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Preface

This volume contains the proceedings of the 29th international conference on the Founda-

tions of Software Technology and Theoretical Computer Science (FSTTCS 2009), organized

under the auspices of the Indian Association for Research in Computing Science (IARCS).

This volume is part of the Leibniz International Proceedings in Informatics (LIPIcs),

published online by Schloss Dagstuhl – Leibniz Zentrum für Informatik, Germany. The

copyrights to the papers will reside with the respective authors. The copyright is governed

by the Creative Commons attribution NC-ND.

This conference attracted 117 submissions. Each submission was reviewed by at least

three independent referees. The final selection of the papers making up the programme

was done through an electronic discussion on EasyChair, held during the first two weeks of

September 2009.

The PC members devoted their valuable time to reviewing papers and coordinating

with reviewers. Without their effort, the conference would not be possble. We express our

deep appreciation to the PC and to all the reviewers.

We have five invited speakers this year: Anuj Dawar, Kim Larsen, Martin Odersky, R.

Ravi and Avi Wigderson. We thank them for having readily accepted our invitation to talk

at the conference and also for their contributions to the proceedings.

We thank the Organizing Committee for making the arrangements for the conference.

This year, the conference is being held at the Indian Institute of Technology, Kanpur, as part

of its golden jubilee celebrations. It is a great honour and privilege for the conference to be

recognized and associated with the institute on this occasion.

We would also like to thank Madhavan Mukund, S P Suresh and V Vinay for their help

in preparing the style files used in typesetting this volume.

December 2009 Ravi Kannan,

K. Narayan Kumar
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ABSTRACT. We propose a new approach for minimizing alternating Büchi automata (ABA). The
approach is based on the so called mediated equivalence on states of ABA, which is the maximal equiv-
alence contained in the so called mediated preorder. Two states p and q can be related by the mediated
preorder if there is a mediator (mediating state) which forward simulates p and backward simulates
q. Under some further conditions, letting a computation on some word jump from q to p (due to
they get collapsed) preserves the language as the automaton can anyway already accept the word
without jumps by runs through the mediator. We further show how the mediated equivalence can
be computed efficiently. Finally, we show that, compared to the standard forward simulation equiv-
alence, the mediated equivalence can yield much more significant reductions when applied within
the process of complementing Büchi automata where ABA are used as an intermediate model.

1 Introduction
Alternating Büchi automata (ABA) are succinct state-machine representations of ω-regular
languages (regular sets of infinite sequences). They are widely used in the area of formal
specification and verification of non-terminating systems. One of the most prominent ex-
amples of the use of ABA is the complementation of nondeterministic Büchi automata [9].
It is an essential step of the automata-theoretic approach to model checking when the speci-
fication is given as a positive Büchi automaton [12] and also learning based model checking
for liveness properties [4]. The other important usage of ABA is as the intermediate data
structure for translating a linear temporal logic (LTL) specification to an automaton [7].

However, because of the compactness of ABA∗, usually the algorithms that work on
them are of high complexity. For example, both the complementation and the LTL transla-
tion algorithms transform an intermediate ABA to an equivalent NBA. The transformation
is exponential in the size of the input ABA. Hence, one may prefer to reduce the size of the
ABA (with some relatively cheaper algorithm) before giving it to the exponential procedure.

In the study of Fritz and Wilke, simulation-based minimization is proven as a very
effective tool for reducing the size of ABA [6]. However, they considered only forward sim-
ulation relations. Inspired by some previous works [1], we believe that backward simulation
can be used for reducing the size of ABA as well. Unfortunately, as will be explained in
Section 3, quotienting wrt. backward simulation (i.e., simplify the automaton by collapsing
backward simulation equivalent states) does not preserve the language.

∗ABA’s are exponentially more succinct than the nondeterministic ones.

c© Abdulla,Chen, Holı́k,Vojnar; licensed under Creative Commons License-NC-ND.
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2 MINIMIZING ALTERNATING BÜCHI AUTOMATA

In this paper, we develop an approach that uses backward simulation for simplifying
ABA indirectly. Instead of looking for a suitable fragment of backward simulation that can
be used to reduce the number of states of an ABA, we combine backward and forward
simulation to form an even coarser relation called mediated preorder that can be used for
minimization. The performance of minimizing ABA with mediated preorder is evaluated on
a large set of experiments. In the experiments, we apply different simulation-based mini-
mization approaches to improve the complementation algorithm of nondeterministic Büchi
automata. The experimental results show that the minimization using mediated preorder
significantly outperforms the minimization using forward simulation. To be more specific,
in average, mediated minimization results in a 30% better reduction in the number of states
and 50% better reduction in the number of transitions than forward minimization on the
intermediate ABA. Moreover, in the complemented nondeterministic Büchi automata, me-
diated minimization results in a 100% better reduction in the number of states and 300%
better reduction in the number of transitions than forward minimization.

2 Basic Definitions
Given a finite set X, we use X∗ to denote the set of all finite words over X and Xω for the
set of all infinite words over X. The empty word is denoted ε and X+ = X∗ \ {ε}. The
concatenation of a finite word u ∈ X∗ and a finite or infinite word v ∈ X∗ ∪ Xω is denoted
by uv. For a word w ∈ X∗ ∪ Xω, |w| is the length of w (|w| = ∞ if w ∈ Xω), wi is the ith
letter of w and wi the ith prefix of w (the word u with w = uv and |u| = i). w0 = ε. The
concatenation of a finite word u and a set S ⊆ X∗ ∪ Xω is defined as uS = {uv | v ∈ S}.

An alternating Büchi automaton is a tuple A = (Σ, Q, ι, δ, α) where Σ is a finite alphabet,
Q is a finite set of states, ι ∈ Q is an initial state, α ⊆ Q is a set of accepting states, and δ : Q×
Σ→ 22Q

is a total transition function. A transition ofA is of the form p a−→ P where P ∈ δ(q, a).
A tree T over Q is a subset of Q+ that contains all nonempty prefixes of each one of its

elements (i.e., T ∪ {ε} is prefix-closed). Furthermore, we require that T contains exactly one
r ∈ Q, the root of T, denoted root(T). We call the elements of Q+ paths. For a path πq, we
use leaf (πq) to denote its last element q. Define the set branches(T) ⊆ Q+ ∪ Qω such that
π ∈ branches(T) iff T contains all prefixes of π and π is not a proper prefix of any path in
T. In other words, a branch of T is either a maximal path of T, or it is a word from Qω such
that T contains all its nonempty prefixes. We use succT(π) = {r | πr ∈ T} to denote the set
of successors of a path π in T, and height(T) to denote the length of the longest branch of T.
The tree U over Q is a prefix of T iff U ⊆ T and for every π ∈ U, succU(π) = succT(π) or
succU(π) = ∅. The suffix of T defined by a path πq is the tree T(πq) = {qψ | πqψ ∈ T}.

Given a word w ∈ Σω, a tree T over Q is a run ofA on w, if for every π ∈ T, leaf (π)
w|π|−−→

succT(π) is a transition of A. Finite prefixes of T are called partial runs on w. A run T of A
over w is accepting iff every infinite branch of T contains infinitely many accepting states.
A word w is accepted by A from a state q ∈ Q iff there exists an accepting run T of A over
w with root(T) = q. The language of a state q ∈ Q in A, denoted LA(q), is the set of all
words accepted by A from q. Then L(A) = LA(ι) is the language of A. For simplicity
of presentation, we assume in the rest of the paper that δ never allows a transition of the
form p a−→ ∅. This means that no run can contain a finite branch. Any automaton can be
easily transformed into one without such transitions by adding a new accepting state q with
δ(q, a) = {{q}} for every a ∈ Σ and replacing every transition p a−→ ∅ by p a−→ {q}.
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3 Simulation Relations
In this section, we give the definitions of forward and backward simulation over ABA and
discuss some of their properties. The notion of backward simulation is inspired by a similar
tree automata notion studied in [1, 3]—namely, the upward simulation parametrised by a
downward simulation (the connection between tree automata and ABA follows from the
fact that the runs of ABA are in fact trees).

For the rest of the section, we fix an ABAA = (Σ, Q, ι, δ, α). We define relations �α and
�ι on Q s.t. q �α r iff q ∈ α =⇒ r ∈ α and q �ι r iff q = ι =⇒ r = ι. For a binary relation
� on a set X, the relation�∀∃ on subsets of X is defined as Y �∀∃ Z iff ∀z ∈ Z. ∃y ∈ Y. y � z,
i.e., iff the upward closure of Z wrt. � is a subset of the upward closure of Y wrt. �.

Forward Simulation. A forward simulation on A is a relation �F ⊆ Q×Q such that p �F r
implies that (i) p �α r and (ii) for all p a−→ P, there exists a r a−→ R such that P �∀∃F R.

For the basic properties of forward simulation, we rely on the work [8] by Gurumurthy
et al. In particular, (i) there exists a unique maximal forward simulation �F on A which is
reflexive and transitive, (ii) for any q, r ∈ Q such that q �F r, it holds that LA(q) ⊆ LA(r),
and (iii) quotienting wrt. �F ∩ �−1

F preserves the language of A.

Backward Simulation. Let �F be a forward simulation on A. A backward simulation on A
parameterized by �F is a relation �B ⊆ Q × Q such that p �B r implies that (i) p �ι r,
(ii) p �α r, and (iii) for all q a−→ P ∪ {p}, p 6∈ P, there exists a s a−→ R ∪ {r}, r 6∈ R such that
q �B s and P �∀∃F R. The below lemma describes some properties of backward simulation.

LEMMA 1. For any reflexive and transitive forward simulation�F onA, there exists a unique
maximal backward simulation�B onA parameterized by�F that is reflexive and transitive.

Backward simulation itself cannot be used for quotienting. In [2], we give an exam-
ple of an automaton, where quotienting using backward simulation does not preserve lan-
guage. However, in Section 4.1, we show how backward simulation can be used to define a
new relation for reducing ABA.

Let �F and �B be forward and backward simulations on A, which are both reflexive
and transitive. For every x ∈ {B, F, α}, we extend the relation �x to Q+ ×Q+ such that for
π, ψ ∈ Q+, π �x ψ iff |π| = |ψ| and for all 1 ≤ i ≤ |π|, πi �x ψi. We say that ψ forward
simulates π, ψ backward simulates π, or ψ is more accepting than π when π �F ψ, π �B ψ,
or π �α ψ, respectively. This notation is further extended to trees. For trees T, U over Q and
for x ∈ {α, F}, we write, T �x U if branches(T) �∀∃x branches(U). Similarly, we say that U
forward simulates T, or U is more accepting than T when T �F U, or T �α U, respectively.
Note that �x is reflexive and transitive for all the variants of x ∈ {F, B, α} defined over
states, paths, or trees (this follows from the assumption that the original relations �F and
�B on states are reflexive and transitive). Moreover, �B ⊆ �α, �B ⊆ �ι, and �F ⊆ �α.

The following two lemmas formulate properties of the simulation relations that we will
use in the rest of the paper.

LEMMA 2. For any p, r ∈ Q with p �F r and a partial run T of A on w ∈ Σω with the root p,
there is a partial run U of A on w with the root r such that T �F U.

For a tree T over Q, π ∈ T, and 1 ≤ i ≤ |π|, the set T 	i π is the union of branches
of suffix trees T(πiq), q ∈ succT(πi), with the branches of the suffix tree T(πi+1) excluded.
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Figure 1: Illustration of the lemmas

Formally, let Qi = succT(πi) \ {πi+1} be the set of all successors of πi in T without the
successor continuing in π. Then T 	i π =

⋃
q∈Qi branches(T(πiq)) (notice that if i = 0, then

T 	i π = ∅).

LEMMA 3. For any p, r ∈ Q with p �B r, a partial run T ofA on w ∈ Σω and π ∈ branches(T)
with leaf (π) = p, there is a partial run U of A on w and ψ ∈ branches(U) with leaf (ψ) = r
such that π �B ψ, and for all 1 ≤ i ≤ |π|, T 	i π �∀∃F U 	i ψ.

4 Mediated Equivalence and Quotienting
Here we discuss the possibility of an indirect use of backward simulation for simplifying
ABA via quotienting. We do not look for a suitable fragment of backward simulation only.
Instead, we (1) combine backward and forward simulation to form an equivalence that sub-
sumes both backward and forward simulation equivalence and (2) take a certain fragment
of this equivalence, called mediated equivalence, that can be used for quotienting.

4.1 The Notion and Intuition of Mediated Equivalence
Collapsing states of an automaton wrt. some equivalence allows a run that arrives to some
state to jump to another equivalent state and continue from there. Alternatively, this can be
viewed as extending the source state of the jump by the outgoing transitions of the target
state†. The equivalence must have the property that the language is not increased even
when the jumps (or, alternatively, transition extensions) are allowed. This is what we aim
at when introducing the mediated equivalence ≡M based on a so called mediated preorder �M.
The mediated preorder �M will in particular be defined as a suitable transitive fragment of
�F ◦ �−1

B in the following.
The intuition behind allowing a run to jump from a state r to a state q such that q �F

◦ �−1
B r is the existence of the so called mediator, i.e., a state s such that q �F s �−1

B r
(cf. Fig. 2(a)). The state s can be reached in the same way and in the same context‡ as r, and,
at the same time, the automaton can continue from s in the same way as from q. Hence,
intuitively, the newly allowed run based on the jump from r to q does not add anything to
the language because it can anyway be realized through s without jumps.

Unfortunately, the relation �F ◦ �−1
B cannot be directly used as it is not transitive, and

taking its symmetric closure would thus not yield an equivalence. We thus have to take
some of its transitive fragments. This is natural as if the automaton can safely jump from q1
to q2 and from q2 to q3, it should be able to safely jump from q1 to q3 too.

This is, however, still not enough. Not all of the transitive fragment of �F ◦ �−1
B can

be used for quotienting. We can only take a fragment �M that is forward extensible, meaning

†The first view is better when explaining the intuition whereas the other is easier to be used in proofs.
‡If a state s is a leaf of a partial run, then by a context of s we mean all the other leaves of the partial run.
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Figure 2: Basic Intuition Behind Mediated Equivalence

that if q1 �M q2 �F q3, then q1 �M q3. The intuitive meaning of this requirement is the
following. When a run jumps from r to q, it may be the case that r is again reached later on
or it appears in the context of itself (cf. Fig. 2(b)). If r is reached in the continuation of the
run from q, the mediated preorder assures that there is some state y in the run continuing
from the mediator s that forward simulates r. Similarly, if the context of r contains another
occurrence of r, there is some state y in the context of s that forward simulates r. However,
this forward simulation is in general guaranteed to hold only when no further jumps are
allowed. In order to guarantee a possibility of further simulation, we require that if the
computation is allowed to jump from r to q, it is allowed to jump from y to q too.

Finally, to make the mediated equivalence applicable, we must pose one more require-
ment. Namely, we require that the transitions of the given ABA are not �F-ambiguous,
meaning that no two states on the right hand side of a transition are forward equivalent.
Intuitively, allowing such transitions goes against the spirit of the backward simulation. For
a mediator p to backward simulate a state r wrt. rules ρ1 : p′ a−→ P ∪ {p}, p 6∈ P, and
ρ2 : r′ a−→ R ∪ {r}, r 6∈ R, it must be the case that each state x in the context P of p within ρ1
is less restrictive (i.e., forward bigger) than some state y in the context R of r within ρ2. The
state r itself is not taken into account when looking for y because we aim at extending its be-
haviour by collapsing (and it could then become less restrictive than the appropriate x). In
the case of �F-ambiguity, the spirit of this restriction is in a sense broken since the forward
behaviour of r may still be taken into account when checking that the context of p is less
restrictive than that of r. This is because the behaviour of r appears in R as the behaviour
of some other state r′′ too. Consequently, r and r′′ may back up each other in a circular way
when checking the restrictiveness of the contexts within the construction of the backward
simulation. Both of them can then seem extensible, but once their behaviour gets extended,
the restriction of their context based on their own original behaviour is lost, which may then
increase the language (an example of such a scenario is given in [2]). However, in Section
5, we show that �F-ambiguity can be efficiently removed.

Mediated Preorder and Equivalence. Let�F be a reflexive and transitive forward sim-
ulation onA, and�B a reflexive and transitive backward simulation onA parameterized by
�F. A preorder �M ⊆ �F ◦ �−1

B such that for all q, r, s ∈ Q, q �M r �F s implies q �M s, is
a mediated preorder induced by �F and �B. The relation ≡M = �M ∩ �−1

M is then a mediated
equivalence induced by �F and �B.

LEMMA 4.[3] There is a unique maximal mediated preorder �M induced by �F and �B.
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4.2 Extending Automata According to Mediated Preorder Preserves Language
Quotient Automata versus Extended Automata. We first show that quotienting can be seen
as a simpler operation of adding transitions and accepting states. Let A = (Σ, Q, ι, δ, α) be
an ABA and let ≡ be an equivalence on Q such that ≡ = � ∩ �−1 for some preorder �. Let
the automaton A/≡ be the quotient of A wrt. ≡ that arises by merging ≡-equivalent states
of A, and let A+ be the automaton extended according to �, that is created as follows: for
every two states q, r ofAwith q � r, (i) add all outgoing transitions of q to r, (ii) if q ≡ r and
q is final, make r final.

The automata A/≡ and A+ are formally defined as follows. Let Q/≡ denote the
quotient of Q wrt. ≡, and let [q] denote the equivalence class of ≡ containing q. Then
A/≡ = (Σ, Q/≡, [ι], δ/≡, {[q] | q ∈ α}) and A+ = (Σ, Q, δ+, ι, α+), where α+ = {p | ∃q ∈
α. q ≡ p} and, for each a ∈ Σ, q ∈ Q, δ/≡([q], a) =

⋃
p∈[q]{{[p′] | p′ ∈ P} | P ∈ δ(p, a)} and

δ+(q, a) =
⋃

p∈Q∧p�q δ(p, a). It is not difficult to show that L(A/≡) ⊆ L(A+) [2] (Lemma
8 in [2]). Hence, if adding transitions and accepting states according to � preserves the
language, then quotienting according to ≡ preserves the language too.

Language Preservation by Mediated Equivalence. We now give a sketch of the proof
that extending automata according to the mediated preorder preserves the language. The
full proofs can be found in [2]. For the rest of the section, we fix an ABA A = (Σ, Q, ι, δ, α),
a reflexive and transitive forward simulation �F onA such thatA is �F-unambiguous, and
a reflexive and transitive backward simulation �B on A parameterized by �F. Let �M be a
mediated preorder induced by�F and�B, and letA+ be the automaton extended according
to �M. Let ≡M = �M ∩�−1

M .
We want to prove that L(A+) = L(A). The nontrivial part is showing that L(A+) ⊆

L(A)—the converse is obvious. To prove L(A+) ⊆ L(A), we need to show that, for every
accepting run of A+ on a word w, there is an accepting run of A on w. We proceed as
follows. We first prove Lemma 5, which shows how partial runs of A with an increased
power of their leaves (wrt. �F) can be built incrementally from other runs of A, bridging
the gap between A and A+. Then we prove Lemma 7 saying that, for every partial run on
a word w of A+, there is a partial run of A on w that is more accepting (recall that partial
runs are finite). By carry this result over to infinite runs we get the proof of Theorem 8.

Consider a partial run T ofA on a word w, we choose for each leaf p of T an�M-smaller
state p′. Suppose that we allow p to make one step using the transitions of p′ or to become
accepting if p′ is accepting and p′ ≡M p. (Thus, we give the leaves of T a part of the power
they would have in A+). We will show that there exists a partial run U of A on w such that
(1) it is more accepting than T, and (2) the leaves of U can mimic the next step of the leaves
of T even if the leaves of T use their extended power.

The above is formalized in Lemma 5 using the following notation. For a partial run T
of A on w, we define ext as an extension function that assigns to every branch π of T a state
ext(π) such that ext(π) �M leaf (π).

Let U be a partial run ofA on w. For two branches π ∈ branches(T) and ψ ∈ branches(U),
we say that ψ strongly covers π wrt. ext, denoted π �ext ψ, iff π �α ψ and ext(π) �F leaf (ψ).
Similarly, we say that ψ weakly covers π wrt. ext, denoted π �w-ext ψ, iff π �α ψ and
ext(π) �M leaf (ψ). We extend the concept of covering to partial runs as follows. We write
T �ext U (U strongly covers T wrt. ext) iff branches(T) �∀∃ext branches(U) and root(T) �B
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root(U). Likewise, we write T �w-ext U (U weakly covers T wrt. ext) iff branches(T) �∀∃w-ext
branches(U) and root(T) �B root(U). Note that we have �ext ⊆ �w-ext for branches as well
for partial runs because �F ⊆ �M. So, the strong covering implies the weak one.

LEMMA 5. For any partial run T of A on a word w with an extension function ext, there is
a partial run U of A on w with T �ext U.

Proving Lemma 5 is the most intricate part of the proof of Theorem 8. We introduce the
concepts used within the proof of Lemma 5 and provide an overview of the proof.

If T �ext T, we are done as in the statement of the lemma, we can take T to be U. So,
suppose that T �ext T. Observe that root(T) �B root(T), and every branch of T weakly
covers itself, which means that T �w-ext T. We will show how to reach U by a chain of
partial runs derived from T. The partial runs within the chain will all weakly cover T. Runs
further from T will in some sense cover T more strongly than the runs closer to T. The last
partial run of the chain will cover T strongly. To do this, we need a suitable measure that,
for a partial run V of A on w with T �w-ext V, tells us how strongly V covers T.

To define the measure, we concentrate on branches of V that cause that V does not cover
T strongly. These are branches ψ ∈ branches(V) for which there is no π ∈ branches(T) with
π �ext ψ (there are only some π ∈ branches(T) with π �w-ext ψ). We call them strict weakly
covering branches. Let swT(V) denote the tree which is the subset of V containing prefixes
of strict weakly covering branches of V wrt. T. Note that T �ext V iff V contains no strict
weakly covering branches, which is equivalent to swT(V) = ∅. For a partial run W of A
on w, we will define which of V and W cover T more strongly by comparing swT(V) and
swT(W). For this, we need the following definitions.

Given a finite tree X over Q and τ ∈ Q+, we define the tree decomposition of X according
to τ as the sequence of (finite) sets of paths 〈τ, X〉 = X	1 τ, X	2 τ, . . . , X	|τ| τ. We also let
〈ε, X〉 = branches(X), which is a sequence of length 1. Notice that under the condition that
τ 6∈ branches(X), 〈τ, X〉 = ∅ . . . ∅ implies that X = ∅§.

Let τV ∈ V ∪ {ε} and τW ∈ W ∪ {ε} be such that τV 6∈ branches(swT(V)) and τW 6∈
branches(swT(W)). We say that W covers T more strongly than V wrt. τV and τW , denoted
V ≺T

τV ,τW
W, iff root(V) �B root(W) and 〈τV , swT(V)〉 @ 〈τW , swT(W)〉, where @ is a binary

relation on sequences of sets of paths defined as follows.
For two sets of paths P and P′, we use P ≺∀∃F P′ to denote that P �∀∃F P′ but not

P′ �∀∃F P. In other words, the upward closure of P′ wrt. �F is a proper subset of the
upward closure of P wrt. �F. Then, for sequences of finite sets S, S′ ∈ (2Q)+, S @ S′

iff there is some k ∈ N, k ≤ min{|S|, |S′|}, such that Sk ≺∀∃F S′k and for all 1 ≤ j < k,
Sj �∀∃F S′j. It is not hard to show that the relation @ is a partial order. Observe that @
does not allow infinite increasing chains of sequences where the length of the sequences
is bounded by some constant (this follows from that �F compares only paths of an equal
length and therefore every increasing chain of finite sets of paths related by ≺∀∃F is finite).
Moreover, S @ ∅ . . . ∅ for every sequence of sets of paths S 6= ∅ . . . ∅.

§Note that if τ ∈ branches(X), 〈τ, X〉 = ∅ . . . ∅ does not imply X = ∅ as τ could be the only branch of X. This
is important as for a partial run Y and τ′ ∈ Y, if τ′ 6∈ branches(Y), the implications 〈τ′, swT(Y)〉 = ∅ . . . ∅ =⇒
swT(Y) = ∅ =⇒ T �ext Y hold. However, the first implication does not hold if τ′ ∈ branches(Y).
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LEMMA 6. Given a partial run V of A on w s.t. T �w-ext V, T 6�ext V, and τV ∈ V ∪ {ε} with
τV 6∈ branches(swT(V)), we can construct a partial run W of A on w with T �w-ext W and
a path τW ∈W with τW 6∈ branches(swT(W)) such that V ≺T

τV ,τW
W.

PROOF. [Sketch] The proof of Lemma 6 relies on Lemma 3 and the definition of �M. We
first choose a suitable branch π of swT(V) as follows. Let 1 ≤ k ≤ |τV | be some index such
that swT(V)	k τV is nonempty. If τV = ε, then k = 1. We choose some π′ ∈ swT(V)	k τV
which is minimal wrt. �F, meaning that there is no π′′ ∈ swT(V) 	k τV different from
π′ such that π′′ �F π′. We put π = τk

Vπ′. We note that this is the place where we use
the �F-unambiguity assumption. If A was �F-ambiguous, there need not be a k such that
swT(V)	k τV contains a minimal element wrt. �F.

From ext(π) �M leaf (π), there is a mediator s with ext(π) �F s �B leaf (π). We apply
Lemma 3 to V, π, leaf (π) and s, which give us a partial run W and ψ ∈ branches(W) with
leaf (ψ) = s such that π �B ψ, and for all 1 ≤ i ≤ |π|, V 	i π �∀∃F W 	i ψ. Let τW = ψ. The
proof can be concluded by showing that (i) T �w-ext W, (ii) τW 6∈ branches(swT(W)), and (iii)
〈τV , swT(V)〉 @ 〈τW , swT(W)〉, which implies V ≺T

τV ,τW
W.

Now we construct a run U strongly covering T as follows. Starting from T and ε, we can
construct a chain T ≺T

ε,τ1
T1 ≺T

τ1,τ2
T2 ≺T

τ2,τ3
T3 . . . by successively applying Lemma 6 for each

i, τi ∈ Ti, τi 6∈ branches(swT(Ti)), and T �w-ext Ti. Observe that by the definition of stronger
covering, we have that 〈ε, swT(T)〉 @ 〈τ1, swT(T1)〉 @ 〈τ2, swT(T2)〉 @ 〈τ3, swT(T3)〉 . . . No-
tice that, for each i, as T �w-ext Ti, height(Ti) = height(T). Therefore the length of τi as well
as the length of 〈τi, swT(Ti)〉 are bounded by height(T).

Recall that (i) the relation @ is a partial order, (ii) that @ does not allow infinite increas-
ing chains of sequences where the length of the sequences is bounded by some constant, and
(iii) that S @ ∅ . . . ∅ for every sequence S 6= ∅ . . . ∅. This means that after a finite number
of steps, this chain must arrive to its last Tk and τk with 〈τk, swT(Tk)〉 = ∅ . . . ∅. This means
that swT(Tk) = ∅, which implies that T �ext Tk. We can put U = Tk and Lemma 5 is proven.

Now we can use Lemma 5 to prove Lemma 7. It relates partial runs of A+ with partial
runs of A by the relation �α+⇒α defined as follows. For two states q and r, q �α+⇒α r iff
q ∈ α+ =⇒ r ∈ α. For two paths π, ψ ∈ Q+, π �α+⇒α ψ iff |π| = |ψ| and for all
1 ≤ i ≤ |π|, πi ∈ α+ =⇒ ψi ∈ α. Finally, for finite trees T and U over Q, we use
T �α+⇒α U to denote that branches(T) �∀∃α+⇒α branches(U).

LEMMA 7. For any partial run T of A+ on w ∈ Σω, there exists a partial run U of A on w
such that root(T) �B root(U) and T �α+⇒α U.

The proof of Lemma 7 is done by induction on the structure of T, where the induction
step employs Lemma 5 (which bridges the gap between A+ and A by showing that there
is a partial run of A strongly covering T even when the power of its leaves is extended by
transitions of some �M-smaller states). With Lemma 7 in hand, we can prove that for each
accepting run ofA+ on a word w, there is an accepting run ofA on w. This requires to carry
Lemma 7 from finite partial runs to full infinite runs¶. This results in Theorem 8, which
together with the fact that L(A/≡) ⊆ L(A+) immediately gives Corollary 9.

¶For an accepting run T ofA+ on a word w, Lemma 7 gives us for every k ∈N and a prefix of T of the height
k a partial run of U of the same height that is more accepting. From the infinite set of partial runs of A obtained
this way, we can construct an accepting run of A on w. The details may be found in [2] and in [2].
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THEOREM 8. L(A+) = L(A).

COROLLARY 9. Quotienting with mediated equivalence preserves the language.

5 Algorithm for Computing Mediated Preorder
In this section, we describe an algorithm for computing mediated preorder on an ABA A =
(Σ, Q, ι, δ, α). We first explain how to compute the maximal forward simulation �F and
backward simulation �B of A. Both �F and �B will be used as the input parameters for
computing the mediated preorder �M. In the rest of the section, we will fix A as the input
ABA, use n for the number of states in A, and use m for the number of transitions in A.

Forward Simulation. The algorithm for computing maximal forward simulation �F on
A can be found in Fritz and Wilke’s work [5] (it is called direct simulation in their paper).
They reduce the problem of computing maximal forward simulation to a simulation game.
Although Fritz and Wilke use a slightly different definition of ABA, it is easy to translate A
to an ABA under their definition with O(n + m) states and O(nm) transitions and then use
their algorithm to compute �F. The time complexity of the above procedure is O(nm2).

Removing Ambiguity. As shown in Section 4.1, A needs to be �F-unambiguous for me-
diated minimization. Here we describe how to modifyA to make it not�F-ambiguous. The
modification does not change the the language of A and also the forward simulation rela-
tion �F, therefore we do not need to recompute forward simulation again for the modified
automaton.

Here we describe the ambiguity removal procedure. For every transition p a−→ P with
P = {p1, . . . , pk} and for each i ∈ {1, . . . , k}, we check if there exists some i < j ≤ k such
that pj �F pi. If there is one, remove pi from P. This procedure has time complexity O(n2m).

Backward Simulation. We now show how to translate the problem of computing maximal
backward simulation to a problem of computing maximal simulation on a labeled transition
system.

Computing Simulation on Labeled Transition Systems. Let T = (S,L,→) be a finite labeled
transition system (LTS), where S is a finite set of states, L is a finite set of labels, and → ⊆
S×L× S is a transition relation. A simulation on T is a binary relation �L on S such that if
q �L r and (q, a, q′) ∈ →, then there is an r′ with (r, a, r′) ∈ → and q′ �L r′.

Here we describe the problem of computing the maximal simulation on an LTS. Given
an LTS T = (S,L,→) and an initial preorder I ⊆ S × S, the task is to find out the unique
maximal simulation on T included in I. An algorithm for computing maximal simulation�I

on the LTS T included in I with time complexity O(|L|.|S|2 + |S|.|→|) and space complexity
O(|L|.|S|2) can be found in [1].

Computing Backward Simulation via a Reduction to LTS. The problem of computing the
maximal backward simulation onA can be reduced to the problem of computing simulation
on an LTS. In order to simplify the explanation of the reduction, we first make the following
definition. An environment is a tuple of the form (p, a, P \ {p′}) obtained by removing a state
p′ ∈ P from the transition p a−→ P of A. Intuitively, an environment records the neighbors of
the removed state p′ in the transition p a−→ P. We denote the set of all environments of A by
Env(A). Formally, we define the LTS A� = (Q�, Σ, ∆�) as follows:
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Figure 3: An example of the reduction from an ABA transition to LTS transitions

• Q� = {q� | q ∈ Q} ∪ {(p, a, P)� | (p, a, P) ∈ Env(A)}.
• ∆� = {(p, a, P \ {p′})� a−→ p�, p′� a−→ (p, a, P \ {p′})� | P ∈ δ(p, a), p′ ∈ P}.

An example of the reduction is given in Figure 3. The goal of this reduction is to obtain
a simulation relation on A� with the following property: p� is simulated by q� in A� iff
p �B q in A. However, the maximal simulation on A� is not sufficient to achieve this goal.
Some essential conditions for backward simulation (e.g., p �B q =⇒ p �α q) are missing in
A�. This can be fixed by defining a proper initial preorder I.

Formally, we define I = {(q�1 , q�2 ) | q1 �ι q2 ∧ q1 �α q2} ∪ {((p, a, P)�, (r, a, R)�) |
P �∀∃F R}. Observe that I is a preorder. Recall that according to the definition of the
backward simulation, p �B r implies that (1) p �ι r, (2) p �α r, and (3) for all transi-
tions q a−→ P ∪ {p}, p 6∈ P, there exists a transition s a−→ R ∪ {r}, r 6∈ R such that q �B s and
P �∀∃F R. The set {(q�1 , q�2 ) | q1 �ι q2 ∧ q1 �α q2} encodes the conditions (1) and (2) required
by the backward simulation, while the set {((p, a, P)�, (r, a, R)�) | P �∀∃F R} encodes the
condition (3). A simulation relation �I can be computed using the aforementioned proce-
dure with LTS A� and the initial preorder I. The following theorems shows the correctness
and complexity of computing backward simulation.

THEOREM 10. For all q, r ∈ Q, we have q �B r iff q� �I r�.

THEOREM 11. Computing backward simulation has both time and space complexity O(nm3).

The complexity comes from three parts of the procedure: (1) compiling A into its cor-
responding LTS A�, (2) computing the initial preorder I, and (3) running the algorithm
for computing the LTS simulation relation. The LTS A� has at most nm+n states and 2nm
transitions. It follows that Part (3) has time complexity O(|Σ|n2m2) and space complexity
O(|Σ|n2m2). In [2], we show that among the three parts, Part (3) has the highest time‖ and
space complexity and therefore computing backward simulation also has time complexity
O(|Σ|n2m2) and space complexity O(|Σ|n2m2). Under our definition of ABA, every state
has at least one outgoing transition for each symbol in Σ. It follows that m ≥ |Σ|n. There-
fore, we can also say that the procedure for computing maximal backward simulation has
time complexity O(nm3) and space complexity O(nm3).

Mediated Preorder. Here we explain how to compute the mediated preorder �M of A
from �F and �B. It is proved in [1] that �M equals the maximal relation R ⊆�F ◦ �−1

B
satisfying x R y �F z =⇒ x (�F ◦ �−1

B ) z. Based on the result, we can obtain the mediated
preorder by the following procedure. Initially, let �M = �F ◦ �−1

B . For all (p, q) ∈ �M, if
there exists some (q, r) ∈ �F such that (p, r) /∈ �F ◦ �−1

B , remove (p, q) from �M. A naive
implementation of this simple procedure has time complexity O(n3).

‖In [2] we will describe an efficient algorithm for computing I. It has time complexity O(n2m2) and space
complexity O(n2m2).
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6 Experimental Results
In this section, we evaluate the performance of mediated minimization by applying it to
accelerate the algorithm proposed by Vardi and Kupferman [9] for complementing nonde-
terministic Büchi automata (NBA). In this algorithm, ABA’s are used as intermediate no-
tion for the complementation. To be more specific, the complementation algorithm has two
steps: (1) it translates an NBA to an ABA that recognizes its complement language, and (2) it
translates the ABA back to an equivalent NBA. The second step is an exponential procedure
(exponential in the size of the ABA), hence reducing the size of the ABA before the second
step usually pays off.

The experimentation is carried out as follows. Three sets of 100 random NBA’s (of |Σ| =
2,4, and 8, respectively) are generated by the GOAL [11] tool and then used as inputs of the
complementation experiments. We compare results of experiments performed according
to the following different options: (1) Original: keep the ABA as what it is, (2) Mediated:
minimizing the ABA with mediated equivalence, and (3) Forward: minimizing the ABA
with forward equivalence.

For each input NBA, we first translate it to an ABA that recognizes its complement lan-
guage. The ABA is (1) processed according to one of the options described above and then
(2) translated back to an equivalent NBA using an exponential procedure ∗∗. The results
are given in Table 1 and Table 2. Table 1 is an overall comparison between the three dif-
ferent options and Table 2 is a more detailed comparison between Mediated and Forward
minimization.

|Σ| NBA Complemented-NBA Time (ms) Timeout
St. Tr. St. Tr. (10 min)

Original
2 2.5 3.3

13.9 52.75 5500.9 0
Mediated 6.68 34.02 524.7 0
Forward 9.45 55.25 5443.7 1
Original

4 3.3 6.0
46.4 348.5 9298.6 6

Mediated 20.42 235.5 1985.4 6
Forward 26.88 325.6 1900.6 7
Original

8 4.7 11.9
127.1.3 1723.4 33429.4 24

Mediated 57.63 1738.3 12930.6 21
Forward 81.23 2349.2 22734.2 24

Table 1: Combining minimization with complementation.

In Table 1, the columns
“NBA” and “Complemented-
NBA” are the average statisti-
cal data of the input NBA and
the complemented NBA. The
column “Time(ms)” is the av-
erage execution time in mil-
liseconds. “Timeout” is the
number of cases that cannot
finish within the timeout pe-
riod (10 min). Note that in the table, the cases that cannot finish within the timeout period
are excluded from the average number. From this table, we can see that minimization by
mediated equivalence can effectively speed up the complementation and also reduce the
size of the complemented NBA’s.

|Σ| Minimized-ABA Complemented-NBA
St. Tr. St. Tr.

Average 2 33.54% 51.62% 63.3% 235.56%
Difference 4 36.24% 51.44% 89.9% 298.99%

8 27.94% 40.88% 152.3% 412.7%

Table 2: Comparison: Mediated v.s. Forward

In Table 2, we compare the perfor-
mance between Mediated and Forward
minimization in detail. The columns
“Minimized-ABA” and “Complemented-
NBA” are the average difference in the
sizes of the ABA after minimization and the complemented BA. From the table, we observe
that mediated minimization results in a much better reduction than forward minimization.

∗∗For the option “Original”, we also use the optimization suggested in [9] that only takes consistent subset.
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7 Conclusion and Future Work
We combined forward and backward simulation to form a coarser relation called mediated
preorder and showed that quotienting wrt. mediated equivalence preserves the language of
ABA. Moreover, we developed an efficient algorithm for computing mediated equivalence.
Experimental results show that the mediated reduction of ABA significantly outperforms
the reduction based on forward simulation. In the future, we would like to extend our
experiments to other applications such as LTL to NBA translation. We would like to extend
the mediated equivalence by building it on top of even coarser forward simulation relations,
e.g., delayed or fair forward simulation [6]. Also, we intend to study possibilities of using
mediated preorder to remove redundant transitions (in a similar way to [10]). We believe
that the extensions described above can improve the performance of mediated reduction.
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ABSTRACT. Message Ferrying is a mobility assisted technique for working around the disconnect-
edness and sparsity of Mobile ad hoc networks. One of the important questions which arise in this
context is to determine the routing of the ferry, so as to minimize the buffers used to store data at
the nodes in the network. We introduce a simple model to capture the ferry routing problem. We
characterize stable solutions of the system and provide efficient approximation algorithms for the
MIN-MAX BUFFER PROBLEM for the case when the nodes are on hierarchically separated metric
spaces.

1 Introduction
Message Ferrying is a new approach developed to assist communication in Mobile ad-hoc
networks [6, 15, 16, 17, 18]. Mobile ad-hoc networks are typically deployed with limited
infrastructure. Moreover, due to various conditions like limited radio range, physical ob-
stacles or inclement weather, some nodes in the network might not be able to communicate
with others. This could result in a disconnected network. In such situations, a typical net-
work protocol might not yield good results. Message Ferrying is an approach which works
around such problems. The message ferrying technique makes use of mobile nodes, called
“ferries”, which are able to collect and transport data from one node to another. Message
ferries move around the deployed area according to known routes and communicate with
other nodes they meet. By using ferries as relays, nodes can communicate asynchronously
with other nodes that are disconnected.

The Message Ferrying scheme raises many theoretical questions that are currently open.
For example, Zhao et.al [17] have developed ad hoc codes that decide how the ferries should
move. While these codes appear to perform well in simulations there are no bounds on the
performance of their heuristic methods. The data at the nodes has to be locally stored in
buffers till it can be passed on to the ferries. In this paper, we look at the buffer optimization
problem for the nodes in the network. We devise routing schemes for the ferries so that the
maximum buffer utilization at any node is minimized.

We do the following in this paper.
• Formalize models for the Message Ferry routing problems.
• State exact conditions for the Stability Problem of ensuring finite buffers.
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• Devise approximation algorithms for buffer optimization.
We feel that the main contribution of this work is in the creation of the precise models

for the Message Ferrying problem. We feel that similarly motivated problems, stemming
from direct practical applications could be important in the future. The algorithms and
techniques in this paper are fairly preliminary; these are just the first steps towards under-
standing the Message Ferrying problem.

1.1 Model and Problem Statement

We model the problem in the following manner. We look at all the connected components
of the network. Since the network can communicate within a connected component using
traditional protocols, we can model each connected component as a node. The connected
components are modeled as nodes numbered [n] in a metric space. The metric space induces
a distance d(·, ·) on the nodes. The ferries are assumed to be devices with infinite storage
capacity traveling across the space at unit speed. We assume that node i generates data at a
rate ri which is to be passed on to the ferries (the data can then in turn be transferred from
the ferry to other nodes). The rate of data transfer from the nodes to the ferries is given by
rF. Unless otherwise stated, we shall assume that there is only one ferry. We wish to provide
message ferrying schemes which are optimal.

A Message Ferrying scheme is an (infinite) sequence σ of tuples (i, t), where i denotes
the node visited and t the time spent exchanging data with i in this visit. We need to look
at the case where the ferry can read data at an infinite speed, i.e. rF = ∞, separately. In this
case, it is clearly undesirable to spend any time at a node, as all the data is read instanta-
neously. Then all we need to specify is a sequence of nodes. Although the sequence could
be infinite, we prove that periodically repeating sequences of finite periods suffice for our
purposes.

Any viable Message Ferrying scheme would need to be optimized over a large number
of disparate parameters like delay minimization and packet loss. Currently, ad hoc and
complex measures are used for performance evaluation [7, 18]. We propose two concrete
measures and present results for the same. Our first measure is the notion of stability. A
Message Ferrying scheme is called stable, if the maximum amount of data stored at a node
at any point of time is bounded. This is clearly desirable as a node can have only a fixed
finite buffer.

DEFINITION 1.STABILITY PROBLEM

Given the rates ri and rF, and the distance metric d, is there a Message Ferrying scheme such
that the required buffers at all the nodes are bounded?

Our second problem is to optimize the maximum buffer size required over all nodes. That is,
given that the rates satisfy the stability conditions, we need to find the scheme minimizing
the maximum buffer of any node. Later, we shall see (theorem 20) that the stability criterion
for the problem with multiple ferries reduces to that with a single ferry. So it makes sense
to look at the optimization problem when only one ferry is involved.
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DEFINITION 2.MIN-MAX BUFFER PROBLEM (MMBP)
Given the data rates ri and ferry rate rF, and the distance metric d, find the order of ferry
visits so as to minimize the maximum buffer required at any node.

As we shall see in Section 3, the above problem turns out to be as hard as solving TSP
on the same metric. The MMBP problem is thus a variant of the TSP problem where the
objective is not to optimize the length of the tour, rather minimize a sort of weighted delay.
Variants of TSP [1, 13], have been studied extensively in the past, although none imply
anything about the problem we study.

In section 2, we characterize the necessary and sufficient conditions for stability of a so-
lution. In section 3, we first prove the NP hardness of MMBP problem. We subsequently ob-
tain approximation algorithms for MMBP under restricted metric spaces. In particular, we
give a constant factor approximation algorithm for hierarchically well separated trees (HSTs) of
constant height, and, a 4

3 -factor approximation ratio for the uniform metric case. We extend
this to an O(n)-factor algorithm for HSTs of height O(log n). Notice that even though n
may be large, this approximation ratio holds for arbitrarily large rates ri of data generation
at nodes as well. We look at some simple extensions to the MMBP problem in section 4.
In section 5, we conclude with some remarks and open problems suggesting specific future
directions of work.

2 Characterization of stable instances
In this section, we give necessary and sufficient conditions for the existence of stable solu-
tions. We consider the case when there is only one ferry, the node data rates are ri, ferry rate
is rF and the data is only sent from nodes to the ferry. We then use this to obtain results for
the general case.

For the case mentioned above, note that ∑n
i=1 ri < rF is a necessary condition for a stable

solution if any of the distances are non-zero. Otherwise the total rate of generation of data
in the nodes exceeds the rate at which it can be read by the ferry. In the next theorem, we
show that this necessary condition is also sufficient.

THEOREM 3. Given rates ri for the nodes, ferry rate rF, any distances d, a stable solution
exists if ∑ ri < rF.

PROOF. Consider the sequence that visits nodes in order 1 to n, spending time t1, t2, . . . , tn
at them respectively and repeats. Suppose it takes time T to travel from 1 to n in that order.

Now notice that the following is enough for stability: for every node j, the amount
of data consumed by the ferry in one visit must be at least the amount that is generated
between two visits of the ferry to the node j. That is, for every j we have

rF · tj ≥ rj · (T +
n

∑
i=1

ti)

Adding these equations over all j we get

rF ·
n

∑
j=1

tj ≥ (
n

∑
j=1

rj) · (T +
n

∑
i=1

ti)
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When rF = ∑n
j=1 rj + ε, for some ε > 0, it is easy to check that ti = T

ε ri satisfies the inequali-

ties, implying a stable solution.

3 Min-max Buffer Problem (MMBP)
In this section, we look at the general min-max buffer problem. Throughout this section,
we assume that the instance is stable. Also, hereafter, we would be assuming that there is
only one ferry node. A solution is called periodic if the nodes are visited in a periodic pattern
(note that this pattern could have some nodes occurring more than once). In the following
proposition, we show that we could look for periodic optimal solutions, since they are as
good as optimal solutions, in case of rational rates.

PROPOSITION 4. For any instance of the MMBP with rational rates and distances, there
exists a periodic Message Ferrying scheme which is optimal.

PROOF. Suppose there is an optimal aperiodic solution with maximum buffer B. By hy-
pothesis, the rates and distances are rational. This implies that the optimal solution is ra-
tional, and when the ferry reaches a node, the buffer state is rational. Scaling the states to
be integral, and recalculating B, each buffer can be one of 0, 1, 2, . . . , B at any given point of
time. If there are n nodes, there can be at most (B + 1)n possible buffer states. There are n
nodes, we can consider a combined notion of states S = (B̄, i), where B̄ is a vector denoting
the buffer state across all nodes and i denotes the node visited. So the optimal aperiodic
solution returns to at least one of these states S more than once. Let us say that the repeated
state is S∗ = (B̄∗, i∗). Consider a new periodic solution where this subsequence (between
two repetitions of S∗) is repeated indefinitely. Since the same visits are conducted between
the two visits to S∗, upon returning to i∗, the buffers have again come back to B̄∗. Since
the buffers never overflowed in the original aperiodic sequence, they do not overflow in
this repeated sequence. This is because we go through the states which were all part of the
original aperiodic sequence. Thus we have a periodic sequence which is optimal.

Henceforth, our solutions will be a sequence that is repeated periodically. The follow-
ing proposition shows the relation of MMBP to the TSP if all the data production rates are
identical. Note that this is not true in general. When the rates are different, the solution
given by the TSP can be arbitrarily bad for the message ferrying problem.

PROPOSITION 5. For any underlying metric d(·, ·), if the rates of all nodes are equal, i.e.,
ri = 1, for all i, and the rate of the ferry rF = ∞, then finding the optimal solution to the
MMBP is the sequence generated by the optimal Traveling Salesman Problem (TSP) tour,
and hence NP-hard.

PROOF. Recall that since rF = ∞, we need to only specify the routing order, there is no
need to mention wait times at each node. It is enough to show that the optimal sequence for
the MMBP must be generated by a tour. Since all rates are the same, the maximum buffer
for the sequence generated by a tour is proportional to the cost of the tour. This implies that
the optimal ferry route for the MMBP is the optimal TSP tour.

Assume that the optimal sequence is not a tour. Let σ be the sequence of the optimal
solution. Let us relabel the nodes according to the order that we see them in the optimal
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solution. By the choice of the labeling, the last node to be visited is n. Since σ is not the
optimal TSP tour, n will be seen for the first time after the ferry has traveled a distance
greater than the cost of the optimal TSP tour. Since every node has the same rate, the buffer
of n is the largest of all the nodes till we visit n for the first time. Consider a solution τ, where
the ferry visits all the nodes repeatedly as in the optimal TSP solution. The maximum buffer
of n in τ is less than the buffer of n in σ. Moreover, the maximum buffer of every node in τ

is the same. Thus τ has a strictly lesser maximum buffer than the route σ.

The above proposition states that solving MMBP is at least as hard as solving TSP on
the same underlying metric. Papadimitriou and Yannakakis in [14] prove that the TSP is NP
hard even when the distances of the graph are restricted to 1 and 2. This implies that the
MMBP is NP hard, even for the case when the distances are restricted to 1 and 2.

In the next two sections, we investigate approximation algorithms when the rate of the
ferry is infinite.

3.1 Uniform Metric Case

Here we look at the uniform metric case, where the distance between all nodes are the same.
That is, d(i, j) = 1 for i 6= j. The nodes have rates ri and we have one ferry, with rate rF = ∞.
Once again, recall that since the ferry rate is infinite, we just need to mention the next node
to be visited and there is no need to specify wait times. For this case we prove the following
theorem.

THEOREM 6. There is a 4
3 -factor approximation algorithm for MIN-MAX BUFFER PROBLEM

in the case when the metric is uniform, and the ferry rate rF = ∞.

The algorithm outline is as follows. Given a guess of the max-buffer B, the algorithm
checks approximate feasibility of B. That is, the algorithm rejects B only if it is infeasible,
otherwise it returns a solution with a max-buffer guarantee of 4

3 B. The 4
3 -approximation

follows from a binary search on the possible values of B.
Let σ be any (infinite) feasible sequence of the node visits with max-buffer B. Each

node i ∈ [n] must be visited once in every B/ri steps. If d(i) denotes the maximum dis-
tance between two consecutive appearances of i in σ, we must have d(i) ≤ bB/ric. Hence
the feasibility solution for the uniform metric case reduces to the following combinatorial
problem, called the pinwheel scheduling problem. Let us set mi = bB/ric.

PINWHEEL SCHEDULING PROBLEM:
Given integers m1 ≤ · · · ≤ mn, is there a (infinite) sequence σ of [n], such that, for each
1 ≤ i ≤ n, the maximum distance between any two consecutive appearances of i is at
most mi? If it does, we call (m1, m2, · · · , mn) feasible.

This scheduling problem is of independent interest and has been studied previously
[3, 4, 9, 10, 11, 12]. Here are some observations about this problem.

PROPOSITION 7. An instance of the pinwheel scheduling problem (m1, m2, · · · , mn) has a
feasible solution, only if ∑n

i=1
1

mi
≤ 1.
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PROOF. Consider a snapshot of any feasible σ of length Z = m1m2 · · ·mn. For each i, It
must contain at least Z/mi occurrences of i. Since there are only Z possible slots, we have
Z ≥ ∑n

i=1 Z/mi proving the lemma.

Remarks: Notice that this condition is necessary but not sufficient; consider (m1, m2, m3) =
(2, 3, N). In this case, ∑ 1

mi
is approximately 5

6 for large N, but there is no sequence that can
satisfy this for any finite N.

Let OPT be the optimal maximum buffer value, amongst all feasible routes of the
ferry. Notice that the optimal routing solves the sequence feasibility problem for the rates
(OPT/r1, OPT/r2, · · · , OPT/rn). So this sequence is feasible, and so proposition 7 implies
the following lemma.

LEMMA 8. If the nodes have rates r1, r2, . . . , rn, with uniform metric, and rF = ∞, we have

OPT ≥
n

∑
i=1

ri

where OPT is the optimal maximum buffer value.

We now have a direct reduction from the Pinwheel Scheduling problem to the ferry routing
problem.

LEMMA 9. Let α ≥ 1. If we have an algorithm for the pinwheel scheduling problem for mi
such that ∑n

i=1
1

mi
≤ 1

α , then we have an α-approximation algorithm for the MMBP problem,
with uniform metric, and rF = ∞.

PROOF. Given a target buffer B, let mi = bαB/ric. Note that mi is the maximum allowed
time gap between any two consecutive visits to the node i, if we want to bound the buffer
by αB. If ∑n

i=1
1

mi
> 1

α , then ∑n
i=1 bB/ric−1 > 1. This by Lemma 7 implies that B is infeasible,

and the algorithm rejects it. If not, then the algorithm for pinwheel scheduling returns a
feasible sequence for (m1, m2, · · · , mn). For this sequence, the maximum buffer of any node
is at most αB. Thus this is an α-approximation.

The only remaining decision is the choice of B. By lemma 8, we have OPT ≥ ∑n
i=1 ri.

Also, we can see that OPT ≤ Bmax where Bmax = α ∑n
i=1 ri + rmax. This is because if we

set B = Bmax, then the corresponding value ∑n
i=1

1
mi
≤ 1

α . So in order to complete the
approximation algorithm, we need to do a binary search for B between ∑n

i=1 ri to α ∑n
i=1 ri +

rmax.

We can use the above lemma 9, with an approximation algorithm for pinwheel schedul-
ing. Fishburn and Lagarias in [9] gave an algorithm for pinwheel scheduling as long as the
following condition is met.

THEOREM 10.[Fishburn, Lagarias] There exists an algorithm for the pinwheel scheduling
problem when ∑n

i=1
1

mi
≤ 0.75.

Theorem 10 along with lemma 9 gives us the following approximation algorithm.
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THEOREM 11. There is a 4
3 -factor approximation algorithm for the MIN-MAX BUFFER PROB-

LEM in the case when the metric is uniform, and the ferry rate rF = ∞.

The above theorem straightaway implies a 4
3

Dmax
Dmin

factor for general metrics where Dmax
(Dmin) is the maximum (minimum) distance between two points. In particular, in the case
where the distances are 1 and 2, this implies a 8

3 factor approximation. Note that by Propo-
sition 5 and the paper [14], this instance is already NP-hard.

Theorem 10, together with lemma 9 also implies the following lemma, which is used in
the section 3.2.

LEMMA 12. Given nodes of rate r1, · · · , rn and a distance 1 between each node, there exists
a ferry routing with maximum buffer at most 4

3 ∑ ri + rmax.

A Simpler Algorithm for Pinwheel Scheduling

Fishburn and Lagarias’ algorithm for the pinwheel scheduling problem is quite involved.
The algorithm involves case based analysis for several small sets of problem instances, clas-
sifies the small sets and extends it to bigger sets based on the classification. We therefore
now give a simpler algorithm for pinwheel scheduling, with a slightly worse bound. Our
algorithm works when ∑n

i=1
1

mi
≤ 1/2.

LEMMA 13. If ∑n
i=1

1
mi
≤ 1/2, then (m1, m2, · · · , mn) is feasible for pinwheel scheduling.

PROOF. We prove by induction on n. The base case of n = 1, m1 = 2 is trivial. For n ≥ 2,
we have ∑n

i=1
1

mi
≤ 1/2. Rearranging and dividing we get ∑n

i=2
1

m̄2
≤ 1/2, where

m̄i =
⌈

2mi(
1
2
− 1

m1
)
⌉

By induction, we get (m̄2, · · · , m̄n) is feasible. Let σ′ be the feasible pinwheel scheduling
sequence. Obtain σ by putting 1 in σ′ every m1 positions. This increases the distance be-
tween two i’s to m̄i +

⌈
m̄i

m1−1

⌉
. We would have a feasible sequence for (m1, m2, · · · , mn) if

m̄i +
⌈

m̄i
m1−1

⌉
≤ mi. The following claim shows that this is indeed the case.

CLAIM 14. For any integers 1 ≤ m1 ≤ mi let m̄i =
⌈

mi − 2mi
m1

⌉
, we have that

m̄i +
⌈

m̄i

m1 − 1

⌉
≤ mi

PROOF. Let x = 2mi
m1

and let k = bxc. Note m̄i = mi − k. Thus to prove the claim, it suffices

to show
⌈

mi−k
m1−1

⌉
≤ k. Since mi − k = m1x/2− k, we have⌈

mi − k
m1 − 1

⌉
=
⌈

x
2

+
1

m1 − 1
(

x
2
− k)

⌉
≤ k

because x
2 < bxc = k, for all x > 1.
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This sufficiency condition is constructive as well. Given (m1, m2, · · · , mn) such that
∑n

i=1 1/mi ≤ 1/2, recursively run on (m̄2, m̄3, · · · , m̄n) and put 1 every m1 spots in the se-
quence returned.

In the section 3.2, we give a constant factor algorithm for the metrics induced by hier-
archically separated trees of constant depth.

3.2 Metrics induced by HSTs of constant depth

In this section, we generalize the results of the previous section to a greater class of metrics.
We have seen that we can get a constant factor approximation algorithm for the uniform
metric. In this section, we shall look at metrics induced by hierarchically well separated
trees (HST).

DEFINITION 15. A Hierarchically well Separated Tree (HST) is a rooted tree such that any
pair of leaves that have the least common ancestor at height i, are separated by a distance of
Di−1, where D is a parameter.

HSTs induce a metric on the nodes of the tree. These metrics have been widely studied
[2, 5, 8] in the area of metric embeddings. HSTs are interesting because it is possible to get
low-distortion embeddings of general metrics into those induced by HSTs.

In this section, we show a constant factor approximation for metrics induced by HSTs
of constant height. Note that the uniform case is an HST of height 1. For the sake of clarity,
we first look at the case of height 2. We call these metrics {1, D}-metrics. (Note that any
metric with distances only 1 and D, with D > 2, can be thought of as an {1, D}-metric).

In this case, we can partition the point sets into clusters P1, P2, · · · , Pt with each pair in
any cluster being at distance 1, and any two points in different clusters at distance D.

We fix some notation. Let Ri := maxj∈Pi rj and Si := ∑j∈Pi
rj be the maximum rate and

sum of rates for nodes in Pi. Our algorithm would maintain B1, · · · , Bt as the max buffers
needed for the various clusters. Note that the max-buffer B = maxi Bi.

We now state lower bounds on OPT for this instance.

LEMMA 16.
1. OPT ≥ ∑t

i=1 Si
2. OPT ≥ ∑t

i=1 DRi

PROOF. Note that if we shrink distances between the nodes and or delete nodes, we could
only decrease the optimum buffer value. If the distance D were shrunk to 1, then by Lemma
8 we get OPT ≥ ∑i ri = ∑i Si. If we delete all points other than the ones with maximum
rate, again by Lemma 8 (recall that we are on an instance where distances are scaled by a
factor D), we get OPT/D ≥ ∑i Ri.

Suppose σi be the sequence corresponding to Lemma 12 in Section 3.1 for the nodes
in Pi. This guarantees a max-buffer of 4

3 Si + Ri. We use this fact to develop the following
algorithm for the {1, D} case. We run the uniform metric algorithm at two separate levels
for this case.
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Algorithm {1, D}
1. Visit each cluster Pi once in every window of ki clusters visited. (ki will be deter-

mined later)
2. When at Pi, run D steps of σi starting from the point where it was when it last left

Pi.

What this algorithm essentially does is to spend some time in each cluster of nodes
(here a cluster is a set of nodes with pairwise distances 1). Across the clusters, the algorithm
simulates the uniform metric algorithm, where the rate of data generation of a cluster is
simply the sum of rates of data generation of the nodes in the cluster. Further, whenever
the algorithm spends time inside a given cluster, the algorithm again simulates the uniform
metric algorithm within it. Notice, however, that the algorithm may not necessarily be able
to perform an entire loop over all nodes within a cluster in one visit. Therefore, it resumes
the optimal algorithm within the cluster once it returns to the cluster the next time.

THEOREM 17. The above algorithm achieves a constant factor approximation for the MIN-
MAX BUFFER PROBLEM on {1, D}metrics.

PROOF. We argue cluster by cluster. We have two cases.
Case 1: Every node in Pi is visited after at least D steps in σi. Since for each D steps of σi,
the algorithm spends 2kiD time outside Pi (kiD for traveling across clusters and D in each of
the ki clusters), the time between two consecutive occurrences of the point is increased by a
factor of at most 2kiD/D = 2ki. Thus we have Bi ≤ 2ki( 4

3 Si + Ri) ≤ 14
3 kiSi from the lemma

12.
Case 2: There is a node in Pi which is visited with a gap strictly less than D in σi. This implies
that it is visited every time we visit the cluster, and thus its buffer is at most Ri(2kiD).

The two cases give Bi ≤ max( 14
3 kiSi, 2RikiD) ≤ ( 14

3 Si + 2RiD)ki. By choosing ki =⌈ 4
3 ∑r

i=1(2Ri D+ 14
3 Si)

2Ri D+ 14
3 Si

⌉
, we get Bi ≤ 4

3 ∑r
i=1(2RiD + 14

3 Si) ≤ 9 ·OPT from Lemma 16.

We complete the proof by noting that a visiting sequence for the clusters for these ki’s
can be achieved since ∑t

i=1 1/ki ≤ 0.75 and we are done by Lemma 8.

THEOREM 18. There is a constant factor approximation to the MMBP for HSTs of constant
height.

PROOF. Assume that we have a C-factor approximation algorithm to an HST of height k;
let this algorithm be AC. Now consider an HST of height (k + 1), say it has t subtrees of
height k. We claim that the analogous extension to Algorithm{1, D} works here:

1. Visit the points in subtree i, Pi, in every window of ki subtrees visited among the t
subtrees.

2. When at Pi, run Dk steps of algorithm AC from the point where it was when it last left
Pi.

Running through a similar analysis as in Algorithm{1, D}, we see that with an increase of 1
in the height of the HST, the approximation ratio increases by a factor at most 7. Thus we
get an approximation factor of 4

3 · 7k where the height of the HST is k.
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Remarks: By the above algorithm, we achieve an O(n)-factor approximation ratio on an
HST of height O(log n).

Remarks: Standard metric embedding results of Bartal [2] and Fakcheroenphol et al. [8]
give a probabilistic embedding of HSTs of height log n into arbitrary metrics with an ex-
pected distortion of O(log n). This has been used in obtaining approximation algorithms
for various problems like the buy-at-bulk network design, metric labeling, etc. which solve
the problem on HST instances and extend it to general metrics via results of [8].

Unfortunately these results do not help us guarantee any approximation on the MMBP
problem for general metrics as we deal with maximum buffers and the expectation of the
maximum buffer can be much larger than the maximum of the expected buffer sizes.

4 Extensions
In this section, we show simple extensions of the stability conditions for data exchange, and
for the case when there are multiple ferry nodes collecting data.

4.1 Data Exchange Problem

Suppose a node i generates data at a rate ai and the ferry generates data, to be passed on to
the node i, at a rate bi. The following lemma follows easily from Theorem 3.

LEMMA 19. If the ferry can only receive or send data at a time, a stable Message Ferrying
scheme exists if and only if ∑ ai + bi < rF. If the ferry can receive and send simultaneously,
a stable Message Ferrying scheme exists if and only if ∑ max(ai, bi) < rF.

Note that max(∑ ai, ∑ bi) < rF is not a sufficient condition for the simultaneous case of
the above lemma. A simple example is two nodes, with a1 = b2 = 0.8, a2 = b1 = 0.1, rF = 1.

Consider the stability problem in a situation where the ferry (or ferries) have bounded
buffers. Suppose each of the ferry has a limited buffer size. Notice that in such a case,
we cannot get a similar theorem like theorem 3. When one limits the ferry buffer size, the
stability is not just a function of the rates of the nodes. The stability would depend on the
topology of the nodes as well. To see this, consider the following problem: there is one ferry
and two nodes, and the ferry has to transport data from one node to the other. The rates
r1, r2 correspond to the transfer rates at the nodes. Let r1 + r2 be infinitesimally close but still
less than rF. By theorem 3, we would still be stable if the ferry had no bounds on its buffer.
Theorem 3 achieves this by making the ferry stay very long at either node, and then moving
only occasionally. But a bound of the ferry buffer size would force the ferry to move earlier,
and thus risk losing data or being not stable. Thus a bound on the ferry’s buffer size would
mean that the stability depends on the topology of the problem.

4.2 Multiple Ferries

Suppose there are m ferries each with the same ferry transfer rate, rF. Also assume that
at any node only one ferry can operate at a time. We have the following necessary and
sufficient conditions for this case.
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THEOREM 20. Consider the case when there are m ferries each with the same ferry transfer
rate, rF. Also, at any node only one ferry can operate at a time. The necessary and sufficient
condition for stability is ∑ ri < mrF and ri ≤ rF for all i.

PROOF. One of the necessary conditions, ∑ ri < mrF is immediate. If ri > rF for any
node, notice that at most one ferry can serve that node at any time. So we would require
unbounded buffer at that node. So ri ≤ rF is a necessary condition.

To see why the conditions are sufficient, let si = ri
m , then the first condition is equivalent

to ∑ si < rF. One ferry could solve this instance with rates si. Consider a stable cyclic
solution for this instance with one ferry, with rate rF. Let this solution take time T for
each cycle period (inclusive of waiting times at each node). Start the m ferries in the given
solution at points 0, T

m , 2 T
m , . . . , (n − 1) T

m . Pretend that each of these ferries is solving an
instance with rates si. This is a stable solution, provided that the ferries never run into each
other at any node. But notice that max si = 1

m max ri ≤ rF
m . So the ferry spends time at most

T/m at each node for the instance with rates si. Since the ferries are equally spaced in time,
no two ferries would have to serve the same node at a given time.

5 Conclusions
In this paper, we formalize the Message Ferrying model for Mobile ad hoc networks. We
characterize stability conditions for problem instances on a node distribution and efficient
approximation algorithms for a restricted class of metric node distributions. An interesting
question is to extend our results to the more realistic and interesting case of finite ferry rate.
Another direction is to generalize the algorithm for a larger class of metrics on which the
nodes are distributed. Also, while the ferry problem seems intriguingly similar to the TSP,
there seems to be no formal connection. Is there a way to translate the TSP approximation
algorithms (on generic metric spaces) to the ferry problem? Also, in this work, we assumed
the rate at which a node is producing data to be constant; however this is could be an
unreasonable assumption, depending on the application. Is there a natural way to model
and solve the more general case?
Acknowledgement. We thank Shiva Kintali for helpful initial discussions.
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ABSTRACT. Motivated by the Hadamard product of matrices we define the Hadamard product of
multivariate polynomials and study its arithmetic circuit and branching program complexity. We
also give applications and connections to polynomial identity testing. Our main results are the fol-
lowing.

• We show that noncommutative polynomial identity testing for algebraic branching programs
over rationals is complete for the logspace counting class C=L, and over fields of characteristic
p the problem is in ModpL/poly.

• We show an exponential lower bound for expressing the Raz-Yehudayoff polynomial as the
Hadamard product of two monotone multilinear polynomials. In contrast the Permanent can
be expressed as the Hadamard product of two monotone multilinear formulas of quadratic
size.

1 Introduction

In this paper we define the Hadamard product of two polynomials f and g in F〈X〉 and study
its expressive power and applications to the complexity of arithmetic circuits and algebraic
branching programs. We also apply it to give a fairly tight characterization of polynomial
identity testing for algebraic branching programs over the field of rationals.

Suppose X = {x1, x2, · · · , xn} is a set of n noncommuting variables. The free monoid X∗

consists of all words over these variables. For a field F let F〈x1, x2, · · · , xn〉 denote the
free noncommutative polynomial ring over F generated by the variables in X. Thus, the
polynomials in this ring are F-linear combinations of words over X. For a given polynomial
f ∈ F〈X〉, let mon( f ) = {m ∈ X∗ | m is a nonzero monomial in f }. If X = {x1, x2, · · · , xn}
is a set of n commuting variables then F[X] denotes the commutative polynomial ring with
coefficients from F.

Motivated by the well-known Hadamard product of matrices (see e.g. [6]) we define the
Hadamard product of polynomials.
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DEFINITION 1. Let f , g ∈ F〈X〉 where X = {x1, x2, · · · , xn}. The Hadamard product of
f and g, denoted f ◦ g, is the polynomial f ◦ g = ∑m ambmm, where f = ∑m amm and
g = ∑m bmm, where the sums index over monomials m.

Complexity theory preliminaries We recall some definitions of logspace counting classes
from [3]. Let L denote the class of languages accepted by deterministic logspace machines.

GapL is the class of functions f : Σ∗ → Z, for which there is a logspace bounded NDTM
M such that for each input x ∈ Σ∗, we have f (x) = accM(x)− rejM(x), where accM(x) and
rejM(x) are the number of accepting and rejecting paths of M on input x, respectively.

A language L is in C=L if there exists a function f ∈ GapL such that x ∈ L if and only if
f (x) = 0. For a prime p, a language L is in the complexity class ModpL if there exists a
function f ∈ GapL such that x ∈ L if and only if f (x) = 0(mod p).

It is shown in [3] that checking if an integer matrix is singular is complete for C=L with
respect to logspace many-one reductions. The same problem is known to be complete for
ModpL over a field of characteristic p. It is useful to recall that both C=L and ModpL are
contained in TC1 (which, in turn, is contained in NC2).

An Algebraic Branching Program (ABP) [13, 14] over a field F and variables x1, x2, · · · , xn is a
layered directed acyclic graph with one source vertex of indegree zero and one sink vertex of
outdegree zero. Let the layers be numbered 0, 1, · · · , d. The source and sink are the unique
layer 0 and layer d vertices, respectively. Edges only go from layer i to i + 1 for each i. Each
edge in the ABP is labeled with a linear form over F in the input variables. Each source
to sink path in the ABP computes the product of the linear forms labelling the edges on
the path, and the sum of these polynomials over all source to sink paths is the polynomial
computed by the ABP. The size of the ABP is the number of vertices.

Main results. We show that the noncommutative branching program complexity of the
Hadamard product f ◦ g is upper bounded by the product of the branching program sizes
for f and g.This upper bound is natural because we know from Nisan’s seminal work [13]
that the algebraic branching program (ABP) complexity B( f ) is well characterized by the
ranks of its “communication” matrices Mk( f ), and the rank of Hadamard product A ◦ B
of two matrices A and B is upper bounded by the product of their ranks. Our proof is
constructive: we give a deterministic logspace algorithm for computing an ABP for f ◦ g.

We then apply this result to polynomial identity testing. It is shown by Raz and Shpilka
[14] that polynomial identity testing of noncommutative ABPs can be done in deterministic
polynomial time. A simple divide and conquer algorithm can be easily designed to show
that the problem is in deterministic NC3. What then is the precise complexity of polynomial
identity testing for noncommutative ABPs? For noncommutative ABPs over rationals we
give a tight characterization by showing that the problem is C=L-complete. We prove this
result using the result on Hadamard product of ABPs explained above.

For noncommutative ABPs over a finite field of characteristic p, we show that identity test-
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ing is in the nonuniform class ModpL/poly (more precisely, in randomized ModpL). Fur-
thermore, the problem turns out to be hard (w.r.t. logspace many-one reductions) for both
NL and ModpL. Hence, it is not likely to be easy to improve this upper bound uncondition-
ally to ModpL (it would imply that NL is contained in ModpL). However, under a hardness
assumption we can apply standard arguments [4, 12] to derandomize this algorithm and
put the problem in ModpL.

In Section 4 we consider the Hadamard product for commutative polynomials. We show an
exponential lower bound for expressing the Raz-Yehudayoff polynomial [15] as the Hadamard
product of two monotone multilinear polynomials. In contrast the Permanent can be ex-
pressed as the Hadamard product of two monotone multilinear formulas of quadratic size.

2 The Hadamard Product

Let f , g ∈ F〈X〉where X = {x1, x2, · · · , xn}. Clearly, mon( f ◦ g) = mon( f )∩mon(g). Thus,
the Hadamard product can be seen as an algebraic version of the intersection of formal
languages. Our definition of the Hadamard product of polynomials is actually motivated
by the well-known Hadamard product A ◦ B of two m× n matrices A and B. We recall the
following well-known bound for the rank of the Hadamard product.

PROPOSITION 2.Let A and B be m× n matrices over a field F. Then

rank(A ◦ B) ≤ rank(A)rank(B)

It is known from Nisan’s work [13] that the ABP complexity B( f ) of a polynomial f ∈
F〈X〉 is closely connected with the ranks of the communication matrices Mk( f ), where
Mk( f ) has its rows indexed by degree k monomials and columns by degree d − k mono-
mials and the (m, m′)th entry of Mk( f ) is the coefficient of mm′ in f . Nisan showed that
B( f ) = ∑k rank(Mk( f )). Indeed, Nisan’s result and the above proposition easily imply the
following bound on the ABP complexity of f ◦ g.

LEMMA 3. For f , g ∈ F〈X〉 we have B( f ◦ g) ≤ B( f )B(g).

Proof. By Nisan’s result B( f ◦ g) = ∑k rank(Mk( f ◦ g)). The above proposition implies

∑
k

rank(Mk( f ◦ g)) ≤∑
k

rank(Mk( f ))rank(Mk(g)) ≤ (∑
k

rank(Mk( f ))(∑
k

rank(Mk(g))),

and the claim follows.

We now show an algorithmic version of this upper bound.
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THEOREM 4. Let P and Q be two given ABP’s computing polynomials f and g in F〈x1, x2, . . . ,
xn〉, respectively. Then there is a deterministic polynomial-time algorithm that will output
an ABP R for the polynomial f ◦ g such that the size of R is a constant multiple of the product
of the sizes of P and Q. (Indeed, R can be computed in deterministic logspace.)

Proof. Let fi and gi denote the ith homogeneous parts of f and g respectively. Then f =
∑d

i=0 fi and g = ∑d
i=0 gi. Since the Hadamard product is distributive over addition and

fi ◦ gj = 0 for i 6= j we have f ◦ g = ∑d
i=0 fi ◦ gi. Thus, we can assume that both P and Q are

homogeneous ABP’s of degree d. Otherwise, we can easily construct an ABP to compute
fi ◦ gi separately for each i and put them together. Note that we can easily compute ABPs
for fi and gi in logspace given as input the ABPs for f and g.

By allowing parallel edges between nodes of P and Q we can assume that the labels associ-
ated with each edge in an ABP is either 0 or αxi for some variable xi and scalar α ∈ F. Let
s1 and s2 bound the number of nodes in each layer of P and Q respectively. Denote the jth

node in layer i by 〈i, j〉 for ABPs P and Q. Now we describe the construction of the ABP
R for computing the polynomial f ◦ g. Each layer i, 1 ≤ i ≤ d of R will have s1 · s2 nodes,
with node labeled 〈i, a, b〉 corresponding to the node 〈i, a〉 of P and the node 〈i, b〉 of Q. We
can assume there is an edge from every node in layer i to every node in layer i + 1 for both
ABPs. For, if there is no such edge we can always include it with label 0.

In the new ABP R we put an edge from 〈i, a, b〉 to 〈i + 1, c, e〉 with label αβxt if and only if
there is an edge from node 〈i, a〉 to 〈i + 1, c〉 with label αxt in P and an edge from 〈i, b〉 to
〈i + 1, e〉 with label βxt in ABP Q. Let 〈0, a, b〉 and 〈d, c, e〉 denote the source and the sink
nodes of ABP R, where 〈0, a〉, 〈0, b〉 are the source nodes of P and Q, and 〈d, c〉, 〈d, e〉 are
the sink nodes of P and Q respectively. It is easy to see that ABP R can be computed in
deterministic logspace. Let h〈i,a,b〉 denote the polynomial computed at node 〈i, a, b〉 of ABP
R. Similarly, let f〈i,a〉 and g〈i,b〉 denote the polynomials computed at node 〈i, a〉 of P and
node 〈i, b〉 of Q. We can easily check that h〈i,a,b〉 = f〈i,a〉 ◦ g〈i,b〉 by an induction argument
on the number of layers in the ABPs. It follows from this inductive argument that the ABP
R computes the polynomial f ◦ g at its sink node. The bound on the size of R also follows
easily.

Applying the above theorem we can give a tight complexity theoretic upper bound for iden-
tity testing of noncommutative ABPs over rationals.

THEOREM 5. The problem of polynomial identity testing for noncommutative algebraic
branching programs over Q is in NC2. More precisely, it complete for the logspace counting
class C=L under logspace reductions.

Proof. Let P be the given ABP computing f ∈ Q〈X〉. We apply the construction of The-
orem 4 to compute a polynomial sized ABP R for the Hadamard product f ◦ f (i.e. of f
with itself). Notice that f ◦ f is nonzero iff f is nonzero. Now, we crucially use the fact that
f ◦ f is a polynomial whose nonzero coefficients are all positive. Hence, f ◦ f is nonzero iff
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it evaluates to nonzero on the all 1’s input. The problem thus boils down to checking if R
evaluates to nonzero on the all 1’s input.

By Theorem 4, the ABP R for polynomial f ◦ f is computable in deterministic logspace,
given as input an ABP for f . Furthermore, evaluating the ABP R on the all 1’s input can be
easily converted to iterated integer matrix multiplication (one matrix for each layer of the
ABP), and checking if R evaluates to nonzero can be done by checking if a specific entry
of the product matrix is nonzero. It is well known that checking if a specific entry of an
iterated integer matrix product is zero is in the logspace counting class C=L (e.g. see [3, 1]).
However, C=L is contained in NC2, in fact in TC1.

We now argue the hardness of this problem for C=L. The problem of checking if an integer
matrix A is singular is well known to be complete for C=L under deterministic logspace
reductions. The standard GapL algorithm for computing det(A) [16] can be converted to
an ABP PA which will compute det(A).∗ Hence the ABP PA computes the identically zero
polynomial iff A is singular. Putting it all together, it follows that identity testing of non-
commutative ABPs over rationals is complete for the class C=L.

An iterative matrix product problem Suppose B is a noncommutative ABP computing a
homogeneous polynomial in F〈X〉 of degree d, where each edge of the ABP is labeled by a
homogeneous linear form in variables from X.

Let n` denote the number of nodes of B in layer `, 0 ≤ ` ≤ d. For each xi and layer `, we
associate an n` × n`+1 matrix Ai,` where the (k, j)th entry of matrix Ai,` is the coefficient of
xi in the linear form associated with the (vk, uj) edge in the ABP B. Here vk is the kth node
in layer ` and uj the jth node in the layer ` + 1. The following claim is easy to see and relates
these matrices to the ABP B.

CLAIM 6. The coefficient of any degree d monomial xi1 xi2 · · · xid in the polynomial computed
by the ABP B is the matrix product Ai1,0 Ai2,1 · · · Aid,d−1 (which is a scalar since Ai1,0 is a row
and Aid,d−1 is a column).

Let i and j be any two nodes in the ABP B. We denote by B(i, j) the algebraic branching
program obtained from the ABP B by designating node i in B as the source node and node
j as the sink node. Clearly, B(i, j) computes a homogeneous polynomial of degree b− a if i
appears in layer a and j in layer b.

For layers a, b, 0 ≤ a < b ≤ d let t = b− a and P(a, b) = {As1,a As2,a+1 . . . Ast,b−1|1 ≤ sj ≤
n, for 1 ≤ j ≤ t}. P(a, b) consists of na × nb matrices. Thus the dimension of the linear
space spanned by P(a, b) is bounded by nanb. It follows from Claim 6 that the linear span
of P(a, b) is the zero space iff the polynomial computed by ABP B(i, j) is identically zero for
every 1 ≤ i ≤ na and 1 ≤ j ≤ nb.

∗Notice that the polynomial computed by the ABP PA is a constant since PA has only constants and no
variables.
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Thus, it suffices to compute a basis for the space spanned by matrices in P(0, d) to check
whether the polynomial computed by B is identically zero. We can easily give a determin-
istic NC3 algorithm for this problem over any field F: First recursively compute bases M1
and M2 for the space spanned by matrices in P(0, d/2) and P(d/2 + 1, d) respectively. From
bases M1 and M2 we can compute in deterministic NC2 a basis M for space spanned by
matrices in P(0, d) as follows. We compute the set S of pairwise products of matrices in M1
and M2 and then we can compute a maximal linearly independent subset of S in NC2 (see
e.g. [1]). This gives an easy NC3 algorithm to compute a basis for the linear span of P(0, d).
This proves the following.

PROPOSITION 7. The problem of polynomial identity testing for noncommutative algebraic
branching programs over any field (in particular, finite fields F) is in deterministic NC3.

Can we give a tight complexity characterization for identity testing of noncommutative
ABPs over finite fields? We show that the problem is in nonuniform ModpL and is hard
for ModpL under logspace reductions. Furthermore, the problem is hard for NL. Hence, it
appears difficult to improve the upper bound to uniform ModpL (as NL is not known to be
contained in uniform ModpL).

THEOREM 8. The problem of polynomial identity testing for noncommutative algebraic
branching programs over a finite field F of characteristic p is in ModpL/poly.

Proof. Consider a new ABP B′ in which we replace the variables xi, 1 ≤ i ≤ n appearing
in the linear form associated with an edge from some node in layer l to a node in layer
l + 1 of ABP B by new variable xi,l , for layers l = 0, 1, . . . , d− 1. Let g ∈ F[X] denotes the
polynomial computed by ABP B′ in commuting variables xi,l , 1 ≤ i ≤ n, 1 ≤ l < d. It is easy
to see that the commutative polynomial g ∈ F[X] is identically zero iff the noncommutative
polynomial f ∈ F〈X〉 computed by ABP B is identically zero. Now, we can apply the
standard Schwartz-Zippel lemma to check if g is identically zero by substituting random
values for the variables xi,l from F (or a suitable finite extension of F). After substitution
of field elements, we are left with an iterated matrix product over a field of characteristic p
which can be done in ModpL. This gives us a randomized ModpL algorithm. By standard
amplification it follows that the problem is in ModpL/poly.

Next we show that identity testing noncommutative ABPs over any field is hard for NL by
a reduction from directed graph reachability. Let (G, s, t) be a reachability instance. Without
loss of generality, we assume that G is a layered directed acyclic graph. The graph G defines
an ABP with source s and sink t as follows: label each edge e in G with a distinct variable xe
and for each absent edge put the label 0. The polynomial computed by the ABP is nonzero
if and only if there is a directed s-t path in G.

THEOREM 9. The problem of polynomial identity testing for noncommutative algebraic
branching programs over any field is hard for NL.
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3 Hadamard product of noncommutative circuits

Analogous to Theorem 4 we show that f ◦ g has small circuits if f has a small circuit and g
has a small ABP. For the proof refer to the full version of the paper [2].

THEOREM 10. Let f , h ∈ F〈x1, x2, · · · , xn〉 be given by a degree d circuit C and a degree d
ABP P respectively, where d = O(nO(1)). Then we can compute in polynomial time a circuit
C′ that computes f ◦ h where the size of C′ is polynomially bounded in the sizes of C and P.

On the other hand, suppose f and g individually have small circuit complexity. Does f ◦ g
have small circuit complexity? Can we compute such a circuit for f ◦ g from circuits for f
and g? We first consider these questions for monotone circuits. It is useful to understand
the connection between monotone noncommutative circuits and context-free grammars. We
recall the following definition.

DEFINITION 11. We call a context-free grammar G = (V, T, P, S) an acyclic CFG if for any
nonterminal A ∈ V there does not exist any derivation of the form A⇒∗ uAw, and for each
production A⇒ β we have |β| ≤ 2.

The size size(G) of an acyclic CFG G = (V, T, P, S) is defined as |V|+ |T|+ size(P), where
V, T, and P are the sets of variables, terminals, and production rules. We note the following
easy proposition that relates acyclic CFGs to monotone noncommutative circuits over X.

PROPOSITION 12. Let C be a monotone circuit of size s computing a polynomial f ∈ Q〈X〉.
Then there is an acyclic CFG G for mon( f ) with size(G) = O(s). Conversely, if G is an
acyclic CFG of size s computing some finite set L ⊂ X∗ of monomials over X, there exists
a monotone circuit of size O(s) that computes a polynomial ∑m∈L amm ∈ Q〈X〉, where the
positive integer am is the number of derivation trees for m in the grammar G.

THEOREM 13. There are monotone circuits C and C′ computing polynomials f and g in
Q〈X〉 respectively, such that the polynomial f ◦ g requires monotone circuits of size expo-
nential in |X|, size(C), and size(C′).

Proof. Let X = {x1, · · · , xn}. Define the finite language L1 = {zwwr | z, w ∈ X∗, |z| = |w| =
n} and the corresponding polynomial f = ∑mα∈L1

mα. Similarly let L2 = {wwrz | z, w ∈
X∗, |z| = |w| = n}, and the corresponding polynomial g = ∑mα∈L2

mα. It is easy to see that
there are poly(n) size unambiguous acyclic CFGs for L1 and L2. Hence, by Proposition 12
there are monotone circuits C1 and C2 of size poly(n) such that C1 computes polynomial f
and C2 computes polynomial g. We first show that the finite language L1 ∩ L2 cannot be
generated by any acyclic CFG of size 2o(n lg n). Assume to the contrary that there is an acyclic
CFG G = (V, T, P, S) for L1 ∩ L2 of size 2o(n lg n). Notice that L1 ∩ L2 = {t | t = wwrw, w ∈
X∗, |w| = n}.
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Consider any derivation tree T′ for a word wwrw = w1w2 . . . wnwnwn−1 . . . w2w1w1 . . . wn.
Starting from the root of the binary tree T′, we traverse down the tree always picking the
child with larger yield. Clearly, there must be a nonterminal A ∈ V in this path of the
derivation tree such that A ⇒∗ u, u ∈ X∗ and n ≤ |u| < 2n. Crucially, note that any word
that A generates must have same length since every word generated by the grammar G is
in L1 ∩ L2 and hence of length 3n. Let wwrw = s1us2 where |s1| = k. As |u| < 2n, the string
s1s2 completely determines the string wwrw. Hence, the nonterminal A can derive at most
one string u. Furthermore, this string u can occur in at most 2n positions in a string of length
3n. Notice that for each position in which u can occur it completely determines a string of
the form wwrw. Therefore, A can participate in the derivation of at most 2n strings from
L1 ∩ L2. Since there are nn distinct words in L1 ∩ L2, it follows that there must be at least nn

2n
distinct nonterminals in V. This contradicts the size assumption of G.

Since L1 ∩ L2 cannot be generated by any acyclic CFG of size 2o(n log n), it follows from
Lemma 12 that the polynomial f ◦ g can not be computed by any monotone circuit of
2o(n log n) size.

Theorem 13 shows that the Hadamard product of monotone circuits is more expressive
than monotone circuits. It raises the question whether the permanent polynomial can be ex-
pressed as the Hadamard product of polynomial-size (or even subexponential size) mono-
tone circuits. We note here that the permanent can be easily expressed as the Hadamard
product of O(n3) many monotone circuits (in fact, monotone ABPs).

THEOREM 14. Suppose there is a deterministic subexponential-time algorithm that takes
two circuits as input, computing polynomials f and g in Q〈x1, · · · , xn〉, and outputs a circuit
for f ◦ g. Then either NEXP is not in P/poly or the Permanent does not have polynomial
size noncommutative circuits.

Proof. Let C1 be a circuit computing some polynomial h ∈ Q〈x1, . . . , xn〉. By assumption,
we can compute a circuit C2 for h ◦ h in subexponential time. Therefore, h is identically zero
iff h ◦ h is identically zero iff C2 evaluates to 0 on the all 1’s input. We can easily check if
C2 evaluates to 0 on all 1’s input by substitution and evaluation. This gives a deterministic
subexponential time algorithm for testing if h is identically zero. By the noncommutative
analogue of [11], shown in [5], it follows that either NEXP 6⊂ P/poly or the Permanent does
not have polynomial size noncommutative circuits.

Next, We show that the identity testing problem: given f , g ∈ F〈X〉 by circuits test if f ◦ g is
identically zero is coNP hard via a reduction from bounded Post Correspondence Problem.
For the proof refer to the full version of the paper [2].

THEOREM 15. Given two monotone polynomial-degree circuits C and C′ computing poly-
nomial f , g ∈ Q〈X〉 it is coNP-complete to check if f ◦ g is identically zero.
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4 Hadamard product of monotone multilinear circuits

In this section we study the Hadamard product of commutative polynomials (defined as in
the noncommutative case). First we introduce some notation useful for this section. Given
a polynomial f ∈ F[X], and a monomial m over the variables X, we define f (m) to be the
coefficient of the monomial m in the polynomial f .† Recall the Definition 1 of the Hadamard
product of two polynomials in F〈X〉. We define the Hadamard product in the commutative
case analogously. Thus, for polynomials f , g ∈ F[X] we have F(m) = f (m)g(m) for any
monomial m, where F = f ◦ g.

In this section our interest is the expressive power of the Hadamard product. Can we ex-
press a hard explicit polynomial (like the Permanent) as the Hadamard product f ◦ g where
f and g have small arithmetic circuits? It turns out that we easily can.

PROPOSITION 16. There are multilinear polynomials f , g ∈ F[x11, x12, · · · , xnn] such that
both f and g have arithmetic formulas of size O(n2) and f ◦ g is the Permanent polynomial.
Furthermore, for F = Q these formulas for f and g are monotone.

Proof. Define the polynomials f and g on the variables {xij | 1 ≤ i, j ≤ n} as fol-
lows f = ∏n

i=1(∑n
j=1 xij) and g = ∏n

j=1(∑n
i=1 xij). Clearly, their Hadamard product is

Perm(x11, · · · , xnn). The formulas for f and g over rationals are monotone.

Nevertheless, we will define an explicit monotone multilinear polynomial that cannot be
written as the Hadamard product of multilinear polynomials computed by subexponential
sized monotone arithmetic circuits. Our construction adapts a result of Raz and Yehudayoff
[15] describing an explicit monotone polynomial that has no monotone arithmetic circuits
of size 2εn, for some constant ε > 0. Our proof closely follows the arguments in [15]. Due to
lack of space, we provide only proof sketches for several technical statements.

DEFINITION 17. For ε > 0, a multilinear polynomial f ∈ C[x1, . . . , xn] is an ε-product
polynomial if there are disjoint sets A, B ⊆ X = {x1, . . . , xn} such that |A| ≥ εn and |B| ≥ εn
and f = gh where g ∈ C[A] and h ∈ C[B].

In the sequel, we often identify a multilinear polynomial f in C[X] with its coefficients vector
(indexed by monomials in the natural lexicographic order). The complex inner product of
vectors w, w′ ∈ Ck is 〈w, w′〉 = ∑i wiw′i. LetM(X) denote the set of multilinear monomials
over the variables in X.

DEFINITION 18. The correlation of multilinear polynomials f and g in C[X] is defined as
Corr ( f , g) = |∑m∈M(X) f (m)g(m)|. Notice that Corr ( f , f ) is the `2-norm ‖ f ‖ of f .

†There should be no confusion with evaluating the multivariate polynomial f at a point (a1, · · · , an) as we
denote that by f (a1, a2, · · · , an).
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The explicit polynomial from [15]

The explicit polynomial F we define is essentially the same as the one in [15] (the difference
is in the constants). Let s ∈ N be a constant, to be chosen later and t = 40s. Let n =
tp = 40sp, for a prime p, and X = {x1, . . . , xn}. Partition X into t many sets of variables
X(1), . . . , X(t) with p variables each, where X(i) = {x(i−1)p+j | j ∈ [p]}.

In poly(n) time we can construct the field F = F2p which is in bijective correspondence with
{0, 1}p. We can assume that 0 ∈ F is associated with the all 0s vector 0p. Fix a nontrivial
additive character ψ of F. Since char(F) = 2 we have ψ(x) = ±1 for all x ∈ F. Each mono-
mial m ∈ M(X) defines a subset Am of X and is thus represented by its characteristic vector
w ∈ {0, 1}n. Split w into t blocks w1, . . . , wt of size p each (wi is the characteristic vector of
Am ∩ X(i)), and consider the p field elements y1(m), y2(m), . . . , yt(m) ∈ F associated with
these strings. The bijection between F and {0, 1}p implies for any m ∈ M(X) that yi(m) = 0
iff no variable x ∈ X(i) appears in m.

Let us now define the polynomial F. Given a monomial m ∈ M(X), we define F(m) to
be ψ(∏t

i=1 yi(m)). We define a polynomial f ∈ F[X] to be explicit if the coefficient f (m) of
any monomial m can be computed in time polynomial in n. Note that the polynomial F is
explicit.

We now state our main correlation result using which we will obtain the lower bound
against the Hadamard product of monotone multilinear polynomials in C[x1, . . . , xn]. A
proof sketch is given in the full version of the paper [2].

LEMMA 19. Let F ∈ C[x1, . . . , xn] be the explicit multilinear polynomial defined above and
f1, f2 ∈ C[x1, . . . , xn] be any 1/3-product polynomials. Then

1. ∑m∈M({x1,...,xn}) F(m) ≥ 0.
2. Corr (F, f1 ◦ f2) ≤ 2−αn‖F‖‖ f1 ◦ f2‖, for a constant α > 0 that is independent of f1 and

f2.

Using the above lemma bounding the correlation between F and the Hadamard product
of 1/3-product polynomials, we will prove the main lower bound. We first recall a crucial
lemma of Raz and Yehudayoff [15].

LEMMA 20. For n ≥ 3, let F ∈ C[x1, . . . , xn] be a monotone multilinear polynomial com-
puted by a monotone circuit of size s (i.e. the circuit has at most s edges). Then, there are
s + 1 monotone 1/3-product polynomials f1, f2, . . . , fs+1 such that F = ∑s+1

i=1 fi.

THEOREM 21. For large enough n ∈ N, there is an explicit monotone multilinear poly-
nomial F′ ∈ Q[x1, . . . , xn] that cannot be written as a Hadamard product of two monotone
multilinear polynomials f1, f2 ∈ R[x1, . . . , xn] such that each fi is computed by monotone
circuits of size less than 2αn, where α > 0 is an absolute constant.
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Proof. By the density of primes it suffices to consider n of the form tp, for prime p, where t is
the constant in the definition of F. Let X denote the set of variables {x1, . . . , xn}, and let F be
the explicit polynomial mentioned in Lemma 19 above. For any monomial m ∈ M(X), let
F′(m) = (F(m) + 1)/2. Clearly, the coefficients of F′ all lie in {0, 1}. Consider the correlation
between F and F′, Corr (F, F′) =

∣∣∣∑m:F(m)=1 1
∣∣∣ ≥ 2n−1, where the inequality follows from

the point 1 of Lemma 19.

Let us assume that F′ can be written as f1 ◦ f2, where f1 and f2 are multilinear polynomials
computed by monotone arithmetic circuits of size at most s. We assume n ≥ 3, so that
Lemma 20 is applicable. By Lemma 20, there exist monotone 1/3-product polynomials
f1,1, . . . , f1,s+1, f2,1, . . . , f2,s+1 such that fi = ∑s+1

j=1 fi,j, for each i ∈ {1, 2}. Thus, we have,

F′ =

(
s+1

∑
j=1

f1,j

)
◦
(

s+1

∑
k=1

f2,k

)
= ∑

1≤j,k≤s+1
f1,j ◦ f2,k

Taking correlation with F on both sides, we see that,

2n−1 ≤ ∑
1≤j,k≤s+1

Corr
(

F, f1,j ◦ f2,k
)
≤ ∑

1≤j,k≤s+1
2−βn‖F‖‖ f1,j ◦ f2,k‖,

by applying triangle inequality and then part 2 of Lemma 19, where β > 0 is some constant.

Since, f1,j ◦ f2,k’s are monotone polynomials adding up to F′, it follows that for any mono-
mial m ∈ M(X) its coefficient in f1,j ◦ f2,k is at most 1. Hence, ‖ f1,j ◦ f2,k‖ ≤ ‖F‖ and we
have

2n−1 ≤ ∑1≤j,k≤s+1 2−βn‖F‖2 = (s + 1)22n−βn

Consequently, we have s ≥ 2βn/4, for large enough n.
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1 LIRMM – Université de Montpellier 2, CNRS,
Montpellier, France.

{bessy|gaspers|paul|perez|thomasse}@lirmm.fr

2 Department of Informatics, University of Bergen,
Bergen, Norway.

{fedor.fomin|saket.saurabh}@ii.uib.no

ABSTRACT. A tournament T = (V, A) is a directed graph in which there is exactly one arc between
every pair of distinct vertices. Given a digraph on n vertices and an integer parameter k, the FEED-
BACK ARC SET problem asks whether the given digraph has a set of k arcs whose removal results
in an acyclic digraph. The FEEDBACK ARC SET problem restricted to tournaments is known as the
k-FEEDBACK ARC SET IN TOURNAMENTS (k-FAST) problem. In this paper we obtain a linear vertex
kernel for k-FAST. That is, we give a polynomial time algorithm which given an input instance T
to k-FAST obtains an equivalent instance T′ on O(k) vertices. In fact, given any fixed ε > 0, the
kernelized instance has at most (2 + ε)k vertices. Our result improves the previous known bound of
O(k2) on the kernel size for k-FAST. Our kernelization algorithm solves the problem on a subclass
of tournaments in polynomial time and uses a known polynomial time approximation scheme for
k-FAST.

1 Introduction
Given a directed graph G = (V, A) on n vertices and an integer parameter k, the FEEDBACK

ARC SET problem asks whether the given digraph has a set of k arcs whose removal results
in an acyclic directed graph. In this paper, we consider this problem in a special class of
directed graphs, tournaments. A tournament T = (V, A) is a directed graph in which there
is exactly one directed arc between every pair of vertices. More formally the problem we
consider is defined as follows.

k-FEEDBACK ARC SET IN TOURNAMENTS (k-FAST): Given a tournament T =
(V, A) and a positive integer k, does there exist a subset F ⊆ A of at most k arcs
whose removal makes T acyclic.

In the weighted version of k-FAST, we are also given integer weights (each weight is at
least one) on the arcs and the objective is to find a feedback arc set of weight at most k. This
problem is called k-WEIGHTED FEEDBACK ARC SET IN TOURNAMENTS (k-WFAST).

Feedback arc sets in tournaments are well studied from the combinatorial [17, 18, 24,
25, 28, 32], statistical [26] and algorithmic [1, 2, 12, 21, 30, 31] points of view. The problems
k-FAST and k-WFAST have several applications. In rank aggregation we are given several

c© Bessy, Fomin, Gaspers, Paul, Perez, Saurabh, Thomassé; licensed under Creative Commons License-NC-ND.
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rankings of a set of objects, and we wish to produce a single ranking that on average is as
consistent as possible with the given ones, according to some chosen measure of consistency.
This problem has been studied in the context of voting [7, 11], machine learning [10], and
search engine ranking [15, 16]. A natural consistency measure for rank aggregation is the
number of pairs that occur in a different order in the two rankings. This leads to Kemeny
rank aggregation [19, 20], a special case of k-WFAST.

The k-FAST problem is known to be NP-complete by recent results of Alon [2] and
Charbit et al. [9] while k-WFAST is known to be NP-complete by Bartholdi III et al. [4].
From an approximation perspective, k-WFAST is APX-hard [27] but admits a polynomial
time approximation scheme when the edge weights are bounded by a constant [21]. The
problem is also well studied in parameterized complexity. In this area, a problem with
input size n and a parameter k is said to be fixed parameter tractable (FPT) if there exists
an algorithm to solve this problem in time f (k) · nO(1), where f is an arbitrary function of
k. Raman and Saurabh [23] showed that k-FAST and k-WFAST are FPT by obtaining an
algorithm running in time O(2.415k · k4.752 + nO(1)). Recently, Alon et al. [3] have improved
this result by giving an algorithm for k-WFAST running in time O(2O(

√
k log2 k) + nO(1)). This

algorithm runs in sub-exponential time, a trait uncommon to parameterized algorithms. In
this paper we investigate k-FAST from the view point of kernelization, currently one of the
most active subfields of parameterized algorithms.

A parameterized problem is said to admit a polynomial kernel if there is a polynomial
(in n) time algorithm, called a kernelization algorithm, that reduces the input instance to an
instance whose size is bounded by a polynomial p(k) in k, while preserving the answer.
This reduced instance is called a p(k) kernel for the problem. When p(k) is a linear function
of k then the corresponding kernel is a linear kernel. Kernelization has been at the forefront
of research in parameterized complexity in the last couple of years, leading to various new
polynomial kernels as well as tools to show that several problems do not have a polyno-
mial kernel under some complexity-theoretic assumptions [5, 6, 8, 14, 29]. In this paper we
continue the current theme of research on kernelization and obtain a linear vertex kernel for
k-FAST. That is, we give a polynomial time algorithm which given an input instance T to
k-FAST obtains an equivalent instance T′ on O(k) vertices. More precisely, given any fixed
ε > 0, we find a kernel with a most (2 + ε)k vertices in polynomial time. The reason we call
it a linear vertex kernel is that, even though the number of vertices in the reduced instance
is at most O(k), the number of arcs is still O(k2). Our result improves the previous known
bound of O(k2) on the vertex kernel size for k-FAST [3, 13]. For our kernelization algo-
rithm we find a subclass of tournaments where one can find a minimum sized feedback arc
set in polynomial time (see Lemma 12) and use the known polynomial time approximation
scheme for k-FAST by Kenyon-Mathieu and Schudy [21]. The polynomial time algorithm
for a subclass of tournaments could be of independent interest.

The paper is organized as follows. In Section 2, we give some definition and prelim-
inary results regarding feedback arc sets. In Section 3 we give a linear vertex kernel for
k-FAST. Finally we conclude with some remarks in Section 4.
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2 Preliminaries
Let T = (V, A) be a tournament on n vertices. We use Tσ = (Vσ, A) to denote a tournament
whose vertices are ordered under a fixed ordering σ = v1, . . . , vn (we also use Dσ for an
ordered directed graph). We say that an arc vivj of Tσ is a backward arc if i > j, otherwise we
call it a forward arc. Moreover, given any partition P := {V1, . . . , Vl} of Vσ, where every
Vi is an interval according to the ordering of Tσ, we use AB to denote all arcs between
the intervals (having their endpoints in different intervals), and AI for all arcs within the
intervals. If Tσ contains no backward arc, then we say that it is transitive.

For a vertex v ∈ V we denote its in-neighborhood by N−(v) := {u ∈ V | uv ∈ A} and its
out-neighborhood by N+(v) := {u ∈ V | vu ∈ A}. A set of vertices M ⊆ V is a module if and
only if N+(u) \M = N+(v) \M for every u, v ∈ M. For a subset of arcs A′ ⊆ A, we define
T[A′] to be the digraph (V ′, A′) where V ′ is the union of endpoints of the arcs in A′. Given
an ordered digraph Dσ and an arc e = vivj, S(e) = {vi, . . . , vj} denotes the span of e. The
number of vertices in S(e) is called the length of e and is denoted by l(e). Thus, for every arc
e = vivj, l(e) = |i− j|+ 1. Finally, for every vertex v in the span of e, we say that e is above v.

In this paper, we will use the well-known fact that every acyclic tournament admits a
transitive ordering. In particular, we will consider maximal transitive modules. We also need
the following result for our kernelization algorithm.

LEMMA 1.([23]) Let D = (V, A) be a directed graph and F be a minimal feedback arc set of
D. Let D′ be the graph obtained from D by reversing the arcs of F in D, then D′ is acyclic.

In this paper whenever we say circuit, we mean a directed cycle. Next we introduce a
definition which is useful for a lemma we prove later.

DEFINITION 2. Let Dσ = (Vσ, A) be an ordered directed graph and let f = vu be a backward
arc of Dσ. We call certificate of f , and denote it by c( f ), any directed path from u to v using
only forward arcs in the span of f in Dσ.

Observe that such a directed path together with the backward arc f forms a directed
cycle in Dσ whose only backward arc is f .

DEFINITION 3. Let Dσ = (Vσ, A) be an ordered directed graph, and let F ⊆ A be a set
of backward arcs of Dσ. We say that we can certify F whenever it is possible to find a set
F = {c( f ) : f ∈ F} of arc-disjoint certificates for the arcs in F.

Let Dσ = (Vσ, A) be an ordered directed graph, and let F ⊆ A be a subset of backward
arcs of Dσ. We say that we can certify the set F using only arcs from A′ ⊆ A if F can be
certified by a collection F such that the union of the arcs of the certificates in F is contained
in A′. In the following, f as(D) denotes the size of a minimum feedback arc set, that is, the
cardinality of a minimum sized set F of arcs whose removal makes D acyclic.

LEMMA 4. Let Dσ be an ordered directed graph, and let P = {V1, . . . , Vl} be a partition of
Dσ into intervals. Assume that the set F of all backward arcs of Dσ[AB] can be certified using
only arcs from AB. Then f as(Dσ) = f as(Dσ[AI ]) + f as(Dσ[AB]). Moreover, there exists a
minimum sized feedback arc set of Dσ containing F.

PROOF. For any bipartition of the arc set A into A1 and A2, f as(Dσ) ≥ f as(Dσ[A1]) +
f as(Dσ[A2]). Hence, in particular for a partition of the arc set A into AI and AB we have
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that f as(Dσ) ≥ f as(Dσ[AI ]) + f as(Dσ[AB]). Next, we show that f as(Dσ) ≤ f as(Dσ[AI ]) +
f as(Dσ[AB]). This follows from the fact that once we reverse all the arcs in F, each remaining
circuit lies in Dσ[Vi] for some i ∈ {1, . . . , l}. In other words once we reverse all the arcs in F,
every circuit is completely contained in Dσ[AI ]. This concludes the proof of the first part of
the lemma. In fact, what we have shown is that there exists a minimum sized feedback arc
set of Dσ containing F. This concludes the proof of the lemma.

3 Kernels for k-FAST
In this section we first give a subquadratic vertex kernel of size O(k

√
k) for k-FAST and then

improve on it to get our final vertex kernel of size O(k). We start by giving a few reduction
rules that will be needed to bound the size of the kernels.

Rule 3.1 If a vertex v is not contained in any triangle, delete v from T.

Rule 3.2 If there exists an arc uv that belongs to more than k distinct triangles, then reverse uv and
decrease k by 1.

We say that a reduction rule is sound, if whenever the rule is applied to an instance
(T, k) to obtain an instance (T′, k′), T has a feedback arc set of size at most k if and only if T′

has a feedback arc set of size at most k′.

LEMMA 5.([3, 13]) Rules 3.1 and 3.2 are sound and can be applied in polynomial time.

The Rules 3.1 and 3.2 together led to a quadratic kernel for k-WFAST [3]. Earlier, these
rules were used by Dom et al. [13] to obtain a quadratic kernel for k-FAST. We now add a
new reduction rule that will allow us to obtain the claimed bound on the kernel sizes for
k-FAST. Given an ordered tournament Tσ = (Vσ, A), we say that P = {V1, . . . , Vl} is a safe
partition of Vσ into intervals whenever it is possible to certify the backward arcs of Tσ[AB]
using only arcs from AB.

Rule 3.3 Let Tσ be an ordered tournament, P = {V1, . . . , Vl} be a safe partition of Vσ into intervals
and F be the set of backward arcs of Tσ[AB]. Then reverse all the arcs of F and decrease k by |F|.

LEMMA 6. Rule 3.3 is sound.

PROOF. Let P be a safe partition of Tσ. Observe that it is possible to certify all the back-
ward arcs, that is F, using only arcs in AB. Hence using Lemma 4 we have that f as(Tσ) =
f as(Tσ[AI ]) + f as(Tσ[AB]). Furthermore, by Lemma 4 we also know that there exists a min-
imum sized feedback arc set of Dσ containing F. Thus, Tσ has a feedback arc set of size at
most k if and only if the tournament T′σ obtained from Tσ by reversing all the arcs of F has a
feedback arc set of size at most k− |F|.

3.1 A subquadratic kernel for k-FAST

In this section, we show how to obtain an O(k
√

k) sized vertex kernel for k-FAST. To do so,
we introduce the following reduction rule.
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Rule 3.4 Let Vm be a maximal transitive module of size p, and I and O be the set of in-neighbors
and out-neighbors of the vertices of Vm in T, respectively. Let Z be the set of arcs uv such that u ∈ O
and v ∈ I. If q = |Z| < p then reverse all the arcs in Z and decrease k by q.

I O

Tm

|Tm| = p

q < p

Figure 1: A transitive module on which Rule 3.4 applies.

LEMMA 7. Rule 3.4 is sound and can be applied in linear time.

PROOF. We first prove that the partition P = {I, Vm, O} forms a safe partition of the input
tournament. Let V ′m = {w1, . . . , wq} ⊆ Vm be an arbitrary subset of size q of Vm and let
Z = {uivi | 1 ≤ i ≤ q}. Consider the collection F = {viwiui | uivi ∈ Z, wi ∈ V ′m} and
notice that it certifies all the arcs in Z. In fact we have managed to certify all the backwards
arcs of the partition using only arcs from AB and hence P forms a safe partition. Thus, by
Rule 3.3, it is safe to reverse all the arcs from O to I. The time complexity follows from the
fact that computing a modular decomposition tree can be done in O(n + m) time on directed
graphs [22].

We show that any YES-instance to which none of the Rules 3.1, 3.2 and 3.4 could be
applied has at most O(k

√
k) vertices.

THEOREM 8. Let (T = (V, A), k) be a YES-instance to k-FAST which has been reduced
according to Rules 3.1, 3.2 and 3.4. Then T has at most O(k

√
k) vertices.

PROOF. Let S be a feedback arc set of size at most k of T and let T′ be the tournament
obtained from T by reversing all the arcs in S. Let σ be the transitive ordering of T′ and
Tσ = (Vσ, A) be the ordered tournament corresponding to the ordering σ. We say that a
vertex is affected if it is incident to some arc in S. Thus, the number of affected vertices is
at most 2|S| ≤ 2k. The reduction Rule 3.1 ensures that the first and last vertex of Tσ are
affected. To see this note that if the first vertex in Vσ is not affected then it is a source vertex
(vertex with in-degree 0) and hence it is not part of any triangle and thus Rule 3.1 would
have applied. We can similarly argue for the last vertex. Next we argue that there is no
backward arc e of length greater than 2k + 2 in Tσ. Assume to the contrary that e = uv is a
backward arc with S(e) = {v, x1, x2, . . . , x2k+1, . . . , u} and hence l(e) > 2k + 2. Consider the
collection T = {vxiu | 1 ≤ i ≤ 2k} and observe that at most k of these triples can contain
an arc from S \ {e} and hence there exist at least k + 1 triplets in T which corresponds to
distinct triangles all containing e. But then e would have been reversed by an application
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of Rule 3.2. Hence, we have shown that there is no backward arc e of length greater than
2k + 2 in Tσ. Thus ∑e∈S l(e) ≤ 2k2 + 2k.

We also know that between two consecutive affected vertices there is exactly one max-
imal transitive module. Let us denote by ti the number of vertices in these modules, where
i ∈ {1, . . . , 2k− 1}. The objective here is to bound the number of vertices in Vσ or V using
∑2k−1

i=1 ti. To do so, observe that since T is reduced under the Rule 3.4, there are at least ti
backward arcs above every module with ti vertices, each of length at least ti. This implies
that ∑2k−1

i=1 t2
i ≤ ∑e∈S l(e) ≤ 2k2 + 2k. Now, using the Cauchy-Schwarz inequality we can

show the following.

2k−1

∑
i=1

ti =
2k−1

∑
i=1

ti · 1 ≤

√√√√2k−1

∑
i=1

t2
i ·

2k−1

∑
i=1

1 ≤
√

(2k2 + 2k) · (2k− 1) =
√

4k3 + 2k2 − k.

Thus every reduced YES-instance has at most
√

4k3 + 2k2 − k + 2k = O(k
√

k) vertices.

3.2 A linear kernel for k-FAST

We begin this subsection by showing some general properties about tournaments which
will be useful in obtaining a linear kernel for k-FAST.

Backward Weighted Tournaments

Let Tσ be an ordered tournament with weights on its backward arcs. We call such a tourna-
ment a backward weighted tournament and denote it by Tω, and use ω(e) to denote the weight
of a backward arc e. For every interval I := [vi, . . . , vj] we use ω(I) to denote the total
weight of all backward arcs having both their endpoints in I, that is, ω(I) = ∑e=uv w(e)
where u, v ∈ I and e is a backward arc.

DEFINITION 9.(Contraction) Let Tω = (Vσ, A) be an ordered tournament with weights on
its backward arcs and I = [vi, . . . , vj] be an interval. The contracted tournament is defined
as Tω′ = (Vσ′ = Vσ \ {I} ∪ {cI}, A′). The arc set A′ is defined as follows.
• It contains all the arcs A1 = {uv | uv ∈ A, u /∈ I, v /∈ I}
• Add A2 = {ucI | uv ∈ A, u /∈ I, v ∈ I} and A3 = {cIv | uv ∈ A, u ∈ I, v /∈ I}.
• Finally, we remove every forward arc involved in a 2-cycle after the addition of arcs in

the previous step.
The order σ′ for Tω′ is provided by σ′ = v1, . . . , vi−1, cI , vj+1, . . . , vn. We define the weight of
a backward arc e = xy of A′ as follows.

w′(xy) =


w(xy) if xy ∈ A1

∑{xz∈A | z∈I} w(xz) if xy ∈ A2

∑{zy∈A | z∈I} w(zy) if xy ∈ A3

We refer to Figure 2 for an illustration.

Next we generalize the notions of certificate and certification (Definitions 2 and 3) to
backward weighted tournaments.
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Figure 2: Illustration of the contraction step for the interval I := [vi, . . . , vj].

DEFINITION 10. Let Tω = (Vσ, A) be a backward weighted tournament, and let f = vu ∈ A
be a backward arc of Tω. We call ω-certificate of f , and denote it by C( f ), a collection of ω( f )
arc-disjoint directed paths going from u to v and using only forward arcs in the span of f in
Tω.

DEFINITION 11. Let Tω = (Vσ, A) be a backward weighted tournament, and let F ⊆ A be
a subset of backward arcs of Tω. We say that we can ω-certify F whenever it is possible to
find a set F = {C( f ) : f ∈ F} of arc-disjoint ω-certificates for the arcs in F.

LEMMA 12. Let Tω = (Vσ, A) be a backward weighted tournament such that for every
interval I := [vi, . . . , vj] the following holds:

2 ·ω(I) ≤ |I| − 1 (1)

Then it is possible to ω-certify the backward arcs of Tω.

PROOF. Let Vσ = v1, . . . , vn. The proof is by induction on n, the number of vertices. Note
that by applying (1) to the interval I = [v1, . . . , vn], we have that there exists a vertex vi
in Tω that is not incident to any backward arc. Let T′ω = (V ′σ, A′) denote the tournament
Tω \ {vi}. We say that an interval I is critical whenever |I| ≥ 2 and 2 · ω(I) = |I| − 1. We
now consider several cases, based on different types of critical intervals.

(i) Suppose that there are no critical intervals. Thus, in T′ω, every interval satisfies (1), and
hence by induction on n the result holds.

(ii) Suppose now that the only critical interval is I = [v1, . . . , vn], and let e = vu be a
backward arc above vi with the maximum length. Note that since vi does not belong
to any backward arc, we can use it to form a directed path c(e) = uviv, which is a
certificate for e. We now consider T′ω where the weight of e has been decreased by
1. In this process if ω(e) becomes 0 then we reverse the arc e. We now show that
every interval of T′ω respects (1). If an interval I′ ∈ T′ω does not contain vi in the
corresponding interval in Tω, then by our assumption we have that 2 ·ω(I′) ≤ |I′| − 1.
Now we assume that the interval corresponding to I′ in Tω contains vi but either u /∈
I′ ∪ {vi} or v /∈ I′ ∪ {vi}. Then we have 2 ·ω(I′) = 2 ·ω(I) < |I| − 1 = |I′| and hence
we get that 2 ·ω(I′) ≤ |I′| − 1. Finally, we assume that the interval corresponding to I′

in Tω contains vi and u, v ∈ I′ ∪ {vi}. In this case, 2 ·ω(I′) = 2 · (ω(I)− 1) ≤ |I| − 1−
2 < |I′| − 1. Thus, by the induction hypothesis, we obtain a family of arc-disjoint ω-
certificates F ′ which ω-certify the backward arcs of T′ω. Observe that the maximality
of l(e) ensures that if e is reversed then it will not be used in any ω-certificate of F ′,
thus implying that F ′ ∪ c(e) is a family ω-certifying the backward arcs of Tω.



44 KERNELS FOR FEEDBACK ARC SET IN TOURNAMENTS

(iii) Finally, suppose that there exists a critical interval I ( Vσ. Roughly speaking, we will
show that I and Vσ \ I can be certified separately. To do so, we first show the following.
Claim. Let I ⊂ Vσ be a critical interval. Then the tournament Tω′ = (Vσ′ , A′) obtained
from Tω by contracting I satisfies the conditions of the lemma.
PROOF. Let H′ be any interval of Tω′ . As before if H′ does not contain cI then the
result holds by hypothesis. Otherwise, let H be the interval corresponding to H′ in Tω.
We will show that 2ω(H′) ≤ |H′| − 1. By hypothesis, we know that 2ω(H) ≤ |H| − 1
and that 2ω(I) = |I| − 1. Thus we have the following.

2ω(H′) = 2 · (ω(H)−ω(I)) ≤ |H| − 1− |I|+ 1 = (|H|+ 1− |I|)− 1 = |H′| − 1

Thus, we have shown that the tournament Tω′ satisfies the conditions of the lemma.

We now consider a minimal critical interval I. By induction, and using the claim, we
know that we can obtain a family of arc-disjoint ω-certificates F ′ which ω-certifies
the backward arcs of Tω′ without using any arc within I. Now, by minimality of I,
we can use (ii) to obtain a family of arc-disjoint ω-certificates F ′′ which ω-certifies the
backward arcs of I using only arcs within I. Thus, F ′ ∪ F ′′ is a family ω-certifying all
backward arcs of Tω.

This concludes the proof of the lemma.

In the following, any interval that does not respect condition (1) is said to be a dense
interval.

LEMMA 13. Let Tω = (Vσ, A) be a backward weighted tournament with |Vσ| ≥ 2p + 1 and
ω(Vσ) ≤ p. Then there exists a safe partition of Vσ with at least one backward arc between
the intervals and it can be computed in polynomial time.

PROOF. The proof is by induction on n = |Vσ|. Observe that the statement is true for
n = 3, which is our base case.

For the inductive step, we assume first that there is no dense interval in Tω. In this case
Lemma 12 ensures that the partition of Vσ into singletons of vertices is a safe partition. So
from now on we assume that there exists at least one dense interval.

Let I be a dense interval. By definition of I, we have that ω(I) ≥ 1
2 · |I|. We now

contract I and obtain the backward weighted tournament Tω′ = (Vσ′ , A′). In the contracted
tournament Tω′ , we have:{

|Vσ′ | ≥ 2p + 1− (|I| − 1) = 2p− |I|+ 2;

ω′(Vσ′) ≤ p− 1
2 · |I|.

Thus, if we set r := p− 1
2 · |I|, we get that |Vσ′ | ≥ 2r + 1 and ω′(Vσ′) ≤ r. Since |Vσ′ | < |Vσ|,

by the induction hypothesis we can find a safe partition P of Tω′ , and thus obtain a family
Fω′ that ω-certifies the backward arcs of Tω′ [AB] using only arcs in AB.

We claim that P ′ obtained from P by substituting cI by its corresponding interval I is
a safe partition in Tω. To see this, first observe that if cI has not been used to ω-certify the
backward arcs in Tω′ [AB], that is, cI is not an end point of any arc in the ω-certificates, then
we are done. So from now on we assume that cI has been part of a ω-certificate for some
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backward arc. Let e be a backward arc in Tω′ [AB], and let cω′(e) ∈ Fω′ be a ω-certificate
of e. First we assume that cI is not the first vertex of the certificate cω′(e) (with respect to
ordering σ′), and let c1 and c2 be the left (in-) and right (out-) neighbors of cI in cω′(e). By
definition of the contraction step together with the fact that there is a forward arc between
c1 and cI and between cI and c2 in Tω′ , we have that there were no backward arcs between
any vertex in the interval corresponding to cI and c1 and c2 in the original tournament Tω.
So we can always find a vertex in I to replace cI in cω′(e), thus obtaining a certificate c(e) for
e in Tω[AB] (observe that e remains a backward arc even in Tω). Now we assume that cI is
either a first or last vertex in the certificate cω′(e). Let e′ be an arc corresponding to e in Tω′

with one of its endpoints being eI ∈ I. To certify e′ in Tω[AB], we need to show that we can
construct a certificate c(e′) using only arcs of Tω[AB]. We have two cases to deal with.

(i) If cI is the first vertex of cω′(e) then let c1 be its right neighbor in cω′(e). Using the
same argument as before, there are only forward arcs between any vertex in I and
c1. In particular, there is a forward arc eIc1 in Tω, meaning that we can construct a
ω-certificate for e′ in Tω by setting c(e′) := (cω′(e) \ {cI}) ∪ {eI}.

e
I

c
I

c
1

c
1

I

Figure 3: On the left, the ω-certificate cω′(e) ∈ Fω′ . On the right, the corresponding ω-
certificate obtained in Tω by replacing cI by the interval I.

(ii) If cI is the last vertex of cω′(e) then let cq be its left neighbor in cω′(e). Once again, we
have that there are only forward arcs between cq and vertices in I, and thus between
cq and eI . So using this we can construct a ω-certificate for e′ in Tω.

Notice that the fact that all ω-certificates are pairwise arc-disjoint in Tω′ [AB] implies that the
corresponding ω-certificates are arc-disjoint in Tω[AB], and so P ′ is indeed a safe partition
of Vσ.

We are now ready to give the linear size kernel for k-FAST. To do so, we make use of
the fact that there exists a polynomial time approximation scheme for this problem [21].

THEOREM 14. For every fixed ε > 0, there exists a vertex kernel for k-FAST with at most
(2 + ε)k vertices that can be computed in polynomial time.

PROOF. Let (T = (V, A), k) be an instance of k-FAST. For a fixed ε > 0, we start by
computing a feedback arc set S of size at most (1 + ε

2 )k. To find such a set S, we use the
known polynomial time approximation scheme for k-FAST [21]. Then, we order T with
the transitive ordering of the tournament obtained by reversing every arc of S in T. Let Tσ

denote the resulting ordered tournament. By the upper bound on the size of S, we know
that Tσ has at most (1 + ε

2 )k backward arcs. Thus, if Tσ has more than (2 + ε)k vertices then
Lemma 13 ensures that we can find a safe partition with at least one backward arc between
the intervals in polynomial time. Hence we can reduce the tournament by applying Rule 3.3.
We then apply Rule 3.1, and repeat the previous steps until we do not find a safe partition or
k = 0. In the former case, we know by Lemma 13 that T can have at most (2 + ε)k vertices,
thus implying the result. In all other cases we return NO.
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4 Conclusion
In this paper we obtained linear vertex kernel for k-FAST, in fact, a vertex kernel of size
(2 + ε)k for any fixed ε > 0. The new bound on the kernel size improves the previous
known bound of O(k2) on the vertex kernel size for k-FAST given in [3, 13]. It would be
interesting to see if one can obtain kernels for other problems using either polynomial time
approximation schemes or a constant factor approximation algorithm for the correspond-
ing problem. An interesting problem which remains unanswered is, whether there exists
a linear or even a o(k2) vertex kernel for the k-FEEDBACK VERTEX SET IN TOURNAMENTS

(k-FVST) problem. In the k-FVST problem we are given a tournament T and a positive
integer k and the aim is to find a set of at most k vertices whose deletion makes the input
tournament acyclic. The smallest known kernel for k-FVST has size O(k2).
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ABSTRACT. We investigate the problem of evaluating memory consumption for systems modelled
by probabilistic pushdown automata (pPDA). The space needed by a run of a pPDA is the maxi-
mal height reached by the stack during the run. The problem is motivated by the investigation of
depth-first computations that play an important role for space-efficient schedulings of multithreaded
programs.
We study the computation of both the distribution of the memory consumption and its expectation.
For the distribution, we show that a naive method incurs an exponential blow-up, and that it can
be avoided using linear equation systems. We also suggest a possibly even faster approximation
method. Given ε > 0, these methods allow to compute bounds on the memory consumption that are
exceeded with a probability of at most ε.
For the expected memory consumption, we show that whether it is infinite can be decided in polyno-
mial time for stateless pPDA (pBPA) and in polynomial space for pPDA. We also provide an iterative
method for approximating the expectation. We show how to compute error bounds of our approx-
imation method and analyze its convergence speed. We prove that our method converges linearly,
i.e., the number of accurate bits of the approximation is a linear function of the number of iterations.

1 Introduction

The verification of probabilistic programs with possibly recursive procedures has been

intensely studied in the last years. The Markov chains or Markov Decision Processes un-

derlying these systems may have infinitely many states. Despite this fact, which prevents

the direct application of the rich theory of finite Markov Chains, many positive results have

been obtained. Model-checking algorithms have been proposed for both linear and branch-

ing temporal logics [8, 11, 18], the long-run behavior of the systems has been analyzed [6, 9],

and algorithms deciding properties of games have been described (see e.g. [10]).

In all these papers programs are modelled as probabilistic pushdown automata (pPDA)

or as recursive Markov chains; the two models are very close, and nearly all results obtained

for one of them can be easily translated to the other [7]. In this paper we consider pPDA.

Loosely speaking, a pPDA is a pushdown automaton whose transitions carry probabilities.

The configurations of a pPDA are pairs containing the current control state and the current

stack content. A run is a sequence of configurations, each one obtained from its predecessor
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by applying a transition, which may modify the control state and modify the top of the stack.

If a run reaches a configuration with empty stack, it stays in this configuration forever. We

say “it terminates”.

The memory consumption of a pPDA is modelled by the random variable M that as-

signs to a run the maximal stack height of the configurations visited along it (which may be

infinite). We study the distribution and the expected value of M. The execution time and

memory consumption of pPDA were studied in [9], but the results about the latter were

much weaker. More precisely, all it was shown in [9] was that P(M = ∞) can be compared

with 0 or 1 in polynomial space and with other rationals in exponential time.

A probabilistic recursive program whose variables have finite range can be modelled

by a pPDA, and in this case M models the amount of memory needed for the recursion

stack. But M is also an important parameter for the problem of scheduling multithreaded

computations (see [15, 3] among other papers). When a multithreaded program is executed

by one processor, a scheduler decides which thread to execute next, and the current states

of all other active threads are stored. When threads are lightweight, this makes the memory

requirements of the program heavily depend on the thread scheduler [15]. Under the usual

assumption that a thread can terminate only after all threads spawned by it terminate, the

space-optimal scheduler is the one that, when A spawns B, interrupts the execution of A and

continues with B; this is called the depth-first scheduler in [15, 3]. The depth-first scheduler

can be modelled by a pushdown automaton. To give an example, consider a multithreaded

system with two types of threads, X and Y. Imagine that through statistical sampling we

know that a thread of type X spawns either a thread of type Y or no new threads, both

with probability 1/2; a thread of type Y spawns another thread of type Y with probability

1/3, or no new thread with probability 2/3. The depth-first execution of this multithreaded

program is modelled by a pPDA with one control state, stack symbols X, Y, and rules X
1/2→

YX, X
1/2→ ε, Y

1/3→ YY, Y
2/3→ ε. Notice that the rule X

1/2→ YX indeed models the depth-first

idea: the new thread Y is executed before the thread X.

In this simple model, pPDA for multithreaded systems have one single control state.

Stack symbols represent currently active threads and pushdown rules model whether a

thread dies or spawns a new thread. On the other hand, pPDA with more than one con-

trol state can model global variables with finite range (the possible values of the global store

are encoded into the control states of the pPDA) [4]. For these reasons we study arbitrary

pPDA in this paper, but also specialize our results (and in particular the complexity of al-

gorithms) to so-called pBPA, which are pPDA with a single control state. As we shall see,

while some algorithms are polynomial for pBPA, this is unlikely to be the case for pPDA.

Our contribution. We specifically address the problem of computing P(M ≥ n), or at

least an upper bound, for a given n. This allows us to determine the size that the stack (or

the store for threads awaiting execution) must have in order to guarantee that the probabil-

ity of a memory overflow does not exceed a given bound. In Section 3 we obtain a system of

recurrence equations for P(M ≥ n), and show that for a pPDA with set Q of control states

and set Γ of stack symbols, P(M ≥ n) can be computed in time O
(
n · (|Q|2 · |Γ|)3

)
(time

O
(
n · |Γ|3

)
for pBPAs) in the Blum-Shub-Smale model, the computation model in which an

arithmetic operation takes one time unit, independently of the size of the operands. How-
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ever, this result does not provide any information on the asymptotic behavior of P(M ≥ n)
when n grows, and moreover the algorithm is computationally inefficient for large values

of n. We address these problems for pPDA in which the expected value of M is finite. We

show in Section 3.2 that in this case P(M ≥ n) ∈ Θ(ρn), where ρ < 1 is the spectral radius

of a certain matrix. This determines the exact asymptotic behavior up to a constant, and also

leads to an algorithm for computing a bound on P(M ≥ n) with logarithmic runtime in n.

Then we turn to computing the expectation of M. In Section 3.3 we provide an algo-

rithm that approximates the expectation, give an error bound and analyze its convergence

speed. Finally, in Section 4 we study the problem of deciding whether the expected value

of M is finite. We show that the problem is polynomial for pBPAs. For arbitrary pPDA we

show that the problem is in PSPACE and at least as hard as the SQRT-SUM and PosSLP

problems. Notice that already the problem of deciding if the termination probability of a

pPDA exceeds a given bound has this same complexity.

The full version of this paper [5] includes the proofs and more discussion.

Related work. Much work has been done also on the analysis of other well-structured

infinite-state Markov chains, such as quasi-birth-death processes and Jackson queueing

networks [16] and probabilistic lossy channel systems [17]. However, none of these classes

contain pPDA or even pBPA. There is also work on general infinite-state (continuous-time)

Markov chains which analyzes the behavior of the chain up to a finite depth [12]. This

method is very general, but it is inefficient for pPDA, because it has not been designed to

exploit the pushdown structure. Our analysis techniques are strongly based on linear alge-

bra and matrix theory, in particular Perron-Frobenius theory [2]. The closest work to ours

is [11] which also uses Perron-Frobenius theory for assessing the termination probability of

recursive Markov chains.

2 Preliminaries

In the rest of this paper, N and R denote the set of positive integers and real numbers,

respectively. The set of all finite words over a given alphabet Σ is denoted by Σ∗, and the

set of all infinite words over Σ is denoted by Σω. We write ε for the empty word. Given two

sets K ⊆ Σ∗ and L ⊆ Σ∗ ∪ Σω, we use K · L (or just KL) to denote the concatenation of K

and L, i.e., KL = {ww′ | w ∈ K, w′ ∈ L}. The length of a given w ∈ Σ∗ ∪ Σω is denoted by

|w|, where the length of an infinite word is ∞. Given a word (finite or infinite) over Σ, the

individual letters of w are denoted by w(0), w(1), . . .

Vectors and Matrices. Given a set S, we regard the elements of R
S as vectors. We use bold

letters, like u, for vectors. The vector whose components are all 0 (resp. all 1) is denoted by 0

(resp. 1). We write u = v (resp. u ≤ v) if u(s) = v(s) (resp. u(s) ≤ v(s)) holds for all s ∈ S.

If S′ ⊆ S, we write u|S′ for the vector v ∈ R
S′

with v(s) = u(s) for all s ∈ S′.
Given two vector spaces R

S, R
T we identify a linear function A : R

S → R
T with its

corresponding matrix A ∈ R
T×S. We use capital letters for matrices and I for the identity

matrix. We call a matrix nonnegative if all its entries are nonnegative. For nonnegative

square matrices A ∈ R
S×S we define the matrix sum A∗ = ∑

∞
i=0 Ai = I + A + AA + · · · .

It is a well-known fact (see e.g. [13]) that A∗ converges (or “exists”) iff ρ(A) < 1, where
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ρ(A) denotes the spectral radius of A, i.e., the largest absolute value of the eigenvalues

of A. Perron-Frobenius theory for nonnegative matrices (see e.g. [2]) states that ρ(A) is an

eigenvalue of A. If A∗ exists, then A∗ = (I − A)−1.

Markov Chains. Our models of interest induce (infinite-state) Markov chains.

DEFINITION 1. A Markov chain is a triple M = (S,→, Prob) where S is a finite or countably
infinite set of states, → ⊆ S × S is a transition relation, and Prob is a function which to each
transition s → t of M assigns its probability Prob(s → t) > 0 so that for every s ∈ S we have

∑s→t Prob(s → t) = 1 (as usual, we write s
x→ t instead of Prob(s → t) = x).

A path in M is a finite or infinite word w ∈ S+ ∪ Sω such that w(i−1) → w(i) for every

1 ≤ i < |w|. A run in M is an infinite path in M. We denote by Run[M] the set of all runs

in M. The set of all runs that start with a given finite path w is denoted by Run[M](w).

When M is understood, we write Run (or Run(w)) instead of Run[M] (or Run[M](w), resp.).

To every s ∈ S we associate the probability space (Run(s),F ,P) where F is the σ-field

generated by all basic cylinders Run(w) where w is a finite path starting with s, and P : F →
[0, 1] is the unique probability measure such that P(Run(w)) = Π

|w|−1
i=1 xi where w(i−1)

xi→
w(i) for every 1 ≤ i < |w|. If |w| = 1, we put P(Run(w)) = 1. Only certain subsets

of Run(s) are P-measurable, but in this paper we only deal with “safe” subsets that are

guaranteed to be in F . Given s ∈ S and A ⊆ S, we say A is reachable from s if P({w ∈
Run(s) | ∃i ≥ 0 : w(i) ∈ A}) > 0.

Probabilistic Pushdown Automata (pPDA).

DEFINITION 2. A probabilistic pushdown automaton (pPDA) is a tuple ∆ = (Q, Γ, δ, Prob)
where Q is a finite set of control states, Γ is a finite stack alphabet, δ ⊆ Q × Γ × Q × Γ≤2

(where Γ≤2 = {α ∈ Γ∗, |α| ≤ 2}) is a transition relation, and Prob is a function which to each
transition pX → qα assigns a rational probability Prob(pX → qα) > 0 so that for all p ∈ Q

and X ∈ Γ we have that ∑pX→qα Prob(pX → qα) = 1 (as usual, we write pX
x→ qα instead

of Prob(pX → qα) = x).

Elements of Q × Γ∗ are called configurations of ∆. A pPDA with just one control state is

called pBPA (pBPAs correspond to 1-exit recursive Markov chains defined in [11]). In what

follows, configurations of pBPAs are usually written without the control state (i.e., we write

only α instead of pα).

EXAMPLE 3 As a running example we choose the pBPA ∆ = ({p}, {X, Y, Z, W}, δ, Prob) with δ

and Prob given as follows.

X
1/4→ ε X

1/4→ Y Y
2/3→ ε Z

1→ Z

X
1/4→ XX X

1/4→ Z Y
1/3→ YY W

1→ YW

We can interpret this example as a model of a multithreaded system with four kinds of threads. Notice

that threads of type Z and W do not terminate (our results also deal with this possibility). We are

interested in the minimal number of threads n such that the probability that the execution of X

requires to store more than n threads is at most 10−5.
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We define the size |∆| of a pPDA ∆ as follows: |∆| = |Q| + |Γ| + |δ| + |Prob| where |Prob|
equals the sum of sizes of binary representations of values of Prob. To ∆ we associate the

Markov chain M∆ with Q × Γ∗ as set of states and transitions defined as follows:

• pε
1→ pε for each p ∈ Q;

• pXβ
x→ qαβ is a transition of M∆ iff pX

x→ qα is a transition of ∆.

Given p, q ∈ Q and X ∈ Γ, we often write pXq to denote (p, X, q). Given pXq we define

Run(pXq) = {w ∈ Run(pX) | ∃i ≥ 0 : w(i) = qε} and [pXq] = P(Run(pXq)) .

Maximal Stack Height. Given pα ∈ Q× Γ∗, we denote by height(pα) = |α| the stack height

of pα. Given pX ∈ Q × Γ, the maximal stack height of a run is defined by setting

MpX(w) = sup{height(w(i)) | i ≥ 0} for all runs w ∈ Run(pX).

It is easy to show that for all n ∈ N ∪ {∞} the set M−1
pX(n) = {w ∈ Run(pX) | MpX(w) = n}

is measurable. Hence the expectation EMpX of MpX exists and we have

EMpX = ∑
n∈N∪{∞}

n · P(M−1
pX(n)) .

For what follows, we fix a pPDA ∆ = (Q, Γ, δ, Prob) with initial configuration p0X0 ∈ Q × Γ.

We are interested in the random variable Mp0X0
modelling the memory consumption of ∆.

We wish to compute or approximate the distribution of Mp0X0
and its expectation.

3 Computing the Memory Consumption

The problem of computing the distribution of the maximal stack height is the problem of

computing the probability of reaching a given height. So, for every n ≥ 1 we define a vector

P[n] ∈ R
Q×Γ with

P[n](pX) = P({w ∈ Run(pX) | MpX(w) ≥ n}) for every pX ∈ Q × Γ ,

i.e., P[n](pX) is the probability that the maximal stack height is ≥ n in a run of Run(pX).

There is a “naive” method to compute P[n](p0X0). (Recall that M∆ is the Markov chain

associated with ∆.) First, compute the Markov chain Mn+1
∆

obtained from M∆ by restricting

it to the states with a height of at most n + 1. Note that Mn+1
∆

has finitely many states. Then

compute P[n](p0X0) by computing the probability of reaching a state of height n + 1 starting

from p0X0. This can be done as usual by solving a linear equation system. The problem with

this approach is that the number of states in Mn+1
∆

is Θ(|Q| · |Γ|n), i.e., exponential in n, and

the linear equation system has equally many equations.

A better algorithm is obtained by observing that the Markov chain induced by a pPDA

has a certain regular structure. We exploit this to get rid of the state explosion in the “naive”

method. (This has also been observed in the analysis of other structured infinite-state sys-

tems, see e.g. [16].) In the following we describe the improved method, which is based on

linear recurrences. We are mainly interested in the probabilities P[n] to reach height n, but as
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an auxiliary quantity we use the probability of not exceeding height n in terminating runs.

Formally, for every n ≥ 0 we define a vector T[n] ∈ R
Q×Γ×Q such that

T[n](pXq) = P({w ∈ Run(pXq) | MpX(w) ≤ n}) for every pXq ∈ Q × Γ × Q ,

i.e., T[n](pXq) is the probability of all runs of Run(pX) that terminate at q and do not exceed

the height n. To every pXq ∈ Q × Γ × Q we associate a variable T〈n〉(pXq). Consider the

following equation system: If T[n](pXq) = 0, then we put T〈n〉(pXq) = 0. Otherwise, we

put

T〈n〉(pXq) = ∑
pX

y→qε

y + ∑
pX

y→rY

yT〈n〉(rYq) + ∑
pX

y→rYZ

∑
s∈Q

yT[n − 1](rYs)T〈n〉(sZq) .

PROPOSITION 4. For n ≥ 0, the vector T[n] is the unique solution of that equation system.

The values T[n] can be used to set up an equation system for P[n]. To every pX ∈
Q × Γ we associate a variable P〈n〉(pX). Consider the following equation system: We put

P〈1〉(pX) = 1. If P[n](pX) = 0, then we put P〈n〉(pX) = 0. Otherwise, we put

P〈n〉(pX) = ∑
pX

y→qY

yP〈n〉(qY)+ ∑
pX

y→qYZ

yP[n − 1](qY) + ∑
pX

y→qYZ

∑
r∈Q

yT[n − 2](qYr)P〈n〉(rZ) .

PROPOSITION 5. For n ≥ 1, the vector P[n] is the unique solution of that equation system.

EXAMPLE 6 In our example we have for n ≥ 1

T[n](X) = 1/4 + 1/4 T[n](Y) + 1/4 T[n](Z) + 1/4 T[n − 1](X)T[n](X)

T[n](Y) = 2/3 + 1/3 T[n − 1](Y)T[n](Y)

T[n](Z) = 0

T[n](W) = 0

and for n ≥ 2

P[n](X) = 1/4 P[n](Y) + 1/4 P[n](Z) + 1/4 P[n − 1](X) + 1/4 T[n − 2](X)P[n](X)

P[n](Y) = 1/3 P[n − 1](Y) + 1/3 T[n − 2](Y)P[n](Y)

P[n](Z) = 0

P[n](W) = P[n − 1](Y) + T[n − 2](Y)P[n](W) .

Solving those systems successively for increasing n shows that n = 17 is the smallest number n such

that P[n](X) ≤ 10−5. In the interpretation as a multithreaded system this means that the probability

that 17 or more threads need to be stored is at most 10−5.

Using the above equation systems, we can compute T[n] and P[n] iteratively for in-

creasing n by plugging in the values obtained in earlier iterations. The cost of each iteration

is dominated by solving the equation system for T[n], which can be done, using Gaussian

elimination, in time O
(
(|Q|2 · |Γ|)3

)
in the Blum-Shub-Smale model. So the total time to

compute P[n] is linear in n.
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PROPOSITION 7. The value P[n] can be computed by setting up and solving the equation
systems of Propositions 4 and 5 in time O

(
n · (|Q|2 · |Γ|)3

)
in the Blum-Shub-Smale model.

The values P[n] that can be computed by Proposition 7 also allow to approximate the

expectation EMp0X0
: Since EY = ∑

∞
n=1 P(Y ≥ n) holds for any random variable Y with

values in N, we have EMp0X0
= ∑

∞
n=1 P[n](p0X0), so one can approximate EMp0X0

by com-

puting ∑
k
n=1 P[n](p0X0) for some finite k.

Proposition 7 is simple and effective, but not fully satisfying for several reasons. First, it

does not indicate how fast P[n](p0X0) decreases (if at all) for increasing n. Second, although

computing P[n] using Proposition 7 is more efficient than using the “naive” method, it may

still be too costly for large n, especially if Q or Γ are large. Instead, one may prefer an

upper bound on P[n] if it is fast to compute. Finally, we wish for an approximation method

for EMp0X0
that comes with an error bound.

In the following we achieve these goals for pPDAs in which the expected memory con-

sumption is finite. So we assume the following on the pPDA ∆ for the rest of the section.

ASSUMPTION: The expectation EMp0X0
is finite.

Notice that from the practical point of view this is a mild assumption: systems with infinite

expected memory consumption also have infinite expected running time, and are unlikely

to be considered suitable in reasonable scenarios. In Section 4 we show that whether EMp0X0

is finite can be decided in polynomial time for pBPA, but also that this problem is unlikely

to be decidable in polynomial time for general pPDA.

3.1 The Matrix A

This subsection leads to a matrix A which is crucial for our analysis. It is useful to get

rid of certain irregularities in the equation systems of Propositions 4 and 5. The following

lemma shows that the variables in the equation systems do not change from 0 to positive

(or from positive to 0) if n is sufficiently large. (Recall that, by definition, T[n] ≤ T[n + 1]
and P[n] ≥ P[n + 1] for all n ≥ 1.)

LEMMA 8.

1. T[|Q|2|Γ| + 1](pXq) > 0 ⇐⇒ for all n ≥ |Q|2|Γ|+ 1 : T[n](pXq) > 0 ⇐⇒ [pXq] > 0;
2. P[|Q||Γ| + 1](pX) > 0 ⇐⇒ for all n ≥ 1 : P[n](pX) > 0.

Another irregularity can be removed by restricting T[n] and P[n] to their “interest-

ing” components; in particular, we filter out entries of P[n] that cannot create large stacks.

Let T ⊆ Q × Γ × Q denote the set of all pXq such that pXΓ∗ is reachable from p0X0,

and [pXq] > 0. Let H ⊆ Q × Γ denote the set of all pX such that pXΓ∗ is reachable from

p0X0, and P[n](pX) > 0 for all n ≥ 1.

LEMMA 9. The sets T and H are computable in polynomial time.

EXAMPLE 10 For our running example, we fix X as the initial configuration. Then WΓ∗ is not

reachable and P[n](Z) = 0 for n ≥ 2, hence H = {X, Y}. Furthermore, T = {X, Y}.

We define t[n] ∈ R
T by t[n] := T[n]|T , i.e., t[n] ∈ R

T is the restriction of T[n] to T .

Similarly, we define p[n] := P[n]|H. Now we bring the equation systems for t[n] and p[n]
from Propositions 4 and 5 in a compact matrix form.
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For t[n], we define a vector c ∈ R
T , a linear function L̃ on R

T , and a bilinear function

Q̃ : R
T × R

T → R
T as follows:

(c)(pXq) = ∑
pX

y→qε

y (L̃v)(pXq) = ∑
pX

y→rY, rYq∈T
yv(rYq)

(Q̃(u, v))(pXq) = ∑
pX

y→rYZ

∑
s∈Q, rYs∈T , sZq∈T

yu(rYs)v(sZq)

By Q̃(u, ·) we denote a linear function satisfying Q̃(u, ·)(v) = Q̃(u, v).

For p[n], we define linear functions L and L′ on R
H, and a bilinear function

Q : R
T × R

H → R
H as follows:

(Lv)(pX) = ∑
pX

y→qY, qY∈H
yv(qY) (L′

v)(pX) = ∑
pX

y→qYZ, qY∈H
yv(qY)

(Q(u, v))(pX) = ∑
pX

y→qYZ

∑
r∈Q, qYr∈T , rZ∈H

yu(qYr)v(rZ)

By Q(u, ·) we denote a linear function satisfying Q(u, ·)(v) = Q(u, v).

Using Propositions 4 and 5 we obtain for n ≥ |Q|2|Γ| + 3 (recall Lemma 8):

PROPOSITION 11. The following equations hold for all n ≥ |Q|2|Γ|+ 3:

t[n] = c + L̃t[n] + Q̃(t[n − 1], t[n]) and p[n] = Lp[n] + L′
p[n − 1] + Q(t[n − 2], p[n])

EXAMPLE 12 In our example we have for n ≥ 1

t[n] =

L̃+Q̃(t[n−1],·)
︷ ︸︸ ︷(

1/4 t[n − 1](X) 1/4

0 1/3 t[n − 1](Y)

)
t[n] +

c︷ ︸︸ ︷(
1/4

2/3

)

and for n ≥ 2

p[n] =

L+Q(t[n−2],·)
︷ ︸︸ ︷(

1/4 t[n − 2](X) 1/4

0 1/3 t[n − 2](Y)

)
p[n] +

L′
︷ ︸︸ ︷(

1/4 0

0 1/3

)
p[n − 1] .

Unlike P[n], the vector p[n] can be expressed in the form Anp[n − 1] for a suitable matrix An:

PROPOSITION 13. Let An := (L + Q(t[n − 2], ·))∗L′. Then for every n ≥ |Q|2|Γ| + 3 the
matrix An exists and p[n] = Anp[n − 1].

The key of our further analysis is to replace the matrix An by A = limn→∞ An. Since

An = (L + Q(t[n − 2], ·))∗L′, we have

A := (L + Q(t, ·))∗L′

where we define t = limn→∞ t[n]. (Observe that t(pXq) = [pXq].) It is not immediate from

Proposition 13 that A exists, but it can be proved:
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PROPOSITION 14. The matrix A exists and its spectral radius ρ satisfies ρ < 1.

Proposition 14 is the technical core of this paper. Its proof is quite involved and relies

on Perron-Frobenius theory [2]. We give a proof sketch and a full proof in [5].

EXAMPLE 15 The termination probabilities t can be computed as the least solution of a nonlinear

equation system [8, 11]. Applied to our example we obtain t(X) = 2 −
√

2 ≈ 0.586 and t(Y) = 1.

Basic computations yield the following matrix A whose spectral radius is ρ = 1/2.

A =

(
1/(2 +

√
2) 1/(4 + 2

√
2)

0 1/2

)

3.2 Approximating the Distribution and a Tail Bound

We can assume p0X0 ∈ H in the following, because otherwise, by Lemma 8, we would have

P[n](p0X0) = 0 for n ≥ |Q|2|Γ| + 3, removing any need for further analysis.

The following theorem suggests an efficient approximation algorithm.

THEOREM 16. Let n⊥ := |Q|2|Γ|+ 3 and p̂[n] := p[n] for n < n⊥ and p̂[n⊥ + n] := An
p[n⊥]

for n ≥ 0. Then p[n] ≤ p̂[n] holds for all n ≥ 1. Moreover, there exists d with 0 < d ≤ 1 and

d · p̂[n](p0X0) ≤ p[n](p0X0) ≤ p̂[n](p0X0) .

The proposition shows that p[n](p0X0) and the approximation p̂[n](p0X0) differ at most by

a constant factor. Given A, the matrix powers An can be computed by repeated squaring,

which allows to compute this upper bound in time O
(
(|Q| · |Γ|)3 · log n

)
in the Blum-Shub-

Smale model. To compute A = (L + Q(t, ·))∗L′ itself, we can compute the matrix star via the

matrix inverse, as stated in the preliminaries. Computing the vector t of termination prob-

abilities requires a more detailed discussion. The vector is the least solution of a nonlinear

equation system, and its components may be irrational and even non-expressible by radi-

cals [8, 11]. However, there are several ways to compute at least upper bounds on t (which

suffices to obtain upper bounds on p[n], as A depends monotonically on t), or lower-bound

approximations sufficiently accurate for all practical purposes, see [5] for a discussion. The-

orem 16 provides a tail bound for p[n](p0X0):

COROLLARY 17. We have p[n](p0X0) ∈ Θ (ρn) .

EXAMPLE 18 Since in our example Proposition 13 holds already for n ≥ 2, we have p̂[n] = An−1
1

for n ≥ 1. With the matrix A from Example 15 and using p[n] ≤ p̂[n] we obtain:

p[2] ≤ 0.5 · 1 , p[5] ≤ 0.07 · 1 , p[17] ≤ 10−4 · 1 , p[65] ≤ 10−19 · 1 , . . .

Binary search can be used to determine that n = 18 is the least number n for which p[n] ≤ p̂[n] ≤
10−5 · 1 holds, so the comparison with Example 6 shows that the overapproximation is quite tight

here. As ρ = 1/2, Corollary 17 yields p[n](p0X0) ∈ Θ (1/2n).
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3.3 Approximating the Expectation

We define an approximation method for the expectation EMp0X0
, and bound its error. As

mentioned below Proposition 7, we have EMp0X0
= ∑

∞
n=1 p[n](p0X0), which can be (under-)

approximated by the partial sums ∑
k
n=1 p[n](p0X0). The values p[n](p0X0) can be computed

using Proposition 11.

The following theorem gives error bounds on this approximation method and shows

that it converges linearly, i.e., the number of accurate bits (as defined in [14]) is a linear

function of the number of iterations. (Recall for the following statement that for a vector

v ∈ R
H its 1-norm ‖v‖1 is defined as ∑h∈H |v(h)|, and that for a matrix B its 1-norm ‖B‖1 is

the maximal 1-norm of its columns.)

THEOREM 19. Let UMp0X0
(k) := ∑

k
n=1 p[n](p0X0). For all k ≥ |Q|2|Γ| + 3

EMp0X0
− UMp0X0

(k) ≤ ‖A∗‖1 ‖p[k]‖1 ≤ abk

where a > 0 and 0 < b < 1 are computable rational numbers. Hence, the sequence

(UMp0X0
(k))k converges linearly to EMp0X0

.

The computation procedure of the constants a and b from Theorem 19 is somewhat

involved, but the first inequality of Theorem 19 gives concrete error bounds as well:

EXAMPLE 20 Using Proposition 11 we compute ∑
12
n=1 p[n](X) = 1.5731 . . . and furthermore

‖p[12]‖1 ≈ 0.00042. We have ‖A∗‖1 = 1 +
√

2 ≈ 2.4. Theorem 19 yields

1.57 < EMX ≤ 1.5731 . . . + ‖A∗‖1 · ‖p[12]‖1 < 1.58 .

4 Finiteness of the Expected Memory Consumption

In this section we study the complexity of the finite-expectation problem that asks whether

the expectation of the memory consumption is finite.

4.1 Expected Memory Consumption of pPDA

For pPDA we can show the following theorem.

THEOREM 21. The problem whether EMp0X0
is finite is decidable in polynomial space.

The proof is based on the following proposition which strengthens Proposition 14 from

the previous section which stated that, under the assumption that EMp0X0
is finite, the spec-

tral radius ρ of A satisfies ρ < 1.

PROPOSITION 22. Suppose P(Mp0X0
< ∞) = 1. Then the matrix A exists. Moreover, its

spectral radius ρ satisfies ρ < 1 if and only if EMp0X0
is finite.

The condition P(Mp0X0
< ∞) = 1 can be checked in polynomial space [9]. If it does

not hold, then clearly EMp0X0
= ∞. Otherwise one checks ρ ≥ 1. Roughly speaking, this

can be done in polynomial space because the matrix A is given in terms of the termination

probabilities t which can be expressed in the existential theory of the reals.
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We can also show that this upper complexity bound from Theorem 21 cannot be signifi-

cantly lowered without a major breakthrough on long-standing and fundamental problems

on numerical computations, namely the SQRT-SUM and the PosSLP problems [1, 11, 5]:

THEOREM 23. The PosSLP problem is P-time many-one reducible to the decision problem

whether the expected maximal height of a pPDA is finite.

It follows that SQRT-SUM is (Turing) reducible to the finite-stack problem, because

SQRT-SUM is (Turing) reducible to PosSLP [1, 11].

4.2 Expected Memory Consumption of pBPA

Now we show that for pBPA the finite-expectation problem can be decided in polynomial

time. Let us fix a pBPA ∆ = ({p}, Γ, δ, Prob), and fix an initial configuration X0 ∈ Γ. Let Γ0

denote the set of all symbols Y ∈ Γ such that YΓ∗ is reachable from X0. Let Term be the set

of all symbols X ∈ Γ0 such that t(X) = 1, i.e., a run from a Term-symbol terminates almost

surely. We define NTerm = Γ0\Term. The following proposition follows from [11].

PROPOSITION 24. The sets Term and NTerm can be computed in polynomial time.

ALGORITHM DECIDING WHETHER EMX0
IS FINITE:

1. Compute the sets Term and NTerm (using Proposition 24).

2. Decide in polynomial time [5] whether all Y ∈ NTerm satisfy P(MY < ∞) = 1. If no,

then stop and return ‘no’.

3. Decide in polynomial time [5] whether all Y ∈ Term satisfy EMY < ∞. If no, then

return ‘no’. Otherwise return ‘yes’.

THEOREM 25. The above algorithm is polynomial. It returns ‘yes’ iff EMX0
is finite.

5 Conclusions

We have investigated the memory consumption of probabilistic pushdown automata (pPDA).

Technically speaking, we have studied the random variable M returning the maximal stack

height of a pPDA. In [9] a PSPACE algorithm was provided for deciding whether the runs

with M = ∞ have nonzero probability, but the distribution of M and its expectation have

not been studied. For computing the distribution of M, we have shown that the exponen-

tial blow-up of the naive method can be avoided using a system of linear equations. We

have also provided an approximation method that gives upper bounds. This can be used,

e.g., for providing space that suffices with a probability of, say, 99%.

Computing the expectation EM was mentioned in [9] as “harder problem” and left

open. Using novel proof techniques, we have provided a rather complete solution. We

have shown that whether the expected maximal stack height of a pBPA is finite can be

decided in polynomial time, while for general pPDA the problem is in PSPACE. By means

of a reduction to the PosSLP and SQRT-SUM problems we have furthermore shown that

this complexity cannot be significantly lowered without major breakthroughs. Finally, we

have defined an iterative method for approximating the expected maximal stack height, and
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have shown that it converges linearly. The complexity of the decision problem EMp0X0
< k

for a finite bound k is an open question.

References

[1] E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. B. Miltersen. On the complexity

of numerical analysis. In IEEE Conference on Computational Complexity, pages 331–339.

IEEE Computer Society, 2006.

[2] A. Berman and R.J. Plemmons. Nonnegative matrices in the mathematical sciences. Aca-

demic Press, 1979.

[3] R.D. Blumofe and C.E. Leiserson. Scheduling multithreaded computations by work

stealing. Journal of the ACM, 46(5):720–748, 1999.

[4] A. Bouajjani and J. Esparza. Rewriting models of boolean programs. In Proceedings of

RTA 2006, Seattle, USA, 2006.

[5] T. Brázdil, J. Esparza, and S. Kiefer. On the memory consumption of probabilistic push-

down automata. Technical Report FIMU-RS-2009-07, Masaryk University, 2009. Avail-

able at http://www.fi.muni.cz/reports/files/2009/FIMU-RS-2009-07.pdf.
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ABSTRACT. We study continuous-time stochastic games with time-bounded reachability objectives.
We show that each vertex in such a game has a value (i.e., an equilibrium probability), and we classify
the conditions under which optimal strategies exist. Finally, we show how to compute optimal
strategies in finite uniform games, and how to compute ε-optimal strategies in finitely-branching
games with bounded rates (for finite games, we provide detailed complexity estimations).

1 Introduction

Markov models are widely used in many diverse areas such as economics, biology, or
physics. More recently, they have also been used for performance and dependability anal-
ysis of computer systems. Since faithful modeling of computer systems often requires both
randomized and non-deterministic choice, a lot of attention has been devoted to Markov mod-
els where these two phenomena co-exist, such as Markov decision processes and stochastic
games. The latter model of stochastic games is particularly apt for analyzing the interaction
between a system and its environment, which are formalized as two players with antago-
nistic objectives (we refer to, e.g., [10, 5, 11] for more comprehensive expositions of results
related to games in formal analysis and verification of computer systems). So far, most of
the existing results concern discrete-time Markov decision processes and stochastic games,
and the accompanying theory is relatively well-developed (see, e.g., [9, 4]).

In this paper, we study continuous-time stochastic games (CTGs) and hence also
continuous-time Markov decision processes (CTMDPs) with time-bounded reachability objec-
tives. Roughly speaking, a CTG is a finite or countably infinite graph with three types
of vertices—controllable vertices (boxes), adversarial vertices (diamonds), and actions (cir-
cles). The outgoing edges of controllable and adversarial vertices lead to the actions that
are enabled at a given vertex. The outgoing edges of actions lead to controllable or adversar-
ial vertices, and every edge is assigned a positive probability so that the total sum of these
probabilities is equal to 1. Further, each action is assigned a positive real rate. A simple finite
CTG is shown below.
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A game is played by two players, � and ♦, who are responsible for selecting the actions
(i.e., resolving the non-deterministic choice) in the controllable and adversarial vertices, re-
spectively. The selection is timeless, but performing a selected action takes time which is
exponentially distributed (the parameter is the rate of a given action). When a given action
is finished, the next vertex is chosen randomly according to the fixed probability distribu-
tion over the outgoing edges of the action. A time-bounded reachability objective is specified
by a set T of target vertices and a time bound t > 0. The goal of player � is to maximize the
probability of reaching a target vertex before time t, while player ♦ aims at minimizing this
probability.

Note that events such as component failures, user requests, message receipts, excep-
tions, etc., are essentially history-independent, which means that the time between two suc-
cessive occurrences of such events is exponentially distributed. CTGs provide a natural and
convenient formal model for systems exhibiting these features, and time-bounded reacha-
bility objectives allow to formalize basic liveness and safety properties of these systems.

Previous work. Although the practical relevance of CTGs with time-bounded reach-
ability objectives to verification problems is obvious, to the best of our knowledge there
are no previous results concerning even very basic properties of such games. A more re-
stricted model of uniform CTMDPs is studied in [2, 7]. Intuitively, a uniform CTMDP is a
CTG where all non-deterministic vertices are controlled just by one player, and all actions
are assigned the same rate. In [2], it is shown that the maximal and minimal probability
of reaching a target vertex before time t is efficiently computable up to an arbitrarily small
given error, and that the associated strategy is also effectively computable. An open ques-
tion explicitly raised in [2] is whether this result can be extended to all (not necessarily
uniform) CTMDP. In [2], it is also shown that time-dependent strategies are more powerful
than time-abstract ones, and this issue is addressed in greater detail in [7] where the mutual
relationship between various classes of time-dependent strategies in CTMDPs is studied.
Furthermore, in [1] reward-bounded objectives in CTMDPs are studied.

Our contribution is twofold. Firstly, we examine the fundamental properties of CTGs,
where we aim at obtaining as general (and tight) results as possible. Secondly, we consider
the associated algorithmic issues. Concrete results are discussed in the following paragraphs.

Fundamental properties of CTGs. We start by showing that each vertex v̂ in a CTG
with time-bounded reachability objectives has a value, i.e., an equilibrium probability of
reaching a target vertex before time t. The value is equal to supσ infπ Pσ,π

v̂ (Reach≤t(T))
and infπ supσ P

σ,π
v̂ (Reach≤t(T)), where σ and π range over all time-abstract strategies of

player � and player ♦, and Pσ,π
v̂ (Reach≤t(T)) is the probability of reaching T before time t

in a play obtained by applying the strategies σ and π. This result holds for arbitrary CTGs
which may have countably many vertices and actions. This immediately raises the question
whether each player has an optimal strategy which achieves the outcome equal to or better
than the value against every strategy of the opponent. We show that the answer is negative
in general, but an optimal strategy for player ♦ is guaranteed to exist in finitely-branching
CTGs, and an optimal strategy for player � is guaranteed to exist in finitely-branching CTGs
with bounded rates (see Definition 2). These results are tight, which is documented by appro-
priate counterexamples. Moreover, we show that in the subclasses of CTGs just mentioned,
the players have also optimal CD strategies (a strategy is CD if it is deterministic and “count-
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ing”, i.e., it only depends on the number of actions in the history of a play, where actions
with the same rate are identified). Note that CD strategies still use infinite memory and in
general they do not admit a finite description. A special attention is devoted to finite uni-
form CTGs, where we show a somewhat surprising result—both players have finite memory
optimal strategies (these finite memory strategies are deterministic and their decision is based
on “bounded counting” of actions; hence, we call them “BCD”).

Algorithms. We show that for finite CTGs, ε-optimal strategies for both players are com-
putable in |V|2 · |A| · bp · (|R| + 1)O((maxR)·t+ln 1

ε ) time, where |V| and |A| is the number
of vertices and actions, resp., bp is the maximum bit-length of transition probabilities and
rates (we assume that rates and the probabilities in distributions assigned to the actions are
represented as fractions of integers encoded in binary), |R| is the number of rates, maxR
is the maximal rate, and t is the time bound. This solves the open problem of [2] (in fact,
our result is more general as it applies to finite CTGs, not just to finite CTMDPs). Actually,
the algorithm works also for infinite-state CTGs as long as they are finitely-branching, have
bounded rates, and satisfy some natural “effectivity assumptions” (see Corollary 14). For
example, this is applicable to the class of infinite-state CTGs definable by pushdown au-
tomata (where the rate of a given configuration depends just on the current control state),
and also to other automata-theoretic models. Finally, we show how to compute the optimal
BCD strategies for both players in finite uniform CTGs.

Due to space constraints, proofs are omitted here. Full proofs can be found in [3]. In the
following we just try to indicate basic ideas behind the proofs. This is not always possible,
because some arguments are tricky and occasionally we also rely on relatively advanced
calculations. Nevertheless, the results themselves should be easy to understand.

2 Definitions

In this paper, the sets of all positive integers, non-negative integers, rational numbers, real
numbers, non-negative real numbers, and positive real numbers are denoted by N, N0,
Q, R, R≥0, and R>0, respectively. Let A be a finite or countably infinite set. A probability
distribution on A is a function f : A → R≥0 such that ∑a∈A f (a) = 1. The support of f is
the set of all a ∈ A where f (a) > 0. A distribution f is rational if f (a) ∈ Q for every
a ∈ A, positive if f (a) > 0 for every a ∈ A, and Dirac if f (a) = 1 for some a ∈ A. The set
of all distributions on A is denoted by D(A). A σ-field over a set Ω is a set F ⊆ 2Ω that
includes Ω and is closed under complement and countable union. A measurable space is a
pair (Ω,F ) where Ω is a set called sample space and F is a σ-field over Ω whose elements
are called measurable sets. A probability measure over a measurable space (Ω,F ) is a function
P : F → R≥0 such that, for each countable collection {Xi}i∈I of pairwise disjoint elements
of F , P(

⋃
i∈I Xi) = ∑i∈I P(Xi), and moreover P(Ω) = 1. A probability space is a triple

(Ω,F ,P), where (Ω,F ) is a measurable space and P is a probability measure over (Ω,F ).
Given two measurable sets X, Y ∈ F such that P(Y) > 0, the conditional probability of X
under the condition Y is defined as P(X | Y) = P(X ∩ Y)/P(Y). We say that a property
A ⊆ Ω holds for almost all elements of a measurable set Y if P(Y) > 0, A ∩ Y ∈ F , and
P((A ∩Y) | Y) = 1.

In our next definition we introduce continuous-time Markov chains (CTMCs). The
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literature offers several equivalent definitions of CTMCs (see, e.g., [8]). For purposes of this
paper, we adopt the variant where transitions have discrete probabilities and the rates are
assigned to states.

DEFINITION 1. A continuous-time Markov chain (CTMC) is a tuple
M = (M, → , Prob, R, Init), where M is a finite or countably infinite set of states, → ⊆ M×M
is a transition relation such that every s ∈ M has at least one outgoing transition, Prob is a
function which to each s ∈ M assigns a positive probability distribution over the set of its outgoing
transitions, R is a function which to each s ∈ M assigns a positive real rate, and Init is the initial
probability distribution on M.

We write s x→ s′ to indicate that s→ s′ and Prob(s)(s→ s′) = x. A time-abstract path is
a finite or infinite sequence u = u0, u1, . . . of states such that ui−1→ ui for every 1 ≤ i <
length(u), where length(u) is the length of u (the length of an infinite sequence is ∞). A timed
path (or just path) is a pair w = (u, t), where u is a time-abstract path and t = t1, t2, . . . is a
sequence of positive reals such that length(t) = length(u). We put length(w) = length(u), and
for every 0 ≤ i < length(w), we usually write w(i) and w[i] instead of ui and ti, respectively.

Infinite paths are also called runs. The set of all runs in M is denoted RunM, or just
Run whenM is clear from the context. A template is a pair (u, I), where u = u0, u1, . . . is a
finite time-abstract path and I = I0, I1, . . . a finite sequence of non-empty intervals in R≥0

such that length(u) = length(I). Every template (u, I) determines a basic cylinder Run(u, I)
consisting of all runs w such that w(i) = ui for all 0 ≤ i < length(u), and w[j] ∈ Ij for all
0 ≤ i < length(u)− 1. ToM we associate the probability space (Run,F ,P) where F is the
σ-field generated by all basic cylinders Run(u, I) and P : F → R≥0 is the unique probability
measure on F such that

P(Run(u, I)) = Init(u0) ·
length(u)−2

∏
i=0

Prob(ui)(ui → ui+1) ·
(

e−R(ui)·sup(Ii) − e−R(ui)·inf(Ii)
)

Note that if length(u) = 1, the “big product” above is empty and hence equal to 1.
Now we formally define continuous-time games, which generalize continuous-

time Markov chains by allowing not only probabilistic but also non-deterministic choice.
Continuous-time games also generalize the model of continuous-time Markov decision pro-
cesses studied in [2, 7] by splitting the non-deterministic vertices into two disjoint subsets of
controllable and adversarial vertices, which are controlled by two “players” with antagonistic
objectives. Thus, one can model the interaction between a system and its environment.

DEFINITION 2. A continuous-time game (CTG) is a tuple G = (V, A, E, (V�, V♦), P, R) where
V is a finite or countably infinite set of vertices, A is a finite or countably infinite set of actions, E
is a function which to every v ∈ V assigns a non-empty set of actions enabled in v, (V�, V♦) is a
partition of V, P is a function which assigns to every a ∈ A a probability distribution on V, and R
is a function which assigns a positive real rate to every a ∈ A.

We require that V ∩ A = ∅ and use N to denote the set V ∪ A. We say that G is finitely-
branching if for each v ∈ V the set E(v) is finite (note that P(a) for a given a ∈ A can still have an
infinite support.) We say that G has bounded rates if supa∈A R(a) < ∞, and that G is uniform if
R is a constant function. Finally, we say that G is finite if both V and A are finite.
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If V� or V♦ is empty (i.e., there is just one type of vertices), then G is a continuous-time
Markov decision process (CTMDP). Technically, our definition of CTMDP is slightly different
from the one used in [2, 7], but the difference is only cosmetic. The two models are equiva-
lent in a well-defined sense (a detailed explanation is included in [3]). Also note that P and
R associate the probability distributions and rates directly to actions, not to pairs of V × A.
This is perhaps somewhat non-standard, but leads to simpler notation (since each vertex
can have its “private” set of enabled actions, this is no restriction).

A play of G is initiated in some vertex. The non-deterministic choice is resolved by
two players, � and ♦, who select the actions in the vertices of V� and V♦, respectively.
The selection itself is timeless, but some time is spent by performing the selected action
(the time is exponentially distributed with the rate R(a)), and then a transition to the next
vertex is chosen randomly according to the distribution P(a). The players can also select the
actions randomly, i.e., they select not just a single action but a probability distribution on the
enabled actions. Moreover, the players are allowed to play differently when the same vertex
is revisited. We assume that both players can see the history of a play, but cannot measure
the elapsed time.

Let � ∈ {�, ♦}. A strategy for player � is a function which to each wv ∈ N∗V� assigns
a probability distribution on E(v). The sets of all strategies for player � and player ♦ are
denoted by Σ and Π, respectively. Each pair of strategies (σ, π) ∈ Σ×Π together with an
initial vertex v̂ ∈ V determine a unique play of the game G, which is a CTMC G(v̂, σ, π)
where N∗A is the set of states, the rate of a given wa ∈ N∗A is R(a) (the rate function of
G(v̂, σ, π) is also denoted by R), and transitions exist only between states of the form wa
and wava′, where wa x→wava′ iff one of the following conditions is satisfied:
• v ∈ V�, a′ ∈ E(v), and x = P(a)(v) · σ(wv)(a′) > 0
• v ∈ V♦, a′ ∈ E(v), and x = P(a)(v) · π(wv)(a′) > 0

The initial distribution is determined as follows:
• Init(v̂a) = σ(v̂)(a) if v̂ ∈ V� and a ∈ E(v̂);
• Init(v̂a) = π(v̂)(a) if v̂ ∈ V♦ and a ∈ E(v̂);
• in the other cases, Init returns zero.

Note that the set of states of G(v̂, σ, π) is infinite. Also note that all states reachable from
a state v̂a, where Init(v̂a) > 0, are alternating sequences of vertices and actions. We say
that a state w of G(v̂, σ, π) hits a vertex v ∈ V if v is the last vertex which appears in w (for
example, v1a1v2a2 hits v2). Further, we say that w hits T ⊆ V if w hits some vertex of T.
From now on, the paths (both finite and infinite) in G(v̂, σ, π) are denoted by Greek letters
α, β, . . .. Note that for every α ∈ RunG(v̂,σ,π) and every i ∈N0 we have that α(i) = wa where
wa ∈ N∗A.

We denote by R(G) the set of all rates used in G (i.e., R(G) = {R(a) | a ∈ A}), and by
H(G) the set of all vectors of the form i : R(G) → N0 satisfying ∑r∈R(G) i(r) < ∞. When
G is clear from the context, we write just R and H instead of R(G) and H(G), respectively.
For every i ∈ H, we put |i| = ∑r∈R i(r). For every r ∈ R, we denote by 1r the vector of
H such that 1r(r) = 1 and 1r(r′) = 0 if r′ 6= r. Further, for every wx ∈ N∗N we define
the vector iwx ∈ H such that iwx(r) returns the cardinality of the set {j ∈ N0 | 0 ≤ j <
length(w), w(j) ∈ A, R(w(j)) = r} (Note that the last element x of wx is disregarded.) Given
i ∈ H and wx ∈ N∗N, we say that wx matches i if i = iwx.
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We say that a strategy τ is counting (C) if τ(wv) = τ(w′v) for all w, w′ ∈ N∗ such that
iwv = iw′v. In other words, a strategy τ is counting if the only information about the history
of a play w which influences the decision of τ is the vector iwv. Hence, every counting
strategy τ can be considered as a function from H× V to D(A), where τ(i, v) corresponds
to the value of τ(wv) for every wv matching i. A counting strategy τ is bounded counting
(BC) if there is k ∈ N such that τ(wv) = τ(w′v) whenever |w|, |w′| ≥ k. A strategy τ is
deterministic (D) if τ(wv) is a Dirac distribution for all wv. Strategies that are not necessarily
counting are called history-dependent (H), and strategies that are not necessarily deterministic
are called randomized (R). Thus, we obtain the following six types of strategies: BCD, BCR,
CD, CR, HD, and HR. The most general (unrestricted) type is HR, and the importance of the
other types of strategies becomes clear in subsequent sections.

In this paper, we are interested in continuous-time games with time-bounded reachability
objectives, which are specified by a set T ⊆ V of target vertices and a time bound t ∈ R>0.
The goal of player � is to maximize the probability of reaching a target vertex before the
time bound t, while player ♦ aims at minimizing this probability. Let v̂ be the initial vertex.
Then each pair of strategies (σ, π) ∈ Σ×Π determines a unique outcome Pσ,π

v̂ (Reach≤t(T)),
which is the probability of all α ∈ RunG(v̂,σ,π) that visit T before time t (i.e., there is i ∈ N0

such that α(i) hits T and ∑i−1
i=0 α[i] ≤ t). A fundamental question (answered in Section 3)

is whether continuous-time games with time-bounded reachability objectives have a value,
i.e., a unique equilibrium outcome. We say that v̂ ∈ V has a value if

sup
σ∈Σ

inf
π∈Π
Pσ,π

v̂ (Reach≤t(T)) = inf
π∈Π

sup
σ∈Σ
Pσ,π

v̂ (Reach≤t(T))

If v̂ has a value, then val(v̂) denotes the value of v̂ defined by the above equality. Further, if v̂
has a value, it makes sense to define ε-optimal and optimal strategies in v̂. Let ε ≥ 0. We say
that a strategy σ ∈ Σ is an ε-optimal maximizing strategy in v̂ (or just ε-optimal in v̂) if

inf
π∈Π
Pσ,π

v̂ (Reach≤t(T)) ≥ val(v̂)− ε ,

and that a strategy π ∈ Π is an ε-optimal minimizing strategy in v̂ (or just ε-optimal in v̂) if

sup
σ∈Σ
Pσ,π

v̂ (Reach≤t(T)) ≤ val(v) + ε

A strategy is optimal in v̂ if it is 0-optimal in v̂, and just optimal if it is optimal in every v̂.

3 The Existence of Values and Optimal Strategies
In this section we first prove that every vertex in a CTG with time-bounded reachability
objectives has a value. This result holds without any additional restrictions (i.e., for CTGs
with possibly countable state-space and infinite branching degree). From this we immedi-
ately obtain the existence of ε-optimal strategies for both players for every ε > 0. Then, we
study the existence of optimal strategies. We show that even though optimal minimizing
strategies may not exist in infinitely-branching CTGs, they always exist in finitely-branching
ones. As for optimal maximizing strategies, we show that they do not necessarily exist
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even in finitely-branching CTGs, but they are guaranteed to exist if a game is both finitely-
branching and has bounded rates (see Definition 2).

For the rest of this section, we fix a CTG G = (V, A, E, (V�, V♦), P, R), a set T ⊆ V of
target vertices, and a time bound t > 0. Given i ∈ H where |i| > 0, we denote by Fi the
probability distribution function of the random variable ∑r∈R ∑i(r)

i=1 X(r)
i where all X(r)

i are

mutually independent and each X(r)
i is an exponentially distributed random variable with

the rate r (for reader’s convenience, basic properties of exponentially distributed random
variables are recalled in [3]). We also define F0 as a constant function returning 1 for every ar-
gument (here 0 ∈ H is the empty history, i.e., |0| = 0). In the special case whenR is a single-
ton, we use F` and f` to denote Fi and fi such that i(r) = `, where r is the only element ofR.
Further, given ∼ ∈ {<,≤, =} and k ∈ N, we denote by Pσ,π

v̂ (Reach≤t
∼k(T)) the probability

of all α ∈ RunG(v̂,σ,π) that visit T for the first time in the number of steps satisfying ∼ k and
before time t (i.e., there is i ∈N0 such that i = min{j | α(j) hits T} ∼ k and ∑i−1

i=0 α[i] ≤ t).
The following theorem says that every vertex in a CTG with bounded reachability ob-

jectives has a value. Let us note that the powerful result of Martin [6] about weak deter-
minacy of Blackwell games cannot be applied in this setting, at least not immediately. As
we shall see, the ideas presented in the proof of Theorem 3 are useful also for designing an
algorithm which for a given ε > 0 computes ε-optimal strategies for both players.

THEOREM 3. Every vertex v ∈ V has a value.

Roughly speaking, Theorem 3 is proved in the following way. Given σ ∈ Σ, π ∈ Π, j ∈ H,
and u ∈ V, we denote by Pσ,π(u, j) the probability of all runs α ∈ RunG(u,σ,π) such that for
some n ∈ N0 the state α(n) hits T and matches j, and for all 0 ≤ j < n we have that α(j)
does not hit T. Then we introduce two functions A,B : H×V → [0, 1] where

A(i, v) = sup
σ∈Σ

inf
π∈Π

∑
j∈H

Fi+j(t) · Pσ,π(v, j) B(i, v) = inf
π∈Π

sup
σ∈Σ

∑
j∈H

Fi+j(t) · Pσ,π(v, j)

Intuitively, A(i, v) and B(i, v) give the “best” probability achievable by player � and
player ♦ in a vertex v, assuming that the history of a play matches i. Hence, it suf-
fices to prove that A = B, because then also A(0, v) = B(0, v) = val(v), where 0
returns zero for every argument. The equality A = B is obtained by demonstrating
that both A and B are equal to the (unique) least fixed point of a monotonic function
V : (H×V → [0, 1])→ (H×V → [0, 1]) defined as follows: for every H : H× V → [0, 1],
i ∈ H, and v ∈ V we have that

V(H)(i, v) =


Fi(t) v ∈ T
supa∈E(v) ∑u∈V P(a)(u) · H(i + 1R(a), u) v ∈ V� \ T

infa∈E(v) ∑u∈V P(a)(u) · H(i + 1R(a), u) v ∈ V♦ \ T

The details are technical and can be found in [3].
Observe that due to Theorem 3, both players have ε-optimal strategies in every vertex v

(for every ε > 0). This follows directly from the definition of val(v) given in Section 2.
Now we examine the existence of optimal strategies. We start by observing that optimal
minimizing and optimal maximizing strategies do not necessarily exist, even if we restrict
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ourselves to games with finitely many rates (i.e., R(G) is finite) and finitely many distinct
transition probabilities.

OBSERVATION 4. Optimal minimizing and optimal maximizing strategies in continuous-time
games with time-bounded reachability objectives do not necessarily exist, even if we restrict our-
selves to games with finitely many rates (i.e., R(G) is finite) and finitely many distinct transition
probabilities.

However, if G is finitely-branching, then the existence of an optimal minimizing CD
strategy can be established by adapting the construction used in the proof of Theorem 3.
Observe that we do not require that G has bounded rates.

THEOREM 5. If G is finitely-branching, then there is an optimal minimizing CD strategy.

The issue with optimal maximizing strategies is slightly more complicated. First,
we observe that optimal maximizing strategies do not necessarily exist even in finitely-
branching games.

OBSERVATION 6. Optimal maximizing strategies in continuous-time games with time-bounded
reachability objectives may not exist, even if we restrict ourselves to finitely-branching games.

Now we show that if G is finitely-branching and has bounded rates, then there is an
optimal maximizing CD strategy. To achieve that, we introduce the notion of k-step opti-
mal strategies, which optimize the outcome in finite plays of length k. Observe that, due
to Theorem 3, for all k ∈ N and v ∈ V we have that supσ∈Σ infπ∈Π Pσ,π

v (Reach≤t
≤k(T)) =

infπ∈Π supσ∈Σ P
σ,π
v (Reach≤t

≤k(T)). We use valk(v) to denote the k-step value defined by this
equality, and we say that strategies σk ∈ Σ and πk ∈ Π are k-step optimal if for all v ∈ V, π ∈
Π, and σ ∈ Σ we have infπ∈Π Pσk ,π

v (Reach≤t
≤k(T)) = supσ∈Σ P

σ,πk

v (Reach≤t
≤k(T)) = valk(v).

The existence and basic properties of k-step optimal strategies are stated in our next lemma.

LEMMA 7. If G is finitely-branching and has bounded rates, then we have the following:
1. For all ε > 0, k ≥ (supR)te2 − ln ε, σ ∈ Σ, π ∈ Π, and v ∈ V we have that

Pσ,π
v (Reach≤t(T))− ε ≤ Pσ,π

v (Reach≤t
≤k(T)) ≤ Pσ,π

v (Reach≤t(T))

2. For every k ∈ N, there are k-step optimal BCD strategies σk ∈ Σ and πk ∈ Π. Further, for
all ε > 0 and k ≥ (supR)te2 − ln ε we have that every k-step optimal strategy is also an
ε-optimal strategy.

If G is finitely-branching and has bounded rates, one may be tempted to construct an op-
timal maximizing strategy σ by selecting those actions that are selected by infinitely many
k-step optimal BCD strategies for all k ∈ N (these strategies are guaranteed to exist by
Lemma 7 (2)). However, this is not so straightforward, because the distributions assigned to
actions in finitely-branching games can still have an infinite support. Intuitively, this issue
is overcome by considering larger and larger finite subsets of the support so that the total
probability of all of the infinitely many omitted elements approaches zero. Hence, a proof
of the following theorem is somewhat technical.

THEOREM 8. If G is finitely-branching and has bounded rates, then there is an optimal maximizing
CD strategy.
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3.1 Optimal Strategies in Finite Uniform CTGs

In this subsection, we restrict ourselves to finite uniform CTGs and prove that both play-
ers have optimal BCD strategies in such games. Roughly speaking, the result is obtained by
showing that optimal CD strategies (which are guaranteed to exist by Theorem 5 and Theo-
rem 8) can be safely redefined into greedy strategies after performing a finite (and effectively
computable) number of steps. Greedy strategies try to maximize/minimize the probability
of reaching T in as few steps as possible, and hence they can ignore the history of a play.
Hence, the original optimal CD strategies become stationary after a finite number of steps,
which means that they are in fact BCD. We also show that this result is tight in the sense
that optimal BCD strategies do not necessarily exist in uniform CTGs with infinitely many
states. In Section 4, we use these results to design an algorithm which computes the optimal
BCD strategies in finite uniform games.

In this subsection, we assume that the previously fixed CTG G is finite and that
R(a) = r > 0 for all a ∈ A. We start by introducing greedy strategies.

DEFINITION 9. A strategy σ ∈ Σ is greedily maximizing if for all v ∈ V and σ′ ∈ Σ one of the
following two conditions is satisfied:
• For all i ∈N0 we have infπ∈Π Pσ,π

v (Reach<∞
≤i (T)) = infπ∈Π Pσ′,π

v (Reach<∞
≤i (T)).

• There is i ∈ N0 such that infπ∈Π Pσ,π
v (Reach<∞

≤i (T)) > infπ∈Π Pσ′,π
v (Reach<∞

≤i (T)) and
for all j < i we have infπ∈Π Pσ,π

v (Reach<∞
≤j (T)) = infπ∈Π Pσ′,π

v (Reach<∞
≤j (T)).

Similarly, π ∈ Π is greedily minimizing if for all v ∈ V and π′ ∈ Π one of the following
conditions holds:
• For all i ∈N0 we have supσ∈Σ P

σ,π
v (Reach<∞

≤i (T)) = supσ∈Σ P
σ,π′
v (Reach<∞

≤i (T)).
• There is i ∈ N0 such that supσ∈Σ P

σ,π
v (Reach<∞

≤i (T)) < supσ∈Σ P
σ,π′
v (Reach<∞

≤i (T)) and
for all j < i we have supσ∈Σ P

σ,π
v (Reach<∞

≤j (T)) = supσ∈Σ P
σ,π′
v (Reach<∞

≤j (T)).

A strategy τ is stationary if τ is deterministic and τ(wv) depends just on v for every vertex v.

Note that time plays no role in greedily maximizing/minimizing strategies. Our next
lemma reveals that greedy stationary strategies exist and can be effectively computed in
polynomial time in finite CTGs.

LEMMA 10. There is a greedily maximizing stationary strategy σg, and a greedily minimizing
stationary strategy πg. Moreover, the strategies σg and πg are computable in polynomial time.

Now we can state the main theorem of this subsection.

THEOREM 11. Let σg be a greedily maximizing stationary strategy, and πg a greedily minimizing
stationary strategy. Let σ be an optimal maximizing CD strategy, and π an optimal minimizing CD
strategy. Then for all sufficiently large k ∈ N we have that BCD strategies σ′ ∈ Σ and π′ ∈ Π
defined by

σ′(i, v) =

{
σ(i, v) if i < k;

σg(v) otherwise.
π′(i, v) =

{
π(i, v) if i < k;

πg(v) otherwise.

are optimal. Moreover, if all transition probabilities in G are rational, then σ′ and π′ are optimal for
all k ≥ rt(1 + m|A|

2·|V|2), where m is the maximal denominator of transition probabilities.
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A natural question is whether Theorem 11 can be extended to infinite-state uniform CTGs.
The question is answered in our next observation.

OBSERVATION 12. Optimal BCD strategies do not necessarily exist in uniform infinite-state CTGs,
even if they are finitely-branching and use only finitely many distinct transition probabilities.

4 Algorithms
Now we present algorithms which compute ε-optimal BCD strategies in finitely-branching
CTGs with bounded rates and optimal BCD strategies in finite uniform CTGs. In this sec-
tion, we assume that all rates and distributions used in the considered CTGs are rational.

4.1 Computing ε-optimal BCD strategies

For the rest of this subsection, let us fix a CTG G = (V, A, E, (V�, V♦), P, R), a set T ⊆ V
of target vertices, a time bound t > 0, and some ε > 0. For simplicity, let us first assume
that G is finite; as we shall see, our algorithm does not really depend on this assumption, as
long as the game is finitely-branching, has bounded rates, and its structure can be effectively
generated (see Corollary 14). Let k = (maxR)te2 − ln( ε

2 ). Then, due to Lemma 7, all k-step
optimal strategies are ε

2 -optimal.
For every i ∈ H, where |i| ≤ k, and for every v ∈ V, our algorithm computes an ac-

tion C(i, v) ∈ E(v) which represents the choice of the constructed ε-optimal BCD strategies
σε ∈ Σ and πε ∈ Π. That is, for every i ∈ H, where |i| ≤ k, and for every v ∈ V�, we put
σε(i, v)(C(i, v)) = 1, and for the other arguments we define σε arbitrarily so that σε remains
a BCD strategy. The strategy πε is induced by the function C in the same way.

To compute C(i, v), our algorithm uses a family of probabilities R(i, u) of reaching T
from u before time t in at most k− |i| steps using the strategies σε and πε and assuming that
the history matches i. Actually, our algorithm computes the probabilities R(i, u) only up
to a sufficiently small error so that the actions chosen by C are “sufficiently optimal” (i.e.,
the strategies σε and πε are ε-optimal, but they are not necessarily k-step optimal for the k
chosen above). Our algorithm works in two phases:

1. For i ∈ H, where |i| ≤ k, compute a number `i(t) > 0 such that |Fi(t)−`i(t)|
Fi(t) ≤ ε2|i|+1

22|i|+1 . For
every a ∈ A and u ∈ V, compute a floating point representation p(a)(u) of P(a)(u)
satisfying |P(a)(u)−p(a)(u)|

P(a)(u) ≤ ε2k+1

22k+1 .
2. Compute (in a bottom up fashion) the functions R and C as follows: Given i ∈ H,

where |i| ≤ k, and v ∈ V, we have that

R(i, v) =


`i(t) if v ∈ T
0 if v 6∈ T and |i| = k
maxa∈E(v) ∑u∈V p(a)(u) · R(i + 1R(a), u) if v ∈ V� \ T and |i| < k
mina∈E(v) ∑u∈V p(a)(u) · R(i + 1R(a), u) if v ∈ V♦ \ T and |i| < k

For all |i| < k and v 6∈ T, we put C(i, v) = a where a is an action that realizes the
maximum (or minimum).
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In [3] we show that the strategies σε and πε are indeed ε-optimal. Complexity analysis of the
algorithm reveals the following (bp denotes the maximum bit-length of P(a)(v) and rates,
assuming that we represent P(a)(v) and rates as fractions of integers encoded in binary).

THEOREM 13. Assume that G is finite. Then for every ε > 0 there are ε-optimal BCD strategies
σε ∈ Σ and πε ∈ Π computable in time |V|2 · |A| · bp · (|R|+ 1)O((maxR)·t+ln 1

ε ).

Note that our algorithm needs to analyze only a finite part of G. Hence, it also works for
infinite games which satisfy the conditions formulated in the next corollary.

COROLLARY 14. Let G be a finitely-branching game with bounded rates and let v ∈ V. Assume
that the vertices and actions of G reachable from v in a given finite number of steps are effectively
computable, and that an upper bound on rates is also effectively computable. Then for every ε > 0
there are effectively computable BCD strategies σε ∈ Σ and πε ∈ Π that are ε-optimal in v.

4.2 Computing optimal BCD strategies in uniform finite games

For the rest of this subsection, we fix a finite uniform CTG G = (V, A, E, (V�, V♦), P, R)
where R(a) = r > 0 for all a ∈ A. Let k = rt(1 + m|A|

2·|V|2) (see Theorem 11).
The algorithm works similarly as the one of Section 4.1, but there are also some differ-

ences. Since we have just one rate, the vector i becomes just a number i. Similarly as in
Section 4.1, our algorithm computes an action C(i, v) ∈ E(v) representing the choice of the
constructed optimal BCD strategies σmax ∈ Σ and πmin ∈ Π. By Lemma 11, every optimal
strategy can, from the k-th step on, start to behave as a fixed greedy stationary strategy, and
we can compute such a greedy stationary strategy in polynomial time. Hence, the optimal
BCD strategies σmax and πmin are defined as follows:

σmax(i, v) =

{
C(i, v) if i < k;

σg(v) otherwise.
πmin(i, v) =

{
C(i, v) if i < k;

πg(v) otherwise.

To compute the function C, our algorithm uses a table of symbolic representations of the
(precise) probabilities R(i, v) (here i ≤ k and v ∈ V) of reaching T from v before time t in at
most k− i steps using the strategies σmax and πmin and assuming that the history matches i.

The function C and the family of all R(i, v) are computed (in a bottom up fashion) as
follows: For all 0 ≤ i ≤ k and v ∈ V we have that

R(i, v) =


Fi(t) if v ∈ T

∑∞
j=0 Fi+j(t) · Pσg,πg

v (Reach<∞
=j (T)) if v 6∈ T and i = k

maxa∈E(v) ∑u∈V P(a)(u) · R(i + 1, u) if v ∈ V� \ T and i < k
mina∈E(v) ∑u∈V P(a)(u) · R(i + 1, u) if v ∈ V♦ \ T and i < k

For all i < k and v ∈ V, we put C(i, v) = a where a is an action maximizing or minimizing
∑u∈V P(a)(u) · R(i + 1, u), depending on whether v ∈ V� or v ∈ V♦, respectively. The
effectivity of computing such an action (this issue is not trivial) is discussed in the proof of
the following theorem.

THEOREM 15. The BCD strategies σmax and πmin are optimal and effectively computable.
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5 Conclusions, Future Work
We have shown that vertices in CTGs with time bounded reachability objectives have a
value, and we classified the subclasses of CTGs where a given player has an optimal strat-
egy. We also proved that in finite uniform CTGs, both players have optimal BCD strate-
gies. Finally, we designed algorithms which compute ε-optimal BCD strategies in finitely-
branching CTGs with bounded rates, and optimal BCD strategies in finite uniform CTGs.

There are several interesting directions for future research. First, we can consider more
general classes of strategies that depend on the elapsed time (in our setting, strategies are
time-abstract). In [2], it is demonstrated that time-dependent strategies can achieve better
results than the time-abstract ones. Further, [7] shows the power of time-dependent strate-
gies differs when the player knows only the time consumed by the last action, or the com-
plete timed history of a play. It is not immediately clear whether Theorem 3 still holds for
time-dependent strategies, and whether it makes sense to think about optimal strategies in
this setting. Second, a generalization to semi-Markov processes and games, where arbitrary
(not only exponential) distributions are considered, would be desirable. Another interesting
open problem is the existence of optimal BCD strategies in (not necessarily uniform) games.
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ABSTRACT. We introduce a new class of automata on infinite words, called min-automata. We
prove that min-automata have the same expressive power as weak monadic second-order logic
(weak MSO) extended with a new quantifier, the recurrence quantifier. These results are dual to
a framework presented in [2], where max-automata were proved equivalent to weak MSO extended
with an unbounding quantifier. We also present a general framework, which tries to explain which
types of automata on infinite words correspond to extensions of weak MSO. As another example for
the usefulness framework, apart from min- and max-automata, we define an extension of weak MSO
with a quantifier that talks about ultimately periodic sets.

Introduction
In [2], a new class of languages of infinite words was defined. This class had two equivalent
descriptions: in terms of a deterministic counter automaton (called a max-automaton), and
in terms of an extension of weak monadic second-order logic (weak MSO). The argument
raised in [2] was that there are robust extensions of ω-regular languages, extensions that
have descriptions in terms of both automata and logic. This paper further investigates that
argument. These are the contributions:

1. We define a type of automaton dual to max-automata, called a min-automaton, and
prove that it is equivalent to a certain extension of weak MSO.

2. We show that min- and max-automata fit in a general picture, where deterministic
automata with prefix-closed acceptance conditions define extensions of weak MSO.

3. As another example of the general picture, we present an extension of weak MSO,
together with a corresponding automaton, that talks about ultimately periodic sets.

Below we describe these contributions in more detail.

Min-automata. A max-automaton, as defined in [2], works as follows. It is a deterministic
automaton, but it also has a finite set C of counters, which store natural numbers. Each
transition is decorated by a sequence of counter operations, which are from the set

Op = {c := c + 1 , c := max(d, e) : c, d, e ∈ C}.

(The toolkit of operations in [2] was slightly different, but the simpler one above is equiv-
alent.) There are two key properties of the model. First, the automaton is deterministic,
which is important for the connection with weak MSO. Second, the choice of the next state
is not influenced by the counter values, but only the current state and input letter; one can
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somehow think of the counter operations being applied after the run is chosen. The only
place where the counters are read is the acceptance condition, which is a boolean combina-
tion of conditions

lim sup
i→∞

val(c, a1a2 . . . ai) = ∞,

where val(c, u) is the value of counter c after reading a finite prefix u of the input word.
The main contribution of [2] is that max-automata are equivalent to weak MSO ex-

tended with a quantifier, called the unbounding quantifier. The unbounding quantifier
binds a set variable X in a formula ϕ(X) and is true if there are sets X of arbitrarily large
finite size that satisfy ϕ(X).

If an automaton with the max operation has a matching logic, then what about min?
What if we use lim inf instead of lim sup in the acceptance condition? In this paper we ana-
lyze such an automaton model, called a min-automaton, where min is used instead of max,
and the acceptance condition uses lim inf instead of lim sup. We show that min-automata
also have a corresponding logic. Note that there are other combinations, which we do not
study here, such as automata that use max and lim inf.

What is the logic that corresponds to min-automata? As was the case for max-automata,
this is an extension of weak MSO, where a new quantifier is added. The quantifier for min-
automata, which we introduce in this paper and call the recurrence quantifier, says: “there is
some n ∈ N such that infinitely many sets of size n satisfy ϕ(X)”. One of our main results,
Theorem 8, is that min-automata have the same expressive power as weak MSO extended
with the recurrence quantifier.

General Framework. Although we think that min-automata are interesting in their own
right, we also think that they are part of a bigger picture for deterministic automata on
infinite words. The bigger picture is that any “reasonable” acceptance condition seems to
give a robust class of languages extending weak MSO. We present some preliminary results
that attempt to formalise these ideas.

One consequence of our results is a normal form theorem: any formula of weak MSO
extended with both the unbounding quantifier (the quantifier related to max-automata) and
the recurrence quantifier (the quantifier related to min-automata) is effectively equivalent
to a boolean combination of formulas, each of which has at most one occurrence of the new
quantifiers (bounding or recurrence). In other words, mutual nesting of the new quantifiers
does not contribute to the expressive power. This normal form can be used to decide satisfi-
ability for weak MSO extended with both quantifiers, since the algorithm only needs to test
emptiness for boolean combinations of (actually, conjunctions of) max- and min-automata.

Ultimately Periodic Quantifier. As an example of the bigger picture, we consider an ex-
tension of weak MSO with the ultimately periodic quantifier. This quantifier binds a first-
order variable in a formula ϕ(x) and says that the set of word positions that satisfy ϕ(x) is
ultimately periodic. We present an equivalent automaton model, where the acceptance con-
dition says that certain states appear in an ultimately periodic way, and certain other states
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do not. Using this model, and some combinatorics, we prove that satisfiability is decidable
for weak MSO with the ultimately periodic quantifier.

Background and related work. The idea of considering extensions of ω-regular languages
is not new, dating back to the sixties. One line of work has been to add new predicates, such
as a predicate square(x), which holds for positions that are square numbers. This line was
started by [7], and continued in [5, 11, 10].

More closely related to this paper is the work on the unbounding quantifier. This quan-
tifier was introduced in [3]. The satisfiability problem for full MSO (as opposed to weak
MSO, the subject of this paper) extended with the unbounding quantifier was tackled [4].
By introducing an automaton model, called a BS-automaton, [4] provided some fragments
of full MSO with the unbounding quantifier that have decidable satisfiability over infinite
words. A BS-automaton is a counter automaton with acceptance conditions as in max- and
min-automata, but, crucially, it is nondeterministic. Nondeterminism is important for full
MSO, where existential quantification over infinite sets is allowed. Nondeterminism also
increases the flexibility of the model (for instance, the max and min operations become re-
dundant). There is no free lunch, however: nondeterministic BS-automata are not closed
under complement, and it is not clear what is the correct automaton model for full MSO
with the unbounding quantifier. It is still an open problem if full MSO extended with the
unbounding quantifier has decidable satisfiability over infinite words.

BS-automata have also been considered in [1], under the name of R-automata. BS-
automata are also closely related to distance desert automata, which were used by Kirsten
to decide the star height problem [8]. A tree variant of distance desert automata was intro-
duced in [6], to decide star height for tree languages.

Acknowledgments. We would like to thank Eryk Kopczyński, Sławomir Lasota, Aymeric
Vincent and Thomas Wilke for many stimulating discussions.

1 Min-automata

In this section we introduce min-automata. The idea is that a min-automaton has a finite set
of counters that store natural numbers, and each transition is labeled by a finite sequence of
counter operations, taken from the set

OpC = {c := c + 1 , c := min(d, e) : c, d, e ∈ C}.
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Formally, a deterministic min-automaton consists of:

A The alphabet of the automaton
Q A finite set of states of the automaton
C A finite set of counters of the automaton
δ The state transition function, δ : Q× A→ Q
γ The counter update function, γ : Q× A→ (OpC)∗

q0 The initial state, q0 ∈ Q
v0 The vector of initial counter values, v0 ∈NC

F The acceptance condition, described below.

Given a finite word w ∈ A∗, the automaton produces a unique run ρ ∈ Q∗. By applying
the counter update function γ to this run, we get a sequence π ∈ (OpC)∗ of counter opera-
tions. By applying this sequence of operations to the initial counter valuation v0, we get a
counter valuation written val(c, w).

The acceptance condition F is the only place where the counters are read. It talks about
the asymptotic† values of the counters when reading an input word a1a2 · · · ∈ Aω. It is a
boolean combination of conditions

lim inf
i→∞

val(c, a1 · · · ai) = ∞. (1)

In the automaton, the above condition is represented in the formula F by an atom c for short.
In particular, the class of languages accepted by min-automata is closed under com-

plementation, since replacing the acceptance condition F by ¬F gives an automaton recog-
nizing the complement language, thanks to determinism. Closure under alternative and
conjunction follows from the usual cartesian product construction.

If the counters would influence the states, such as by having a zero-test counter op-
eration, we would lose all the robust decidability of the model. It is crucial that as far as
choosing the states is concerned, a min-automaton behaves just like a finite deterministic
automaton.

EXAMPLE 1. With each infinite sequence of natural numbers n1, n2, n3 . . ., we may associate
an infinite word

an1 b an2 b an3 b . . .

Let L be the set of words associated with sequences where lim inf ni < ∞. Then L is recog-
nized by a deterministic min-automaton with one state, three counters c, d, z and the follow-
ing instructions.

- when reading a, do c := c + 1,
- when reading b, do d := min(c, c); c := z.

The initial valuation is (0, 0, 0). Counter c stores the size of the current a block, while counter
d stores the size of the last complete a block. Counter z always stores 0, and is used to reset

†Since the acceptance condition is insensitive to finite perturbations, the initial counter valuation does not
influence the accepted language. The initial counter valuation will play a role for automata in matrix form.
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counter c when a block of a’s is finished. The acceptance condition is F = ¬c ∧ ¬d: both
counters c and d should have lim inf < ∞ (counter z is not mentioned in the acceptance
condition).

The above example shows how counter operations c := 0 and d := c can be imple-
mented in the model.

The following lower bound on the complexity of emptiness is via a reduction from
the universality problem for nondeterministic automata. This is also a partial answer to a
question posed in [2], which asked about the complexity of emptiness for max-automata
(the same proof works for max-automata).

THEOREM 2. Emptiness is PSPACE-hard for min-automata.

Determinism. Does determinism restrict the expressive power of min-automata? It does
for max-automata: in [2], it was shown that nondeterministic max-automata can, while
deterministic max-automata cannot, recognize the language

L = {an1 b an2 b an3 b . . . : lim inf ni < ∞}.

The reason why a nondeterministic max-automaton can recognize L is that a sequence has
lim inf < ∞ if and only if it has a subsequence of lim sup < ∞, and the subsequence can
be nondeterministically guessed. The reason why deterministic max-automata cannot rec-
ognize this language is that L is on level Σ3 of the Borel hierarchy, while deterministic max-
automata can only recognize languages that are boolean combinations of Σ2 languages.

For min-automata, one can prove that nondeterministic min-automata can, while de-
terministic min-automata cannot, recognize the language

K = {an1 b an2 b an3 b . . . : lim sup ni = ∞}.

The reason why a nondeterministic min-automaton can recognize K is the same as in the
counterexample for max-automata. However, how does one prove that a deterministic min-
automaton cannot recognize K? The topological argument no longer works, since K is on
level Π2 of the Borel hierarchy, while deterministic min-automata can recognize even Σ3

languages, such as the language L. One idea would be to change the topology, to one where
min-automata would be simpler than max-automata, but we could not find such a topology.
Our solution uses pumping arguments.

Relationship with BS-automata. In this section we talk about translating min- and max-
automata into BS-automata, as defined in [4]. BS-automata are like min- or max-automata,
with three differences: (i) they are nondeterministic; (ii) they do not have the min and max
counter operations, only increment and reset; and (iii) the acceptance condition can speak
of both lim inf and lim sup. In [2] it was shown how to convert a max-automaton to a
nondeterministic BS-automaton. The same technique works for min-automata, so we get:

THEOREM 3. Every max-automaton is effectively equivalent to a nondeterministic BS-
automaton. The same holds for min-automata.
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COROLLARY 4. Emptiness is decidable for boolean combinations of min- and max-automata.

PROOF. Since max- and min-automata are closed under boolean operations, the problem
is equivalent to testing emptiness for positive boolean combinations. Since BS-automata
are closed under positive boolean combinations, every boolean combination of max- and
min-automata is effectively equivalent to a BS-automaton. Emptiness of BS-automata is
decidable by [4].

The complexity of the above procedure is quite high, especially due to the high cost of
translating a max-automaton into a BS-automaton (the current algorithm is nonelementary).
It would be nice to get an upper bound that is closer to the PSPACE lower bound from
Theorem 2.

BS-automata do not have the min operation, and yet they are still able to capture min-
automata. The translation from min-automata to BS-automata introduces nondeterminism.
One might ask: is the min counter operation necessary in a deterministic min-automaton?
(After removing the min-operation, we add a substitution operation c := d and a reset oper-
ation c := 0, and we still keep the acceptance condition that talks about lim inf.) Notice how
the automaton in Example 1 does not really use the min operation, only the substitution. In
preliminary work, we have proved that min-automata without min are less expressive.

Below we describe the separating example. The alphabet is a, b, c, d. Let

w = an1 ban2 b · · · ank b

be a word in (a∗b)+. For σ ∈ {c, d} we define wσ to be min(n1, . . . , nk) if σ = c and ∞
otherwise. The separating language is

{w1σ1w2σ2 . . . ∈ ((a∗b)+(c + d))ω : lim inf wiσi = ∞}

It is easy to define a min-automaton that recognizes the above language. The proof that an
automaton without min cannot recognize this language requires a pumping argument, and
will be given in a full version of this paper.

A matrix representation. In this section we represent the automata by matrices.
We extend slightly the definition of min-automata and allow an additional value >,

called the undefined value. As far as the min operation is concerned, the values are ordered
0 < 1 < . . . < >. We extend addition to the new counter values by setting:

>+ x = x +> = > for all x.

We write T for the extended set {0, 1, 2, . . . ,>} of counter values. Together with the two
operations above T forms a semiring, where the addition operation is min and the multipli-
cation operation is +. This semiring is called the tropical semiring, or (min, +) semiring, see
e.g. [9].

The new counter values can be eliminated, by storing in the states the information
about which counters are >. The undefined counter value > will become important in the
matrix representation, where it will be used to eliminate states from the automaton.
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Let MCT denote the semiring of C × C matrices with entries from T . Suppose that
M ∈ MCT . We can treat M as a counter operation, which changes a counter valuation,
treated as a vector v ∈ T C, to v ·M ∈ T C. This type of operation can be implemented by a
min-automaton, possibly after introducing auxiliary counters.

EXAMPLE 5. Let us return to the automaton from Example 1. When reading a letter a, the
automaton would perform the operations c := c + 1. In matrix form, this is written as

(
c d z

)
:=

(
c d z

)
·

 1 > >
> 0 >
> > 0

 .

When reading b, the automaton would do d := min(c, c); c := z. In matrix form, this is

(
c d z

)
:=

(
c d z

)
·

 > 0 >
> > >
0 > 0

 .

Every sequence of counter operations can be represented in a matrix form as in the
above example. In a min-automaton in matrix form, the counter operations are implemented
by matrices, and the choice of the matrix only depends on the last letter seen (so there is no
state). Such an automaton is given by an initial vector and a matrix for each letter of the
input alphabet, so it is a tuple

〈A, C, γ : A→MCT , v0 ∈ T C, F〉.

After reading a word a1 · · · an, the counter valuation is

v0 · γ(a1) · γ(a2) · · · γ(an).

PROPOSITION 6. For every min-automaton one can construct an equivalent min-automaton
in matrix form. If the input automaton has n states and m counters, the output automaton
has (m + 1)× n counters.

PROOF. [sketch] By storing the state information in the counters which use the value >.
Each counter has one copy corresponding to each of the automaton states, and all but one
of the copies are undefined at any moment.

What is the point of the matrix representation? One advantage is that it underlies the
close connection with existing work on distance automata and formal power series, where
matrices over the tropical semiring play an important role. We would like to further inves-
tigate this connection, especially how the PSPACE upper bound on the limitedness problem
for distance automata can be used for testing emptiness of min automata.

Another advantage is that we can eliminate states from the automaton. This is more
an advantage of the > counter value. Having a stateless automaton enormously simplifies
combinatorics, for instance in the proof that deterministic min-automata cannot recognize
the language K defined earlier, and hence nondeterministic min-automata cannot be deter-
minized.
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2 Weak MSO with the recurrence quantifier
In [2], max-automata were proved to have the same expressive power as weak MSO ex-
tended with a new quantifier, called the unbounding quantifier (denoted U). For min-
automata, the situation is the same, only a different quantifier is needed. Before introducing
the new quantifier, we recall the definition of weak MSO. In weak MSO over infinite words
we may:

- quantify over finite sets of positions (the ∃finX quantifier) and single positions (the ∃x
quantifier),

- verify that a position belongs to a set of positions (x ∈ X),
- verify that one position comes before another (x ≤ y),
- check the label standing on a position (a(x) for each label a ∈ A),
- use boolean operations (∧,∨,¬).

Weak MSO corresponds to deterministic Muller automata over infinite words, which, thanks
to the theorem of McNaughton, define all ω-regular languages. The goal of this section is to
show this correspondence for min-automata, by adding a new quantifier, called the recur-
rence quantifier.

The recurrence quantifier The recurrence quantifier, written R, binds a set variable X in a
formula ϕ(X) and is true if there are infinitely many sets X of equal size that satisfy ϕ(X).
More precisely, RX.ϕ(X) is satisfied in a word w if there exists a number N ∈ N and in-
finitely many sets X of size N such that ϕ(X) is satisfied in w.

EXAMPLE 7. Let ϕ be a formula with a free set-variable X which says that X is connected
and has at least two b’s. Formally,

ϕ(X) = ∧
{
∀x∀y∀z x ∈ X ∧ z ∈ X ∧ x ≤ y ≤ z ⇒ y ∈ X
∃x∃y x < y ∧ b(x) ∧ b(y) ∧ x ∈ X ∧ y ∈ X

A word an1 b an2 b . . . satisfies RX.ϕ(X) if and only if lim inf ni < ∞. Therefore, the set of
words with infinitely many b’s that satisfy RX.ϕ(X) is the language L from Example 1.

THEOREM 8. Weak MSO logic with the recurrence quantifier recognizes the same class of
languages as min-automata.

This theorem is a special case of Theorem 11, stated in the next section.

3 General framework
In the previous section, we defined min-automata and stated that they are equivalent to
weak MSO with the recurrence quantifier. This is analogous to the situation for max-
automata, where the appropriate quantifier is the unbounding quantifier. Converting an
automaton into a formula is straightforward, while converting a formula into an automa-
ton can be done thanks to some general properties shared by min- and max-automata. We
would like to bring out these similarities, by introducing a more abstract framework.
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The automaton side The control structure of deterministic min-automata, max-automata,
Büchi automata, etc. is always the same, it is only the mode of acceptance that changes. We
give an abstract definition below, by modeling an acceptance condition as a language F ⊆
Bω. The definition uses the notion of a letter to letter transducer, by which we understand
a finite deterministic automaton with input alphabet A, whose transitions are labelled by
letters of an output alphabet B. This transducer maps every word in A∗ to a word in B∗

of same length. We will use a transducer on infinite words, where it will give a function
Aω → Bω. Note that the transducers have no acceptance condition.

DEFINITION 9. An automaton with acceptance condition F ⊆ Bω (or simply F-automaton)
A is a deterministic letter-to-letter transducer with input alphabet A and output alphabet B.
We say that A accepts an input word w ∈ Aω if the output word belongs to F. Languages
accepted by F-automata are called F-regular.

One example of this definition is a Büchi automaton. In this case, the acceptance condi-
tion is any language of the form (B∗C)ω ⊆ Bω, for C ⊆ B. In a similar way we can encode
Muller or parity automata.

For min- or max-automata, the same can be done. In this case, the alphabet of the ac-
ceptance condition consists of words over the set of counter operations, and the acceptance
condition contains those infinite sequences of counter operations where the appropriate
limits are ∞.

We are mainly interested in prefix-independent acceptance conditions, namely languages
F ⊆ Bω that satisfy F = B∗F. All the examples mentioned above are prefix-independent. (In
the case of min- or max-automata, to get prefix-independence we should not use the matrix
form of automata, but the original definition, where the counters have values in N.)

The logic side Let us call a locus any family X of finite sets of positions. Let a given input
word be fixed. A formula ϕ(X) with a free set-type variable X defines its locus Xϕ as the
family of finite sets of positions X which satisfy ϕ. A locus property Q is any set of loci. If Q

is a locus property, then we write QX.ϕ(X) if Xϕ ∈ Q. The quantifiers ∃fin, U, R, P (defined
in the next section) all arise in this fashion. For instance, for a locus X , X ∈ ∃fin if it is
nonempty, while X ∈ U if it contains arbitrarily large sets.

For two loci X and Y , we write X ' Y if X and Y differ by a finite number of sets.
We call Q finitely invariant if Q is invariant under ', i.e. if X ∈ Q and X ' Y , then Y ∈ Q.
Examples of finitely invariant locus properties are U, R, P. On the other hand, ∃fin is not
finitely invariant.

A Q-formula is a formula QX.ϕ(X) where ϕ(X) is a formula of WMSO with only one
free variable, namely X. An open Q-formula is a Q-formula where ϕ is open in the following
sense: if a word w together with a set X satisfies ϕ(X), then there is some finite prefix of
w such that changing the word w on positions outside the prefix does not affect the truth
value of ϕ(X).

Quantifier elimination Here we present our main result, which shows how quantifiers
can be denested in the scope of a formula of WMSO. Since the theorem talks about automata
and languages, a quantifier is viewed as an operation on languages, which takes a language
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over an alphabet A× {0, 1} and returns a language over an alphabet A. In the following,
for a word w over alphabet A and a set of positions X, we write w⊗ X for the word over
alphabet A × {0, 1} that has the labels of w on the first coordinate and the characteristic
function of X on the second coordinate.

THEOREM 10. Let F be a prefix-independent acceptance condition and let Q be a locus
property. If L is an F-regular language over the alphabet A× {0, 1}, then the language

QL = {w ∈ Aω : QX.[w⊗ X ∈ L]}

is a boolean combination of F-regular languages, ω-regular languages, and Q-formulas.
Moreover, if Q is finitely invariant, then the Q-formulas are open.

Here is an important corollary of the above result.

THEOREM 11. Weak MSO extended by both the recurrence quantifier R and the unbound-
ing quantifier U defines the same languages as boolean combinations of max-automata and
min-automata. If the formula does not use R, then min-automata are not used in the combi-
nation, likewise for U and max-automata.

The above theorem also gives a normal form for weak MSO with the quantifiers R and
U. Take a formula ϕ of the logic, compile it into a boolean combination of automata as in
the above corollary, and then compile each of those automata back into a formula. What we
end up with is a boolean combination of formulas of the form RX.ϕ(X) or UX.ϕ(X), where
ϕ(X) is a formula of weak MSO without R or U. In other words, nesting the quantifiers R

and U does not contribute anything to the expressive power of weak MSO.

4 Ultimately Periodic Quantifier
In this section we present another extension of weak MSO, and use the general framework
to show that its emptiness problem is decidable.

The ultimately periodic quantifier, written P, is used to say that a set of positions is ulti-
mately periodic. Specifically, if ϕ is a formula, and x is a first-order variable free in ϕ, then
Px.ϕ(x) is true in a word if the set of positions x that satisfy ϕ is ultimately periodic (the
variable x gets bound by the quantifier).

We now use the framework from the previous section to present an automaton model
that captures weak MSO extended with the ultimately periodic quantifier. For L ⊆ Aω and
a word a1a2 . . . ∈ Aω, we write

suffixL(a1a2 . . .) = {i ∈N : aiai+1 . . . ∈ L}

We define PSL to be the set of words w ∈ Aω where suffixL(w) is ultimately periodic. Any
language of the form PSL is called an ultimately periodic acceptance condition.

COROLLARY 12. Weak MSO extended with the ultimately periodic quantifier has the same
expressive power as boolean combinations of deterministic automata with Büchi and ulti-
mately periodic acceptance conditions.

PROOF. The nontrivial translation, from logic to automata, follows from Theorem 10.
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THEOREM 13. Satisfiability is decidable for weak MSO extended with the ultimately peri-
odic quantifier.

PROOF. By Corollary 12, it suffices to decide emptiness for a boolean combination of de-
terministic automata with Büchi and ultimately periodic acceptance conditions. (The trans-
lations between formulas and automata are effective.) Since the acceptance conditions con-
cerned are closed under homomorphic images, we may assume that the same transducer
f : Aω → Bω is used by all automata. We may also assume that the boolean combination
is in DNF form, and as far as emptiness is concerned, has only one disjunct (which is a
conjunction of, possibly negated, acceptance conditions). Finally, by collapsing the Büchi
languages into a single ω-regular language, we may assume one conjunct is ω-regular, and
all others involve ultimately periodic acceptance conditions.

Summing up: we want to decide if the transducer f can output a word in an inter-
section K ∩ K1 ∩ · · · ∩ Kn, where K is ω-regular and each Ki is either a language PSLi or its
complement, for some ω-regular language Li. It is not difficult to see that the following
language over alphabet {0, 1}n is ω-regular:

M = {X1 ⊗ · · · ⊗ Xn : exists w ∈ f (Aω) ∩ K such that Xi = suffixLi(w) for all i = 1, . . . , n}

(here ⊗ combines characteristic functions of sets into a word over the product alphabet).
The emptiness problem boils down to testing if the set M above contains a word, whose

projection onto coordinates i corresponding to languages PSLi is an ultimately periodic
word, and whose projection onto coordinates i corresponding to complements of languages
PSLi is not ultimately periodic. This way we have reduced our satisfiability problem to the
following combinatorial result, which can be solved using standard automata techniques.

THEOREM 14. The following problem is decidable
• Input: An ω-regular language L ⊆ Bω, letter-to-letter homomorphisms πi : Bω → Bω

i
for i = 1, . . . , n, and a set F ⊆ {1, . . . , n}.
• Question: Is there some w ∈ L such that F = {i : πi(w) is ultimately periodic}.

We could go even further, and consider an extension of weak MSO where all the new
quantifiers mentioned in this work are allowed: the bounding quantifier, the recurrence
quantifier, and the ultimately periodic quantifier. As previously, the automaton model
would simply be boolean combinations of the three automata models: min-automata, max-
automata, and automata with ultimately periodic acceptance condition. The emptiness
problem would require solving a variant of Theorem 14 where the language L is not ω-
regular, but recognized by a nondeterministic BS-automaton (since these are strong enough
to capture both max- and min-automata).

5 Conclusions
In this paper we presented several new classes of languages of infinite words. These classes
are robust: they have good closure properties, they admit logical and automaton charac-
terizations, they have decidable emptiness. We hope that the examples from this paper,
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together with the max-automata from [2], offer convincing proof that there are interesting
generalizations of the concept of ω-regular language. The general theme is to look at de-
terministic automata with conditions that talk about asymptotic behavior, conditions more
subtle than the usual “state q appears infinitely often”.

One direction of future research is investigating the exact relationship between min-
automata and the existing theory of distance automata and formal power series. Prelimi-
nary results show that such connections result in a PSPACE-upper bound for deciding empti-
ness of boolean combinations of min- and max-automata.

Finally, we intend to investigate a similar theory for tree languages.
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[2] M. Bojańczyk. Weak MSO with the unbounding quantifier. submitted.
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ABSTRACT. We address the problem of alternating simulation refinement for concurrent timed
games (TG). We show that checking timed alternating simulation between TG is EXPTIME-complete,
and provide a logical characterization of this preorder in terms of a meaningful fragment of a new
logic, TAMTL∗. TAMTL∗ is an action-based timed extension of standard alternating-time temporal
logic ATL∗, which allows to quantify on strategies where the designated player is not responsible
for blocking time. While for full TAMTL∗, model-checking TG is undecidable, we show that for its
fragment TAMTL, corresponding to the timed version of ATL, the problem is instead in EXPTIME.

1 Introduction

Refinement preorders constitute the standard mathematical approach to formalize the rela-

tion between abstract and concrete versions of the same system. Intuitively, an implementa-

tion I refines an abstraction A when each behavior of I is allowed by A. Refinement usually

comes together with a logical setting to formally express the requirements preserved by the

preorder. The goal is to ensure that the properties proved about the abstract description

continue to hold in the refined version (i.e., the implementation). This scenario may arise ei-

ther because the design is being carried out in an incremental fashion, or because the system

is too complex and an abstraction needs to be used to verify its properties.

In the design and analysis of reactive and distributed component-based systems, refine-

ment usually refers to a single component, whose behavior depends on assumptions on its

environment (the other components). In this context, traditional refinement preorders, like

simulation, are inappropriate because they do not distinguish between the behaviors of the

component and those of its environment; so that, refinement also restrict the environment

behaviors. Recently, [5, 10, 8] have addressed this problem and succeeded in an elegant

solution for finite-state systems based on the game paradigm: the system is modeled by a

multi-player finite-state concurrent game, where at each step, the next state is determined

by considering the “intersection” between the choices (behavioral options) made simulta-

neously and independently by all the players (the components). Thus, one can keep all as-

sumptions about a component separated from those of its environment. In this framework,

simulation refinement becomes alternating simulation [5], a preorder which exploits the game

setting and is defined according to a designated player (component):∗ an implementation I

refines an abstraction A of the same component whenever any possible behavioral option of

I is allowed by A, and controvariantly, any possible behavioral option of the environment

of A is allowed by the environment of I. In this way, the refinement restricts the component

behaviors without restricting the permissible environment behaviors.

∗or, more in general, w.r.t. any subset of players (coalitions)
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While classical simulation preserves universal fragments of standard branching tempo-

ral logics designed for closed systems such as CTL∗ [11], alternating simulation for a given

player preserves expressive fragments of alternating-time temporal logics designed for open

systems such as ATL∗ [5, 4]. The latter is a convenient formalism for component-based sys-

tems modeled by finite-state concurrent games, where properties need to be guaranteed by

a player irrespective of the behavior of the other players.

Our contribution. We address the problem of refinement for real-time component-based

systems, agreeing on the crucial role of timed information in practical applications, e.g. in

embedded–system applications. We extend the notion of alternating simulation refinement

for finite-state concurrent games to the setting of (perfect-information) timed concurrent

games (TG) with the element of surprise introduced in [9]. In this setting, at each step,

players choose simultaneously and independently moves consisting of delayed actions: the

move with the smallest delay is carried out and determines the next state (if the small-

est delay is proposed by several players, then the move of one of them is chosen nonde-

terministically). Moreover, we propose the new logic TAMTL∗ as a language for specify-

ing properties of timed component-based systems modeled by TG. TAMTL∗ is a real-time

action-based extension of ATL∗, in which the temporal operators correspond to those of the

timed linear-time temporal logic MTL [13]. Differently from the known real-time extension

of ATL∗, namely TATL∗ [12], which is based on a dense-time continuous semantic (the system

is observed at any point in time), we adopt a dense-time pointwise semantics (the system is

observed through events) [16]. Furthermore and more importantly, we generalize the class

of atomic formulas of MTL by introducing the notion of (timed) multi-action constraint. Intu-

itively, such constraints express requirements on the “observable” part of single steps along

TG runs, i.e., the delay-action chosen by each player and the player which is selected in the

current step. In this way we can directly express important properties such as the existence

of reasonable strategies, that are strategies where the designated player is not responsible

for blocking time progress. In TATL∗, this is not directly possible: to express the above re-

quirement we have to artificially extend the infinite labeled transition system (LTS) of the

given TG in order to obtain another LTS that cannot be associated to any TG specification.

Our main results are the following:

1. We show that checking timed alternating simulation between TG for a given player is

EXPTIME-complete. The upper bound is proved by a non-trivial generalization of the

region-abstraction approach used for checking timed simulation/bisimulation [7, 17].

The matching lower bound is shown by an easy and linear-time reduction from the

problem of checking timed simulation, which is known to be EXPTIME-hard [14].

2. We provide a logical characterization of timed alternating simulation for a given player

σ in terms of a meaningful fragment, σ-TAMTL∗
P, of TAMTL∗, where strategy quanti-

fiers are parameterized by σ and negation applies only to multi-action constraints. We

show that a TG A is timed σ-simulated by a TG B precisely when each σ-TAMTL∗
P

formula that holds in A also holds in B. To the best of our knowledge, this is the first

paper that provides a full logical characterization for a timed refinement preorder.

3. While for unrestricted TAMTL∗, model checking TG is undecidable (since TAMTL∗ sub-

sumes MTL over infinite words [15]), we show that for its fragment TAMTL, where

each temporal operator is immediately preceded by a strategy quantifier, the problem
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is instead in EXPTIME. To do so, for each player σ, we associate to the given TG a

region-abstraction finite-state turn-based game Gσ, and recursively reduce the prob-

lem to solving the games Gσ w.r.t. regular objectives. Compared to the TATL model

checking algorithm in [12], our approach is direct and provides more insight on TG.

Here, we restrict our attention to the two-player case, but all results can be extended

to the multi-player setting, where players play in coalitions. Details of this extension are

deferred to the full version of this paper.

Related work. Refinement of real-time closed systems has been addressed in many pa-

pers (e.g. [3, 1, 17]), where systems are modeled by standard timed automata (TA) [3]. Timed

language containment for TA is undecidable [3], while timed simulation [1, 17] between TA,

which preserves the universal fragment of timed CTL (TCTL) [2], is EXPTIME-complete [17,

14]. For the open system setting, we are only aware of the recent work of Bulychev et al.

[6], who propose timed simulation preorders for two-player timed games where partial ob-

servability is also taken into account. However, the games exploited there are asymmetric,

which prevents a natural extension to the multi-player setting. Moreover, there are some

significant restrictions on the model. For example, a player is enforced to play a discrete

action if the invariant at the current location expires. Furthermore, their notion of preorder

differs from ours in at least one crucial point: in their case, there is no interaction between

the choices of opponent players in the underlying simulation game.

2 Preliminaries

2.1 Concurrent Timed Games

Let R≥0 be the set of non-negative reals and Q≥0 be the set of non-negative rational numbers.

Fix a finite set of clock variables X. The set C(X) of clock constraints (over X) is the set of

boolean combinations of formulas of the form x ∼ c, where x ∈ X, c is a natural number,

and ∼∈ {≤, <}. A (clock) valuation (over X) is a function v : X → R≥0 that maps every clock

to a non-negative real number. Whether a valuation v satisfies a clock constraint g ∈ C(X),

denoted v |= g, is defined in a natural way. For t ∈ R≥0, the valuation v + t is defined

as (v + t)(x) = v(x) + t for all x ∈ X. For Y ⊆ X, the valuation v[Y := 0] is defined as

(v[Y := 0])(x) = 0 if x ∈ Y and (v[Y := 0])(x) = v(x) otherwise.

DEFINITION 1.[3] A timed transition table (TT) is a tuple T = 〈Act, X, Q, ∆, Inv〉, where Act

is a finite set of actions, Q is a finite set of locations, ∆ ⊆ Q × (Act ∪ {⊥}) × C(X)× 2X × Q

is a finite transition relation, where ⊥ /∈ Act is the null action, and Inv : Q → C(X) maps
each location to an invariant. We require that for each q ∈ Q, there is exactly one transition
(q,⊥, g, Y, q′) from q associated with the null action; moreover, q′ = q, g = true, and Y = ∅.

A state of T is a pair (q, v) such that q ∈ Q, v is a valuation, and the invariant at location

q is satisfied by v, i.e. v |= Inv(q). The TT T induces an infinite-state labeled transition

system (LTS) [[T ]] = 〈S,→〉 over the set of labels R≥0 × (Act ∪ {⊥}) × ∆, where S is the set

of T -states, and the set of labeled edges →⊆ S × [R≥0 × (Act ∪ {⊥})× ∆]× S is defined as:

(q, v)
t,a,δ−−→ (q′, v′) iff δ = (q, a, g, Y, q′), v + t |= g, v′ = (v + t)[Y := 0], and v + t′ |= Inv(q)

for each 0 < t′ ≤ t. Note that if (q, v)
t,⊥,δ−−→ (q′, v′), then q′ = q and v′ = v + t.
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DEFINITION 2.[9] A (two-player concurrent) timed game (TG) is a tuple A = 〈T , s0, Act0,

Act1〉, where T = 〈Act, X, Q, ∆, Inv〉 is a TT, s0 is a designated initial state of T whose clock
values are in Q≥0, and {Act0, Act1} is a partition of Act with Act0, Act1 6= ∅.

A state of A is a state of [[T ]]. For each σ ∈ {0, 1}, let Act⊥σ = Actσ ∪ {⊥}. Intuitively,

Act⊥σ represents the set of actions for player σ. The set of moves MovA(σ) of player σ is given

by R≥0 × Act⊥σ ×∆. For a state s, the set of moves available to player σ in s, written MovA(σ, s),

is the set of moves (t, a, δ) ∈ MovA(σ) such that s
t,a,δ−−→ s′ for some state s′, which is uniquely

determined and is denoted by NextA(s, 〈t, a, δ〉). Observe that MovA(σ, s) is not empty since

(0,⊥, (q,⊥, true, ∅, q)) ∈ MovA(σ, s), where q is the location of s.

The timed game is intuitively played as follows. In each state s, each player σ chooses

a move (t, a, δ) ∈ MovA(σ, s) indicating that the player wants to play the transition δ asso-

ciated with the action a after a delay of t time units. The null action ⊥ signifies the player’s

intention to remain idle for the specified time delay. The move with the shorter proposed

time delay determines the next state of the game; if both player propose the same delay, then

one of the chosen moves occurs non-deterministically. An outcome of the game corresponds

to an infinite path of [[T ]] augmented with additional information. Before formalizing these

notions, we recall that in the standard definition of TG (see e.g. [9]) a move of a player just

consists of a timed delay followed by an action. This because the underlying TT is assumed

to be time-deterministic, i.e. for each (t, a) ∈ R≥0 × Act and state s, there is at most one

transition δ such that s
t,a,δ−−→ s′. Here, we have removed this restriction. Thus, to uniquely

determine the next state, a player has to specify also the transition to be taken.

For moves (t0, a0, δ0) ∈ MovA(0, s) and (t1, a1, δ1) ∈ MovA(1, s), the joint destination

move, written JDM(〈t0, a0, δ0〉, 〈t1, a1, δ1〉), is {〈t0, a0, δ0〉, 〈t1, a1, δ1〉} if t0 = t1, and the sin-

gleton {〈tk, ak, δk〉} for the unique k ∈ {0, 1} such that tk < t1−k otherwise.

A run of A is a finite or infinite sequence π = s0, 〈m0
1, m1

1, σ1〉, s1, 〈m0
2, m1

2, σ2〉, s2, . . . such

that for any k, sk ∈ S, m0
k+1 ∈ MovA(0, sk), m1

k+1 ∈ MovA(1, sk), σk+1 ∈ {0, 1}, m
σk+1

k+1 ∈
JDM(m0

k+1, m1
k+1), and sk+1 = NextA(sk, m

σk+1

k+1 ). For each k, we denote by πk the suffix-run

of π starting from state sk, and by π[0, k] the prefix-run of π leading to state sk. The duration

DUR(π) of π is the sum of timestamps of the selected moves m
σk+1

k+1 along π. An infinite run

π is divergent if DUR(π) = +∞. Let FRuns be the set of finite runs of A. For π ∈ FRuns,

we denote by last(π) the last state of π. A strategy fσ for player σ ∈ {0, 1} is a mapping

fσ : FRuns → MovA(σ) assigning to each finite run π a move to be proposed by player σ at

last(π) such that fσ(π) ∈ MovA(σ, last(π)). For each state s, the set of outcomes of strategy fσ

from s, OutcomesA(σ, s, fσ), is the set of all infinite runs s0, 〈m0
1, m1

1, σ1〉, s1, 〈m0
2, m1

2, σ2〉, s2 . . .

such that s0 = s, and for each k ≥ 0, fσ(s0, 〈m0
1, m1

1, σ1〉, s1, . . . sk) = mσ
k+1. Let π =

s0, 〈m0
1, m1

1, σ1〉, s1, 〈m0
2, m1

2, σ2〉, s2 . . . with m
j
k = (t

j
k, a

j
k, δ

j
k) (for each j = 0, 1 and k ≥ 1).

The trace of π, written trace(π), is 〈(t0
1, a0

1), (t1
1, a1

1), σ1〉, 〈(t0
2, a0

2), (t1
2, a1

2), σ2〉, . . .

We are also interested in strategies fσ of player σ ∈ {0, 1} such that player σ is not

responsible for blocking time progress [9]. Let Blamelessσ be the set of infinite runs π =
s0, 〈m0

1, m1
1, σ1〉, s1, . . . such that player σ is responsible only for finitely many steps, i.e. such

that there is k ≥ 1 so that for all j ≥ k, σj = 1 − σ. Note that Blamelessσ does not distinguish

between runs which have the same trace. A strategy fσ for player σ is reasonable in a state s

iff for all runs π in OutcomesA(σ, s, fσ), either π is divergent or π ∈ Blamelessσ.
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2.2 The logic TAMTL∗

In this subsection, we introduce a real-time action-based extension of the alternating-time

temporal logic ATL∗ [4], called TAMTL∗, based on a dense-time pointwise semantics.

Fix two nonempty and disjoint sets of actions Act0 and Act1. A (timed) multi-action over

(Act0, Act1) is a triple θ = 〈(t0, a0), (t1, a1), σ〉, where (ti, ai) ∈ R≥0 × Act⊥i for i = 0, 1,

σ ∈ {0, 1}, and tσ ≤ t0, t1. Note that the traces of runs in TG on (Act0, Act1) are sequence of

multi-actions. A (timed) multi-action constraint χ is a triple χ = 〈(a′0,∼0 c0), (a′1,∼1 c1), σ′〉,
where σ′ ∈ {0, 1} and for i = 0, 1, a′i ∈ Act⊥i , ∼i∈ {=, <,≤, >,≥}, and ci ∈ Q≥0. The above

multi-action θ satisfies χ, written θ |= χ, iff σ = σ′ and for i = 0, 1, ai = a′i and ti ∼i ci.

The sets of state formulas ϕ and path formulas ψ of TAMTL∗ over (Act0, Act1) are defined as:

ϕ := true | ¬ ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈〈σ〉〉ψ | 〈〈σ〉〉reψ

ψ := χ | ϕ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | ψ UI ψ | ψŨ Iψ

where σ ∈ {0, 1}, 〈〈σ〉〉 and 〈〈σ〉〉re are strategy quantifiers, where, intuitively, 〈〈σ〉〉re is re-

stricted to σ-reasonable strategies, χ is a multi-action constraint, UI is the constrained strict

until operator, where I is an interval with bounds in Q≥0 ∪ {+∞}, and Ũ I is the dual of UI .

The set of state formulas ϕ forms the language TAMTL∗. TAMTL∗ is interpreted over states

of TG. Let A be a TG over (Act0, Act1), s be a state of A, and π be an infinite run of A. For a

state formula ϕ and a path formula ψ, the satisfaction relations (A, s) |= ϕ and (A, π) |= ψ

are defined by induction as follows (we omit the rules for boolean connectives):

(A, s) |= 〈〈σ〉〉ψ iff there is a strategy f of player σ such that

for all π ∈ OutcomesA(σ, s, f ), (A, π) |= ψ

(A, s) |= 〈〈σ〉〉reψ iff there is a reasonable strategy f of player σ such that for all

π ∈ OutcomesA(σ, s, f ), (A, π) |= ψ if π is divergent

(A, π) |= χ iff trace(π) = θ0, θ1, . . . and θ0 |= χ

(A, π) |= ϕ iff π = s0, . . . and (A, s0) |= ϕ

(A, π) |= ψ1 UI ψ2 iff there is i > 0 such that DUR(π[0, i]) ∈ I,

(A, πi) |= ψ2, and (A, πk) |= ψ1 for all 0 < k < i

(A, π) |= ψ1Ũ Iψ2 iff (A, π) |= ¬((¬ψ1)UI(¬ψ2))

We write A |= ϕ to mean that (A, s0) |= ϕ for the initial state s0 of A. We use some standard

shortcuts: ♦I ψ := trueUI ψ (eventually), �I ψ := ¬♦I ¬ψ (always), and ©I ψ := (¬true)UI ψ

(next). We omit the subscript I when I = R≥0. We denote by TAMTL the fragment of

TAMTL∗ consisting of the formulas in which every temporal operator is immediately pre-

ceded by a strategy quantifier. Moreover, for σ ∈ {0, 1}, let σ-TAMTL∗
P be the fragment of

TAMTL∗ (not closed under negation) in which all strategy quantifiers are parameterized by

σ, and negation is applied only to multi-action constraints. Intuitively, σ-TAMTL∗
P formulas

describe behaviors that player σ can enforce no matter what player 1 − σ does. Note that

since TG are not determined [9], the dual σ- ˜TAMTL∗
P of σ-TAMTL∗

P does not correspond to

(1− σ)-TAMTL∗
P. By the equivalence below, it follows that in fact 〈〈σ〉〉re is a derivate operator

in TAMTL∗ and also in σ-TAMTL∗
P. However, this does not hold for the logic TAMTL.

〈〈σ〉〉reψ ≡ 〈〈σ〉〉
(
((�♦[1,∞[ true) → ψ) ∧ (¬(�♦[1,∞[ true) → ψblamelessσ

)
)

ψblamelessσ
:= ♦�

( ∨

a0∈Act⊥0

∨

a1∈Act⊥1

〈(a0,≥ 0), (a1,≥ 0), 1 − σ〉
)
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EXAMPLE 3. Let Act0 = {a} and Act1 = {b}. The 0-TAMTL∗
P formula 〈〈0〉〉re � (〈(a,≥ 0),

(b,≥ 0), 0〉 → ♦[1,1]〈(a,≥ 0), (b,≥ 0), 1)〉) requires that player 0 has a reasonable strategy
ensuring that along every its divergent outcome, every a-event (i.e., the action a is selected

in the current step) is followed one time unit later by a b-event.

3 Timed Alternating Simulation

In this section, we introduce the notion of timed alternating simulation between TG which

generalizes alternating simulation between finite-state concurrent games [5].

Fix two comparable TG A = 〈TA, sA0 , ActA0 , ActA1 〉 and B = 〈TB, sB0 , ActB0 , ActB1 〉, i.e. such

that ActA0 = ActB0 and ActA1 = ActB1 . Let SA (resp., SB) be the set of states of A (resp., B).

DEFINITION 4. For a player σ ∈ {0, 1}, a relation H ⊆ SA × SB is a timed alternating

simulation for player σ from A to B iff for all (sA, sB) ∈ H, the following holds:
- for every move mA

σ = (t, a, δA) ∈ MovA(σ, sA), there is a matching move mB
σ = (t, a, δB) ∈

MovB(σ, sB) such that for every move mB
1−σ = (t′, b, δ′B) ∈ MovB(1 − σ, sB), there is a

matching move mA
1−σ = (t′, b, δ′A) ∈ MovA(1 − σ, sA) so that for all i = 0, 1,

mA
i ∈ JDM(mA

0 , mA
1 ) implies (NextA(sA, mA

i ), NextB(sB , mB
i )) ∈ H

Note that mB
i ∈ JDM(mB

0 , mB
1 ). If there is a timed alternating simulation H for player σ from

A to B such that (sA0 , sB0 ) ∈ H, we say that B timed σ-simulates A, and we write A �σ B.

Note that �σ is a preorder on TG. We can give a game-theoretic interpretation of timed

alternating simulation for a player σ ∈ {0, 1}. Consider the following two-player turn-based

game whose set of main positions is SA × SB . The initial position is (sA0 , sB0 ). Each round

consists of five steps as follows. Assume that the current main position is (sA, sB). Then:

1. The antagonist chooses a move mA
σ = (t, a, δA) ∈ MovA(σ, sA) of player σ in A avail-

able at state sA, and moves to position p1 = (sA, sB, mA
σ ).

2. The protagonist, from p1, chooses a matching move mB
σ = (t, a, δB) ∈ MovB(σ, sB) of

player σ in B available at state sB , and moves to position p2 = (sA, sB , mA
σ , mB

σ ).

3. The antagonist, from p2, chooses a move mB
1−σ = (t′, b, δ′B) ∈ MovB(1− σ, sB) of player

1 − σ in B available at state sB, and moves to position p3 = (sA, sB , mA
σ , mB

σ , mB
1−σ).

4. The protagonist, from p3, chooses a matching move mA
1−σ = (t′, b, δ′A) ∈ MovA(σ, sA)

of player 1−σ in A available at state sA, and moves to p4 = (sA, sB , mA
σ , mB

σ , mB
1−σ, mA

1−σ).

5. The antagonist, from position p4, chooses i = 0, 1 such that mA
i ∈ JDM(mA

0 , mA
1 ), and

moves to the main position (NextA(sA, mA
i ), NextB(sB , mB

i )).

If the game proceeds ad infinitum, then the protagonist wins. Otherwise, the game reaches

a position from which the protagonist cannot choose in steps 2 or 4 above a matching move,

and the antagonist wins. It easily follows that B timed σ-simulates A iff the protagonist has

a winning strategy. Note that for each σ ∈ {0, 1}, we have a different turn-based game.

Intuitively, B timed σ-simulates A iff player σ is more powerful in game B than in game

A, i.e. each behavior that player σ can induce in A, it can also induce in B. The following

lemma formalizes this intuition. Let H ⊆ SA × SB. For a run π of A and a run π′ of B
having the same length, we write H(π, π′) to mean that for each prefix-run π[0, k] of π,

(last(π[0, k]), last(π′ [0, k])) ∈ H.
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LEMMA 5. Let H be a timed alternating simulation for player σ ∈ {0, 1} from A to B.
Then, for all (sA, sB) ∈ H and strategy fA of player σ in A, there exists a strategy fB of
player σ in B such that for every run πB ∈ OutcomesB(σ, sB , fB), there exists a run πA ∈
OutcomesA(σ, sA, fA) so that H(πA, πB) and trace(πA) = trace(πB).

EXAMPLE 6. The figure depicts two simple TG A and B with Act0 = {a} and Act1 = {b}.

Let s0
A = (qA, v) and s0

B = (qB, v) be the initial states of A and B, where v is any valuation
with v(x) ≤ 1. It easily follows that B timed 0-simulates A and A timed 1-simulates B, but
the vice versa of each of two conditions does
not hold. Moreover, note that there exists no
(standard) timed simulation from A to B and

vice versa (w.r.t. the given initial states).

�
��mqA

A

a
x ≤ 1

b
x ≤ 3

U �

�
��mqB

B

a
x ≤ 2

b
x ≤ 2

U �

3.1 Checking Timed Alternating Simulation

In this subsection, we show that for given comparable TG A and B, and player σ ∈ {0, 1},

checking whether A �σ B is decidable via a suitable region abstraction, and the check can

be done in exponential time. Fix two comparable TG A = 〈TA, sA0 , Act0, Act1〉 and B =
〈TB, sB0 , Act0, Act1〉. Let SA (resp., SB) be the set of states of A (resp., B), and let XA (resp.,

XB) be the set of clocks of A (resp., B). W.l.o.g. we can assume that XA ∩ XB = ∅.

Region equivalence [3]: we denote by Kmax the largest constant occurring in the clock con-

straints of A and B. Given a clock valuation vA over XA and a clock valuation vB over

XB, the clock valuation vA‖vB over XA ∪ XB is defined in the obvious way (recall that

XA ∩ XB = ∅). For t ∈ R≥0, ⌊t⌋ denotes the integral part of t and f ract(t) denotes its

fractional part. The region equivalence relation over SA × SB, written ≈A‖B, is defined as fol-

lows: ((qA, vA), (qB, vB)) ≈A‖B ((q′A, v′A), (q′B , v′B)) iff qA = q′A, qB = q′B, and for each

x ∈ XA ∪ XB , either both (vA‖vB)(x), (v′A‖v′B)(x) > Kmax, or the following holds:

• ⌊(vA‖vB)(x)⌋ = ⌊(v′A‖v′B)(x)⌋ and f ract((vA‖vB)(x)) = 0 iff f ract((v′A‖v′B)(x)) = 0;

• for each y ∈ XA∪XB s.t. (vA‖vB)(y) ≤ Kmax, f ract((vA‖vB)(x)) ≤ f ract((vA‖vB)(y))
iff f ract((v′A‖v′B)(x)) ≤ f ract((v′A‖v′B)(y)) (ordering of the fractional parts).

Let RegA‖B be the set of equivalence classes of ≈A‖B, called regions. By [3], RegA‖B is

finite and its size is singly exponential in the sizes of A and B.

Finite Sampling of R≥0: let (sA, sB) ∈ SA × SB and x1, . . . , xn be the clocks in XA ∪ XB
whose values t1, . . . , tn in (sA, sB) are not greater than Kmax. Assume w.l.o.g. that τ1 ≤ τ2 ≤
. . . ≤ τn, where τi = f ract(ti) for 1 ≤ i ≤ n. Let τ0 = 0, τn+1 = 1, and min(sA, sB) =
min{⌊t1⌋, . . . , ⌊tn⌋}. We consider the following finite set of real numbers:

Times(sA, sB) = {h − 1
2(τi + τi+1) | i = 0, . . . , n and h = 1, . . . , Kmax − min(sA, sB)} ∪

{h− τi | i = 1, . . . , n and h = 1, . . . , Kmax −min(sA, sB)} ∪ {0, . . . , Kmax + 1−min(sA, sB)}}

Thus, Times(sA, sB) consists of the integers in {0, . . . , Kmax + 1 − min(sA, sB)} plus the dis-

tances between the points p and the integers 1, . . . , Kmax − min(sA, sB), where p is either a

fractional part τj or the mid-point of some interval [τi, τi+1] with 0 ≤ i ≤ n. Intuitively,

the distance d between a mid-point 1
2(τi + τi+1) and an integer h = 1, . . . , Kmax − min(sA, sB)
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is used as a representative for all timestamps t such that h − τi+1 < t < h − τi (formally,

(vA‖vB) + t ≈A‖B (vA‖vB) + d, where vA and vB are the clock valuations of sA and sB).

Checking if A �σ B for σ ∈ {0, 1}: let Hmax
σ be the maximal timed alternating simulation

for player σ from A to B. We show that Hmax
σ is a computable union of regions.

DEFINITION 7.[Goodness] Let Γ ⊆ RegA‖B be a set of regions and let R ∈ Γ. We say that R

is good in Γ w.r.t. player σ ∈ {0, 1} iff there is (sA, sB) ∈ R such that:
1. for every move mA

σ = (t, a, δA) ∈ MovA(σ, sA) with t ∈ Times(sA, sB), there is a match-

ing move mB
σ = (t, a, δB) ∈ MovB(σ, sB) such that for every move mB

1−σ = (t′, b, δ′B) ∈
MovB(1 − σ, sB) with t′ ∈ Times(sA, sB), there is a matching move mA

1−σ = (t′, b, δ′A) ∈
MovA(1 − σ, sA) so that for all i = 0, 1 with mA

i ∈ JDM(mA
0 , mA

1 ),

(NextA(sA, mA
i ), NextB(sB , mB

i )) ∈ Ri for some Ri ∈ Γ

Fix σ ∈ {0, 1} and let Ωσ : 2RegA‖B → 2RegA‖B be the monotone operator defined as fol-

lows: Ωσ(Γ) = {R ∈ Γ | R is good in Γ w.r.t. player σ}. We show that Ωσ is computable and

Hmax
σ =

⋃
R∈Γmax

R, where Γmax is the greatest fixpoint of Ωσ. For this, we need the following

crucial technical lemma, which extends the result given in [17] for timed simulation.

LEMMA 8. Let Γ ⊆ RegA‖B be a set of regions and R ∈ Γ such that R is good in Γ w.r.t. player
σ. Then, each (sA, sB) ∈ R satisfies the condition obtained from Condition 1 in Definition 7
by removing the constraint that the timestamps have to be chosen in Times(sA, sB).

Let H ⊆ SA × SB be a timed alternating simulation for player σ from A to B. We denote

by ΓH the set ΓH = {R ∈ RegA‖B | R ∩ H 6= ∅}. By Definition 7, the following holds.

LEMMA 9. If H ⊆ SA × SB is a timed alternating simulation for player σ from A to B, then
ΓH is a fixpoint of Ωσ.

By Lemmata 8 and 9, we obtain the following results.

COROLLARY 10. If H ⊆ SA × SB is a timed alternating simulation for player σ from A to B,

then
⋃

R∈ΓH
R is a timed alternating simulation for player σ from A to B.

COROLLARY 11. Let Γ ⊆ RegA‖B be a set of regions. Then, Ωσ(Γ) = Γ iff
⋃

R∈Γ R is a timed
alternating simulation for player σ from A to B.

By Corollary 10, Hmax
σ is a union of regions in RegA‖B, and by Corollary 11, Hmax

σ =⋃
R∈Γmax

R, where Γmax is the greatest fixpoint of Ωσ. Note that Γmax can be obtained by

iterative applications of Ωσ starting with Γ0 = RegA‖B. There can be at most |RegA‖B | many

iterations. Moreover, by Lemma 8, Condition 1 in Definition 7 is independent on what

representative is chosen for the given equivalence class. Since |Times(sA, sB)| for (sA, sB) ∈
SA× SB and |RegA‖B | are singly exponential in the sizes of A and B, if follows that Ωσ(Γ) for

given Γ ⊆ RegA‖B can be computed in single exponential time in the sizes of A and B. Since

A �σ B iff (sA0 , sB0 ) ∈ Hmax
σ , checking whether A �σ B is in EXPTIME. We can show that

the problem is also EXPTIME-hard by a straightforward and linear reduction from checking

timed simulation between TT, which is EXPTIME-hard [14]. Thus, we obtain the following.

THEOREM 12. Given two comparable TG A and B and player σ ∈ {0, 1}, the problem of
checking whether A �σ B is EXPTIME-complete.
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3.2 Logical characterization of timed alternating simulation

In this subsection, we give a logical characterization of timed alternating simulation for a

given player σ ∈ {0, 1} in terms of the fragment σ-TAMTL∗
P of TAMTL∗.

THEOREM 13. Let A and B be two TG over (Act0, Act1) and σ ∈ {0, 1}. Then, A �σ B if

and only if for every σ-TAMTL∗
P formula ϕ, A |= ϕ implies B |= ϕ. Hence, A �σ B if and

only if for every σ- ˜TAMTL∗
P formula ϕ̃, B |= ϕ̃ implies A |= ϕ̃.

Sketched proof. For the direct implication (⇒), it suffices to show that if H is a timed alternat-

ing simulation for player σ from A to B, then the following holds:

1. for all σ-TAMTL∗
P (state) formulas ϕ and (sA, sB) ∈ H, (A, sA) |= ϕ implies (B, sB) |= ϕ.

2. for all path formulas ψ of σ-TAMTL∗
P and for all infinite runs πA of A and πB of B s.t.

H(πA, πB) and trace(πA) = trace(πB), (A, πA) |= ψ implies (B, πB) |= ψ.

The proof is by induction on the structure of formulas. The non-trivial case is that of state

formulas of the form 〈〈σ〉〉ψ (recall that 〈〈σ〉〉re is a derivate operator in σ-TAMTL∗
P). Assume

that (sA, sB) ∈ H and (A, sA) |= 〈〈σ〉〉ψ. Thus, there is a strategy fA of player σ in A such

that for each outcome πA of fA from sA, (A, πA) |= ψ. Since (sA, sB) ∈ H, by Lemma 5,

there is a strategy fB of player σ in B such that for each outcome πB of fB from sB , there is

an outcome πA of fA from sA so that H(πA, πB) and trace(πA) = trace(πB). By ind. hyp.,

Property 2 holds for the path formula ψ. Hence, evidently, the result follows.

For the converse implication (⇐) of the theorem, assume that A 6�σ B. Let σ = 0 (the

other case is symmetric). We need to prove that for some 0-TAMTL∗
P formula ϕ, A |= ϕ

and B 6|= ϕ. Consider the turn-based 0-simulation game G0 between the antagonist and the

protagonist on page 90. By the results of Subsection 3.1 we can assume that the timestamps

chosen by the antagonist are in the finite set Times(sA, sB), where (sA, sB) is the main current

position of the game. It follows that G0 is finitely-branching. Since A 6�0 B, the antagonist

has a winning strategy f starting from (sA0 , sB0 ), where sA0 (resp., sB0 ) is the initial state of A
(resp., B) whose clock-values are rational. Hence, the strategy-tree Tf of f from (sA0 , sB0 ) is

finite, and (by def. of Times) the timestamps of the moves along the edges of Tf are rational.

We claim that for each node xp of Tf labeled by a main position p = (sA, sB) ∈ SA × SB,

there is a 0-TAMTL∗
P formula ϕp such that (A, sA) |= ϕp and (B, sB) 6|= ϕp. Hence, the result

follows. The proof is by induction on the height of the subtree of Tf rooted at node xp. By

construction, xp has exactly one child, say x′p, and the edge from xp to x′p corresponds to a

move m0
A = (t, a, δA) for player 0 in MovA(0, sA) with t ∈ Times(sA, sB) ⊆ Q≥0 chosen by

the antagonist in Step 1 on page 90. Moreover, the edges from x′p to its children y1, . . . , yn, if

any, correspond to all and only the matching moves m0
B = (t, a, δB) ∈ MovB(0, sB) of m0

A for

player 0 in B from sB . If n = 0 (base case), there is no such a matching move. In this case, the

0-TAMTL∗
P formula ϕp satisfying the claim is 〈〈0〉〉(∨b∈Act⊥1

∨
κ∈{0,1}〈(a, = t), (b,≥ 0), κ〉).

Now, assume that n ≥ 1. By construction, for each 1 ≤ i ≤ n, yi has a unique

child y′i and the edge from yi to y′i is associated with some move (t′, b, δ′B) ∈ MovB(1, sB)
(depending on i) with t′ ∈ Times(sA, sB) ⊆ Q≥0 chosen by the antagonist in Step 3 on

page 90. Moreover, the edges from y′i to its children zi,1, . . . , zi,mi
represent all and only the

possible matching moves (t′, b, δ′A) ∈ MovA(1, sA) (for player 1 in A from sA) of the move

(t′, b, δ′B) ∈ MovB(1, sB). Assume that for each 1 ≤ i ≤ n, mi ≥ 1, i.e. y′i is not a leaf (the
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other case being simpler). By construction, for each 1 ≤ l ≤ mi, zi,l has a unique child z′i,l ,
which is labeled by a main position in SA × SB, and the edge from zi,l to z′i,l corresponds to

a choice κ = 0, 1 of the antagonist in Step 5 on page 90. We distinguish two cases:

• ∃1 ≤ i ≤ n. ∀1 ≤ l ≤ mi: the edge from zi,l to z′i,l is associated with the choice κ = 1;

• ∀1 ≤ i ≤ n. ∃1 ≤ l ≤ mi: the edge from zi,l to z′i,l is associated with the choice κ = 0.

Here, we focus on the first case. Let m1
B = (t′, b, δ′B) ∈ MovB(1, sB) be the move associated

with the edge from yi to y′i, where t′ ∈ Q≥0, and wB = NextB(sB , m1
B). By construction, t′ ≤ t

and the nodes z′i,1, . . . , z′i,mi
are labeled by positions (w1

A, wB), . . . , (wmi
A , wB), respectively,

where w1
A, . . . , wmi

A are the states of A obtained from sA applying all and only the matching

moves (t′, b, δ′A) ∈ MovA(1, sA) of m1
B. By ind. hyp. for each 1 ≤ l ≤ mi, there is a 0-TAMTL∗

P

formula φl s.t. (A, wl
A) |= φl and (B, wB) 6|= φl. Let ϕp be the 0-TAMTL∗

P formula given by

〈〈0〉〉
{( ∨

c∈Act⊥1

∨

κ∈{0,1}
〈(a, = t), (c,≥ 0), κ〉

)
∧

(
〈(a, = t), (b, = t′), 1〉 → ©(φ1 ∨ . . . ∨ φmi

)
)}

Evidently, (A, sA) |= ϕp. Moreover, (B, sB) 6|= ϕp, since for every strategy of player 0 in B
which initially selects from sB a move of the form (t, a, δ), there is an outcome from sB of the

form π = sB , 〈(t, a, δ), (t′ , b, δB), 1〉, wB, . . ., where by hypothesis wB 6|= (φ1 ∨ . . . ∨ φmi
).

From the proof of Theorem 13, it follows that timed alternating simulation for player σ

can also be logically characterized by the small fragment of σ-TAMTL∗
P which only uses the

boolean connectives, the next temporal modality ©, and the strategy quantifier 〈〈σ〉〉.

4 Model checking TG against TAMTL

Fix a TG Ain over (Act0, Act1) and a TAMTL formula ϕ. By [3], w.l.o.g. we can assume that

the constants occurring in ϕ are natural numbers. Moreover, we can assume that Ain uses a

clock xdiv, which is reset whenever the constraint xdiv ≥ 1 holds. Let A be the TG obtained

from Ain by simply adding a new clock, say xϕ (note that xϕ is never used by A). Let Kmax

be the largest constant occurring in A and ϕ. We denote by RegAin
(resp., RegA) the finite

set of equivalences classes of the region equivalence on the set SAin
(resp., SA) of states of

Ain (resp., A) w.r.t. the constant Kmax [3], which is defined similarly to the set RegA‖B in

Subsection 3.1. We show that checking whether Ain |= ϕ (model-checking problem) can be

reduced to solving finite-state games w.r.t. regular objectives. For this, we associate to A
two finite-state games which abstract away from precise time information.

Let R ∈ RegA. A region R′ ∈ RegA is an abstract time-successor of R, written R ≤ R′,
if there is (q, v) ∈ R such that for some t ∈ R≥0, (q, v + t) ∈ R′ and v + t′ |= Inv(q) for

each 0 < t′ < t. By [3], the previous condition is independent on what representative is

chosen in R. Moreover, if R ≤ R′ and R ≤ R′′, then either R′ ≤ R′′ or R′′ ≤ R′. The set of

abstract moves available to player σ in R, written Movabs
A (σ, R), is the set of triples (R′, a, δ) ∈

RegA × Act⊥σ × ∆, such that R ≤ R′, δ = (q, a, g, Y, q′), q is the location associated with R′,
and g holds in R′. Given m = (R′, a, δ) ∈ Movabs

A (σ, R) with δ = (q, a, g, Y, q′), we denote by

Nextabs
A (R, m) the unique region R′′ such that there is (q, v) ∈ R′ so that (q, v[Y := 0]) ∈ R′′.

By [3], the previous condition is independent on what representative is chosen in R′.
Let σ ∈ {0, 1}. The finite-state turn-based two-player game Aabs

σ = 〈Pσ = Pσ
σ ∪ P1−σ

σ , Eσ〉
is defined as follows: Pσ

σ = RegA × {0, 1} is the set of states (or positions) for player σ,
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P1−σ
σ = {〈R, m, l〉 | R ∈ RegA, m ∈ Movabs

A (σ, R), and l ∈ {0, 1}} is the set of positions for

player 1 − σ, and Eσ ⊆ (Pσ
σ × P1−σ

σ ) ∪ (P1−σ
σ × Pσ

σ ) consists of following edges:

• (R, l) ։ (R, m, l) for all R ∈ RegA, m ∈ Movabs
A (σ, R), and l ∈ {0, 1};

• (R, 〈R1, a, δ1〉, l) ։ (R′, l′) iff ∃〈R2, b, δ2〉 ∈ Movabs
A (1 − σ, R) s.t. either l′ = σ, R1 ≤ R2,

and R′ = Nextabs
A (R, 〈R1, a, δ1〉), or l′ = 1−σ, R2 ≤ R1, and R′ = Nextabs

A (R, 〈R2, b, δ2〉).

A strategy for player σ in Aabs
σ is a function f : P∗

σ · Pσ
σ → P1−σ

σ such that for each π = π′ · p ∈
P∗

σ · Pσ
σ , p ։ f (π) is an edge of Aabs

σ . For each p ∈ Pσ, the set OutcomesAabs
σ

(σ, p, f ) of infinite

outcomes of f from p is defined in the usual way. For a finite set of propositions Prop, a label-

ing function L : Pσ → 2Prop, a standard LTL formula ξ over Prop, and position p ∈ Pσ, we say

that the strategy f is winning in p w.r.t. L and the objective ξ if for each outcome p0, p1, . . . ∈
OutcomesAabs

σ
(σ, p, f ), L(p0), L(p1), . . . satisfies ξ. The following two lemmata show the con-

nection between the strategies of player σ in A and the strategies of player σ in Aabs
σ .

LEMMA 14. Let σ ∈ {0, 1}, f be a strategy of player σ in A, R0 ∈ RegA, and s0 ∈ R0. Then,

there is a strategy fabs of player σ in Aabs
σ such that for each path πabs = (R0, 0), p0, (R1, σ1), p1,

(R2, σ2) . . . ∈ OutcomesAabs
σ

(σ, (R0, 0), fabs), there exists a run π ∈ OutcomesA(σ, s0, f ) of the

form π = s0, 〈m0
1, m1

1, σ1〉, s1, 〈m0
2, m1

2, σ2〉, . . . so that for each h ≥ 1, sh ∈ Rh.

LEMMA 15. Let σ ∈ {0, 1} and fabs be a strategy of player σ in Aabs
σ , and R0 ∈ RegA. Then,

there is a strategy f of player σ in A s.t. for each π = s0, 〈m0
1, m1

1, σ1〉, s1, 〈m0
2, m1

2, σ2〉, . . . ∈
OutcomesA(σ, s0, f ) with s0 ∈ R0, there is πabs ∈ OutcomesAabs

σ
(σ, (R0, 0), fabs) of the form

πabs = (R0, 0), p0, (R1, σ1), p1, (R2, σ2) . . . so that for each h ≥ 1, sh ∈ Rh.

THEOREM 16. The set of states sin of Ain such that (Ain, sin) |= ϕ is a union of regions in
RegAin

, and its (region) representation can be computed in exponential time. Hence, model
checking TG against TAMTL is in EXPTIME.

PROOF. We prove by induction on the structure of the formulas that the result holds for

each state subformula φ of ϕ. Here, we illustrate the case in which φ = 〈〈σ〉〉re(φ1 UI φ2) for

some σ ∈ {0, 1}. For s ∈ SA, we denote by Proj(s) the associated state in SAin
. Let SA[xϕ :=

0] be the set of states in SA such that the value of clock xϕ is 0. Note that for each s ∈ SA,

(A, s) |= φ iff (Ain, Proj(s)) |= φ. By ind. hyp. it follows that for each i = 1, 2, the set of

states s ∈ SA such that (A, s) |= φi is a union of regions in RegA whose representation can be

computed in exponential time. Evidently, it suffices to show that the last condition continues

to hold for the set of states s in SA[xϕ := 0] such that (A, s) |= 〈〈σ〉〉re(φ1 UI φ2). Note that

by the previous observations, for each s0 ∈ SA[xϕ := 0], (A, s0) |= 〈〈σ〉〉re(φ1 UI φ2) iff there

is a strategy f of player σ in A such that for each π = s0, 〈m0
1, m1

1, σ1〉, s1, 〈m0
2, m1

2, σ2〉, . . . ∈
OutcomesA(σ, s0, f ), the associate sequence Reg(s0), σ1, Reg(s1), σ2, . . ., where Reg(sj) is the

region of sj, satisfies the following: either (1) for infinitely many j ≥ 0, Reg(sj) satisfies the

constraint xdiv ≥ 1, and there is k > 0 such that Reg(sk) satisfies φ2 and the constraint xϕ ∈ I,

and Reg(sh) satisfies φ1 for each 0 < h < k, or (2) there is k ≥ 0 such that for each j ≥ k,

σj 6= σ and Reg(sj) satisfies xdiv < 1. Let L : Pσ → {pφ2 , pφ1
, (xdiv ≥ 1), (xϕ ∈ I), 0, 1} be the

labeling of Aabs
σ defined in the obvious way. Then, by Lemmata 14 and 15, for all regions

R0 ∈ RegA satisfying xϕ = 0 and s0 ∈ R0, it holds that (A, s0) |= 〈〈σ〉〉re(φ1 UI φ2) iff there

is a winning strategy fabs of player σ in Aabs
σ in position (R0, 0) w.r.t. the labeling L and the

LTL objective: [� ♦(xdiv ≥ 1) ∧ (pφ1 U (pφ2 ∧ (xϕ ∈ I)))] ∨ [♦ �(¬(xdiv ≥ 1) ∧ (1 − σ))]
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Since LTL finite-state games for a fixed LTL formula can be solved in polynomial time

[18] and since the size of Aabs
σ is exponential in the size of Ain, the result follows.
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ABSTRACT. The paper focuses on the structure of fundamental sequences of ordinals smaller than
ε0. A first result is the construction of a monadic second-order formula identifying a given structure,
whereas such a formula cannot exist for ordinals themselves. The structures are precisely classified
in the pushdown hierarchy. Ordinals are also located in the hierarchy, and a direct presentation is
given.

A recurrent question in computational model theory is the problem of model checking,

i.e. the way to decide whether a given formula holds in a structure or not. When studying

infinite structures, first-order logic only brings local properties whereas second-order logic

is most of the time undecidable, so monadic second-order logic or one of its variants is often

a balanced option. In the field of countable ordinals, results of Büchi [3] and Shelah [15]

both brought decidability of the monadic theory via different ways. This positive outcome

is tainted with the following property : the monadic theory of a countable ordinal only

depends on a small portion of it, called the ω-tail [3, Th. 4.9]. In other words, many ordinals

greater than ωω share the same monadic theories and cannot be distinguished.

Another class of structures enjoying a decidable monadic second-order theory is the

pushdown hierarchy [6], which takes its source in the Muller and Schupp characterization of

transition graphs of pushdown automata [11]. In the same way, each level of the hierarchy

has two characterizations : an internal by higher-order pushdown automata [4], and an

external presentation by graph transformations [5]. This paper will use the latter by the

means of monadic interpretation and treegraph operations.

The original motivation of this paper was the localization of ordinals smaller than ε0 in

the hierarchy. Because of the above property, ordinals themselves are not easy to manipu-

late with monadic interpretations. There is therefore a need of structures as expressive as

ordinals (in terms of interpretations) but having additional properties, such as the existence

of a monadic formula precisely identifying the structure.

A well-known object answers to this request. Each countable limit ordinal may be

defined as the limit of a so-called fundamental sequence. For ordinals smaller than ε0, it

is easy to have a unique definition for this sequence using the Cantor normal form. We

note α ≺ β when α is in the fundamental sequence of β or α + 1 = β. When restricted to

ordinals smaller than λ, we call the resulting structure the covering graph of λ. In Section

2, we present precisely this structure and give some of its properties. In particular, the out-

degree of its vertices is studied intensively. This eventually yields a specific formula for

each covering graph.

Section 3 locates the covering graph of any ordinal α smaller than ε0 in the level n of the

hierarchy, where n is the largest size of the ω-tower smaller than α. The result also applies

to ordinals themselves. This was already shown for ordinals up to ωωω
in [1]. In Section 4,

the result in strengthened by proving that covering graphs are not in the lower levels; the
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question is still open for ordinals. Eventually, we produce a direct presentation for towers

of ω through prefix-recognizable relations of order n, but involving a more technical proof.

Similar attempts of characterization of ordinals has been made in the field of automatic-

ity [8, 10], but in the other way around : word- and tree-automatic ordinals are shown to be

respectively less than ωω and ωωω
.

1 Definitions

In this paper, ordinals are often considered from a graph theory point of view. The set of

vertices of α is the set of ordinals smaller than α, and the set of arcs is the relation <.

1.1 Graphs

Graphs are finite or infinite sets of labeled arcs. A Σ-graph is a set G ⊆ V × Σ × V, where

V (or VG if unclear) is the support, i.e. a finite or countably infinite set of vertices, and Σ a

finite set of labels. An element (p, a, q) of G is called an arc and noted p
a−→ q. Each label

a ∈ Σ is associated to a relation Ra = {(p, q) | p
a−→ q} on V. A finite sequence of arcs

p
a1−→ . . .

an−→ q is a path and noted p
a1 ...an−−−→ q. This is extended to languages with p

L−→ q iff

∃u ∈ L such that p
u−→ q. Isomorphism between graphs is noted ≃.

The monadic second-order (MSO) logic is defined as usual; see for instance [9]. We take a

set of (lowercase) first-order variables and a set of (uppercase) second-order variables. For a

given set of labels Σ, atomic formulas are x ∈ X, x = y and x
a−→ y for all a ∈ Σ and x, y, X

variables. Formulas are then closed by the propositional connectives ¬,∧ and the quantifier

∃. Graphs are seen as relational structures over the signature consisting of the relations

{Ra}a∈Σ. The set of closed monadic formulas satisfied by a graph G is noted MTh(G).

Given a binary relation R, the in-degree (respectively out-degree) of x is the cardinality

of {y | yRx} (resp. {y | xRy}). The output degree in a graph G of x ∈ V is the cardinal of

{y | ∃a, (x, a, y) ∈ G}. The output degree of a graph is the maximal output degree of its

vertices if it exists.

1.2 Ordinals

For a general introduction to ordinal theory, see [14, 13]. An order is a well-order when each

non-empty subset has a smallest element. Ordinals are well-ordered by the relation ∈, and

satisfy ∀x(x ∈ α ⇒ x ⊂ α). Since any well-ordered set is isomorphic to a unique ordinal, we

will often consider an ordinal up to isomorphism. In terms of graphs, the set of labels of an

ordinal is a singleton often noted Σ = {<} and the graph respects the following monadic

properties :

(strict order)

{
∀p, q(¬(p

<−→ q ∧ q
<−→ p))

∀p, q, r((p
<−→ q ∧ (q

<−→ r) ⇒ p
<−→ r)

(total order) ∀p, q(p
<−→ q ∨ q

<−→ p ∨ p = q)

(well order) ∀X 6= ∅ ∃x(x ∈ X ∧ ∀y(y ∈ X ⇒ (x
<−→ y ∨ x = y)))
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The ordinal arithmetics define operations on ordinals such as addition, multiplication,

exponentiation. The bound of ordinals investigated here is ε0, the smallest ordinal such that

ε0 = ωε0 ; therefore the declaration “< ε0” is implicit through the rest of the paper. To sim-

plify the writing of towers of ω, the notation ⇑ is used to note the iteration of exponentiation

ie. a ⇑ b = aa...a
}

b times. In particular, a ⇑ 0 = 1 is the (right) exponentiation identity.

Classic operations are not commutative in ordinal theory : for instance ω + ω2 = ω2
<

ω2 + ω. This leads to many writings for a single ordinal. Fortunately, all ordinals smaller

than ε0 may uniquely be written in the Cantor normal form (CNF)

α = ωα0 + · · · + ωαk

where αk ≤ · · · ≤ α0 < α. An alternative we will call reduced Cantor normal form (RCNF) is

α = ωα0 .c0 + · · · + ωαk .ck where αk < · · · < α0 < α and c1, . . . , ck are non-zero integers. To

express ordinals smaller than ε0 from natural numbers and ω, the only operations needed

are thus addition and exponentiation.

2 Covering graphs

In this section, we define the covering graph of an ordinal as the graph of successor and

fundamental sequence relations. Then, we prove some of its important properties. One of

them is the finite degree property, which is worked out to bring a specific monadic formula

for each covering graph, thus allowing to differentiate them.

2.1 Fundamental sequence

The cofinality [14] of any countable ordinal is ω. To each limit ordinal α we may associate a

ω-sequence whose bound is α. For α ≤ ε0, α = β + ωγ with β < α, γ < α and ωγ is the last

term in the CNF of α, we define the fundamental sequence (α[n])n<ω as follows :

α[n] =

{
β + ωγ′

.(n + 1) if γ = γ′ + 1

β + ωγ[n] otherwise.

We define α′ ≺ α whenever there is k such that α′ = α[k], or if α′ + 1 = α.

For instance, the fundamental sequence of ω is the sequence of integers starting from

1. The sequence of ωω is therefore (ω, ω2, ω3, . . . ). The fundamental sequence merged with

the successor relation yields for instance

0 ≺ 1 ≺ ω ≺ ω + 1 ≺ ω.2 ≺ ω2 ≺ ωω.

Taking the transitive closure of this relation gives back the original order, so there no infor-

mation loss.

Lemma 1 The transitive closure of ≺ is <.

Moreover, the relation is crossing-free as described below, which is a helpful technical

tool.

Lemma 2 If α1 < λ1 < α2, α1 ≺ α2 and λ1 ≺ λ2, then λ2 ≤ α2.

This is the forbidden case :

α1
((

λ1
((

α2 λ2
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Figure 1: covering graph of ωω.

2.2 Covering graphs

Let Gα = {λ1 ≺ λ2 | λ1, λ2 < α} be the graph of successor and fundamental sequence

relation, or covering graph of the ordinal α. For instance, a representation of Gωω is given in

Figure 1.

We first remark the finite out-degree of the covering graphs.

Lemma 3 For any ω ⇑ (n − 1) < α ≤ ω ⇑ n and n > 0, the out-degree of Gα is n.

In the following, we refine this property to get a characterisation of an ordinal by the

degree of its vertices. We define the degree word u(α) of a covering graph as follows. Con-

sider the greatest sequence σ of Gα starting from 0, i.e. σ0 = 0 and for k ≥ 0, σk+1 is the greatest

such that σk ≺ σk+1. The previous lemma ensures that {λ | σk ≺ λ} is finite, so σk+1 exists.

Such a sequence may be finite.

The degree word u(α) is a finite or infinite word over [0, n] when α ≤ ω ⇑ n, and its kth

letter is the out-degree of σk in Gα.

For instance, consider u(ωω). Its greatest sequence is (0, 1, ω, ω2, ω3, . . . ), where all

have degree 2 in Gωω except the first; so u(ωω) = 12ω . Now consider u(ω3 + ω2) : the

sequence is now

0, 1, ω, ω2, ω3, ω3 + 1, ω3 + ω, ω3 + ω + 1, . . .

which loops into (. . . , ω3 + ω.k, ω3 + ω.k + 1, . . . ) so u(ω3 + ω2) = 12221(21)ω .

Lemma 4 For any α ≤ ω ⇑ n, if α is successor then u(α) is a finite word of [0, n]∗; otherwise u(α)
is an ultimately periodic word of [1, n]ω.

PROOF (SKETCH). If α is successor, then since the greatest sequence is unbounded, the

predecessor of α is in it and the word is finite. Otherwise, we prove that α[k] is in the

greatest sequence of α for all finite k. The sequence of degrees from 0 to α[0] forms the static

part of the ultimately periodic word, whereas the sequences of degrees between α[k] and

α[k + 1] are always the same.
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Let <
n
lex be the lexicographic ordering on words on [0, n] based on standard order. De-

gree words differ for each ordinal.

Lemma 5 If α < α′ ≤ ω ⇑n, then u(α) <
n
lex u(α′).

PROOF. Consider n > 0, otherwise its degree word of α is the empty word. As before,

note that the greatest sequence is unbounded, and that σ0 = σ′
0 = 0. Thus if 0 < α < α′ and

σ′ is the greatest sequence of Gα′ , there is a smallest n > 0 such that σn 6= σ′
n, or σn doesn’t

exist whereas σ′
n does. In both cases, the output degree of σn−1 is less in Gα than in Gα′ , so

u(α) <
n
lex u(α′).

A ultimately periodic pattern can be captured by a monadic formula. This is the goal

of the the following lemma.

Lemma 6 For each finite or infinite word u over [0, n] and a given ordinal α, there is a monadic

formula ϕu such that Gα |= ϕu iff u = u(α).

PROOF. The fact that the degree word is finite or ultimately periodic permits to use a finite

number of variables. We consider the ultimately periodic case, and u(α) = uvω.

To simplify the writing, we consider the following shortcuts :

• τ(p, q) stands if q is the greatest such that p ≺ q;

• if the output degree of p is k, then ∂k(p) is true;

• root(X, p) and end(X, p) are true when p is co-accessible (resp. accessible) from each

vertex of X, with the entire path in X; root(p) looks for a root of the whole graph;

• inline(X) checks that X is a finite or infinite path;

• sizek(X) stands for |X| = k.

All these notations stand for monadic formulas. For instance, the inline(X) property is true

when there is a root in X and each vertex has output degree 1, and each except the root has

input degree 1.

Now we may write the formula ϕu. For this, we need two finite sets p1 . . . p|u| ∈ U for

the static part, q1 . . . q|v| ∈ V ′ for the beginning of the periodic part and an infinite set V with

V ′ ⊆ V. We check that p1 is the general root 0, and q1 the root of V, which is an infinite path.

Formulas τ and ∂k force the degree of the uv part. For the periodic part, each q ∈ V there

must be the root of a finite path Xq ⊆ V of size |v| + 1, which end has the same degree that

q.

The combination of Lemmas 5 and 6 yields the following theorem.

Theorem 7 For α 6= α′ smaller than ε0, we have MTh(Gα) 6= MTh(Gα′).

As a consequence, there is no generic monadic interpretation (see next section for def-

inition) from an ordinal greater than ωω to its covering graph. Below this limit, there is an

interpretation, because it is possible to distinguish successive limit ordinals.

3 The pushdown hierarchy

In this section, the pushdown hierarchy will only be defined by monadic interpretations and

the treegraph operation. For other definitions, see for instance [4]. In particular, each level

can be defined as the set of transition graphs (up to some closure operation) of finite-state

higher-order pushdown automata of level n (n-hopda), hence the name.
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A major property shared by this class of graphs is the decidability of their monadic

theories. Since it is also the case for countable ordinals [15, 3], it is natural to examine the

intersection. Here, covering graphs and ordinals are located at each level of the hierarchy.

3.1 Definitions

A monadic interpretation I is a finite set {ϕa(x, y)}a∈Γ of monadic formulas with two free first

order variables. The interpretation of a graph G ⊆ V ×Σ ×V by I is a graph I(G) = {p
a−→

q | p, q ∈ V ∧ G � ϕa(p, q)} ⊆ V × Γ × V. It is helpful to have Γ = Σ to allow iteration

process. The set of monadic interpretations I is closed by composition.

A particular case of monadic interpretation is inverse rational mapping. The alphabet

Σ̄ is used to read the arcs backwards : p
ā−→ q iff q

a−→ p. An inverse rational mapping is

an interpretation such that ϕa(p, q) := p
La−→ q where La is a regular language over Σ ∪ Σ̄.

For instance, the transitive closure of Ra for a label a is a monadic interpretation. By

Lemma 1, there is therefore an immediate monadic interpretation from Gα to α. An impor-

tant corollary of Lemma 7 is that the reverse cannot exist, or there would be a monadic

formula identifying a specific ordinal smaller than ε0, which is contradictory to the result of

Büchi [3, Th. 4.9] cited in introduction.

For a more complex illustration of a monadic interpretation, we notice that the degree

word allows the restriction from a greater ordinal.

Lemma 8 If α < α′, there is a MSO interpretation I such that Gα = I(Gα′).

PROOF. Following the definition, we look for an interpretation I = {ψ≺}. We use again

the fact that the degree word is unique and MSO-definable. Defining the greatest sequence

of Gα provides a MSO marking on G ′
α, which bounds the set of vertices. More precisely, let

Ψu(p) be an expression similar to ϕu of the Lemma 6 but where the part τ(pi, pi+1) ∧ δui
(pi)

has been replaced by τui
(pi, pi+1) meaning “pi+1 is the uth

i such that pi ≺ pi+1”; the same

goes for the qj and for τ(p|u|, q1) ∧ δu|u|(p|u|). Also add the condition that p is a part of the

sequence : (
∨

i p = pi)∨ p ∈ V. Then Ψu(p) is a marking of the greatest sequence associated

to u. For a given α, I simply adds the condition of co-accessibility to a vertex marked by

Ψu(α).

ψ≺(p, q) := p
≺−→ q ∧ ∃r (Ψu(α)(r) ∧ q

≺∗
−→ r)

Gα = {p
≺−→ q | p

≺−→ q ∈ Gα′ ∧ ∃r (Ψu(α)(r) ∧ q
≺∗
−→ r)}

The treegraph Treegraph(G) of a graph G is the set {p
a−→ q} ⊆ V∗

G × (ΣG ∪ {#}) × V∗
G

where (p, q) ∈ V∗
G are sequences of vertices of G, and a ∈ ΣG either if p = wu, q = wv and

u
a−→ v ∈ G, or if a = #, p = wu and q = wuu. One can also see the treegraph as the

fixpoint of the operation which, to each vertex which is not starting point of an # arc, adds

this arc leading to the location of this vertex in a copy of G. The starting graph is called the

root graph.

One way to define the pushdown hierarchy (see [5] for details) is as follows.

• H0 is the class of graphs with finite support,
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• Hn = I ◦ Treegraph(Hn−1).

For instance, H1 is the class of prefix-recognizable graphs [7] and further Hn classes have

been proved to correspond to an extension of prefix-recognizability on higher-order stacks

[4].

3.2 Building covering graphs

We note p
a•−→ q for the longest possible path labeled by a, and p

S−→ q a shortcut for the

successor relation, i.e.

p
a•−→ q := p

a∗−→ q ∧ ¬∃r (q
a−→ r)

p
S−→ q := p

≺−→ q ∧ ¬∃r(p
≺−→ r ∧ r

≺∗
−→ q).

Now let I = {ϕ≺} and M(p) respectively be the interpretation and marking

ϕ≺(p, q) := M(p) ∧ M(q) ∧ p
≺̄•#−−→ q ∨ p

#̄•S#−−→ q ∨ p
#̄≺#−−→ q

M(p) := ∃r : ∀q (r
(≺+#+≺̄)∗−−−−−−→ q) ∧ r

≺∗#(≺̄∗#)∗−−−−−→ p

The marking M(p) allows to start anywhere on the root graph, but as soon as a #-arc

has been followed, ≺-arcs can only be followed backwards. We consider only goals of a

#-arc.

The ϕ≺(p, q) formula states the relation on these vertices, leaving three choices : either

to follow ≺-arcs as long as possible (in practice, until a copy of 0) and go down one #-arc; or

on the contrary, to follow # backwards as long as possible, then take the successor and one

#-arc; or just to follow one # backwards, one ≺ and one #.

Lemma 9 Gωα = I ◦ Treegraph(Gα).

For instance consider Gω, which is an infinite path. A representation of its treegraph is

given below (plain lines for ≺, dotted lines for #). The circled vertices are the ones marked

by M and therefore they are the only ones kept by the interpretation ϕ. We are allowed to go

anywhere on the root Gω structure, but as soon as we follow # we can only go backwards.

This reflects the construction of a power of ω as a decreasing sequence of ordinals : we may

start by any, but afterwards we only may decrease.

Lemma 10 If α < ω ⇑ (n + 1), then Gα ∈ Hn.
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PROOF. For any finite α, Gα is in fact a finite path labeled by ≺ and is in H0. By Lemma

9 iterated n times, every ω...ω
k

with n times ω and 1 < k < ω is in Hn. Smaller ordinals are

captured by a restriction as in Lemma 8.

This proves the decidability of the monadic theory of the covering graphs. By transitive

closure (Lemma 1), ordinals are also captured.

Theorem 11 If α < ω ⇑ (n + 1), then α ∈ Hn.

The decidability of the monadic theory of these ordinals is well-known, but this result

also shows that ordinals below ε0 can be expressed by finite objects, namely higher-order

pushdown automata. Following the steps of a well-chosen automaton (up to an operation

called the ε-closure) builds exactly an ordinal. This approach is explained in Section 5.

4 Strictness of the hierarchy for covering graphs

In this section, we strengthen Lemma 10 by proving that covering graphs cannot be in any

level of the hierarchy. Let exp(x, n, k) be a tower of exponentiation of x of height n with

power k on the top, where n and k are integers.

exp(x, n, k) = k if n = 0

= xexp(x,n−1,k) otherwise.

In the following section, this function will be used in the cases x = 2 and x = ω.

We examine the tree Tn of trace (from the root) {anbexp(2,n,k)}. It has the form below

with f (k) = exp(2, n, k). The horizontal arcs are labeled by a and the vertical arcs by b.
0 ...k

f(k)

For any n, there is such a tree which is not in the level n of the hierarchy [2].

Proposition 1 For n ≥ 1, T3n /∈ Hn.

Finding a monadic interpretation from Gα to T3n is therefore enough to prove Gα /∈ Hn.

In fact, Lemma 8 already states that if ω ⇑3n + 1 ≤ α, then there is an interpretation from Gα

to Gω⇑3n+1; so the interpretation from Gω⇑3n+1 to T3n is enough for a whole class of ordinals.

We sketch this interpretation.

Let Ck
n be the set of ordinals smaller than exp(ω, n, k) where each coefficient in RCNF is

at most 1, except for the top-most power :

• [0, k − 1] ∈ Ck
0,

• 0 ∈ Ck
n,

• if γ0, . . . , γh are all distinct ordinals of Ck
n−1, then ωγ0 + · · · + ωγh ∈ Ck

n.
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For instance, C3
1 = {0, 1, ω, ω + 1, ω2, ω2 + 1, ω2 + ω, ω2 + ω + 1};

C2
2 = {0, 1, ω, ω + 1, ωω, ωω + 1, ωω + ω, ωω + ω + 1,

ωω+1, ωω+1 + 1, ωω+1, + ω, ωω+1 + ω + 1,

ωω+1 + ωω, ωω+1 + ωω + 1, ωω+1 + ωω + ω, ωω+1 + ωω + ω + 1}.

The following lemma is only a matter of cardinality of powersets.

Lemma 12 The cardinality of the set Ck
n is exp(2, n, k).

We abusively note α + Ck
n for the set {α + γ | γ ∈ Ck

n}. The main difficulty of this

section is to define a monadic formula for this set.

Lemma 13 For n > 0, there is a monadic formula describing exp(ω, n, k) + Ck
n in Gα, for α greater

than exp(ω, n, k).2.

These ordinals are easy to capture by previous tools. The following lemma is a natural

corollary of the proof of Lemma 4, since exp(ω, n, k) ≺ exp(ω, n, k + 1).

Lemma 14 The greatest sequence of ω ⇑(n + 1) is ultimately the sequence (exp(ω, n, k))k≥1.

We may now state the main result of this section.

Theorem 15 If n > 0 and α ≥ ω ⇑3n + 1, then Gα /∈ Hn.

PROOF (SKETCH). If we concatenate the previous lemmas, it appears that

• since the greatest sequence of α is interpretable from Gα, we can extract the sequence

(exp(ω, 3n, k))k≥1 from Gω⇑3n+1, which will be the “horizontal path” of T3n;

• for each exp(ω, 3n, k) we can also capture the associated set exp(ω, 3n, k) + Ck
3n and

arrange it in path. This yields the “vertical path” hanging from exp(ω, 3n, k) and of

length exp(2, 3n, k).

Eventually, the monadic interpretation builds exactly T3n, which is the expected result.

The covering graph Gε0 can be defined and has unbounded degree, but has still the

property of Lemma 8 : it can give any smaller ordinal via monadic interpretation, which

yields the following result.

Corollary 16 Gε0 does not belong to the hierarchy.

From [2] we could actually extract the lower bound T2n /∈ Hn. The conjecture is that

Tn /∈ Hn, which would allow to locate exactly each covering graph in the hierarchy.

The Theorem 15 does not apply to ordinal themselves, since there we showed that there

is no interpretation from ordinals to covering graphs. Therefore, the question is still open,

which leads to Conjecture 1 at the end of this paper.

5 Higher-order stack description of ordinals

The graph on the level n of the hierarchy are also graphs (up to ε-closure) of higher-order

pushdown automata of level n [5], i.e. automata which use nested stacks of stacks of depth

n. The construction by monadic interpretations and unfolding could be translated into

a pushdown automata description. Instead of doing so, we use the equivalent notion of

prefix-recognizable relations [4] from scratch. This notion offers a natural encoding of ordi-

nals by their Cantor normal form. Nonetheless, the associated proof is still heavy.
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5.1 Short presentation

This section sketches a particular case of prefix-recognizable graphs. For a complete de-

scription, see [4]. We only consider 1-stacks (usual stacks) over an alphabet of size 1, i.e.

integers. The empty 1-stack is therefore noted 0. For all n > 1, a n-stack is a non-empty

finite sequence of (n − 1)-stacks, noted [a1, . . . , am]n. The operations Ops1 on a 1-stack are

push1(i) := i + 1,

pop1(i + 1) := i.

For n > 1, the set Opsn of operations on a n-stack include

copyn([a1, . . . , am]n) := [a1, . . . , am, am]n
popn([a1, . . . , am]n) := [a1, . . . , am−1]n

f ([a1, . . . , am]n) := [a1, . . . , f (am)]n

where f is any operation on k-stacks, k < n.

The 2-stack containing only 0 is noted [ ]2, and the n-stack containing only [ ]n−1 is

noted [ ]n. Let also be an identity operation id defined on all stacks.

The set Opsn forms a monoid with the composition operation. Let Reg(Opsn) the clo-

sure of the finite subsets of this monoid under union, product and iteration, i.e. the set

of regular expressions on Opsn. To each expression E ∈ Reg(Opsn) we associate the set of

n-stacks S(E) = E([ ]n) and the set of relations on stacks R(E) = {(s, s′)|s′ ∈ E(s)}.

Given E and a finite set (Ea)a∈Σ in Reg(Opsn), the graph of support S(F) and arcs s
a−→

s′ iff (s, s′) ∈ R(Fa) is a prefix-recognizable graph of order n. General prefix-recognizable graphs

are exactly graphs of pushdown automata of the same order.

5.2 Towers of ω

We define the expressions dom and inc which respectively fix the domain of the structure

and the order relation. In the following we also will need an expression dec to perform the

symmetric of inc. In one word, we want the structure 〈S(dom(α)), R(dec(α)), R(inc(α))〉 to

be isomorphic to the structure 〈α, >, <〉.
For ω, we consider the set of all 1-stacks (i.e. integers). In this case, dom(ω) is obtained

by iterating push1 on the empty stack. The other operations are also straighforward.

dom(ω) := push∗
1

inc(ω) := push+
1

dec(ω) := pop+
1

We consider now any ordinal α. Let n be the smallest value such that dom(α), inc(α)
and dec(α) are all in Reg(Opsn−1).

Let tail(α) := copyn.(id + dec(α)). Informally, each ordinal γ < ωα is either 0 or may be

written as γ = ωγ0 + · · ·+ ωγk with γi < α; so we code γ as a sequence of stacks respectively

coding γ0 . . . γk. The tail operation takes the last stack (representing γk) and adds a stack

coding an ordinal ≤ γk, so that the CNF constraint is respected. For the relation <, inc
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either adds a decreasing sequence (by tail), or it first pops stacks, then increases a given one

before adding a tail.

dom(ωα) := dom(α).tail(α)∗

inc(ωα) := [pop∗
n.inc(α) + tail(α)].tail(α)∗

dec(ωα) := pop∗
n.[popn + dec(α).tail(α)∗]

We get this version of Theorem 11 restricted to towers of ω.

Theorem 17 The graph of ω ⇑ n is isomorphic to the prefix-recognizable graph of order n with

support S(dom(ω ⇑ n)) and one relation R(inc(ω ⇑ n)).

The proof of this proposition encodes exponentiation of ω, so the case of all ordinals

smaller than ε0 can be obtained by encoding also addition. This can be done with a greater

starting alphabet and using markers to differentiate each part of the addition.

6 Perspectives

We have defined covering graphs as graphs of fundamental sequence and successor rela-

tions and shown the existence of a formula identifying a covering graph among others, via

the degree word. Then, the covering graphs and the corresponding ordinals have been lo-

cated in the pushdown hierarchy according to the size in terms of tower of ω, in a strict way

for the covering graph case.

Theorem 11 raises the question of the strictness of the classification of ordinals in the

hierarchy. Theorem 15 naturally suggests that if α ≥ ω ⇑ n, then α does not belong to Hn−1,

and therefore ε0 is banned from the hierarchy.

Conjecture 1 ε0 does not belong to the hierarchy.

If this were proved, ε0 would actually be a good candidate for extending the hierarchy

above the Hn. Indeed, a current field of research is to capture as many structures with de-

cidable monadic theory as possible. A way to do so would be to find an operation extending

those used in this paper — interpretation and treegraph.

One can find definitions [16] of a canonical fundamental sequence for ordinals greater

than ε0 and therefore define covering graphs outside of the hierarchy. For instance, one can

take ε0[n] = ω ⇑(n + 1). In this way, covering graphs may be defined for a large number

of ordinals; but we conjecture that the Theorem 7 does not stand any more, i.e. for any

definition of fundamental sequence, there are two ordinals whose covering graphs have the

same monadic theories.

Also, the ability to differentiate covering graphs smaller than ε0 leads to check this

robustness for more difficult questions. One of them is selection in monadic theory, which

is negative for ordinals greater than ωω [12].

In another direction, it would be interesting to remove the well-ordering property and

to consider more general linear orderings. The orders of Q and Z are obviously prefix-

recognizable. We would like to reach structures of more complex orders.
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Figure 1: A height 3 binary tree T3
2 with nodes numbered heap style.

1 Introduction

One of the fundamental problems in complexity theory is to separate P from L. In a recent

paper [3], we propose the Tree evaluation problem as a candidate to separate these classes,

and indeed to obtain the much tighter separation of LogCFL from NL.

The Tree Evaluation problem FTd(h, k) is defined as follows. The input to FTd(h, k) is a

balanced d-ary tree of height h, denoted Th
d .(see Fig. 1). Attached to each internal node i of

the tree is some explicit function fi : [k]d → [k] specified as kd integers in [k] = {1, . . . , k}.

Attached to each leaf is a number in [k]. Each internal tree node thus takes a value in [k] by

applying its attached function to the values of its children. The function problem FTd(h, k) is

to compute the value of the root, and the Boolean problem BTd(h, k) is to determine whether

this value is 1.

In [3], we show that BTd(h, k) ∈ LogCFL. To show that LogCFL 6⊆ L (resp. LogCFL 6⊆
NL), it’s sufficient to get a super-polynomial lower bound on the deterministic (resp. non-

deterministic) branching program complexity of the Tree evaluation problem. As we ob-

serve in [3], a lower bound of Ω(kr(h)) on the number of states in any deterministic (resp.

non-deterministic) branching program solving FTd(h, k) or BTd(h, k) for any unbounded

function r(h) would yield the desired separation between LogCFL and L (resp. NL).

In this paper, we study the deterministic and non-deterministic branching program

complexity of the tree evaluation problem, both from the perspective of upper bounds and

lower bounds. In the context of branching programs we think of d and h as fixed, and we

are interested in how the number of states required grows with k. To indicate this point of

view we write the function problem FTd(h, k) as FTh
d (k) and the Boolean problem BTd(h, k)

as BTh
d (k). For this it turns out that k-way branching programs are a more natural model

than Boolean branching programs, since an input of FTh
d (k) or BTh

d (k) is naturally presented

as a tuple of elements in [k]. Each non-final state in a k-way BP queries a specific element of

the tuple, and branches k possible ways according to the k possible answers. Lower bounds

for k-way BPs are at least as strong as lower bounds for Boolean BPs, while upper bounds

can be smaller by at most a factor of k.

Our best upper bounds for k-way deterministic branching programs come from black

pebbling algorithms for trees. There is a well-known generalisation of black pebbling called

black-white pebbling which naturally models non-deterministic procedures. However we

find we can often do better in terms of non-deterministic branching program complexity
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than using black-white pebbling. For example, there is a k-way non-deterministic branching

program of size O(k5/2) which solves BT3
2 (k) while the size of the branching program aris-

ing from the optimal black-white pebbling of T3
2 is O(k3). These non-trivial upper bounds

lead us to re-examine the notion of pebbling, and we come up with a more relaxed notion of

pebbling called fractional pebbling, which corresponds to non-deterministic branching pro-

gram complexity in a tighter way. For example, the tree T3
2 can be fractionally pebbled

with 5/2 pebbles, which leads to non-deterministic branching programs of size O(k5/2) for

BT3
2 (k) . We show a general correspondence between fractional pebbling number and non-

deterministic branching program complexity.

THEOREM 1. If Th
d can be fractionally pebbled with p pebbles, then non-deterministic

branching programs can solve BTh
d (k) with O(kp) states

We explore this new notion of pebbling, and prove a general result that fractional peb-

bling saves at most a factor of 2 over black-white pebbling. Getting tight bounds on the frac-

tional pebbling number of trees turns out to be much more difficult than proving bounds

for black-white pebbling. We do have some success though - we prove upper and lower

bounds which are within d/2 + 1 of each other for degree d, using a non-trivial reduction to

results of Klawe [11] for pyramid graphs. In addition, we get tight results for height-3 trees

and the height-4 binary tree.

THEOREM 2. The fractional pebbling number of Th
d is at least (d − 1)h/2 − d/2, and at most

(d − 1)h/2 + 1.

We then turn our attention to lower bounds. In our previous paper [3], we proved tight

lower bounds for the tree evaluation problem on height-3 trees. Here we try to obtain lower

bounds for trees of arbitrary height, but this comes at a cost to generality in the model. We

introduce a natural semantic restriction on BPs which solve the tree evaluation problem:

A k-way BP is thrifty if it only queries the function f (x1, . . . , xd) associated with a node

when (x1, . . . , xd) are the correct values of the children of the node. The deterministic BPs

corresponding to black pebbling are thrifty; so are the non-deterministic BPs corresponding

to fractional pebbling.

THEOREM 3. If p is the minimum number of pebbles required to black-pebble Th
2 then every

deterministic thrifty BP solving BTh
2 (k) (or FTh

2 (k) ) requires Ω(kp) states.

For the decision problem BTh
2 (k) there is indeed a non-thrifty deterministic BP improv-

ing on the bound by a factor of log k, and this is tight for h = 3 [3]. But we have not been

able to improve on thrifty BPs for solving any function problem FTh
d (k).

We have been able to prove that thrifty non-deterministic BPs cannot beat fractional

pebbling for binary trees of height h = 4 or less, but for general trees this is open. It is

not hard to see that for black pebbling, fractional pebbles do not help. The difficulty of

analysing fractional pebbling compared to black pebbling might explain why we have been

able to prove tight bounds for deterministic thrifty BPs for all binary trees, but only for trees

of height 4 or less for non-deterministic thrifty BPs.

We pose the following as another interesting open question:

Thrifty Hypothesis: Thrifty BPs are optimal among k-way BPs solving FTh
d (k).
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Proving this for deterministic BPs would show L 6= LogDCFL, and for non-deterministic

BPs would show NL 6= LogCFL. Disproving this would provide interesting new space-

efficient algorithms and might point the way to new approaches for proving lower bounds.

1.1 Relation to previous work

Taitslin [16] proposed a problem similar to BTh
2 (k) in which the functions attached to inter-

nal nodes are specific quasi groups, in an unsuccessful attempt to prove NL 6= P.

Gal, Koucky and McKenzie [8] proved exponential lower bounds on the size of re-

stricted n-way branching programs solving versions of the problem GEN. Like our prob-

lems BTh
d (k) and FTh

d (k), the best known upper bounds for solving GEN come from peb-

bling algorithms.

As a concrete approach to separating NC
1 from NC

2, Karchmer, Raz and Wigderson

[10] suggested proving that the circuit depth required to compose a Boolean function with

itself h times grows appreciably with h. Edmonds, Impagliazzo, Rudich and Sgall [7] noted

that the approach would in fact separate NC
1 from AC

1. They also coined the name Iterated

Multiplexor for the most general computational problem considered in [10], namely compos-

ing in a tree-like fashion a set of explicitly presented Boolean functions, one per tree node.

Our problem FTh
d (k) can be considered as a generalisation of the Iterated Multiplexor prob-

lem in which the functions map [k]d to [k] instead of {0, 1}d to {0, 1}. This generalisation

allows us to focus on getting lower bounds as a function of k when the tree is fixed.

1.2 Organization

The paper is organized as follows. Section 2 defines the main notions used in this paper,

including branching programs and pebbling. Section 3 proves various upper and lower

bounds on black, black-white and fractional pebbling. Section 4 relates branching programs

and pebbling, and uses the results of Section 3 to prove upper bounds on the size of branch-

ing programs. Section 5 contains results for thrifty branching programs. Because of space

constraints, proofs are omitted from this version of the paper.

2 Preliminaries

We assume some familiarity with complexity theory, such as can be found in [9]. We write

[k] for {1, 2, . . . , k}. For d, h ≥ 2 we use Th
d to denote the balanced d-ary tree of height h.

Warning: Here the height of a tree is the number of levels in the tree, as opposed to the

distance from root to leaf. Thus T2
2 has just 3 nodes.

We number the nodes of Th
d as suggested by the heap data structure. Thus the root is node

1, and in general the children of node i are (when d = 2) nodes 2i, 2i + 1 (see Figure 1).

DEFINITION 4.[Tree evaluation problems] Given: The tree Th
d with each non-leaf node i

independently labelled with a function fi : [k]d → [k] and each leaf node independently
labelled with an element from [k], where d, h, k ≥ 2.

Function evaluation problem FTh
d (k): Compute the value v1 ∈ [k] of the root 1 of Th

d , where
in general vi = a if i is a leaf labelled a and vi = fi(vj1 , . . . , vjd ) if the children of i are j1, . . . , jd.
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Boolean problem BTh
d (k): Decide whether v1 = 1.

2.1 Branching programs

We use the following definition of branching programs, inspired by Wegener [17, p. 239]

and by the k-way branching program model of Borodin and Cook [2].

DEFINITION 5.[Branching programs] A non-deterministic k-way branching program B com-
puting a total function g : [k]m → R, where R is a finite set, is a directed rooted multi-graph

whose nodes are called states. Every edge has a label from [k]. Every state has a label from
[m], except |R| final sink states consecutively labelled with the elements from R. An input
(x1, . . . , xm) ∈ [k]m activates, for each 1 ≤ j ≤ m, every edge labelled xj out of every state
labelled j. A computation on input ~x = (x1, . . . , xm) ∈ [k]m is a directed path consisting

of edges activated by ~x which begins with the unique start state (the root), and either it is
infinite, or it ends in the final state labelled g(x1, . . . , xm), or it ends in a non-final state la-
belled j with no out-edge labelled xj (in which case we say the computation aborts). At least
one such computation must end in a final state. The size of B is its number of states. B is

deterministic k-way if every non-final state has precisely k out-edges labelled 1, . . . , k. B is
binary if k = 2.

We say that B solves a decision problem (relation) if it computes the characteristic func-
tion of the relation.

A k-way branching program computing the function FTh
d (k) requires kd k-ary argu-

ments for each internal node i of Th
d in order to specify the function fi, together with one

k-ary argument for each leaf. Thus in the notation of Definition 4, FTh
d (k): [k]m → R where

R = [k] and m = dh−1−1
d−1 · kd + dh−1. Also BTh

d (k): [k]m → {0, 1}.

For fixed d, h we are interested in how the number of states required for a k-way branch-

ing program to compute FTh
d (k) and BTh

d (k) grows with k. We define #detFstatesh
d(k) (resp.

#ndetFstatesh
d(k)) to be the minimum number of states required for a deterministic (resp.

non-deterministic) k-way branching program to solve FTh
d (k). Similarly we define

#detBstatesh
d(k) and #ndetBstatesh

d(k) to be the number of states for solving BTh
d (k).

The next lemma shows that the function problem is not much harder to solve than the

Boolean problem.

LEMMA 6. [3]

#detBstatesh
d(k) ≤ #detFstatesh

d(k) ≤ k · #detBstatesh
d(k)

#ndetBstatesh
d(k) ≤ #ndetFstatesh

d(k) ≤ k · #ndetBstatesh
d(k)

Next we introduce thrifty programs, a restricted form of k-way branching programs

for solving tree evaluation problems. Thrifty programs efficiently simulate pebbling algo-

rithms, and implement the best known upper bounds for #ndetBstatesh
d(k) and #detFstatesh

d(k),

and are within a factor of log k of the best known for #detBstatesh
d(k). In Section 4 we prove

tight lower bounds for deterministic thrifty programs which solve BTh
d (k) and FTh

d (k).
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DEFINITION 7.[Thrifty branching program] A deterministic k-way branching program which
solves FTh

d (k) or BTh
d (k) is thrifty if during the computation on any input every query fi(~x)

to an internal node i of Th
d satisfies the condition that ~x is the tuple of correct values for

the children of node i. A non-deterministic such program is thrifty if for every input every
computation which ends in a final state satisfies the above restriction on queries.

Note that the restriction in the above definition is semantic, rather than syntactic. It

somewhat resembles the semantic restriction used to define incremental branching pro-

grams in [8]. However we are able to prove strong lower bounds using our semantic re-

striction, but in [8] a syntactic restriction was needed to prove lower bounds.

2.2 Pebbling

The pebbling game for dags was defined by Paterson and Hewitt [15] and was used as

an abstraction for deterministic Turing machine space in [5]. Black-white pebbling was

introduced in [6] as an abstraction of non-deterministic Turing machine space (see [14] for a

recent survey).

Here we define and use three versions of the pebbling game. The first is a simple

‘black pebbling’ game: A black pebble can be placed on any leaf node, and in general if all

children of a node i have pebbles, then one of the pebbles on the children can be slid to i

(this is a “black sliding move’)’. Any black pebble can be removed at any time. The goal is to

pebble the root, using as few pebbles as possible. The second version is ‘whole’ black-white

pebbling as defined in [6] with the restriction that we do not allow “white sliding moves”.

Thus if node i has a white pebble and each child of i has a pebble (either black or white) then

the white pebble can be removed. (A white sliding move would apply if one of the children

had no pebble, and the white pebble on i was slid to the empty child. We do not allow this.)

A white pebble can be placed on any node at any time. The goal is to start and end with no

pebbles, but to have a black pebble on the root at some time.

The third is a new game called fractional pebbling, which generalises whole black-white

pebbling by allowing the black and white pebble value of a node to be any real number

between 0 and 1. However the total pebble value of each child of a node i must be 1 before

the black value of i is increased or the white value of i is decreased. Figure 2 illustrates two

configurations in an optimal fractional pebbling of the binary tree of height three using 2.5

pebbles.

Our motivation for choosing these definitions is that we want pebbling algorithms for

trees to closely correspond to k-way branching program algorithms for the tree evaluation

problem.

We start by defining fractional pebbling, and then define the other two notions as re-

strictions on fractional pebbling.

DEFINITION 8.[Pebbling] A fractional pebble configuration on a rooted d-ary tree T is an
assignment of a pair of real numbers (b(i), w(i)) to each node i of the tree, where

0 ≤ b(i), w(i) (1)

b(i) + w(i) ≤ 1 (2)
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Here b(i) and w(i) are the black pebble value and the white pebble value, respectively, of i,
and b(i) + w(i) is the pebble value of i. The number of pebbles in the configuration is the
sum over all nodes i of the pebble value of i. The legal pebble moves are as follows (always

subject to maintaining the constraints (1), (2)): (i) For any node i, decrease b(i) arbitrarily,
(ii) For any node i, increase w(i) so that b(i) + w(i) = 1, (iii) For every node i, if each child
of i has pebble value 1, then decrease w(i) to 0, increase b(i) arbitrarily, and simultaneously
decrease the black pebble values the children of i arbitrarily.

A fractional pebbling of T using p pebbles is any sequence of (fractional) pebbling

moves on nodes of T which starts and ends with every node having pebble value 0, and
at some point the root has black pebble value 1, and no configuration has more than p peb-
bles.

A whole black-white pebbling of T is a fractional pebbling of T such that b(i) and w(i)
take values in {0, 1} for every node i and every configuration. A black pebbling is a black-

white pebbling in which w(i) is always 0.

Notice that rule (iii) does not quite treat black and white pebbles dually, since the peb-

ble values of the children must each be 1 before any decrease of w(i) is allowed. A true dual

move would allow increasing the white pebble values of the children so they all have peb-

ble value 1 while simultaneously decreasing w(i). In other words, we allow black sliding

moves, but disallow white sliding moves. The reason for this (as mentioned above) is that

non-deterministic branching programs can simulate the former, but not the latter.

We use #pebbles(T), #BWpebbles(T), and #FRpebbles(T) respectively to denote the min-

imum number of pebbles required to black pebble T, black-white pebble T, and fractional

pebble T. Bounds for these values are given in Section 3. For example for d = 2 we have

#pebbles(Th
2 ) = h, #BWpebbles(Th

2 ) = ⌈h/2⌉ + 1, and #FRpebbles(Th
2 ) ≤ h/2 + 1. In particu-

lar #FRpebbles(T3
2 ) = 2.5 (see Figure 2).

3 Pebbling Bounds

3.1 Previous results

We start by summarizing what is known about whole black and black-white pebbling num-

bers as defined at the end of Definition 8 (i.e. we allow black sliding moves but not white

sliding moves).

The following are minor adaptations of results and techniques that have been known

since work of Loui, Meyer auf der Heide and Lengauer-Tarjan [13, 1, 12] in the late ’70s.

They considered pebbling games where sliding moves were either disallowed or permitted

for both black and white pebble, in contrast to our results below.

We always assume h ≥ 2 and d ≥ 2.

THEOREM 9. [3] #pebbles(Th
d ) = (d − 1)h − d + 2.

THEOREM 10. For d = 2 and d odd:

#BWpebbles(Th
d ) = ⌈(d − 1)h/2⌉ + 1 (3)
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Figure 2: Two configurations from the pebbling of the height 3 binary tree with 2.5 pebbles

For d even:

#BWpebbles(Th
d ) ≤ ⌈(d − 1)h/2⌉ + 1 (4)

When d is odd, this number is the same as when white sliding moves are allowed.

3.2 Results for fractional pebbling

The concept of fractional pebbling is new. Determining the minimum number p of pebbles

required to fractionally pebble Th
d is important since O(kp) is the best known upper bound

on the number of states required by a non-deterministic BP to solve FTh
d (k) (see Theorem

18). It turns out that proving fractional pebbling lower bounds is much more difficult than

proving whole black-white pebbling lower bounds. We are able to get exact fractional peb-

bling numbers for the binary tree of height 4 and less, but the best general lower bound

comes from a nontrivial reduction to a paper by Klawe [11] which proves bounds for the

pyramid graph. This bound is within d/2 + 1 pebbles of optimal for degree d trees (at most

2 pebbles from optimal for binary trees).

Our proof of the exact value of #FRpebbles(T4
2 ) = 3 led us to conjecture that any non-

deterministic BP computing BT4
2 (k) requires Ω(k3) states. In Section 5 we provide evidence

for that conjecture by proving that any non-deterministic thrifty BP requires Ω(k3) states.

We start by presenting a general result showing that fractional pebbling can save at

most a factor of two over whole black-white pebbling for any DAG (directed acyclic graph).

(Here the pebbling rules for a DAG are the same as for a tree, where we require that every

sink node (i.e. every ‘root’) must have a whole black pebble at some point.) We will not use

this result, but it does provide a simple proof of weaker lower bounds than those given in

Theorem 12 below.

THEOREM 11. If a DAG D has a fractional pebbling using p pebbles, then it has a black-
white pebbling using 2p pebbles.

The next result presents our best-known bounds for fractionally pebbling trees Th
d . The-

orem 2 is the first part of this result.

THEOREM 12.

(d − 1)h/2 − d/2 ≤ #FRpebbles(Th
d ) ≤ (d − 1)h/2 + 1

#FRpebbles(T3
d ) = (3/2)d − 1/2
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#FRpebbles(T4
2 ) = 3

Theorem 12 is a consequence of the following lemmas.

LEMMA 13.

#FRpebbles(Th
d ) ≤ (d − 1)h/2 + 1

This lemma gives the upper bound for all degrees and heights.

LEMMA 14.

#FRpebbles(T3
d ) = (3/2)d − 1/2

This lemma gives the lower bound for height 3 and all degrees. It follows from the

asymptotically tight lower bound on the number of states for non-deterministic BPs com-

puting BT3
d (k) in [3] (Theorem 4.3 in that paper).

LEMMA 15.

#FRpebbles(T4
2 ) ≥ 3

This lemma gives the tight lower bound for binary height 4 trees.

LEMMA 16. For any d and h, #FRpebbles(Th
d ≥ (d − 1)(h − 1)/2 − .5

This lemma gives our general lower bound for all degrees and heights. We do not

believe that this lower bound is tight. The proof of Lemma 16 requires the following result

about optimal pebblings.

LEMMA 17. For every finite DAG there is an optimal fractional B/W pebbling in which all

pebble values are rational numbers. (This result is robust independent of various definitions
of pebbling; for example with or without sliding moves, and whether or not we require the
root to end up pebbled.)

4 Pebbling and Branching Program Upper Bounds

In this section, we connect pebbling upper bounds with upper bounds for branching pro-

grams, and use the results of the previous section to derive tight bounds for branching

program size of tree evaluation on trees of small height.

The first result connects pebbling upper bounds with upper bounds for thrifty branch-

ing programs. The second part is Theorem 1. Part (i) of this result without the thriftiness

condition was proved in [3].

THEOREM 18. (i) If Th
d can be black pebbled with p pebbles, then deterministic thrifty

branching programs with O(kp) states can solve FTh
d (k) and BTh

d (k). (ii) If Th
d can be fraction-

ally pebbled with p pebbles then non-deterministic thrifty branching programs can solve
BTh

d (k) with O(kp) states.
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COROLLARY 19. #ndetFstatesh
d(k) = O(k#FRpebbles(Th

d )).

For every height h ≥ 2 we prove upper bounds for deterministic thrifty programs which

solve FTh
d (k) (Theorem 20, (5)), and show in Section 5 that these bounds are optimal for

degree d = 2 even for the Boolean problem BTh
d (k) (Theorem 21). We prove upper bounds

for non-deterministic thrifty programs solving BTh
d (k) in general, and show in Section 5 that

these are optimal for binary trees of height 4 or less (Theorem 22 together with Theorem 4.3

in [3]).

For the non-deterministic case our best BP upper bounds for every h ≥ 2 come from

fractional pebbling algorithms via Theorem 18. For the deterministic case our best bounds

for the function problem FTh
d (k) come from black pebbling via the same theorem, although

we can improve on them for the Boolean problem BTh
2 (k) by a factor of log k (for h ≥ 3) [3].

THEOREM 20.[BP Upper Bounds] For all h, d ≥ 2

#detFstatesh
d(k) = O(k(d−1)h−d+2) (5)

#ndetBstatesh
d(k) = O(k(d−1)(h/2)+1) (6)

These bounds are realized by thrifty programs.

5 Thrifty lower bounds

See Definition 7 for thrifty programs.

Theorem 21 below shows that the upper bound given in Theorem 20 (5) is optimal

for deterministic thrifty programs solving the function problem FTh
d (k) for d = 2 and all

h ≥ 2. Theorem 22 shows that the upper bound given in Theorem 20 (6) is optimal for non-

deterministic thrifty programs solving the Boolean problem BTh
d (k) for d = 2 and h = 4.

Theorem 21 below is a re-statement of Theorem 3.

THEOREM 21. For all h ≥ 2 every deterministic thrifty program that solves BTh
2 (k) has at

least 0.5kh states for sufficiently large k.

Next we prove a lower bound on non-deterministic thrifty branching programs.

THEOREM 22. Every non-deterministic thrifty branching program solving BT4
2 (k) has Ω(k3)

states.

6 Conclusion

The Thrifty Hypothesis states that thrifty branching programs are optimal among k-way

BPs solving FTh
d (k). For the deterministic case, this says that the black pebbling method is

optimal. Proving this would separate L from P .

Even disproving this would be interesting, since it would show that one can improve

upon this obvious application of pebbling. One of the referees pointed out that if the func-

tions at nodes are restricted to be integer polynomials, then for some parameter settings it

is possible to obtain non-trivial branching programs that are not thrifty, by using Chinese

remaindering.
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Other accessible open problems are to generalise Theorem 22 to get general lower

bounds for non-deterministic thrifty BPs solving BTh
2 , and to improve Theorem 12 to get

tight bounds on the number of pebbles required to fractionally pebble Th
d .

For a complete and combined treatment of the notions and results in this paper and in

[3], please see [4].

Acknowledgement James Cook played a helpful role in the early parts of this research.
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ABSTRACT. Recently, Mikołaj Bojańczyk introduced a class of max-regular languages, an extension
of regular languages of infinite words preserving many of its usual properties. This new class can
be seen as a different way of generalising the notion of regularity from finite to infinite words. This
paper compares regular and max-regular languages in terms of topological complexity. It is proved
that up to Wadge equivalence the classes coincide. Moreover, when restricted to ∆0

2-languages, the
classes contain virtually the same languages. On the other hand, separating examples of arbitrary
complexity exceeding ∆0

2 are constructed.

Introduction
Until recently, the notion of regularity for languages of infinite words developed by Büchi [2]
seemed to be universally accepted. Büchi’s class has various characterisations, most notably
in terms of automata and monadic second order logic, and enjoys a multitude of elegant
properties, like closure by Boolean operations (including negation). Nowadays however
some doubt has been cast by Mikołaj Bojańczyk [1], who presented a richer class of max-
regular languages, arguably as much regular as Büchi’s languages. This new class has a
characterisation via weak monadic second-order logic with the unbounding quantifier, and
a suitable automaton model with decidable emptiness. It also exhibits the usual closure
properties.

In this paper we would like to shed some more light on the relations between the two
classes. A typical max-regular language is defined by the property “the distance between
consecutive b’s is unbounded”,

K = {an1 ban2 ban3 . . . : ∀m ∃i ni > m} .

This language is not regular, but it is Π0
2-complete. In fact, as Bojańczyk notes, all max-

regular languages are Boolean combinations of Σ0
2-sets, just like regular languages. Is this

a coincidence, or does the similarity go further? How big is the new class? The ultimate
tool for this kind of questions is the Wadge hierarchy [13, 14]. Ordering the sets based
on the existence of continuous reductions (Wadge reductions) between them, the Wadge
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hierarchy is the most refined complexity measure in descriptive set theory. For classical
regular languages, it coincides exactly with automata-based Wagner hierarchy, and is well-
understood [15]. Here we investigate the Wadge hierarchy of max-regular languages.

As was shown by Finkel’s work on blind counter automata [10], adding very restricted
counters already makes the Wadge hierarchy much richer. Surprisingly, even though max-
automata do involve counters, the Wadge hierarchy they induce actually coincides with the
Wagner hierarchy. In other words, for each max-regular language, there exists a Wadge-
equivalent regular language. Topologically, Bojańczyk’s extension is very conservative.

On the other hand, there is an abundance of separating languages: we provide one for
each level beginning from ω. This shows that the difference between the two classes spans
orthogonally to the topological complexity.

Below the level ω, which corresponds exactly to the languages complete for Π0
2 or Σ0

2,
the levels contain the same languages. Hence, the exemplary language K is as simple as
possible: every max-regular language strictly lower than K in the Wadge hierarchy is neces-
sarily regular.

1 Preliminaries
1.1 Languages

A set of finite words is called a language, and a set of infinite words an ω-language. Given
a finite set A, called the alphabet, then A∗, A+, Aω, and A∞ denote respectively the sets of
finite words, nonempty finite words, infinite words, and finite or infinite words, all of them
over the alphabet A. The empty word is denoted by ε. Given a finite word u and a finite
or infinite word v, we write uv to denote the concatenation of u and v. Given X ⊆ A∗ and
Y ⊆ A∞, the concatenation of X and Y is defined by XY = {xy : x ∈ X and y ∈ Y}, the
finite iteration of X is X∗ = {x1 · · · xn : n ≥ 0 and x1, . . . , xn ∈ X}, and the infinite iteration
of X is Xω = {x0x1x2 · · · : xi ∈ X, for all i ∈ N}. Given u ∈ A∗ and X ⊆ Aω, the set u−1X
is defined as u−1X = {x ∈ Aω : ux ∈ X}, and Xu is u(u−1X) = uAω ∩ X.

The ω-regular languages are exactly the ones recognised by finite Büchi, or equivalently,
by finite Muller automata. We refer to [11, p.15] for further details.

Finally, for any alphabet A, the set Aω can be equipped with the product topology of the
discrete topology on A. The open sets of Aω are thus of the form WAω, for some W ⊆ A∗.

1.2 The Wadge hierarchy

The Wadge hierarchy is a very refined topological classification of ω-languages. This classi-
fication is obtained by means of Wadge (or continuous) reduction, which is a partial order-
ing defined via the Wadge games [13] presented below.

Let A and B be two finite alphabets, and let X ⊆ Aω and Y ⊆ Bω. The Wadge game
W((A, X), (B, Y)) is a two-player infinite game with perfect information, where player I
is in charge of the subset X and player II is in charge of the subset Y. Players I and II
alternately play letters from the alphabets A and B, respectively. Player I begins. Player
II is allowed to skip her turn, formally denoted by the symbol “−”, provided she plays
infinitely many letters, whereas player I is not allowed to do so. After ω turns, players I
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and II have produced two infinite words, α ∈ Aω and β ∈ Bω respectively. Player II wins
W ((A, X), (B, Y)) if and only if (α ∈ X ⇔ β ∈ Y). From this point onward, the Wadge
game W ((A, X), (B, Y)) will be denoted W(X, Y) and the alphabets involved will always
be clear from the context. Along the play, the finite sequence of all previous moves of a given
player is called the current position of this player. A strategy for player I is a mapping from
(B∪ {−})∗ into A. A strategy for player II is a mapping from A+ into B∪ {−}. A strategy is
winning if the player following it must necessarily win, no matter what his opponent plays.

The Wadge reduction is defined via the Wadge game as follows: a set X is said to be
Wadge reducible to Y, denoted by X ≤W Y, if and only if player II has a winning strategy
in W(X, Y). This relation ≤W is reflexive and transitive. The corresponding equivalence
relation and strict reduction are defined by X ≡W Y if and only if both X ≤W Y and Y ≤W X
hold, and X <W Y if and only if X ≤W Y and X 6≡W Y. In addition, the sets X and Y are said
to be Wadge incomparable, denoted as X⊥WY, if and only if both X 6≤W Y and Y 6≤W X.
Besides, a set X ⊆ Aω is called self-dual if X ≡W Xc, and non-self-dual if X 6≡W Xc.

Let us point out that Wadge games were designed so that the Wadge reduction corre-
spond precisely to the continuous reduction. Indeed, it holds that X ≤W Y if and only if
there exists a continuous function f : Aω → Bω such that f−1(Y) = X [13].

The Wadge hierarchy consists of the collection of all ω-languages ordered by the Wadge
reduction, and the Borel Wadge hierarchy is the restriction of the Wadge hierarchy to Borel
ω-languages. As a consequence of Martin’s Borel determinacy theorem, for any two Borel
ω-languages X and Y, there exists a winning strategy for one of the players in W(X, Y).
This key property induces the following strong consequences on the Borel Wadge hierarchy.
First, the ≤W-antichains have length at most 2, and the only incomparable ω-languages are,
up to Wadge equivalence, of the form X and Xc, for X non-self-dual. Furthermore, the
Wadge reduction is well-founded on Borel sets, meaning that there is no infinite strictly
descending sequence of Borel ω-languages X0 >W X1 >W X2 >W . . . . These results ensure
that, up to complementation and Wadge equivalence, the Borel Wadge hierarchy is actually
a well ordering.

Therefore, there exist a unique ordinal, called the height of the Borel Wadge hierarchy,
and a mapping dW from the Borel Wadge hierarchy onto its height, called the Wadge degree,
such that dW(X) < dW(Y) if and only if X <W Y, and dW(X) = dW(Y) if and only if either
X ≡W Y or X ≡W Yc, for every Borel ω-languages X and Y. Actually, it is usually convenient
to consider another definition of the Wadge degree which makes the non-self dual sets and
the first self dual ones that strictly reduce these latter always share the same degree, namely:

dW(X) =


1 if X = ∅ or X = ∅c,

sup {dW(Y) + 1 : Y n.s.d. and Y <W X} if X is non-self-dual,

sup {dW(Y) : Y n.s.d. and Y <W X} if X is self-dual.

Furthermore, it can be proved that the Borel Wadge hierarchy actually consists of an
alternating succession of non-self-dual and self-dual sets with non-self-dual pairs at each
limit level (provided finite alphabets are considered) [7, 13, 14]. Therefore, for any ordinal
α below the height of the Borel Wadge hierarchy, there exist exactly three Wadge classes of
degree α, namely two non-self-dual and one self-dual located precisely just one level above,
as illustrated in Figure 1(a).
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Wadge degree ω

Wadge degree 2

Wadge degree 1

(a) The Wadge hierarchy: circles represent Wadge-
equivalence classes and arrows stand for the strict
Wadge reduction between those. The non-self
dual sets and the self dual ones located just one
level above share the same Wadge degree.

MR-Wadge / Wagner degree ω

MR-Wadge / Wagner degree 2

MR-Wadge / Wagner degree 1

(b) The MR-Wadge and the Wagner hierarchy. On fi-
nite levels the classes coincide; above, MR-Wadge classes
properly extend corresponding Wagner classes.

Figure 1: The hierarchies

The three Wadge classes are very closely related. In fact, any set X ⊆ Aω that is com-
plete for some Wadge class of degree α gives rise to two other sets Y, Z ⊆ Aω that are re-
spectively complete for the two remaining Wadge classes of same degree α. More precisely,
if one starts with X self-dual such that dW(X) = α, then we know that there exists u ∈ A∗

such that Y = u−1X is non-self-dual and dW(Y) = α. It directly follows that Z = (u−1X)c is
also non-self-dual and dW(Z) = α. On the other hand, if one starts with X non-self-dual and
dW(X) = α, then Y = Xc is also non-self-dual, Wadge incomparable with X, and dW(Y) = α.
Moreover, for any a ∈ A, the set Z = aX ∪ (A \ {a})Xc is self-dual with dW(Z) = α. All
these results are folklore and can be found for instance in [7]. In the sequel we will also use
the fact that the constructions above preserve regularity and max-regularity.

In this paper we are working only with the sets from BC(Σ0
2), the class of Boolean

combinations of Σ0
2 sets, but in fact we need to go quite deep into the structure of the Wadge

hierarchy in order to obtain the promised results. The proofs of all the facts we state below
can be found in [7].

Let us start with the relation between the Borel classes and the Wadge degrees. The nth
level of the Borel hierarchy corresponds to the Wadge degree “a tower of ω1’s of the height
n− 1”. In particular, a language complete for Σ0

2 or Π0
2 has degree ω1. This already shows

how drastically the Borel Wadge hierarchy refines the Borel hierarchy! When we move to
combinations of Σ0

2 sets, we get exactly the Wadge degrees strictly below ωω
1 .
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Important milestones on the way from ω1 to ωω
1 are the so-called initialisable sets. They

are defined as those sets X, for which player II has a winning strategy in the II-imposed
Wadge game W(X, X) where player I is allowed at any moment, but only once, to erase
everything he has played before and start anew.

Let us remark that initialisable sets generalise prefix-independent sets, i.e., sets satis-
fying condition u−1X = X for all finite words u. Indeed, the winning strategy for player
II in the corresponding game amounts to copying the letters played by player I, even after
player I decides to erase everything and start again: the part of player II’s word played
before player I erased his word will not influence the outcome. Roughly speaking, initialis-
ability is prefix-independence up to Wadge-equivalence.

Initialisable sets within BC(Σ0
2) are exactly those with Wadge degrees ωn

1 for some nat-
ural number n. Clearly, the empty set and the whole space are prefix-independent, and so
initialisable. So is the well-known Π0

2-complete set (1∗2)ω. In fact, the parity languages with
n + 1 ranks correspond exactly to the degree ωn

1 . Showing that no other degree below ωω
1 is

initialisable requires a lot of technical effort. We refer the reader to [7] for the proof.
Let us finish this quick peek into the internal structure of BC(Σ0

2) with a fact that shows
how simpler sets are hidden inside more complex ones. As already stated, BC(Σ0

2) sets have
degrees strictly below ωω

1 . Hence, if X ⊆ A∗ is BC(Σ0
2), its Wadge degree can be written in

the Cantor normal form of base ω1 as dW(X) = ωnk
1 · pk + · · · + ωn0

1 · p0, for some k > 0,
some ω > nk > . . . > n0 ≥ 0, and some 0 < pi < ω1 for all 0 ≤ i ≤ k. Assume that one
of the coefficients, say pj, is not finite, i.e., pj ≥ ω. Then for each m > 0 there exists a word
u ∈ A∗ such that dW(Xu) = ωnk

1 · pk + · · · + ω
nj
1 · m. This fact is a special case of a more

general result [8, Lemmas 33 and 39]. The following lemma follows easily.

LEMMA 1. Let X ⊆ A∗ be a BC(Σ0
2) set such that the family {Xu : u ∈ A∗} is finite up to

Wadge equivalence. Then

dW(X) = ωnk
1 · pk + · · ·+ ωn0

1 · p0 ,

for some k > 0, some ω > nk > . . . > n0 ≥ 0, and some 0 < pi < ω for all 0 ≤ i ≤ k.

1.3 The Wagner hierarchy

In 1979, Klaus Wagner described a classification of ω-regular sets in terms of the graph-
theoretical structure automata known as the the Wagner hierarchy [15]. This hierarchy is a
decidable pre-well-ordering of width 2 and height ωω. The Wagner degree of any given ω-
regular language can be effectively computed by analysing the graph of a Muller automaton
accepting this language [16].

In 1986, Simonnet proved that the Wagner hierarchy corresponds precisely to the re-
striction of the Wadge hierarchy to ω-regular languages. In our further explanations the
following notion will be convenient. We say that a Wadge class is inhabited by a language if
the language is complete for the Wadge class. In these terms, ω-regular languages inhabit
exactly all Wadge classes with Wadge degrees of the form ωnk

1 · pk + · · · + ωn0
1 · p0, where

ω > nk > . . . > n0 ≥ 0 and 0 < pi < ω for all 0 ≤ i ≤ k. In addition, it can be shown
that the Wagner reduction, which already coincides with the Wadge reduction, can also be
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defined in terms of automata [11, Thm. 5.2, p. 209]. Similarly to the Wadge degree, the
Wagner degree of an ω-regular language L can thus be defined as follows:

dωR(L) =


1 if L = ∅ or L = ∅c,

sup {dωR(K) + 1 : K n.s.d. and K <W L} if L is non-self-dual,

sup {dωR(K) : K n.s.d. and K <W L} if L is self-dual.

In consequence, the Wagner and the Wadge degrees of ω-regular languages are related as
follows: for any ω-regular language L, if

dωR(L) = ωnk · pk + · · ·+ ωn0 · p0 ,

for some ω > nk > . . . > n0 ≥ 0 and 0 < pi < ω for all 0 ≤ i ≤ k, then

dW(L) = ωnk
1 · pk + · · ·+ ωn0

1 · p0 .

The Wagner hierarchy has been extensively investigated. Its complete set theoretical
description in terms of Boolean expressions was given by Selivanov [12], and its algebraic
counterpart was studied by various authors [3, 4, 5, 6, 9].

2 Max-regular languages
In [1], Bojańczyk introduces a new class of languages of infinite words called max-regular
languages. This class is a proper extension of the class of ω-regular languages. It has two
equivalent descriptions, one in terms of automata (max-automata), and the other in terms
of logic (weak MSO with the unbounding quantifier). Here, we briefly recall the automata-
theoretic one.

DEFINITION 2. A max-automaton is a tuple A = (Q, A, Γ, q0, E, T ), where Q is a finite set
of states, A a finite input alphabet, Γ a finite set of counters, q0 an initial state, T ⊆ P(Γ) is a
specified collection of subsets of Γ, and E ⊆ Q× A× Q× (

⋃
c,c′∈Γ{incc, resc, outc, maxc,c′})∗

is a finite set of transitions, which, given a current state q and input letter a specifies a
changing state and a sequence of counter operations. The operations incc, resc, outc, and
maxc,c′ respectively mean set c := c + 1, set c := 0, output the current value of c, and set
c := max(c, c′).

As usual, a deterministic max-automaton is defined by requiring the transition set E to
be the graph of a partial function from Q× A into Q× (

⋃
c,c′∈Γ{incc, resc, outc, maxc,c′})∗.

For any counter c ∈ Γ and any finite sequence of counter operations o0, . . . , oi, the
value of counter c after the successive performing of these operations will be denoted by
c(o1 · · · oi).

A run of A is a sequence of consecutive transitions. Given an infinite run ρ, the infinite
output sequence of counter c during ρ is denoted by ρc. An infinite word x is accepted by A
if it admits a run ρ such that {c ∈ Γ : ρc is unbounded} ∈ T . In other words, the accepting
conditions of max-automata are Boolean combinations of clauses of the form “the sequence
ρc is bounded”.
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The set of infinite words accepted by A is the language recognised by A and is denoted
by L(A). An ω-language is called max-regular if it is recognised by a deterministic max-
automaton.

Note that, as for Muller automata, up to adding a sink state together with the appropri-
ate transitions and counter operations, we may assume without loss of generality that every
deterministic max-automaton is complete. Hence, for any finite or infinite word, there ex-
ists exactly one corresponding finite or infinite run labelled by this word. From this point
onwards, every max-automaton will be assumed to be deterministic and complete.

The following fact is taken from [1]. We sketch the proof for the sake of completeness.

LEMMA 3. The class of max-languages is a proper extension of the class of ω-regular lan-
guages.

PROOF. The language K = {an1 ban2 ban3 . . . : ∀m ∃i ni > m}mentioned in the introduction
separates the classes. Let us concentrate on showing that every ω-regular language is max-
regular.

Let L be an ω-regular language, and let A = (Q, A, q0, δ, T ) be a deterministic Muller
automaton recognising it. We build a deterministic max-automaton A′ recognising this
same language. The automatonA′ = (Q′, A, Γ, q′0, δ′, T ′) is obtained by associating a counter
cq with each state q of A and by simulating the visit of each state of A by increment-
ing and outputting the corresponding counter of A’. More precisely, we set Q′ = Q,
Γ = {cq : q ∈ Q}, q′0 = q0, δ′ = {(q, a, q′, (incc′q , outc′q)) : (q, a, q′) ∈ δ}, and T ′ =
{{cq1 , . . . , cqn} : {q1, . . . , qn} ∈ T }. In this way, a state of A is visited infinitely often iff
the output sequence of its corresponding counter in A′ is unbounded. The definition of T ′
then ensures that A and A′ recognise the same ω-language. �

We now prove that if two infinite words induce converging runs, they are either both
accepted or both rejected. This technical result will be very useful in the sequel. For finite
words u and v we write u ∼A v iff A’s runs on u and v end in the same state.

LEMMA 4. LetA be a deterministic max-automaton, and let u and v such that u ∼A v. Then
u−1L(A) = v−1L(A).

PROOF. Let A be the input alphabet of the automaton A, and let x = x0x1x2 · · · be some
infinite word of Aω. Let also ρ = ρ0ρ1ρ2 · · · and ρ′ = ρ′0ρ′1ρ′2 · · · be the two infinite runs
of A labelled by ux and vx, respectively, and let o0o1o2 · · · and o′0o′1o′2 · · · be the two corre-
sponding infinite sequences of counter operations performed during these respective runs.
Since u ∼A v, there exist two integers m′ and n′ such that ρm′+i = ρ′n′+i for all i ≥ 0,
thus there also exist two integers m and n such that om+i = o′n+i for all i ≥ 0. Now let
k = maxc∈Γ |c(o0 · · · om) − c(o′0 · · · o′n)|. We prove by induction on i ∈ N that the relation
|c(o0 · · · om+i)− c(o′0 · · · o′n+i)| ≤ k holds for all c ∈ Γ.

By definition of k, the claim holds for i = 0. Now let i > 0, and assume that for all j ≤ i,
the inequality |c(o0 · · · om+j)− c(o′0 · · · o′n+j)| ≤ k is true for all c ∈ Γ. Let c ∈ Γ, and consider
the counter operation om+i+1 = o′n+i+1. We discuss the nature of this operation.

(1) If om+i+1 = o′n+i+1 = resc, then |c(o0 · · · om+i+1)− c(o′0 · · · o′n+i+1)| = 0 ≤ k.
(2) If om+i+1 = o′n+i+1 is either incc or outc, then by the induction hypothesis, it follows

that |c(o0 · · · om+i+1)− c(o′0 · · · o′n+i+1)| = |c(o0 · · · om+i)− c(o′0 · · · o′n+i)| ≤ k.
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(3) If om+i+1 = o′n+i+1 concerns another counter than c, then by the induction hypothesis
|c(o0 · · · om+i+1)− c(o′0 · · · o′n+i+1)| = |c(o0 · · · om+i)− c(o′0 · · · o′n+i)| ≤ k.

(4) If om+i+1 = o′n+i+1 = maxc,d, for some d ∈ Γ, four different cases need to be considered:
(a) If c(o0 · · · om+i) ≤ d(o0 · · · om+i) and c(o′0 · · · o′n+i) ≤ d(o′0 · · · o′n+i), it follows that

c(o0 · · · om+i+1) := d(o0 · · · om+i) and c(o′0 · · · o′n+i+1) := d(o′0 · · · o′n+i). Therefore
by the induction hypothesis |c(o0 · · · om+i+1)− c(o′0 · · · o′n+i+1)| = |d(o0 · · · om+i)−
d(o′0 · · · o′n+i)| ≤ k.

(b) The case c(o0 · · · om+i) ≥ d(o0 · · · om+i) and c(o′0 · · · o′n+i) ≥ d(o′0 · · · o′n+i) is sym-
metric.

(c) If c(o0 · · · om+i) ≤ d(o0 · · · om+i) but c(o′0 · · · o′n+i) ≥ d(o′0 · · · o′n+i), it follows that
c(o0 · · · om+i+1) := d(o0 · · · om+i) and c(o′0 · · · o′n+i+1) := c(o′0 · · · o′n+i). Thence
|c(o0 · · · om+i+1) − c(o′0 · · · o′n+i+1)| = |d(o0 · · · om+i) − c(o′0 · · · o′n+i)|. Now the
two following cases need to be distinguished:

i. If c(o′0 · · · o′n+i) ≤ d(o0 · · · om+i), thence |d(o0 · · · om+i) − c(o′0 · · · o′n+i)| =
d(o0 · · · om+i)− c(o′0 · · · o′n+i) ≤ d(o0 · · · om+i)− d(o′0 · · · o′n+i) ≤ k.

ii. If c(o′0 · · · o′n+i) ≥ d(o0 · · · om+i), thence |d(o0 · · · om+i) − c(o′0 · · · o′n+i)| =
c(o′0 · · · o′n+i)− d(o0 · · · om+i) ≤ c(o′0 · · · o′n+i)− c(o′0 · · · o′n+i) ≤ k.

(d) The case c(o0 · · · om+i) ≥ d(o0 · · · om+i) but c(o′0 · · · o′n+i) ≤ d(o′0 · · · o′n+i) is sym-
metric.

Now since |c(o0 · · · om+i)− c(o′0 · · · o′n+i)| ≤ k for all i ≥ 0 and all c ∈ Γ, it follows that, for
all c ∈ Γ, the output sequence ρc is bounded iff ρ′c is also bounded. Therefore ux ∈ L(A) iff
vx ∈ L(A) for all x ∈ Aω, or in other words, u−1L(A) = v−1L(A). �

3 The Wadge hierarchy of max-regular languages
The collection of all max-regular languages ordered by the Wadge reduction will be called
the MR-Wadge hierarchy. The present section provides a description of this hierarchy. We
prove that, although the class of max-regular languages properly extends the class of ω-
regular languages, the MR-Wadge hierarchy and the Wagner hierarchy are equal up to
Wadge equivalence.

THEOREM 5. Max-regular languages inhabit exactly those self-dual and non-self-dual classes,
which have the Wadge degree of the form

ωnk
1 · pk + · · ·+ ωn0

1 · p0

with k > 0, ω > nk > . . . > n0 ≥ 0, and 0 < pi < ω for all 0 ≤ i ≤ k.

In particular, the MR-Wadge hierarchy is a pre-well-ordering of width 2 and height ωω.

PROOF. Let α be an ordinal with Cantor normal form α = ωnk
1 · pk + · · · + ωn0

1 · p0, for
some k > 0, some ω > nk > . . . > n0 ≥ 0 and some 0 < pi < ω for all 0 ≤ i ≤ k. In
the Wagner hierarchy, there exist two ω-regular languages L and L′ such that L is self-dual,
L′ is non-self dual, and dW(L) = dW(L′) = α. Lemma 3 guarantees that L and L′ are also
max-regular.

It remains to prove that no other Wadge class is inhabited by a max-regular language.
Let L be a max-regular language over the alphabet A. The language L is recognised by a
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finite state max-automaton, so from Lemma 4 it follows that the family {u−1L : u ∈ A∗} is
finite. But then, up to Wadge equivalence, {Lu : u ∈ A∗} is finite and the claim follows by
Lemma 1. �

More precisely, the MR-Wadge hierarchy consists of an alternating succession of non-
self-dual and self-dual Wadge classes with non-self-dual pairs at each limit level. The MR
degree of a max-regular language L is now defined as

dMR(L) =


1 if L = ∅ or L = ∅c,

sup {dMR(K) + 1 : K n.s.d. and K <W L} if L is non-self-dual,

sup {dMR(K) : K n.s.d. and K <W L} if L is self-dual.

Once again, this definition of the MR degree ensures that the non-self dual languages and
the self dual ones located just one level above in the MR-Wadge hierarchy always share the
same degree. Therefore, the MR-Wadge and the Wadge degrees of max-regular languages
are related as follows: for any max-regular languages L, if dMR(L) = ωnk · pk + · · ·+ ωn0 · p0,
for some ω > nk > . . . > n0 ≥ 0 and 0 < pi < ω for all 0 ≤ i ≤ k, then dW(L) =
ωnk

1 · pk + · · ·+ ωn0
1 · p0.

4 The MR-Wadge and the Wagner hierarchies
We now provide a detailed comparison of the MR-Wadge and the Wagner hierarchies. In
the previous section we have seen that the MR-Wadge and the Wagner hierarchies inhabit
exactly the same Wadge classes.

THEOREM 6. The MR-Wadge and the Wagner hierarchy are equal (up to Wadge equiva-
lence).

The following two results prove that the ω first classes of the MR-Wadge and the Wag-
ner hierarchies contain exactly the same ω-languages, whereas every other MR-Wadge class
is a proper extension of its Wagner counterpart (see Fig. 1(b)).

PROPOSITION 7. For every natural number n the following conditions are equivalent:
(1) L is ω-regular and dωR(L) = n.
(2) L is max-regular and dMR(L) = n.

PROOF. Let us first see that (1) implies (2). Let L be ω-regular with dωR(L) = n. Then L is
also max-regular. Moreover, the structure of the Wagner hierarchy ensures that dW(L) = n.
Hence, by Theorem 5, dMR(L) = n.

Now, let us prove that (2) implies (1). Take a max-regular language L with dMR(L) =
n. We first show that L is ω-regular. Let A = (Q, A, Γ, q0, δ, T ) be a max-automaton that
recognises L. Let C1, . . . , Cp be all (maximal) strongly connected components (s.c.c.) of the
graph of the automaton A. Given any infinite word x, we denote scc(x) the unique s.c.c.
that contains all states visited infinitely often while reading x. In other words, scc(x) is the
s.c.c. inside which the reading of the terminal part of x takes place. Consider the following
equivalence relation between infinite words: x ≈ y iff scc(x) = scc(y). We claim that x ≈ y
implies that (x ∈ L ⇔ y ∈ L). Towards a contradiction, assume that there exist x ∈ L and
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y /∈ L with x ≈ y. Let scc(x) = scc(y) = Ci and let u, v ∈ A∗ be the shortest prefixes of x and
y respectively such that there exist respectively qu, qv ∈ Ci with q0

u−→ qu and q0
v−→ qv. Let

x′, y′ be such that x = ux′ and y = vy′. Since Ci is a s.c.c., there exists a finite word w such
that qu

w−→ qv. Consider Z = {z ∈ uAω : scc(z) = Ci}. We next prove the following facts:
(1) Z ∩ L is initialisable,
(2) both ∅ ≤W Z ∩ L and ∅c ≤W Z ∩ L hold,
(3) Z ∩ L ≤W L.

(1) Consider the II-imposed game W(Z ∩ L, Z ∩ L) where I may only once erase his play
and start anew. We will provide a winning strategy for player II that guarantees that she
always remains inside Z. As long as player I stays inside Z, player II should copy his actions.
If player I exits Z, player II should play a finite word that reaches qv, and then to play y′.
If player I decides to erase everything he has played since the beginning, then player II can
still catch up by playing any finite word that leads her back to qu, and start copying again
I’s play, from the moment when I reaches qu. If player I exits Z again, II should proceed like
before. By Lemma 4 this provides a winning strategy. (2) ∅ ≤W Z∩ L and ∅c ≤W Z∩ L hold
because playing x = uwy′ or ux′, respectively, is winning for II in the corresponding Wadge
games. (3) A winning strategy for player II in W(Z ∩ L, L) amounts to copying player I’s
moves, as long as he stays in Z. If player I exits Z, player II should play a word reaching qv
(this is always possible, since so far player II has stayed inside Z) and then play y′.

Since Z∩ L is a Boolean combination of Σ0
2 sets, by a result from [7], condition (1) yields

dW(Z ∩ L) = ωn
1 for some natural n. Condition (2) ensures that n > 0, hence dW(Z ∩ L) ≥

ω1. Finally, condition (3) implies that dW(L) ≥ ω1, but this is a contradiction. Hence, the
claim holds.

Consider A′ = (Q, A, q0, δ′, F), the deterministic finite automaton with Büchi accep-
tance conditions where δ′ is just δ with the operations on counters removed, and F is the set
of states q for which there exists an infinite word x ∈ L such that q ∈ scc(x). Then A′ recog-
nises L, which shows that L is ω-regular. Theorem 6, guarantees that dMR(L) = dωR(L) =
dW(L) = n. �

Before we move to the proof of our last result, let us show that the language

K = {an1 ban2 ban3 b · · · : ∀m ∃i ni > m}

is Π0
2-complete, as stated in the introduction. It is very easy to see that it is Wadge equivalent

to the Π0
2-complete L′ = (a∗b)ω. Indeed, player II has a winning strategy in the game

W(L, L′): every time player I produces a sequence of consecutive a’s that is strictly longer
than all previous ones, Player II should play a b. Otherwise, player II should play an a.
Conversely, player II also has a winning strategy in the game W(L′, L): every time player I
plays a b, player II should play a sequence of consecutive a’s that is strictly longer than all
previously played, followed by b. Otherwise, she should play b alone.

PROPOSITION 8. Let α = ωnk
1 · pk + · · ·+ ωn0

1 · p0 ≥ ω1, where ω > nk > . . . > n0 ≥ 0 and
0 < pi < ω for all 0 ≤ i ≤ k. Then there exist max-regular languages L and L′ such that L is
self-dual, L′ is non-self-dual, dW(L) = dW(L′) = α, and both L and L′ are not ω-regular.

PROOF. Without loss of generality we may assume that A = {a, b}. We first prove the
existence of appropriate non-self-dual languages over A. If α = ω1, then consider the lan-
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guage K above. It is Π0
2-complete, which means that dW(K) = ω1 = α, as mentioned in

Sect. 1.2. Now if α = ωnk
1 · pk + · · · + ωn0

1 · p0 > ω1, then there exists a non-self-dual ω-
regular language M ⊆ Aω such that dW(M) = α. Let L = aM ∪ bK. The language L is
non-self-dual and satisfies L ≡W M. Thus dW(L) = dW(M) = α. In addition, since both M
and K are max-regular, so is L. Finally, L is not ω-regular, for if it were so, then b−1L = K
would also be ω-regular – a contradiction.

From the existence of an appropriate non-self-dual language, we deduce the existence
of an appropriate self-dual language over A. Let L ⊆ Aω be a non-self-dual max-regular
language such that both dW(L) = α and L is not ω-regular. Take L′ = aL ∪ bLc. Then L′

is also max-regular. Moreover, as mentioned in Sect. 1.2, L′ is self-dual and dW(L′) = α.
Finally, L′ is not ω-regular, for if it were so, the language a−1L′ = L would also be ω-regular
– a contradiction. �

Conclusion

We have given a precise comparison of the Wadge hierarchies for regular and max-regular
languages. As the hierarchies coincide, Bojańczyk’s extension does not increase the topo-
logical complexity. It does provide more variety though, as witnessed by the plethora of
separating examples.

The results of this paper give a complete description of the Wadge hierarchy of max-
regular languages. Alas, the description is not effective (unlike [10, 15]). What is missing
is an algorithm to decide the Wadge degree of a given language. From the proof of Propo-
sition 7 one could extract a partial decidability result. Using decidability of emptiness for
max-automata, one can check if there are two words x ∈ L(A) and y /∈ L(A), such that the
runs on both of them are finally trapped in the same strongly connected component of A,
thus deciding if L(A) is at least on the level ω or not. If not, one can construct effectively
an equivalent automaton without counters, and use the Wagner’s characterisation to com-
pute the exact degree. Obtaining decidability of higher levels would probably require much
deeper analysis of the loop structure within strongly connected components. We point this
out as a promising line of investigation.

As for the technical side of the paper, we would like to highlight the method used
to prove that no other Wadge degrees are realised by max-regular languages (Theorem 5).
Here, the argument relies on the fact that the family {w−1L : w ∈ A∗} is finite up to Wadge
equivalence. A more involved version of this method, based on a generalisation of Lemma 1,
has been successfully applied to deterministic push-down automata [8]. We believe that this
technique can be useful for other models of computation as well.
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ABSTRACT. Linear temporal logic was introduced in order to reason about reactive systems. It is
often considered with respect to infinite words, to specify the behaviour of long-running systems.
One can consider more general models for linear time, using words indexed by arbitrary linear
orderings. We investigate the connections between temporal logic and automata on linear orderings,
as introduced by Bruyère and Carton. We provide a doubly exponential procedure to compute from
any LTL formula with Until, Since, and the Stavi connectives an automaton that decides whether
that formula holds on the input word. In particular, since the emptiness problem for these automata
is decidable, this transformation gives a decision procedure for the satisfiability of the logic.

1 Introduction

Temporal logic, in particular LTL, was proposed by Pnueli to specify the behaviour of re-

active systems [12]. The model of time usually considered is the ordered set of natural

numbers, and executions of the system are seen as infinite words on some set of atomic

propositions. This logic was shown to have the same expressive power as the first order

logic of order [11], but it provides a more convenient formalism to express verification prop-

erties. It is also more tractable: while the satisfiability problem of FO is non-elementary [17],

it was shown in [16] that the decision problem of LTL with Until and Since on ω-words is

PSPACE-complete. This logic has also strong ties with automata, with important work to

provide efficient translations to Büchi automata, e.g. [9].

Within this time model, a number of extensions of the logic and the automata model

have been studied. But one can also consider more general models of time: general linear

time could be useful in different settings, including concurrency, asynchronous communi-

cation, and others, where using the set of integers can be too simplistic. Possible choices

include ordinals, the reals, or even arbitrary linear orderings. In terms of expressivity, while

LTL with Until and Since is expressively complete (i.e. equivalent to FO) on Dedekind-

complete orderings (which includes the ordering of the reals as well as all ordinals), this

does not hold in the general case. Two more connectives, the future and past Stavi opera-

tors, are necessary to handle gaps [10] when considering arbitrary linear orderings.

Over ordinals, LTL with Until and Since has been shown to have a PSPACE-complete

satisfiability problem [7]. Over the ordering of the real numbers, satisfiability of LTL with

until and since is PSPACE-complete, but satisfiability of MSO is undecidable. Over general

linear time, first order logic has been shown to be decidable, as well as universal monadic

second order logic. Reynolds shows in [14] that the satisfiability problem of temporal logic

with only the Until connective is also PSPACE-complete, and conjectures that this might stay

true when adding the Since connective. The upper bound in [7] is obtained by reducing the

satisfiability of LTL formulae to the accessibility problem in an appropriate automata model,

c© Julien Cristau; licensed under Creative Commons License-NC-ND.
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accepting words indexed by ordinals. In this paper, we focus on the general case of arbitrary

linear orderings, using the full logic with Until, Since and both Stavi connectives. Our aim

is to investigate the connections between LTL and automata in this setting.

Automata on linear orderings were introduced by Bruyère and Carton [2]. This model

extends traditional finite automata using “limit” transitions to handle positions with no suc-

cessor or predecessor, furthering Büchi’s model of automata on words of ordinal length [4].

Carton showed in [5] that accessibility over scattered ordering is decidable in polynomial

time, and in [13] it was shown that these automata can be complemented over countable

scattered linear orderings. The accessibility result can be extended to arbitrary orderings [6].

From any formula in this logic, we define an automaton which determines whether the

formula holds on its input word. Satisfiability of the formula is reduced to accessibility in

this automaton, and that way we get decidability of the satisfiability problem of LTL with

Until, Since and the Stavi operators for any rational subclass.

Section 2 presents some definitions about linear orderings, linear temporal logic, and

the model of automata used. Section 3 introduces our main result, an algorithm to translate

any LTL formula into a corresponding automaton. Section 4 discusses the expressivity of

the logic and automata considered, and looks at some natural fragments.

2 Definitions

2.1 Linear orderings

We first recall some basic definitions about orderings, and introduce some notations. For a

complete introduction to linear orderings, the reader is referred to [15]. A linear ordering J

is a totally ordered set (J, <) (considered modulo isomorphism). The sets of integers (ω), of

rational numbers (η), and of real numbers with the usual orderings are all linear orderings.

Let J and K be two linear orderings. One defines the reversed ordering −J as the order-

ing obtained by reversing the relation < in J, and the ordering J + K as the disjoint union

J ⊔ K extended with j < k for any j ∈ J and k ∈ K. For example, −ω is the ordering of

negative integers. −ω + ω is the usual ordering of Z, also denoted by ζ.

A non-empty subset K of an ordering J is an interval if for any i < j < k in J, if i ∈ K and

k ∈ K then j ∈ K. In order to define the runs of an automaton, we use the notion of cut. A cut

of an ordering J is a partition (K, L) of J such that for any k ∈ K and l ∈ L, k < l. We denote

by Ĵ the set of cuts of J. This set is equipped with the order defined by (K1, L1) < (K2, L2)
if K1 ( K2. This ordering can be extended to J ∪ Ĵ in a natural way ((K, L) < j iff j ∈ L).

Notice that Ĵ always has a smallest and a biggest element, respectively cmin = (∅, J) and

cmax = (J, ∅). For example, the set of cuts of the finite ordering {0, 1, . . . , n − 1} is the

ordering {0, 1, . . . , n}, and the set of cuts of ω is ω + 1.

For any element j of J, there are two successive cuts c−j and c+
j , respectively ({i ∈ J |

i < j}, {i ∈ J | j ≤ i}) and ({i ∈ J | i ≤ j}, {i ∈ J | j < i}). A gap in an ordering J is a cut c

which is not an extremity (cmax or cmin), and has neither a successor nor a predecessor.

Given an alphabet Σ, a word of length J is a sequence (aj)j∈J of elements of Σ indexed

by J. For example, (ab)ω is a word of length ω; the sequence abωabωa is a word of length

ω + ω + 1, and (abω)ω is a word of length ω2.
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2.2 Temporal logic

We use words over linear orderings to model the behaviour of systems over linear time.

To express properties of these systems, we consider linear temporal logic. The set of LTL

formulae is defined by the following grammar, where p ranges over a set AP of atomic

propositions: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕUϕ | ϕSϕ | ϕU ′ϕ | ϕS ′ϕ
Besides the usual boolean operators, we have four temporal connectives. The U connec-

tive is called “Until”, and S is called “Since”. U ′ and S ′ are respectively the future and past

Stavi connectives. Other usual connectives such as “Next” (X ), “Eventually” (F ), “Always”

(G) can be defined using these, as we see below.

These formulae are interpreted on words over the alphabet 2AP. A letter in those words

is the set of atomic propositions that hold at the corresponding position. Let x = (xj)j∈J a

word of length J. A formula ϕ is evaluated at a particular position i in x; we say that ϕ holds

at position i in x, and we write x, i |= ϕ, using the following semantics:

x, i |= p if p ∈ xi

x, i |= ¬ψ if x, i 6|= ψ

x, i |= ψ1 ∨ ψ2 if x, i |= ψ1 or x, i |= ψ2

x, i |= ψ1Uψ2 if there exists j > i such that x, j |= ψ2,

and for any k such that i < k < j, we have x, k |= ψ1

x, i |= ψ1Sψ2 if −x, i |= ψ1Uψ2 where −x is the reversed word (aj)j∈−J

x, i |= ψ1U ′ψ2 if there exists a gap c ∈ Ĵ verifying three properties:

(1) x, j |= ψ1 for any position j such that i < j < c

(2) there is no interval starting at c where ψ1 is always true

(i.e. ∀c < k ∃c < j < k x, j |= ¬ψ1), and

(3) ψ2 is always true in some interval starting at c

x, i |= ψ1S ′ψ2 if −x, i |= ψ1U ′ψ2 (it is the corresponding past connective)

Note that we use a “strict” semantic for the Until operator, contrary to a common defi-

nition, which would be:

x, i |= ψ1U nsψ2 if there exists j ≥ i such that x, j |= ψ2 and x, k |= ψ1 for any i ≤ k < j.

In the strict version, the current position i is not considered for either the ψ1 or the ψ2 part of

the definition. Using the strict or non-strict version makes no difference when considering

ω-words, but in the case of arbitrary orderings, the strict Until is more powerful, as noted

by Reynolds in [14].

The formula “Next ϕ”, or X ϕ, is equivalent to ⊥U ϕ. “Eventually ϕ”, noted F ϕ, is

ϕ ∨ (⊤U ϕ), and “always ϕ”, noted G ϕ, can be expressed as ¬(F (¬ϕ)).

Given a word x of length J, the truth word of ϕ on x is the word vϕ(x) of length J over

the alphabet {0, 1} where the position j is labelled by 1 iff x, j |= ϕ. A formula is valid if its

truth word on any input only has ones. A formula is satisfiable if there exists an input word

such that the truth word contains a one.
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Consider the formula ϕ = ¬a∧ (G ¬X a), with AP = {a}. If x = (a∅)ω (where a stands

for {a}), then vϕ(x) = 0ω (at every position, either a is true or a is true in the successor). On

the other hand, if x = a∅ωa∅ωa, then vϕ(x) = 01ω01ω0: at positions 0, ω and at the last

position, a is true so the formula doesn’t hold; at all other positions, a is false, and there is

no position in the input word where X a holds.

The satisfiability problem for a formula ϕ consists in deciding whether there exists a word

w and a position i in w such that w, i |= ϕ. As FO is decidable, and every LTL formula can

be expressed using first order, satisfiability of LTL is decidable. Note however that in terms

of complexity FO is already non-elementary on finite words [17], which is not true of LTL.

2.3 Automata

On infinite words, Büchi automata can be used to decide satisfiability of LTL formulae. In

the case of words over linear orderings, a model of automata has been introduced in [2].

Instead of accepting or rejecting each input word, as in the case of ω-words, we use these

automata to compute the truth words corresponding to an LTL formula. Our model of

automata thus has an output letter on each transition, so they are actually letter-to-letter

transducers, which make composition easier (see Section 3.1).

An automaton is a tuple A = (Q, Σ, Γ, δ, I, F) where Q is a finite set of states, Σ is a

finite input alphabet, Γ is a finite output alphabet, I and F are subsets of Q, respectively the

set of initial and final states, and δ ⊆ (Q × Σ × Γ × Q) ∪ (2Q × Q) ∪ (Q × 2Q) is the set of

transitions. We note:

• p
a|b−→ q if (p, a, b, q) ∈ δ (successor transition)

• P → q if (P, q) ∈ δ (left limit transition)

• q → P if (q, P) ∈ δ (right limit transition).

Consider a word x = (qj)j∈J over Q. We define the left and right limit sets of x at

position j ∈ J as the sets of labels that appear arbitrarily close to j (respectively to its left and

to its right). Formally:

limj− x = {q ∈ Q | ∀k < j ∃i k < i < j ∧ qi = q}
limj+ x = {q ∈ Q | ∀k > j ∃i j < i < k ∧ qi = q}

Note that limj− x is non-empty if and only if the transition to j is a left limit, and similarly

for limj+ x if the transition from j is a right limit. These sets help define the possible limit

transitions in a run.

Given an automaton A, an accepting run of A on a word x = (xj)j∈J is a word ρ of

length Ĵ over Q such that:

• ρcmin ∈ I and ρcmax ∈ F;

• for each i ∈ J, there exists yi ∈ Γ such that ρc−i

xi|yi−−→ ρc+
i

;

• if c ∈ Ĵ has no predecessor, limc− ρ → ρc, and if c ∈ Ĵ has no successor, ρc → limc+ ρ.

EXAMPLE 1. The first automaton in Figure 1 outputs 1 at each position immediately fol-
lowed by a 1 in the input word, and 0 at other positions.

The second automaton accepts input words whose length is a linear ordering without

first or last element, and without two consecutive elements (i.e. dense orderings). The
notation P → q0, q1 means that there is a transition P → q0 and a transition P → q1.
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q0

q1

q2

−|1

−|0

1|1
1|00|1

0|0

Limits: P → q0 q0 → P q2 → P

for any P ⊆ {q0, q1, q2}

q0

q1 q2
−|−

Limits: {q1, q2}, {q0, q1, q2} → q0, q1

q1, q2 → {q1, q2}, {q0, q1, q2}
Figure 1: Example automata

In [5], Carton proves that the accessibility problem on these automata can be solved in

polynomial time, when only considering scattered orderings. This result can be extended

to arbitrary orderings [6] as it is done for rational expressions in [3]. The idea is to build

an automaton over finite words which simulates the paths in the initial automaton and re-

members their contents. In order to handle the general case (as opposed to only scattered

orderings), the added operation is called “shuffle”: sh(w1, . . . , wn) = Πj∈J xj where J is a

dense and complete ordering without a first or last element, partitioned in dense subor-

derings J1 . . . Jn, such that xj = wi if j ∈ Ji. Looking at automata, this means that if there

are paths from p1 to q1 with content P1, . . . , from pn to qn with content Pn, and transitions

from P1 ∪ · · · ∪ Pn to each pi, transitions from each qi to P1 ∪ · · · ∪ Pn, a transition from p to

P1 ∪ · · · ∪ Pn and a transition from P1 ∪ · · · ∪ Pn to q, then there is a path from p to q.

3 Translation between formulae and automata

Over ω-words, problems on temporal logics are commonly solved using tableau meth-

ods [20], or automata-based techniques [19]. In this work we extend the correspondence

between LTL and automata to words over linear orderings. Our main result is Theorem 2.

THEOREM 2. For every LTL formula ϕ, there is an automaton Aϕ which given any input
word x outputs the truth word vϕ(x).

Moreover, this automaton Aϕ can be effectively computed, and has a number of states

exponential in the size of ϕ. Because we can compute the product of Aϕ with any given au-

tomaton and check for its emptiness, we get Corollary 3, which states that given a temporal

formula and a rational property (i.e. an automaton on words over linear orderings), we can

check whether there exists a model of the formula which is accepted by the automaton.

COROLLARY 3. The satisfiability problem for any rational subclass is decidable.

The idea is to build Aϕ by induction on the formula. We construct an elementary au-

tomaton for each logical connective. We use composition and product operations to build

inductively the automaton of any LTL formula from elementary automata. All automata

used in this proof have the particular property that there exists exactly one accepting run

for each possible input word, i.e. they are non-deterministic, but also non-ambiguous. This

property is preserved by composition and product.

The structure of the proof is the following: we define the composition and product op-

erators on automata, then we present the elementary automata that are needed to encode

logical connectives. Finally, we give the inductive method to build the automaton corre-

sponding to a formula from elementary ones.
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3.1 Product, composition and elementary automata

Let A1 = (Q1, Σ, Γ, δ1, I1, F1) and A2 = (Q2, Σ′, ∆, δ2, I2, F2) be two automata. The prod-

uct consists in running both automata with the same input alphabet in parallel, and out-

putting the combination of their outputs. If A1’s output alphabet and A2’s input alphabet

are the same, the composition consists in running A2 over A1’s output. We use the notation

π1(a, b) = a and π2(a, b) = b for the first and second projections.

DEFINITION 4. Suppose that A1 and A2 have the same input alphabet, i.e. Σ = Σ′. The
product of A1 and A2 is the automaton A1 ×A2 = (Q1 × Q2, Σ, Γ × ∆, δ, I1 × I2, F1 × F2),
where δ contains the following transitions:

• (q1, q2)
a|b,c−−→ (q′1, q′2) if q1

a|b−→ q′1 and q2
a|c−→ q′2,

• (q1, q2) → P if q1 → π1(P) and q2 → π2(P),
• P → (q1, q2) if π1(P) → q1 and π2(P) → q2.

DEFINITION 5. Suppose now that the output alphabet of A1 is the input alphabet of A2, i.e.

Γ = Σ′. The composition of A1 and A2 is the automaton A2 ◦ A1 = (Q1 × Q2, Σ, ∆, δ, I1 ×
I2, F1 × F2). The transitions in δ are:

• (q1, q2)
a|c−→ (q′1, q′2) if q1

a|b−→ q′1 and q2
b|c−→ q′2,

• (q1, q2) → P if q1 → π1(P) and q2 → π2(P),
• P → (q1, q2) if π1(P) → q1 and π2(P) → q2.

Recall that LTL formulae are given by ϕ := p | ¬ϕ | ϕ ∨ ϕ | ϕUϕ | ϕU ′ϕ | ϕSϕ | ϕS ′ϕ.

For each atomic proposition p we construct an automaton Ap which, given a word x, out-

puts vp(x). For each logical connective of arity n, we construct an automaton with input

alphabet {0, 1}n , and output alphabet {0, 1}. The input word is the tuple of truth words of

the connective’s variables, the output is the truth word of the complete formula. For tempo-

ral connectives, we only describe the automata corresponding to U and U ′. For the “past”

connectives, the automata are the same with all transitions (successor and limits) reversed,

and initial and final states swapped.

For any p ∈ AP, the automaton Ap is ({q}, 2AP, {0, 1}, δ, {q}, {q}) where δ = {(q
a|0−→

q | p 6∈ a} ∪ {q
a|1−→ q | p ∈ a} ∪ {q → {q}, {q} → q}. This automaton simply outputs 1 at

positions where p is true, and 0 everywhere else. Note that the run is uniquely determined

by the input word; such a transducer is called non-ambiguous.

Figures 2(a) and 2(b) show the automata corresponding to the negation (¬) and dis-

junction (∨) connectives. Their limit transitions are {q} → q and q → {q}. Again, these

automata admit exactly one run for each input word.

q0|1 1|0

(a) Automaton for negation

q0, 0|0 0, 1|1 1, 0|1 1, 1|1

(b) Automaton for disjunction
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3.2 Automaton for U
The difficulty starts with the “Until” connective (U ). We recall that ϕUψ holds at position i

in a word w if there exists j > i such that ψ holds at j, and such that ϕ holds at every position

k such that i < k < j.

We build an automaton AU with input alphabet {0, 1}2 and output alphabet {0, 1}.

On an input word of the form (vϕ(w), vψ(w)) for some word w, we want the output to be

vϕUψ(w). Let J = |w|, and c ∈ Ĵ. We distinguish five different situations. For each of them

the figure describes an example, where “|” represents the cut c, and each • represents a

position in the input word.

0. c is followed by a position where ϕ and ψ are true. input

output
· · · •

1
| 1,1• · · ·

1. c = c−j , and j is such that ϕ is false and ψ is true. input

output
· · · •

1
| 0,1• · · ·

2. other cases where ϕUψ is true at c. input

output
· · · •

1
|

1,−︷︸︸︷· · · −,1• · · ·

3. c is followed by a position where both ϕ and ψ are false. input

output
· · · •

0
| 0,0• · · ·

4. other cases where ϕUψ is false at c. If c = c−j then the input at position j is (1, 0).

input

output
· · · •

0
|

1,0︷︸︸︷· · · 0,0• · · · · · · •
0
|

1,0︷︸︸︷· · ·
{(1,−),(0,1)}

︷ ︸︸ ︷· · · · · · · · ·

The structure of the automaton AU and the limit transitions are given by Figure 2. This

automaton has five states q0 to q4 corresponding to the situations described above. Given

any two states q and q′ there exists a transition q → q′ except from q2 to q3 or q4 and from

q4 to q0, q1 or q2. The input label of successor transitions is determined by the origin node:

(1, 1) for q0, (0, 1) for q1, (0, 0) for q3, and (1, 0) for q2 and q4. The output label is 1 on

transitions leading to q0, q1 or q2, and 0 on transitions leading to q3 or q4. All states are

initial, while q4 is the only final state.

LEMMA 6. Let ϕ and ψ two formulae. Let x and y be the truth words of ϕ and ψ on a word

w of length J. The output of AU on (x, y) is the truth word of ϕUψ on w.

PROOF. Let ρ be the word of length Ĵ on Q defined by

• if xj = yj = 1, then ρ(c−j ) = q0;

• if xj = 0 and yj = 1 then ρ(c−j ) = q1;

• if xj = yj = 0 then ρ(c−j ) = q3;

• otherwise, if there exists j > c such that yj = 1 and for all i such that c < i < j, xi = 1,

then ρ(c) = q2;

• otherwise, ρ(c) = q4.

We show that ρ is a run of AU on the input (x, y), that this run is unique, and that the

corresponding output word is indeed the truth word of ϕUψ on w.

By definition, ρ ends in the final state q4. Let c ∈ Ĵ. If ρ(c) is q0, q1 or q3, then c = c−j for

some j and the successor transition from c to the next cut is allowed by the automaton. If

ρ(c) = q2, and c = c−j for some j, then xj = 1 and yj = 0, and ρ(c+
j ) is q0, q1 or q2. Similarly
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q0 q1

q2

q3

q4

1, 1/1 0, 1/1

1, 0/1

0, 0/0

1, 0/0

1, 1/1

1, 1/0

0, 0/1

0, 1/1

0, 0/0

P → q0, q1, q2, q3, q4

if q0, q1 or q3 ∈ P

{q2} → q0, q1, q2

{q4} → q3, q4

q2 → {q0}, {q2}, {q0, q2}
q4 → P if q1 or q3 ∈ P

q4 → {q4}

Figure 2: Automaton for U

if ρ(c−j ) = q4, then xj = 1 and yj = 0, and ρ(c+
j ) can be q3 or q4. Every successor transition

in ρ is thus allowed by AU .

We now prove the same for limit transitions. If a left limit transition leads to a cut c,

then either ψ is true arbitrarily close to the left of c (in which case the corresponding limit

set contains q0 or q1), or it is always false (and the limit set is {q2} or a subset of {q3, q4}). If

the limit set contains q0, q1 or q3, any state for c is allowed. If the limit set is {q2}, the cut c

can’t be labelled by q3 or q4 without violating the definition of ρ. Conversely, if the limit set

is {q4}, ρ(c) is necessarily q3 or q4. Let’s now consider a right limit transition starting at a

cut c. The label of this cut can only be q2 or q4. In the first case, ϕ must be true everywhere in

the limit set, which is thus a subset of {q0, q2}. In the second case, either ϕ is false infinitely

often in the limit, or ψ is always false. This means that the limit set contains q1 or q3, or is

restricted to {q4}. This shows that ρ is a run of AU on the input (x, y).

We now show that a run on AU is uniquely determined by the input word. Let γ a run

of AU on (x, y). Because of the constraints on the successor transitions, a cut c is labelled by

q0, q1 or q3 in γ if and only if it is labelled by the same state in ρ.

Let’s suppose that a cut c is labelled by q2 in γ. Since q2 is not final, there exists c′ > c

labelled by some other state. If there is a first such cut, its label is necessarily q0 or q1 (by a

successor transition from q2 or a limit transition from {q2}). Otherwise, there is a transition

of the form q2 → {q0} or q2 → {q0, q2}. In both cases, c satisfies the condition for cuts

labelled by q2 in the definition of ρ. A similar argument shows that a cut labelled by q4 in γ

has the same label in ρ. The run of AU on a given input word is thus unique.

Finally, we show that the output word is really the truth word of ϕUψ. Let j an element

of J. First, suppose that w, j |= ϕUψ. If j has a successor k, and ψ is true at k, then yk = 1,

and AU outputs 1 at position j. Otherwise, there exists k > j such that w, k |= ψ (i.e. yk = 1),

and xℓ = 1 whenever j < ℓ < k. Thus, c+
j is labelled with q2, and AU once again outputs 1

at position j. Suppose now that w, j 6|= ϕUψ. If j has a successor k and xk = yk = 0, then c+
j

is labelled by q3, so the output at position j is 0. Otherwise, c+
j is labelled by q4, and once

again AU outputs 0.
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q2 q1

q0

q3

q7 q6

q5 q4 q8

q9

1,1/0

0,1/0

1,0/0

0,0/0

1,0/1

1,1/1

• P → q0, q1, q2 if P ∩ {q4, q5} 6=
∅ or P ⊆ {q0, q1, q2}

• P → q3 if P ⊆ {q0, q1, q2}
• P → q4, q5, q6, q7 if P 6⊆
{q0, q1, q2}

• P → q8 if P ∩ {q4, q5} 6= ∅

• P → q9 if P ∩ {q4, q5} = ∅

and P 6⊆ {q0, q1, q2}
• q0 → P if P ⊆ {q0, q1, q2}
• q3 → P if P ∩ {q1, q4, q6} = ∅

and q5 ∈ P

• q8 → P if P ∩ {q4, q5, q6, q7} 6=
∅

• q9 → P if P ∩ {q4, q5, q6, q7} 6=
∅ and either P ∩ {q4, q5} = ∅

or P intersects {q1, q4, q6}
Figure 3: Automaton for the future Stavi operator

3.3 Automaton for the future Stavi connective (U ′
)

Let’s recall that ϕU ′ψ holds at position i if there exists a gap c > i such that ϕ holds at every

position i < j < c, the property ψ holds at every position in some interval starting at x, and

¬ϕ holds at positions arbitrarily close to c to the right.

The central point in this definition is the gap c, which corresponds to state q3 in the

automaton. States q0, q1 and q2 follow the positions, before q3, where the formula holds.

States q4, q5, q6, q7, q8 follow the positions where the formula doesn’t hold. If a run reaches

q0, q1 or q2, it has to leave this region through q3, and all successor transitions until then

have input label (1, 0) or (1, 1). The structure of this automaton is depicted in Figure 3. All

states except q3 and q9 are initial; q8 and q9 are final. Transitions from q1 and q7 have input

label (1, 1), transitions from q2 and q6 have input label (1, 0), transitions from q4 have input

label (0, 0), and transitions from q5 have input label (0, 1). The output is 1 for transitions to

q0, q1 and q2, and 0 for transitions to q4, q5, q6, q7 and q8.

We define a labelling ρ of the cuts of a word w on {0, 1}2 using the states of the automa-

ton as follows. A cut c is labelled with:

• q0 if it has no successor, ϕU ′ψ is true

• q1 if it is followed by a position labelled (1, 0), ϕU ′ψ is true

• q2 if it is followed by a position labelled (1, 1), ϕU ′ψ is true

• q3 if it is a gap, ϕU ′ψ is true before it and false afterwards

• q4 if it is followed by a position labelled (0, 0), ϕU ′ψ is false

• q5 if it is followed by a position labelled (0, 1), ϕU ′ψ is false

• q6 if it is followed by a position labelled (1, 0), ϕU ′ψ is false

• q7 if it is followed by a position labelled (1, 1), ϕU ′ψ is false

• q8 if it has no successor, ϕ doesn’t hold in the left limit if it has no predecessor, and

ϕU ′ψ is false

• q9 if it is a gap or is the last cut, ϕU ′ψ is false, and ϕ is true in some interval to the left



142 AUTOMATA AND TEMPORAL LOGIC OVER ARBITRARY LINEAR TIME

LEMMA 7. ρ defines the unique run of the automaton on its input word. If the input is
(vϕ(w), vψ(w)) for some word w, then the output of this run is vϕU ′ψ(w).

PROOF. We first show that ρ is a run. Successor transitions correspond almost directly to

the definitions of the labelling ρ, so let’s look at limit transitions. For left limits, the following

cases need to be considered:

• if a transition P → q0 is taken at a cut c, then either ϕ is true in the limit, and so ϕU ′ψ
is too, and P ⊆ {q0, q1, q2}, or it’s not, and either q4 or q5 appear in the limit

• the same reasoning applies for q1 and q2

• if c is labelled q3 then the incoming transition has to come from a subset of {q0, q1, q2}
since ϕU ′ψ is true in the limit.

• if a transition P → q4 is used, then ϕU ′ψ is not true in the limit (otherwise it would

still be true), and so P 6⊆ {q0, q1, q2}; the same applies for q5, q6, q7, q8 and q9

• if c is a left limit and is labelled q8 then the incoming transition comes from a set P

intersecting {q4, q5} because ¬ϕ is repeated

• if c is labelled q9 then q4 and q5 can’t appear in the left limit set (ϕ is true)

If c is a right limit cut, it can be labelled q0, q3, q8 or q9. The right-limit transition can be:

• if c is labelled q0, the limit transition has to go to a subset of {q0, q1, q2} since ϕU ′ψ
holds in the limit;

• if c is labelled with q3, the limit transition to its right leads necessarily to a set P not

including q1, q4 and q6 since ψ is always true, and including q5 because ¬ϕ is repeated;

• if c is labelled q8 or q9, the right limit set can’t be a subset of {q0, q1, q2} otherwise c

would have been labelled q0;

• if c is labelled q9 we have the additional condition that either ϕ holds in the limit (and

neither q4 nor q5 appears) or ψ doesn’t (and one of q1, q4 and q6 is in the limit).

The labelling of cuts defined above is thus a path of the automaton, and we only need to

show that it’s the only one, using the same method as for the AU . Moreover, the definition

of ρ means that the output is 1 whenever ϕU ′ψ holds, and 0 at all other positions.

3.4 Construction of Aϕ

Now that we have the basic blocks for our construction, we can build an automaton for

any formula ϕ. If ϕ is an atomic proposition p, we have Ap as in Section 3.1. If ϕ = ¬ψ,

then Aϕ = A¬ ◦ Aψ. If ϕ = ψ1 ∨ ψ2, then Aϕ = A∨ ◦ (Aψ1
×Aψ2). If ϕ = ψ1Uψ2, then

Aϕ = AU ◦ (Aψ1
×Aψ2). The same can be done for U ′ and for the past connectives.

The number of states of the resulting automaton is the product of the number of states

of all the elementary automata, and is thus exponential in the size of the formula. The actual

size of the automaton includes limit transitions, so can be doubly exponential in the size of

the formula, if those transitions are represented explicitly.

To check whether the formula ϕ is satisfiable by a model which is recognized by an

automaton B, we can compute the product of the automaton Aϕ with B, and check whether

a transition where Aϕ outputs 1 is accessible and co-accessible. This ensures that there exists

a successful run of the product automaton going through that transition, meaning that the

corresponding input word is accepted by B and there is a position where ϕ holds.
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Limit transitions:

P → a, h if P ⊆ {a, b, c, h}

c → P if P ⊆ {a, b, c, h}

P → a′, f for any P

c′ → P if P ∩ {a, b, c, h} = ∅

Figure 4: Automaton checking whether a gap exists in the future

4 Discussion

Logical characterization of automata. We have shown that any LTL, and thus FO, formula

can be represented as a non-ambiguous automaton with output. But one can also build such

an automaton where the output is the truth word of a property which can’t be expressed in

the first order. The automaton shown on Figure 4 outputs 1 whenever “there is a gap some-

where in the future” is true; that formula can’t be expressed in FO. It would be interesting to

find a logical characterisation of the properties that can be expressed using such automata.

Computational complexity. The exact complexity of the satisfiability problem for LTL on ar-

bitrary orderings remains open. We give a 2EXPSPACE procedure to compute an automaton

from a formula, whose emptiness can then be checked efficiently. A classical optimization

in similar problems is to compute the automaton on the fly, which saves a lot of complexity,

so an algorithm using this technique for LTL on arbitrary orderings would be interesting.

Expressive power. On finite and ω-words, LTL restricted to the unary operators (X , F ,

and their past counterparts) is equivalent to first-order logic restricted to two variables,

FO2(<, +1) [8]. Restricting even further to F and its reverse, we get a logic expressively

equivalent to FO2(<). In the case of finite words, FO2(<) corresponds to “partially ordered”

two-way automata [18]. The proof of equivalence between unary temporal logic and FO2

can be easily extended to the case of arbitrary linear orderings. It would be interesting to

find such a correspondence for arbitrary orderings as well, and to see if these restrictions

provide lower complexity results.

Mosaics technique. In his work on LTL(U ), Reynolds uses “mosaics” to keep track of the

subformulas that need to be satisfied in particular intervals, and to find a decomposition

that shows the satisfiability of the initial formula. Unfortunately it is not clear if and how

this can be extended to handle a larger fragment of the logic.

5 Conclusion

We investigate linear temporal order with Until, Since, and the Stavi connectives over gen-

eral linear time, and its relationship with automata over linear orderings. We provide a

translation from LTL to a class of non-ambiguous automata with output, giving a 2EXPSPACE
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procedure to decide satisfiability of a formula in any rational subclass. This leaves a number

of immediate questions, starting with the actual complexity for the satisfiability problem for

LTL, but also for some of its fragments, where some operators are excluded. While the full

class of automata over linear orderings is not closed under complementation [1], it might

still be possible to find a logical characterization for some interesting subclasses.
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ABSTRACT. Graph isomorphism is an important and widely studied computational problem with
a yet unsettled complexity. However, the exact complexity is known for isomorphism of various
classes of graphs. Recently, [8] proved that planar isomorphism is complete for log-space. We extend
this result further to the classes of graphs which exclude K3,3 or K5 as a minor, and give a log-space
algorithm.
Our algorithm decomposes K3,3 minor-free graphs into biconnected and those further into tricon-
nected components, which are known to be either planar or K5 components [20]. This gives a tricon-
nected component tree similar to that for planar graphs. An extension of the log-space algorithm of
[8] can then be used to decide the isomorphism problem.
For K5 minor-free graphs, we consider 3-connected components. These are either planar or isomor-
phic to the four-rung mobius ladder on 8 vertices or, with a further decomposition, one obtains
planar 4-connected components [9]. We give an algorithm to get a unique decomposition of K5

minor-free graphs into bi-, tri- and 4-connected components, and construct trees, accordingly. Since
the algorithm of [8] does not deal with four-connected component trees, it needs to be modified in a
quite non-trivial way.

1 Introduction

The graph isomorphism problem GI consists of deciding whether there is a bijection be-

tween the vertices of two graphs, preserving the adjacencies among vertices. It is an impor-

tant problem with a yet unknown complexity. The problem is clearly in NP and is also in

SPP [2]. It is unlikely to be NP-hard [5, 16], because otherwise the polynomial time hierar-

chy collapses to the second level. As far as lower bounds are concerned, GI is hard for DET
[18], the class of problems NC1-reducible to the determinant [6].

∗Supported by DFG grants TO 200/2-2.

c© S. Datta, P. Nimbhorkar, T. Thierauf, F. Wagner; licensed under Creative Commons License-NC-ND.
Foundations of Software Technology and Theoretical Computer Science (Kanpur) 2009.
Editors: Ravi Kannan and K. Narayan Kumar; pp 145–156
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany. 
Digital Object Identifier: 10.4230/LIPIcs.FSTTCS.2009.2314



146 ISOMORPHISM OF K3,3-FREE AND K5-FREE GRAPHS IN L

While this enormous gap has motivated a study of isomorphism in general graphs, it

has also induced research in isomorphism restricted to special cases of graphs where this

gap can be reduced. Tournaments are an example of directed graphs where the DET lower

bound is preserved [21], while there is a quasi-polynomial time upper bound [4]. The com-

plexity of isomorphism is settled for trees [11, 12], partial 2-trees [1], and for planar graphs

[8]. We extend the result of [8] to isomorphism of K3,3 and K5 minor-free graphs. The pre-

viously known upper bound for these graph classes is P due to [14]. Both of these graph

classes include planar graphs, and hence are considerably larger than the class of planar

graphs.

We consider undirected graphs without parallel edges and loops, also known as simple

graphs. For directed graphs or graphs with loops and parallel edges, there are log-space

many-one reductions to simple undirected graphs (cf. [10]). Our log-space algorithm relies

on the following properties of K3,3 and K5 minor-free graphs:

• The 3-connected components of K3,3 minor-free graphs are either planar graphs or

complete graphs on 5 vertices i.e. K5’s [20].

• The 3-connected components of K5 minor-free graphs are either planar or V8’s (where

V8 is a four-rung mobius ladder on 8 vertices) or the following holds. The 4-connected

components of the remaining non-planar 3-connected components are planar [9].

There is a related result [17] where reachability in K3,3 and K5 minor-free graphs are

reduced to reachability in planar graphs under log-space many-one reductions. The ba-

sic idea is that the non-planar components are transformed into new planar components.

This technique preserves the reachability properties but not the isomorphism. We give a

log-space algorithm to get these decompositions in a canonical way, and construct the bicon-

nected and triconnected component trees for K3,3 minor-free graphs. Then we extend the

log-space algorithm of [8] for isomorphism testing and canonization of two such graphs.

The isomorphism of K5 minor-free graphs is more complex, as in addition it has bi-, tri- and

four-connected component trees. This needs considerable modifications and new ideas.

The rest of the paper is organized as follows: Section 2 gives the necessary definitions

and background. Section 3 gives the decomposition of K3,3 and K5 minor-free graphs and

proves the uniqueness of such decompositions. In Section 4 we give a log-space algorithm

for isomorphism and canonization of K3,3 and K5 minor-free graphs. We omit some proofs

due to space constraints and refer to full version of the paper for those proofs.

2 Definitions and Notations

For U ⊆ V let G \ U be the induced subgraph of G on V \ U. Let S ⊆ V with |S| = k. S is a k-

separating set if G \ S is not connected. The vertices of a k-separating set are called articulation

point (or cut vertex) for k = 1, separating pair for k = 2, and separating triple for k = 3. G

is k-connected if it contains no (k − 1)-separating set, i.e. there are k vertex-disjoint paths

between any pair in G. A 1-connected graph is simply called connected and a 2-connected

graph biconnected. The connected components of G \ S are called the split components of S.

DEFINITION 1. The biconnected component tree. We define nodes for the biconnected
components and articulation points. There is an edge between a biconnected component
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node and an articulation point node if the articulation point is contained in the correspond-
ing component. The resulting graph is a tree, the biconnected component tree T B(G).

A graph is triconnected if it is either 3-connected, a cycle or a 3-bond. A k-bond is a

pair of vertices connected by k edges. A separating pair {a, b} is called 3-connected if there

are three vertex-disjoint paths between a and b. In the rest of the paper a separating pair is

always considered to be a 3-connected separating pair.

DEFINITION 2. The triconnected component tree. Define nodes for the triconnected com-
ponents and (3-connected) separating pairs for a biconnected graph G. There is an edge
between a triconnected component node and a separating pair node if the separating pair
is contained in the corresponding component. In a triconnected component, the vertices of
a separating pair are connected by a virtual edge. If a separating pair is connected in the

original graph G then there is a node for a 3-bond connected to the separating pair node.
The resulting graph is a tree, the triconnected component tree T T(G).
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Figure 1: Decomposition of biconnected component B into triconnected components, and

G2 further into four-connected components. Virtual edges are indicated by dashed lines.

There is a 3-bond connected to τ2 because {w2, w3} is an edge in G2.

For a component tree T, the size of an individual component node C of T is the number of

nodes in C. The vertices of the separating sets are counted in in every component where

they occur. The size of the tree T, denoted by |T|, is the sum of the sizes of its component

nodes. The size of T is at least as large as the number of vertices in graph(T), the graph

corresponding to the component tree T. Let TC be T when rooted at node C. A child of C is

called a large child if |TC| > |T|/2. #C denotes the number of children of C.

A graph H is a minor of a graph G if and only if H can be obtained from G by a finite

sequence of edge-removal and edge-contraction operations. A K3,3-free graph (K5-free graph)

is an undirected graph which does not contain a K3,3 (or K5) as a minor.

For two isomorphic graphs we write G ∼= H. A canon for G is a sorted list of edges with

renamed vertices f (G), such that for all graphs G, H we have G ∼= H ⇔ f (G) = f (H). We

also use canon with respect to some fixed starting edge. A code of G is the lexicographically

sorted list of edges when given an arbitrary labeling of vertices.

By L we denote the languages computable by a log-space bounded Turing machine.
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3 Decomposition into triconnected components

3.1 Decomposition of K3,3-free graphs

We consider the decomposition of biconnected K3,3-free graphs into triconnected compo-

nents. The decomposition is unique [19] and has the following form.

LEMMA 3. [3] Each triconnected component of a K3,3-free graph is either planar or exactly
the graph K5.

We state a more general result below, which is used in our decomposition:

LEMMA 4. In a simple undirected biconnected graph G, the removal of 3-connected separat-
ing pairs gives a unique decomposition, irrespective of the order in which they are removed.
This decomposition can be computed in log-space.

Miller and Ramachandran [13] showed that the triconnected component tree of a K3,3-

free graph can be computed in NC2. Thierauf and Wagner [17] describe a construction that

works in log-space. This now follows from Lemma 4:

COROLLARY 5. For a biconnected K3,3-free graph, the triconnected planar components and
K5 components can be computed in log-space.

3.2 Decomposition of K5-free graphs

We decompose the given K5-free graph into 3-connected and 4-connected components. It

follows from a theorem of Wagner [22] that besides planar components we obtain the fol-

lowing non-planar components that way:

• the four-rung Mobius ladder (also called V8), a 3-connected graph on 8 vertices, which

is non-planar because it contains a K3,3.

• The remaining 3-connected non-planar components are further decomposed into 4-

connected components which are all planar.

Khuller [9] described a decomposition of K5-free graphs with a clique-sum operation.

If two graphs G1 and G2 each contain cliques of equal size, the clique-sum of G1 and G2 is

a graph G formed from their disjoint union by identifying pairs of vertices in these two

cliques to form a single shared clique, and then possibly deleting some of the clique edges.

A k-clique-sum is a clique-sum in which both cliques have at most k vertices.

If G can be constructed by repeatedly taking k-clique-sums starting from graphs iso-

morphic to members of some graph class G, then we say G ∈ 〈G〉k. The class of K5-free

graphs can be decomposed as follows.

THEOREM 6. [22] Let C be the class of all planar graphs together with the four-rung Mobius

ladder V8. Then 〈C〉3 is the class of all graphs with no K5-minor.

Theorem 6 and the following observations lead to Corollary 7:

• If we build the 3-clique-sum of two planar graphs, then the three vertices of the joint

clique are a separating triple in the resulting graph. Hence, the 4-connected compo-

nents of a graph which is built as the 3-clique-sum of planar graphs must all be planar.
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• The V8 is non-planar and 3-connected and cannot be part of a 3-clique sum, because it

does not contain a triangle as subgraph.

COROLLARY 7.(cf. [9]) A non-planar 3-connected component of a K5-free undirected graph
is either the V8 or its 4-connected components are all planar.

Similar to the decomposition algorithm of Vazirani [20], we decompose the K5-free

graph into triconnected components. That is, we first decompose it into biconnected com-

ponents and then the biconnected components further into triconnected components.

Unique decomposition of 3-connected K5-free graphs. Let G 6= V8 be a non-planar 3-

connected component of a K5-free graph, which needs to be decomposed into 4-connected

components. The decomposition by [17] is not unique up to isomorphism. Therefore we

describe a different way of decomposition. The main idea is to decompose G at only those

separating triples which cause the non-planarity.

DEFINITION 8. Let G be a 3-connected component of a graph G∗ and let τ ⊆ V(G) be a
separating triple. Then τ is called 3-divisive if in G∗ \ τ the component G is split into at
least three connected components.

Intuitively, to see that a 3-divisive separating triple τ causes always non-planarity, col-

lapse the split components of τ to single vertices and a K3,3 is obtained. If G is not the K3,3

then we can split G at one 3-divisive separating triple and all the other 3-divisive separating

triples remain. We prove now that the K3,3 is the only special case where this is different.

DEFINITION 9. Let G be an undirected K5-free 3-connected graph. Two 3-divisive sepa-
rating triples τ 6= τ′ are conflicting if τ is no 3-divisive separating triple in a 3-connected
component of (G \ τ′) ∪ τ.

In general there are no conflicting 3-divisive separating triples except for the K3,3. This

is important to obtain a decomposition for G which is unique up to isomorphism.

LEMMA 10. Let G be an undirected and 3-connected graph. There is a conflicting pair of
3-divisive separating triples in G if and only if G is the K3,3.

The four-connected component tree. If we fix one 3-divisive separating triple as root then

we get a unique decomposition for G up to isomorphism, also if G is the K3,3. We decompose

the given graph G at 3-divisive separating triples and obtain four-connected components. Two

vertices u, v belong to a four-connected component if for all 3-divisive separating triples τ the

following is true: At least one of u, v belongs to τ or there is a path from u to v in G \ τ. Note,

a four-connected component is planar and 3-connected.

We define a graph with nodes for the four-connected components and 3-divisive sep-

arating triples. A four-connected component node is connected to a 3-divisive separating triple

node τ if the vertices of τ are also contained in the corresponding four-connected component.

The resulting graph is a tree, the four-connected component tree T F(G). This unique decom-

position can be computed in log-space, because every computation step can be queried to

the reachability problem in undirected graphs which is in log-space [15].
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THEOREM 11. A unique decomposition of a 3-connected non-planar K5-free graph (not the
V8) into four-connected components can be computed in log-space.

The triconnected component tree of K5-free graphs. From Lemma 4, it follows that the

triconnected component tree of a K5-free graph is log-space computable (also see [8, 17]).

For technical reasons we make some changes to this tree structure. Let B be a biconnected

K5-free graph with G0 a triconnected non-planar component node in T T(B). In T T(B) there

is a separating pair node s for each edge which is part of a 3-divisive separating triple in G.

In T T(B) the node s is connected to the node G. We call s a leaf separating pair of T T(B) if it

is connected to only one component node. It can be seen that the set of leaf separating pairs

can be computed in log-space.

4 Canonization of K3,3-free and K5-free graphs

4.1 Isomorphism ordering and canonization of K3,3-free graphs

We decompose K3,3-free graphs as in Section 3.1 and extend [8] for K5-components.

Isomorphism ordering for K5-components. For a K5 component we have a node in the

triconnected component tree. There are 5! ways of labeling the vertices of a K5. The first two

vertices are from the parent separating pair. There remain 2 · 3! = 12 ways of labelling the

vertices, e.g. a = 1, b = 2, c = 3, d = 4, e = 5 is one possibility to label the vertices a, b, c, d, e.

The canonical description of the graph is then (1, 2)(1, 3), (1, 4), (1, 5), (2, 1), (2, 3), . . . , (5, 4).

The canonical descriptions of all these labelings are candidates for the canon of the K5. To

keep notation short, we say code instead of candidate for a canon.

For each code, the isomorphism ordering algorithm compares two codes edge-by-edge,

thereby going into recursion at child separating pairs and comparing their subtrees. If the

subtrees are not isomorphic, the larger code is eliminated. The comparison and the elimina-

tion of codes is done similarly as for the planar triconnected components in Datta et.al. [8].

The comparison takes O(1) space on the work-tape to keep counters for the not eliminated

codes. The orientation of a K5-component given to its parent depends on the direction of

{a, b} in the codes.

CLAIM 12. Let G0 be a K5-node in a triconnected component tree and let V(G0) = {a, b, c, d, e}
and (a, b) be the parent separating pair of G0. Either all minimum remaining codes start with

(a, b) (or reverse, (b, a)) or there is an equal number of codes starting with (a, b) and (b, a).

Once we can canonize K5-components, we can use the algorithm of [8] to check the

isomorphism ordering of triconnected and biconnected component trees.

THEOREM 13. A K3,3-free graph can be canonized in log-space.

4.2 Isomorphism order of K5-free graphs

Isomorphism order of K5-free 3-connected graphs

The isomorphism order of two triconnected component trees S and T rooted at separating

pairs s = {a, b} and t = {a′ , b′} is defined the same way as for planar graphs in [8] with one
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difference. When comparing nodes of the tree we first distinguish between the new types

of nodes. We define planar triconnected components <T V8-components <T non-planar

3-connected components. The isomorphism order for planar components is as in [8] and

refine it now for the new types of non-planar components.

Isomorphism order of subtrees rooted at V8-components: Consider SGi
and THj

rooted at

V8-component nodes Gi and Hj. We construct the codes of Gi and Hj and compare them bit-

by-bit. To canonize the V8-components, we traverse it starting from the parent separating

pairs {a, b} and {a′, b′} and then traversing the components as follows. We define the codes

with help of Hamiltonian cycles of the V8-component. We define E′ to be the set of edges

which are contained in four Hamiltonian cycles.

LEMMA 14. Each directed edge of a V8 appears in two or four Hamiltonian cycles.

Basically, there are two possible traversals of each Hamiltonian cycle starting from

{a, b}, one in each direction. We define the code for Gi and the starting edge (a, b) in this

direction as follows. We distinguish the situation whether {a, b} ∈ E′ or not. We will fix

one Hamiltonian cycle starting with (a, b). We rename the vertices in that order of their first

occurrence in the fixed Hamiltonian cycle exactly in that order. The code is then the list of

edges in lexicographical order with the new labels.

Isomorphism order of the 3-connected non-planar components

Let SGi
and THj

be trees rooted at 3-connected non-planar component nodes Gi and Hj which

are different to the V8. Let s = {a, b} and t = {a′, b′} be the parent separating pairs of Gi

and Hj, respectively. We are interested in the orientation given to s and t. After this, we

discuss the comparison algorithm of Gi with Hj. We further partition Gi and Hj into their

four-connected components and consider their trees T F(Gi) and T F(Hj).

Overview of the steps in the isomorphism order.

DEFINITION 15. For a four-connected component tree T, the size of an individual compo-
nent node C of T is the number nC of vertices in C. The separating triple nodes are counted

in every component where they occur. The size of the tree T, denoted by |T|, is the sum of
the sizes of its component nodes.

The isomorphism order of two four-connected component trees S and T rooted at 3-

divisive separating triples τ and τ′ where given an order order(τ) and order(τ′) is defined

Sτ ≤F Tτ′ if:

1. |Sτ | < |Tτ′ | or

2. |Sτ | = |Tτ′ | but #τ < #τ′ or

3. |Sτ | = |Tτ′ |, #τ = #τ′ = k, but (SF1
, . . . , SFk

) <F (TF′
1
, . . . , TF′

k
) lexicographically, where

we assume that SF1
≤F . . . ≤T SFk

and TF′
1
≤T . . . ≤T TF′

k
are the ordered subtrees of Sτ

and Tτ′ , respectively. For the isomorphism order between the subtrees SFi
and TF′

i
we

compare lexicographically the codes of Fi and F′
i and recursively the subtrees rooted at

the children of Fi and F′
i . Note, that these children are again separating triple nodes.

4. |Sτ | = |Tτ′ |, #τ = #τ′ = k, (SF1
≤F . . . ≤F SFk

) =F (TF′
1
≤F . . . ≤F TF′

k
), but the follow-

ing holds. For all i, the return value from the recursion of SFi
with TF′

i
is an orientation
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graph Xi and X′
i with V(Xi) = τ and V(X′

i) = τ′ and colored edges, respectively. We

compute a reference orientation graph X and X′ from all the Xi and X′
i . We compare lex-

icographically whether X with order(τ) < X′ with order(τ′). We describe the notion of

(reference) orientation graph and order(τ) below in more detail.

We say that two four-connected component trees Sτ and Tτ′ are equal according to the

isomorphism order, denoted by Sτ =F Tτ′ , if neither Sτ <F Tτ′ nor Tτ′ <F Sτ holds.

Orientation given to the parent separating pair by a non-planar component, not the V8.

Given two non-planar 3-connected components Gi and Hj and their trees T F(Gi) and T F(Hj).

There is a set of candidates for root separating triples such that we obtain the minimum

codes when the trees are rooted at them. For the canonization algorithm, the isomorphism

ordering algorithm is used as a sub-routine. For the isomorphism ordering procedure, we

give distinct colors to the parent separating pair and the parent articulation point in the

trees. We also have colors for the child separating pairs and child articulation points, ac-

cording to their isomorphism order. We recompute these colors by interrupting the current

isomorphism ordering procedure and going into recursion at the corresponding subtrees.

Finally, we just consider the first occurrence of the parent separating pair in all the

minimum codes. If the first occurrence is (a, b) in this direction in all the codes, then Gi

gives this orientation to the parent. Similarly for (b, a). If both (a, b) and (b, a) occur first in

different minimum codes, then there is no orientation given to the parent.

Isomorphism order of four-connected component trees. We describe what is different be-

tween isomorphism ordering for four-connected and triconnected component trees in Sec-

tion 4.2 (also see [8]). Instead of separating pairs we have 3-divisive separating

τSτ

. . .

. . .. . .

. . .

τ1 τlk
τl1

S1 Slk

. . .F1 Fk

SF1
SFk

triples. In the isomorphism order algorithm for

two triconnected component trees there was one

task, where the orientations of the separating

pairs were compared. An orientation of a pair

{a, b} in a triconnected component tree T{a,b}
is the set of permutations which partially map

T{a,b} to its canon. This is a subgroup of the sym-

metric group Sym({a, b}). For a four-connected

component tree Sτ, we consider the set of per-

mutations of the triple τ = {a, b, c}. This set

contains all partial automorphisms which par-

tially map Sτ to its canon. This is a subgroup of

the symmetric group Sym({a, b, c}). Instead of

3-connected planar components we have four-connected planar components in Sτ and Tτ′ .

Isomorphism order of two subtrees rooted at four-connected component nodes. We con-

sider the isomorphism order of two subtrees SFi
and TF′

j
rooted at four-connected component

nodes Fi and F′
j , respectively. We construct the codes of Fi and F′

j and compare them bit-by-

bit. To canonize Fi, we use the log-space algorithm from [7]. Besides Fi, the algorithm gets

as input a starting edge and a combinatorial embedding ρ of Fi. There are three choices of

selecting a starting edge {a, b}, {b, c}, {a, c} and two choices for the direction of each edge,

e.g. for {a, b} we have (a, b) and (b, a). Further, a 3-connected planar graph has two planar
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combinatorial embeddings [23]. There are 12 possible ways to canonize Gi.

We start the canonization of Gi and Hj in all the possible ways and compare these codes

bit-by-bit. Let C and C′ be two codes to be compared. The base case is that Fi and F′
j are leaf

nodes and therefore contain no further virtual edges. In this case we use the lexicographic

order between C and C′. If Gi and Hj contain a virtual edge, then this belongs to a child

separating triple and is treated in a special way when comparing C and C′:
First, if a virtual edge is traversed in the codes C or C′ but not in the other, then we

define the one without the virtual edge to be the smaller code.

Second, if C and C′ encounter the virtual edges {u, v} and {u′, v′} then we consider

only the child separating triples which do not have virtual edges considered earlier in the

codes C and C′. We order these triples according to the positions of all their virtual edges

in the codes. We call this order the position-order. W.l.o.g. let τi0 (in C) and τ′
j0

(in C′) be

the separating triples which come first in this position-order. For τi0 and τ′
j0

, we will define

below the reference orientation graphs X and X′ with V(X) = τi0 and V(X′) = τ′
j0

, respectively.

For all pairs in τi0 = {u, v, w} and τ′
j0

= {u′, v′, w′} we have virtual edges in C and C′.
We compare X and X′ with respect to the ordering of these virtual edges order(τi0) and

order(τ′
j0
) in the codes C and C′, respectively. This is described below in more detail. If we

find an inequality, say X < X′ then C is defined to be the smaller code. Proceed with the next

separating triples in the position-order until we ran through all of them.

We eliminate the codes which were found to be the larger codes at least once. In the

end, the codes that are not eliminated are the minimum codes. If we have minimum codes

for both Fi and F′
j then we define SFi

=F TF′
j
. The construction of the codes also defines an

isomorphism between the subgraphs associated to SFi
and TF′

j
, i.e. graph(SFi

) ∼= graph(TF′
j
).

For a single four-connected component this follows from [7]. If the trees contain several

components, then our definition of SFi
=F TF′

j
guarantees that we can combine the isomor-

phisms of the components to an isomorphism between graph(SFi
) and graph(TF′

j
).

Finally, we define the orientation given to the parent separating triple of Fi and F′
j as follows.

• We compute an orientation graph Xi with V(Xi) = τ.

• For each pair in τ when taken as starting edge for the canonization of SFi
which leads

to a minimum code (among all the codes for these edges) we have a directed edge in

E(Xi) with color (1).

• Also for the r-th minimum codes we have a directed edge in E(Xi) with color (r), for

all 1 ≤ r ≤ 6. Here, 6 is the number of directed edges in τ.

We define a new graph Xi with V(Xi) = τ and X′
j with V(X′

j) = τ′. For each of the

remaining minimum codes we have a unique starting edge which is also contained as a di-

rected edge in Xi or X′
j, respectively. Every subtree rooted at a four-connected component

node gives an orientation graph to the parent separating triple. If the orientation is consis-

tent, then we define Sτ =F Tτ′ and show that the corresponding graphs are isomorphic.

Isomorphism order of two subtrees rooted at separating triple nodes. We consider the

subtrees SF1
, . . . , SFk

and TF′
1
, . . . , TF′

k
. We order them SF1

≤F · · · ≤F SFk
and TF′

1
≤F · · · ≤F

TF′
k
, and verify that SFi

=F TF′
i

for all i. If we find an inequality then the one with the

smallest index i defines the order between Sτ and Tτ′ . For all i, assume now that SFi
=F
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TF′
i

and, inductively, the corresponding split components are isomorphic, i.e. graph(SFi
) ∼=

graph(TF′
i
). The next comparison concerns the orientation of τ and τ′. We already explained

above the orientation given by each of the SFi
’s to τ. We define a reference orientation for the

root nodes τ and τ′ which is given by their children. This is done as follows. We partition

(SF1
, . . . , SFk

) into classes of isomorphic subtrees, say I1 <F . . . <F Ip for some p ≤ k, and

similarly we partition (TF′
1
, . . . , TF′

k
) into I ′1 <F . . . <F I ′p. It follows that Ij and I ′j contain the

same number of subtrees for every j.

Consider the orientation given to τ by an isomorphism class Ij: For each child Fi which

belongs to Ij we compute an orientation graph Xi with vertices V(Xi) = τ. The orientation

graph is defined as above but with the following changes. Instead of colors (1), . . . , (6) we

have the colors (j, 1), . . . , (j, 6) for the edges. The reference orientation given to τ is defined

as follows. We define the orientation graph X with vertices V(X) = τ and edges E(X) =⋃
1≤i≤k E(Xi) the disjoint union of the edges of the orientation graphs from all children of τ.

Thus, X has multiple edges. We call X the reference orientation graph for τ.

Comparison of two orientation graphs. For τ and τ′, the isomorphism ordering algorithm

compares X and X′ for isomorphism. Assume now τ and τ′ have isomorphic subtrees and

the nodes F and F′ as parents. In this situation we return from recursion with =F and give

the orientation graphs X and X′ to the parent. We went into recursion because the virtual

edges of τ and τ′ appeared in the same positions in the codes of the parent. In these codes,

we have a complete ordering on the vertices of τ and τ′. Let V(X) = {u, v, w} and let

order(τ) = u < v < w be an ordering of τ. We compute a list of counters for (X, order(τ)):

• We order the edges of X according to the order of their vertices, lexicographically. That

is, (u, v) < (u, w) < (v, u) < (v, w) < (w, u) < (w, v).

• Among directed edges with the same ends, we order them according to their color.

That is, an edge with color (i1, i2) comes before an edge with color (j1, j2) if (i1, i2) <

(j1, j2) lexicographically.

• We define a counter for the number of edges with the same ends and the same color.

For the edge (u, v) we have the counters c(u,v),1, . . . , c(u,v),6p. Note, we have at most 6p

colors because there are 6 colors for edges from orientation graphs of one isomorphism

class and there are p isomorphism classes.

• We order the counters according to the order of the edges. That is, we have a list of

counters L(X, order(τ)) = (c(u,v),1, c(u,v),2, . . . , c(u,v),6p, . . . , c(w,v),1, . . . , c(w,v),6p).

Note, among isomorphic graphs, there must be edges having the same color up to a

permutation of them. Counting the colored edges allows to combine the orientations of all

isomorphic subtrees. Note, if an orientation graph Xi for τ has two equal colored edges

then there is an automorphism that maps the one edge to the other same colored edge in

τ. The permutation of one edge completely fixes the whole automorphism of τ. Hence,

also when counting the edges from different orientation graphs X1 and X2, if w.l.o.g. there

are the edges (u, v) with colors 1 and 2 then the mapping of (u, v) to other edges com-

pletely fixes the whole automorphism among τ and whether X1 and X2 are swapped. With

an inductive argument, this can be generalized to the whole orientation graph X. Let X′

be the corresponding reference orientation graph for τ′. We define the isomorphism order

(X, order(τ)) < (X′, order(τ′)) exactly when L(X, order(τ)) < L(X′, order(τ′)) lexicographi-

cally. The preceding discussion leads to the following theorem.
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THEOREM 16. The 3-connected non-planar graphs G and H which contained 3-divisive
separating triples are isomorphic if and only if there is a choice of separating triples τ, τ′

in G and H such that Sτ =F Tτ′ when rooted at τ and τ′, respectively.

4.3 Complexity of the isomorphism order algorithm and canonization

For a log-space implementation, there are two tasks: We limit the number of choices for roots

of triconnected and four-connected component trees, and ensure that nothing is stored on

the work-tape while recursing on a large child. For the first task, we modify the algorithm of

[8] to accommodate non-planar 3-connected components. The two root finding procedures

are interdependent. We bound the number of roots for the four-connected component tree

with respect to the number of child separating pairs and child articulation points of tri- and

biconnected subtrees. The algorithm is based on an intricate case analysis which has to be

extended to work with respect to the three tree structures.

For the second task, we extend the ideas from [8], because for the analysis of large

children we consider the bi- tri- and four-connected component trees simultaneously. In the

trees, the recursion goes from depth d to d + 2 and large children are handled a priori at any

level.For the space requirement of our algorithm we get:

S(N) = maxj S
(

N
k j

)
+ O(log kj),

where kj ≥ 2 (for all j) is the number of bi-, tri- or four-connected subtrees having the

same size. Hence, S(N) = O(log N). It is helpful to imagine that we have three work-

tapes, which are used when we go into recursion at articulation point nodes, separating

pair nodes, and separating triple nodes respectively. We canonize K5-free graphs exactly

the same way as planar graphs. Thus we get

THEOREM 17. The isomorphism order between two K5-free graphs can be computed in
log-space. The canonization of K5-free graphs can be done in log-space.
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[4] László Babai and Eugene M. Luks. Canonical labeling of graphs. In Proceedings of the

15th annual ACM symposium on Theory of computing (STOC), 1983.

[5] R. B. Boppana, J. Hastad, and S. Zachos. Does co-NP have short interactive proofs?

Information Processing Letters, 25(2), 1987.

[6] Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Information

and Control, 64(1-3), 1985.



156 ISOMORPHISM OF K3,3-FREE AND K5-FREE GRAPHS IN L

[7] Samir Datta, Nutan Limaye, and Prajakta Nimbhorkar. 3-connected planar graph iso-

morphism is in log-space. In Proceedings of the 28th annual Conference on Foundations of

Software Technology and Theoretical Computer Science (FSTTCS), 2008.

[8] Samir Datta, Nutan Limaye, Prajakta Nimbhorkar, Thomas Thierauf, and Fabian Wag-

ner. Planar graph isomorphism is in log-space. Technical Report TR09-052, Electronic

Colloquium on Computational Complexity (ECCC), 2009.

[9] Samir Khuller. Parallel algorithms for K5-minor free graphs. Technical Report TR88-

909, Cornell University, Computer Science Department, 1988.
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ABSTRACT. We investigate the parameterized complexity of generalisations and variations of the
dominating set problem on classes of graphs that are nowhere dense. In particular, we show that
the distance-d dominating-set problem, also known as the (k, d)-centres problem, is fixed-parameter
tractable on any class that is nowhere dense and closed under induced subgraphs. This generalises
known results about the dominating set problem on H-minor free classes, classes with locally ex-
cluded minors and classes of graphs of bounded expansion. A key feature of our proof is that it is
based simply on the fact that these graph classes are uniformly quasi-wide, and does not rely on a
structural decomposition. Our result also establishes that the distance-d dominating-set problem is
FPT on classes of bounded expansion, answering a question of Nešetřil and Ossona de Mendez.

1 Introduction

The dominating-set problem is among the most well-studied problems in algorithmic graph
theory and complexity theory. Given a graph G and an integer k, we are asked to determine
whether G contains a set X of at most k vertices such that every vertex of G is either in X or
adjacent to a vertex in X. This is a classical NP-complete problem that has been intensively
studied from the point of view of approximation algorithms and fixed-parameter tractabil-
ity. A number of generalisations and variations of the dominating set problem have also
been studied in this context. In particular, the distance-d dominating-set problem is one where
we are given a graph G and integer parameters d and k and we are to determine whether G
contains a set X of at most k vertices such that every vertex in G has distance at most d to
a vertex in X. This problem, also known as the (k, d)-centre problem, has for instance been
studied in [5] in connection with network centres and other clustering problems (see the
references in [10]). It is clear that in the case d = 1, this is just the dominating set problem.
A number of other domination problems are considered in Section 5.

We are interested in investigating these problems from the point of view of fixed-
parameter tractability. That is we are interested in algorithms for these problems that run in
time f (k) · nc (or f (k + d) · nc in the case of the distance-d dominating-set problem) where
n is the order of the graph G, c is independent of the parameters k and d and f is any com-
putable function. Such algorithms are unlikely to exist in general, since the dominating-set
problem is W[2]-complete (see [13, 15] for a general introduction to parameterized complex-
ity, including definitions of FPT and W[2]). However, if we restrict the class of graphs under

c� Dawar, Kreutzer; licensed under Creative Commons License-NC-ND.
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consideration, we can obtain efficient algorithms in the sense of fixed-parameter tractabil-
ity, even though the problem remains NP-complete on the restricted class. We are interested
in knowing how general we can make our graph classes while retaining fixed-parameter
tractability. In this paper, we push the tractability frontier forward by showing that the
distance-d dominating-set problem as well as a number of other domination problems, are
FPT on nowhere-dense classes of graphs. This generalises known results about the dominat-
ing set problem on H-minor free graphs, classes of graphs of bounded expansion and classes
with locally excluded minors. Moreover, while the latter results relied heavily on graph struc-
ture theory, our proof depends on a simple combinatorial property of nowhere-dense classes
and thus affords a great simplification to the proof. In the sequel, we will use the term effi-
cient algorithm always to mean efficient in the sense of fixed-parameter tractability.

Classes on which efficient algorithms have previously been obtained for the dominat-
ing set problem include planar graphs where an algorithm with running time O(8kn)-time
is given in [2] and graphs of genus g, where an O((4g + 40)kn2)-time algorithm is given
in [14]. Improvements to the algorithms on planar graphs have subsequently been made,
to O(4

6√34kn) in [1], to O(227
√

kn) in [18] and to O(215.13
√

kk + n3 + k4) in [16]. Efficient al-
gorithms for distance-d dominating sets are also known for planar graphs and map-graphs
[10]. For the dominating set problem, efficient algorithms were shown for H-minor free
graphs in [11]. The latter generalises the result for classes of graphs of bounded genus. More
recently, Alon and Gutner gave a linear time parameterized algorithm for dominating sets
on d-degenerate graphs running in time kO(dk)n [3]. This is a further generalisation beyond
H-minor-free classes. Another generalisation is obtained by Philip et al. [23] who show that
the problem is fixed-parameter tractable on graphs that exclude Ki,j as a subgraph. It should
be noted that while all other classes mentioned above also admit an efficient algorithm for
the distance-d dominating-set problem, this is not the case for classes of degenerate graphs.
Indeed, this problem is W[2]-hard, already on the class of 2-degenerate graphs [17].

Other generalisations of H-minor free classes that have been considered in the liter-
ature are classes with locally excluded minors [9] and classes of bounded expansion [20].
For the former, it follows from [9] that the distance-d dominating-set problem is FPT. This
is because the problem can be specified by a first-order formula (depending on d and k),
and any property so specified is FPT on classes that locally exclude a minor. For classes
of bounded expansion, Nešetřil and Ossona de Mendez [22] show that the dominating
set problem is solvable in fixed-parameter linear time, while the question of whether the
distance-d dominating-set problem is FPT on such classes is left open. Indeed, they point
out that their method cannot be used to show that the distance-2 dominating-set problem is
FPT on classes of bounded expansion. Our result settles this question as it implies the exis-
tence of an efficient algorithm for distance-d dominating-set on bounded-expansion classes.

Our main results concern classes of graphs that are nowhere dense. This is a concept in-
troduced by Nešetřil and Ossona de Mendez [19, 21] that generalises both locally excluded
minors and bounded expansion in the sense that any class of graphs that either locally ex-
cludes a minor or has bounded expansion is also nowhere dense. Nešetřil and Ossona de
Mendez show that nowhere-dense classes can be characterised by the property of being
uniformly quasi-wide (see Section 2 for the defintions). The latter is a property introduced by
Dawar [7, 8] in the study of preservation theorems in finite model theory. In the present pa-
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per we show that this property is by itself sufficient to establish that a class of graphs admits
an efficient parameterized algorithm for distance-d dominating set. The great advantage
here is that this is a combinatorial property that is easy to state and yields a transparently
simple algorithm. This should be contrasted with the algorithms [10, 11] on H-minor free
graphs that heavily rely on graph structure theory.

We begin by establishing some basic terminology and notation in Section 2, and intro-
duce nowhere-dense classes and uniformly quasi-wide classes of graphs. In Section 3 we
examine the relationship between these two notions and extract the algorithmic content of
the equivalence between them. This allows us, in Section 4, to exhibit an efficient parame-
terized algorithm for the distance-d dominating set problem on nowhere dense classes. In
Section 5, we explain how the same ideas can be carried over to a number of other parame-
terized problems that are defined in terms of domination in graphs.

2 Preliminaries

For a graph G and vertices u, v ∈ V(G), we write distG(u, v) for the distance (i.e. the length
of the shortest path) from u to v. We write NG

d (v) for the d-neighbourhood of v, i.e. the set of
vertices u in V(G) with distG(u, v) ≤ d. Where the meaning is clear from context, we drop
the superscript G. For positive integers i < j, we write [i, j] for the set {k : i ≤ k ≤ j}.

For a graph G and a set of vertices X ⊆ V(G), we write G− X for G[V(G) \ X], i.e. the
subgraph of G induced by the vertices V(G) \ X.

DEFINITION 1. Let G be a graph and d ∈ N.
1. A set X ⊆ V(G) is d-scattered if for u �= v ∈ X, Nd(u) ∩ Nd(v) = ∅.
2. A set X ⊆ V(G) d-dominates a set W ⊆ V(G) if for all u ∈ W there is a v ∈ X such

that u ∈ Nd(v).
3. A set X ⊆ V(G) is a d-dominating set if it d-dominates V(G).

We say that a graph H is a minor of G (written H � G) if H can be obtained from a
subgraph of G by contracting edges. An equivalent characterization (see [12]) states that H
is a minor of G if there is a map that associates to each vertex v of H a non-empty connected
subgraph Gv of G such that Gu and Gv are disjoint for u �= v and whenever there is an edge
between u and v in H there is an edge in G between some node in Gu and some node in Gv.
The subgraphs Gv are called branch sets.

We say that H is a minor at depth r of G (and write H �r G) if H is a minor of G and this
is witnessed by a collection of branch sets {Gv | v ∈ V(H)}, each of which induces a graph
of radius at most r. That is, for each v ∈ V(H), there is a w ∈ V(Gv) such that Gv ⊆ NGv

r (w).
The definition of nowhere-dense classes is due to Nešetřil and Ossona de Mendez [19,

21]. We are particularly interested in classes where the excluded minors are computable and
for this purpose we introduce the notion of effectively nowhere-dense classes.

DEFINITION 2.[nowhere dense classes] A class of graphs C is said to be nowhere dense if
for every r ≥ 0 there is a graph Hr such that Hr ��r G for all G ∈ C. We say C is effectively
nowhere dense if the map r �→ Hr is computable.

It is immediate from the definition that if C excludes a minor then it is nowhere dense.
It is also not difficult to show that classes of bounded expansion and classes that locally
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exclude minors are also nowhere dense. Nešetřil and Ossona de Mendez [19] show an in-
teresting relationship between nowhere dense classes and a property of classes of structures
introduced by Dawar [7, 8] called quasi-wideness. Again, we are interested in effective ver-
sions of this concept.

DEFINITION 3.[quasi-wide classes] Let s : N → N be a function. A class C of graphs is
quasi-wide with margin s if for all r ≥ 0 and m ≥ 0 there exists an N ≥ 0 such that if
G ∈ C and |G| > N then there is a set S ⊆ V(G) with |S| < s(r) such that G− S contains an
r-scattered set of size at least m.

We say that C is quasi-wide if there is some s such that C is quasi-wide with margin s.
We say that C is effectively quasi-wide if s and N(r, m) are computable.

We occasionally refer to a set S as in the above definition as a bottleneck of G.
It turns out that if C is closed under taking induced subgraphs, then it is nowhere dense

if, and only if, it is quasi-wide. For such classes, quasi-wideness is equivalent to the notion
of uniform quasi-wideness defined below, which is the notion we will use in the present
paper.

DEFINITION 4.[uniformly quasi-wide classes] A class C of graphs is uniformly quasi-wide
with margin s if for all r ≥ 0 and all m ≥ 0 there exists an N ≥ 0 such that if G ∈ C and
W ⊆ V(G) with |W| > N then there is a set S ⊆ V(G) with |S| < s(r) such that W contains
an r-scattered set of size at least m in G − S. C is effectively uniformly quasi-wide if s and
N(r, m) are computable.

We often write sC for the margin of the class C, and NC(r, m) for the value of N it guar-
antees for this class. We are only interested in classes C for which these functions are com-
putable, and we tacitly make this assumption from now on. We can now state the equiva-
lence of the two central notions.

THEOREM 5.[19] Any class C of graphs that is closed under taking induced subgraphs is
quasi-wide if, and only if, it is nowhere dense.

In Section 3, we will exhibit the algorithmic content of this equivalence by showing that
in any nowhere-dense class, there is an efficient (in the sense of fixed-parameter tractability)
algorithm that can find the bottleneck S and the scattered set induced by its removal. In
particular this implies that a class C closed under subgraphs is effectively nowhere dense if,
and only if, it is effectively quasi-wide. We end this section with some examples of quasi-
wide classes.

EXAMPLE 6.
1. Bounded-degree graphs. The class of graphs Dd of valence at most d is quasi-wide

with margin 1 and NDd(r, m) = (d− 1)r + d + 1.
2. H-minor free graphs. The class of graphs excluding H as a minor is quasi-wide with

margin |H|− 1.

3 Computing Bottlenecks and Scattered Sets

In this section, our aim is to extract the computational content of Theorem 5 stating the
equivalence between nowhere dense classes and uniformly quasi-wide classes. In particu-
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lar, we show that in any nowhere dense class C, we can efficiently extract bottlenecks and
scattered sets in any graph.

The first step is to show that in any uniformly quasi-wide class with margin s, we can
compute, from s(r) and NC , a bound on the order of the graphs that are excluded as minors
of depth r.

LEMMA 7. If C is a uniformly quasi-wide class with margin s and h > NC(r + 1, s(r + 1)+ 1),
then Kh ��r G for any G ∈ C.

PROOF. Suppose, for contradiction, that Kh �r G and let u1, . . . , uh be such that the neigh-
bourhoods NG

r (ui) contain branch sets G1, . . . , Gh witnessing this. Then, by the choice of h
and the definition of quasi-wideness, there is a set S ⊆ V(G) with |S| < s(r + 1) such that
{u1, . . . , uh} contains an r + 1-scattered set A of size s(r + 1) + 1 in G − S. Thus, since the
branch sets are pairwise disjoint, there must be two distinct vertices ui, uj ∈ A such that
S ∩ Gi = S ∩ Gj = ∅. There is an edge between some vertex in Gi and some vertex in Gj
(since they are branch sets witnessing Kh �r G). We thus have that Nr+1(ui)∩Nr+1(uj) �= ∅
even in G− S, contradicting the fact that A is r + 1-scattered.

The other direction is based on the following theorem, stated in [8], though the proof is
extracted from that of a weaker statement proved in [4].

THEOREM 8.[8] For any h, r, m ≥ 0 there is an N ≥ 0 such that if G is a graph with more
than N vertices then

1. either Kh �r+1 G; or
2. there is a set S ⊆ V(G) with |S| ≤ h− 2 such that G− S contains an r-scattered set of

size m.

Indeed, the bound N is computable as a function of h, r and m. To be precise, let R be
the function guaranteed by Ramsey’s theorem so that for any set A with |A| > R(x, y, z)
any colouring of the y-tuples from A with x distinct colours yields a homogeneous subset of
size at least z. Let bh(x) = R(h + 1, h, (h− 2)(x + 1)) and let ch(x) = R(2, 2, bh−2

h (x)) where
bi

h(x) denotes the function bh iterated i times. Then, it follows from the construction in [4]
that taking N(h, r, m) = cr

h(m) (i.e. ch iterated r times) suffices for the proof of Theorem 8.
It follows from the above that if C is a nowhere-dense class of graphs with a computable

function h such that Kh(r) ��r G for any G ∈ C, then C is quasi-wide with computable margin
s and a computable function NC . We now show that in this case, we can compute rather
more. That is, given a graph G ∈ C and a set W ⊆ V(G) with |W| > N(h(r), r, m), we
can find, in time O(|G|2), a set S and a subset A ⊆ W of at least m elements so that in
G − S, A is r-scattered. This is formalised in the lemma below, which relies on extracting
the algorithmic content of the proofs in [4].

LEMMA 9. Let C be a nowhere-dense class of graphs and h be the function such that Kh(r) ��r

G for all G ∈ C. The following problem is solvable in time O(|G|2).

Input: G ∈ C, r, m ∈ N, W ⊆ V(G) with |W| > N(h(r), r, m)
Problem: compute a set S ⊆ V(G), |S| ≤ h(r)− 2 and a set A ⊆ W

with |A| ≥ m, such that in G− S, A is r-scattered.
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PROOF. In what follows, we write h for h(r) and N for N(h, r, m). The proof constructs
sequences of sets of vertices W0 ⊇ W1 ⊇ · · · ⊇ Wr and S0 ⊆ S1 ⊆ · · · ⊆ Sr = S such that for
all i,

1. |Si| < h− 1
2. Wi is i-scattered in G− Si
3. cr−i

h (m) < |Wi|

4. for all v ∈ Si and u ∈ Wi there is a w ∈ NG−Si
i (u) such that {v, w} ∈ E(G).

For i = 0, we take S0 = ∅ and W0 = W. It is clear that all four conditions are sat-
isfied. Suppose that Si and Wi have been constructed. We define a graph G� on the set
of vertices Wi by putting an edge between u and v if there is an edge in E(G) between
some vertex in NG−Si

i (u) and NG−Si
i (v). Since Kh ��i G, G� cannot contain a h-clique and

thus as |Wi| > cr−i
h (m) = R(2, 2, bh−2

h (cr−(i+1)
h (m))), G� contains an independent set I with

|I| > bh−2
h (cr−(i+1)

h (m)), which can be found by a greedy algorithm. Note that G� can be
constructed from G in linear time, thus I is found in quadratic time.

The proof of Lemma 5.2 in [4] then guarantees that as long as Kh ��i+1 G we can
find Wi+1 ⊆ I and Si+1 satisfying the four conditions above. This is because the condi-
tion Kh ��i+1 G guarantees that there is a (possibly empty) set of vertices Z in G − Si with
|Si ∪Z| < h− 1 and a set J ⊆ I with |J| > cr−(i+1)

h (m) such that NG−Si
i+1 (u)∩NG−Si

i+1 (v) = Z for
each u, v ∈ J. Moreover, the choice of size bounds ensures that Z can be found by a greedy
algorithm. We start by taking Z0 := ∅ and I0 := I. Once Zj has been constructed (for
j < h− 2), we check if there is a vertex z such that there are more than bh−2−j

h (cr−(i+1)
h (m))

elements v ∈ Ij such that z ∈ NG−(Si∪Zj)
i+1 (v). If there is, we take Ij+1 to be the set of such

elements v and Zj+1 := Zj ∪ {z}. This process is guaranteed to halt within at most h − 2
steps, at which point a greedy algorithm can find a set J with at least cr−(i+1)

h (m) vertices

with NG−(Si∪Zj)
i+1 (u) ∩ NG−(Si∪Zj)

i+1 (v) = ∅, as otherwise we will have found Kh as a minor of
G at depth i + 1. Thus, we take Si+1 = Si ∪ Z and Wi+1 = J to satisfy the four conditions
above.

The algorithm for distance-d dominating set we present in Section 4 below makes re-
peated use of the procedure defined above to recursively reduce the problem of finding a
distance-d-dominating set of size k in a graph down to the size N := NC(d, (k + 2)(d + 1)s),
at which point an exhaustive search is performed. The running time of the algorithm is thus
exponential in N (which only depends on the parameters), and cubic in |G|. On the other
hand, the exact parameter dependence of the algorithm depends on the function h, which
is determined by the class of structures C. However, even for simple classes C, where h is
linear, or constant, N may be a rather fast-growing function of k and d, as it is defined in
terms of iterations of the Ramsey function R. On the other hand, as we saw in Example 6,
there are quasi-wide classes, such as classes of graphs of bounded degree, where N can be
bounded by a simple exponential.

The property of being quasi-wide can be seen as stating the existence of weak separa-
tors. Recall that a set S is a separator of a set of vertices W in a graph G if in the graph G− S,
W is split into non-empty disjoint parts with no path between them. It is known, for in-
stance, that if G is a graph of treewidth at most h, for any set W of vertices, we can find a sep-
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arator S of W with |S| ≤ h + 1. Now, nowhere-dense graphs are a generalisation of classes
of H-minor free graphs which include, in particular, classes of bounded treewidth. While
we cannot hope for the separator property of the form that holds on bounded treewidth
classes to hold in nowhere-dense classes, uniform quasi-wideness does show us that we can
find a small set S that splits W into parts so that there are no short paths between them.

4 Distance-d-Dominating Set

In this section, we show that the distance-d-dominating set problem is fixed-parameter
tractable on any nowhere-dense class C of graphs, with parameter d + k. Throughout the
remainder of this section, fix a class C that is uniformly quasi-wide with margin sC and let
NC(r, m) be as in Definition 4.

We consider a more general form of the problem. We are given a graph G and a set
W ⊆ V(G) of vertices and we are asked to determine whether there is a set X in G of at
most k vertices that d-dominates W. We begin with the observation that this problem, when
parameterized by k, d and the size of W is FPT on the class of all graphs.

LEMMA 10. The following problem is fixed parameter tractable.

Input: A graph G, W ⊆ V(G), k, d ≥ 0
Parameter: k + d + |W|

Problem: Are there x1, . . . , xk ∈ V(G) such that W ⊆
�

i Nd(xi)?

PROOF. Consider any partition of W into k sets W1, . . . , Wk. For each i ∈ [1, k], define the
set Xi :=

�
w∈Wi

Nd(w). That is, Xi is the set of vertices that individually d-dominate the set
Wi. Now, if each Xi is non-empty, then we can find the dominating set we are looking for
by choosing xi to be any element of Xi. Conversely, any set {x1, . . . , xk} that d-dominates W
determines a partition W1, . . . , Wk such that xi ∈ Xi.

The algorithm proceeds by considering each partition of W into k sets in turn (note that
the number of such partitions is less than k|W|). For each partition, we compute the sets Xi
by computing Nd(w) for each w ∈ W and taking appropriate intersections. This takes time
O(d · |W| · |G|). The total running time is therefore O(d · |W| · k|W| · |G|)

Now we want to consider the case where the size of W is not part of the parameter, but
G is chosen from the nowhere-dense class C. We show that in this case, we can find a set
W � ⊆ W whose size is bounded by a function of the parameters k and d such that G contains
a set of size k that d-dominates W if, and only if, it contains such a set that d-dominates W �.
This will then allow us to use Lemma 10 to get the desired result.

For now, fix k and d, and let s := sC(d) and N := NC(d, (k + 2)(d + 1)s). That is, for
any G ∈ C and W ⊆ V(G) with |W| > N, we can find S ⊆ V(G) and A ⊆ W such that
|S| ≤ s, |A| ≥ (k + 2)(d + 1)s and A is d-scattered in G− S. We claim that, in this case, we
can efficiently find an element a ∈ A such that G contains a set of size k that d-dominates W
if, and only if, there is such a set that d-dominates W \ {a}. We formalise this statement in
the lemma below.
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LEMMA 11. There is an algorithm, running in time f (k, d)|G|2 for some computable function
f , that given G ∈ C and W ⊆ V(G) with |W| > N returns a vertex w ∈ W such that for any
set X ⊆ V(G) with |X| ≤ k, X d-dominates W if, and only if, X d-dominates W \ {w}.

PROOF. By Lemma 9, we can find, in time O(|G|2), S ⊆ V(G) and A ⊆ W such that
|S| ≤ s, |A| ≥ (k + 2)(d + 1)s and A is d-scattered in G − S. Let S = {t1, . . . , ts} and,
for each a ∈ A, we compute the distance vector va = (v1, . . . , vs) where vi = dist(a, ti) if
this distance is at most d and vi = ∞ otherwise. Note that there are, by construction, at
most (d + 1)s distinct distance vectors. Since |A| ≥ (k + 2)(d + 1)s, there are k + 2 distinct
elements a1, . . . , ak+2 ∈ A which have the same distance vector. We claim that taking w := a1
satisfies the lemma.

CLAIM 12. For any set X ⊆ V(G) with |X| ≤ k, X d-dominates W if, and only if, X d-
dominates W \ {a1}.

The direction from left to right is obvious. Now, suppose X d-dominates W \ {a1}.
Consider the sets Ai := NG−S

d (ai) for i ∈ [2, k + 2]. These sets are, by construction, mutually
disjoint. Since there are k + 1 of them, at least one, say Aj, does not contain any element of
X. However, since aj ∈ W \ {a1} there is a path of length at most d from some element x in
X to aj. This path must, therefore, go through an element of S. Since va1 = vaj , we conclude
that there is also a path of length at most d from x to a1 and therefore X d-dominates W.

For the complexity bounds, note that all the distance vectors can be computed in time
O(|S| · |A| · |G|). This is f (k, d)|G| for a computable f . Adding this to the O(|G|2) time to
find S and A gives us the required bound.

We now state the main result of this section.

THEOREM 13. The following is fixed-parameter tractable for any effectively nowhere-dense
class C of graphs.

DISTANCE-d-DOMINATING SET
Input: A graph G ∈ C, W ⊆ V(G), k, d ≥ 0

Parameter: k + d
Problem: Determine whether there is a set X ⊆ V(G) of k ver-

tices which d-dominates W.

PROOF. The algorithm proceeds as follows. Compute s := sC(d) and N := NC(d, (k +
2)(d + 1)s). As long as |W| > N, use the procedure from Lemma 11 to choose an element
w ∈ W that may be removed. Once |W| ≤ N, use the procedure from Lemma 10 to deter-
mine whether the required dominating set exists.

This concludes the proof of Theorem 13. The following corollaries are immediate.

COROLLARY 14. The dominating set problem is fixed-parameter tractable on any effectively
nowhere-dense class.

This generalises the known results for the dominating set problem on classes of bounded
expansion and classes that locally exclude a minor. This corollary is also obtained as a con-
sequence of a result in [23].
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COROLLARY 15. The distance-d dominating set problem is fixed-parameter tractable with
parameter k + d on any class of graphs of bounded expansion, where k is the size of the
solution.

This answers a question of Nešetřil and Ossona de Mendez who show that the domi-
nating set problem is fixed-parameter tractable on such classes and ask whether the same
could be true for the distance-2 dominating set problem.

5 Other Domination Problems

Among problems that are fixed-parameter intractable, dominating set and its variants play
an important role. For instance, in the Compendium of Parameterized Problems [6], a num-
ber of problems are given which are known to be hard in general, but tractable on planar
graphs. Virtually all of them are variations on the theme of finding dominating sets. In
this section we show that all of these problems and, in many cases, their harder “distance-
d” versions remain fixed-parameter tractable on nowhere-dense classes of graphs, which
greatly generalises the results on planar graphs. We refer to [6] for formal definitions of the
problems below and references to the literature where they were first studied.

The first type of problems we look at are dominating set problems with additional re-
quirements for connectivity, such as CONNECTED DOMINATING SET where we are to com-
pute a dominating set which induces a connected sub-graph. We study its generalisation to
d-domination defined as follows.

CONNECTED DISTANCE-d-DOMINATING SET
Input: Graph G, k, d ∈ N

Parameter: k + d
Problem: Is there a subset X ⊆ V(G) with |X| = k such that X d-dominates G and G[X]

is connected?

We are able to show that this problem is FPT on nowhere-dense classes of graphs by
adapting the proof of Lemma 10 to show that the following problem is FPT.

Input: A graph G, W ⊆ V(G), k, d ≥ 0
Parameter: k + d + |W|

Problem: Are there x1, . . . , xk ∈ V(G) such that W ⊆
�

i Nd(xi) and
G[x1, . . . , xk] is connected?

Similar methods can be used to show that the problem d-CONNECTED DISTANCE-d-
DOMINATING SET is FPT on nowhere-dense classes. This is the problem of deciding if there
is a d-dominating set X of k vertices which is d-connected. A set is said to be d-connected in
a graph G if it induces a connected subgraph in the graph Gd obtained from G by putting an
edge between any two vertices that have distance at most d in G. The same method shows
that EFFICIENT DOMINATING SET is in FPT on nowhere-dense graph classes.

EFFICIENT d-DOMINATING SET
Input: Graph G, k, d ∈ N

Parameter: k + d
Problem: Is there a subset X ⊆ V(G) with |X| = k such that X is a d-dominating set

and, in addition, all pairs x �= y ∈ X have distance at least 2d + 1?
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Further variations of domination problems studied in the literature are ANNOTATED DOM-
INATING SET and RED-BLUE DOMINATING SET. Annotated domination means that we are
given a graph G and W ⊆ V(G) and want to find a set dominating W. The distance-d-
version of this problem is what is solved by Theorem 13. Red-Blue Domination means that
we are given a graph G whose vertex set is partitioned into blue and red vertices and we
want to dominate the blue vertices using red vertices only. Again its distance-d version can
be solved by the methods presented in Section 4.

Finally, we look at problems such as ROMAN DOMINATION, MAXIMUM MINIMAL DOM-
INATING SET, PERFECT CODE and DIGRAPH KERNEL. If we are not interested in their
distance-d-version than an even simpler algorithm than the one presented above can be
used to show that these problems are in FPT on nowhere-dense classes of graphs, which we
demonstrate using the ROMAN DOMINATION problem.

ROMAN DOMINATION
Input: Graph G, k ∈ N

Parameter: k
Problem: Is there a Roman domination function R such that ∑v∈V(G) R(v) ≤ k?

A Roman domination of G is a function R : V(G) → {0, 1, 2} such that for all v ∈ V(G)
if R(v) = 0 then there exists an x ∈ N(v) such that R(x) = 2. To solve the problem on
nowhere-dense classes of graphs we first compute a set S ⊆ G such that G \ S contains a 2-
scattered set A of size 2k + 1. Clearly, for at least k + 1 vertices v ∈ A we must have R(v) = 0
and hence one of their neighbours must be labelled by 2. However, this implies that at least
one vertex in S must be labelled by 2. As |S| only depends on the parameter we can use this
to define a recursive procedure whose depth and width only depend on the parameter.

The following theorem sums up what we have established so far. It is easily seen
that INDEPENDENT SET and INDEPENDENT DOMINATING SET are FPT on nowhere-dense
classes and our procedures presented before readily solve the problems. We refer to [6] for
precise definitions of the problems.

THEOREM 16. The following problems are fixed-parameter tractable on effectively nowhere-
dense classes of graphs: CONNECTED DOMINATING SET, CONNECTED d-DOMINATING
SET, c-CONNECTED d-DOMINATING SET, ANNOTATED d-DOMINATING SET, EFFICIENT d-
DOMINATING SET, MAXIMUM MINIMAL DOMINATING SET, ROMAN DOMINATION, RED-
BLUE DOMINATING SET, INDEPENDENT SET, INDEPENDENT DOMINATING SET, PERFECT
CODE, and DIGRAPH KERNEL.

These examples show that the distance-d-dominating set problem that we showed is
tractable on nowhere-dense graph classes is actually representative of a whole class of sim-
ilar problems which become tractable in this case. Several of these are known to be in-
tractable on graph classes of bounded degeneracy. To give an example of a problem which
remains hard on nowhere-dense classes, consider the DIRECTED DISJOINT PATHS problem.

DIRECTED DISJOINT PATHS
Input: Directed graph G, pairs (s1, t1), . . . , (sk, tk) ∈ V(G)2

Parameter: k
Problem: Does G contain k vertex disjoint paths P1, . . . , Pk such that Pi links si and ti?
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This is known to be W[1]-hard even on acyclic digraphs and it is easy to see that it can be
reduced to the directed disjoint paths problem on graphs of degree at most 4 as follows. Let
G be a digraph and let v ∈ V(G) be a vertex with in-neighbours u1, . . . , ul where l > 1. Let
T be a directed rooted tree of degree at most 3 which has l leaves and where all edges are
oriented towards the root. Now eliminate all incoming edges to v and add the tree T to G
identifying v with the root of T and u1, . . . , ul with the leaves of T. A similar procedure is
used to eliminate outgoing edges of v. Applying this to all vertices in G yields a graph G� of
degree at most 4 but which has k disjoint paths between the pairs (s1, t1), . . . , (sk, tk) if, and
only if, such paths exist in G. Since the class of graphs of degree at most 4 is nowhere dense,
this shows the problem is hard on such classes as in the general case.

6 Conclusion and Further Work

The aim of the paper is to initiate an algorithmic study of graph classes which are nowhere
dense. The examples above, including the dominating set problem and the more gen-
eral distance-d dominating set, or (k, d)-centre, problem, demonstrate that a certain class
of important algorithmic problems become fixed-parameter tractable on classes which are
nowhere dense. One of the main advantages of these results over known algorithms for
these problems on classes excluding a fixed minor is that our algorithms are elementary
and do not rely on deep results and methods from graph minor theory.

One direction for further research is to investigate what other problems might become
tractable on nowhere-dense classes of graphs. Also, it would be interesting to compare
nowhere-dense classes of graphs to graph classes of bounded degeneracy. The two concepts
are incomparable but both generalise classes excluding a fixed minor and we have already
seen that there are examples of problems that become fixed-parameter tractable on nowhere-
dense classes of graphs which are intractable on classes of graphs of bounded degeneracy.

Finally, it would be interesting to explore the extent of the algorithmic theory of nowhere-
dense classes of graphs in terms of algorithmic meta-theorems. In particular, it would be
very interesting if model-checking for first-order logic was FPT on nowhere-dense classes
of graphs. This would establish a rich algorithmic theory of such classes. However, es-
tablishing such a result would require novel methods as we do not have a decomposition
theory for nowhere-dense classes along the lines of what is used to establish the tractability
of first-order logic in classes with locally excluded minors.
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ABSTRACT. We present a symbolic framework for refinement and composition of security protocols.
The framework uses the notion of ideal functionalities. These are abstract systems which are secure
by construction and which can be combined into larger systems. They can be separately refined in
order to obtain concrete protocols implementing them. Our work builds on ideas from the “trusted
party paradigm” used in computational cryptography models. The underlying language we use is
the applied pi calculus which is a general language for specifying security protocols. In our frame-
work we can express the different standard flavours of simulation-based security which happen to
all coincide. We illustrate our framework on an authentication functionality which can be realized
using the Needham-Schroeder-Lowe protocol. For this we need to define an ideal functionality for
asymmetric encryption and its realization. We show a joint state result for this functionality which
allows composition (even though the same key material is reused) using a tagging mechanism.

1 Introduction
Symbolic techniques showed to be a very useful approach for the modeling and analysis of
security protocols: for twenty years, they improved our understanding of security proto-
cols, allowed discovering flaws [17], and provided support for protocol design [9]. These
techniques also resulted in the creation of powerful automated analysis tools (e.g. [3]), and
impacted on several protocol standards used every day, e.g., [8].

Until now, symbolic techniques mostly concentrated on specifying and proving confi-
dentiality and correspondence properties, i.e., showing which symbols are kept secret, and
on which session parameters participants agree when a protocol session completes. How-
ever, such specifications do not provide any information about the behavior of protocols
when they are used in composition with other protocols, and surprising behaviors are well
know to happen in such contexts [7]. Moreover, protocols are often expected to provide
more sophisticated security guarantees, which may be difficult to formalize.

In this paper, we present a symbolic framework for refinement and composition of se-
curity protocols, in which protocols are defined in terms of the behavior of trusted parties,
or ideal functionalities, following the general outline of simulation-based security [5, 12, 4].
A lower-level protocol is said to securely emulate a higher-level protocol, or ideal function-
ality, if any behavior that can be observed from the interaction of an adversary with the
lower-level protocol can also be observed from the interaction of another adversary (called
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the simulator) with the higher-level protocol. As a result, ideal functionalities can be suc-
cessively refined into more concrete protocols, but also composed to build more complex
protocols. Functionalities have been proposed for a wide range of protocol tasks, including
general secure multi-party computation [5]. In the spi-calculus [2], Abadi and Gordon also
present the idea of a protocol being equivalent to an idealized version. This is however
more restrictive as they do not have the notion of a simulator.

Simulation-based security frameworks can typically be decomposed into two “layers”:
(i) a foundational layer that provides a general model for concurrent computation, and (ii) a
security layer that provides general security definitions, most importantly the notion of
secure protocol emulation to be used. While the security layer is essentially common to all
frameworks [4, 5, 6, 14, 18], including this paper, the foundational layer varies widely. Those
variations typically lie in the concurrency model (from the most common token-passing
mechanism to the use of schedulers with various powers) and in the definition of computa-
tional bounds. These differences typically result in incomparable security notions.

Defining simulation-based security while choosing the applied pi calculus [1] as the
foundational layer brings the main benefits of this approach into the symbolic world:
• it provides a powerful machinery that can be used to specify a wide range of sophisti-

cated protocol tasks in terms of the behavior of functionalities, and
• general composition theorems guarantee that protocols keep behaving as expected

when executed in arbitrary contexts.
While we tried to stick to the common definitions from the security layer of simulation-
based security frameworks, the use of the applied pi calculus as foundational layer raised
interesting challenges.

First, at the most fundamental level, one has to adopt a notion of indistinguishability
of processes. While the symmetric notions of computational indistinguishability and ob-
servational equivalence are commonly used in the cryptographic and symbolic worlds, the
symmetry of such relations appeared to be too restrictive for our purpose. For instance, a
symmetric equivalence relation makes the addition of an adversary that simply acts as a
relay visible. The resulting undesired behaviors motivate the introduction of new notions
of observational preorder and labelled simulation relations in the applied pi calculus.

Next, our attempts at translating ideal functionalities from the computational world
into the symbolic world showed to be a non immediate task. For instance, traditional
ideal functionalities for asymmetric encryption produce ciphertexts by encrypting random
strings. An association table (plaintext/ciphertext) is then necessary to perform decryption.
In our symbolic setting we avoid such a table by using two layers of encryption and a secure
key.

Eventually, we investigate the statement of general composition theorems, and of a
specific joint state composition theorem for our asymmetric encryption functionality, as this
functionality is typically expected to be used in several protocol sessions. While these the-
orems appear to be the natural counterpart of their computational versions [4, 5, 6, 16], the
joint state composition theorem brings message tagging constraints that, interestingly, are
consistent with those obtained by using a completely different symbolic approach (e.g. [13]).

Because of lack of space the proofs are omitted, but can be found in [10].
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2 The applied pi calculus

2.1 Syntax and informal semantics

To describe processes, one starts with a set of names (which are used to name communica-
tion channels or other atomic data), a set of variables, and a signature Σ which consists of
the function symbols which will be used to define terms. In the case of security protocols,
typical function symbols will include enc for encryption, and dec for decryption. Terms are
defined as names, variables, and function symbols applied to other terms. Terms and func-
tion symbols are sorted. While the details of the sort systems are not essential it is important
to distinguish sorts of base types and sorts of channel type. Function symbols can only be
applied and return terms of base type. By the means of an equational theory E we describe
the equations which hold on terms. We denote =E the equivalence relation induced by E.
Example 1 In the equational theory {dec(enc(x, k), k) = x, test(enc(x, y), y) = ok}, we have that
test(dec(enc(enc(n, k1), k2), k2), k1) =E ok.

In the applied pi calculus, one has plain processes and extended processes. Plain processes
(P, Q, R) are built up in a similar way to processes in the pi calculus, except that messages
can contain terms (rather than just names). Extended processes add active substitutions and
restriction on variables. Below, M is a term, n is a name, and x a variable.

A, B, C := P | A | B | νn.A | νx.A | {M/x}
Active substitutions generalise “let”. The process νx.({M/x} | P) corresponds exactly

to the process “let x = M in P”. As usual, names and variables have scopes, which are
delimited by restrictions and by inputs. We write fv(A), bv(A), fn(A) and bn(A) for the sets
of free and bound variables and free and bound names of A, respectively. We also assume
that, in an extended process, there is at most one substitution for each variable, and there is
exactly one when the variable is restricted. We say that an extended process is closed if all its
variables are either bound or defined by an active substitution.

Active substitutions are useful because they allow us to map an extended process A
to its frame φ(A) by replacing every plain process in A with 0. A frame is an extended
process built up from 0 and active substitutions by parallel composition and restriction.
The frame φ(A) can be viewed as an approximation of A that accounts for the static knowl-
edge A exposes to its environment, but not A’s dynamic behaviour. The domain of a frame ϕ,
denoted by dom(ϕ), is the set of variables for which ϕ defines a substitution (those variables
that are not under a restriction). An evaluation context C[ ] is an extended process with a hole
instead of an extended process. A context C[ ] closes A when C[A] is closed.

2.2 Semantics

The operational semantics of processes in the applied pi calculus is defined by structural
rules defining two relations: structural equivalence, denoted ≡, and internal reduction, de-
noted →. Structural equivalence takes into account some basic structural rules, e.g. asso-
ciativity and commutativity of the parallel operator. Internal reduction → is the smallest
relation on extended processes closed under structural equivalence and application of eval-
uation contexts such that:
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COMM out(a, M).P | in(a, x).Q → P | Q{M/x}
THEN if M = N then P else Q → P where M =E N
ELSE if M = N then P else Q → Q

for any terms M and N without variable such that M 6=E N
The operational semantics is extended by a labelled operational semantics enabling us to

reason about processes that interact with their environment. Labelled operational semantics
defines the relation α−→ where α is either an input in(a, M) (a is a channel name and M is a
term that can contain names and variables), or νx.out(a, x) (x is a variable of base type), or
out(a, c) or νc.out(a, c) (c is a channel name).

IN in(a, x).P
in(a,M)−−−−→ P{M/x}

OUT-CH out(a, c).P
out(a,c)−−−−→ P

OPEN-CH
A

out(a,c)−−−−→ A′ c 6= a

νc.A
νc.out(a,c)−−−−−→ A′

OUT-T out(a, M).P
νx.out(a,x)−−−−−→ P | {M/x}

x 6∈ fv(P) ∪ fv(M)

SCOPE
A α−→ A′ u does not occur in α

νu.A α−→ νu.A′

bn(α) ∩ fn(B) = ∅

PAR
A α−→ A′ bv(α) ∩ fv(B) = ∅

A | B α−→ A′ | B

STRUCT
A ≡ B B α−→ B′ A′ ≡ B′

A α−→ A′

Our rules differ slightly from those described in [1]. It is proved in [11] that labelled bisim-
ulation (see Section 2.3) in our system coincides with labelled bisimulation in [1].
Example 2 Consider the following process P:
νk. (in(io1, x).out(net, enc(x, k)) | in(net, y). if test(y, k) = ok then out(io2, dec(y, k)) else 0).

The first component receives a message x on the channel io1 and sends its encryption with the
key k on the channel net. The second one is waiting for an input y on net, uses the secret key k to
decrypt it. If the decryption succeeds, then it forwards the resulting plaintext on io2. We have that:

P
in(io1,s)−−−−→ νk.(out(net, enc(s, k)) | in(net, y). if test(y, k) = ok then out(io2, dec(y, k)) else 0)

−→∗ νk.out(io2, s)
νx.out(io2,x)−−−−−−→ νk.{s/x}

Let A be the resulting process. We have that φ(A) ≡ νk.{s/x}.

2.3 Indistinguishability relations

In [1], it is shown that observational equivalence coincides with labelled bisimilarity. This
relation is like the usual definition of bisimilarity, except that at each step one additionally
requires that the processes are statically equivalent.

DEFINITION 1.Two terms M and N are equal in the frame φ, written (M =E N)φ, if, and
only if there exists ñ and a substitution σ such that φ ≡ νñ.σ, Mσ =E Nσ, and ñ ∩ (fn(M) ∪
fn(N)) = ∅. Two frames φ1 and φ2 are statically equivalent, φ1 ≈s φ2, when dom(φ1) =
dom(φ2), and for all terms M, N we have that (M =E N)φ1 if and only if (M =E N)φ2.

Example 3 Let ϕ0 = νs.{enc(s,k)/x} and ϕ1 = νr.{r/x} where k, s and r are names and E be the
theory given in Example 1. We have that (test(x, k) =E ok)ϕ0 but not (test(x, k) =E ok)ϕ1, thus
ϕ0 6≈s ϕ1. However, we have that νk.ϕ0 ≈s ϕ1.

Now, we introduce the notion of a barb. Given an extended process A and a channel
name a, we write A ⇓ a when A →∗ C[out(a, M).P] for some term M, plain process P, and
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evaluation context C[ ] that does not bind a.

DEFINITION 2. Observational preorder (�) (resp. equivalence (≈)) is the largest (resp.
largest symmetric) relation on extended processes with same domain s.t. A R B implies

1. if A ⇓ a then B ⇓ a;
2. if A→∗ A′, then B→∗ B′ and A′ R B′ for some B′;
3. C[A] R C[B] for all closing evaluation contexts C[ ].

DEFINITION 3. A relationR on closed extended processes is a simulation if A R B implies
1. φ(A) ≈s φ(B),
2. if A→ A′, then B→∗ B′ and A′ R B′ for some B′,
3. if A α→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then B →∗ α→→∗ B′ and

A′ R B′ for some B′.
IfR andR−1 are both simulations we say thatR is a bisimulation. Labelled similarity (�`),
resp. labelled bisimilarity (≈`), is the largest simulation, resp. bisimulation relation.

Observational preorder and similarity were not introduced in [1]. However, these def-
initions seem natural for our purposes. Obviously we have that ≈ ⊂ � and ≈` ⊂ �`. We
now show that labelled similarity is a precongruence.

PROPOSITION 4. Let A and B be two extended processes such that A �` B. We have that
C[A] �` C[B] for all closing evaluation context C[ ].

From this proposition it follows that�` ⊆ �. Hence, we can use labelled similarity as a
convenient proof technique for observational preorder. We actually expect the two relations
to coincide but did not prove it as we did not need it. We have also the following lemma:

LEMMA 5. Let P and Q be two closed plain processes. We have that: (i) if P �` Q then
!P �` !Q; (ii) !(P | Q) �` !P |!Q and !P |!Q �` !(P | Q).

3 Simulation based security
3.1 Basic definitions

The simulation-based security approach classically distinguishes between input-output chan-
nels, which yield the internal interface of a protocol or functionality to its environment and
network channels, which allow the adversary to interact with the functionality. We suppose
that all channels are of one of these two sorts: IO or NET. Moreover the sort system ensures
that names of sort NET can never be conveyed as data on a channel, i.e. these channels can
never be transmitted. We write fnet(P) for fn(P) ∩NET.

DEFINITION 6. A functionality F is a closed plain process. An adversary for F is an eval-
uation contextA[ ] of the form: νñet1.(A1 | νñet2.(A2 | . . . |νñetk.(Ak | ) . . .)) where each Ai
(1 ≤ i ≤ k) is a closed plain process, fnet(F ) ⊆ ⋃

1≤i≤k ñeti ⊆ NET, and fn(A[ ]) ∩ IO = ∅.

One may note that the nested form of the adversary process allows to express any
arbitrary context while expliciting the restricted names whose scope ranges on the hole.
We also note that if A[ ] is an adversary for F then fnet(A[ ]) = fnet(A[F ]).
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LEMMA 7. Let F be a functionality and A1[ ] be an adversary for F . Then A1[F ] is a
functionality. If A2[ ] is an adversary for A1[F ], then A2[A1[ ]] is an adversary for F .

While adversaries control the communication of functionalities on NET channels, IO
contexts model the environment of functionalities, providing inputs and collecting outputs.

DEFINITION 8. An IO context is an evaluation context Cio[ ] of the form νĩo1.(C1 | νĩo2.(C2 |
. . . |νĩok.(Ck | ) . . .)) where each Ci (1 ≤ i ≤ k) is a closed plain process, and

⋃
1≤i≤k ĩoi ⊆ IO

Note that if F is a functionality and Cio[ ] is an IO context, then Cio[F ] is a functionality.

3.2 Strong simulatability

The notion of strong simulatability [15], which is probably the simplest secure emulation
notion used in simulation-based security, can be formulated in our setting.

DEFINITION 9.Let F1 and F2 be two functionalities. F1 emulates F2 in the sense of strong
simulatability, written F1 ≤SS F2, if there exists an adversary S for F2 (the simulator) such
that fnet(F1) = fnet(S [F2]) and F1 � S [F2].

The definition ensures that any behavior of F1 can be matched by F2 executed in the
presence of a specific adversary S . Hence, there are no more attacks on F1 than attacks
onF2. Moreover, the presence of S allows abstract definitions of higher-level functionalities,
which are independent of a specific realization. One may also note that 0 ≤SS F for any
functionality F . This seems natural in a simulation based framework which only aims at
preserving security. Non-triviality conditions may be imposed independently [5].
Example 4 Let Fcc = in(io1, xs).out(netcc, ok).in(netcc, x). if x = ok then out(io2, xs). The func-
tionality models a confidential channel and takes a potentially secret value s as input on channel io1.
The adversary is notified via channel netcc that this value is to be transmitted. If the adversary agrees
the value is output on channel io2. This functionality can be realized by the process described in Ex-
ample 2. Let S = νnetcc.in(netcc, x).νr.out(net, r).in(net, x). if x = r then out(netcc, ok) | ). We
indeed have that P �` S [Fcc] and fnet(P) = fnet(S [Fcc]).

In order to examine the properties of strong simulatability in our specific setting, we
now define a particular adversary D[ ] which is called a dummy adversary: intuitively, it acts
as a relay which forwards all messages. The formal definition is technical because D[ ] needs
to both restrict all names in fnet(F ) and ensure that fnet(F ) = fnet(D[F ]). It therefore relies
on two internal channels simi/o

j for inputs, resp. outputs, for each channel in fnet(F ).

DEFINITION 10. Let F be a functionality. The dummy adversary for F is the adver-
sary D[ ] = νs̃im.(D1 | νñet.(D2 | )) where ñet = fnet(F ) = {net1, . . . , netn}; s̃im =
{simi

1, . . . , simi
n, simo

1, . . . , simo
n} ⊆ NET; and

• D1 = !in(net1, x).out(simi
1, x) | . . . |!in(netn, x).out(simi

n, x) |
!in(simo

1, x).out(net1, x) | . . . |!in(simo
n, x).out(netn, x);

• D2 = !in(simi
1, x).out(net1, x) | . . . |!in(simi

n, x).out(netn, x) |
!in(net1, x).out(simo

1, x) | . . . |!in(netn, x).out(simo
n, x).

By construction we have that fnet(D[F ]) = fnet(F ).

LEMMA 11. Let F be a functionality and D[ ] be the dummy adversary for F : F � D[F ].
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However, we do not have that F ≈ D[F ], since D[F ] has more non-determinism
than F . A direct consequence of this lemma is that F1 � F2 and fnet(F1) = fnet(F2)
implies that F1 ≤SS F2: as F2 � D[F2] we have by transitivity that F1 � D[F2]. We
use these observations to show that ≤SS is a preorder (Lemma 12) , which is closed under
application of IO contexts (Proposition 13) and parallel composition (Proposition 14).

LEMMA 12. (i) F1 ≤SS F1; (ii) F1 ≤SS F2 and F2 ≤SS F3 ⇒ F1 ≤SS F3.

PROPOSITION 13. Let F1, F2 be two functionalities and Cio be an IO context.

F1 ≤SS F2 =⇒ Cio[F1] ≤SS Cio[F2].

PROPOSITION 14. Let F1, F2 and F3 be three functionalities. We have that:
(i) F1 ≤SS F2 ⇒ F1 | F3 ≤SS F2 | F3; and (ii) F1 ≤SS F2 ⇒ !F1 ≤SS !F2.

While, (i) is a direct consequence of Proposition 13 (notice that | F3 is an IO-context) the
proof of (ii) is more involved and given in [10].

3.3 Other notions of simulation based security

Several other notions of simulation based security appear in the literature. We present them,
and show that they all coincide in our setting. This coincidence is regarded as highly desir-
able [15, 14], while it does not hold in most simulation-based security frameworks [5, 4].

DEFINITION 15. Let F1 and F2 be two functionalities and A be any adversary for F1.
• F1 emulates F2 in the sense of black box simulatability, F1 ≤BB F2, iff
∃S . ∀A.A[F1] � A[S [F2]] where S is an adversary forF2 with fnet(S[F2]) = fnet(F1).

• F1 emulates F2 in the sense of universally composable simulatability, F1 ≤UC F2, iff
∀A. ∃S .A[F1] � S [F2] where S is an adversary for F2 s.t. fnet(A[F1]) = fnet(S [F2]).

• F1 emulates F2 in the sense of universally composable simulatability with dummy
adversary, F1 ≤UCDA F2, iff ∃S . D[F1] � S [F2] where D is the dummy adversary
for F1 and S is an adversary for F2 such that fnet(S [F2]) = fnet(D[F1]).

THEOREM 16. We have that ≤SS = ≤BB = ≤UC = ≤UCDA.

The above security notions can also be defined replacing observational preorder by ob-
servational equivalence denoted ≤SS

≈ ,≤BB
≈ ,≤UC

≈ and ≤UCDA
≈ . Surprisingly, the use of obser-

vational equivalence turns out to be too strong, ruling out natural secure emulation cases:
for instance, the ≤SS

≈ relation is not reflexive, due to the extra non-determinism that the
simulator introduces. While symbolic analysis techniques typically rely on bisimulation
relations, this is however consistent with the definitions proposed in the task-PIOA frame-
work [6], which also allows non-deterministic executions for simulation based security.

4 Applications
We illustrate our framework by showing the secure emulation of a mutual authentication
functionality by the Needham-Shroeder-Lowe (NSL) protocol [17]. As the NSL protocol
uses public key encryption we first introduce in Section 4.1 functionalities for asymmetric
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Ppke := in(iopke, io1
pke).νsk.out(io1

pke, 〈KEY, pk(sk)〉).
(let ioi

pke = io1
pke in !Penc | let ioi

pke = io2
pke in !Penc | !Pdec)

Penc := in(ioi
pke, 〈= ENC, m〉).

νr2. let menc = aenc(〈TAG0, m〉, pk(sk), r2) in out(ioi
pke, 〈CIPHER, menc〉)

Pdec := in(io1
pke, 〈= DEC, m〉).

let 〈= TAG0, m1〉 = adec(m, sk) in out(io1
pke, 〈PLAIN, m〉)

Figure 1: Real encryption functionality

encryption. Then, we briefly present the mutual authentication functionality and its realiza-
tion through the NSL protocol. Finally we use the joint state composition result in Section 4.3
to obtain a result for an unbounded number of concurrent sessions.

4.1 Asymmetric encryption with joint state

We introduce a functionality for asymmetric encryption together with a joint state composi-
tion result which is crucial for composition of protocols that share key material. Even though
encryption in a Dolev-Yao model is already idealized we will see that by introducing an ideal
functionality for encryption we are able to obtain a joint state composition result. Throughout
this section we rely on the following equational theory allowing us to model randomized
asymmetric encryption:

adec(aenc(x, pk(y), z), y) = x testdec(aenc(x, pk(y), z), y) = ok.
Real encryption. This functionality (decribed in Figure 1) receives a channel name io1

pke,
which will be used for all sensitive information exchanges. A fresh private key sk is gen-
erated and the corresponding public key, i.e. pk(sk), is sent on io1

pke. Then the process is
ready to receive encryption or decryption requests. Note that encryption requests can be
sent on the sensitive channel io1

pke or on the public channel io2
pke which is the channel the en-

vironment will typically use. Decryption requests are only available through the sensitive
channel io1

pke and thus will not be used by the attacker. Each time a decryption request is
received on the channel io1

pke, it tries to decrypt the ciphertext and checks whether the tag
is TAG0. If so, it outputs the plaintext on the channel io1

pke. Otherwise, it does nothing.

Ideal functionality. We now propose, in Figure 2, an idealized version Fpke of the real
encryption functionality, which guarantees that the confidentiality of messages is preserved
independently of any cryptanalytic effort that could be performed on ciphertexts from the
knowledge of public keys. In various cryptographic settings [4, 5, 16], this is achieved by
computing ciphertexts as the encryption of random messages instead of the actual plaintext.
To be able to perform decryption, a table for plaintext/ciphertext associations is maintained.
The burden of this association table is avoided in our symbolic specification by using two
layers of encryption: messages are first encrypted using a secure key pk(ssk), then tagged
and encrypted with the public key pk(sk) that is published during the initialization step.
We stress that neither pk(ssk) nor ssk are ever transmitted by Fpke, guaranteeing that it
is impossible to decrypt such a ciphertext outside the functionality, even if the key sk is
adversarially chosen, which will be a crucial feature for our joint state composition theorem.
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Fpke := in(iopke, io1
pke).out(net, INIT).in(net, 〈= ALGO, sk, tag〉).out(io1

pke, 〈KEY, pk(sk)〉).
νssk. (let ioi

pke = io1
pke in !Fenc | let ioi

pke = io2
pke in !Fenc | !Fdec)

Fenc := in(ioi
pke, 〈= ENC, m〉).νr1.νr2.

let alea = aenc(m, pk(ssk), r1) in let menc = aenc(〈tag, alea〉, pk(sk), r2) in
out(ioi

pke, 〈CIPHER, menc〉)
Fdec := in(io1

pke, 〈= DEC, m〉). let 〈= tag, m1〉 = adec(m, sk) in
if testdec(m1, ssk) = ok then out(io1

pke, 〈PLAIN, adec(m1, ssk)〉)
else out(io1

pke, 〈PLAIN, m1〉)
Figure 2: Ideal encryption functionality

During the initialization, the attacker chooses the secret key sk and the tag that will
be added in each encryption. Then a secure key ssk is generated and now the process is
ready to receive encryption or decryption requests. Each time the process receives an en-
cryption request, it computes the corresponding ciphertext and outputs the corresponding
ciphertext. As explained above, the plaintext m is first encrypted using pk(ssk) before be-
ing tagged and encrypted with pk(sk). When the process receives a decryption request, it
tries to decrypt the ciphertext and checks if the tag is the tag provided during the initializa-
tion. Then, it checks if the resulting plaintext is encrypted under pk(ssk). If so, this means
that this ciphertext has been produced by the encryption functionality and thus has to be
decrypted twice. Otherwise, the ciphertext has been produced by the attacker.

Realization. The real encryption functionality realizes the ideal one, i.e., Ppke ≤SS Fpke.
This is witnessed by Apke = νnet.(in(net, = INIT). νsk. out(net, (ALGO, sk, TAG0)) | ).

Composition with joint state. While ≤SS is stable under replication this is not always suf-
ficient to obtain composition guarantees. Indeed replication of a process also replicates all
key generation operations. In order to obtain self-composition and inter-protocol compo-
sition with common key material we need a joint state functionality, i.e. a functionality that
realizes !Fpke while reusing the same key material. We actually consider the functional-
ity Fpke, which is a variant of Fpke in which each message is tagged. More precisely, the
process Fpke is defined as Fpke, except that: (i) the functionality begins with the instruc-

tions in(iopke, io1
pke).in(io1

pke, sid) instead of in(iopke, io1
pke), (ii) each input of the form in(c, m)

is replaced by in(c, 〈= sid, m〉), and (iii) each output of the form out(c, m) is replaced by
out(c, 〈sid, m〉).

The joint state functionality Pjs[Fpke] (see Figure 3) uses a single instance of Fpke for all
protocol sessions. All the requests to the joint state functionality are received on the public
channel iopke in processP1

js. They are then forwarded using the private IO channel cont toP2
js.

The process P2
js shares the private channel iopke with Fpke and forwards all the requests after

concatenating the session identifier to the plaintext. Then the response is again forwarded
to the process P1

js which outputs the result on the public channel iopke.
We now observe that the following joint state composition result holds. One instance of

the encryption functionality can be used to emulate an unbounded number of such instances
using the joint state process: Pjs[Fpke] ≤SS !Fpke.
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Pjs := νcont.(P1
js | νiopke, io2

pke.(P2
js | ))

P1
js := in(iopke, io1

pke).in(io1, sid).out(cont, 〈sid, INIT〉).
in(cont, (= KEY, pk)).out(io1

pke, 〈sid, KEY, pk〉).
(let ioi

pke = io1
pke in !P1

js−enc | let ioi
pke = io2

pke in !P1
js−enc | !P1

js−dec |
!in(iopke, io1

pke).in(io1, sid).out(io1
pke, 〈sid, KEY, pk〉).

(let ioi
pke = io1

pke in !P1
js−enc | let ioi

pke = io2
pke in !P1

js−enc | !P1
js−dec))

P1
js−enc := in(ioi

pke, 〈= sid, = ENC, m〉). out(cont, 〈sid, ENC, m〉).
in(cont, 〈= CIPHER, c〉). out(ioi

pke, 〈sid, CIPHER, c〉)
P1

js−dec := in(io1
pke, 〈= sid, = DEC, c〉). out(cont, 〈sid, dec, c〉).

in(cont, 〈= PLAIN, m〉). out(iopke, 〈sid, PLAIN, m〉)

P2
js := in(cont, 〈sid, = INIT〉).νio′pke.out(iopke, io′pke).

in(io′pke, 〈= KEY, pk〉).out(cont, 〈KEY, pk〉). (!P2
js−enc | !P2

js−dec)
P2

js−enc := in(cont, 〈= sid, = ENC, m〉). out(io′pke, 〈ENC, 〈sid, m〉〉).
in(io′pke, 〈= CIPHER, c〉). out(cont, 〈CIPHER, c〉)

P2
js−dec := in(cont, 〈= sid, = DEC, c〉). out(io′pke, 〈DEC, c〉).

in(io′pke, 〈= PLAIN, m〉). out(cont, 〈PLAIN, m〉)
Figure 3: Joint state IO-context

Ajs := νcs.(A1
js | νnet.(A2

js | ))

A1
js := in(cs, INIT).out(net, INIT).in(net, 〈= ALGO, sk, tag〉).out(cs, 〈ALGO, sk, tag〉)
A2

js := in(net, 〈sid, = INIT〉). out(cs, INIT).
in(cs, 〈= ALGO, sk, tag〉). out(net, 〈sid, ALGO, sk, 〈sid, tag〉〉).
!in(net, 〈sid′, = INIT〉).out(net, 〈sid′, ALGO, sk, 〈sid′, tag〉〉)

Figure 4: Joint state adversary

This relation is witnessed by the adversary Ajs described in Figure 4 as we have that:
Pjs[Fpke] � Ajs[!Fpke]. This adversary launches several functionalities with the same
key sk. However, note that the session identifier sid used to tag each encryption associated
could be different. The value of these session identifiers is selected by the attacker.

Note that it is crucial to introduce an ideal encryption functionality. We indeed have
that Pjs[Ppke] ≤SS Pjs[Fpke] ≤SS !Fpke as well as !Ppke ≤SS!Fpke (where Ppke is defined
from Ppke in the same way as Fpke from Fpke). However, Pjs[Ppke] 6≤SS !Ppke. In particular
!Ppke will provide multiple public keys while Pjs[Ppke] only provides a single one. Taking
the more abstract ideal functionality allows this to be avoided by a simulator that chooses
the same secret key for each instance of the functionality.

4.2 Mutual authentication

Because of lack of space we only briefly sketch the mutual authentication functionality. The
details of the functionalities and the simulator are given in [10].
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Ideal functionality for mutual authentication. The functionality Fauth roughly works as
follows. Both the initiator (Finit) and the responder (Fresp) receive a request for mutual
authentication on their io channel. They forward this request to the adversary and, if both
parties are honest, to a trusted hostFth which compares these requests and authorizes going
further if they match. Eventually, when the adversary asks to finish the protocol, then both
participants complete the protocol session.

Realization of mutual authentication. The functionality Fauth can be realized by a func-
tionality Pnsl implementing the well-known Needham-Schroeder-Lowe protocol [17]. We
have that Pnsl ≤SS Fauth by showing that Pnsl � S [Fauth] for some S .

4.3 From one to many sessions

We have that Pnsl ≤SS Fauth. This result only shows that Pnsl is as secure as Fauth for a single
session of the protocol. By Proposition 14 we have that !Pnsl ≤SS!Fauth but this does not
correspond to the expected security for an unbounded number of sessions, as each session
uses a different key. To show that !Fauth can be realized with shared key material we use our
joint state result. To apply this result we need the following technical lemma which allows
pushing the replication under the restricted channel c.

LEMMA 17. Let n be a name and c be a channel name such that c 6∈ fn(P) ∪ fn(Q).

νc. ![νn.(out(c, n) | P) | in(c, x).Q] �` ! νc.[νn.(out(c, n) | P) | in(c, x).Q].

This lemma allows us to apply the joint state result and obtain a result for an unbounded
number of sessions sharing keys. Note that the joint state context uses a tagging mechanism.

5 Conclusions
This paper proposes a symbolic framework for the analysis of security protocols along the
lines of the simulation based security approach, while adopting the applied pi calculus as its
basic layer. We state central definitions and security notions, show general composition the-
orems and specific joint-state composition results for asymmetric encryption, and illustrate
their use in the analysis of a mutual authentication protocol.

This framework brings the benefits of the secure composition theorems associated to
simulation based security into the symbolic world, and opens the path to the analysis of
more sophisticated protocols that can naturally be specified by the behavior of an ideal
functionality. At a more fundamental level, we use preorder notions, which can be estab-
lished by labeled simulation. While the use of labeled bisimulations is quite common in
the applied pi calculus and has been integrated in automatic provers, the automation of
proofs relying on labeled simulation appears as an interesting challenge for future works.
Another direction for future work is to give a precise characterization of what properties are
preserved by strong simulatability.
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ABSTRACT. The covering and boundedness problems for branching vector addition systems are
shown complete for doubly-exponential time.

1 Introduction

Vector addition systems (shortly, VAS), or equivalently Petri nets (e.g., [14]), are a funda-

mental model of computation, which is more expressive than finite-state machines and less

than Turing-powerful. Decidability and complexity of a variety of problems have been ex-

tensively studied ([6] is a comprehensive survey).

A k-dimensional VAS consists of an initial vector of non-negative integers, and a finite

set of vectors of integers, all of dimension k. Let us call the initial vector axiom, and the

other vectors rules. A computation can then be thought of as a derivation: it starts with the

axiom, and at each step, the next vector is derived from the current one by adding a rule.

The vectors of interest are the ones derived admissibly, i.e. at the end of a derivation which

is such that none of the vectors derived during it contains a negative entry.

Covering and boundedness are two central decision problems for VAS. The former asks

whether a vector that is pointwise greater than or equal to a given vector can be admissi-

bly derived, and the latter asks whether the set of all admissibly derived vectors is finite.

In a landmark article [12], Rackoff showed that covering and boundedness for VAS are in

EXPSPACE, matching Lipton’s lower bound of EXPSPACE-hardness [10].∗ Considering the

expressively equivalent VAS with states (shortly, VASS), Rosier and Yen refined the proofs

of Lipton and Rackoff to obtain almost matching lower and upper bounds in terms of three

parameters: the dimension, the binary size of the maximum absolute value of an entry in a

rule, and the number of states [15]. Lipton’s result was also extended by Mayr and Meyer

to reversible Petri nets, which are equivalent to commutative semigroups [11]. Building fur-

ther on Rosier and Yen’s work, Habermehl showed that space exponential in the size of the

system and polynomial in the size of the formula suffices for model checking the proposi-

tional linear-time µ-calculus on VASS, and he obtained a matching lower bound already for

LTL on BPP [7].

∗We recommend http://rjlipton.wordpress.com/2009/04/08/an-expspace-lower-bound/.
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The following is a natural extension of VAS: instead of linearly, computation proceeds

from the leaves to the root of a tree. For each node which is not a leaf, its vector is derived by

summing the vectors derived at its children and adding a rule vector. The same condition

of admissibility applies, i.e. no derived vector may contain a negative entry. This model of

computation is branching VAS (shortly, BVAS).

In recent years, it has turned out that BVAS have interesting connections to a number

of formalisms:

• BVAS correspond to a class of linear index grammars in computational linguistics [13];

• reachability (i.e. admissible derivability) for BVAS is decidable iff provability in mul-

tiplicative exponential linear logic is decidable [4];

• Verma and Goubault-Larrecq have extended the computation of Karp and Miller trees

[8] to BVAS, and used it to draw conclusions about a class of equational tree automata

which are useful for analysing cryptographic protocols [17];

• if first-order logic with 2 variables on finite data trees (which has applications to the

XPath query language for XML) is decidable, then so is reachability for BVAS [1].

Covering and boundedness for BVAS are decidable easily using the branching exten-

sion of Karp and Miller’s procedure [17]. However, the resulting algorithms do not operate

in primitive recursive time or space, even in the linear case [16].

The main results we report are that, by switching from VAS to BVAS, covering and

boundedness move two notches up the complexity hierarchy, to 2EXPTIME-complete.

For the 2EXPTIME-memberships, consider the following simple-minded idea for trans-

ferring knowledge about VAS derivations to the branching case:

✴ Every simple path from a leaf to the root in a BVAS derivation is a VAS derivation.

We show that the idea can give us mileage, but only after the following new insight, which

is needed because the subderivations that grow off the simple path and hence contribute

summands to it make the resulting VAS contain rules with unbounded positive entries.

☞ For VAS, we can obtain similar upper bounds to Rackoff’s, but which depend only on

the dimension and the minimum negative entry in a rule, i.e. not on the maximum

positive entry in a rule.

The insight is at the centre of our proofs. In the case of covering, we show it essentially by

inspecting carefully a proof of Rackoff, but in the case of boundedness, it relies on proving a

new result on small solutions of integer programming problems, which extends a classical

theorem of Borosh and Treybig and may also be a contribution of wider interest. To complete

the proofs of the 2EXPTIME-memberships, we provide arguments for reducing the heights

of appropriate BVAS derivations to at most doubly-exponential, and for why resulting small

witnesses can be guessed and verified by alternating Turing machines in exponential space.

To obtain 2EXPTIME-hardness for covering and boundedness for BVAS, we extend the

proof of Lipton to show that computations of alternating machines of size N with counters

bounded by 22N
can be simulated in reverse by BVAS of size O(N2). Although universal

branchings of alternating counter machines copy counter valutations whereas BVAS sum

vectors derived at children nodes, the inner workings of Lipton’s construction enable us to

add a bit of machinery by which the BVAS can simulate the copying. We remark that, as

is the case with Lipton’s result, the lower bound is shown already for BVAS whose rules

contain only entries −1, 0 or 1.
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After fixing notations and making some preliminary observations in the next section,

that covering and boundedness are in 2EXPTIME is shown in Sections 3 and 4, respectively.

We then argue in Section 5 that both problems are 2EXPTIME-hard.

2 Preliminaries

Numbers, vectors and matrices. We write N+, N and Z for the sets of all positive, non-

negative and arbitrary integers, respectively. Since we shall only work with integers, let the

open interval (a, b) denote (a, b) ∩Z, and analogously for half-open and closed intervals.

Given a dimension k ∈ N, let 0 denote the zero vector and, for each i ∈ [1, k], ei denote

the ith unit vector. For v, w ∈ Z
k and B ∈ Z, we write:

• v(1), . . . , v(k) for the entries of v;

• supp(v) for the set of all i ∈ [1, k] such that v(i) 6= 0;

• v ≤ w iff v(i) ≤ w(i) for all i ∈ [1, k], and v < w iff v ≤ w and v 6= w;

• min(B, v) for the vector 〈min{B, v(1)}, . . . , min{B, v(k)}〉, and analogously for max;

• v
− for the vector −min(0, v), and v

+ for the vector max(0, v).

For v ∈ N
k, let max(v) = max{v(1), . . . , v(k)}, where in case k = 0, we have max(〈〉) =

max ∅ = 0. For finite R ⊆ Z
k, let max(R−/+) denote max{max(r

−/+) : r ∈ R}, respec-

tively.

Let Sk×n denote the set of all matrices with k rows, n columns and entries from S. Con-

veniently albeit slightly eccentrically, we use−i for an index i to denote all rows or columns

other than the ith, and • to denote all rows or columns. For example, Ai• is row i of A, and

A•(−j) is A with column j removed.

Trees. A finite binary tree T , which may contain nodes with one child, is a non-empty

finite subset of {1, 2}∗ such that, for all n ∈ {1, 2}∗ and i ∈ {1, 2}, n · 2 ∈ T implies n · 1 ∈ T ,

and n · i ∈ T implies n ∈ T . The nodes of T are its elements. The root of T is ε, the empty

word. All notions such as parent, first child, second child, subtree and leaf, have their

standard meanings. The height of T is the length, i.e. the number of nodes, of the longest

simple path from the root to a leaf.

BVAS. The systems we define are equivalent to the branching vector addition systems

with states [17] and the vector addition tree automata [4, 1]. To simplify our technical life, we

work with stateless systems. In the linear case, it is well-known that states can be eliminated

in logarithmic space, e.g. by adding the number of states to the dimension. For branching

systems, the same is true, but computation steps that join two vectors by addition need to

be generalised so that a vector from a fixed finite set (which may contain negative entries)

is added also. Since we are not studying the systems as recognisers of languages, we do not

have to work with alphabets either. Another simplification which costs only a logarithmic

amount of space is in relation to the VATA [4], where branching up to a fixed finite arity was

permitted. Hence, adopting a proof-theoretic terminology like that of Verma and Goubault-

Larrecq [17], a system will consist of finite sets of axioms, unary rules and binary rules, all of

which are simply integral vectors. The unary rules are present for easy compatibility with

the linear case.
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Let a branching vector addition system (BVAS) be a tuple B = 〈k, A0, R1, R2〉, where:

• k ∈ N is the dimension;

• A0 ⊆ N
k is a non-empty finite set of axioms;

• R1, R2 ⊆ Z
k are finite sets of unary and binary rules, respectively.

A derivation starts with a number of integral vectors, proceeds by applying the rules,

and finishes with a single vector. Applying a unary rule means adding it to a derived vector,

and applying a binary rule means adding it to the sum of two derived vectors. For a vector

to be considered produced by the system, it needs to be derived by a derivation which starts

with the axioms and whose derived vectors are all non-negative.

Formally, a derivation of B is a labelling D : T → Z
k such that:

• T is a finite binary tree;

• if n has one child in T , then D(n) ∈ R1;

• if n has two children in T , then D(n) ∈ R2.

The vectors that are derived at every node are obtained recursively as follows:

• if n is a leaf in T , then D̂(n) = D(n);

• if n has one child n′ in T , then D̂(n) = D(n) + D̂(n′);

• if n has two children n′ and n′′ in T , then D̂(n) = D(n) + D̂(n′) + D̂(n′′).

Now, we say that D:

• is initialised iff, for each leaf n of T , we have D(n) ∈ A0;

• is admissible iff, for each node n of T , we have D̂(n) ∈ N
k;

• derives D̂(ε), which is the vector derived at the root.

For v ∈ N
k, we say that B produces v iff some initialised admissible derivation of B

derives v.

Substitutions and contractions. For finite binary trees T and T ′, and a node n of T , let

T [n ← T ′] denote the tree obtained by replacing with T ′ the subtree of T rooted at n. To

extend the notation to derivations, for D : T → Z
k and D′ : T ′ → Z

k, and a node n of T ,

let D[n ← D′] : T [n ← T ′] → Z
k denote the derivation obtained by replacing with D′ the

subderivation of D rooted at n. Observe that the vector derived at node n† in D[n← D′] is:

• D̂′(n′), if n† corresponds to the node n′ of D′;
• D̂(n†)− D̂(n) + D̂′(ε), if n† is an ancestor of n;

• D̂(n†), otherwise.

When D′ has only one leaf n, we write D;D′ instead of D′[n ← D].

For a derivation D and its nodes n and n′ such that n is an ancestor of n′, we write

D[n ← n′] instead of D[n ← D′], where D′ is the subderivation of D rooted at n′. We call

such substitutions contracting. For two derivationsD† andD‡, we say thatD‡ is a contraction

of D† iff D‡ is obtained from D† by a finite sequence of contracting substitutions.

VAS. The classical vector addition systems can be defined as BVAS of the form V =
〈k, {a}, R, ∅〉, i.e. with one axiom and no binary rules. We may write them as just 〈k, a, R〉.

All the definitions for BVAS apply to VAS, but they simplify. For each derivation D :

T → Z
k, its underlying tree T is a sequence.
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Restrictions and bounds. For k-dimensional X, and I ⊆ [1, k], we write X(I) for the “re-

striction of X to the set of places I”, e.g.: v(I) is the vector obtained from v by removing the

entries in places outside of I; 〈k, a, R〉(I) is the |I|-dimensional VAS obtained from 〈k, a, R〉
by replacing a with a(I), and by replacing every rule r ∈ R with r(I); andD(I) is the deriva-

tion obtained from D by replacing, for every node n, the label D(n) of n with D(n)(I).

For v ∈ Z
k and B ∈ N, we say that v is B-bounded iff v ∈ [0, B− 1]k. We regard a deriva-

tion B-bounded iff all the vectors derived at its nodes are B-bounded. Thus, B-boundedness

implies admissibility.

For a k-dimensional vector or derivation X, and I ⊆ [1, k], we say that X is I-B-bounded

iff X(I) is B-bounded.

Decision problems. We study the complexity of the following problems. As is standard,

the input sizes are with respect to binary representations of integers.

Covering Given a BVAS B and a target non-negative vector t of the same dimension, does

B produce some v such that v ≥ t?

Boundedness Given a BVAS, is the set of all vectors that it produces finite?

THEOREM 1. [10, 12] Covering and boundedness for VAS are EXPSPACE-complete.

THEOREM 2. [17] Covering and boundedness for BVAS are decidable.

3 Upper bound for the covering problem

We say that a derivationD of a BVAS B is a covering of a vector t iff the vector thatD derives

is at least t, i.e. D̂(ε) ≥ t. Thus, the covering problem asks whether there exists an initialised

admissible covering.

For VAS, Rackoff [12] established EXPSPACE-membership of the covering problem by

showing that, if an initialised admissible covering exists, then there must exist one of at

most doubly-exponential length. Such a “short” covering can be guessed and verified in

non-deterministic exponential space, and determinism is regained by Savitch’s Theorem.

More precisely, Rackoff proved:

LEMMA 3. [12, Section 3] If a VAS 〈k, a, R〉 has an initialised admissible covering of t ∈ N
k,

then it has one whose length is at most 2(3L)k+1
, where L = max{size(R), size(t)}.

Now, the following proof scheme suggests itself for showing that, if a k-dimensional

BVAS B has an initialised admissible covering D of t, then it has one of at most doubly-

exponential height:

(i) If D has an excessively high leaf n, let V be the VAS whose axiom is D(n) and whose

rules R are all the vectors:

– D(n′), such that n′ is on the path π from n to the root, and has one child;

– D(n′) + D̂(n′′), such that n′ is on π, and n′′ is a child of n′ not on π.

Hence, the sequence obtained from π by relabelling the nodes with two children as

specified is a derivation D† of V . The vectors derived along D† are the same as the

vectors derived along π in D, so D† is an initialised admissible covering of t.
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(ii) By Lemma 3, V has an initialised admissible covering D‡ of t with length at most

2(3L)k+1
, where L = max{size(R), size(t)}.

(iii) Let D′ be a derivation of B obtained from D‡ by undoing the linearisation done in (i),

i.e. by unfolding each rule in D‡ which is not a unary rule of B into a binary rule of

B and a subderivation of D. It is straightforward to check that D′ is also an initialised

admissible covering of t. We repeat from (i) with D′ instead of D, until there are no

excessively high leaves.

There are, unfortunately, two obstacles:

• Since the definition of R in (i) involves adding derived vectors (the ones at the nodes

one edge away from the path π), we have no bound on size(R) in terms of size(B)
and size(t), and therefore neither on L in (ii).

• Even if we manage to bound L, Lemma 3 gives us no guarantees about the shape of

D‡ in (ii) in relation to the shape of D†. Hence, although the length of D‡ is bounded,

we are not able to deduce that after the unfolding in (iii), D′ has fewer excessively

high leaves than D.

However, the key to overcoming both obstacles is observing that essentially Rackoff’s proof

of Lemma 3 shows more than is stated in that result! Firstly, any initialised admissible

covering has a contraction which is a short initialised admissible covering, and secondly,

the length of the latter is bounded by the sizes of the target vector and only the negative

entries in the rules of the VAS. More precisely, we have:

LEMMA 4. If a VAS 〈k, a, R〉 has an initialised admissible covering D of t ∈ N
k, then it has

one which is a contraction of D and whose length is at most (max(R−) + max(t) + 2)(3k)!.

We are now in a position to show that, indeed, if a given BVAS has an initialised admis-

sible covering of a given vector of non-negative integers, then it has one of at most doubly-

exponential height. Although that is all that is required in this article, the actual statement

is stronger for the record.

LEMMA 5. If a BVAS 〈k, A0, R1, R2〉 has an initialised admissible covering D of t ∈N
k, then

it has one which is a contraction of D and whose height is at most (max((R1 ∪ R2)−) +
max(t) + 2)(3k)!.

Therefore, to decide the covering problem, it suffices to search for an initialised admis-

sible covering of at most doubly-exponential height. Note, however, that the size of a binary

tree of doubly-exponential height can be triply-exponential, and hence vectors derived in a

derivation of doubly-exponential height may contain triply-exponential entries. In order

to prove the main result of this section, i.e., that the covering problem for is in 2EXPTIME,

we need to avoid having to manipulate such large numbers. That is achieved by our next

result, Proposition 6, which shows that for a large enough bound B, whether a derivation is

admissible and a covering can be verified accurately even if entries in the derived vectors

are truncated to be at most B.

For a derivation D : T → Z
k and B ∈ N, we define the B-truncated derived vectors by:

• if n is a leaf in T , then D̂B(n) = min(B,D(n));

• if n has one child n′ in T , then D̂B(n) = min(B,D(n) + D̂B(n′));

• if n has two children n′ and n′′ in T , then D̂B(n) = min(B,D(n) + D̂B(n′) + D̂B(n′′)).
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PROPOSITION 6. Suppose B = 〈k, A0, R1, R2〉 is a BVAS, t ∈ N
k, D is a derivation in B of

height at most H, and B ≥ H ·max((R1 ∪R2)−) + max(t). ThenD is an admissible covering
of t iff, for each node n in D, D̂B(n) ≥ 0, and D̂B(ε) ≥ t.

THEOREM 7. Covering for BVAS is in 2EXPTIME.

PROOF. Let B = 〈k, A0, R1, R2〉 be a BVAS and t ∈ N
k. Let N = size(B) + size(t). If

ℓ = max((R1 ∪ R2)−) + max(t) + 2 then ℓ ≤ 2N , and without any loss of generality we can

assume that 3k ≤ N.

Lemma 5 implies that if there is an initialised admissible covering of t in B then there

is one of height at most ℓ
(3k)! ≤ (2N)N! ≤ 22C1 N log N

, for some constant C1 > 1. If we set

H = 22C1 N log N
and B = H2, then from Proposition 6 it follows that in order to establish

existence of an initialised admissible covering of t in B, it suffices to:

• guess an initialised derivation D in B of height at most H;

• guess the B-truncated derived vectors at all nodes in D, and for every node and its

children, verify that they satisfy the equations defining B-truncated derived vectors,

and that they are non-negative;

• verify that the B-truncated derived vector at the root covers t.

We argue that the guessing and verification of such a structure of at most triply-exponential

size can be carried out by an alternating Turing machine with exponential space, and hence

the covering problem is in 2EXPTIME [3]. The alternating Turing machine starts at the root

of the derivation, it uses non-deterministic states to guess the rules labelling the current

node and its children, and their B-truncated derived vectors, and it uses universal states to

proceed with the guessing and verification process to both children (for nodes labelled by

binary rules) in parallel. All those tasks can indeed be carried out by a Turing machine with

only exponential space because it can represent—in binary—and manipulate numbers of

doubly-exponential magnitude.

4 Upper bound for the boundedness problem

Let us say that a derivation D is self-covering iff, for some node n, the vector derived at n is

less than or equal to the one at the root, and less in at least one place, i.e. D̂(n) < D̂(ε).

The following fact tells us that boundedness is equivalent to non-existence of an ini-

tialised admissible self-covering derivation. The “if” part is easy. The “only if” part was

inferred by Verma and Goubault-Larrecq, using the properties of their extension of Karp

and Miller’s procedure.

THEOREM 8. [17] A BVAS produces infinitely many vectors iff it has an initialised admissi-

ble self-covering derivation.

In the simpler setting of VAS, to conclude that boundedness is in EXPSPACE, Rackoff

showed that if an initialised admissible self-covering derivation exists, then there exists one

of at most doubly-exponential length:
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LEMMA 9. [12, Section 4] If a VAS V = 〈k, a, R〉 has an initialised admissible self-covering

derivation, then it has one whose length is at most 22C2L log L
, where L = size(R) and C2 is

some constant.

Encouraged by our eventual success in Section 3, consider the following scheme for

proving that, if a BVAS B = 〈k, A0, R1, R2〉 has an initialised admissible self-covering deriva-

tion D, then it has one of at most doubly-exponential height:

(I) Let node n be such that D̂(n) < D̂(ε), and pick a simple path π in D which is from a

leaf to the root and passes through n. Let V be the VAS defined as in (i) in Section 3, i.e.

its axiom is the label of the leaf of π and its rules R are obtained by linearising the bi-

nary rules on π. Thus, V has a derivation D† whose sequence of derived vectors is the

same as the sequence of derived vectors along π in D. In particular, D† is initialised,

admissible and self-covering.

(II) By Lemma 9, V has an initialised admissible self-covering derivationD‡ whose length

is at most 22C2 L log L
, where L = size(R).

(III) Let D′ be a derivation of B obtained from D‡ by undoing the linearisation done in (I),

as in (iii) in Section 3, and let π′ be the path in D′ that is from a leaf to the root and

corresponds to D‡. It is straightforward to check that D′ is also initialised, admissible

and self-covering.

(IV) Let H be the length of π′, which equals the length of D‡. For each node n′ that is one

edge away from π′ inD′ (i.e., that was attached in (III)), the subderivation ofD′ rooted

at n′ is an initialised admissible covering of min((H − 1) ·max(R−) + 1, D̂′(n′)). By

Lemma 5, B has an initialised admissible covering D∗n′ of the same vector, whose

height is at most

(
max((R1 ∪ R2)

−) + max
(

min
(
(H − 1) ·max(R−) + 1, D̂′(n′)

))
+ 2

)(3k)!

≤
(
max((R1 ∪ R2)

−) + (H − 1) ·max(R−) + 3
)(3k)!

≤
(

H ·max((R1 ∪ R2)
−) + 3

)(3k)!
.

Let D′′ be obtained from D′ by performing each substitution [n′ ← D∗n′ ]. The trun-

cating threshold (H − 1) ·max(R−) + 1 is such that D′′ is still admissible and self-

covering, certainly it is still initialised, and H + (H ·max((R1 ∪ R2)−) + 3)(3k)! bounds

its height.

Of course, we have the same problem as the first one in Section 3: we have no bound

on size(R) in terms of size(B), and therefore neither on H in (IV). Seeking therefore a refine-

ment of Lemma 9, we find that the key ingredient in its proof is:

LEMMA 10. [12, Lemma 4.5] Suppose V = 〈k, a, R〉 is a VAS, I ⊆ [1, k] and B > 1. If V has
an initialised I-B-bounded self-covering derivation, then it has one whose length is at most

B(size(R))C3 , where C3 is some constant.

In turn, at the centre of the proof of Lemma 10, Rackoff invokes the following theorem

of Borosh and Treybig on small solutions of integer linear programming problems. Recall

that the interval notations denote sets of integers.
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THEOREM 11. [2] Let A ∈ (−m, m)k×n and b ∈ (−m, m)k, where k, n, m ∈ N. If there exists
x ∈ N

n such that Ax ≥ b, then there exists y ∈ [0, (max{n, m})C4k]n such that Ay ≥ b,
where C4 is some constant.

When we examine feeding a VAS 〈k, a, R〉 for which we have a bound on max(R−) but

not on max(R+) into Rackoff’s proof of Lemma 10, we discover that Theorem 11 is invoked

for bounded k, unbounded n, A whose entries are bounded below but not above, and b

whose entries are bounded above but not below. Surprisingly, this is where we can make

progress. We now show that, if we can afford roughly one exponential more, small solutions

exist for A and b which are only one-sidedly bounded by m. Moreover, the number of non-

zero entries in the small solutions and their values are bounded only in terms of k and m.

THEOREM 12. Let A ∈ (−m, ∞)k×n and b ∈ (−∞, m)k, where k, n, m ∈ N. If there exists
x ∈ N

n such that Ax ≥ b, then there exists y ∈ [0, L]n such that |supp(y)| ≤ L and Ay ≥ b,

where L = m2C5k2

and C5 is some constant.

In order to reformulate Theorem 12 so that it becomes appropriate for a proof by induc-

tion on k (cf. Lemma 14), we define Fk(m), for all integers k ≥ 1 and m ≥ 2, by:

Fk(m) =

{
m if k = 1,
(

Fk−1(2m)
)4C4k2

if k > 1,

where C4 is the constant from Theorem 11, which we can assume is at least 1.

PROPOSITION 13. For all integers k ≥ 1 and m ≥ 2, we have Fk(m) ≤ m(4C4)
k·(2k)!.

Observe that there is a constant C5 such that, for all integers k ≥ 1 and m ≥ 2, we have

Fk(m) ≤ m(4C4)k ·(2k)! ≤ m2C5k2

. Hence, and since Theorem 12 is true trivially when k = 0 or

m ≤ 1, Theorem 12 follows from the following lemma.

LEMMA 14. Let A ∈ (−m, ∞)k×n and b ∈ (−∞, m)k, where k ≥ 1, n and m ≥ 2 are
integers. If there exists x ∈ N

n such that Ax ≥ b, then there exists y ∈ [0, Fk(m)]n such that

|supp(y)| ≤ Fk(m) and Ay ≥ b.

PROOF. We can assume without any loss of generality that, for each j ∈ [1, n], there exists

x ∈N
n such that Ax ≥ b and x(j) ≥ 1. Otherwise, consider A

′ = A•(−j), where there exists

no x ∈ N
n such that Ax ≥ b and x(j) ≥ 1.

The proof is by induction on k. First we consider the base case when k = 1. If b ≤ 0 then

Ay ≥ b for y = 0. If, however, b > 0 then the existence of x ∈ N
n such that Ax ≥ b implies

that there must be i ∈ [1, n] such that A(1, i) > 0. Then, we have Ay ≥ b for y = m · ei.

For the inductive step we consider the following three cases. Essentially, if either b

contains a large negative entry or A contains a large positive entry, then we remove that

row of A and argue by the inductive hypothesis and the largeness of the entry. Otherwise,

we have a lower bound for all entries of b and an upper bound for all entries of A, and we

invoke Theorem 11.
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Case 1. There exists i ∈ [1, k] such that b(i) ≤ −m · (Fk−1(m))2. Let A
′ = A(−i)• and let

b
′ = b−i. By the inductive hypothesis, there exists y ∈ [0, Fk−1(m)]n—and hence y ∈

[0, Fk(m)]n—such that |supp(y)| ≤ Fk−1(m) < Fk(m) and A
′
y ≥ b

′. The assumption that

A(i, j) > −m for all j ∈ [1, n] then implies that Ai•y > −m · (Fk−1(m))2 ≥ b(i), and hence

we have Ay ≥ b.

Case 2. There exist i ∈ [1, k] and j ∈ [1, n] such that A(i, j) ≥ 2m · (Fk−1(2m))2, and there exists

x ∈N
n such that Ax ≥ b and x(j) ≥ 1. Let A

′ = A(−i)•, let b
′ = b−i, and let b

′′ = b
′−A(−i)j.

Note that A
′(x− ej) ≥ b

′′ and that, since x(j) ≥ 1, we have x− ej ∈ N
n. Observe also that

b
′′ ∈ (−∞, 2m)k−1 and hence, by the inductive hypothesis, there exists y ∈ [0, Fk−1(2m)]n

such that |supp(y)| ≤ Fk−1(2m) and A
′
y ≥ b

′′.
Let z = y + ej. Note that then z ∈ [0, Fk−1(2m) + 1]n ⊆ [0, Fk(m)]n and |supp(y)| ≤

Fk−1(2m) + 1 ≤ Fk(m), and hence we only need to establish that Az ≥ b. We have:

(Az)(i) = Ai•(y + ej) ≥ A(i, j)−m · (Fk−1(2m))2 ≥ m · (Fk−1(2m))2 ≥ m ≥ b(i),

where the first inequality follows from A ∈ (−m, ∞)k×n, from y ∈ [0, Fk−1(2m)], and from

|supp(y)| ≤ Fk−1(2m); and the second inequality follows from the assumption that A(i, j) ≥
2m · (Fk−1(2m))2. Moreover, we have:

(Az)−i = A
′(y + ej) = A

′
y + A(−i)j ≥ b

′′ + A(−i)j = b
′ = b−i.

Case 3. Neither Case 1 nor Case 2 applies. Observe that, in this case, every column of A is

in [−m, 2m · (Fk−1(2m))2]k, and b ∈ [−m · (Fk−1(m))2, m]k. The number of distinct columns

of A is therefore at most (3m · (Fk−1(2m))2)k ≤ (Fk−1(2m))4k, and so without loss of general-

ity we may assume n ≤ (Fk−1(2m))4k. By Theorem 11, there exists y ∈ [0, Fk−1(2m)4C4k2
]n =

[0, Fk(m)]n such that |supp(y)| ≤ (Fk−1(2m))4k ≤ Fk(m) and Ay ≥ b.

By substituting the use of Theorem 11 in Rackoff’s proof of Lemma 10 by a use of

Theorem 12, we obtain:

LEMMA 15. Suppose V = 〈k, a, R〉 is a VAS, I ⊆ [1, k] and B > 1. If V has an initialised I-B-

bounded self-covering derivation, then it has one of length at most ((max(R−) + 1) · B)2C6k2

,
where C6 is some constant.

The final step in obtaining a revision of Lemma 9 that we can apply to VAS whose rules

are bounded below but not above is to substitute in its proof uses of Lemma 10 by uses of

Lemma 15. That yields the following result, which shows that we could indeed afford the

extra exponential in Theorem 12. Although it filters through to Lemma 15, it gets swallowed

by the steps of Rackoff’s inductive proof of Lemma 9.

LEMMA 16. If a VAS V = 〈k, a, R〉 has an initialised admissible self-covering derivation,

then it has one of length at most (2(max(R−) + 1))2C7k3

, where C7 is some constant.

THEOREM 17. Boundedness for BVAS is in 2EXPTIME.
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5 Lower bounds

Let a counter machine consist of finite sets of states, counters and transitions. Each transi-

tion changes state, and either increments a counter, or checks that a counter is positive and

decrements it, or checks that a counter is zero. We consider alternating counter machines,

where the set of states is partitioned into non-deterministic and universal. Without loss of

generality, we restrict to at most binary branching. A computation of such a machine is a

binary tree of configurations, each of which is a state together with a non-negative integer

for every counter.

To establish lower bounds for the covering and boundedness problems for BVAS, we

reduce from the following problem. Its AEXPSPACE-hardness is an easy consequence of

standard translations from Turing machines to counter machines (e.g., by simulating the

tape by two stacks and encoding the latter by counters), and so it is 2EXPTIME-hard [3].

Doubly-exponential halting Given an alternating counter machine of size N with an initial

state and a halting state, does it have an initialised 22N
-bounded halting computation,

i.e. whose root is the initial state with 0 for every counter, in which every counter value

is less than 22N
, and which is finite and such that the state of each leaf is halting?

We argue that, given an alternating counter machineM of size N, a BVAS BM which

simulatesM and is of size O(N2) is computable:

• For simulating the operations on counters, we employ Lipton’s construction [10] (cf.

the nice presentation by Esparza [5, Section 7]), in which each counter c ofM is repre-

sented by two places pc and pc of BM, and it is an invariant in all initialised admissible

derivations of BM that the sum of pc and pc is 22N
. Increments and decrements of c are

easy, but to simulate checking that c is zero, BM uses implementations of two auxil-

iary counters bounded by 22N−1
to decrement pc exactly 22N−1 · 22N−1

= 22N
times. The

implementations of the two auxiliary counters in turn require two auxiliary counters

bounded by 22N−2
etc.

• The simulation is performed in reverse, so that BM guesses and verifies an initialised

22N
-bounded halting computation ofM. To verify a universal branching, where the

two child configurations ofM are represented by two derived vectors v and v
′, BM

derives v
′′ from v

′ by transferring each pair of places that represents a counter ofM
to a separate pair of places which is reserved for that purpose. Then, BM joins v and

v
′′ by performing a binary rule, verifies that the values of each counter ofM were the

same in v and v
′, and empties the auxiliary places.

• Since BM can simulate checking that every counter of M is zero, it can guess and

verify that the configuration that it represents is initial.

To reduce to the covering problem, we use the target vector to specify that the reverse

simulation has reached the initial configuration ofM. To reduce to the boundedness prob-

lem, we amend BM so that upon guessing and verifying that the configuration of M is

initial, it becomes unbounded by deriving an infinite sequence of increasing vectors.

THEOREM 18. Covering and boundedness for BVAS are 2EXPTIME-hard.
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6 Concluding remarks

The extra work in this article in relation to the proofs of Lipton and Rackoff [10, 12], and the

recent result that reachability for BVAS is 2EXPSPACE-hard [9] (the highest known lower

bound for VAS is Lipton’s), indicate that BVAS are not a trivial extension of VAS.

We would like to thank Serge Haddad (LSV, Cachan) for numerous discussions about

VAS and their extensions, Sylvain Schmitz (LSV, Cachan) for pointing us to [13], and Alexan-

der Schrijver (CWI, Amsterdam) for correspondence about integer linear programming.
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than covering all edges (or vertices). In general graphs, these problems are hard for parameterized
complexity classes when parameterized by k. It was recently shown by Amini et. al. [FSTTCS 08 ]
that PARTIAL VERTEX COVER and PARTIAL DOMINATING SET are fixed parameter tractable on large
classes of sparse graphs, namely H-minor free graphs, which include planar graphs and graphs of
bounded genus. In particular, it was shown that on planar graphs both problems can be solved in
time 2O(k)nO(1).
During the last decade there has been an extensive study on parameterized subexponential algo-
rithms. In particular, it was shown that the classical VERTEX COVER and DOMINATING SET problems
can be solved in subexponential time on H-minor free graphs. The techniques developed to obtain
subexponential algorithms for classical problems do not apply to partial cover problems. It was left
as an open problem by Amini et al. [FSTTCS 08 ] whether there is a subexponential algorithm for
PARTIAL VERTEX COVER and PARTIAL DOMINATING SET. In this paper, we answer the question
affirmatively by solving both problems in time 2O(

√
k)nO(1) not only on planar graphs but also on

much larger classes of graphs, namely, apex-minor free graphs. Compared to previously known
algorithms for these problems our algorithms are significantly faster and simpler.

1 Introduction and Motivation
A generic instance of a covering problem consists of a family of sets over an universe and
the objective is to cover the universe with as few sets from the family as possible. Cover-
ing problems are basic problems not only in combinatorial optimization and algorithms but
occur naturally in variety of applications. One of the prominent covering problems is the
classical SET COVER problem. Other classical problems in the framework of covering in-
clude well known problems like VERTEX COVER, DOMINATING SET, FACILITY LOCATION,
k-MEDIAN, k-CENTER problems, on which hundreds of papers have been written.

As the name suggests, in partial cover problems one is interested in covering as much
of the universe, if not the entire universe. This makes the partial cover problems natural
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generalizations of the well known covering problems. More precisely, in the partial covering
problem, for a given integer t ≥ 0, we want to cover at least t elements using as few objects
(vertices or edges) as possible. For an example, in PARTIAL VERTEX COVER (PVC), the
goal is to cover at least t edges with the minimum number of vertices while in PARTIAL

DOMINATING SET (PDS) the goal is to dominate at least t vertices of the input graph with
the minimum number of vertices.

Partial cover problems have been investigated extensively and are well understood in
the context of polynomial time approximation [2, 4, 3, 5, 16, 18] and parameterized com-
plexity [1, 4, 24, 25, 23, 27]. In this paper we study partial cover problems defined on graphs
namely PARTIAL VERTEX COVER and PARTIAL r-DOMINATING SET from the view point of
parameterized algorithms. PARTIAL VERTEX COVER is defined as follows.

PARTIAL VERTEX COVER (PVC): Given a graph G = (V, E) and positive integers
k and t, check whether there exists a set of vertices C ⊆ V such that |C| ≤ k and
there are at least t edges incident to C.

The PARTIAL r-DOMINATING SET is a generalization of DOMINATING SET and is defined as
follows.

PARTIAL r-DOMINATING SET (P-r-DS): Given a graph G = (V, E) and positive
integers k, r and t, determine whether there exists a set of vertices D ⊆ V such
that |D| ≤ k and there are at least t vertices at distance at most r from some
vertex in D.

In parameterized algorithms, for decision problems with input size n, and a parameter k,
the goal is to design an algorithm with runtime f (k) · nO(1), where f is a function of k alone.
Problems having such an algorithm are said to be fixed parameter tractable (FPT). There
is also a theory of hardness using which one can identify parameterized problems that are
not amenable to such algorithms. This hardness hierarchy is represented by W[i] hierarchy
for i ≥ 1. For an introduction and more recent developments see the books [13, 14, 29]. In
this paper, we always parameterize a problem by the size of the cover, that is, the positive
integer k.

Most of the research on partial cover problems in parameterized complexity has con-
sidered the number of objects to be covered (t) as a parameter rather than the the size of
the cover (k). Bläser [4] initiated the study of partial cover problems parameterized by
t and obtained a randomized algorithm with running time 5.45tnO(1) for PDS. Kneis et
al. [25] improved this algorithm and obtained a randomized algorithm with running time
(4 + ε)tnO(1) for every fixed ε > 0. Recently, Koutis and Williams [27] obtained an even
faster randomized algorithm for PDS, which runs in time 2tnO(1). Kneis et al. [24] studied
the PVC problem when parameterized by the number edged to be covered (t) and obtained
a randomized algorithm running in time 2.0911tnO(1). The algorithm for PVC was recently
improved by Kneis et al. [23]. They obtain a randomized algorithm with running time
1.2993tnO(1) and a deterministic algorithm with running time 1.396tnO(1) for PVC. When
parameterized by the size of cover k, PVC is known to be W[1]-complete [17]. The P-r-
DS problem being a generalization of DOMINATING SET is also known to be W[2]-hard on
general graphs when parameterized by the cover size. Amini et al. [1] considered these
problems with the size of the cover k being the parameter and initiated a study of these
problem on sparse graphs namely planar graphs, apex minor free graphs and H-minor



FOMIN, LOKSHTANOV, RAMAN AND SAURABH FSTTCS 2009 195

free graphs. They obtained algorithms with running time 2O(k)nO(1) for PVC and P-r-DS
and left an open question of whether these problems have an algorithm with running time
2o(k)nO(1), like their non partial counterpart on planar graphs or more generally on H-minor
free graphs. In this paper we answer this question in affirmative and obtain algorithms with
running time 2O(

√
k)nO(1) for PVC and P-r-DS on planar graphs and more general classes of

sparse graphs, namely, apex-minor free graphs.
Most of the known sub-exponential time algorithms on planar graphs, graphs of bounded

genus, apex minor free graphs and H-minor free graphs are based on the meta-algorithmic
theory of bidimensionality, developed by Demaine et al. [7]. The bidimensionality theory is
based on algorithmic and combinatorial extensions to various parts of Graph Minors The-
ory of Robertson and Seymour [30] and provides a simple criteria for checking whether a
parameterized problem is solvable in subexponential time on sparse graphs. The theory ap-
plies to the graph problems that are bidimensional in the sense that the value of the solution
for the problem in question on k× k grid or “grid like graph” is at least Ω(k2) and the value
of solution decreases while contracting or sometime deleting the edges. Problems that are
bidimensional include k-FEEDBACK VERTEX SET, k-EDGE DOMINATING SET, k-LEAF SPAN-
NING TREE, k-PATH, k-rDOMINATING SET, k-VERTEX COVER and many others. We refer to
surveys by Demaine and Hajiaghayi [10] and Dorn et al. [12] for further details on bidimen-
sionality and subexponential parameterized algorithms. But neither PVC nor P-r-DS are
bidimensional problems. This is because an optimum solution to PVC or P-r-DS need not
cover all the edges (or the vertices respectively) of a k× k grid, and hence its value need not
be large on such a grid. Hence this theory is not amenable to our problems.

Our subexponential time algorithms for PVC and P-r-DS are based on a technique used
to solve the classical DISJOINT PATH problem in the Graph Minors Theory of Robertson and
Seymour [31], called irrelevant vertex argument. The technique can be described as follows,
in polynomial time we find a vertex which is irrelevant for the solution and hence can be
deleted and when we can not find an irrelevant vertex, we show that the reduced instance
has bounded treewidth. This technique has recently been used to solve several problems
around finding disjoint paths [19, 20, 21, 22, 26]. To obtain subexponential time algorithms
for PVC and P-r-DS we introduce a notion of “lexicographically smallest” solution and use
its properties to obtain an irrelevant vertex in the graph. When we can not find any irrel-
evant vertex then we are able to show that that the treewidth of the reduced graph is at
most O(

√
k). Once we have a sublinear bound on the treewidth of the input graph, we can

solve the problem in 2O(
√

k)nO(1) time using dynamic programming over graphs of bounded
treewidth. Our results are based on a simple but powerful observation relating lexicograph-
ically least solutions and r-dominating sets of size at most k.

2 Preliminaries
Let G = (V, E) be an undirected graph where V is the set of vertices and E is the set of edges.
We denote the number of vertices by n and number of edges by m. For a subset V ′ ⊆ V, by
G[V ′] we mean the subgraph of G induced by V ′. By N(u) we denote (open) neighborhood
of u that is set of all vertices adjacent to u and by N[u] = N(u) ∪ {u}. Similarly, for a subset
D ⊆ V, we define N[D] = ∪v∈D N[v]. The distance dG(u, v) between two vertices u and v of
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G is the length of the shortest path in G from u to v. For a given vertex v ∈ V by ∂(v) we
denote the set of edges which are incident with v. For a subset X ⊆ V, ∂(S) = ∪v∈S∂(v).

Given an edge e = (u, v) of a graph G, the graph G/e is obtained by contracting the
edge (u, v) that is we get G/e by identifying the vertices u and v and removing all the loops
and duplicate edges. A minor of a graph G is a graph H that can be obtained from a subgraph
of G by contracting edges. A graph class C is minor closed if any minor of any graph in C is
also an element of C. A minor closed graph class C is H-minor-free or simply H-free if H /∈ C.
A graph H is called an apex graph if the removal of one vertex makes it a planar graph.

A tree decomposition of a graph G = (V, E) is a pair (X, T) where T is a tree on vertex set
V(T) whose vertices we call nodes and X = ({Xi | i ∈ V(T)}) is a collection of subsets of V
such that

1.
⋃

i∈V(T) Xi = V,
2. for each edge (v, w) ∈ E, there is an i ∈ V(T) such that {v, w} ∈ Xi, and
3. for each v ∈ V the set of nodes {i | v ∈ Xi} forms a subtree of T.

The width of a tree decomposition ({Xi | i ∈ V(T)}, T) equals maxi∈V(T){|Xi| − 1}. The
treewidth of a graph G is the minimum width over all tree decompositions of G. We use
notation tw(G) to denote the treewidth of a graph G.

Given a graph G = (V, E) a set of vertices D of V is called an r-dominating set for G
if Nr(D) = V. For r = 1 the set D is called a dominating set. In the r-DOMINATING SET

problem, we are given a graph G = (V, E) and the objective is to find the smallest sized D
such that Nr(D) = V.

3 Subexponential algorithm for Partial Vertex Cover
In this section we consider the PVC problem. In fact we will solve a slightly more general
problem, that is, given an undirected graph, a non negative integer k, we find the maximum
number of edges that can be covered by a subset of at most k vertices. The decision version
of the problem is precisely PVC. If the maximum number of edges covered by any vertex
set of size at most k is at least t then we return “yes” else we return “no”.

The key idea of the algorithm is to identify a set of irrelevant vertices, I, which can
be deleted without destroying at least one set C ⊆ V such that |C| ≤ k and |∂(C)| ≥ t,
if such a set exists. Then we will show that the tw(G[V \ I]) ≤ O(

√
k) and hence the

dynamic programming over graphs of bounded treewidth can be applied. To identify a set
of irrelevant vertices we introduce the notion of lexicographically smallest solution.
Definition 1 Given a graph G = (V, E), an ordering σ = v1 . . . vn of the vertices in V and subsets
X and Y of V, if X is lexicographically smaller than Y then we denote it by X ≤σ Y. We call a set
C ⊆ V the lexicographically smallest solution for PVC if for any other solution C′ for the PVC
we have that C ≤σ C′.

Let σ = v1v2 . . . vn be an ordering of the vertices such that the vertices are in non in-
creasing order of their degrees, with ties being broken arbitrarily. That is,

d(v1) ≥ d(v2) · · · ≥ d(vn−1) ≥ d(vn).

Throughout this section, we will assume that the vertex set of the input graph is ordered
by this fixed ordering σ and denote the graph by G = (Vσ, E) to emphasize the fact that the
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vertex set is order with respect to σ. By Vi
σ we denote the vertex set v1 . . . vi. Our goal will

be to find the lexicographically smallest solution for PVC. The algorithm is based on the
following properties of the lexicographically smallest solution for PVC.

LEMMA 1. Let G = (Vσ, E) be a yes instance to PVC, C = {ui1 , . . . , uik} be the lexicograph-
ically smallest solution for PVC and uik = vj for some j. Then C is a dominating set of size

at most k for G[V j
σ].

PROOF. Let us assume to the contrary that C is not a dominating set for G[V j
σ]. Then there

exists a vertex vi, 1 ≤ i < j such that N[vi] ∩ C = ∅. Set C′ := C \ {vj} ∪ {vi}. We claim
that C′ covers at least as many edges as are covered by C. That is, |∂(C′)| ≥ |∂(C)|. Since
d(vi) ≥ d(vj), we have that

|∂(C′)| ≥ |∂(C)| − d(vj) + d(vi) ≥ |∂(C)|.

This is because the edges covered by vi are not covered by any element of C− {vj}. Hence,
|C′| = |C|, C′ is lexicographically smaller than C and |∂(C′)| ≥ |∂(C)| a contradiction to the
choice of C.

We also need the following results for our algorithm.

LEMMA 2. Let G be a n-vertex graph excluding an apex graph H as a minor. If G has an
r-dominating set of size at most k, then G has treewidth at most cHr

√
k = O(r

√
k), where

cH is a constant depending only on the size of H.

Lemma 2 follows from the fact that the size of r-dominating set is a “contraction bidi-
mensional” parameter and that if a contraction bidimensional parameter has value at most
k on a graph G which excludes an apex graph H as a minor then tw(G) ≤ O(r

√
k) [6, 8, 15]

. We will use the following known algorithm to solve PVC on graphs of bounded treewidth.

LEMMA 3.[28] Let G be an undirected graph such that the treewidth of G is at most w. Then
in time 2wnO(1) we can find a subset C of at most k vertices that cover the maximum number
of edges of G.

For our proof we also need the following result by Demaine and Hajiaghayi to obtain a
polynomial time approximation scheme (PTAS) for r-DOMINATING SET.

LEMMA 4.[9] There is a PTAS for r-DOMINATING SET on apex minor free graphs.

NsV \ N

Figure 1: The Algorithmic Schema

The basic schema of the algorithm is as follows. We start with the vertex set Vσ and scan
the vertices in the reverse order of σ = v1v2 . . . vn. That is, we scan the vertices in the order
vnvn−1 . . . v2v1. The algorithm can be viewed as having a stick, initially positioned to the
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ALGO-PC(G = (Vσ, E), k, ε, N)
(Here G is a graph with vertices ordered in non increasing order σ of their degrees
, k a non negative integer, ε > 0 is an arbitrary fixed constant, N is a set of vertices
(initially ∅), and the goal is to find a subset of V \ N of size at most k that covers
the maximum number of edges of G = (V, E).)

1. Let p := n.
2. While there does not exist a dominating set of size at most (1 + ε)k for G[Vp

σ ] (deter-
mined using Lemma 4)
• set N := N ∪ {vp} and p := p− 1.

endwhile
3. Let I = {u | u ∈ N, N(u) ⊆ N} and set V′ = V \ I. Find a tree-decomposition (U, T)

of G[V′] using the constant factor approximation algorithm of Demaine et al. [11] for
computing the treewidth of H-minor free graph.

4. Apply Lemma 3 to find a subset C′ of size at most k of G[V′] which covers the maxi-
mum number of edges.

Figure 2: Description of the partial cover Algorithm

right of vn which we slide towards its left if the vertex to its left satisfies certain properties.
See Figure 1. At any intermediate stage, we have a vertex set N which are the vertices in
the original order σ, to the right of the stick. The vertex set s is the first vertex to the left of
the stick. The stick represents the fact that the lexicographically smallest solution C we are
looking for lies completely in V \ N, that is, C ⊆ V \ N. To slide the stick we do as follows.
Let s = vj for some j. Now we check whether G[V j

σ] has a dominating set of size “roughly k”.
If not, we slide the stick to one position left. Else we find an appropriate induced subgraph
G′ = (V ′, E′) of G such that tw(G′) ≤ O(

√
k) and G has a set C of size at most k such that

|∂(C)| ≥ t if and only if there exists a set C′ ⊆ V ′ such that |C′| ≤ k and |∂(C′)| ≥ t. A
formal description of our algorithm for partial vertex cover is given in Figure 2. The ALGO-
PC is called with the parameter (G = (Vσ, E), k, ε, ∅). Now we state our main theorem for
this section.

THEOREM 5. Let G = (V, E) a graph that excludes an apex graph H as a minor and k and
t be a positive integers. Then in 2O(

√
k)nO(1) time we can determine whether there exists a

subset C ⊆ V of size at most k such that |∂(C)| ≥ t.

PROOF. We argue the correctness of the algorithm. In the first part of the algorithm we try
to identify the subset N of vertices such that it does not intersect with the lexicographically
least solution C we are looking for. We iteratively run through the vertices in the reverse
order and try to maintain the invariant that N is a subset of the vertices that does not inter-
sect with the lexicographically least solution. Initially N is empty, so the invariant trivially
holds. The set N only grows if in any step, the PTAS algorithm of Lemma 4 finds a dom-
inating set of G[V \ N] of size more than (1 + ε)k. Let vp be the largest indexed vertex in
V \ N, that is, vp is to the left of the set N in the ordering σ. Now by Lemma 1, we know
that if vp ∈ C then G[V \ N] has a dominating set of size at most k and hence the PTAS from
Lemma 4 would find an approximate dominating set of size at most (1 + ε)k. This implies
that vp /∈ C and hence we can safely place vp in N. This proves the correctness of the first
part.
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Note that edges in G[N] will not be covered by C, and hence vertices in N that have
neighbors only in N are collected in the set I and deleted at the end. The set I is the irrelevant
set of vertices we were looking for. Let V ′ = V \ I. Thus we have shown that G has a set
C of size at most k such that |∂(C)| ≥ t if and only if there exists a set C′ ⊆ V ′ such that
|C′| ≤ k and |∂(C′)| ≥ t. Now applying Lemma 3 we find a subset C′ of size at most k of
G[V ′] which covers the maximum number of edges. So if |∂(C′)| ≥ t then we return “yes”
else we return “no”. The correctness of this step follows from Lemma 3.

Now we analyze the time complexity of the algorithm. We know that when the algo-
rithm exits the while loop, G[V \ N] has a dominating set of size at most (1 + ε)k. Let D be
a dominating set of G[V \ N] of size at most (1 + ε)k. This implies that D is a 2-dominating
set of G[V ′] as every vertex v ∈ (N ∩ V ′) has a neighbor in V \ N. Hence by Lemma 2,
tw(G′) ≤ O(

√
(1 + ε)k) = O(

√
k). Now using the constant factor approximation algo-

rithm of Demaine et al. [11] for computing the treewidth of H-minor free graph, we find a
tree-decomposition of G[V ′] of width O(

√
k) in time nO(1). Finally, the dynamic program-

ming algorithm mentioned in Lemma 3 runs in time 2wnO(1) on graphs of treewidth w and
hence our algorithm has running time 2O(

√
k)nO(1).

4 Partial dominating set problems
In this section we consider PARTIAL r-DOMINATING SET problem. We first modify Lemma
1 to prove the following.

LEMMA 6. Let G = (V, E) be a graph and let σ be the ordering of the vertices in non
increasing order of their sizes of Nr(v), that is, if vi < vj in σ, then |Nr(vi)| ≥ |Nr(vi+1)|with
ties being broken arbitrarily. Let G = (Vσ, E) be a yes instance to P-r-DS, C = {ui1 , . . . , uik}
be the lexicographically smallest solution for P-r-DS and uik = vj for some j. Then C is a

2r-dominating set of size at most k for G[V j
σ].

PROOF. Let Nr(C) =
⋃

s∈C Nr(s) be the set of vertices of V j
σ that are r-dominated by

C, and suppose that C is not a 2r-dominating set of V. Let vi, i < j be a vertex of V j
σ

that is not 2r-dominated by C (vi /∈ N2r(C)). Then Nr(vi) ∪ Nr(s) = ∅ for every s ∈ C
as otherwise if for some vertex s ∈ C, the intersection is non empty, then vi will be 2r
dominated by s. Let C′ = C− vj ∪ {vi}, then |C′| = |C|, C′ is lexicographically smaller than
C and |Nr(C′)| ≥ |Nr(C)|+ |Nr(vi)| − |Nr(vj)| ≥ Nr(C) a contradiction to the choice of C.

We also need a lemma similar to Lemma 3 which we state below.

LEMMA 7.[7] Let G be an undirected graph such that the treewidth of G is at most w. Then
in time (2r + 1)1.5wnO(1) we can find a subset C of at most k vertices that r-dominate the
maximum number of vertices of G.

With all these ingredients, the subexponential algorithm for the P-r-DS is very similar
to our algorithm for PVC. The only difference is in the while loop where instead of finding a
dominating set of size (1 + ε)k, we find a 2r-dominating set of size (1 + ε)k, and in the final
step, use the dynamic programming algorithm of Lemma 7 to find a subset C of at most k
vertices that r-dominate the maximum number of vertices of G. Thus we have
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THEOREM 8. Let G = (V, E) a graph that excludes an apex graph H as a minor and k and t
be a positive integers. Then in 2O(r(log r)

√
k)nO(1) time we can determine whether there exists

a subset C ⊆ V of size at most k such that |Nr(C)| ≥ t.

5 Conclusion

We have given the first subexponential algorithms for PARTIAL VERTEX COVER and PAR-
TIAL r-DOMINATING SET problems on planar and apex minor free graphs, answering an
open problem in [1]. Our results were based on a simple but powerful observation relating
lexicographically least solutions and r-dominating sets of size at most k. This allowed us to
significantly improve the running time of several algorithm presented in [1] in an elegant
way. Through this process, we have also expanded the list of problems tractable using the
irrelevant vertex argument and it would be nice to apply this technique for other problems
in planar and other classes of sparse graphs.
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ABSTRACT. We show that the integrality gap of the standard SDP for VERTEX COVER on instances of
n vertices remains 2 − o(1) even after the addition of all hypermetric inequalities. Our lower bound
requires new insights into the structure of SDP solutions behaving like ℓ1 metric spaces when one
point is removed. We also show that the addition of all ℓ1 inequalities eliminates any solutions that
are not convex combination of integral solutions. Consequently, we provide the strongest possible
separation between hypermetrics and ℓ1 inequalities with respect to the tightening of the standard
SDP for VERTEX COVER.

1 Introduction

A vertex cover for a graph G = (V, E) is a subset of the vertices touching all edges. The min-

imum VERTEX COVER problem (VC) is to find a minimal vertex cover for a graph. While the

corresponding decision version for VERTEX COVER is a classic NP-hard problem, the exact

approximability of the minimum VERTEX COVER problem remains one of the outstanding

open problems in approximation algorithms.

In terms of lower bounds, Dinur and Safra [6] show that VERTEX COVER is NP-hard to

approximate within a factor better than 1.36. Assuming Khot’s [15] Unique Games conjec-

ture holds, Khot and Regev [16] show that computing a 2−Ω(1) approximation is NP-hard.

As for upper bounds, a very simple argument based on maximal matchings shows that VER-

TEX COVER admits a polynomial time 2 approximation. The best approximation algorithm

known is due to Karakostas [13] and has an approximation ratio of 2 − Ω(
√

1/ log n).

Closing the gap between the known upper and lower bounds on VERTEX COVER’s ap-

proximability (or obtaining a tight lower bound without relying on the Unique Games Con-

jecture) has proved particularly difficult. As a result researchers have focused on studying

how well we can approximate VERTEX COVER using algorithmic techniques proven suc-

cessful for other optimization problems. One such family of algorithms arises by first for-

mulating the optimization problem as a (intractable) quadratic integer problem and then

relaxing the integrality constraint to obtain a semidefinite program (SDP) that can be solved

in polynomial time up to any desired precision. This approach was first introduced by

Goemans and Williamson [11] and used to obtain a breakthrough 0.878-approximation al-

gorithm for MAX CUT. Subsequently, many SDP-based algorithms have been discovered

and which yield the best approximation algorithms known for several optimization prob-

lems [2, 14, 13].

The quality of an SDP relaxation is typically measured by its integrality gap, namely,

the ratio between the true optimal solution and the relaxed SDP solution. It is generally

accepted that a lower bound on the integrality gap is a lower bound on the approximation
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ratio achievable by any algorithm based on the SDP relaxation. Unfortunately, so far no SDP

relaxation for VERTEX COVER has been found whose integrality gap is not 2 − o(1).

Indeed, Kleinberg and Goemans [10] show that the obvious “standard” SDP for VERTEX

COVER (defined in Section 2.2) has integrality gap 2 − o(1). But can this standard SDP be

tightened with further constraints to reduce the integrality gap? A series of papers studies

whether so-called ℓ1 inequalities can decrease the integrality gap. The use of ℓ1 inequalities

is motivated by the fact that solutions to the standard quadratic programming formulation

for VERTEX COVER lie in an ℓ1 metric space. Further motivation comes from a paper by

Hatami et al. [12] showing that adding all ℓ1 inequalities to the standard SDP for VERTEX

COVER yields true optimal solutions. Now, adding all ℓ1 inequalities yields an intractable

SDP relaxation. The natural question that then emerges is whether there is a subset of ℓ1 in-

equalities which decreases the integrality gap while keeping the program tractable. Indeed

such subsets have been useful for other optimization problems: For instance, the simplest

ℓ1 inequality, the triangle inequality, is crucial in the Arora-Rao-Vazirani SDP algorithm

for SPARSEST CUT [2] and subsequently in the best tractable SDP formulation for VERTEX

COVER [13]. Avis and Umemoto [3] used k-gonal inequalities (a family of ℓ1 inequalities

generalizing the triangle inequality) to design a PTAS for MAX CUT on certain sparse graph

families. However, results for VERTEX COVER have so far all been negative: A series of

papers [4, 12, 9] culminates in showing that adding so-called hypermetric inequalities (the

most well known canonical family of ℓ1 inequalities, and a generalization of k-gonal inequal-

ities) of bounded support does not reduce the integrality gap. The latter is also motivated by

the fact that, as k grows, the k-gonal inequalities become increasingly stronger. This will be

discussed in Section 2.1.

In this paper, we bring this series of results to its “completion” by showing, somewhat

surprisingly, that hypermetrics never help for VERTEX COVER:

THEOREM 1. The integrality gap of the standard SDP relaxation for VERTEX COVER tight-

ened with all hypermetric inequalities is 2 − o(1).

Theorem 1 may provide further evidence of the true inapproximability of the VERTEX

COVER problem. It was consistent with previous results that tightening the standard SDP

relaxation for VERTEX COVER with hypermetrics of sufficiently large support (note that such

SDPs might not be “tractable”: they would only be computable in time polynomial in the

number of constraints added) might give an integrality gap of 2 − Ω(1).

Our result extends several ideas from [9]. Indeed the graph instances and our SDP

vector construction is similar to the one used in [9] (and related to those used in [8]). Our

improvement relies on some new insights we develop for controlling the value of certain

“hypermetric-like” inequalities on ℓ1 embeddable metrics. (An in-depth comparison to pre-

vious constructions can be found in Section 3.4.)

But if hypermetrics don’t help, can we hope that the family of all ℓ1 inequalities helps?

The answer seems to depend on the problem; for example, in the MINIMUM MULTICUT

problem [1] the addition of all ℓ1 inequalities does not yield integrality gap 1. In contrast,

we show that for VERTEX COVER the opposite is true:

THEOREM 2. Consider a vector solution of the standard SDP for VERTEX COVER that along
with (at least) one antipode vector satisfies all ℓ1 inequalities. Then the solution is in the
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integral hull, and therefore the integrality gap is 1.

In particular, Theorems 1 and 2 together show that to reduce the integrality gap one must

employ “unnatural” ℓ1-inequalities. As mentioned above, Hatami et al. [12] prove a similar

result to Theorem 2 showing that strengthening the standard SDP for VERTEX COVER with

all ℓ1 inequalities yields an SDP with no integrality gap. However, we emphasize that their

result, which is essentially proved by exploiting the optimality of the SDP solution, does not

rule out the possibility of a feasible SDP solution outside the integral hull.

Relations to Lift-and-project systems Lift-and-project procedures, such as those defined

by Lovász and Schrijver [18] and Lasserre [17], take an initial LP or SDP relaxation and

then systematically derive (over successive rounds) all inequalities valid for the integral

hull. Relaxations for VERTEX COVER in the Lovász-Schrijver hierachy are incomparable to

those studied here (see [9]); the VERTEX COVER SDP relaxation produced after k rounds of

Lasserre’s tightening satisfies all ℓ1 inequalities of support k. Strong integrality gaps for lift-

and-project derived SDPs (but incomparable to those proved here) are proved by Georgiou

et al. [8] and Schoenebeck [19] for the Lovász-Schrijver and Lasserre systems, respectively.

2 Preliminaries

2.1 Metric Spaces, and ℓ1 and Hypermetric Inequalities

A finite metric space (X, d) is ℓ1 embeddable, or simply an ℓ1-metric, if there exists a mapping

f : X → R
n such that for all x, y ∈ X we have d(x, y) = ‖ f (x) − f (y)‖1. The mapping f

is called an isometry. We now survey those facts about ℓ1 metric spaces we will need. For

proofs see [5].

Fix a finite set of points X of size n which we will denote by [n]. For each S ⊆ X define

the cut metric δS : [n] × [n] → {0, 1} such that δS(i, j) = 1 if |S ∩ {i, j}| = 1 and 0 otherwise.

Cut metrics are clearly ℓ1 embeddable, and moreover, every ℓ1 embeddable metric space d

can be represented as a convex combination of cut metrics, namely d(i, j) = ∑S λSδS(i, j),

where λS ≥ 0. We then say that (X, d) is realized by {λS}S⊆X (realization is not unique in

general). An ℓ1 inequality is an inequality ∑ij Bijxij ≤ 0 that holds for all ℓ1 embeddable

metrics d, that is ∑ij Bijd(i, j) ≤ 0. It is possible to show that ∑ij Bijxij ≤ 0 is an ℓ1 inequality

if and only if it satisfies ∑ij Bijd(i, j) ≤ 0 for all cut metrics d.

A canonical discrete class of ℓ1 inequalities is the class of hypermetric inequalities.

DEFINITION 3. For any b ∈ Z
n with ∑

n
i=1 bi = 1, the inequality ∑ij bibjxij ≤ 0 is a hyperme-

tric inequality. The support of a hypermetric inequality is the support of b = (b1, . . . , bn).

It is well known that hypermetric inequalities are ℓ1-inequalities, that is ∑ij bibjd(i, j) ≤
0 for all ℓ1-metrics d (this also follows as a corollary from Lemma 5 below). Note that the

hypermetrics include the triangle inequality (by taking bi = bj = 1, bk = −1 and b is

0 elsewhere), and all other k-gonal inequalities (e.g., the pentagonal inequality) which are

simply those hypermetrics where each bi is ±1 or 0.

Both hypermetric inequalities and ℓ1 inequalities define convex cones. The cone of

hypermetric inequalities is contained in the cone of ℓ1 inequalities, and the containment
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is strict for dimension at least 7. The cone of hypermetric inequalities is polyhedral, and

many of its facets define facets in the ℓ1 cone. Since no hypermetric inequality is a positive

multiple of another, it follows that only finitely many hypermetrics define facets of the cut

cone. A canonical example of such facets are the k-gonal inequalities defined above. It is

important to note that k-gonal inequalities are stronger the larger k is in the following sense:

for every k > 1 there exists a metric on n-points satisfying all (2t + 1)-gonal inequalities,

0 < t < k while the (2k + 1)-inequality is violated (Corollary 28.3.3 in [5]).

2.2 SDP Formulations for Vertex Cover and Integrality Gap Constructions

Let G = (V, E) be a graph with V = [n]. The standard SDP relaxation for VERTEX COVER is

min ∑i∈V ‖zi + z0‖2
2/4

s.t. ‖zi − z0‖2
2 + ‖zj − z0‖2

2 = ‖zi − zj‖2
2 ∀ij ∈ E

‖zi‖2
2 = 1 ∀i ∈ {0} ∪ V,

(1)

where the zi are vectors∗. Note that any vector solution {zi}i∈{0}∪V of (1) induces a distance

function d(i, j) = ‖zi − zj‖2
2.

The SDP relaxation (1) is in general stronger than the standard LP relaxation for VER-

TEX COVER. Unlike the standard LP, showing that (1) has an integrality gap of 2 − o(1) is

non-trivial [10]. The graph instances witnessing the integrality gap rely on a powerful com-

binatorial theorem due to Frankl and Rödl [7] that shows that there cannot be a large family

of sets of certain cardinality, all of whose pairwise intersections satisfy a certain condition.

DEFINITION 4. Given γ > 0, the Frankl-Rödl graph G
γ
m is the graph on the 2m vertices of the

m-dimensional hypercube {−1, 1}m having edges between those vertices with Hamming
distance exactly (1 − γ)m.

The theorem of Frankl and Rödl [7] implies that for any constant γ > 0, a vertex cover

of the graphs G
γ
m has size 2m − o(2m). In fact, it follows from their work that G

γ
m enjoys these

properties even for sufficiently large subconstant γ; this was made explicit in [8] showing

that one can set γ = Ω(
√

log m/m) to ensure that no small vertex covers exist.

To appreciate the theorem, notice that for γ = 0 the graph G
γ
m is just a perfect matching,

and hence has a vertex cover of size only half the graph. But by making γ only slightly

positive the minimum vertex cover of the obtained graph ”jumps” in size to be almost all

the vertices!

Frankl-Rödl graphs have been used to prove all the tight integrality gap results [10, 4,

12, 8, 9] for VERTEX COVER SDPs mentioned in the introduction. Most of these papers study

(implicitly or explicitly) whether there exists some small enough subset of ℓ1-inequalities

that can be added to the standard SDP relaxation (1) to reduce the integrality gap. Let us

briefly explain the role of ℓ1 inequalities in this context. The metric induced by an inte-

gral solution of (1) is (a scalar multiple of) the cut metric associated with the vertex cover.

Therefore, ℓ1 inequalities are valid for all integral solutions. In the extreme, adding all ℓ1-

inequalities eliminates the integrality gap [12], and thus focusing on this family of inequali-

ties seems natural.
∗Note that the edge constraint can be equivalently written (and is perhaps more well-known) as (z0 − zi) ·

(z0 − zj) = 0.
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In this paper we analyze the performance of the standard SDP for VERTEX COVER

strengthened with hypermetric inequalities, namely, the SDP (1) strengthened by

∑
ij

bibj‖zi − zj‖2
2 ≤ 0, ∀b ∈ Z

n+1 such that
n+1

∑
i

bi = 1. (2)

In the above, if we only use integer vectors b of support k we obtain the SDP for VERTEX

COVER strengthened by all hypermetrics of support k.

Charikar [4] was the first to show tight integrality gaps when we add triangle inequal-

ity (a hypermetric of support three) to SDP (1). In [12] a similar result was shown when

pentagonal inequalities are added. The strongest negative result analyzing the effect of ℓ1-

inequalities on the standard SDP for VERTEX COVER is due to Georgiou et al. [9] where it is

shown that the addition of hypermetrics with support O(
√

log n/ log log n) cannot reduce

the integrality gap below 2 − o(1).

3 Hypermetrics Cannot Strengthen the Standard SDP for VC

3.1 Preparatory Observations about Hypermetric Inequalities

How can we show that a certain metric d satisfies all hypermetric inequalities? Of course

the simplest way would be to take an ℓ1 embeddable metric d that “automatically” satisfies

all such inequalities. But by [12] we know that if the solution metric is ℓ1 embeddable

then the value of the SDP will be the same as the integral optimum. However, this type of

reasoning is still useful: our solution d will be “almost” ℓ1 embeddable: if we remove the

point associated with v0 the rest of the points will in fact be ℓ1 embeddable; nevertheless,

we will pick our solution so that we have an integrality gap as large as 2 − o(1). Next we

present some simple lemmas that will help in analyzing hypermetric inequalities for such

“almost-ℓ1” metrics.

We start by analyzing a generalization of the notion of hypermetric inequalities (hyper-

metrics correspond to the case q = 1).

LEMMA 5. Let (X, d), be an ℓ1-metric on n points realized by {λS}S⊆X. Let b1, . . . , bn ∈ Z be
such that ∑

n
i bi = q. Then ∑1≤i<j≤n bibjd(i, j) ≤ ⌊(q/2)2⌋∑S λS.

PROOF.

∑
1≤i<j≤n

bibjd(i, j) = ∑
1≤i<j≤n

bibj ∑
S

λSδS(i, j) = ∑
S

λS ∑
1≤i<j≤n

bibjδS(i, j)

= ∑
S

λS ∑
i∈S,j 6∈S

bibj = ∑
S

λS

(

∑
i∈S

bi

)(
q − ∑

i∈S

bi

)
≤ ∑

S

λS(⌊(q/2)2⌋).

The last inequality follows from the geometric-mean arithmetic-mean inequality for inte-

gers.

We next show that when an ℓ1-metric has a unit representation, that is, points are vec-

tors in R
n of unit ℓ

2
2 norm, then it is sometimes possible to bound the sum of the cut co-

efficients. We say that an ℓ1-metric with a unit representation has large diameter if it has

diameter 4. (Notice that the diameter of any metric with unit representation is at most 4.)
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LEMMA 6. Let d be an ℓ1-metric with unit representation that has large diameter. Then

∑S λS = 4.

PROOF. Having a large diameter is equivalent to having two unit vectors in the represen-

tation that are antipodes. Without loss of generality, let z1 = −z2. Also, since any S ⊆ X

induces a cut, we may assume that {λS}S⊆X are non-zero only for sets S that contain 1. Now

note that 4 = ‖z1 − z2‖2 = d12 = ∑S 6∋2 λS so our task is to show that λS = 0 whenever 2 ∈ S.

Let i ∈ [n]. Then ‖z1 − zi‖2 + ‖zi − z2‖2 = 4− 2(z1zi + z2zi) = 4 = ‖z1 − z2‖2. Since for ev-

ery S, δS(1, i) + δS(2, i) ≥ δS(1, 2) and since ‖z1 − zi‖2 + ‖zi − z2‖2 = ‖z1 − z2‖2, we know

that whenever λS > 0 we must have δS(1, i) + δS(2, i) = δS(1, 2). But for S that contains 1

and 2 the right hand side is 0, and hence the left hand side is too and i ∈ S. This is true for

all i, and hence S = X which makes it a trivial cut that can be ignored.

COROLLARY 7. Let d̃ be an ℓ1-metric space with large diameter unit representation, and let
d be the restriction of d̃ on a subset of the points. Further, let b1, . . . , bn ∈ Z be such that

∑
n
i bi = q. Then ∑i,j bibjd(i, j) ≤ 4⌊(q/2)2⌋.

PROOF. Let λS be a realization of d̃. By Lemma 6 we have ∑S λS = 4. We now apply

Lemma 5 to d̃ to get ∑i,j bibjd̃(i, j) ≤ ∑S λS (⌊q/2⌋)2 = 4 (⌊q/2⌋)2. Since d is a restriction of

d̃ the corollary follows.

3.2 The Vector Solution

Our construction is based on tensored vectors. Recall that the tensor product u ⊗ v of

vectors u ∈ R
n and v ∈ R

m is the vector in R
nm indexed by ordered pairs from n × m

and assuming the value uivj at coordinate (i, j). Define u
⊗d to be the vector in R

nd
ob-

tained by tensoring u with itself d times. Let P(x) = c1xt1 + . . . + cqxtq be a polynomial

with nonnegative coefficients. Then TP is the function that maps a vector u to the vector

TP(u) = (
√

c1u
⊗t1 , . . . ,

√
cqu

⊗tq). Polynomial tensoring can be used to manipulate inner

products in the sense that TP(u) · TP(v) = P(u · v).

Recall Definition 4 of the graphs G
γ
m for which we want to build a vector solution for

SDP (1) strengthened by (2). For γ > 0 where 1/γ is even, our SDP solution will be the result

of the tensoring polynomial P(x) = c2(x + 1)x2m/γ + c1x1/γ + (1 − (c1 + 2c2))x applied on

the normalized m-dimensional hypercube {−1, 1}m , where all c1, c2 and 1 − (c1 + 2c2) are

non-negative. Note that regardless of c1, c2, we have P(1) = 1. Let ui be the normalized

vectors of the hypercube, namely {±1/
√

m}m. Our solution vectors are then

wi = (18γ,
√

1 − (18γ)2TP(ui)), i = 1, . . . , 2m, (3)

w0 = (1, 0, . . . , 0).

Regardless of the exact choice of P, the value of the objective with the vectors {wi} in (1) is

2m(1/2 + 9γ). To achieve a big integrality gap, we will use the smallest possible value of γ

that ensures that no small vertex covers exist, namely γ = Θ(
√

log m/m).

The following lemma whose proof is deferred to the appendix shows that there exist

appropriate constants c1, c2 such that the vector solution both satisfies the standard SDP and

the triangle inequality.
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LEMMA 8. For sufficiently big m, there exist positive c1, c2 (both of order Θ(γ)), such that for
G

γ
m, the vectors (3) satisfy the standard SDP (1) strengthened with the triangle inequality.

Moreover, c2 > 9γ.

An analogous lemma (Lemma 3) with different bounds on the constants c1 and c2 was

proved in [8], and the proof is very similar. Indeed, the precise constraints on c1, c2 given by

Lemma 8 will be crucial for our analysis here and are not implied by Lemma 3 in [8].

Lemma 8 immediately implies that the integrality gap of SDP (1) is at least
2m−o(2m)

2m(1/2+9γ)
,

which is of course 2 − o(1). Therefore Theorem 1 will follow if we additionally show that

the vectors (3) satisfy any hypermetric inequality (2). This is taken care of in Section 3.3.

3.3 Proof of Theorem 1

Let ∑ij Bijxij ≤ 0 be a hypermetric inequality, with Bij = bibj, bi ∈ Z, i = 0, . . . , n. Our goal

is to show that for the vectors (3), ∑0≤i<j≤n Bij‖wi − wj‖2
2 ≤ 0. By definition, for i, j ≥ 1,

‖wi − wj‖2
2 = 2 − 2((18γ)2 + (1 − (18γ)2)P(ui · uj)) = (1 − (18γ)2)‖TP(ui) − TP(uj)‖2

2 ,

and ‖wi − w0‖2
2 = 2(1 − 18γ). Hence,

∑
0≤i<j≤n

Bij‖wi − wj‖2
2 = 2(1 − 18γ)

n

∑
i=1

B0i + (1 − (18γ)2) ∑
1≤i<j≤n

Bij‖TP(ui) − TP(uj)‖2
2

Therefore, we need to show

n

∑
i=1

B0i + (1 + 18γ)
1

2 ∑
1≤i<j≤n

Bij‖TP(ui)− TP(uj)‖2
2 ≤ 0 . (4)

Let now (Y, d) be a metric defined as Y = {1, . . . , n}, and d(i, j) = ‖TP(ui) − TP(uj)‖2
2.

All points TP(ui) are normalized sign vectors. By considering all points TP(ui) along with

their antipodes −TP(ui) we can obtain the metric (Ỹ, d̃), where again d̃ is the square Eu-

clidean distance of the vectors. Clearly, d is a restriction of d̃ on a subset of points (recall that

the tensoring polynomial P is not odd).

CLAIM 9. The metric (Ỹ, d̃) is ℓ1 with large diameter unit representation.

PROOF. (Ỹ, d̃) has large diameter because all antipodes are present. Now, the vectors

ui have unit ℓ
2
2 norm, and so do the vectors TP(ui), i = 1, . . . , n. Notice that in Ỹ we have

excluded the point that corresponds to z0 in the SDP. Now, applying the tensor operation on

a ±1 vector results in a, say, M-dimensional, ±1 vector, and hence applying a polynomial

on such a vector yields a vector which assumes one of two values in each of the coordinates,

and further, one of the values, say xi, i = 1, . . . , M, is the negation of the other. The same

holds by including all their antipodes. In other words, all points ±TP(ui) are vertices of a

box centered at the origin. It is easy to see that the ℓ
2
2-metric associated with such a box is ℓ1

embeddable: any vector TP(ui) (or its antipode) has the form u
′
i = (s

(i)
1 x1, . . . , s

(i)
M xM) where

s
(i)
t ∈ {±1} and it can be mapped by f to (2s

(i)
1 x2

1, . . . , 2s
(i)
M x2

M). Hence for any two i, j ∈ V

‖u
′
i − u

′
j‖2

2 =
M

∑
t=1

(s
(i)
t xt − s

(j)
t xt)

2 =
M

∑
t=1

|2s
(i)
t x2

t − 2s
(j)
t x2

t | = ‖ f (u
′
i)− f (u

′
j)‖1.
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Therefore, for the metric (Y, d) we can apply Corollary 7 with q = ∑
n
i=1 bi = 1 − b0 and

conclude that the left hand side of expression (4) is upper-bounded by

b0(1− b0)+ (1+ 18γ)2⌊(1− b0)
2/4⌋ ≤

{
0 if b0 ≥ 0,
1
2 (1 − b0)((1 − 18γ)b0 + (1 + 18γ)) < 0 if b0 ≤ −2.

Therefore, we have shown that all hypermetrics are satisfied except perhaps those for which

b0 = −1 (like the triangle inequality, pentagonal inequality, etc.).

In order to deal with the case b0 = −1 we look deeper into the structure of TP(ui).

To start, we simplify our notation by abbreviating (ui · uj + 1)(ui · uj)
2m/γ, (ui · uj)

1/γ, and

ui · uj by Hij, Mij and Lij, respectively, the “high”, “medium” and “low” order terms. Then,

P(ui · uj) = c2Hij + c1Mij + (1 − (c1 + 2c2))Lij. Note that for distinct ui, uj, we have |ui ·
uj| ≤ 1− 1/m, and hence Hij is negligible. We therefore omit it in what follows. As b0 = −1,

it follows that ∑
n
i=1 B0i = b0(1 − b0) = −2 and hence that the left hand side of (4) is

− 2 + (1 + 18γ) ∑
1≤i<j≤n

Bij(1 − P(ui · uj))

≈− 2 + (1 + 18γ) ∑
1≤i<j≤n

Bij(1 − c1Mij − (1 − (c1 + 2c2))Lij) . (5)

Now we make some simple observations. We have (∑
n
i=1 bi)

2 = ∑
n
i=1 b2

i + 2 ∑1≤i<j≤n bibj,

and since ∑
n
i=1 bi = 1 − b0 = 2 we get

∑
1≤i<j≤n

Bij =
1

2
(4 −

n

∑
i=1

b2
i ). (6)

Now, note that for unit vectors u, v we have ‖u − v‖2
2 = 2(1 − u · v). Hence the values

2(1 − Mij), 1 ≤ i < j ≤ n, are the ℓ
2
2 distances of unit vectors that have undergone the

polynomial tensoring transformation using some monomial (similarly for the values 2(1 −
Lij)). Arguing exactly as in Claim 9, the vectors form an ℓ1-metric that has a large diameter

unit representation, and so by Corollary 7 we have

∑
1≤i<j≤n

Bij(1 − Mij) ≤ 2, and ∑
1≤i<j≤n

Bij(1 − Lij) ≤ 2. (7)

We now use (6), (7), to conclude that

∑
1≤i<j≤n

Bij(1 − c1Mij − (1 − c1 − 2c2)Lij)

= 2c2 ∑
1≤i<j≤n

Bij + c1 ∑
1≤i<j≤n

Bij(1 − Mij) + (1 − c1 − 2c2) ∑
1≤i<j≤n

Bij(1 − Lij)

≤ c2

(
4 −

n

∑
i=1

b2
i

)
+ 2c1 + 2(1 − c1 − 2c2) = −c2

n

∑
i=1

b2
i + 2.
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Recall here that by Lemma 8, c2 > 9γ, and the SDP vectors {wi} satisfy the triangle

inequality. Therefore when b0 = −1 we may assume that ∑
n
i=1 b2

i ≥ 4. Theorem 1 now

follows since (5) is upper-bounded by

−2 + (1 + 18γ)

(
−c2

n

∑
i=1

b2
i + 2

)
≤ −2 + (1 + 18γ) (−36γ + 2) = −648γ2. (8)

3.4 Discussion and a strengthened version of Theorem 1

In this section we look a bit more carefully at how our result differs from previous work and

use the resulting observations to obtain a strengthened version of Theorem 1.

As mentioned in Section 2.2 all previous works [10, 4, 12, 9] studying integrality gaps

for VERTEX COVER SDPs use Frankl-Rödl graphs G
γ
m on n = 2m vertices. Moreover, they all

employ tensoring polynomials of some sort to construct their vector solutions. Perhaps the

most useful parameter differentiating the vector solutions amongst these papers (including

the current paper) is each solution’s minimal distance ∆ = mini 6=j ‖wi − wj‖2
2. In [4, 12] ∆

behaves like 1/m. To a large degree, what allowed the improvement of [9] was a modifica-

tion of the tensoring polynomials thereby increasing the minimal distance ∆ to a constant

(an arbitrary small one). The analysis of [9] then showed that the resulting solution satisfies

all hypermetrics of support O(∆/γ) with an integrality gap of 2 − Θ(∆) (in particular, tak-

ing the smallest possible γ, namely γ = Θ(
√

m/ log m), the analysis in [9] shows that the

solution satisfies all hypermetrics of support O(
√

log log n/ log n)).

In the present work we use similar vectors as the one used in [9] but get more mileage

by more carefully analyzing the structure of the ℓ1-metric that emerges from the solution.

In particular, while both [12] and [9] use the fact that removing w0 from the vector solution

gives an ℓ1-metric, in the current paper we crucially use the fact that our vectors arise by

applying tensoring polynomials to “sign” vectors. More precisely, we exploit the fact that

the ℓ1-metric corresponding to the vectors {wi}i≥1 has a unit representation with large di-

ameter. The bottom line is that our new analysis allows us to show that any hypermetric

(not just those with support O(∆/γ)) is satisfied as long as ∆/γ is a sufficiently large con-

stant (our argument does not work for the vector construction of [4] but also does not rule

out that same vector construction satisfying SDP (1) strengthened by (2)). But note now that

if we take γ = Θ(
√

log m/m) when defining our Frankl-Rödl instances, then for ∆/γ to be

constant it suffices to use a tensoring construction where the minimum distance ∆ is of order

up to O(
√

log m/m). In particular, the integrality gap obtained by our analysis is 2 − O(γ);

so taking γ = Θ(
√

log m/m) gives the following strengthened version of Theorem 1:

THEOREM 10. The integrality gap of the standard SDP relaxation for VERTEX COVER on in-

stances of n vertices tightened with all hypermetric inequalities is 2−O(
√

log log n/ log n).

Interestingly, the lower bound in Theorem 10 almost matches the upper bound given by

Karakostas [13] who gives an SDP for VERTEX COVER tightened with the triangle inequality

and which has integrality gap 2 − Ω(
√

1/ log n).
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4 ℓ1 Embeddability Implies Integrality

This section is devoted to proving Theorem 2 which is based on the following simple ob-

servation. Let the metric induced by SDP (1) be ℓ1, realized by some {λS}S⊆X. Since every

subset S induces a cut, we may restrict ourselves only to subsets S that contain the element

0, corresponding to z0. Now let Λ = ∑S λS and consider an orthonormal basis {eY}Y⊆X (eY

is indexed by all subsets of X, and is 1 in the Y-th coordinate and 0 elsewhere). For every

A ⊆ X we define uA = ∑S:A⊆S

√
λSeS. Associate also the singleton {0} with the vector u∅

corresponding to the empty set ∅. The key observation is that the mapping zi 7→ u{i} is an

isometry. This is because u{i} − u{j}‖2
2 equals

∑
S:i∈S

λS + ∑
S:j∈S

λS − 2 ∑
S:{i,j}⊆S

λS = ∑
S:i∈S

λS − ∑
S:{i,j}⊆S

λS + ∑
S:j∈S

λS − ∑
S:{i,j}⊆S

λS

= ∑
S:j 6∈S&i∈S

λS + ∑
S:i 6∈S&j∈S

λS = ∑
S

λSδS(i, j)

The last expression is exactly ‖zi − zj‖2
2. Theorem 2 now follows from Lemma 11 below.

LEMMA 11. Let G = (V, E) be a graph for which the metric induced by the solution of the
standard SDP (1) is an ℓ1-metric with unit representation {zi} that has large diameter. Then
the vector solution is a convex combination of vertex covers.

PROOF. For every S ⊆ {1, . . . , n} consider the characteristic vector y
S ∈ {0, 1}n with

yS
i = 1 if and only if i ∈ S. We prove (A) If λS > 0 then S is a vertex cover; and (B)

1
4

(
‖z1 + z0‖2, . . . , ‖zn + z0‖2

)
= ∑S

1
Λ

λSy
S.

For (A) note that the SDP edge constraints simply require that the triangle inequality

‖z0 − zi‖2 + ‖z0 − zj‖2 − ‖zi − zj‖2 ≥ 0 is tight. The same is true for the vectors u{i}, u{j},

since the mapping zi 7→ u{i} is an isometry. It follows that for every edge ij ∈ E we have

(u∅ − u{i})(u∅ − u{j}) = u
2
∅ − u∅ · u{i} − u∅ · u{i} + u{i} · u{j}

=

(

∑
S

λS − ∑
S∋i

λS

)
−



∑
S∋j

λS − ∑
S⊇{i,j}

λS





= ∑
S 6∋i

λS − ∑
j∈S 6∋i

λS = ∑
j 6∈S 6∋i

λS,

and the last expression equals 0. Since cut coefficients are non-negative, claim 1 follows.

For (B) it suffices to show that for every i ∈ V, 1
4‖zi + z0‖2 = 1

Λ ∑S:i∈S λS. To that end,

recall that ‖z0 − zi‖2 = ∑S δS(0, i) and 0 ∈ S. Hence, 2ziz0 = 2− ∑S 6∋i λS, and 1
4‖z0 + zi‖2 =

1
4

(
4 − ∑S 6∋i λS

)
. The latter equals 1

Λ ∑S:i∈S λS iff ∑S λS = 4. This is guaranteed by Lemma 6,

since the ℓ1-metric induced by SDP (1) has large diameter.

5 Discussion - Open Problems

Our work raises two natural questions. Theorem 1 implies that the most interesting ℓ1 in-

equalities are those that are not hypermetric. Given that hypermetrics are the most natural



inequalities to consider, can we identify another family of interesting yet natural inequal-

ities that could potentially strengthen the standard SDP for VERTEX COVER? Since such

inequalities are produced by the Lasserre system, it seems we must better characterize the

constraints derived by that system. Second, it is interesting to investigate to what extent our

arguments apply to general ℓ1 inequalities. A positive answer could potentially give a first

step towards showing tight integrality gaps for VERTEX COVER in the Lasserre system.
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Appendix

PROOF. [Lemma 8 - sketch] Let G
γ
m = (V, E). The standard SDP (1) strengthened with the

triangle inequality requires for our vectors wi that

‖wi − w0‖2 + ‖wj − w0‖2 = ‖wi − wj‖2 , ∀ij ∈ E (the edge constraints) (9)

‖wi − w0‖2 + ‖wj − w0‖2 ≥ ‖wi − wj‖2 , ∀i, j ∈ V (the triangle inequality) (10)

and that all vectors have unit norm. For an edge ij ∈ E we have ui · uj = −1 + 2γ. Recalling

that wi = (18γ,
√

1 − (18γ)2TP(ui)) where P is our “tensoring” polynomial (see section 3.2),

it is easy to see that for the above constraints to hold it suffices to have

−1 − 18γ

1 + 18γ
= P(−1 + 2γ) ≤ P(x), ∀x ∈ [−1, 1], (11)

where the left equality takes care of the edge constraints and the right inequality implies the

triangle inequality. Set c1 = η1γ and c2 = η2γ.

For any distinct points of the hypercube, the high order term of P is negligible so we

can disregard it. Recall that 1/γ is even. For the edge constraint, i.e. the right inequality

in (11), we require P′(−1 + 2γ) = 0, and P′′(−1 + 2γ) > 0. The former requires that η1(1 −
2γ)1/γ−1 = 1− (η1 + 2η2)γ. The left constraint of condition (11) requires that − 1−18γ

1+18γ = (1−
(η1 + 2η2)γ)(−1 + 2γ) + η1γ(1 − 2γ)1/γ. Solving the system of inequalities with respect

to η1, η2 and taking the limit γ → 0 (or equivalently m → ∞) we get that η1 = e2 and

η2 = (36 − 3 − e2)/2 > 9. Finally it is easy to check that the second derivative is positive as

required.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.
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ABSTRACT.
We clarify the role of Kolmogorov complexity in the area of randomness extraction. We show that a
computable function is an almost randomness extractor if and only if it is a Kolmogorov complexity
extractor, thus establishing a fundamental equivalence between two forms of extraction studied in
the literature: Kolmogorov extraction and randomness extraction. We present a distribution Mk
based on Kolmogorov complexity that is complete for randomness extraction in the sense that a
computable function is an almost randomness extractor if and only if it extracts randomness from
Mk.

1 Introduction
The problem of extracting pure randomness from weak random sources has received in-
tense attention in the last two decades producing several exciting results. The main goal in
this topic is to give explicit constructions of functions that are known as randomness extrac-
tors; functions that output almost pure random bits given samples from a weak source of
randomness which may be correlated and biased. Randomness extractors have found ap-
plications in several areas of theoretical computer science including complexity theory and
cryptography. The body of work on randomness extractors is vast and we do not attempt
to list them here. Instead, we refer the readers to survey articles by Nisan and Ta-Shma [10]
and Shaltiel [13], and Rao’s thesis [11] for an extensive exposition on the topic (with the
caveat that some of the recent advances are not reported in these articles).

We will focus on a type of randomness extractors known as multi-source extractors.
These are multi-input functions with the property that if the inputs come from independent
distributions with certain guaranteed randomness, typically measured by their minentropy,
then the output distribution will be close to the uniform distribution. A distribution over
n-bit strings is said to have minentropy k, if any element in the support of the distribution
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has a probability ≤ 2−k. A function f : {0, 1}n × {0, 1}n → {0, 1}m is a 2-source extractor
for minentropy k if for any two independent distributions X and Y on {0, 1}n with minen-
tropy k, the output f (X, Y) is statistically close to the uniform distribution. It is known that
such extractors exist for all minentropy levels with optimal parameters [3, 4], but explicitly
constructing 2-source extractors for sources with low minentropy is a very active research
question.

While minentropy characterizes the amount of randomness present in a probability
distribution, Kolmogorov complexity characterizes the amount of randomness present in
individual strings. The Kolmogorov complexity of a string x, denoted by K(x), is the the
length of the shortest program that outputs x. If K(x) = m, then x can be viewed as contain-
ing m bits of randomness. A string x is Kolmogorov random if its Kolmogorov complexity is
close to the length of x. A natural notion that arises is that of Kolmogorov extractors: explicit
functions that extract Kolmogorov complexity from strings that need not be Kolmogorov
random. More formally, a 2-string Kolmogorov extractor for complexity k is a function
f : Σn × Σn → Σm such that K( f (x, y)) is close to m whenever K(x), K(y) ≥ k and x and y
are Kolmogorov independent (K(xy) ' K(x) + K(y)). Kolmogorov extractors have recently
been of interest to researchers [1, 5, 14, 15]. One of the main observations that emerged from
this research is that a randomness extractor is also a Kolmogorov extractor. In particular, in
[5], the authors show that the construction due to Barak, Impagliazzo and Wigderson [2] of
a multisource extractor is also a Kolmogorov extractor. Zimand takes this approach further
and gives constructions of Kolmogorov extractors in other settings [14, 15]. Thus, this line
of research uses randomness extractors as a tool in Kolmogorov complexity research. How-
ever, the role of Komogorov complexity in the area of randomness extraction has not yet
been explored by researchers. We take a step in this direction.

We ask the following question. Is it true that a Kolmogorov extractor is also a random-
ness extractor? While randomness extractors concern information-theoretic randomness,
Kolmogorov extractors concern computational randomness. Thus intuitively it appears that
Kolmogorov extractors are weaker objects than randomness extractors. Moreover, if we use
the strict definition of extraction, it is easy to come up with a counterexample to this con-
verse. Let f be a Kolmogorov extractor, then f ◦ 1 (output of f concatenated with bit 1)
is also a Kolmogorov extractor. But f ◦ 1 is not a randomness extractor for any function f
because it never outputs 50% of the strings - strings that end with 0. The reason for this
counterexample is that any Kolmogorov complexity measure is precise only up to a small
additive term. Consequently, a string x of length n is considered Kolmogorov random even
if its Kolmogorov complexity is only n − a(n) for a slow growing function a(n) such as a
constant multiple of log n [5]. Thus a more fruitful question is to ask whether a Kolmogorov
extractor is also an almost randomness extractor. An almost randomness extractor is like a
traditional randomness extractor except that we only require the output of an almost extrac-
tor to be close to a distribution with minentropy m−O(log n). For a traditional extractor, the
output has to be close to the uniform distribution - the only distribution with minentropy
m. Such almost extractors have been considered in the literature (see for example [12]).

Our first contribution is to show an equivalence between Kolmogorov extraction and
the above-mentioned slightly relaxed notion of randomness extraction. The following state-
ment is very informal and Section 3 is devoted to giving a precise statement with a proof.
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RESULT 1. A computable function f is a Kolmogorov extractor if and only if f is an almost random-
ness extractor.

A randomness extractor is a universal object in the sense that it should extract random-
ness from all distributions with certain minentropy. Can this universality be shifted to a
distribution? That is, is there a distribution D so that a computable function f is an extractor
if and only if f extracts randomness from D? We call such a distribution a complete distri-
bution for randomness extraction. Kolmogorov complexity has proved to be useful in the
discovery of distributions with a similar universality property in other areas of computer
science including average-case analysis [8] and learning theory [7].

Our second contribution is to present a complete distribution, based on Kolmogorov
complexity, for randomness extraction. Fix an input length n. For a number k consider
the distribution Mk that puts uniform weight on all strings of length n with Kolmogorov
complexity≤ k. Motivated by the proof of our first result we show that the distributionMk
is a complete distribution for almost extractors. The following statement is informal and the
full details are in Section 4.

RESULT 2. For any k, there is a k′ = k + O(log n) so thatMk′ is complete for almost extractors
with minentropy parameter k.

2 Preliminaries, Definitions, and Basic Results

Kolmogorov Extractors

We only review the essentials of Kolmogorov complexity and refer to the textbook by Li and
Vitányi [9] for a thorough treatment of the subject. For a string x ∈ {0, 1}∗, l(x) denotes the
length of x. We use the following standard encoding function where a pair 〈x, y〉 is encoded
as 1l(l(x))0l(x)xy. By viewing 〈x, y, z〉 as 〈x, 〈y, z〉〉, this encoding can be extended to 3-tuples
(and similarly for any k-tuple).

Let U be a universal Turing machine. Then for any string x ∈ {0, 1}∗, the Kolmogorov
complexity of x is defined as

K(x) = min{l(p) | U(p) = x},

that is, the length of a shortest program p that causes U to print x and halt. If we restrict
the set of programs to be prefix-free, then the corresponding measure is known as prefix-
free Kolmogorov complexity. These two complexity measures only differ by an additive
logarithmic factor. We will work with the above-defined standard measure. Since we are
flexible about additive logarithmic factors in this paper, our results will hold with the prefix-
free version also.

Kolmogorov extractors are computable functions which convert strings that have a guar-
anteed amount of Kolmogorov complexity into a Kolmogorov random string. We give a
general definition of Kolmogorov extractors involving a parameter for dependency between
the input strings. Consequently, instead of aiming for maximum complexity in the output
string, we will consider extractors which lose an additive factor equal to the dependency
in the inputs. The following notion of dependency we use is equivalent to the well-studied
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notion of mutual information in the Kolmogorov complexity literature up to an additive log
factor. However, we prefer to use the term dependency in this paper.

DEFINITION 1.[Dependency] For two strings x and y of the same length, the dependency
between x and y is

dep(xy) = K(x) + K(y)− K(xy).

DEFINITION 2.[Kolmogorov Extractor] An (n, m(n), k(n), α(n)) Kolmogorov extractor is
a uniformly computable family { fn}n of functions fn : Σn × Σn → Σm(n) where there is
a constant c such that for all n, for all x, y ∈ Σn with K(x) ≥ k(n), K(y) ≥ k(n), and
dep(xy) ≤ α(n), we have

K( fn(x, y)) ≥ m(n)− dep(xy)− c log n.

The computability restriction is required to make the definition nontrivial. Otherwise
it is easy to come up with Kolmogorov extractors: for any pair of inputs at length n, just
output a fixed string of length m(n) that has maximal Kolmogorov complexity.

Randomness Extractors

Randomness extractors are functions which convert weak random sources to a distribution
that is statistically close to the uniform distribution. A weak random source is characterized
by its minentropy which is defined as follows.

DEFINITION 3. For a probability distribution X over a universe S, the minentropy of X is

− log
(

max
s∈S

X(s)
)

= min
s∈S

(
log

1
X(s)

)
.

Here we are writing X(s) for the probability that distribution X assigns to outcome s.
For an event T ⊆ S, X(T) = ∑s∈T X(s) is the probability of T under X.

DEFINITION 4. For any two distributions X and Y on a universe S, their statistical distance
|X−Y| is

|X−Y| = max
T⊆S
|X(T)−Y(T)| = 1

2 ∑
s∈S
|X(s)−Y(s)|

. If |X−Y| ≤ ε, we say X and Y are ε-close to each other.

DEFINITION 5.[Almost Randomness Extractor] An (n, m(n), k(n), ε(n)) almost random-
ness extractor is a family { fn}n of functions fn : Σn×Σn → Σm(n) where there is a constant c
such that for all n, for every pair of independent distributions X and Y over Σn with minen-
tropy at least k(n), the distribution fn(X, Y) is ε(n)-close to a distribution with minentropy
at least m(n)− c log n. Moreover, f is uniformly computable.

A distribution X over Σn is called a flat distribution if it is uniform over some subset of
Σn. For a flat distribution X, we will use X also to denote the support of the distribution X.
The following useful theorem due to Chor and Goldreich [3] states that every function that
extracts randomness from flat distributions is a randomness extractor.
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THEOREM 6.[3] Let f be a function from Σn × Σn to Σm. Suppose for every pair of indepen-
dent flat distributions X and Y with minentropy k, f (X, Y) is ε-close to having minentropy
m− c log n. Then f is a (n, m, k, ε) almost randomness extractor.

Let D be a distribution over Σm induced by a distribution over Σn×Σn. We call D a nice
distribution if for all z ∈ Σm, D(z) is a rational number of the form p/q with q ≤ 22n. This
restriction allows us to effectively cycle through all nice distributions. For any distribution
D with minentropy k, there is a nice distribution D′ with the same minentropy so that the
statistical distance between D and D′ is at most 1/2n. Because of this we will assume that
distribution are nice whenever necessary.

The following lemma due to Guruswami, Umans, and Vadhan [6] is useful to obtain a
bound on the minentropy of a distribution. We will state it for nice distributions although
the original statement and the proof do not have such a restriction. Their proof can be easily
modified to prove this case also.

LEMMA 7.[6] Let D be a nice distribution and s be an integer. Suppose that for every set S of
size s, D(S) ≤ ε. Then D is ε-close to a nice distribution with minentropy at least log(s/ε).

Remarks and Clarifications

Although it is typical requirement for the extractors to be efficiently computable, the only
requirement we need in our proofs is that the extractors are computable. Hence, we will not
mention any resource restrictions here. Here we only focus on extractors with 2 inputs. The
connection we prove here also holds for extractors with k inputs for any constant k ≥ 2 with
identical proofs. Although the parameters in the definition of the extractors depend on the
input length n, we will omit it in the rest of the paper. For instance, a (n, m(n), k(n), α(n))
Kolmogorov extractor will be denoted as an (n, m, k, α) extractor. In addition, we also as-
sume that the parameters that depend on input length n are computable functions of n.
Finally, henceforth by a randomness extractor we mean an almost randomness extractor
unless otherwise mentioned.

Why is there a dependency parameter in the definition of Kolmogorov extractor? Our
aim is to establish a tight connection between randomness extractors and Kolmogorov ex-
tractors. Randomness extractors typically have four parameters; input length n, output
length m, minentropy bound k, and the error parameter ε. Except for the error parameter,
there is an obvious mapping of parameters between Kolmogorov and randomness extrac-
tors. But there appears to be no natural notion of “error” in Kolmogorov extraction. What is
a choice for the parameter in the definition of Kolmogorov extractor analogous to the error
parameter? Our theorems indicate that the dependency is a good choice.

3 The Equivalence

3.1 Kolmogorov Extractor is a Randomness Extractor

In this subsection we show that for appropriate settings of parameters, a Kolmogorov ex-
tractor is also a randomness extractor. First we will give a simple argument for the special
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case when the dependency parameter is O(log n). In this case we get a inverse polyno-
mial error for the randomness extractor. We will only give a sketch of the proof since the
subsequent theorem for the general case subsumes this case.

A Special Case

The proof of this special case is a simple application of the following well known coding
theorem.

THEOREM 8.[Coding Theorem] Let D be a probability distribution over {0, 1}∗ that is com-
putable by a program P, there is a constant c such that

1
2K(x) ≥

c
2|P|

D(x).

THEOREM 9. Let f be a (n, m, k, α) Kolmogorov extractor with α = O(log n). Then f is a
(n, m, k′, ε) almost randomness extractor where k′ = k + O(log n) and ε = 1/poly(n).

PROOF. We provide a proof sketch. Let c be the constant associated with the Kolmogorov
extractor f . That is, K( f (x, y)) ≥ m− c log n− dep(xy) provided K(x) ≥ k, K(y) ≥ k, and
dep(xy) ≤ α.

We will show that for every pair of flat distributions X and Y with minentropy k′,
f (X, Y) is ε-close to a nice distribution with minentropy at least m− (c + 6) log n. Then by
Theorem 6, it will follow that f is an almost randomness extractor for minentropy k′. For the
purpose of contradiction, suppose there are flat distributions X and Y with minentropy k′

so that f (X, Y) is ε far from all nice distributions with minentropy at least m− (c + 6) log n.
Let X and Y be the first such distributions (in some fixed ordering of distributions).

The number of flat distributions with minentropy k′ is finite, and the number of nice
distributions over Σm with minentropy at least m− (c + 6) log n is also finite. Thus there is
a program p which given n as input, produces the distributions X and Y. Thus the size of p
is at most 2 log n for large enough n. Let D denote the distribution f (X, Y).

The idea of the rest proof is as follows. Consider the following set S.

S = {〈x, y〉 ∈ X×Y | K(x) ≥ k, K(y) ≥ k, and dep(xy) ≤ 10 log n}.

First using a simple counting argument it is easy to show that S is a large set and hence
probability of the complement of S with respect to X × Y is small. Since f is a Kolmogorov
extractor, for all elements (x, y) ∈ S, K(z) is close to m where z = f (x, y). Since D is
computable, by the coding theorem, it follows that D(z) ≤ 1/2m−O(log n). Thus, except for
a small fraction of strings in f (S), the strings in the range of f satisfies the minentropy
condition. Hence D must be close to a distribution with minentropy m− c log n.

The General Case

We now state and prove the theorem for a general setting of parameters. The proof follows
the line of argument of the proof of the special case. But we will use Lemma 7 instead of the
coding theorem.
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THEOREM 10. Let f be a (n, m, k, α) Kolmogorov extractor. Then f is a (n, m, k′, ε) almost
randomness extractor where

(a) if k′ − k > α− 4 log n + 1, then ε ≤ 1
2α−4 log n−1 .

(b) if k′ − k ≤ α− 4 log n + 1, then ε ≤ 1
2k′−k−2 .

PROOF. Let c be the constant associated with the Kolmogorov extractor f . That is, K( f (x, y)) ≥
m− c log n− dep(xy) provided K(x) ≥ k, K(y) ≥ k, and dep(xy) ≤ α.

We will show that for every pair of flat distributions X and Y with minentropy k′,
f (X, Y) is ε-close to a nice distribution with minentropy at least m − (c + 9) log n where
ε is as given in the statement of the theorem. Then by Theorem 6, it will follow that f is an
almost randomness extractor for minentropy k′. For the purpose of contradiction, suppose
there are flat distributions X and Y with minentropy k′ so that f (X, Y) is ε far from all nice
distribution with minentropy at least m− (c + 9) log n. Let X and Y be the first such distri-
butions (in some fixed ordering of distributions). For simplicity, we will denote the supports
of distributions X and Y also by X and Y, respectively. Let D denote the distribution f (X, Y).
D is a nice distribution.

The number of flat distributions with minentropy k′ is finite, and the number of nice
distributions over Σm with minentropy at least m− (c + 9) log n is also finite. Thus there is a
program p which given n, c and a code for f as input, produces the flat distributions X and
Y by brute-force search method. The size of p is at most 2 log n for large enough n. We will
split the rest of the proof into two cases.

Case (a). k′ − k > α− 4 log n + 1.

Define the “good set” S as

S = {〈x, y〉 ∈ X×Y | K(x) ≥ k, K(y) ≥ k, and dep(xy) ≤ α}.

Let S′ be the compliment of S within X × Y. That is S′ = X × Y \ S. We will bound the
size of S′. Observe that S′ is a subset of the union of following sets:

S1 = {〈x, y〉 ∈ X×Y | K(x) < k},

S2 = {〈x, y〉 ∈ X×Y | K(y) < k},

S3 = {〈x, y〉 ∈ X×Y | dep(xy) > α}.

Clearly, sizes of S1 and S2 are bounded by 2k+k′ . We will bound |S3|. Since the program
p produces X and Y and |X| = |Y| = 2k′ , every string in X ∪Y has Kolmogorov complexity
at most k′+ 2 log n. Thus for any 〈x, y〉 ∈ S3 we have that K(xy) = K(x)+ K(y)−dep(xy) ≤
2k′ + 4 log n− α. So |S3| ≤ 22k′+4 log n−α. Hence |S′| ≤ |S1 ∪ S2 ∪ S3| ≤ |S1|+ |S2|+ |S3| ≤
2k+k′+1 + 22k′+4 log n−α. Since k′ − k > α− 4 log n + 1, this sum is ≤ 22k′+4 log n−α+1. Thus we
have the following bound on the probability of S′.

CLAIM 11. If k′ − k > α− 4 log n + 1 then PrX×Y(S′) ≤ 1
2α−4 log n−1

We assumed that f is not an almost randomness extractor. That is the distribution is
ε-far from any nice distribution with minentropy m− (c + 9) log n. By Lemma 7, there is a
set U ⊆ Σm of size 2m−α−(c+4) log n such that D(U) > 1/2α−5 log n. Since a program of size
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2 log n produces distributions X and Y and f is computable, there is a program of size at
most 3 log n that produces the set U. Thus for all u ∈ U, K(u) < m− α− c log n.

Since PrX×Y(S′) ≤ 1
2α−4 log n−1 ≤ 1

2α−5 log n and D(U) > 1
2α−5 log n , there must exist a tuple

〈x, y〉 ∈ S so that f (x, y) ∈ U and for this tuple we have K( f (x, y)) < m − α − c log n.
This is a contradiction since f is a Kolmogorov extractor and for all elements 〈x, y〉 ∈ S,
K( f (x, y)) ≥ m− dep(xy)− c log n ≥ m− α− c log n.

Case (b). k′ − k ≤ α− 4 log n + 1.

The proof is very similar. Define the “good set” S as

S = {〈x, y〉 ∈ X×Y | K(x) ≥ k, K(y) ≥ k, and dep(xy) ≤ k′ − k + 4 log n}.

In this case, we can bound the size of S′ (the compliment of S within X×Y) by consid-
ering the following sets.

S1 = {〈x, y〉 ∈ X×Y | K(x) < k},

S2 = {〈x, y〉 ∈ X×Y | K(y) < k},

S3 = {〈x, y〉 ∈ X×Y | dep(xy) > k′ − k + 4 log n}.

Sizes of S1 and S2 are bounded by 2k+k′ . We will bound |S3|. Since the program p
produces X and Y and |X| = |Y| = 2k′ , every string in X ∪Y has Kolmogorov complexity at
most k′ + 2 log n. Thus for any 〈x, y〉 ∈ S3 we have that K(xy) = K(x) + K(y)− dep(xy) ≤
2k′ + 4 log n− (k′ − k + 4 log n) = k′ + k. So |S3| ≤ 2k′+k. Hence |S′| ≤ |S1|+ |S2|+ |S3| ≤
2k+k′+1 + 2k′+k ≤ 2k+k′+2. Thus in this case we have the following bound on the probability
of S′.

CLAIM 12. If k′ − k ≤ α− 4 log n + 1 then PrX×Y(S′) ≤ 1
2k′−k−2

We assumed that distribution D is ε-far from any nice distribution with minentropy
m− (c + 9) log n. By Lemma 7, there is a set U ⊆ Σm of size 2m−(k′−k+4 log n)−(c+4) log n such
that D(U) > 1/2k′−k−log n. Since a program of size 2 log n produces distributions X and
Y and f is computable, there is a program of size at most 3 log n that produces the set U.
Thus for all u ∈ U, K(u) < m− (k′ − k + 4 log n)− c log n. But since PrX×Y(S′) ≤ 1

2k′−k−2 ≤
1

2k′−k−log n and D(U) > 1
2k′−k−log n , there must exist a tuple 〈x, y〉 ∈ S so that f (x, y) ∈ U. This

contradicts the fact that f is a Kolmogorov extractor with the prescribed parameters.

3.2 Randomness Extractor is a Kolmogorov Extractor

In this subsection we show that an almost randomness extractor is also a Kolmogorov ex-
tractor. We follow the line of proof presented in [5] where it is shown that the construction
of a multisource extractor in [2] is also a Kolmogorov extractor. Here we note that in fact the
argument works even for almost randomness extractors.
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THEOREM 13. An (n, m, k, ε) almost extractor is also a (n, m, k′, α) Kolmogorov extractor for
α < log 1

ε − 6 log n and k′ = k + 3 log n.

PROOF. Let f : {0, 1}n × {0, 1}n → {0, 1}m be an (n, m, k, ε) almost extractor. Let c be the
the associated constant. That is, the minentropy guarantee of the output of f is m− c log n.

Let x1 and x2 be two strings with K(x1) = k1 ≥ k′, K(x2) = k2 ≥ k′ and dep(x1x2) ≤ α.
Let X1 and X2 be subsets of {0, 1}n with Kolmogorov complexity at most k1 and k2 respec-
tively. That is, X1 = {x ∈ {0, 1}n|K(x) ≤ k1} and X2 = {x ∈ {0, 1}n|K(x) ≤ k2}. We will
also use X1 and X2 to denote the flat distributions that put uniform weight on sets X1 and
X2 respectively (in the next section, we give specific notation for these distributions).

For t = m − dep(x1x2) − (c + 6) log n, let T ⊆ {0, 1}m be the set of strings with Kol-
mogorov complexity at most t. That is, T = {z | K(z) < t}. We will show that for all u, v
so that f (u, v) ∈ T, K(uv) < k1 + k2 − dep(x1x2). This will show the theorem as this will
imply f (x1, x2) 6∈ T and hence K( f (x1, x2)) > m− dep(x1x2)− (c + 6) log n.

CLAIM 14. For all u ∈ X1 and v ∈ X2 so that f (u, v) ∈ T, K(uv) < k1 + k2 − dep(x1x2).

PROOF. It is clear that |Xi| ≤ 2ki . Since each string in the set 0(n−k){0, 1}k has Kolmogorov
complexity ≤ k + 2 log n + O(log log n) ≤ ki (for large enough n), we also have that |Xi| ≥
2k. Thus PrXi(x) ≤ 1

2k for any x ∈ Xi, Xi has minentropy at least k and f works for X1 × X2.
Consider the output distribution f (X1, X2) on {0, 1}m. Let us call this distribution D.

Since f is an almost extractor the distribution D is ε-close to a distribution with minentropy
m− c log n.

Since |T| ≤ 2t = 2m−dep(x1x2)−(c+6) log n and D is ε-close to a distribution with minen-
tropy m− c log n, we have the following.

PrD(T) ≤ |T|
2m × nc + ε

≤ 2−dep(x1x2)−6 log n + 2−α−6 log n

≤ 2−dep(x1x2)−6 log n+1

The last two inequalities follow because α ≤ log( 1
ε )− 6 log n and dep(x1x2) ≤ α.

Consider the set S = f−1(T) ∩ X1 × X2 ⊆ {0, 1}n × {0, 1}n. We will first bound |S|.
Every tuple from S gets a weight of ≥ 1/2k1+k2 according to the joint distribution X1 × X2.
Thus we have

|S|
2k1+k2

≤ Pr(X1,X2)(S)

= PrD(T)
≤ (2−dep(x1x2)−6 log n+1)

Hence |S| ≤ 2k1+k2−dep(x1x2)−6 log n+1.
The sets X1, X2, and T are recursively-enumerable and f is computable. Hence there

is a program that given n, k1, k2, dep(x1x2), a code for f , and c, enumerates the elements of
S. Hence for any 〈u, v〉 ∈ S, K(uv) ≤ log |S|+ 4 log n + O(log log n) ≤ log |S|+ 5 log n for
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large enough n. Since |S| ≤ 2k1+k2−dep(x1x2)−6 log n+1, K(uv) < k1 + k2 − dep(x1x2) and the
claim follows.

3.3 The Error Parameter vs the Dependency Parameter

Theorem 13 suggests that there is a nice logarithmic relation between error of an almost
extractor and the dependency parameter of the corresponding Kolmogorov extractor. In
particular, in Theorem 13, we show that an (n, m, k, ε) almost randomness extractor is a
(n, m, k′, α) Kolmogorov extractor for α = log(1/ε)−O(log n) for k′ slightly larger than k
(k′ = k + O(log n)). On the other hand, the parameters we get in the proof of the converse
direction (Kolmogorov extractor⇒ randomness extractor) are not fully satisfactory. Ideally
we would like to prove that every (n, m, k, α) Kolmogorov extractor is a (n, m, k′, ε) almost
randomness extractor with k′ = k + O(log n) and ε = 1/2α−O(log n) which will be a true
converse to Theorem 13. We note that this is not possible in general. In particular, we show
that for a (n, m, k, α) Kolmogorov extractor to be a (n, m, k′, ε) almost randomness extractor
with ε = 2α−O(log n), k′ has to be greater than k + α (upto a log factor).

THEOREM 15. Let f be a (n, m, k, α) Kolmogorov extractor. Then there exists a computable
function g which is also a (n, m, k, α) Kolmogorov extractor but g is not a (n, m, k′, ε) almost
randomness extractor for ε < 1

2k′−k+4 log n for any k′ where k′ < m + k− c log n for all constants
c.

PROOF. Let f be a (n, m, k, α) Kolmogorov extractor. Consider the set U ⊆ {0, 1}n defined
as U = {0, 1}k−3 log n0n−k+3 log n. For any string x ∈ U, K(x) < k. Define the function g as
follows: g(x, y) = 0m if x ∈ U and g(x, y) = f (x, y) otherwise.

Since membership in the set U is easy to decide and f is computable, g is computable.
Also, by definition of g, for all pair of strings x, y so that K(x) ≥ k, K(y) ≥ k and dep(x, y) ≤
α, g(x, y) = f (x, y). Hence g is a (n, m, k, α) Kolmogorov extractor.

Now consider two flat distributions X and Y of size 2k′ such that U ⊆ X. Let D denotes
the distribution g(X × Y). Notice that PrD(0m) ≥ PrX(x ∈ U) ≥ 1

2k′−k+3 log n . Now an easy
calculation (omitted because of space constraints) proves the theorem.

4 A Complete Distribution for Randomness Extraction
For integers k and n, letMn

k′ denote the distribution that places uniform weight on the set
{x ∈ {0, 1}n | K(x) ≤ k}. That is Mn

k is uniform over all the strings with Kolmogorov
complexity ≤ k. As n will be clear from the context, we will omit n from the notation
and call itMk. We show thatMk is a complete distribution for randomness extraction in
the sense that a computable function f is an almost randomness extractor if and only if it
extracts randomness from two independent copies ofMk.

This result is motivated by the proof of the equivalence theorem. Notice that in the
proof that a randomness extractor f is also a Kolmogorov extractor, we essentially show that
if f extracts randomness from the class of distributions {Ml}l≥k, then it is a Kolmogorov
extractor. The other implication shows that if f is a Kolmogorov extractor then it is also a
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randomness extractor. Thus intuitively we get that the class {Ml}l≥k is complete. Below
we give a simple argument for completeness.

THEOREM 16. A computable function f is a (n, m, k, ε) almost extractor if and only if there
is a constant c so that f (Mk′ ×Mk′) is ε′ close to a distribution with minentropy m− c log n
where k′ = k + 2 log n and ε′ = ε/n4.

PROOF. The set 0(n−k){0, 1}k is a subset of Mk since every strings in this set has Kol-
mogorov complexity ≤ k + log n + O(log log n) < k′. Hence Mk′ has minentropy ≥ k
and since f is an almost extractor for minentropy k it should also extract randomness from
Mk′ ×Mk′ .

For the other direction, let f be a function that extracts fromMk′ ×Mk′ . Hence there is
a constant c so that f (Mk′ ×Mk′) is ε′ close to a distribution with minentropy m− c log n.

For the sake of contradiction suppose f is not an almost extractor for minentropy k. Let
X and Y be first two flat distributions over {0, 1}n for which the distribution D = f (X, Y) is
ε-far from all nice distributions with minentropy m− (c + 4) log n. Observe that there is a
program p which given n, c, and a code for f produces the distributions X and Y. Thus for
any x ∈ X, we have K(x) ≤ k + log n + O(log log n) ≤ k′. Similarly for y ∈ Y. Hence we
have the following claim.

CLAIM 17. For all x ∈ X, K(x) ≤ k′. Similarly for all y ∈ Y, K(y) ≤ k′. Hence X ⊆Mk′ and
Y ⊆Mk′ .

We will show that for all T ⊆ {0, 1}m, PrD(T) ≤ |T|
2m × nc+4 + ε. This suffices to show

that D is ε-close to a distribution with minentropy m− (c + 4) log n.

PrD(T) = PrX×Y( f−1(T) ∩ X×Y)

=
| f−1(T) ∩ X×Y|

22k

≤ Pr f (Mk×Mk)(T)× n4

≤ (
|T|
2m nc + ε′)× n4

=
|T|
2m nc+4 + ε

The inequality second from the last is because of the assumption that f (Mk ×Mk) is
ε′ close to a distribution with minentropy m− c log n.
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ABSTRACT. We introduce and study the donation center location problem, which has an additional
application in network testing and may also be of independent interest as a general graph-theoretic
problem. Given a set of agents and a set of centers, where agents have preferences over centers and
centers have capacities, the goal is to open a subset of centers and to assign a maximum-sized subset
of agents to their most-preferred open centers, while respecting the capacity constraints.

We prove that in general, the problem is hard to approximate within n1/2−ǫ for any ǫ > 0. In
view of this, we investigate two special cases. In one, every agent has a bounded number of centers
on her preference list, and in the other, all preferences are induced by a line-metric. We present
constant-factor approximation algorithms for the former and exact polynomial-time algorithms for
the latter. Of particular interest among our techniques are an analysis of the greedy algorithm for
a variant of the maximum coverage problem called frugal coverage, the use of maximum matching
subroutine with subsequent modification, analyzed using a counting argument, and a reduction
to the independent set problem on terminal intersection graphs, which we show to be a subclass of
trapezoid graphs.

1 Introduction

Suppose that a charitable organization wishes to open a number of locations where people

can make donations (e.g. donate blood). There is no cost for opening these centers, but they

do have capacities for the number of donors that they can accommodate. We model the

potential donors, whom we call agents, as each having a list of locations where she would

be willing to go to make a donation. Once some of the centers are opened, each agent goes to

the most convenient open one from her list. However, if that center is full (i.e. has exceeded

its capacity), then the agent gives up and decides not to donate at all. Our goal is to choose

a set of centers to open to maximize the number of collected donations.

Formally, we define the DONATION CENTER LOCATION (DCL) problem as follows. Let

G = (A ∪ L, E) be a directed bipartite graph, with edges directed from the set A of agents

to the set L of donation centers. Every center l ∈ L has a capacity cl ∈ Z
+, and every

vertex a ∈ A has a strictly-ordered preference ranking of its neighbors in L (or, equivalently,

of its outgoing edges). These preferences model either distance or some other measure

of convenience for the agents over the locations. We have to choose a subset L′ ⊆ L of

centers to open, and to assign a subset A′ ⊆ A of agents to centers in L′, in such a way

that the number of agents assigned to any center l ∈ L′ is at most cl, and each a ∈ A′ is

assigned to its highest-ranked neighbor in L′. The goal is to maximize |A′|, the number of
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assigned agents. Note that once a set L′ of locations is selected, it is very easy to find an

optimal assignment of agents: if some open center l ∈ L′ is the first choice of more than cl

agents, then an arbitrary subset of cl of them can be assigned to it (and others will remain

unassigned). Thus, our problem statement requiring an explicit assignment from A′ to L′ is

equivalent to one motivated above, which just asks to find L′ and assumes that each center

l ∈ L will accommodate an unspecified subset of at most cl agents who prefer it.

We use notation l ≻a l′ to indicate that agent a ∈ A prefers center l to center l′, where

both (a, l) and (a, l′) are edges in E. If a solution assigns agent a ∈ A′ to center l ∈ L′, then

we write µ(a) = l. We also define µ−1(l) = {a ∈ A′ : µ(a) = l} to be the set of agents

assigned to l. If an assignment µ satisfies the constraints of the DCL problem, then we call

it valid. Formally, a valid assignment µ : A′ → L′ meets the following conditions:

1. if a ∈ A′, then (a, µ(a)) ∈ E

2. if a ∈ A′, then there is no l ∈ L′ such that (a, l) ∈ E and l ≻a µ(a)
3. if l ∈ L′, then |µ−1(l)| ≤ cl

One special case of DCL that we focus on is the unit-capacity case, where cl = 1 for all

centers. In that case the assignment µ : A′ → L′ is a matching. This special case establishes

a connection between DCL and various matching problems under preferences that have

been extensively studied in both computer science and economics literature. It also has an

application in network testing [6, 19], which is as follows. In a wireless network consisting of

transmitters and receivers, the transmitter nodes have to be tested. For one round of testing,

a maximum-cardinality set A′ of transmitters has to be matched to a set L′ of receivers. The

power setting of a transmitter is adjusted based on the distance to its intended receiver,

and the signal reaches this receiver as well as all receivers that are closer to the transmitter

than it is. The preference lists of transmitters over receivers are complete and are induced

by the distance, with closer ones ranked higher. Then Condition 2 for a valid matching

requires that a matched receiver not simultaneously be in the range of two active (matched)

transmitters, thus preventing interference.

1.1 Related work

Matching entities with preferences is an extensively studied topic in the literature. The most

representative is the stable matching (also known as stable marriage) problem [9], where

both sides have preferences and a matching is considered stable if there are no two elements

that both prefer each other to their assigned matches. Recently, the matching problems in the

context of one-sided preferences have also been studied. Examples include popular match-

ing [2, 13, 15], rank-maximal matching [12, 16], and pareto-optimal matching [1]. A major

distinction in our model is that an unopened center does not influence the feasibility of a

given solution, even if some agent prefers this center to his assigned open one. However,

for instance, in the stable marriage problem, a bachelor and a married woman can disturb

the stability of a matching.

Our model also resembles the well-studied facility location problems [5, 18] and their

capacitated versions [17, 21]. However, in most facility location problems, the algorithm is

allowed to assign clients to arbitrary opened facilities, whereas in our case, each client has to

go to its nearest one. Also, DCL is a maximization problem and does not have a requirement
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of assigning all clients, whereas facility location is usually formulated as assigning all clients

while minimizing cost. Thus, there is no direct way to apply known algorithmic techniques

for it to our setting.

Network testing is a possible application of DCL. Maximum-cardinality matching be-

tween transmitters and receivers has been studied in [6, 19], where the interference between

transmitters is modeled in a more crude way: just the presence of an edge between a trans-

mitter and a receiver in the connection graph represents a possible source of interference.

In contrast, we use the notion of preferences (relative physical distance) to give a more fine-

grained model of interference.

1.2 Our results and techniques

We study the general DCL problem as well as several special cases of it. Most of the ver-

sions that we consider here are NP-complete, in which case we study their approximability,

either by finding good approximation algorithms, or by proving hardness of approximation

results. However, some of the special cases are solvable in polynomial time, and for these

we present exact algorithms. Our results are summarized in Table 1. Some of the proofs are

omitted here and appear in the full version of this paper [11].

unit capacity general capacity

complete preferences n1/2−ε-hard to approximate (§2)

bounded degree APX-hard (§2)

out-degree bound d 1/d (§3.1) 1/2d (§3.3), 1/φd ([11])

out-degree bound d = 2 e
e+1 (§3.2) 1/2 ([11])

line metric polynomial-time (§4)

Table 1: Summary of results

For the general case of DCL, we show that it is hard to approximate to a factor of n1/2−ε,

for any ε > 0. This result also holds for the special case of complete preferences (when G

is a complete bipartite graph). In view of this, we focus on two types of special cases, one

of which is the bounded degree case. Here the degree in G of any vertex a ∈ A is upper-

bounded by a constant d. We show that the problem remains APX-hard, even in the unit-

capacity case with degree bound of 2. For any degree bound d, we give a 1/d-approximation

algorithm for the unit-capacity case. For the special case of degree bound d = 2, we improve

this ratio to e
e+1 ≈ 0.731. To do this, we introduce a new variant of the maximum coverage

problem, called frugal coverage, and analyze the performance of the greedy algorithm on

it. For the problem with general capacities and degree bound d, we present a 1/2d approxi-

mation algorithm that makes use of a maximum matching subroutine. In [11], we improve

the analysis to give a 1/φd approximation, for φ ≈ 1.618, and also improve the ratio to 1/2

for the special case of d = 2.

The second special case that we consider is one in which the preferences are induced

by a line metric. In particular, all nodes of A ∪ L are located on a single line, and each

agent ranks the centers in the order of proximity. For this case, we give an exact linear-time
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algorithm for the unit-capacity setting. Then we extend it to obtain an exact polynomial-

time algorithm for general capacities. To design these algorithms, we reduce the problems

to maximum independent set on a special kind of graphs that we call terminal intersection

graphs. We then show that these graphs form a subclass of trapezoid graphs [3, 4], for which

there are known polynomial-time algorithms that solve maximum independent set [8, 14].

2 Hardness results

We prove that DCL is hard to approximate to a factor of n1/2−ǫ, and that it remains APX-hard

even in the bounded-degree case. The proof of the first result uses a non-trivial reduction

from the maximum independent set problem, which increases the size of the instance while

approximately preserving the value of the optimal solution. The proof of APX-hardness

uses a different reduction from independent set on 3-regular graphs. Both proofs appear

in [11].

THEOREM 1. DCL problem is hard to approximate within O
(
|A ∪ L|1/2−ǫ

)
for any ǫ > 0,

unless NP=ZPP. This is true even in the case of unit capacities and complete preferences.

THEOREM 2. DCL problem is APX-hard, even with unit capacities, out-degree bound of 2
on A and in-degree bound of 3 on L.

We also show that the special case of DCL in which preferences are induced by a metric

is no easier than the general problem with complete preferences‡. In fact, arbitrary complete

preferences of A over L can be represented by embedding all points of A ∪ L into a metric

space. To do this, we use the ℓ∞ metric over an |L|-dimensional space. Each element li ∈ L

(for i = 1 to |L|) is mapped to a location xi, with coordinates xi
j = 0 for j 6= i, and xi

i = 1.

Each element a ∈ A is mapped to a location xa, with xa
i = 1

2 −
rank(a,li)

2|L| . Here rank(a, li) is the

rank that agent a assigns to center li, ranging from 1 for the most-preferred center up to |L|.
With this embedding, the ℓ∞ distance from a to li, for each 1 ≤ i ≤ |L|, becomes 1

2 + rank(a,li)
2|L|

(with |xi
i − xa

i | being the largest coordinate difference). This ensures that for each a ∈ A, the

ordering of elements of L by distance is the same as it is by preference.

3 Algorithms for bounded-degree DCL

In view of the hardness results for the general problem, in this section we focus on special

cases in which the lengths of the agents’ preference lists are bounded by a constant d.

3.1 A linear-time 1/d approximation for the unit-capacity case

We partition L into d subsets L1, L2, · · · , Ld. A center l is in group Lk if, among all edges from

agents to l, the highest rank of these edges is k. We now consider each set Lk separately, and

let µk denote an arbitrary matching in which each center in Lk is matched to an agent that

ranks it k. Note that at least one such agent for each center must exist by definition of Lk, and

no agent will be matched twice as it can’t have the same rank for two different centers. We

‡This reduction was suggested to us by Uri Feige
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claim that µk is a valid matching in the original problem. If not, suppose that both (a, l) and

(a′, l′) are part of µk and l′ ≻a l. Then a ranks l′ higher than k, contradicting the assumption

that l′ ∈ Lk. We output the largest µk, which satisfies |µk| = |Lk| ≥ 1
d |L| ≥ 1

d OPT, and note

that the algorithm can be implemented in linear time.

3.2 A e/(e + 1) approximation for unit-capacity DCL with degree bound d = 2

Here we consider the unit-capacity case in which the out-degree of each agent is at most 2.

Our algorithm in the preceding section gives a ratio of 1/2 in this case, but here we improve

it to e
e+1 ≥ 0.731. We first give an approximation-preserving reduction to a problem that

we call frugal coverage, and then give a e
e+1-factor approximation for frugal coverage. The

input to this problem is the same as for set cover, but the objective function is different. We

wish to maximize the number of elements covered by the chosen sets plus the number of

sets that are not chosen.

DEFINITION 3. In the frugal coverage problem, the input is a universe U of elements and a
collection C of subsets of U. The goal is to select a subset C ′ ⊆ C that maximizes |⋃S∈C ′ S|+
|C \ C ′|.

LEMMA 4. If there is an α-approximation for the frugal coverage problem, then there is an
α-approximation for unit-capacity DCL with degree bound 2.

PROOF. To obtain a reduction, we first do one step of pre-processing on the given DCL

instance. If any center l ∈ L has incoming edges of both rank 1 and rank 2, then we remove

all its incoming edges of rank 2. We claim that the value of the optimum is maintained,

because any feasible solution that uses the edges that were removed can be transformed

into one of the same size which does not use these edges. Suppose a1 ∈ A ranks l first,

and a2 ∈ A ranks l second. Now, if a2 is matched to l in the optimal solution, then a1 is

unmatched, as otherwise it would prefer l to its match. So we can replace the matched pair

(a2, l) with (a1, l), preserving the size and feasibility of the solution.

Now we give a reduction from the DCL instance to frugal coverage, assuming that

no node l ∈ L has both rank-1 and rank-2 incoming edges. We also assume without loss

of generality that there are no nodes in A ∪ L with degree zero. We partition the set L into

subsets X and Y, where X contains all the nodes with incoming rank-1 edges, and Y contains

all the nodes with incoming rank-2 edges. By our assumptions, these sets are disjoint and

cover L. For each l1 ∈ X, we create a set S(l1) ∈ C. For each l2 ∈ Y, we create an element

e(l2) ∈ U. For each agent a ∈ A whose preference list is of length two, with l1 ≻a l2, we

include the element e(l2) into the set S(l1).

Given a valid matching µ for the DCL instance, we create a solution to the derived

frugal coverage instance with value at least |µ|. In particular, this solution C ′ consists of all

sets S(l) that correspond to unmatched nodes l ∈ X. If we let |µ| = x + y, where x is the

number of matches on rank-1 edges, and y is the number of matches on rank-2 edges, then

|C \ C ′| = x and |⋃S∈C ′ S| ≥ y. The equality follows because C corresponds to all nodes

of X, and C ′ corresponds to the unmatched ones. For the inequality, suppose that a rank-2

match (a, l2) is part of µ, and consider the center l1 such that l1 ≻a l2. Then l1 is unmatched,

as otherwise the feasibility of µ is violated, and therefore S(l1) ∈ C ′. Also, by construction,
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e(l2) ∈ S(l1). So we have that for each l2 ∈ Y matched on rank-2 edge, there exists l1 ∈ X

such that e(l2) ∈ S(l1) ∈ C ′, and therefore |⋃S∈C ′ S| ≥ y.

Conversely, given a solution C ′ to the constructed frugal coverage instance, a feasible

solution µ to the original DCL instance, with at least as big a value, can be produced. For

each l ∈ X whose corresponding set is not chosen (S(l) /∈ C ′), choose an arbitrary node

a ∈ A such that (a, l) is an edge, and include (a, l) in µ. For each l2 ∈ Y whose corresponding

element is covered by the frugal coverage solution (e(l2) ∈ ⋃
S∈C ′ S), find a node l1 ∈ X

whose corresponding set covers e(l2) (i.e. with e(l2) ∈ S(l1) and S(l1) ∈ C ′), choose a node

a ∈ A such that l1 ≻a l2 (which enabled us to include e(l2) in S(l1) when constructing the

instance), and match a to l2. To ensure that no a ∈ A is matched twice, and that µ is a valid

matching, suppose that there is a node a ∈ A with µ(a) = l2, l1 ≻a l2, and l1 also matched.

But this is a contradiction because we only matched (a, l2) if S(l1) ∈ C ′, and only matched

l1 if S(l1) /∈ C ′. Since for each covered element and for each unchosen set we have included

one pair into the matching, the size of µ is at least the objective function value of the frugal

coverage solution.

To obtain an α-approximation for DCL, perform the above construction, producing an

instance of frugal coverage whose optimum is at least |µ∗|, where µ∗ is an optimal valid

matching. Find an α-approximation to frugal coverage of value at least α · |µ∗|, and trans-

form it back to a DCL solution with at least as big a value.

Algorithm for frugal coverage

We analyze the performance of the greedy algorithm for the frugal coverage problem. This

is the same algorithm as is used for set cover [20]: while there is a set that covers at least one

new element, choose the one that covers maximum number of new elements and include it

in the solution. We note that our approximation guarantee for frugal coverage is better than

the best possible factor of e−1
e ≈ 0.632 for the maximum coverage problem [7].

LEMMA 5. The greedy algorithm is a e
e+1 approximation for the frugal coverage problem.

PROOF. Let m = |C| be the number of sets in the instance, n = |U| be the total number of

elements, and n′ = |⋃S∈C S| be the number of elements that are contained in at least one set.

Suppose that the greedy algorithm completes after taking l sets. Then its objective function

value is equal to ALG = n′ + (m − l). Let Ck denote the intermediate solution obtained

by the greedy algorithm after including 0 ≤ k ≤ l sets. We observe that the solution Cl is

at least as good as any Ck, because with each step of the algorithm, the number of unused

sets |C \ Ck| decreases by one, and the number of covered elements |⋃S∈Ck
S| increases by at

least one. By the same reasoning, we know that there is an optimal solution C∗ ⊆ C to the

frugal coverage problem that covers all elements that are contained in at least one set. Let

k∗ = |C∗| be the number of sets chosen by this optimal solution. Then its objective function

value is OPT = n′ + (m − k∗).

We first give an easy proof to show that the greedy algorithm is at least a e−1
e approx-

imation, and then improve the guarantee. Consider the intermediate greedy solution Ck∗

(note that l ≥ k∗, as k∗ is the minimum number of sets that can cover all n′ elements). By
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the guarantee of the greedy algorithm for the maximum coverage problem [7], Ck∗ covers at

least e−1
e · n′ elements. So the value of the solution is ALG ≥ e−1

e · n′ + (m − k∗) ≥ e−1
e · OPT.

To improve the guarantee, we observe that l ≤ m, and therefore ALG ≥ n′. Combining

with the previous result, we get ALG ≥ max( e−1
e n′ + m − k∗, n′). We now consider two

cases. The first case is that n′ ≥ e−1
e n′ + (m − k∗), and therefore n′ ≥ e(m − k∗). Then

ALG ≥ n′ =
en′

e + 1
+

n′

e + 1
≥ en′

e + 1
+

e(m − k∗)
e + 1

=
e

e + 1
· OPT.

In the second case, n′
<

e−1
e n′ + (m − k∗), and therefore m − k∗ > n′/e. Then

ALG ≥ e − 1

e
n′ + m − k∗ =

e − 1

e
n′ +

m − k∗

e + 1
+

e(m − k∗)
e + 1

>
e − 1

e
n′ +

n′

e(e + 1)
+

e(m − k∗)
e + 1

=
en′

e + 1
+

e(m − k∗)
e + 1

=
e

e + 1
· OPT,

so in either case we get the desired approximation.

Combining Lemmas 4 and 5, we arrive at the following result.

THEOREM 6. There is an e
e+1 ≥ 0.731 approximation for unit-capacity DCL with degree

bound 2.

We make two remarks before we close this section. First, by the APX-hardness result

of Theorem 2, the reduction in Lemma 4, and the constant approximation in Lemma 5, it

follows that the frugal coverage problem is APX-complete. Second, the following special

case of DCL is solvable in polynomial time: every agent in A has out-degree at most 2 and

every center in L has at most two incoming rank-1 edges. To see this, observe that in this

setting, under the reduction of Lemma 4, we derive a frugal coverage instance with every

set in C of size at most 2. By the same reasoning as in Lemma 5, there is an optimal solution

that covers all elements in
⋃

S∈C S. Thus, the problem is equivalent to finding an optimal set

cover where every set is of size at most 2 and can be easily shown to be equivalent to the

edge cover problem, which is known to be in P [10].

3.3 A 1/2d approximation for DCL with general capacities

As the hardness results of Section 2 still apply to the problem with general capacities, we

consider the special case in which each agent has at most d outgoing edges in G. Our algo-

rithm consists of the following steps.

1. Using flow techniques, find a maximum-size assignment µ (not necessarily valid) be-

tween A and L on the edges of G, where each agent is assigned to at most one center,

and each center l gets at most cl agents. This assignment disregards the preferences of

the agents, and serves as an upper bound on the optimum.

2. Create a directed graph on the set of centers H = (L, F) based on µ. An arc (l, l′) ∈ F

is drawn if there is some agent that is assigned to center l by µ, but prefers l′ to l. If

H contains a directed cycle, then update µ by transferring one agent along each arc of

this cycle so as to improve the transferred agents’ assignments. Update H, and repeat

until H is acyclic. Note that this process terminates in polynomial time.
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3. Discard all unassigned agents and unused centers from the graph G to produce a

subgraph G′. Furthermore, remove from G′ edges from each agent a to centers which

a ranks lower than µ(a). Also remove unused centers from H.

4. Define a topological order over H so that all directed arcs of H go “from left to right”.

5. Consider each center node l in H, scanning from left to right, and delete it from G′ if

the degree of l in G′ is greater than ξ · cl, where ξ > 1 is a parameter to be optimized

later. To delete l, update G′ by removing l and the agents assigned to it by µ, along

with the incident edges.

6. Return the set U of centers that are still part of G′.

Note that the final solution is not µ, as µ is not necessarily a valid assignment. Instead, it

is the set U ⊆ L of open centers, with the best valid assignment of agents to them, which

is easy to find as mentioned in the introduction. The possible loss in value of this solution

compared to the size of µ is analyzed below.

THEOREM 7. The above algorithm is a 1/2d-approximation for DCL with degree bound d.

PROOF. As mentioned, the number of agents assigned by µ serves as an upper bound on

the optimum. Moreover, step 2 does not alter the size of µ. There are two ways in which the

algorithm can lose agents that are matched in step 1. The first is the deletion of centers in

step 5, as agents assigned to them may not have any edges to the remaining centers, and thus

be lost to the solution. The second reason is that even from centers in U, the contribution

to the objective function may be smaller than the number of agents assigned to them by µ.

This is because the agents ‘switch’ from their assigned centers to their best centers in U. As

a simple example, consider an instance with two agents and two centers, where both agents

prefer l1 to l2, and cl1 = cl2 = 1. Then µ assigns one agent to each center, and has size two.

But opening both centers produces a solution with objective function of 1.

We let |µ| = nu + nr, where nu is the number of agents that are assigned by µ (after step

2) to centers in U, and nr is the number of agents assigned by µ to other centers, i.e. ones

removed by the algorithm in step 5. We first lower-bound nu, and then lower-bound the size

of the solution in terms of nu. Observe that for every center l deleted in step 5, its degree in

G′ (at the time of deletion) is greater than ξcl . At most cl of these incoming edges come from

agents assigned to it by µ, and the rest come from agents that are assigned elsewhere by µ,

but prefer l to their current centers (this is because in step 3, we removed edges from each

agent a to centers that rank lower than µ(a)). Let us say that one such agent, a, is assigned

to a center l′ but prefers l to l′. In this case the graph H would contain an edge from l′ to l,

which means that l′ occurs before l in the topological ordering. Furthermore, when l′ was

considered by step 5 of the algorithm (which happened before l was considered), it was not

deleted, since otherwise we would have also deleted all its agents, including a. So any such

center l′ must be part of U. Now, each agent has at most d − 1 edges in G′ to centers other

than its assigned one, so the number of agents assigned to U by µ that contribute the extra

ξcl − cl edges to centers l /∈ U can be bounded as

nu ≥ ∑l /∈U(ξcl − cl)

d − 1
=

ξ − 1

d − 1
· ∑

l /∈U

cl ≥ ξ − 1

d − 1
· nr. (1)
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The value of the final solution that assigns agents from A to centers in U in an optimal

way can only be higher than if we restrict the assignment to only use agents from some

subset Ã ⊆ A. In particular, let Ã be the set of nu agents that are assigned to U by µ. For a

center l ∈ U, consider the set of agents Ãl ⊆ Ã that rank l highest among centers in U. For

any such agent a ∈ Ãl, there is an edge in G′ from a to l. But since the degree of l in G′ is

at most ξcl , the size of Ãl is at most ξcl . Thus, at least a 1/ξ fraction of agents in Ãl can be

assigned to l by a valid assignment. As the sets Ãl partition Ã, overall ALG ≥ nu/ξ. Using

(1), the approximation ratio becomes

ALG

OPT
≥ nu/ξ

|µ| =
nu/ξ

nu + nr
≥ nu/ξ

nu + nu
d−1
ξ−1

=
1/ξ

1 + d−1
ξ−1

≡ fd(ξ).

Calculus shows that fd(ξ) is maximized at ξ = 1 +
√

d − 1, and the approximation

guarantee becomes 1/(d + 2
√

d − 1) ≥ 1/2d. In fact, for large d, it approaches 1/d.

With a more detailed analysis (see [11]), the above algorithm can be shown to deliver

a 1/φd approximation, for φ ≈ 1.618. In addition, for the special case of d = 2, another

algorithm with an improved guarantee of 1/2 appears in [11].

4 DCL on a line

In this section we show how to find optimal solutions to unit-capacity and general DCL, in

the case that preferences are complete and defined according to distances on a line (with

closer points ranked higher). Our algorithms work through a reduction to the independent

set problem on a special class of graphs, which we call terminal intersection graphs. As

we show, terminal intersection graphs are a subclass of trapezoid graphs [3, 4], for which

polynomial-time algorithms for independent set are known. We assume that no two nodes

are co-located on the line, and no two distances are equal. Distance between two points on

the line is denoted by d(x, y).

DEFINITION 8. A graph H = (W, F) is a terminal intersection graph if there exists a set of
intervals I = {Iw = [aw , bw] : w ∈ W} on a line, each with a terminal cw ∈ Iw, such that

there is an edge (w, w′) ∈ F if and only if either cw ∈ Iw′ or cw′ ∈ Iw.

DEFINITION 9. A graph H = (W, F) is a trapezoid graph if there exist two parallel lines
such that each vertex w ∈ W corresponds to a trapezoid Tw defined by the convex hull of
two points on the top line and two points on the bottom line, and (w, w′) ∈ F if and only if

Tw and Tw′ intersect.

LEMMA 10. Every terminal intersection graph is a trapezoid graph, and the trapezoid
model can be found in linear time when a terminal intersection model is given.

Proof of Lemma 10 appears in [11]. We now give the main results of the section.



236 DONATION CENTER LOCATION PROBLEM

THEOREM 11. Unit-capacity DCL on a line can be solved to optimality in linear time.

PROOF. We reduce to the independent set problem on terminal intersection graphs, which

can be solved in linear time using Lemma 10 and the algorithm for independent set on

trapezoid graphs ([14] and the fact that trapezoid graphs are a subclass of co-comparability

graphs [8]). Our reduction is also linear-time, so this gives an overall O(n)-time algorithm.

We start with a useful observation about the structure of an optimal valid matching

on a line. We claim that for any instance, there exists an optimal solution in which every

matched center is matched either to its closest agent to the right of it on the line, or to its

closest agent to the left. To see this, consider a center l, its closest agent to the right a1, and

an agent a2 farther to the right. Suppose that l and a2 are matched. Then there is no other

matched center between l and a2, and there is no matched center within distance d(l, a2)
to the right of a2 (otherwise a2 would prefer those centers to l). This implies that a1 is not

matched, as otherwise it would prefer l to its match. So if, instead of (a2, l), we match (a1, l),

this would also be a feasible solution, since l would be the closest matched center to a1.

Given the above observation, it suffices to only consider two possible matches for each

center l: (al , l) and (ar, l), where al and ar are the nearest agents to the left and to the right,

respectively. So there are at most 2|L| possible matches to consider, and we have to choose

the maximum subset of them which matches each node at most once and fulfills the condi-

tion of a valid matching. We do this by creating a terminal intersection graph H = (W, F) in

which the nodes correspond to possible matches, and edges correspond to pairs of matches

that interfere with each other. Then the maximum independent set in H corresponds to the

maximum valid matching in our instance.

For each center l ∈ L and its potential match ar on the right we create a vertex w in

H specified by the interval Iw = [l, l + 2 · d(l, ar)] and the terminal cw = l (we identify

the nodes in A ∪ L with their coordinates on the line, and hence treat them as numbers).

Similarly, for l and al we create a node with interval [l − 2 · d(al , l), l] and terminal l. This is

an interval that is twice as long as the distance between the agent and the center, centered

at the agent, and with a terminal at the endpoint corresponding to the center.

We now verify that two vertices have an edge in H if and only if both of their cor-

responding pairs cannot be included in the matching. Suppose that H contains an edge

(w, w′). Then either cw ∈ Iw′ or cw′ ∈ Iw, so assume without loss of generality that cw ∈ Iw′ .

Let (aw, lw) be the potential match corresponding to the vertex w, and (aw′ , lw′) be one corre-

sponding to w′. Then, by geometry, d(aw′ , lw) ≤ d(aw′ , lw′). So either lw = lw′ , or aw′ is closer

to lw than to lw′ , and both pairs cannot be matched simultaneously. Conversely, suppose

that two pairs (aw, lw) and (aw′ , lw′) cannot both participate in the matching. This could be

because lw = lw′ , or aw = aw′ , or because they violate the preference condition. In the first

case, immediately cw ∈ Iw′ , so the edge (w, w′) is in H; in the second case, assume lw is closer

than lw′ to aw, but then cw = lw ∈ Iw′ ; in the last case, assume that d(aw′ , lw) < d(aw′ , lw′).

But since Iw′ is an interval of length 2d(aw′ , lw′) centered at aw′ , it includes cw = lw, so again

(w, w′) is an edge in H.

THEOREM 12. DCL on a line can be solved to optimality in polynomial time.

We sketch the ideas for extending the unit-capacity algorithm to general capacities. The

running time is no longer linear, but it remains polynomial. We again construct a terminal
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intersection graph H, but this time we reduce to the maximum weighted IS problem on it,

which is still solvable in polynomial time for trapezoid graphs [8]. Consider a center u with

cu ≤ n. Any feasible solution assigns kl agents to it that are to the left of u on the line, and

kr agents that are on the right, for some kl and kr with kl + kr ≤ cu. Analogously to the

proof of Theorem 11, we can assume that these agents are the closest kl ones on the left, and

the closest kr ones on the right. So for each center u, and for each possible kl and kr , we

create an interval Iu with a terminal located at u. To specify the endpoints of Iu, we let al

be the kl-th farthest agent to the left of u, and ar be the kr-th agent to the right of u. Then

Iu = [u − 2 · d(al , u), u + 2 · d(u, ar)]. Finally, we set the weight of the corresponding vertex

in H to kl + kr . As before, it can be verified that a set of vertices in H is independent if and

only if the corresponding assignment in the original problem is valid. Moreover, the weight

of this set is equal to the number of agents assigned in the corresponding solution.

5 Conclusion

We have introduced a new combinatorial problem with a number of applications and made

significant progress toward characterizing its complexity and approximability. In doing so,

we used a variety of techniques, including a non-trivial hardness proof, an analysis of the

greedy algorithm for a new variant of set cover, a counting argument for establishing the

approximation ratio in the general capacity case, and a reduction to geometric graphs. Our

definitions of the frugal coverage problem and the terminal intersection graphs, as well as

our algorithms, may be of more general interest and find applications in other contexts.

One extension of the DCL problem is the non-bipartite version, where G is a general

directed graph, and all vertices have preferences over their outgoing edges. A solution

consists of sets A′, L′, and a valid assignment from A′ to L′ as before, but now A′ and L′ can

be arbitrary disjoint subsets of vertices of G. In the network testing application, the bipartite

problem corresponds to the case that transmitters and receivers are two different types of

devices, whereas the non-bipartite version models a more general setting in which some

or all of devices are capable of performing either function. Our hardness of approximation

results extend to the non-bipartite version, and in the unit-capacity setting it admits a 1/d

approximation for the bounded-degree case as well as a polynomial-time exact algorithm

on a line metric. Full description of these results can be found in [11].

Our results highlight a number of questions and related problems that remain open. For

example, the weighted version of the problem is a possible extension. For network testing,

a natural problem is to minimize the number of rounds required to test all transmitters.

Also, an extension of our algorithm for DCL on a line to the case of Euclidean plane may

be relevant for this setting. Given our hardness results for DCL, it may be worthwhile to

consider alternative formulations, such as minimizing the number of unassigned nodes,

instead of maximizing the number of assigned ones. Finally, we leave for future work the

investigation of similar problems with two-sided preferences.
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Non-Local Box Complexity and Secure
Function Evaluation

M. Kaplan∗ , I. Kerenidis∗ , S. Laplante∗ , and J. Roland†

ABSTRACT. A non-local box is an abstract device into which Alice and Bob input bits x and y respec-
tively and receive outputs a and b respectively, where a, b are uniformly distributed and a⊕ b = x∧ y.
Such boxes have been central to the study of quantum or generalized non-locality as well as the sim-
ulation of non-signaling distributions. In this paper, we start by studying how many non-local boxes
Alice and Bob need in order to compute a Boolean function f . We provide tight upper and lower
bounds in terms of the communication complexity of the function both in the deterministic and
randomized case. We show that non-local box complexity has interesting applications to classical
cryptography, in particular to secure function evaluation, and study the question posed by Beimel
and Malkin [4] of how many Oblivious Transfer calls Alice and Bob need in order to securely com-
pute a function f . We show that this question is related to the non-local box complexity of the
function and conclude by greatly improving their bounds. Finally, another consequence of our re-
sults is that traceless two-outcome measurements on maximally entangled states can be simulated
with 3 non-local boxes, while no finite bound was previously known.

1 Introduction
Communication complexity. Communication complexity is a central model of computa-
tion, which was first defined by Yao in 1979 [35] and has since found numerous applications.
In this model Alice and Bob receive inputs x and y respectively and are allowed to commu-
nicate in order to compute a function f (x, y). The goal is to find the minimum amount of
communication needed for this task. In different variants of the model, we allow Alice and
Bob to err with some probability, and to share common resources in an attempt to enable
them to solve their task more efficiently.

One such resource is shared randomness. When Alice and Bob are not allowed any
errors, shared randomness does not reduce the communication complexity. On the other
hand, when they are allowed to err, a common random string can reduce the amount of
communication needed. However, Newman’s result tells us that shared randomness can be
replaced by private randomness at an additional cost logarithmic in the input size.

Another very powerful shared resource is entanglement. Using teleportation, Alice and
Bob can transmit quantum messages by using their entanglement and only classical com-
munication. This model has been proven to be very powerful, in some cases exponentially
more efficient than the classical one. Another way to understand the power of entanglement
is by looking at the CHSH game [13], where Alice and Bob receive uniformly random bits x
and y respectively and their goal is to output bits a and b resp. such that a⊕ b = x ∧ y with-
out communicating. It is not hard to conclude that even if Alice and Bob share randomness,
their optimal strategy will be successful with probability 0.75 over the inputs. However, if

∗LRI - Université Paris-Sud
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they share entanglement, then there is a strategy that succeeds with probability 0.85. This
game proves that quantum entanglement can enable two parties to create correlations that
are impossible to create with classical means.

Non-local boxes. As we said, entanglement enables Alice and Bob to succeed in the CHSH
game with probability 0.85. But what if they shared some resource that would enable
them to win the game with probability 1? Starting from such considerations, Popescu and
Rohrlich [30] defined the notion of a non-local box. A non-local box is an abstract device
shared by Alice and Bob. By one use of a non-local box, we mean that Alice inputs x, Bob
inputs y, Alice gets as output a and Bob gets b where a, b are uniformly distributed and more
importantly a⊕ b = x ∧ y. The name non-local box is due to the property that one use of a
non-local box creates correlations between two bits that are maximally non-local (allowing
to win the CHSH game with probability one), but still does not allow to communicate, since
taken separately, each bit is just an unbiased random coin. As such, a non-local box may be
considered as a unit of non-locality. We note here an important property of a non-local box,
namely that, similar to entanglement, one player can enter an input and receive an output
even before the second player has entered an input.

The importance of the notion of a non-local box has become increasingly evident in
the last years. Non-local boxes were first introduced to study (quantum or generalized)
non-locality. In particular, it was shown than one of the most studied versions of the EPR
experiment, where Alice and Bob perform projective measurements on a maximally entan-
gled qubit pair, may be simulated using only one use of a non-local box [10]. More generally,
it was shown that any non-signaling distribution over Boolean outputs may be exactly sim-
ulated with some finite number of non-local boxes (for finite input size) [1, 19]. This was
later generalized to any non-signaling distribution, except that the simulation may not al-
ways be performed exactly for non-Boolean outputs [16]. These results rely on the fact that
the set of non-signaling distributions is a polytope, so it suffices to simulate the extremal
vertices to be able simulate the whole set. In the context of non-locality, another application
of non-local boxes is the study of pseudo-telepathy games [7].

It is easy to see that one use of a non-local box can be simulated with one bit of com-
munication and shared randomness: Alice outputs a uniform bit r and sends x to Bob, who
outputs r⊕ x · y. However, the converse cannot possibly hold, since a non-local box cannot
be used for communication.

The first question is what happens if we use non-local boxes as shared resource in
the communication complexity model. Van Dam showed that for any Boolean function
f : {0, 1}n × {0, 1}n → {0, 1}, Alice and Bob can use 2n non-local boxes and no communica-
tion at all and at the end output bits a and b such that a⊕ b = f (x, y) [33]. In other words, if
non-local boxes were physically implementable, then all functions would have trivial com-
munication complexity. His results were strengthened by Brassard et al. who showed that
even if a non-ideal non-local box existed, one that solves the CHSH game with probability
0.91, then still all functions would have trivial communication complexity [6]. Note that in
these results, the number of non-local boxes needed may be exponential in the input size
and do not take into account any properties of the function and more precisely its commu-
nication complexity without non-local boxes. It also follows from the work of [1, 6] that for
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any Boolean function f , if f has a circuit with fan-in 2 of size s, then there is a deterministic
non-local box protocol of complexity O(s), where the bits of the input of f are split arbi-
trarily among the players. This implies that exhibiting an explicit function for which the
deterministic non-local box complexity is superlinear would be a real breakthrough, since it
would translate into a superlinear circuit lower bound for this function.

Secure function evaluation. Non-local boxes have also been studied in relation to crypto-
graphic primitives such as Oblivious Transfer or Bit Commitment. Wolf and Wullschleger
[34] showed that Oblivious Transfer is equivalent to a timed version of a non-local box (up
to a factor of 2). To maintain the non-signaling property of the non-local box, one can define
timed non-local box as having a predefined time limit, and if any of the players have not
entered an input by this time, then some fixed input, say 0, is used instead. Subsequently,
Buhrman et al. [8] showed how to construct Bit Commitment and Oblivious Transfer by
using non-local boxes that do not need to be timed but have to be trusted.

In this paper, we are interested in secure function evaluation, which is one of the most
fundamental cryptographic tasks. In this model, Alice and Bob want to evaluate some func-
tion of their inputs in a way that does not leak any more information than what follows from
the output of the function. It is known that even though not all functions can be evaluated
securely in the information-theoretic setting ([5, 11, 12, 26]), all functions can be computed
securely in the information theoretic setting, if we have access to a black box that performs
Oblivious Transfer or some other complete function, e.g. the AND function ([17, 20]).

There has been a lot of work trying to identify, in various settings, which functions
can be easily evaluated in a secure way, i.e., without any invocation of the black box, and
which are hard to evaluate securely, i.e., require at least one invocation of the black box ([12,
26, 3, 21, 23, 3, 22]). Moreover, Beaver [2] showed that there exists a hierarchy of different
degrees of hardness for the information-theoretic reduction setting, in other words that for
all k, there are functions that can be securely evaluated with k invocations of the AND box
but cannot be computed with k− 1 uses of the black box.

Beimel and Malkin [4] proposed a quantitative approach to secure function evalua-
tion by studying how many calls to an Oblivious Transfer or other complete black box one
needs in order to securely compute a given function f in the honest-but-curious model. For
a Boolean function f : X ×Y → {0, 1} and deterministic protocols, they provide a combina-
torial characterization of the minimal number of AND calls required, which however does
not lead to an efficient algorithm to determine how many ANDs are actually required. They
also show that at most 2|X | ANDs are needed for any function. In the randomized case, they
provide lower bounds depending on the truth-table of the function which can be at most of
the order of n. They also state that “it would be very interesting to try and explore tighter
connections with the communication complexity of the functions”.

Finally, Naor and Nissim [29] have given some connections between the communica-
tion complexity of a function f and the communication complexity for securely computing
f . These results, translated into the Beimel-Malkin and our model, only show that the num-
ber of ANDs is at most exponential in the communication complexity.
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Our results. In this paper, we provide more evidence on the importance of non-local boxes
by showing how they relate to different models of communication complexity as well as
how they can be used as a tool to quantitatively study secure function evaluation. Our
results show that non-local boxes, introduced for the study of quantum or more general
non-locality, can provide a novel way of looking at questions about classical communication
complexity, secure function evaluation and complexity theory.

2 Preliminaries
2.1 Communication Complexity

Let f : X × Y → {0, 1} be a bipartite Boolean function. Alice gets an input x ∈ X and Bob
gets an input y ∈ Y . We say that Alice and Bob compute f (x, y) in parity if after executing
a protocol, Alice outputs a bit a and Bob outputs a bit b such that a ⊕ b = f (x, y), where
we use ⊕ to denote both the logical XOR and addition mod 2. This model differs from the
standard model, where one of the players outputs the value of the function, by at most 1 bit.

We use the following notions of communication complexity. In probabilistic models,
we assume that the players have a common source of randomness. D( f ) and Rε( f ) denote
deterministic and ε-bounded error communication complexity of f (x, y) in parity. D→( f )
and R→ε ( f ) are the one-way deterministic and bounded-error communication complexity
of f (x, y) in parity. Finally, D‖( f ) and R‖ε ( f ) are the deterministic and bounded-error com-
munication complexities in the model of simultaneous messages, where Alice and Bob each
send a message to the referee and the referee outputs the value of the function f (x, y).

For the model of simultaneous messages, we also consider some natural restrictions
on how the referee computes the output from the messages he receives from the players.
We assume the messages sent are of the same length. Suppose the referee receives bits
a = (a1, . . . , at) from Alice, and b = (b1, . . . , bt) from Bob. If the referee always computes a
predefined function g(a, b), then we write D‖,g( f ) or R‖,gε ( f ) to be the length of the message
sent by the players (not the sum of these lengths, as is done in the standard model). In this
paper, we will consider two functions, the inner product modulo 2, IP2(a, b) =

⊕
i(ai · bi)

(where · denotes the multiplication over GF2, which corresponds to the logical AND) and
the majority function, MAJ(a, b) = MAJ(a1 ⊕ b1, . . . , at ⊕ bt).

2.2 Non-local box Complexity

Definition 1 (Non-local box) A non-local box is a device shared by two parties, which on one
side takes Boolean input x and immediately produces Boolean output a, and on the other side takes
Boolean input y and immediately produces Boolean output b, according to the following distribution:

pNL(a, b|x, y) =
{ 1

2 if a⊕ b = x · y
0 otherwise.

We study a model akin to communication complexity, where Alice and Bob use non-
local boxes instead of communication. In a non-local box protocol, Alice and Bob wish to
compute some function f : X ×Y → {0, 1} in the following way. Alice gets an input x ∈ X ,
Bob gets an input y ∈ Y , and at the end of the protocol, Alice outputs a ∈ {0, 1}, Bob
outputs b ∈ {0, 1}, such that a⊕ b = f (x, y). For a protocol P, we will write P(x, y) = (a, b).
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In the course of the protocol, Alice and Bob are allowed shared randomness and may use
non-local boxes, but they may not communicate. Bob is not allowed to see Alice’s inputs to
the non-local boxes, nor does he see the outcome on Alice’s side, and likewise for Alice.
Definition 2 For any function f : X × Y → {0, 1}, NL( f ) is the smallest t such that there is a
protocol that computes f exactly, using t non-local boxes.

We will label the non-local boxes with labels from 1 to t. (Recall that in general, Alice
and Bob are not required to use the t non-local boxes in the same order.) We relax the exact-
ness condition and allow the protocol’s outcome to be incorrect with constant probability ε.
Definition 3 For any function f : X × Y → {0, 1}, NLε( f ) is the smallest t such that there is a
protocol P using t non-local boxes, with Pr[P(x, y) = (a, b) with a⊕ b = f (x, y)] ≥ 1− ε.

We will also study two variants of the general model, where the non-local boxes are
used in a restricted manner. First, we assume that the non-local boxes are used in parallel,
that is, the input to any non-local box does not depend on the outcome of any other. The
complexity in this model is denoted NL|| in the exact case, and NL||ε in the ε error case.

Second, we define the model where both players use the non-local boxes in the same or-
der, that is, the non-local boxes are labeled from 1 to t and Alice’s input to the non-local box
with label i does not depend on the outputs from the non-local boxes labeled from i + 1
to t (similarly for Bob). The complexity in this model is denoted NLord in the exact case,
and NLord

ε in the ε error case. It is clear that this model is more powerful than the parallel
model but less powerful than the general non-local box complexity. In fact, we will only use
this last variant when we talk about secure function evaluation. Note also that in all these
models, the non-local boxes are still non-signaling and Alice and Bob receive the outputs of
the non-local boxes immediately after they enter their inputs.

Finally, we consider a restriction where the players always output the same predefined
function g of the outputs of the non-local boxes. Let (a1, b1), . . . , (at, bt) be the outcomes of
the t non-local boxes in some particular run of a protocol. Of particular interest are protocols
where Alice outputs a = a1 ⊕ · · · ⊕ at and Bob outputs b = b1 ⊕ · · · ⊕ bt. The function g
is used in a superscript to denote the complexity of a function f in this model, NLg in the
determinstic case, and NLg

ε in the ε error case, and in particular, NL||,⊕ and NL||,⊕ε when the
non-local boxes are in parallel and g = ⊕.

2.3 Secure Function Evaluation

We will consider the following cryptographic primitives.
Definition 4 (Oblivious transfer) A 2-1 Oblivious Transfer (OT) is a device which on input bits
p0, p1 for Alice and q for Bob, outputs bit b to Bob, such that b = pq.
Definition 5 (Secure AND) A secure AND is a device which on input bits p for Alice and q for
Bob, outputs bit a to Alice, such that a = p · q.
While at first view, these definitions seem similar to the definition of the non-local box, note
that the timing properties are different: for the cryptographic primitives, the outputs are
produced only after all the inputs have been entered into the device. It is precisely this
subtlety that has led to confusion when trying to use non-local boxes to implement crypto-
graphic primitives, in particular for bit commitment, when timing is particularly important,
since a cheating Alice could wait until the reveal phase before committing her bit into the
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non-local box, without Bob ever realizing it [8]. However, we will see that this is not an
issue for our results on secure computation.

Let f : X × Y → {0, 1} be a bipartite Boolean function. We study the number of
cryptographic primitives necessary to compute f . In all the models we consider, we require
perfect privacy. In the honest-but-curious model, perfect privacy means that when a player
follows the protocol, he should not learn more than required about the other player’s input.
In the malicious model, this condition must still hold even if the player does not follow the
protocol. Not more than required means, for models where the function must be computed
in parity, that the players should learn nothing about the other’s input, while for models
where one of the player should output the function, it means that this player should learn
nothing more than what he can infer from his input and the value of the function, while the
other player should learn nothing.

Let us note that AND may not be used as a primitive in the malicious model, so we will
consider the OT primitive instead. Moreover, in this model, it is known that randomness
is necessary to achieve perfect privacy [15], so in this setting we do not consider the deter-
ministic model. Our bounds in the randomized malicious model also hold for the weaker
honest-but-curious model. We define AND( f ) to be the number of secure AND gates re-
quired to securely compute f (x, y) (not in parity) in the deterministic, honest-but-curious
model. We note that we can allow free two-way communication without in fact changing
the complexity [4]. Similarly, OTε( f ) is the number of 2-1 Oblivious Transfer calls required
to compute f (x, y) in parity with perfect privacy and ε error over the players’ private coins,
assisted with (free) two-way communication, in the malicious model.

2.4 Complexity Measures

We will compare non-local box complexity to traditional models of communication com-
plexity and prove upper and lower bounds for this new model. Some of these bounds are
in terms of the factorization norms of the communication matrix [28] and related measures.

DEFINITION 1. Let M be a real matrix. The γ2 norm of M is γ2(M) = minXTY=M col(X)col(Y),
where col(N) is the largest Euclidian norm of a column of N.

It is known that 2 log(γ2(M)) gives a lower bound on deterministic communication
complexity of M, where M is a sign matrix of the Boolean function to be computed [28]. In
order to lower bound the randomized and quantum communication complexity, we have
to consider a “smoothed” version of this measure.

DEFINITION 2. Let M be a sign matrix and α ≥ 1. γα
2(M) = min{γ2(N) : ∀i, j 1≤Mi,jNi,j≤α}.

In particular, γ∞
2 (M) is the minimum γ2 norm over all matrices N such that 1 ≤ Mi,jNi,j.

The measures γα
2 and γ∞

2 give upper and lower bounds for bounded-error communi-
cation complexity [28]: 2 log(γα

2( f )/α) ≤ Rε( f ) and R||,MAJ
ε ( f ) ≤ O((γ∞

2 ( f ))2) (implicit in
[28]), where α = 1

1−2ε . The discrepancy of a sign matrix M over inputs X × Y with re-
spect to distribution µ over the inputs is Discµ(M) = maxR ∑(x,y)∈R µ(x, y)M(x, y), where
R is taken from all possible rectangles. It is known that γ∞

2 ( f ) = Θ( 1
Disc( f ) ), and for any

α, γ∞
2 ( f ) ≤ γα

2( f ) [28]. Finally, for a Boolean function, the L1 norm is defined as the sum
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of the absolute values of its Fourier coefficients. We can think of the 2n bits of input of the
function as equally split between Alice and Bob. Grolmusz uses this notion to upper bound
the randomized communication complexity by proving that Rε( f ) ≤ O(L2

1( f )) [18].

3 Deterministic non-local box complexity
We start by studying a restricted model of non-local box complexity, where the non-local boxes
are used in parallel and at the end of the protocol, Alice and Bob output the parity of the
outputs of their non-local boxes respectively. We will show that the complexity of f in this
model is equal to the rank of the communication matrix of f over GF2. Note that this rank is
equal to the minimum m, such that f (x, y) can be written as f (x, y) =

⊕m
i=1 ai(x) · bi(y) (see

also [9]). This restricted variant of non-local box complexity is exactly the one that appears
in van Dam’s work [33], where he shows that any Boolean function f can be computed by
such a protocol of complexity 2n. Moreover, we prove that the restriction that the players
output the XOR of the outcomes of the non-local boxes is without loss of generality.

THEOREM 3. NL||,⊕( f ) = rankGF2(M f ) = D‖,IP2( f ).

PROOF. We start by showing that NL||,⊕( f ) ≤ rankGF2(M f ). Let rankGF2(M f ) = t,
i.e., f (x, y) =

⊕
i∈[t] pi(x) · qi(y). Then we construct a protocol that uses t non-local boxes in

parallel, where Alice and Bob output the parity of the outcomes of the non-local boxes and
for every input (x, y) the output of the protocol is equal to f (x, y). The inputs of Alice and
Bob to the i-th non-local box are the bits pi(x) and qi(y), i ∈ [t] respectively and let ai, bi the
outputs of the non-local box such that ai ⊕ bi = pi(x) · qi(y). Alice and Bob output at the
end of the protocol the value (

⊕
i∈[t] ai)⊕ (

⊕
i∈[t] bi) =

⊕
i∈[t] pi(x) · qi(y) = f (x, y).

Conversely, if there exists a protocol where Alice and Bob use t non-local boxes in paral-
lel with inputs pi(x), qi(y) and outputs ai, bi, their final output is (

⊕
i∈[t] ai)⊕ (

⊕
i∈[t] bi) and

it always equals f (x, y), then we have f (x, y) = (
⊕

i∈[t] ai)⊕ (
⊕

i∈[t] bi) =
⊕

i∈[t] pi(x) · qi(y)
and hence rankGF2(M f ) ≤ t. From this last argument, we get D‖,IP2( f ) ≤ NL||,⊕( f ) since
the players can send pi and qi to the referee who computes the inner product. For the con-
verse, if the referee receives mA, mB from each player and computes their inner product mod
2, the players can instead input each bit of the message into a non-local box and output the
parity of the outputs to obtain the same result.

For the next corollary, we use the fact that log(2rankF(M f ) − 1) ≤ D( f ) + 1 for any
field F (see [27]).

COROLLARY 4. NL||,⊕( f ) ≤ 2D( f ).

On the other hand, it is easy to see that the one-way communication complexity is a
lower bound on the non-local box complexity. Alice can send all her inputs to Bob, and
since the non-local box protocol is always correct, they can simulate it, assuming that Alice
received only zeros from all non-local boxes.

LEMMA 5. D→( f ) ≤ NL( f ).

Moreover, we show that both in the general and in the parallel model of deterministic
non-local box complexity, we can assume without loss of generality that the players output
the XOR of the outcomes of the non-local boxes. Unlike the general case, showing that
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in the parallel case we can assume that the players output the XOR of the outputs of the
non-local boxes is not a trivial statement.

THEOREM 6. NL( f ) ≤ NL⊕( f ) ≤ NL( f ) + 2, and NL||( f ) ≤ NL||,⊕( f ) ≤ NL||( f ) + 2.

Last, our bounds for deterministic non-local box complexity are tight as can be shown
by looking at the Inner Product and Disjointness functions. Indeed, for Inner Product we
have D(IP) = NL||(IP) = n, while for Disjointness, NL||,⊕(DISJ) = 2D(DISJ) = 2n. For
Disjointness, the circuit size upper bound also implies that NL(DISJ) = O(n), so there is
an exponential separation between NL and NL||,⊕.

4 Randomized non-local box complexity
In this section, we consider protocols that use shared randomness and have success proba-
bility at least 2/3. We start by comparing the parallel non-local box complexity to commu-
nication complexity. In the full paper, we also exactly characterize NL||,⊕ε in terms of the
approximate rank (over GF2) of the communication matrix.

THEOREM 7. R→ε ( f ) ≤ NL||ε ( f ) ≤ NL||,⊕ε ( f ) ≤ 2Rε( f ).

Next, we relate the general non-local box complexity to the following model of com-
munication: Alice and Bob send to a referee one message each and the referee outputs 1 if
for the majority of indices, the two messages are equal. We denote the communication com-
plexity in this model by R||,MAJ

ε ( f ). This is a natural model of communication complexity
that has appeared repeatedly in the simulation of quantum protocols by classical ones, as
well as various upper bounds on simultaneous messages [25, 18, 32, 28].

THEOREM 8. R→ε ( f ) ≤ NLε( f ) ≤ O(R||,MAJ
ε ( f )).

PROOF. The lower bound proof follows directly from the deterministic case. For the upper
bound, fix a t-bit simultaneous protocol for f , where the referee receives two messages a and
b of size t from Alice and Bob and outputs MAJ(a1 ⊕ b1, . . . , at ⊕ bt). It is well-known, by
using an addition circuit, that the majority of t bits can be computed by a circuit of size O(t)
with AND, NOT gates. Moreover, the distributed AND of two bits can be computed using
two non-local boxes [6]. We conclude that the non-local box complexity of the distributed
Majority is O(t) and hence the theorem follows.

COROLLARY 9. 2 log(γα
2( f )/α) ≤ NLε( f ) ≤ O((γ∞

2 ( f ))2), where α = 1
1−2ε .

It is known that γ∞
2 ( f ) = Θ( 1

Disc( f ) ), and also that for any α, γ∞
2 ( f ) ≤ γα

2( f ) [28].
Hence, since discrepancy gives a lower bound on the quantum communication complexity
with entanglement Q∗ε ( f ) [24], we get the following corollary.

COROLLARY 10. NLε( f ) ≤ O(22Q∗ε ( f )).

Finally, we can relate the non-local box complexity of a function f , to the L1 norm of
the Fourier coefficients of f by using a result by Grolmusz. Grolmusz showed that for
any Boolean function f , there exists a randomized public coin protocol that solves f with
complexity O(L2

1( f )). This protocol can be easily transformed into a simultaneous messages
protocol where the referee outputs the distributed majority of the message bits. Hence,
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COROLLARY 11. NLε( f ) ≤ O(L2
1( f )).

Let us make here a last remark about the proof of Theorem 8. We started from a Simulta-
neous Messages protocol where the referee outputs a Majority function and we constructed
a non-local box protocol with complexity equal to the communication complexity. If we look
at this protocol, we can see that Alice and Bob can use their non-local boxes in the same or-
der. This will be useful when we relate non-local boxes to secure function evaluation.

COROLLARY 12. R→ε ( f ) ≤ NLε( f ) ≤ NLord
ε ( f ) ≤ O(R||,MAJ

ε ( f )).

Our bounds are almost tight for the general case, but the case of parallel non-local box
complexity is more interesting. We can give a simple O(n) parallel protocol for Disjointness,
showing that the exponential separation does not hold anymore. It is open whether parallel
and general randomized non-local box complexity are polynomially related.

5 Non-local boxes and measurement simulation
In this section we present another application of our results on non-local boxes. Using the
recent breakthrough of Regev and Toner [31], who give a two-bit one-way protocol for sim-
ulating two-outcome measurements on entangled states for arbitrary dimensions, we show
that this can be done with 3 non-local boxes. Previously, no finite upper bound was known
for this problem. In the full paper, we prove the following, more general, theorem.

THEOREM 13. For any non-signaling distribution over binary outputs with uniform marginals,
any t-bit communication protocol can be simulated with 2t − 1 non-local boxes in parallel.

The proof builds on an idea presented in [14] to replace communication by non-local
boxes, which is here used recursively, and is given in the full paper.

6 Secure Function Evaluation
6.1 Honest-but-curious model

As a starting point, we consider the most basic model, namely deterministic secure compu-
tation with ANDs in the honest-but-curious model. Beimel and Malkin [4] have shown that
AND( f ) ≤ 2|X |. We show that it is characterized by the one-way communication complex-
ity of f . (The proof is given in the full paper.)

THEOREM 14. AND( f ) = 2D→( f ).

One can say that this shows that for most functions, randomization is necessary in order
to construct efficient protocols even in the honest-but-curious model.

6.2 Malicious model

Due to their non-signaling property, protocols using non-local boxes only and no commu-
nication, such as those presented in the previous sections, are trivially secure even against
malicious players. Indeed, the non-signaling property implies that the view of the protocol
by a possibly dishonest player is always independent from the actions of the other player.
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We show that certain such protocols may be transformed into protocols using OTs,
namely the protocols where Alice and Bob use their non-local boxes in the same order.
At this point, we don’t know if this type of protocols are strictly weaker than general
non-local box protocols. Nevertheless, our upper bounds in terms of communication com-
plexity hold for such protocols as well (Corollary 12) and hence they translate into upper
bounds on OTε( f ).

THEOREM 15. For any ε ≥ 0, OTε( f ) ≤ NLord
ε ( f ).

The proof, which will be given in the full version of the paper, consists in first showing
how to simulate the non-local box protocol using OTs, following a construction due to Wolf
and Wullschleger [34]. The security of the OT protocol then follows from the non-signaling
property of the non-local boxes. From the above theorem we can conclude that all the
upper bounds that we had for the NLord

ε complexity (see Corollaries 9-12) translate into
upper bounds for OTε( f ).

We now turn our attention to lower bounds. For this we need to restrict ourselves
to what we call ‘optimal’ secure protocols. An ‘optimal’ secure protocol is one where the
function is computed securely in the usual sense, but we also require that for all the OT calls,
there is always an input that remains perfectly secure throughout the protocol. Intuitively,
since we try to minimize the number of OTs that we use, it should be the case that these
OT calls are really necessary, in the sense that one of the two inputs should always remain
secure. If for example both inputs are revealed at some point during the protocol, then one
may not use this OT at all, resulting into a more efficient protocol. Even though intuitively
our definition seems natural, at this point, we do not know whether this assumption can be
done without loss of generality. We denote by ÔTε( f ) the minimum number of OT calls of
an ‘optimal’ secure protocol. In the full paper we provide the formal definition and prove
the following

THEOREM 16. ÔTε( f ) = Ω(Rε( f )).

7 Conclusion and open questions

We have shown various upper and lower bounds on non-local box complexity, and shown
how the upper bounds could be translated into bounds for secure function evaluation. We
have also shown how to simulate quantum correlations arising from binary measurements
on bipartite entangled states using 3 non-local boxes.

During our investigations, we have come across a series of interesting open questions.
1) While the disjointness function provides an example of exponential gap between parallel
and general deterministic non-local box complexity, the gap disappears in the randomized
model. Are parallel and general randomized non-local box complexities polynomially re-
lated? 2) Are there functions for which NLord

ε ( f ) > NLε( f )? 3) We proved that the com-
munication complexity is a lower bound on OT complexity only under some optimality
assumption. Can this assumption be made without loss of generality? 4) Can we prove
an analogue of Theorem 16 for non-local boxes? Ideally, we would like to prove that for
secure computation with non-local boxes, communication does not help. Indeed, due to the
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reduction from non-local boxes to OT boxes and vice versa, this would imply that NLord
ε ( f )

is exactly OTε( f ), and not just an upper bound.
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ABSTRACT. We develop an abstraction-based framework to check probabilistic specifications of
Markov Decision Processes (MDPs) using the stochastic two-player game abstractions (i.e. “games”)
developed by Kwiatkowska et al. as a foundation. We define an abstraction preorder for these game
abstractions which enables us to identify many new game abstractions for each MDP — ranging from
compact and imprecise to complex and precise. This added ability to trade precision for efficiency
is crucial for scalable software model checking, as precise abstractions are expensive to construct
in practice. Furthermore, we develop a four-valued probabilistic computation tree logic (PCTL)
semantics for game abstractions. Together, the preorder and PCTL semantics comprise a powerful
verification and refutation framework for arbitrary PCTL properties of MDPs.

1 Introduction
Model checking [5, 28] is a methodology for reasoning about the formal correctness of sys-
tems. The task of a model checker is to decide whether a model M satisfies a property φ. We
write this as a judgment M |= φ and say a model checker verifies or refutes such judgments.

It is often intractable to verify or refute judgments involving large or infinite-state mod-
els directly. A recognised solution is to apply abstraction. That is, we can reason about the
validity of M |= φ by model checking judgments involving abstractions A of M. Usually
abstraction is used within an abstraction-refinement loop [7]. Starting with a very imprecise
abstraction A this loop, if necessary, incrementally refines A until it is precise enough to
either verify or refute M |= φ. When model checking software one would typically use ex-
istential abstractions [8, 1], with which it is possible to verify a certain class of properties.
However, to refute these properties, one has to concretise abstract counter-examples [7].

In this paper we focus on probabilistic models and properties. Unfortunately, counter-
examples of probabilistic models are usually complex infinite structures [14]. Hence, refuta-
tion by concretising abstract counter-examples akin to existential abstractions is a lot more
involved for probabilistic models [16]. This motivates us to consider abstraction schemes
with which we can directly refute properties (c.f. modal or mixed abstractions [26, 10]). Such
abstractions also potentially demonstrate the validity or falsity of M |= φ more compactly
and more intuitively than probabilistic witnesses or counter-examples. That is, one may use
abstractions as diagnostic tools or certificates demonstrating validity or falsity of M |= φ [27].
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The models we consider are Markov decision processes (MDPs), which naturally model
a wide range of probabilistic systems due to their ability to capture both probabilistic and
non-deterministic choice. Our abstraction scheme is based on the two-player stochastic game
(i.e. “game”) abstractions suggested in [24]. In [24], these abstractions are used to over and
under-approximate reachability probabilities of MDPs — as opposed to the verification and
refutation of more complex properties.

Unfortunately, the definition of abstraction in [24] has a shortcoming. Given a particu-
lar partition of MDP states it only considers the optimal game over this partition. That is,
other than the expected loss of precision that occurs due to joining MDP states, there is no
mechanism that enables one to lose more precision — in fact, it is unclear what less pre-
cise abstractions over this partition would look like. Optimal abstractions over a partition
are usually inefficient to represent and computationally expensive to construct. Moreover,
the same job can often be accomplished with less precise abstractions. This is evident in
most abstraction-based software model checkers which, for a fixed partition,† first consider
a coarse abstraction over this partition and consider more precise abstractions over this par-
tition only if this is necessary [1, 6]. Due to the shortcoming of [24] it is not possible to take
such an approach with game abstractions and, as constructing optimal game abstractions is
expensive, this significantly affects the scalability of, e.g., the method in [22].

Hence, the first issue we address in this paper is the development of an abstraction pre-
order for games which alleviates the shortcomings of [24]. Compared to the work in [24],
this preorder identifies many additional game abstractions of varying precisions — even
when restricted to a fixed partition. This opens up the possibility of adapting the method in
[22] and other tools using game abstractions [25, 21, 20] to reason more efficiently via non-
optimal games. Furthermore, instead of over and under-approximating reachability proper-
ties of MDPs, we develop a four-valued probabilistic computation tree logic (PCTL) [15] semantics
for games and show our abstraction preorder preserves this semantics. Our abstraction pre-
order and PCTL semantics together comprise a powerful abstraction framework with which
we can verify and refute arbitrary PCTL specifications of MDPs.

2 Background
Let AP be a fixed set of atomic propositions. Let B be the Boolean domain. Let PX be the
powerset of a set X, excluding ∅. A probability distribution over X is a function λ : X →
[0, 1] such that ∑x∈X λ(x) = 1 and the set {x ∈ X | λ(x) > 0} is countable. Let DX be the
set of all distributions over X. For x ∈ X let [x] ∈ DX be the point distribution on x, i.e.
[x](x) = 1. Every distribution over a countable set can be written as a countable sum of
point distributions ∑i wi · [xi].

We model four-valued logic [2] with a must (!) and may (?) modality of truth. Intuitively,
?-true corresponds to possible truth and !-true indicates certain truth. We represent true (resp.
false) by being both !-true and ?-true (resp. !-false and ?-false). We represent uncertainty by
being !-false and ?-true and inconsistency by being !-true and ?-false.

Given an arbitrary non-empty sequence π = ω0; ω1; ω2, . . . let |π| be the number ele-
ments of π minus one. We let π(i) be ωi and, if |π| is finite, let LAST(π) be π(|π|). Finally,

†That is to say, a fixed set of predicates when using predicate abstraction [1].



MARK KATTENBELT AND MICHAEL HUTH FSTTCS 2009 253

let πi be the prefix of π such that |πi| = i. We write π; π′ for the concatenation of sequences.
Markov decision processes We now introduce Markov decision processes (MDPs) which
naturally model systems with both non-deterministic and probabilistic behaviours:

DEFINITION 1. A Markov decision process (MDP) M is a tuple 〈S, si, T, L〉, where:
– S is a countable set of states;
– si ∈ S is an initial state;
– T ∈ S→ PDS is a transition function;
– L ∈ S× AP → B is a labelling function.

The definition of P ensures totality: i.e. ∀s ∈ S : |T(s)| > 0 (this totality requirement is not
essential and is made for presentational reasons, only). We letM be the class of all MDPs.

From a state s ∈ S, a non-deterministic choice picks a distribution λ ∈ T(s). Then, the
next state s′ ∈ S is picked probabilistically according to λ. A path of M is a sequence over
S ∪DS that strictly alternates between states and distributions as described. Let ΠM and
Π∞

M be the set of all finite and infinite paths, respectively. For Ω ⊆ S ∪DS we write, e.g.,
ΠM(Ω) to restrict to paths starting with an element in Ω.

A strategy of M is a partial function σ : ΠM → DDS, with domain of definition all π

with LAST(π) ∈ S, such that σ(π) ∈ D(T(LAST(π))). As is evident from the definition, we
consider randomised strategies (i.e. strategies that resolve non-determinism with a proba-
bilistic choice). Let ΣM be all strategies of M. A path π is consistent with σ ∈ ΣM iff for all
i ≤ |π| − 1 with π(i) ∈ S the probability σ(πi)(π(i + 1)) is positive. We write, e.g., ΠM,σ to
restrict to paths consistent with σ. For every s ∈ S and σ ∈ ΣM we construct a probability
measure Prs

M,σ over infinite paths Π∞
M,σ({s}) with standard techniques [23].

Probabilistic CTL We define an adequate PCTL fragment with unrestricted negation [15]:

DEFINITION 2. A PCTL formula is defined with the following BNF-style syntax rules where
a ∈ AP, k ∈N∪ {∞}, p ∈ [0, 1] and ./ ∈ {≤, <,≥, >}:

φ ::= a | ¬φ | φ1 ∨ φ2 | P ./ p〈ψ〉 ψ ::= Xφ | φ1U
≤kφ2 .

We let Φ and Ψ be the set of all PCTL formulae of the form φ and ψ respectively.

PCTL semantics of MDPs Finally, we define standard PCTL semantics of MDPs via a
satisfaction relation |= ⊆M×Φ [3]:

DEFINITION 3. Let M = 〈S, si, T, L〉 be an MDP, and let φ ∈ Φ be a PCTL formula. We
define satisfaction relations for states |= ⊆ S×Φ and paths |= ⊆ Π∞

M(S)×Ψ as follows:

π |= Xφ ⇐⇒ s1 |= φ

π |= φ1U
≤kφ2 ⇐⇒ ∃i≤k :

(
si |= φ2 ∧ (∀j<i : sj |= φ1

)
s |= a ⇐⇒ L(s, a)
s |= ¬φ ⇐⇒ s 6|= φ

s |= φ1 ∨ φ2 ⇐⇒ (s |= φ1 or s |= φ2)
s |= P . p〈ψ〉 ⇐⇒ infσ Prs

M,σ{π ∈ Π∞
M,σ(s) | π |= ψ} . p

s |= P / p〈ψ〉 ⇐⇒ supσ Prs
M,σ{π ∈ Π∞

M,σ(s) | π |= ψ} / p

with π = s0; λ0; s1; λ1 . . ., . ∈ {>,≥}, / ∈ {<,≤} and σ ∈ ΣM. Moreover, M |= φ iff si |= φ.
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For any PCTL path formula, the set of paths satisfying it is measurable [30]. For MDPs,
properties like P ./ p〈ψ〉 are universal as threshold ./ p must be met under all strategies. Con-
versely, properties like ¬P ./ p〈ψ〉 hold iff there exists a strategy that violates the threshold.

We use standard methods to lift any relation to a relation over distributions [18]. For
any relation R ⊆ X × Y we let RD ⊆ DX ×DY be the relation such that λX RD λY iff there
is a weight function δ ∈ X×Y → [0, 1] with (for all x ∈ X, y ∈ Y):

λX(x) = ∑y′∈Y δ(x, y′) λY(y) = ∑x′∈X δ(x′, y) δ(x, y) > 0⇒ x R y (1)

3 Game-based abstraction framework
We now introduce the components of our abstraction framework. We start by formally
defining a class of games (G) and an embedding function (emb : M � G), which casts MDPs
into G. We then define an abstraction preorder (vp ⊆ G × G) as a relation over games. Our
last component is a four-valued PCTL semantics (|=!, |=? ⊆ G ×Φ) over games. Finally, we
show our components satisfy some necessary soundness properties. With these components
and properties we then show how to verify and refute arbitrary PCTL properties of MDPs.

Stochastic two-player games (G) In comparison to MDPs, games are equipped with an
additional level of choice (i.e. their transition function yields sets of sets of distributions).
Games also have four-valued propositional labelling (through a must and may labelling):

DEFINITION 4. A stochastic two-player game G is a tuple 〈S, si, T, L!, L?〉, where:
– S is a countable set of states;
– si ∈ S is an initial state;
– T ∈ S→ PPDS is a transition function;
– L!, L? ∈ S× AP → B are labelling functions.

By definition of P we ensure totality for T: i.e. we have |T(s)| > 0 for all s ∈ S and |Λ| > 0
for all Λ ∈ T(s). Let G be the class of all games. We define player 1 states as elements of S,
player 2 states as sets of distributions over player 1 states (PDS) and probabilistic states as
distributions over player 1 states (DS). From a player 1 state s ∈ S player 1 can transition to
a player 2 state Λ ∈ PDS iff Λ ∈ T(s) (written s →1 Λ). Analogously, from a player 2 state
Λ ∈ PDS player 2 can transition to a probabilistic state λ ∈ DS iff λ ∈ Λ (written Λ→2 λ).
Finally, from a probabilistic state λ ∈ DS the game transitions to a player 1 state s′ ∈ S with
probability λ(s′) (written λ→p s′).

A play in G is a sequence of transitions‡ and hence necessarily strictly alternates be-
tween player 1 states, player 2 states and probabilistic states. Let ΠG and Π∞

G be the set of
all finite and infinite plays of G, respectively. For Ω ⊆ S∪PDS∪DS we write, e.g., ΠG(Ω)
to restrict to plays starting with an element in Ω.

A player 1 strategy is a partial function σ1 ∈ ΠG → DPDS, with domain of definition
all π with LAST(π) ∈ S, such that σ1(π) ∈ D(T(LAST(π))). Analogously, a player 2 strategy
is a partial function σ2 ∈ ΠG → DDS with domain of definition all π with LAST(π) ∈ PDS,
such that σ2(π) ∈ D(LAST(π)). We write Σ1

G and Σ2
G for the set of all player 1 and player

‡We will manipulate plays as if they are sequences over S ∪PDS ∪DS.
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2 strategies, respectively. A play π of G is consistent with σ1 ∈ Σ1
G if for every i ≤ |π| − 1

with π(i) ∈ S the probability σ1(πi)(π(i + 1)) is positive. Similarly, π is consistent with
σ2 ∈ Σ2

G if σ2(πi)(π(i + 1)) is positive whenever π(i) ∈ PDS. For σ1 ∈ Σ1
G and σ2 ∈ Σ2

G we
write, e.g., ΠG,σ1,σ2 to restrict to plays consistent with σ1 and σ2. For σ1 ∈ Σ1

G and σ2 ∈ Σ2
G

and Π ⊆ ΠG,σ1,σ2 , we denote with Π↑σ1,σ2 the infinite plays of G that are consistent with both
σ1 and σ2 and have a prefix in Π.

Given strategies σ1 ∈ Σ1
G and σ2 ∈ Σ2

G the behaviour of G is purely probabilistic.
Hence, for each ω ∈ S ∪ PDS ∪DS, using standard techniques [23], we construct a prob-
ability space over infinite plays Π∞

G,σ1,σ2
({ω}) with probability measure Prω

G,σ1,σ2
such that

Prω
G,σ1,σ2

({ω}↑σ1,σ2 ) = 1 and, for every finite play of non-zero length π ∈ ΠG,σ1,σ2({ω}):

Prω
G,σ1,σ2

({π}↑σ1,σ2 ) =


Prω

G,σ1,σ2
({π′}↑σ1,σ2 ) · σ1(π′)(Λ′) if (π = π′ →1 Λ′)

Prω
G,σ1,σ2

({π′}↑σ1,σ2 ) · σ2(π′)(λ′) if (π = π′ →2 λ′)
Prω

G,σ1,σ2
({π′}↑σ1,σ2 ) · LAST(π′)(s′) if (π = π′ →p s′)

REMARK 5. In figures we depict player 1 states with big open circles, player 2 states with
small filled squares and probabilistic states with filled black circles. Labels depict the prob-
ability of transitions (omitted for point distributions). We write a!, a? and a!? next to s iff
L!(s, a) ∧ ¬L?(s, a), ¬L!(s, a) ∧ L?(s, a) or L!(s, a) ∧ L?(s, a) resp., and nothing otherwise.

The roles of player 1 & 2 Before we define the components of our abstraction framework
we first give an informal account of how a game Ĝ (over states Ŝ) abstracts an MDP M (over
states S). Intuitively, to be sound for PCTL — or any unrestricted branching-time logic — Ĝ
must both under and over-approximate the strategies that are feasible in M. Observe that
a strategy of M is simply a particular resolution of non-determinism in M and hence, to
under and over-approximate feasible strategies of M, Ĝ must under and over-approximate
the non-deterministic choice T(s) ∈ PDS in each state of M.§ We use player 1 states of Ĝ to
represent sets of states of M and player 2 states of Ĝ to approximate the non-deterministic
choices of these states (i.e. player 2 resolves the non-determinism of M). Informally, in ŝ ∈ Ŝ
player 1 can choose from T̂(ŝ) ∈ PPDŜ at least one player 2 state that under-approximates
T(s) and one player 2 state that over-approximates T(s) for every concrete state s ∈ S of
M that ŝ abstracts. As ŝ may abstract many states of M, and for each such state we have
both under and over-approximating player 2 choices, there may be many player 1 choices
in T̂(ŝ). Hence, player 1 resolves non-determinism introduced by abstraction.
The embedding function (emb) The first component of our framework is an embedding
function emb : M � G, which yields an exact representation emb(M) in G for each MDP M.
The embedding function allows us to treat MDPs as a special kind of game.

DEFINITION 6. Let emb ∈ M → G be the function which for every MDP M = 〈S, si, T, L〉
yields a game G = 〈S, si, T̂, L, L〉 such that T̂(s) = {T(s)} for every s ∈ S.

Embedded MDPs are exact representations of MDPs in G. Intuitively, we ascribe all of
M’s non-determinism to player 2. That is, player 2 strategies Σ2

G have a one-to-one corre-
spondence with ΣM. Moreover, player 1 has no power (i.e. |Σ1

G| = 1).

§Below, we formalise this under/over-approximation in the definition of the preorder vp.
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Figure 1: A geometrical interpretation of games.

EXAMPLE 7. Consider a program with two 8-bit unsigned integers x, y which first initialises
y non-deterministically and then assigns to x, uniformly at random, a number between 0
and 255. We model this program with an MDP M and depict emb(M) in Fig. 3(a).

Combined player 1 & 2 transitions Prior to introducing our next component — the ab-
straction preorder vp — we need to introduce combined transitions. Combined transitions
will enable the preorder take into account that players can make probabilistic choices. Com-
bined transitions are well understood for MDPs but are less well-known in games. To ex-
plain combined transitions observe that we can interpret probability distributions λ ∈ DS
geometrically as points on a plane in |S|-dimensional Euclidean space [27]. Hence, we can
interpret the choices available to player 2 and player 1 as a set of points and a set of set of points,
respectively. We illustrate in Fig. 1(a) the choice T(s1) = {Λa, Λb} = {{λ1, λ2}, {λ3, λ4, λ5}}
available to player 1 in a state s1 (over a state space {s1,s2,s3}).

In the player 2 state Λa ∈ PDS player 2 can make a probabilistic choice over probabilistic
states {λ1, λ2}. Hence, it is appropriate to think of Λa as defining the hull of a convex shape
from which player 2 can draw any probabilistic state (see Fig. 1(b)). To formalise this, akin
to [29], we introduce combined player 2 transitions. A combined player 2 transition is a move
from a player 2 state Λ ∈ PDS to a probabilistic state λ ∈ DS, denoted Λ →C

1 λ, iff for
some ∑i wi · [λi] ∈ DΛ we have λ = ∑i wi · λi.

Because player 2 choices are interpreted as convex shapes, the choice available to player
1 in s1 is a set of convex shapes T(s1) = {Λa, Λb}. Player 1 can also take any weighted com-
bination of these convex shapes (see Fig. 1(b)). We extend the existing notion of combined
transitions over sets of distributions from [29] to combined transitions over sets of sets of
distributions as follows: a combined player 1 transition is a move from a player 1 state s ∈ S to
a player 2 state Λ ∈ PDS, denoted s →C

1 Λ, if and only if for some ∑i wi · [Λi] ∈ D(T(s))
we have Λ = {∑i wi · λi | λi ∈ Λi for all i}.
The abstraction preorder (vp) We can now define the abstraction preorder — a relation
vp ⊆ G × G over games. Intuitively, this preorder defines a notion of precision in G; that
is, Ĝ vp G has the meaning that Ĝ is less precise (i.e. an abstraction of ) G. We can therefore
employ the embedding function to define when a game Ĝ abstracts an MDP M (i.e. when
Ĝ vp emb(M)).

We definevp through a new notion of simulation over games. We consider simulations
over disjoint unions Ĝ⊕ G of games (defined in the obvious way):
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(a) Game Ĝ and embedding emb(M) s.t. Ĝ vp emb(M).
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Figure 2: Games illustrating various points in the paper.

DEFINITION 8. Let G = 〈S, si, T, L!, L?〉 be a game and let R ⊆ S× S be a relation on S. We
call R a strong probabilistic game-simulation iff for all s′ R s the following conditions hold:

(i) L!(s′, a)⇒ L!(s, a) for all a ∈ AP

(ii) L?(s′, a)⇐ L?(s, a) for all a ∈ AP

(iii) ∀s→1 Λ : ∃s′ →C
1 Λ′ : ∀Λ′ →2 λ′ : ∃Λ→C

2 λ : λ′ RD λ

(iv) ∀s→1 Λ : ∃s′ →C
1 Λ′ : ∀Λ→2 λ : ∃Λ′ →C

2 λ′ : λ′ RD λ

Moreover, for games Ĝ = 〈Ŝ, ŝi, T̂, L̂!, L̂?〉 and G = 〈S, si, T, L!, L?〉 we let Ĝ vp G iff the
largest¶ strong probabilistic game-simulation R on Ĝ⊕ G includes ŝi R si.

Intuitively, the meaning of ŝ R s is that ŝ abstracts s. Conditions (i) and (ii) ensure that
the labelling in ŝ soundly approximates that of s. The innermost quantifier pair in (iii) for-
mally defines under-approximation of player 2 states: i.e. Λ̂ ∈ PDŜ under-approximates
Λ ∈ PDS iff all transitions Λ̂ →2 λ̂ can be simulated by a combined player 2 transition
Λ →C

2 λ. That is, for these player 2 states, player 2 in G is more powerful than player 2 in
Ĝ. The innermost quantifier pair of (iv) defines over-approximation analogously.

Recall that player 1 transitions s →1 Λ are such that Λ represents an under or over-
approximation of non-determinism in an MDP state that s abstracts. As ŝ abstracts all
MDP states that s abstracts, player 1 in ŝ must both under and over-approximate all player
1 transitions s →1 Λ with some combined player 1 move ŝ →C

1 Λ̂. This under/over-
approximation is realised by the outermost quantifier pair of (iii) and (iv), respectively.

EXAMPLE 9. Consider games Ĝ and emb(M) in Fig. 2(a). The largest strong prob. game-
simulation R over Ĝ⊕ emb(M) trivially includes 〈ŝ1, s2〉, 〈ŝ1, s3〉, 〈ŝ2, s1〉, 〈ŝ2, s3〉, 〈ŝ2, s4〉 and
〈ŝ3, s2〉. To see ŝ0 R s0, i.e. Ĝ vp emb(M), observe that (iii) for Λ1 ∈ T(s0) is satisfied by Λ̂2 ∈
T̂(ŝ0) as λ̂3 RD λ1 and (iv) is satisfied by Λ̂1 ∈ T̂(ŝ0) as λ̂1 RD λ1 and 2

3 · λ̂1 + 1
3 · λ̂2 RD λ2.

Generality of vp Intuitively, in [24], the non-determinism in each MDP state that ŝ ab-
stracts is exactly approximated (i.e. both under and over-approximated) by a normal player
1 transition ŝ→1 Λ̂. Our main ability to lose precision arises from the ability to under/over-
approximate T(s′) with separate player 1 transitions (in combination with the use of com-
bined transitions). We illustrate the use of combined transitions with two examples.

¶The largest strong game-simulation in a game is the union of all its strong game-simulations.
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Firstly, the use of combined transitions allows us to abstract probabilistic choice with
player 1 non-determinism (see Fig. 2(b) (bottom)). As it is expensive to abstract probabilistic
choice it may be advantageous to initially abstract probabilistic behaviour in this way.

Secondly, observe the equivalence classes of vp define a notion of equivalence in G (i.e.
G and G′ are equivalent iff G vp G′ and G′ vp G). Fig. 2(b) (top) illustrates that through this
equivalence we can consider more compact representations without losing any precision.
Abstract PCTL semantics (|=!, |=?) The final component of our abstraction framework is a
four-valued abstract PCTL semantics |=!, |=? ⊆ G ×Φ for games. Informally, G |=! φ (resp.
G |=? φ) holds only if all MDPs that G abstracts must (resp. may) satisfy φ.

DEFINITION 10. Let G = 〈S, si, T, L!, L?〉 be a game and let φ ∈ Φ be a PCTL formula. We
define must/may relations for states |=!, |=? ⊆ S × Φ and plays |=!, |=? ⊆ Π∞

G (S) × Ψ as
follows (letting ∗ ∈ {!, ?}, ¬! = ? and ¬? = !):

π |=∗ Xφ ⇐⇒ s1 |=∗ φ

π |=∗ φ1U
≤kφ2 ⇐⇒ ∃i≤k :

(
si |=∗ φ2 ∧ (∀j<i : sj |=∗ φ1

)
s |=∗ a ⇐⇒ L∗(s, a)
s |=∗ ¬φ ⇐⇒ s 6|=¬∗ φ

s |=∗ φ1 ∨ φ2 ⇐⇒ (s |=∗ φ1 or s |=∗ φ2)

s |=! P . p〈ψ〉 ⇐⇒ infσ1 infσ2 Prs
G,σ1,σ2

{π ∈ Π∞
G,σ1,σ2

(s) | π |=! ψ} . p

s |=? P . p〈ψ〉 ⇐⇒ supσ1
infσ2 Prs

G,σ1,σ2
{π ∈ Π∞

G,σ1,σ2
(s) | π |=? ψ} . p

s |=! P / p〈ψ〉 ⇐⇒ supσ1
supσ2

Prs
G,σ1,σ2

{π ∈ Π∞
G,σ1,σ2

(s) | π |=? ψ} / p

s |=? P / p〈ψ〉 ⇐⇒ infσ1 supσ2
Prs

G,σ1,σ2
{π ∈ Π∞

G,σ1,σ2
(s) | π |=! ψ} / p

with π = s0; Λ0; λ0; s1 . . ., . ∈ {>,≥}, / ∈ {<,≤}, σi ∈ Σi
G. Moreover, G |=∗ φ iff si |=∗ φ.

The four-valued semantics of propositional and temporal operators is standard. The
only non-standard semantics is that of the probabilistic operator P ./ p〈ψ〉. Recall P ./ p〈ψ〉
holds for an MDP if all MDP-schedulings meet the threshold ./ p. As player 2 represents
MDP non-determinism, for a lower threshold . p (upper threshold / p) we take the infimum
(supremum) over player 2 strategies, regardless of whether we are evaluating in the must
or may modality. In contrast, whether we take the infimum or supremum over player 1
strategies depends only on the modality. That is, if we are evaluating in the must modality
we quantify pessimistically over player 1 strategies (inf. for . p, sup. for / p) and in the
may modality we quantify optimistically over player 1 strategies (sup. for . p, inf. for / p).
For lower thresholds, the modality in which we evaluate path properties corresponds to the
modality in which we are evaluating — this has to be inverted for upper thresholds / p.
Soundness properties Before we can verify and refute judgments over MDPs via games,
we need to show our components satisfy the following properties:

LEMMA 11. For all MDPs M and φ ∈ Φ we have M |= φ⇔ emb(M) |=! φ⇔ emb(M) |=? φ.

PROOF. Follows directly from the fact that embedded MDPs have two-valued proposi-
tional labelling, i.e. L! = L?, and one trivial player 1 strategy, i.e. |Σ1

G| = 1.
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Figure 3: The MDP (a) and the two game abstractions (b) and (c) from Example 14.

THEOREM 12. For all games Ĝ, G such that Ĝ vp G and all PCTL properties φ ∈ Φ we have
(Ĝ |=! φ⇒ G |=! φ) and (Ĝ 6|=? φ⇒ G 6|=? φ).

PROOF. We only sketch the structure of the proof here. Let ŝ be any state of Ĝ and let s
be any state of G, respectively. The proof shows that ŝ |=! φ ⇒ s |=! φ and, dually, that
s |=? φ⇒ ŝ |=? φ. The main complexity of the proof is due to properties P ./ p〈ψ〉.

Intuitively, due to (iii) of Def.8, for any player 1 strategy in G, player 1 in Ĝ can choose a
strategy under which it knows player 2 must be less powerful in Ĝ than in G, which ensures
s |=? P ./ p〈ψ〉 ⇒ ŝ |=? P ./ p〈ψ〉. Dually, (iv) of Def. 8 guarantees that for every player 1
strategy in G, player 1 in Ĝ can choose a strategy under which it knows player 2 is more
powerful in Ĝ than it is in G, which ensures ŝ |=! P ./ p〈ψ〉 ⇒ s |=! P ./ p〈ψ〉.

Lem. 11 ensures consistency across the two representations of MDPs whereas Th. 12 en-
sures that any property that is |=!-satisfied (not |=?-satisfied) by a game Ĝ is also |=!-satisfied
(not |=?-satisfied) by any game that is less abstract than Ĝ — including MDP embeddings.

Verification & refutation via games We can now verify the judgment M |= φ by construct-
ing a game G that abstracts M (i.e. G vp emb(M)) and that !-satisfies φ (i.e. G |=! φ). It is
easy to see this: by Th. 12 emb(M) |=! φ and by Lem. 11 this is equivalent to M |= φ. Analo-
gously, we can refuteM |= φ by finding a game G such that G vp emb(M) and G 6|=? φ (i.e.
by Th. 12 emb(M) 6|=? φ; by Lem. 11 M 6|= φ).

For some games G it may be that both G 6|=! φ and G |=? φ. In this case we can neither
verify nor refute M |= φ and we need to consider refining G.

EXAMPLE 13. For Ĝ and emb(M) of Fig. 2(a), as Ĝ vp emb(M) and Ĝ |=! ¬P> 0.5〈Xa〉, using
Lem. 11 and Th. 12, we have verified M |= ¬P> 0.5〈Xa〉: some scheduling of M satisfies Xa
with probability of at most 0.5. However, as Ĝ 6|=! P≤ 0.5〈Xa〉 and Ĝ |=? P≤ 0.5〈Xa〉 we can
neither verify nor refute via Ĝ whether this threshold holds for all schedulings of M.

Finally, once we find a game G via which we, say, verify M |= φ, we can claim this
judgment holds and use G as a certificate to our claim. To confirm our claim one would
have to perform the checks G vp emb(M) and G |=! φ. Analogously, we can use games as
refutation certificates. We demonstrate our framework with a final motivating example:
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EXAMPLE 14. Reconsider the program and embedded MDP emb(M) of Example 7. Suppose
we wish to check the program stops with x ≤ y with a probability greater than 0.003 (i.e.
M |= P> 0.003〈true U≤∞ x leq y〉). We consider a partition which joins all states before the
probabilistic assignment and which, after the assignment, divides states according to the
predicate x ≤ y. Fig. 3(b) depicts the (optimal) game G constructed with the techniques in
[24]. We can verify our judgment with this game; however, G has many transitions because
the probability of x ≤ y is different for each initial value of y. With the framework presented
in this paper we can verify the judgment with the game Ĝ depicted in Fig. 3(c) — a much
more compact game defined over the same partition.

4 Discussion and conclusions
We motivated the need for an abstraction-based framework for the verification and refuta-
tion of PCTL specifications of MDPs. We constructed such a framework by taking the game
abstractions from [24], developing an abstraction preorder and abstract PCTL semantics for
these games, and proving these components meet certain soundness properties.

This preorder enables us to lose precision — even for a fixed partitioning of MDP states.
This allows us to verify and refute properties of MDPs with more compact games. In many
cases losing precision is essential. For example, when abstracting program statements under
predicates that contain non-linear arithmetic, computing the optimal abstraction for a set of
predicates is very inefficient. Through our abstraction preorder, by losing precision, we may
be able to obtain abstractions more efficiently in such cases — for example by considering
incrementally precise abstractions over a fixed partition, akin to software model checkers.
However, to automate this we need to augment our framework with a refinement proce-
dure. Although procedures exists to refine optimal partition abstractions of games [21, 22],
we have not yet adapted these procedures to deal with the additional causes of imprecision
that occur in our framework.

The game abstractions considered in practice (in, e.g., [22]) are known to be abstrac-
tions by construction — there is no need to check the conditions of vp. Nevertheless, the
computational complexity of deciding vp and |=!, |=? are still of interest. In a preliminary
unpublished version of this paper [19] we show vp without combined player 1 transitions
is decidable in P and |=!, |=? are decidable in NP∩ co-NP.

There is potential to improve precision of our framework as follows: one could equip
games with separate must/may transition functions to distinguish under-approximating
from over-approximating player 2 states (c.f. [26, 10]). That is, in (iii) of Def. 8 and in the
must evaluations of Def. 10 one would use the must transitions and in (iv) of Def. 8 and in
the may evaluations of Def. 10 one would use the may transitions. This change would not
increase precision for partition abstractions.
Related work In recent papers, many orthogonal challenges related to game abstractions
have been addressed: in [21, 22] it is outlined how optimal game abstractions can be con-
structed from language-level descriptions via SAT; in [20, 22] it is explained how good par-
tition abstractions can be found using automated abstraction refinement.

For probabilistic systems, abstraction frameworks include probabilistic extensions of
existential abstraction [11, 16], where MDP are abstracted by MDPs again through the strong
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(probabilistic) simulation preorder of [18, 29]. Other frameworks abstract probabilities with
intervals (e.g. [18, 17, 13, 4]). When considering these frameworks as an abstraction frame-
work for MDPs we observe the abstract models are unable to distinguish non-determinism
of the concrete MDP from the non-determinism that arises through abstraction. As a result,
refuting a property P≤ p〈ψ〉, i.e. showing there exists a strategy that exceeds p, can only be
achieved by establishing all strategies exceed p. As this may not be true for some MDPs
the property may not be refutable with these abstractions. By separating the two kinds of
non-determinism, our framework does not suffer from the same problem. Note that our
argument relies on the presence of non-determinism and does not occur when considering
the abstraction schemes in, e.g., [29, 17, 13] as abstraction frameworks for Markov chains
(MCs). In fact, our preorder is essentially the strong probabilistic simulation of [29] when
restricted to MCs. Finally, we mention [4] in which more efficiently checkable abstractions
are obtained by eliminating non-determinism (i.e. MDPs are abstracted by MCs).

For non-probabilistic systems, sound verification and refutation of temporal logics have
mostly been developed in a (sometimes implicit) three-valued setting [26, 10]. Our results in
the probabilistic setting are, notably, informed by work on modal/mixed transitions system
[26, 10] and three-valued abstraction of games [12].
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ABSTRACT. In this paper, we initiate the study of designing approximation algorithms for Fault-
Tolerant Group-Steiner (FTGS) problems. The motivation is to protect the well-studied group-
Steiner networks from edge or vertex failures. In Fault-Tolerant Group-Steiner problems, we are
given a graph with edge- (or vertex-) costs, a root vertex, and a collection of subsets of vertices called
groups. The objective is to find a minimum-cost subgraph that has two edge- (or vertex-) disjoint
paths from each group to the root. We present approximation algorithms and hardness results for
several variants of this basic problem, e.g., edge-costs vs. vertex-costs, edge-connectivity vs. vertex-
connectivity, and 2-connecting from each group a single vertex vs. many vertices. Main contributions
of our paper include the introduction of very general structural lemmas on connectivity and a charg-
ing scheme that may find more applications in the future. Our algorithmic results are supplemented
by inapproximability results, which are tight in some cases.
Our algorithms employ a variety of techniques. For the edge-connectivity variant, we use a primal-
dual based algorithm for covering an uncrossable set-family, while for the vertex-connectivity ver-
sion, we prove a new graph-theoretic lemma that shows equivalence between obtaining two vertex-
disjoint paths from two vertices and 2-connecting a carefully chosen single vertex. To handle large
group-sizes, we use a p-Steiner tree algorithm to identify the “correct” pair of terminals from each
group to be connected to the root. We also use a non-trivial charging scheme to improve the approx-
imation ratio for the most general problem we consider.

1 Introduction
The fault-tolerant network design problems are well-studied in the theory of combinatorial
optimization and approximation algorithms. The basic goal in these problems is to design
a minimum-cost network that satisfies some prescribed connectivity requirements. Higher
connectivity requirements are usually enforced for fault-tolerance — in order to protect con-
nectivity in the solution against edge or vertex failures. A well-studied fault-tolerant net-
work design problem is the Steiner Network problem. In this problem, we are given edge-
(or vertex-) connectivity requirement rij between every pair {i, j} of vertices, and the goal is
to design a network with at least rij edge- or vertex-disjoint paths between i and j for each
pair {i, j}.

In this paper, we study fault-tolerant versions of the Group-Steiner problem. In this
problem, we are given a (undirected or directed) graph G = (V, E) with edge- or vertex-
costs, a root vertex r ∈ V, and a collection of of subsets (groups) S = {S1, . . . , Sq} of V \ {r}.
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The objective is to find a minimum cost subgraph H of G that contains two edge- or vertex-
disjoint paths from each group Si to the root. This problem models the flexibility, often
arising in problems in VLSI design [25], in connecting any vertices from a given group as
well as the fault-tolerance which requires the solution to be robust under edge- or vertex-
failures.

1.1 Previous work on fault-tolerance problems

Fault tolerance problems have been extensively studied in Combinatorial Optimization and
Approximation Algorithms. Consider for example the well known Steiner Network prob-
lem. Given an undirected graph G = (V, E) with edge-costs {ce | e ∈ E}, and requirement
rij for every pair of vertices i, j ∈ V, the goal is to find a minimum cost subgraph H of G that
contains at least rij edge-disjoint paths between i and j, for all i, j. The network H is fault
tolerant in the sense that a pair i, j can sustain rij− 1 link failures and still be connected. The
best ratio known for this problem is 2 due to Jain [14].

The internally-disjoint path version of the Steiner Network problem is very hard to
approximate [16, 21, 9, 18]. The currently best known ratio for this problem is O(k3 log n) for
edge-costs due to Chuzhoy and Khanna [8] and O(k4 log2 n) for vertex-costs [20]. The rooted
version, where a root s is given and rij = 0 for all pairs i, j so that i 6= s and j 6= s, has gotten
a significant attention recently on the high level [3, 5, 9, 23, 8, 20]. This problem is at least as
hard to approximate as Directed Steiner Tree [18]. The best approximation ratio known for
this problem for general rooted demands is O(k2) for edge-costs and O(k2 log n) for vertex-
costs [20], where k = max rij. We mention that prior to the work of [20], a randomized
approximation algorithm with ratio kO(k2) log4 n was developed by Chakraborty, Chuzhoy,
& Khanna [3], then improved to kO(k) log n by Chekuri & Korula [5], and then improved to
O(k2 log n) by Chuzhoy & Khanna [9, 8] and [23]. Note that k can be as large as Ω(n).

A particular case of fault tolerance problems with 2 disjoint paths has also received an
attention on the high level [1, 19, 5]. Lau et al. [19] presented an O(log2 n)-approximation
algorithm for the problem of finding a minimum-cost 2-edge connected subgraph with at
least k vertices. This problem can be seen as a fault-tolerant generalization of the k-MST
problem which requires to find a minimum spanning tree on k vertices. The best known
approximation ratio for the k-MST problem is 2 [11]. Chekuri and Korula [6] presented
an O(log2 n)-approximation for the problem of finding a minimum-cost 2-vertex connected
subgraph with at least k terminals. In [1, 5], the fault-tolerance version of the Buy-at-Bulk
problem was studied, where two edge-disjoint paths are required to be included from every
terminal to the root.

In the same spirit, in this paper we consider a generalization of the Group-Steiner Tree
problem. In the usual Group-Steiner Tree problem, we are given a graph G = (V, E), edge
costs {ce : e ∈ E}, a root r ∈ V, and a collection of subsets (groups) S = {S1, . . . , Sq} of
V \ {r}. The objective is to find a minimum cost subtree T of G that contains r and at least
one vertex from each group Si ∈ S . The best known approximation ratio for this problem is
O(log3 n) [12]. The Fault-Tolerant Group-Steiner Tree problem, on the other hand, requires
obtaining two (edge- or vertex-) disjoint paths between each group to the root. We are not
aware of any previous work on Fault-Tolerant Group-Steiner problems.
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1.2 Problem variants studied in this paper

One can define several variants of the Fault-Tolerant Group-Steiner problem, based on whe-
ther we desire 2-edge- or 2-vertex-connectivity, whether we have edge- or vertex-costs,
whether we wish to 2-connect to the root a single vertex from each group or two distinct
vertices from each group, etc. Below we formally define all the variants studied in this pa-
per. Two paths are said to be internally-disjoint if they are vertex-disjoint except for their
end-points. Each of the following problems takes a graph G = (V, E) on n vertices with
edge-costs {ce | e ∈ E} (or with node-costs {cv | v ∈ V}), a root r ∈ V, and groups
S = {S1, . . . , Sq} as input, and is required to compute a min-cost subgraph H of G with at
least two edge/vertex-disjoint paths from each group Si to the root, so that the endnodes
of these paths are distinct. Unless stated otherwise, we consider the edge-cost version and
assume that G is undirected. We also assume that the groups S1, . . . , Sq are pairwise dis-
joint.∗ The vertices in the groups Si are called terminals. We add the prefix EC- for edge-
connectivity and the prefix VC- for vertex-connectivity. We add the suffix “-k” after the
name of the problem if the instances are restricted to satisfy |Si| ≤ k for all i = 1, . . . , q.
• EC-FTGS: Here for every i = 1, . . . , q, H should contain at least two edge-disjoint

Sir-paths; the end-points in Si of these paths should be distinct.
• VC-FTGS: The same as EC-FTGS, except that the paths should be internally-disjoint.
• EC-FTGS-k and VC-FTGS-k: These are EC-FTGS and VC-FTGS, respectively, re-

stricted to instances with |Si| ≤ k for all i = 1, . . . , q.
In the edge-connectivity case, for both edge and vertex-costs, the version when the end-

points in Si of the two Sir-paths may or may not be distinct, is easily reduced to EC-FTGS
as follows. For every terminal s, add a new vertex s′ of cost 0 connected to s with an edge
of cost 0, and add s′ to every group S ∈ S that contains s. After this transformation, we can
assume, without loss of generality, that the two edge-disjoint paths from each group start
from distinct terminals in that group. This may double the number of vertices, and cause a
constant loss in approximation ratios that depend on n.

We also consider the version when we insist that a single vertex from each group must
be 2-edge-connected to the root. Namely, for every i = 1, . . . , q there should exist a vertex
vi ∈ Si such that H contains 2 edge-disjoint rvi-paths. We call this version Single EC-FTGS.

1.3 The difficulty in approximating Fault-Tolerant problems

When two disjoint paths from every group to the root are required, we cannot use the stan-
dard transformation to Bartal trees [2, 10] as done in the approximation of the Group Steiner
problem [12]. This is so because disjoint paths from a group to the root in a Bartal tree do
not necessarily correspond to disjoint paths in the original graph.

We now give a strong evidence that an approximation that is polylogarithmic in n for
either EC-FTGS-k and VC-FTGS-k may be very hard to obtain as it implies solving a long
standing open problem. Note that we can reduce the usual Group Steiner problem to EC-
FTGS-k or VC-FTGS-k problems by adding a new vertex, which is connected to the root

∗This can be typically assumed by making multiple copies of the vertices in multiple groups and adding
zero-cost edges connecting the different copies. This reduction, however, increases the number of vertices in the
graph, thus possibly affecting the approximation ratio.
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Problem Edge-Connectivity (EC) Vertex-Connectivity (VC)

FTGS-2 3.55, Vertex-Cover-hard O(log2 n)
O(log n), Ω(log n)-hard (vertex-costs)

FTGS-k O(k log2 n) O(k log2 n)
FTGS O(

√
n log n) O(

√
n log n)

Group Steiner Tree-hard Group Steiner Tree-hard
Single FTGS Label Cover-hard (directed) Label Cover-hard (directed)

Table 1: Approximation ratios and hardness results for FTGS variants. The extra assump-
tions, if any, are given in the parentheses.

by a zero-cost edge, to each group. Since we get one path for “free”, any solution to EC-
FTGS-k and VC-FTGS-k corresponds to a solution of the usual Group Steiner problem and
vice-versa.

Now since an algorithm for EC-FTGS-k or VC-FTGS-k cannot use Bartal trees, it must
solve the Group Steiner problem as well without using Bartal trees. The question if Group
Steiner problem can be approximated within a polylogarithmic ratio without first reducing
the graph into trees is a long standing open question and seemingly a very hard one.

To the best of our knowledge, the best known ratio for Group Steiner problem without
using Bartal trees is O(nε) for any constant ε > 0, with running time n f (1/ε). The recursive
greedy technique [27, 17, 4], used in this algorithm, is a complex greedy approach with quite
delicate analysis that seems completely inappropriate for the requirement of two disjoint
paths. Thus even an nε approximation for every universal constant ε seems to be a quite
significant challenge for our problems in the current state of knowledge and techniques.

In our opinion, this is a strong evidence that it is quite a challenge to get polylogarithmic
ratios for either EC-FTGS-k or VC-FTGS-k in polynomial time.

Remark: The above simple reduction shows that the Ω(log2−ε n) hardness for the Group
Steiner problem applies also for EC-FTGS-k and VC-FTGS-k. However, from the above
evidence, EC-FTGS-k and VC-FTGS-k may in fact be much harder to approximate than
Ω(log2−ε n), and it may be that a polynomial ratio is the best we can hope for.

1.4 Our results

We start with a definition. For two optimization problems P1 and P2, we say that P1 is P2-
hard if existence of a ρ-approximation algorithm forP1 implies existence of a ρ-approximation
for P2. Similarly, P1 is Ω( f (n))-hard if there exists a constant ε > 0 so that P1 admits no
ε f (n)-approximation algorithm, unless P=NP.

Our main results are summarized in Theorem 1 and in Table 1.

THEOREM 1.
(i) EC-FTGS-2 admits the following approximation ratios:

(2 + γ) for edge costs, where γ < 1.55 is the best ratio for the Steiner Tree problem,
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and O(log n) for vertex costs. Moreover, the edge-cost version is Vertex-Cover-hard
and the vertex-cost version is Ω(log n)-hard.

(ii) EC-FTGS-k and VC-FTGS-k admit an O(k log2 n)-approximation algorithm. EC-FTGS
and VC-FTGS admit an O(

√
n log n)-approximation algorithm. EC-FTGS and VC-

FTGS are Group Steiner Tree-hard and thus are O(log2−ε n)-hard for any constant
ε > 0.

(iii) The directed version of Single EC-FTGS problem admits no 2log1−ε n-approximation
for any constant ε > 0, unless NP ⊆ DTIME(npolylog(n)).

The results (i) and (ii) are proved in Sections 2 and 3 respectively. The proof of (iii) is
omitted due to lack of space.

2 Proof of Part (i)
We start with some definitions. An edge e is said to cover a subset X ⊂ V of vertices if
exactly one end-point of e lies in X. Let F be a collection of subsets of V. We say that an
edge-set E′ covers F if for each X ∈ F , there is an edge e ∈ E′ that covers X. The Set-Family
Edge-Cover problem with edge-cost is to find a minimum-cost collection of edges E′ that
covers F . In the vertex-cost version, we wish to minimize the total cost of vertices incident
to E′ that covers F . The family F may not be given explicitly, but we require that certain
queries related to F can be answered in polynomial time. Specifically, we assume that, in
the edge-cost version, for any edge-set E′, the inclusion minimal members of F that are not
covered by E′ can be computed in polynomial time; while, in the vertex-cost version, for
any s, t ∈ V, one can compute in polynomial time a min-cost cover of all members of F that
separate s and t.

We call a family F of sets uncrossable if X ∩ Y, X ∪ Y ∈ F or X \ Y, Y \ X ∈ F for any
X, Y ∈ F . Our algorithms for EC-FTGS-2 problem with edge-costs or vertex-costs use the
following results, respectively.

THEOREM 2. (Goemans et al. [13]) The Set-Family Edge-Cover problem with edge-costs
and with uncrossable set-family F admits a 2-approximation algorithm.

THEOREM 3.([22]) The Set-Family Edge-Cover problem with vertex-costs and with uncross-
able set-family F admits an O(log n)-approximation algorithm.

2.1 Algorithmic results

Since the problem insists that the two edge-disjoint paths from each group must start at
distinct terminals in the group, the optimum solution contains a Steiner tree containing all
the terminals and the root. Our algorithm first finds a Steiner tree T that connects all the
terminals to the root. If we use an α-approximation algorithm for this step (α < 1.55 for the
edge-costs [26] and α = O(log n) for the vertex-costs [15]), we get COST(T) ≤ α · OPT where
OPT denotes the cost of the optimum solution.

For X ⊂ V, let degT(X) denote the number of edges in T from X to V \ X. Define an
instance of Set-Family Edge-Cover by setting

F = {X ⊆ V \ {r} | degT(X) = 1, S ⊆ X for some S ∈ S}.
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We now present two important observations.

LEMMA 4. For I ⊆ E \ E(T), the set T ∪ I is a feasible solution to EC-FTGS-2 if, and only if,
I covers F .

PROOF. Note that T has a path from each terminal to the root. Thus by Menger’s Theorem,
H = T ∪ I is a feasible solution to EC-FTGS-2 if, and only if, degH(X) ≥ 2 for every set
X ⊆ V \ {r} that contains some group S ∈ S . As degT(X) ≥ 1 for any X ⊆ V \ {r}
that contains at least one vertex from some group, we obtain that the latter condition is
equivalent to degI(X) ≥ 1 for every X ∈ F .

LEMMA 5. The set family F is uncrossable.

PROOF. Note that by the definition of F , X ∈ F if, and only if, X is a union of a rooted
proper subtree of T that contains a group S ∈ S and any subset of vertices not in T. Let
X, Y ∈ F . Then X ∩ T, Y ∩ T are disjoint, or one of them contains the other. In the former
case, we have X \ Y, Y \ X ∈ F ; e.g., X \ Y ∈ F since (X \ Y) ∩ T = X ∩ T, hence X \ Y is
a union of the subtree contained in X and the vertex subset X \ (T ∪ Y) disjoint to T. In the
latter case, X ∩ Y, X ∪ Y ∈ F ; e.g., if X ⊆ Y, then X ∩ Y is a union of the subtree contained
in X and some vertices not in T, while X ∪ Y is the union of the subtree contained in Y and
some vertices not in T.

It is easy to check that for any edge set I ⊂ E \ E(T), the minimal members of the family
F not covered by I can be computed in polynomial time. Moreover, for any s, t ∈ V, a min-
cost cover of all members in F that separate s and t can also be computed in polynomial
time. Thus, we can use the algorithms in Theorems 2 and 3 respectively to complete the
solutions for the edge- and vertex-cost versions.

2.2 Hardness of approximation results

We now show that EC-EFTGS-2 is Vertex-Cover hard in the case of edge-costs, and that it
is Hitting-Set-hard, i.e., Ω(log n)-hard, in the case of vertex-costs.

Let J = (VJ , EJ) be an instance of Vertex-Cover. Define an instance {G = (V, E), {ce :
e ∈ E}, r,S} of 2-EC-FTGS-2 as follows. Set V = VJ ∪ {a, r}, connect every vertex in VJ
to a with an edge of cost 0 and connect a to r with an edge of cost 0. Let T denote the set
of these zero-cost edges. Connect each vertex in VJ to r with an edge of cost 1 each. The
set S of pairs is defined by edges of EJ , namely, S = {{u, v} | (u, v) ∈ EJ}. Note that the
optimum solution, without loss of generality, picks all the edges in T. It is now easy to see
that T + H is a feasible solution to the obtained instance of EC-FTGS-2 if and only if the set
of end-points of the edges in H is a vertex-cover in J.

In the case of vertex-costs, EC-FTGS-2 is easily reduced to the Steiner Tree problem
with vertex-costs which is known to be Hitting-Set-hard [15]. Given an instance {J =
(VJ , EJ), r, S} of Steiner Tree with vertex-costs, for every s ∈ S add a copy s′ of cost 0 and
connect s′ to r. The set of pairs is S = {{s, s′} | s ∈ S}. It is easy to see that T is a feasible
solution to Steiner Tree with vertex-costs if and only if T ∪ {(r, s′) | s ∈ S} is a feasible
solution to the constructed 2-EC-FTGS-2 instance.

The proof of Part (i) of Theorem 1 is thus complete.
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3 Proof of Part (ii)
3.1 Algorithm for VC-FTGS-2

In this section, we introduce our main technical ideas. We present an O(log2 n)-approxima-
tion algorithm for VC-FTGS-2.

As in the edge-connectivity case, we first compute a Steiner tree T of cost COST(T) ≤ α ·
OPT connecting all terminals to the root. We have α < 1.55 for edge-costs and α = O(log n)
for vertex-costs. Our algorithm uses set-cover like approach in which we iteratively add
partial solutions with low density, i.e., low cost to profit ratio, till we complete the solution.
We get one logarithmic factor in the approximation from the set-cover analysis (and since
the number of groups is O(n)) and another logarithmic factor from the fact that we can only
compute O(log n) approximation to the minimum-density subproblem.

Given a partial solution I ⊂ E \ E(T), let the deficiency of I be the number of groups in S
that are not 2-vertex-connected to r in T ∪ I. Let the density of an edge set F ⊂ E \ (E(T)∪ I)
be COST(F) divided by the decrease in the deficiency caused by adding F to T ∪ I. The
following two lemmas captures the essence of our algorithm for VC-FTGS-2.

LEMMA 6. Given a partial solution T ∪ I, the problem of computing a minimum density
augmenting edge set F ⊂ E \ (E(T) ∪ I) for VC-FTGS-2 admits an O(log n)-approximation
algorithm.

LEMMA 7. The algorithm in Lemma 6 can be used to obtain O(log2 n) approximation for
VC-FTGS-2.

As mentioned, the proof of Lemma 7 follows from the standard set-cover like analysis
and is omitted. In the rest of this section we prove Lemma 6. We ignore the groups in S that
are already connected in T ∪ I to the root via 2 vertex-disjoint paths starting from distinct
vertices.

We start by recalling some definitions. A vertex v ∈ V is a cut-vertex of a graph H
if H \ {v} has more connected components than H. A cut-vertex v of H is said to separate
vertex r and set S ⊂ V \ {r, v} if r and S belong to the same connected component of H but
H \ {v} does not contain a path from r to any vertex in S. Consider a group {s1, s2} ∈ S . By
Menger’s Theorem we have:

PROPOSITION 8. A subgraph that contains an rs1-path and an rs2-path, contains such paths
that are internally vertex disjoint if and only if it has no cut-vertex that separates r and
{s1, s2}.

Now think of the tree T as being rooted at r. For any two vertices s1, s2 ∈ T, we define
LCA(s1, s2) to be the least common ancestor of s1 and s2 in T. Consider S = {s1, s2} ∈ S
with u = LCA(s1, s2) in T. Note that u 6= r since S is not 2-vertex connected to r via paths
starting from s1 and s2. Let U (S) = {u1, u2} be two (possibly identical) vertices defined as
follows.
• If u 6∈ {s1, s2}, then let u1 (resp. u2) be the child of u that lies on the rs1- (resp. rs2-)

path in T.
• If u ∈ {s1, s2}, then let u1, u2 = u.
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Define a family U = U (S , T) of pairs (groups) as U = {U (S) | S ∈ S}. Note that the pairs
in U may not be disjoint, and that some “pairs” in U are in fact singletons. The following
lemma captures the “equivalence” between covering pairs in S and pairs in U .

LEMMA 9. For any edge set F ⊂ E \ (E(T)∪ I), the solution H = T ∪ I ∪ F contains 2-vertex
disjoint paths (with distinct starting points) between r and S if, and only if, it contains 2-
vertex disjoint paths (with distinct starting points) between r and U (S).

PROOF. Let u = LCA(s1, s2) where S = {s1, s2}. By Proposition 8, S is 2-connected to r in
H = T ∪ I ∪ F if and only if H has no cut-vertex separating S from r; namely, no vertex on
the ur-path in T is a cut-vertex of H. By the definition of U (S) = {u1, u2} and Proposition 8,
this is equivalent to the property that U (S) is 2-connected to r in H.

The above lemma implies that the densities of F w.r.t. S and w.r.t. U are equal. Further-
more, T ∪ I ∪ F is a feasible solution w.r.t. S if and only if it is w.r.t. U . Note that the groups
U satisfy a special property, which is crucial in rest of the analysis.

Property P: For all groups {u1, u2} ∈ U , either u1 = u2 or u1, u2 have the same
parent in T.

LEMMA 10. Let U = {u1, u2} ∈ U . For F ⊂ E \ (E(T) ∪ I), the graph H = T ∪ I ∪ F
contains a u1r-path and a u2r-path that are internally vertex-disjoint if and only if H contains
2 internally-disjoint paths to r from either u1 or u2.

PROOF. The proof uses Menger’s Theorem and Property P of the groups in U .
Suppose that H contains 2 internally vertex-disjoint paths from u1 to r. Then H has no

cut-vertex separating r and u1, by Menger’s Theorem. In particular, there is no cut-vertex
separating r and {u1, u2}. Thus H contains a u1r-path and a u2r-path that are internally
vertex-disjoint, by Proposition 8.

Suppose now that H contains a u1r-path and a u2r-path that are internally vertex-
disjoint. Now we use Property P. If u1 = u2, the proof is complete. Assume therefore
that u1 6= u2 and that they have a common parent u in T and assume to the contrary that H
has no pair of internally vertex-disjoint uir-paths for i = 1, 2. Then by Menger’s Theorem,
there are cut-vertices v1, v2 in H, where vi separates ui from r. As u1, u2 have a common
parent u 6= r, any vertex separating r from one of u1, u2 must lie on the ur-path in T. If
v1 = v2 = v, then v separates both u1, u2 from r contradicting the assumption (by Propo-
sition 8). Thus v1 6= v2, so one of v1, v2 is distinct from u, say v1 6= u. The graph H \ {v1}
contains a u2r-path. As T \ {v1} contains a u1u2-path, this implies that H \ {v1} contains a
u1r-path. This contradicts that v1 separates u1 and r.

Thus the original density problem can be reduced to the following problem. Given a
collection of groups {ui

1, ui
2} for i = 1, 2, . . ., find a subset F ⊂ E \ (E(T) ∪ I) such that the

ratio of COST(F) to the number of groups i such that at least one of ui
1 or ui

2 has 2-vertex-
disjoint paths to r in E(T) ∪ I ∪ F.

The problem of finding a subgraph that minimizes the ratio of its cost over the total
profit of vertices that are 2-vertex-connected to the root was studied by Chekuri and Ko-
rula [6], who gave an O(log n)-approximation for the problem. We use their algorithm to
compute an O(log n)-approximation for the density version of our problem, as follows. The
input to the algorithm of Chekuri and Korula is the original graph with root r and with prof-
its on vertices defined as follows. Let the profit p(u) of a vertex u be the number of groups
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1. Initialize subgraphH ← ∅ and q′ ← q to be the number of uncovered groups.
2. If q′ > 0, begin a phase:

(a) Assign a cost of zero to all vertices inH.
(b) Find Twin-pairs: Compute a subgraph H of cost O(OPT · k log n) that contains twin

pairs (Definition 11) from at least q′/2 uncovered groups.
(c) Cover: Compute a subgraph I of cost O(OPT · k log n) that covers at least q′/2 uncovered

groups.
(d) UpdateH ← H∪ H ∪ I and update q′ to be the number of uncovered groups inH.

3. OutputH.

Figure 1: An outline of our algorithm for VC-FTGS-k with vertex-costs.

i such that u ∈ {ui
1, ui

2}. Thus p(u) denotes the number of new groups that would get
connected to the root via 2 vertex-disjoint paths provided u gets connected to the root via 2
vertex-disjoint paths. Note that since both ui

1 or ui
2 may claim profit for covering group i, we

may overestimate the profit of 2-vertex connecting a subset of vertices to r by a factor of 2.
This introduces another factor 2 in the approximation. Using Chekuri-Korula algorithm, we
compute a subgraph which yields a O(log n) approximation for minimizing the ratio of its
cost over the total profit of its vertices that are 2-vertex-connected to the root. This subgraph
yields O(log n) approximation to the problem defined in Lemma 6.

Thus the proof is complete.

3.2 Algorithm for EC-FTGS-k and VC-FTGS-k with edge/vertex costs

We present an algorithm for VC-FTGS-k with vertex-costs, which is more general than the
case of edge-costs. Adaptation of this algorithm to EC-FTGS-k is easy.

Fix an optimum solution OPT with cost also denoted by OPT. To simplify the presen-
tation, the algorithm given below is assumed to know the value of OPT. In reality, the
algorithm tries all possible guesses for the power of 2 that is closest to OPT and picks the
cheapest solution among those computed for each of these guesses.

Our algorithm has logarithmic number of phases. In each phase, it covers at least half
of the remaining groups. A high-level pseudo-code of the algorithm is given in Figure 1. At
the beginning of each phase, we make the cost of the vertices that are already picked in the
solutionH zero. In what follows, we analyze a single phase which begins with q′ uncovered
groups overall. The groups in S that are already covered are ignored. In what follows, we
explain how to implement steps Find Twin-pairs and Cover respectively.

How to implement step Find Twin-pairs.

DEFINITION 11. For a group S ∈ S , we say that the terminals s1, s2 ∈ S form a twin pair
if OPT contains two internally-disjoint paths from s1 and s2 to r. If there are more than one
such pairs for a group, we designate exactly one of these pairs as twin pair arbitrarily.

We do not know which terminals form twin pairs a-priori. Nevertheless, we can com-
pute a low-cost tree that connects the twin pairs from at least half of the remaining groups
to the root, as shown below. We iteratively use p-Steiner tree algorithm for p = q′. Recall
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that the p-Steiner Tree problem is to compute a minimum-cost tree that connects at least p
terminals to the root. Let H denote the union of the p-Steiner trees computed so far. Assume
that the number of uncovered groups is at least q′/2.

LEMMA 12. Assign a cost of zero vertices in H. Now apply (c log n)-approximation algo-
rithm [7] for the p-Steiner tree problem (where c is a constant) for the instance given by H,
root r, p = q′ and terminals as the vertices in the the union of uncovered groups in S but
not in H: {v ∈ S | S ∈ S is uncovered, v 6∈ H}. If the cost of the computed Steiner tree is
more than (c log n) · OPT, then H contains the twin pairs for at least q′/2 uncovered groups.

PROOF. Assume on the contrary that H does not contain twin pairs for at least q′/2 uncov-
ered groups. Thus the OPT solution connects at least 2 · q′/2 = q′ terminals in this p-Steiner
tree instance to the root. Since we use a (c log n)-approximation, the cost of the computed
Steiner tree is at most (c log n) · OPT. This is a contradiction, and the lemma follows.

We run the p-Steiner tree algorithm iteratively while the cost of the new tree computed
is at most c log n · OPT. Since H contains at least p = q′ new terminals in each iteration, the
total number of invocations of such p-Steiner tree algorithm is at most q′ · k/q′. This holds
since the size of each group is at most k. Thus the total cost of the step Find Twin-pairs
is COST(H) ≤ O(OPT · k log n).

How to implement step Cover.

Even if H contains the twin pairs of at least q′/2 uncovered groups, we still do not know
which of the terminals in H form twin pairs. We therefore need one more definition.

DEFINITION 13. Let T be a spanning tree of H. We say that a vertex u1 can help an uncov-
ered group S if there exist distinct vertices s1, s2 ∈ S ∩ T and another vertex u2 so that u1, u2

have the same parent u = LCA(s1, s2) in the tree T. The profit p(u) of vertex u is defined as
the number of uncovered groups in S that u can help.

The intuition of the above definition comes from our algorithm for VC-FTGS-2, and in
particular, from Lemma 10. Note that the profit of a vertex u is the number of uncovered
groups that will get covered if u gets connected to the root via 2 internally-disjoint paths.

Since more than one vertex can claim a profit for covering a single group, it is important
to understand how many vertices can help a particular group. Since there are at most k
terminals in any group S ∈ S , it is obvious that there can be at most O(k2) vertices that can
help S. This crude upper bound comes from the fact that there are O(k2) pairs s1, s2 ∈ S that
can give rise to such vertices. However the following lemma presents a careful counting of
such vertices.

LEMMA 14. There are O(k) vertices that can help any single group S ∈ S .

PROOF. Consider tree T with terminals in group S marked as s (see Figure 2). Further
consider a subtree T′ restricted to terminals in S. The vertices u ∈ T′ that can play a role
of LCA(s1, s2) for s1, s2 ∈ S (these are shown as red squares in Figure 2) have a degree of at
least 3 in T′, i.e., degT′(u) ≥ 3. Thus if a vertex v can help group S, it must be a child of a
vertex u with degT′(u) ≥ 3. The number of children of a vertex u is degT′(u)− 1. Therefore,
the number of vertices v that can help S is at most ∑u:degT′ (u)≥3(degT′(u)− 1).
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Figure 2: The vertices marked with s
are terminals in a group S. The ver-
tices marked with red squares can
take a role of LCA(s1, s2) for a pair
{s1, s2} in group S. The children of
red squares that lie on a path from
some s ∈ S to r can help S. There are
O(k) such vertices.

Since T′ is a tree induced on at most k terminals of S, the tree has at most k leaves. By a
simple counting argument, it therefore follows that the desired sum ∑u:degT′ (u)≥3(degT′(u)−
1) is O(k). The lemma thus holds.

Now we have all the ingredients to present the step Cover. We again use the O(log n)-
approximation algorithm of Chekuri and Korula [6] that was also used in Section 3.1, for
the problem of finding a subgraph that minimizes the ratio of its cost over the total profit of
vertices that are 2-vertex-connected to the root. Recall that the subgraph induced by OPT has
cost at most OPT and profit at least q′/2 (since T contains twin pairs from at least q′/2 un-
covered groups). Thus the cost-to-profit ratio of the solution computed by our algorithm is
at most O(log n · OPT/q′). From Lemma 14, we get that the ratio of the cost of this subgraph
to the number of uncovered groups covered is at most O(k log n · OPT/q′).

We apply such algorithm iteratively till end of the phase, i.e., at least q′/2 previously
uncovered groups are covered in this phase, and call this subgraph I. From the above ana-
lysis, it is clear that the total cost of step Cover is COST(I) = q′ · O(k log n · OPT/q′) =
O(k log n · OPT). Thus the total cost of a phase is COST(H) + COST(I) = O(OPT · k log n).
Since there are O(log q) = O(log n) phases overall, the total cost of the algorithm is O(OPT ·
k log2 n) as desired.

As was mentioned in the Introduction, an O(
√

n log n)-approximation algorithm for
VC-FTGS immediately follows from the O(k log2 n)-approximation for VC-FTGS-k, and
thus the proof of Part (ii) of Theorem 1 is now complete.
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ABSTRACT. We introduce a graph clustering problem motivated by a stream processing application.
Input to our problem is an undirected graph with vertex and edge weights. A cluster is a subset of
the vertices. The size of a cluster is defined as the total vertex weight in the subset plus the total
edge weight at the boundary of the cluster. The bounded size graph clustering problem (BSGC) is to
partition the vertices into clusters of size at most a given budget and minimize the total edge-weight
across the clusters. In the multiway cut version of the problem, we are also given a subset of vertices
called terminals. No cluster is allowed to contain more than one terminal. Our problem differs from
most of the previously studied clustering problems in that the number of clusters is not specified.
We first show that the feasibility version of the multiway cut BSGC problem, i.e., determining if there
exists a clustering with bounded-size clusters satisfying the multiway cut constraint, can be solved
in polynomial time. Our algorithm is based on the min-cut subroutine and an uncrossing argument.
This result is in contrast with the NP-hardness of the min-max multiway cut problem, considered by
Svitkina and Tardos (2004), in which the number of clusters must equal the number of terminals. Our
results for the feasibility version also generalize to any symmetric submodular function. We next
show that the optimization version of BSGC is NP-hard by showing an approximation-preserving
reduction from the 1

3 -balanced cut problem. Our main result is an O(log2 n)-approximation to the
optimization version of the multiway cut BSGC problem violating the budget by an O(log n) factor,
where n denotes the number of vertices. Our algorithm is based on a set-cover-like greedy approach
which iteratively computes bounded-size clusters to maximize the number of new vertices covered.

1 Introduction

Graph partitioning and clustering are fundamental optimization problems with applica-
tions to a variety of areas like VLSI design, divide-and-conquer algorithms, computer vi-
sion, data analysis, discovering communities in social networks, and learning. In this pa-
per we introduce a graph clustering problem motivated by System S, a stream computing
system [1] being developed at IBM research. Consider a system that takes, as input, a high-
throughput data stream such as live option trading or stock feeds in financial services, phys-
ical link statistics in networking and telecommunications, sensor readings in environmental
monitoring and emergency response, or live experimental data in scientific applications.
This system is required to generate responses derived from on-line processing of the data
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in real-time. An application in this system can be modeled as a graph in which the ver-
tices represent domain-specific operators consuming and producing streams of data, and the
edges represent the streams themselves.

It is very convenient to compose these applications out of type-generic, built-in stream
processing operators [7]. But these operators are usually small: they typically spend more
effort sending and receiving data than they do in actual processing. Taken individually, such
operators can therefore become performance bottlenecks in the system. The good news is
that it is actually possible to “fuse” operators at compile time. If two adjacent operators are
fused, the downstream operator is invoked by means of a function call from the upstream
operator. As a result, there is effectively no cost to sending data between fused pairs of
adjacent operators.

Thus, to efficiently deploy such a CPU-intensive application in a distributed comput-
ing environment, one has to decide how to partition the operators into clusters, for example
one for each computing host. The total CPU requirement for a cluster of operators comes
from two sources. The first is the computational needs of the operators in the cluster. This
can be modeled by associating a non-negative weight with each operator u. The total com-
putational needs of a cluster is then the sum of its operators weights. The second is the
communication overhead, incurred at the boundary of the cluster, for receiving and sending
streams to operators outside the cluster. This can be modeled by associating a non-negative
weight with each edge e = (u, v). The total communication needs of a cluster is then the
cut-weight with respect to these edge-weights. As noted, an edge contained within a cluster
is converted into a function-call, incurring negligible overhead and as such not accounted
for in the computational needs of the cluster. The consideration of the CPU requirement
imposes a natural constraint on the clustering: the total CPU requirement of each cluster
must be at most the capacity of a host.

We frequently encounter additional resource constraints that cannot be captured as
CPU requirements. For example, some operators make extensive use of specific hardware
(such as a network card). Clustering two such operators together would cause poor perfor-
mance. To handle such situations, we include in the problem a set of terminals T and insist
that each cluster contain at most one terminal from T.

A high-throughput application, if not carefully deployed, may overload the network
capacity. Therefore, a natural goal when computing a bounded-size clustering is to mini-
mize the total edge-weights across the clusters.

Formal problem definition. With the above motivation, we introduce the Bounded-Size
Graph Clustering (BSGC) problem, defined formally as follows. Consider an undirected
graph G = (V, E) on n vertices with vertex-weights wv ∈ Q+ and edge-weights we ∈
Q+. Here Q+ denotes the set of non-negative rational numbers. For a subset S ⊂ V, let
δ(S) denote the set of edges with exactly one end-point in S, w(S) = ∑v∈S wv, w(δ(S)) =
∑e∈δ(S) we, and size(S) = w(S) + w(δ(S)). We are also given a set of terminals T ⊆ V and
a budget B ∈ Q+. The BSGC problem is to find a partitioning of the vertex set into clusters
S1, . . . , Sk such that
• the size of each cluster is bounded: size(Si) ≤ B for all i;
• each cluster contains at most one terminal, i.e., |Si ∩ T| ≤ 1 for all i; and
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• the total edge-weight across the clusters, 1
2 ∑k

i=1 w(δ(Si)), is minimized.
We call a clustering that satisfies the first two properties feasible. From the second condition,
it is clear that the number of clusters k is at least the number of terminals |T|. However, k is
not given as input, and it may be larger than the number of terminals.

Our results. Our main results are summarized below:
1. First, in Section 2, we consider the feasibility version of BSGC, i.e., to compute a feasible

clustering without considering the total cut-weight. We show that we can compute a
feasible clustering, if it exists, in polynomial time. Our algorithm uses a minimum cut
subroutine and an uncrossing argument to make the clusters disjoint. This result gen-
eralizes to any symmetric submodular function [6]. See Section 2.1 for more details.

2. In Section 3.1 we show that the BSGC problem is NP-hard by an approximation pre-
serving reduction from the 1

3 -balanced cut problem. Recall that the best-known ap-
proximation for the 1

3 -balanced cut problem that does not violate∗ the balance con-
straint is O(log n) [10].

3. Finally, in Section 3.2, we present a pseudo-approximation for the optimization ver-
sion of the problem. More precisely, we present a deterministic polynomial-time algo-
rithm that computes a clustering {S1, . . . , Sk} such that |Si ∩ T| ≤ 1 and w(δ(Si)) ≤
O(log n) · (B−w(Si)) for all i, and the total cut-weight is O(log2 n) times the optimum
cut-weight. Note that the above condition implies that (c log n) · w(Si) + w(δ(Si)) ≤
(c log n) · B for some absolute constant c > 0, i.e., the budget is violated by an O(log n)
factor.

Related work. A problem that is closely related to the feasibility version of BSGC was
studied by Svitkina and Tardos [11]. In that problem, called min-max multiway cut, an edge-
weighted undirected graph with terminals T ⊆ V is given. The goal is to partition vertices
into |T| clusters such that each cluster contains exactly one terminal and the maximum cut
value of a cluster is minimized. A crucial difference is that BSGC does not require the num-
ber of clusters to be exactly |T|. Svitkina and Tardos show that the min-max multiway cut
problem is NP-hard and present an O(log2 n)-approximation† for it. They do so using, as
a subroutine, the maximum-size bounded capacity cut problem (MaxSBCC), defined as fol-
lows: Given an undirected graph G = (V, E) with vertex and edge weights, two vertices
s, t ∈ V, and a budget B > 0, find an s-t cut (S, V \ S) such that w(δ(S)) ≤ B and w(S)
is maximized. Svitkina and Tardos iteratively solve MaxSBCC with varying vertex weights
and combine those cuts to compute their final clustering.

Several cut problems with budget constraints were also considered by Engelberg et
al. [5]. In particular, they consider budgeted multiway cut problems in which there is a
budget on the total cut-value and the objective is either to maximize the number of terminal-
pairs separated, to maximize the number of terminals that are completely separated from

∗We can obtain an O(
√

log n) approximation if we violate the budget by a constant factor [2].
†In fact, they present an O(log3 n)-approximation using a subroutine for finding minimum cuts with the

specified number of vertices. Using an improved O(log n)-approximation for the subroutine [10], their algo-
rithm can be shown to yield an O(log2 n)-approximation.
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other terminals, or simply to maximize the number of connected components. They use
Räcke’s tree decomposition [10] and Gomory-Hu trees [8] to design their approximation
algorithms.

Most graph clustering problems in the literature specify the number of clusters required
as part of the input. One important exception is correlation clustering, introduced by Bansal et
al. [3]. In this problem, the edges of an undirected graph are labelled with either ”+” or ”−”.
Given a clustering of the vertices, let the number of “agreements” be the number of + edges
inside the clusters plus the number of − edges across the clusters. Similarly the number
of “disagreements” is the total number of edges minus the number of agreements. Bansal
et al. and several subsequent papers design approximation algorithms for maximizing the
number of agreements or minimizing the number of disagreements.

Finally, Khandekar et al. [9] consider a variant of our graph clustering problem (with
significantly more elaborate practical constraints). Their (partially heuristic) solution is, in
fact, implemented as a key component in System S [1].

Our techniques. In contrast to min-max multiway cut, relaxing the constraint on the num-
ber of clusters makes it possible to find a polynomial-time algorithm for the feasibility ver-
sion of BSGC. For each vertex v, our algorithm computes a cluster, of size at most B, contain-
ing v and at most one terminal. To this end, we first augment the graph by adding a new
vertex with edges to all the old vertices and “translate” the vertex weights into weights on
the new edges. Later we show that the problem of computing a desired cluster can be re-
duced to minimum cut computations in the augmented graph. The clusters thus computed
may not be disjoint, however. The algorithm then systematically uncrosses the clusters to
make them disjoint, using an argument similar to [11], while satisfying the budget and the
multiway cut constraints. This result applies more generally: if the size of a cluster S is de-
fined as ∑v∈S wv + f (S), where f is a symmetric submodular set function, we can determine
in polynomial time if there exists a clustering such that each cluster contains at most one
terminal and has size at most B.

The optimization version of BSGC is different from the traditional graph partitioning
into clusters of bounded-size, because the size of a cluster includes its cut-cost. Therefore
the hierarchical partitioning approach – iteratively splitting clusters into two until the size
constraints are satisfied – does not work for the BSGC problem. For example, after splitting
the given graph into two, there may not exist a feasible clustering respecting this split, even
if the original graph has a feasible clustering.

Our approach for the optimization problem resembles that of Svitkina and Tardos [11].
We think of our problem as an instance of the set-cover problem where the sets are the
subsets S ⊆ V such that |S ∩ T| ≤ 1 and size(S) ≤ B. Let the cost of such a set be w(δ(S)).
The problem is then to find a minimum-cost collection of sets that covers all the vertices.
Now in order to use the greedy algorithm, we need the following oracle: given a subset of
vertices not yet covered, find a set S that minimizes the ratio of w(δ(S)) and the number of
vertices in S that are not yet covered. Unfortunately the oracle itself is NP-hard. We then
use a hierarchical tree-decomposition of graphs by Räcke [10] to get a O(log n)-approximation
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to the oracle. More precisely, we find S ⊆ V such that

(c log n) · w(S) + w(δ(S)) ≤ (c log n) · B

for an absolute constant c > 0 that also minimizes the desired ratio to within an O(log n)
factor. This, combined with a standard set-cover analysis, yields our final result. Once again
we use an uncrossing argument to make the clusters disjoint.

2 The feasibility version
Since the definition of the size of a cluster involves both the vertex and edge weights, it is not
clear a-priori if the feasibility version, i.e., to determine if there exists a feasible clustering, is
tractable. For example, the clustering obtained by putting each vertex into a separate cluster
may not be feasible. Assuming that the problem is feasible, we now present a polynomial-
time algorithm for finding a clustering {S1, . . . , Sk} such that size(Si) ≤ B and |Si ∩ T| ≤ 1
for all i.

Our idea is to construct a new graph in which the vertex weights are converted into
edge weights on artificial edges. This means our algorithm can work just with cuts. We
construct this graph G′ = (V ′, E′) as follows. (See Figure 1.) Let V ′ = V ∪ {s} for a new
vertex s and E′ = E ∪ {(s, v) | v ∈ V}. Each edge e ∈ E′ ∪ E inherits its weight we, and
e = (s, v) ∈ E′ gets a weight of we = wv for all v ∈ V. Note that for a cluster S ⊆ V, we have
that size(S) equals the capacity of the cut (S, V ′ \ S) in G′.

In a problem instance without terminals, we note that Gomory-Hu trees [8] allow us
to determine feasibility. Consider the Gomory-Hu tree T of G′. In a feasible instance, the
minimum cut in G′ between s and any other vertex u is at most B, and the edges in T
that are incident to s have weight at most B each. The removal these edges from T gives
a partitioning of vertices into clusters, say S1, . . . , Sk. It is easy to see that this is a feasible
clustering for our problem. If there are edges in T that are incident to s and have weight
greater than B, the problem instance is not feasible.

To approach the problem with terminals, we start by stating a useful lemma that will
simplify the presentation of our algorithm. The following lemma states that it is enough to
compute possibly overlapping clusters that satisfy the given constraints. The basic technique
used in this lemma is systematic uncrossing.

LEMMA 1. Given clusters {S1, . . . , Sk} such that ∪iSi = V and |Si ∩ T| ≤ 1 for all i, we
can compute in polynomial time clusters {U1, . . . , Uk} such that ∪iUi = V, |Ui ∩ T| ≤ 1,
w(Ui) ≤ w(Si), w(δ(Ui)) ≤ w(δ(Si)) for all i, and moreover Ui ∩Uj = ∅ for i 6= j

PROOF. For two disjoint subsets A, B ⊂ V, let w(A, B) = {we | e = (u, v), u ∈ A, v ∈ B}
be the total edge-weight between A and B. We define an uncrossing operation for two
intersecting sets A and B as follows. If w(A∩ B, A \ B) < w(A∩ B, B \ A), we let A′ ← A \ B
and B′ ← B, else we let A′ ← A and B′ ← B \ A. Note that we have: w(A′) ≤ w(A), w(B′) ≤
w(B), w(δ(A′)) ≤ w(δ(A)), w(δ(B′)) ≤ w(δ(B)), and A′ ∩ B′ = ∅.

We apply the above uncrossing operation to S1, . . . , Sk systematically, obtaining U1, . . . ,
Uk as follows. We first let U1 = S1 and make it disjoint from S2, . . . , Sk in that order. Then
we let U2 = S2 and repeat. In the end, we have sets Ui with the desired properties.



280 BOUNDED SIZE GRAPH CLUSTERING WITH APPLICATIONS TO STREAM PROCESSING

Figure 1: Construction of graph G′. The capacity of the cut (C, (V \ C) ∪ {s}) in G′ is
size(C).

LEMMA 2. For any v ∈ V, in polynomial-time, we can find a cluster Sv ⊂ V such that
v ∈ Sv, |Sv ∩ T| ≤ 1 , and size(Sv) ≤ B.

PROOF. Since BSGC is feasible, for any v ∈ V, the cluster S∗v in a feasible clustering satisfies
the above conditions.

If v is a terminal, we find a minimum cut in G′ that separates v from (T \ {v}) ∪ {s}
by doing a single min-cut computation.‡ Let Sv denote the vertices on the v-side of this cut.
From the minimality of the cut, we have size(Sv) ≤ size(S∗v) ≤ B.

If v is not a terminal, we try all possible values of S∗v ∩ T. It can either be empty or a
singleton set containing a terminal. If S∗v ∩ T = ∅, we can find a minimum cut in G′ that
separates v from T ∪ {s}. On the other hand, if S∗v ∩ T = {t}, we can find a minimum cut
in G′ that separates {v, t} from (T \ {t}) ∪ {s}. In either case, we can find Sv satisfying the
desired properties.

We can now find a feasible clustering in polynomial-time as follows.
1. Compute clusters Sv for all v satisfying the conditions in Lemma 2.
2. Systematically uncross clusters Sv to make them disjoint using Lemma 1.

2.1 Generalizations to symmetric submodular functions

A function f : 2V → <+ is called submodular if f (A) + f (B) ≥ f (A ∩ B) + f (A ∪ B) holds
for all A, B ⊆ V, and it is called symmetric if f (A) = f (V \ A) holds for all A ⊆ V. For
an undirected graph G = (V, E) with edges weights we, the function f (S) = w(δ(S)) for
S ⊆ V is symmetric and submodular. We can extend the results for the feasibility version
of the problem to general symmetric submodular functions. The feasibility version of the
bounded size clustering problem for symmetric submodular function is defined as follows.
Given a symmetric submodular function f : 2V → <+, a weight function w : V → <+, a set
of terminals T ⊆ V, and a budget B, find a partitioning of V into clusters such that for each
cluster S ⊆ V we have |S ∩ T| ≤ 1 and size(S) = ∑v∈S wv + f (S) ≤ B.

We now briefly outline how Lemmas 1 and 2, and hence our algorithm for the feasibility
version, can be generalized to symmetric submodular functions. The generalization of the

‡This can be done by shrinking (T \ {v})∪ {s} into a super-vertex s′ (or alternately adding very high weight
edges between vertices in (T \ {v}) ∪ {s}) and finding a min-cut separating v and s′.
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proof of Lemma 1 follows from the observation that for any two sets A, B ⊆ V, we have
f (A \ B) + f (B \ A) = f (A ∩ B) + f (B ∩ A) = f (A ∩ B) + f (B ∪ A) ≤ f (A) + f (B) =
f (A) + f (B). Thus either f (A \ B) ≤ f (A) or f (B \ A) ≤ f (B) holds.

To generalize the proof of Lemma 2, we introduce a new element s to the ground set V
and define a symmetric submodular function g : V ∪ {s} → <+ as

g(A) =
{

∑v∈A wv, if s 6∈ A,
∑v 6∈A wv, if s ∈ A.

The function g corresponds to adding edges of weight wv between s and v ∈ V. We also
lift f from V to V ∪ {s} by defining f (A) = f (V ∩ A) for A ⊆ V ∪ {s}. It is easy to see
that for any A ⊆ V, we have size(A) = f (A) + g(A). Now note that a set separating two
subsets A1, A2 ⊂ V of elements that minimizes the symmetric submodular function f + g
can be computed by “merging” the elements A1 (respectively, A2) into a super-element a1
(respectively, a2) and using standard algorithms for symmetric submodular function mini-
mization [6] to separate elements a1 and a2. The proof of Lemma 2 thus holds for symmetric
submodular functions as well.

3 The optimization version
3.1 NP-hardness

We present an approximation preserving reduction from the 1
3 -balanced cut problem, which

is NP-hard, to the BSGC problem with T = ∅. The 1
3 -balanced cut problem is defined as

follows: given undirected graph G = (V, E) on n vertices with vertex weights wv ≥ 0
and edge weights we ≥ 0, partition the vertices into two non-empty clusters S ⊂ V and
V \ S such that min{w(S), w(V \ S)} ≥ 1

3 w(V) and w(δ(S)) is minimized. This problem is
NP-hard [4] and the best-known approximation for this problem that does not violate∗ the
balance constraint is O(log n) [10].

LEMMA 3. If there is a ρ-approximation for the BSGC problem with T = ∅, there is a ρ-
approximation to the 1

3 -balanced cut problem.

PROOF. Given an instance (G, w) of the 1
3 -balanced cut problem, we create an instance of

the BSGC problem as follows. We scale the vertex and edge weights so that 1 = minv∈V wv >
2 ∑e∈E we and let B = 2

3 w(V) + 1
2 and T = ∅. We then compute a ρ-approximation for

the BSGC problem. We can assume, without loss of generality, that the output consists of
exactly two clusters, as follows. As long as we have at least three clusters, say S1, S2, S3 with
w(S1) ≤ w(S2) ≤ w(S3), we can merge S1 and S2 into a single cluster without violating the
budget constraint. This merge does not increase the total edge-weight across the clusters.
Since minv wv = 1, it is now easy to see that the resulting two clusters, say S̃1 and S̃2 =
V \ S̃1, satisfy the balance condition and form a ρ-approximation for the 1

3 -balanced cut
problem.

3.2 The algorithm

In this section, we show how to find {S1, . . . , Sk} such that |Si ∩ T| ≤ 1 and w(δ(Si)) ≤
O(log n) · (B−w(Si)) for all i such that the total cut-weight is O(log2 n) times the optimum
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1. Initialize U ← V be to the set of not-yet-covered vertices.
2. Initialize the set of clusters S ← ∅.
3. While U 6= ∅ do:

(a) Find an approximately valid set S ⊆ V such that

w(δ(S))
|S ∩U| ≤ (c log n) · 2OPT

|U| .

(b) Add S to S .
(c) Let U ← U \ S.

4. Uncross the clusters in S .

Figure 2: Algorithm for BSGC

cut-weight. We think of BSGC as a set-cover problem. The elements to be covered are the
vertices and the sets are “valid” subsets of V.

DEFINITION 4. A subset S ⊆ V is called valid if |S ∩ T| ≤ 1 and w(S) + w(δ(S)) ≤ B. A
subset S ⊆ V is called approximately valid if |S ∩ T| ≤ 1 and

(c log n) · w(S) + w(δ(S)) ≤ (c log n) · B

holds, where c > 0 is an absolute constant, the value of which will be fixed later.

Let the cost of S be w(δ(S)). Clearly the optimum covers all the elements using only
valid subsets. Let OPT denote the cost of this optimum set cover. Note that the number
of sets is exponential in general. However the greedy set cover algorithm only needs the
following oracle: given a subset U ⊆ V of “yet to be covered” vertices, find a valid set S that
minimizes the ratio w(δ(S))

|S∩U| . Unfortunately, even this oracle is NP-hard, and hence we use an
approximation for the oracle. Our algorithm, given in Figure 2, picks approximately valid
subsets one by one to cover all the vertices. Then, using Lemma 1, it uncrosses the clusters
to make them disjoint.

Finding a minimum ratio approximately valid set

LEMMA 5. Given a non-empty subset U ⊆ V, we can find in polynomial time an approxi-
mately valid subset S ⊆ V such that

w(δ(S))
|S ∩U| ≤ (c log n) · 2OPT

|U| .

It is easy to see that this lemma combined with the analysis of the greedy set-cover
algorithm yields our result.
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Proof of Lemma 5. We argue that there exists a valid subset S∗ ⊆ V such that w(δ(S∗))
|S∗∩U| ≤

2OPT
|U| . Consider the optimum clustering {S∗i }. Note that

min
i

w(δ(S∗i ))
|S∗i ∩U| ≤

∑i w(δ(S∗i ))
∑i |S∗i ∩U| =

2OPT

|U| .

Thus the cluster S∗i that minimizes the ratio w(δ(S∗i ))
|S∗i ∩U| is a candidate set.

We next use the following tree decomposition result of Räcke [10]. Given an edge-
weighted undirected graph G = (V, E), a tree decomposition T is an edge-weighted rooted
tree which has a one-to-one correspondence between the vertices V and the leaves of T .

THEOREM 6. [Räcke [10]] There exists a probability distribution on polynomially many tree
decompositions T such that for all sets S ⊆ V and all T , we have w(δ(S)) ≤ wT (δ(S)) and

ET [wT (δ(S))] ≤ (c log n) · w(δ(S))

for an absolute constant c > 0. Here wT (δ(S)) denotes the minimum cut in T that separates
leaves in S from the other leaves. Moreover such a distribution and tree decompositions can
be found in polynomial time.

Let the constant c > 0 be as given in Theorem 6. Our algorithm first computes the tree
decompositions given in Theorem 6 and assigns a weight of wv to each leaf corresponding to
vertex v in each of these tree decompositions. From Theorem 6 and an averaging argument,
there exists a tree decomposition, say T ∗, in this collection such that

wT ∗(δ(S∗))
|S∗ ∩U| ≤ (c log n) · OPT

|U| and wT ∗(δ(S∗)) ≤ (c log n) · (B− w(S∗)).

Of course, we do not know which of the polynomially many tree decompositions T ∗ corre-
sponds to a-priori. Therefore our algorithm tries each of these tree decompositions T and
computes the set S, if it exists, such that

|S ∩ T| ≤ 1 and wT (δ(S)) ≤ (c log n) · (B− w(S)) (1)

holds and such that
wT (δ(S))
|S ∩U| (2)

is minimized. Finally, it outputs the set computed in this manner with the minimum ra-
tio (2).

Now fix a tree decomposition T . In order to compute a set S satisfying (1) with the
minimum ratio (2), the algorithm runs the following dynamic program. For each value of
k ∈ {1, . . . , |U|} and each possible weight w ≤ B, it computes S, if it exists, such that w(S) =
w, |S ∩ T| ≤ 1, |S ∩U| = k, and wT (δ(S)) is minimized. If wT (δ(S)) ≤ (c log n) · (B− w)
holds, it stores the set S as a candidate set. In the end, it outputs the candidate set with
minimum ratio (2).
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The dynamic program. To this end, using standard scaling techniques we assume that
the vertex and edge weights in T are polynomially bounded in n. More precisely, we can
assume without loss of generality that wv ≤ B for all v ∈ V; otherwise no feasible clustering
exists. Next we shrink all the edges e ∈ E with we > B, since such edges cannot cross
clusters in a feasible clustering. Furthermore, for all v such that wv ≤ B/n, we set wv = 0,
and for all e such that we ≤ B/n2, we set we = 0. In doing so, we can only violate the
budget by an extra constant factor. By scaling if necessary, we assume that the vertex and
edge weights and the budget B are non-negative integers. We also assume for simplicity
that c log n is an integer.

We can assume, without loss of generality, that T is a binary tree. If some internal node
v has l > 2 children, we can replace v by a binary tree with l leaves and attach the l children
to the l leaves one-to-one. We also give a cost of 1 + (c log n) · B to the edges of this new
binary tree. Since wT (δ(S∗)) ≤ (c log n) · B, no edge of such a high cost will be present in
the cut wT (δ(S)) output by the dynamic program. Thus, computing the desired set S in the
original tree is equivalent to computing S in the transformed binary tree.

For a node v ∈ T , let T v denote the subtree hanging from node v (including node v).
Now for each node v ∈ T , our dynamic program builds the following table. For each I ⊂ T
with |I| ≤ 1, integer weights w ≤ B and w1, w2 ≤ (c log n) · B, and an integer k ≤ |U|, we
store a subset S[v, I, w, w1, w2, k] of the leaves in T v, if it exists, such that

1. S ∩ T = I,
2. w(S) = w,
3. the minimum cut in T v separating S from the remaining leaves in T v has weight w1,
4. the minimum cut in T v separating S from the remaining leaves in T v as well as v has

weight w2, and
5. |S ∩U| = k.

Observe that a cut separating S from the remaining leaves in T v may contain node v on
either side of the cut. Therefore, w1 ≤ w2. It is easy to see that this table is of polynomial
size. The final output of the dynamic program is computed as follows: among all possible
sets S[r, I, w, w1, w2, k], where r is the root of T , output a set satisfying (1) that minimizes the
ratio (2).

We next show how to compute this table in bottom-up fashion in polynomial time. If
v is a leaf node, the table has no entries. For internal nodes v that have leaf nodes as its
children, it is easy to compute such a table. For all other internal nodes v, let p and q be its
children and assume that such tables are already computed for nodes p and q. Let wvp (resp.
wvq) denote the weight of edge (v, p) (resp. (v, q)) in T .

Given values of (I, w, w1, w2, k), we find disjoint sets

Sp = S[p, Ip, wp, wp
1 , wp

2 , kp]

and
Sq = S[q, Iq, wq, wq

1, wq
2, kq]

if they exist, for all possible decompositions I = Ip ∪ Iq, w = wp + wq, and k = kp + kq, and
all possible choices of wp

1 , wq
1, wp

2 , wq
2, such that the following conditions hold:

w1 = min{wp
1 + wq

1 + min{wvp, wvq}, wp
2 + wq

1, wp
1 + wq

2}, (3)
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and
w2 = min{wp

2 , wp
1 + wvp}+ min{wq

2, wq
1 + wvq}. (4)

Note that the expression (3) considers all possible ways of realizing a cut with weight w1 that
separates S from the remaining leaves in T v. In fact, the three terms correspond to whether
nodes p and q are on the same side of the cut as sets Sp and Sq, respectively. Similarly, the
expression (4) considers all possible ways of realizing a cut with weight w2 that separates S
from the remaining leaves in T v as well as v.

If there exist such sets Sp and Sq for any such decomposition, ties broken arbitrarily, we
store S = Sp ∪ Sq as the entry S[v, I, w, w1, w2, k]. Otherwise we leave the entry empty. The
correctness and the polynomial size of the dynamic program follows easily.

4 Conclusions
A consequence of our work is that the min-max multiway cut problem becomes polynomial-
time solvable if there are allowed to be clusters without terminals. This raises a question of
whether other graph problems become similarly easier if the number of clusters is not spec-
ified as part of the input. Our work also introduces many interesting open questions. Since
the feasibility version of BSGC is solvable in polynomial time, can one approximate BSGC, say
within a poly-logarithmic factor, without violating the budget constraint? In stream process-
ing applications, it is often important to find a clustering to minimize the maximum latency
of a path taken by a data stream, where an edge on a path contributes to the latency only if
it goes between two clusters. Studying the approximability of this problem is an important
research direction.
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ABSTRACT. We present a simple exact algorithm for the INDEPENDENT SET problem with a run-
time bounded by O(1.2132npoly(n)). This bound is obtained by, firstly, applying a new branching
rule and, secondly, by a distinct, computer-aided case analysis. The new branching rule uses the
concept of satellites and has previously only been used in an algorithm for sparse graphs. The
computer-aided case analysis allows us to capture the behavior of our algorithm in more detail than
in a traditional analysis. The main purpose of this paper is to demonstrate how a very simple algo-
rithm can outperform more complicated ones if the right analysis of its running time is performed.

1 Introduction

INDEPENDENT SET is one of the most important graph problems. Although it is one of the

classical NP-complete problems, it allows for very fast exact algorithms. Even the very triv-

ial branching algorithm that recursively tries whether a node of degree at least two belongs

to an independent set or not yields a runtime of O∗(1.47n)†. More sophisticated algorithms

improve this bound by a large margin.

In this paper, we present a new algorithm for INDEPENDENT SET with a runtime of

O∗(1.2132n) that improves over the runtime O∗(1.2201n) of the previously best published

algorithm by Fomin, Grandoni, and Kratsch [5]. Our algorithm is based on their algorithm

and is rather simple: We only use two simple branching rules and few simplification rules.

The improvement is based on (1) the usage of the new satellites branching rule, and (2) on

a new kind of a computer-generated proof. The latter enables us to estimate the effects of

reduction rules beyond the neighborhood of a single vertex.

Of course, there is a long history of computer-aided proofs, e.g., for the four color the-

orem [1, 2]. Still, computer-aided proofs are often hard to verify and sometimes regarded as

unaesthetic. We propose a framework that hopefully allows a better and easier verification

of automated proofs. The INDEPENDENT SET problem is well-suited for our framework,

since the efficiency of branching algorithms for INDEPENDENT SET depends mostly on the

case distinctions in small induced subgraphs. Our approach is to use a computer to gener-

ate all of them and to evaluate the algorithm in every individual case. Only when time or

space constraints render it impossible to generate all cases with a computer, we switch to a

classical analysis.

We only briefly recall previous results for INDEPENDENT SET: The first algorithm that

improves over the trivial bounds is due to Tarjan and Trojanowski [19]. This algorithm,
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†The O∗ notation suppresses polynomial factors.
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which was introduced as early as in 1977, already has a runtime bound of O∗(1.261n). Fur-

ther improvements were achieved by Jian [8] and Robson [17] to O∗(1.235) and O∗(1.228n),

respectively. In the same paper, Robson was also able to prove an upper bound of O∗(1.211n)
using exponential space. It is noteworthy that this is based on the Memorization technique,

which cannot be used in algorithms that employ so-called folding to remove nodes of degree

two.

Fomin, Grandoni, and Kratsch [5] recently employed their Measure & Conquer tech-

nique [6] to a new algorithm for INDEPENDENT SET with a runtime bounded by O∗(1.2201n)
that requires only polynomial space. The algorithm itself is extremely simple and the im-

proved runtime is mainly due to an elegant analysis and a new branching rule using mirrors.

Furthermore, it is worthwhile to mention that there is work in progress that might to

lead to an even faster, but very complicated algorithm that is partly computer-generated. A

preliminary version was published by Robson as a technical report [16, 18].

2 Preliminaries

Let G = (V, E) denote an undirected graph. The size of a maximum independent set in G is

denoted by α(G). For any v ∈ V and any i ∈ N, the set of nodes of having distance exactly i

to v is denoted by Ni(v), i.e., the neighborhood of v is denoted by N(v) = N1(v). Similarly,

Ni[v] denotes the set of nodes having distance at most i to v, such that N[v] = N1[v] =
N(v) ∪ {v}. The degree of a node v ∈ V, i.e., the number of its neighbors in G, is denoted by

deg(v) = degG(v). We assume the reader is familiar with the basic techniques and notation

of branching algorithms, in particular with the concept of measures (or potentials), branching

vectors, and their corresponding branching number.

The concept of mirrors was introduced by Fomin, Grandoni, and Kratsch [5]: For some

v ∈ V, a node u ∈ N2(v) is called mirror of v, if N(v) \ N(u) is a clique. We denote the set of

of a node v mirrors by M(v). Mirrors allow for efficient branching [5]:

LEMMA 1. Let G = (V, E) be a graph, and v ∈ V. Then α(G) = max{α(G \ (M(v) ∪
{v})), α(G \ N[v]) + 1}.

We also apply the concept of satellites, which has only been used in algorithms for

sparse graphs [9] before. Figure 1 shows some examples of mirrors and satellites, the latter

of which are defined as follows:

DEFINITION 2. Let G be a graph v ∈ V. A node u ∈ N2(v) is called satellite of v, if there is
some u′ ∈ N(v) such that N[u′] \ N[v] = {u}. The set of satellites of a node v is denoted by
S(v), and we also use the notation S[v] := S(v) ∪ {v}.

Note that simple branching algorithms such as the one by Fomin, Grandoni, and Kratsch

or our own algorithm typically perform well when they branch on a node v such that N2(v)
is large. If N2(v) is rather small, there usually is some mirror u of v and branching on v

according to Lemma 1 is still efficient. However, there are also some situations where N2(v)
is small, but v has no mirrors, which is the case in four of the five hardest cases in the anal-

ysis of Fomin, Grandoni, and Kratsch [5]. Fortunately, satellites allow us to improve these

cases, since by the number of edges between N(v) and N2(v), we can conclude that a satel-
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v u

N(v)

v u

u
′

N(v)

v

M(v)
S(v)

Figure 1: In the graph depicted on the left, u is a mirror of v. In the graph depicted in the

middle, u is a satellite of v (through u′). An optimal independent set in the graph on the

right contains all nodes in M(v) but no node in S(v). Thus, branching on G \ ({v} ∪ M(v))
and G \ N[{v} ∪ S(v)] at the same time does not yield the correct solution.

v
x y

u w

N(v)

Figure 2: The node v has two adjacent satellites and thus α(G) = α(G \ {v}): If an optimal

independent set contains x and v, we can replace v by w. If it contains y and v, we can pick

u instead of v.

lite of v must exist, if there is no mirror. The following lemma ([9], Lemma 1) defines the

corresponding branching rule.

LEMMA 3. Let G = (V, E) be a graph, and v ∈ V. Then α(G) = max{α(G \ {v}), α(G \
N[S[v]]) + |S(v)| + 1}.

Note that satellites are particularly useful on graphs with large maximum degree that

cannot be analyzed in a computer-aided proof. Unfortunately, we cannot simultaneously

branch on mirrors and satellites, as depicted in Figure 1.

Furthermore, our algorithm uses the following well-known reduction rules for inde-

pendent set that we shortly recall: Firstly, any nodes of degree zero or one can be added

to the solution. Similarly, nodes that dominate‡ some other node can be removed from G.

Finally, a nodes of degree two not subject to domination can be folded, i.e., its neighbors

can be merged and the node itself can be removed (see, e.g., [4]). Moreover, Fürer’s reduc-

tion rule [7] guarantees that each small induced subgraph contains at least three nodes with

edges to three distinct nodes in the remaining graph. A precise definition can be found in

the appendix.

Finally, satellites can also be used in the following reduction rule (exemplified in Fig-

ure 2), which was proven in [9].

LEMMA 4. Let G = (V, E) be a graph, and v, u, w ∈ V, such that u, w ∈ S(v) and {u, w} ∈ E.
Then α(G) = α(G \ {v}).

‡Let u, v ∈ V be two adjacent nodes. We say u dominates v iff N[u] ⊇ N[v].
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We say G is reduced, if no further reduction rules can be applied. Moreover, we de-

note by R(G) the reduced graph obtained from G by applying the reduction rules in some

(arbitrarily) fixed order until no more rules can be applied.

Following the Measure & Conquer paradigm [6], we define the following measure

on G. This will allow us to prove a better runtime bound than an analysis in |V|.
DEFINITION 5. Let ϕi = 0 for i ≤ 2, ϕi = 1 for i ≥ 7, ϕ3 = 0.474506, ϕ4 = 0.786716, ϕ5 =
0.920901, and ϕ6 = 0.979383: For a graph G = (V, E) and v ∈ V, we let ϕG(v) := ϕdegG(v)

and

ϕ(G) = ∑
v∈V

ϕG(v).

Obviously, ϕ(G) ≤ |V|. Any runtime bound in ϕ therefore immediately implies a run-

time bound in |V|. Note that the values for ϕi used in this definition are chosen in a way

that optimizes the obtained runtime bound. However, these values depend on several thou-

sand recurrences introduced later on, hence they can not be derived easily. We thus used a

complex optimization heuristic to compute these values. For i ≥ 5, ϕi is determined by the

runtime on regular graphs of degree i, whereas the values for ϕ3 and ϕ4 are determined by

more complex cases (see [10]).

We write ϕ(v) instead of ϕG(v) whenever G can easily be deducted from the context,

and let ∆d := min{ ϕi − ϕi−1 | 4 ≤ i ≤ d } be the minimal measure difference between two

nodes in reduced graphs with maximum degree d. Applying the reductions rules does not

increase the measure:

LEMMA 6. Let G = (V, E) be a graph. Then, ϕ(R(G)) ≤ ϕ(G).

PROOF. Removing nodes from the graph respects ϕ = ϕ(G), as some nodes are removed

completely and the degree of some adjacent nodes decreases. This does not increase the

degree of any node and since ϕi ≤ ϕi+1 for all i ∈ N, ϕ decreases whenever a node is

removed.

Whenever a node is folded, its two neighbors u, v are merged. The new node v′ can be

of higher degree than u and v, but will be at most deg(v′) ≤ deg(u) + deg(v)− 2. Thus, the

measure changes by at most a := ϕdeg(u)+deg(v)−2 − ϕdeg(u) − ϕdeg(v). A short computation

of all possible combinations shows a ≤ 0.

Finally, Fürer’s reduction rule either removes some nodes of the separator {u1, u2},

adds at most on edge between {u1, u2} or merges {u1, u2} into a new node u. Similar to

the cases above, removing nodes and merging nodes cannot increase ϕ. Adding an edge

between u1 and u2 does not increase ϕ, because at the same time other edges incident to u1

and u2 are removed.

3 A Simple Algorithm for the Independent Set Problem

Combining all the results above, we easily obtain a simple algorithm for the INDEPENDENT

SET problem (see Algorithm 1). Its correctness is easy to see, since the reduction rules are

valid and the two possible respective branching rules are correct by Lemmas 1 and 3.
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Algorithm 1 A fast algorithm for INDEPENDENT SET.

Input: a graph G = (V, E)
Output: α(G)

01: apply reduction rules to G;

02: if G is not connected then compute α for each component independently;

03: if G is cubic then apply algorithm for cubic graphs;

04: select v ∈ V of maximum degree that yields the best branching number;

05: if the mirror branch on v is more efficient than the satellite branch then

06: return max(α(G \ M[v]), 1 + α(G \ N[v]));

07: else return max(α(G \ {v}), 1 + |S(v)| + α(G \ N[S[v]]));

THEOREM 7. Let G = (V, E). Then, Algorithm 1 correctly returns α(G).

The remaining part of this paper is devoted to the runtime analysis of Algorithm 1. Ba-

sically, this is done by a large case distinction on the effects of the branching and reduction

rules when branching on a node v, until we obtain a cubic graph where a faster algorithm

exists [9]. If v is of rather high degree, even the trivial algorithm is fast enough. However,

with decreasing degree of v, the effects of branching and the subsequent application of re-

duction rules become more and more important. Down to a degree of five (in general) and

for some special cases of degree four, we are still able to give a classical theoretical analy-

sis. However, for the majority of cases having maximum degree of four, even very similar

graphs can result in completely different branching vectors. These effects are extremely

hard to tackle by an analysis that combines multiple cases. The sharpest runtime bound can

be obtained by looking at each possible case individually.

4 A Computer-Aided Case Distinction

Since it is impossible to enumerate each of the millions of possible cases by hand, we use

a computer-aided case distinction. Computer-aided proofs are nothing new in the analysis

of algorithms, although they still play only a minor role in this field. One example for a

computer-aided proof is the algorithm for MAX-2SAT by Kojevnikov and Kulikov [11].

The main problem of computer-generated proofs, and maybe the cause why they are

only seldom used, is the complicated verification. While traditional mathematical proofs

can be checked rather easily — or at least, we are used to it — this does not hold for com-

puter programs. We therefore propose a framework for computer-aided proofs that allows

for an easier verification.

4.1 A General Framework for Computer-Aided Proofs

The first step in any computer-aided proof is to decide which parts of the proof should use

the aid of a computer and which parts should be be proven by hand. This step naturally

must contain a (traditional) proof of how the computer-aided parts can be incorporated into

the traditional proof. The second step is to develop a program that outputs the proof itself

and additionally a well-defined certificate that lets a reader validate the proof (on a related
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note, we refer the reader to the concept of robust and certifying algorithms, see, e.g., [3, 12]).

Finally, the proof must be independently validated using the certificate.

We use the framework for the INDEPENDENT SET problem as follows: As outlined

above, we want to use a computer-aided proof for certain graphs of maximum degree four,

all remaining cases are to be proven by a traditional analysis. Since there are infinitely

many graphs of maximum degree four, we only evaluate the branching on a finite number

of subgraphs (called graphlets, for a formal definition see below). By Theorem 13, this is

sufficient.

We developed a computer program that generates all of these graphlets and simulates

the two possible branchings (mirrors and satellites) and the subsequent application of the

reduction rules. This yields a list of corresponding branching vectors. A complete docu-

mentation of this program can be found in [13]. The certificate is given as the complete list

of graphlets generated together with their corresponding branching vectors. The certificate

and its documentation is publicly available at [10].

In order to verify our proof, one can use the certificate to check (1) whether the cer-

tificate is complete, i.e., contains each graphlet or an isomorphic one, (2) whether the cor-

responding branching vector matches the graphlet, and finally (3) whether the branching

vector yields a branching number at most 1.2132.

Finally, an independent team developed programs that validated our certificate, and

verified that each of the aforementioned claims actually holds. In the verification team,

there was a strong emphasize on clean and simple code so that the verification process can

easily be understood by third parties. A full documentation of the verification programs

can be found in [15].

We are not aware of any similarly exhaustive approaches to computer-aided proofs that

include a formal definition of goals, the proof including a certificate, and particularly an in-

dependent verification, with a full documentation of the programs available. An example

of an automated proof coming close to our framework are those for MAX-2-SAT by Ko-

jevnikov and Kulikov [11]. Their certificate however does not seem to have been verified

independently before publication.

4.2 Generating all Graphlets of Maximum Degree Four

In this section, we give the theoretical foundations for the computer-aided proof. Firstly,

we define a notion for reduction rules applied to only a well-defined subgraph of a graph

G and show that it this suffices to obtain lower bounds for the real effects of the reduction

rules.

DEFINITION 8. Let G = (V, E) be a graph and let I ⊆ V. We define RI(G) as the graph

obtained from G by applying the reduction rules applied to nodes in I only, i.e., (1) remove
u ∈ I if deg(u) ≤ 1; (2) remove u ∈ I if u dominates some u′ ∈ I; (3) remove u ∈ I if u has
adjacent satellites u1, u2 ∈ S(u) ∩ I; (4) if I contains a separator for G of size at most two,
apply Fürer’s reduction rule; and (5) apply folding to u ∈ I if N(u) ⊆ I.

From now on, we wlog assume that the reduction rules R on G are always applied in

the same order as in RI .
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LEMMA 9. Let G = (V, E) be a reduced graph of maximum degree d, I ⊆ V, U ⊆ I. Let
G′ = (V ′, E′) = RI(G \ U) and let ∆e :=

∣∣{ {u, v} ∈ E(G) | u ∈ I, v /∈ I
}∣∣ −

∣∣{ {u, v} ∈
E(G′) | u ∈ I, v /∈ I

}∣∣ denote by how much the number of edges between I and V \ I

changes when applying the reduction rules to I. Then

ϕ(R(G \ U)) ≤ ϕ(RI(G \ U)) = ϕ(G′))

≤ ϕ(G)− ∑
v∈I\V′

ϕG(v) − ∑
v∈I∩V′

(
ϕG(v) − ϕG′(v)

)
− ∆e min{ϕ3/3, ∆d}.

This lemma allows us to evaluate our branching on subgraphs G[I] quite easily: After

removing nodes by branching and applying the reduction rules RI , we can simply count

how the degree of all nodes in I changed and add min{ϕ3/3, ∆d} for each removed edge

from I to the remaining graph. Note that this is the minimum value each edge contributes

to the measure.

DEFINITION 10. Let H = (I ∪ O, E) be graph, such that I ∩ O = ∅, and let v ∈ I such that
I = Ni[v], O = Ni+1(v) and deg(u) = 1 for u ∈ O. Moreover, let deg(v) ≥ deg(u) for all

u ∈ I ∪O. We call (H, v) graphlet of radius i. We call I the inner nodes of (H, v) and the set
of edges between I and O the anonymous edges.

Note that the notation of the radius i is motivated by the fact that we are only interested

in the number of edges from Ni(v) to Ni+1(v) and to which nodes in Ni(v) they are incident.

Similarly to Lemma 9, we will restrict our branching and the application of the reduction

rules to I = Ni[v].

DEFINITION 11. Let G = (V, E) be a graph, v ∈ V, and (H = (I ∪ O, E′), v) be a graphlet
of radius i. We say G contains (H, v) iff (1) I ⊆ V, (2) H[I] is an induced subgraph of G,
(3) Ni−1

G [v] = I, and (4) degG(u) = degH(u) for all u ∈ I.

Note that by these conditions, |O| = |{ {u, w} ∈ E | u ∈ I, w /∈ I }|. While this

definition is somewhat technical, the intuition behind it is rather simple: The nodes in I

form not only an induced subgraph of G, but I is only connected to G \ I via nodes in Ni
G(v).

Moreover, the degree of all nodes in I is the same in both graphs and thus the number of

edges between G[I] and G \ I as well as between H[I] = G[I] and H \ I is identical. See

Figure 3 for an example.

LEMMA 12. Let G = (V, E) be a reduced graph that contains a graphlet (H = (I ∪ O, E′), v)
and U ⊆ I. Let G′ = RI(G \ U) and H′ = RI(H \ U). Then, (1) G[V \ I] = G′[V ′ \ I], (2)

degG′(v) ≤ degH′(v) for all v ∈ I, and (3)
∣∣{ {u, w} ∈ E(G′) | u ∈ I, w /∈ I

}∣∣ ≤
∣∣{ {u, w} ∈

E(H′) | u ∈ I, w /∈ I
}∣∣.

PROOF. Since we restrict the reduction rules to I, any edge that is not incident to I can-

not be affected by the reduction rules. Moreover, only nodes in I can be removed by the

restricted reduction rules. Thus, G[V \ I] = G′[V ′ \ I].

By induction over the number of applied reduction rules, we easily obtain Gi[I] = Hi[I]
and degGi

(u) ≤ degHi
(u) for all u ∈ I, where Gi (and Hi, resp.) denotes the graph G (and

H, resp.) after i reduction steps:
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Figure 3: The graph G on the left contains the graphlet (H, v) of orbit 1 on the right. Note

that u1 and u4 have a common neighbor in N2(v) in G, but not in (H, v).

1. If I contains a separator of size two in Hi, this is also a separator in Gi and vice versa.

Moreover, Gi[I] = Hi[I] implies that Fürer’s reduction rule is applied in exactly the same

way in both graphs, as the optimal independent sets of these graphs are the same. Hence,

Gi+1[I] = Hi+1[I] and degGi+1
(u) ≤ degHi+1

(u) for all u ∈ I.

2. Let u ∈ I be a node that is removed by one of the reduction rules. Removing u in

Gi and removing u in Hi removes exactly the same edges within Gi[I] = Hi[I] before the

node is removed. Thus, after the removal degGi+1
(w) ≤ degHi+1

(w) for all w ∈ I and again

Gi+1[I] = Hi+1[I].
3. Let u ∈ I be a node that is subject to folding in RI . By definition of RI , both neighbors

u1, u2 of u must belong to I. In Gi as well as in Hi, any edge {u2, w} becomes the new edge

{u1, w}, Moreover, u and u2 are removed in both graphs. Therefore, Gi+1[I] = Hi+1[I]
holds after folding u. Since only edges incident to u2 are changed, we have degGi+1

(w) ≤
degHi+1

(w) for all w ∈ I \ {u1}.

Let SH = (NHi
(u1) ∩ NHi

(u2)) \ {u} and SG = (NGi
(u1) ∩ NGi

(u2)) \ {u}. Then SH ⊆
SG, as the only common neighbors of u1 and u2 in Hi must be in I and Gi[I] = Hi[I]. But then,

degGi+1
(u1) = degGi

(u1) + degGi
(u2)− 2− |SG | and degHi+1

(u1) = degHi
(u1) + degHi

(u2)−
2 − |SH| imply degGi+1

(u1) ≤ degHi+1
(u1) by induction. We obtain

∣∣{ {u, w} ∈ E(G′) | u ∈ I, w /∈ I
}∣∣ ≤

∣∣{ {u, w} ∈ E(H′) | u ∈ I, w /∈ I
}∣∣

as a direct consequence of this.

Combining the results above, we can now conclude that is sufficient to evaluate our

branching algorithm on graphlets of some fixed radius. After branching and applying the

reduction rules to the inner nodes of the graphlet, we only need to analyze how the inner

nodes changed and how many anonymous edges are removed to obtain a branching num-

ber and (together with the remaining cases) an upper bound for the runtime of Algorithm 1.

THEOREM 13. Let G = (V, E) be a reduced graph of maximum degree d that contains the

graphlet (H = (I ∪ O, E′), v). Let U ⊆ I and H′ = RI(H \ U). Then

ϕ(G)− ϕ(R(G \ U)) ≥ ∑
u∈I∩V(H′)

ϕH(u) − ϕH′(u) + ∑
u∈I\V(H′)

ϕH(u)

+∆E(H) min{ϕ3/3, ∆d},
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where

∆E(H) :=
∣∣{ {u, w} ∈ E(H) | u ∈ I, w ∈ O

}∣∣ −
∣∣{ {u, w} ∈ E(H′) | u ∈ I, w ∈ O

}∣∣

denotes the number of anonymous edges that are removed by the reduction rules.

PROOF. Let G′ = RI(G \ U). By Lemma 9, we have

ϕ(G)− ϕ(R(G \ U)) ≥ ∑
u∈I∩V(G′)

ϕG(u)− ϕRI(G\U)(u) + ∑
u∈I\V(G′)

ϕG(u)

+∆E(G) min{ϕ3/3, ∆d},

where

∆E(G) =
∣∣{ {u, w} ∈ E(G) | u ∈ I, w /∈ I

}∣∣ −
∣∣{ {u, w} ∈ E(G′) | u ∈ I, w /∈ I

}∣∣.

Since G contains the graphlet (H, v), we have
∣∣{ {u, w} ∈ E(G) | u ∈ I, w /∈ I

}∣∣ =
∣∣{ {u, w} ∈ E(H) | u ∈ I, w /∈ I

}∣∣.

Thus, statement (3) from Lemma 12 yields ∆E(G) ≥ ∆E(H). By the definition of graphlets,

ϕG(u) = ϕH(u) for all u ∈ I. Moreover, Lemma 12 implies degG′(u) ≤ degH′(u) for all

u ∈ I. Hence, ϕG′(u) ≤ ϕH′(u) for all u ∈ I and we obtain the claimed estimation.

We can now use use a computer-aided proof for the following theorem:

THEOREM 14. Let G = (V, E) be a reduced graph of maximum degree four and let v ∈ V

such that deg(v) = 4 and |N2(v)| ≤ 7. Then branching on v as described in Algorithm 1
yields a branching with a branching number of at most 1.2132.

PROOF. Let H denote the set of all graphlets (H, v) of radius 2 such that deg(v) = 4 and

|N2(v)| ≤ 7. Then G contains some graphlet (H′, v) ∈ H. By Theorem 13, it is sufficient to

simulate the branching on (H′, v) and count how the node of the inner nodes changes and

how many anonymous edges are removed.

We now have a formal specification of what the computer shall compute as required by

the framework outlined in the previous section. Generating all graphlets and computing the

branching vectors yields a branching number of at most 1.2132. The certificate is publicly

available at [10] and a complete description of the generation and verification programs can

be found in [13] and [15], respectively.

5 A Traditional Analysis of the Remaining Cases

Finally, we give an traditional analysis for the remaining cases. Due to the combinatorial

explosion, it is impossible to use a computer-aided case distinction for these cases using the

methods described in the previous section.

Once the graph is cubic, we apply the algorithm for sparse graphs by Razgon [14],

which solves INDEPENDENT SET on cubic graphs in time O∗(1.0892n). However, we need

to be careful because in general, n ≥ ϕ(G), but we measure the running time in the latter.

Rewriting the statement in terms of our measure, we obtain the following bound.
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COROLLARY 15. Let G = (V, E) be a reduced cubic graph, i.e., ϕ(G) = nϕ3. Then,
Algorithm 1 solves INDEPENDENT SET on G in time O∗(1.0892n) = O∗(1.0892ϕ(G)/ϕ3) ≤
O∗(1.198ϕ(G)).

Please note that we could use a slower but simpler algorithm on cubic graphs, as long

as its runtime is at most O∗(1.096n). For increased readability, we will denote the measure

difference between G and R(G \ U), for U ⊆ V, by ∆ϕ(U) := ϕ(G)− ϕ(R(G \ U)).

For graphs of maximum degree four, we only need to handle the case where |N2(v)| ≥
8. Since a lot of nodes are affected in this case, we easily obtain a good runtime bound.

LEMMA 16. Let G = (V, E) be a reduced graph of maximum degree four. Let v ∈ V such
that deg(v) = 4 and |N2(v)| ≥ 8. Then branching on v as described in Algorithm 1 yields a
branching with a branching number of at most 1.201.

PROOF. In G \ N[v], the degree of all nodes in N2(v) is reduced by at least one. Thus,

the measure changes by at least 8 min{ϕ3, ϕ4 − ϕ3}. Let d3 = |{ u ∈ N(v) | deg(u) = 3 }|.
Then ∆ϕ({v}) = ϕ4 + d3 ϕ3 + (4 − d3)(ϕ4 − ϕ3) and ∆ϕ(N[v]) = ϕ4 + d3 ϕ3 + (4 − d3)ϕ4.

Computing all five possible branching vectors
(

ϕ4 + d3 ϕ3 + (4 − d3)(ϕ4 − ϕ3), ϕ4 + d3 ϕ3 +

(4 − d3)ϕ4

)
yields the desired bound.

Now, only the analysis for graphs of higher degree remains. A complete list of the

respective branching vectors and their corresponding branching numbers obtained in the

following lemmas can be found at [10].

LEMMA 17. Let G = (V, E) be a reduced graph of maximum degree d ≥ 5 and let v ∈ V

such that deg(v) = d. Moreover, let M(v) = ∅ and S(v) = ∅. Then branching on v as
described in Algorithm 1 yields a branching with a branching number of at most 1.2132.

LEMMA 18. Let G = (V, E) be a reduced graph of maximum degree d ≥ 5 and let v ∈ V

such that deg(v) = d. Moreover, let u ∈ M(v). Then branching on v as described in
Algorithm 1 yields a branching with a branching number of at most 1.2132.

PROOF. Let l = deg(u), S := N(v) ∩ N(u) and s := |N(v) ∩ N(u)|. Moreover, let T :=
(N(v) ∪ N(u)) \ S. Note that the degree of all nodes in S decreases by at least two in R(G \
{v, u}). Therefore, we have

∆ϕ({v, u}) ≥ ϕd + ϕl + ∑
w∈T

(ϕdeg(w) − ϕdeg(w)−1) + ∑
w∈S

(ϕdeg(w) − ϕdeg(w)−2) and

∆ϕ(N[v]) ≥ ϕd + ϕl − ϕl−s + ∑
w∈N(v)

ϕdeg(w) + (d − s) min{ϕ3, ∆d},

which yields a good enough branching vector (∆ϕ({v, u}), ∆ϕ(N[v])) for all cases.

LEMMA 19. Let G = (V, E) be a reduced graph of maximum degree d ≥ 5 and let v ∈ V

such that deg(v) = d. Moreover, let S(v) 6= ∅ and let M(v) = ∅. Then branching on v as
described in Algorithm 1 yields a branching with a branching number of at most 1.2132.
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PROOF. Note that M(v) = ∅ implies that each node in N2(v) has at most d − 2 neighbors

in N(v). Assume |S(v)| ≥ 2 or S(v) = {u} and N(u) \ N(v) 6= ∅. Since wlog V \ (N[v] ∪
N[S(v)]) 6= ∅ (otherwise the graph is of constant size), we obtain the branching vectors

(
ϕd + ∑

w∈N(v)

(ϕdeg(w) − ϕdeg(w)−1), ϕd + ∑
w∈N(v)

ϕdeg(w) + 2ϕ3 + 3 min{ϕ3/3, ∆d}
)

,

because at least two nodes in N2(v) of degree at least three are removed and at least three

edges connect the corresponding graph to the remaining graph. Otherwise, G contains a

separator of size two.

Finally, let S(v) = {u} and N(u) ⊆ N(v). Let deg(u) = d′. Since at least d − d′ nodes in

N(v) have at least two neighbors in N2(v) (otherwise, |S(v) > 1|), we obtain the branching

vector
(

ϕd + ∑
w∈N(v)

(ϕdeg(w) − ϕdeg(w)−1), ϕd + ϕd′ + ∑
w∈N(v)

ϕdeg(w) + 2(d − d′) min{ϕ3/3, ∆d}
)

.

Again, these branching vectors are good enough except if deg(v) = 5 and all neighbors

of v are of degree of five as well. But then we can branch on a neighbor v′ of v, such that

N(v′) contains a node of degree four or less, because the satellite is no mirror and hence of

degree 3.

We now easily obtain our main result:

THEOREM 20. Let G = (V, E) be a graph. Algorithm 1 solves INDEPENDENT SET on G in

time bounded by O∗(1.2132n).

PROOF. First note that for graphs of maximum degree d > 7, even the simple branching

vector (
ϕd + ∑

w∈N(v)

(ϕdeg(w) − ϕdeg(w)−1), ϕd + ∑
w∈N(v)

ϕdeg(w)

)

is good enough. Also note that ϕi = ϕ7 for all i ≥ 8, and thus increasing the maximum

degree to values larger than 8 can never yield a worse branching vector than for a smaller

maximum degree, as N(v) contains only more neighbors and it makes no difference whether

N(v) contains node of degree 8 or a node of higher degree. A complete list of the respective

branching vectors for graphs of maximum degree 8 can be found at [10].

For graphs of maximum degree at most seven, the runtime bound follows from Lem-

mas 17, 18, and 19, Lemma 16 and Theorem 14, as well as Corollary 15.

6 Conclusion

Although it took some considerable effort to analyze the running time of our algorithm for

INDEPENDENT SET, in particular the computer-aided part and its independent verification,

we believe the results legitimate this effort. Hopefully, the proposed framework is able to

resolve some doubt regarding computer-aided proofs, especially since the certificate can

be (and already has been) used to independently validate the proof. We hope that this

approach can be used for other problems as well.



298 A FINE-GRAINED ANALYSIS OF A SIMPLE INDEPENDENT SET ALGORITHM

References

[1] K. Appel and W. Haken. Solution of the four color map problem. Scientific American,

237:108–121, 1977.

[2] K. Appel, W. Haken, and J. Koch. Every planar map is four colorable. Journal of Mathe-

matics, 21:439–567, 1977.

[3] M. Blum and S. Kannan. Designing programs that check their work. J. ACM, 42(1):269–

291, 1995.

[4] J. Chen, I. Kanj, and W. Jia. Vertex cover: Further observations and further improve-

ments. In Proc. of 25th WG, number 1665 in LNCS, pages 313–324. Springer, 1999.

[5] F. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: A simple O(20.288n)
independent set algorithm. In Proc. of 17th SODA, pages 18–25, 2006.

[6] F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: Domination – A case

study. In Proc. of 32nd ICALP, LNCS, pages 191–203. Springer, 2005.
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Using Elimination Theory to construct
Rigid Matrices
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ABSTRACT. The rigidity of a matrix A for target rank r is the minimum number of entries of A that
must be changed to ensure that the rank of the altered matrix is at most r. Since its introduction
by Valiant [22], rigidity and similar rank-robustness functions of matrices have found numerous
applications in circuit complexity, communication complexity, and learning complexity. Almost all
n × n matrices over an infinite field have a rigidity of (n − r)2. It is a long-standing open question to
construct infinite families of explicit matrices even with superlinear rigidity when r = Ω(n).
In this paper, we construct an infinite family of complex matrices with the largest possible, i.e., (n −
r)2, rigidity. The entries of an n × n matrix in this family are distinct primitive roots of unity of
orders roughly exp(n4 log n). To the best of our knowledge, this is the first family of concrete (but
not entirely explicit) matrices having maximal rigidity and a succinct algebraic description.
Our construction is based on elimination theory of polynomial ideals. In particular, we use results
on the existence of polynomials in elimination ideals with effective degree upper bounds (effective
Nullstellensatz). Using elementary algebraic geometry, we prove that the dimension of the affine
variety of matrices of rigidity at most k is exactly n2 − (n − r)2 + k. Finally, we use elimination
theory to examine whether the rigidity function is semicontinuous.

1 Introduction

Valiant [22] introduced the notion of matrix rigidity. The rigidity function Rig(A, r) of a

matrix A for target rank r is defined to be the smallest number of entries of A that must be

changed to ensure that the altered matrix has rank at most r. It is easy to see that for every

n × n matrix A (over any field), Rig(A, r) 6 (n − r)2. Valiant also showed that, over an infi-

nite field, almost all matrices have rigidity exactly (n − r)2. It is a long-standing open ques-

tion to construct infinite families of explicit matrices with superlinear rigidity for r = Ω(n).

Here, by an explicit family, we mean that the n × n matrix in the family is computable by a

deterministic Turing machine in time polynomial in n or by a Boolean circuit of size poly-

nomial in n. Lower bounds on rigidity of explicit matrices are motivated by their numerous

applications in complexity theory. In particular, Valiant showed that lower bounds of the

form Rig(A, ǫn) = n1+δ (where ǫ and δ are some positive constants) imply that the linear

transformation defined by A cannot be computed by arithmetic circuits of linear size and

logarithmic depth consisting of gates that compute linear functions of their inputs. Since

then, applications of lower bounds on rigidity and similar rank-robustness functions have

been found in circuit complexity, communication complexity, and learning complexity ([7],
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[13], [15], [18], [19]). Two comprehensive surveys on this topic are [4] and [5]. Over finite

fields, the best known lower bound for explicit A was first proved by Friedman [8] and is

Rig(A, r) = Ω( n2

r log n
r ) for parity check matrices of good error-correcting codes. Over infi-

nite fields, the same lower bound was proved by Shokrollahi, Spielman, and Stemann [21]

for Cauchy matrices, Discrete Fourier Transform matrices of prime order (see [14]), and

other families. Note that this type of lower bound reduces to the trivial Rig(A, r) = Ω(n)
when r = Ω(n). In [16], lower bounds of the form Rig(A, ǫn) = Ω(n2) were proved when

A = (
√

pjk) or when A = (exp(2πi/pjk)), where pjk are the first n2 primes. These matrices,

however, are not explicit in the sense defined above.

In this paper, we construct an infinite family of complex matrices with the highest pos-

sible, i.e., (n− r)2 rigidity. The entries of the n× n matrix in this family are primitive roots of

unity of orders roughly exp(n4 log n). We show that the real parts of these matrices are also

maximally rigid. Like the matrices in [16], this family of matrices is not explicit in the sense

of efficient computability described earlier. However, one of the motivations for studying

rigidity comes from algebraic complexity. In the world of algebraic complexity, any ele-

ment of the ground field (in our case C) is considered a primitive or atomic object. In this

sense, the matrices we construct are explicitly described algebraic entities. To the best of our

knowledge, this is the first construction giving an infinite family of non-generic/concrete

matrices with maximum rigidity. It is still unsatisfactory, though, that the roots of unity in

our matrices have orders exponential in n. Earlier constructions in [16] use roots of unity

of orders O(n2) but the bounds on rigidity proved there are weaker: n(n − cr) for some

constant c > 2.

We pursue a general approach to studying rigidity based on elementary algebraic ge-

ometry and elimination theory. To set up the formalism of this approach, we begin by re-

proving Valiant’s result that the set of matrices of rigidity less than (n − r)2 form a Zariski

closed set in C
n×n, i.e., such matrices are solutions of a finite system of polynomial equa-

tions (hence a generic matrix has rigidity at least (n − r)2). In fact, we prove a more general

statement: the set of matrices of rigidity at most k has dimension (as an affine variety) ex-

actly n2 − (n − r)2 + k. This sheds light on the geometric structure of rigid matrices. Our

transversality argument in this context is clearer and cleaner than an earlier attempt in this

direction (in the projective setting) by [11]. To look for specific matrices of high rigidity, we

consider certain elimination ideals associated to matrices with rigidity at most k. A result

in [1] using effective Nullstellensatz bounds [2], [9] shows that an elimination ideal of a

polynomial ideal must always contain a nonzero polynomial with an explicit degree upper

bound (Theorem 8). We then use simple facts from algebraic number theory to prove that a

matrix whose entries are primitive roots of sufficiently high orders cannot satisfy any poly-

nomial with such a degree upper bound. This gives us the claimed family of matrices of

maximum rigidity.

Our primary objects of interest in this paper are the varieties of matrices with rigidity

at most k. For a fixed k, we have a natural decomposition of this variety based on the pat-

terns of changes. We prove that this natural decomposition is indeed a decomposition into

irreducible components (Corollary 13). In fact, these components are defined by elimination

ideals of determinantal ideals generated by all the (r + 1)× (r + 1) minors of an n× n matrix

of indeterminates. Better effective upper bounds on the degree of a nonzero polynomial in
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the elimination ideal of determinantal ideals than given by Theorem 8 would lead to similar

improvements in the bound on the order of the primitive roots of unity we use to construct

our rigid matrices. While determinantal ideals have been well-studied in mathematical lit-

erature, their elimination theory does not seem to have been as well-studied. Application

to rigidity of these elimination ideals of determinantal ideals might be a natural motivation

for studying them.

We next consider the question: given a matrix A, is there a small neighborhood of A

within which the rigidity function is nondecreasing, i.e. such that every matrix in this neigh-

borhood has rigidity at least equal to that of A? This is related to the notion of semicontinuity

of the rigidity function. We give a family of examples to show that the rigidity function is

in general not semicontinuous. However, the specific matrices we produce above, by their

very construction, have neighborhoods within which rigidity is nondecreasing.

1.1 Definitions and Notations

Let F be a field. Then, by Mn(F) we denote the algebra of n × n matrices over F. At times,

when it is clear from the context, we will denote Mn(F) by Mn. Let X ∈ Mn(F). Then by

Xij we will denote the (i, j)-th entry of X. Given X ∈ Mn(F), the support of X is defined as

Supp(X) := {(i, j) | Xij 6= 0 ∈ F}. Given a non-negative integer k, we define

S(k) := {X ∈ Mn(F) : |Supp(X)| 6 k}.

Thus, S(k) is the set of matrices over F with at most k non-zero entries. A pattern π is a

subset of the positions of an n × n matrix. Then, we define:

S(π) := {X ∈ Mn(F) : Supp(X) ⊆ π}.

Note that S(k) = ∪|π|=kS(π).

We say that a matrix X is (r, k)-rigid if changing at most k entries of X does not bring

down the rank of the matrix to a value 6 r. More formally,

DEFINITION 1. A matrix X is (r, k)-rigid if rank(X + T) > r whenever T ∈ S(k).

DEFINITION 2. The rigidity function Rig(X, r) is the smallest integer k for which the matrix
X is not (r, k)-rigid. That is, Rig(X, r) is the minimum number of entries we need to change
in the matrix X so that the rank becomes at most r:

Rig(X, r) := min{Supp(T) : rank(X + T) 6 r}.

Sometimes, we will allow T to be chosen in Mn(L) for L an extension field of F. In this case
we will denote the rigidity by Rig(X, r, L).

Let RIG(n, r, k) denote the set of n × n matrices X such that Rig(X, r) = k. Similarly, we

define RIG(n, r, > k) to be the set of matrices of rigidity at least k and RIG(n, r, 6 k) to be the

set of matrices of rigidity at most k. For a pattern π of size k, let RIG(n, r, π) be the set of

matrices X such that for some Tπ ∈ S(π) we have rank(X + Tπ) 6 r. Then we have

RIG(n, r, 6 k) =
⋃

π,|π|=k

RIG(n, r, π).
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1.2 Elimination Theory: Closure Theorem

We refer the reader to a standard text in algebraic geometry [6, 20] for the necessary back-

ground. Here we recall a basic result from Elimination Theory which is directly used in

the paper. As the name suggests, Elimination Theory deals with elimination of a subset of

variables from a given set of polynomial equations and finding the reduced set of polynomial

equations (not involving the eliminated variables). The main results of Elimination Theory,

especially the Closure Theorem, describe a precise relation between the reduced ideal and

the given ideal, and its corresponding geometric interpretation.

Given an ideal I = 〈 f1, . . . , fs〉 ⊆ F[x1, . . . , xn], the l-th elimination ideal Il is the ideal of

F[xl+1, . . . , xn] defined by Il := I ∩ F[xl+1, . . . , xn].

THEOREM 3.(Closure Theorem, page 125, Theorem 3 of [6])

Let I be an ideal of F[x1, . . . , xn, y1, . . . , ym] and In := I
⋂

F[y1, . . . , ym] be the n-th elimination
ideal associated to I. Let V(I) and V(In) be the subvarieties of A

n+m and A
m (the affine

spaces over F of dimension n + m and m respectively) defined by I and In respectively. Let
p be the natural projection map from A

n+m → A
m (projection map onto the y-coordinates).

Then,

1. V(In) is the smallest (closed) affine variety containing p(V(I)) ⊆ A
m. In other words,

V(In) is the Zariski closure of p(V(I))(F̄) ⊆ F̄m.
2. When V(I)(F̄) 6= φ, there is an affine variety W strictly contained in V(In) such that

V(In) − W ⊆ p(V(I)).

2 Use of Elimination Theory

2.1 Determinantal Ideals and their Elimination Ideals

We would like to investigate the structure of the sets RIG(n, r, 6 k) and RIG(n, r, π) and their

Zariski closures

W(n, r, 6 k) := RIG(n, r, 6 k) and

W(n, r, π) := RIG(n, r, π)

in the n2-dimensional affine space of n × n matrices. Let X be an n × n matrix with entries

being indeterminates x1, . . . , xn2 . For a pattern π of k positions, let Tπ be the n × n matrix

with indeterminates t1, . . . , tk in the positions given by π. Note that saying X + Tπ has rank

at most r is equivalent to saying that all its (r + 1) × (r + 1) minors vanish. Let us consider

the ideal generated by these minors:

I(n, r, π) :=
〈

Minors(r+1)×(r+1)(X + Tπ)
〉
⊆ F[x1, . . . , xn2 , t1, . . . , tk]. (1)

It then follows from the definition of rigidity that RIG(n, r, π) is the projection from A
n2 ×A

k

to A
n2

of the algebraic set V(I(n, r, π))(F). Thus, if we define the elimination ideal

EI(n, r, π) := I(n, r, π) ∩ F[x1, . . . , xn2 ] ⊆ F[x1, . . . , xn2 ],
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then by the Closure Theorem (Theorem 3), we obtain

W(n, r, π) = V(EI(n, r, π)). (2)

Note that

W(n, r, 6 k) =
⋃

π,|π|=k

W(n, r, π).

2.2 Valiant’s Theorem

The following theorem due to Valiant [22, Theorem 6.4, page 172] says that a generic matrix

has rigidity (n − r)2. That is, for k < (n − r)2, the dimension of W(n, r, 6 k) is strictly less

than n2.

A reader familiar with Valiant’s proof will realize that our proof is basically a rephrasing

of Valiant’s proof in the language of algebraic geometry. The point of this proof is to set up

the formalism and use it later; in particular, when we compute the exact dimension of the

rigidity variety W(n, r, 6 k).

THEOREM 4.(Valiant) Let n > 1, 0 < r < n and 0 6 k < (n − r)2. Let W := W(n, r, 6 k) be

as above. Then,
dim(W) < n2.

PROOF. Let π ⊆ {(i, j)|1 6 i, j 6 n} be a pattern of size k. Let τ be the index set of a fixed

r × r minor. For a matrix B, let Bτ denote the minor of B indexed by τ. Define RIG(n, r, π, τ)
to be the set of all n × n matrices A that satisfy the following properties: there exists some

n × n matrix Tπ such that

1. Supp(Tπ) ⊆ π,

2. rank(A + Tπ) = r, and

3. det((A + Tπ)τ) 6= 0 where τ denotes the fixed r × r minor as above.

Recall that S(π) is the set of matrices whose support is contained in π. Let us also

define

RANK(n, r, τ) := {C ∈ Mn | rank(C) = r and det(Cτ) 6= 0}.

By definition, every element A ∈ RIG(n, r, π, τ) can be written as C−Tπ, with C ∈ RANK(n, r, τ)
and Tπ ∈ S(π).

We state the following lemma without proof. (Details can be found in the full version [10]).

LEMMA 5. dim(RANK(n, r, τ)) = n2 − (n − r)2.

Consider the following natural map Φ:

A
n2−(n−r)2 × A

k ⊃ RANK(n, r, τ) × S(π)
Φ−→ Mn

∼= A
n2

, (3)

taking (X, Tπ) to X + Tπ . The image of Φ is exactly RIG(n, r, π, τ).

Also, note that dim(S(π)) = |π|. We note that if there is a surjective morphism from

an affine variety X to another affine variety Y, then dim Y 6 dim X (we defer a formal

statement to the full version [10]). Thus for k 6 (n − r)2 − 1, we get

dim(Im(Φ)) = dim(RIG(n, r, π, τ)) 6 n2 − (n − r)2 + k < n2.
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Note that

W =
⋃

τ,π

RIG(n, r, π, τ)

and that completes the proof of the theorem.

Thus we have proved that the set of matrices of rigidity strictly smaller than (n − r)2 is

contained in a proper closed affine variety of A
n2

, and thus is of dimension strictly less than

n2. In other words, a generic matrix, i.e. a matrix that lies outside a certain proper closed

affine subvariety of A
n2

, is maximally rigid. Therefore, over an infinite field F (for instance,

an algebraically closed field), there always exist maximally rigid matrices.

We now refine Valiant’s argument and prove the following exact bound on the dimen-

sion of W . The main point of the proof is a lower bound on dim(W).

THEOREM 6. Let 0 6 r 6 n and 0 6 k 6 (n − r)2. Then

dim(W) = n2 − (n − r)2 + k.

PROOF. With the notation of the previous proof, we have the map

Φ : RANK(n, r, τ) × S(π) → Mn.

defined above. Let RANK(n, 6 r), RANK(n, r) be the set of n × n matrices of rank at most r

and exactly r respectively. Let S(k) be the set of matrices of support at most k.

Now note that GL(n) × GL(n) acts on RANK(n, 6 r) by multiplication on the left and

the right, and that the action is transitive on the set of matrices with rank exactly r, which

forms a Zariski open subset of RANK(n, 6 r). Therefore RANK(n, 6 r) is an irreducible

algebraic variety. It is not difficult to see (for instance, from the computation below of the

tangent space) that its singular locus is exactly RANK(n, 6 r − 1), the set of matrices with

rank less than r.

On the other hand, S(k) splits into components S(π) depending on the pattern π and

is thus a union of various affine subspaces (each associated to a π of size at most k). The

nonsingular elements of S(k) are those which have support of size exactly k.

We can put together the maps Φ arising from various choices of τ and π to write the

map

Φ̃ : RANK(n, 6 r) × S(k) → RIG(n, r, 6 k).

We can easily see that Φ̃ is a surjective morphism of affine varieties. If we can find a nonsin-

gular point of RANK(n, 6 r) × S(k) for which the map on tangent spaces is injective, then

the dimension of the target space RIG(n, r, 6 k) will equal dim RANK(n, 6 r) + dim S(k) =
n2 − (n − r)2 + k, proving the theorem. Since the map on tangent spaces is simply addi-

tion of matrices, we need to show that the subspaces do not intersect non-trivially and that

would complete the proof of the theorem. For any smooth point x ∈ RANK(n, r), the smooth

locus of RANK(n, 6 r), we will find a pattern π of size k and y ∈ S(π) for which the tangent

spaces at x and y intersect transversely.

Assume first that the point x is

(
Ir 0

0 0

)
. We choose the pattern π to lie completely in

the bottom right hand block of size (n− r)× (n− r), and choose any smooth point y of S(π)
(i.e. having all k entries nonzero).
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The tangent space of x is

(∗ ∗
∗ 0

)
.

That is, it consists of the subspace of Mn consisting of matrices with arbitrary entries

except in the lower (n − r) × (n − r) block, which is constrained to be the zero submatrix.

The dimension of the tangent space is r2 + 2r(n − r) = n2 − (n − r)2, as expected. The

tangent space of y is

(
0 0

0 ∗π

)
where ∗π means that the entries in positions of π are arbitrary,

and the other entries are zero.

It’s clear that these two tangent spaces intersect transversely.

Now, we need to show this for a more general x ∈ RANK(n, r). Assume that the top left

r × r minor of x is nonsingular (else we can multiply by permutation matrices on left and

right, noting that permutations just shuffle the various S(π) for |π| = k).

The first r columns of x are independent and span the column space of x, so there

exists a matrix g =

(
Ir ∗
0 In−r

)
such that xg has the form

(∗ 0

∗ 0

)
. Then using that the

first r rows of xg are independent and span its row space, we can find an invertible matrix

h =

(∗ 0

∗ In−r

)
such that hxg =

(
Ir 0

0 0

)
. The tangent space of x is h−1

(∗ ∗
∗ 0

)
g−1. We

need to show this does not intersect S(π) for some π. That is,

(∗ ∗
∗ 0

)
does not intersect

h

(
0 0

0 ∗π

)
g except in zero. But this follows from the fact that the latter is a matrix of the

same form (in fact, multiplication by h and g leave any element of S(π) unchanged).

Remarks: A similar argument or line of study - though in the projective setting - is also found in

[11]. Our formalism and proofs seem clearer and simpler. Our theorem is also very explicit.

2.3 Rigid Matrices over the field of Complex Numbers

Recall that to say that the rigidity of a matrix A for target rank r is at least k, it suffices

to prove that the matrix A is not in W(n, r, 6 (k − 1)). We use this idea to achieve the

maximum possible lower bound for the rigidity of a family of matrices over the field of

complex numbers C. As a matter of fact, we obtain matrices with real algebraic entries with

rigidity (n − r)2.

THEOREM 7. Let δ(n) = n4n4
. Let pi,j for 1 6 i, j 6 n be distinct primes such that pi,j > δ(n).

Let K = Q(ζ1,1, . . . , ζn,n) where ζi,j = e2πi/pi,j . Let A(n) := (ζi,j) ∈ M(n, K). Then, for any
field L containing K,

Rig(A(n), r, L) = (n − r)2.

PROOF. For simplicity, we will index the ζi,j by ζα for α = 1 to n2, and similarly pα. We

prove the theorem by showing that

A(n) /∈ W(n, r, 6 (n − r)2 − 1)(L).
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Thus it is sufficient to prove that

A(n) /∈ W(n, r, π)(L)

for any pattern π with |π| = (n − r)2 − 1. Let π be any such pattern. To simplify notation,

let us define, W := W(n, r, π)(L). By Theorem 4 we have:

dim(W) 6 dim(W(n, r, 6 (n − r)2 − 1)) 6 (n2 − 1) < n2.

Equivalently (by Hilbert’s Nullstellensatz),

EI(n, r, π) 6= (0).

Proving that A(n) /∈ W is equivalent to showing the existence of a g ∈ EI(n, r, π) such that

g(A(n)) 6= 0. We produce such a g using the following theorem:

THEOREM 8.([1], page 6, Theorem 4) Let I = 〈 f1, . . . , fs〉 be an ideal in the polynomial
ring F[Y] over an infinite field F, where Y = {y1, . . . , ym}. Let d be the maximum total

degree of the generators fi. Let Z = {yi1 , . . . , yiℓ} ⊆ Y be a subset of indeterminates of Y. If
I ∩ F[Z] 6= (0) then there exists a non-zero polynomial g ∈ I ∩ F[Z] such that, g = ∑

s
i=1 gi fi,

with gi ∈ F[Y] and deg(gi fi) 6 (µ + 1)(m + 2)(dµ + 1)µ+2, where µ = min{s, m}.

Let us apply Theorem 8 to our case - in the notation of this theorem our data is as fol-

lows: F := Q, Y := {x1, . . . , xn2 , t1, . . . , tk}, Z := {x1, . . . , xn2}, Σr+1 := set of all minors of size

(r + 1), fτ := det((X + Tπ)τ) for τ ∈ Σr+1, here by Yτ we denote the τ-th minor of Y, and

I := I(n, r, π) = 〈 fτ : τ ∈ Σr+1〉 as defined in (1).

Furthermore, we have:

m = n2 + (n − r)2 − 1 6 2n2 − 2

µ = min

{

n2 + (n − r)2 − 1,

(
n

r + 1

)2
}

6 n2 + (n − r)2 − 1 6 2n2 − 2,

d = r + 1 6 n,

I ∩ F[Z] = EI(n, r, π) 6= (0).

By Theorem 8 there exists a

g 6= 0 ∈ EI(n, r, π) ⊆ Q[x1, . . . , xn2 ]

such that

deg(g) 6 (2n2 − 1)(2n2)(n2n2−2 + 1)2n2
< n4n4

= δ(n).

We will now apply the following Lemma 9, which we prove later, to this situation.
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LEMMA 9. Let N be a positive integer. Let θ1, · · · , θm be m algebraic numbers such that for
any 1 6 i 6 m, the field Q(θi) is Galois over Q and such that

[Q(θi) : Q] > N and

Q(θi) ∩ Q(θ1, . . . , θi−1, θi+1, . . . , θm) = Q.

Let g(x) 6= 0 ∈ Q[x1, . . . , xm] such that deg(g) < N. Then,

g(θ1, . . . , θm) 6= 0.

Let us set m = n2, N = δ(n), l := deg(g) 6 N in Lemma 9. It is now easy to check that

[Q(ζα) : Q] = pα − 1 > δ(n) = N

and

Q(ζα) ∩ Q(ζ1, . . . , ζα−1, ζα+1, . . . , ζn2) = Q.

The latter follows from the fact that the prime pα is totally ramified in Q(ζα) and is unrami-

fied in Q(ζ1, . . . , ζα−1, ζα+1, . . . , ζn2); see Theorem 4.10 in [17]. Thus Lemma 9 is applicable

and we get:

g(ζ1, . . . , ζn2) 6= 0.

To complete the argument (for Theorem 7), now we prove Lemma 9.

Proof of Lemma 9 : By induction on m. For m = 1 this is trivial. Now suppose that the

statement is true when the number of variables is strictly less than m. Assuming that the

statement is not true for m, we will arrive at a contradiction. This will prove the Lemma.

Let g ∈ Q[x] with l := deg(g) < N be such that

g(θ1, . . . , θm) = 0,

with θi, 1 6 i 6 m, satisfying the conditions as in the theorem. Since the statement is true

for any (m − 1) number of variables, without loss of generality, we can assume that all the

variables and hence xm appears in g. Let us denote xm by x. Let us write

g(x1, . . . , xm) =
l

∑
i=0

fi(x1, . . . , xm−1)xl−i.

Note that l < N and deg( fi) < N for 0 6 i 6 l. Since g 6= 0, for some i, 0 6 i 6 l the

polynomial fi 6= 0. Thus, by the inductive hypothesis,

fi(θ1, . . . , θm−1) 6= 0.

Thus g(θ1, . . . , θm−1)(x) 6= 0 ∈ Q(θ1, . . . , θm−1)[x]. This implies that θm satisfies a non-zero

polynomial over Q(θ1, . . . , θm−1) of degree 6 l < N. Thus:

[Q(θ1, . . . , θm) : Q(θ1, . . . , θm−1)] 6 l < N. (4)
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On the other hand, since Q(θm) ∩ Q(θ1, . . . , θm−1) = Q and the fields Q(θi) are Galois over

Q, it can be concluded by the property of such extensions ([12] Theorem 1.12, page 266) that

[Q(θ1, . . . , θm−1)(θm) : Q(θ1, . . . , θm−1)] = [Q(θm) : Q] > N.

This contradicts (4) above and that proves the lemma.

This concludes the proof of Theorem 7.

Note that Theorem 7 is true for any family of matrices A(n) = [θi,j] provided the θi,j

satisfy Lemma 9. Hence, we have

COROLLARY 10. Let A(n) := (ζi,j + ζi,j), where ζi,j are primitive roots of unity of order pi,j

such that pi,j − 1 > 2δ(n) (here ζi,j denotes the complex conjugate of ζi,j). Then, A(n) ∈
M(n, R) has Rig(A(n), r) = (n − r)2.

3 Reduction to Determinantal Ideals

In this section, we show that the natural decomposition of the rigidity varieties W(n, r, 6

k) = ∪|π|=kW(n, r, π) is indeed a decomposition into irreducible affine algebraic varieties.

In fact, these components turn out to be varieties defined by elimination ideals of determi-

nantal ideals generated by all the (r + 1) × (r + 1) minors.

To show the decomposition, we will continue to use the notation from Section 2. Con-

sider the matrix X + Tπ. Let x = {x1, . . . , xn2} = xπ̄ ∪ xπ , where xπ is the set of variables

that are indexed by π and xπ̄ is the set of remaining variables.

Let

J := I(n, r, π) =
〈

Minors(r+1)×(r+1)(X + Tπ)
〉

be the ideal of Q[x, t] = Q[xπ , xπ̄ , tπ] generated by the (r + 1) × (r + 1) minors of X + Tπ .

Let
J1 := J ∩ Q[xπ , xπ̄ ] ⊆ Q[x1, . . . , xn2 ],
J2 := J1 ∩ Q[xπ̄ ],

Ir+1 :=
〈

Minors(r+1)×(r+1)(X)
〉
⊆ Q[x], and

EIr+1 := Ir+1 ∩ Q[xπ̄ ] ⊆ Q[xπ̄ ].

Notice that since J1 is the elimination ideal of J w.r.t. eliminating variables tπ , a matrix A

lies in W(n, r, 6 k) = RIG(n, r, 6 k) if and only if its entries lie in the variety defined by the

ideal J1. Also, Ir+1 is the ideal generated by the (r + 1) × (r + 1) minors of X and EIr+1 its

elimination ideal for the rational ring generated by the variables xπ̄ .

PROPOSITION 11. J1 = J2Q[x] (the ideal generated by J2 in Q[x]) and J2 = EIr+1. In
particular, EI(n, r, π) = EIr+1Q[x] considered as ideals in Q[x].

PROOF. First, notice that in the (r + 1) × (r + 1) minors of X + Tπ , the variable ti,j, for

(i, j) ∈ π, always occurs in combination with xi,j as ti,j + xi,j. Therefore, eliminating the

variables tπ will also automatically eliminate the variables xπ, giving the equality of the

generators of the ideals J1 and J2. Therefore J1 = J2Q[x]. More formally, consider the iso-

morphism between the two coordinate rings φ : Q[xπ , xπ̄, tπ ] and Q[xπ , xπ̄, tπ ] defined by

letting φ(ti,j) = xi,j + ti,j for each (i, j) ∈ π and φ(xi,j) = xi,j for all (i, j) 6∈ π. The ideal
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J1 = J ∩Q[xπ , xπ̄ ] ⊆ Q[x1, . . . , xn2 ] must equal the ideal φ(φ−1(J) ∩ φ−1
Q[x1, . . . , xn2 ]), since

φ is an isomorphism. But φ−1(J) is generated by matrices only involving the variables of

tπ and xπ̄ , whereas φ−1
Q[x1, . . . , xn2 ]) = Q[x1, . . . , xn2 ], so that φ−1(J) ∩ φ−1

Q[x1, . . . , xn2 ] is

generated by polynomials only involving the variables of xπ̄. Therefore φ−1(J1) = φ−1(J) ∩
φ−1

Q[x1, . . . , xn2 ] = J2Q[x] and taking the image under φ, we get J1 = J2Q[x].
The equation J2 = EIr+1 follows from similar considerations, noting that the variables

xi,j for (i, j) ∈ π always occur in the combination xi,j + ti,j. Therefore eliminating them elim-

inates ti,j as well. More formally, consider the isomorphism ψ : Q[xπ , xπ̄ , tπ ] → Q[xπ , xπ̄, tπ ]
defined by letting ψ(xi,j) = xi,j + ti,j for each (i, j) ∈ π, while ψ(ti,j) = ti,j for (i, j) ∈ π and

ψ(xi,j) = xi,j. Then again we have J2 = J1 ∩Q[xπ̄ ] = J ∩Q[xπ̄ ] = ψ(ψ−1(J)∩ψ−1(Q[xπ̄ ])) =
φ(Ir+1Q[x, tπ ] ∩ Q[xπ̄ ]) = φ(EIr+1) = EIr+1 ⊂ Q[xπ̄ ].

The following is a well-known theorem; see [3, Chapter 2].

THEOREM 12. Let RANK(n, 6 r) be the set of all rank 6 r matrices of Mn
∼= A

n2
. Then

• I(RANK(n, 6 r)) = Ir+1 and RANK(n, 6 r) = V(Ir+1).
• Ir+1 is a prime ideal of Q[X]. In particular, RANK(n, 6 r) is an irreducible variety.

From Theorem 12 and Proposition 11 we get the following corollary (see [10]) for details).

COROLLARY 13. In the natural decompositionW(n, r, 6 k) = ∪|π|=kW(n, r, π), the W(n, r, π)
are irreducible varieties.

4 Semicontinuity of Rigidity

Intuitively, if a function is (lower) semicontinuous at a given point, then within a small

neighborhood of that point the function is nondecreasing. (See the full version [10] of the

paper for a formal treatment of the material in this section). The rank function of a ma-

trix, for example, is a lower semicontinuous function on the space of all n × n complex

matrices. It is possible to construct give examples (we defer this to the full version [10]) to

show that the rigidity function is not semicontinuous in general. However, it seems to have

semicontinuity property at some interesting matrices. In particular, the matrices A(n) from

Theorem 7 have an open neighborhood around them within which the rigidity function is

constant. This is a direct consequence of their very construction since they are outside the

closed sets W(n, r, 6 (n − r)2 − 1). These examples motivate us to study the properties of

the Euclidean closure and Zariski closure of the set RIG(n, r, 6 k)(C). In fact, we are able to

argue that these two coincide.

PROPOSITION 14. The Euclidean Closure of RIG(n, r, 6 k)(C) equals its Zariski Closure.

PROOF. Recall that we can write RIG(n, r, 6 k) =
⋃

π, |π|=k RIG(n, r, π). Thus, to prove

the proposition, it is sufficient to prove that for any pattern π, the Euclidean closure of

RIG(n, r, π) equals its Zariski Closure. By Closure Theorem, there exists a subvariety V

strictly contained in W := RIG(n, r, π) such that W(C) − V(C) ⊆ RIG(n, r, π)(C) ⊆ W(C).

Since W(C) is closed in the Euclidean topology, we will done if we prove that the Euclidean

closure of W(C) − V(C) is W(C). This is precisely the statement of the following lemma

from [20], which we state below for easy reference. Also note that, by Corollary 13, W is an

irreducible variety for every pattern π and hence the lemma is applicable.
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LEMMA 15. ([20, Lemma 1, page 124]) If X is an irreducible algebraic variety and Y a proper
subvariety of X then the set X(C)− Y(C) is dense in X(C).
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On Nondeterministic Unranked Tree
Automata with Sibling Constraints
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ABSTRACT. We continue the study of bottom-up unranked tree automata with equality and dis-
equality constraints between direct subtrees. In particular, we show that the emptiness problem for
the nondeterministic automata is decidable. In addition, we show that the universality problem, in
contrast, is undecidable.

1 Introduction
We continue the study of bottom-up unranked tree automata with equality and disequality
constraints between direct subtrees, introduced in [12], which extend the corresponding
automaton model known from the ranked setting [1]. This extension constitutes a part of
the efforts in transferring the results known in the context of automata on ranked trees to
the unranked case, which has attracted much attention from the research community as a
formal model for XML documents; for references, see, e.g., the surveys [14, 15].

The distinguishing feature of unranked trees is that the number of children of the nodes,
as opposed to ranked trees, is not a priori bounded by any fixed rank. In order to cope with
this phenomenon, bottom-up automata on unranked trees, usually, incorporate regular lan-
guages in their transitions. It then turns out that finite automata on unranked trees enjoy
many of the good properties of their counterpart in the ranked case. In many application
domains, however, it is often desired to add some expressive power to the basic model with-
out losing too many of the decidability results. A common approach to doing this is to add
some constraints to the transitions of the automata. In fact, many models of finite automata
with constraints on (ranked as well as unranked) trees have appeared in the literature.

An example of adding constraints in tree automata is counting constraints, which is
particularly interesting in the unranked case as the number of successors of a node might
be unbounded. For instance, in Presburger automata [17] (cf. also sheaves automata [7])
the application of a bottom-up transition is subject to the satisfaction of certain numerical
conditions involving the subtrees (or the states reached at the root of these subtrees), such
as “the number of a-rooted subtrees is twice the number of b-rooted subtrees”. It turns out
that adding these constraints retains many of the good properties of the basic model; in
particular, the emptiness problem remains decidable.

Another type of constraints that has been considered in the literature is the equality
(and disequality) constraints. Here, the application of a bottom-up transition is subject to
whether certain subtrees of the current node are equal. It turns out, however, that these
constraints, in the most general form where comparisons between arbitrary subtrees are al-
lowed, are too powerful, in the sense that the emptiness problem becomes undecidable [13].
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In order to obtain decidability, thus, some restrictions on how equality constraints are used
in ranked tree automata have been suggested. Such a restriction can be found in reduction
automata [3, 8]; here, one requires that the number of equality and disequality tests in each
path of a run tree must be bounded. Another possible restriction, suggested in [1], is that
equality constraints may only be applied to sibling subtrees. For a more thorough overview
of these automata models, the reader is referred to [4].

In [12], we extend tree automata with equality constraints between siblings to the un-
ranked setting. In order to be able to address the (possibly) unbounded number of siblings
to be compared, while still maintaining a finite representation, we suggest using formulas
of monadic second-order logic. For this model, it has been shown that the emptiness prob-
lem for the deterministic case is decidable, while leaving open the nondeterministic case.
It also turns out that the nondeterministic automata are strictly more expressive than the
deterministic ones.

In this paper, we settle the nondeterministic case: we show that the emptiness problem,
as in the deterministic case, is decidable. For this, despite the fact that determinization is
not possible, we incorporate a kind of subset construction directly into our algorithm for the
deterministic case, which then yields an emptiness algorithm for the nondeterministic case.
In addition, we show that the universality problem in undecidable, which is achieved via a
reduction of the halting problem for two-register machines.

There is a tight connection between our automaton model and data words that we want
to point out. Generally speaking, a data word is a finite word to each position of which is
attached a data value, i.e., a value from an infinite domain like the natural numbers. There
are several automaton models on data words (and data trees) that have been proposed in
the literature; for a recent survey, see, e.g., [16]. In order to maintain decidability results,
these automaton models, usually, can only compare data values with respect to equality.
Now, as trees can be used to represent data values, equality between data values amounts
to equality between trees. Thus, with an appropriate encoding of data words as unranked
trees, our automaton model can be used to describe languages of data words.

This paper is organized as follows. In Section 2, we fix our notations and recall our
automaton model as well as some known results. Section 3 is devoted to our main result,
namely that the emptiness problem for our automaton model is decidable. In Section 4
we show that the universality problem, in contrast, is undecidable. Then, in Section 5 we
discuss the connection with data languages. Finally, Section 6 concludes with some remarks
on the complexity issues and further prospects.

2 Preliminaries

We denote the set of (positive) natural numbers by N (respectively, N+).
For every set A, we denote by 2A the power set of A and by NA the set of mappings

assigning a natural number to each member of A. We denote the set of all finite (nonempty)
words over A by A∗ (respectively, A+). We denote the empty word by ε. For every word
w ∈ A∗, we denote its length by |w|.

Let A be a finite, nonempty alphabet. A nonempty word w over A defines a logical
structure with the set of w’s positions as its universe, equipped with the successor predi-
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cate S(x, y), the order predicate x < y, and the label predicate a(x), for each a ∈ A; these
predicates are interpreted over {1, . . . , |w|} as usual. The formulas of monadic second-order
(MSO) logic over words over A are built up from: first-order variables x, y, z, . . . (ranging
over positions); set variables X, Y, Z, . . . ; atomic formulas x = y, x < y, S(x, y), X(x), and
a(x), for all a ∈ A; Boolean connectives; and first-order as well as set quantifiers. We write
ϕ(x1, . . . , xn, X1, . . . , Xm) to indicate that the MSO-formula ϕ may contain free occurrences
of the variables x1, . . . , xn, X1, . . . , Xm.

In the sequel, let Σ be a nonempty, finite (tree-labeling) alphabet. A tree domain D is a
nonempty, prefix-closed subset of N∗+ such that, for each u ∈ D and i > 0, if ui ∈ D, then
also uj ∈ D, for each j ∈ {1, . . . , i}. A finite unranked tree t over Σ (Σ-labeled tree, for short)
is a mapping t : domt → Σ where domt is a finite tree domain. The elements of domt are
called the nodes of t, and the node ε is called the root of t. A node u ∈ domt is said to have
k ≥ 0 successors if uk ∈ domt but u(k + 1) 6∈ domt. In this case, we call ui the i-th successor
of u, and we say that ui and uj are sibling nodes, for each i, j ∈ {1, . . . , k}. A leaf of t is a
node without any successor. Given a node u of t, the subtree of t at u is the tree given by
t|u with domt|u = {v ∈ N∗+ | uv ∈ domt} and t|u(v) = t(uv), for all v ∈ domt|u . Further,
t|u is called a direct subtree of t if |u| = 1. We write t as a(t1 . . . tk) to indicate that its root
is labeled with a and that it has k successors at which the subtrees t1, . . . , tk are rooted. We
denote the set of all Σ-labeled trees by TΣ.

Let Q be a finite, nonempty set (of tree automaton states). An atomic sibling constraint
over Q is given by an MSO-formula ϕ(x, y) over words over Q, with two free first-order
variables x and y, and has either of the following forms:

(∀=) ∀x∀y . ϕ(x, y) → tx = ty (∃=) ∃x∃y . ϕ(x, y) ∧ tx = ty

(∀ 6=) ∀x∀y . ϕ(x, y) → tx 6= ty (∃ 6=) ∃x∃y . ϕ(x, y) ∧ tx 6= ty

Intuitively, an ∃=-constraint (respectively, ∃ 6=) says that “there is a pair of positions that
satisfies ϕ, and the subtrees at these positions are equal (or distinct, respectively)”, and a ∀=-
constraint (respectively, ∀ 6=) says that “for each pair of positions that satisfies ϕ the subtrees
at these positions must be equal (or distinct, respectively)”. A nonempty word w over Q
together with a sequence t1 . . . t|w| of Σ-labeled trees (attached to w’s positions) are said to
satisfy an atomic sibling constraint if, depending on the constraint type, the following holds:
• ∃=- or ∃ 6=-constraint: There exist some positions x, y in w such that ϕ(x, y) is satisfied

and tx = ty (respectively, tx 6= ty).
• ∀=- or ∀ 6=-constraint: For all positions x, y in w, if ϕ(x, y) is satisfied, then tx = ty

(respectively, tx 6= ty).
For the sake of simplicity, we will sometimes refer to atomic sibling constraints simply by the
underlying MSO-formulas whenever no confusion might arise. A sibling constraint over Q is
a Boolean combination of atomic constraints. As a remark, ∀=-constraints are, with respect
to negation, dual to ∃ 6=-constraints, and, similarly, ∀ 6=-constraints are dual to ∃=-constraints.
Thus, without loss of generality, we will consider only positive Boolean combinations (i.e.,
without negation) of atomic constraints.

A (nondeterministic) unranked tree automaton with equality and disequality constraints be-
tween siblings (UTACS) over Σ is defined as a tuple A = (Q, Σ, Λ, ∆, F) where: Q is a finite,
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nonempty set of states; F ⊆ Q is the set of accepting or final states; Λ ⊆ Σ × Q is the set
of leaf transitions; and ∆ is the set of inner-node transitions of the form (L, α, a, q), where
L ⊆ Q+ is a regular set, α is a sibling constraint over Q, a ∈ Σ, and q ∈ Q. Note that we can
assume, without loss of generality, that α is a conjunction of atomic constraints; starting from
sibling constraints in disjunctive normal form, each transition with a disjunction of sibling
constraints can be split into several transitions each of which contains only a conjunction of
atomic constraints.

For every Σ-labeled tree t, a run of A on t is a Q-labeled tree ρ : domt → Q such that: (a)
for each leaf node u ∈ domt, we have (t(u), ρ(u)) ∈ Λ; (b) for each node u ∈ domt with k ≥
1 successors, there exists a transition (L, α, t(u), ρ(u)) in ∆ such that the word ρ(u1) . . . ρ(uk)
belongs to L and, together with the tree sequence t|u1 . . . t|uk, satisfies α. In case such a run
exists, we write t →A ρ(ε) (or simply t → ρ(ε)), and say that t reaches or evaluates to ρ(ε).
Further, δ(t) denotes the set of states reached by t, i.e., δ(t) = {q ∈ Q | t → q}. Note that
δ(t) can effectively be determined. The tree t is accepted by A if δ(t) ∩ F 6= ∅. The set of
trees accepted by A is denoted by T(A). We call A deterministic if, for each tree t, there exists
at most one state q with t→ q.

Let us recall some properties of UTACS (cf. [12]). The class of UTACS is closed under
union and intersection, and the class of deterministic UTACS are closed under all Boolean
operations. Moreover, UTACS, in general, cannot be determinized; that is, there exists some
UTACS-definable tree language which cannot be recognized by any deterministic UTACS.

3 The Emptiness Problem
The main result of this section is:

THEOREM 1. The emptiness problem for nondeterministic UTACS is decidable.

In [12], we have given an emptiness algorithm for the deterministic case. Toward show-
ing Theorem 1, we propose incorporating a kind of subset construction into this algorithm
in order to obtain an emptiness algorithm for the nondeterministic case; in this way, we
have thus avoided determinization, which, in general, is not possible for nondeterministic
UTACS. In order to accomplish this, we will need to refine some notions we have used in the
deterministic case and adapt the algorithm appropriately. For the sake of clarity, in the fol-
lowing we will directly present our method for the nondeterministic case, while sometimes
making reference to the deterministic case as we see fit.

Throughout this section, let A = (Q, Σ, Λ, ∆, F) be a nondeterministic UTACS.
The key difference between nondeterministic and deterministic UTACS is that for the

former the state reached by a tree is, in general, not unique. Nevertheless, the set of states
reached by every tree is unique; in other words, we have:

REMARK 2. For every pair, t and t′, of Σ-labeled trees, if δ(t) 6= δ(t′), then t 6= t′.

Our emptiness algorithm is actually an adaptation of the standard marking algorithm
(see, e.g., [4, Chapter 8]). The main idea is to maintain, for each set of states S ⊆ Q, a
collection TS containing trees t with δ(t) = S. For this, we iteratively construct new trees
a(t1 . . . tm), for some a ∈ Σ, where the trees t1, . . . , tm have been constructed in previous
rounds, by checking whether some transition that reaches S is applicable. The algorithm then
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terminates as soon as some tree t with δ(t)∩ F 6= ∅ has been constructed, or, otherwise, if we
have constructed enough trees to conclude that the language recognized by the underlying
automaton is empty.

In the sequel, we define the notions needed for our algorithm. First, we introduce
transitions that have state sets as target. Second, we consider the applicability of such tran-
sitions. Third, we provide a bound on the number of trees we need to collect. Due to space
limitations, however, we will omit most of the technical details.

Subset transitions and suitable words. As we are considering sets of states instead of
mere states as the target of a transition, we are going to consider a collection of transitions
instead of a single transition, which reflects the possibility to reach, with each tree, more
than one target state. Such a collection of transitions, intuitively, specifies which ‘normal
transitions’ we can apply in order to reach the states in S.

DEFINITION 3. Let a be a symbol from Σ, and let S be a nonempty subset of Q. A subset
transition w.r.t. a and S (or, for short, (a, S)-transition) is a collection of transitions given by
a mapping θ : S → ∆ such that, for each q ∈ S, the transition θ(q) ∈ ∆ reads the symbol a
and has q as its target state. We denote the set of all (a, S)-transitions by Θa

S.

An application of a subset transition θ ∈ Θa
S to a tree t = a(t1 . . . tm), actually, consists

of applying all the transitions referred to therein to t; that is, for each of these transitions, say
(L, α, a, q), there is a sequence of states w = q1 . . . qm, with qi ∈ δ(ti), for each i = 1, . . . , m,
such that, firstly, w belongs to L and, secondly, w and t1 . . . tm satisfy the constraint α.

Note that with this definition the result of applying a subset transition θ ∈ Θa
S to a tree

t = a(t1 . . . tm) is, in general, not exactly S; instead, δ(t) might be a superset of S, as the
definition does not forbid other transitions than the ones mentioned in θ to be applied to t.

In order to analyze the conditions under which a subset transition is applicable, we
focus on the sequences of state sets that underlie an application of the subset transition (i.e.,
the state sets occurring at the children of the node under consideration). Let θ ∈ Θa

S be a
subset transition. A nonempty word over the power set of Q, say ξ = S1 . . . Sm ∈ (2Q)+, is
called suitable for θ (or θ-suitable, for short) if it can be used in an application of θ under the
assumption that a sequence of trees t1, . . . , tm with δ(ti) = Si, for each i = 1, . . . , m, exists
(thus resulting in a tree t = a(t1 . . . tm) with S ⊆ δ(t)). We denote the set of θ-suitable words
by suit(θ).

Note that with the notion of suitability we ignore the actual fact whether the trees
needed to apply a subset transition exist. Instead, we focus on the sequences of state sets
that can possibly be used for applying a subset transition under the assumption that the
trees needed for the application exist; if an application is indeed possible, we then just have
to arrange these trees appropriately. Thus, not surprisingly, analyzing the suitable words for
a subset transition amounts to analyzing whether the equality and disequality constraints
of the subset transition under consideration do not contradict one another.

More precisely, ξ = S1 . . . Sm ∈ (2Q)+ is suitable for θ if there exists a family of words
(wτ)τ∈θ(S) such that the following holds:
• For each transition τ ∈ θ(S), say, τ = (Lτ, ατ, a, qτ), we have that wτ ∈ Lτ and, for

each i = 1, . . . , m, the state at the i-th position of wτ, say qτ
i , belongs to Si.
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• Every two positions that are required to be equal (w.r.t. the evaluation of the constraint
ατ on wτ, for all τ ∈ θ(S)), due to Remark 2, are labeled with the same state set.

• The equality and disequality constraints (again, with respect to the evaluation of ατ

on wτ, for all τ ∈ θ(S)) do not contradict one another.
In particular, the satisfaction of these conditions allows an assignment of trees (if these exist)
to the positions 1, . . . , m in order to apply all the transitions τ under consideration using the
corresponding words wτ.

Later in the emptiness algorithm, we want to look for some subset transition that is
applicable using only the trees we have constructed in the previous rounds. To this end, we
introduce a further restriction on the notion of suitable words. Let R ⊆ 2Q be a set of state
sets, and let d̄ : R → N be a mapping assigning to each state set K ∈ R a natural number.
A word ξ = S1 . . . Sm ∈ (2Q)+ is called suitable for θ with respect to R and d̄ (or (θ, R, d̄)-
suitable, for short) if it can be used in an application of θ under the assumption that there is
a sequence of trees t1, . . . , tm satisfying the following:
• for each i = 1, . . . , m, δ(ti) = Si;
• for each K ∈ R, the number of distinct trees among t1, . . . , tm that reach K, i.e., the

cardinality of the set {ti | 1 ≤ i ≤ m and δ(ti) = K}, does not exceed d̄(K). In other
words, d̄(K) gives the number of available distinct trees that evaluate to K.

Note that, for each K ∈ 2Q \R, we do not put any restriction on the number of distinct trees
among t1, . . . , tm that reach K. The sets of (θ, R, d̄)-suitable words is denoted by suit(θ, R, d̄).

As sibling constraints are based on MSO-formulas, it turns out that the suitability con-
ditions introduced above can be translated into MSO-formulas, which justifies the following
lemma.

LEMMA 4. For each subset transition θ, each R ⊆ 2Q, and each d̄ : R → N, the sets suit(θ)
and suit(θ, R, d̄) are regular. In particular, it is decidable whether these sets are empty.

The bound lemma. As in the deterministic case, the next step is to assert the existence of
a certain bound on the number of distinct trees needed for each state set in order to apply
a subset transition. Such a bound is given in Lemma 5 below. Consequently, our emptiness
algorithm needs to collect, for each state set, only as many distinct trees as this bound.

For every θ-suitable word ξ, let Jξ, θK ∈ N(2Q) be a mapping assigning to each set of
states the number of distinct trees evaluating to this state set that are needed in order to
apply θ (with respect to a particular application of θ using ξ). Note that Jξ, θK, as has been
remarked in [12], does not merely depend on ξ and θ, but also on a certain application of θ

using ξ. That is, whenever we pick a θ-suitable word ξ, we always implicitly refer to such
a particular application of θ, which then gives a unique value of Jξ, θK. Note also that each
value of Jξ, θK, in general, does not need to exceed |ξ|.

LEMMA 5. There exists some B ∈ N such that, for each subset transition θ of A and each
θ-suitable word ξ, there exists a θ-suitable word ξ ′ satisfying the following properties:

1. For each R ⊆ Q, Jξ ′, θK(R) ≤ B.
2. For each R ⊆ Q, Jξ ′, θK(R) ≤ Jξ, θK(R).
3. For each R ⊆ Q, if R occurs in ξ, then it occurs in ξ ′ as well.
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In essence, the lemma asserts the existence of a bound B such that for each subset tran-
sition θ, if we can apply it using ξ, and if this application needs more than B distinct trees
for some state set R, then we can as well apply θ using another word ξ ′, in place of ξ, such
that the latter application needs only at most B distinct trees, for each state set. The second
condition says, moreover, that the latter application can be carried out using only the trees
which have already been available to the former application of θ. The third condition is
merely a technical condition asserting that all state sets occurring in ξ also occur in ξ ′. Note
that, by the definition of subset transitions, the state sets reached by the application of θ

using ξ and using ξ ′ might be different, in contrast to the corresponding bound lemma in
the deterministic case (cf. [12, Lemma 3]).

As in the deterministic case, the bound lemma is established by a brute-force algorithm
finding the desired bound iteratively. We start with some initial bound on the number
of distinct trees needed for each state set in order to apply a subset transition and try all
possible scenarios of the actual number of distinct trees for each state set within this bound,
which boils down to checking the sets of suitable words (in each iteration with respect to
the corresponding value of the bound) for emptiness; by Lemma 4, the emptiness of these
sets is indeed decidable. In fact, our algorithm for finding the bound is a straightforward
adjustment of the bound algorithm of the deterministic case: we only need to replace ‘state’
with ‘set of states’ and ‘transition’ with ‘subset transition’.

The emptiness algorithm. The main idea of the our emptiness algorithm (Algorithm 1 on
page 318) is to collect, for each state set S ⊆ Q, a certain number of trees that evaluate to S
in TS; let d̄ ∈ N(2Q) be such that d̄(S) keeps track of the cardinality of TS. We collect trees
by iteratively constructing new trees out of the trees we have collected in previous rounds
by means of some applicable subset transition. In order to check the applicability of subset
transitions, we look for subset transitions for which the set of suitable words has not yet
been exhausted (cf. the if-condition of Line 6–10). Here, the crucial point is to find some
appropriate suitable word ξ, which can effectively be done since the emptiness of suit(θ, d̄)
is decidable, and the algorithm, at any point during its execution, stores only a finite number
of trees.

In order to guarantee termination, we set a bound on the number of trees we are col-
lecting, i.e., the algorithm terminates as soon as this bound has been reached. Such a bound
is provided by Lemma 5, which says that, for each state set S, it suffices to collect up to B
trees. We encounter some difficulties, though: as has been noted before, applying a subset
transition (say, for a state set S) using a suitable word might lead to a tree that does not
evaluate exactly to S but, instead, to some superset S′ of S. In order to deal with this, we
observe that, as far as the applicability of (subset) transitions is concerned, trees evaluating
to S′ can be used as a replacement for trees evaluating to S; in this case, we have to keep the
trees used for S′ and the ones used for S separately in order to maintain the satisfaction of
the disequality constraints. Thus, instead of collecting B trees for S and S′ each, we can as
well collect, for instance, (2 · B) trees for S′.

We exploit this observation in the algorithm by considering, for each state set S, not only
TS, but also the union of all TS′ with S′ ⊇ S, which is denoted by TS↑ and which is referred
to as a (tree) collection. In other words, we put a bound, z, on the cardinality of such tree
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Algorithm 1 The emptiness algorithm

1: procedure EMPTY(A)
2: compute the bound B according to Lemma 5
3: initialize each TS with {a ∈ Σ | δ(a) = S}
4: z := (B + 1) · 22|Q|

5: repeat
6: if there exist some subset transition θ ∈ Θa

S, some word ξ = S1 . . . Sm ∈ suit(θ, d̄),
7: and some trees t1, . . . , tm with ti ∈ TSi such that
8: − TS↑ is not full, i.e., |TS↑| < z,
9: − θ can be applied using ξ and t1, . . . , tm, and

10: − a(t1 . . . tm) has not been constructed before, i.e., a(t1 . . . tm) /∈ ⋃R⊆Q TR
11: then add a(t1 . . . tm) to TR, where R = δ(a(t1 . . . tm)), and update d̄
12: if TS↑ has become full (i.e., |TS↑| ≥ z) then z := z− 2|Q|

13: until no new tree can be constructed
14: if TS 6= ∅ for some S ⊆ Q with S ∩ F 6= ∅ then return ‘T(A) 6= ∅’
15: else return ‘T(A) = ∅’
16: end procedure

collections; that is, we consider a tree collection TS↑ full (with respect to z) if |TS↑| ≥ z. Since
there are 2|Q|−|S| supersets of S, it suffices, for TS↑, to collect B · 2|Q|−|S| trees (i.e., B trees for
each superset of S). Furthermore, in order to cope with some technicalities arising from the
correctness proof of the algorithm (cf. Lemma 7 below), we initialize z with (B + 1) · 22|Q|

and decrease z by 2|Q| each time a tree collection turns full.

REMARK 6. Since the bound z is non-increasing, once a tree collection has been declared
full, it stays full until the termination of the algorithm. In particular, z is decreased at most
2|Q| times since the decrement only takes place if a tree collection turns full (and there are
2|Q| of them). Moreover, upon termination of the algorithm, the value of z is at least B · 22|Q|.

Therefore, for each tree collection, at most (B + 1) · 22|Q| trees are constructed, and in
each iteration of the repeat-loop a new tree is constructed. Consequently, this loop is iterated
at most ((B + 1) · 23|Q|)-times, so the algorithm eventually terminates.

The algorithm is sound as trees are constructed according to the subset transitions of
A. The completeness of the algorithm follows from Lemma 7 below, which is similar to the
completeness lemma of the deterministic case (cf. [12, Lemma 6]).

LEMMA 7. For each tree t ∈ TΣ and each state set S ⊆ Q, if δ(t) = S, then t ∈ TS (that is, the
tree t is eventually constructed by the algorithm), or TS↑ has been declared full (for some
value of z) upon the termination of the algorithm.

As with its deterministic-case counterpart, the proof of this lemma goes by an induction
on the structure of t. However, it is more involved, in particular for the case t = a(t1 . . . tm)
with δ(t) = S but t 6∈ TS in the induction step. For this, we have to show that the tree
collection TS↑ can be declared full by constructing as many trees as necessary. In order to
achieve this, we also need to reduce, in the course of the algorithm, the requirement of a tree
collection being full, which is done by decreasing the bound z on the collection size.
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The complexity of our emptiness algorithm depends on the bound B given by the
bound lemma. Unfortunately, we have not yet been able to give an upper bound for B
since in the proof of the bound lemma we make use of Dickson’s Lemma [9], which guar-
antees that our algorithm for finding the desired bound indeed terminates, but which does
not come with any complexity analysis (recall that the proof of Dickson’s Lemma is a non-
constructive one). Thus, the complexity of our emptiness algorithm is still an open issue.

4 The Universality Problem

The universality problem for UTACS is the question whether a given UTACS accepts all its
input trees. For deterministic UTACS, this problem is decidable since deterministic UTACS
are effectively closed under complementation; the decidability of universality then follows
from the decidability of emptiness (see [12]). For nondeterministic UTACS, in contrast, it
turns out that this problem is undecidable.

THEOREM 8. The universality problem for nondeterministic UTACS is undecidable.

In order to show this, we use a reduction from the halting problem for 2-register ma-
chines: given a 2-register machine, we construct a UTACS such that the 2-register machine
has a halting computation if and only if there exists some unranked tree that is not accepted
by the UTACS, which is supposed to be the encoding of the halting computation. Due to
space limitations, we will only present a brief sketch of the encoding we use and point out
the main difficulties arising in the proof of Theorem 8.

In the core of the reduction is how the computations of a 2-register machine are encoded
as unranked trees. As usual, a computation of a 2-register machine is a sequence κ1 . . . κm
where, for i = 1, . . . , m, κi = (pi, di, ei) is a configuration, which records the current control
state pi as well as the contents di, ei ∈N of the registers. Basically, we want to encode such a
computation as a word of the form p1 ⊥ ad1 ⊥⊥ be1 $ . . . $ pm ⊥ adm ⊥⊥ bem , where a, b,⊥,⊥⊥, $
are new symbols. We then consider each symbol of this word as the root of a unary tree
(of a certain depth) and connect these trees with a single root, thus obtaining a tree that
represents the underlying computation.

This encoding is actually quite similar to the encoding of the solutions of PCP (Post’s
Correspondence Problem) as data words in [2], which is used to show that the satisfiability
problem for the logic FO3(∼, S) over data words is undecidable. In fact, the unary trees
mentioned in our encoding above can be seen as data values that are attached to the word
encoding of a 2-register-machine computation (see also Section 5 below).

Although the reduction, given the encoding, is fairly standard, we encounter some
technical difficulties arising from the restricted quantification patterns in our definition of
UTACS constraints (i.e., only ∀x∀y and ∃x∃y). As an illustration, consider the case of a word
encoding of a 2-register machine computation which contains two consecutive configura-
tions, say κ = p⊥ad⊥⊥be and κ′ = p′⊥ad′⊥⊥be′ , which do not represent a correct execution of,
say, an increment to the first register. This occurs if, for example, e < e′ (that is, κ′ contains
more b’s than κ). Intuitively, this can be captured by expressing the following constraints:
first, in each of κ and κ′, all the unary trees attached to the b-positions are pairwise differ-
ent; second, for each b-position of κ there exists a b-position in κ′ with the same unary tree;
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third, there exists a b-position in κ′ such that the unary tree attached to it does not occur
at the b-positions of κ. Notice the quantification patterns occurring in these constraints:
∀x∀y, ∀x∃y, and ∃x∀y, respectively. The first quantification pattern, ∀x∀y, can easily be
handled by UTACS constraints. The third one, ∃x∀y, can be handled by first nondeterminis-
tically guessing the position of x and then comparing this position with all positions y using
UTACS constraints. The second quantification pattern, ∀x∃y, however, cannot be captured
by UTACS constraints, so we have to overcome this difficulty by putting some additional
requirements on the unary trees used in the tree encoding of a halting computation.

5 UTACS and Data Languages
In this section, we are interested in a connection between languages of data words and tree
automata with equality constraints, which is established by encoding data words as trees of
a certain form. With this encoding, then, data equality amounts to equality between trees.

For the ease of exposition, we consider data words over Σ and N+, where Σ is a finite
alphabet. A data word w = w1 . . . wm is a finite sequence of pairs of the form wi = (ai, di) ∈
Σ×N+. We encode such a data word as a tree of the form > ( a1 d1 a2 d2 . . . am dm ) where
> is a new symbol and di, for each i = 1, . . . , m, encodes the data value di (i.e., a positive
integer) as a unary tree over {•} of depth di. Consequently, we can use UTACS accepting
trees of this form to define languages of data words. For such a language of data words,
in particular, the emptiness problem then amounts to the emptiness problem for UTACS,
which, by Theorem 1, is decidable.

Following the notations of [16], more specifically, we consider a fragment of the logic
MSO(∼, <, S) over data words (with∼ being the data-equality predicate; i.e., x ∼ y holds if
the data value at position x is equal to the one at position y), which contains positive Boolean

combinations of formulas of the form ∃X1 . . . ∃Xn.
(

θ(X1, . . . , Xn) ∧ α(X1, . . . , Xn)
)

, where

θ is an MSO(<, S)-formula (i.e., without∼) over Σ with free occurrences of the set variables
X1, . . . , Xn, and α is a positive Boolean combination of formulas of the forms:

∀x∀y.
[

ϕ(X1, . . . , Xn, x, y)→ x ∼ y
]

∃x∃y.
[

ϕ(X1, . . . , Xn, x, y) ∧ x ∼ y
]

∀x∀y.
[

ϕ(X1, . . . , Xn, x, y)→ x 6∼ y
]

∃x∃y.
[

ϕ(X1, . . . , Xn, x, y) ∧ x 6∼ y
]

where ϕ, in turn, is an MSO(<, S)-formula (i.e., without ∼) over Σ with the free variables
X1, . . . , Xn and x, y. Note that these kinds of formulas correspond to the types of constraints
we have used in defining the transitions of UTACS. In fact, for every formula of the logic
over data words described above, we can construct a UTACS recognizing the set of trees en-
coding the data words defined by the formula. This allows us to derive from Theorem 1 that
the satisfiability problem for this logic is decidable. Furthermore, as remarked in Section 4,
in the proof of Theorem 8 we actually encode computations of 2-register machines as data
words. Consequently, the validity problem for this logic (i.e., the problem of determining,
for a given formula, whether all data words satisfy this formula) is undecidable.

In comparison with the logic FO2(∼, <, S) (first-order logic with two variables) over
data words, which is considered in [2], the logic described above seems to be weaker be-
cause of the restricted use of data comparisons. In particular, for the languages of data
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words defined by our logic, the projection w.r.t. the finite alphabet always yields a regu-
lar language; this can be shown by using an analysis related to the notion of suitability
used in Section 3. For instance, the language of data words (over the label alphabet {a, b})
satisfying “every two positions labeled with a carry different data values, and for each po-
sition labeled with a there exists a position labeled with b with the same data value” cannot
be defined in our logic since the projection of this language w.r.t. {a, b} yields a language
which is not regular, but it can be defined in FO2(∼, <, S) (see [2]). On the other hand,
formulas of our logic may use more than just two variables, while still being decidable.
This allows us to define, for instance, the language of data words satisfying “between every
two a-positions carrying the same data value there exists a b-position” by saying that ev-
ery two a-positions with no b-position in between must carry different data values, that is,
∀x∀y.

[
x < y ∧ a(x) ∧ a(y) ∧ ¬(∃z.x < z < y ∧ b(z))→ x 6∼ y

]
. To the best of our knowl-

edge, it is still an open question whether this language can be expressed in FO2(∼, <, S)
(see [16]).

6 Conclusions
We have shown that the emptiness problem for nondeterministic unranked tree automata
with sibling equality and disequality constraints is decidable by extending the method we
have proposed previously for the deterministic case. However, the precise complexity (both
lower and upper bound) of the problem is still missing. One possible approach towards an
upper bound for our method is to provide a different proof for the bound lemma which
avoids the use of Dickson’s Lemma.

We believe that the connection between our automaton model and languages of data
words deserves further studies. Here, it might be worthwhile to study the precise relation of
the logic over data words emerging from our automaton model to the existing formalisms
for data languages and also to study its complexity.

We remark that our method of deciding emptiness for UTACS, actually, does not rely on
the fact that trees are compared with respect to equality. In fact, our method still works if we
consider, for instance, automata with sibling constraints with respect to structural equality
(two trees are said to be structurally equal if they share the same set of nodes). Thus, we
would like to study (in the unranked setting) automata with constraints regarding more
general types of relations between trees than just equality, like, e.g., relations defined by
tree transducers. This is actually related to some recent works on (ranked) tree automata
with constraints. In the automaton models of [5, 6], constraints are posed not directly on the
input subtrees, but, instead, on some output trees, called memories, which are produced
during a bottom-up run of the automata. Similarly, in [11], one defines a function assigning
to each tree a certain size and poses (numerical) constraints with respect to this size function.

Finally, it would be interesting to compare our automaton model with the automata
defined in [10], where it is allowed to compare subtrees which are not necessarily siblings
but may be remotely located in the tree.
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thesis, Université de Lille I (1981)

[14] Neven, F.: Automata, logic, and XML. In Proc. CSL 2002. LNCS 2471. Springer (2002)
[15] Schwentick, T.: Automata for XML – a survey. J. Comput. Syst. Sci. 73 (2007)
[16] Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In

Proc. CSL 2006. LNCS 4207. Springer (2006)
[17] Seidl, H., Schwentick, T., Muscholl, A.: Counting in trees. In Logic and Automata:

History and Perspectives. Amsterdam University Press (2008)

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.



LIPIcs Leibniz International Proceedings in Informatics

Functionally Private Approximations of
Negligibly-Biased Estimators
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ABSTRACT. We study functionally private approximations. An approximation function g is func-
tionally private with respect to f if, for any input x, g(x) reveals no more information about x than
f (x). Our main result states that a function f admits an efficiently-computable functionally private
approximation g if there exists an efficiently-computable and negligibly-biased estimator for f . Con-
trary to previous generic results, our theorem is more general and has a wider application reach.
We provide two distinct applications of the above result to demonstrate its flexibility. In the data
stream model, we provide a functionally private approximation to the Lp-norm estimation problem,
a quintessential application in streaming, using only polylogarithmic space in the input size. The pri-
vacy guarantees rely on the use of pseudo-random functions (PRF) (a stronger cryptographic notion
than pseudo-random generators) of which can be based on common cryptographic assumptions.
The application of PRFs in this context appears to be novel and we expect other results to follow
suit. Moreover, this is the first known functionally private streaming result for any problem.
Our second application result states that every problem in some subclasses of ]P of hard counting
problems admit efficient and functionally private approximation protocols. This result is based on
a functionally private approximation for the ]DNF problem (or estimating the number of satisfiable
truth assignments to a Boolean formula in disjunctive normal form), which is an application of our
main theorem and previously known results.

1 Introduction
Consider a two-party functionality f (x1, x2) = (y1, y2), where (xi, yi) is the private in-
put/output pair of party i ∈ {1, 2}. Informally, a private computation of f is one that com-
putes f correctly and guarantees that each party i learns only yi and nothing else.

Interestingly, Feigenbaum et al. [1] observed that the private computation of an ap-
proximation function g(x1, x2) = (ỹ1, ỹ2) of f can potentially leak more information than
the computation of f itself. Indeed, consider function f (x1, x2) computing the Hamming
distance between binary vectors x1 and x2. Let g be an approximation of f where the least
significant bit of g(x1, x2) corresponds to some arbitrary bit of x1 and all the remaining bits
of g equals those of f . Although g is indeed a good approximation, it leaks more informa-
tion about x1 than f does. In view of this problem, the authors argued that it is natural to
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require that g be also functionally private with respect to f ; i.e. roughly speaking, there should
be no (or it is computationally infeasible to find an) i such that ỹi “leaks” more information
than yi does (we make it precise in Section 2). As approximations are often used in place of
exact computations to reduce computing resources, the definition also captures the notion
that efficiency and privacy should not be conflicting goals.

We observe that although a series of seminal results [5, 19] claim that any efficiently-
computable (read polynomial-time) distributed protocol for a functionality f can be “com-
piled” into a private protocol, one cannot claim the same for approximations. Indeed, the
functional privacy property is inherent to the description of g and not of any protocol com-
puting g. Hence, there is no hope for a “compiler-like” solution for approximations. Conse-
quently, the focus on functional privacy has been on designing protocols for a particular set
of functions of interest (or classes thereof). Unfortunately, since the definition of functional
privacy first appeared in [1] few results have surfaced. Most are either tailored protocols
for specific functions of interest [1, 2, 8, 10] or impossibility results [6]. An exception are the
more general feasibility results of [1] that claims functionally private approximations for a
specific set of conforming Monte-Carlo simulations. Unfortunately, the results are limited
in scope and rigid in their requirements as we outline and discuss in Section 3.

Our main result, on the other hand, roughly states that a function f admits an efficient
functionally private approximation g if there exists an efficient negligibly biased estimator for
f . The result is flexible enough under many circumstances. We demonstrate this point by
providing two distinct applications of it. The first relates to a quintessential problem in the
data stream model of computation [12]: the estimation of the Lp norm of vectors, which
in the non-private streaming setting spurred several new results. The second is concerned
with feasibility results for ]P problems. Before presenting our contributions, we start with
some relevant context.

Private Streaming Computations. Consider two parties Alice and Bob. Alice sees an n-
dimensional vector a given as a series of coordinate updates. The jth update is (j, ji, ju)
where ji ∈ [n] refers to the dimension of the vector, and ju the change to that dimension, i.e.,
a[ji]→ a[ji] + ju. We visualize a as the stream. Each update has to be processed quickly and
there is only limited memory to store a. Formally, we are allowed space polylogarithmic in n
and various parameters of interest, as well as similar update and processing time. Similarly,
Bob is given input vector b given as a stream. When a function f needs to be computed at
time t, Alice and Bob communicate with each other to evaluate f (at, bt) where at (bt) denotes
Alice’s (resp. Bob’s) vector at time t (hereafter, we drop the subscript t whenever the context
allows). Total communication is in bits polylogarithmic in n and other parameters. This is
the distributed data stream model [12].

Our focus is on achieving functionally private protocols in the streaming model. In this
setting, as in general private computation, Alice and Bob do not wish to reveal the contents
of their streaming data. This stringent requirement is a result of either binding legal reasons
or sheer competitiveness. However, in the spirit of cooperation or as required by law, they
might be willing to perform a specific data analysis task in a secure way. This is the con-
text for the problems we study. For the purposes of this paper, we will address a common
streaming analysis that is already well-studied in the literature [7, 11, 14] (but in a secure
way) and not delve deeper into its many applications (which can be found in [12]). Specif-
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ically, we consider the following problem: compute the Lp norm of vector a − b, denoted
Lp(a − b) = ||a − b||p, for p ∈ [0, 2]. Recall that Lp(x) = (∑i |xi|p)1/p. Nearly all non-
trivial streaming analyses — including the problem above — are in fact approximate (exact
computations are impossible without linear space [12]) and hence we focus on functionally
private approximations.

Private Computation of ]P-complete Problems. In this setting, Alice and Bob hold finite
inputs a and b respectively. Similar in spirit as before, they wish to compute a ]P-complete
function f of their private inputs such that no information other than f (a, b) (and whatever
can be inferred from it) “leaks”. However, as f (a, b) is an intractable problem, they must
settle on computing an efficiently-computable functionally private approximation instead.

Results. Our contributions are as follows:
1. We show that if there exists a negligibly biased estimator (NBE) A(x, ε′, δ′) of f (x)†,

which 〈ε′, δ′〉-approximates‡ f for ε′ = 1/2 and δ′ = µ(κ) in time poly(κ, log |x|)§,
and a public upper bound τ on f (x), then there exists a functionally private 〈ε, δ〉-
approximation g of f computable in time poly(κ, log |x|, log τ, 1/ε, log(1/δ)) for a se-
curity parameter κ. Thus, if τ = poly(|x|) as below, g is polylog(|x|)-computable.
The proof consists of taking enough samples from Bernoulli random variable (r.v.)
with success probability p = O(A(·)/τ) and ensuring p = Θ(1/c) ≤ 1 for a tight
approximation using Õ(c) samples.¶ The output then depends solely on E[A(·)/τ].
Since this is negligibly far from f (x)/τ we argue that functional privacy is implied.
This is a general result for any function f and is not limited to any format as opposed
to the feasibility results in [1]. We believe that it is of general interest and will prove
useful to other functionally private protocols such as the following results.

2. We design a functionally private 〈ε, δ〉-approximation g for the Lp norm, p ∈ (0, 2], of

an n-dimensional vector using Õ
(

κ2 log2 n
)

bits of space on a security parameter κ.
Our result is based on a slight adaptation of the recent non-private unbiased estimator
for Lp [11] applied to our first result. To ensure functional privacy, we use a Pseudo-
Random Functions (PRF), a stronger cryptographic notion than a Pseudo-Random
Generator (PRG) that suffices for standard non-private streaming computations. Sam-
pling from sketches and the use of PRFs in this context appear to be novel.
From above, private streaming protocols for the Lp distance of two vectors follows.
These are the first known private streaming protocols for any problem.

3. We design a functionally private 〈ε, δ〉-approximation g for the ]DNF problem, or esti-
mating the number of satisfiable assignments of a formula in disjunctive normal form,
a ]P-complete problem. In a nutshell, we rely on the result of Karp and Luby [9] to
construct an unbiased estimator suitable for application of our first result.
The result yields functionally private 〈ε, δ〉-approximations to all problems within
some logic-based subclasses of ]P. Specifically, we show that ]DNF is complete un-
der a private and approximation-preserving reduction for the ]Σ1 and ]RΣ2 classes,

†informally, X is a NGE if E[X] is negligibly far from f (x) and has finite variance. See Section 2 for details.
‡a function g 〈ε, δ〉-approximates f if Pr [|g(x)− f (x)| > ε f (x)] ≤ δ for all inputs x.
§poly(n) (polylog) means any polynomial in n (in log n respectively).
¶the notation Õ(n) should be read as O

(
n log(1/δ)/ε2) throughout the paper.
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yielding functionally private approximations to all problems therein.
Although our goal is on achieving private protocols, we omit the details about con-

structing a secure two-party protocol. As Feigenbaum et al. [1] indicated, the challenge typ-
ically boils down to proving functional privacy when designing a private approximation
protocol. Additionally, most of the construction details of a secure protocol are orthogonal
to our main contributions in this paper. We refer the reader to [1, 3] for such details.

2 Preliminaries
Let [m] denote the integer range 1, . . . , m. We denote a negligible function in a positive integer
parameter κ by µ(κ) ∈ κ−w(1). A function f is said to be overwhelming if 1− f is negligible.
Polynomial time means time polynomial in n, 1/ε, and security parameter κ and is denoted
by poly. Similarly, by polylog, we mean time polylogarithmic in n, but poly in 1/ε and κ.
Finally, we say a function is efficient if it is poly-time computable.

DEFINITION 1.[〈ε, δ〉-approximation] A function g is an 〈ε, δ〉-approximation of f if, ∀x,
Pr[|g(x)− f (x)| > ε f (x)] ≤ δ holds for arbitrary ε, δ ∈ (0, 1). The function g depends on
both ε and δ and the probabilistic guarantees are over the randomness of g.

Below is the general notion of indistinguishability of distributions in Cryptography.

DEFINITION 2.[indistinguishability of distributions] Two distributions D1 and D2 are said
to be computationally indistinguishable, denoted D1

c≡ D2, if for every pair of random
variables X1 ∼ D1 and X2 ∼ D2 and for any family of polynomial-size circuits {Cκ} we
have |Pr(Cκ(X1) = 1)− Pr(Cκ(X2) = 1)| ≤ µ(κ)) for a security parameter κ. Distributions
D1 and D2 are statistically indistinguishable, denoted D1

s≡ D2, if for any X1 ∼ D1 and
X2 ∼ D2 the statistical distance SD(X1, X2) = 1

2 ∑a |Pr [X1 = a]− Pr [X2 = a] | ≤ µ(κ). Note

that D1
s≡ D2 implies D1

c≡ D2 but not necessarily vice-versa.

Consider the functional privacy definition for general approximations from [1].

DEFINITION 3.[functional privacy [1]] A function g is functionally private with respect to
a function f if there exists a probabilistic poly-time algorithm (a.k.a. simulator) S such that,
for any input x, {S( f (x))} τ≡ {g(x)} where

τ≡ denotes either ≡,
c≡, or

s≡.

This definition captures the notion that the approximation output g(x) does not reveal
extra information about x besides what can be inferred from f (x). Moreover, the functional
privacy definition is independent of how g is computed or whether f is efficiently com-
putable or not. Indeed, f could be a hard problem and thus S is modeled as having only
access to f (x) and not an oracle access to f .

3 Functional Privacy: current techniques and limitations
The seminal work of [1] presented a feasibility result for the following set of functions.
Consider a two-party computation where Alice and Bob hold private inputs a and b of size
n respectively and let x represent the input pair (a, b). Let f (x) = ψ(Pr [ξ]), where ξ is
an event or Bernoulli trial parameterized by a and b and ψ is an approximation-preserving
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function that is efficient to compute and invert. It was shown that f admits an efficient
functionally private approximation g as long as Pr [ξ] ≥ 1/poly. Essentially, g is constructed
by applying ψ to the outcome of a sampling algorithm estimating Pr [ξ] directly from a
and b via poly independent samples. Correctness follows from Chernoff bounds. On the
other hand, the functional privacy simulator works as follows: given f (x), apply ψ to poly
independent samples of a Bernoulli random variable with success probability equal to an
Ω(κ)-bit approximation of Pr [ξ] = ψ−1( f (x)). Functional privacy follows from the fact that
the simulated distribution is statistically indistinguishable (in a security parameter κ) from
the one induced by g —and thus also computationally indistinguishable. Additionally, [1]
extended the results to functions of the form f (x) = ψ(φ(ξ1, ξ2, . . . , ξt)) for a polynomial-
size, constant-depth arithmetic formula φ(·) of “coin manipulation” gates.‖

We outline some problems with the above feasibility results. The main drawback is the
stringent structure on f (x) = ψ(φ(·)). It restricts f to be the result of some Monte-Carlo
experiment, where coin manipulations suffices in making φ(·) simulatable from f (x) alone
using ψ−1(·). Unfortunately, this structure might not always be easily attainable. Indeed,
for the problem we consider in Section 5, an efficient (and known) solution is to construct
a coin φ(·) = f (x)/h(x) for a function h(x) not inferred from f (x) alone. It turns out that
h(x) depends on the structure of x and thus of private inputs a and b. In that case, ψ−1( f (x))
cannot yield f (x)/h(x) properly as required without the knowledge of h(x).

A second drawback is the requirement that Pr [ξ] ≥ 1/poly. Essentially, it requires tak-
ing poly samples for a tight approximation. This might be prohibitive for very large inputs.
In many cases, the only acceptable goal is to take polylog samples, as the sampling complex-
ity is closely related to the communication complexity of a private distributed protocol [1].
Specifically, when a tighter range for Pr [ξ] is known, it is reasonable to expect a much bet-
ter sampling complexity. Indeed, that is the case of the stand-alone private protocol of [8],
which reduces the sampling complexity to poly(κ, log n) by ensuring that Pr [ξ] ∈ Θ(1/κ).

We address both concerns simultaneously. Roughly speaking, we show that it suf-
fices to design a negligibly biased estimator (NBE) that 〈ε, δ〉-approximates f for f to admit
a functionally private approximation g. Contrary to above, the NBE carries no restriction. For
example, the NBE can be constructed out of a Monte-Carlo experiment or in any other way.
In other words, it is applicable to any function f as long as a suitable NBE is available.
Therefore, our result widens and also encompasses the previous feasibility results of [1].

3.1 Randomness in Private Streaming

Although there are a few deterministic streaming results (c.f. [12]), most streaming protocols
employ the use of randomization. The amount of randomness required varies and typically
ranges between pairwise and full independence. In particular, the streaming problem we
consider in this paper requires O(n) fully independent random variables, where n is the
stream size. Unfortunately, truly independence requires Ω(n) random bits, a prohibitive
storage requirement for data streaming applications. In such cases, a common approach is

‖The gates result from the observation that given two independent coins with unknown probabilities p, q ≥
1/poly, one can construct (in poly time) coins with probabilities p · q, 1− p, or any convex combination of p, q.
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to use a Pseudo-Random Generator (PRG) suitable for space-bounded computations. In-
dyk [7] pioneered this approach by using Nisan’s PRG [15] construction, which fools space-
bounded algorithms. An interesting property of the PRG is that it provides easy access to
any bits of the pseudo-random pad. The property is used to ensure that any bit can be
accessed efficiently every time it is requested; a critical part for streaming applications.

Unfortunately, space-fooling PRGs are not sufficient for functional privacy. In short, the
security convention in Cryptography is to bound the adversary to poly(κ)-time as opposed
toO(κ)-space for a security parameter κ. A typical adversary in the former model can break
the randomness security in the latter (c.f. [3]).

In this paper, we consider a different approach. In a nutshell, we employ the use of a
Pseudo-Random Function (PRF) [4] as follows. A brief review of PRF is informative. Let Iκ

denote the set of all κ-bit strings. Consider Hκ the set of all functions from Iκ into Iκ (note
that |Hκ| = 2κ·2κ

). Let F = {Fκ} be a function ensemble where Fκ assumes values from
Hκ. Then, F is a PRF if it has the following properties: (a) indexing: each function in Fκ

has a unique κ-bit index associated with it Fκ = { fs|s ∈ Iκ}; (b) poly-time evaluation: fs(x)
can be computed in poly(κ)-time given s ∈ Iκ and x ∈ Iκ; and (c) pseudo-randomness: no
poly(κ)-time probabilistic algorithm can distinguish the functions in Fκ from the ones in Hκ.
Intuitively, given a κ-bit truly-random seed string s, a function fs chosen from Fκ is as good
as a random function to any poly(κ) adversary.

Many PRF constructions exist and suffice for our results. Our result in Section 5, how-
ever, uses the PRF construction of [13] because, to the best of our knowledge, it is currently
the most efficient construction regarding the evaluation of fs(x).

4 Functional Privacy of Negligibly Biased Estimators
Consider a positive single-output deterministic function f with input size n. Our result is
inspired in a technique implicit in the private protocol of [8]. We begin with a new definition.

DEFINITION 4.[negligibly biased estimator (NBE)] A random variable X is a negligibly
biased estimator for f (x) in a parameter κ ∈ N if, for any admissible input x, E[X] ∈
(1± µ(κ)) f (x) and Var[X] < ∞.

Observe that securely computing an NBE is not necessarily a functionally private ap-
proximation. Indeed, the higher moments of such computation depend on the input x. The
following theorem attempts in squashing them and remove non-simulatable information.

THEOREM 5. Suppose there exists an algorithm A(x, ε′, δ′) that 〈1/2, µ(κ)〉-approximates a
positive function f (x) with the following conditions. For any input x:

a) A is a negligibly biased estimator for f (x) in a security parameter κ ∈N;
b) ∃ an upper bound τ of f (x), which is considered public knowledge.

Then, f admits a functionally private 〈ε, δ〉-approximation function such that:
1. it is computable in timeO

(
(log τ)(κ + log(log τ) + log(1/δ)/ε2) · TA(|x|, 1/2, µ(κ))

)
;

2. uses O
(
(log τ + log κ + log log[(1/2δ)/ε2]) + SA(|x|, 1/2, µ(κ))

)
of space,

where TA(n, ε′, δ′) and SA(n, ε′, δ′) are the running time and space usage of A(x, ε, δ) resp..

PROOF. We prove it constructively; i.e. we show how Function 1 achieves the claims. Let
Bernoulli(q) represents a Bernoulli r.v. with success probability q.
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Inputs: input x and parameters τ ≥ f (x), ε ∈ (0, 1), δ ∈ (0, 1), security parameter κ,
and access to a NBE A(x, ε′, δ′) for ε′ = 1/2 and δ′ = µ(κ).

Output: a functionally private 〈ε, δ〉-approximation of f (x)
1. Let N = Θ(κ + log(log τ) + log(2/δ)/ε2)
2. For each iteration i = 0, . . . , dlog τe:

(a) Compute Zi = ∑N
j Zi,j, where each Zi,j is the outcome of an indepen-

dent trial of

Bernoulli
(
A(x, 1/2, µ(κ))

(3/2)(τ/2i)

)
(1)

until iteration ` where Z` exceeds N/8.
(b) Abort if any call to A(·) > (3/2)(τ/2i) and output failure.

3. Output F = Z` · (3/2)(τ/2`)/N
Function 1: Functionally private approximation function given an NBE.

Correctness. For each iteration i = 0, 1, . . . , dlog τe, let the collection of r.v.s {Xi,j}j∈[N] repre-
sent the N independent outcomes of callingA(x, 1/2, µ(κ)). Each Xi,j is an negligibly biased
〈1/2, µ(κ)〉-approximation of f (x); i.e. with overwhelming probability in κ it holds that a
sample from Xi,j ∈ (1± 1/2) f (x) and E

[
Xi,j
]

= (1± µ(κ)) f (x). As in Function 1, define
Bernoulli r.v.s {Zi,j}j∈[N] where each Zi,j has success probability pi,j = Xi,j/[(3/2)(τ/2i)].

Let Zi = ∑N
j Zi,j. Also, let ` be the smallest index such that Z` > N/8 as stated in

Function 1 and let `′ be the index such that τ/2`′+1 ≤ f (x) < τ/2`′ (note that there is
always such an index by definition of τ and iteration range of `′). First, note that for any
iteration i = 0, 1, . . . , `′, pi,j ≤ 1 because τ/2`′ ≥ f (x) and the confidence guarantees of
A(·) hold overwhelming in κ; i.e. only with µ(κ) probability, the protocol aborts and we can
safely assume this does not happen. Therefore, all sample probabilities are proper in that
range. We then show that ` ≤ `′ always holds; i.e. Z`′ ≥ N/8 holds with overwhelming
probability in κ. Indeed, the expectation of the Bernoulli trials at iteration `′ is

E
[
Z`′,j

]
= E

[
A(x, 1/2, 2−κ)
(3/2)(τ/2`′)

]
≥ E[A(x, 1/2, 2−κ)]

(3/2)(2 f (x))
=

(1± µ(κ)) f (x)
3 f (x)

≥ 1/4.

In turn, E[Z`′ ] ≥ N/4 by linearity of expectations and thus

Pr [Z`′ < N/8] ≤ Pr [Z`′ < (1/2)E[Z`′ ]] ≤
(

e−1/2

(1/2)(1/2)

)E[Z`′ ]

≤ e−N/8 ≤ µ(κ),

which follows from a Chernoff bound and choice of N. Therefore, a suitable index ` ≤ `′

can be found in at most log(τ) + 1 iterations overwhelmingly in κ.
Now, recall that the output is F = Z` · (3/2)(τ/2`)/N. For the possible candidate exit

iterations i ≤ `, we have that

E[Zi] = E

[
N

∑
j

Zi,j

]
=

N

∑
j

E

[
A(x, 1/2, 2−κ)
(3/2)(τ/2i)

]
= N

f (x)
(3/2)(τ/2i)

= Θ(N).
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Thus, by a Chernoff bound and union bound over the iterations,

Pr [F > (1 + ε) f (x)] = log(τ) · Pr
[

Zi · (3/2)(τ/2i)/N > (1 + ε) f (x)
]

= log(τ) · Pr [Zi > (1 + ε)E[Zi]]

≤ log(τ) · e−Θ(N) ε2
3 ≤ e−(κε2+log(2/δ)) ≤ δ/2.

A similar result holds for Pr [F < (1− ε) f (x)] ≤ δ/2. Therefore, we have shown that
Pr [F ∈ (1± ε) f (x)] ≥ 1 − δ as desired. The running time follows from at most log(τ)
iterations of Õ(κ) independent samples of TA(n, 1/2, µ(κ)). Space follows as one log τ-bit
counter and one log N-bit counter suffice for computing the Zi’s.

Privacy. F is functionally private to f (x) as the Bernoulli trials can be simulated by an
algorithm with similar skeleton as Function 1 but with success probabilities

pi,j =
f (x)

(3/2)(τ/2i)

instead in (1) (recall that f (x) is given to the simulator, see Definition 3). Now, note that they
are statistically indistinguishable from the protocol trials because each Xi,j = A(x, ε′, δ′) is
a negligibly biased estimator of f (x); i.e. E[A(x, ε′, δ′)] = (1± µ(κ)) f (x) overwhelmingly
in κ for ε′ = 1/2 and say δ′ = 2−Θ(κ).∗∗ Indeed, the samples gathered until the last iteration
` were generated from proper probabilities (≤ 1) as argued earlier. Finally, recall that the
higher moments of the Bernoulli random variables depend solely on its expectation —thus
effectively squashing any non-simulatable higher moments of A(·). Since τ is considered
public, functional privacy is implied.

Remark. The theorem is most useful when the upper bound τ is at most single-exponential
in f (x); as we shall see in the next section.

5 Functionally Private Streaming Approximation for the Lp Norm
The Lp norm, for p ∈ (0, 2], of a vector a ∈ {−M, M}n is defined as Lp(a) = ||a||p =
(∑n

i |ai|p)1/p. In this section, we prove the following theorem.

THEOREM 6. There exists a functionally private 〈ε, δ〉-approximation of ||a||p, p ∈ (0, 2], in

the streaming setting, requiring only O
(

κ2 log2(nM)(κ + log(1/δ)/ε2)
)

bits of space, and

O
(
κ2 log(nM)(κ + log(1/δ)/ε2)

)
update andO

(
κ log2(nM)(κ + log(1/δ)/ε2)

)
update query

time for arbitrary ε, δ ∈ (0, 1) and security parameter κ.

Before proceeding, it is instructive to recall the estimator of [11].

Geometric Mean Unbiased Estimator for Lp [11]. Let R be the R`×n projection matrix with
i.i.d. entries Ri,j ∼ S(p, 1), where S(p, γ) denotes a discretized symmetric p-stable distribu-
tion over R with scale parameter γ. Let x = Ra be the “sketch” of a as `� n (` is set later).

∗∗let us not confuse ε′ and δ′ with ε and δ. The former parameters are the ones used for invoking the NBE A,
while the latter are the error and confidence parameters of the functionally private approximation function.
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By the properties of the distribution, each xj = ∑i aiRi,j ∼ ||a||pXj, where Xj ∼ S(p, 1).
Equivalently, we can write xj ∼ S(p, ||a||p). Such distributions exists for p ∈ (0, 2]. Thus, to
estimate ||a||p, it boils down to approximating the scale parameter γ from ` i.i.d. samples.
In [7], the author proposed using the estimator median(|x1|, |x2|, . . . , |x`|). However, [11]
has shown that not only it is severely biased but also hard to bias-correct it analytically or
algorithmically. Therefore, for p ∈ (0, 2], [11] proposed using a bias-corrected version of the
geometric mean estimator:

L̂p,gm =
`

∏
j=1
|xj|1/`

/[
2
π

Γ
( p

`

)
Γ

(
1− 1

`

)
sin
(π

2
p
`

)]`

, (2)

where Γ (z) is the Gamma function of a real-valued z. The estimator is strictly unbiased, or
E[L̂p,gm] = ||a||p. Moreover, it has finite variance and exponential tail bounds, crucial for an
〈ε, δ〉-approximation of ||a||p for arbitrary ε, δ ∈ (0, 1).

The correctness of the construction relies on building the projection matrix R from truly
random samples. Unfortunately, that requires Ω(n`) bits of storage. By using the Pseudo-
Random Function construction of [13] instead (see Section 3.1) we only need to store a κ-bit
seed sj per each sample j ∈ [`]. This is correct as long as κ = Ω(log n) because we use the
vector coordinate i ∈ {0, 1}log n as input for the PRF given seed sj.

Proof of Theorem 6. We transform the unbiased geometric estimator L̂p,gm of (2) to an NBE
with Ω(κ)-bit precision. The theorem then follows by applying Theorem 5.

Specifically, for p = 1, the denominator in (2) simplifies to [2 sin(π/2`)/ sin(π/`)]` =
1/ cos`(π/2`). It is known that it suffices to use O(log 1/ε) terms to (1± ε)-approximate
cos`(x) (by bounding the Taylor polynomial), or in our case O(κ`) terms to (1 ± µ(κ))-
approximate For p = 2, the same denominator simplifies to [pΓ (1/`)/Γ (1/p`)]` . Approxi-
mating it negligibly in κ implies getting an (1± 2−κ`) approximation to the Gamma function
(note the power `). A result from [17] does so with O(κ`) time with relative error 2−κ`. A
similar argument applies for p ∈ (0, 2]. Finally, observe that for agreed-upon values of κ, ε,
and δ, the correction factor can be pre-computed (the theorem claims assume this fact).

Now, we validate our storage claims. Recall that Theorem 5 makes at mostO(log τ) ·N
invocations to the NBE A, where τ is an upper bound on f (x) and N = Θ(κ + log(log τ) +
log(1/δ)/ε2). Since τ ≤ nM2 (for any p ∈ (0, 2])) we have O

(
log(nM)(κ + log(1/δ)/ε2)

)
invocations of A.†† On the other hand, each invocation of A requires taking ` samples
(or sketches). In [11], it was shown that setting ` = O

(
log(1/δ)/ε2) suffices for an 〈ε, δ〉-

approximation of ||a||p using (2). Since A is called with ε′ = 1/2 and δ′ = µ(κ) = 2−Θ(κ)

in Theorem 5, we have that each invocation requires ` = O
(

log(1/2−Θ(κ))/(1/2)2
)

=
O(κ) sketches. Therefore, multiplying the number of invocations by the number of sam-
ples we get that the total storage requirement is O

(
κ log(nM)(κ + log(1/δ)/ε2)

)
sketches.

Each of these sketches require a counter and a κ-bit seed for the PRF. The former requires
O(log(nM)) bits as the maximum value for f (x) is nM2 for any p ∈ (0, 2]. Thus, the total
storage is O

(
κ2 log2(nM)(κ + log(1/δ)/ε2)

)
bits as desired.

††assuming κ = Ω(log log τ) = Ω(log(log nM)).
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The amount of computation per update per sketch is dominated by κ modulo multipli-
cations and one exponentiation of κ-bit numbers when using the PRF construction of [13].
These can be performed in O(κ) constant-time computations. The update time is thus sim-
ply O

(
κ2 log(nM)(κ + log(1/δ)/ε2)

)
as desired assuming that operations on O(log(nM))-

bit strings are constant. Finally, the query time is O
(
κ2 log(nM)(κ + log(1/δ)/ε2)

)
as the

work of Function 1 is simply linear in the storage size once all sketches are available.

6 Private Approximation of ]P-complete problems
Consider the following abstract problem. Let U be a finite set whose elements are binary
strings of size n. Let the Boolean function h : U → {0, 1} partition U. The goal is to estimate
the cardinality of D = {u|u ∈ U ∧ h(u) = 1}. Most problems in ]P can be formulated as
the problem above. Indeed, ]P can be seen as the class of function problems counting the
number of accepting paths in an NP machine [18]. In this section, we focus on obtaining
efficient (read poly-time) functionally private approximations to the above abstract problem
as exact solutions are typically not feasible.

Monte-Carlo sampling methods are useful in estimating µ = |D|/|U|. From Chernoff
bounds, an 〈ε, δ〉-approximation is possible using Õ(1/µ) independent samples of h(u) for
an u chosen uniformly at random (u.a.r.) from U. An efficient algorithm, however, requires
that µ ≥ 1/poly provided that it is poly-time computable to sample an element u u.a.r.
from U and compute h(u). Unfortunately, µ may be exponentially small in n, requiring
a prohibitive super-polynomial samples. An alternative approach is the method of Karp
and Luby [9]. The crux is on finding a small enough multiset V, containing all elements
of D, such that µ = |D|/|V| is large enough for efficient sampling. The following theorem
summarizes their coverage algorithm, as it is known, for an abstract Union of Sets problem.

THEOREM 7.[Karp and Luby [9]] Let U and D be defined as before. Suppose there are sets
{D1, . . . , Dm} ⊆ D s.t. D =

⋃m
i Di and the following conditions hold, ∀i ∈ [m]:

1. |Di| can be computed in poly(n, m) time;
2. any element s ∈ Di can be sampled u.a.r. from Di in poly(n, m) time;
3. given any s ∈ D, it can be decided if s ∈ Di in poly(n, m) time.

Then, an 〈ε, δ〉-approximation for |D| can be computed in poly (n, m, 1/ε, log(1/δ)) time.

Private Coverage Algorithm. What prevents the coverage algorithm from being functionally
private to f using current techniques is the fact that |V| depends on x. Indeed, |V| cannot
be inferred from f (x) alone and thus the higher moments of the distribution induced by X
depends on the structure of x and thus breaks functional privacy (c.f. Section 2).

Let Xj be a Bernoulli r.v. representing the jth sample of a coin with success probability
p = |D|/|V| as in the proof of Theorem 7 [9]. Alternatively, one might be tempted to
construct an event “Yj = 1” where Yj is a Bernoulli r.v. with probability q = |V|/τ and

sample from the joint Bernoulli distribution E
[
“Xj = 1′′ and “Yj = 1′′

]
= p · q = |D|

|V| ·
|V|
τ =

|D|
τ for a publicly known value τ (or one that can be inferred from f (x)), where p = E

[
Xj
]
.

That way the output distribution depends solely on |D| (and no-harm τ) and functional
privacy is implied by the feasibility results of [1] using their formula f (x) = ψ(φ(·)) where
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φ = p · q and ψ(n) = n · τ (see Theorem 6.4 in [1]). However, we note that in this case τ must
be larger than |V| so that the coin is proper. Unfortunately, the only known upper bound
on |V| we know of without knowing x is m2n as every element can be part of each set Di.
In such case, q = |V|/(m2n) < 1/poly for small values of |V| and no efficient sampling is
possible.

Our approach instead is to squash the higher moments of X to prevent non-simulatable
information from leaking. To that end, we use the unbiased coverage algorithm of Theo-
rem 7 as the negligibly biased estimator in our main theorem, Theorem 5. The result is below.

THEOREM 8. Let U, D and V and the set forth conditions on them be as in Theorem 7. Fur-
thermore, suppose there exists a publicly known upper bound τ on f (x). Then there exists
a functionally private 〈ε, δ〉-approximation for |D| in poly (κ, n, m, log τ, 1/ε, log(1/δ)) time
for a security parameter κ.

PROOF. Let A(x, ε, δ) be the coverage algorithm of Theorem 7. The theorem follows from
a direct application of Theorem 5 usingAwith parameters ε = 1/2 and δ = µ(κ) and upper
bound τ = 2n.

Private ]DNF. Let F =
∨m

i Ci, be a propositional formula in disjunctive normal form where
each Ci is a conjunction of a subset of literals defined with respect to n Boolean variables
x1, . . . , xn. The goal is to output the number of satisfiable assignments to F, or ]F. The
problems is ]P-complete [18]. In [9], Karp and Luby also showed a connection between the
abstract Union of Sets problem and ]DNF. Our result below uses this connection.

COROLLARY 9. There exists a functionally private 〈ε, δ〉-approximation for ]DNF com-
putable in poly(n, m, 1/ε, log(1/δ)) time.

PROOF. The claims follows directly from Theorem 8. Essentially, we show set D =
⋃m

i Di
can be built as required and the conditions put forth in Theorem 7 (and Theorem 8) hold. Let
each Di be the set of assignments satisfying clause Ci. Then, clearly ]F = |D|. The conditions
are met as follows, ∀i ∈ [m]: 1) |Di| can be computed in O(1) as |Di| = 2n−|Ci |; 2) sampling
an element s ∈ Di u.a.r. from Di requires setting the proper assignments for the literals in Ci
and choosing u.a.r. from {true, false} for the other literals not in Ci; and 3) trivial to evaluate
whether or not s ∈ Di for any s ∈ D in O(n) time. The corollary follows.

Further Applications. In [16], it was shown that ]k logDNF (a special case of ]DNF re-
stricting the formula to at most k log n variables per disjunct.) and ]DNF are complete for
classes ]Σ1 and ]RΣ2 respectively. These are logic-based classes of counting problems. The
problems are complete under a product reduction, which is a reduction from f to g where
∃φ, h ∈ FP, h : N → N such that ∀x, f (x) = g(φ(x)) · h(|x|), with FP being the complexity
class of polynomial-time computable functions problems.

Observe that the reduction is private and approximation-preserving. Note that h(|x|)
not only preserves approximability but also does not leak anything about x. We conclude
that a functionally private 〈ε, δ〉-approximation to g implies one to f . Consequently, we
have that all problems in ]Σ1 and ]RΣ2 can be privately approximated, including prob-
lems such as ]NON-VERTEX-COVERS, ]NON-CLIQUES, ]NON-DOMINATING-SETS, and
]NON-HITTING-SETS to cite a few (c.f. [16]). We defer details to the full version.
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ABSTRACT. We suggest that extending Muller games with preference ordering for players is a
natural way to reason about unbounded duration games. In this context, we look at the standard
solution concept of Nash equilibrium for non-zero sum games. We show that Nash equilibria always
exists for such generalised Muller games on finite graphs and present a procedure to compute an
equilibrium strategy profile. We also give a procedure to compute a subgame perfect equilibrium
when it exists in such games.

1 Introduction

Infinite two player games on graphs have been shown to have various applications in differ-

ent branches of mathematics and computer science. These are games played on a directed

graph where players take turns to move and trace out a path in the graph. The winning

condition is given by a set of infinite paths. Such games are well studied in descriptive set

theory and topology in the form of Banach-Mazur games. In computer science these are

commonly used as models of games in verification and synthesis of open reactive systems.

The key question of interest for such games is that of determinacy. That is, whether one of

the players always has a winning strategy. It turns out that determinacy depends crucially

on the topological properties of the winning set. A celebrated result by Martin [7] showed

that all games with Borel winning conditions are determined.

Martin’s result however, does not make any assertion as to whether it is possible to de-

termine who the winner is or how “complex” the winning strategy is. These turn out to be

the core questions in solving the verification and synthesis problems as well. Winning con-

ditions for games which arise in computer science are typically specified as logical formulas

in S1S, first order logic or LTL and are therefore regular conditions. A seminal result due

to Büchi and Landweber [1] says that for games played on finite graphs where the wining

condition is specified as a Muller set, the winner can be determined and that the winning

strategy can be effectively synthesised in finite memory strategies.

A natural generalisation of two player zero sum games is multi-player games where

each player has a win-lose objective. Players’ objectives are allowed to overlap and therefore

these define non-zero sum games. For non-zero sum games, determinacy is usually replaced

c© Paul, Simon; licensed under Creative Commons License-NC-ND.
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by one of the most important solution concepts in game theory, that of Nash equilibrium: a

strategy profile where none of the players have an incentive to deviate unilaterally. It has

been shown in [3] that every multiplayer game with Borel winning condition has a Nash

equilibrium (see [2] for a detailed exposition). The main idea here is the effective use of

threat strategies whereby a player deviating from the equilibrium profile is punished by

others to receive the outcome which she can guarantee on her own. For games where the

win-lose objectives are regular, an equilibrium profile can be effectively synthesized as well.

For games of infinite duration, it is questionable whether Nash equilibrium defines a

satisfactory notion of rational behaviour. A more refined concept is that of subgame perfect

equilibrium which takes into account perturbations of players as well. The existence of

subgame perfect equilibrium for multiplayer games with win-lose objectives was shown

in [9]. [5] unifies both results and shows that the crucial requirement for the existence of

equilibrium for such multiplayer games is the determinacy of the underlying two player

games.

From a game theoretic perspective, it is quite natural to consider games where players

have utilities associated with plays rather than just win-lose conditions. We suggest that

in case we restrict our attention to classifying regular plays then this can be captured in

terms of a generalised Muller game. These are Muller games where instead of interpreting

the Muller table as defining win-lose conditions, we associate utilities over the sets in the

Muller table. Such games define non-zero sum objectives for players and we can therefore

ask the question whether Nash equilibrium always exists for this class of games. In this

context we show the following results:

• Nash equilibrium always exists for generalised Muller games played on finite graphs.

• An equilibrium profile can be effectively synthesized.

One could employ threat strategies to show the existence of equilibrium. However, for

infinite games with non-zero sum objectives, even coming up with rationality assumptions

which justify the use of such strategies is a challenging task. On the other hand, backward

inductive equilibrium profiles are known to be more versatile in the case of finite games. We

show that the standard backward induction algorithm [10] can be effectively used to prove

the existence of Nash equilibrium and to synthesize an equilibrium profile in generalised

Muller games.

Subgame perfect equilibria in general need not exists for such games. However, we

show that:

• It is decidable to check whether subgame perfect equilibrium exists in a generalised

Muller game.

• It is possible to effectively synthesize a subgame perfect equilibrium profile (when it

exists).

2 Preliminaries

We begin with a description of the game arena and the objectives of the players. We look at

unbounded duration, turn based games played on finite graphs.
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2.1 Game Arena

A game G consists of an arena A and an objective Win. For a directed graph A = (V, E)
and for a node v ∈ V, let vE = {v′ | (v, v′) ∈ E}. Let N = {1, . . . , n} be the set of players. A

game arena is a finite graph A = (V, E) where V is the set of game positions and E ⊆ V ×V

is the move relation. V is partitioned into sets V = V1 ∪ . . . ∪Vn where for all i ∈ N, Vi is the

set of game positions of player i. For simplicity we assume that for all v ∈ V, the set vE is

nonempty. An initialised game is a game G along with a starting vertex v0 ∈ V. Henceforth

when we use the notation (G, v0), we will generally mean an initialised game with initial

vertex v0.

Given a game (G, v0), a play in (G, v0) can be viewed as follows: initially a token is

placed at vertex v0. At any point, if the token is at a vertex v ∈ Vi (i.e. a player i vertex) then

she moves the token to some v′ ∈ vE. In this way an infinite path, π = v0v1 . . . where for all

j > 0 we have (vj−1, vj) ∈ E, called a play is constructed in the arena.

For a finite sequence ρ = v0v1 . . . vk let first(ρ) = v0, last(ρ) = vk and for an infinite

sequence π = v0v1 . . . let inf(π) denote the set of nodes that appear infinitely often in π.

For any sequence π = v0v1 . . ., let π(i) denote the ith element of π, πi denote the length i

prefix of π, |π|v denote the number of v’s occuring in π and Occ(π) = {v | |π|v > 0}.

2.2 Strategies

A strategy for player i specifies at each game position of i which move to choose. It is a

function σi : V∗Vi → V from the set of all finite plays (histories) ending in a player i node to

the set of game positions which satisfies the condition:

• for all π = v0 . . . vk, such that vk ∈ Vi, σi(π) ∈ vkE.

Let TA denote the tree unfolding of A. A strategy σi can also be thought of as a subtree Tσi

of TA (called the strategy tree) where for each player i node there is a unique outgoing edge

and for any other player node, we include all the edges.

A strategy σ is said to be bounded memory if there exists a finite state machine M =
(M, g, h, mI) where M is the memory of the strategy, mI ∈ M is the initial memory, g :

V × M → M the memory update function, and h : V × M → V is the output function which

specifies the choice of the player such that if v0 . . . vk is a play and m0 . . . mk+1 is a sequence

determined by m0 = mI and mi+1 = g(vi, mi) then σ(v0 . . . vk) = h(vk , mk+1). The strategy σ

is said to be memoryless if M is a singleton.

Let Ωi denote the set of all strategies for player i. A strategy profile σ̄ = (σ1, . . . , σn)
defines a unique play in the game, we use πσ̄ to denote this play. We often use the notation

ı̄ to denote the set N \ {i} and σ̄−i to denote the tuple (σ1, . . . , σi−1, σi+1, . . . , σn).

2.3 Objectives

The arena specifies the rules of the game and the moves of the players. To describe a game

fully, the objectives of the players have to be specified. The players play in a way that they

can ‘achieve/avoid’ these objectives. The objective of a player is usually a subset ot the set of

plays. However, for algorithmic analysis, the objectives need to be finitely presentable. The

most widely studied of these presentations are ω-regular objectives, mean-payoff objectives
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and so on. These naturally arise in the specifications encountered in the verification and

synthesis of reactive systems. In this paper we concentrate on a specific type of ω-regular

objective, the Muller objective.

Binary Objectives: In this case the objective of each player i is an omega regular subset

Win of plays. The game is not antagonistic since objectives of players are allowed to over-

lap. For instance, for Muller objectives, each player i has a collection Fi of Muller sets. She

wins the game if and only if the game eventually settles down to some subset F of the set

of vertices V such that F ∈ Fi; otherwise she loses. We often call these objectives ‘win-lose

objectives’.

Generalised Objectives: In this paper we are concerned with games where players have

preference orderings on the various Muller sets. Formally, player i has a total order ⊑i on

the Muller sets. Such an ordering can also be viewed as an utility function ui : 2V → N.

Since a strategy profile σ̄ ∈ Πn
i=1Ωi defines a unique Muller set F = inf(πσ̄), we may also

think of ui to be a function from ui : Πn
i=1Ωi → N. We call such games generalised Muller

games.

2.4 Best Response and Equilibrium

The notion of best response and equilibrium is defined as follows:

• A strategy σi of player i is said to be a best response for σ̄−i if for all σ′
i ∈ Ωi,

ui(π(σ̄−i,σ
′
i )
) ≤ ui(π(σ̄−i,σi)).

• A strategy tuple σ̄ = (σ1, . . . , σn) is a Nash equilibrium if for all i ∈ N, σi is the best

response for σ̄−i.

• A subgame perfect equilibrium (SPE) [8] can be defined in our setting as follows. Let

ρ be a (finite) path in the arena A. Given a strategy σi for player i, the strategy σi(ρ)
is defined to be a function: σi(ρ) : ρV∗Vi → V such that σi(ρ)(ρ′) = σi(ρρ′). Let σ̄(ρ)
denote the tuple (σ1(ρ), . . . , σn(ρ)). A strategy tuple σ̄ in the initialised game (G, v0)
is said to be an SPE if for every vertex v in A and for every path ρ from v0 to v in A,

σ̄(ρ) is a Nash equilibrium for the initialised game (G, v).

2.5 Computing Nash Equilibrium

In [3], the authors show that n-player games with win-lose Borel objectives always have

a Nash equilibrium. An equilibrium profile is where the players play ‘threat’ strategies in

that, if any player i unilaterally deviates from her prescribed behaviour, all the other players

punish her by playing a profile where she can never gain anything more than what she

would have had she stuck to her prescribed strategy. The procedure can be appropriately

modified to show that Nash equilibrium always exists in a generalised Muller game.

Threat strategies are naturally defined in the case of games with win-lose objectives.

However, with general non-zero sum games, it is not clear whether threat strategies consti-

tute ‘efficient’ solutions profiles. For finite games backward inductive solution profiles are

known to preserve nice properties like Pareto efficiency [4]. Here we show that the standard
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backward induction procedure can be effectively utilised for computing Nash equilibria in

generalised Muller games.

3 Solving Generalised Games

In this section, we develop our procedure for solving generalised Muller games and prove

its correctness. The central idea of the procedure is to perform a finite unfolding of the game

arena, making use of the ‘latest appearance record’ (LAR) data structure [6] and apply a

backward induction on this unfolding.

3.1 The LAR Tree

Let A = (V, E) be a finite graph and ♯ /∈ V. Let ≺ be a total order on the nodes of V. We Let

LA = {l ∈ (V ∪ {♯})|V|+1 | |l|♯ = 1 ∧ ∀v ∈ V(|l|v = 1)}

The set LA is called the LAR memory. Henceforth we shall refer to elements from LA
as x♯y where x, y ∈ V∗. We define a function next : LA × V → LA as

next(x♯y, v) =






x′♯x′′yv iff x♯y = x′vx′′♯y

xy′♯y′′v iff x♯y = x♯y′vy′′

x♯y iff x♯y = x♯y′v

For a finite play ρ = v0v1 . . . vk in the arena we define LAR(ρ) inductively as:

• LAR(v0)=x♯v0 where x is ordered according to the total order ≺.

• LAR(v0 . . . vi)=next(LAR(v0 . . . vi−1),vi), i ≥ 1.

Given an arena A = (V, E) and an element x♯y ∈ LA the (finite) LAR tree Tfin(A, x♯y)
corresponding to A and x♯y, or just Tfin(x♯y) when the arena A is fixed, is constructed as

follows:

• x♯y is the root of Tfin(x♯y).

• For any node x′♯y′v of Tfin(x♯y), and for all u ∈ vE, x′′♯y′′ = next(x′♯y′v, u) is a child

of x′♯y′v iff there is no node x′′♯y′′ in the unique path from the root to x′♯y′v, or x′′♯y′′

is the first node to repeat in the path.

That Tfin(x♯y) is well defined follows from the fact that the function next is well defined.

And the fact that Tfin(x♯y) is finite can be ascertained by noting that along any sequence of

the elements of LA of length (|V| + 1)! + 1, at least one element is bound to repeat, by the

pigeonhole principle.

3.2 Ensuring a Muller Set

Let A = (V, E) be an arena, v0 be an initial vertex and Tfin(x♯v0) be the LAR tree of A
corresponding to the LAR x♯v0 where x is ordered according to the total order ≺. Let F ⊆
2V be a collection Muller sets and M ( N, M 6= ∅ be a subset of players. We label the

leaf nodes of Tfin(x♯v0) with F or F̄ as follows. For a leaf node x♯y of Tfin(x♯v0), let ρ be

the unique path in Tfin(x♯v0) from the root to x♯y. Let ρ′ be the least suffix of ρ such that

first(ρ′) = last(ρ′) = x♯y (note that such a suffix always exists by construction of Tfin(x♯v0)).
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Let Let lmax = max{|y| | x♯y ∈ Occ(ρ′)} and let Lρ = {x♯y | |y| = lmax}. If there exists

x′♯y′ ∈ Lρ such that {y′} ∈ F then we label the leaf x♯y with F . Otherwise we label it with

F̄ .

We now label the entire Tfin(x♯v0) with F or F̄ and construct (memoryless) strategies

µi : LA → LA, i ∈ M using the following backward induction procedure.

Procedure 1

Suppose all children of node x♯yv of Tfin(x♯v0) have been labelled. Let Tx♯yv be the set of

children of x♯yv and let TF
x♯yv ⊆ Tx♯yv be the nodes among these children that have been

labelled with F . Then

• v ∈ Vi such that i ∈ M:

– If TF
x♯yv 6= ∅ then let x′♯y′v′ be such that v′ ≺ v′′ for all x′′♯y′′v′′ ∈ TF

x♯yv. Label

x♯yv with F and put µi(x♯yv) = x′♯y′v′.
– If TF

x♯yv = ∅ then let x′♯y′v′ ∈ Tx♯yv be such that v′ ≺ v′′ for all x′′♯y′′v′′ ∈ Tx♯yv.

Label x♯yv with F̄ and put µi(x♯yv) = x′♯y′v′.
• v ∈ Vi such that i /∈ M:

– If TF
x♯yv = Tx♯yv, which means that every child of x♯yv is labelled F , then label

x♯yv with F .

– If TF
x♯yv ( Tx♯yv then there exists a child x′♯y′v′ of x♯yv such that x′♯y′v′ has label

F̄ . Label x♯yv with F̄ .

Note that, choosing the least v in the order ≺ in the above procedure ensures that the µi’s

constructed are well defined.

Players M are said to be able to ensure the Muller sets F by strategy µi, i ∈ M on

Tfin(x♯v0) if the root of Tfin(x♯v0) is labelled F by the above procedure and µi are the strate-

gies constructed.

Given a memoryless strategy µi for player i on an LAR tree Tfin(x♯y) we can construct

the corresponding bounded memory strategy σi for player i on the arena A as follows:

• The memory M of σi is the set LA and the initial memory mI is x♯y.

• The memory update function gi : V × M → M is defined as gi(v, x′♯y′) = next(x′♯y′, v).

• The output function hi : Vi × M → V is defined as h(v, x′♯y) = µi(x′♯y).

For a word on notation, we denote memoryless strategies on Tfin(·) by µ and we denote

the bounded memory strategies on the arena A by σ.

A strategy σ on the arena A is said to exist in Tfin(x♯y) if it corresponds to some strategy

µ on Tfin(x♯y). A strategy µ is said to exist in Tfin(x♯y) if it is some subtree of Tfin(x♯y).

LEMMA 1. If players M ( N, M 6= ∅ can ensure Muller sets F in Tfin(x♯v0) by strate-
gies µi, i ∈ M, then they can ensure F in (G, v0) by the bounded memory strategies σi

corresponding to µi.

PROOF. Suppose not and suppose that players M can ensure F in Tfin(x♯v0) by µi, i ∈ M

but they cannot ensure F in (G, v0) by the corresponding strategies σi. Then there exists a

play π in (G, v0) conforming to σi, i ∈ M such that it settles down to a Muller set F′ /∈ F .

There are two cases to consider.
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The first case is when there exists v ∈ F′ such that v /∈ F for any F ∈ F . Let j be the first

index such that π(j) = v and π(j − 1) ∈ Vk, k /∈ M. Let ρ be the (finite) path in Tfin(x♯v0)
corresponding to π. j must be greater than |ρ|; otherwise ρ couldn’t have been labelled F
and hence µi’s couldn’t have ensured F . Let x′♯y′=LAR(πj−1). By the construction of the

LAR tree Tfin(x♯v0) there exists a node x′♯y′ ∈ ρ itself. But this means that player k had the

option of playing v at the node x′♯y′ forcing x′♯y′ and hence the root to be labelled F̄ . But

this would contradict the fact that µi’s ensure F in Tfin(x♯v0).

The other case is when there exists v ∈ F ∈ F such that v /∈ F′. Let ρ be the (finite) path

in Tfin(x♯v0) corresponding to π. Let l be the biggest index l such that π(l) = v but l < |ρ|.
Suppose π(l − 1) ∈ Vi, i ∈ M. Then for all indices l1, l2, . . . such that l < l1 < l2 < . . .

and LAR(πl1)= LAR(πl2)=. . . = LAR(πl−1), player i has to play v as it is prescribed by the

memoryless strategy µi, and hence in turn by the corresponding bounded memory strategy

σi. But this contradicts the fact that the π settles down to F′.
Finally, suppose π(l − 1) ∈ Vk, k /∈ M. Then player k has the option of playing v at

π(l − 1) and al all indices l1, l2, . . . such that l < l1 < l2 < . . . and LAR(πl1)= LAR(πl2)=. . . =

LAR(πl−1). Hence µi’s could not have ensured F in Tfin(x♯v0) as the leaf node of ρ wouldn’t

have been labelled F and hence neither the root.

LEMMA 2. Let F be a collection of Muller sets. If players M ( N, M 6= ∅ have strategies
σi, i ∈ M to ensure F in the game (G, v0), then they have strategies µi, i ∈ M to ensure F in
Tfin(x♯v0).

PROOF. Suppose players M do not have strategies µi, i ∈ M to ensure F in Tfin(x♯v0) then

Tfin(x♯v0) being a finite tree (and hence a finite extensive form game) it follows that players

N \ M have strategies µi, i ∈ N \ M to ensure 2V \ F in Tfin(x♯v0), since finite games are

determined. Then by Lemma 1, players N \ M have bounded memory strategies σi, i ∈
N \ M corresponding to the µi’s to ensure 2V \ F in (G, v0) as well. But this contradicts the

assumption that players M have strategies to ensure F in (G, v0).

Combining the above two lemmata, we have the following theorem.

THEOREM 3. Let (G, v0) be an n-player game, N being the set of players. Let M ( N, M 6=
∅ be a subset of players and F be a collection of a Muller sets consisting of the nodes of the
arena of the game. Then players M can ensure F in (G, v0) if and only if they can ensure

F in Tfin(x♯v0). Also, if players M can ensure F in Tfin(x♯v0) then the bounded memory
strategies σi, i ∈ M corresponding to the memoryless strategies µi, i ∈ M computed by
Procedure 1, ensures F in (G, v0).

3.3 Equilibrium Computation

Let (G, v0) be a generalised Muller game with the set of players N and let ui be the utility

function of player i over the Muller sets. We label the leaf nodes of the LAR tree Tfin(x♯v0)
consistently with tuples (x1, . . . , xn) ∈ N

n as follows.

For a leaf node x♯y of Tfin(x♯v0), let ρ be the unique path in Tfin(x♯v0) from the root

to x♯y. Let ρ′ be the least suffix of ρ such that first(ρ′) = last(ρ′) = x♯y. Let lmax =
max{|y| | x♯y ∈ Occ(ρ′)} and let Lρ = {x♯y | |y| = lmax}. Observe that, by the property



342 NASH EQUILIBRIUM IN GENERALISED MULLER GAMES

of the LAR construction y = y′ for all x♯y, x′♯y′ ∈ Lρ. Let Y = y′ such that x′♯y′ ∈ Lρ. Label

the leaf x♯y with (u1(Y), . . . , un(Y)).

We now label the entire tree Tfin consistently, with tuples (x1, . . . , xn) ∈ N
n, and com-

pute a strategy tuple µ̄ = (µ1, . . . , µn) as follows:

Procedure 2

Suppose all children of node x♯yv have been labelled and v ∈ Vi. Let

ux♯yv = max{ui(x′♯y′) | x′♯y′ is a child of x♯yv},

Tx♯yv = {x′♯y′ | x′♯y′ is a child of x♯yv and ui(x′♯y′) = ux♯yv}.

Put µi(x♯yv) = x′♯y′v′ ∈ Tx♯yv such that v′ ≺ v′′ for all x′′♯y′′v′′ ∈ Tx♯yv. Label x♯yv with

(u1(x′♯y′v′), . . . , un(x′♯y′v′)).

THEOREM 4. Every generalised Muller game (G, v0) has a Nash equilibrium.

The proof shows that the bounded memory strategy tuple (σ1, . . . , σn) corresponding

to the tuple (µ1, . . . , µn) constructed by Procedure 2, is an equilibrium tuple in the game

(G, v0). The essence of the proof is the same as the one for Theorem 3: player i has an in-

centive to deviate from σi in (G, v0) if and only if she has an incentive to deviate from µi in

Tfin(x♯yv0). We omit the full proof due to space limitations.

Complexity. Let the number of vertices in the arena A be m. In Procedure 2, the number of

permutations of the m vertices of the arena is equal to m. Thus the size of the LAR memory

LA may be as big as (m + 1)!. This means that each path of the LAR tree might be (m + 1)!

nodes long. As there are O(mm!) such paths and the backward induction procedure runs in

time linear in the size of the LAR tree, the running time of Procedure 2 is O(mm!).

4 Subgame Perfection

Nash equilibrium, as a solution concept, has its limitations. One such limitation is that it

does not take into account the sequential nature of the game. In an extensive form game,

if a player deviates from equilibrium behaviour even for just one move, Nash equilibrium

says nothing about the outcome of the game. One possible refinement to Nash equilibrium

is to insist that strategies are optimal after every prefix. This is achieved by subgame per-

fect equilibrium [8]. Ummels [9] has shown that subgame perfect equilibria always exist

for n-player infinite games on graphs for ω-regular win-lose objectives. The question there-

fore arises whether subgame perfect equilibria exist for n-player infinite games where the

objectives are not win-lose but generalised.

For finite extensive form games, the backward induction procedure does indeed yield

a subgame perfect equilibrium profile. Since our construction of the equilibrium profile

for generalised Muller games employs a backward induction procedure (Procedure 2), it is

natural to ask if the profile constructed is subgame perfect. The answer is affirmative for

win-lose objectives as we show in the following proposition.
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PROPOSITION 5. Every generalised Muller game with binary objectives has a subgame
perfect equilibrium.

PROOF. We show that the strategy tuple σ̄ corresponding to the tuple µ̄ constructed by

Procedure 2 is a subgame perfect equilibrium of (G, v0) when the objectives of the players

are binary.

Suppose σ̄ is not an SPE. Then there exists a vertex v ∈ V, v ∈ Vi say, and a path ρ from

v0 to v such that µ̄(ρ) is not an equilibrium tuple. Let ρ′ be the (finite) path in Tfin(x♯v0)
corresponding to ρ.

Suppose player j has an incentive to deviate from σj(ρ). If |ρ| < |ρ′|, then player j has

an incentive to deviate from µj as well. But this contradicts the fact that µ̄ is an equilibrium

tuple (Theorem 3).

So assume that |ρ| ≥ |ρ′ |. Then by the property of the LAR tree Tfin(x♯v0), there exists

ρ′′ such that |ρ′′| < |ρ′| and LAR(ρ′′) = LAR(ρ). Now, since σ̄j corresponds to µ̄j which is

a memoryless strategy constructed from Tfin(x♯v0), it prescribes the same action at ρ and

ρ′′ (since LAR(ρ′′) = LAR(ρ)). Thus if player j has an incentive to deviate from σj(ρ), she

has an incentive to deviate from σj(ρ′′) as well which in turn means she has an incentive

to deviate from σj in the first place. But this again contradicts fact that σ̄ is an equilibrium

tuple (Theorem 3).

The argument for the above proof breaks down when the objectives of the players are

not binary but generalised.

3 1 2 4

in

in

out out

Figure 1: Non existence of subgame perfect equilibrium

Example 1 Consider the game arena shown in Figure 1. Player 1 nodes are denoted by ©
and player 2 nodes are denoted by 2. The game starts at node 1. The utilities of the players

for the relevant Muller sets are as follows: u1({3}) = 1, u1({1, 2}) = 0, u1({4}) = 2 and

u2({3}) = 0, u2({1, 2}) = 2, u2({4}) = 1. Procedure 2 gives the following strategies µ1 and

µ2 for players 1 and 2 respectively. µ1 prescribes that player 1 stays ‘in’ in her first move ex-

pecting player 2 to go ‘out’ and hence give 1 a better payoff. But if she plays ‘in’ then player

2 stays ‘in’ as prescribed by µ2 because that gives her a better payoff. To this 1 assumes that

player 2 will stay in forever and hence plays ‘out’ in her next move as prescribed by µ1. The

profile (µ1, µ2) is thus not subgame perfect. One can verify that the above game does not

have a subgame perfect equilibrium.

The above example shows that in general subgame perfect equilibria need not exist for

generalised Muller games. Thus an obvious question to ask would be: Is it decidable to

check whether subgame perfect equilibrium exists in a given generalised Muller game? In

this section, we develop a procedure to decide the existence of sub-game perfect equilibrium

and to compute the equilibrium profile when it exists.
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First, it is important to note that given an arena A and an initial vertex v, for any

bounded memory strategy on A that uses memory LA the initial element of LA does not

matter. In other words, no matter what element x♯y such that last(x♯y) = v of LA we take

as the root of the LAR tree, the backward induction procedure (Procedure 2) gives all the

bounded memory strategies that are possible by using memory LA and updating it as de-

scribed in Section 3. This is because starting from any vertex v of A, the tree explores all

possible cycles reachable from v and a path of the LAR tree is terminated if and only if a

cycle is completed.

Define the following property for a strategy tuple µ̄ on Tfin(x♯v0)

Property 1 For every x♯y ∈ Tfin(x♯v0), there exists a strategy tuple µ̄′ on Tfin(x♯y) such that µ̄′ is

derived by backward induction on Tfin(x♯y) and µ̄′(x♯y) = µ̄(x♯y).

Given an game (G, v0), let Path(G, v0) be the set of all finite paths starting at v0 in G.

Define P : L → 2Path(G,v0) such that P(x♯y) = {ρ ∈ Path(G, v0) | LAR(ρ) = x♯y}.

Given a strategy tuple σ̄ on (G, v0) define Qσ̄ : L → 22V
as Qσ̄(x♯y) = {inf(πσ̄(ρ)) | ρ ∈

P(x♯y)} where πσ̄(ρ) is the play conforming to σ̄(ρ). Let Cσ̄ be a choice function Cσ̄ : L → 2V

such that

Property 2 x′♯y′ is a child of x♯y in Tfin(x♯v0) and Cσ̄(x♯y) ∈ Qσ̄(x′♯y′) implies Cσ̄(x′♯y′) =
Cσ̄(x♯y).

It follows that

Property 3 If Cσ̄(x♯yv) = F, v ∈ Vi then there actually exists a ρ ∈ Path(G, v0) such that

LAR(ρ)= x♯yv, inf(πσ̄(ρ)) = F, σi(ρ) = v and inf(πσ̄(ρv)) = F.

Assume for the moment that given any strategy tuple σ̄, we have such a function Cσ̄ sat-

isfying Property 2. Now let σ̄ be an SPE on (G, v0). For every i ∈ N, construct σ′
i as follows:

σ′
i : V∗Vi → V such that σ′

i (uv) = uvv′ iff Cσ̄(LAR(uv)) = Cσ̄(LAR(uvv′)), (v, v′) ∈ E

LEMMA 6. σ̄′ is an SPE on (G, v0)

PROOF. Suppose not. Then there exists ρ ∈ Path(G, v0) such that σ̄′(ρ) is not an NE. So

suppose player i has an incentive to deviate from σ′
i (ρ). Now by property 3 there exists a

history ρ′ ∈ Path(G, v0) such that σ′
i (ρ) = σi(ρ′). Then player i must have an incentive to

deviate from σi(ρ′) itself. But this contradicts the subgame perfection of σ̄.

Now σ̄′ exists on Tfin(x♯v0). Indeed, it is the strategy where σ′
i (x♯y) = x′♯y′ such that

x♯y is a parent of x′♯y′ in Tfin(x♯v0) and Cσ̄(x♯y) = Cσ̄(x′♯y′). Let µ̄′ denote this memoryless

strategy tuple on Tfin(x♯v0) corresponding to σ̄′.

LEMMA 7. µ̄′ has Property 1

PROOF. Suppose not. Then there exists a node x♯y ∈ Tfin(x♯v0) such that for any back-

ward induction strategy profile µ̄+ on Tfin(x♯y), µ̄′(x♯y) 6= µ̄+(x♯y). Now we have that

σ̄′ is subgame perfect on (G, v0) and bounded memory, the memory being LA. So µ̄′(x♯y)
must correspond to some equilibrium tuple σ̄′ on (G, last(x♯y)) which exists in Tfin(x♯y), as

backward induction on Tfin(x♯y) gives all the bounded memory equilibria starting at node

last(x♯y) with memory LA. But then the above cannot happen.
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LEMMA 8. If a strategy tuple µ̄ on Tfin(x♯v0) satisfies Property 1 then σ̄ on (G, v0) corre-
sponding to µ̄ is an SPE.

PROOF. Suppose not. Then there exists ρ ∈ Path(G, v0) such that σ̄(ρ) is not an equilibrium

on (G, last(ρ)). Let LAR(ρ)=x♯y. Now x♯y ∈ Tfin(x♯v0) and σ̄(ρ) is bounded memory, the

memory being LA. Thus µ̄(ρ) corresponding to σ̄(ρ) cannot be a backward induction profile

on Tfin(x♯y) as backward induction on Tfin(x♯y) gives all the bounded memory equilibria

starting at node last(x♯y) with memory LA. So µ̄ cannot satisfy Property 1.

From the above set of lemmata we have the following theorem.

THEOREM 9. A generalised Muller game (G, v0) has a subgame perfect equilibrium if and
only if there exists a strategy profile µ̄ on Tfin(x♯v0) that satisfies Property 1.

PROOF. It only remains to construct the choice function Cσ̄ satisfying Property 2 given a

strategy profile σ̄. We do that as follows: let ⋖ be a breadth-first ordering on Tfin(x♯v0) and

let H = ∅.

Till H 6= Tfin(x♯v0) do

• Let x♯y be the minimum in the ordering (Tfin(x♯v0) \ H) ↾ ⋖.

• Let ρ be the path from the root to x♯y.

• Let Cσ̄(x♯y) = inf(πσ̄(ρ)) = F.

• There exists a path ρ′ from x♯y to a leaf node of Tfin(x♯v0) such that for all x′♯y′ ∈
ρ′, F ∈ Qσ̄(LAR(x′♯y′)). Put Cσ̄(x′♯y′) = F for all such x′♯y′ ∈ ρ′. Let H = H ∪
{x′♯y′ | x′♯y′ ∈ ρ′}.

• For all x′♯y′ ∈ Tfin(x♯v0) such that x′♯y′ /∈ ρ′ and such that LAR(x′♯y′) = LAR(x′′♯y′′)
for some x′′♯y′′ ∈ ρ′, put Cσ̄(x′♯y′) = Cσ̄(x′′♯y′′). Let H = H ∪ {x′♯y′}.

It is immediate that the Cσ̄ constructed above meets Property 2.

The above theorem immediately gives us the following procedure to test if a gener-

alised Muller game has a subgame perfect equilibrium.

Procedure:

For every backward induction strategy profile µ̄ on Tfin(x♯v0)
For all x♯y ∈ Tfin(x♯v0) such that x♯y 6= x♯v0

If µ̄(x♯y) 6= µ̄+(x♯y) for some backward induction strategy profile µ̄+

on Tfin(x♯y), then return TRUE and exit

Return FALSE

Complexity: Let |V| = m. There are at most 1 + m + m2 + . . . + mm! = (mm!+1 − 1)/(m − 1)
nodes in an LAR tree. There are atmost m · m2 · . . . mm! = mm!(m!+1)/2 strategy tuples in

an LAR tree. Hence the complexity of the above procedure is O((mm!+1 − 1)/(m − 1) ·
mm!(m!+1)/2 · (mm!+1 − 1)/(m − 1)) = O(m2m! · m(m!)2

).

5 Discussion

Nash equilibrium and subgame perfect equilibrium are well studied in finite games. In the

setting of finite games, subgame perfection is justified under the trembling hand assump-
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tion and a subgame perfect profile is considered more robust than general Nash equilib-

rium profiles. When we move to nonzero sum games of infinite duration even coming up

with an appropriate notion of rationality which justifies the trembling hand assumption is

a challenging task. However, the equilibrium notions are mathematically well defined and

deserves attention in their own right. In this paper rather than delve into issues concerning

rationality, we have attempted to investigate equilibrium notions in the context of infinite

games. We have shown that the standard technique of backward induction can be appro-

priately modified to compute equilibrium profile in generalised Muller games. Though the

running time complexity of the procedures is not very encouraging, we would like to view

this as a generic technique for solving games.
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[5] E. Grädel and M. Ummels. Solution concepts and algorithms for infinite multiplayer

games. In New Perspectives on Games and Interaction, volume 4 of Texts in Logic and

Games, pages 151–178. Amsterdam University Press, 2008.

[6] Y. Gurevich and L. Harrington. Trees, automata and games. In Proceedings of the 14th

Annual Symposium on Theory of Computing, pages 60–65. ACM Press, 1982.

[7] D. A. Martin. Borel determinacy. Annals of Mathematics, 102:363–371, 1975.

[8] R. Selten. Spieltheoretische behandlung eines oligopolmodells mit nachfrageträgheit.
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1-safe nets with buffers in paraPSPACE
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ABSTRACT. We consider concurrent systems that can be modelled as 1-safe Petri nets communi-
cating through a fixed set of buffers (modelled as unbounded places). We identify a parameter K,
which we call “benefit depth”, formed from the communication graph between the buffers. We show
that for our system model, the coverability and boundedness problems can be solved in polynomial
space assuming K to be a fixed parameter, that is, the space requirement is f (K)p(n), where f is an
exponential function and p is a polynomial in the size of the input. We then obtain similar complexity
bounds for modelchecking a logic based on such counting properties. This means that systems that
have sparse communication patterns can be analyzed more efficiently than using previously known
algorithms for general Petri nets.

1 Introduction
Many theoretical models exist for concurrent, infinite-state systems. Petri nets [19], process
rewrite systems [4], lossy channel systems (LCS) [5] and networks of pushdown systems
[1] are some of them. The power to express properties of the original system in sufficient
detail and existence of efficient algorithms for analysis are often conflicting goals in these
models. Reachability in LCS is non-primitive recursive [22] and reachability for Petri nets is
decidable but with no known upper bound [18, 15].

More structure is sometimes imposed on the models to handle these conflicting goals.
Communicating automata with buffers [3] is one such model. In this paper we consider a
small generalization where 1-safe Petri nets (which we call components) communicate via
buffers. Thus we have a system model which allows both asynchronous and synchronous
communication, since 1-safe Petri nets can model the latter.

The diagram shown in Fig. 1 illustrates the kind of systems we are interested in. The
boxes labelled as line 1, line 2 etc. can be thought of as assembly lines represented by 1-
safe Petri nets, drawing raw materials from buffers ib1, ib2 etc. Output of these assembly
lines are deposited into buffers ob1, ob2 etc. Boxes labelled master line 1 and master line
2 can be thought of as master assembly lines that use output of earlier assembly lines as
their input. They deposit their output in buffers pr1 and pr2 respectively. We are concerned
with verifying properties like ∃c : pr1 ≤ c in all reachable configurations (boundedness) or
ob1 + ob2 ≥ 100 in some reachable configuration (coverability). For instance, the latter property
might show that the two buffers are dealing with enough throughput. Karp and Miller
examined these properties in the context of Petri nets [14] and Lipton and Rackoff showed
them to be EXPSPACE-complete [17, 20].

As Esparza notes in his survey article [10], verification of a “logic” based on such prop-
erties, for instance LTL or CTL extended with counting properties, quickly becomes unde-
cidable. Modalities of the form EF(M ≥ Mc) (where M, Mc are markings) can be handled
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ob1

ib1

line 1

ob2

ib2

line 2

obr

ibr

line r

master line 1

pr1

master line 2

pr2

Figure 1: Illustration of communicating automata with buffers

without getting into undecidability [24]. However, a “usual” definition of a logic based on
these modalities can express reachability, as in Howell, Rosier and Yen’s logic [13] and in
Yen’s logic [24] (as was recently shown by Atig and Habermehl [2]). So we are left with
positive Boolean combinations of formulae of the form EF(M ≥ Mc) [24] for which mod-
elchecking is EXPSPACE-hard. Rosier and Yen analyzed boundedness [21] using what we
today call parameterized complexity [9] to show that the space requirement is exponential
in the number of unbounded places and polynomial in the number of bounded places. If
we give up counting properties, Habermehl shows that the full linear time µ-calculus can be
reduced to the problem of repeated control state reachability [12] and is PSPACE-complete
in the size of the formula and EXPSPACE-complete in the size of the model.

An EXPSPACE lower bound in the size of the model is not very encouraging for po-
tential verifiers. Our first contribution is the identification of a parameter K, which we call
benefit depth. A buffer p1 can benefit by another buffer p2 if there is a sequence of transi-
tions that decrease tokens in p2 and increase tokens in p1. Benefit depth is the maximum
number of buffers benefited by any one buffer. It seems reasonable that, in a sparsely com-
municating system, benefit depth can be low.

We show that boundedness and coverability in our models, when parameterized by
benefit depth, are solvable in paraPSPACE [11]. That is, the space requirement is of the form
O( f (K)p(n)), where f is an exponential function of benefit depth and p is some polyno-
mial of the size of the model and the marking to be covered. For constant benefit depth,
boundedness and coverability can be solved in PSPACE. Thus, our results are refinements
of Rosier and Yen’s [21], improving them if benefit depth is less than the number of buffers
(as happens in sparsely communicating systems).

As our final contribution, we define a logic which can express counting properties such
as coverability and show that it can be modelchecked on Petri nets in paraPSPACE.

The full version of this paper may be consulted at http://www.imsc.res.in/%7Epraveen/
for detailed proofs. This conference version attempts a more intuitive treatment without
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compromising precision.

2 Problem definitions
Let Z be the set of integers and N the set of natural numbers. A Petri net is a 4-tuple
N = (P, T, Pre, Post) where P is a set of places, T is a set of transitions and Pre and Post
are the incidence functions: Pre : P× T → [0 . . . W] (arcs going from places to transitions),
Post : P× T → [0 . . . W] (arcs going from transitions to places), where W ≥ 1.

DEFINITION 1. Given a place p, the set of places Ben(p) ⊆ P and the set of transitions
Tben(p) ⊆ T benefited by p are those connected to p by a sequence of arcs with weight ≥ 1.
Formally they are the smallest sets satisfying:

1. p ∈ Ben(p).
2. If some p′ ∈ Ben(p) and there is a transition t with Pre(p′, t) ≥ 1, then t ∈ Tben(p).
3. If some transition t ∈ Tben(p) and there is a place p′′ such that Post(p′′, t) ≥ 1, then

p′′ ∈ Ben(p).
Ind(p) = P \ Ben(p) and Tind(p) = T \ Tben(p) are the places and transitions not benefiting
from p.

We call a function M : P → Z a vector. For two vectors M1 and M2, we say M1 covers
M2 (written M1 ≥ M2) if for every place p, M1(p) ≥ M2(p). M1 > M2 means that M1
covers M2 but they are not the same.

If the range of the vector is N, it is called a marking. At a marking M, a place p is said
to have M(p) tokens. A pair (N, M0) consisting of a Petri net N and an initial marking M0 is
called a system. We assume a net is presented as two matrices for Pre and Post. In the rest
of this paper, we will assume that a Petri net N has m places, n transitions and that W is the
maximum of the range of Pre and Post. We define the size of the net to be 2mn log W bits.
The system has size 2mn log W + log |M0| bits.

A transition t may be taken as a step at the vector M yielding a new vector M′ given
by the equation M′(p) = M(p)− Pre(p, t) + Post(p, t) for all p ∈ P. The transition t is said
to be fired at M if, in addition, t is enabled at M, that is, for all p ∈ P, M(p) ≥ Pre(p, t).
Thus firing a transition leads from a marking to another marking, while stepping is a more
general notion leading from a vector to a vector.

A finite transition sequence σ = t1t2 . . . tr is a walk from an initial vector M0 to a vector
Mr if there exist intermediate vectors M1, M2, . . . , Mr such that for all i with 1 ≤ i ≤ r, we
have a step from Mi−1 to Mi using the transition ti. We write M0

σ−→ Mr. σ is a firing se-
quence enabled at some initial marking M0 if the transitions are enabled at the intermediate
vectors, so that M1, M2, . . . , Mr are all markings. We write M0

σ==⇒ Mr and say that the
marking Mr is reachable from M0. R(N, M0) is the set of markings reachable from M0. A
place is said to be c-bounded, c ∈N, in the system (N, M0), if for all its reachable markings
M, M(p) is in {0, . . . , c}. The system is c-bounded if all its places are. A 1-bounded system
is commonly called a 1-Safe net.

DEFINITION 2.[Reachability, coverability, boundedness] Given a system (N, M0) and a mark-
ing M as input data, the reachability problem is to decide if the marking M is in R(N, M0);
the coverability problem is to decide if there is an M′ in R(N, M0) such that M′ covers M.



350 MODELCHECKING COUNTING PROPERTIES OF NETS WITH BUFFERS IN PARAPSPACE

Given a system (N, M0), the boundedness problem is to decide if there is some c ∈ N such
that the system is c-bounded.

Given a c-bounded system, the reachability and coverability problems are known to
be PSPACE-complete [6]. For systems in general, which can be unbounded, Lipton showed
that all three problems are EXPSPACE-hard [17]. Rackoff showed that boundedness and
coverability are in EXPSPACE[20]. Reachability has been shown to be decidable [18, 15],
obtaining an upper bound is a famous open problem.

2.1 A logic of properties

Inspired by Yen [24], we now formulate a logic of properties such that its model checking
can be reduced to coverability (κ) and boundedness (β) problems, but is designed to avoid
expressing reachability. In particular, a κ formula of the form τ ≤ c, c ∈ N, is not provided
and the κ and φ formulas are not closed under negation.

τ ::= p, p ∈ P | τ1 + τ2 | cτ, c ∈N

κ ::= τ ≥ c, c ∈N | κ1 ∧ κ2 | κ1 ∨ κ2 | EFκ

β ::= {τ1, . . . , τr} < ω | ¬β | β1 ∨ β2

φ ::= β | κ | φ1 ∧ φ2 | φ1 ∨ φ2

The satisfaction of a formula φ by a system (N, M0) (denoted as N, M0 |= φ) is defined
below. The boolean operators work as usual. Note that every term (of type τ) gives a
function Lτ : P→N such that τ is syntactically equivalent to ∑p∈P Lτ(p)p.
• N, M0 |= τ ≥ c if ∑p∈P Lτ(p)M0(p) ≥ c.
• N, M0 |= EFκ if ∃M ∈ R(N, M0) such that N, M |= κ.
• N, M0 |= {τ1, . . . τr} < ω if ∃c ∈ N : ∀M ∈ R(N, M0) ∃j ∈ {1, . . . , r} such that

∑p∈P Lτj(p)M(p) ≤ c.
We use {τ1, . . . , τr} = ω as an abbreviation for ¬({τ1, . . . , τr} < ω).

The formula {p1, . . . , pr} < ω says that the given set of places is bounded according to
Valk and Vidal-Naquet [23, Section 4.1]. On the other hand, {p1 + · · ·+ pr} < ω says that
the same set of places is uniformly bounded according to the same authors [23].∗

2.2 System model

Though our results work for any Petri net, we work with the model defined below to em-
phasize the fact that our problem formulation strictly generalizes reachability for 1-bounded
systems. The model of concurrent systems we consider in this paper consists of some 1-safe
nets, called components, which can add or remove tokens to/from a set of unbounded
places that we refer to as buffers.

∗We thank an anonymous FSTTCS referee for pointing out this subtlety. Following their suggestion, we have
slightly extended our logic beyond the submitted version to cover both kinds of boundedness.
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DEFINITION 3. A net communicating with buffers (we just use the word “net” below) is a
Petri net N = (C, B, T, Pre, Post) where the set of places P = C ∪ B is partitioned into a set
of buffers B and component places C = P \ B, such that all places in C remain 1-bounded
(regardless of the number of tokens in the buffers in an initial marking).

In the rest of the paper, we will assume that |C| = a, |B| = b and that a + b = m, where
m is the total number of places. In our model, the components do not contribute to expo-
nential space complexity. Our results can be generalized to the case where the components
are declared to be c-bounded (for a constant c) rather than 1-bounded.

DEFINITION 4. The benefit depth of a net is defined as K = max{|Ben(p)∩ B| − 1 | p ∈ B}.
Benefit depth depends only on the communication pattern among buffers, even though

the communication link may involve some component places. It can be computed efficiently
(in NLOGSPACE).

The communication graph of the system of Fig. 1 is shown in Fig. 2. Irrespective of
the number of assembly lines, benefit depth is 3 since only obi, pr1 and pr2 can benefit by
decreasing tokens from ibi. If there are interdependencies among the assembly lines, such

ob1

ib1

ob2

ib2

obr

ibr

pr1 pr2

Figure 2: Communication graph of buffers of the system in Fig. 1

as a byproduct of one being the raw material of another (not shown in the figure), then ben-
efit depth will increase. The more such dependencies (i.e., more dense the communication
graph among the buffers is), the higher will be the benefit depth. Intuitively, the number
of tokens in a place in Ben(p) can be increased by decreasing some tokens in p through a
sequence of transitions in Tben(p). Only those transitions use the extra tokens from p.

Our earlier definitions are modified to be well-behaved on the components. A vector
will now be given by a pair of functions C → {0, 1} and B→ Z; it is a marking if the second
function has range N. Walks and firing sequences will now be defined with these kinds of
intermediate vectors and markings.

3 Benefit depth and coverability
Let Q ⊆ P be a subset of places. For this paper we will need the inbetween notion (due to
Rackoff) of σ being a Q-run where for the vectors Mi, 0 ≤ i < r, Mi(p) ≥ Pre(p, ti+1) for
every place p in Q. Thus a walk is a ∅-run and a firing sequence is a P-run. For two vectors
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M1 and M2, we say M1 ≥Q M2 if for every p ∈ Q, M1(p) ≥ M2(p) and M1(p) = M2(p)
for every p ∈ C. A walk σ from M1 is said to Q-cover a marking Mcov if it is a Q-run and
the final vector M2 obtained by walking σ at M1 satisfies M2 ≥Q Mcov. We say σ covers a
marking if σ P-covers it.

We will fix for this section Mcov as the marking to be covered. For the purpose of
complexity analysis, we will denote the maximum of the range of Mcov by R.

DEFINITION 5. A Q-covering run is a Q-run that Q-covers Mcov. Let Q0 ⊆ Q. A Q-run from
M0 to Mr is said to be c-bounded for Q0, c ∈N, if for all intermediate vectors Mi, 0 ≤ i < r,
Mi(p) is in {0, . . . , c} for every place p in Q0.

DEFINITION 6.[20, Rackoff] Let C ⊆ Q ⊆ P. Define lencov(Q, M, Mcov) to be the length
of the shortest Q-covering run from the vector M. If there is no such sequence, define
lencov(Q, M, Mcov) to be 0. For 0 ≤ i ≤ b, `(i, Mcov) is defined to be max{lencov(Q, M, Mcov) |
M a vector, C ⊆ Q ⊆ P and |Q \ C| = i}. In this section we abbreviate `(i, Mcov) to `(i). In
section 5 we will abbreviate `(b, M) to `′(M).

DEFINITION 7. Let C ⊆ Q ⊆ P and p ∈ B be a buffer. Define covindp(Q, M, Mcov) to
be the length of the shortest Q-covering run in Tben(p)∗ from the vector M. If there is no
such sequence, define covindp(Q, M, Mcov) to be 0. Let `ı(i) = max{covindp(Q, M, Mcov) |
M a vector, p a buffer, |Q ∩ Ben(p) ∩ B| = i}.

Our strategy is to segregate covering sequences into two parts, the first made of tran-
sitions in Tind(p) and the second one made of transitions in Tben(p). We need the following
technical lemma, which is a generalization of the exchange lemma [7, Lemma 2.14] to Petri
nets with weighted arcs.

LEMMA 8. Let p be a place, transitions tben ∈ Tben(p) and tind ∈ Tind(p). Let Q ⊆ P be some
subset of places. If tbentind is a Q-run from some vector M, then so is tindtben.

LEMMA 9. If K ≤ i < b, then `(i + 1) ≤ (W`ı(K) + R)i+12a + `(i) + `ı(K).

PROOF. Suppose σ is a Qi+1-covering run from some vector M, with Qi+1 ⊆ P and
|Qi+1 ∩ B| = i + 1. If some buffer p ∈ Qi+1 has more than W`ı(K) + R tokens at some
intermediate marking M′, rest of the sequence can be replaced by a Qi-covering run σ′2 of
length at most `(i), where Qi = Qi+1 \ {p}. Now, apply Lemma 8 repeatedly to rearrange
σ′2 into τ1τ2, with τ1 ∈ Tind(p)∗ and τ2 ∈ Tben(p)∗ (see Fig. 3). Since τ2 is a covering sequence
made of transitions in Tben(p), it can be replaced by another one of length at most `ı(K).

The bound on `(i + 1) given by Rackoff in [20] is similar to the one in Lemma 9 but
uses `(i) in place of `ı(K). Since `ı(K) can be much smaller than `(i), the bound in Lemma 9
is better. This is the fact that enables us to restrict exponential space complexity to K. The
following lemma gives a recurrence relation for length of covering sequences made of tran-
sitions in Tben(p).



PRAVEEN, LODAYA FSTTCS 2009 353

p

M

C

A
Qi+1

M′

σ1

↑
↑
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↑
↑
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⊆ Ind(p)

⊆ Ben(p)

Qi

≤ `ı(k)

Figure 3: Sequences and bounds used in the proof of Lemma 9
↑ (resp. ↓) inside places indicates that tokens are non-decreasing (resp. non-increasing).

LEMMA 10. `ı(0) ≤ 2a and `ı(i + 1) ≤ (W`ı(i) + R)i+12a + `ı(i).

PROOF. (Following [20].) For any Q ⊆ P, buffer p and Q-run σ ∈ Tben(p)∗, if two interme-
diate vectors of the run are equal when restricted to Q ∩ Ben(p), the subsequence between
these two vectors can be removed and the remaining sequence will still be a Q-run and re-
tains the covering properties of σ. This is because the removed subsequence doesn’t affect
places in Q ∩ Ben(p) and doesn’t increase tokens in any place in Q ∩ Ind(p).

The bound on `ı(0) is due to the above observation and the fact that component places
are 1-bounded and there are 2a possible distinct vectors when restricted to C. For `ı(i +
1), suppose there is a Qi+1-covering run σ ∈ Tben(p)∗ for some buffer p with |Qi+1 ∩ B ∩
Ben(p)| = i + 1. If some buffer p′ ∈ Ben(p)∩Qi+1 has more than W`ı(i) + R tokens at some
intermediate vector M, we can apply the same kind of reasoning used in Lemma 9.

It now only remains to solve the recurrence relations we have obtained and use them in
a nondeterministic algorithm that guesses covering sequences to get our first main theorem.

DEFINITION 11. Let W ′ = max{W, 2}, R′ = max{R, 2}. Define a growth function g : N→
N as g(0) = W ′R′2a and g(i + 1) = (g(i))3(i+1)2a.

LEMMA 12. `(K + j) ≤ (K + j)(W`ı(K) + R)K+j2a + j`ı(K) + `(K).

LEMMA 13. `ı(i), `(i) ≤ g(i) ≤ (W ′R′)3ii!26ii!a and `(K + j) ≤ (K + j)(g(K))3(K+j)2a.

THEOREM 14. Suppose a net under consideration has benefit depth K. There is a non-
deterministic algorithm that decides if there is a firing sequence covering Mcov from M0 in
space O(log |M0|+ log n + (log W ′ + log R′)6K+2K!m3 log m).

PROOF. Since there are b buffers in the net, `(b) gives an upper bound on the length of the
shortest P-covering run. Therefore, there exists a P-covering run iff there is one of length at
most `(b). From Lemma 13 we get
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`(b) ≤ b(g(K))3b2a ≤ m(g(K))3m2a ≤ m
(
(W ′R′)3KK!26KK!a

)3m
2a ≤ m

(
(W ′R′)6K+1K!a

)3m
2a

Hence `(b) ≤ m(W ′R′)6K+2K!m2
. A nondeterministic algorithm can guess a sequence of

transitions of this length and verify that it is P-covering from M0. The memory needed is
dominated by a counter to count up to maximum `(b) and the memory needed to store inter-
mediate markings. The memory needed for the counter isO((log W ′+ log R′)6K+2K!m2 log m)
and to store markings we need O(log |M0|+ log n + (log W ′ + log R′)6K+2K!m3 log m).

Given a net, its benefit depth K can be computed in polynomial time. Hence, the upper
bound on the memory requirement in the above theorem is space constructible and the
well known Savitch’s theorem can be applied to determinize the above algorithm (see any
standard text on complexity theory). The memory required will still be polynomial in the
size of the input net and this gives us the paraPSPACE algorithm.

For later use in section 5, we name the exponent 6K+2K!m2 used in the above proof
expcov(1), and let expcov(i) = expcov(1)i.

4 Benefit depth and boundedness
In this section, we will tighten Rosier and Yen’s analysis [21] and prove that the complex-
ity of boundedness problem is paraPSPACE when parameterized by benefit depth. As in
coverability, we segregate transitions that reduce tokens from a place and those that do not.

DEFINITION 15. Let U ⊆ B be a subset of buffers, Q ⊆ P a subset of places and M a
vector. A Q-run σ from M is said to be U-self-covering if it can be decomposed as σ1σ2 with
M

σ1−→ M1
σ2−→ M2, M2 ≥ M1 and for all p ∈ U, M2(p) > M1(p). We call σ2 as the pumping

portion of the self-covering sequence.

It is well known that a place p is unbounded iff there is a firing sequence that is U-
self-covering from the initial marking† for some U ⊆ P with p ∈ U. In the rest of this
section, we will fix a non-empty subset U of places and refer to U-self-covering sequences
as self-covering sequences. Let Tdep(p) = {t ∈ Tben(p) | ∀p′ ∈ Ind(p) : Pre(p′, t) = 0}.
DEFINITION 16. Let C ⊆ Q ⊆ P and p ∈ B be a buffer. Let scovp(Q, M) be the length
of the shortest Q-run in Tben(p)∗ that is self-covering from the vector M with the pumping
portion of the sequence in Tdep(p)∗. If there is no such sequence, define scovp(Q, M) to be
0. Let sı(i) = max{scovp(Q, M) | M a vector, |Q ∩ Ben(p) ∩ B| = i}. Also, let scov(Q, M)
be the length of the shortest self-covering Q-run from the vector M and 0 if there is no such
sequence. Let s(i) = max{scov(Q, M) | M a vector, |Q ∩ B| = i}.

LEMMA 17. For 0 ≤ i < b, s(i + 1) ≤ (W2sı(K))poly(m) + sı(K) + (Wsı(K) + 2)s(i) for
poly(m) a polynomial in m with degree independent of W, m, K.

PROOF. Suppose that Q = Qi+1 = C ∪ A with |A| = i + 1 and that there is a self-covering
Qi+1-run σ from some vector M. If this run is Wsı(K)-bounded for Qi+1, the required result

†We thank an anonymous FSTTCS referee for pointing out a mistake here.
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is a consequence of Lemma 2.2 in [21]. Otherwise some buffer p ∈ Qi+1 has more than
Wsı(K) tokens at some intermediate vector M′. The sequence occurring after M′ can be
replaced by a self-covering Qi-run σ2 of length at most s(i), with Qi = Qi+1 \ {p}. By
repeated application of Lemma 8, rearrange the non-pumping portion of σ2 into τ1τ2 and
the pumping portion into τ′1τ′2, with τ1, τ′1 ∈ Tind(p)∗ and τ2, τ′2 ∈ Tben(p)∗ (see Fig. 4). τ′2

M

p

C

A
Qi+1

M′

σ1

↑
↑
↑
↑
↑

M1

↑
↑
↑
↑
↑

τ1

Tind(p)∗

↓
↓

↓
↓

M2

↓
↓

↓
↓

τ2

Tben(p)∗

↑
↑
↑
↑
↑

M3

↑
↑
↑
↑
↑

τ′1

Tind(p)∗

↓
↓

↓
↓

M4

↓
↓

↓
↓

τ′2

Tben(p)∗

⊆ Ind(p)

⊆ Ind(p)

Ben(p)

Qi

Figure 4: Sequences and bounds used in the proof of Lemma 17

is a sequence in Tben(p)∗ that “pumps up” tokens in some of the places and hence can be
replaced by another one τ′′2 of length at most sı(K). τ′′2 can however decrease tokens from
places that are pumped up by τ′1, so we compensate for it by firing τ′1 Wsı(K) + 1 times.
Putting everything together, we get τ1τ2τ

′Wsı(K)
1 τ′′2 is a self-covering Qi+1-run from M′.

The following lemmas give recurrence relations for length of self-covering sequences in
Tben(p)∗. The proofs are similar to those of corresponding lemmas in [21] with the additional
fact that transitions in Tben(p) don’t increase tokens in Ind(p). As before, W ′ = max{W, 2}.
LEMMA 18. Let C ⊆ Q ⊆ P and p ∈ B a buffer. For c ∈ N, suppose there is a self-
covering Q-run in Tben(p)∗ from some vector M which is c-bounded for Q ∩ Ben(p) ∩ B. If
its pumping portion is in Tdep(p)∗, then a similar sequence exists whose length is at most
(W ′c2a)poly(K) for poly(K) some polynomial in K whose degree is independent of W, c, a, K.

LEMMA 19. sı(0) ≤ (W ′2a)poly(K) and sı(i + 1) ≤ (W ′2sı(i)2a)poly(K).

Now we give upper bounds for these recurrence relations and use them in a nonde-
terministic algorithm. A technical point is that the recurrence relation in Lemma 17 for s(i)
starts from i = 1 (unlike that in Lemma 9). This avoids the calculation of an upper bound
for s(u) using Lemma 20 below from containing terms mK in the exponent, which is not
acceptable in paraPSPACE algorithms.
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LEMMA 20. For 0 < i < b, we have sı(i) ≤ W ′2(i+1)poly(Ki+1)2a(i+1)poly(Ki+1), as also s(i) ≤
2i−1(4Wsı(K))i−1(W2sı(K))poly(m) + (4Wsı(K))is(0).

THEOREM 21. There is a nondeterministic algorithm that decides if a net is bounded in
space O(log |M0|+ log W ′KcKmca + m log n) where c is some constant.

5 The model checking algorithm
We now show that checking whether a given system (N, M0) satisfies a given formula φ

of the logic defined in sub-section 2.1 can be done in paraPSPACE with benefit depth as
the parameter. This requires a lot of technical work. First of all, we simplify the kind of
formulas that our algorithm has to handle by nondeterministically choosing a disjunct from
a disjunctive subformula. We then end up with φ a sequence of conjuncts β1, . . . , βc, κ, where
each βi is of the form {τ1, · · · τr} < ω or {τ1, · · · τr} = ω and κ consists of conjunctions of
nested EF modalities over τ ≥ c formulas. If we can check such formulas in paraPSPACE,
Savitch’s theorem ensures that satisfiability of φ can be checked in paraPSPACE.

For checking βi, we need the following lemma. The proof of this lemma relies on some
results on Karp-Miller trees, in particular on [8, Theorems 21 and 22]. Recall that every term
τ gives a function Lτ : P→N such that τ is syntactically equivalent to ∑p∈P Lτ(p)p.

LEMMA 22. N, M0 |= {τ1, . . . , τr} = ω iff there exists a U-self-covering sequence for some
U ⊆ P such that for every j ∈ {1. . . . , r}, there is a pj ∈ U with Lτj(pj) ≥ 1.

Hence, checking of βi can be done in paraPSPACE by using results of section 4.
We now consider verifying the formulas κ, which are of the form γ ∧ EF(κ1) ∧ · · · ∧

EF(κr), with γ having only conjunctions of τ ≥ c formulas. We call γ the content of κ and
κ1, . . . , κr as the children of κ. Each of the children may have their own content and children,
thus generating a tree with nodes Γ, with κ at the root of this tree. We will represent nodes
of this tree by sequences of natural numbers, 0 being the root.

The maximum length of sequences in Γ is one more than the nesting depth of the EF
modality in κ and we denote it by D. Let [D] = {0, 1, . . . , D− 1}. If α ∈ Γ is a tree node that
represents the formula κ(α) = γ∧EF(κ1)∧ · · · ∧EF(κr), content(α) = γ denotes the content
of the node α. Let ratio(τ ≥ c) = max{dc/Lτ(p)e | Lτ(p) 6= 0, p ∈ P}. Defining max(∅) =
0, we define the maximum ratio at height i in the tree by ratio(i) = max{ratio(τ ≥ c) | τ ≥
c appears as a conjunct in content(α) for some α ∈ Γ, |α| = i + 1}. Recall from Definition 6
that b is the number of buffers and `′(M) the length of the shortest run covering M using all
the buffers `(b, M).

DEFINITION 23. Given a formula κ and a system (N, M0), the bound function f : [D]× P→
N is defined as follows. We use f (j) for the marking defined by f (j)(p) = f (j, p).
• f (D− 1, p) = ratio(D− 1),
• f (D− i, p) = max{ratio(D− i), W`′( f (D− i + 1)) + f (D− i + 1, p)}, 1 < i < D,
• f (0, p) = M0(p).

A guess function h : Γ× P → N is any function that satisfies h(α, p) ≤ f (|α| − 1, p) for all
α ∈ Γ and p ∈ P. If h is a guess function, h(α) is the marking defined by h(α)(p) = h(α, p).
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If a given system satisfies the formula κ = γ ∧ EF(κ1) ∧ · · · ∧ EF(κr), then there exist
firing sequences σ01, . . . , σ0r that are all enabled at the initial marking M0 such that M0

σ0i==⇒
M0i and M0i satisfies κi. In general, if κ generates a tree with set of nodes Γ, then there is a

set of sequences {σα | α ∈ Γ \ {0}} and set of markings {Mα | α ∈ Γ} such that Mα

σαj
==⇒ Mαj

for all α, αj ∈ Γ and Mα satisfies content(α) for all α ∈ Γ.

LEMMA 24. There exist sequences {µα | α ∈ Γ \ {0}} and markings {Mα | α ∈ Γ} such that

Mα

µαj
==⇒ Mαj for all α, αj ∈ Γ with Mα satisfying content(α) and |µα| ≤ `′( f (|α| − 1)) iff there

exist sequences {σα | α ∈ Γ \ {0}} and markings {M′α | α ∈ Γ} (M′0 should be equal to M0)

such that M′α
σαj

==⇒ M′αj for all α, αj ∈ Γ with M′α satisfying content(α).

To derive an upper bound for f (i) to use in a nondeterministic algorithm, let R =
max{ratio(τ ≥ c) | τ ≥ c is a subformula of κ}, R′ = max{R, 2} and W ′ = max{W, 2}.
Recall that D− 1 is the nesting depth of EF and note that boundedness and coverability can
be expressed with D ≤ 2.

LEMMA 25. For i ≥ 2, f (D− i, p) ≤ (i + 1)R′W`′( f (D− i + 1)).

LEMMA 26. Recall from the end of section 3 that expcov(i) = (6K+2K!m2)i. Then `′( f (D−
1)) ≤ m(W ′R′)expcov(1) and `′( f (D− i)) ≤ m ∏D

j=D−i
(
(D− j + 1)W ′2R′m

)expcov(i+j+1−D).

THEOREM 27. Given a net and a formula φ, if the benefit depth of the net is treated as a
parameter and the nesting depth D of EF modality in the formula is treated as a constant,
then there is a paraPSPACE algorithm that checks if the net satisfies the given formula.

PROOF. By Lemma 24, it is enough for a nondeterministic algorithm to guess sequences
σαj, αj ∈ Γ of lengths at most `′( f (|αj| − 1)) and verify that they satisfy the formula. Using
bounds given by Lemma 26 and an argument similar to the one in the proof of Theorem 14,
it can be shown that the space used is exponential in K and polynomial in the size of the net
and numeric constants in the formula. This gives the paraPSPACE algorithm.

The space requirement of the above algorithm will have terms like m2D and hence it
will not be paraPSPACE if D is treated as a parameter instead of a constant.

6 Conclusion
We considered nets communicating with buffers. These are infinite-state concurrent sys-
tems allowing 1-safe Petri net components communicating through synchronization, which
in turn communicate asynchronously through a fixed set of buffers. We identified the pa-
rameter benefit depth that measures the maximum number of other buffers that any one
buffer can influence. We showed that based on this parameter, paraPSPACE algorithms can
be obtained for the coverability and boundedness problems. Note that this does not yield a
paraPSPACE algorithm for the reachability problem. Whether benefit depth can yield such
an algorithm is open; for work of this kind we refer to Kostin [16]. We then extended the
above technique to show that satisfiability of formulas of the logic given in sub-section 2.1
can be checked in paraPSPACE if the nesting depth of EF quantifiers in such formulas is
treated as a constant.
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ABSTRACT. Church’s Problem asks for the construction of a procedure which, given a logical speci-
fication ϕ on sequence pairs, realizes for any input sequence I an output sequence O such that (I, O)
satisfies ϕ. McNaughton reduced Church’s Problem to a problem about two-player ω-games. Büchi
and Landweber gave a solution for Monadic Second-Order Logic of Order (MLO) specifications in
terms of finite-state strategies. We consider two natural generalizations of the Church problem to
countable ordinals: the first deals with finite-state strategies; the second deals with MLO-definable
strategies. We investigate games of arbitrary countable length and prove the computability of these
generalizations of Church’s problem.

1 Introduction

Two fundamental results of classical automata theory are decidability of the monadic second-

order logic of order (MLO) over ω = (N, <) and computability of the Church synthesis

problem. These results have provided the underlying mathematical framework for the de-

velopment of formalisms for the description of interactive systems and their desired prop-

erties, the algorithmic verification and the automatic synthesis of correct implementations

from logical specifications, and advanced algorithmic techniques that are now embodied in

industrial tools for verification and validation.

In order to prove decidability of the monadic theory of ω, Büchi introduced finite au-

tomata over ω-words. He provided a computable reduction from formulas to finite au-

tomata.

Büchi also introduced automata which “work” on words of any countable length (or-

dinal) and proved that the MLO-theory of any countable ordinal is decidable (see [BS73]).

What is known as the “Church synthesis problem” was first posed by Church in [Ch63]

for the case of (ω, <). The Church problem is much more complex than the decidability

problem for MLO. Church uses the language of automata theory. It was McNaughton

[Mc65] who first observed that the Church problem can be equivalently phrased in game-

theoretic language.

Let α > 0 be an ordinal and let ϕ(X1, X2) be a formula, where X1 and X2 are set

(monadic predicate) variables. The McNaughton game Gα
ϕ is defined as follows.

1. The game is played by two players, called Player I and Player II.

2. A play of the game has α rounds.

3. At round β < α: first, Player I chooses πX1
(β) ∈ {0, 1}; then, Player II chooses

πX2
(β) ∈ {0, 1}.
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SRC.

c© A. Rabinovich; licensed under Creative Commons License-NC-ND.
Foundations of Software Technology and Theoretical Computer Science (Kanpur) 2009.
Editors: Ravi Kannan and K. Narayan Kumar; pp 359–370
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany. 
Digital Object Identifier: 10.4230/LIPIcs.FSTTCS.2009.2332



360 SYNTHESIS OF FINITE-STATE AND DEFINABLE WINNING STRATEGIES

4. By the end of the play two monadic predicates πX1
, πX2

⊆ α have been constructed†.

5. Then, Player I wins the play if (α, <) |= ϕ(πX1
, πX2

); otherwise, Player II wins.

What we want to know is: Does either one of the players have a winning strategy in Gα
ϕ? If so,

which one? That is, can Player I choose his moves so that, whatever way Player II responds

we have ϕ(πX1
, πX2

)? Or can Player II respond to Player I’s moves in a way that ensures the

opposite?

This leads to

Game version of the Church problem Let α be an ordinal. Given an MLO formula ϕ(X1, X2),

decide whether Player I has a winning strategy in Gα
ϕ.

In [BL69], Büchi and Landweber prove the computability of the Church problem in ω =
(N, <). Even more importantly, they show that in the case of ω we can restrict ourselves to

MLO-definable strategies, or equivalently, to finite-state strategies (see Sect. 3 for the definitions

of these strategies).

THEOREM 1.1 (BÜCHI-LANDWEBER, 1969) Let ϕ(X1, X2) be an MLO formula. Then:

Determinacy One of the players has a winning strategy in the game Gω
ϕ .

Decidability It is decidable which of the players has a winning strategy.

Definable strategy The player who has a winning strategy, also has an MLO-definable winning

strategy.

Synthesis We can compute a formula ψ(X1, X2) that defines (in ω) a winning strategy for the

winning player in Gω
ϕ .

After stating their main theorem, Büchi and Landweber write:

“We hope to present elsewhere a corresponding extension of [our main theorem]

from ω to any countable ordinal.”

However, despite the fundamental role of the Church problem, no such extension is even

mentioned in a later book by Büchi and Siefkes [BS73], which summarizes the theory of

finite automata over words of countable ordinal length.

We proved in [RS08a, Rab09] that the Büchi-Landweber theorem extends fully to all

ordinals < ωω and its determinacy and decidability parts extend to all countable ordinals.

In [RS08], we provided a counter-example to a full extension of the Büchi-Landweber

theorem to α ≥ ωω. For every ordinal α ≥ ωω we constructed an MLO formula ϕα(X1, X2)
such that Player I has a winning strategy in Gα

ϕα
; however, he has no MLO-definable winning

strategy.

For α ≤ ωω, the set of MLO-definable in α strategies is the same as the set of finite-

state strategies. However, for α > ωω, the set of MLO-definable in α strategies properly

contains the set of finite-state strategies. This leads to the following two synthesis problems

for α ≥ ωω:

Synthesis Problems for α

Input: an MLO formula ϕ(X1, X2).

Task1: Decide whether one of the players has a definable winning strategy in Gα
ϕ,

and if so, construct ψ which defines his winning strategy.

Task2: Decide whether one of the players has a finite-state winning strategy in Gα
ϕ,

and if so, construct such a strategy.

†We identify monadic predicates with their characteristic functions.
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The first task is the synthesis problem of definable strategy and it will be denoted by

Dsynth(α); the second task is the synthesis problem of finite-state strategy and it will be

denoted by Fsynth(α).

In [Rab09], we reduced the synthesis problem Dsynth(α) to Dsynth(ωω). However, the

decidability of the latter remained open.

Two main contributions of this paper are: the computability of Dsynth(ωω) (and, as

a consequence, the computability of Dsynth(α)), and the computability of Fsynth(α). Our

results are stronger than the computability of Dsynth(α) and Fsynth(α). For every count-

able α we need finite amount of data (code of α) which determines its monadic theory (see

Subsection 2.2). We prove that there is an algorithm that receives the code of an ordinal α

and a formula ϕ and decides whether Player I has a definable or finite-state strategy in the

McNaughton game Gα
ϕ.

Our proofs use both game theoretical techniques and the “composition method” devel-

oped by Feferman-Vaught, Shelah and others (see, e.g. [Sh75]).

The article is organized as follows. The next section recalls standard definitions about

monadic logic of order, summarizes elements of the composition method and reviews known

facts about the monadic theory of countable ordinals. In Sect. 3, we provide definitions of

the finite-state and MLO-definable strategies and survey results about McNauughton games

of countable length. In Section 4, we introduce special games on types and provide a reduc-

tion of these games to the McNaughton games. Section 5 contains the main results of the pa-

per and outlines the proof of the computability of the synthesis problem for MLO-definable

strategies. Finally, in Sect. 6, we discuss some open problems.

2 Preliminaries on Monadic Logic of Order

Notations and terminology We use n, k, l, m, p, q for natural numbers and α, β, γ, δ for or-

dinals. We use N for the set of natural numbers and ω for the first infinite ordinal. We write

α + β, αβ, αβ for the sum, multiplication and exponentiation, respectively, of ordinals α and

β. We use the expressions “chain” and “linear order” interchangeably. We use P(A) for the

set of subsets of A.

2.1 The Monadic Logic of Order (MLO)

Syntax The syntax of the monadic second-order logic of order - MLO has in its vocabulary

individual (first order) variables t1, t2 . . ., monadic second-order variables X1, X2 . . . and one

binary relation < (the order).

Atomic formulas are of the form X(t) and t1 < t2. Well-formed formulas of the monadic

logic MLO are obtained from atomic formulas using Boolean connectives ¬,∨,∧,→, the

first-order quantifiers ∃t and ∀t, and the second-order quantifiers ∃X and ∀X. The quantifier

depth of a formula ϕ is denoted by qd(ϕ).

We use upper case letters X, Y, Z to denote second-order variables, and overlined letters

X̄, Ȳ to denote finite tuples of variables.

Semantics A structure is a tuple M := (AM, <M, P̄M) where: AM is a non-empty set, <
M

is a binary relation on AM, and P̄M :=
(

PM
1 , . . . , PM

l

)
is a finite tuple of subsets of AM.
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If P̄M is a tuple of l sets, we call M an l-structure. If <
M linearly orders AM, we call

M an l-chain.

Suppose M is an l-structure and ϕ a formula with free-variables among X1, . . . , Xl. We

define the relation M |= ϕ (read: M satisfies ϕ) as usual, understanding that the second-

order quantifiers range over subsets of AM.

Let M be an l-structure. The monadic theory of M, MTh(M), is the set of all formulas

with free variables among X1, . . . , Xl satisfied by M.

¿From now on, we omit the superscript in ‘<M’ and ‘P̄M’. We often write (A, <) |=
ϕ(P̄) meaning (A, <, P̄) |= ϕ.

2.2 The monadic theory of countable ordinals

Büchi (for instance [BS73]) has shown that there is a finite amount of data concerning any

countable ordinal which determines its monadic theory:

THEOREM 2.1 Let α be a countable ordinal. Write α = ωωβ + ζ where ζ < ωω (this can be done

in a unique way). Then the monadic theory of (α, <) is determined by:

1. whether α < ωω, and

2. ζ.

We can associate with every countable α a finite code which holds the data required in the

previous theorem. This is clear with respect to (1). As for (2), if ζ 6= 0, write

ζ = ∑i≤n ωn−i · an−i, where n, ai ∈ N for i ≤ n and an 6= 0

(this, too, can be done in a unique way), and let the sequence (an, . . . , a0) encode ζ. The

following is implicit in [BS73]:

THEOREM 2.2 (MONADIC DECIDABILITY THEOREM) There is an algorithm that, given a sen-

tence ϕ and the code of a countable ordinal α, determines whether (α, <) |= ϕ.

We conclude by a well-known Lemma which is easily derived from Büchi results [BS73],

as well from the composition theorem (see Theorem 2.11).

LEMMA 2.3 For every n there is m computable from n such that for every MLO sentence ϕ of the

quantifier depth at most n and every countable ordinals α > 0 and β:

ωm + β |= ϕ if and only if ωmα + β |= ϕ

2.3 Elements of the composition method

Our proofs make use of the technique known as the composition method developed by

Feferman-Vaught and Shelah [FV59, Sh75]. To fix notations and to aid the reader unfamiliar

with this technique, we briefly review the required definitions and results. A more detailed

presentation can be found in [Th97] or [Gu85].

Let n, l ∈ N. We denote by Formn
l the set of formulas with free variables among

X1, . . . , Xl and of quantifier depth ≤ n.

DEFINITION 2.4 Let n, l ∈ N and let M,N be l-structures. The n-theory of M is

Thn(M) := {ϕ ∈ Formn
l | M |= ϕ}.

If Thn(M) = Thn(N ), we say that M and N are n-equivalent and write M ≡n N .
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Clearly, ≡n is an equivalence relation. For any n ∈ N and l > 0, the set Formn
l is infi-

nite. However, it contains only finitely many semantically distinct formulas. So, there are

finitely many ≡n-equivalence classes of l-structures. In fact, we can compute characteristic

sentences for the ≡n-equivalence classes:

LEMMA 2.5 (HINTIKKA LEMMA) For n, l ∈ N, we can compute a finite set Charn
l ⊆ Formn

l

such that:

1. For every ≡n-equivalence class A there is a unique τ ∈ Charn
l such that for every l-structure

M: M ∈ A iff M |= τ.

2. Every MLO formula ϕ(X1, . . . Xl) with qd(ϕ) ≤ n is equivalent to a (finite) disjunction of char-

acteristic formulas from Charn
l . Moreover, there is an algorithm which for every formula ϕ(X1, . . . Xl)

computes a finite set Gϕ ⊆ Char
qd(ϕ)
l of characteristic formulas, such that ϕ is equivalent to the dis-

junction of all the formulas in G.

Any member of Charn
l we call a (n, l)-Hintikka formula or (n, l)-characteristic formula. We

use τ, τi, τ j to range over the characteristic formulas and G, Gi, G′ to range over sets of

characteristic formulas. Usually, we do not distinguish between ϕ and the corresponding

set Gϕ of characteristic formulas.

DEFINITION 2.6 (n-TYPE) For n, l ∈ N and an l-structure M, we denote by typen(M) the

unique member of Charn
l satisfied by M and call it the n-type of M.

Thus, typen(M) determines Thn(M) and, indeed, Thn(M) is computable from typen(M).

DEFINITION 2.7 (SUM OF CHAINS) Let l ∈ N, I := (I, <I) a chain and S := (Mα | α ∈ I) a

sequence of l-chains. Write Mα := (Aα, <α, P1
α, . . . , Pl

α) and assume that Aα ∩ Aβ = ∅ whenever

α 6= β are in I. The ordered sum of S is the l-chain

∑
I

S := (
⋃

α∈I

Aα, <I ,S,
⋃

α∈I
P1

α, . . . ,
⋃

α∈I

Pl
α),

where: if α, β ∈ I, a ∈ Aα, b ∈ Aβ, then b <
I ,S a iff β <

I α or β = α and b <
α a.

If the domains of the Mα’s are not disjoint, replace them with isomorphic l-chains that have

disjoint domains, and proceed as before.

If I = ({0, 1}, <) and S = (M0,M1), we denote ∑I S by M0 + M1.

The next proposition states that taking ordered sums preserves ≡n-equivalence.

PROPOSITION 2.8 Let n, l ∈ N. Assume:

1. (I, <I) is a linear order,

2.
(
M0

α | α ∈ I
)

and
(
M1

α | α ∈ I
)

are sequences of l-chains, and

3. for every α ∈ I, M0
α ≡n M1

α.

Then, ∑α∈I M0
α ≡n ∑α∈I M1

α.

This allows us to define the sum of formulas in Charn
l with respect to any linear order.

DEFINITION 2.9 Let n, l ∈ N, I := (I, <I) a chain, H := (τα | α ∈ I) a sequence of (n, l)-

Hintikka formulas. The ordered sum of H, (notations ∑I H or ∑α∈I τα), is an element τ of Charn
l

such that:

if S := (Mα | α ∈ I) is a sequence of l-chains and typen(Mα) = τα for α ∈ I, then

typen(∑
I

S) = τ.

If I = ({0, 1}, <) and H = (τ0, τ1), we denote ∑α∈I τα by τ0 + τ1.
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The next Lemma states that the sum of two types is computable.

LEMMA 2.10 (ADDITION LEMMA) The function which maps the pairs of characteristic formulas

to their sum is recursive. Formally, λn, l ∈ N.λτ0, τ1 ∈ Charn
l .τ0 + τ1 is recursive.

The following fundamental result of Shelah can be found in [Sh75]:

THEOREM 2.11 (COMPOSITION THEOREM) Let ϕ(X1, . . . , Xl) be a formula, let n = qd(ϕ)
and let {τ1, . . . , τm} = Charn

l . Then, there is a formula ψ(Y1, . . . , Ym) such that for every chain

I = (I, <) and sequence (Mα | α ∈ I) of l-chains the following holds:

∑
α∈I

Mα |= ϕ iff I |= ψ(Q1, . . . , Qm), where

Qj = {α ∈ I | Mα |= τj}. Moreover, ψ is computable from ϕ.

3 Finite-state and MLO-definable strategies

In the McNaughton game Gα
ϕ, at round β < α, Player I has access only to πX2

∩ [0, β) and

Player II has access only to πX1
∩ [0, β]. Therefore, the following formalizes well the notion

of a strategy in this game:

DEFINITION 3.1 (CAUSAL OPERATOR) Let α be an ordinal, F : P(α) → P(α) maps the subsets

of α into the subsets of α. We call F causal (resp. strongly causal) iff for all P, P′ ⊆ α and β < α:

if P ∩ [0, β] = P′ ∩ [0, β] (resp. P ∩ [0, β) = P′ ∩ [0, β)), then

F(P) ∩ [0, β] = F(P′) ∩ [0, β].
That is, if P and P′ agree up to and including (resp. up to) β, then so do F(P) and F(P′).

So, a winning strategy for Player I is a strongly causal F : P(α) → P(α) such that for every

P ⊆ α, (α, <) |= ϕ(F(P), P); a winning strategy for Player II is a causal F : P(α) → P(α)
such that for every P ⊆ α, (α, <) |= ¬ϕ(P, F(P)).

Let ψ(X1, X2) be a formula where X2 is declared as the “domain” variable and X1 as the

“range” variables. Let M := (A, <) be a chain and let F : P(A) → P(A) be an operator. We

say that ψ defines F in M if M |= ψ(P1, P2) iff P1 = F(P2).

It is easy to formalize in MLO that ψ defines in M a causal or strongly causal operator.

Hence, for every ψ there are sentences I-Player-strategyψ and II-Player-strategyψ such that

α |= I-Player-strategyψ iff ψ defines (in α) a strategy for Player I, and α |= II-Player-strategyψ

iff ψ defines (in α) a strategy for Player II. A play ρ := (ρX1
(0), ρX2

(0)) . . . (ρX1
(β), ρX2

(β))
. . . is consistent with the strategy defined in α by ψ if α |= ψ(ρX1

, ρX2
). A Player I’s strategy

defined by ψ is winning in Gα
ϕ if α |= ∀X1X2ψ(X1, X2) → ϕ(X1, X2). Hence, the monadic

theory of an ordinal α “knows” which formulas defines in α a strategy and which definable

strategies are winning in Gα
ϕ.

A formula ψ(X̄, t) with at most one free individual variable t is (syntactically) bounded

if all its first-order quantifiers are of the form ∃<ty . . . (short for ∃y(y < t ∧ . . .) and ∀<ty . . .

(short for ∀y(y < t → . . .)).

If ψ(X1, X2, t) is syntactically bounded and does not contain the atomic formulas X1(t)
and X2(t), then ∀t

(
X1(t) ↔ ψ

)
defines in every ordinal a strategy for Player I (a strongly

causal operator); ψ is said to be an explicit definition of this strategy. Similarly, if ψ(X1, X2, t) is

syntactically bounded and does not contain the atomic formula X2(t), then ∀t
(
X2(t) ↔ ψ

)

defines in every ordinal a strategy for Player II (a causal operator).
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The strategies explicitly defined by the bounded formulas can be computed by finite-

state transducers. A finite state transducer consists of a finite set Q - memory states, an

initial state qinit, next-state functions next1 : Q → Q and next2 : Q × {0, 1} → Q, a limit

transition function ∆ : P(Q) → Q, and an output function out : Q → {0, 1}.

During a play, according to a transducer, at round β, Player I first updates the state

according to next1 or ∆, outputs value according to out, and then after a move of Player II

updates the state. Formally, a play ρ := (ρX1
(0), ρX2

(0)) . . . (ρX1
(β), ρX2

(β)) . . . is consistent

with such a strategy if there are q0, q′0 . . . qβq′β . . . such that q0 = qinit

1. If β = β′ + 1 is a successor ordinal, then qβ = next1(q′β′)

2. If β is a limit ordinal then qβ = ∆(L) , where L := {q ∈ Q | q appears cofinally often

in q0, q′0 . . . qγq′γ . . . (γ < β)}.

3. ρX1
(β) = out(qβ).

4. q′β = next2(qβ, ρX2
(β))

It is clear that a transducer defines a strategy st for Player I. Moreover, st is definable by a

transducer iff it is explicitly definable by a bounded a formula.

Every ordinal α < ωω is MLO-definable. It is not difficult to show that a strategy is

MLO-definable in α < ωω iff it is finite-state strategy (equivalently is explicitly defined

by a bounded formula). If for a countable ordinal α every cofinal interval (β, α) is isomor-

phic to α, then a strategy is finite-state iff it is MLO-definable in α. However, the set of

MLO-definable strategies is larger than the set of finite-state strategies; e.g., if n > 0 and

ϕ expresses “X1 contains exactly the last element”, then Player I has a definable winning

strategy in Gωω+n
ϕ , but he has no finite-state winning strategy in this game.

We recall below results from [Rab09, RS08] about McNauughton games over ordinals,

and results from [CH08] about reachability and safety games of length ωω.

THEOREM 3.2 Let α be a countable ordinal, ϕ(X1, X2) a formula.

Determinacy One of the players has a winning strategy in the game Gα
ϕ.

MLO characterization of the winner There is a sentence win(ϕ) such that for every countable

ordinal α: Player I wins Gα
ϕ if and only if α |= win(ϕ). Furthermore, win(ϕ) is computable from ϕ.

Decidability There is an algorithm that given α and ϕ decides which of the players has a winning

strategy in Gα
ϕ.

No definable winning strategy For every α ≥ ωω, there is a formula ϕ such that no player has

a definable winning strategy in Gα
ϕ.

Finite-state winning strategy If α < ωω, then the player who has a winning strategy, also has a

finite-state winning strategy.

Synthesis If α < ωω, then we can compute a finite-state winning strategy for the winning player

in Gα
ϕ.

Hence, the Büchi-Landweber theorem extends fully to the ordinals less than ωω, and its

determinacy and decidability parts extends to all countable ordinals.

REMARK 3.3 1. In this paper, whenever we say that an algorithm is “given an ordinal...” or

“returns an ordinal...”, we mean the code of the ordinal. In particular, this holds for the decidability

and synthesis parts of Theorem 3.2.

2. Sometimes, like in the MLO characterization part of Theorem 3.2, we state our result only for

Player I. However, in all these cases there is a duality between the players, and similar assertions

hold for Player II. For every ϕ we can construct ψ such that Player I has a definable (respectively,
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finite-state) winning strategy st in Gα
ψ iff Player II has a definable (respectively, finite-state) winning

strategy in Gα
ϕ. Moreover, this strategy is computable from (the description of) st.

3. To simplify notations, games and the Church problem were previously defined for formulas with

two free variables X1 and X2. It is easy to generalize all definitions and results to formulas ψ(X1, . . . , Xm,

Y1, . . . Yn) with many variables. In this generalization at round β, Player I chooses values for

X1(β), . . . , Xm(β), then Player II replies by choosing values for Y1(β), . . . , Yn(β). Note that, strictly

speaking, the input to the Church problem is not only a formula, but a formula plus a partition of its

free variables to Player I’s variables and Player II’s variables.

In [CH08] reachability games of ordinal length over finite graphs were considered. The next

theorem reformulates results from [CH08] in logical terms.

Let ϑ(X1, X2) be a formula. Let ϑ<t be the relativization of ϑ to the interval [0, t), i.e.,

obtained from ϑ(X1, X2) by changing the first-order quantifiers ∃y and ∀y to ∃<ty and ∀<ty.

A reachability formula is a formula of the form ∃tϑ<t. A safety formula is a formula of the

form ∀tϑ<t.

THEOREM 3.4 Let ϕ be a reachability or safety formula. Then

Finite-state strategy The player who has a winning strategy in Gωω

ϕ also has a finite-state winning

strategy.

Synthesis We can compute a finite-state winning strategy for the winning player in Gωω

ϕ .

4 Special Games on Types

In this section we introduce special games on types. These games play an important role

in our proof that Dsynth(ωω) is computable. We reduce special games to safety games and

derive that a winning player in these games has a definable winning strategy.

DEFINITION 4.1 (RESIDUAL) Let k ∈ N, G ⊆ Chark
2 and τ ∈ Chark

2. Define resτ(G) as

resτ(G) := {τ′ ∈ Chark
2 | τ + τ′ ∈ G}.

Let F assign to every τ ∈ G a non-empty subset of P(resτ(G)) \ {∅}. The ωω-game on

types, Game(F, G), is defined as follows. There are ωω rounds.

Round 0: Player I sets G0 := G. Player II chooses τ0 ∈ G0.

Round α (for α > 0): Let τ<α := ∑β∈α τβ. If τ<α 6∈ G, then Player II wins. Otherwise, Player

I chooses Gα ∈ F(τ<α) and then Player II chooses τα ∈ Gα.

Winning Conditions: Player I wins a play G0τ0 . . . Gβτβ . . . if ∑β∈α τβ ∈ G for every α ≤ ωω.

The proof of the next proposition is based on a reduction of special games to safety games.

PROPOSITION 4.2 There is an algorithm that given a game Game(F, G), decides whether Player

I has a winning strategy. Furthermore, if such a strategy exists, then there is definable winning

strategy, and we can compute a formula ψ(X̄, Ȳ) that defines in ωω a winning strategy for Player I.

Since a strategy is definable in ωω iff it is finite-state, we can replace “definable” by “finite-

state” in the above Proposition.

5 Main Results

In the next lemma and throughout this paper we often use G ⊆ Chark
2 for ϕ defined as

∨τ∈Gτ. In particular, we use Gα
G, for the McNaughton game Gα

ϕ, and win(G) for win(ϕ),

where win(ϕ) is the sentence from Theorem 3.2.
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LEMMA 5.1 (MAIN) Let G ⊆ Chark
2. The following are equivalent:

1. Player I has a definable winning strategy in Gωω

G .

2. There is G′ ⊆ G and a special game Game(F, G′) such that

(a) ωω |= win(G′).

(b) ωω |= win(G1) for every τ ∈ G′ and G1 ∈ F(τ).

(c) Player I has a winning strategy in Game(F, G′).

The implication (2)⇒(1) will be proved in Subsection 5.1. The implication (1)⇒(2) will be

proved in Subsection 5.2. As a consequence, we obtain the computability of Dsynth(ωω).

THEOREM 5.2 (COMPUTABILITY OF DSYNTH(ωω
)) There is an algorithm that given a for-

mula ϕ(X1, X2) decides whether Player I has a definable winning strategy in the game Gωω

ϕ . Further-

more, if such a strategy exists we can compute a formula ψ(X1, X2) that defines (in ωω) a winning

strategy for Player I.

PROOF. Since condition (2) of Lemma 5.1 is decidable, we obtain the decidability part

of the theorem. The “furthermore part” of the theorem can be extracted from our proof of

Lemma 5.1.

In [Rab09] we provided reduction from Dsynth(α) to Dsynth(ωω). As a consequence of

Theorem 5.2 and results in [Rab09] we obtain:

THEOREM 5.3 (COMPUTABILITY OF DSYNTH(α)) 1. There is an algorithm that given a for-

mula ϕ(X1, X2) computes a sentence Dwinϕ such that for every countable ordinal α ≥ ωω: Player

I has a definable (in α) winning strategy in Gα
ϕ iff α |= Dwinϕ.

2. There is an algorithm that given a formula ϕ(X1, X2) and the code of an ordinal α decides whether

Player I has a definable winning strategy in Gα
ϕ, and if so, computes a formula ψα which defines in α

such a strategy.

The next theorem states that the synthesis problem for finite-state strategies is computable.

Its proof refines the proof of Theorem 5.3 and will be presented in the full paper.

THEOREM 5.4 (COMPUTABILITY OF FSYNTH(α)) 1. There is an algorithm that given a for-

mula ϕ(X1, X2) computes a sentence Fswinϕ such that for every countable ordinal α ≥ ωω: Player

I has a finite-state winning strategy in Gα
ϕ if and only if α |= Fswinϕ.

2. There is an algorithm that given a formula ϕ(X1, X2) and a code of α decides whether Player I has

a finite-state winning strategy in Gα
ϕ, and if so, computes such a strategy.

5.1 Implication (2)⇒ (1) of Lemma 5.1

Terminology. (k-type of a play) For a (partial) play π := (πX1
(0), πX2

(0)) . . . (πX1
(β), πX2

(β)) . . .

(β ∈ α) its k-type is defined as the k-type of the chain (α, <, πX1
, πX2

).

Let n be an upper bound on the quantifier depth of win(H) for H ⊆ Chark
2, where

win(H) is as in Theorem 3.2. By Lemma 2.3, we can compute m such that no sentence of the

quantifier depth ≤ n can distinguish between multiples of ωm.

¿From condition 2(a), and our choice of m, it follows that ωm |= win(G′) and therefore,

by the synthesis part of Theorem 3.2, Player I has a definable winning strategy in Gωm

G′ .

We fix such a strategy stG′ . Similarly, condition 2(b) implies that for every τ ∈ G′ and

G1 ∈ F(τ) Player I has a definable winning strategy in Gωm

G1
, we denote such a strategy by

stG1
. Condition 2(c) implies that Player I has a definable winning strategy stF in Game(F, G′).
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We organize our description of a winning strategy for Gωω

G in sessions; each session is

played for ωm rounds. Each session “corresponds” to one round in Game(F, G′).

We show that this strategy wins G′ on every multiple of ωm.

Session 0: Play first ωm rounds according to a definable winning strategy for G0 := G′.
Set τ0 to be the k-type of the play during this session. Note that τ0 ∈ G0 and this session

corresponds to the play π0 := G0τ0 consistent with stF in the game Game(F, G′).

Session α (for α > 0): Let π := G0τ0, . . . , Gβτβ . . . (for β < α) be the play of Game(F, G′)
which corresponds to the previous sessions of the play.

Let Gα be defined as the response of stF after π. Play the next ωm rounds according to

the winning strategy stGα
in Gωm

Gα
.

Set τα to be the k-type of the play during this session. Note that τα ∈ Gα and the play

πGατα is a play according to stF.

It is clear that the above strategy is winning in Gωω

G′ and hence in Gωω

G .

It is easy to see that the above description of the strategy can be formalized in MLO.

5.2 Implication (1)⇒(2) of Lemma 5.1

DEFINITION 5.5 Let G ⊆ Chark
2. We say that a strategy realizes G on α if it wins Gα

G and there is

no G1 ( G such that it wins Gα
G1

.

Note that for each k and a strategy st, the set G ⊆ Chark
2 realized by st on α is unique. For

every ψ and G ⊆ Chark
2, there is a sentence Realize(ψ, G) such that for every α: ψ defines in

α a strategy which realizes G iff α |= Realize(ψ, G).

Assume that st defines a strategy and the quantifier depth of st is s. For τ ∈ Chars
2, let

stτ := {τ′ ∈ Chars
2 | τ + τ′ → st} be the residual of st wrt τ.

LEMMA 5.6 Assume that st defines in ωω a strategy, its quantifier depth is s, and τ ∈ Chars
2.

1. If st ∧ τ is satisfiable, then stτ defines in ωω a strategy.

2. If M0 + M1 |= st and types(M0) = τ then M1 |= stτ.

3. If M0 |= st and types(M0) = τ and M1 |= stτ, then M0 + M1 |= st.

4. If τβ = types(Mβ), and M0 |= st and Mβ |= stΣγ∈βτγ
for every β ∈ (0, α), then

Σβ∈[0,α)Mβ |= st.

For k ∈ N and a strategy st, we denote by R(k, st) the subset of Chark
2 realized by st on ωω.

Define Fk
st : R(k, st) → P(P(Chark

2)) \ {∅} as follows:

Fk
st(τ) := {R(k, stδ) | δ ∈ Chars

2 and δ ∧ st ∧ τ is satisfiable on ωω}
The implication (1) ⇒ (2) of Lemma 5.1 immediately follows from the next lemma and the

observation that stδ wins Gωω

R(k,stδ)
.

LEMMA 5.7 Assume that st defines in ωω a strategy for Player I, and the quantifier depth of st is s.

Then for every k ≤ s, Player I has a winning strategy in Game(Fk
st, R(k, st)).

PROOF. Let m be defined from n := s + 2 as in Lemma 2.3. In particular, st realizes R(k, st)
on every multiple of ωm. Note that for δ ∈ Chars

2, the quantifier depth of stδ is s. Therefore,

stδ realizes R(k, stδ) on every multiple of ωm.

We will describe a strategy for Player I and show that it is winning in Game(Fk
st, R(k, st)).

Each round in this game corresponds to ωm rounds in Gωω

R(k,st). A play according to this

strategy corresponds to a play according to the strategy st in Gωω

R(k,st).
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In addition to the description of the strategy we are going to define for each round α:

δα, υα ∈ Chars
2, and a play Mα of length ωm.

Round 0 Play G0 := R(k, st). Assume that Player II has replied by τ0 ∈ G0 in round

0. Choose υ1 = δ0 ∈ Chars
2 consistent with τ0 ∧ st on ωω. Choose 2-chain M0 :=

(ωm, X1, X2) such that M0 |= τ0 ∧ δ0. The structure M0 is a (partial) play, according

to the strategy st.

Round α (for α > 0) Assume that π<α = G0τ0 . . . Gβτβ . . . is the (partial) play up to round α

and we have chosen δβ ∈ Chars
2 at round β < α.

Set υα := ∑β∈α δβ.

Play Gα := R(k, stυα).

Assume that Player II replies by τα ∈ Gα at this round.

Choose δα ∈ Chars
2 to be consistent with τα ∧ stυα .

Choose 2-chain Mα := (ωm, X1, X2) such that Mα |= τα ∧ δα ∧ stυα .

By the induction on α, using Lemma 5.6 and our choice of m, one can show that for every

play G0τ0 . . . Gβτβ . . . which is consistent with the described strategy the following invari-

ants hold:

1. δα ∧ τα are satisfiable on ωω and therefore on ωm.

2. (∑β∈α δβ) ∧ (∑β∈α τβ) are satisfiable on ωω, and therefore on ωmα.

3. types(∑β∈α Mβ) = ∑β∈α δβ = υα

4. ∑β∈α Mβ |= st, i.e., the play ∑β∈α Mβ is consistent with st.

5. ∑β∈α τβ ∈ R(k, st).

6. Gα ∈ Fk
st(∑β∈α τβ).

¿From (5)-(6) it follows that the described strategy is a winning strategy in Game(Fk
st, R(k, st)).

6 Open Problems and Further Directions

The Büchi-Landweber theorem (Theorem 1.1) states that for the ω-games with MLO win-

ning conditions, the player who has a winning strategy also has an MLO-definable win-

ning strategy. In [RT07], we considered fragments of MLO logics. We proved that the

Büchi-Landweber theorem fully extends to the first-order fragment of MLO (FOMLO) for

ω-games; i.e., for every winning conditions ϕ(X1, X2) ∈ FOMLO, the player who has a win-

ning strategy in Gω
ϕ , also has a FOMLO-definable winning strategy. We also proved that the

theorem extends fully to the FOMLO extended by modular counting quantifiers.

In [RS08], we proved that for every ordinal α ≥ ωω there is a FOMLO formula ϕα(X1, X2)
such that Player I has a winning strategy in Gα

ϕα
; however, he has no MLO-definable winning

strategy.

We plan to consider several fragments of MLO including FOMLO, FOMLO extended

by the modular counting quantifiers and FOMLO extended by the quantifications over the

finite sets (WMLO). For each of the above fragments L we address the problem of deciding

for a formula ϕ ∈ L and an ordinal α, whether one of the player has L-definable winning

strategy in Gα
ϕ.

We reduced the synthesis problems to the satisfiability problem for MLO which has

non-elementary complexity. We plan to analyze the complexity of the synthesis problems
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when winning conditions are described by automata which have the same expressive power

as MLO or by temporal logic formulas which have the same expressive power as FOMLO.

For the winning conditions expressed in these formalisms we hope to prove that the syn-

thesis problems have a reasonable complexity.
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ABSTRACT.
We study the problem of polynomial identity testing (PIT) for depth 2 arithmetic circuits over ma-
trix algebra. We show that identity testing of depth 3 (ΣΠΣ) arithmetic circuits over a field F is
polynomial time equivalent to identity testing of depth 2 (ΠΣ) arithmetic circuits over U2(F), the
algebra of upper-triangular 2× 2 matrices with entries from F. Such a connection is a bit surprising
since we also show that, as computational models, ΠΣ circuits over U2(F) are strictly ‘weaker’ than
ΣΠΣ circuits over F. The equivalence further implies that PIT of ΣΠΣ circuits reduces to PIT of
width-2 commutative Algebraic Branching Programs(ABP). Further, we give a deterministic polyno-
mial time identity testing algorithm for a ΠΣ circuit of size s over commutative algebras of dimension
O(log s/ log log s) over F. Over commutative algebras of dimension poly(s), we show that identity
testing of ΠΣ circuits is at least as hard as that of ΣΠΣ circuits over F.

1 Introduction
Polynomial identity testing (PIT) is a fundamental problem in theoretical computer science.
Over the last decade this problem has drawn significant attention from many leading re-
searchers owing to its role in designing efficient algorithms and in proving circuit lower
bounds. Identity testing is the following problem:

PROBLEM 1. Given an arithmetic circuit C with input variables x1, . . . , xn and constants
taken from a field F, check if the polynomial computed by C is identically zero.

Besides being a natural problem in algebraic computation, identity testing appears in im-
portant complexity theory results such as, IP = PSPACE [21] and the PCP theorem [6]. It
also plays a promising role in proving super-polynomial circuit lower bound for permanent
[13, 1]. Moreover, algorithms for problems like primality testing [3], graph matching [17]
and multivariate polynomial interpolation [12] also involve identity testing. Several effi-
cient randomized algorithms [20, 23, 10, 16, 2, 15] are known for identity testing. However,
despite many attempts a deterministic polynomial time algorithm has remained elusive.
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Nevertheless, important progress has been made both in the designing of deterministic al-
gorithms for special circuits, and in the understanding of why a general deterministic solu-
tion could be hard to get.

Assume that a circuit C has alternate layers of addition and multiplication gates. A
layer of addition gates is denoted by Σ and that of multiplication gates is denoted by Π.
Kayal and Saxena [14] gave a deterministic polynomial time identity testing algorithm for
depth 3 (ΣΠΣ) circuits with constant top fan-in. As such, no other general polynomial time
result is known for depth 3 circuits. A justification behind the hardness of PIT even for
small depth circuits was provided by Agrawal and Vinay [4]. They showed that a determin-
istic black box identity test for depth 4 (ΣΠΣΠ) circuits implies a quasi-polynomial time
deterministic PIT algorithm for circuits computing polynomials of low degree†.

Thus, the non-trivial case for identity testing starts with depth 3 circuits; whereas cir-
cuits of depth 4 are almost the general case. At this point, it is natural to ask as to what is
the complexity of the PIT problem for depth 2 (ΠΣ) circuits if we allow the constants of the
circuit to come from an algebra ‡ R that has dimension over F, dimF (R) > 1. Can we relate
this problem to the classical PIT problem for depth 3 and depth 4 circuits? In this paper, we
address and answer this question. We assume that the algebra R is given in basis form i.e.
we know an F-basis {e1, . . . , ek} of R and we also know how eiej can be expressed in terms
of the basis elements, for all i and j. Since elements of a finite dimensional algebra, given in
basis form, can be expressed as matrices over F, the problem at hand is the following.

PROBLEM 2. Given an expression P = ∏d
i=1 ∑n

j=0 Aijxj with x0 = 1 and Aij ∈ Mk(F), the
algebra of k× k matrices over F, check if P is zero using poly(n · k · d) many F-operations.

How hard is this problem? It is quite easy to verify that if we allow randomness then it is
solvable just like the usual PIT problem (using Schwartz-Zippel test [20, 23]). So we are only
interested in deterministic methods in this work.

Conventions - Whenever we say ‘arithmetic circuit (or formula)’ without an extra qualifi-
cation, we mean a circuit (or formula) over a field. Otherwise, we explicitly mention ‘arith-
metic circuit (or formula) over some algebra’ to mean that the constants of the circuit are
taken from ‘that’ algebra. Also, by depth 3 and depth 2 circuits, we always mean ΣΠΣ and
ΠΣ circuits respectively. Further, we take x0 = 1 throughout this paper.

1.1 The depth 2 model of computation

A depth 2 circuit C over matrices naturally defines a computational model. AssumingR =
Mk(F), for some k, a polynomial P ∈ R[x1, . . . , xn] outputted by C can be viewed as a
k× k matrix of polynomials in F[x1, . . . , xn]. We say that a polynomial f ∈ F[x1, . . . , xn] is
computed by C if one of the k2 polynomials in matrix P is f . Sometimes we say P computes
f to mean the same. In the following discussion, we denote the algebra of upper-triangular
k × k matrices by Uk(F). The algebra U2(F) is the smallest non-commutative algebra with
unity over F, in the sense that dimF U2(F) = 3 and any algebra of smaller dimension is
commutative. We show here that already U2(F) captures an open case of identity testing.

†A polynomial is said to have low degree if its degree is less than the size of the circuit that computes it.
‡In this paper, an algebra is always a finite dimensional associative algebra with unity.
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Ben-Or and Cleve [8] showed that a polynomial computed by an arithmetic formula E
of depth d, and fan-in (of every gate) bounded by 2, can also be computed by a straight-
line program of length at most 4d using only 3 registers. The following fact can be readily
derived from their result: From an arithmetic formula E of depth d and fan-in bounded
by 2, we can efficiently compute the expression, P = ∏m

i=1 ∑n
j=0 Aijxj, where m ≤ 4d and

Aij ∈ M3(F) such that P computes the polynomial that E does. Thus solving Problem 2
in polynomial time even for 3× 3 matrices yields a polynomial time algorithm for PIT of
constant depth circuits, in particular depth 4 circuits. There is an alternative way of arguing
that the choice ofR as M3(F) is almost the general case.

Given an arithmetic circuit of size s, computing a low degree polynomial, use the depth-
reduction result by Allender, Jiao, Mahajan and Vinay [5] (see also [22]) to construct an
equivalent bounded fan-in formula of size sO(log s) and depth O(log2 s). From this, obtain a
depth 2 circuit over M3(F) of size 4O(log2 s) = sO(log s) (using Ben-Or and Cleve’s result) that
computes the same polynomial as the formula. Thus, derandomization of PIT for depth
2 circuits over 3× 3 matrices yields a quasi-polynomial time PIT algorithm for any circuit
computing a low degree polynomial. This means, in essence a depth 2 circuit over M3(F)
plays the role of a depth 4 circuit over F (in the spirit of Agrawal and Vinay’s result).

It is natural to ask how the complexity of PIT for depth 2 circuits over M2(F) relates to
PIT for arithmetic circuits. In this paper, we provide an answer to this. We show a surprising
connection between PIT of depth 2 circuits over U2(F) and PIT of depth 3 circuits. The
reason this is surprising is because we also show that, a depth 2 circuit over U2(F) is not
even powerful enough to compute a simple polynomial like, x1x2 + x3x4 + x5x6!

Known related models

Identity testing and circuit lower bounds have been studied for different algebraic models.
Nisan [18] showed an exponential lower bound on the size of any arithmetic formula com-
puting the determinant of a matrix in the non-commutative free algebra model. The result
was generalized by Chien and Sinclair [11] to a large class of non-commutative algebras sat-
isfying polynomial identities, called PI-algebras. Identity testing has also been studied for
the non-commutative model by Raz and Shpilka [19], Bogdanov and Wee [9], and Arvind,
Mukhopadhyay and Srinivasan [7]. But unlike those models where the variables do not
commute, in our setting the variables always commute but the constant coefficients are taken
from an algebraR. The motivation for studying this latter model (besides it being a natural
generalization of circuits over fields) is that, it provides a different perspective to the com-
plexity of the classical PIT problem in terms of the dimension of the underlying algebra. It
seems to ‘pack’ the combinatorial nature of the circuit into a larger base algebra and hence
opens up the possibility of using algebra structure results. The simplest nontrivial circuit in
this model is a ΠΣ circuit over the non-commutative algebra R = U2(F), and even this, as
we show, represents the frontier of our understanding.

1.2 Our Results

The results we give are of two types. Some are related to identity testing while the rest are
related to the weakness of the depth 2 computational model over U2(F) and M2(F).
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Identity testing

We show the following result.

THEOREM 3. Identity testing for depth 3 (ΣΠΣ) circuits is polynomial time equivalent to
identity testing for depth 2 (ΠΣ) circuits over U2(F).

The above theorem has an interesting consequence on identity testing for Algebraic Branch-
ing Program (ABP) [18]. It is known that identity testing for non-commutative ABP can be
done in deterministic polynomial time [19]. But no interesting result is known for identity
testing of even width-2 commutative ABP’s. The following result justifies this.

COROLLARY 4. Identity testing of depth 3 circuits (ΣΠΣ) reduces to that of width-2 ABPs.

We mentioned before the prospect of using algebra structure results to solve PIT for depth
2 circuits over algebras. Our next result shows this idea at work for commutative algebras.

THEOREM 5. Given an expression P = ∏d
i=1 ∑n

j=0 Aijxj, where Aij ∈ R, a commutative
algebra of dimension k over F, there is a deterministic algorithm to test if P is zero running
in time poly

(
kk, n, d

)
.

The above result gives a polynomial time algorithm for k = O (log s/ log log s) where s =
O(nd). This result establishes that the power of depth 2 circuits over small algebras is pri-
marily derived from the non-commutative nature of the algebra. However, we show that
commutative algebras of polynomial dimension over F are much more powerful.

THEOREM 6. Identity testing of depth 3 (ΣΠΣ) circuits reduces to identity testing of depth
2 (ΠΣ) circuit C over a commutative algebra of dimension polynomial in the size of C.

Our argument for proving Theorem 3 is relatively simple in nature. Perhaps the reason
why such a connection was overlooked before is that, unlike a depth 2 circuit over M3(F),
we do not have the privilege of exactly computing a polynomial over F using a depth 2
circuit over U2(F). Showing this weakness of the latter computational model constitutes
the second part of our results.

Weakness of the depth 2 model over U2(F) and M2(F)

We show that depth 2 circuits over U2(F) are computationally weaker than depth 3 circuits.

THEOREM 7. Let f ∈ F[x1, . . . , xn] be a polynomial such that there are no two linear func-
tions l1 and l2 (with 1 6∈ (l1, l2), the ideal generated by l1 and l2) which make f mod (l1, l2)
also a linear function. Then f is not computable by a depth 2 (ΠΣ) circuit over U2(F).

Even a simple polynomial like x1x2 + x3x4 + x5x6 satisfies the condition stated in the above
theorem, and so it is not computable by any depth 2 circuit over U2(F), no matter how large!
This contrast makes Theorem 3 surprising as it establishes an equivalence of identity testing
in two models of different computational strengths. We further show that the computational
power of depth 2 circuits over M2(F) is also severely restrictive. Let P` denote the partial
product P` = ∏d

i=` ∑n
j=0 Aijxj, where Aij ∈ M2(F) and 1 ≤ ` ≤ d.
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DEFINITION 8. A polynomial f is computed by a depth 2 circuit (ΠΣ) under a degree
restriction of m if the degree of every partial product P` is bounded by m, for 1 ≤ ` ≤ d.

THEOREM 9. There exists a class of polynomials over F of degree n that cannot be computed
by a depth 2 (ΠΣ) circuit over M2(F), under a degree restriction of n.

The motivation behind imposing a condition like degree restriction comes naturally from
depth 2 circuits over M3(F). Given a polynomial f = ∑i mi, where mi’s are the monomials of
f , it is easy to construct a depth 2 circuit over M3(F) that literally forms these monomials and
adds them up one by one. This computation is degree restricted, if we extend our definition
of degree restriction to M3(F). However, the above theorem shows that this simple scheme
fails over M2(F).

2 Identity testing over M2(F)
We show that PIT of depth 2 circuits over M2(F) is at least as hard as PIT of depth 3 circuits.
This implies that PIT of a width-2 commutative ABP is also ‘harder’ than the latter problem.

2.1 Equivalence with depth 3 identity testing

Given a depth 3 circuit, assume (without loss of generality) that the fan-in of the multiplica-
tion gates are the same. This multiplicative fan-in is referred to as the degree of the depth 3
circuit. For convenience, we call a matrix with linear functions as entries, a linear matrix.

LEMMA 10. Let f be a polynomial over F computed by a depth 3 circuit C of degree d and
top fan-in s. Given C, it is possible to efficiently construct a depth 2 circuit over U2(F) of
size O(ds2) that computes L · f , where L is a product of non-zero linear functions.

PROOF. A depth 2 circuit over U2(F) is simply a product sequence of 2 × 2 upper-
triangular linear matrices. We show that there exists such a sequence of length O(ds2) such
that the product 2× 2 matrix has L · f as one of its entries. Since f is computed by a depth
3 circuit, f = ∑s

i=1 Pi, where each summand Pi = ∏j lij is a product of linear functions.
Observe that a single Pi can be computed using the following product sequence of length d.[

li1
1

]
· · ·

[
li(d−1)

1

] [
1 lid

1

]
=

[
L′ Pi

1

]
, where L′ = li1 · · · li(d−1). (1)

The proof proceeds through induction, where Equation 1 serves as the induction basis. A

generic intermediate matrix looks like
[

L1 L2g
L3

]
, where each Li is a product of non-zero

linear functions and g is a partial sum of the Pi’s. Inductively double the number of sum-
mands in g as follows.

At the i-th iteration, suppose we have the matrices
[

L1 L2g
L3

]
and

[
M1 M2h

M3

]
,

each computed by a sequence of ni linear matrices. We want a sequence that computes a
polynomial of the form L · (g + h). Consider the following sequence,[

L1 L2g
L3

] [
A

B

] [
M1 M2h

M3

]
=

[
AL1M1 AL1M2h + BL2M3g

BL3M3

]
, (2)
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where A, B are products of linear functions. By setting A = L2M3 and B = L1M2 we have,[
L1 L2g

L3

] [
A

B

] [
M1 M2h

M3

]
=

[
L1L2M1M3 L1L2M2M3(g + h)

L1L3M2M3

]
.

This way, we have doubled the number of summands in g + h. By induction, each Li and Mi

is a product of ni linear functions. Therefore, the matrix
[

A
B

]
is a product of at most

2ni diagonal linear matrices and the length of the sequence given in Equation 2 is bounded
by 4ni. This process of doubling the summands needs to be repeated at most log s + 1 times
and so the length of the final product sequence is bounded by d · 4log s = ds2.

PROOF. [Theorem 3] Given a depth 3 circuit computing f we can construct a depth 2 circuit
D over U2(F) that computes L · f . The output of D can be projected appropriately so that

we may assume that D outputs the matrix
[

0 L · f
0

]
, which is zero if and only if f is zero.

To see the other direction of the equivalence, observe that the off-diagonal entry of the
output of any depth 2 circuit D over U2(F) is a sum of at most d′ products of linear functions,
where d′ is the multiplicative fan-in of D.

2.2 Width-2 algebraic branching programs

Algebraic Branching Program (ABP) is a model of computation introduced by Nisan [18].

DEFINITION 11. An ABP is a directed acyclic graph with a source and a sink. The vertices
of this graph are partitioned into levels, where edges go from level i to level i + 1, with the
source at the first level and the sink at the last level. Each edge is labelled with a homo-
geneous linear function of x1, . . . , xn. The width of the ABP is the maximum number of
vertices at any level. An ABP computes a function by summing over all paths from source
to sink, the product of all linear functions by which the edges of the path are labelled.

PROOF. [Corollary 4] In Theorem 3 we have constructed a depth 2 circuit D that computes
P = ∏i ∑j Aijxj, where each Aij ∈ U2(F). We can make D homogeneous by introducing
an extra variable z, such that P = ∏i(Ai0z + Ai1x1 + . . . + Ainxn). By making the ith linear
matrix in the sequence act as the biadjacency matrix between level i and i + 1 of the ABP,
we have a width-2 ABP computing the same polynomial.

3 Identity testing over commutative algebras
The main idea behind the proof of Theorem 5 is a structure theorem for finite dimensional
commutative algebras involving local rings.

DEFINITION 12. A ringR is local if it has a unique maximal ideal.

In a local ring the unique maximal ideal consists of all non-units in R. The following
theorem shows how a commutative algebra decomposes into local sub-algebras. The theo-
rem is quite well known in the theory of commutative algebras. But, as we need an effective
version of this theorem, we present an appropriate proof here.
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THEOREM 13. A finite dimensional commutative algebra R is isomorphic to a direct sum
of local rings, i.e. R ∼= ⊕`

i=1Ri, whereRi is a local ring and any non-unit inRi is nilpotent.

PROOF. If all non-units in R are nilpotents then R is a local ring and the set of nilpotents
forms the unique maximal ideal. Suppose, there is a non-nilpotent non-unit z in R. (Any
non-unit z in a finite dimensional algebra is a zero-divisor i.e. ∃y ∈ R and y 6= 0 such
that yz = 0.) We will later show that using z it is possible to find an idempotent v 6∈ {0, 1}
(i.e. v2 = v) in R. But at first, let us see what happens if we already have a non-trivial
idempotent v ∈ R. LetRv be the sub-algebra ofR generated by multiplying elements ofR
with v. Since any a = av + a(1− v) and for any b ∈ Rv and c ∈ R(1− v), b · c = 0, we get
R ∼= Rv⊕R(1− v) as a non-trivial decomposition ofR. By repeating the splitting process
on the sub-algebras we can eventually prove the theorem.

Now we show how to find an idempotent from a zero-divisor z. An element a ∈ R
can be equivalently expressed as a matrix in Mk(F), where k = dimF(R), by treating a as
the linear transformation on R that takes b ∈ R to a · b. Therefore, z is a zero-divisor if and
only if z as a matrix is singular. Consider the Jordan normal form of z. Since it is merely
a change of basis we can assume that z is already in Jordan normal form. (We will not
compute the Jordan normal form in our algorithm, it is used only for the sake of argument.)

Let, z =
[

A 0
0 N

]
, where A, N are block diagonal matrices and A is non-singular and N is

nilpotent. Then, w = zk =
[

B 0
0 0

]
, where B = Ak is non-singular. The claim is, there is an

identity element in the sub-algebraRw which can be taken to be the idempotent v that splits
R. First observe that the minimum polynomial of w is m(x) = x ·m′(x), where m′(x) is the
minimum polynomial of B. Also if m(x) = ∑k

i=1 αixi then α1 6= 0 as it is the constant term
of m′(x) and B is non-singular. Therefore, there exists an a ∈ R such that w · (aw− 1) = 0.
Hence v = aw is the identity element ofRw and is also an idempotent inR.

We are now ready to prove Theorem 5.

PROOF. [Theorem 5] Let {e1, . . . , ek} be a basis ofR over F. As argued before, any element
in R can be equivalently expressed as a k × k matrix over F. Hence, assume that Aij ∈
Mk(F), for all i and j. Since R is given in basis form, the matrix representations of Aij’s can
be found efficiently. If every Aij is non-singular, then surely P 6= 0. So, assume that ∃Aij = z
such that z is a zero-divisor i.e. singular. From the proof of Theorem 13 it follows that the
sub-algebraRw, where w = zk, contains an identity element v which is an idempotent. The
idempotent v can be found by solving a system of linear equations over F. Let b1, . . . , bk′

be a basis of Rw, which can be easily computed from the elements e1w, . . . , ekw. Express v
as, v = ∑k′

j=1 νjbj, where νj ∈ F are unknowns. Since v is an identity in Rw it satisfies the

relation, ∑k′
j=1 νjbj · bi = bi, for 1 ≤ i ≤ k′. Expressing each bi in terms of e1, . . . , ek, we get a

system of linear equations in the νj’s. Find v by solving this linear system.
Since R ∼= Rv⊕R(1− v), we can split the identity testing problem into two subprob-

lems. That is, P is zero if and only if, Pv ∈ Rv and P(1− v) ∈ R(1− v) are both zero.
Now apply the above process, recursively, on Pv and P(1− v). By decomposing the algebra
each time an Aij is a non-nilpotent zero-divisor, we are finally left with the easier problem
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of checking if, P = ∏d
i=1

(
∑n

j=0 Aijxj

)
is zero, where the coefficients Aij’s are either nilpotent

or invertible matrices. It is not hard to see that such a P is zero, if and only if the product
of all those terms for which all the coefficients are nilpotent matrices is zero. If the number
of such terms is greater than k then P is automatically zero (this follows from the fact that
commuting nilpotent matrices can be simultaneously triangularized).

Otherwise, treat each term ∑n
j=0 Aijxj as a k× k linear matrix. Since, there are at most k

such linear matrices in P, the total number of linear functions occurring as entries of these
linear matrices is bounded by k3. Using a basis of these linear functions we can reduce the
number of effective variables in P to k3. Now, checking if P is zero takes only poly(kk) field
operations and hence the overall time complexity is bounded by poly(kk, n, d).

Thus, PIT of depth 2 circuits over finite dimensional commutative algebras reduces in poly-
nomial time to that over local rings. If dimensions of these local rings are small we have an
efficient algorithm. But what happens for much larger dimensions?

THEOREM 6. Given a depth 3 (ΣΠΣ) circuit C of degree d and top level fan-in s, it is possi-
ble to construct in polynomial time a depth 2 (ΠΣ) circuit C̃ over a local ring of dimension
s(d− 1) + 2 over F such that C̃ computes a zero polynomial if and only if C does so.

PROOF. Consider a depth 3 circuit computing a polynomial f = ∑s
i=1 ∏d

j=1 lij, where lij’s
are linear functions. Consider the ring R = F[y1, . . . , ys]/I , where I is an ideal generated
by the elements {yiyj}1≤i<j≤s and {yd

1 − yd
i }1<i≤s. Observe thatR is a local ring, as yd+1

i = 0
for all 1 ≤ i ≤ s. The elements {1, y1, . . . , yd

1, y2, . . . , yd−1
2 , . . . , ys, . . . , yd−1

s } form an F-basis
of R. Notice that the polynomial, P = ∏d

j=1 ∑s
i=1 lijyi = f · yd

1 is zero if and only if f is zero.

Polynomial P can indeed be computed by a depth 2 circuit overR.

4 Weakness of the depth 2 model
In Lemma 10, we have constructed a depth 2 circuit over U2(F) that computes L · f instead
of f . Is it possible to drop the factor L and simply compute f ? In this section, we show that
in many cases it is impossible to find a depth 2 circuit over U2(F) that computes f .

4.1 Depth 2 model over U2(F)

The ideal of F[x1, . . . , xn] generated by two linear functions l1 and l2 is denoted by (l1, l2).
We say that l1 is independent of l2 if 1 6∈ (l1, l2). Let f be a polynomial such that there are no
two independent linear functions l1 and l2 which make f mod (l1, l2) also a linear function.

PROOF. [Theorem 7] Assume on the contrary that f can be computed by a depth 2 circuit
over U2(F). That is, there is a product sequence M1 · · ·Mt of 2× 2 upper-triangular linear

matrices such that f is the top-right entry of the product matrix. Let Mi =
[

li1 li2
li3

]
, then

f =
[

1 0
] [

l11 l12
l13

] [
l21 l22

l23

]
· · ·

[
lt1 lt2

lt3

] [
0
1

]
. (3)
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Case 1: Not all the li1’s are constants. Let k be the smallest such that lk1 is not a constant
and li1 = ci for all i < k. Let [B L]T = Mk+1 · · ·Mt · [0 1]T and [di Di] = [1 0] ·M1 · · ·Mi−1.
Observe that L is just a product of linear functions, and for all 1 ≤ i < k, we have the
relations, di+1 = ∏i

j=1 cj and Di+1 = dili2 + li3Di. Hence, Equation 3 simplifies as,

f =
[

dk Dk
] [

lk1 lk2
lk3

] [
B
L

]
= dklk1B + (dklk2 + lk3Dk) L.

Suppose there is some factor l of L with 1 6∈ (lk1, l). Then f = 0 mod (lk1, l), which is not
possible. Hence, L must be a constant modulo lk1. For appropriate constants α, β, we have

f = αlk2 + βlk3Dk (mod lk1). (4)

By inducting on k, we argue that the above relation can not be true. If lk3 was independent
of lk1, then f = αlk2 mod (lk1, lk3) which is not possible. Therefore, lk3 must be a constant
modulo lk1. We then have the following (reusing α and β to denote appropriate constants):

f = αlk2 + βDk (mod lk1)

= αlk2 + β
(

dk−1l(k−1)2 + l(k−1)3Dk−1

)
(mod lk1)

=⇒ f =
(

αlk2 + βdk−1l(k−1)2

)
+ βl(k−1)3Dk−1 (mod lk1).

The last equation can be rewritten in the form of Equation 4 with the term βlk3Dk replaced by
βl(k−1)3Dk−1. Notice that the expression

(
αlk2 + βdk−1l(k−1)2

)
is linear just like αlk2. Hence,

by using the argument iteratively we eventually get a contradiction at D1.

Case 2: All the li1’s are constants. In this case, f = dtlt2 + lt3Dt. This relation is again of the
form in Equation 4 (without the mod term) and so the same argument can be repeated.

Some explicit examples of functions that cannot be computed are the following.

COROLLARY 14. A depth 2 circuit over U2(F) cannot compute the polynomial x1x2 + x3x4 +
x5x6. Other examples include functions like the determinant and permanent polynomials.

4.2 Depth 2 model over M2(F)

The power of depth 2 circuits is very restrictive even if the underlying algebra is M2(F).

DEFINITION 15. A polynomial f is said to be r-robust if f does not belong to any ideal
generated by r linear forms. (A homogeneous linear function is called a linear form.)

For instance, it can be checked that detn and permn, the symbolic determinant and perma-
nent of an n× n matrix, are (n− 1)-robust polynomials. For any polynomial f , denote the
dth homogeneous part of f by [ f ]d. Recall the definition of degree restriction (Definition 8).

THEOREM 16. A polynomial f of degree n, such that [ f ]n is 5-robust, cannot be computed
by a depth 2 (ΠΣ) circuit over M2(F) under a degree restriction of n.

We prove this with the help of the following lemma.



380 THE POWER OF DEPTH 2 CIRCUITS OVER ALGEBRAS

LEMMA 17. Let f1 be a polynomial of degree n such that [ f1]n is 4-robust. Suppose there
is a linear matrix M and polynomials f2, g1, g2 of degree at most n satisfying [ f1 f2]T =
M · [g1 g2]T. Then, there is an appropriate invertible column operation A such that M · A =[

1 h2

c3 h4 + c4

]
, where c3, c4 are constants and h2, h4 are linear forms.

We defer the proof of this lemma to the end of this section.

PROOF. [Theorem 16] Assume that there is such a sequence of matrices computing f . With-
out loss of generality, let the first matrix in the sequence be a row vector v̄ and the last ma-
trix be a column vector w̄. Let f = v̄ · M1M2 · · ·Md · w̄ be a sequence of minimum length
computing f . Using Lemma 17, we repeatedly transform this sequence, replacing the term
Mi Mi+1 by (Mi A)(A−1Mi+1) for an appropriate invertible column transformation A. To
begin, let v̄ = [l1 l2] for two linear functions l1 and l2, and [ f1 f2]T = M1 · · ·Mdw̄. Then,

[ f 0]T =
[

l1 l2
0 0

]
· [ f1 f2]T. Applying Lemma 17, we can assume that v̄ = [1 h] and so

f = f1 + h f2. Also, h 6= 0, by the minimality of the sequence. This forces [ f1]n = [ f ]n to be
4-robust and the degree restriction makes [ f2]n = 0.

Let [g1 g2]T = M2 · · ·Mdw̄. The goal is to translate the properties that [ f1]n is 4-robust
and [ f2]n = 0, to [g1]n and [g2]n respectively. We use induction and translate these properties
to the vectors Mi · · ·Mdw̄, for all i ≥ 2. So, suppose that the relation, [ f1 f2]T = Mi · [g1 g2]T,
holds in general for some i, where [ f1]n is 4-robust and [ f2]n = 0.

Since [ f1]n is 4-robust, using Lemma 17 again, we can assume that[
f1
f2

]
=

[
1 h2

c3 c4 + h4

] [
g1
g2

]
(5)

by reusing the symbols g1, g2. Observe that in the above equation if h4 = 0 then Mi−1Mi
still continues to be a linear matrix (since, by induction, Mi−1 is of the form as dictated by
Lemma 17) and that would contradict the minimality of the sequence. Therefore h4 6= 0.

We claim that, in Equation 5, c3 = 0. As h4 6= 0, the degree restriction forces [g2]n = 0.
And since [ f2]n = 0, we have the relation c3[g1]n = −h4[g2]n−1. If c3 6= 0, we have [g1]n ∈
(h4), contradicting 4-robustness of [ f1]n as then [ f1]n = [g1]n + h2[g2]n−1 ∈ (h2, h4).

From the relations, [ f2]n = 0, c3 = 0 and h4 6= 0, it follow that [g2]n−1 = 0. Hence,
[g1]n = [ f1]n is 4-robust. Thus, we have translated the properties to [g1 g2]T, showing that
[g1]n is 4-robust and [g2]n = 0. However, since the sequence is finite, there must come a
point when degree of g1 in [g1 g2]T = Mi · · ·Mdw̄ drops below n for some i ≥ 2. At this
point we get a contradiction.

PROOF. [Lemma 17] Suppose we have the equation,[
f1
f2

]
=

[
h1 + c1 h2 + c2

h3 + c3 h4 + c4

] [
g1
g2

]
(6)

where c1, . . . , c4 are constants and h1, . . . , h4 are linear forms. On comparing degree n + 1
terms, we have the relations, h1[g1]n + h2[g2]n = 0 and h3[g1]n + h4[g2]n = 0. If h3 and h4 (a
similar reasoning holds for h1 and h2) are not proportional (i.e. not multiple of each other),
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then [g1]n, [g2]n ∈ (h3, h4). But this implies that, [ f1]n = h1[g1]n−1 + h2[g2]n−1 + c1[g1]n +
c2[g2]n ∈ (h1, h2, h3, h4), contradicting the 4-robustness of [ f1]n. Thus, h3 and h4 (as well as h1
and h2) are proportional, in the same ratio as−[g2]n and [g1]n. Using an appropriate column

operation, Equation 6 simplifies to
[

f1
f2

]
=

[
c1 h2 + c2

c3 h4 + c4

] [
g1
g2

]
, reusing symbols g1, g2

and others. If c1 = [g2]n = 0 then [ f1]n = h2[g2]n−1, contradicting robustness. Therefore,
either c1 6= 0, in which case another column transformation gets the matrix to the form
claimed, or [g2]n 6= 0 implying that h2 = h4 = 0. But then c1 and c2 both cannot be zero,
[ f1]n being 4-robust, and hence a column transformation yields the desired form.

5 Concluding remarks
We give a new perspective to identity testing of depth 3 arithmetic circuits by showing an
equivalence to identity testing of depth 2 circuits over U2(F). We also give a deterministic
polynomial time identity testing algorithm for depth 2 circuits over commutative algebras of
small dimension. Our algorithm crucially exploits an interesting structural result involving
local rings. This naturally poses the following question - Can we use more algebraic insight
on non-commutative algebras to solve the general problem? In fact, we have a specific non-
commutative algebra in mind. The question is - Is it possible to use properties very specific
to the ring of upper-triangular 2× 2 matrices to solve PIT for depth 3 circuits?
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ABSTRACT. We define the notion of inductive invariants for continuous dynamical systems and use
it to present inference rules for safety verification of polynomial continuous dynamical systems. We
present two different sound and complete inference rules, but neither of these rules can be effectively
applied. We then present several simpler and practical inference rules that are sound and relatively
complete for different classes of inductive invariants. The simpler inference rules can be effectively
checked when all involved sets are semi-algebraic.

1 Introduction
The deductive rule for safety verification of sequential and concurrent programs was an
important milestone in the field of formal program verification [6, 10, 12]. A program can
be proved safe by constructing an inductive invariant that is strong enough to prove safety.
Programs can be formally viewed as discrete state transition systems. If the predicate t(~x,~y)
states that there is a discrete transition from the state ~x to the state ~y in the discrete state
transition system DTS, and if Init and Safe are, respectively, the initial states of DTS and
the hypothesized safe set, then the classical inference rule for safety verification is given as
follows:

(1) ∀~x ~x ∈ Init ⇒ ~x ∈ Inv
(2) ∀~x,~y ~x ∈ Inv∧ t(~x,~y) ⇒ ~y ∈ Inv
(3) ∀~x ~x ∈ Inv ⇒ ~x ∈ Safe

Reach(DTS) ⊆ Safe

This rule essentially says that we can prove that all reachable states of DTS lie inside the safe
set Safe by finding a suitable “inductive invariant” Inv.

A valuable property of the deductive verification rule is that it is both sound and com-
plete. Soundness here means that if a program is proved correct using the rule, then that
program indeed satisfies the safety property. Completeness means that if the given program
is actually safe, then there is an inductive invariant Inv that satisfies the Conditions (1), (2)
and (3) of the deductive verification rule. The above rule, however, applies only to discrete
state transition systems where the “next” states can be effectively specified.

While discrete state transition systems is a powerful modeling formalism, it is inadequate
for modeling systems that involve physical components. Physical systems are typically
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modeled using differential equations as continuous dynamical systems. The formalisms of
continuous dynamical systems and discrete transition systems can be combined to give hy-
brid dynamical systems. Hybrid systems are immensely useful in describing systems that
have physical and computational components, such as embedded and control systems, as
well as, systems that operate at multiple different time scales, such as biological systems.

This paper presents a deductive verification rule for continuous dynamical systems.
When combined with the above rule for discrete state transition systems, we get a deduc-
tive verification rule for hybrid systems. The challenge in coming up with a deductive ver-
ification rule for continuous dynamical systems is that there is no useful notion of a “next”
state. In this paper, we use “continuity” to formulate the deductive verification rule. One
of the technical difficulties here is to obtain a rule that is simultaneously (1) sound, (2) com-
plete, and (3) effectively checkable. It is easy to propose rules that compromise one or more
of these three requirements. The main results of this paper are (a) two distinct sound and
complete rules, but these are not directly checkable, and (b) three simpler sound and effec-
tively checkable rules, that are relatively complete for large and useful classes of systems
and invariants.

Motivation and Related Work. From a purely theoretical perspective, it is appealing to have an
effective, sound, and relatively complete inference rule for safety verification of continuous
systems. Recently, however, promising practical techniques have been proposed for safety
verification that are directly based on using such inference rules. One such technique – that
is especially effective for safety verification of continuous and hybrid systems – is bounded
verification. Bounded verification is the dual of bounded model checking. Whereas bounded
model checking searches for a bounded counter example for safety, bounded verification
searches for a bounded proof for safety. The essential idea in bounded verification is to
search for an inductive invariant of a given form. Note that the inference rule for safety
verification requires proving the formula

∃Inv : ∀~x,~y : φ(Inv,~x,~y), (1)

where φ is simply a conjunction of Formulas (1), (2) and (3) from the rule above. This for-
mula involves a second-order quantification. We can eliminate this second-order quantifi-
cation by restricting the form of the inductive invariant Inv. For example, assuming Inv
can be written as ψ(~u,~x), over some unknown parameters~u, Formula 1 changes to

∃~u : ∀~x,~y : φ(ψ(~u,~x),~x,~y). (2)

Formula 2 is now a first-order ∃∀ formula. If this formula is valid, then we know there is
an inductive invariant that proves safety. Further details on bounded verification, can be
found in the work of Gulwani et al. [7] and Gulwani and Tiwari [8].

The formula ψ(~u,~x) can be seen as a template for the invariant. The idea of using
templates is not new. In fact, it is the classical approach used to prove stability in control
theory. Recently, it has also been used for safety verification for discrete programs [2, 7, 11,
18] and continuous and hybrid systems [17, 15, 1, 20, 8]. These papers use templates for
performing bounded verification, but differ in the details about their use of the inference
rule to construct φ′ in Formula 2 and their use of the constraint solving technique to solve the
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∃∀ constraint. Since template-based verification is not the main topic of this paper, but just
used as a motivation, we do not discuss the related literature here. However, the inference
rules used in the papers on verification of continuous and hybrid systems are relevant to
the work in this paper and we discuss them briefly here and in the rest of the article.

If the hypothesized invariant Inv is a polynomial equation, p = 0, then there is a
simple way to check invariance: whenever p = 0, the time derivative of p, dp

dt , should
also be 0. This verification rule for equational invariants was used by Sankaranarayanan
et al. [17]. If the invariant is an inequality, such as p ≥ 0, then there are several sufficient
checks, such as, dp

dt ≥ 0 whenever p ≥ 0. This test is very strong: it requires that p is
increasing everywhere inside the invariant set. This sound, but incomplete, test has been
used by Platzer et al. [14, 13]. We can weaken the test, and check dp

dt ≥ 0 only on points
where p = 0 [15, 8], but this variant is not sound in general. This is discussed in detail later.

Outline of the Paper. We formally define continuous dynamical systems in Section 2 and
present two distinct sound and complete deductive verification rules for continuous dy-
namical systems in Section 3. In Section 4, we first present inference rules that are interest-
ing from a practical point of view and compromise either soundness or completeness. We
then present three sound and relatively complete inference rules.

2 Continuous Dynamical System

DEFINITION 1.[Continuous Dynamical System] A continuous dynamical system CDS is a
tuple (X,Init, f ) where X is a finite set of variables interpreted over the reals R, X = RX is
the set of all valuations of the variables X, Init ⊆ X is the set of initial states, and f : X 7→ X
is a vector field that specifies the continuous dynamics.

Note that RX is isomorphic to the n-dimensional real space Rn where n = |X| is the
number of variables in X. Note also that the continuous dynamical systems we consider
here are autonomous, that is, they have no inputs. We assume that f is Lipshitz, which
guarantees that the ordinary differential equations dX

dt = f (X) have a unique solution. In
fact, the following property [4] of Lipschitz vector fields will be used in the proofs.

PROPOSITION 2.[Theorem 2.3.1, p80 [4]] Consider a Lipschitz vector field f and the ini-
tial value problem dX(t)

dt = f (X(t)), X(0) = ~x0. The solution of this problem, denoted by
F(~x0, t), always exists and is unique. Moreover, F(~x0, t) depends continuously on the initial
state~x0.

The meaning of a continuous dynamical system is simply the collection of all possi-
ble trajectories starting from an initial state. Formally, if F(~x0, t) is the solution of dX(t)

dt =
f (X(t)), X(0) = ~x0, then the semantics, [[CDS]], of a continuous dynamical system CDS =
(X,Init, f ) is given as

[[CDS]] := {F1 : [0, ∞) 7→ X | F1(t) = F(~x0, t), ~x0 ∈ Init }

The above semantics using flow functions is broadly referred to as the flow seman-
tics [21]. One can also give a transition semantics using discrete state transition systems [9],
but the distinction [5] is not relevant for this paper.
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The set of reachable states for a continuous dynamical system CDS, Reach(CDS), is
given by {~x ∈ X | ∃F ∈ [[CDS]], ∃t ≥ 0 : ~x = F(t)}. A (safety) property, Safe, is sim-
ply a subset of the state space X. A property Safe is an invariant (for the system CDS) if
Reach(CDS) ⊆ Safe. We are interested in solving the following problem in this paper:

DEFINITION 3.[Safety Verification Problem] Given a continuous dynamical system CDS and
a safety property Safe, determine if Safe is an invariant for CDS.

One of the classical methods to solve the safety verification problem is based on finding
stronger invariants that are also inductive. By introducing the extra requirement of induc-
tiveness, the “global” test for invariance, viz. all reachable states are contained in Safe,
reduces to a simpler “local” test, viz. every single transition out of Safe state goes into only
a Safe state.

3 Sound and Complete Rules

In this section we present two verification rules for solving the problem described in Defi-
nition 3. Each rule replaces the global test for invariance by a local test for inductiveness.

We fix our notation and denote the given continuous dynamical system by CDS =
(X,Init, f ) and the given safety property by Safe. The challenge in defining a local in-
ductiveness test is that, for continuous dynamical systems, there is no clear notion of a
“next” state in the flow semantics. Even if we use the transition semantics, the set of all the
uncountably many next states is equal to the Reach set and hence the distinction between
inductive invariants and general invariants is lost. However, using continuity, instead of
using arbitrary future states, we can look at only states reachable in an ε-future and require
that they remain inside Inv. This is formalized below in (A2).

DEFINITION 4.[Inductive Invariant] A set Inv ⊂ RX is an inductive invariant for a given
continuous dynamical system CDS := (X,Init, f ) if the following conditions hold:

(A1) Init ⊆ Inv

(A2) ∀~x ∈ Inv : ∃t0 > 0 : ∀0 ≤ t < t0 : F(~x, t) ∈ Inv

where F is the solution of the initial value problem dX(t)
dt = f (X(t)), X(0) = ~x.

A closed set that is an inductive invariant in the above sense contains all the reachable
states and hence it is indeed an invariant.

PROPOSITION 5. Let Inv be a closed inductive invariant for the continuous dynamical
system CDS := (X,Init, f ). Then, Reach(CDS) ⊆ Inv.

However, Definition 4 is not directly useful for checking inductiveness because (a) it
uses quantifier alternation (∀∃∀) and (b) it uses the solution F of the differential equations.
For most interesting applications, it may be difficult, if not impossible, to compute F ana-
lytically. Fortunately, there are two different ways in which we can check for inductiveness
without using F. Before describing them, we first concretize the specification language for
CDS and Safe.
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(S1) Init(~x)⇒ p(~x) ≥ 0 (T1) Init(~x)⇒ p(~x) ≥ 0

(S2) p(~x) = 0⇒ f (~x) ∈ T(p ≥ 0)(~x) (T2) p = 0⇒ (
k−1∧
i=1

L(i)
f (p) = 0⇒ L(k)

f (p) ≥ 0)

for k = 1, 2, . . .
(S3) p(~x) ≥ 0⇒ Safe(~x) (T3) p(~x) ≥ 0⇒ Safe(~x)

Reach(CDS) ⊆ Safe Reach(CDS) ⊆ Safe

Figure 1: Inference rules for safety verification of continuous system CDS := (X,Init, f )
and safety property Safe ⊆ X.

Since we are interested in computability, henceforth, we assume that the continuous dy-
namical system CDS := (X,Init, f ) and the safe set Safe are specified using polynomials.
Let L := {Q, +,−, ∗,≥, >, =} be a language containing all rational constants Q, function
symbols +,−, ∗ and predicates ≥, >, =. These symbols are interpreted over the reals in the
usual way. We fix X to be the set of variables. A term over variables X will just be a poly-
nomial in the ring Q[X]. Atomic formulas consist of polynomial equalities and inequalities.
A set S ⊆ Rn is semi-algebraic if it represents the solutions of a (quantifier-free) formula. A
CDS := (X,Init, f ) is a polynomial CDS if Init is semi-algebraic and the vector field is
specified using only polynomials from Q[X].

For simplicity of presentation, we will initially restrict the set Inv to be of the form
p ≥ 0 for some polynomial p. We will later extend the results to boolean combinations.
Since we are restricting Inv to be in a certain class, we will lose completeness. However,
we are interested in “relative completeness”; that is, if there is an inductive invariant in the
restricted class, then the deductive verification rule should be applicable.

We are now ready to present the two different ways for checking inductiveness without
using F. First, we use a result in Control Theory, called Nagumo’s theorem, that says that a
set Inv is an invariant only if, at every point~x on the boundary of Inv, the vector field f (~x)
at that point points “inwards”. Formally, the set of vectors that point “inwards” at point ~x
define the tangent cone at~x.

DEFINITION 6.[Tangent Cone, Definition 3.1 in [3]] Let S ⊂ Rn be a closed set. Let~x ∈ Rn.
The tangent cone to S at~x is the set

T(S)(x) := {~z ∈ Rn | lim inf
α→0

d(~x+ α~z,S)
α

= 0} (3)

where d(~x,S) := inf~y∈S ||~x−~y|| is the distance of~x from S and || · || is any norm in Rn.

Figure 1 (Left) presents an inference rule for safety verification of continuous systems.
Note that Condition (S2) says that for every point on the boundary of Inv, the vector field
f is in the tangent cone at that point. Nagumo’s theorem states that for closed sets Inv,
Condition (S2) from Figure 1 is equivalent to Condition (A2) from Definition 4. We refer
the reader to the review article by Blanchini for details [3].

The key idea behind the second approach for automating the test of Condition (A2) is
the use of Lie derivatives. Intuitively, we can check that trajectories do not leave p ≥ 0 by
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checking that dp
dt is greater-than zero whenever p = 0. Technically, the derivative of p with

respect to time, dp
dt , is called the Lie derivative, L f (p), of p with respect to the vector field f .

It can be computed using the chain rule, as shown below. Let us define the notation L(n)
f (p)

to denote the n-th derivative of p with respect to time. Formally,

L(n)
f (p) :=

 ∑x∈X
∂p
∂x

dx
dt := ~∇p · f := ( ∂p

∂x1
, ∂p

∂x2
, . . .) · ( dx1

dt , dx2
dt , . . .) if n = 1

dL(n−1)
f (p)

dt otherwise
(4)

where the time-derivative, d
dt , is always computed using the chain rule as dg

dt = ~∇g · f . If
f is specified using polynomials (i.e., dx

dt is a polynomial for every variable x) and if p is a

polynomial in Q[X], then Equation 4 shows that L(n)
f (p) is a polynomial in Q[X] and it can

be symbolically computed. The second inference rule for checking inductiveness is shown
in Figure 1(Right). Note that Condition (T2) requires that, for all k, the k-th derivative be
non-negative whenever the first k− 1 derivatives are zero.

The two deductive verification rules given in Figure 1 are both sound and (relatively)
complete. For lack of space, proofs are not provided.

THEOREM 7.[Soundness] Let CDS := (X,Init, f ) be a continuous dynamical system and
Safe ⊆ X be a safety property. If there is a set Inv that satisfies Conditions (S1), (S2)
and (S3) from Figure 1(Left), or alternatively, it satisfies Conditions (T1), (T2) and (T3) from
Figure 1(Right), then Reach(CDS) ⊆ Safe.

THEOREM 8.[Relative Completeness] Let CDS := (X,Init, f ) be a CDS and Safe be a
closed set such that Reach(CDS) ⊆ Safe. If there is an inductive invariant p ≥ 0 such that
p ≥ 0 ⇒ Safe, then p ≥ 0 also satisfies Conditions (S1), (S2) and (S3) from Figure 1(Left),
as well as, Conditions (T1), (T2) and (T3) from Figure 1(Right).

The inference rules in Figure 1 can be generalized to also handle Boolean combinations
of predicates of the form p ≥ 0 (see Discussion in Section 4) and these generalized rules will
be complete for all semi-algebraic invariants.

Comparing the two inference rules. Since the two sets of conditions in Figure 1 are both
sound and relatively complete for showing inductive invariance, it is tempting to assume
that they are “essentially the same”. These two tests are indeed “globally equivalent”: if
every point on the boundary satisfies Condition (S2), then every point on the boundary also
satisfies Condition (T2), and vice-versa. However, the two tests are distinct tests and they
are not “locally equivalent”; that is, they may disagree on individual points.
Example 1 Consider the constant vector field f ((x, y)) = (1, 0) and consider the candidate in-
variant region, −x2 − y2 + 2y ≥ 0. The candidate invariant set is a circle of radius 1 centered
at (0, 1) and hence clearly the vector field is tangential to the invariant set at the origin; that is,
(1, 0) ∈ T(−x2 − y2 + 2y ≥ 0)((0, 0)). Hence Condition (S2) evaluates to true for point (0, 0).
However, the derivative test fails at (0, 0): though dp

dt at (0, 0) is 0, the second derivative is negative

(everywhere): dp
dt = −2x dx

dt − (2y− 2) dy
dt = −2x, d2 p

dt2 = −2 dx
dt = −2. This shows that Condi-

tion (T2) fails at (0, 0). Thus, Condition (S2) and Condition (T2) give different answers at the point
(0, 0). However, they both agree globally that the candidate invariant set here is not an invariant.
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(A1) Init(~x)⇒ p(~x) ≥ 0 (B1) Init(~x)⇒ p(~x) ≥ 0
(A2) p(~x) = 0⇒ L f (p)(~x) ≥ 0 (B2) p(~x) = 0⇒ L f (p)(~x) > 0
(A3) p(~x) ≥ 0⇒ Safe(~x) (B3) p(~x) ≥ 0⇒ Safe(~x)

Reach(CDS) ⊆ Safe Reach(CDS) ⊆ Safe

Figure 2: An unsound, but relatively complete, rule (left) and a sound, but incomplete, rule
(right) for safety verification of polynomial CDS CDS := (X,Init, f ) and safety property
Safe ⊆ X.

Although the verification rules in Figure 1 are both sound and relatively complete, they
are not computationally feasible as there is no easy way to verify Condition (S2) and Con-
dition (T2): the former involves reasoning about the tangent cone, whereas the latter is
an infinite set of conditions. We will next present computable conditions and prove their
soundness or completeness by comparing them to Condition (S2) or Condition (T2).

4 Practical Rules for Safety Verification of Polynomial CDS

In this section, we present inference rules that can be applied in practice for performing
safety verification of continuous systems. We shall also point to the literature where these
rules have been used. The rules will compromise either soundness or completeness.

Figure 2 presents two approximations of the inference rule in Figure 1(Right). First,
instead of performing the infinitely many checks in Condition (T2)– one for each k – we can
just perform the check for k = 1 and ignore the other checks. This gives an unsound, but
relatively complete, inference rule, shown in Figure 2(Left). The following example shows
the unsoundness and was mentioned to us by Andre Platzer.
Example 2 Consider the system CDS := ({x}, {x = 0}, f ) where f (x) = 1 and the safety property
−x2 ≥ 0. Since initially x = 0 and since dx

dt = f (x) = 1, x takes positive values and hence the
safety property is violated. However, the rule in Figure 2(Left) can be applied successfully using−x2

as p. Condition (A2) is verified because the following is a theorem in the theory of reals: −x2 = 0⇒
−2x ∗ 1 ≥ 0. This example shows that the rule in Figure 2(Left) is unsound.

Example 2 suggests that we can regain soundness by replacing the check L f (p) ≥ 0 by
the stronger test L f (p) > 0. This gives us the inference rule in Figure 2(Right). However,
we lose completeness.
Example 3 (Incompleteness) Consider the system CDS := ({x}, {x = 0}, f ) where f (x) = 0
and the safety property x ≥ 0. Since initially x = 0 and since dx

dt = f (x) = 0, clearly CDS is safe
with respect to the given safety property. In fact, there is an inductive invariant x ≥ 0 (of the form
p ≥ 0) that can prove this safety property. However, the rule in Figure 2 fails: for any p ∈ Q[x],
L f (p) is always 0, and it is never strictly positive (as required by Condition (B2)).

The rules in Figure 2 are commonly used. Despite the unsoundness, the inference rule
in Figure 2(Left) has been used in the work by Gulwani and Tiwari [8] and Prajna and
Jadbabaie [15]. The sound, but incomplete, variant in Figure 2(Right) has been used by
Prajna, Jadbabaie and Pappas [16].
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(C1) Init⇒ p ≥ 0 (D1) Init⇒ p ≥ 0
(C2) p = 0⇒ L f (p) ≥ 0 (D2) p = 0⇒ L f (p) ≥ 0
(C2′) p = 0⇒ ~∇p 6= 0 (D2′) p = 0∧ ~∇p = 0⇒ ¬neg(p,~x, f (~x))
(C3) p ≥ 0⇒ Safe (D3) p ≥ 0⇒ Safe

Reach(CDS) ⊆ Safe Reach(CDS) ⊆ Safe

Figure 3: Sound inference rules for safety verification of polynomial CDS CDS :=
(X,Init, f ) and safety property Safe ⊆ X that are also complete for a certain class of
invariants.

Inference Rule Complete for Smooth Invariants

The case that leads to unsoundness or incompleteness is when p(~x) = 0 and L f (p)(~x) = 0.
Intuitively, one expects that the condition L f (p)(~x) = 0 should hold only when the vector
field is “tangential” to the invariant set p ≥ 0. Unfortunately, it also holds in some degen-
erate cases. One such degenerate case is when ~∇p = 0. The inference rule in Figure 3(Left)
explicitly rules out such cases. Let us say that the boundary of a set p ≥ 0 is smooth if,
~∇p(~u) 6= 0 for all points ~u s.t. p(~u) = 0. Condition (C2’) in Figure 3(Left) explicitly checks
that the boundary of the invariant set is smooth. With this additional check, the inference
rule in Figure 3(Left) can be shown to be sound.
Example 4 Consider the dynamical system from Example 2. We cannot use the rule in Figure 3 on
it. If we use −x2 as p, Condition (C2’) becomes −x2 = 0⇒ −2x 6= 0 which is false over the reals.

The inference rule in Figure 3(Left) is not only sound, but also complete for invariants
p ≥ 0 whose boundary is smooth. This is the case, for example, when p is linear, which is a
particularly useful class [8]. Figure 3(Left) fails on invariants with non-smooth boundaries.
Example 5 Consider the system CDS := ({x, y, z},Init, f ), where Init is the set x2 + y2 ≤ z2

and the vector field f is given by f ((x, y, z)) := (−x,−y,−z). Thus, at every point, the vector
field points to the origin and the initial set is a cone. We wish to prove that the set Init is safe; i.e.,
Safe = Init. The inductive invariant z2 − x2 − y2 ≥ 0 can prove safety. However, there is no
polynomial p such that p ≥ 0 satisfies Conditions (C1), (C2), (C2’) and (C3). Suppose p is such a
polynomial. Then, since the set Init is equal to the set Safe, the set Inv := {~u | p(~u) ≥ 0} has
to be necessarily equal to these two sets (by Condition (C1) and (C3)). But then, Condition (C2’) will
fail because at the boundary point (0, 0, 0) the gradient of p cannot be nonzero.

Inference Rule Complete for Quadratic Invariants

We can generalize Condition (C2’) to require that, at all points where p = 0 and ~∇p = 0, the
vector field f is “pointing inside” (Figure 3(Right)). Before we outline the test for “pointing
inside”, we need the following definition.

DEFINITION 9.[Homogeneous decomposition, zero,pos,neg] A polynomial p ∈ Q[X] is
a homogeneous polynomial of degree k if the total degree of each monomial in p is k. A
homogeneous decomposition of p is obtained by writing p as ∑n

i=1 pi, where pi is homo-
geneous with degree ki and ki < k j for i < j. Let p(~x+~y)i denote the i-th homogeneous
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(F1) Init⇒ p ≥ 0

(F2) p = 0⇒ ¬neg(p,~x, f ) ∨
n∨

k=2
(kneg(p,~x, f , k) ∧ ∨

l<k
(∃g : pos(pl , f , g) ∧ ∧

j<l
zero(pj, f , g)))

(F3) p ≥ 0⇒ Safe

Reach(CDS) ⊆ Safe

Figure 4: Sound, and relatively complete, deductive rule for solving the safety verification
problem for polynomial CDS CDS := (X,Init, f ) and safety property Safe ⊆ X.

component of p(~x+~y) when viewed as a polynomial in ~y (with coefficients in Q[~x]). The
predicates zero,pos,neg and kneg are defined as follows:

pos(p,~x,~u) :=
n∨

k=1

(p(~x+~y)k(~u) > 0∧
k−1∧
i=1

p(~x+~y)i(~u) = 0)

kneg(p,~x,~u, k) := (p(~x+~y)k(~u) < 0∧
k−1∧
i=1

p(~x+~y)i(~u) = 0)

zero(p,~x,~u) :=
n∧

i=1

p(~x+~y)i(~u) = 0 neg(p,~x,~u) :=
n∨

i=1

kneg(p,~x,~u, i)

If p is a polynomial and~x,~u are two points such that p(~x) = 0, then
(a) pos(p,~x,~u) is equivalent to ∃α0 > 0 : ∀(0 < α ≤ α0) : p(~x+ α~u) > 0.
(b) zero(p,~x,~u) is equivalent to the fact that p(~x+ α~u) = 0 for all α.
(c) neg(p,~x,~u) is equivalent to ∃α0 > 0 : ∀(0 < α ≤ α0) : p(~x+ α~u) < 0.

Using the predicate neg, the inference rule in Figure 3(Right) checks that, for every
point ~x such that p(~x) = 0 and ~∇p(~x) = 0, it is the case that moving along the direction of
the vector field f (~x) at the point~x, we move inside the invariant set p ≥ 0. Figure 3(Right)
generalizes the rule in Figure 3(Left). We will later see that it is complete for quadratic p.

Inference Rule Complete for Convex Invariants

���
�����������������������������������������

��
��
�

��
��
�

f

g

u

p >= 0

Figure 5: Illustration

Figure 4 presents an inference rule that generalizes the above two
rules and can be shown to be complete for a larger class of invari-
ants that includes linear, smooth and quadratic invariants. The
rule in Figure 4 checks that for each point ~x on the boundary
(p(~x) = 0), either we move inside the set p ≥ 0 as we move from
~x along the vector field direction f (~x), or we move outside but
there is a direction g such that if we go along g, we can make p = 0
“sufficiently quickly”; see illustration in Figure 5. The following
example illustrates the notation from Definition 9 and the inference rule in Figure 4.
Example 6 Consider CDS := ({x1, x2},Init, f ), where Init is given by x1 = 2, x2 = 0 and
f (x1) = x2, f (x2) = −x1. Let p be −x2

1 − x2
2 + 4. The set p ≥ 0 is an inductive invariant of
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this CDS. Let ~u be a point on the boundary; i.e., p(~u) = 0. Moving the origin to ~u, we get the new
polynomial p(~u+~x) = −(u1 + x1)2− (u2 + x2)2 + 4 which is equal to (−u2

1− u2
2 + 4)− 2u1x1−

2u2x2 − x2
1 − x2

2. Since p(~u) = 0, the new polynomial simplifies to −2u1x1 − 2u2x2 − x2
1 − x2

2.
This has two homogeneous components:

p1 := p(~u+~x)1 := −2u1x1 − 2u2x2 homogeneous with degree k1 = 1
p2 := p(~u+~x)2 := −x2

1 − x2
2 homogeneous with degree k2 = 2

We now verify that −x2
1 − x2

2 + 4 ≥ 0 satisfies Condition (F2):

p1( f (~u)) := −2u1u2 + 2u2u1 = 0 p2( f (~u)) := −u2
1 − u2

2

Since p(~u) = 0, which is −u2
1 − u2

2 + 4 = 0, implies p1( f (~u)) = 0 and p2( f (~u)) < 0, we have
kneg(p,~u, f (~u), 2) holds. Clearly, zero(p,~u, f (~u)) and pos(p,~u, f (~u)) do not hold. Thus, we
see that the direction f (~u) takes the point outside of the invariant set (as in Figure 5). However,
Condition (F2) is true since for direction g := (−u1,−u2), pos(p1, f (~u), g) holds:

p1( f (~u) +~x)1 := −2u1x1 − 2u2x2, p1( f (~u) +~x)1(g) := 2u2
1 + 2u2

2 = 2 ∗ 4 = 8 > 0

The rule in Figure 4 is complete for the class of invariants Inv that are convex.

DEFINITION 10. The predicate convex(p ≥ 0) holds for the set p ≥ 0 if, for any points ~u
and~v, if p(~u) ≥ 0 and p(~v) ≥ 0, then p(~u+ α~v) ≥ 0 for all 0 ≤ α ≤ 1.

For example, the set −x2 − y2 + 1 ≥ 0 is convex, but the set −x2 − y2 + 1 = 0, which
can be encoded as −(−x2 − y2 + 1)2 ≥ 0, is not convex.

Soundness and Relative Completeness

THEOREM 11.[Soundness] Let CDS := (X,Init, f ) be a CDS and Safe be a safety prop-
erty. If p ∈ Q[X] is a polynomial that satisfies Conditions (C1), (C2), (C2’) and (C3) of
Figure 3(Left), or alternatively Conditions (D1), (D2), (D2’) and (D3) of Figure 3(Right), or
alternatively, Conditions (F1), (F2) and (F3) of Figure 4, then Reach(CDS) ⊆ Safe.

THEOREM 12.[Relative Completeness] Let CDS := (X,Init, f ) be a CDS and Safe be a
closed set such that Reach(CDS) ⊆ Safe. Let p ≥ 0 be an inductive invariant such that
p ≥ 0⇒ Safe. Then, the following claims are true.
(1) If p = 0⇒ ~∇p 6= 0, then p ≥ 0 satisfies Conditions (C1), (C2), (C2’) and (C3).
(2) If p is quadratic, then p ≥ 0 satisfies Conditions (D1), (D2), (D2’) and (D3).
(3) If p ≥ 0 is convex, then p ≥ 0 satisfies Conditions (F1), (F2) and (F3).

Theorem 12 shows that the rules in Figure 3 are complete for a large class of practi-
cally useful invariants, namely, linear, quadratic, and convex invariants. Note that for a
polynomial CDS and a semi-algebraic safe set, given a p, the inference rules in Figure 3 are
formulas in the first-order theory of the reals, which is decidable [19]. It appears to be ex-
tremely difficult to come up with a simple and effective rule that is sound and complete for
the class of all invariants of the form p ≥ 0.
Example 7 The set −(−x2 − y2 + 2y)2 ≥ 0, which geometrically is the circumference of a circle,
is not convex. In fact, inference rules in Figure 3 and Figure 4 will all fail to prove that this set is
an inductive invariant under the dynamics given by dx

dt = 1− y, dy
dt = x.
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Discussion The rule in Figure 4 is related to the earlier rules via the observation that
p(~u+~x)1( f (~u)) is equal to L f (p)(~u). In the special case when ~∇p 6= 0, the role of the
witness direction g (in Figure 4) can be performed by ~∇p. Thus, Figure 4 is also relatively
complete for “smooth” sets and hence it is more powerful than the rules in Figure 3.

The rules above are complete for larger classes that what have been identified above.
For example, the rule in Figure 3(Right) is complete for all p such that p(~x) = 0∧ ~∇(p)(~x) =
0⇒ (p(~x+~y)2( f (~x)) 6= 0, but we do not explore those results here.

Since Condition (F2) is based on Nagumo’s criterion, which holds more generally, we
can now easily generalize Condition (F2) from p ≥ 0 to more general boolean combinations
of polynomial inequalities. Let In(p,~x, f ) be a predicate that denotes Condition (F2) applied
to polynomial p at point ~x with vector field f . When the candidate invariant is p1 ≥ 0 ∧
p2 ≥ 0, Condition (F2) generalizes to (p1(~x) = 0 ∧ p2(~x) > 0 ⇒ In(p1,~x, f )) ∧ (p1(~x) >
0 ∧ p2(~x) = 0 ⇒ In(p2,~x, f )) ∧ (p1(~x) = 0 ∧ p2(~x) = 0 ⇒ In(p1,~x, f ) ∧ In(p2,~x, f )).
Similarly, when the candidate invariant is p1 ≥ 0 ∨ p2 ≥ 0, then Condition (F2) generalizes
to (p1(~x) = 0 ∧ p2(~x) < 0 ⇒ In(p1,~x, f )) ∧ (p1(~x) < 0 ∧ p2(~x) = 0 ⇒ In(p2,~x, f )) ∧
(p1(~x) = 0∧ p2(~x) = 0⇒ In(p1,~x, f ) ∨ In(p2,~x, f )).

Hybrid Systems Since hybrid systems extend CDSs with discrete transitions, and since
the rule to handle discrete transitions is standard, the sound inference rules for hybrid sys-
tems can be obtained by combining the rule for continuous systems with the rule for dis-
crete transitions. However, when using the rule for continuous systems, we can use any
rule whose soundness is proved using Condition (A2) (such as rule in Figure 1(Right)),
but we cannot use a rule whose soundness is proved using Condition (S2) (such as rule in
Figure 4). The reason is that, as mentioned in Section 3, Condition (T2) is locally sound,
whereas Condition (S2) is locally unsound, but only globally sound. In hybrid systems, due
to the possibility of the presence of discrete transitions from the boundary, we need a sound
condition that can verify invariance locally at every point.
Example 8 We build a hybrid system to exploit the difference illustrated in Example 1. Consider a
hybrid system that has only one mode, with dynamics f ((x, y)) = (1, 0) and a discrete transition
given by, x := −x whenever x2 + (y− 1)2 = 1∧ x > 0. Suppose initially, x2 + (y− 1)2 ≤ 1 and
we want to show that this initial set is also an inductive invariant. We note that this set is not an
invariant because there are trajectories leaving the invariant set from points (0, 1) and (0, 0). But
Condition (S2) holds at both these points, and it also holds on all boundary points from where there
is no discrete transition. The invariant set is inductive with respect to the discrete transitions. This
shows that one has to be careful when generalizing rules based on Condition (S2) to hybrid systems.

5 Conclusions

We presented several inference rules for safety verification of continuous systems and an-
alyzed their soundness and relative completeness. We have a finite and sound rule that
is also complete for the class of invariants containing convex and certain smooth semi-
algebraic sets. It remains a challenge to discover an effectively checkable and sound rule
that is complete for all semi-algebraic invariants.
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ABSTRACT.
In a context of ω-regular specifications for infinite execution sequences, the classical Büchi condition,
or repeated liveness condition, asks that an accepting state is visited infinitely often. In this paper,
we show that in a probabilistic context it is relevant to strengthen this infinitely often condition. An
execution path is now accepting if the proportion of time spent on an accepting state does not go to
zero as the length of the path goes to infinity. We introduce associated notions of recurrence and
transience for non-homogeneous finite Markov chains and study the computational complexity of
the associated problems. As Probabilistic Büchi Automata (PBA) have been an attempt to generalize
Büchi automata to a probabilistic context, we define a class of Constrained Probabilistic Automata
with our new accepting condition on runs. The accepted language is defined by the requirement
that the measure of the set of accepting runs is positive (probable semantics) or equals 1 (almost-sure
semantics). In contrast to the PBA case, we prove that the emptiness problem for the language of a
constrained probabilistic Büchi automaton with the probable semantics is decidable.

1 Introduction

In a context of system analysis, ω-regular specifications are used to evaluate the long term

properties of a system [14]. An ω-regular specification can be decomposed into a safety part

and a liveness part. Typically, if the system is an elevator reacting to a user, an ω-regular

specification can ensure that the system will never do something ”wrong” (for instance hav-

ing its door open while moving), and that the system will eventually do something ”good”

after a stimulus (for instance the elevator should stop on level i after a finite number of steps

if the user asks to). The avoidance of the ”wrong” event is the safety part, and the ”even-

tually good” event is the liveness part. The liveness can be violated only in the limit. As

underlines [6], a weakness of the classical definition is that the requirements can be satisfied

by evolutions of the system which are quite unsatisfactory because no bound can be put on

the response time. For instance, as the elevator is used by different users, they may have to

wait an increasing and maybe unbounded amount of time to reach their level. Alternative

∗This research was funded by the French program on Computer Security ANR-07-SESU-013
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definitions for liveness have been proposed, in order to bound the distance between con-

secutive responses [6, 3]. In [6], the authors present the alternative notion of finitary liveness:

finitary liveness assumes the existence of an unknown bound b such that every stimulus is

followed by a response within b transitions. In this paper, instead of asking for a bound on

the number of steps between ”good” events, we will ask that the proportion of ”good” events

on a run does not go to zero as the length of the run goes to infinity.

In [4], the authors consider ω-regular properties on Markov chains, and in [2], the au-

thors extend Büchi automata to a probabilistic context. They introduce the class PBA>0 of

Probabilistic Büchi Automata, which can be seen as a resolution of the non-determinism on

a Büchi automaton by a probabilistic choice. In [2], as for the classical Büchi condition, a

run is accepted if it visits infinitely often an accepting state, and a word is accepted if the

probability of the set of associated accepted runs is non zero. This definition leads to a class

of languages which is closed under the elementary operations of union, intersection and

complementation. Moreover, the class of languages defined by PBA>0 strictly subsumes

the class of ω-regular languages. Unfortunately, working on these objects is difficult since

basic problems such as the emptiness problem for the language of an automaton in PBA>0

is undecidable [1].

In this paper, we consider alternative definitions of accepting runs. We introduce the

notion of the Support of a run: a state s is in the support of a run r if the portion of time the

state s is visited by r between time 0 and T, does not go to zero as T goes to infinity. We

introduce the class CPBA of Constrained Probabilistic Büchi Automata. A run on an automaton

in CPBA is accepting if there exists an accepting state in its support. As for PBA>0, a word

is accepted by a CPBA>0 if the probability of the set of associated accepted runs is non zero.

We show that the class of languages associated to CPBA>0 is not closed under com-

plementation, however the emptiness problem is now in PSPACE. As it is done in [1] for

the class PBA, we consider the class CPBA=1 of Constrained Probabilistic Büchi Automata

with an almost sure semantics. We prove that solving the emptiness problem of the language

of an automaton in CPBA=1 is equivalent to solving the same problem on an automaton in

the class PBA=1.

The fact that with positive probability an accepting state is in the support of a run can

be seen as a recurrence property, by analogy with the classical homogeneous Markov chain

theory. We define notions of recurrence and transience for non homogeneous probabilistic

processes, in a context of Finite Probabilistic Tables (FPT, [16, 15]). An FPT can be seen as

a non-homogeneous Markov chain on a finite state space with a finite number of transition

functions. The main results of the paper are:

• Notions of weak and strong transience and recurrence for non homogeneous Markov

processes.

• The study of the computational complexity of the associated problems, in particular

the PSPACE-completeness of the strong recurrence problem, and the undecidability

of the two states strong recurrence problem.

• The decidability of the emptiness problem for the languages of automata in CPBA>0

and CPBA=1.

• The study of the expressivity of our new classes of automata. In particular the set of

the complement of languages of automata in PBA=1 is expressible with automata in
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CPBA>0.

The paper is organized as follows: In section 2 we briefly recall the basic notions of finite

probabilistic tables and define (constrained) probabilistic automata on infinite words. In

section 3 we define the notions of transience and recurrence on finite probabilistic tables and

study the computational complexity of the associated problems. In section 4 we consider the

classes CPBA>0 and CPBA=1 and possible generalizations. Section 5 concludes the paper.

2 Preliminaries

Throughout the paper, we assume some familiarity with classical automata theory on in-

finite words [9]. We will use the notion of Finite Probabilistic Table (FPT) as a general

framework for probabilistic automata. An FPT is the ”structural part” of a probabilistic

automaton, on which no acceptance condition has been made precise. An FPT can also be

seen as a particular kind of non-homogeneous Markov chain, where only a finite number of

transition functions are available. If S is a finite set, we write ∆(S) for the set of probability

distributions on S.

DEFINITION 1.[Finite Probabilistic Tables [16]] A Finite Probabilistic Table (FPT), is a tuple
T = (S, Σ, {Ma, a ∈ Σ}, α), where S is a finite set (representing the states), α ∈ ∆(S) is
the initial distribution, Σ is a finite set (representing the alphabet), and for all a ∈ Σ, Ma is
a Markov matrix of order |S| (Ma represents the transition probabilities from state to state

related to the symbol a).

We write Ma = (ma
si,s j

)i,j∈{1,...,|S|}. The component ma
s,t corresponds to the probability of

going from state s to state t when the transition matrix Ma is chosen. If w = a1...al ∈ Σ∗, we

write Mw for the product Ma1 · ... · Mal , whose components are the mw
si,s j

. Often, we will use

the notation δ for the transition function: if w ∈ Σ∗ and s, t ∈ S, δ(s, w)(t) is the probability

to arrive in t if we start on s and read w. In other words, δ(s, w)(t) = mw
s,t. We generalize

the notation and write δ(s, w) for the set of states t ∈ S such that δ(s, w)(t) > 0. Finally, if

A ⊆ S (resp. α ∈ ∆(S)), δ(A, w) (resp. δ(α, w)) is the set of states t ∈ S such that there exists

s ∈ A with δ(s, w)(t) > 0 (resp. s ∈ S s.t. α(s) > 0 and δ(s, w)(t) > 0). We will often define

an FPT as a tuple T = (S, Σ, δ, α), since we can compute easily δ and the Ma, a ∈ Σ one from

the other.

Let T = (S, Σ, δ, α) be an FPT. A run on T , or a run on S and Σ, is an alternating

sequence s0a1s1a2..., finite or infinite, of states in S and letters in Σ. The trace of a run r,

written Tr(r), is the sequence of its letters, and In f (r) is the set of states which appear

infinitely often in r. Given a finite run r = s0a1s1...ansn we denote by |r| = n the length of

r and by r|k = s0a1s1...aksk its prefix of length k. Similarly for a finite word w ∈ Σ∗, |w| is

the length of w and w|k denotes its prefix of length k. We write Ω for the set of infinite runs

on T . If n ∈ N, Xn is the random variable on Ω which associates to a run r its n-th state.

The set of cones of the form Cw = {r ∈ Ω|Tr(r|n) = w}, for w ∈ Σn, induces a σ-field F
on Ω which is the smallest σ-field with respect to which all the Xn, n ≥ 0, are measurable.

The initial distribution α on S, and an infinite word w = a1a2... ∈ Σω, uniquely determine

a probability measure P
α
w on F such that Xn, n ≥ 0 is a non-homogeneous Markov chain

on (Ω,F , P
α
w), with P

α
w(X0 = s) = α(s), and P

α
w(Xn+1 = t|Xn = s) = δ(s, an+1)(t) for all
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n ∈ N and s, t ∈ S. (See [11, 13, 18, 7]). We may forget the α in the notation when clear from

the context.

DEFINITION 2.[Support of an infinite sequence] Let Σ be a finite alphabet, and w = a0, a1, ... ∈
Σω. Let ρ = b0b1...bl ∈ Σ∗. We call the proportion of ρ in w the limit-sup of the proportion
of time spent reading ρ when reading a1, ..., an:

prop(ρ, w) = Limn→∞

|{i ∈ [1; n − l] s.t. ai = b0 ∧ ... ∧ ai+l = bl}|
n

.

The support of the sequence w, written Supp(w), is the set of words ρ ∈ Σ∗ such that
prop(ρ, w) > 0.

For instance, if we consider a run r on an automaton A as an infinite sequence on S∪ Σ,

the set of states in the support of r can be seen as the set of states on which r spends a

non negligible amount of time. It is a subset of In f (r), and the inclusion is strict in general.

Instead of imposing acceptance conditions on the set of states that are visited infinitely often

in a run, in this paper we will impose acceptance conditions on the set of states that are

visited with a “non negligible” portion, i.e. that are in the support of the run. This gives rise

to the class of constrained probabilistic automata.

A probabilistic automaton is just a pair A = (T , Acc) where T = (S, Σ, δ, α) is an

FPT and Acc is an acceptance condition. We consider here acceptance conditions of the

following types: Büchi, where Acc ⊆ S is a subset of final states, Street and Rabin, where

Acc = {(H1, K1), . . . , (Hn, Kn)} is a set of acceptance pairs and Muller, where Acc ⊆ 2S is a

set of final sets. Given a subset T ⊆ S of states we call T accepting according to a

• Büchi acceptance condition Acc ⊆ S, if T ∩ Acc 6= ∅. In the sequel we will denote a

Büchi acceptance condition by F.

• Rabin acceptance condition Acc = {(H1, K1), . . . , (Hn, Kn)}, if there exists 1 ≤ i ≤ n

such that T ∩ Hi = ∅ and T ∩ Ki 6= ∅.

• Streett acceptance condition Acc = {(H1, K1), . . . , (Hn, Kn)}, if for every 1 ≤ i ≤ n it

holds that T ∩ Hi 6= ∅ or T ∩ Ki = ∅.

• Muller acceptance condition Acc ⊆ 2S, if T ∈ Acc.

As indicated above we will distinguish between two types of automata, namely

• (classical) probabilistic automata, where a run is called accepting for w ∈ Σω iff

Tr(r) = w and In f (r) is accepting and

• constrained probabilistic automata, where a run is called accepting for w ∈ Σω iff

Tr(r) = w and Supp(r) is accepting.

For both types of automata we distinguish two semantics, the probable semantics, where

the accepted language of A is:

L>0(A) = {w ∈ Σω|Pw({r|r is accepting f or w}) > 0}
and the almost-sure semantics where the accepted language of A is:

L=1(A) = {w ∈ Σω|Pw({r|r is accepting f or w}) = 1}.

Given an automaton with a Büchi acceptance condition, we call a (classical) probabilistic

automaton a PBA and we call a constrained probabilistic automaton a CPBA (the analogous

notations apply to Street (PSA, CPSA), Rabin (PRA, CPRA) and Muller (PMA, CPMA) au-

tomata). The class of PBA is denoted PBA. In the following, when K is a class of automata

and x ∈ {> 0, = 1}, we write CKx for the associated class of languages. We will some-
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times write PBAx, resp. PBAx, to denote a PBA, resp. the class of PBA, with the associated

semantics given by x.

By [2, 1], CPBA>0 is closed under union, intersection and complementation. However,

the emptiness problem of a PBA>0 is shown to be undecidable. On the other hand, the

emptiness problem for an automaton in PBA=1 is shown to be decidable, but the class

CPBA=1 is not any more closed under complementation.

Remarks: Taking an inf limit instead of a sup limit in the definition of the support, we

could express the fact that the proportion of time spent on a particular set of states stays

bounded away from zero as the length increases. The two different possible definitions for

the support of a run would lead to different classes of automata, which recognize different

languages and can express different properties of interest. However, we will see that the

same algorithms can be used on both classes of automata, for the natural problems such as

the emptiness problem. In this paper, we will use the limit-sup to define the support of a

run, but the results could be easily adapted to handle the inf limit case.

3 Finite non-homogeneous Markov chains

We are interested in basic questions concerning our models of probabilistic automata (PBA,

CPBA), such as the emptiness problem of the language of a given automaton, or the univer-

sality problem for this language. Such problems can be presented in the general framework

of finite non-homogeneous Markov chains. In the past, researcher working in this domain

seem to have been mostly interested in considerations on the ergodic properties of such

chains ([15, 17]). In general they did not take into account the fact that the number of transi-

tion functions of the process may be finite, which is crucial when dealing with probabilistic

automata. We start with some remarks on homogeneous Markov chains, and next we study

severall problems of interest concerning non-homogenous Markov chains.

3.1 Recurrence and transience for non-homogeneous Markov chains

Homogeneous Markov chains

We fix Xi, i ≥ 0 a homogeneous Markov chain on a finite state space S. If α ∈ ∆(S), P
α is

the probability distribution on the set of runs on the chain with initial distribution α. Recall,

[11], that a state s ∈ S is called recurrent if P
s({r|s ∈ In f (r)}) > 0. Otherwise it is called

transient. Note that we sometimes identify s with the Dirac distribution µs ∈ ∆(S) with

µs(s) = 1.

THEOREM 3.[Recurrence and the ergodic theorem, [11]] Given a homogeneous Markov
chain with finite state space S and s ∈ S, s is recurrent iff P

s({r|s ∈ In f (r)}) = 1, iff
P

s({r|s ∈ Supp(r)}) > 0, iff P
s({r|s ∈ Supp(r)}) = 1.

Thus, in the homogeneous case, a state s is recurrent if almost all the runs on the chain

visit infinitely often s, or equivalently if almost all the runs spend a non negligible amount

of time on s. We will see in the next subsection that this equivalence does not hold in the

context of non-homogeneous Markov chains. Notice that the notion of finitary liveness of [6]
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is not adapted to the probabilistic context. Indeed, even if s is recurrent, on a homogeneous

Markov chain, for almost all the runs on the chain, the distance between two consecutive

occurrences of s is not bounded.

Non-homogeneous Markov chains

For the following we fix an FPT T = (S, Σ, δ, α).

Accessibility: a state s ∈ S is said to be accessible in T if there exists n ∈ N and a word

ρ ∈ Σn such that δ(α, ρ)(s) > 0. That is, with positive probability the process can be in state

s after a finite number steps. By simple reachability considerations, we can compute the set

Acc(T ) of the accessible states in T in time polynomial in the size of the FPT.

Given a homogeneous Markov chain on S and s ∈ S, theorem 3 shows that P
s({r|s ∈

In f (r)}) > 0 iff P
s({r|s ∈ Supp(r)}) > 0. This is not the case in the context of non-

homogeneous Markov chains, which motivates the two following definitions for recurrence.

DEFINITION 4.[Strong Recurrence, Weak Recurrence] Let Xn, n ∈ N be a non homogeneous

Markov chain on a finite state space S, and s ∈ S. Let P be the probability distribution on
the set of runs of the chain. We say that s is weakly recurrent (resp. strongly recurrent), if

P({r|s ∈ In f (r)}) > 0 (resp. P({r|s ∈ Supp(r)}) > 0)

Otherwise, s is said to be weakly transient (resp. strongly transient).

Given an FPT T = (S, Σ, δ, α), several algorithmic problems may arise, concerning

transience and recurrence. The first question is whether we can find w ∈ Σω such that

a given state s ∈ S is weakly, or strongly, recurrent, for the associated non-homogeneous

Markov chain on T .

Problem 1 (Weak recurrence (resp. strong recurrence))

Input: An FPT T = (S, Σ, δ, α), F ⊆ S.

Question: Is there w ∈ Σω such that

P
α
w[{r|F ∩ In f (r) 6= ∅}] > 0. (resp. P

α
w[{r|F ∩ Supp(r) 6= ∅}] > 0).

The undecidability of the emptiness problem for PBA>0 [2], implies that the weak re-

currence problem is undecidable. In contrast, we will see that the strong recurrence problem

is PSPACE-complete (theorem 10). We cannot generalize our approach to several states, as

we will prove that the following problem is undecidable (theorem 15):

Problem 2 (Two states strong recurrence)

Input: An FPT T = (S, Σ, δ, α), s, t ∈ S.

Question: Is there w ∈ Σω s.t. P
α
w[{r|s ∈ Supp(r) and t ∈ Supp(r)}] > 0?

Consider now the universal analog of the weak recurrence problem (resp. of the strong

recurrence problem): do we have that for all w ∈ Σω, Pw[{r|s ∈ In f (r)}] > 0? (resp.

Pw[{r|s ∈ Supp(r)}] > 0). By contraposition, these problems can be reformulated as fol-

lows.

Problem 3 (Universal weak recurrence (resp. universal strong recurrence))

Input: An FPT T = (S, Σ, δ, α), F ⊆ S.

Question: Is there w ∈ Σω such that

P
α
w[{r|F ∩ In f (r) = ∅}] = 1. (resp. P

α
w[{r|F ∩ Supp(r) = ∅}] = 1).
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By the results of [1], since CPBA>0 is closed under complementation, the universal weak

recurrence problem is undecidable. We will show later that CCPBA>0 is not closed under

complementation, hence we cannot conclude directly for the complexity of the universal

strong recurrence problem.

The condition Pw[{r|F ∩ In f (r) 6= ∅}] > 0 (as well as the condition Pw[{r|F ∩Supp(r) 6=
∅}] > 0), can be seen as a Büchi condition. One can be interested in the co-Büchi condition:

a run is accepted if no state in F is visited infinitely often. The associated problems in our

context are the following.

Problem 4 (Weak transience (resp. strong transience))

Input: An FPT T = (S, Σ, δ, α), F ⊆ S.

Question: Is there w ∈ Σω such that

P
α
w[{r|F ∩ In f (r) = ∅}] > 0. (resp. P

α
w[{r|F ∩ Supp(r) = ∅}] > 0.)

The weak transience and strong transience problems are both PSPACE -complete (the-

orem 14). As before, we can consider the universal versions of these problems.

Problem 5 (Universal weak transience (resp. universal strong transience))

Input: An FPT T = (S, Σ, δ, α), F ⊆ S.

Question: Is there w ∈ Σω such that

P
α
w[{r|F ∩ In f (r) 6= ∅}] = 1. (resp. P

α
w[{r|F ∩ Supp(r) 6= ∅}] = 1.)

The universal weak and strong transience problems are PSPACE-complete (theorem

12). The following of the section is devoted to the proofs of the complexity of the previous

problems.

3.2 Computational complexity of the recurrence problems.

Our decision procedures will often rely on the notion of probabilistic loop, which correspond

to the set of homogeneous Markov chains that one can define on an FPT.

DEFINITION 5.[Probabilistic loop] A probabilistic loop in T is a couple (C, ρ), where C ⊆ S

and ρ ∈ Σ∗ are such that δ(C, ρ) ⊆ C.

If F ⊆ S, a probabilistic loop around F in T is a probabilistic loop (C, ρ) in T such that
for all s ∈ C, there exists ρ′s a prefix of ρ, such that δ(s, ρ′s) ∩ F 6= ∅.

A probabilistic loop (C, ρ) in T induces an homogeneous Markov chain Xn, n ∈ N with

state space C and transitions probabilities given, for all s, t ∈ C, by P[Xn+1 = t|Xn = s] =
δ(s, ρ)(t). Let A be the set of states in C which are recurrent for this chain. The Support of

the loop (C, ρ) is the set of states t in S such that there exists s ∈ A and ρ′ a prefix of ρ with

δ(s, ρ′)(t) > 0.

We consider first the strong recurrence problem. We fix an instance T = (S, Σ, δ, α), F ⊆
S, of the strong recurrence problem. We can assume that F = {s}, with no loss on generality.

We will prove in this subsection that s is strongly recurrent for a non-homogeneous Markov

chain on the probabilistic table iff s is accessible and there exists a probabilistic loop around

s in T . This will imply the PSPACE completeness of the strong recurrence problem. The

next example shows that this equivalence does not hold in general, if Σ is infinite.

Example 1 Let S = {s, t}. For δ ∈]0; 1] consider the Markov matrix Mδ =

(
1 − δ δ

0 1

)
. The graph
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of the associated Markov chain is: s

1−δ

�� δ
// t

1

��

Suppose that the chain is initiated on state s: α = {s}. Consider now the family of matrices
M = {M1/2i , i ∈ N}. It is not difficult to see that for any finite product of matrices in M, the
associated homogeneous Markov chain Xn, n ≥ 0 on S is aperiodic and t is the only state in the
support of the stationary distribution. By theorem 3, this implies that s is transient for the (homo-
geneous) chain. This implies that there exists no probabilistic loop around s in T . However, if we
consider the non-homogeneous Markov chain Xn, n ≥ 0 on S whose transitions probabilities are
given by the matrices M1/2, M1/22, M1/23 , ..., then P

α
1/2,1/22...

[{r|∀n ∈ N Xn(r) = s}] > 0, and in

particular P
α
1/2,1/22...

[{r|s ∈ Supp(r) > 0}] > 0, which proves that s is strongly recurrent for the

(non-homogeneous) chain.

We give a couple of definitions and lemma to prove our theorem. The notion of filter

will allow us to build a probabilistic loop around a state s by aggregating the successors of

this state.

DEFINITION 6.[Filters] Let S be a finite state space, and Σ be a finite alphabet. A filter on

S and Σ is a finite sequence of couples on S ∪ {·} and Σ ∪ {·}, where · is a special symbol
denoting an “indefinite place“.

A filter can be seen as a word in ((S ∪ {·})(Σ ∪ {·}))∗. Two filters x and y will be said

to coincide, written x = y, if they have the same length and at each place either they have

the same elements, or at least one has got an empty place. If u and v are two filters on S and

Σ, then uv is the natural concatenated filter: For instance, if w = a1...al ∈ Σ∗ and s ∈ S, then

(s, w, s) is the filter (s, a1), (·, a2), ..., (·, al), (s, ·).

We start with a combinatorial lemma. The proportion prop(w, r) of a filter w in a run r

is naturally defined the same way as we defined the proportion of a subword in a run, using

a limit-sup.

LEMMA 7. Let S be a finite state space and Σ be a finite alphabet. Let r be a run on S and
Σ, and let u be a filter on S and Σ. Suppose prop(u, r) > 1/N, where N ∈ N and N > |u|.
Then there exists another filter v on S and Σ such that prop(uvu, r) > 1/(2 · N). Moreover,

we can choose v such that |v| ≤ 2 · N.

We will apply recursively the following lemma to build a probabilistic loop around s.

LEMMA 8. Let ρ ∈ Σ∗. Suppose P
α
w[{r|prop((s, ρ), r) > 0}] > 0, and let t ∈ δ(s, ρ). Then,

there exists ρ′ ∈ Σ∗ such that:

s ∈ δ(t, ρ′), and P
α
w[{r|prop((s, ρρ′ ), r) > 0}] > 0.

THEOREM 9. Let T = (S, Σ, δ, α), s ∈ S, be an instance of the strong recurrence problem.
Then the following are equivalent:

• There exists w ∈ Σω such that s is strongly recurrent for the associated non-homogeneous
Markov chain on T .

• s is accessible, and there exists a probabilistic loop around s in T .

Moreover, in the positive case, the letters of the trace of the loop can all be taken in the
support of w.
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PROOF. (sketch) Notice that one way is easy: if there exists ρ0 ∈ Σn such that δ(α, ρ0)(s) >

0 and if there exists a probabilistic loop (C, ρ) around s, then P
α
ρ0·ρω({r|s ∈ Supp(r)}) > 0,

and s is strongly recurrent for the chain associated to w = ρ0 · ρω.

We prove now that the strong recurrence problem is PSPACE complete. First, we know

that we can compute in PTIME if s is accessible from α. Thus, the strong recurrence problem

is PTIME equivalent to the problem of finding if there exists a probabilistic loop around s.

We reduce the problem of Finite Intersection of Regular Languages, which is known to be

PSPACE complete [12], to our strong recurrence problem.

Problem 6 (Finite Intersection of Regular Languages)

Input: A1, ...,Al a family of deterministic automata (on finite words) on the same finite alphabet Σ.

Question: Do we have L(A1) ∩ ...∩ L(Al) = ∅ ?

THEOREM 10. The strong recurrence problem is PSPACE complete.

We consider now the complexity of the co-Büchi problems.

PROPOSITION 11. Let T = (S, Σ, δ, α) be an FPT, and F ⊆ S. Then the following are

equivalent:
1. ∃w ∈ Σω s.t. P

α
w[{r|F ∩ In f (r) = ∅}] > 0.

2. ∃w ∈ Σω s.t. P
α
w[{r|F ∩ Supp(r) = ∅}] > 0.

3. There exists an accessible probabilistic loop on S whose support does not contain any

state in F

THEOREM 12. The universal weak and strong transience problems (problem 5) are PSPACE
complete.

PROOF. As for the strong recurrence problem, we can build a nondeterministic Turing

machine which finds a relevant probabilistic loop in PSPACE. For the PSPACE hardness, we

can also reduce the finite intersection of regular languages problem to these problems.

PROPOSITION 13. Let T = (S, Σ, δ, α) be an FPT, and F ⊆ S. Then the following are
equivalent:

1. ∃w ∈ Σω s.t. Pw[{r|F ∩ In f (r) 6= ∅}] = 1.
2. ∃w ∈ Σω s.t. Pw[{r|F ∩ Supp(r) 6= ∅}] = 1.

3. There exists ρ0 and ρ in Σ∗ such that (δ(α, ρ0), ρ) is a probabilistic loop around F.

PROOF. 3 ⇒ 2 and 2 ⇒ 1 are simple. Suppose 1: ∃w ∈ Σω s.t. P
α
w[{r|F ∩ In f (r) 6= ∅}] >

0. Write w = a1a2.... For i ∈ N, let Hi = δ(α, w|i) =
⋃

s|α(s)>0 δ(s, w|i).

Since S is finite, there exists H ⊆ S such that infinitely often, Hi = H. Let i0 ∈ N such

that Hi0 = H. Let t ∈ H. Then P
α
w[{r|Xi0 (r) = t}] > 0. Since P

α
w[{r|F ∩ In f (r) 6= ∅}] = 1, F

must be reachable from t after a finite number of steps. That is, there exists lt ∈ N such that

δ(t, ai0+1ai0+2...ai0+lt
)(F) > 0. Let l0 = Maxt∈H lt, and l ≥ l0 such that δ(s, w|i0+l) = H. Then

ρ0 = w|i0 and ρ = ai0+1, ..., ai0+l satisfy the conditions of 3.

THEOREM 14. The weak transience and strong transience problems (problem 4) are PSPACE
complete.

PROOF. The proof of the fact that these problems are in PSPACE is the same as for the

strong recurrence problem: a nondeterministic Turing machine can guess ρ0 and ρ and ver-

ify in PSPACE the requirements. Concerning the PSPACE hardness, we point out that the
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exact same reduction as for the strong recurrence problem is also a reduction for the Inter-

section of Regular Languages problem to our problem.

We can reduce the emptiness problem for an automaton in PBA>0 to problem 2:

THEOREM 15. Problem 2 is undecidable.

4 Probabilistic automata

In this section we study our new classes of constrained probabilistic automata using the

results from the previous section. We start our discussion with the class CPBA>0. As a

CPBA is structurally an FPT plus a set of final states, we can use the results of the last section,

and the notion of probabilistic loop. A probabilistic loop on a CPBA will be accepting if its

support contains an accepting state. For the following, we fix a CPBA A = (T , F), where

T = (S, Σ, δ, α) is an FPT and F ⊆ S. The past section yields the following theorem.

THEOREM 16. The following are equivalent:

1. L>0(A) 6= ∅.
2. A accepts a lasso shape word.

3. There exists an accessible and accepting probabilistic loop on A.

PROOF. 1 ⇔ 3 comes from theorem 9. 2 ⇒ 1 is direct. Suppose 3. If x ∈ Σ∗ is such that

δ(α, x)(s) > 0 and y ∈ Σ∗ is the trace of the loop, the word x · yω is a lasso shape word and

belongs to the language of the automaton.

COROLLARY 17. The emptiness problem of the language of a CPBA with the probable
semantics is PSPACE complete.

PROPOSITION 18. CCPBA>0 is not closed under complementation.

In particular, the proof shows that the set of ω-regular languages is not a subset of

the set of languages definable by automata in CPBA>0. The following proposition, using a

construction of [10], shows that the class of the complements of languages of automata in

PBA=1 is a subset of the class of languages recognized by automata in CPBA>0.

PROPOSITION 19. If A ∈ PBA, there exists A′ ∈ CPBA such that |A′| ≤ |A| + 1 and
L>0(A′) = L=1(A)c. Moreover, the inclusion {L=1(A)c|A ∈ PBA} ⊆ CCPBA>0 is strict.

As a corollary, since the emptiness of the language of a CPBA>0 can be decided in

PSPACE, this proves that the universality problem of the language of an automaton in

PBA=1 can be decided in PSPACE. The following proposition shows that the emptiness

problems on the classes PBA=1 and CPBA=1 are equivalent. Given a probabilistic automa-

ton A with final states set F, we can consider the language LPBA=1
(A) of the set of words

accepted by A when A is considered in PBA=1, and also the language LCPBA=1
(A) of the

set of words accepted by A when A is considered in CPBA=1.



TRACOL, BAIER, GRÖSSER FSTTCS 2009 405

PROPOSITION 20. Let A be a probabilistic automaton with final states set F. Then:

• LPBA=1
(A) = ∅ iff LCPBA=1

(A) = ∅.
• LPBA=1

(A) = Σω iff LCPBA=1
(A) = Σω.

PROOF. Follows directly from propositions 11 and 13, as the condition on the probabilistic

loop around the final state set is a structural condition, which does not depend on consider-

ations on Inf or Supports sets of the runs.

By theorem 12 and theorem 14, the complexity of the emptiness problem and the uni-

versality problem of the language of an automaton in CPBA=1 or in PBA=1 is in PSPACE.

This improves the previous results of [1] which showed using different tools that the empti-

ness problem for the language of an automaton in PBA=1 is in EXPTIME. Note that the

upcoming paper [5] shows PSPACE-completeness for the emptiness problem and the uni-

versality problem of the language of an automaton in PBA=1.

PROPOSITION 21. The class of languages CPBA=1 is a subclass of CCPBA=1 , and the inclusion
is strict.

PROOF. The inclusion follows from the construction of a layered automaton, as in propo-

sition 19. We can show that {w|a ∈ Supp(w)} ∈ CCPBA=1 − CPBA=1 .

We have seen that in contrast to (classical) probabilistic automata, for constrained prob-

abilistic automata, the emptiness problem for Büchi acceptance under the probable seman-

tics becomes decidable. However, for Street, resp. Muller acceptance condition, the empti-

ness problem for the probable semantics is undecidable. Surprisingly, for Rabin (and thus

parity) acceptance, we can prove as for theorem 10 that the problem is decidable.

THEOREM 22. The emptiness problem for CPSA, resp. CPMA, under the probable seman-
tics is undecidable.

PROOF. With Acc = {({s}, S), ({t}, S)}, resp. Acc = {T : {s, t} ⊆ T ⊆ S}, problem 2 (two

states strong recurrence) reduces to the emptiness problem for CPSA>0, resp. CPMA>0. As

theorem 15 shows the undecidability of problem 2, the claim follows.

THEOREM 23. The emptiness problem for CPRA under the probable semantics is decidable.

Remarks: If we use the alternative definition for the support of a run, such that a state s is

in the support of a run if the Inf limit of the time spent on s is non zero, we get different

classes of automata, with different languages. However, the emptiness problem and all the

natural problems can still be solved using the same tools. For instance, the language of

an associated PCA automaton is still non empty iff there exists an accessible and accepting

probabilistic loop. Thus, the complexity of the problems we studied does not change.

5 Conclusion

This paper presents an alternative definition to the the classical ”infinitely often” Büchi con-

dition. We presented several notions of recurrence and transience on finite probabilistic

tables and gave the precise computational complexity of several of the associated prob-

lems. We used these results to prove the decidability of basic problems on new classes of
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probabilistic automata on infinite words. Several theoretical questions are still open, e.g.,

the complexity of the universal strong recurrence problem. The possibility to find classes

of probabilistic automata on which the basic problems such as the emptiness problem are

computable, and which may be used to specify relevant properties in a system verification

context, could motivate future work. Another issue is in the context of infinite duration

games, where we can change the classical ω-regular condition of [8], or the extensions of

[6], by our notion of acceptance.

Bibliography
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1 Introduction

Computational complexity is often described as the study of what makes certain compu-
tational problems inherently difficult to solve. Of course, it has proved to be extremely
difficult to establish unconditional lower bounds, but the theory has provided us with im-
portant tools for identifying intractable problems. If one were to pick out the most impor-
tant contribution that complexity theory has made to the theory and practice of comput-
ing, it is arguably in introducing the notion of NP-completeness. The ability to identify
NP-complete problems and to construct reductions are skills that are taught to virtually all
students of computer science. However, while thousands of problems have been identified
as NP-complete, and we have a strong, if informal, understanding of what makes a problem
hard, this does not amount to a theory of complexity. We understand that an exponential,
unstructured search space leads to difficulty, but we do not have an account of what kind of
structure in the search space allows for tractable solutions. This is a distinct problem from
our inability to prove lower bounds, i.e. to explain why NP-complete problems are truly
intractable. It is the problem of explaining what makes certain problems NP-complete in
the first place. It may even be argued that, at this point, we do not know what such a theory
of difficulty might look like.

In this talk, I review results from descriptive complexity that relate to this issue. The
best known results of descriptive complexity are about the characterisations of complexity
classes in terms of logical definability. I would argue that one important contribution of
these results is the separation they provide between the specification of a decision problem
and the structure against which this specification is checked. The first is usually formalised
as a sentence in some suitable formal logic, while the latter is usually a relational struc-
ture of some kind. This separation allows some insight into sources of complexity. One
can measure the richness of the language in which specifications are written and one can
measure the density of the structures considered. These are two aspects of work in descrip-
tive complexity that I will consider. In these notes to accompany the talk, I briefly present
some definitions and the main results. Many of these are historical, but I take them up to
recent work and provide pointers to the literature. After presenting some background and
definitions I briefly consider the complexity of specification languages in Section 2 and of
structures at some length in Section 3. The former leads to some recent work on the question
of characterisations of P, while the latter leads to connections with paramterized complexity.
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2 Complexity of Specification

The general situation we consider is of a problem where an instance is a structure (such as a
graph) and the problem to be decided is given by a formula in some logic (typically an exten-
sion of first-order logic). Indeed, in the examples I consider in this paper, I confine myself to
decision problems on graphs. Consider, for example, some classical NP-complete problems
on graphs: INDEPENDENT SET, DOMINATING SET, 3-COLOURABILITY and HAMILTONIC-
ITY. In the first two cases, the input is a graph together with an integer parameter, while in
the second case it consists of a graph alone. As we shall see, it matters whether we consider
the integer parameter to be part of the specification of the problem, or the instance.

Suppose then that we are given a graph G and a formula ϕ of first-order logic in the
language with one binary relation. How hard is it to decide whether G |= ϕ? There are
essentially two versions of this question that interest us here (called the data complexity and
the combined complexity of first-order logic, respectively by Vardi in [34]).

In the first, we ask how complex can be the set of graphs that satisfy a fixed first-order
sentence. The answer is that it is always decidable in logarithmic space by a straightforward
algorithm (and, indeed the set is in fact in AC0 [1]). Moreover, there are problems in L which
one can easily show are not definable by any first-order sentence. In particular, there is no
sentence that defines the graphs with an even number of vertices or the connected graphs
(see [15, 26] for proofs). It is also not difficult to show that the Hamiltonian graphs, or the 3-
colourable graphs are provably not first-order definable. The conclusion one can draw from
this is that the expressive power of first-order logic is rather weak. This is one reason that
research in finite model theory has focused on extensions of the logic.

On the other hand, it is easy to write, for each k a first-order sentence that defines the
graphs that contain an independent set of k vertices, or a dominating set with k vertices.
Thus, if one considers the combined complexity of first-order logic, i.e. the following de-
cision problem: given a graph G and a first-order formula ϕ, determine whether G |= ϕ,
then it is clearly hard. In fact, the problem is PSpace-complete. In terms of parameterized
complexity, taking the length of ϕ as parameter, the problem is AW[*]-complete. Moreover,
restricting the first-order sentences to a fixed-number of quantifier alternations yields com-
plete problems at every level of the W-hierarchy and thus the problem of evaluating first-
order sentences in graphs is central to parameterized complexity. I return to connections
with parameterized complexity in the next section. Futher details may also be found in the
excellent text [19].

Searching for a specification language more expressive than first-order logic, the logi-
cian may turn first to second-order logic. Here, it is known since the work of Fagin [17]
that the existential fragment is rich enough to express all (and only) the problems in NP.
It follows that second-order logic expresses all decision problems in the polynomial hierar-
chy [32]. From the complexity-theoretic point of view, the interesting logics are intermediate
in expressive power between first and second-order logic. In particular, it remains an open
question whether there is a logic that expresses exactly the polynomial-time decidable prop-
erties of graphs.

Immerman [25] and Vardi [34] showed that LFP, the extension of first-order logic with
inductive definitions expesses exactly the polynomial-time properies of ordered graphs but
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this is too weak in general. An extension of LFP with a mechanism for counting was pro-
posed by Immerman, but shown to be too weak in [3]. Since then, a number of further logic
have been proposed that all properly extend the expressive power of LFP with counting and
for which it remains an open question whether they can express all polynomial-time proper-
ties. They include the language of choiceless polynomial-time with counting of Blass, Gurevich
and Shelah [2] and the language of specified symmetric choice of Gire and Hoang [22, 12]. A
significant recent development in this direction is the proposal to extend LFP with linear
algabraic operators [8]. The mutual interrelationship between these various extensions also
remains to be explored (see [13] for related results). A useful recent survey on the problem
of characterising P is given by Grohe in [24].

3 Resticted Graph Classes

We now turn our attention to the combined complexity of first-order logic and to the ques-
tion about how constraints on the structure can limit the search space and make hard prob-
lems tractable. As mentioned above, the problem of deciding, given a graph G and a first-
order sentence ϕ whether G |= ϕ is PSpace-complete, while for any fixed ϕ, the class of
graphs that satisfy it is in L. To be more precise, if ϕ has length l and m distinct variables
and G is a graph on n vertices, then G |= ϕ can be decided in time O(lnm) and space
O(m log n). In [33], Stolboushkin and Taitslin asked whether there is a constant c such that
every first-order sentence defines a problem decidable in timeO(nc). They conjectured that
this was not the case and noted that a proof of the conjecture would imply a separation of P
from PSpace. A more uniform version of their question would ask for a computable func-
tion that maps ϕ to a O(nc) clocked algorithm for deciding the models of ϕ. The existence
of such a function would imply that the problem of deciding whether G |= ϕ was fixed-
parameter tractable. Since this problem is AW[*]-complete (see [19] for details) this would
imply the collapse of the edifice of parameterized complexity.

Indeed, many natural problems that are hard from the point of view of parameterized
complexity can be naturally formulated in first-order logic. As an example, consider two
problems mentioned above: INDEPENDENT SET and DOMINATING SET. They are complete
for W[1] and W[2] respectively and, as noted above, naturally expressed by a (parameter-
dependent) first-order formula.

A subject of intensive investigation in recent years has been the fixed-parameter tractabil-
ity of otherwise hard problems, when the class of input graphs is restricted. A typical exam-
ple is the fixed-paramter tractability of DOMINATING SET when restricted to planar graphs.
Indeed, for many interesting restrictions on graphs, one can show that first-order satisfac-
tion is itself fixed-parameter tractable and as a result the tractability of a whole host of other
individual problems follows. In the rest of this section, we briefly survey results that estab-
lish the fixed-parameter tractability of first-order satisfaction on a number of such classes.
The classes we examine are all classes of sparse graphs. That is, though the classes may be
defined in other terms, they have the property that the number of edges in a graph in the
class as a function of the number of vertices does not grow very fast. It should be remarked
that there are other classes of graphs (such as those of bounded cliquewidth) which are not
sparse in this sense, but where it is known that first-order logic (and, indeed, even monadic
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second-order logic) admit fixed-parameter tractable algorithms for the satisfaction problem
(see [6, 5]).

Sparse Classes The relationships between various classes of sparse graphs that have been
studied are depicted in Figure 1.

excluded minors bounded local treewidth

planar graphs bounded degree

bounded expansion locally excluded minors

acyclic graphs

bounded genus
bounded treewidth

nowhere dense

Figure 1: Relationships between sparse graph classes.

Among the restrictions given in Figure 1, those of acyclicity and planarity are of a dif-
ferent character to the others in that they apply to single graphs. We can say of graph G that
it is acyclic or planar. When we apply this restriction to a class C, we mean that all struc-
tures in the class satisfy it. The other conditions in the figure only make sense in relation
to classes of graphs. Thus, it makes little sense to say of a single finite graph that it is of
bounded degree (it is necessarily so). When we say of a class C that it is of bounded degree,
we mean that there is a uniform bound on the degree of all graphs in C.

The arrows in Figure 1 should be read as implications. Thus, any graph that is acyclic is
necessarily planar. Similarly, any class of acyclic graphs has bounded treewidth. The arrows
given in the figure are complete in the sense that when two restrictions are not connected by
an arrow (or sequence of arrows) then the first does not imply the second and separating
examples are known in all such cases.

The restrictions of acyclicity, planarity and bounded degree are self-explanatory. We
say that a class of graphs C has bounded genus if there is a fixed orientable surface S such
that all graphs in C can be embedded in S (see [27]). In particular, as planar graphs are
embeddable in a sphere, any class of planar graphs has bounded genus. The treewidth of
a graph is a measure of how tree-like it is (see [14]). In particular, trees have treewidth 1,
and so any class of acyclic graphs has treewidth bounded by 1. The measure plays a crucial
role in the graph structure theory developed by Robertson and Seymour in their proof of
the graph minor theorem. We say that a graph G is a minor of H (written G ≺ H) if G can
be obtained from a subgraph of H by a series of edge contractions (see [14] for details). We
say that a class of graphs C excludes a minor if there is some G such that for all H ∈ C we
have G 6≺ H. In particular, this includes all classes C which are closed under taking minors
and which do not include all graphs. If G is embeddable in a surface S then so are all its
minors. Since, for any fixed integer k, there are graphs that are not of genus k, it follows that
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any class of bounded genus excludes some minor.
The notion of bounded local treewidth was introduced as a common generalisation of

classes of bounded treewidth and bounded genus. A variant, called the diameter width
property was introduced in [16] while bounded local treewidth is from [20]. Recall that the
r-neighbourhood of a vertex v in a graph G, denoted Nr

G(v), is the subgraph of G induced by
the set of vertices at distance at most r from v. We say that a class of graphs C has bounded
local treewidth if there is a nondecreasing function t : N → N such that for any graph
G ∈ C, any vertex v in G and any r, the treewidth of Nr

G(v) is at most t(r). It is clear that
any class of graphs of bounded treewidth has bounded local treewidth (indeed, bounded
by a constant function t). Similarly, any class of graphs of degree bounded by d has local
treewidth bounded by the function dr, since the number of elements in Nr

G(v) is at most dr.
The fact that classes of bounded genus also have bounded local treewidth follows from a
result of Eppstein [16].

We say that a class of graphs C locally excludes minors if there is a nondecreasing
function t : N → N such that for any graph G ∈ C, any vertex v in G and any r, the clique
Kt(r) is not a minor of the graph Nr

G(v). This notion is introduced in [9] as a natural common
generalisation of bounded local treewidth and classes with excluded minors. Classes of
graphs with bounded expansion were introduced by Nešetřil and Ossona de Mendez [30]
as a common generalisation of classes of bounded degree and proper minor-closed classes.
A class of graphs C has bounded expansion if there is a function t : N → N such that
for any graph G ∈ C, any subgraph H of G and any minor H′ of H obtained from H by
contracting neighbourhoods of radius at most r, the average degree in H′ is bounded by
t(r). In particular, classes that exclude a minor have bounded expansion witnessed by a
constant function f .

Finally, we say that a class C of graphs is nowhere dense if there is a function t : N →
N such that for each r, the graph Kt(r) cannot be obtained as a minor of any G ∈ C by
contracting neighbourhoods of radius at most r. This notion is introduced by Nešetřil and
Ossona de Mendez in [28, 29]. They present convincing arguments to show that this is the
natural upper limit to well-behaved classes of graphs based on sparseness conditions.

Automata and Locality The following is a sampling of results on the fixed-parameter
tractability of the first-order satisfaction problem on classes of sparse graphs. In each of
these, l is the length of the formula ϕ, n is the size of the graph G and f is some computable
function.

1. If Tk is the class of graphs of treewidth at most k, then G |= ϕ is decidable in time
O( f (l)n). Indeed this is true not just for first-order ϕ but even in monadic second-
order logic by [4].

2. If Dk is the class of graphs of degree at most k, then G |= ϕ is decidable in time
O( f (l)n). This is established by Seese in [31].

3. If LTWt is the class of graphs of local treewidth bounded by a function t, then G |= ϕ

is decidable in time O( f (l)n2) by a result of Frick and Grohe [20].
4. IfMk is the class of graphs excluding Kk as a minor, then G |= ϕ is decidable in time
O( f (l)n5) by results of Flum and Grohe [18].
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5. If LEMt is the class of graphs with locally excluded minors given by t, then G |= ϕ is
decidable in time O( f (l)n6) by a result of Dawar et al. [9].

These results are established by a combination of two essential methods. One is some-
times called the method of automata or the method of decompositions. The other is based on
the locality of first-order logic. These two basic methods are best illustrated by the first two
results on the list above.

For two graphs G and H and tuples of vertices u and v we write (G, u) ≡m (H, v) to
denote that any formula ϕ(x) with quantifier depth at most m is true of u in G if, and only
if, it is true of v in H. Two key facts about this equivalence relation are (1) that, for any fixed
m and fixed length of tuple, it has finite index and (2) that it is a congruence with respect
to a certain gluing operation. That is, if v is a tuple of vertices inducing the same subgraph
in both G and H, let G ⊕v H denote the graph obtained by taking the disjoint union of G
and H while identifying the vertices in v. Then, it can be shown that the ≡m equivalence
class of (G ⊕v H, v) is determined by the classes of (G, v) and (H, v) respectively. Since
graphs in Tk can be constructed from a finite collection of graphs (i.e. the graphs with at
most k vertices) using this gluing operation (and some vertex renaming operations needed
for technical reasons), we can use dynamic programming to determine the ≡m-class of an
arbitrary graph in Tk in linear time from its tree decomposition.

Abstractly, the method of decompositions can be formulated as follows. Suppose C is a
class of graphs such that there is a finite class B and a finite collection of operations Op such
that:
• C is contained in the closure of B under the operations in Op;
• there is a polynomial-time algorithm which constructs, given any G ∈ C an Op-

decomposition of G over B; and
• for each m, the equivalence relation ≡m is an effective congruence with respect to all

the operations o ∈ Op (by which we mean that the ≡m class of o(G1, . . . , Gs) can be
computed from the classes of G1, . . . , Gs),

then, satisfaction of first-order formulas for graphs in C is fixed-parameter tractable.
More generally, instead of requiring B to be finite, it suffices that first-order satisfaction

is itself fixed-parameter tractable on B. Indeed, result (4) above, on classes of graphs that
exclude a minor, is obtained by considering a tree-decomposition of graphs in such a class
over a class of bounded local treewidth and then using the result (3).

Another possible relaxation of the method is to replace ≡m by some other sequence
∼m of congruence relations. The properties required to make this work are that for every
first-order formula ϕ there is an m such that ϕ is invariant under ∼m and that for each m,
∼m is a relation of finite index. In this context, it should be noted that taking G ∼m H
to denote that G and H cannot be distinguished by any formula of length at most m does
not yield a congruence relation even with respect to disjoint union. Indeed, it was shown
in [10] that there is no elementary function e such that G1 ∼e(m) H1 and G2 ∼e(m) H2 implies
G1 ⊕ G2 ∼m H1 ⊕ H2.

In contrast, the proof of result (2) above is based on the locality of first-order logic.
This property essentially says that the truth of a formula ϕ in a graph G can be determined
by examining local neighbourhoods inside G. A precise statement is given by Gaifman’s
locality theorem [21] the statement of which requires some definitions.
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For every integer r ≥ 0, let δ(x, y) ≤ r denote the first-order formula expressing that
the distance between x and y in the Gaifman graph is at most r. Let δ(x, y) > r denote the
negation of this formula. Note that the quanfier rank of δ(x, y) ≤ r is bounded by r. A basic
local sentence is a sentence of the form

(∃x1) · · · (∃xn)

∧
i 6=j

δ(xi, xj) > 2r ∧
∧

i

ψNr(xi)(xi)

 , (1)

where ψ is a first-order formula with one free variable. Here, ψNr(xi)(xi) stands for the rel-
ativization of ψ to Nr(xi); that is, the subformulas of ψ of the form (∃x)(θ) are replaced by
(∃x)(δ(x, xi) ≤ r∧ θ), and the subformulas of the form (∀x)(θ) are replaced by (∀x)(δ(x, xi) ≤
r → θ).

THEOREM 1.[Gaifman Locality] Every first-order sentence is equivalent to a Boolean com-
bination of basic local sentences.

We call the Boolean combination of basic local sentences that is equivalent to a given
first-order sentence ϕ a Gaifman normal form of ϕ. Since the proof of Theorem 1 (see for
instance [15, Thm 2.5.1]) gives an effective construction of the Gaifman normal form from
ϕ, to prove (2), it suffices to consider how a basic local sentence can be evaluated. Since,
in a graph of bounded degree, there is a bound on the size of neighbourhoods, we can
easily (in linear time) label elements by whether or not they satisfy the formulas ψNr(xi)(xi).
The problem then reduces to determining in a vertex-coloured graph whether there is a
large enough r-scattered set of a given colour. This can be done easily enough on graphs of
bounded degree. However, Frick and Grohe [20] show that this can be solved in a somewhat
more general setting giving an abstract method of locality. See [23, Sec. 4] for a very readable
account.

The abstract formulation of the method of locality is as follows. Suppose we have a
function, associating an integer parameter kG with each graph G. Suppose further that we
have an algorithm which, given a graph G and a formula ϕ decides G |= ϕ in time g(l, kG)nc

for some computable g and some constant c. Finally, let C be a class of graphs of bounded
local k. That is, there is a computable function t such that for every G ∈ C and every vertex
v in G, kNr

G(v) < t(r). Then, there is an algorithm which decides G |= ϕ in time f (l)nc+1 for
some computable f .

It is this general localisation principle that gives us (3) from (1) above. It may seem
that (5) follows from (4) by a similar application of the method of locality. However, while
the result in [18] gives, for each k, a fixed-parameter tractable algorithm for deciding G |=
ϕ for classes that exclude Kk as a minor, it is not clear from the proof that the parameter
dependence is computable from k. The proof relies on Robertson-Seymour decompositions
which do not yield computable bounds. Thus, the result in [9] relies on rather different
decompositions.

Nowhere-Dense Classes As of this writing, it remains an open question whether the
fixed-parameter tractability of first-order satisfaction can be pushed beyond the classes of
locally excluded minors. In particular, the box at the bottom of Figure 1, containing the
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nowhere-dense classes, is an interesting case. This property was identified by Nešetřil and
Ossona de Mendez in [28, 29]. They show that it is closely related to a property of classes
of graphs called quasi-wideness in [7]. They give strong evidence that this property is the
natural limit for methods which rely on the sparsity of graphs. To be precise, they associate
the following parameter with any infinite class C of graphs.

dC = lim
r→∞

lim sup
G∈Cr

log ||G||
log |G| ,

where Cr denotes the collection of graphs that can be obtained as minors of a graph in C by
contracting neighbourhoods of radius at most r. As usual, ||G|| and |G| denote the number
of edges and the number of vertices in G respectively. The remarkable result they then prove
is what they call the trichotomy theorem [29] which states that dC only takes values 0, 1 and 2.
Moreover, the nowhere-dense classes are exactly the ones where it does not take value 2.

So, could it be that first-order satisfaction is fixed-parameter tractable on all nowhere-
dense classes? The connection with quasi-wideness provides some clues. It is easy to estab-
lish that problems such as INDEPENDENT SET are fixed-parameter tractable on such classes.
A paper in the present volume [11] shows that variations on the DOMINATING SET prob-
lem are also fixed-parameter tractable. However, it remains a challenge to extend this to all
first-order definable properties. In particular, such a result would generalise the tractability
of first-order logic on excluded minor classes, which depends on deep decomposition theo-
rems. In contrast, the results in [11] depend on rather more straightforward combinatorial
properties of nowhere-dense classes.
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ABSTRACT. Priced timed automata are emerging as useful formalisms for modeling and analysing a
broad range of resource allocation problems. In this extended abstract, we highlight recent (un)deci-
dability results related to priced timed automata as well as point to a number of open problems.

1 Introduction
The model of timed automata, introduced by Alur and Dill [2, 3], has by now established
itself as a classical formalism for describing the behaviour of real-time systems. A number
of important properties has been shown decidable, including reachability, model checking
and several behavioural equivalences and preorders.

By now, real-time model checking tools such as UPPAAL [11, 39] and KRONOS [30]
are based on the timed automata formalism and on the substantial body of research on this
model that has been targeted towards transforming the early results into practically efficient
algorithms — e.g. [9, 15, 8, 13] — and data structures — e.g.[38, 37, 14, 14].

More recently, model-checking tools in general and UPPAAL in particular have been
applied to solve realistic scheduling problems by a reformulation as reachability problems
— e.g. [34, 35, 1, 41]. Aiming at optimal scheduling, priced timed automata [12, 5] are emerg-
ing as a useful formalism for formulating and solving a broad range of resource allocation
problems of importance in applications areas such as, e.g., embedded systems.

2 Optimal Reachability and Optimal Safety
Within the model of priced timed automata, the cost variables serve purely as evaluation
functions or observers, i.e., the behaviour of the underlying timed automatoa may in no way
depend on the cost variables. As a consequence of this restriction – and in contrast to the
related models of constant slope and linear hybrid automata – a number of optimization
problems have been shown decidable for priced timed automata including minimun-cost
reachability [12, 4, 20], optimal (minimum and maximum cost) reachability in multi-priced
settings [40].

EXAMPLE 1. Consider the timed automaton of Fig. 1(a) with two clocks x and y, and label set
{a, b, c, d, e}. Note that no time can elapse in the middle location due to the invariant (y = 0). The
a, d and e transitions have guards x ≤ 2 and x = 2 respectively. It is clear that no matter which
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Figure 1: (a) A Small Timed Automaton. (b) A Small Priced Timed Automaton. (c) A Small
Cyclic Priced Timed Automaton.

execution – differing in the delay in initial location and whether to choose the b or c transition – the
minimal time for reaching the END location is 2.

Now consider the priced timed automaton of Fig. 1(b). Here the decoration of +10 on a location
indicates that cost increases by 10 per time unit in the location; a decoration −7 on a transition
indicates that taking the transition increases overall cost by 7. Let us compute the minimum cost
that is required for reacing location END. There are two families of executions: those that follow the
b edge and those that follow the c edge. Furthermore, in each family, there is a single parameter t ≤ 2
being the time elapsed in the initial location before the a edge is taken. Hence the minimum cost is:

inf
0≤t≤2

min
(

5t + 10(2− t) + 1
5t + (2− t) + 7

)
= 9

where 5t + 10(2− t) + 1 and 5t + (2− t) + 7 give the cost of executions following the b respectively
the c edge.

Dually, computability of cost-optimal infinite schedules have been established cover-
ing optimal infinite schedules in terms of minimal (or maximal) cost per time ratio in the
limit have been obtained in [21, 22] and optimal infinite schedules in terms of minimal (or
maximal) discounted total cost [33].

EXAMPLE 2. Now reconsider the cyclic priced timed automaton of Fig. 1(c). Due to the simplicity
of the cycle (both x and y are reset at the looping transition), the optimal schedule in terms of minimal
cost per time unit has value (9 + 2)/2 = 5.5.
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Figure 2: (a) A Small Timed Game. (b) A Small Priced Timed Game.

In terms of tool support UPPAAL Cora [36, 16, 17, 42] provides an efficient method for
computing cost-optimal or near-optimal solutions to reachability questions, implementing
a symbolic A∗ algorithm based on a new data strucutre (so-called priced zones) allowing
for efficient symbolic state-representation with additional cost-information.

3 Model-Checking

Cost-extended versions of temporal logics such as CTL (branching-time) and LTL (linear-
time) appear as a natural “generalizations" of the above optimization problems. Just as
TCTL and MTL provide extensions of CTL and LTL with time-constrained modalities, WCTL
and WMTL are extensions with cost-constrained modalities interpreted with respect to priced
timed automata. Unfortunately, the addition of cost now turns out to come with a price:
whereas the model-checking problems for timed automata with respect to TCTL and MTL
are decidable, it has been shown in [31] that model-checking with respect to WCTL is un-
decidable for priced timed automata with three clocks or more. In contrast [27, 28] shows
that model checking with respect to WCTL is decidable under the single clock assumption.
Decidability of WCTL for priced timed automata with two clocks is still an open (and hard)
problem.

EXAMPLE 3. Reconsider the priced timed automaton of Fig. 1(b) (with x ≤ 2 added as an invariant
to the initial location). Then the properties that i) there is a run leading to the location END with cost
no more than 9 and that ii) all runs will lead to END within cost 17 may be expressed as the WCTL
formula EFc≤9END and AFc≤17END, respectively.

4 Priced Timed Games

The models we have considered so far are closed in the sense that all transitions under con-
trol of the the user of the system. This is not sufficient to model embedded systems, where
interaction with an uncontrollable environment is crucial, or systems with some impreci-
sions. These can be modelled using (two-player) timed games [7], in which some actions are
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triggered by the environment. The aim is to control, or guide, the system so that it is guaran-
teed to be safe or correct regardless of the way the environment interferes. An example of a
timed game is depicted in Fig. 2. Here, a winning strategy clearly exists achieving the objec-
tive of reaching location END. Such winning reachability strategies, as well as time-optimal
strategies [6], may be computed using efficient zone-based algorithms. Tool support is now
available in UPPAAL Tiga [10] applying a symbolic on-the-fly algorithm.

It is natural to extend the timed game framework with cost information, hence making
it possible to model uncertainty as well as consumption of resource, and to ask for strategies
which obtain a stated objective in an optimal manner given the particular cost decoration.
The model of priced timed games is the obvious combination of timed games and priced timed
automata.

EXAMPLE 4. Consider the example of the priced timed game of Fig. 2. Now we may want to compute
the minimal cost for reaching the final location END regardless of whether the environment chooses
to take the b or the c edge. As the system cannot control this choice, the minimum cost is given by
the formula:

inf
0≤t≤2

max
(

5t + 10(2− t) + 1
5t + (2− t) + 7

)
= 14.33

As for model checking priced timed automata, optimal winning strategies for priced
timed games have proved much more difficult than simple optimal reachability and safety.
In particular in [32] it has been shown that the problem of determining cost-optimal winning
reachability strategies for priced timed games is not computable. In [19] it has been shown
that these negative results hold even for priced timed (game) automata with no more than
three clocks.

Decidability has been shown for classes of priced timed games with strong zone-like
conditions on the evolution of cost [23, 24] and for one-clock priced timed games [29]. Again
the case of two clocks is as yet unsettled.

5 Energy-Games

In [26] we began the study of a new class of resource scheduling problems, namely that of
constructing infinite schedules or strategies subject to boundary constraints on the accumu-
lation of resources, so-called energy-games or energy-schedules.

More specifically, we consider priced timed automata with positive as well as negative
price-rates. This extension allows for the modelling of systems where resources are not
only consumed but also occasionally produced or regained. In [26] three infinite scheduling
problems was considered: lower-bound where the energy level never must go below zero,
interval-bound where energy level must be maintained within a given interval, and weak
upper bound, which does not prevent energy-increasing behaviour from proceeding once
the upper bound is reached but merely maintains the energy level at the upper bound.

For one-clock priced timed automata both the lower-bound and the lower-weak-upper-
bound problems are shown decidable (in polynomial time) [26], whereas the interval-bound
problem is proved to be undecidable in a game setting. Decidability of the interval-bound
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Figure 3: One-clock priced timed automaton and three types of infinite schedules: lower-
bound (a), lower-upper-bound (b) and lower-weak-upper-bound (c).

problem for one-clock priced timed automata as well as decidability of all of the considered
scheduling problems for priced timed automata with two or more clocks are still unsettled.

EXAMPLE 5. Consider the priced timed automaton in Fig. 3 with infinite behaviours repeatedly
delaying in the three locations for a total duration of one time unit. The negative weights (−3 and−6)
indicate rates by which energy will be consumed, and the positive rate (+6) indicates the rate by
which energy will be gained. Thus, for a given iteration the effect on the energy remaining will
highly depend on the distribution of the one time unit over the three locations. The three types of
schedules given an inital energy level of one are illustrated.

Most recently, the decidability of [26] for the lower-bound problem has been extended
to the setting of “1 1

2 ” priced timed automata and with prices growing either linearly (i.e. ṗ =
k) or exponentially (i.e. ṗ = kp) [25]. By “1 1

2 -clock” priced timed automata we refer to one-
clock priced timed automata augmented with discontinuous (discrete) updates (i.e., p :=
p + c) of the price on edges: discrete updates can easily be encoded using a second clock but
do not provide the full expressive power of two clocks.

Surprisingly, the presence of discrete updates makes the lower-bound problem signif-
icantly more intricate. In particular, whereas region-stable strategies suffice in the search
for infinite lower-bound schedules for one-clock priced timed automata, this is no longer
the case when discrete updates are permitted as can be seen from Fig. 4. Not being able to
rely on the classical region construction, the key to our decidability result is the notion of an
energy function providing an abstraction of a path in the priced timed automaton (Fig. 5).
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ABSTRACT. We report on our experiences in redesigning Scala’s collection libraries, focussing on
the role that type systems play in keeping software architectures coherent over time. Type systems
can make software architecture more explicit but, if they are too weak, can also cause code du-
plication. We show that code duplication can be avoided using two of Scala’s type constructions:
higher-kinded types and implicit parameters and conversions.

1 Introduction
Bit rot is a persistent problem in most long-running software projects. As software systems
evolve, they gain in bulk but lose in coherence and clarity of design. Consequently, main-
tenance costs increase and adaptations and fixes become more complicated. At some point,
it’s better to redesign the system from scratch (often this is not done and software systems
are left to be limping along because the risk of a redesign is deemed to high).

At first glance it seems paradoxical that bits should rot. After all, computer programs
differ from other engineering artefacts in that they do not deteriorate in a physical sense.
Software systems rot not because of rust or material fatigue, but because their requirements
change. Modifying a software system is comparatively easy, so there’s a low threshold to
accepting new requirements, and adaptations and extensions are common. However, if not
done right, every such change can obscure the original architectural design by introducing
a new special case.

Two aspects of software systems tend to accelerate bit rot: lack of explicit design and
code duplication. If the design of a system is not made explicit in detail it risks being under-
mined by changes down the line, in particular from contributors who are new to the system.
Code duplication, on the other hand, is problematic because necessary adaptations might
apply to one piece of code but might be overlooked in a duplicate.

In this paper we explore how a strong static type discipline affects bit rot, using the
Scala collection library as a case study. A collections library is interesting because it provides
a wide variety of operations, spread over several different interfaces of collections, and over
an even larger number of implementations. While there is a high degree of commonality
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among collection interfaces and implementations, the details vary considerably. Thus, ex-
tracting the commonalities is at the same time necessary and non-trivial.

At first glance, a static type system looks like a good basis for a robust collections library
because it can make design decisions explicit and checkable. On the other hand, if the
static type system is not flexible enough to capture some common pattern, it might force
conceptually sharable code to be repeated at each type instance. In the Scala collections
we experienced both of these effects. The first Scala collection library was designed with
a standard repertoire of generics and nominal inheritance and subtyping, close to what is
found in Java or C#. This made a number of constraints explicit, but forced some code to
be duplicated over many classes. As the number of contributors to the code base grew, this
duplication caused a loss of consistency, because additions were either not done in the most
general possible context, or necessary specialisations in subclasses were missed.

We recently set out to redesign the collection libraries with the aim of obtaining at the
same time better architectural coherence and better extensibility. The redesign makes crit-
ical use of two advanced forms of polymorphism available in Scala: higher-kinded types
and implicit parameters and conversions. Higher-kinded types allow to abstract over the
constructor of a collection, independently of its element type. Implicits give a library au-
thor the means to define new type theories which are adapted to the domain at hand. Both
played important roles in cleaning up the collections design.

In this paper we explain the architecture of the original collections library, and how we
addressed its shortcomings in the new Scala 2.8 collections. We then present the architecture
of Scala 2.8 collection framework, and show how it can be extended with new kinds of
collections. We also explain how higher-kinded types and implicits help in making the new
design explicit and checkable and in keeping extensions uniform and concise.

Related work The generalisation of first-order polymorphism to a higher-order system
was a natural step in lambda calculus [6, 18, 2]. This theoretical advance has since been
incorporated into functional programming languages. For instance, the Haskell program-
ming language [8] supports higher-kinded types, and integrates them with type classes [9],
the Haskell approach to ad-hoc polymorphism. However, to the best of our knowledge,
Scala is the only object-oriented language to integrate support for higher-kinded types. We
call this feature “type constructor polymorphism” [13]. Altherr et al. have proposed integ-
rating this into Java [4].

Implicits serve two purposes in Scala: they allow for retroactive extension using the
“pimp-my-library” pattern [15], and they extend the language with support for ad-hoc
polymorphism. Implicits are the minimal addition to an object-oriented language that is
required to encode Haskell’s type classes, and thus support that style of ad-hoc polymorph-
ism. They are more local than type classes in that the applicability of an implicit is controlled
by scope rules, similarly to the modular type class proposal for ML [5]. A type-class like ex-
tension has also been proposed for Java [21].

Ad-hoc polymorphism is similar to parametric polymorphism in the sense that it al-
lows operations to be applicable at varying types, except that, whereas parametrically poly-
morphic operations are truly indifferent to the concrete type that they are applied to, ad-hoc
polymorphic operations take the specific type into account and vary their behaviour accord-
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ingly. Java’s static overloading is a minimal implementation of this abstraction mechanism,
whereas Haskell type classes [20] allow for expressing much richer abstractions.

The literature on the design of collection frameworks has traditionally concentrated on
the Smalltalk language. The “blue book” [7] contains a description of Smalltalk’s original
collection hierarchy. Cook [3] analyses the interfaces inherent in that library which are of-
ten not expressed directly in Smalltalk’s single-inheritance hierarchy. Ducasse and Schärli
describe the use of traits to refactor the Smalltalk collection libraries [1]. Our experience con-
firms their conclusion that composition of traits is an important asset in the design of such
complex libraries. Scala traits differ from their formulation [19] in that Scala traits combine
aspects of symmetric trait composition with aspects of linear mixin composition. Neverthe-
less, the applicability of both forms of traits for modelling collections stays the same. Of
course, Smalltalk is dynamically typed, so none of the previously cited related works ad-
dresses the question how to type collections statically. Naftalin and Wadler describe Java’s
generic collections [14], which are largely imperative, and do not offer higher-order func-
tional operations, so that they pose less challenges to the type system.

Structure of the paper Section 2 gives a quick introduction of the parts of Scala neces-
sary to understand the examples in the rest of this paper. Section 3 presents the original
collection framework as it existed before the redesign and highlights its shortcomings. The
next two sections introduce key abstractions that form the foundation the new collections
library. Section 4 shows how to reduce code duplication by abstracting over the represent-
ation type of the collection, as well as over how to traverse and build it. Section 5 refines
this to abstractions over type constructors. However, neither approach suffices. Section 6
illustrates that we need ad-hoc polymorphism — piece-wise defined type functions — and
introduces implicits as a solution. Section 7 discusses in detail how implicits express piece-
wise defined type functions and integrates them with builders. Section 8 outlines the Scala
2.8 collections hierarchy, and shows how new collection implementations can be integrated
in the framework, illustrating the kind of code re-use that is achieved. Section 9 explains
how the pre-existing primitive classes for arrays and strings can be integrated in the collec-
tions framework. Section 10 concludes.

2 Syntactic Preliminaries
In Scala [16, 17], a class can inherit from one other class and several other traits. A trait is a
class that can be composed with other traits using mixin composition. Mixin composition is
a restricted form of multiple inheritance, which avoids ambiguities by linearising the graph
that results from composing traits that are themselves composites of traits. The difference
between an abstract class and a trait is that the latter can be composed using mixing inher-
itance†. We will use “class” to refer to traits and classes alike, but, for brevity, we will use
trait instead of abstract class in listings.

Identifiers in Scala may consist of symbolic as well as regular identifier characters.
Method calls like xs.++(ys) or xs.take(5) have more lightweight equivalents: xs ++

ys and xs take 5.

†The restrictions imposed on traits to allow mixin composition are not relevant for this paper.
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Figure 1: Some Scala Collection Classes (2.8-specific classes are shaded)

Functions are first-class values in Scala. The type of functions from T to U is writ-
ten T⇒ U. A function literal is also written with an infix “⇒ ”, e.g. (x: Int)⇒ x + 1 for
anonymous successor function over type Int. Type inference often allows to elide the ar-
gument type of a function literal, as in x ⇒ x + 1. Alternatively, and even shorter, the
parameter position may be marked with an underscore, as in (_ + 1). Internally, func-
tions are represented as objects with apply methods. For instance, each of the three above
function literals is expanded to the object

new Function1[Int, Int] {
def apply(x: Int) = x + 1

}

Conversely, function application notation f(e) is available for every object f with an apply

method, and is in each case equivalent to f.apply(e).

3 Status Quo

Scala collections are characterised by four properties: they are object-oriented, optionally per-
sistent, generic, and higher-order.

Object-oriented Collections form a hierarchy, sharing common operations in base traits.
Figure 1 gives an outline of the collections hierarchy as it existed in Scala until version 2.7,
including some of the new classes from Scala 2.8, which have been shaded. At the top
of the original hierarchy is trait Iterable, which represents a collection by means of an
elements method that allows iterating over its elements. Specialisations of Iterable are
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Set for sets, Map for maps, and Seq for sequences. Some of these abstractions have further
specialisations.

For example, the classes SortedSet and SortedMap represent sets or maps which are
sorted, meaning that their iterators return their elements in the natural order of the element
type. Each collection abstraction has multiple implementations. Sequences in trait Seq can
be linked lists, arrays, list buffers, array buffers, or priority queues, to name but a few. The
class hierarchy gives rise to a subtyping relation (<: ) between collections. For instance, Set
is a subtype of Iterable, so that a set can be passed wherever an iterable is expected.

Most operations on collections are represented as methods in the collection classes. For
instance, to retrieve an iterator for the elements in c, one calls c.iterator. The length of
a sequence s can be queried using s.length, and s(i) (short for s.apply(i)) returns its
i’th element.

Optionally persistent Most collection abstractions in the library exists in two forms: mut-
able and immutable. Immutable collections are also called “persistent”; they offer opera-
tions that create new collections from existing ones incrementally, leaving the original col-
lections unchanged. For instance, xs ++ ys creates a new sequence which consists of all
elements of sequences xs, followed by all elements of sequence ys. The sequences xs and
ys remain unchanged. Or, m + (k -> v) creates a new map that augments map m with a
new key/value binding. The original map remains again unchanged. Mutable collections
introduce operations that change the collection in place. For instance, m.update(k, v)

updates a map at key k with the new value v (this can be expressed shorter as m(k) = v).

Generic Most collections are parametric in the type of their elements. For instance, the
type of lists with pairs of integers and strings as elements is List[(Int, String)], and
Map[String, List[String]] represents a map that takes keys of type String to values
of type List[String]. The interaction between subtyping and generics is controlled by
variance annotations. Most persistent collection types are covariant, whereas all mutable
collections are nonvariant.

Variance defines a subtyping relation over parameterised types based on the subtyping
of their element types. For example, class List[+T] introduces the type constructor List,
whose type parameter is covariant. This means that List[A] is a subtype of List[B] iff
A is a subtype of B. With a contravariant type parameter, this is inverted, so that class
OutputChannel[-T] entails that OutputChannel[A] is a subtype of OutputChannel[B] iff
A is a supertype of B. Without an explicit variance annotation, type arguments must be equal
for the constructed types to be comparable.

Some collections restrict their type parameter. Sets backed by red-black trees, for ex-
ample, are only defined for element types that can be ordered.

Higher-order Many operations on collections take functions as arguments. Examples are:
c.foreach(f), which applies the side-effecting function f to each element in c, the col-
lection of the elements in c that satisfy the predicate p can be computed as c.filter(p),
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trait Iterable[+A] {
def filter(p: A ⇒ Boolean): Iterable[A] = . . .
def partition(p: A ⇒ Boolean) = (filter(p(_)), filter((!p(_))))
def map[B](f: A ⇒ B): Iterable[B] = . . .

}

trait Seq[+A] extends Iterable[A] {
override def filter(p: A ⇒ Boolean): Seq[A] = . . .
override def partition(p: A ⇒ Boolean) = (filter(p(_)), filter((!p(_))))
override def map[B](f: A ⇒ B): Seq[B] = . . .

}

Listing 1: Some methods of the Iterable and Seq traits

and c.map(f) produces a new collection with the same size as c, where each element is the
result of applying f to the corresponding element of c.
These operations are defined uniformly for all collections. When they return a collection
result, it is usually of the same class as the collection on which the operation was applied.
For instance if xs is a list then xs map (_ + 1) would yield another list, but if xs was an
array, the same call would again yield an array. The following interaction with Scala REPL
shows that this relationship holds for static types as well as computed values.

scala> val xs = List("hello", "world", "!")
xs: List[java.lang.String] = List(hello, world, !)

scala> xs map (_.length)
res0: List[Int] = List(5, 5, 1)

scala> val ys = Array("hello", "world", "!")
ys: Array[java.lang.String] = Array(hello, world, !)

scala> ys filter (_.length > 1)
res1: Array[java.lang.String] = Array(hello, world)

Base traits like Iterable offer the same operations as their concrete implementations, but
with the base trait as result type. For instance, the following REPL interactions show that ap-
plying map on an Iterable will yield Iterable again as the static result type (even though
the computed value is a subtype).

scala> val zs: Iterable[String] = xs
zs: Iterable[String] = List(hello, world, !)

scala> zs map (_.length)
res2: Iterable[Int] = List(5, 5, 1)

Ideally, a collections framework should also be highly extensible. It should be easy to add
new kinds of collections, or new implementations of existing collections. However, the com-
bination of genericity and immutable higher-order operations makes it difficult to achieve
good extensibility. Consider the filter method of trait Iterable in Listing 1, which must
be specialised in Seq so that it returns a Seq. Every other subclass of Iterable needs a
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similar re-implementation. In the original collection library such implementations had to
be provided explicitly by the implementer of a collection class.

Methods that could in principle be implemented uniformly over all collections also
need to be re-implemented. Consider for example the partition method of Listing 1,
which splits a collection into two sub-collections of elements according to whether they
satisfy a predicate p. This method could in principle be implemented just once in Iterable.
However, to produce the correct static return type, partition still has to be re-implemented
for every subclass, even though its definition in terms of filter is the same in each class.

The problem becomes even more challenging with an operation like map, also shown in
Listing 1. The map method does not return exactly the same type as the type it was invoked
on. It preserves the type constructor, but may apply it to a different element type.

Overall, these re-implementations pose a significant burden on collection imple-
menters. Taking sequences as an example, this type of collection supports about a hundred
methods, of which 20 return the collection type itself as some part of its result, like filter

and partition do, and of which another 10 return the collection type constructor at a dif-
ferent element type, like map does. Every new collection type would have to re-implement
at least these 30 methods.

In practice, this made maintaining and extending the library quite difficult. As the
collection implementation evolved and the number of its contributors increased, it lost
more and more of its consistency. Some operations would be added only to a specific sub-
class, even though they could in principle apply to more general collection types such as
Iterable. Sometimes, a specific implementation would fail to re-implement some of the
methods of the general collection class it inherited from, leading to a loss of type precision.
We observed a pronounced “broken windows” effect: classes of the library that already
contained ad-hoc methods would quickly attract more such methods and become more dis-
organised, whereas classes that started in a clean state tended to stay that way. Over the
course of some years the coherence of the collection design deteriorated to a state where we
felt a complete redesign was needed.

The intention was that the collection library redesign should largely keep to the original
APIs in order to maintain a high degree of backwards compatibility, and also because the
basic structure of these APIs proved to be sound. At the same time, the redesign should
provide effective guards against the kind of bit rot that affected the previous framework.
In the rest of this paper we explain how this goal was achieved and which of Scala’s more
advanced type constructs were instrumental in this.

4 Abstracting over the Representation Type

To avoid code duplication, collection classes such as Traversable or Seq inherit most of
their concrete method implementations from an implementation trait. These implement-
ation traits, which are denoted by the Like suffix, form a shadow hierarchy of the client-
facing side of the collections that were depicted in Figure 1. For example, SeqLike is the
implementation trait for Seq and TraversableLike underlies Traversable.

Listing 2 outlines the core implementation trait, TraversableLike, which backs the
new root of the collection hierarchy, Traversable. The type parameter Elem stands for the



434 EXPERIENCE REPORT: SCALA COLLECTIONS

package scala.collection
trait TraversableLike[+Elem, +Repr] {
protected[this] def newBuilder: Builder[Elem, Repr] // deferred
def foreach[U](f: Elem ⇒ U) // deferred

def filter(p: Elem ⇒ Boolean): Repr = {
val b = newBuilder
foreach { elem ⇒ if (p(elem)) b += elem }
b.result

}
}

Listing 2: An outline of trait TraversableLike

package scala.collection.generic
class Builder[-Elem, +To] {
def +=(elem: Elem): this.type = . . .
def result(): To = . . .
def clear() = . . .
def mapResult[NewTo](f: To ⇒ NewTo): Builder[Elem, NewTo] = . . .

}

Listing 3: An outline of the Builder class.

element type of the traversable whereas the type parameter Repr stands for its represent-
ation. An actual collection class, such as List, can simply inherit the appropriate imple-
mentation trait, and instantiate Repr to List. Thus, clients of List never see the type of
the underlying implementation trait. There are no constraints on Repr, so that it might be
instantiated to a type that is not a subtype of Traversable. Therefore, classes outside the
collections hierarchy such as String and Array can still make use of all operations defined
in this implementation trait.

The two fundamental operations in Traversable are foreach and newBuilder. Both
operations are deferred in class TraverableLike to be implemented in concrete subclasses.
The foreach operation takes a function parameter that is applied to every element in the
traversable collection. The result of the function paraneter is ignored, so functions are ap-
plied for their side effect only. The newBuilder operation creates a “builder” object, from
which new collections can be constructed. All other methods on of Traversable access the
collection using foreach. If they construct a new collection, they always do so through a
builder.

Listing 3 presents a slightly simplified outline of the Builder class. One can add an
element x to a builder b with b += x. There’s also syntax to add more than one element at
once, for instance b += (x, y) to add the two elements x and y, or b ++= xs to add all
elements in the collection xs. The result() method returns a collection from a builder. The
state of the builder is undefined after taking its result, but it can be reset into a new empty
state using clear(). Builders are generic in both the element type Elem and in the type To
of collections they return.
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Often, a builder can refer to some other builder for assembling the elements of a collec-
tion, but then would like to transform the result of the other builder, to give a different type,
say. This task is simplified by the method mapResult in class Builder. For instance, assum-
ing a builder bldr of ArrayBuffer collections, one can turn it into a builder for Arrays like
this:

bldr mapResult (_.toArray)

Given these abstractions, the trait TraversableLike can define operations like filter
in the same way for all collection classes, without compromising efficiency or precision

of type signatures. First, it relies on the newBuilder method to create an empty builder
that’s appropriate for the collection at hand, then, it uses foreach to traverse the existing
collection, appending every elem that meets the predicate p to the builder. Finally, the
builder’s result is the filtered collection.

5 Abstracting over the Collection Type Constructor
While abstracting over the representation type suffices to factor out exactly what varies in
filter’s result type across the collection hierarchy, it cannot capture the variation in map’s
result type. Recall that map is an operation that derives a collection from an existing one by
applying a user-supplied function to each of its elements. For example, if the given function
f goes from String to Int, and xs is a List[String], xs map f should yield a List[Int].
Likewise, if ys is an Array[String], then we expect ys map f to produce an Array[Int].

To provide a precise abstract declaration of map at the top of the collection hierarchy – let
alone a single implementation – we must refine the technique we developed in the previous
section. To make concrete only what distinguishes the individual subclasses, we must be
able to abstract over precisely what varies in these examples, and not more. Thus, we cannot
simply abstract over the representation type, as the variation (of map’s result type) across the
hierarchy is restricted to the type constructor that represents the collection – it does not fix
the type of its elements. The element type depends on the function supplied to map, not on
map’s location in the collection hierarchy. In other words, abstracting over the representation
type is too coarse, since we must be able to vary the element type in the map method.

More concretely, we need to factor out the type constructors List and Array. Thus,
instead of abstracting over the representation type, we abstract over the collection type con-
structor. Abstracting over type constructors requires higher-order parametric polymorph-
ism, which we call type constructor polymorphism in Scala [13]. This higher-order generalisa-
tion of what is typically called “genericity” in object-oriented languages, allows to declare
type parameters, such as Coll, that themselves take (higher-order) type parameters, such
as x in the following snippet:

trait TraversableLike[+Elem, +Coll[+x]] {
def map[NewElem](f: Elem ⇒ NewElem): Coll[NewElem]
def filter(p: Elem ⇒ Boolean): Coll[Elem]

}

Now, List[T] may extend TraversableLike[T, List] in order to specify that mapping
or filtering a list again yields a list, whereas the type of the elements depends on the opera-
tion. Of course, filter’s type can still be expressed as well.



436 EXPERIENCE REPORT: SCALA COLLECTIONS

Thus, with type constructor polymorphism, we can give a single declaration of map
that can be specialised without redundancy in List and Array. Moreover, as discussed in
Section 7, we can even provide a single implementation, where the only variation between
the different concrete subclasses is how to build that concrete collection.

However, important corner cases in the collection hierarchy exhibit variations that are
less uniform than the above examples. In turns out type constructor polymorphism is too
uniform to express the required ad-hoc variations. The next section discusses the general
case and presents the kind of polymorphism that our design hinges on.

6 Ad-hoc Polymorphism with Implicits
The examples from the previous section led us to believe that map’s result type is a simple
“straight-line” function from the concrete collection type (e.g., List or Array) and the type
of the transformed elements to the type of the resulting collection. We assumed we could
simply apply the type constructor of the generic class that represents the collection to the
result type of the mapped function, as mapping a function from Int to String over an
Array of Ints yields an Array[String].

We shall collect the variations in map’s type signature using a triple of types that relates
the original collection, the transformed elements, and the resulting collection. Type con-
structor polymorphism is restricted to type functions of the shape (CC[_], T, CC[T]), for
any type constructor‡ CC and any type T. This section discusses several important examples
that deviate from this pattern, and introduces implicits as a way of expressing them.

The regularity of transforming arrays and lists breaks down when we consider more
specialised collections, such as a BitSet, which must nonetheless fit in our hierarchy. Con-
sider the following interaction with the Scala REPL:

scala> BitSet(1,2,3) map (_ + 1)
res0: scala.collection.immutable.BitSet = BitSet(2, 3, 4)

With a little bit of foresight in Iterable, we can capture this pattern. However, it quickly
goes awry when we consider an equally desirable transformation:

scala> BitSet(1,2,3) map (_.toString+"!")
res1: scala.collection.immutable.Set[java.lang.String] = Set(1!, 2!,

3!)

Because the result type of toString is String and not Int, the result of the map cannot be
a BitSet. Instead a general Set[String] is returned. One might ask why the second map

should be admitted at all. Could one not restrict map on BitSet to mappings from Int to
Int? In fact, such a restriction would be illegal because BitSet is declared to be a subtype
of Set[Int] (and there are good modelling reasons why it should be). Set[Int] provides
a map operation which takes arbitrary functions over Int, so by the Liskov substitution
principle [10] every subtype of Set[Int] must provide the same operation.

This means that our type function for calculating map’s result type must now include
the following triples: (BitSet, Int, BitSet), and (BitSet, String, Set[String]),
and in fact, for every type T different from Int, (BitSet, T, Set[T]). A type function

‡More precisely, for any type constructor CC with one unbounded type parameter.
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that includes only the first triple (BitSet, Int, BitSet) can be expressed using type
constructor polymorphism, but the other ones are out of reach.
Finally, consider transforming maps:

scala> Map("a" -> 1, "b" -> 2) map { case (x, y) ⇒ (y, x) }
res2: scala.collection.immutable.Map[Int,java.lang.String] = Map(1 ->

a, 2 -> b)

scala> Map("a" -> 1, "b" -> 2) map { case (x, y) ⇒ y }
res3: scala.collection.immutable.Iterable[Int] = List(1, 2)

The first function swaps two arguments of a key/value pair. The result of mapping this
function is again a map, but now going in the other direction. In fact, the original yields the
inverse of the original map, provided it is invertible. The second function, however, maps
the key/value pair to an integer, namely its value component. In that case, we cannot form
a Map from the results, but we can still form an Iterable, which is the base trait of Map.

The irregular triples (Map[A, B], (A, B)⇒ (B, A), Map[B, A]) and — assuming
T is not (A, B) — (Map[A, B], (A, B)⇒ T, Iterable[T]) summarise these type signa-
tures, for arbitrary types A, B, and T.

Instead of admitting these ad-hoc type relations between the type of the collection, the
transformation and the result, we could restrict map to recover the regularity that is suppor-
ted by type constructor polymorphism. However, in doing so, we must respect the Liskov
substitution principle. This requires somehow “announcing” these restrictions abstractly in
the top-level type, Iterable. Expressing these restrictions quickly becomes unwieldy so
that this is not a viable alternative.

Shoehorning the collection hierarchy into what is supported by type constructor poly-
morphism would lead to an imprecise interface, code duplication, and thus, in the long
term, bit rot. To avoid these problems, we shall use the type system to express the required
piece-wise defined type functions precisely.

Piece-wise defined type functions are reminiscent of Java’s static overloading, as an
individual case (“piece”) of the type function corresponds to an overloaded method. How-
ever, Java’s static overloading can only express fairly trivial piece-wise defined type func-
tions, rendering it unsuitable for our purposes. Haskell’s type classes [20] provide a suffi-
ciently expressive, and principled solution. Scala introduces implicits, which, together with
Scala’s object-oriented constructs, support ad-hoc polymorphism in much the same way as
type classes.

Implicits

The foundations of Scala’s implicits are quite simple. A method’s last argument list may be
marked as implicit. If such an implicit argument list is omitted at a call site, the compiler
will, for each missing implicit argument, search for the implicit value with the most specific
type that conforms to the type of that argument. For a value to be eligible, it must have been
marked with the implicit keyword, and it must be in the implicit scope at the call site. For
now, the implicit scope may simply be thought of as the scope of a regular value, although
it is actually broader.
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abstract class Monoid[T] {
def add(x: T, y: T): T
def unit: T

}

object Monoids {
implicit object stringMonoid extends Monoid[String] {
def add(x: String, y: String): String = x.concat(y)
def unit: String = ""

}
implicit object intMonoid extends Monoid[Int] {
def add(x: Int, y: Int): Int = x + y
def unit: Int = 0

}
}

Listing 4: Using implicits to model monoids

def sum[T](xs: List[T])(implicit m: Monoid[T]): T =
if(xs.isEmpty) m.unit
else m.add(xs.head, sum(xs.tail))

Listing 5: Summing lists over arbitrary monoids

Listing 4 introduces implicits by way of a simple example. It defines an abstract class of
monoids and two concrete implementations, StringMonoid and IntMonoid. The two im-
plementations are marked with an implicit modifier. Listing 5 implements a sum method,
which works for arbitrary monoids. sum’s second parameter is marked implicit. Because
of that, sum’s recursive call does not need to pass along the m argument explicitly; it is in-
stead provided automatically by the Scala compiler.

After having entered the code snippets in Listings 4 and 5 into the Scala REPL, we can
bring the implicit values in the Monoid object into scope with import Monoids._. This
makes the two implicit definitions of stringMonoid and intMonoid eligible to be passed as
implicit arguments, so that one can write:

scala> sum(List("a", "bc", "def"))
res0: java.lang.String = abcdef

scala> sum(List(1, 2, 3))
res1: Int = 6

These applications of sum are equivalent to the following two applications, where the
formerly implicit argument is now given explicitly.

sum(List("a", "bc", "def"))(stringMonoid)
sum(List(1, 2, 3))(intMonoid)

Implicits are closely related to Haskell’s type classes. Where Scala uses a regular class such
as Monoid, Haskell would use a type class. Implicit values such as stringMonoid and
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intMonoid correspond to instance declarations in Haskell. Implicit parameters correspond
to contexts in Haskell. Conditional instance declarations with contexts in Haskell can be
modelled in Scala by implicit functions that themselves take implicit parameters. For in-
stance, here is a function defining an implicit lexicographical ordering relation on lists which
have element types that are themselves ordered.

implicit def listOrdering[T](xs: List[T])(implicit elemOrd: Ordering[T]) =
new Ordering[List[T]] {
def compare(xs: List[T], ys: List[T]) = (xs, ys) match {
case (Nil, Nil) ⇒ 0
case (Nil, _) ⇒ -1
case (_, Nil) ⇒ 1
case (x :: xs1, y :: ys1) ⇒
val ec = elemOrd.compare(x, y)
if (ec != 0) ec else compare(xs1, ys1)

}
}

7 Implicits for Scala’s collections
The most interesting application of implicits in our design of Scala’s collections library is in
the typing of methods like map, which require expressive ad-hoc polymorphism. We have
seen that the result type of BitSet’s map method can be specified in terms of triples that
relate the source collection, the target element type, and the resulting collection: (BitSet,
Int, BitSet), (BitSet, T, Set[T]). These triples define a piece-wise function on types,
encoded as the implicit instances of the trait CanBuildFrom in Listing 6.

The listing first defines the trait CanBuildFrom, which takes three type parameters: the
Collection type parameter indicates the collection from which the new collection should
be built, the NewElem type parameter indicates the new element type of the collection to be
built, and the Result type parameter indicates the type of that collection itself. The trait has
a single deferred method, apply, which produces a Builder object that constructs a Result
collection from NewElem elements.

The listing then shows the map method in class TraversableLike. This method is
defined for every function result type B and every collection type To such that there exists
an implicit value of CanBuildFrom[Repr, B, To], where Repr is the representation type
of the current collection. In other words, the triple (Repr, B, To) must be populated by a
CanBuildFrom value. We’ll come back to the implementation of map later in this section.

Two such CanBuildFrom values are shown in the companion objects –– the objects that
are co-defined with the classes of the same name – of classes Set and BitSet. Scala’s scope
rules for implicits include the companion object of a type in the implicit scope for that type.
More precisely, when searching for an implicit value of type T, we consider all types S that
form part of T, as well as all the supertypes of any such part S. The companion objects of
all these types may contain implicit definitions which are then in the implicit scope for T.
For instance, when searching for an implicit value of type CanBuildfrom[BitSet, Int,

?To], the BitSet object is in the implicit scope because BitSet forms part of the type of the
requested implicit. The Set object is also in the implicit scope because Set is a superclass of
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trait CanBuildFrom[-Collection, -NewElem, +Result] {
def apply(from: Collection): Builder[NewElem, Result]

}

trait TraversableLike[+A, +Repr] {
def repr: Repr = . . .
def foreach[U](f: A ⇒ U): Unit = . . .
def map[B, To](f: A⇒B)(implicit cbf: CanBuildFrom[Repr, B, To]): To = {
val b = cbf(repr) // get the builder from the CanBuildFrom instance
for (x <- this) b += f(x) // transform element and add
b.result

}
}
trait SetLike[+A, +Repr] extends TraversableLike[A, Repr] { }
trait BitSetLike[+This <: BitSetLike[This] with Set[Int]] extends SetLike[

Int, This] {}

trait Traversable[+A] extends TraversableLike[A, Traversable[A]]
trait Set[+A] extends Traversable[A] with SetLike[A, Set[A]]
class BitSet extends Set[Int] with BitSetLike[BitSet]

object Set {
implicit def canBuildFromSet[B] = new CanBuildFrom[Set[_], B, Set[B]] {
def apply(from: Set[_]) = . . .

}
}

object BitSet {
implicit val canBuildFromBitSet = new CanBuildFrom[BitSet, Int, BitSet] {
def apply(from: BitSet) = . . .

}
}

object Test {
val bits = BitSet(1, 31, 15)
val shifted = bits map (x ⇒ x + 1)
val strings = bits map (x ⇒ x.toString)

}

Listing 6: Encoding the CanBuildFrom type-relation for BitSet



ODERSKY, MOORS FSTTCS 2009 441

BitSet.
Consider now the Test object in Listing 6. It contains two applications of map on the

BitSet value bits. In the first case, the implicit parameter of the map method has a type
of the form CanBuildfrom[BitSet, Int, ?To] because the collection on which the map

is performed is a BitSet and the result type of the new collection is Int. Both shown
CanBuildFrom values are in the implicit scope, and both match the type pattern that is
searched. In this case, the canBuildFromBitSet value in object BitSet is the more specific
of the two, and will be selected.

Implicit resolution uses Scala’s standard member resolution rules for overloading in
order to disambiguate between several applicable implicits, such as canBuildFromSet and
canBuildFromBitSet in the example above. Member resolution orders equivalent mem-
bers according to where they are defined in the subclassing hierarchy, with definitions in
class A preceding over those in class B if A is a subclass of B. This ordering is extended to
companion objects, which can be seen as forming a parallel hierarchy to the corresponding
class hierarchy, somewhat like meta-classes in Smalltalk.

In the second case, the implicit parameter of the map method has a type of the form
CanBuildfrom[BitSet, String, ?To] because the result type of the second function ar-
gument is String. In this case, only the implicit value in Set is applicable and will be
selected.

Type inference takes the availability of an implicit value into account. Thus, when
inferring the type arguments for map, the To type parameter is constrained by the search for
the applicable implicit. In the example, shifted gets type BitSet since the implicit value
canBuildFromBitSet is selected, and for that to be a valid argument for map’s cbf implicit
type parameter, its To type parameter must be BitSet. The definition of strings, on the
other hand, passes canBuildFromBitSet to the map application, with Set[String] as third
type pararameter. Consequently, Set[String] is also the result type of that application.

The second application of map, stored in strings, explains why CanBuildFrom’s first
type parameter is contravariant§: an implicit of CanBuildFrom[BitSet, String, ?To] is
required, where ?To is a type inference variable. We have that BitSet is a subtype of Set. By
contravariance of CanBuildFrom, this means that CanBuildFrom[Set, String, ?To] is a
subtype of CanBuildFrom[BitSet, String, ?To]. Hence, CanBuildFrom[Set, String

, ?To] can be substituted for the required CanBuildFrom[BitSet, String, ?To], and
?To is inferred to be Set[String].

Finding Builders at Run Time

We have seen that map can be given a precise type signature in TraversableLike, but how
do we implement it? Since map has a value of type CanBuildFrom[From, Elem, To],
the idea is to let the implicit canBuildFrom values produce builder objects of type
Builder[Elem, To] that construct collections of the right kind.

However, there is one minor snag. Since implicit resolution is performed at compile
time, it cannot take dynamic types into account. Nonetheless, we expect a List to be created

§The variance of the other type parameters will become apparent in the next section.
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when the dynamic type is List, even if the static type information is limited to Iterable.
This is illustrated by the following interaction with the Scala REPL:

scala> val xs: Iterable[Int] = List(1, 2, 3)
xs: Iterable[Int] = List(1, 2, 3)

scala> xs map (x ⇒ x * x)
res0: Iterable[Int] = List(1, 4, 9)

If CanBuildFrom solely relied on the triple of types (Iterable[Int], Int, Iterable[

Int]) to provide a builder, it could not do better than to statically select a Builder[Int,

Iterable[Int]], which in turn could not build a List. Thus, we add a run-time indirection
that makes this selection more dynamic.

The idea is to give the applymethod of CanBuildfrom access to the dynamic type of the
original collection via its from argument. An instance cbf of CanBuildFrom[Iterable[Int
], Int, Iterable[Int]], is essentially a function from an Iterable[Int] to a Builder

[Int, Iterable[Int]], which constructs a builder that is appropriate for the dynamic
type of its argument. This is shortly explained in more detail. We first discuss how map is
implemented in terms of this abstraction.

The implementation of map in Listing 6 is quite similar to the implementation of filter
shown in Listing 2. The interesting difference lies in how the builder is acquired: whereas
filter called the newBuilder method of class TraversableLike, map uses the instance
of CanBuildFrom that is passed in as a witness to the constraint that a collection of type
To with elements of type B can be derived from a collection with type Repr. This nicely
brings together the static and the dynamic aspects of implicits: they express rich relations
on types, which may be witnessed by a run-time entity. Thus, static implicit resolution
resolves the constraints on the types of map, and virtual dispatch picks the best dynamic
type that corresponds to these constraints.

Most instances of CanBuildFrom use the same structure for this virtual dispatch, so that
we can implement it in GenericTraversableTemplate, the higher-kinded implementation
trait for all traversables, as shown in Listing 7.

Let’s see what happens for a concrete call xs.map(f), where f has static type A ⇒ B,
and xs’s static type is a subtype of GenericTraversableTemplate[A, CC]. The compiler
will statically select an instance of CanBuildFrom[CC[A], B, CC[B]] for the implicit ar-
gument cbf. The call cbf(this) in map will actually be cbf(xs), which, assuming cbf

was a standard instance of GenericCanBuildFrom[B], evaluates to xs.genericBuilder[

B], and finally xs.companion.newBuilder[B]. Thus, whatever the dynamic type of xs, it
must simply implement companion to point to its factory companion object, and implement
the newBuilder method there.

8 Scala 2.8 Collections Hierarchy
In this section we give an architectural summary of the 2.8 collections framework and dis-
cuss how it can be extended by implementers of new collection classes.

Figure 1 gives an overview of some common collection classes. Classes that were added
in the 2.8 framework are shaded in that figure. At the top of the collection hierarchy is now
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trait GenericCompanion[+CC[X] <: Traversable[X]] {
def newBuilder[A]: Builder[A, CC[A]]

}

trait GenericTraversableTemplate[+A, +CC[X] <: Traversable[X]] {
// The factory companion object that builds instances of class CC.
def companion: GenericCompanion[CC]

// The builder that builds instances of CC at arbitrary element types.
def genericBuilder[B]: Builder[B, CC[B]] = companion.newBuilder[B]

}

trait TraversableFactory[CC[X] <: Traversable[X] with
GenericTraversableTemplate[X, CC]]

extends GenericCompanion[CC] {
// Standard CanBuildFrom instance for a CC that’s a traversable.
class GenericCanBuildFrom[A] extends CanBuildFrom[CC[_], A, CC[A]] {
def apply(from: CC[_]) = from.genericBuilder[A]

}
}

Listing 7: GenericCanBuildFrom

class Traversable, which implements all accesses to its data via its foreach method. Class
Traversable is extended by class Iterable, which implements all traversals by means
of an iterator. Iterable is further extended by classes Seq, Set, and Map. Each of these
classes has further subclasses that capture some particular trait of a collection. For instances,
sequences Seq are split in turn into LinearSeq for linear access sequences such as lists and
IndexedSeq for random access sequences such as arrays.

All collection classes are kept in a package scala.collection. This package has three
subpackages: mutable, immutable, and generic. Most collections exist in three forms,
depending on their mutability.

A collection in package scala.collection.immutable is guaranteed to be immutable
for everyone. That means one can rely on the fact that accessing the same collection value
over time will always yield a collection with the same elements.

A collection in package scala.collection.mutable is known to have some opera-
tions that change the collection in place.

A collection in package scala.collection can be either mutable or immutable. For
instance, collection.Seq[T] is a superclass of both collection.immutable.Seq[T]

and collection.mutable.Seq[T]. Generally, the root collections in package scala.

collection define the same interface as the immutable collections, and the mutable col-
lections in package scala.collection.mutable typically add some destructive modific-
ation operations to this immutable interface. The difference between root collections and
immutable collections is that a user of an immutable collection has a guarantee that nobody
can mutate the collection, whereas users of root collections have to assume modifications by
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package mycollection
import collection.generic.{CanBuildFrom, GenericTraversableTemplate,

GenericCompanion, SeqFactory}
import collection.mutable.{Builder, ArrayBuffer}

class Vector[+A](buf: ArrayBuffer[A])
extends collection.immutable.IndexedSeq[A]

with collection.IndexedSeqLike[A, Vector[A]]
with GenericTraversableTemplate[A, Vector] {

override def companion: GenericCompanion[Vector] = Vector
def length = buf.length
def apply(idx: Int) = buf.apply(idx)

}

object Vector extends SeqFactory[Vector] {
implicit def canBuildFrom[A]: CanBuildFrom[Vector[_], A, Vector[A]] =
new GenericCanBuildFrom[A]

def newBuilder[A]: Builder[A, Vector[A]] =
new ArrayBuffer[A] mapResult (buf ⇒ new Vector(buf))

}

Listing 8: A sample collection implementation.

others, even though they cannot do any modifications themselves.
The generic package contains building blocks for implementing various collections.

Typically, collection classes defer the implementations of some of their operations to classes
in generic. Users of the collection framework, on the other hand, should need to refer at
classes in generic only in exceptional circumstances.

Integrating new collections

The collection framework is designed to make it easy to add new kinds of collections to
it. As an example, Listing 8 shows a simple yet complete implementation of immutable
vectors.

The Vector trait inherits from three other traits. It inherits from scala.collection

.immutable.IndexedSeq to specify that Vector is a subtype of a random access se-
quence and is immutable. It inherits most of implementations of its methods from the
IndexedSeqLike trait, specialising the representation type to Vector[A]. Finally, Vector
mixes in GenericTraversableTemplate, and instantiates the type parameter that abstracts
over the collection type constructor to Vector.

Only three abstract methods remain to be implemented. Two of these, length and
apply, are related to querying an existing sequence, while the third, companion, is involved
in creating new sequences. The method length yields the length of the sequence, and
apply returns an element at a given index. These two operations are implemented in trait
Vector. For simplicity’s sake they simply forward to the same operation of an underlying
ArrayBuffer. Of course, the actual implementation of immutable vectors is considerably
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more refined algorithmically, and more efficient.
The third method, companion, is declared in GenericTraversableTemplate. Vector

defines it to refer to its companion object, which specifies the CanBuildFrom case for
Vector. This ensures that calling map on a Vector yields a Vector. As discussed in Sec-
tion 7, the implicit value that populates the CanBuildFrom relation on types is an instance
of GenericCanBuildFrom, which delegates the creation of the Vector-specific builder to
the newBuilder method. This method creates an array buffer (which is a specialised kind
of builder), and transforms results coming out of this buffer into instances of Vector. That’s
the minimal functionality required for instances of GenericTraversableTemplate.

As an added convenience, the Vector object inherits from class SeqFactory which
makes available a large set of creation methods for vectors.

With the setup as described in Listing 8 the Vector class is fully integrated into the col-
lections hierarchy. It inherits all methods defined on indexed sequences and all construction
methods for such sequences can be applied to it. The following REPL script shows some of
the operations that are supported. First, here are some ways to construct vectors:

import mycollection.Vector

scala> val v = Vector(1, 2, 3)
v: mycollection.Vector[Int] = Vector(1, 2, 3)

scala> val ev = Vector.empty
ev: mycollection.Vector[Nothing] = Vector()

scala> val zeroes = Vector.fill(10)(0)
zeroes: mycollection.Vector[Int] = Vector(0, 0, 0, 0, 0, 0, 0, 0, 0,

0)

scala> val squares = Vector.tabulate(10)(x ⇒ x * x)
squares: mycollection.Vector[Int] = Vector(0, 1, 4, 9, 16, 25, 36,

49, 64, 81)

scala> val names = Vector("Jane", "Bob", "Pierre")
names: mycollection.Vector[java.lang.String] = Vector(Jane, Bob,

Pierre)

scala> val ages = Vector(21, 16, 24)
ages: mycollection.Vector[Int] = Vector(21, 16, 24)

To continue, here are some operations on vectors.

scala> val persons = names zip ages
persons: mycollection.Vector[(java.lang.String, Int)] =

Vector((Jane,21), (Bob,16), (Pierre,24))

scala> val (minors, adults) = persons partition (_._2 <= 18)
minors: mycollection.Vector[(java.lang.String, Int)] =

Vector((Bob,16))
adults: mycollection.Vector[(java.lang.String, Int)] =

Vector((Jane,21), (Pierre,24))
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scala> val adultNames = adults map (_._2)
adultNames: mycollection.Vector[Int] = Vector(21, 24)

scala> val totalAge = ages reduceLeft (_ + _)
totalAge: Int = 61

To summarise: To fully integrate a new collection class into the framework one needs to pay
attention to the following points:

1. Decide whether the collection should be mutable or immutable.
2. Pick the right base classes for the collection.
3. Inherit from the right template trait to implement most collection operations.
4. If one wants map and similar operations return instances of the collection type, provide

an implicit builder factory in the companion object.
5. If the collection should have dynamic type adaptation for map and operations like it,

one should also inherit from GenericTraversableTemplate, or implement equival-
ent functionality.

A simpler scheme is also possible if one does not need bulk operations like map or filter
to return the same collection type. In that case one can simply inherit from some general
collection class like Seq or Map and implement any additional operations directly.

9 Dealing with Arrays and Strings

The integration of arrays into the Scala collection library has turned out to be very chal-
lenging. This has mostly to do with the clash between requirements and the constraints
imposed by Java and the JVM. On the one hand, arrays play an important role for interop-
eration with Java, which means that they need to have the same representation as in Java.
This low-level representation is also useful to get high performance out of arrays. But on
the other hand, arrays in Java are severely limited.

First, there’s actually not a single array type representation in Java but nine different
ones: one representation for arrays of reference type and another eight for arrays of each of
the primitive types byte, char, short, int, long, float, double, and boolean. Unfortu-
nately, java.lang.Object is the most specific common type for these different represent-
ations, even though there are some reflective methods to deal with arrays of arbitrary type
in java.lang.reflect.Array. Second, there’s no way to create an array of a generic type;
only monomorphic array creations are allowed. Third, arrays only support operations for
indexing, updating, and getting their length.

Contrast this with what we would like to have in Scala: Arrays should slot into the
collections hierarchy, supporting the roughly one hundred methods that are defined on se-
quences. And they should certainly be generic, so that one can create an Array[T] where T
is a type variable.

The previous collection design dealt with arrays in an ad-hoc way. The Scala compiler
wrapped and unwrapped arrays when required in a process called boxing and unboxing,
similarly to what is done to treat primitive numeric types as objects. Additional “magic”
made generic array creation work. An expression like new Array[T] where T is a type
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parameter was converted to new BoxedAnyArray[T]. BoxedAnyArray was a special wrap-
per class which changed its representation depending on the type of the concrete Java array to
which it was cast. This scheme worked well enough for most programs but the implement-
ation “leaked” for certain combinations of type tests and type casts, as well as for observing
uninitialised arrays. It also could lead to unexpectedly low performance. Some of the prob-
lems have been described by David MacIver [11] and Matt Malone [12]. Moreover, boxed
arrays were unsound when combined with covariant collections. In summary, the old ar-
ray implementation technique was problematic because it was a leaky abstraction that was
complicated enough so that it would be very tedious to specify where the leaks were to be
expected.

The obvious way to reduce the amount of “magic” needed for arrays is to have two
representations: one that corresponds closely to a Java array and another that forms an in-
tegral part of Scala’s collection hierarchy. Implicit conversions can be used to transparently
convert between the two representations. A possible downside of having two array types
would be that it forces programmers to choose the kind of array to work with. That choice
would not be clear-cut: the Java-like arrays would be fast and interoperable whereas the
Scala native arrays would support a much nicer set of operations on them. With a choice
like this, one would expect different components and libraries to make different decisions,
which would result in incompatibilities and brittle, complex code. In a word, an ideal en-
vironment for future bit rot.

Fortunately, the introduction of implementation traits in 2.8 collections offers a way out
of that dilemma of choice. Arrays can be integrated into this framework using two implicit
conversions. The first conversion maps an Array[T] to an object of type ArrayOps, which
is a subtype of type IndexedSeqLike[T, Array[T]]. Using this conversion, all sequence
operations are available for arrays at the natural types. In particular, methods will always
yield arrays instead of ArrayOps values as their results. Because the results of these implicit
conversions are so short-lived, modern VM’s can eliminate them altogether using escape
analysis, so we expect the calling overhead for these added methods to be essentially zero.

So far so good. But what if we need to convert an array to a real Seq, not just call a
Seq method on it? This is handled by another implicit conversion, which takes an array
and converts it into a WrappedArray. WrappedArrays are mutable, indexed sequences that
implement all sequence operations in terms of a given Java array. The difference between
a WrappedArray and an ArrayOps object is apparent in the type of methods like reverse:
Invoked on a WrappedArray, reverse again returns a WrappedArray, but invoked on an
ArrayOps object, it returns an Array. The conversion from Array to WrappedArray is in-
vertible. A dual implicit conversion goes from WrappedArray to Array. WrappedArray and
ArrayOps both inherit from an implementation trait ArrayLike. This is to avoid duplica-
tion of code between ArrayOps and WrappedArray; all operations are factored out into the
common ArrayLike trait.

Avoiding ambiguities. The two implicit conversions from Array to ArrayLike values are
disambiguated according to the rules explained in Section 7. Applied to arrays, this means
that we can prioritise the conversion from Array to ArrayOps over the conversion from
Array to WrappedArray by placing the former in the standard Predef object (which is vis-
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ible in all user code) and by placing the latter in a class LowPriorityImplicits, which is
inherited by Predef. This way, calling a sequence method will always invoke the conver-
sion to ArrayOps. The conversion to WrappedArray will only be invoked when an array
needs to be converted to a sequence.

Integrating Strings. Strings pose similar problems as arrays in that we are forced to pick
an existing representation which is not integrated into the collection library and which can-
not be extended with new methods because Java’s String class is final. The solution for
strings is very similar as the one for arrays. There are two prioritised implicit conversions
that apply to strings. The low-priority conversion maps a string to an immutable indexed
sequence of type scala.collection.immutable.IndexedSeq. The high-priority conver-
sion maps a string to a (short-lived) StringOps object which implements all operations of
an immutable indexed sequence, but with String as the result type. The previous collec-
tion framework implemented only the first conversion. This had the following undesirable
effect:

"abc" != "abc".reverse.reverse

This unintuitive behaviour occurred because the result of the double reverse in previous
Scala collections was a Seq instead of a String, so Java’s built-in operation of equality an
strings failed to recognise it as equal to the string. In the new collection framework, the high-
priority conversion to StringOps will be applied instead, so that "abc".reverse.reverse
yields a String and the equality holds.

Generic Array Creation and Manifests. The only remaining question is how to imple-
ment generic array creation. Unlike Java, Scala allows an instance creation new Array[T]

where T is a type parameter. How can this be implemented, given the fact that there does
not exist a uniform array representation in Java? The only way to do this is to require ad-
ditional run-time information which describes the type T. Scala 2.8 has a new mechanism
for this, which is called a Manifest. An object of type Manifest[T] provides complete
information about the type T. Manifest values are typically passed in implicit parameters,
and the compiler knows how to construct them for statically known types T. There exists
also a weaker form named ClassManifest which can be constructed from knowing just the
top-level class of a type, without necessarily knowing all its argument types. It is this type
of runtime information that’s required for array creation.

10 Conclusion
As this paper is written we are about to release Scala 2.8 with its new collections library. So
it is too early to tell whether the new design withstands bit rot better than the old one did.
Nevertheless, we have reasonable grounds for hoping that this will be the case.

The new collection design is far more regular than the old one and makes many as-
pects of its structure more explicit. Mutability aspects are consistently expressed by placing
collections in the right package. Reusable method implementations are separated from cli-
ent interfaces in implementation classes. This allowed us to have simple and intuitive types
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like Seq[String] or Map[String, Int] for clients yet have implementation classes expose
their representation as in additional type parameter that can be instantiated as needed by
implementers. There is a common universal framework of builders and traversal methods.
Code duplication is almost completely absent (There is still a certain amount of duplicated
boilerplate code in the definition of so called views, which are by-name transforms of ex-
isting collections, but these views are typically not extended by third parties). Arrays and
strings are cleanly integrated into the collections framework with implicit conversions in-
stead of requiring special compiler support.

Getting this design right was very hard, however. It took us about a year to go from
a first sketch to the final implementation. In doing this work, we also encountered some
dead ends. Initially, we anticipated that most of the flexibility and opportunities for code-
reuse of the framework would come from higher-kinded types. In retrospect this turned
out to be a false assumption, because requirements on the element type of collections varied
from collection to collection. So common methods on collections had to be defined piece-
wise. They would return a specialised collection for some element types, and a more general
“fall-back” collection for other element types. In the course of the project, we learned how
to use implicits to define these piece-wise functions. More generally, we came to appreciate
how implicits can encode rich user-defined type theories. So, in the end higher-kinded types
played a smaller role than anticipated and implicits played a much larger role.

Nevertheless, type constructor polymorphism did find a useful application niche in
the collections framework, where it came to generate factories for collection classes. This
application worked out fine because setting up a factory by inheriting from a factory class
which takes higher-kinded type parameters is done on a case-by-case basis. Collections
which pose additional constraints on the higher-kinded type parameter can simply choose
not to inherit from TraversableFactory and implement the required methods themselves.
By contrast, implementation classes follow a subtyping hierarchy; any specification made
higher up in the hierarchy needs to hold up for all inheriting classes. So the lesson drawn
is not that higher-kinded types per se are of limited utility, but that they sometimes interact
in awkward ways with a rich subtyping hierarchy. In some sense this is a new facet of the
fragile baseclass problem.
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ABSTRACT. We describe a simple iterative method for proving a variety of results in combinatorial
optimization. It is inspired by Jain’s iterative rounding method (FOCS 1998) for designing approx-
imation algorithms for survivable network design problems, and augmented with a relaxation idea
in the work of Lau, Naor, Salvatipour and Singh (STOC 2007) on designing an approximation al-
gorithm for its degree bounded version. At the heart of the method is a counting argument that
redistributes tokens from the columns to the rows of an LP extreme point. This token argument
was further refined to fractional assignment and redistribution in work of Bansal, Khandekar and
Nagarajan on degree-bounded directed network design (STOC 2008).
In this presentation, we introduce the method using the assignment problem, describe its applica-
tion to showing the integrality of Edmond’s characterization (1971) of the spanning tree polyhedron,
and then extend the argument to show a simple proof of the Singh and Lau’s approximation algo-
rithm (STOC 2007) for its degree constrained version, due to Bansal, Khandekar and Nagarajan. We
conclude by showing how Jain’s original proof can also be simplified by using a fractional token
argument (joint work with Nagarajan and Singh).
This presentation is extracted from an upcoming monograph on this topic co-authored with Lau and
Singh.

1 Introduction

Iterative methods are an important tool in the growing toolkit available for designing ap-

proximation algorithms based on linear programming relaxations. First we motivate our

method via the assignment problem. Through this problem we highlight the basic ingredi-

ents and ideas of the method and provide an outline of how a typical result proved using

this method is structured. In the following sections, we apply this method to the classical

minimum spanning tree problem, and extend it to derive an approximation algorithm for

the degree-bounded version. In the last section, we present an application to re-derive an

old result of Jain on LP extreme points for survivable network design problems.

The Assignment Problem: Consider the classical assignment problem: Given a bipar-

tite graph G = (U ∪ V, E) with |U| = |V| and weight function w : E → R+, the objective is

to match every vertex in U with a distinct vertex in V to minimize the total weight (cost) of

the matching. This is also called the minimum weight bipartite perfect matching problem

in the literature, and is a fundamental problem in combinatorial optimization.

One approach to the assignment problem is to model it as a linear programming prob-

lem. A linear program is a mathematical formulation of the problem with a system of linear
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constraints which can contain both equalities and inequalities, and also a linear objective

function that is to be maximized or minimized. In the assignment problem, we associate a

variable xuv for every (u, v) ∈ E. Ideally, we would like the variables to take one of two val-

ues, zero or one (hence in the ideal case, they are binary variables). When xuv is set to one,

we intend the model to signal that this pair is matched; when xuv is set to zero, we intend

the model to signal that this pair is not matched. The following is a linear programming

formulation of the assignment problem.

minimize ∑
u,v

wuv xuv

subject to ∑
v:{u,v}∈E

xuv = 1 ∀ u ∈ U

∑
u:{u,v}∈E

xuv = 1 ∀ v ∈ V

xuv ≥ 0 ∀ {u, v} ∈ E

The objective function is to minimize the total weight of the matching, while the two sets of

linear equalities ensure that every vertex in U is matched to exactly one vertex in V in the

assignment and vice-versa.

A fundamental result in the Operations Research literature [8] is the polynomial time

solvability (as well as the practical tractability) of linear programming problems. There is

also a rich theory of optimality (and certificates for it) that has been developed (see e.g.,

the text by Chvatal [3]). Using these results, we can solve the problem we have formulated

above quite effectively for even very large problem sizes.

Returning to the formulation however, our goal is to find a ”binary” assignment of

vertices in U to vertices in V, but in the solution returned, the x-variables may take fractional

values. Nevertheless, for the assignment problem, a celebrated result that is a cornerstone of

combinatorial optimization [2] states that for any set of weights that permit a finite optimal

solution, there is always an optimal solution to the above LP (linear program) that takes

binary values in all the x-variables.

Such integrality results of LPs are few and far between, but reveal rich underlying struc-

ture for efficient optimization over the large combinatorial solution space [13]. They have

been shown using special properties of the constraint matrix of the problem (such as total

unimodularity), or of the whole linear system including the right hand side (such as total

dual integrality). This article is about a simple and fairly intuitive method that is able to

re-prove many (but not all) of the results obtained by these powerful methods. One advan-

tage of our approach is that it can be used to incorporate additional constraints that make

the problem computationally hard, and allow us to derive good approximation algorithms

with provable performance guarantee for the constrained versions.

2 Iterative Algorithm

Our method is iterative. Using the following two steps, it works inductively to show that

the LP has an integral optimal solution.
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• If any xuv is set to 1 in an optimal solution to the LP, then we take this pair as matched

in our solution, and delete them both to get a smaller problem, and proceed to the next

iteration.

• If any variable xuv is set to 0 in the optimal solution, we remove the edge (u, v) to

again get a smaller problem (since the number of edges reduces by 1) and proceed to

the next iteration.

We continue the above iterations till all variables have been fixed to either 0 or 1. Given

the above iterative algorithm, there are two claims that need to be proven. Firstly, that the

algorithm works correctly, i.e., it can always find a variable with value 0 or 1 in each iteration

and secondly, the matching selected is an optimal (minimum weight) matching. Assuming

the first claim, the second claim can be proved by a simple inductive argument. The crux of

the argument is that in each iteration our solution pays exactly what the fractional optimal

solution pays. Moreover, the fractional optimal solution when restricted to the residual

problem remains feasible for the residual problem. This allows us to apply an inductive

argument to show that the matching we construct has the same weight as the fractional

optimal solution, and is thus optimal. For the first claim, it is not clear a-priori that one

can always find a variable with value 1 or 0 at every step. However, we use the important

concept of the extreme point (or vertex) solutions of linear program to show that the above

iterative algorithm works correctly.

DEFINITION 1. Let P = {x : Ax = b, x ≥ 0} ⊆ R
n. Then x ∈ R

n is an extreme point

solution of P if there does not exist a non-zero vector y ∈ R
n such that x + y, x− y ∈ P.

Extreme point solutions are also known as vertex solutions and are equivalent to ba-

sic feasible solutions [3]. The following basic result shows that there is always an optimal

extreme point solution to bounded linear programs.

LEMMA 2. Let P = {x : Ax = b, x ≥ 0} and assume that the optimum value min{cT x :

x ∈ P} is finite. Then for any feasible solution x ∈ P, there exists an extreme point solution
x′ ∈ P with cTx′ ≤ cTx.

The following “Rank lemma” is an important ingredient in the correctness proofs of all

iterative algorithms.

LEMMA 3. Let P = {x : Ax = b, x ≥ 0} and let x be an extreme point solution of P such
that xi > 0 for each i. Then the number of variables is equal to the number of linearly

independent constraints of A, i.e. the rank of A.

2.1 Contradiction Proof Idea: Lower Bound > Upper Bound

We give an outline of the proof that at each iteration there exists a variable with value 0 or

1. Suppose for contradiction that 0 < xe < 1 for every edge e. We use this assumption

to derive a lower bound on the number of variables of the linear program. Let n be the

remaining vertices in U (or V, they have the same cardinality) at the current iteration. Then

each vertex in U must have two edges incident on it, since ∑v∈V:(u,v)∈E xuv = 1 and xuv < 1

for each (u, v) ∈ E. Thus the total number of edges is at least 2n. This is a lower bound on

the number of variables of the linear program, since we have one variable for each edge.
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On the other hand, using the Rank Lemma, we derive an upper bound on the number of

variables of the linear program. In the linear program for bipartite matching, we have only

2n constraints (one for each vertex in U ∪V). Moreover, these 2n constraints are dependent

since the sum of the constraints for vertices in U equals the sum of the constraints for vertices

in V. Hence, the number of linearly independent constraints is at most 2n− 1. By the Rank

Lemma, the number of variables is at most 2n − 1. This provides us an upper bound on

the number of variables. Since our upper bound is strictly smaller than the lower bound,

we obtain the desired contradiction. Therefore, in an extreme point solution of the linear

program for bipartite matching, there must exist a variable with value 0 or 1, and thus the

iterative algorithm works. The number of iterations can be simply bounded by the number

of edges in the bipartite graph.

3 Outline of the Approach

We now give a brief outline of the approach to designing algorithms with this approach. The

method can be used to prove the integrality of the LP relaxation of a well-studied problem,

and once this is well understood, the iterative proof of integrality can be extended to design

approximation algorithms for NP-hard variants of the basic problems. Both components

follow the natural outline described below.

1. Linear Programming Formulation: We start by giving a linear programming relax-

ation for the optimization problem we study. If the problem is polynomially solvable,

this relaxation will be one with integral extreme points and that is what we will set

out to show. If the problem is NP-hard, we state an approximation algorithmic result

which we then set out to prove.

(a) Solvability: Sometimes the linear programming relaxation we start with will be

exponential in size. We then show that the linear program is solvable in poly-

nomial time. Usually, this would entail providing a polynomial time separation

oracle for the program using the formalism of the ellipsoid method [7]. Infor-

mally, the separation oracle is a procedure that certifies that any given candidate

solution for the program is either feasible or not and in the latter case provides

a separating hyperplane which is a violated inequality of the formulation. In

programs with an exponential number of such inequalities that are implicity de-

scribed, the design of the separation oracle is itself a combinatorial optimization

problem, and we sketch the reduction to one.

2. Characterization of Extreme Point Solution: We then give a characterization result for

the optimal extreme point solutions of the linear program based on the Rank Lemma 3.

This part aims to show that any maximal set of independent tight constraints at this

extreme point solution can be captured by a sparse structure. Sometimes the proof of

this requires the use of the uncrossing technique [2] in combinatorial optimization.

3. Iterative Algorithm: We present an iterative algorithm for constructing an integral

solution to the problem from the vertex solution. The algorithm has two simple steps.

(a) If there is a variable in the optimal vertex solution that is set to a value of 1, then

include the element in the integral solution.

(b) If there is a variable in the optimal vertex solution that is set to a value of 0, then
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remove the corresponding element.

In each of the above cases, at each iteration, we reduce the problem and arrive at a

residual version and iterate until all variables have been set this way. In designing

approximation algorithms we also use the rounding and relaxation steps as stated

earlier.

4. Analysis: We then analyze the algorithm. This involves arguing the following two

facts. First, we establish that the algorithm runs correctly and second, that it returns

an optimal solution.

(a) Correctness: We show that the iterative algorithm is correct by arguing that there

is always a 1-element or a 0-element to pick in every iteration. This crucially uses

the characterization of tight constraints at this optimal extreme point solution.

The argument here also follows the same contradiction proof idea (lower bound

> upper bound): We assume for a contradiction that there is no 1-element or

0-element and get a large lower bound on the number of nonzero variables in

the optimal extreme point solution. On the other side, we use the sparsity of the

independent tight constraints to show an upper bound on the number of such

constraints. This then contradicts the rank lemma that insists that both these

numbers are equal, and proves that there is always a 1- or 0-element.

(b) Optimality: We finally show that the iterative algorithm indeed returns an opti-

mal solution using a simple inductive argument. The crux of this argument is to

show that the extreme point solution induced on the residual problem remains

a feasible solution to this residual problem.

3.1 Approximation Algorithms for NP-hard Problems

The above framework can be naturally adapted to provide an approximation algorithm via

the iterative method. In particular, for this, the iterative algorithm above typically has one

or both of two additional steps: Rounding and Relaxation.

1. Rounding: Fix a threshold α ≥ 1. If there is a variable xi which in the optimal extreme

point solution has a value of at least 1
α then include the corresponding element in the

solution.

Adding this rounding step does not allow us to obtain optimal integral solution but

only near-optimal solutions. Using the above step, typically one obtains an approxi-

mation ratio of 1
α for covering problems addressed using this framework.

2. Relaxation: Fix a threshold β. If there is a constraint ∑i aixi ≤ b such that ∑i ai ≤ b + β

then remove the constraint in the residual formulation.

The iterative relaxation step removes a constraint and hence this constraint can be

violated in later iterations. But the condition on the removal of the constraints ensures

that the constraint is only violated by an additive amount of β. This step enables us to

obtain additive approximation algorithms for a variety of problems.

To summarize, for designing approximation algorithms, we first study the exact op-

timization problem in the above framework. We then use the above two steps in various

combinations to derive strong approximation algorithms for constrained versions of these

exact problems.
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4 Minimum Spanning Trees

In an instance of the Minimum Spanning Tree (MST) problem we are given an undirected

graph G = (V, E), edge costs given as c : E → R, and the task is to find a spanning tree of

minimum total edge cost.

4.1 Linear Programming Relaxation

An exact linear formulation for the convex hull of integral spannign trees is the subtour

elimination LP which is related to the study of the Traveling Salesman Problem. For S ⊆ V,

define E(S) to be the set of edges with both endpoints in S. For a spanning tree, there are

at most |S| − 1 edges in E(S), where |S| denotes the number of vertices in S. Insisting on

this for every set by using the constraint (2) eliminates all the potential subtours that can be

formed in the LP solution: this is how the formulation gets its name.

minimize ∑
e∈E

ce xe (1)

subject to x(E(S)) ≤ |S| − 1 ∀ ∅ 6= S ⊂ V (2)

x(E(V)) = |V| − 1 (3)

xe ≥ 0 ∀ e ∈ E (4)

We will present an iterative algorithm which will prove that the subtour LP is integral.

THEOREM 4. Every extreme point solution to the subtour LP is integral and corresponds to
the characteristic vector of a spanning tree.

Before we give the iterative algorithm and proof of Theorem 4, we show that one can

optimize over the subtour LP in polynomial time. We show this giving a polynomial time

separation oracle for the constraints in subtour LP. Polynomial time solvability now follows

from results on the equivalence of separation and optimization [7].

THEOREM 5. There is a polynomial time separation oracle for the subtour LP.

PROOF. The separation oracle, given a fractional solution x, needs to find a set S ⊆ V such

that x(E(S)) > |S| − 1 if such a set exists. It is easy to check the equality x(E(V)) = |V| − 1.

Thus, checking the inequality for S is equivalent to checking if minS{|S| − 1− x(E(S))} < 0.

Using x(E(V)) = |V| − 1 we obtain that it is enough to check minS{|S| − 1 + x(E(V)) −
x(E(S)} < |V| − 1} or equivalently if minS{|S|+ x(E(V))− x(E(S)} < |V|}.

We set up a min-cut problem in a new digraph D with a new source s and new sink t.

We also have one node in the digraph per edge e in the support (i.e., with xe > 0) and a node

per vertex of G. The source s has an arc to every edge e with capacity xe. For every edge

e = i, j in G, its corresponding node in D has two arcs of infinite capacity, one to each of the

vertices i and j. Finally, every vertex i has an arc of unit capacity to t. To find a violated cut,

we need to check if the min s− t cut is smaller than |V|.
Suppose there is a violated set S with x(E(S)) > |S| − 1. Then consider the cut formed

by including on the side of s, all the nodes of D corresponding to edges in E(S) as well as the
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vertices of S. The set of arcs coming out of this cut are those coming out of the vertices of S

and hence have capacity |S|. All edges not in E(S), namely in E(V)− E(S), must now have

their incoming arc from s in the cut for a total capacity contribution of x(E(V))− x(E(S)).

Thus a violated cut will have cut value less than |V|.
Conversely, suppose the min-cut solution returns one of value less than |V|: we show

how to extract a violated set from it. Since every node in D corresponding to an edge e

of G has both its outgoing arcs with infinite capacity, if such a node (say e = i, j) is in the

s-side of the min cut, then both its successors (i.e. both i and j) must also be in the s-side of

the minimum cut. Similarly, if we take all the vertices of G in the s-side of the min-cut, all

edges of G which do not have both their endpoints in this set will have to lie on the t-side

of this cut. If the min-cut found has the set S′ in the s-side of the cut, the capacity of the

cut is precisely |S| (from the unit arcs going from these nodes to t) plus the x-value of all

edges that do not have both end points in S, namely x(E(V))− x(E(S′)) as required. If this

min-cut value is less than |V|, we can see that S′ is a violating set.

4.2 Characterizations of Extreme Point Solutions via the Uncrossing Technique

In this subsection, we analyze the extreme point solution to the subtour LP. Recall that an

extreme point solution is the unique solution defined by n linearly independent tight in-

equalities, where n is the number of variables in the linear program. There are exponen-

tially many inequalities in the subtour LP, and an extreme point solution may satisfy many

inequalities as equalities. To analyze an extreme point solution, an important step is to find

a “good” set of tight inequalities defining it. If there is an edge e with xe = 0, this edge

can be removed from the graph without affecting the feasibility and the objective value. So

henceforth assume every edge e has xe > 0.

The uncrossing technique is a powerful technique and we shall use it to find a good set

of tight inequalities for an extreme point solution in the subtour LP. Let E(X, Y) denotes the

set of edges with one endpoint in X and the other endpoint in Y, and let E(X) = E(X, X)
denote the set of edges of G induced in X ⊆ V(G). For a set F ⊆ E, let χ(F) denote the

vector in R
|E| that has an 1 corresponding to each edge e ∈ F, and 0 otherwise. This vector

is called the characteristic vector of F. The following proposition is straightforward.

PROPOSITION 6. For X, Y ⊆ V,

χ(E(X)) + χ(E(Y)) ≤ χ(E(X ∪Y)) + χ(E(X ∩Y)),

and equality holds if and only if E(X \Y, Y \ X) = ∅.

PROOF. Observe that

χ(E(X)) + χ(E(Y)) = χ(E(X ∪Y)) + χ(E(X ∩Y))− χ(E(X \Y, Y \ X))

and proof follows immediately.

Given an extreme point solution x to the subtour LP, let F = {S | x(E(S)) = |S| − 1}
be the family of tight inequalities for an extreme point solution x in the subtour LP. The

following lemma shows that this family is closed under intersection and union.
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LEMMA 7. If S, T ∈ F and S ∩ T 6= ∅, then both S ∩ T and S ∪ T are in F . Furthermore,
χ(E(S)) + χ(E(T)) = χ(E(S ∩ T)) + χ(E(S ∪ T)).

PROOF. Observe that

|S| − 1 + |T| − 1 = x(E(S)) + x(E(T))

≤ x(E(S ∩ T)) + x(E(S ∪ T)))

≤ |S ∩ T| − 1 + |S ∪ T| − 1

= |S| − 1 + |T| − 1.

The first equality follows from the fact that S, T ∈ F . The second inequality follows from

Proposition 6. The third inequality follows from the constraints for S ∩ T and S ∪ T in the

subtour LP. The last equality is because |S|+ |T| = |S ∩ T|+ |S ∪ T| for any two sets S, T.

Equality must hold everywhere and we have x(E(S∩ T)) + x(E(S∪ T)) = |S∩ T| − 1 + |S∪
T| − 1. Thus, we must have equality for constraints for S ∩ T and S ∪ T, i.e., x(E(S ∩ T)) =
|S ∩ T| − 1 and x(E(S ∪ T)) = |S ∪ T| − 1, which implies that S ∩ T and S ∪ T are also

in F . Moreover, equality holds for Proposition 6 and thus χ(E(S \ T, T \ S)) = ∅ and

χ(E(S)) + χ(E(T)) = χ(E(S ∩ T)) + χ(E(S ∪ T)).

Denote by span(F) the vector space generated by the set of vectors {χ(E(S)) | S ∈ F}.
Call two sets X, Y intersecting if X ∩ Y, X − Y and Y − X are nonempty. A family of sets is

laminar if no two sets are intersecting. The following lemma says that an extreme point solu-

tion is characterized by tight inequalities whose corresponding sets form a laminar family.

This is a crucial structure theorem on the extreme point solutions for the subtour LP.

LEMMA 8. If L is a maximal laminar subfamily of F , then span(L) = span(F).

PROOF. Suppose, by way of contradiction, that L is a maximal laminar subfamily of F
but span(L) ⊂ span(F). For any S /∈ L, define intersect(S,L) to be the number of sets

in L which intersect S, i.e. intersect(S,L) = |{T ∈ L | S and T are intersecting}|. Since

span(L) ⊂ span(F), there exists a set S with χ(E(S)) /∈ span(L). Choose such a set S

with minimum intersect(S,L). Clearly, intersect(S,L) ≥ 1; otherwise L ∪ {S} is also a

laminar subfamily, contradicting the maximality of L. Let T be a set in L which intersects

S. Since S, T ∈ F, by Lemma 7, both S ∩ T and S ∪ T are in F . Also, both intersect(S ∩
T,L) and intersect(S ∪ T,L) are smaller than intersect(S,L), which will be proved next

in Proposition 9. Hence, by the minimality of intersect(S,L), both S ∩ T and S ∪ T are in

span(L). By Lemma 7, χ(E(S)) + χ(E(T)) = χ(E(S∩ T)) + χ(E(S∪ T)). Since χ(E(S∩ T))
and χ(E(S ∪ T)) are in span(L) and T ∈ L, the above equation implies that χ(E(S)) ∈
span(L), a contradiction. It remains to prove Proposition 9.

PROPOSITION 9. Let S be a set that intersects T ∈ L. Then intersect(S∩T,L) and intersect(S∪
T,L) are smaller than intersect(S,L).

PROOF. Since L is a laminar family, for a set R ∈ L with R 6= T, R does not intersect T

(either R ⊂ T, T ⊂ R or T ∩ R = ∅). So, whenever R intersects S ∩ T or S ∪ T, R also

intersects S. Also, T intersects S but not S ∩ T or S ∪ T. Therefore, intersect(S ∩ T,L) and

intersect(S ∪ T,L) are smaller than intersect(S,L)

This completes the proof of Lemma 8.
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4.3 Iterative 1-edge-finding Algorithm

In this section, we give an iterative procedure to find a minimum spanning tree from an

optimal extreme point solution of the subtour LP. The algorithm is shown in Figure 1. To

create the residual problem, the chosen edge e is contracted from G to identify its endpoints

to result in the graph G/e.

Iterative 1-edge-finding MST Algorithm

1. Initialization F ← ∅.

2. While V(G) 6= ∅ do

(a) Find an optimal extreme point solution x of the subtour LP and remove

every edge e with xe = 0 from G.

(b) Find an edge e = {u, v} such that xe = 1 and update F ← F ∪ {e}, G ←
G/e.

3. Return F.

Figure 1: Iterative 1-edge-finding MST Algorithm

4.4 Correctness and Optimality

LEMMA 10. For any extreme point solution x of the subtour LP with xe ≥ 0 for each edge e

there exists an edge f such that x f = 1.

PROOF. We assign one token for each edge e in the support E, for a total of |E| tokens. We

will redistribute the tokens so that each set in L will receive one token and there are some

extra tokens left. This implies that |E| > |L|, giving us the contradiction to Lemma 8 and

the Rank Lemma that together imply that |E| = |L|.
For each edge e, we redistribute xe to the smallest set containing both the endpoints.

Now, we show that each set in L can collect at least one token, and demonstrate some extra

leftover fractional edge tokens giving us the contradiction.

Let S be any set in L with children R1, . . . , Rk. We have

x(E(S)) = |S| − 1

and for each i,

x(E(Ri) = |Ri| − 1

Subtracting, we obtain

x(E(S))−∑
i

x(E(Ri)) = |S| −∑
i

|Ri|+ k− 1.

This implies that

x(A) = |S| −∑
i

|Ri|+ k− 1

where A = E(S) \ (∪iE(Ri)). Now S obtains exactly xe fractional token for each edge e in A.

If A = ∅, then χ(E(S)) = ∑i χ(E(Ri)) which contradicts the independence of these sets of
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constraints in L. Moreover, x(A) is an integer and hence it is at least one, giving S the unit

token it needs.

Since every edge is not integral, we have the extra fractional token values of (1− xe)

for every edge as unused tokens giving the contradiction.

THEOREM 11. The Iterative MST Algorithm returns a minimum spanning tree in polyno-

mial time.

PROOF. This is proved by induction on the number of iterations of the algorithm. Note

that if the algorithm finds a 1-edge e, for any spanning tree T′ of G′ = G/e, we can construct

a spanning tree T = T′ ∪ {e} of G. Hence, the residual problem is to find a minimum

spanning tree on G/e, and the same procedure is applied to solve the residual problem

recursively.

Since xe = 1, the restriction of x to E(G′), denoted by xres, is a feasible solution to the

subtour LP for G′. Inductively, the algorithm will return a spanning tree F′ of G′ of cost at

most the optimal value of the subtour LP for G′, and hence c(F′) ≤ c · xres. Therefore,

c(F) = c(F′) + ce and c(F′) ≤ c · xres

which imply that

c(F) ≤ c · xres + ce = c · x

as xe = 1. Hence, the spanning tree returned by the algorithm is of cost no more than the

cost of an optimal LP solution x, which is a lower bound on the cost of a minimum spanning

tree. This shows that the algorithm returns a minimum spanning tree of the graph.

5 Minimum Bounded-Degree Spanning Trees

We next turn to the study of the MINIMUM BOUNDED-DEGREE SPANNING TREE (MBDST)

problem. In an instance of the MBDST problem we are given a graph G = (V, E), edge

cost given by c : E → R, a degree upper bound Bv for each v ∈ V and the task is to find a

spanning tree of minimum cost which satisfies the degree bounds. We prove the following

theorem originally due to Singh and Lau.

THEOREM 12. There exists a polynomial time algorithm which given an instance of the
MBDST problem returns a spanning tree T such that degT(v) ≤ Bv + 1 and cost of the tree

T is smaller than the cost of any tree which satisfies the degree bounds.

We prove Theorem 12 using the iterative relaxation technique.

5.1 Linear Programming Relaxation

We use the following standard linear programming relaxation for the MBDST problem,

which we denote by LPmbdst(G, B, W). In the following we assume that degree bounds

are given for vertices only in a subset W ⊆ V. Let B denote the vector of all degree bounds

Bv, one for each vertex v ∈W.
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minimize ∑
e∈E

ce xe (5)

subject to x(E(V)) = |V| − 1 (6)

x(E(S)) ≤ |S| − 1 ∀∅ 6= S ⊂ V (7)

x(δ(v)) ≤ Bv ∀ v ∈ W (8)

xe ≥ 0 ∀ e ∈ E (9)

Separation over the inequalities in the above linear program can be carried out in poly-

nomial time and follows from Theorem 5. An alternative is to write a compact reformulation

of the above linear program which has polynomially many variables and constraints.

5.2 Characterization of Extreme Point Solutions

We first give a characterization of an extreme point solution of LPmbdst(G,B, W). We remove

all edges with xe = 0 and focus only on the support of the extreme point solution and the

tight constraints from (6)-(8). Let F = {S ⊆ V : x(E(S)) = |S| − 1} be the set of tight

constraints from (6)-(7). From an application of Rank Lemma 3 and the characterization of

extreme point solution to the spanning tree polyhedron (Lemma 8), we have the following

characterization.

LEMMA 13. Let x be any extreme point solution of LPmbdst(G,B, W) with xe > 0 for each
edge e ∈ E. Then there exists a set T ⊆W and a laminar family L such that

1. x(δ(v)) = Bv for each v ∈ T and x(E(S)) = |S| − 1 for each S ∈ L.
2. The vectors {χ(E(S)) : S ∈ L} ∪ {χ(δ(v)) : v ∈ T} are linearly independent.
3. |L|+ |T| = |E|.

5.3 An Additive One Approximation Algorithm

We now present an iterative algorithm which returns a tree of optimal cost and violates the

degree bound within an additive error of one. This algorithm removes degree constraints

one by one, and eventually reduces the problem to a minimum spanning tree problem.

This can be thought of as a simple extension of the 1-edge-finding iterative MST algorithm

presented earlier. The algorithm is given in Figure 2.

MBDST Algorithm

1. While W 6= ∅ do

(a) Find an optimal extreme point solution x of LPmbdst(G,B, W) and remove

every edge e with xe = 0 from G. Let the support of x be E.

(b) (Relaxation) If there exists a vertex v ∈ W with degE(v) ≤ Bv + 1, then

update W ← W \ {v}.
2. Return E.

Figure 2: Additive One MBDST Algorithm
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5.4 Correctness and Performance Guarantee

In the next lemma we prove that in each iteration, the algorithm can find some vertex for

which the degree constraint can be removed. Observe that once all the degree constraints

are removed we obtain the linear program for the minimum spanning tree problem which

we showed in Section 4 to be integral. Hence, the algorithm returns a tree. Moreover, at

each step we only relax the linear program. Hence, the cost of the final solution is at most

the cost of the initial linear programming solution. Thus the tree returned by the algorithm

has optimal cost. A simple inductive argument also shows that the degree bound is violated

by at most an additive one. The degree bound is violated only when we remove the degree

constraint and then degE(v) ≤ Bv + 1. Thus, in the worst case, if we include all the edges

incident at v in T, the degree bound of v is violated by at most an additive one.

It remains to show that the iterative relaxation algorithm finds a degree constraint to

remove at each step. From Lemma 13 we have that there exists a laminar family L ⊆ F
and T ⊆ W such that |L|+ |T| = |E| and constraints for sets in L are linearly independent.

Observe that if T = ∅ then only the spanning tree inequalities define the solution x. Hence,

x must be integral. In the other case, we show that there must be a vertex in W whose degree

constraint can be removed.

LEMMA 14. Let x be an extreme point solution to LPmbdst(G, B, W) such that xe > 0. Let L
and T ⊆W correspond to the tight set constraints and tight degree constraints defining x as
given by Lemma 13. If T 6= ∅ then there exists some vertex v ∈ W with degE(v) ≤ Bv + 1.

PROOF. We use the fractional token argument as in the integrality proof of the 1-edge-

finding iterative MST algorithm we presented earlier.

Suppose for the sake of contradiction, we have T 6= ∅ and degE(v) ≥ Bv + 2 for each

v ∈ W. We now show a contradiction by a token argument. We give one token for each

edge in E. We then redistribute the token such that each vertex in T and each set in L gets

one token and we still have extra tokens left. This will contradict |E| = |T|+ |L|. The token

redistribution is as follows. Each edge e ∈ E gives as before xe tokens to the smallest set

in L containing both endpoints of e, and (1− xe)/2 to each of its endpoints for the degree

constraints.

We have already argued earlier that the xe assignment suffices to obtain one token per

member in the laminar family (see the proof of Lemma 10).

Thus it suffices to show that each vertex with a tight degree constraint gets one token.

Let v ∈ T be such a vertex. Then v receives (1− xe)/2 tokens for each edge incident at v for

a total of

∑
e∈δ(v)

1− xe

2
=

degE(v)− Bv

2
≥ 1,

where the first equality holds since ∑e∈δ(v) xe = Bv and the inequality holds since degE(v) ≥
Bv + 2 by Step 1b of the algorithm.

To finish the proof, we argue that there is some extra token left for contradiction. If

V /∈ L then there exists an edge e which is not contained in any set of L and the xe token

for that edge gives us the contradiction. Similarly, if there is a vertex v ∈ W \ T then v also

collects one token which it does not need and we get the desired contradiction. Moreover, if
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there is a vertex v ∈ V \T then each edge e incident at v must have xe = 1 else (1− xe)/2 > 0

tokens are extra. Note that e ∈ span(L) for each e with xe = 1, since e is a tight set of size

two. We have

2χ(E(V)) = ∑
v∈V

χ(δ(v)) = ∑
v∈T

χ(δ(v)) + ∑
v∈V−T

χ(δ(v)) = ∑
v∈T

χ(δ(v)) + ∑
v∈V−T

∑
e∈δ(v)

χ(e).

We have argued that V ∈ L and e ∈ span(L) for each edge e ∈ δ(v) for v ∈ V − T. Since

T 6= ∅, this implies the linear independence of the tight constraints in T and those in L,

giving us the contradiction.

5.5 Historical Notes

Edmonds [4] gave the integral linear programming relaxation for minimum spanning tree

problem that we presented. There is a long line of work of successively improving the

performance guarantees for the degree-bounded minimum-cost spanning tree problem. The

algorithm with additive guarantee of one for the unweighted case was first given by Fürer

and Raghavachari [5]. The additive algorithm with violation 2 (with both upper and lower

degree bounds) was presented by Goemans [6]. The algorithm with additive violation of 1

was first presented by Singh and Lau [14], also for the case with upper and lower bounds

on the degree. The fractional token proof which we used for the additive one proof was first

presented by Bansal et al. [1].

6 Survivable Network Design Problem

The survivable network design problem generalizes the minimum Steiner tree problem, the

minimum Steiner forest problem, and the minimum k-edge-connected subgraph problem,

etc. Hence the result in this section also applies to these problems.

6.1 Linear Programming Relaxation

To formulate the problem as a linear program, we represent the connectivity requirements

by a skew supermodular function. A function f : 2V → Z is called skew supermodular if at

least one of the two following conditions hold for any two subsets S, T ⊆ V.

f (S) + f (T) ≤ f (S ∪ T) + f (S ∩ T)

f (S) + f (T) ≤ f (S\T) + f (T\S)

It can be verified (with some simple case analysis) that the function f defined by f (S) =
maxu∈S,v/∈S ruv for each subset S ⊆ V is a skew supermodular function. Hence, one can write

the following linear programming relaxation for the survivable network design problem,

denoted by LPsndp.

minimize ∑
e∈E

ce xe

subject to x(δ(S)) ≥ f (S) ∀ S ⊆ V

0 ≤ xe ≤ 1 ∀ e ∈ E
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This linear program for the case of minimum Steiner networks can be solved in polynomial

time by using a minimum cut algorithm as a separation oracle. Designing a separation

oracle for more general skew submodular functions as right hand sides needs more work -

details can be found in the original paper of Jain [9].

6.2 Characterization of Extreme Point Solutions

For a subset S ⊆ V, the corresponding constraint x(δ(S)) ≥ f (S) defines a vector in R
|E|:

the vector has an 1 corresponding to each edge e ∈ δ(S), and a 0 otherwise. We call this

vector the characteristic vector of δ(S), and denote it by χ(δ(S)). Recall that two sets X, Y

are intersecting if X ∩Y, X−Y and Y−X are nonempty, and that a family of sets is laminar

if no two sets are intersecting. It is not hard to verify the two inequalities below using the

submodularity of the cut function.

x(δ(X)) + x(δ(Y)) ≥ x(δ(X ∩Y)) + x(δ(X ∪Y)) and

x(δ(X)) + x(δ(Y)) ≥ x(δ(X − Y)) + x(δ(Y− X)).

For any two subsets X and Y, when f is skew supermodular, it follows from standard un-

crossing arguments, as in the case of spanning trees, that an extreme point solution to LPsndp

is characterized by a laminar family of tight constraints. The Lemma below then follows

from these uncrossing arguments and the Rank Lemma (Lemma 3).

LEMMA 15. Let the requirement function f of LPsndp be skew supermodular, and let x be an
extreme point solution to LPsndp with 0 < xe < 1 for every edge e ∈ E. Then, there exists a

laminar family L such that:

1. x(δ(S)) = f (S) for each S ∈ L.
2. The vectors χ(δ(S)) for S ∈ L are linearly independent.
3. |E| = |L|.

6.3 Iterative Algorithm

Jain’s iterative rounding algorithm is in Figure 3.

Iterative Algorithm for Minimum Steiner Network

1. Initialization F ← ∅, f ′ ← f ;

2. While f ′ 6= ∅ do

(a) Find an optimal extreme point solution x to LPsndp with cut requirement f ′ and

remove every edge e with xe = 0.

(b) If there exists an edge e with xe ≥ 1/2, then add e to F.

(c) For every S ⊆ V: update f ′(S)← f (S)− |δF(S)|.
3. Return H = (V, F).

Figure 3: Minimum Steiner Network Algorithm
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6.4 Correctness and Performance Guarantee

Jain proved an important theorem about the extreme point solutions of LPsndp.

THEOREM 16.[Jain] Suppose f is an integral skew submodular function and x is an extreme

point solution to LPsndp. Then there exists an edge e ∈ E with xe ≥ 1
2 .

Assuming Theorem 16, then the iterative algorithm will terminate successfully, and it

can be shown by a straightforward inductive argument that the returned solution is a 2-

approximate solution.

THEOREM 17. Algorithm 3 is a 2-approximation algorithm for the SURVIVABLE NETWORK

DESIGN problem.

PROOF. The proof is by induction on the number of iterations executed by the algorithm.

For the base case that requires only one iteration, the theorem follows since it rounds up

a single edge e with xe ≥ 1
2 . For the induction step, let e′ be the edge with xe′ ≥ 1

2 in

the current iteration, which is guaranteed to exist by Theorem 16. Let f ′ be the residual

requirement function after this iteration and let H′ be the set of edges picked in subsequent

iterations for satisfying f ′. The key observation is that the current solution x restricted to

E− e′ is a feasible solution for satisfying f ′, and thus by the induction hypothesis, the cost

of H′ is at most 2 ∑e∈E−e′ cexe. Consider H := H′ ∪ e′ which satisfies f (by the definition of

f ′). The cost of H is:

cost(H) = cost(H′) + ce′ ≤ 2 ∑
e∈E−e′

cexe + ce′ ≤ 2 ∑
e∈E

cexe,

where the last inequality follows because xe′ ≥ 1
2 . This implies that the cost of H is at most

twice the cost of an optimal fractional solution, which is a lower bound of the optimal cost,

and thus the theorem follows.

We now give a simple proof of Jain’s theorem above using the fractional token idea

from the previous sections. This proof is due to Nagarajan et al. [12].

PROOF. We first prove that xe ≥ 1
2 for some edge e ∈ E in any extreme point solution x

to LPSNDP. Suppose that 0 < xe <
1
2 for each e ∈ E. Then we will show that |E| > |L|,

contradicting Lemma 15. The proof is by a fractional token counting argument. We give

one token to each edge in E, and then we will reassign the tokens such that we can collect

one token for each member in L and still have extra tokens left, giving us the contradiction

that |E| > |L|. Each edge e = uv is given one token which is reassigned as follows.

1. (Rule 1) Let S ∈ L be the smallest set containing u and R ∈ L be the smallest set

containing v. Then e gives xe tokens each to S and R.

2. (Rule 2) Let T be the smallest set containing both u and v. Then e gives 1− 2xe tokens

to T.

We now show that each set S in L receives at least one token. Let S be any set with

children R1, . . . , Rk where k ≥ 0 (if S does not have any children then k = 0). We have the

following equalities.

x(δ(S)) = f (S)

x(δ(Ri)) = f (Ri) ∀ 1 ≤ i ≤ k
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Subtracting we obtain,

x(δ(S))−∑
i

x(δ(Ri)) = f (S)−
k

∑
i=1

f (Ri). (10)

We divide the edges involved into three types, where

A = {e : |e ∩ (∪iRi)| = 0, |e ∩ S| = 1}
B = {e : |e ∩ (∪iRi)| = 1, |e ∩ S| = 2}
C = {e : |e ∩ (∪iRi)| = 2, |e ∩ S| = 2}.

Then (10) can be rewritten as:

x(A)− x(B)− 2x(C) = f (S)−
k

∑
i=1

f (Ri). (11)

Observe that A∪ B∪C 6= ∅; otherwise the characteristic vectors χ(δ(S)), χ(δ(R1)), . . . , χ(δ(Rk))
are linearly dependent. For each edge e ∈ A, S receives xe tokens from e by Rule 1. For each

edge e ∈ B, S receives 1− xe tokens from e by Rule 1 and Rule 2. For each edge e ∈ C, S

receives 1− 2xe tokens from e by Rule 2. Hence, the total tokens received by S are exactly,

0 < ∑
e∈A

xe + ∑
e∈B

(1− xe) + ∑
e∈C

(1− 2xe)

= x(A) + |B| − x(B) + |C| − 2x(C)

= |B|+ |C|+ f (S)−
k

∑
i=1

f (Ri),

where the last equality follows from (11). Since f is integral, the right hand side is at least

one, and thus every set S ∈ L receives at least one token in the reassignment.

It remains to show that there are some unassigned tokens, which would imply the

contradiction that |E| > |L|. Let R be any maximal set in L. Consider any edge e ∈ δ(R).

The fraction of the token by Rule 2 for edge e is unassigned, as there is no set with |T∩ e| = 2,

and gives us the desired contradiction.
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ABSTRACT. Randomness extractors are efficient algorithms which convert weak random sources
into nearly perfect ones. While such purification of randomness was the original motivation for
constructing extractors, these constructions turn out to have strong pseudorandom properties which
found applications in diverse areas of computer science and combinatorics. We will highlight some
of the applications, as well as recent constructions achieving near-optimal extraction.

Introduction
The quest to purify the randomness in “weak” random sources (of biased and correlated
bits) was initiated in the papers of Blum [1] and Santha and Vazirani [16].

The amount of randomness in a distribution for this purpose is captured by the no-
tion of min-entropy, first suggested in this context by Chor and Goldreich [2] and Zucker-
man [22]. We say that a random variable has min entropy ≥ k if its probability of it hitting
any specific value is at most 2−k.

Purifying the randomness from such distributions is captured by the notion of extrac-
tors, first defined in the seminal paper of Nisan and Zuckerman [13]. A (k, ε)-extractor is
a function E : {0, 1}n × {0, 1}d 7→ {0, 1}m such that for every random variable X with min
entropy k, the distribution of E(X, Ud) has statistical distance ≤ ε from the uniform distri-
bution, where Ud denotes a random variable independent of X and uniform on {0, 1}d. The
input Ud is called a seed and is thought of as being much shorter (in bits) than X. It is not
hard to see that a seed is essential for an extractor to work in this general setting. Such ex-
tractors are often called “seeded extractors”, to distinguish them from “seedless extractors”
(such determinsitic seedless extractors can work only when additional structure is imposed
on the source, and will not be discussed here). An excellent survey of seeded extractors is
[15].

An extractor has three important parameters. The first is the seed length d, which we
wish to minimize. The second is the output length m, which we want to maximize (we want
to have m ≈ k). The third parameter we wish to minimize is the ‘error’ ε – the statistical
distance of the output of the extractor from the uniform distribution. It can be shown, using
the probabilistic method, that a random function gives an extractor which is optimal in all
three parameters, which allows (roughly) m = k and d = log(n/ε2). A random function,
however, is not satisfactory since in applications we need to be able to compute the extractor
efficiently. An extractor which is efficiently computable is called explicit. Below we list the
progress on explicit constructions, as well as the numerous applications of such explicit
extractors.
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Constructions Since the 80’s there many works devised a variety of techniques to con-
struct explicit extractors of better and better parameters (see [15] for a complete list of ref-
erences). The first paper to give an explicit extractor which was optimal (up to constant
factors) both in seed length and in entropy output was the work of Lu, Reingold, Vadhan
and Wigderson [12]. The first to achive this for the error parameter as well were Guruswami,
Umans and Vadhan [8], in an elegant construction based on list-decodable Parvaresh-Vardy
codes [14], which is also much simpler than [12]. An alternative construction, with the same
parameters based on the resolution of the Kakeya conjecture in finite fields [4], was give by
Dvir and Wigderson [5]. In all of these the output m was a constant fraction (arbitrarily close
to 1) of k. This year Dvir, Kopparty, Saraf and Sudan [6] managed to extract m = (1− o(1))k
for the first time, as byproduct of tight analysis of the Kakeya conjecture. Achieving m = k
and removing the large constant factor in the seed length remain challenging openquestions,
of relevance to some of the applications.

Applications Extractors posses remarkable pseudorandom properties, which have found
applications in a remarkably diverse areas. We list here only some of them, with sample
references of each, noting that there are many others.
• Probabilistic algorithms with weak randomness [20, 22, 18]
• Derandomizing small-space computations [13, 10]
• List-decodable error-correcting codes [17]
• Expanders beating the eigenvalue bound (and the applications of these) [21]
• Lossless expanders (and the applications of these) [3]
• Sampling and Hashing [7, 9]
• Cryptography [19]
• Pseudorandom generators [18]
• Metric embeddings [11]
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