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Preface

The 10th Conference on the Theory of Quantum Computation, Communication and Cryp-
tography was held at the Université libre de Bruxelles from the 20th to the 22nd of May
2015. Quantum computation, quantum communication, and quantum cryptography are
subfields of quantum information processing, an interdisciplinary field of information science
and quantum mechanics. The TQC conference series focuses on theoretical aspects of these
subfields. The objective of the conference is to bring together researchers so that they can
interact with each other and share problems and recent discoveries.

A list of the previous editions of TQC follows:
TQC 2014, National University of Singapore, Singapore
TQC 2013, University of Guelph, Canada
TQC 2012, The University of Tokyo, Japan
TQC 2011, Universidad Complutense de Madrid, Spain
TQC 2010, University of Leeds, UK
TQC 2009, Institute for Quantum Computing, University of Waterloo, Canada
TQC 2008, University of Tokyo, Japan
TQC 2007, Nara Institute of Science and Technology, Nara, Japan
TQC 2006, NTT R&D Center, Atsugi, Kanagawa, Japan

The conference consisted of invited talks, contributed talks and a poster session. The
invited talks were given by David DiVincenzo (RWTH Aachen & FZ Jülich), Sean Hallgren
(Pennsylvania State University), Laura Mančinska (CQT Singapore) and Ronald de Wolf
(CWI Amsterdam). The conference was possible thanks to the financial support of the Belgian
Fund for Scientific Research (FNRS), Visit Brussels, Journal of Physics A, Cryptoworks21,
the Engineering and Physical Research Council (EPSRC), as well as the Royal Society. We
wish to thank the members of the Program Committee and all subreviewers for their precious
help. Our warm thanks also go to the members of the Local Organizing Committee, for their
considerable efforts in organizing the conference. We would like to thank Marc Herbstritt
and Michael Wagner (Dagstuhl Publishing) for their technical help. Finally, we would like
to thank the members of the Steering Committee for giving us the opportunity to work for
TQC. And, of course, we thank all contributors and participants!

August 2015 Salman Beigi and Robert König
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Oracles with Costs
Shelby Kimmel1,2, Cedric Yen-Yu Lin2, and Han-Hsuan Lin2

1 Joint Center for Quantum Information and Computer Science, University of
Maryland, US

2 Center for Theoretical Physics, Massachusetts Institute of Technology, US

Abstract
While powerful tools have been developed to analyze quantum query complexity, there are still
many natural problems that do not fit neatly into the black box model of oracles. We create a
new model that allows multiple oracles with differing costs. This model captures more of the
difficulty of certain natural problems. We test this model on a simple problem, Search with Two
Oracles, for which we create a quantum algorithm that we prove is asymptotically optimal. We
further give some evidence, using a geometric picture of Grover’s algorithm, that our algorithm
is exactly optimal.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Quantum Algorithms, Query Complexity, Amplitude Amplification

Digital Object Identifier 10.4230/LIPIcs.TQC.2015.1

1 Introduction

The standard oracle model is a powerful paradigm for understanding quantum computers.
Tools such as the adversary semidefinite program [12, 13], learning graphs [5, 6], and the
polynomial method [4] allow us to accurately characterize the quantum query complexity
[1, 7] of many problems of interest.

However, the oracle model does not capture the full power or challenges of quantum
computing. For example, problems such as k-SAT do not fit easily into the oracle model.
Additionally, while the query complexity of the hidden subgroup problem is known to be
polynomial in the size of the problem [11], for some non-abelian groups there is no efficient
algorithm.

In this paper, we describe a variation of the oracle model. We have access to two oracles,
rather than a single oracle1, but one oracle is more expensive to use. In the standard oracle
model, the figure of merit is the query complexity, which is the minimum number of queries
needed to an oracle to evaluate a function. In our model, the figure of merit is the cost
complexity, which is the minimum cost needed to evaluate a function using multiple oracles
with different costs.

To motivate this model, we consider the following fact: in some search problems we want
to find an element in a set that satisfies a property that is expensive to test. However, often
another less expensive test is available that can narrow down the search range but is not
conclusive. We give three examples of problems where such less expensive, less conclusive
tests are natural. In each example, Test 1 is more expensive to run but is conclusive, while
Test 2 is cheaper to run but allows some non-solutions to pass.

1 The model can easily be extended to more than two oracles, but for simplicity, we limit ourselves to two.

© Shelby Kimmel, Cedric Yen-Yu Lin, and Han-Hsuan Lin;
licensed under Creative Commons License CC-BY

10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015).
Editors: Salman Beigi and Robert König; pp. 1–26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TQC.2015.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Oracles with Costs

In the problem of k-SAT on n bits, we would like to find an assignment x ∈ {0, 1}n such
that all clauses are satisfied. Consider an algorithm for k-SAT that runs two types of
tests on a possible assignment x:
1. Check whether all clauses are satisfied.
2. Check whether some subset of the clauses are satisfied.
Given a graph A and a set of graphs {B1, · · · , Bp}, we would like to find a graph Bi
isomorphic to A. Consider an algorithm that runs two types of tests on a graph Bi:
1. Check whether Bi is isomorphic to A (say by brute force search).
2. Check whether the adjacency matrices of Bi and A have the same spectrum.
In the decision variant of the traveling salesman problem, given a positively weighted
N -graph G and a positive number b, we would like to find a tour of the vertices of G that
uses cost no more than b. Given a partial tour of length N/2, we can run two types of
tests:
1. Check whether the partial tour can be completed to an N -vertex tour that has cost at

most b, by using brute force search.
2. Check whether the sum of the weights of the N/2 edges traversed in the partial tour is

bigger than b.

In all three examples, the two tests can be implemented as unitaries O1,O2 that act
as Oi|x〉|y〉 = |x〉|y ⊕ fi(x)〉. Here fi(x) = 1 if assignment x passes Test i and fi(x) = 0
otherwise. These two unitaries will play the role of oracles with different costs.

None of the problems listed above are typically thought of as oracle problems, because
in each problem, there is more information than can easily be incorporated into a single
oracle. However, with multiple oracles, the information can be distributed among different
oracles. Using different costs for different oracles allows us to include information about
the time required to access information. We see that cost complexity can capture certain
aspects of a problem that can not be easily accounted for in the standard oracle model;
we hope this model will provide new insight into problems previously thought beyond the
tools of query algorithms. We note that we do not expect these techniques to allow us to
solve NP-complete problems in polynomial time. Rather, our goal is to potentially improve
upon existing exponential time algorithms, and create connections between standard oracle
problems and problems that seem far from typical oracle problems.

Problems such as those described above can easily be recast into an oracle problem, which
we call Search with Two Oracles (STO). In this work, we focus on the problem of STO. We
tightly characterize the quantum cost complexity of this problem, and give several techniques
for putting lower bounds on quantum cost complexity. We also show that the cost complexity
of STO is the same whether or not the oracles can be accessed using a control operation;
that is, accessing the oracles in superposition gives no added power.

We also attempt to exactly bound (rather than asymptotically bound) the cost complexity
of STO. Usually, one is not particularly interested in proving exact optimality, but we have
several reasons for wanting to explore this problem. Few quantum algorithms are known to
be exactly optimal; Grover’s algorithm and parity are two examples [10, 4]. STO is a very
simple extension of a standard search problem, so it seems like a good candidate problem for
obtaining another exact lower bound. Proving that our algorithm is exactly optimal would
provide evidence that amplitude amplification is exactly optimal in the case of no additional
structure (i.e. when we treat the base algorithm as a black box). Additionally, while we can
obtain asymptotically tight bounds for the problem of STO, for a simple extension of STO
to logN oracles (where N is the size of the search space), these techniques fail. However, if
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we could obtain tighter bounds for STO, we should be able to get a better characterization
of the cost complexity for these more complex problems.

Finally, we compare the quantum cost complexity of STO to the classical cost complexity.
We show a polynomial reduction in cost for the quantum version. Moreover, we show that
the optimal quantum and classical algorithms behave qualitatively differently, highlighting
the power of quantum algorithms.

In Section 2, we describe cost complexity and define STO. In Section 3, we describe
optimal quantum algorithms for STO, and in Section 4, we put lower bounds on the cost
complexity of STO. Finally, we look at the classical cost complexity of STO in Section 5.

2 Cost Complexity, STO, and Relation to Previous Work

Cost complexity is very closely related to query complexity. For background on query
complexity, see [1, 7].

We first define cost complexity. In the following, we use the notation [N ] ≡ {1, . . . , N}.
Given the input (f1, f2) ∈ D, which is a pair of functions f1, f2 : [N ]→ {0, 1}, we want to
calculate F where F : D → {0, 1}. Let f1 be associated with cost c1 and f2 be associated with
cost c2. Depending on the type of algorithm (e.g. classical, quantum), these two functions
are accessed in different ways.

In the classical setting, consider a randomized classical algorithm Ac for F that makes q1
queries to f1, and q2 queries to f2. Then the cost of this algorithm is

Cost(Ac) = q1c1 + q2c2. (1)

Let Ac,ε be the set of randomized classical algorithms that solve F with success probability
at least 1− ε on all inputs in D. Then the classical randomized cost complexity (RCC) of F is

RCCε(F ) = min
Ac∈Ac,ε

Cost(Ac). (2)

In the quantum setting, let O1 and O2 be unitaries acting on the Hilbert space CN with
standard basis states |i〉 for i ∈ [N ] as Oj |i〉 = (−1)fj(i)|i〉 for j ∈ 1, 2. Consider a quantum
algorithm Aq that at each time step, can apply O1 or O2 or some other unitary that is
independent of f1 and f2, and which makes q1 queries to O1 and q2 queries to O2. Then the
cost of the algorithm Aq is

Cost(Aq) = q1c1 + q2c2. (3)

Let Aq,ε be the set of quantum algorithms that solve F with success probability at least
1− ε on all inputs in D. Then the quantum cost complexity (QCC) of F is

QCCε(F ) = min
Aq∈Aq,ε

Cost(Aq). (4)

Finally, we consider quantum algorithms that can access oracles in superposition. Let
O1 and O2 be as above, and let O0 = I, the N × N identity matrix. We now consider a
quantum algorithm that has access to a controlled operation CO that acts on the the Hilbert
space C3 ⊗ CN ⊗ CV (CV is a workspace register) with standard basis states |b〉|i〉|v〉 for
i ∈ [N ], v ∈ [V ], and b ∈ {0, 1, 2} as CO|b, i〉 = |b〉Ob|i〉|v〉. Suppose the encoded functions
are f1 and f2. Then if an algorithm Aqs applies CO a total of T times over the course of
the algorithm to states

|ηtf1,f2
〉 =

2∑
b=0

N∑
i=1

V∑
v=1

αtf1,f2
(b, i, v)|b, i, v〉 (5)

TQC’15



4 Oracles with Costs

for t ∈ [T ], the cost of the algorithm is

Cost(Aqs) = max
f1,f2

T∑
t=1

κ(ηtf1,f2
) where

κ(ηtf1,f2
) =


c1 if

∑
i,v |αtf1,f2

(1, i, v)|2 6= 0,
c2 if

∑
i,v |αtf1,f2

(1, i, v)|2 = 0 and
∑
i,v |αtf1,f2

(2, i, v)|2 6= 0,
0 if

∑
i,v |αtf1,f2

(1, i, v)|2 = 0 and
∑
i,v |αtf1,f2

(2, i, v)|2 = 0.
(6)

Let Aqs,ε be the set of quantum algorithms using CO that solve F with success probability
at least 1− ε on all inputs in D. Then the controlled quantum cost complexity (ConQCC) of
F is

ConQCCε(F ) = min
Aqs∈Aqs,ε

Cost(Aqs). (7)

The controlled quantum cost complexity is closely related to the time required in the model
of variable times introduced by Ambainis in [2].

Note that

ConQCCε(F ) ≤ QCCε(F ) ≤ RCCε(F ). (8)

For any of the cost complexities described above, if we do not include a subscript ε, then
the cost is assumed to apply for the case ε = 1/3.

Now that we have defined cost complexity, we introduce the problem of STO as a testbed
for tools and ideas that can hopefully be applied to more complex problems. More formally,
we give the definition of STO:

I Definition 1 (Search with Two Oracles (STO)). Let N and M be known positive integers
and let S ⊆ [N ] be an unknown set. There might or might not exist a special item i∗. If
i∗ exists, then one is promised that i∗ ∈ S and |S| = M . If i∗ doesn’t exist, the size of S is
arbitrary. Let f∗ and fS be two functions with domain [N ] and range {0, 1} such that

f∗(i) =
{

1 if i = i∗

0 if i 6= i∗ or i∗ doesn’t exist.
fS(i) =

{
1 if i ∈ S
0 if i /∈ S.

(9)

Then STO(f∗, fS) = 1 if i∗ exists, and 0 otherwise. c∗ is the cost associated with f∗ and cS
is the cost associated with fS , with c∗ ≥ cS .

cS and c∗ are assumed to depend on N and M, but our results hold for any form of that
dependence, so we leave off any explicit relationship.

Cost complexity, and STO in particular, are related to several existing oracle problems.
In the problem of STO, the function fS can be thought of as providing extra information or
advice about the function f∗. There have been several studies in which access to a single
oracle is supplemented with some extra information that can come in the form of another
oracle or classical information, e.g. [14, 15]. Previous works [3, 14] have considered multiple
oracles, but not with costs. Furthermore, the additional advice oracles considered in these
works tend to be somewhat unnatural, and are tailored to the specific problems considered.
As mentioned, ConQCC is related to the model of variable costs studied by Ambainis, in
which he considered a single oracle that has different costs for querying different items [2].
We also note that Cerf et al. [9] consider similar quantum algorithms in the context of
constraint satisfaction problems, but they do not approach the problem from an oracular
perspective.
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3 Quantum Algorithms for STO

We now describe quantum algorithms for solving STO2. These algorithms use the oracles
O∗ and OS directly, rather than the controlled version (i.e. CO) of these oracles. All of our
algorithms can be viewed as examples of amplitude amplification. Recall

I Theorem 2 (Amplitude Amplification [8]). Let T ⊂ [N ], α ∈ [0, 1], and let OT be an
quantum oracle that marks the elements of T . We define

|T 〉 = 1√
|T |

∑
i∈T
|i〉. (10)

Given an algorithm A that acts on a state |ψ0〉 and produces a state |ψA〉 such that |〈T |ψA〉| =
p, one can create a new algorithm B that applies OT , A, and A−1 each

τ =
⌈

arcsin
√

1− α− arcsin p
2 arcsin p

⌉
(11)

times, and which acts on the initial state |ψ0〉 and produces a state |ψB〉 such that

|ψB〉 =
√

1− α|T 〉+
√
α|T⊥〉, (12)

where 〈T |T⊥〉 = 0 and |T⊥〉 ∈ Span (|T 〉, |ψA〉).

This gives us the following Corollary:

I Corollary 3. Let A and τ be as in Theorem 2, and assume OT has cost cT while A and
A−1 have cost cA. Then there exists a algorithm B that applies OT , A and A−1 not in
superposition, and produces the state |T 〉 with probability 1− ε such that

Cost(B) = τ (cT + 2cA) . (13)

In the following, we describe three algorithms for STO. We consider the limit that
M,N/M →∞ to simplify our analysis, but this limit still captures the essential behavior of
the algorithms. We use the following notation:

|N〉 = 1√
N

N∑
i=1
|i〉,

|S〉 = 1√
M

∑
i∈S
|i〉. (14)

We have a slight abuse of notation, since |N〉 could refer either to the equal superposition
state, or the N th standard basis state. However, whenever we write |N〉, we will always
mean the equal superposition state.

The first algorithm we consider ignores OS and performs a Grover search for i∗ using O∗:

2 For the purpose of describing these algorithms, we assume that i∗ exists. A single application of O∗ at
the end of the algorithm can be used to check (with appropriate probability) whether or not i∗ exists,
at a cost of c∗.

TQC’15



6 Oracles with Costs

I Algorithm 1 (Grover’s Search). Prepare the state |N〉 at cost 0. Set A equal to the identity.
Then by Corollary 3 there exists an algorithm B that produces the state |i∗〉 with probability
1− ε with cost

c∗

⌈
arcsin

√
1− ε− arcsin 1√

N

2 arcsin 1√
N

⌉
. (15)

In the limit of N →∞, the cost becomes

c∗ arcsin
√

1− ε
√
N. (16)

However, if OS comes to us cheaply, we would like to take advantage of it: The following
algorithm first rotates |N〉 to |S〉 (using OS), and then rotates |S〉 to |i∗〉 (using both OS
and O∗).

I Algorithm 2. Prepare the state |N〉 at cost 0. Set A equal to the identity. Since |〈N |S〉| =√
M/N , by Corollary 3 there exists an algorithm B that with probability 1 produces the state
|S〉 at cost

cS


(
π
2 − arcsin

√
M
N

)
2 arcsin

√
M
N

 . (17)

Now |〈i∗|S〉| =
√

1/M , so using Corollary 3 again, there exists an algorithm C that with
probability 1− ε produces the state |i∗〉 at cost

⌈
arcsin

√
1− ε− arcsin 1√

M

2 arcsin 1√
M

⌉c∗ + 2cS


(
π
2 − arcsin

√
M
N

)
2 arcsin

√
M
N


 . (18)

Dropping terms of size at most O(M−1/2) or O
(
(M/N)1/2) of the zeroth order terms, the

cost becomes

arcsin
√

1− ε
4

(
2c∗
√
M + πcS

√
N
)
. (19)

Combining Algorithms 1 and 2, we have that

QCC(STO) = O
(

min
{
c∗
√
N, c∗

√
M + cS

√
N
})

= O
(

max
{
c∗
√
M, cS

√
N
})

. (20)

In Section 4, we will show that this cost (Eq. (20)) is asymptotically optimal. This means
that Algorithm 2 is always asymptotically optimal, although Algorithm 1 has lower cost
when c∗ ≈ cS . However, it turns out that there is an algorithm that has lower cost than
either Algorithm 1 or 2. In Section 4, we give evidence that this final algorithm, which we
call the Hybrid Algorithm, is not just asymptotically optimal, but exactly optimal.

The two algorithms we have so far presented can be summarized as follows: Algorithm 1
directly performs Grover rotations to rotate |N〉 to |i∗〉, while Algorithm 2 first rotates |N〉
to |S〉, then rotates |S〉 to |i∗〉. The final algorithm we consider, the Hybrid Algorithm, first
rotates |N〉 to some superposition of |N〉 and |S〉, and then rotates to |i∗〉.
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I Algorithm 3 (Hybrid Algorithm). Prepare the state |N〉 at cost 0. Set A equal to the
identity. Since |〈N |S〉| =

√
M/N , by Theorem 2 and Corollary 3 there exists an algorithm

B that produces a state |ψB〉 at cost

cS


(

arcsin
√

1− α− arcsin
√

M
N

)
2 arcsin

√
M
N

 . (21)

where

|ψB〉 =
√

1− α|S〉+
√
α|S⊥〉. (22)

By Theorem 2, |S⊥〉 is a linear combination of |S〉 and |N〉 but is orthogonal to |S〉. Therefore,
|S⊥〉 is a superposition of all elements not in S, and so 〈i∗|S⊥〉 = 0. Thus
√

1− α√
M

= 〈ψB|i∗〉. (23)

Applying Corollary 3 again, we can create an algorithm C that has cost
arcsin

√
1− ε− arcsin

√
1−α√
M

2 arcsin
√

1−α√
M


c∗ + 2cS


(

arcsin
√

1− α− arcsin
√

M
N

)
2 arcsin

√
M
N


 (24)

and produces the state |i∗〉 with probability 1− ε. In Appendix A, we show there is a choice
of α such that, dropping terms of size at most O(M−1/2) or O((M/N)1/4) that of the zeroth
order terms, the cost is

Cost(Hybrid) = cS
√
N arcsin

√
1− ε

2 sec
(
φopt +

√
M

N

)
, (25)

where φopt is given by

φopt = max

0
φ : tan

(
φ+

√
M
N

)
= φ+ c∗

cS

√
M
N .

(26)

When cS is close to c∗, this algorithm approximates Algorithm 1. When cS is very small
compared to c∗, it approximates Algorithm 2. Otherwise, it, in effect, interpolates between
the two algorithms.

4 Lower Bound on Quantum Cost Complexity of STO

Several techniques give asymptotically tight lower bounds on the quantum cost complexity
of STO. We will briefly sketch two approaches for bounding the quantum cost complexity
(QCC), and then discuss a bound on controlled quantum cost complexity (ConQCC) in
detail. The fact that so many approaches give good lower bounds is encouraging; this means
many techniques from (or variations on) the standard query complexity toolbox can be
applied.

Our lower bound on ConQCC(STO) is asymptotically tight with the algorithms of
Section 3, i.e. Eq. (20), even though those algorithms do not use controlled oracles. Because
algorithms that use controlled versions of the oracles are more powerful than oracles that
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8 Oracles with Costs

can not access controlled versions (see Eq. (8)), this result proves that not only are our
algorithms for STO asymptotically optimal, but having access to a controlled version of the
oracles for STO does not give an advantage.

When discussing lower bounds on the cost of STO, we will often refer to the SEARCH
problem. We call SEARCH the problem in which one is given a function f∗ : [N ]→ {0, 1}
such that there is exactly zero or one element i∗ such that f∗(i∗) = 1, and one would like
to determine if there is such an element i∗; in other words, SEARCH is computing OR(f∗)
with a promise on f∗.

Here are brief descriptions of two methods for lower bounding QCC. We describe them
in the context of STO, but they could be applied more generally.

Oracle Simulation: Suppose one only has an oracle O∗. Then one could use this to simulate
an oracle OS by applying O∗, and then subsequently randomly choosing M − 1 items to
mark. If M � N , with high probability, the chosen M − 1 items will not include O∗, and
this simulated oracle will act identically to a true OS . Now any algorithm for STO that
uses this simulated oracle will actually only use O∗ to find the marked item i∗, and so the
problem reduces to SEARCH. Well-known quantum lower bounds on SEARCH [7] then give
a lower bound on the total number of queries to either O∗ or the simulated OS , which in
turn can be used to put a lower bound on the cost. For more details on oracle simulation, see
Section 5, in which we use oracle simulation to bound the classical cost complexity of STO.

Adversary Method: One can create an adversary matrix whose rows and columns are
indexed by pairs of oracles (f∗, fS). This matrix can be used to create a progress function,
and then one can bound the progress that either oracle O∗ or OS can make. This gives lower
bounds on the queries needed to O∗ and OS to evaluate STO, which in turn can be used to
lower bound the cost of STO. In Appendix C, we detail how to create this bound for STO.

4.1 Lower Bound on Controlled Quantum Cost Complexity of STO
In this section, in order to lower bound ConQCC(STO), we consider a new problem in the
standard query model, which we call Expanded Search with Two Oracles (ESTO). We show
that if we had an algorithm A which could use the control oracle CO to solve STO with
cost cA, then we could create a new algorithm A′ to solve ESTO using O(cA) queries. We
then use the adversary method to lower bound the query complexity of ESTO, which in turn
puts a lower bound on ConQCC(STO). This strategy is inspired by Ambianis’s approach
for lower bounding the variable times search problem [2].

We first describe the problem ESTO. We suggest referencing Figure 1 during the de-
scription of the problem for a graphical interpretation. Let N, M, c∗ and cS be as in STO.
Without loss of generality, we can assume c∗, cS � 1. If they are not, we can multiply both
costs by some large factor K. Then the final cost is exactly a factor of K larger than it would
have been with the original costs. (If cS = 0, this approach does not work, but in that case,
STO reduces to SEARCH). We define

m∗ = max
{
i :
⌈π

4
√
i
⌉

+ 1 ≤ c∗, i ∈ Z
}
,

mS = max
{
i :
⌈π

4
√
i
⌉

+ 1 ≤ cS , i ∈ Z
}
,

ESTO queries an unknown function f : [N(mS + m∗)] → {0, 1}. We consider D1 =
{1, . . . , Nm∗} to be the “first part” of the domain of f , and D2 = {Nm∗+1, . . . , N(m∗+mS)}
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Figure 1 A diagram of a function f for which ESTO(f) = 1. The domain of f is divided into two
parts D1 and D2. Each of these sets are further divided into N sets of size m∗ and mS respectively.
These sets are labeled T 1

k for sets in D1, and T 2
k for sets in D2. We see there is exactly one value of

i ∈ D1 with value 1, and it is in the set T 1
k∗ . In the case shown in this figure, S = {1, k∗}, so both

T 2
k∗ and T 2

1 contain exactly one marked item.

to be the “second part” of the domain. We further divide D1 (D2) into N blocks of m∗ (mS)
elements respectively, where the elements T 1

k = {(k − 1)m∗ + 1, . . . , km∗} constitute the kth
block of D1, and the elements T 2

k = {Nm∗ + (k − 1)mS + 1, . . . , Nm∗ + kmS} constitute
the kth block of D2.

We are promised that there is either exactly zero or one value i∗ ∈ D1 such that f(i∗) = 1.
If there is such an i∗, we label the block it is in by k∗, so i∗ ∈ T 1

k∗
. Furthermore, if i∗ exists,

there is a set S ∈ [N ] such that |S| = M , k∗ ∈ S, and for each k ∈ S there is exactly one
value of i ∈ T 2

k such that f(i) = 1. Given such a function f , ESTO(f) = 1 if there is an item
i∗ ∈ D1 such that f(i∗) = 1, and 0 otherwise.

Given an algorithm A for STO that uses the control oracle CO and has cost cA, we can
create an algorithm A′ to solve ESTO that uses 2cA queries. Let ybj = 1 for b ∈ {1, 2} if
there is an element i ∈ T bj such that f(i) = 1, and 0 otherwise. Then by Claim 2 in [2],
there is an algorithm B that takes |b, j〉|0〉|0〉 → |b, j〉|ybj〉|ψbj〉 for some state |ψbj〉 and uses c∗
queries if b = 1 and cS queries if b = 2. At the cost of doubling the number of queries, we can
uncompute the final register. Thus there is an algorithm B′ that takes |b, j〉|0〉 → |b, j〉|ybj〉
and uses 2c∗ queries if b = 1 and 2cS queries if b = 2. We also allow for b = 0, in which case
the algorithm B′ applies the identity.

Then we can solve ESTO using our algorithm A for STO. In STO we are searching for a
specific element i∗ ∈ [N ] with certain properties, in ESTO, the search is for a specific block
k∗ ∈ [N ] with analogous properties. We replace an application of the controlled oracle C-O
to the state |b, i〉 with b ∈ {0, 1, 2} and i ∈ [N ] with an application of the algorithm B′ to the
state |b, i〉, (which corresponds to searching the block T bi , for b ∈ {1, 2} and i ∈ [N ], or doing
nothing if b = 0). The number of queries required by B′ will be twice cost of the equivalent
query made by A. Due to the specific structure of f , this algorithm will solve ESTO with a
number of queries equal to 2cA.

Now all that is left is to put a lower bound on the number of queries needed to solve
ESTO. We use Ambainis’s adversary bound:

I Theorem 4 (Basic Adversary Bound [1]). Let F (f(1), . . . , f(N)) be a function of N {0, 1}-
valued variables f(i), and let X, Y be two sets of inputs such that F (f) 6= F (g) if f ∈ X and
g ∈ Y. Let R ⊂ X × Y be such that

For every f ∈ X, there exist at least µ different g ∈ Y such that (f, g) ∈ R.
For every g ∈ Y , there exist at least µ′ different f ∈ X such that (f, g) ∈ R.
For every f ∈ X and i ∈ [N ], there are at most l different g ∈ Y such that (f, g) ∈ R
and f(i) 6= g(i).
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10 Oracles with Costs

For every g ∈ Y and i ∈ [N ], there exist at least l′ different f ∈ X such that (f, g) ∈ R
and f(i) 6= g(i).

Then, any quantum algorithm computing F with error at most ε on all valid inputs uses at
least

1− 2
√
ε(1− ε)
2

√
µµ′

ll′
(27)

queries.

For the sets X and Y , we only consider functions f where in each block T bj , there is at
most 1 marked item. We denote by fk∗,i∗,S,S′ a function where i∗ ∈ D1 is the marked item,
k∗ is the block where the i∗ sits (or i∗ = k∗ = 0 if there is no marked item in D1), S is the
set of blocks in D2 that have exactly one marked item in each block, and S′ is a list of the
|S| items that are marked in the second part of the domain.

Let X be the set of all functions fk∗,i∗,S,S′ with k∗ 6= 0, i∗ 6= 0, |S| = M, and k∗ ∈ S. From
our definition of ESTO, these are functions for which the algorithm should output 1. Let Y be
the set of functions f0,0,T,T ′ with |T | = M−1. Then R is defined by (fk∗,i∗,S,S′ , f0,0,T,T ′) ∈ R
if and only if T ⊂ S, T ′ ⊂ S′, and k∗ /∈ T. With this definition of R, we have µ = 1 while
µ′ = (N −M + 1)m∗mS . Likewise l = 1 while l′ = max{mS ,m∗} = m∗ since c∗ ≥ cS .
Theorem 4 then gives that the number of queries required to solve ESTO, is at least

1− 2
√
ε(1− ε)
2

√
(N −M + 1)mS . (28)

Eq. (28) does not tell the full story; we can repeat this procedure with the set X the
same as before, but now the set Y includes all functions f0,0,S,S′ such that |S| = M. Then
we choose (fk∗,i∗,S,S′ , f0,0,T,T ′) ∈ R if and only if T = S and T ′ = S′. With this definition of
R, we have µ = 1, while µ′ = Mm∗. Likewise l = 1 while l′ = 1. Again using Theorem 4, we
have that the number of queries required to solve ESTO is at least

1− 2
√
ε(1− ε)
2

√
Mm∗. (29)

Since c∗, cS � 1, we have m∗ = Ω((c∗)2) and mS = Ω((cS)2), so combining Eq. (28) and
Eq. (29), and using the fact that a lower bound on the query complexity of ESTO gives a
lower bound on the controlled quantum cost complexity of of STO, we have

ConQCCε(STO) ≥
1− 2

√
ε(1− ε)
4 ×max

{√
Mm∗,

√
(N −M + 1)mS

}
(30)

= Ω
(

max
{√

Mc∗,
√

(N −M + 1)cS
})

. (31)

With Eq. (20), this bound proves our algorithms are asymptotically optimal. In Figure 2,
we compare the bound given by the reduction to ESTO with the Hybrid Algorithm. Even
though the functions are asymptotically tight, the forms of these two bounds are quite
different.

4.2 Exact Lower Bound for Cost Complexity of STO
In the introduction, we mentioned several reasons for wanting to prove exact optimality of
our algorithm for STO. Aside from finding an example besides Grover’s algorithm of an
exactly optimal algorithm, proving our algorithm for STO is optimal would have several
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Figure 2 The solid line is the cost of the hybrid algorithm, while the dashed line is the lower
bound on the cost given by Eq. (30). The cost is calculated with c∗ = 1, N = 104, M = 400 and
ε = 0 while cS is varied.

other implications. First, the algorithms described in Section 3 are all based on amplitude
amplification, so if we can prove these approaches are optimal, that would give evidence that
amplitude amplification is an exactly optimal algorithm for certain types of unstructured
search problems.

Second, if we consider an extension of STO to many oracles, we can no longer prove
asymptotic optimality of our amplitude amplification algorithm. Note that in amplitude
amplification, (see Theorem 2), the inner algorithm (A) is applied two times for each
application of the oracle that identifies the target state (if A = A−1). This factor of two is
not accounted for in our lower bound of Section 4.1. While this factor of two can be swept
under the rug using asymptotic notation, if we consider a problem with k nested oracles,
and try to apply a similar strategy as for STO and use nested amplitude amplification, the
innermost algorithm will accumulate an extra factor of 2k in the number of times it must
be applied. Using a strategy similar to Section 4.1 to lower bound this problem will not
catch that factor of 2k, for the same reason the factor of 2 is not characterized by the oracle
simulation and adversary method. In the case of k = logN nested oracles, our bounds will no
longer be asymptotically tight. Thus, if we can find an exact bound in the case of STO, we
might be able to extend it to get asymptotically tight bounds for the case of nested oracles,
providing evidence that multiple nestings of amplitude amplification are optimal for certain
problems.

We have found that proving an exactly tight lower bound for STO is a challenge, and in
fact we can only prove the hybrid algorithm is optimal in a limited setting. The difficulty in
proving optimality even in this limited case provides insight into the difficulty of the more
general case.

The restricted setting we investigate is to only consider Grover-like algorithms.

I Definition 5. A Grover-like algorithm with oracles {O1, . . . ,Ol} that act on an N -
dimensional Hilbert space must:

Use only an N -dimensional Hilbert space as its workspace,
Initialize in the equal superposition state |N〉 = 1√

N

∑N
i=1 |i〉,

Use only the unitaries {O1, . . . ,Ol} and G = I− 2|N〉〈N | , and
End with a measurement on the standard basis.
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12 Oracles with Costs

If we consider Grover-like algorithms for SEARCH, the state of the system is restricted
to a 2-dimensional subspace spanned by |N〉 and |i∗〉. Since G2 = O2

∗ = I, the only possible
algorithm is alternating G and O∗, and one can easily track the progress of the state through
the two dimensional space towards |i∗〉, thus trivially proving that in this setting, Grover’s
algorithm is exactly optimal.

We will see in the proof of Theorem 6 that for STO, the picture becomes much more
complicated. In fact, even in the restricted setting of Grover-like algorithms, we need an
additional assumption to prove optimality. In particular, we show

I Theorem 6 (Exact Lower Bound). The cost of every Grover-like algorithm for STO that
succeeds with probability at least 1− ε for a constant ε is at least

cS
√
N arcsin

√
1− ε

2 sec
(
φopt +

√
M/N

)
, (32)

where φopt satisfies

φopt = max

0,
φ : tan

(
φ+

√
M
N

)
= φ+ c∗

cS

√
M
N .

(33)

We also require the conditions M,N/M →∞ and C → 0, where

C ≡ cS
√
N

c∗
√
ε2M cos

(
φopt +

√
M/N

) . (34)

Theorem 6 matches the cost of our hybrid algorithm, Eq. (25).
The proof of Theorem 6 can be found in Appendix B; here we provide a very brief sketch.

Just as a Grover-like algorithm for standard search can be thought of as acting on a two
dimensional subspace of the full N -dimensional Hilbert space, a Grover-like algorithm for
STO can be thought of as acting on a three-dimensional subspace. We create a progress
function as a position of the state in this subspace such that G has no affect on the progress
function, while O∗ and OS can cause the progress function to increase or decrease. We then
show that the increase in the progress function due to one of the oracles, divided by the
cost of that oracle, is bounded. In other words, for a given cost, we can only increase the
progress function by a certain amount, no matter which oracle is used. We finally take the
total change in the progress function necessary to achieve success, and divide by the change
in progress per cost to put a lower bound the cost.

5 Classical Cost Complexity of STO

In this section, we give bounds on the classical randomized cost complexity (RCC) of STO.
We will examine both the exact and bounded error cost complexity. For the exact cost
complexity, we see that there are two classical algorithms that resemble Algorithm 1 and
Algorithm 2, but whereas in the quantum case, it is possible to do better with the Hybrid
Algorithm, we prove that there is no classical counterpart to the Hybrid Algorithm. In
the case of exact and bounded error cost complexity, we see a polynomial increase in cost
compared to the quantum case.

In the case of exact classical cost complexity, we have:

I Lemma 7. The exact (0-error) classical cost complexity of STO is

RCC0(STO) = min{Nc∗, (N − 1)cS +Mc∗}. (35)
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Proof. We consider an adversarial oracle that knows in advance the queries the algorithm
will make.

Recall that for i ∈ [N ], fS identifies whether i ∈ S and f∗ identifies whether i = i∗. We
say an item has been completely queried if it has been queried with fS , and is found to not
be an element of S, or if it has been queried with f∗. Then the adversarial oracle acts in the
following way:

The first M − 1 items that the algorithm queries using oracle fS are all elements of S.
If all elements except one have been queried (but not necessarily completely queried)
using either function f∗ or fS , the final element to be queried will be an element of S
(even if this element is not queried using fS).
The last element to be completely queried is the marked item, if it exists.

Any algorithm acting against this adversarial oracle that makes q queries using fS , has
worst-case cost at least

NcS +Mc∗ if q = N,

qcS + [(N − q) + (M − 1)]c∗ if N − 1 ≥ q ≥M − 1,
qcS +Nc∗ if M − 1 ≥ q ≥ 0. (36)

These expressions are minimized at q = N − 1 or q = 0, and we obtain

RCC0(STO) ≥ min{Nc∗, (N − 1)cS +Mc∗}. (37)

For the upper bound, consider the following two algorithms.

I Algorithm 4. Query all items using f∗. This algorithm will find the marked item if it
exists with certainty, and has cost Nc∗.

I Algorithm 5. Query all but the last item using fS. Then:
If M items of S have been found, query f∗ on these M items.
If M − 1 items of S have been found, query f∗ on these M − 1 items, and also the last
item (the item that was not queried using fS).
Otherwise |S| 6= M and therefore no marked item exists.

This algorithm will find the marked item if it exists with certainty, and has cost (N − 1)cS +
Mc∗.

Thus we have

RCC0(STO) ≤ min{Nc∗, (N − 1)cS +Mc∗}. (38)

J

Algorithm 1 can be thought of as the quantum version of Algorithm 4, while Algorithm
2 can be thought of as the quantum version of Algorithm 5. In the 0-error classical case,
these two approaches tell the whole story. However, in the quantum case, you can do better
with the Hybrid Algorithm. The Hybrid Algorithm works by doing something very quantum,
which is to partially search for the elements of S. In the classical case, this doesn’t work.
Once you’ve found an element of S, you’ve found it; there is no way to partially find an
element of S.

With Lemma 7, we’ve proven that in the 0-error case, we can obtain a polynomial
reduction in cost by using a quantum algorithm for STO. Next, we show this polynomial
reduction holds even in the case of bounded error algorithms. We do this by reducing STO
to the problem of SEARCH. Recall that for SEARCH, we have:
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I Lemma 8. Any randomized classical algorithm that solves SEARCH with bounded probab-
ility must query f∗ at least Ω(N) times.

Now we can prove the reduction of STO to standard search:

I Lemma 9. Any randomized classical algorithm that solves STO with bounded probability
of error must use as least Ω(N) queries to either f∗ or fS, as long as M/N ≤ 1/9.

Proof. Suppose there is a randomized algorithm A that solves STO with probability 3/4
and makes q∗ queries to f∗ and qS queries to fS . Then we will use A to find i∗ in the case
when we are given f∗ but not fS . To do this, we will use f∗ to create a function that behaves
similarly to fS . We choose a subset T ∈ [N ] with |T | = M − 1 at random, and create a
function fT that acts as

fT (i) =
{

1 if i ∈ T
0 if i /∈ T.

(39)

Then we create the function f̃S to simulate fS , where

f̃S(i) = fT (i) ∨ f∗(i). (40)

Each time we want to query f̃S , we must query f∗(i). Notice that f̃S behaves like a valid fS
function unless i∗ exists and i∗ ∈ T (because in this case f̃S marks M − 1 items instead of
M .) i∗ ∈ T with probability M−1

N.

We create f̃S as above, and we implement A, but every time A asks us to apply fS , we
instead apply f̃S . This new algorithm will succeed with probability 3/4(1−(M−1)/N) ≥ 2/3,
because it succeeds with probability 3/4 as long as i∗ /∈ F . This means we have created
an algorithm for standard search which uses q∗ + qS queries to f∗ and which succeeds with
probability 2/3. But by Lemma 8, we must have q∗ + qS = Ω(N). J

Finally, we note that there is an additional restriction on the number of queries to f∗:

I Lemma 10. Any randomized classical algorithm that solves STO with bounded probability
must use at least Ω(M) queries to f∗.

Proof. Suppose the elements of the subset S were known. Then in the worst case, that
would still only narrow down the search to M items. (This is the worst case because if
|S| 6= M , then one immediately knows there is no marked item.) One must then perform a
search for one marked item out of M , which requires Ω(M) queries via Lemma 8. J

Now we can state our lower bound on the query cost of STO:

I Theorem 11. The bounded error classical randomized cost complexity of STO is

RCC(STO) = min {Ω(cSN + c∗M),Ω(c∗N)} . (41)

Proof. When M/N ≤ 1/9, we solve the following linear program:

minimize: q∗c∗ + qScS

subject to: q∗ ≥ f1(M, ε)
q∗ + qS ≥ f2(N,M, ε). (42)

When M/N > 1/9, from Lemma 10, we have have q∗ = Ω(M) = Ω(N), so the cost is as
least Ω(c∗M) = Ω(c∗N). J

Comparing Eq. (41) with Eq. (20), we see that there is always a separation between
the quantum and classical costs of STO. In particular, to get the quantum scaling from the
classical scaling, simply replace all M ’s and N ’s by

√
M and

√
N .
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6 Conclusions and Open Questions

While query complexity is a well understood and powerful tool for quantifying the power
of quantum computers, there are still problems that are not easily characterized by query
complexity. Cost complexity is one way of extending the standard query model, and we’ve
argued that this approach has potential applications in constraint satisfaction problems.

While we motivated STO with problems like k-SAT, graph isomorphism, and the traveling
salesman problem, it is not obvious how much of a speed-up an STO inspired algorithm for
these problems would be. The speed-up in STO depends critically on N, M, c∗, and cs. It
would be interesting to calculate approximately what this relationship is, for example, in a
random k-SAT instance. Once this relationship is better understood, we could determine the
amount of speed-up an STO algorithm would give for such a problem. However, even with a
better understanding of this relationship, it is unlikely that M would be known exactly. In
that case, a method such as fixed point search [16] might be helpful.

STO is a very simple extension of a search problem, and thus the methods described here
all have a Grover-ish flavor to them. It would be interesting to find well motivated problems
for the cost complexity model where other quantum algorithms could be employed.

We have also left open the question of the exact cost of STO. We believe our algorithm is
optimal, but it seems new techniques are needed to prove it.
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A Analysis of the Hybrid Algorithm

Throughout this section, when we are calculating something “to zeroth order”, we drop terms
whose sizes are O(M−1/2) or O((M/N)1/4) multiplied by the size of the largest term.

In Section 3, Eq. (24), we showed that the cost of the Hybrid Algorithm is

Cost(Hybrid) =


arcsin

√
1− ε− arcsin

√
1−α√
M

2 arcsin
√

1−α√
M


×

c∗ + 2cS


(

arcsin
√

1− α− arcsin
√

M
N

)
2 arcsin

√
M
N


 . (43)

In this appendix, we prove that in the limit of M →∞ and N/M →∞, there is a choice of
α such that the cost is

Cost(Hybrid) = cS
√
N arcsin

√
1− ε

2 sec
(
φopt +

√
M

N

)
, (44)

where φopt is given by

φopt = max

0
φ : tan

(
φ+

√
M
N

)
= φ+ c∗

cS

√
M
N .

(45)

We first define

t =


(

arcsin
√

1− α− arcsin
√

M
N

)
2 arcsin

√
M
N

 , (46)

so t is a non-negative integer. Substituting t for α in Eq. (43), we obtain

Cost(Hybrid) =(2tcS + c∗)

×

arcsin
√

1− ε

2 arcsin

 sin
(

(2t+ 1) arcsin
√

M
N

)
√
M



−1

− 1/2

 .
(47)
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To zeroth order, this becomes

Cost(Hybrid) = (2tcS + c∗)
√
M arcsin

√
1− ε

2 sin
(

(2t+ 1)
√

M
N

) . (48)

Finally, we denote φ = 2t
√
M/N to obtain

Cost(Hybrid) =

(
φcS +

√
M
N c∗

)√
N arcsin

√
1− ε

2 sin
(
φ+

√
M
N

) . (49)

We take the partial derivative of the cost with respect to φ, and set it to zero to find the
value of φ that gives the smallest cost. We find the cost is minimized when φ = φopt, where
φopt satisfies

tan
(
φopt +

√
M/N

)
= φopt + c∗

c

√
M/N. (50)

Notice that there is always a solution with φopt ∈ [−
√
M/N, π/2]. However t is non-negative,

so if φopt < 0 we set φopt = 0. This condition, along with Eq. (49) and Eq. (50), immediately
gives the cost claimed in Eq. (44).

We might not be able to exactly attain this cost, because t must be an integer, so we
might only be able to set φ close to φopt. We show that even if we can’t set φ exactly to
φopt, we can still attain the cost of Eq. (44), to zeroth order.

There are two cases to consider. In the first case, we assume (M/N)1/4 ≤ φopt ≤ π/2. We
require that t be a non-negative integer, so we choose t =

⌈
(φopt

√
N)/(2

√
M)
⌉
, and hence

we set

φ =
⌈
φopt

2

√
N

M

⌉
2
√
M

N
. (51)

For that choice, notice that

φ− φopt = O
(

(M/N)1/2
)
. (52)

This allows us to relate terms involving φ to those involving φ0:

sin
(
φ+

√
M/N

)
= sin

(
φopt +

√
M/N

)
±O((M/N)1/2)

= sin
(
φopt +

√
M/N

)(
1±O((M/N)1/4)

)
=
(
φopt + c∗

cS

√
M/N

)
cos
(
φopt +

√
M/N

)(
1±O

(
(M/N)1/4

))
=
(
φ+ c∗

cS

√
M/N

)
cos
(
φopt +

√
M/N

)(
1±O

(
(M/N)1/4

))
,

(53)

where in the first line, we use the angle addition formula and Eq. (52); in the second, we
use the assumption that φopt ≥ (M/N)1/4; in the third line we applied Eq. (50); and in the
last we have used Eq. (52) and the assumption on the size of φopt. Plugging Eq. (53) into
our expression for the cost in Eq. (49), we have that to zeroth order, we obtain Eq. (44), as
desired.
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We now consider the second case, when 0 ≤ φopt < (M/N)1/4. In this case, we simply
set t = 0, and hence φ = 0. Plugging φ = 0 the cost of Eq. (49), we have, to zeroth order,

Cost(Hybrid) = arcsin
√

1− ε
√
N

2 c∗. (54)

We will show that Eq. (54) and Eq. (44) are equivalent for 0 ≤ φopt < (M/N)1/4. We have

sec
(
φopt +

√
M/N

)
= 1 +O

(
(M/N)1/4

)
. (55)

We can expand Eq. (50) to get

cS = c∗

(
1−O

(
(M/N)1/4)

))
. (56)

Plugging Eqs. (55) and (56) into Eq. (44) and keeping only zeroth order terms, we recover
Eq. (54).

B Proof of Theorem 6

In this section, we prove the following theorem:

I Theorem 6 (Exact Lower Bound). The cost of every Grover-like algorithm for STO that
succeeds with probability at least 1− ε for a constant ε is at least

cS
√
N arcsin

√
1− ε

2 sec
(
φopt +

√
M/N

)
, (32)

where φopt satisfies

φopt = max

0,
φ : tan

(
φ+

√
M
N

)
= φ+ c∗

cS

√
M
N .

(33)

We also require the conditions M,N/M →∞ and C → 0, where

C ≡ cS
√
N

c∗
√
ε2M cos

(
φopt +

√
M/N

) . (34)

Proof. Throughout this section, when we say to zeroth order, we mean dropping terms of
size at most O(M−1/2) or O

(
(M/N)1/2) or O(C) of the zeroth order terms.

Since we only consider the operations OS , O∗, and G, the state of the system never leaves
the three-dimensional space spanned by the orthonormal states{

|i∗〉, |S−〉 = 1√
M−1

∑
i∈S−{i∗} |i〉, |S

⊥〉 = 1√
N−M

∑
i/∈S |i〉

}
. (57)

It turns out that it is more convenient to work in a slightly shifted basis from that of Eq.
(57). We instead use the orthonormal basis states:

|x〉 = cos θ0|i∗〉 − sin θ0|S−〉,
|y〉 = cosφ0 sin θ0|i∗〉+ cosφ0 cos θ0|S−〉 − sinφ0|S⊥〉,
|z〉 = sinφ0 sin θ0|i∗〉+ cos θ0 sinφ0|S−〉+ cosφ0|S⊥〉

= |N〉. (58)
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We can think of these states as forming the axes of a 3-dimensional space, where a state

|χ〉 = x|x〉+ y|y〉+ z|z〉 (59)

is identified with the point (x, y, z). Then if the algorithm is initialized in the equal
superposition state |z〉, the goal of the algorithm is to move from the |z〉-axis towards the
|x〉-axis.

Since any normalized state of the system corresponds to a point on the unit sphere in this
space, let us now introduce polar coordinates, with the |x〉-axis as the polar axis. Specifically,
we associate the state |χ〉 with the polar coordinates (θ, φ), where

x = sin θ, y = cos θ sinφ, z = cos θ cosφ (60)

for θ ∈ [−π/2, π/2]. (The variable φ in this section plays a nearly identical role to φ in
Appendix A, so we use the same variable name.)

If we multiply a state by −1, this transforms the coordinates from (θ, φ) to (−θ, φ+ π).
Because overall phases do not affect the state, we can apply this transformation for free. In
particular, we use it to “pick a gauge” and choose the coordinates that satisfy θ ≥ 0.

For a Grover-like algorithm which finds the marked state with high success probability,
the algorithm starts at the point (θ = 0, φ = 0), and must end near θ = π/2. We define a
progress function H(θ, φ), for θ > 0, as

H(θ, φ) = θ − kmin
`∈Z
|φ+ 2`π − π/2|, (61)

where

k = θ0 cos(φopt + φ0), (62)

φ0 = arcsin
√
M/N, (63)

θ0 = arcsin
√

1/M, (64)

φopt = max
{

0
φ : tan(φ+ φ0) = φ+ c∗

c φ0.
(65)

The second term of H(θ, φ) is proportional to the angular distance of φ to π/2 (taken so the
distance is < π).

Before we analyze how each unitary changes the progress function, we will look at the
total progress that must occur for the algorithm to succeed. The total progress gained by
the algorithm must be larger than the difference between the value of the progress function
at the starting point and the end point. We pick the starting point as the last time the
algorithm increases θ from less than 2θ0 to more than 2θ0, and φ ≥ 0. (We require φ ≥ 0 for
Lemma 12, and we require θ ≥ 2θ0 in order to calculate the progress due to O∗.) We will
show later that such a point will always exist for any successful algorithm, and also that at
such a point θ < 6θ0. Thus the value of the progress function at the starting point is at most
6θ0.

For the end point of the algorithm, note that the probability of success is

sin2(θ) > 1− ε, (66)

to zeroth order. Thus the total change in progress function is at least

arcsin
√

1− ε− kπ − 6θ0 > arcsin
√

1− ε− (6 + π)θ0, (67)
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where we bound k using Eq. (62), and the kπ term comes from the worst possible value of φ
when θ gets sufficiently large.

We note the following: from Eq. (25) and Eq. (62) we see that the cost of the optimal
algorithm is at most

cS arcsin
√

1− ε
φ0k

, (68)

and from Eq. (67) the change in the progress function is at least arcsin
√

1− ε− (6 + π)θ0;
therefore the progress per unit cost must be at least φ0k/cS , to zeroth order. It therefore
follows that when calculating the change in progress function, we only need to keep track of
terms up to order O(φ0k/cS) per cost. For example, for O∗, we need only keep track of the
change in progress (not progress per cost) up to order O(φ0kc∗/cS).

The change in the progress function H(θ, φ) due to the unitaries G, OS , and O∗ can be
calculated by how they change the coordinates (θ, φ) of a state. After some algebra and
using our gauge choice, we obtain

G: The unitary G is a reflection about the z-axis, and in polar coordinates is the map

G : (θ, φ)→ (θ, π − φ). (69)

Comparing with Eq. (61), we see G has no effect on the progress function.
OS : The oracle OS is a reflection about the state which has polar coordinates (θ = 0, φ =
−φ0).

OS : (θ, φ)→ (θ, π − φ− 2φ0) (70)

We see that OS can change the progress function by at most 2φ0k. Thus the increase in
the progress function per cost due to OS is at most

2φ0k

cS
= 2φ0θ0 cos(φopt + φ0)

cS
. (71)

O∗: The oracle O∗ is a reflection about the state |i∗〉, which is close to |x〉. We find O∗
transforms coordinates as

θ → θ + 2θ0 sin(φ+ φ0) +O(θ2
0) (72)

φ→ π + φ+O

(
θ0

cos θ

)
. (73)

Now we consider how O∗ affects the progress function; unlike the previous cases, which
we calculated exactly, we will only analyze this case to zeroth order. We will first show that
we can assume |φ| ≤ π/2. Suppose that |φ| > π/2 just before we would like to apply O∗.
Then instead of applying O∗, we apply GO∗G. One can check that with this replacement,
when O∗ is applied, |φ| ≤ π/2. Furthermore one can verify that this replacement causes θ to
increase (which can only be good for the progress function), while on the other hand, the
value of φ changes by at most O (θ0/ cos θ) due to this replacement, resulting in a change
in the progress function of size O (kθ0/

√
ε) (using Eq. (66) to bound cos θ). Using our

assumption that that C = o(1), this change has order less than O(φ0kc∗/cS), and so can be
discarded using the argument following Eq. (68). We can therefore assume that O∗ is always
applied at |φ| ≤ π/2.
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Now we can examine the change in the progress function due to the action of O∗. The
increase in the progress function is

2θ0 sin(φ+ φ0) +O
(
θ2

0
)

− k
(

min
`∈Z
| − φ+ 2`π − π/2| −min

`∈Z
|φ+ 2`π − π/2|

)
+O

(
kθ0

cos θ

)
. (74)

Since |φ| ≤ π/2, the increase in the progress function due to O∗ is less than

2θ0 sin(φ+ φ0)− 2φθ0 cos(φopt + φ0) +O

(
θ2

0√
ε

)
, (75)

where we have used the value of k from Eq. (62) and bounded cos θ with Eq. (66).
Taking the first and second derivatives of Eq. (75) with respect to φ, we see that when

φ ≥ 0, the increase in the progress function is maximized when φ = φopt. It turns out that
if one applies O∗ at φ < 0, it is sometimes possible to achieve a larger increase in progress
per cost than when φ ≥ 0. However, we show at the end of this section, (Lemma 12), that
applying O∗ when φ < 0 will always be less efficient (up to higher order terms) in terms of
the increase in progress function per cost, than applying O∗ at φ = φopt, when viewed in the
context of the larger algorithm. Applying the definition of φopt from Eq. (65) to Eq. (75),
and using the definition of C from Eq. (34), the increase in the progress function due to O∗
is less than

c∗2φ0θ0 cos(φopt + φ0)
cS

(
1 +O(φ2

0) +O (C)
)
, (76)

where the O(φ2
0) term accounts for the case that φopt = 0.

From Eq. (71) and Eq. (76) we see that (to zeroth order) the maximum increase in the
progress function per cost is the same whether O∗ is applied or OS is applied. Dividing the
total necessary change in progress (Eq. (67)) by the maximum change in progress per cost
(Eq. (76)) gives us the minimum cost:

arcsin
√

1− ε cS
2φ0θ0 cos(φopt + φ0)

(
1−O(C)−O(M−1/2)−O

(
(M/N)−1/2

))
. (77)

In the limit of N,M →∞ and C → 0, (to zeroth order) we have that the cost is at least

arcsin
√

1− ε cS
√
M

2φ0 cos(φopt + φ0) , (78)

which matches the cost of Eq. (25).
We now justify why the value of the progress function must be less than 6θ0 when we start

tracking it. Immediately before we start tracking the progress function, we have θ < 2θ0, so
the bound on the increase in progress given by Eq. (75) does not necessarily apply. However,
it is simple to show that the increase in the progress function due to O∗ is always bounded
by 2θ0, where we have dropped terms of O(θ2

0/
√
ε) as before. Thus if θ < 2θ0, and then O∗

is applied, θ can increase by at most 2θ0, and so the new value of θ satisfies θ < 4θ0. At this
point, θ > 2θ0, but φ might be negative. Notice that θ can not increase unless O∗ is applied,
(and θ must increase in order to obtain a high probability of success) but O∗ flips the sign of
φ, so after applying O∗ at most one more time, we will have both the conditions θ > 2θ0
and φ ≥ 0 satisfied, at which point we start tracking the progress function. This tells us that
the value of θ will be at most 6θ0 when we start tracking the progress function. J
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I Lemma 12. Suppose there is an algorithm than applies O∗ when φ < 0. Then there is
always an alternative algorithm that achieves the same or greater increase in progress for the
same or less cost (up to zeroth order), but applies O∗ only when φ ≥ 0.

Proof. We begin by classifying the the possible sequences of O∗, OS , and G the algorithm
can take. We will use notation such that unitaries act from right to left, so GO∗ signifies O∗
acts first, and then G acts.

First look at O∗. We can always assume O∗ is followed by a G; if it is not, insert a GG
pair after the O∗. Note in the discussion following Eq. (73), we proved that we can assume
|φ| < π/2 before applying O∗. With Eqs. (69) and (73) we have

GO∗ : φ→ −φ+O

(
θ0

cos θ

)
. (79)

Since |φ| < π
2 before GO∗ acts, we also have |φ| < π

2 after GO∗ acts, up to an additive factor
of O

(
θ0

cos θ
)
, which we can ignore thanks to the discussion following Eq. (68). Therefore GO∗

maps φ inside the |φ| < π
2 region.

In between applications of GO∗, there is always a sequence of one of the following forms:

(GOS)m, G(GOS)m, (OSG)m, or G(OSG)m, (80)

where m is a non-negative integer that indicates multiple applications of the unitary sequence
inside the parenthesis. These are the only possible sequences because OSOS = I and GG = I.
Combining the action of G and OS in Eqs. (69) and (70) we get

(OSG)m : (θ, φ)→ (θ, φ− 2mφ0) (81)
(GOS)m : (θ, φ)→ (θ, φ+ 2mφ0). (82)

Thus the 4 sequences of Eq. (80) rotate φ by some amount ±2mφ0, possibly followed by the
transformation φ→ π − φ.

Now we focus on the algorithm’s action on φ. Since the GO∗’s are mapping φ between
points inside the |φ| < π

2 region, the four possible sequences of alternating G and OS in
Eq (80) just connect the value of φ after applying GO∗ to the value of φ before the next
application of GO∗. Generalizing Figure 3, one can see that the shortest path uses either
(GOS)m or (OSG)m to connect points inside the |φ| < π

2 region. Therefore we do not need
to consider the sequences G(OSG)m or G(GOS)m.

Next, we show that if one initially has φ > 0, it is never advantageous to again apply
GO∗ when φ < 0. Since the algorithm must consist of applications of GO∗ separated by
sequences of either (OSG)m or (GOS)m, we can enumerate and address the three possible
cases that lead us to apply O∗ at some φ = φneg < 0 after initially having φ ≥ 0. The three
possible cases are laid out graphically in Figure 4. In order to prove that none of the cases
are optimal, we define the function

p∗(φ) = 2(θ0 sin(φ+ φ0)− kφ) (83)

as the change in progress function due to an application of O∗, dropping higher order terms.
Note for φ ≥ 0, φopt optimizes Eq. (83) as discussed after Eq. (75). We proceed to treat the
three cases.
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Figure 3 The path in the figure at left uses a sequence (GOS)m to move from φstart to φend,
whereas the path in figure at right uses a sequence G(OSG)m. The path using (GOS)m is shorter,
signifying that fewer uses of OS are required to move from φstart to φend, and thus this is the more
efficient path.

Sequence I. We consider the following sequence of operations (see Figure 4):
(i) Start with φi > 0. Then apply GO∗ to get to −φi.
(ii) Apply (GOS) some number of times to increase φ to φneg > −φi.
(iii) Apply GO∗ to get to −φneg < φi.

The change in progress due only to O∗ in this sequence is

p∗(φi) + p∗(φneg) = 2(θ0 sin(φi + φ0)− kφi)
+ 2(θ0 sin(φneg + φ0)− kφneg)

≤ 4[θ0 sin(φi + φneg
2 + φ0)− kφneg + φi

2 ]

= 2p∗(φi + φneg)
≤ 2p∗(φopt), (84)

Since φneg + φi ≥ 0, the average progress due to the two applications of O∗ is worse than
if we had applied O∗ at φopt both times. Thus this sequence cannot be optimal.

Sequence II. We consider the following sequence of operations (see Figure 4):
(i) Start with φi > 0. Then apply GO∗ to get to −φi.
(ii) Apply (OSG) some number of times to decrease φ to φneg < −φi.
(iii) Apply GO∗ to get to −φneg > φi.
Compare Sequence II to the following Sequence 2:
(a) Start with φi > 0. Then apply (GOS) some number of times to increase φ to
−φneg > φi.

The difference in progress between Sequence II and Sequence 2 is

(2θ0 sin(φi + φ0) + 2θ0 sin(φneg + φ0))

=4θ0 sin(φi + φneg
2 + φ0) cos(φi − φneg2 )

<4θ0 sinφ0, (85)

since −π4 <
φi+φneg

2 < 0 and 0 < φi−φneg
2 < π

2 . Sequence II and Sequence 2 both use the
same number of applications of OS (in steps (ii) and (a) respectively). Therefore, the
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Sequence II has an additional cost 2c∗ while it only has an added increase in progress of

4θ0 sinφ0 =2p∗(0)
≤2p∗(φopt). (86)

Therefore Sequence II does not attain the increase in progress per cost that one could
attain by only applying O∗ at φopt.

Sequence III. We consider the following sequence of operations (see Figure 4):
(i) Start with φi ≥ 0, then apply (OSG) some number of times to decrease φ to

φneg < 0.
(ii) Apply GO∗ to get to −φneg.
Compare Sequence III to the following Sequence 3:
(a) Start with φi ≥ 0, and then apply (OSG) some number of times to decrease φ to

φw such that 2φ0 > φw ≥ 0.
(b) Apply GO∗ to get to −φw.
(c) Apply (GOS) some number of times to increase φ to −φneg > 0.
Note that we can always create a sequence with such a φw because (OSG) changes φ by
at most 2φ0 each time. The cost of Sequence III is the same as the cost of Sequence 3.
The difference in progress between Sequence III and Sequence 3 is

2θ0 sin(φneg + φ0)− 2θ0 sin(φw + φ0)

≤4θ0 cos
(
φneg + φw

2 + φ0

)
sin
(
φneg − φw

2

)
<0 (87)

since |φneg+φw
2 + φ0| < π

2 and π
2 <

φneg−φw
2 < 0. Therefore Sequence III is not optimal

either.

Hence we conclude that applying O∗ at negative φ never achieves as much increase in
progress per cost as applying O∗ at φopt, and therefore we only need to consider applying
O∗ at positive φ, at φopt. J

C An Adversary Lower Bound

In this section, we will show how to apply the adversary method to the problem of cost
complexity of STO.

Suppose we are given access to an oracle O∗, which implements the function f∗, and an
oracle OS , which implements the function fS . Then any algorithm which solves STO using
these oracles, after t steps, produces a state

|ψtf∗,fS 〉 = U tOct · · ·U2Oc2U
1Oc1 |ψ0〉, (88)

where cj ∈ {∗, S}, and U j are fixed unitaries independent of f∗ and fS .
We create an adversary matrix Γ, a matrix whose rows and columns are indexed by pairs

of functions (f∗, fS) ∈ DSTO, where DSTO is the set of valid inputs to STO. Furthermore,
we have the condition that that Γ[(f∗, fS), (g∗, gS)] = 0 if STO(f∗, fS) = STO(g∗, gS). With
this notation, we define the progress function:

W t =
∑

(f∗,fS),(g∗,gS)∈DSTO×DSTO

Γ(f∗,fS),(g∗,gS)vf∗,fSv
∗
g∗,gS 〈ψ

t
f∗,fS |ψ

t
g∗,gS 〉 (89)
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Figure 4 Possible paths that could lead to applying GO∗ at a negative value of φ, when initially,
φ has positive value.

for a vector v indexed by the elements of DSTO, such that ‖v‖ = 1 and v is an eigenvector
of Γ with eigenvalue ±‖Γ‖, (where ‖ · ‖ signifies the l-2 norm for vectors or the induced l-2
norm for matrices).

Then following [12]3, we have
1. W 0 = ‖Γ‖.
2. WT ≤

(
2
√
ε(1− ε) + 2ε

)
‖Γ‖, for any algorithm with probability of error at most ε.

3. W t−1 −W t ≤ 2 maxi ‖Γ ◦Dct
i ‖ where D

ct
i are |DSTO| × |DSTO| matrices satisfying

D∗i [(f∗, fS), (g∗, gS)] =
{

0 if f∗(i) = g∗(i),
1 otherwise,

DS
i [(f∗, fS), (g∗, gS)] =

{
0 if fS(i) = fS(i),
1 otherwise.

Thus if q∗ queries are made to O∗ and qS queries are made to OS , we have

‖Γ‖g(ε) ≤ q∗max
i
‖Γ ◦D∗i ‖+ qS max

i
‖Γ ◦DS

i ‖ (90)

3 The proofs are identical, so we omit them.

TQC’15



26 Oracles with Costs

where

g(ε) =
1−

(
2
√
ε(1− ε) + 2ε

)
2 . (91)

We construct the following adversary matrix for STO: Γ[(f∗, fS), (g∗, gS)] = 1 if one of
the following conditions holds:

STO(f∗, fS) = 1, STO(g∗, gS) = 0, and fS(i) = gS(i) except if f∗(i∗) = 1, then gS(i∗) = 0,
STO(g∗, gS) = 1, STO(f∗, fS) = 0, and gS(i) = fS(i) except if g∗(i∗) = 1, then fS(i∗) = 0.

Otherwise, Γ = 0.
One can calculate (or it is easy to see by analogy to a standard Grover search over

N −M + 1 items) that

‖Γ‖ =
√
N −M + 1,

max
i
‖Γ ◦Dct

i ‖ = 1,

max
i
‖Γ ◦DS

i ‖ = 1. (92)

Plugging into Eq. (90) we have

g(ε)
√
N −M + 1 ≤ q∗ + qS , (93)

so for N > M/2, we have

QCC(STO) = Ω(cS
√
N). (94)

We also consider a second adversary matrix for STO. Let Γ[(f∗, fS), (g∗, gS)] = 1 if one
of the following conditions holds:

STO(f∗, fS) = 1, STO(g∗, gS) = 0, and fS(i) = gS(i),
STO(g∗, gS) = 1, STO(f∗, fS) = 0, and gS(i) = fS(i).

Otherwise, Γ = 0.
In this case, the adversary matrix only pairs instances such that OS is the same in both

pairs. Thus it is as if the set S is known ahead of time. In this case, one can calculate (or it
is easy to see by analogy to a standard Grover search over M items), that

‖Γ‖ =
√
M

max
i
‖Γ ◦Djt

i ‖ = 1

max
i
‖Γ ◦DS

i ‖ = 0. (95)

Plugging into Eq. (90), we have

g(ε)
√
M ≤ q∗, (96)

so

QCC(STO) = Ω(c∗
√
M) (97)

Combining Eq. (94) and Eq. (97), we obtain a bound that matches Eq. (20):

QCC(STO) = Ω
(

max{c∗
√
M, cS

√
N}
)
. (98)
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Abstract
We present an operational framework for Einstein-Podolsky-Rosen steering as a physical resource.
To begin with, we characterize the set of steering non-increasing operations (SNIOs) – i.e., those
that do not create steering– on arbitrary-dimensional bipartite systems composed of a quantum
subsystem and a black-box device. Next, we introduce the notion of convex steering monotones
as the fundamental axiomatic quantifiers of steering. As a convenient example thereof, we present
the relative entropy of steering. In addition, we prove that two previously proposed quantifiers,
the steerable weight and the robustness of steering, are also convex steering monotones. To
end up with, for minimal-dimensional systems, we establish, on the one hand, necessary and
sufficient conditions for pure-state steering conversions under stochastic SNIOs and prove, on
the other hand, the non-existence of steering bits, i.e., measure-independent maximally steerable
states from which all states can be obtained by means of the free operations. Our findings reveal
unexpected aspects of steering and lay foundations for further resource-theory approaches, with
potential implications in Bell non-locality.
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1 Introduction

Steering, as Schrödinger named it [38], is an exotic quantum effect by which ensembles of
quantum states can be remotely prepared by performing local measurements at a distant lab.
It allows [43, 23, 34] to certify the presence of entanglement between a user with an untrusted
measurement apparatus, Alice, and another with a trusted quantum-measurement device,
Bob. Thus, it constitutes a fundamental notion between quantum entanglement [22], whose
certification requires quantum measurements on both sides, and Bell non-locality [13], where
both users possess untrusted black-box devices. Steering can be detected through simple
tests analogous to Bell inequalities [14], and has been verified in a variety of remarkable
experiments [29, 8, 37, 7, 20, 39], including steering without Bell non-locality [35] and a fully
loop-hole free steering demonstration [44]. Apart from its fundamental relevance, steering
has been identified as a resource for one-sided device-independent quantum key-distribution
(QKD), where only one of the parts has an untrusted apparatus while the other ones possess
trusted devices [9, 21]. There, the experimental requirements for unconditionally secure keys
are less stringent than in fully (both-sided) device-independent QKD [4, 1, 2].

The formal treatment of a physical property as a resource is given by a resource theory.The
basic component of this is a restricted class of operations, called the free operations, subject to
a physically relevant constraint. The free operations are such that every free state, i.e., every
one without the property in question, is mapped into a free state, so that the resourceful states
can be defined as those not attainable by free operations acting on any free state. Furthermore,
the quantification of the resource is also built upon the free operations: The fundamental
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necessary condition for a function to be a measure of the resource is that it is monotonous –
non-increasing – under the free operations. That is, the operations that do not increase the
resource on the free states do not increase it on all other states either. Entanglement theory
[22] is the most popular and best understood [40, 32, 10, 11] resource theory. There, the
constrain on the operations is the unavailability of quantum communication, which yields
the local operations assisted by classical communication (LOCCs) [6] as the corresponding
free operations. Nevertheless, resource theories have been formulated also for states out
of thermal equilibrium [12], asymmetry [3], reference frames [19], and quantum coherence
[26, 5], for instance.

In steering theory, systems are described by an ensemble of quantum states, on Bob’s
side, each one associated to the conditional probability of a measurement outcome (output)
given a measurement setting (input), on Alice’s. Such conditional ensembles are sometimes
called assemblages [33, 36, 31]. The free operations for steering, which we call steering
non-increasing operations (SNIOs), must thus arise from constrains native of a natural
scenario where steerable assemblages are useful for some physical task. Curiously, up to now,
no attempt for an operational framework of steering as a resource has been reported.

In this submission we develop the resource theory of steering. First, we derive the explicit
expression of the most general SNIO, for arbitrarily many inputs and outputs for Alice’s
black box and arbitrary dimension for Bob’s quantum system. We show that this class of
free operations emerges naturally from the basic restrictions of QKD with assemblages, i.e.,
of one-side device-independent QKD [9, 21]. With the derived SNIOs, we provide a formal
definition of steering monotones. As an example thereof, we present the relative entropy of
steering, for which we also introduce, on the way, the notion of relative entropy between
assemblages. In addition, we prove SNIO monotonicity for two other recently proposed
steering measures, the steerable weight [36] and the robustness of steering [31], and convexity
for all three measures. To end up with, we prove two theorems on steering conversion under
stochastic SNIOs for the lowest-dimensional case, i.e., qubits on Bob’s side and 2 inputs × 2
outputs on Alice’s. In the first one, we show that it is impossible to transform via SNIOs,
not even probabilistically, an assemblage composed of pairs of pure orthogonal states into
another assemblage composed also of pairs of pure orthogonal states but with a different
pair overlap, unless the latter is unsteerable. This yields infinitely many inequivalent classes
of steering already for systems of the lowest dimension. In the second one, we show that
there exists no assemblage composed of pairs of pure states that can be transformed into
any assemblage by stochastic SNIOs. It follows that, in striking contrast to entanglement
theory, there exists no operationally well defined, measure-independent maximally steerable
assemblage of minimal dimension.

The submission is organized as follows. In Sec. 2 we formally define assemblages and
present their basic properties. In Sec. 3 we characterise the SNIOs. In Sec. 4 we introduce the
notion of convex steering monotones. In Sec. 5 we present the relative entropy of steering. In
Sec. 6 we show convexity and SNIO-monotonicity of the steerable weight and the robustness
of steering. In Sec. 7 we study, for minimal-dimensional systems, assemblage conversions
under SNIOs and prove the in existence of pure-assemblage steering bits. Finally, in Sec. 8
we present our conclusions and mention some future research directions that our results offer.

Note also, that some proofs and supplemental material can be found in the Appendix of
the online version on which this submission is based [17], in which case it will be indicated
explicitly.
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2 Assemblages and steering

We consider two distant parties, Alice and Bob, who have each a half of a bipartite system.
Alice holds a so-called black-box device, which, given a classical input x ∈ [s], generates
a classical output a ∈ [r], where s and r are natural numbers and the notation [n] ≡
{0, . . . , n− 1}, for n ∈ N, is introduced. Bob holds a quantum system of dimension d (qudit),
whose state he can perfectly characterize tomographically via trusted quantum measurements.
The joint state of their system is thus fully specified by an assemblage

ρA|X ≡ {PA|X(a, x), %(a, x)}a∈[r],x∈[s], (1)

of normalized quantum states %(a, x) ∈ L(HB), with L(HB) the set of linear operators
on Bob’s subsystem’s Hilbert space HB, each one associated to a conditional probabil-
ity PA|X(a, x) of Alice getting an output a given an input x. We denote by PA|X the
corresponding conditional probability distribution.

Equivalently, each pair {PA|X(a, x), %(a, x)} can be univocally represented by the unnor-
malized quantum state

%A|X(a, x) ≡ PA|X(a, x)× %(a, x). (2)

In turn, an alternative representation of the assemblage ρA|X is given by the set ρ̂A|X ≡
{ρ̂A|X(x)}x of quantum states

ρ̂A|X(x) ≡
∑
a

|a〉〈a| ⊗ %A|X(a, x) ∈ L(HE ⊗HB), (3)

where {|a〉} is an orthonormal basis of an auxiliary extension Hilbert space HE of dimension
r. The states {|a〉} do not describe the system inside Alice’s box, they are just abstract flag
states to represent its outcomes with a convenient bra-ket notation. Expression (3) gives the
counterpart for assemblages of the so-called extended Hilbert space representation used for
ensembles of quantum states [28]. We refer to ρ̂A|X for short as the quantum representation
of ρA|X and use either notation upon convenience.

We restrict throughout to no-signaling assemblages, i.e., those for which Bob’s reduced
state %B ∈ L(HB) does not depend on Alice’s input choice x:

%B ≡
∑
a

%A|X(a, x) =
∑
a

%A|X(a, x′) ∀ x, x′. (4)

The assemblages fulfilling the no-signaling condition (4) are the ones that possess a quantum
realization. That is, they can be obtained from local quantum measurements by Alice on a
joint quantum state %AB ∈ L(HA ⊗HB) shared with Bob, where HA is the Hilbert space of
the system inside Alice’s box. For any no-signaling assemblage ρA|X , we refer as the trace of
the assemblage to the x-independent quantity

Tr[ρA|X ] ≡ TrEB [ρ̂A|X ] = Tr[%B ] =
∑
a

PA|X(a, x), (5)

and say that the assemblage is normalized if Tr[ρA|X ] = 1 and unnormalized if Tr[ρA|X ] ≤ 1.
An assemblage σA|X ≡ {ςA|X(a, x)}a∈[r],x∈[s], being ςA|X(a, x) ∈ L(HB) unnormalized

states, is called unsteerable if there exist a probability distribution PΛ, a conditional probability
distribution PA|XΛ, and normalized states ξ(λ) ∈ L(HB) such that

ςA|X(a, x) =
∑
λ

PΛ(λ)PA|XΛ(a, x, λ) ξ(λ) ∀ x, a. (6)
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Figure 1 Schematic representation of a SNIO map M: The initial assemblage ρA|X consists
of a black-box, with inputs x and outputs a, governed by the probability distribution PA|X , in
Alice’s hand, and a quantum subsystem in one of the states {%(a, x)}a,x, in Bob’s hands. The final
assemblage ρAf |Xf = M(ρA|X) is given by a final black-box, represented by the light-grey rectangle,
of inputs xf and outputs af , and a final subsystem, represented outside the light-grey rectangle, in
the state %(af , xf ) = Eω(%(a, x)). To implement M, first, Bob applies, with a probability PΩ(ω), a
stochastic quantum operation Eω that leaves his subsystem in the state Eω(%(a, x)). He communicates
ω to Alice. Then, Alice generates x by processing the classical bits ω and xf according to the
conditional distribution PX|Xf ,Ω. She inputs x to her initial device, upon which the bit a is output.
Finally, Alice generates the output af of the final device by processing xf , ω, x, and a, according to
the conditional distribution PAf |A,X,Ω,Xf .

Such assemblages can be obtained by sending a shared classical random variable λ to Alice,
correlated with the state ξ(λ) sent to Bob, and letting Alice classically post-process her
random variable according to PA|XΛ, with PX,Λ = PX ×PΛ so that condition (4) holds. The
variable λ is called a local-hidden variable and the decomposition (6) is accordingly referred
to as a local-hidden state (LHS) model. We refer to the set of all unsteerable assemblages as
LHS. Any assemblage that does not admit a LHS model as in Eq. (6) is called steerable. An
assemblage is compatible with classical correlations if, and only if, it is unsteerable.

3 The operational framework

3.1 Physical constraints defining the free operations

QKD consists of the extraction of a secret key from the correlations of local-measurement
outcomes on a bipartite quantum state. The most fundamental constraint to which any
generic QKD protocol is subject is, of course, the lack of a private safe classical-communication
channel between distant labs. Otherwise, if such channel was available, the whole enterprise
of QKD would be pointless. This imposes restrictions on the operations allowed so as not to
break the security of the protocol. For instance, clearly, the local-measurement outcomes
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cannot be communicated, as they can be intercepted by potential eavesdroppers who could,
with them, immediately crack the key. Of particular relevance for this submission are
the assumptions on the measurement devices. In non-device-independent QKD protocols
entanglement is the resource and security is proven under the assumption that the users have
a specific quantum state and perfectly characterized measurement devices [16]. Knowledge
of the state by an eavesdropper does not compromise the security. Therefore, prior to the
measurements producing the key, the users are allowed to preprocess the state in any way and
exchange information about it, for instance with LOCCs and even eventually disregarding
the state and aborting the protocol run. Pre-processing abortions or classical communication
can at most provide an eavesdropper with knowledge about the state, not about the key,
and therefore do not affect the security.

The situation is different in device-independent QKD (DIQKD) [4, 1, 2]. There, the
resource is given by Bell non-local correlations and no assumption is made either on the
quantum state or the measurement devices. The users effectively hold black-box measurement
devices, whose inputs and outputs are all to which they have access. Since such inputs and
outputs are precisely the bits with which the key is established, both classical communication
and abortions are forbidden. Communication of outputs can directly reveal the key, as
mentioned, whereas abortions and communication of inputs can, due to the locality and
detection loopholes, respectively, be maliciously exploited by an eavesdropper to obtain
information about the key too. Hence, the natural constrains of DIQKD impose that
operations are restricted to well-known [18, 41] paradigm of shared-randomness and local
classical information processing.

Steerable assemblages are resources for one-sided DIQKD (1S-DIQKD) [9, 21]. There,
while no assumption is made on the bipartite quantum state or Alice’s measurement device,
Bob’s measurement device is perfectly characterized. This is effectively described by as-
semblages as given in Eq. (1). Thus, it is reasonable to take the natural constrains of
1S-DIQKD as the basic restrictions to define the free operations for steering. The asym-
metry in the assumptions on Alice and Bob’s devices, results in an asymmetry between
the operations allowed to each of them. Alice is subject to the same restrictions as in
device-independent QKD, while Bob, to those of non-device-independent QKD. Hence, Alice
cannot abort or transmit any information, but, prior to his key-producing measurement,
Bob is allowed to implement arbitrary local quantum operations to his subsystem, including
stochastic ones with possible abortions, and send any feedback about them to Alice. Alto-
gether, this gives a clear physical motivation for our operational framework: We take SNIOs
as the assemblage transformations involving only deterministic classical maps on Alice’s side
and arbitrary – possibly stochastic – quantum operations on Bob’s side assisted by one-way
classical communication only from Bob to Alice.1. Note that shared randomness, which also
does not introduce any security compromise in 1S-DIQKD, can always be recast as one-way
classical communication from Bob to Alice and needs, therefore, not be considered explicitly.

1 Throughout the article, the term “deterministic” is used to refer probability (trace) preserving classical
(quantum) maps. These are maps such that, given an input bit (state), generate an output bit (state),
respectively, with certainty, i.e., they never cause an abortion. This does not mean that the output
cannot be chosen at random. That is, this should not be confused with classical (quantum) maps where
the output bit (state) is a Kronecker delta function of the input bit (a unitary transformation of the
input state). In turn, the term “stochastic” is used throughout to refer to non probability-preserving
classical or non trace-preserving quantum transformations that do not occur with certainty.
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3.2 The free operations
More technically, we consider the general scenario of stochastic SNIOs, i.e., SNIOs that do
not necessarily occur with certainty, which map the initial assemblage ρAf |Xf into a final
assemblage ρAf |Xf (see Fig. 1). Bob’s generic quantum operation can be represented by
an incomplete generalised measurement. This is described by a completely-positive non
trace-preserving map E : L(HB)→ L(HBf ) defined by

E(·) :=
∑
ω

Eω(·), with Eω(·) := Kω · K†ω, (7a)

such that
∑
ω

K†ωKω ≤ 1, (7b)

where HBf is the final Hilbert space, of dimension df , and Kω : HB → HBf is the
measurement operator corresponding to the ω-th measurement outcome. For any normalized
%B ∈ L(HB), the trace Tr[E(%B)] ≤ 1 of the map’s output E(%B) represents the probability
that the physical transformation %B → E(%B)/Tr[E(%B)] takes place. In turn, the map Eω(·)
describes the post-selection of the ω-th outcome, which occurs with a probability

PΩ(ω) := Tr[Eω(ρB)] = Tr[Kω%BK
†
ω] ≤ 1. (8)

Since Alice can only process classical information, the allowed one-way communication
from Bob to her must be classical too. Thus, it can only consists of the outcome ω of
his quantum operation. Classical bit processings are usually referred to as wirings [13].
Alice’s wirings map a ∈ [r] and x ∈ [s] into input and out bits af ∈ [rf ] and xf ∈ [sf ],
respectively, of the final assemblage, where sf and rf are natural numbers. The most
general wirings respecting the above constraints are described by conditional probability
distributions PX|Xf ,Ω and PAf |A,X,Ω,Xf of generating x from ω and xf and af from xf ,
ω, x, and a, respectively, as sketched in Fig. 1. Finally, since, as mentioned, her wirings
must be deterministic, PX|Xf ,Ω and PAf |A,X,Ω,Xf must be normalized probability-preserving
distributions.

All in all, the general form of the resulting maps is parametrized in the following definition
(see App. A in [17]).

I Definition 1 (Stochastic SNIOs). We define the class SNIO of (stochastic) SNIOs as the
set of (stochastic) mapsM that take an arbitrary assemblage ρ̂A|X into a final assemblage
ρ̂Af |Xf :=M(ρ̂A|X), where

M(ρ̂A|X) :=
∑
ω

(1⊗Kω)Wω(ρ̂A|X) (1⊗K†ω), (9)

being Wω a deterministic wiring map given by

[Wω(ρ̂A|X)](xf ) :=
∑
af ,a,x

P (x|xf , ω)P (af |a, x, ω, xf )

× (|af 〉〈a| ⊗ 1) ρ̂A|X(x) (|a〉〈af | ⊗ 1), (10)

with P (x|xf , ω) and P (af |a, x, ω, xf ) short-hand notations for the conditional probabilities
PX|Xf ,Ω(x, xf , ω) and PAf |A,X,Ω,Xf (af , a, x, ω, xf ), respectively.

Note that the final assemblage (9) is in general not normalized: Introducing

Mω( · ) := (1⊗Kω)Wω( · ) (1⊗K†ω), (11)
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such thatM( · ) =
∑
ωMω( · ), we obtain, using Eqs. (3), (4), (5), (8), (9), and (10), that

Tr[M(ρ̂A|X)] =
∑
ω

Tr[Mω(ρ̂A|X)] =
∑
ω

PΩ(ω) ≤ 1. (12)

As with quantum operations, the trace (12) ofM(ρ̂A|X) represents the probability that the
physical transformation ρ̂A|X →M(ρ̂A|X)/Tr[M(ρ̂A|X)] takes place. Analogously, the map
Mω describes the assemblage transformation that takes place when Bob post-selects the
ω-th outcome, which occurs with probability Tr[Mω(ρ̂A|X)] = PΩ(ω). In the particular case
whereM is trace-preserving, we refer to it as a deterministic SNIO.

Finally, we prove in App. B of Ref. [17] the following theorem.

I Theorem 2 (SNIO invariance of LHS). Any map of the class SNIO takes every unsteerable
assemblage into an unsteerable assemblage.

4 Steering monotonicity

As the natural next step, we introduce an axiomatic approach to define steering measures, i.e.,
a set of reasonable postulates that a bona fide quantifier of the steering of a given assemblage
should fulfill.

I Definition 3 (SNIO-monotonicity and convexity). A function S , from the space of as-
semblages into R≥0, is a steering monotone if it fulfils the following two axioms:
(i) S (ρ̂A|X) = 0 for all ρ̂A|X ∈ LHS.
(ii) S does not increase, on average, under deterministic SNIOs, i.e.,

∑
ω

PΩ(ω)S
(

Mω(ρ̂A|X)
Tr
[
Mω(ρ̂A|X)

]) ≤ S (ρ̂A|X) (13)

for all ρ̂A|X , with PΩ(ω) = Tr
[
Mω(ρ̂A|X)

]
and

∑
ω PΩ = 1.

Besides, S is a convex steering monotone if it additionally satisfies the property:
(iii) Given any real number 0 ≤ µ ≤ 1, and assemblages ρ̂A|X and ρ̂′A|X , then

S
(
µ ρ̂A|X + (1− µ)ρ̂′A|X

)
≤ µS

(
ρ̂A|X

)
+ (1− µ)S

(
ρ̂′A|X

)
. (14)

Condition i) reflects the basic fact that unsteerable assemblages should have zero steering.
Condition ii) formalizes the intuition that, analogously to entanglement, steering should
not increase – on average – under SNIOs, even if the flag information ω produced in the
transformation is available. Finally, condition iii) states the desired property that steering
should not increase by probabilistically mixing assemblages. The first two conditions are taken
as mandatory necessary conditions, the third one only as a convenient property. Importantly,
there exists a less demanding definition of monotonicity. There, the left-hand side of Eq. (13)
is replaced by S

(
M(ρ̂A|X)/Tr[M(ρ̂A|X)]

)
. That is, ii′) it is demanded only that steering

itself, instead of its average over ω, is non-increasing under SNIOs. The latter is actually the
most fundamental necessary condition for a measure. However, monotonicity ii) is in many
cases (including the present submission) easier to prove and, together with condition iii),
implies monotonicity ii′). Hence, we focus throughout on monotonicity as defined by Eq.
(13) and refer to it simply as SNIO monotonicity. All three known quantifiers of steering,
the two ones introduced in Refs. [36, 31] as well as the one we introduce next, turn out to
be convex steering monotones in the sense of Definition 3.
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5 The relative entropy of steering

The first step is to introduce the notion of relative entropy between assemblages. To this end,
for any two density operators % and %′, we first recall the quantum von-Neumann relative
entropy

SQ(%‖%′) := Tr [% (log %− log %′)] (15)

of % with respect to %′ and, for any two probability distributions PX and P ′X , the classical
relative entropy, or Kullback-Leibler divergence,

SC(PX‖P ′X) :=
∑
x

PX(x)[logPX(x)− logP ′X(x)] (16)

of PX with respect to P ′X . The quantum and classical relative entropies (15) and (16) measure
the distinguishability of states and distributions, respectively. To find an equivalent measure
for assemblages, we note, for ρ̂A|X(x) given by Eq. (3) and ρ̂′A|X(x) :=

∑
a P
′
A|X(a, x)|a〉〈a|⊗

%′(a, x), that

SQ

(
ρ̂A|X(x)‖ρ̂′A|X(x)

)
= SC

(
PA|X(·, x)‖P ′A|X(·, x)

)
+
∑
a

PA|X(a, x)SQ (%(a, x)‖%′(a, x)) , (17)

where PA|X(·, x) and P ′A|X(·, x) are respectively the distributions over a obtained from the
conditional distributions PA|X and P ′A|X for a fixed x. That is, the distinguishability between
the states ρ̂A|X(x) and ρ̂′A|X(x) ∈ L(HE ⊗HB) equals the sum of the distinguishabilities
between PA|X(x) and P ′A|X(x) and between %(a, x) and %′(a, x) ∈ L(HB), weighted by
PA|X(a, x) and averaged over a.

The entropy (17), which depends on x, does not measure the distinguishability between
the assemblages ρA|X and ρ′A|X . Since the latter are conditional objects, i.e., with inputs,
a general strategy to distinguish them must allow for Alice choosing the input for which
the assemblages’ outputs are optimally distinguishable. Furthermore, Bob can first apply a
generalised measurement on his subsystem and communicate the outcome γ to her, which
she can then use for her input choice. This is the most general procedure within the allowed
SNIOs. Hence, a generic distinguishing strategy under SNIOs involves probabilistically chosen
inputs that depend on γ. Note, in addition, that the statistics of γ generated, described by
distributions PΓ or P ′Γ, encode differences between ρA|X and ρ′A|X too and must therefore
also be accounted for by a distinguishability measure. The following definition incorporates
all these considerations.

I Definition 4 (Relative entropy between assemblages). Given any two assemblages ρA|X and
ρ′A|X , we define the assemblage relative entropy of ρA|X with respect to ρ′A|X as

SA(ρA|X‖ρ′A|X) := max
PX|Γ,{Eγ}

[
SC(PΓ‖P ′Γ)

+
∑
γ,x

P (x|γ)PΓ(γ)SQ
(
1⊗ Eγ ρ̂A|X(x)1⊗ E†γ

PΓ(γ)

∥∥∥∥ 1⊗ Eγ ρ̂′A|X(x)1⊗ E†γ
P ′Γ(γ)

)]
, (18)

where Eγ : HB → HB are generalised-measurement operators such that
∑
γ E
†
γEγ = 1, PX|Γ

is a conditional probability distribution of x given γ, the short-hand notation P (x|γ) :=
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PX|Γ(x, γ) has been used, and

PΓ(γ) := Tr[1⊗ Eγ ρ̂A|X(x)1⊗ E†γ ] = TrB [Eγ%BE†γ ], (19a)
P ′Γ(γ) := Tr[1⊗ Eγ ρ̂′A|X(x)1⊗ E†γ ] = TrB [Eγ%′BE†γ ], (19b)

where %′B is Bob’s reduced state for the assemblage ρ′A|X .

In App. C of Ref. [17], we show that SA does not increase – on average – under deterministic
SNIOs and, as its quantum counterpart SQ, is jointly convex. Hence, SA is a proper measure of
distinguishability between assemblages under SNIOs.2. The first term inside the maximization
in Eq. (18) accounts for the distinguishability between the distributions of measurement
outcomes γ and the second one for that between the distributions of Alice’s outputs and
Bob’s states resulting from each γ, averaged over all inputs and measurement outcomes. In
turn, the maximization over {Eγ} and PX|Γ ensures that these output distributions and
states are distinguished using the optimal SNIO-compatible strategy.

We are now in a good position to introduce a convex steering monotone. We do it with a
theorem.

I Theorem 5 (SNIO-monotonicity and convexity of SR). The relative entropy of steering
SR, defined for an assemblage ρA|X as

SR(ρA|X) := min
σA|X∈LHS

SA(ρA|X ‖ σA|X), (20)

is a convex steering monotone.

The theorem is proven in App. C in Ref. [17].

6 Other convex steering monotones

Apart from SR two other quantifiers of steering have been recently proposed: the steerable
weight [36] and the robustness of steering [31]. In this section, we show that these are also
convex steering monotones.

I Definition 6 (Steerable weight [36]). The steerable weight SW(ρA|X) of an assemblage
ρA|X is the minimum ν ∈ R≥0 such that

ρA|X = ν ρ̃A|X + (1− ν)σA|X , (21)

with ρ̃A|X an arbitrary assemblage and σA|X ∈ LHS.

I Definition 7 (Robustness of steering [31]). The robustness of steering SRob(ρA|X) of an
assemblage ρA|X is the minimum ν ∈ R≥0 such that

σA|X := 1
1 + ν

ρA|X + ν

1 + ν
ρ̃A|X (22)

belongs to LHS, with ρ̃A|X an arbitrary assemblage.

2 A natural question (which we leave open) is how to define a relative entropy between assemblages that
is non-increasing under generic assemblage transformations instead of just SNIOs, so that it can be
understood as measure of distinguishability under fully general strategies. That is the case of SQ, for
instance, which is non-increasing under not only LOCCs but also any completely positive map. However,
to introduce a steering monotone, SNIO-monotonicity of SA suffices.
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In App. D in Ref. [17], we prove the following theorem.

I Theorem 8 (SNIO-monotonicity and convexity of SW and SRob). Both SW and SRob are
convex steering monotones.

To end up with, we note that a steering measure for assemblages containing continuous-
variable (CV) bosonic systems in Gaussian states has very recently appeared [24]. Even
though our formalism can be straightforwardly extended to CV systems, such extension is
outside the scope of the present submission.

7 Assemblage conversions and no steering bits

We say that ΨA|X and Ψ′A|X are pure assemblages if they are of the form

ΨA|X := {PA|X(a, x), |ψ(a, x)〉〈ψ(a, x)|}a,x, (23a)
Ψ′A|X := {P ′A|X(a, x), |ψ′(a, x)〉〈ψ′(a, x)|}a,x, (23b)

where |ψ(a, x)〉 and |ψ′(a, x)〉 ∈ HB, and pure orthogonal assemblages if, in addition,
〈ψ(a, x)|ψ(ã, x)〉 = δa ã = 〈ψ′(a, x)|ψ′(ã, x)〉 for all x. Note that pure orthogonal assemblages
are the ones obtained when Alice and Bob share a pure maximally entangled state and
Alice performs a von-Neumann measurement on her share. We present two theorems about
assemblage conversions under SNIOs.

The first one, proven in App. E in Ref. [17], establishes necessary and sufficient conditions
for stochastic-SNIO conversions between pure orthogonal assemblages, therefore playing
a similar role here to the one played in entanglement theory by Vidal’s theorem [42] for
stochastic-LOCC pure-state conversions.

I Theorem 9 (Criterion for stochastic-SNIO conversion). Let ΨA|X and Ψ′A|X be any two
pure orthogonal assemblages with d = s = r = 2. Then, ΨA|X can be transformed into Ψ′A|X
by a stochastic SNIO iff: either Ψ′A|X ∈ LHS or P ′A|X = PA|X and

|〈ψ′(a, 0)|ψ′(a, 1)〉| = |〈ψ(a, 0)|ψ(a, 1)〉| ∀ a. (24)

In other words, no pure orthogonal assemblage of minimal dimension can be obtained via a
SNIO, not even probabilistically, from a pure orthogonal assemblage of minimal dimension
with a different state-basis overlap unless the former is unsteerable. Hence, each state-basis
overlap defines an inequivalent class of steering, there being infinitely many of them. This
is in a way reminiscent to the inequivalent classes of entanglement in multipartite [15] or
infinite-dimensional bipartite [30] systems, but here the phenomenon is found already for
bipartite systems of minimal dimension.

The second theorem, proven in App. F in [17], rules out the possibility of there being
a (non-orthogonal) minimal-dimension pure assemblage from which all assemblages can be
obtained.

I Theorem 10 (Non-existence of steering bits). There exists no pure assemblage with d =
s = r = 2 that can be transformed into any assemblage by stochastic SNIOs.

Hence, among the minimal-dimension assemblages there is no operationally well defined unit
of steering, or steering bit, i.e., an assemblage from which all assemblages can be obtained for
free and can therefore be taken as a measure-independent maximally steerable assemblage.
This is again in striking contrast to entanglement theory, where pure maximally entangled
states can be defined without the need of entanglement quantifiers and each one can be
transformed into any state by deterministic LOCCs [42, 27].
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8 Discussion and outlook

We have introduced the resource theory of Einstein-Podolsky-Rosen steering. The restricted
class of free operations for the theory, which we abbreviate by SNIOs, arises naturally from
the basic physical constraints in one-sided device-independent QKD. It is composed of all the
transformations involving deterministic bit wirings on Alice’s side and stochastic quantum
operations on Bob’s assisted by one-way classical communication from Bob to Alice. With
it, we introduced the notion of convex steering monotones, presented the relative entropy
of steering as a convenient example thereof, and proved monotonicity and convexity of two
other previously proposed steering measures. In addition, for minimal-dimensional systems,
we established necessary and sufficient conditions for stochastic-SNIO conversions between
pure-state assemblages and proved the non-existence of steering bits.

It is instructive to emphasize that the derived SNIOs correspond to a combination of the
operations that do not increase the entanglement of quantum states, stochastic LOCCs, and
the ones that do not increase the Bell non-locality of correlations, local wirings assisted by
shared randomness. Regarding the latter, a resource-theory approach to Bell non-locality is
only partially developed [18, 25, 41]. Hence, our findings are potentially useful also in Bell
non-locality. In addition, our submission offers a number of challenges for future research.
Namely, for example, the non-existence of steering bits of minimal dimension can be seen
as an impossibility of steering dilution of minimal-dimension assemblages in the single-copy
regime. We leave as open questions what the rules for steering dilution and distillation are for
higher-dimensional systems, mixed-state assemblages, or in asymptotic multi-copy regimes,
and what the steering classes are for mixed-state assemblages. Moreover, other fascinating
questions are whether one can formulate a notion of bound steering or an analogue to the
positive-partial-transpose criterion for assemblages.
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Abstract
We study how generic is the property of nonlocality among the set of quantum correlations for
bipartite dichotomic measurements. To do so, we consider the characterization of these quantum
correlations as those of the form γ = (〈ui, vj〉)ni,j=1, where the vectors ui and vj are in the unit
sphere of a real Hilbert space. The important parameters in this description are the number of
vectors n and the dimension of the Hilbert space m. Thus, it is natural to study the probability
of a quantum correlation being nonlocal as a function of α = m

n , where the previous vectors are
independent and uniformly distributed in the unit sphere of Rm. In this situation, our main
result shows the existence of two completely different regimes: There exists an α0 > 0 such that
if α ≤ α0, then γ is nonlocal with probability tending to 1 as n → ∞. On the other hand, if
α ≥ 2 then γ is local with probability tending to 1 as n→∞.
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1 Introduction

Local measurements performed by two spatially separated observers on entangled bipartite
quantum states can lead to correlations which cannot be explained by Local Hidden Variable
Models (LHVM) [7]. This phenomenon, known as quantum nonlocality, is one of the most
relevant features of quantum mechanics. In fact, though initially discovered in the context of
foundations of quantum mechanics, during the last decade quantum nonlocality has become
a crucial resource in many applications; some of them are quantum cryptography ([1], [2],
[17]), communication complexity ([8]) and random number generators ([15], [18]).
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Both from the fundamental and the resource point of view, we are interested in quantifying
quantum nonlocality. That is, somehow measuring “how much” nonlocality is available in
a given situation. The most used tool to quantify nonlocality is the violation of a Bell
inequality, and by now there is an abundance of results quantifying the maximum possible
violation in a large variety of contexts.

Another important point of view when quantifying a given resource is not only to look
at the extremal cases (that is, the maximal violations) but at the “typical” cases. That is,
we would like to know not only how much quantum nonlocality we have in certain extremal
situations, but also how likely it is to find quantum nonlocality in a random situation.

This second problem is, so far, much less understood than the first. One of the first steps
in this direction is [3]. In there, the authors prove that for almost every randomly chosen
(in a precisely defined way) XOR game, its quantum value will be strictly bigger than its
local value. Put in another way, the result says that almost every such game will serve as a
witness that certain quantum correlation is not local.

In this work we study the “dual problem”: if we consider a random quantum correlation,
how likely is it that it is nonlocal? We state next the definitions needed for a precise
formulation of our question.

We will work in the context where two spatially separated observers, Alice and Bob,
perform dichotomic (two-outcome) measurements on a bipartite quantum state ρ, each on
their part of the system, and consider the correlations between their answers.

According to the postulates of quantum mechanics, a two-outcome measurement for
Alice (resp. Bob) is given by {A+, A−} (resp. {B+, B−}), where A± (resp. B±) are
projectors acting on a Hilbert space and summing to the identity. We define the observable
corresponding to Alice’s (Bob’s) measurement as A = A+ −A− (B = B+ −B−). The joint
correlation of Alice’s and Bob’s measurement results, denoted by a and b respectively, is
〈ab〉 = tr(A⊗Bρ). Motivated by this, we say that γ = (γi,j)ni,j=1 is a quantum correlation
matrix and denote by γ ∈ Q, if there exist a density matrix ρ acting on a tensor product
of Hilbert spaces H1 ⊗ H2 and two families of contractive self-adjoint operators {Ai}ni=1,
{Bi}ni=1 acting on H1 and H2 respectively such that

γi,j = tr(Ai ⊗Bjρ) for every i, j = 1, · · · , n. (1)

That is, γ is a matrix whose entries are the correlations obtained in an Alice-Bob scenario
where each of the observers can choose among n different possible dichotomic measurements.
On the other hand, we say that γ = (γi,j)ni,j=1 is a local correlation matrix if it belongs to
the convex hull of deterministic correlations. That is,

L = conv
{

(αiβj)ni,j=1, αi = ±1, βj = ±1, i, j = 1, · · · , n
}
. (2)

Local correlation matrices are precisely those whose entries are the correlations obtained
in an Alice-Bob scenario when the measurement procedure can be explained by means of a
LHVM. It is well known ([16]) that L and Q are convex sets satisfying

L  Q  KGL,

where 1.67696... ≤ KG ≤ 1.78221... is the so called Grothendieck’s constant. Indeed, the
first strict inclusion exactly means that there exist quantum correlations which cannot be
explained by means of a LHVM (what we have called quantum nonlocality above) while the
second inclusion is a consequence of Grothendieck’s inequality (see Theorem 5 below) and a
result proved by Tsirelson ([16]) which states that γ = (γi,j)ni,j=1 is a quantum correlation
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matrix if and only if there exist a real Hilbert space H and unit vectors u1, · · · , un, v1, · · · , vn
in H such that

γi,j = 〈ui, vj〉 for every i, j = 1, · · · , n. (3)

We want to choose now a probability distribution on the set of quantum correlations. It
is not obvious how to do so. One may try to use expression (1) as a guide, and choose a
probability distribution on the set of states ρ and on the set of families of self-adjoint and
contractive operators A1, · · · , An, B1, · · · , Bn. But it is not obvious how to choose a natural
candidate for this second probability distribution.

Instead of that, we look at the equivalent reformulation (3) of a quantum correlation.
In this (more mathematical, less physical) expression, there is indeed a natural probability
distribution: we can consider the vectors u1, · · · , un, v1, · · · , vn independently uniformly
distributed on the unit sphere of Rm. It is well known that this is exactly the same as
considering independent normalized m-dimensional gaussian vectors. Due to the Central
Limit Theorem, this last fact makes it likely that different physically realistic models yield
probability distributions related to this one.

Our results will depend on the relation between the dimension m and the number of
questions n. It is simple to see that if one fixes any finite m, the probability that a quantum
correlation matrix γ sampled according to the previous procedure is nonlocal tends to one as
n tends to infinity. It is also simple to see that if n is fixed and m tends to infinity, then the
probability that γ is not local converges to 0. See [12] for details.

Remarkably, our main result says that in the “constant ratio regime”, where the ratio
α = m

n remains constant as n grows, both extreme cases are possible: γ will be almost surely
local for α big enough, whereas γ will be almost surely non local for α small enough.

Specifically, the main result of our work can be condensed as:

I Theorem 1. Let n and m be two natural numbers and α = m
n . Let us consider 2n random

vectors u1, · · · , un, v1, · · · , vn independent and uniformly distributed on the unit sphere of Rm
and let us denote by γ = (〈ui, vj〉)ni,j=1 the corresponding quantum correlation matrix.
(a) If α ≤ α0 ≈ 0.004 then γ is nonlocal with probability tending to one as n tends to

infinity.
(b) If α ≥ 2, then γ is local with probability tending to one as n tends to infinity.

This result shows clearly the need of studying the problem as a function of the parameter
α = m

n . One possible way to think of this problem is the following: say that we want
to sample our vectors on a space of large dimension m. In that case, how many vectors
u1, · · · , un, v1, · · · , vn will we need to sample in order to have nonlocality with high prob-
ability? Our results show that n = m

2 will be too few vectors, whereas n = m
α0

will be
enough.

Curiously enough, we will see below that if one considers normalized vectors whose entries
are independent Bernoulli variables, the probability of obtaining a nonlocal correlation matrix
is zero, since all of them will be local. This means that, in contrast to many other contexts in
random matrix theory, considering gaussian and Bernouilli random variables in our problem
leads to completely different conclusions.

The probability distribution we consider on the random correlations arises from a mostly
mathematical point of view. Despite that, in Section 5 we show a physical model which
yields that same probability distribution.

The paper is organized as follows: In Section 2 we introduce some basic results that
will illustrate the technics used along the whole paper. The main theorem is divided in

TQC’15



42 How Many Quantum Correlations Are Not Local?

two parts, as each of them requires quite different techniques. The precise statement and a
sketch of the proof of part a) of the theorem, based on results from random matrix theory, is
given in Section 3, while Section 4 states precisely part b) and sketches its proof. Here, the
main tools are tensor norms in Banach space theory. In Section 5 we will discuss a physical
interpretation of the probability distribution we consider on the set of quantum correlations.
The conclusions of our work and future lines of research appear in Section 6.

2 Preliminary results

In this section we state some of the known, or essentially known, previous results which we
will need along the paper.

The following proposition can be easily deduced from [9, Lemma 2.2].

I Proposition 2. Let Gn be the gaussian measure on Rn and let L ⊂ Rn be a k-dimensional
subspace. For a vector g = (g1, · · · , gn) ∈ Rn, let ḡ = g

‖g‖ and let PL(ḡ) denote the orthogonal
projection of ḡ onto L. Then, for any 0 < ρ < 1 we have

Gn

(
(g1, · · · , gn) ∈ Rn : ‖PL(ḡ)‖ ≥ 1

1− ρ

√
k

n

)
≤ e−

ρ2k
4 ,

and

Gn

(
(g1, · · · , gn) ∈ Rn : ‖PL(ḡ)‖ ≤ (1− ρ)

√
k

n

)
≤ e−

ρ2k
4 .

I Remark. As we already mentioned in the Introduction, it is completely equivalent to
sample a unit vector u ∈ Sn−1 according to the uniform measure on the sphere µn to
sample normalized gaussian vectors g = 1

‖(g1,··· ,gn)‖ (g1, · · · , gn). That is, both probability
distributions are exactly the same (see [6, Section 3.3] for a more complete explanation). In
particular, Proposition 2 implies an analoguous statement for unitary vectors and Theorem 1
can be equivalently stated as in Theorem 6 and Theorem 9.

We say that a real random n×n matrix M is bi-orthogonally invariant if the distribution
on Mn(R) of M is equal to that of O1MO2 for any orthogonal matrices O1 and O2. It is
well known and easy to check that gaussian matrices are bi-orthogonally invariant.

The following result is well known, but we have not found a reference for it. It is not
difficult to write a proof following the ideas of [13, Lemma 4.3.10].

I Proposition 3. Let A ∈ Mn(R) be an n × n random matrix in some probability space
(Ξ,P). If A is bi-orthogonally invariant then there exist random matrices U and V in (Ξ,P)
such that
(i) U, V follow the Haar distribution in the orthogonal group O(n).
(ii) U and V are independent.
(iii) U and V are the matrices whose columns are respectively the left and right singular

vectors associated to the ordered singular values of A.

I Remark. We will use later the following easy consequence of Proposition 3: For every
n ∈ N there exists a probability space Ξ with three n× n random matrices A,U, V defined
on it such that A is a gaussian matrix, U, V are independent and Haar distributed in O(n),
and for almost every ξ ∈ Ξ, U(ξ) and V (ξ) are the right and left singular values of A(ξ)
arranged in decreasing order of the singular values.

We will need the Marcenko-Pastur law, describing the distribution of the singular values
of random matrices:
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I Theorem 4 (Marcenko-Pastur law, [14]). Let A be an n × n random matrix whose entries
aij are independent real random variables with mean 0 and variance 1. Let C ∈ [0, 2].
With probability 1 − o(1), the number of singular values λ of A that satisfy λ ≥ C

√
n is

(f(C)− o(1))n where

f(C) = 1
2π

∫ 4

x=C2

√
4
x
− 1dx.

Here, we say that h = h(n) is o(1) if and only if limn→∞ h(n) = 0.

Finally, we state the version of Grothendieck’s inequality most useful for our purposes
(see [10, Page 172]).

I Theorem 5 (Grothendieck’s inequality). There exists a universal constant KG, such that
for every natural number n and for every real matrix (ai,j)ni,j=1 we have

sup
{∣∣∣ n∑

i,j=1
ai,j〈xi, yj〉

∣∣∣ : xi, yj ∈ BH
}
≤ KG sup

{∣∣∣ n∑
i,j=1

ai,jsitj

∣∣∣ : si, tj = ±1
}
,

where the first supremum runs over elements x1, · · · , xn, y1, · · · , yn in the unit ball of a real
Hilbert space H.

The exact value of KG is still unknown but it is known that 1.67696... ≤ KG ≤ 1.78221....

3 A lower bound for α0: Part (a) of Theorem 1

The precise statement for the lower bound is the following.

I Theorem 6. Let G = (gi,j)n,mi,j=1 and H = (hi,j)n,mi,j=1 be two random matrices whose
entries are independent real normalized gaussian variables satisfying α = m

n ∈ (0, 1). For
every i, j = 1, · · · , n, let gi = (gi,k)mk=1 and hj = (hj,k)mk=1 be the row vectors of G and H
respectively . Let us denote ḡi = gi

‖gi‖ and h̄j = hj
‖hj‖ . Then, if α ≤ α0 ≈ 0.004, the quantum

correlation matrix given by γ = (〈ḡi|h̄j〉)ni,j=1is not local with probability 1− o(1).

The starting point for its proof is the following result, which can be deduced from [3]
and the Remark following Proposition 3. It provides an abundance of quantum nonlocal
correlations when we consider the dot product of normalized truncations of orthonormal
vectors.

I Proposition 7. Let U = (ui,j)ni,j=1, V = (vi,j)ni,j=1 be two independent orthogonal random
matrices distributed according to the Haar measure on the orthogonal group O(n). Let
α ∈ (0, 1) and m = αn. We also denote δ = f−1(α), where f is the Marcenko-Pastur densitiy
function as in Theorem 4. Let γi,j = 〈

√
n√
m
ui,
√
n√
m
vj〉 with ui = (ui,k)mk=1 vj = (vj,k)mk=1.

Then there exists an n× n matrix A = (ai,j)ni,j=1 such that, with probability 1− o(1),

n∑
i,j=1

ai,jγi,j ≥ (δ − o(1))n 3
2 and ω(A) ≤ 1.6651 . . . n 3

2 .

The previous proposition implies that for certain range of α = m
n , the first m properly

normalized columns of two Haar distributed orthogonal matrices generate a nonlocal quantum
correlation with high probability. It also provides a gaussian matrix A that certifies this
nonlocality. Note that the vectors {ui}i (resp. {vj}j) are dependent of each other as they
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are part of an orthogonal matrix. On the contrary, the vectors that we use to generate our
correlation matrix are independent from each other.

Now, we want to approximate this columns in the appropriate norm with the corresponding
columns of gaussian matrices. This is achieved with the following result from [11]. Its proof,
quite technical, is based on an analysis of the Gram-Schmidt orthonormalization process and
a careful use of the concentration of measure phenomenon, where Proposition 2 and similar
estimates are used repeatedly.

I Theorem 8 ([11, Theorem 1.1]). Let n and m be two natural numbers such that α = m
n ∈

(0, 1). Then, there exist matrices Yn = (yi,j)ni,j=1 and Un = (uij)ni,j=1 whose 2n2 entries are
real random variables defined on the same probability space Ξ such that
(i) {yi,j ; 1 ≤ i, j ≤ n} are independent normalized random gaussian variables,
(ii) Un is an orthogonal matrix distributed according to the Haar measure,
(iii) If we set Fmi (Yn −

√
nUn) the i-th row of the matrix Yn −

√
nUn truncated to its first

m entries, we have

PΞ

(
sup

i=1,··· ,n

∥∥Fmi (Yn −
√
nUn)

∥∥ > (1 + ε)θ(α)
√
m
)
≤ KneC(ε,α)n,

where here K is a universal positive constant, C(ε, α) > 0 is a constant depending only
on ε and α and

θ(α) =
√

2− 4
3

(1− (1− α)3/2)
α

.

Finally, Grothendieck’s inequality allows us to translate this euclidean approximation
between gaussian and orthonormal vectors into a big value of the correlation γ when tested
against the witness A. Details can be seen in [12].

To finish this section we mention that if we consider normalized vectors ui and vj whose
entries are independent Bernoulli variables (rather than gaussian) then we obtain local
correlations with probability one. Indeed, if we consider such vectors ui = 1√

m
(εi1, · · · , εim),

vj = 1√
m

(δj1, · · · , δjm), we obtain that

(γi,j)ni,j=1 =
( 1
m

m∑
k=1

εikδ
j
k

)n
i,j=1

.

However, for a fixed k, we have that (γki,j)ni,j=1 =
(
εikδ

j
k

)n
i,j=1 is a deterministic (so local) cor-

relation. Since (γi,j)ni,j=1 is written as a convex combination of these objects, we immediately
conclude that (γi,j)ni,j=1 is a local correlation.

4 An upper bound for α: Part (b) of Theorem 1

The precise statement for the upper bound is the following.

I Theorem 9. Let G = (gi,j)n,mi,j=1 and H = (hi,j)n,mi,j=1 be two random matrices whose entries
are independent real normalized gaussian variables and let α = m

n . For every i, j = 1, · · · , n,
let gi = (gi,k)mk=1 and hj = (hj,k)mk=1 be the row vectors of G and H respectively . Let us
denote ḡi = gi

‖gi‖ and h̄j = hj
‖hj‖ . Then, if α ≥ 2, the quantum correlation matrix given by

γ = (〈ḡi|h̄j〉)ni,j=1is local with probability larger than 1− 2neC(α)n. Here, C(α) ∈ (0, 1) is a
constant depending only on α.
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The proof of Theorem 9 relies on elements from Banach space theory: Given an n×nmatrix
with real entries Γ = (γi,j)ni,j=1, we can regard this matrix as a tensor Γ =

∑n
i,j=1 γi,jei⊗ej ∈

Rn ⊗Rn. It will be convenient for us to introduce two tensor norms in this space. We define

‖Γ‖`n∞⊗π`n∞ = inf
{ N∑
k=1
‖xi‖∞‖yi‖∞ : Γ =

N∑
i=1

xi ⊗ yi
}
,

where in this definition, given a vector z ∈ Rn, we denote ‖z‖∞ = maxi=1,··· ,n |zi|. This
norm is the projective tensor norm on `n∞ ⊗ `n∞ and it can be equivalently defined (see [10,
Chapter 3]) as

‖Γ‖`n∞⊗π`n∞ = inf
{ N∑
k=1

λk : λk ≥ 0,Γ =
N∑
k=1

λkηk

}
,

where here ηk denotes the matrix associated to a deterministic (so local) correlation. That
is, for every k we have that ηk = ak ⊗ bk for certain sign vectors ak, bk ∈ Rn.
I Remark. It is now clear why we are interested in this norm: For a given matrix A, we
trivially have that

‖Γ‖`n∞⊗π`n∞ ≤ 1 if and only if Γ is local (as a correlation matrix).

On the other hand, we can define another tensor norm by

‖Γ‖`n∞(`n2 ) = max
i=1,··· ,n

‖(γi,j)nj=1‖.

The following result is the starting point of our proof of Theorem 9. It is a reformulation of
the fact, well known in Banach space theory, that π1(id : `n1 → `n2 ) ≤

√
2, where π1 denotes

the 1-summing norm (see for instance [10, Ex 11.5]).

I Theorem 10. Given an n× n matrix with real entries Γ = (γi,j)ni,j=1, we have that

‖Γ‖`n∞⊗π`n∞ ≤
√

2‖Γ‖`n∞(`n2 ).

To prove now Theorem 9, we use concentration of measure results to show that, with our
hypothesis, ‖Γ‖`n∞(`n2 ) ≤ 1√

2 with exponentially high probability. Details can be seen in [12].

5 A physical interpretation of the result

As we have said before, we consider the correlations arising from randomly uniformly
distributed unit vectors as in (3). In principle, this is not a physical procedure. Nevertheless,
Tsirelson proved in a constructive way that all matrices given by (3) are quantum correlations.
In particular, the following result holds.

I Theorem 11 ([16]). Let ui = (uik)mk=1, vl = (vjl)ml=1 ∈ Rm be unit vectors. Let γ =
(〈ui, vj〉)ni,j=1. Let X1, · · · , Xm : Hr → Hr be m Hermitian operators, such that XkXl =
−XlXk if l 6= k and X2

k = 11, where Hr is an r-dimensional Hilbert space. Then, for every
1 ≤ i, j ≤ n,

Ai =
m∑
k=1

uikXk and Bj =
m∑
l=1

vjlXl

are Hermitian operators of norm one and

γi,j = 〈ψ|Ai ⊗Bj |ψ〉,

where |ψ〉 = 1√
r

∑r
s=1 |ss〉 ∈ Hr ⊗Hr.
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Thus, given a Hilbert space Hr and operators X1, · · · , Xm fulfilling the conditions
from Theorem 11, the random correlation we are considering can be obtained physically by
considering the maximally entangled state |ψ〉 ∈ Hr⊗Hr and observables {Ai}i, {Bj}j which
are independent random linear combinations of the anticommuting observables X1, · · · , Xm.

It is known that the smallest r, so that operators X1, · · · , Xm as above exist in Hr, is
r = 2[(m+1)/2] (see [16]). In this case a particular choice of these operators for even m is:

X2i−1 = X⊗ i−1· · · ⊗X ⊗ Y ⊗ 11⊗ · · · ⊗ 11 for every i = 1, · · · ,m/2;

X2i = X⊗ i−1· · · ⊗X ⊗ Z ⊗ 11⊗ · · · ⊗ 11 for every i = 1, · · · ,m/2,

where X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
and Z =

(
1 0
0 −1

)
are the Pauli matrices.

That is, with this particular choice of X1, · · · , Xm, we can physically generate quantum
correlations with our probability distribution by imposing the associated probability dis-
tribution on those Pauli product measurements and measuring the maximally entangled
state.

Those measurements are closely related to the measurements considered in [19], but note
that in our case we increase the dimension, where in [19] the increasing parameter is the
number of parties.

The main caveat to our model presented above is that it requires the physical dimension
of the system to be exponential in the mathematical dimension m. We expect that there
exist physical systems of much smaller dimension that give rise to quantum correlations
distributed similarly to the ones we have consider, so that our techniques will apply.

6 Conclusions and future lines of research

We initiate the study of the probability of finding nonlocality among quantum probability
distributions. The dual situation, studying the probability of finding games for which
quantumness is an advantage over local resources, was initiated in [3].

We consider the simplest case, quantum correlations arising from bipartite dichotomic
measurements. In this setting, quantum correlations can be written as the product γ =
(〈ui, vj〉)ni,j=1 of unit vectors ui, vj of an m-dimensional real Hilbert space H.

In this set we consider the probability distribution in the quantum correlations induced
by considering the unit vectors u1, . . . , un, v1, . . . , vn independently uniformly distributed in
the unit sphere of Rm. This is equivalent to consider these vectors as independent normalized
gaussian vectors.

We study the situation where both m and n grow to infinity with the ratio α = m
n

constant.
Our main result says that in this setting two extreme situations can happen: if α is small

enough (smaller than certain α0 ≈ 0.004) then almost every such quantum correlation will
be non local. But if α is big enough (greater than 2), then almost every such correlation will
be local.

The tools needed to prove the first bound are random matrix theory and concentration
of measure. For the second bound, the main tool are tensor norms in Banach space theory.

So far, we do not know what happens when α0 < α < 2. In particular, we do not know
if a sharp threshold behaviour between both regimes exists or not. Our techniques maybe
can be refined to slightly increase the bound α0, but they will never reach the relevant case
α0 = 1. From the other side, our proof of part b) suggests that a more clever argument could
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lead to replace 2 by KG, but again our present approach does not seem to allow for further
improvement. Along these lines, it is plausible that a relation between α and KG describes
interesting behaviors of our correlation matrices.

We provide a physical model which gives rise to our probability distribution, but it
requires of an exponential (in m) physical dimension. We expect that relevant physical
models of lower dimension will give rise to probability distributions close enough to ours, so
that related reasonings will apply. This line of research is also open.

Until now we have only addressed the study of bipartite dichotomic quantum correlations.
The study of the full probability distribution for two or more parties, or the study of N -partite
dichotomic quantum correlations is totally open.
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Abstract
One-way quantum computation was first invented using the cluster state. Since then graph states,
the generalization of the cluster state, were investigated and understood when they would enable
such a measurement-based approach for quantum computation. Are there any other family of
states, i.e., states with different entanglement structures, that can also serve as the universal
resource for quantum computation? Recent study shows that the Affleck-Kennedy-Lieb-Tasaki
(AKLT) states also provide a useful source. Here, we show that the spin-2 state on the square
lattice is a universal resource for measurement-based quantum computation. We employ a POVM
on all sites that convert the local 5-level system to 2-level, and the post-POVM state is a graph
state, whose graph is in general non-planar. We then follow with another round of measurement
to recover the planarity of the graphs by thinning. The resultant typical graphs are shown to
reside in the supercritical phase of percolation via Monte Carlo simulations and the associated
graph states are universal, implying the AKLT state is also universal.
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1 Introduction and motivation

Universal quantum computation can be achieved by using local measurements on certain
entangled states, such as the cluster state. This measurement-based model of quantum
computation (MBQC) [13, 1, 14] provides equivalent power of computation as the standard
circuit model. However, not all entangled states can provide the capability for driving a
universal quantum computation. A complete classification of entanglement that enables
MBQC remains a challenging open question. The quest for more universal resource states
will advance our knowledge towards the essential type of entanglement. The family of cluster
states or more generally graph states contains abundance supply of resource states. These
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states, however, cannot be unique ground states of two-body interacting Hamiltonians [12].
Beyond this family of states, only a handful of other entangled states are known to be
universal [6, 3, 2, 10].

Here, we demonstrate that the spin-2 Affleck-Kennedy-Lieb-Tasaki (AKLT) state on
the square lattice is a universal resource for measurement-based quantum computation
(MBQC). This question has been open since the universality of the spin-3/2 AKLT state on
the honeycomb lattice was established [16, 11]. AKLT states can be defined on any graph
and are unique ground states of two-body interacting Hamiltonians with suitable boundary
conditions. But the quantum computational universality in this family is less explored than
the family of cluster or graph states. Together with the results here, the emerging picture
from a series of study on the quantum computational universality in the AKLT valence-bond
family is as follows [16, 11, 17, 15, 18]. AKLT states involving spin-2 and other lower spin
entities are universal if they reside on a frustration-free lattice with any combination of
spin-2, spin-3/2, spin-1 and spin-1/2 (consistent with the lattice). Additionally, a frustrated
lattice can always be decorated (by adding additional spins) such that the resultant AKLT
state is universal.

2 Overall strategy

Our goal is to show that any quantum computation that is efficiently implemented in the
circuit model can also be implemented efficiently by a sequence of adaptive local measurements
on a spin-2 AKLT state. In other words, we want to show that the spin-2 AKLT state is a
universal resource for MBQC.

The overall strategy for demonstrating this is: (1) we need to find a POVM that converts
a 5-level state to a 2-level state; (2) we show that the post-POVM state is a graph state; (3)
if this graph state has a planar graph then we check whether the graph is percolated; if the
graph is non-planar, we need to restore planarity by apply futher active local measurement.

However, it is not guaranteed that the POVM will convert the AKLT state a qubit graph
state. Fortunately, the POVM we found in Eq. (1) below allows us to do this. The graphs
associated with the post-POVM states are generally not planar and we indeed need to apply
some procedure to restore planarity at the cost of measuring and disentangling more qubits.
In order to show that the typical graphs are percolated, we need to sample from the exact
distribution. For this we manage to prove an exact weight formula for any given POVM
outcome, and this allows us to perform Monte Carlo simulations. The most pronounced
difference between the spin-3/2 and spin-2 probability weights is that for spin 3/2 all possible
combinations of POVM outcomes do indeed occur with non-zero probability (except when
the lattice is not bi-colorable) whereas, for the spin-2 case, certain combinations of POVM
outcomes do not occur, i.e., have probability zero.

Why our work is interesting? We investigate how particular condensed-matter spin systems
(the AKLT family) can be exploited for quantum computation. The framework is the so-called
measurement-based quantum computation, one of several experimentally pursued approaches
for realizing a quantum computer, which uses entanglement as a resource. Proving a general
state can be useful in measurement-based quantum computation remains a theoretical
challenge. Our present manuscript represents a significant advancement since our paper in
2011 [16], and together with our other recent works, gives a comprehensive understanding
of why some generic states in the so-called AKLT family are useful. AKLT states are
important from many perspectives: strong evidence for Haldane’s conjecture, precursor of
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(a) (b)

Figure 1 (a) AKLT state. Spin singlets |φ〉e = (|01〉 − |10〉)/
√

2 of two virtual spins 1/2 are
located on the edges of the square lattice. A projection at each lattice site onto the symmetric
subspace of four virtual spins creates the AKLT state. (b) Teleportation. A perspective of the action
of the POVM Kα in Eq. (1).

the so-called matrix product states and tensor product states (which have been developed
to useful numerical tools), examples of symmetry-protected topological ordered states, and
with our contribution, quantum computation, etc. We believe our paper is of interest to
researchers in various fields, including condensed-matter physics, quantum information and
computation, AMO physics (as possible implementation and indeed a proof-of-principle
demonstration on 1D AKLT quantum computation was done with entangled photons [8]),
statistical mechanics (given some of the techniques we used), and mathematics (such as
random graph and probability theory).

3 Reduction from AKLT states to graph states

Let us define the AKLT state on the square lattice. It is useful to view the spin-2 particle
on each site is consisting of four virtual qubits. Each virtual qubit forms a singlet state,
|φ〉e = (|01〉 − |10〉)/

√
2, with its corresponding virtual qubit on the neighboring site, with

the singlets indicated by the dotted edges; see Fig. 1a. In order to convert the local 5-level
system to 2-level, we shall use a POVM measurement below in Sec. 3.1. We shall see that
regardless of the POVM outcome, the post-measurement state is a graph state, with its
graph being modified from the original square lattice, more or less, randomly. However, the
graph is not planar. But it is easier to understand such graphs as resulting from a two-step
process: (1) a planar random graph from the square lattice is formed (which we prove in
Sec. 3.2); then (2) certain Pauli measurements (due to some of the POVM elements) are
then done to change the graph further (which we illustrate in Sec. 3.3).

3.1 Reduction from spin-2 entities to qubits: the generalized
measurement

The POVM we shall employ consists of three rank-two elements and three additional rank-one
elements [18]:

Fα =
√

2
3 (|Sα=2〉〈Sα=2|+ |Sα=−2〉〈Sα=−2|), Kα =

√
1
3 |φ

−
α 〉〈φ−α |, (1)

where α = x, y, z and |φ±α 〉 ≡ (|Sα=2〉 ± |Sα=−2〉)/
√

2. The F ’s are straightforward
generalization from the spin-3/2 case [16], but they do not give rise to the completeness
relation, which is required for conservation of probabilities. By adding K’s, it can be verified
that the completeness relation is satisfied:

∑
α F
†
αFα +

∑
αK

†
αKα = I.
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Expressed in terms of the four virtual qubits representing a spin-2 particle, the above
operators in the POVM are

Fx =
√

2
3 (|+⊗4〉〈+⊗4|+ |−⊗4〉〈−⊗4|), Kx =

√
1
3 |GHZ−x 〉〈GHZ−x |, (2a)

Fy =
√

2
3 (|i⊗4〉〈i⊗4|+ |(−i)⊗4〉〈(−i)⊗4|), Ky =

√
1
3 |GHZ−y 〉〈GHZ−y |, (2b)

Fz =
√

2
3 (|0⊗4〉〈0⊗4|+ |1⊗4〉〈1⊗4|), Kz =

√
1
3 |GHZ−z 〉〈GHZ−z |, (2c)

where |ψ⊗4〉 is a short-hand notation for |ψ,ψ, ψ, ψ〉, equivalent to an eigenstate |Sα〉 of the
spin-2 operator in either α = x, y, or z direction. The first three elements are similar to
those in spin-3/2 sites, except the number of virtual qubits being four, and correspond to
good outcomes of type x, y and z, respectively. Associated with the last three elements,
|GHZ−z 〉 ≡ (|0000〉 − |1111〉)/

√
2, |GHZ−x 〉 ≡ (|+ + + +〉 − | − − −−〉)/

√
2, and |GHZ−y 〉 ≡

(|i, i, i, i〉 − | − i,−i,−i,−i〉)/
√

2 are the corresponding states and they will be regarded as
unwanted outcomes of type x, y, and z, respectively. The effect of these GHZ outcomes is
that the neighboring four virtual qubits connected to the center site becomes GHZ entangled,
as illustrated in Fig. 1b. It is these GHZ entanglement in the virtual qubits that complicates
the measurement-based quantum computation. The reduced density matrix for a single site
of the AKLT state is a completely mixed state, and therefore, each unwanted type occurs
on average with a probability 1/15. An unwanted outcome associated with K thus occurs
with probability perr = 3× 1/15 = 1/5. However, as we shall see below in Sec. 5 that not all
POVM outcomes associated with sets of {Fα(v),Kβ(w)} occur with non-zero probability, due
to the correlation present in the AKLT state.

We note that Kα can be rewritten as follows,

Kα =
√

1/2|φ−α 〉〈φ−α |Fα =
√

2/3KαFα. (3)

We can thus think of the POVM Eq. (1) as a two-stage process: (i) first the outcomes on all
sites are F ’s, and (ii) then a number of sites are flipped to K or equivalently a projective
measurement is done in the basis |φ±α 〉 and the result |φ−α 〉 is post-selected.

Corresponding to step (i), we show in the next section that the post-measurement state

|G0({F})〉 ∼
⊗
v∈L

Fα(v)|ψAKLT〉 (4)

is an encoded graph state [16, 17]. The ‘bar’ is used to indicate that the graph state is
‘encoded’, i.e., one logical qubit is formed by a few physical spins which we also can a domain.
We shall omit the bar and write the state as |G0〉 instead. In the section after that, we
discuss the effect of K’s, which is either simply shrinking the size of a domain or inducing a
Pauli measurement.

3.2 The exact form of stabilizer generators
In this section we prove that |G0〉 is a graph state by deriving the form of the stabilizer
operators Kc for the domain labeled by Cc. It includes all subtle plus and minus signs. The
result is general for all states |G0〉 ∼

⊗
v∈Ω Fαv,v|ψAKLT〉, where F ’s can be of arbitrary

spins. This was already considered in the case of the spin-3/2 AKLT state [16], but the
argument used there applies more generally.

Let us first explain the notation. Consider a central vertex Cc ∈ V (G0({F})) and all its
neighboring vertices Cµ ∈ V (G0); see e.g. Fig. 2 for illustration. Each vertex may contain
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Figure 2 POVM outcomes. The center domain Cc has ac = x (red), and its neighboring domains:
Cµ1 and Cµ2 have aµ1 = aµ2 = y (green); Cµ3 and Cµ4 have aµ3 = aµ4 = z (black).

multiple sites that are connected and are of the same POVM outcome Fα. We shall refer to
these sites collectively as a domain. Namely, each vertex in graph G0 is physically a domain.
Denote the POVM outcome for all L-sites v ∈ Cc, Cµ by ac and aµ, respectively. Denote by
Eµ the set of L-edges that run between Cc and Cµ. Denote by Ec the set of L-edges internal
to Cc. Denote by Cc the set of all qubits in Cc, and by Cµ the set of all qubits in Cµ. (Recall
that there are 4 qubit locations per L-vertex v ∈ Cc, Cµ.) For any µ and any edge e ∈ Eµ, let
u(e) [v(e)] be the endpoint of e in Cµ [Cc]. Then, for all µ and all e ∈ Eµ the Pauli operators
−σ(u(e))

aµ σ
(v(e))
aµ are in the stabilizer of the singlet

⊗
e∈E(L) |φ〉e.

Choose b ∈ {x, y, z} such that b 6= ac, and let, for any edge e′ ∈ Ec, v1(e′), v2(e′) ∈ Cc be
qubit locations such that e′ = (v1(e′), v2(e′)). Then, for all e′ ∈ Ec, −σ(v1(e′))

b σ
(v2(e′))
b is in

the stabilizer of
⊗

e∈E(L) |φ〉e.
Thus we have the following operator as the stabilizer for

⊗
e∈E(L) |φ〉e,

Kc =
⊗
µ

⊗
e∈Eµ

(−1)σ(u(e))
aµ σ(v(e))

aµ

⊗
e′∈Ec

(−1)σ(v1(e′))
b σ

(v2(e′))
b

= (−1)|Ec|+
∑

µ
|Eµ|⊗

µ

⊗
e∈Eµ

σ(u(e))
aµ σ(v(e))

aµ

⊗
e′∈Ec

σ
(v1(e′))
b σ

(v2(e′))
b .

We now show that OCc commutes with the local POVMs and is therefore also in the
stabilizer of |Ψ(A)〉. First, consider the central domain Cc. The operator OCc acts non-
trivially on every qubit in Cc, OCc |l 6= Il for all qubits l ∈ Cc. Furthermore, for all qubits
l ∈ Cc, OCc |l 6= σ

(l)
ac . Namely, if l ∈ Cc is connected by an edge e ∈ Eµ to Cµ, for some

µ, then OCc |l = σ
(l)
aµ 6= σ

(l)
ac (for all µ, aµ 6= ac by construction of G(A)). Or, if l ∈ Cc is

the endpoint of an internal edge e′ ∈ Ec then OCc |l = σ
(l)
b 6= σ

(l)
ac (ac 6= b by above choice).

Therefore, for any i, j ∈ Cc, OCc anticommutes with σ(i)
ac and σ(j)

ac , and thus commutes with
all σ(i)

ac σ
(j)
ac . Thus, OCc commutes with the local POVMs Fac in Eq. (2) on all v ∈ Cc.

Second, consider the neighboring domains Cµ. OCc
∣∣Cµ =

⊗
j σ

(j)
aµ by construction. OC0

thus commutes with the local POVMs Fv,aµ for all v ∈ Cµ and for all µ.
To give explicit form of the stabilizer operators, we shall take the following convention

for b as shown in Table 1. For POVM outcome ac = z, we take b = x; for ac = x, we take
b = z; for ac = y, we take b = z. With this choice we have

Kc = (−1)|Ec|+
∑

µ
|Eµ|⊗

µ

(⊗e∈Eµλu(e))Z |Eµ|µ

⊗
e∈Eµ

σv(e)
aµ σ

v(e)
b Xc.
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Table 1 The choice of b and aµ 6=b.

ac z x y

b x z z

aµ6=b y y x

Table 2 The dependence of stabilizers and encodings on the local POVM outcome. |C| denotes
the total number of sites contained in a domain C and i, j = 1 .. 4|C| (as there are four vitural qubits
in a site). The square lattice L is bi-partite and all sites can be divided into either A or B sublattice,
V (L) = A ∪B, and λi = 1 if the virtual qubit i ∈ v ∈ A and λi = −1 if i ∈ v′ ∈ B. This is due to
the negative sign in the stabilizer generator for a singlet |φ〉ij , (−σ[i]

µ σ
[j]
µ )|φ〉ij = |φ〉ij for an edge

(i, j).

POVM outcome z x y

stabilizer generator λiλjσ
[i]
z σ

[j]
z , λiλjσ

[i]
x σ

[j]
x λiλjσ

[i]
y σ

[j]
y

X
⊗4|C|

j=1 σ
[j]
x

⊗4|C|
j=1 σ

[j]
z

⊗4|C|
j=1 σ

[j]
z

Z λiσ
[i]
z λiσ

[i]
x λiσ

[i]
y

It is convenient to define n 6=b ≡
∑
µ,aµ 6=b |Eµ|. Then

Kc = (−1)|Ec|+
∑

µ
|Eµ|⊗

µ

(⊗e∈Eµλu(e))Z |Eµ|µ (
⊗
aµ 6=b

⊗e∈Eµλv(e))Qc, (5)

where Qc = in 6=bXc if n 6=b is even and Qc = −i1+n 6=b(−1)δac,xYc if n 6=b is odd. This gives
complete characterization of stabilizer generators, i.e., Qc = ±Xc or Qc = ±Yc and the exact
sign can be determined. This is essential in checking the incompatibility condition.

Note that the stabilizer operators are not always in the canonical form in which Kc|c = Xc,
i.e., they can be ±Xc or ±Yc, but those non-central operators are always Z. But it is easy
to find rotations (around logical z-axis) to make them canonical. We shall the basis after
such rotations are made the canonical graph-state basis (CGSB).

A few remarks are in order.
1. Each domain on L supports a single encoded qubit, i.e., the domains D ⊂ L are the sites

or vertices of the graph G0, with the encoding as described in Table 2. The encoded
qubits form a graph state |G0〉. When there is no confusion, we shall not distinguish
between the graph state |G0〉 and its encoded version |G0〉 and omit the labeling {F}.

2. The graph G0 has an edge between the vertices v(D) and v(D′), if the domains D and
D′ are connected by an odd number of edges in L.

3. Be D a domain of type T ∈ {x, y, z} with nα neighbouring domains of type α. The
stabilizer operators for such a graph state are shown in Eq. (5) in terms of encoded logical
operators. They are characterized by the so-called stabilizer matrix, and in the case of
graph state, is given via the adjacency matrix AG0 of the graph G0. It is seen that when

ny mod 2 = 1, for T = x,

nx mod 2 = 1, for T = y,

ny mod 2 = 1, for T = z,

the stabilizer operator KD has a logical Y operator at the support of D. This means that
the graph G0 has a self-loop attached to the domain D, i.e., (AG0)D,D = 1.

We recall the definition of a “domain”. A domain is a maximal set of neighbouring sites
in the lattice L for which the outcome of the POVM Eq. (1) is Fα or Kα [see Eq. (3)] with
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the same α. That is, there are domains of x, y and z-type, and neighbouring domains must
be of different type. The self-loop is a convenient picture to visualize the graph. But we can
perform local logical rotation to transform Y to X so as to remove the self-loop, then the
resulting stabilizer operators will be in the canonical form. (Such rotation will also change
the basis of logical measurement.) Moreover, we shall often not distinguish between an
encoded X or Y operator from the corresponding X or Y operator, unless necessary.

3.3 POVM outcomes Kα: domain shrinking and logical Pauli
measurements

We shall denote by {F,K} the POVM outcomes on all sites, by JF ⊂ L the set of sites where
the POVM outcome is of F -type, and by JK = L\JF the set of sites where POVM outcome
is of K-type. Upon obtaining {F,K} we can deduce the state |G〉 that the original AKLT
state is transformed to,

|G({F,K})〉 =
(√

1
2

)|JK | ⊗
u∈JK

|φ−α(u)〉〈φ
−
α(u)|

⊗
v∈L

Fα(v)|ψAKLT〉, (6)

where the state is not normalized and the probability of the set of POVM outcomes {F,K}
occurs is

p({F,K}) = 〈G({F,K})|G({F,K})〉. (7)

We have shown that |G0〉 is a graph state, and one can further show the normalization due
to F ’s acting on the AKLT state [16],

⊗
u∈L

Fα(u)|ψAKLT〉 = c0

(
1√
2

)|E|−|V |
|G0〉, (8)

where c0 is an outcome-independent overall normalization, V is the set of domains, E is the
set of inter-domain edges (before the modulo-2 operation) and |G0〉 is properly normalized
to have unit norm [16]. For the encoding using virtual-qubit picture, see Table 2.

Summarizing the above discussion, we have

|G({F,K})〉 = c0

(√
1
2

)|E|−|V |+|JK |(⊗
u∈JK

|φ−α(u)〉〈φ
−
α(u)|

)
|G0({F})〉, (9)

where |G0({F})〉 is assumed to be properly normalized. Without the additional operators⊗
u∈JK |φ

−
α(u)〉〈φ

−
α(u)| the analysis of the computational universality would be the same as in

the spin-3/2 case. It is these operators that complicate the situtation. However, as we shall
see below their effect is not serious.

Then the effect of measuring in the basis |φ±α 〉 corresponds to shrinking or thinning
the domain, without affecting the entanglement of the domain with others. This can be
understood from the following example. Suppose a two-site domain with α = x: the basis
states are |Sx = +2〉1|Sx = −2〉2 and |Sx = −2〉1|Sx = +2〉2, due to the POVM. Let us denote
the whole wavefunction of the system as |Ψ〉 = a |+2〉1|−2〉2⊗|ψ0〉R+b |−2〉1|+2〉2⊗|ψ1〉R,
where |ψi〉R’s denote the corresponding state of other spins. We can rewrite the first spin in
|φ±x 〉 basis: |Ψ〉 = |φ+

x 〉
(
a | − 2〉2 ⊗ |ψ0〉R + b |+ 2〉2 ⊗ |ψ1〉R

)
/
√

2 + |φ−x 〉
(
a | − 2〉2 ⊗ |ψ0〉R −

b | + 2〉2 ⊗ |ψ1〉R
)
/
√

2). The measurement outcome ± gives rise the reduced state being
a | − 2〉2 ⊗ |ψ0〉R ± b |+ 2〉2 ⊗ |ψ1〉R. The only difference is that the domain is reduced to a
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Figure 3 Illustration of graph transformation rules on Y measurements on a spin-2 domains
and possible follow-up Z measurement to restore planarity. The hexagon indicates a Y -measured
domain, and the diamonds indicate active Z measurements.

single site, but the quantum information remains the same (up to an inconsequential phase).
But now if we continue to measure the second spin in the same way, this correponds to a
logical X measurement and will change the entanglement structure for the remaining spins.
In general, the effect of all |φ−α 〉〈φ−α | (associated with Kα) in multi-site domains C is thus
equivalent to a logical measurement of X operator.

Thus for each domain we need to distinguish two cases: (a) Fewer then all sites in an
α-domain are affected by the POVM outcome Kα. Then, the domain is simply shrunk, and
the graph G is unaffected. (b) All sites in an α-domain are affected by the POVM outcome
Kα. Then, the encoded qubit residing on that domain is measured in the X-basis. If the
latter happens, in terms of CGSB, measurement can be either a logical X or a logical Y
measurement, and the state resulting from such measurement is again a graph state, and
the new graph can be deduced from simple graph rules [7]; see Fig. 3 for illustration for
Y -measurement.

4 Restoring planarity

We previously established simple criteria for computational universality of random planar
graph states [16, 17], namely their corresponding graphs need to have a traversing path, and
the domains need to be microscopic. The latter requirement for domains to be microscopic
was checked numerically in several trivalent lattices [16, 17, 15] and also holds here via
percolation argument. Therefore, what is needed to check is the former criterion. However,
due to X- or Y -measured domains, the resultant graphs are no longer planer. After the
POVM Eq. (1) we therefore apply a further round of active measurements with the purpose
of restoring planarity of the encoded graph state.

What we choose to do here, specifically, is to first remove connected POVM “measured”
(regardless of whether it is X- or Y -measured) domains by actively measuring their enclos-
ing/neighboring domains in the logical Z basis, so as to remove these connected “measured”
domains [7] at the cost of removing the enclosing domains as well. We also remove all
X-measured domains and isolated multi-site (i.e. those with more than 2 sites) Y -measured
domains by the same procedure. The non-planarity caused by these POVM “measured”
domains is recovered quasi-locally; see Fig. 4.

Then we proceed to deal with the remaining isolated Y -measured domains which contain
either one single or two sites (which can have at most 6 neighboring sites and hence domains).

TQC’15



56 Spin-2 AKLT State and MBQC

Figure 4 (color online) Part of a random graph for domains (solid circles). (a) The square
indicates an X-measured domain and the hexagon indicates a Y -measured domain. In this example,
the two measured domains are neighbors, and the effect on the graph will induce non-planarity. A
simple approach is to apply active Z measurement on those domains (indicated by the diamonds)
that enclose these connected X or Y -measured domains, similar to the game of go. (b) The upshot of
the active Z measurements will remove these X/Y -measured domains as well as active Z-measured
domains but will restore planarity.

The effect of Y -measured domains on the graph is to apply local complementation before
removing the vertices corresponding to the Y -measured domains. If the Y -measured domain
has three or fewer neighboring domains, the local complentation still preserves planarity. But
when the nunber of neighbors is four or more, we then actively apply Z measurement on
some of the neighboring domains (see Fig. 3) to maintain local planarity of the graph.

In the end we are left with a planar graph state, whose graph may or may not be percolated.
If for large enough system and with finite nonzero probability, the graphs obtained after the
above procedure are in the supercritical phase, then the resultant graph states can be used
for universal MBQC, implying the original AKLT state is universal as well. Our simulations
indicate that we need to use L of order 80 or larger in order to show that the graphs are in
the supercritical phase with high probability such as 90%; see Fig. 5.

To carry out the simulations, we still need to sample the configuration {F,K} according
to the exact distribution p({F,K}) [16]. In Section 5 we describe the formula.

5 Exact weight formula and simulation results

The exact sampling is needed, as random assignment of F and K POVM outcomes does
not correctly reflect the correlation that these outcomes must obey due to multipartite
entanglement in the AKLT state. Moreover, many of randomly chosen assignment of F
and K are not valid measurement outcomes (as see below by the incompatibility condition).
This latter complication sets the spin-2 case apart from the spin-3/2 case (in addition to the
POVM itself). Employing the exact sampling also enables us to estimate the probability (at
least the lower bound) of obtaining a universal resource state from performing the reduction
procedure. We note that as long as the reduction procedure gives a finite, nonzero success
probability in the large system limit then the original state is still regarded as a universal
resource state (though of probabilistic nature). The weight formula that we discuss below
will enable the exact sampling in the numerical simulations.

The weight formula. Let us recapitulate the notations introduced in Sec. 3.3. Consider a
spin-2 AKLT state on a bi-colorable lattice L (generalization to non-bicolorable lattices is
possible), and POVM elements Fα and Kα (α = x, y, z). Denote by JF ⊂ L the set of sites
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Figure 5 (a) Left panel: pspan vs. L (with N = L2 the total number of sites) at pdelete = 0.
As L increases pspan also increases. This is obtained with exact sampling. (b) Right panel: pspan

vs. pdelete (with N = L2 the total number of sites) with L = 120, 140, 160, 180. The threshold of
pdelete is approximately 0.142(3). The crossing for these curves indicates that there is a percolation
transition from the supercritical to subcritical phase in the thermodynamic limit.

where the POVM outcome is of F -type and by JK = L\JF the set of sites where POVM
outcome is of K-type. Here additionally we denote by DK the set of domains where the
number of K-type POVM elements is equal to the total number of sites in the domain. Denote
{F,K} the set of POVM outcomes corresponding to F (v)

α(v) and K(w)
β(w) and the probability

for such occurrence is p({F,K}).
We have introduced the graph state |G0〉 in Eq. (4). Let us also label the set of all

domains (i.e. vertices of the G0) by V , the set of all inter-domain edges in L by E and the
set of all edges of G0 by E. Note that E is obtained from E by a modulo-2 operation [16].

As explained in Sec. 3.3, the effect of K-type POVM elements on a strict subset of sites
in a domain only shrinks the size of a domain, whereas K-type POVM measurement on all
sites in a domain in DK amounts to the measurement (on |G0〉) of an encoded logical X with
respect to the encoding in Table 2. The stablizer operators for |G0〉 in this encoding can
be either ±Xc

⊗
µ∈Nb(c) Zµ or ±Yc

⊗
µ∈Nb(c) Zµ (see Appendix 3.2), where Nb(c) denotes

the set of neighbors of vertex c. But one can perform local logical-qubit rotations such that
all stabilizer operators are of the canonical form Xc

⊗
µ∈Nb(c) Zµ, but then the effect of

K-type POVM elements in a domain inside DK amounts to the measurement of an encoded
observable either X or Y . We have referred to this latter basis as the canonical graph-state
basis (CGSB) earlier.
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Now we introduce a |V |× |DK | binary-valued matrix H with its entries defined as follows,

Hµν = 0, if [Kµ, Oν ] = 0, (10a)
Hµν = 1, if {Kµ, Oν} = 0, (10b)

where Kµ is the stabilizer operator associated with the vertex (or domain) µ ∈ V of the
graph G, Oν ≡ (−1)|Vµ|Xµ is proportional to a logical Pauli X operator, and ν ∈ DK ; see
also Sec. 3.2. Let dim

(
ker(H)

)
denote the dimension of the kernel of matrix H. We are

ready to introduce the following lemma.

I Lemma 1. If there exists a set Q (subset of DK) such that −⊗µ∈QOµ is in the stablizer
group S(|G0〉) of the state |G0〉, then p({F,K}) = 0. Otherwise,

p({F,K}) = c

(
1
2

)|E|−|V |+2|JK |−dim
(

ker(H)
)
, (11)

where c is a constant.

We subsequently refer to the above condition for p({F,K}) = 0 as the incompatability
condition. The incompatibility condition implies that not all POVM outcomes labeled by
Fα and Kα can occur. When there is no K outcome, Eq. (11) reduces to p = c 2|V |−|E| of
previous results [16]. The correlation of F ’s and K’s at different sites is reflected either in
the incompatibility condition (if it is met) or else in the factor dim

(
ker(H)

)
. The probability

distribution of {F,K} is thus very far from independent and random. For the proof of the
lemma, see Appendix A.

Numerical simulations. With the weight formula we can sample the exact distribution of
physically allowed POVM outcomes {F,K} and carry out the procedure to restore planarity
of the random graphs associated with the post-POVM states. The sampling is obtained by
using the standard Metropolis algorithm for updating {F,K} configurations. One notable
distinction is that we will need to avoid configurations that satisfies the incompatibility
condition. First, we check whether the random graphs after our procedure have a spanner
cluster by showing pspan for different L, and we see that it increases as L increases and
approaches to unity; see Fig. 5. This suggests that for L large enough, the random graphs
resulting from the thinning procedure are percolated. Then, we perform site percolation
numerical experiment on these random graphs by removing each vertex with a probability
pdelete and record the probability of a spanning cluster pspan. The crossing of curves in Fig. 5
for different sizes indicates that there is a percolation transition (at p∗delete ≈ 0.142) from the
supercritical to subcritical phase in the thermodynamic limit. This shows that our random
graph states (whose graphs are sitting at pdelete = 0) can be used to generate a network of
entanglement that is universal for measurement-based quantum computation. This shows
that the original AKLT state is also universal.

6 Concluding remarks

The family of Affleck-Kennedy-Lieb-Tasaki states provides a versatile playground for universal
quantum computation. The merit of these states is that by appropriately choosing boundary
conditions they are unique ground states of two-body interacting Hamiltonians, possibly
with a spectral gap above the ground states. Here we have overcome several obstacles and
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shown that the spin-2 AKLT state on the square lattice is also a universal resource for
measurement-based quantum computation. We were able to derive an exact weight formula
for any given POVM outcome. Combined with a thinning procedure to restore planarity
of random graph states, we performed Monte Carlo simulations and demonstrated that the
assoicated planar random graphs from the procedure are residing in the supercritical phase.

The emerging picture from our series of study on the quantum computational universality
in the two-dimensional AKLT valence-bond family is as follows. AKLT states involving spin-2
and other lower spin entities are universal if they reside on a two-dimensional frustration-free
regular lattice with any combination of spin-2, spin-3/2, spin-1 and spin-1/2 (consistent with
the lattice). Additionally, the effect of frustrated lattice may not be serious and can always
be decorated (by adding additional spins) such that the resultant AKLT state is universal.
We conjecture that the result hold in three dimensions as well.

Another direction of generalization is to investigate the robustness of the resource under
small perturbations, e.g., slightly away from the AKLT Hamiltonian. A slight and simpler
variation [5] is to consider the AKLT deformed spin-2 AKLT state with some deformation
parameters, for which we give more detail in our arXiv paper [20]. One can also consider
the frustrated kagomé lattice and deform it in a way to connect to a cluster state [4].
Furthermore, how would the quantum computational power of AKLT-like states make
transition and how would they compare with the usual phases of matter [19]. We leave these
for future consideration.
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A Proof of the weight formula

Let us mention first the following fact that (b is chosen according to ac in Table 1),

〈G0|Orest ⊗i∈Ic σ
[i]
b |G0〉 = 0, (12)

if Ic is a strict subset of virtual qubits in any domain C (i.e. |Ic| < 4|C|) and σb is chosen
according to Table 1 (Orest denotes operators not in the support of domain C). This can
easily be proved by the fact that one can choose a stabilizer Sjq ≡ λjλqσ[j]

acσ
[q]
ac (see Table 2),

where j ∈ Ic and q ∈ C but q /∈ Ic, so that (⊗i∈Ic(σ
[i]
b ) and Sjq anticommutes. Hence,

〈G0|Orest(⊗i∈Icσ
[i]
b )|G0〉 = 〈G0|Orest(⊗i∈Icσ

[i]
b )Sjk|G0〉

= −〈G0|SjkOrest(⊗i∈Icσ
[i]
b )|G0〉 = −〈G0|Orest(⊗i∈Icσ

[i]
b )|G0〉,

showing that the expectation value is identically zero.
Let us also note the following useful relation regarding to the 4-qubit GHZ associated

with the corresponding POVM outcome Kα,

|GHZ−α 〉〈GHZ−α | = Πα

(1− σ[v;1]
bα

σ
[v;2]
bα

σ
[v;3]
bα

σ
[v;4]
bα

)
2 Πα, (13)

where Πα (α = x, y, z) is a projection to a two-dimensional subspace, equivalently an
identity operator on the code subspace and can be safely omitted when acting on the
graph state |G0〉. Specificially, Πx = | + + + +〉〈+ + + + | + | − − − −〉〈− − − − |,
Πy = |i, i, i, i〉〈i, i, i, i|+ |− i,−i,−i,−i〉〈−i,−i,−i,−i| and Πz = |0000〉〈0000|+ |1111〉〈1111|.
The label bα denotes the corresponding type b if ac = α; see Table 1.

For a given domain (with a given type α), the POVM outcome on any site in the domain
can be either Fα or Kα. Regarding the number nK of K outcomes, there are two scenarios:
(i) nK is less than the total number |Vc| of sites in that domain C; (ii) nK = |Vc|.

For case (i), the effect of all those K in terms of the probability distribution (or the
weight formula) is to multiply a factor of 2−nK , i.e., (using J ∈ C to denotes the set of those
sites with K)

〈G0|Orest

(
⊗v∈J |GHZ−α(v)〉〈GHZ−α(v)|

)
|G0〉 = 〈G0|Orest ⊗v∈J

(1− σ[v;1]
b σ

[v;2]
b σ

[v;3]
b σ

[v;4]
b )

2 |G0〉

=2−nK 〈G0|Orest|G0〉,

where Orest denotes operators not in the support of domain C, and we have used

〈G0|Orest ⊗v∈J (σ[v;1]
b σ

[v;2]
b σ

[v;3]
b σ

[v;4]
b )|G0〉 = 0.

For case (ii), when we expand all the 2|Vc| terms in ⊗v∈C(1− σ[v;1]
b σ

[v;2]
b σ

[v;3]
b σ

[v;4]
b )/2, the

only two nonvanishing contributions are 1/2|Vc| and (−1)|Vc|(⊗4|C|
i=1σ

[i]
b )/2|Vc| = (−1)|Vc|Xc/2|Vc|.
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In terms of logical X, the effect of all K is equivalent to Pc = (1 + Oc)/2|Vc|, where the
Oc = (−1)|Vc|Xc. That is

〈G0|Orest

(
⊗v∈C |GHZ−α(v)〉〈GHZ−α(v)|

)
|G0〉 = 〈G0|Orest ⊗v∈C

(1− σ[v;1]
b σ

[v;2]
b σ

[v;3]
b σ

[v;4]
b )

2 |G0〉

= 2−|Vc|〈G0|Orest(1 +Oc)|G0〉.

Here we also see that the effect of all K in domain C is to measurement the logical qubit C
in the logical X, followed by a post-selection of the result corresponding to either positive (if
|Vc| is even) or negative (if |Vc| is oddd) eigenvalue of X.

With the above preparation, we can move on to the proof. Now consider a spin-2 AKLT
state on a bi-colorable lattice L (generalization to non-bicolorable lattices is possible), and
POVM elements Fα and Kα (α = x, y, z). Denote by JF ⊂ L the set of sites where the
POVM outcome is of F -type and by JK = L\JF the set of sites where POVM outcome is of
K-type. We should, strictly speaking, use α(v) to denote the type of x, y, z at site v. When
there is no confusion, we simply write α.

Proof of Lemma 1. For simplicity let us denote the AKLT state by |ψ〉 below. The proba-
bility p({F,K}) for obtaining POVM measurements {F,K} described above is

p({F,K}) = 〈ψ| ⊗
v∈JF

F
(v)†
α(v)F

(v)
α(v) ⊗

w∈JK
K

(w)†
α(w)K

(w)
α(w)|ψ〉

=
(

3
2

)|JK |
〈ψ| ⊗

v∈JF
F

(v)†
α(v)F

(v)
α(v) ⊗

w∈JK
F

(w)†
α(w)K

(w)†
α(w)K

(w)
α(w)F

(w)
α(w)|ψ〉

=
(

1
2

)|JK |
〈ψ| ⊗

v∈L
F

(v)†
α(v) ⊗

w∈JK
|GHZ−α(w)〉〈GHZ−α(w)| ⊗

u∈L
F

(u)
α(u)|ψ〉.

In the second equality we have used the fact that Kα =
√

3/2KαFα, and in the third
equality we have combined all F ’s and written explicitly Kα’s in terms of the four-qubit
GHZ projectors.

Now we know from Ref. [16] that

⊗
u∈L

F
(u)
α(u)|ψ〉 = c0

(
1√
2

)|E|−|V |
|G0〉, (14)

where |G0〉 is an encoded graph state whose graph G0 is specified by the POVM elements
{F}, V is the set of domains of same-outcome POVM measurements, and E is the set of
inter-domain edges (before the modulo-2 operation) [16]. The formula (14) was originally
stated for the honeycomb lattice, but holds for all bipartite lattices. (For non-bipartite
lattices, an additional condition needs to be imposed relating to geometric frustration [15].
Namely, if any domain contains a cycle with odd number of sites, such {F} will not appear.)
Combining the above two results we find that

p({F,K}) = |c0|2
(

1
2

)|E|−|V |+|JK |
× 〈G0|

(
⊗

v∈JK
|GHZ−α(v)〉〈GHZ−α(v)|

)
|G0〉. (15)

Using Eq. (13) and the results in the beginning of the section, we know that for those
GHZ-projections in a domain such that their number is less than the total number of sites in
the domain, i.e., case (i) discussed above, their contribution is to mulitiply by a factor 2−nK .
For those such that the two numbers are equal, i.e., case (ii), these GHZ-projections (in a
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domain) can be replaced by Pc = (1 + Oc)/2|Vc|, where the Oc = (−1)|Vc|Xc, and c labels
the domain. Thus,

p({F,K}) = |c0|2
(

1
2

)|E|−|V |+2|JK |
× 〈G0| ⊗

c∈DK
(Ic +Oc)|G0〉, (16)

where we use DK to label the domains that contain the same number of K operators as the
total number of internal sites.

Next we demonstrate the first part of the Lemma. Assume that, for some subset Q ∈ DK ,
the observable −⊗c∈QOc ∈ S(|G0〉). Then,

〈G0| ⊗
µ∈DK

(Iµ +Oµ)|G0〉 = 〈G0| ⊗
ν∈DK\Q

(Iν +Oν) ⊗
µ∈Q

(Iµ +Oµ)
(
− ⊗
c∈Q

Oc

)
|G0〉

= −〈G0| ⊗
ν∈DK\Q

(Iν +Oν) ⊗
c∈Q

(Oc + Ic)|G0〉 = −〈G0| ⊗
µ∈DK

(Iµ +Oµ)|G0〉 = 0.

In the third line we have used the fact O2
µ = Iµ. Let us also note that being product of Pauli

operators, Oµ either commutes or anticommutes with another product of Pauli operators.
Next, we demonstrate the second part of the Lemma, i.e., finding p({F,K}) when it is

not identically zero. Consider a subset of domains Q ⊂ DK . If ⊗µ∈QOµ 6∈ ±S(|G0〉), then
〈G0| ⊗µ∈QOµ|G0〉 = 0 (note that µ is an index for the domain, not an index for the site).
Furthermore, if the incompatibility condition is not satisfied, then ⊗µ∈QOµ ∈ ±S(|G0〉)
implies that ⊗µ∈QOµ ∈ S(|G0〉), and therefore 〈G0| ⊗µ∈QOµ|G0〉 = 1. We now exapnd the
projector ⊗c∈DK (Ic +Oc) in the matrix element,

〈G0| ⊗
c∈DK

(Ic +Oc)|G0 = 〈G0|
∑

Q⊂DK

⊗
µ∈Q

Oµ|G0〉 = |M |, (17)

where the set M is defined as M = {O(Q) ≡ ⊗µ∈QOw|Q ⊂ DK andO(Q) ∈ S(|G0〉)}.
Actually M has the following equivalent formulation which will turn out to be useful,

M = {O(Q) ≡ ⊗
µ∈Q

Oµ|Q ⊂ DK and [O(Q), S] = 0,∀S ∈ S(|G0〉)}. (18)

Using this latter characterization of M , we now turn to the counting for |M |. We describe
every subset Q of DK by its characteristic vector q, defined as follows: if µ ∈ Q then qµ = 1,
or if µ 6∈ Q, then qµ = 0. Furthermore we define a binary-valued matrix H of dimension
|V | × |DK | (where |V | denotes total number of domains), whose entries are

Hµν = 0, if [Kµ, Oν ] = 0,
Hµν = 1, if {Kµ, Oν} = 0,

where µ ∈ V (the set of all domains) and ν ∈ DK (the set of those domains with equal
number of K’s and sites). Then for any Q ⊂ DK , O(Q) ∈M if and only if Hq mod 2 = 0.
Therefore,

|M | = 2dim
(

ker(H)
)
. (19)

Putting everything into the expression for p({F,K}) we obtain the equation (11),

p({F,K}) = |c0|2
(

1
2

)|E|−|V |+2|JK |−dim
(

ker(H)
)
,

and the lemma is proved. J
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We remark that checking the kernel of a binary matrix can be done via, e.g., the Gauss
elimination method; see e.g. [9]. Furthermore, to check the incompatibility condition it is
sufficient to check the products of Oµ associated with all basis vectors q’s in the kernel. If
none of them satisifies it, then the incompatibility condition is not satisified.
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Abstract
The quantum capacity of a quantum channel is always smaller than the capacity of the channel
for private communication. However, both quantities are given by the infinite regularization of
respectively the coherent and the private information. Here, we construct a family of channels
for which the private and coherent information can remain strictly superadditive for unbounded
number of uses. We prove this by showing that the coherent information is strictly larger than
the private information of a smaller number of uses of the channel. It turns out that even though
the quantum capacity is upper bounded by the private capacity, the non-regularized quantities
can be interleaved. From an operational point of view, the private capacity can be used for
gauging the practical value of quantum channels for secure communication and, consequently, for
key distribution. We thus show that in order to evaluate the interest a channel for this task it is
necessary to optimize the private information over an unlimited number of uses of the channel.
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1 Introduction

How well is it possible to characterize the resources available to transmit information? In
classical information theory, this proves to be fully within our computational abilities: given
a description of a channel, answering the question about its capacity to convey information
to the receiver is straightforward. However, our world is inherently quantum and when one
turns to the channels which transmit quantum information – the amount of resources required
to compute their capacities is unknown at best. To compute a number of different types of
capacity of the quantum channel, defined as regularized quantities [15, 10, 18, 20, 5, 16, 2, 8],
it is necessary to perform an unbounded optimization over the number of the copies of
the channel. The action of a channel NA→B can be defined via an isometry V A→BE :
NA→B(ρ) = trEV ρV ∗, and its complementary channel is NA→E

c (ρ) = trBV ρV ∗. In the
following, we will omit the register superscripts when it does not add to clarity.
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The quantum and classical capacity of a channel [15, 10, 18, 20, 5] are given by:

Q(N ) = lim
n→∞

1
n
Q(1)(N⊗n), (1)

C(N ) = lim
n→∞

1
n
C(1)(N⊗n) (2)

where

Q(1)(N ) = max
ρA

H(B)−H(E), (3)

C(1)(N ) = max
ρ∈R

I(X;B). (4)

The optimization of the quantum capacity is performed over all valid states on the input
register A while the optimization of the classical capacity is performed over R the set of
classical-quantum states of the form ρXA =

∑
x px|x〉〈x|X ⊗ ρAx . Where X is an auxiliary

classical register, H is the von Neumann entropy and I(X;B) is the quantum mutual
information.

From the above expressions it follows that one has to optimize over an infinite number of
copies of the channel in order to compute its capacity. Do we have to resort to the regularized
expression in order to compute the capacity of a quantum channel? It has recently been
shown that at least in the case of the quantum capacity this is unavoidable [6, 22] even when
we attempt to answer the question whether the channel has any capacity at all [4]. For the
classical capacity, which is known to be superadditive for two uses of the channel [9], there is
some evidence that ultimately the regularization might not be required [17, 24].

Arguably, the biggest practical success of quantum information theory to date is the
possibility of quantum key distribution (QKD). QKD allows two distant parties to agree on
a secret key independent of any eavesdropper. The required assumptions are: access to a
quantum channel with positive private capacity and the validity of quantum physics1. On
the other hand, key distribution is a primitive that can only be implemented with classical
resources if one is willing to constrain the power of the eavesdropper. Even though there exist
practical QKD schemes which enable secure communication over large distances with high
key rates [3, 13, 11, 19], some of the fundamental questions about the capacity to transmit
secure correlations remain unanswered.

The private capacity P of a channel is used to describe the ability of the channel to
send secure messages to the receiver [5, 1]. It has a clear operational interpretation as the
maximum rate at which the sender, Alice, can send private classical communication to the
receiver, Bob. It is defined as follows:

P(N ) = lim
n→∞

1
n
P(1)(N⊗n). (5)

That is the private capacity is given by the regularization of P(1)(N ), the private information
of the channel, which is given by

P(1)(N ) = max
ρ∈R

I(X;B)− I(X;E). (6)

One can view private capacity as the optimal rate of reliable communication keeping Eve in
a product state with Alice and Bob.

1 In order to characterize the channel and to implement a specific QKD protocol one might need a public
authentic classical channel or a small preshared secret.
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This capacity characterizes the optimal rates of QKD. A better understanding of this
quantity would allow to evaluate precisely the usefulness of communications channels for
practical QKD links. For instance, the private capacity of Gaussian channels [25] remains
open. Beyond the pure loss channel [27] only lower bounds on the private information of a
single use are known.

Despite the significance of the private information, we still understand very little about
its behaviour when the communication channel is used many times. Authors in [21, 12]
provide evidence that P(1)(N ) is superadditive for two channel uses, although the magnitude
of this effect is quantitatively very small. Recently, it has been shown the existence of two
quantum channels N1,N2 with C(N1) ≤ 2,P(N2) = 0 for which P(N1 ⊗ N2) ≥ 1/2 log d,
where d is the dimension of the output of the joint channel [23]. This example shows that
the private capacity is a superadditive quantity (this was also proved in [14] using a different
construction).

Here we show that private information can be strictly superadditive for an arbitrarily
large number of uses of the channel. More precisely, we prove the following theorem:

I Theorem 1. For any n there exists a quantum channel Nn such that for n > k ≥ 1:

1
k
P(1)(N⊗kn ) < 1

k + 1Q
(1)(N⊗k+1

n ). (7)

This proves that entangled inputs increase the private information of a quantum channel
and this effect persists for an arbitrary number of channel uses. As a bonus, we obtain a
qualitatively different proof for the unbounded superadditivity of the coherent information [4].

The following relation holds for any channel [26]:

Q(1)(Nn) ≤ P(1)(Nn) ≤ C(1)(Nn). (8)

This means, that even though the coherent information is upper bounded by the private
information and the quantum capacity is upper bounded by the private capacity, Theorem 1
implies that the non-regularized quantities can be interleaved.

We now introduce the key components of our construction which are required to prove
Theorem 1.

2 Main construction

We first introduce switch channels:

N SA→SB(ρSA) =
∑

i

PS→Si ⊗NA→B
i (ρSA). (9)

A switch channel consists of two input registers S and A of dimensions d and n respectively.
Register S is measured in the standard basis and conditioned on the measurement outcome
i a component channel Ni is applied to the second register. The computation of P(1)(N )
when N is of the form (9) can be simplified; it suffices to restrict inputs to a special form.
The equivalent result for the quantum capacity was proved in [7].

I Lemma 2. Consider a switch channel N SA→SB and let T = {ρ : ρ =
∑
x px|x〉〈x|X ⊗

|s〉〈s|S ⊗ ρAx }. Then

P(1)(N ) = max
1≤s<n

P(1)(Ns), (10)

and P(1)(N ) can be achieved by some ρ ∈ T .
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Figure 1 The channel has two input registers the control register S and the data register A. The
control register is measured in the computational basis and depending on the output either the
erasure channel Ẽn

p,d or n copies of the d-dimensional rocket channel are applied.

Proof. The channel complementary to a switch channel is also a switch channel with
component channels {N c

i }ni=1 complementary to {Ni}ni=1 [4]. We denote the output systems of
the complementary channel by S and E. Let ρ ∈ R be the input state that maximizes P(1)(N ),
then N takes ρ to

∑
x,s pxps|x|x〉〈x|⊗ |s〉〈s|⊗Ns(ρs|x) and N c takes ρ to

∑
x,s pxps|x|x〉〈x|⊗

|s〉〈s| ⊗ N c
s (ρs|x). The following chain of inequalities holds:

I(X;BS)− I(X;ES) (11)

=
∑

s

ps

(
I(X;B|S = s)− I(X;E|S = s)

)
(12)

≤ max
s

(
I(X;B|S = s)− I(X;E|S = s)

)
(13)

≤ max
s
P(1)(Ns). (14)

The first equality follows because S is a classical system. The first inequality follows by
choosing the value of s which maximizes the difference between the mutual informations. The
second one since the difference between the between the mutual informations to the receiver
and the environment is upper bounded by the private information of the channel Ns. This
upper bound is achievable by an input state of the form σXSA =

∑
x px|x〉〈x| ⊗ |s〉〈s| ⊗ ρx

where trS(σXSA) is the state that achieves the private information of channel Ns. Finally
note that σXSA ∈ T . J

There are two types of channels which we will use in place of Ni. The first channel is the
erasure channel:

EA→Bp,d (ρA) = (1− p)ρB + p|e〉〈e|B (15)

where |e〉〈e| is the erasure flag and d the dimension of the input register A. For p ≤ 1/2
the erasure channel is degradable and Q(Ep,d) = P(Ep,d) = max{0, (1 − 2p) log d}, and
C(Ep,d) = (1− p) log d.
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For any quantum channel N used alongside Ep,d the classical capacity is additive:

I Lemma 3. For all quantum channels N

C(1)
(
N ⊗ E⊗np,d

)
= C(1)(N ) + nC(1)(Ep,d). (16)

Proof. The inequality C(1)
(
N ⊗ E⊗np,d

)
≥ C(1)(N ) + nC(1)(Ep,d) is trivial. In order to prove

the other direction consider the following chain of inequalities:

C(1)(N ⊗ E⊗np,d ) = C(1)(M⊗Ep,d) (17)
= max

ρ
I(X;B1B2) (18)

= max
ρ

(1− p)I(X;B1A2) + pI(X;B1) (19)

≤ (1− p)C(1)(M⊗ I) + pC(1)(M) (20)
= C(1)(M) + (1− p) log d (21)
= C(1)(N ) + n(1− p) log d. (22)

The first equality follows by identifyingM with N ⊗E⊗n−1
p,d . We let A1, A2 and B1, B2 be the

input and output ofM and Ep,d respectively. The second equality is just the definition of the
classical information (see Eq. 2). The third equality breaks the mutual information depending
on the erasure channel transmitting or erasing. The inequality follows by maximizing each
of the two mutual informations individually. The fourth inequality follows by taking into
account that the classical information of the identity is additive and the last one by applying
the same argument recursively for n− 1 times. J

Intuitively, Lemma 3 states that the erasure channel cannot convey more information than
an identity channel of dimension d1−p even in the presence of other channels. Furthermore,
we can use the expression for the classical capacity to obtain a trivial bound for the private
information. It turns out that this trivial bound is tight and is saturated by the channel
construction that we introduce below.

The second channel that we use alongside Ep,d is a d-dimensional ‘rocket’ channel, Rd [23].
It consists of two d-dimensional input registers A1 and A2 and a d-dimensional output register
B. A1 and A2 are first subject to a random unitary and then jointly decoupled with a
controlled dephasing gate. Then, the contents of A1 becomes the output of the channel and
the contents of A2 is traced out. Bob also receives the classical description of the unitaries
which acted on A1 and A2. Since dephasing occurs after the input registers have been
scrambled by a random unitary, it is very hard for Alice to code for such channel, hence it
has a very low classical capacity: C(Rd) ≤ 2.

Our switch channel construction has the following form:

Nn,p,d = P0 ⊗Rnd + P1 ⊗ Ẽnp,d (23)

That is, it allows Alice to choose between Rnd = R⊗nd and Ẽnp,d = Ep,d ⊗ E1,d2n−1 – a d-
dimensional erasure channel padded with a full erasure channel to match the input dimension
of Rnd .

2.1 Upper bound
To upper bound the private information of Nn,p,d we only need to optimize over all the
possible different choices of Rnd and Ẽnp,d. Thus, the upper bound for P(1)(N⊗kn,p,d) for k ≥ 1
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reads:

P(1)(N⊗kn,p,d) = max
0≤i≤k

P(1)(E⊗ip,d ⊗ (Rnd )⊗k−i)

≤ max





C(1)((Rnd )⊗k)

max
1≤i≤k−1

C(1)(E⊗ip,d ⊗ (Rnd )⊗k−i),

P(1)(E⊗kp,d )

≤ max





2kn,
(2n+ (k − 1)(1− p) log d) .
(1− 2p) k log d

(24)

2.2 Superadditivity of P(1)

First, we present the input state such that for j > i uses and for some range of parameters
allows to conclude that the private information for j uses is higher than the upper bound (24)
for i uses. This state has the form:

ρ =
j−1⊗

k=1

(
Φ+
ÃkA

[1]
k1
⊗ Φ+

A
[1]
k2A

[k+1]
11
⊗ σA

)
(25)

where Φ+
AB = 1/d

∑d
i,j=1 |ii〉〈jj|. For the first use Alice chooses the rocket channel and for

the remaining j − 1 uses of the channel she selects Enp,d. We denote with superscript [k]
the k-th use of the channel and the subscript ij indicates the input register as pictured in
Fig. 1. The state can be read operationally as follows: Alice keeps the Ãkm registers and
sends A[1]

k1 through the first input of k-th Rd channel, A[1]
k2 through the second (which will be

subsequently discarded by the channel) and A[k]
11 through Ep,d. The remaining inputs do not

play any role, so Alice can send any pure state σA through ED,1 and R[k]
d for k > j. It is

easy to verify that:

Q(1)(N⊗jn,p,d, ρ) = (j − 1)(1− p)
j

log d. (26)

This immediately gives a lower bound for the private information. Now, we are ready to
prove Theorem 1.

Proof.
Fix d = 24n2/(1−2p) and p = 11

24 . Then the regularized upper bounds (24) for P(1) after k
uses of the channel have the form:

U1
k = 2n

k
, (27)

U2
k = 2n(13(k − 1)n+ 1)

k
(28)

and

U3
k = 4n2; (29)

the lower bound (26) after k + 1 uses of the channel has the form:

Lk+1 = 26kn2

k + 1 . (30)
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Consider the differences Di
k = −U ik + Lk+1 for i = 1, 2, 3. Then, a simple substitution

shows that:

D1
k = 26kn2

k + 1 −
2n
k
, (31)

D2
k = −2n(k − 13n+ 1)

k(k + 1) (32)

and

D3
k = 2(11k − 2)n2

k + 1 . (33)

All of the differences are positive for n > k ≥ 1. J
The results of the theorem indicate that in order to compute the exact private capacity

of a channel N it is necessary to compute P(1)(N⊗n) for an arbitrary number of uses n.
In addition, we found an example whereby for each n and 1 ≤ k < n having access to one
additional copy of the channel up to n provides the parties with the largest possible gain
in the capacity, proportional to the output dimension of the channel. Note, that for the
channel Nn,p,d strict superadditivity of both private and coherent information holds for all
number of uses of the channel up to n. This is markedly different from all previously known
channel constructions which exhibit various superadditivity effects for quantum channel
capacities. Such constructions exhibited superadditivity for some fixed number of uses of the
channel t versus t+ c for some c. Our construction above shows that the private and coherent
information of the same channel can be strictly superadditive for an arbitrary number of
channel uses.

3 Discussion

In this paper we have constructed a family of channels for which the private and coherent
information can remain strictly superadditive any number of uses of the channel. We are
able to prove this result by showing that the private information of k uses of the channel
is smaller than the coherent information of k + 1 uses. That is, both quantities can be
interleaved use after use for the first n uses of the channel. This shows that even though the
quantum capacity is upper bounded by the infinite regularization of the private information,
the quantum capacity can be larger than a finite regularization of the private information.

The private capacity of a quantum channel characterizes its ability to convey classical
information securely. We proved that in order to compute the private capacity it is necessary
to consider regularized expressions (5).

The results shown here raise questions about the properties that a channel has to verify
such that its different capacities can be computed exactly using only finitely many (preferably
only a few) copies of the channel.
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Abstract
Randomness extractors are an important building block for classical and quantum cryptography.
However, for many applications it is crucial that the extractors are quantum-proof, i.e., that
they work even in the presence of quantum adversaries. In general, quantum-proof extractors are
poorly understood and we would like to argue that in the same way as Bell inequalities (multi
prover games) and communication complexity, the setting of randomness extractors provides a
operationally useful framework for studying the power and limitations of a quantum memory
compared to a classical one.

We start by recalling how to phrase the extractor property as a quadratic program with linear
constraints. We then construct a semidefinite programming (SDP) relaxation for this program
that is tight for some extractor constructions. Moreover, we show that this SDP relaxation is even
sufficient to certify quantum-proof extractors. This gives a unifying approach to understand the
stability properties of extractors against quantum adversaries. Finally, we analyze the limitations
of this SDP relaxation.
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1 Introduction

1.1 Randomness extractors
A randomness extractor is a procedure to distill from a weakly random system as much
(almost) uniform random bits as possible. Such objects are essential in many cryptographic
protocols, in particular in quantum key distribution and device independent randomness
expansion [3, 26, 12, 24, 35]. In this context, the process of transforming a partly private
string into one that is almost uniformly random from the adversary’s point of view is called
privacy amplification [5, 4]. Even though we take a cryptographic point of view in this
paper, we should mention that randomness extractors are very useful combinatorial objects
in particular in the study of the computational power of randomness (see [34] for a survey).

More precisely, a randomness extractor is described by a family of functions Ext = {fs}s∈D
where fs : N →M . We use N = 2n to denote the input system (consisting of strings of n
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bits), M = 2m (bit-strings of length m) to denote the output system, and D = 2d (d bits) to
denote the seed system that labels the functions fs. Note that in a slight abuse of notation,
we use the same letter for the actual set of inputs/outputs as well as its size. We say that
Ext is a (k, ε)-extractor if for any random variable X taking values in N ,

Hmin(X) := − log pguess(X) ≥ k =⇒ fUD (X) is ε-close to UM , (1)

where UD is uniformly distributed on D and independent of X and UM denotes the uniform
distribution over M . As mentioned in the equation, the min-entropy Hmin(X) is defined by
the maximum probability of success in guessing a source X with only the knowledge of the
distribution p of X. In this case, we simply have Hmin(X) = − log max p(x). To quantify
the distance between distributions, we use the total variation distance.1 Equation (1) can
thus be more explicitly written as

∀x ∈ N, p(x) ≤ 2−k =⇒ 1
D

∑
s∈D
y∈M

∣∣∣∣∣∣
∑

x:fs(x)=y

p(x)− 1
M

∣∣∣∣∣∣ ≤ ε . (2)

Even though the concept was already present in [5, 4], the definition of randomness extractors
was formulated in [23]. The typical example of a family {fs}s of functions that satisfy
this condition are randomly chosen functions. In fact, one can show [29, 25] that choosing
D functions fs independently at random among all the functions from N to M satisfies
equation (2) with the following parameters

m = k − 2 log(1/ε)−O(1) and d = log(n− k) + 2 log(1/ε) +O(1) . (3)

In fact, we even know that these parameters cannot be improved except for additive con-
stants [25]. Probabilistic constructions are interesting, but for applications we usually want
the functions fs to be efficiently computable. The most famous example of an explicit
extractor is given by two-universal hash functions [5, 4, 17]. However, this construction
has a seed size d that of the order of n, very far from the logn achieved by probabilistic
constructions (3). Constructing efficiently computable extractors that match the parameters
of randomly chosen functions has been the subject of a large body of research. Starting
with the work of Nisan and Ta-Shma [22] and followed by Trevisan’s breakthrough res-
ult [33], there has been a lot of progress in achieving polylogarithmic seed size, and there are
now many intricate constructions that come close to the parameters in (3) (see the review
articles [28, 34]).

1.2 Quantum-proof randomness extractors
For applications in classical and quantum cryptography (see, e.g., [26, 20]) and for constructing
device independent randomness amplification and expansion schemes (see, e.g., [11, 21, 13])
it is important to find out if extractor constructions also work when the input source is
correlated to another (possibly quantum) system Q. That is, we would like that for all
classical-quantum input density matrices ρQN =

∑
x∈N ρ(x) ⊗ |x〉〈x| acting on QN with

conditional min-entropy

Hmin(N |Q)ρ := − log pguess(N |Q)ρ ≥ k , (4)

1 It is more convenient here to use simply the `1 norm between the distributions, ignoring the 1
2 factor in

the usual definition of the total variation distance.
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where pguess(N |Q) denotes the maximal probability of guessing the system N given Q, the
output is uniform and independent of Q,2

1
D

∑
s∈D
y∈M

∥∥∥∥∥∥
∑

x:fs(x)=y

ρ(x)− 1
M

∑
x∈N

ρ(x)

∥∥∥∥∥∥
1

≤ ε . (5)

As observed in [19, Proposition 1], if we restrict the system Q to be classical with respect to
some basis {|e〉}e∈Q then every (k, ε)-extractor as in (2) is also a

(
k + log(1/ε), 2ε

)
-extractor

in the sense of (5). That is, even when the input source is correlated to a classical system
Q, every extractor construction still works (nearly) equally well for extracting randomness.
However, if Q is quantum no such generic reduction is known and extractor constructions
that also work for quantum Q are called quantum-proof.3 Examples of (approximately)
quantum-proof extractors include:

Spectral (k, ε)-extractors are quantum-proof (k, 2
√
ε)-extractors [8, Theorem 4]. This in-

cludes in particular two-universal hashing [26, 32], two-wise independent permutations [30],
as well as sample and hash based constructions [18].
One-bit output (k, ε)-extractors are quantum-proof (k + log(1/ε), 3

√
ε)-extractors [19,

Theorem 1].
(k, ε)-extractors constructed along Trevisan [33] are quantum-proof

(
k + log(1/ε), 3

√
ε
)
-

extractors [14, Theorem 4.6] (see also [2]).
We emphasize that all these stability results are specifically tailored proofs that make use
of the structure of the particular extractor constructions. In contrast to these findings it
was shown by Gavinsky et al. [16, Theorem 1] that there exists a valid (though contrived)
extractor for which the decrease in the quality of the output randomness has to be at least
ε 7→ Ω(mε).4 As put forward by Ta-Shma [31, Slide 84], this then raises the question if the
separation found by Gavinsky et al. is maximal, that is:

Is every (k, ε)-extractor a quantum-proof
(
O(k + log(1/ε)), O(m

√
ε)
)
-extractor or

does there exists an extractor that is not quantum-proof with a large separation, say
ε 7→ (2mε)Ω(1)?

We note that such a stability result would make every extractor with reasonable parameters
(approximately) quantum-proof. However, for reasons discussed later it is unclear if such a
generic quantum-proof reduction is possible and small sets of randomly chosen functions are
interesting candidates to study this possibly large classical/quantum separation.

1.3 Our results
We write the extractor condition (2) as a quadratic optimization program. The optimal
value for this program denoted as C(Ext, k) is the smallest error ε such that Ext is a
(k, ε)-extractor. We then construct a semidefinite programming (SDP) relaxation for this
program whose optimal value is denoted SDP(Ext, k). This program gives an efficiently
computable procedure to certify that a family of functions Ext is a (k, ε)-extractor for
ε = SDP(Ext, k).

2 Other notions for weaker quantum adversaries have also been discussed in the literature, e.g., in the
bounded storage model (see [14, Section 1] for a detailed overview).

3 Note that the dimension of Q is unbounded and that it is a priori unclear if there exist any extractor
constructions that are quantum-proof (even with arbitrarily worse parameters).

4 Since the quality of the output randomness of Gavinsky et al.’s construction is bad to start with, the
decrease ε 7→ Ω(mε) for quantum Q already makes the extractor fail completely in this case.
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We show that this certification procedure gives us much more: it certifies that Ext
is a quantum-proof (k,

√
2ε)-extractor. Thus, we give a general efficient method for

proving that an extractor is quantum-proof. This technique can recover in a unified way
many of the currently known methods for constructing quantum-proof extractors. In
particular, we can show that constructions based on two-universal hashing [27, 32] are
quantum-proof, and that any extractor with entropy deficit n− k or output size m small
is quantum-proof [6] (for m = 1 this was first shown in [19]). This latter result is a basic
building block for showing that Trevisan based extractors are quantum-proof [14].
We consider the limitations of this SDP relaxation. Even though SDP(Ext, k) is a tight
bound on C(Ext, k) for many extractor constructions, there can be a large gap between
these two values. In particular, if Extrand is given by a small number of randomly
chosen functions, then C(Extrand, k)� SDP(Extrand, k). This shows that the method we
propose cannot be used to prove that a small set of randomly chosen functions define
good extractors. This means that other techniques would be needed to determine whether
Extrand is a quantum-proof extractor or not.

2 Preliminaries

2.1 Quantum information
In quantum theory, a system is described by an inner-product space, that we denote here
by letters like N,M,Q.5 Note that we use the same symbol Q to label the system, the
corresponding inner-product space and also the dimension of the space. Let MatQ(S) be the
vector space of Q×Q matrices with entries in S. Whenever S is not specified, it is assumed
to be the set of complex numbers C, i.e., we write MatQ(C) =: MatQ. The state of a system
is defined by a positive semidefinite operator ρQ with trace 1 acting on Q. The set of states
on system Q is denoted by S(Q) ⊂ MatQ(C). The inner-product space of a composite system
QN is given by the tensor product of the inner-product spaces Q⊗N =: QN . From a joint
state ρQN ∈ S(QN), we can obtain marginals on the system Q by performing a partial trace
of the N system ρQ := TrN [ρQN ]. The state ρQN of a system QN is called quantum-classical
(with respect to some basis) if it can be written as ρQN =

∑
x ρ(x)⊗ |x〉〈x| for some basis

{|x〉} of N and some positive semidefinite operators ρ(x) acting on Q with
∑
x Tr[ρ(x)] = 1.

We denote the maximally mixed state on system N by υN .
To measure the distance between two states, we use the trace norm ‖A‖1 := Tr[

√
A∗A],

where A∗ is the conjugate transpose of A. In the special case when A is diagonal, ‖A‖1
becomes the familiar `1 norm of the diagonal entries. Moreover, the Hilbert-Schmidt norm
is defined as ‖A‖2 :=

√
Tr[A∗A], and when A is diagonal this becomes the usual `2 norm.

Another important norm we use is the operator norm, or the largest singular value of A,
denoted by ‖A‖∞. When A is diagonal, this corresponds to the familiar `∞ norm of the
diagonal entries. For a probability distribution PN on the set N , ‖PN‖`∞ corresponds to the
optimal probability with which PN can be guessed successfully. We write

Hmin(N)P := − log ‖PN‖`∞ , (6)

the min-entropy of PN . More generally, the conditional min-entropy of N given Q is used to
quantify the uncertainty in the system N given the system Q. The conditional min-entropy

5 In the following all spaces are assumed to be finite-dimensional.
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is defined as

Hmin(N |Q)ρ := − log min
σQ∈S(Q)

∥∥(idN ⊗ σ−1/2
Q )ρNQ(idN ⊗ σ−1/2

Q )
∥∥
∞ , (7)

with generalized inverses. Note that in the special case where the system Q is trivial, we
have Hmin(N)ρ = − log ‖ρN‖∞.

2.2 Semidefinite programming
Semidefinite programs (SDP) are a large class of optimization problems that can be efficiently
solved. Even if one is not explicitly interested in solving it numerically, a semidefinite program
often has appealing properties such as strong duality. Semidefinite programming has been
extensively used in various contexts in quantum information.

We use a formulation of semidefinite programs sometimes called vector programs. For
some fixed values αx,x′ , βx,x′,k and γk, the optimization program can be written as follows:

maximize
∑
x,x′

αx,x′~ax · ~ax′ (8)

subject to
∑
x,x′

βx,x′,k~ax · ~ax′ ≤ γk for all k (9)

Here the optimization is over all vector ~ax (of arbitrary finite dimension) that satisfy the
constraints stated above. Note that we can always assume that the dimension of the vectors
~ax is bounded by the number of vectors, i.e., the size of the set x runs over.

3 Quadratic programs for randomness extractors

It is useful to see the definition of extractors using the following optimization program:

Error for extractor Ext = {fs}

C(Ext, k) := maximize 1
D

∑
s,y

∑
x

(
δfs(x)=y −

1
M

)
p(x)βs,y (10)

subject to 0 ≤ p(x) ≤ 2−k (11)∑
x

p(x) = 1 (12)

− 1 ≤ βs,y ≤ 1 (13)

I Definition 1. Ext is a (k, ε)-extractor if and only if C(Ext, k) ≤ ε.

To relate this to the definition given in the introduction, it suffices to observe that
the optimal choice for βs,y is the sign of

∑
x

(
δfs(x)=y − 1

M

)
p(x) so the objective function

becomes 1
D

∑
s,y

∣∣∑
x

(
δfs(x)=y − 1

M

)
p(x)

∣∣. The conditions (11) and (12) ensure that the
input distribution has min-entropy at least k.

To simplify the program (10) we note that this function is convex in the distribution
p and so the maximum is attained in the extreme points of the feasible region. These are
simply the distributions that are uniform over a set of size at least 2k. So we can equivalently
write

C(Ext, k) = max
{∑
s,y

∣∣∣∣∣ 1
KD

∑
x∈L

δfs(x)=y −
1

MD

∣∣∣∣∣ : L ⊆ N,L ≥ 2k
}

, (14)
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where again in a slight abuse of notation, we use the letter L for the actual set as well as its
size. As the expression being maximized is the `1 norm between two probability distributions,
we can write it as:

C(Ext, k) = 2 ·max

 1
KD

∑
x∈L,(y,s)∈R

δfs(x)=y −
R

MD
: L ⊆ N,L ≥ 2k, R ⊆M ×D

 .

(15)

This allows us to interpret C(Ext, k) in graph-theoretic terms. For that we introduce a
bipartite graph with left vertex set N and right vertex set M × D, and there is an edge
between vertices x and (y, s) if and only if fs(x) = y. By writing E(L,R) for the set of edges
with one endpoint in L and the other endpoint in R, this expression is simply

C(Ext, k) = 2 ·max
{
E(L,R)

2kD − R

MD
: L ⊆ N,L ≥ 2k, R ⊆M ×D

}
. (16)

Written in this way, we see that the optimization in C(Ext, k) is a kind of bipartite
densest subgraph problem. Algorithms for a slightly different problem known as the densest
K-subgraph problem have been extensively studied, see e.g., [15, 9]. The best known approx-
imation algorithms for this problem achieve a factor of Nα for some constant α, but even
ruling out constant factor approximations is only known using quite strong assumptions [1].

We can similarly write a program for the error of Ext against potentially quantum
adversaries:

Error for extractor Ext = {fs} against quantum adversaries

Q(Ext, k) := maximize 1
D

∑
s,y

∑
x

(
δfs(x)=y −

1
M

)
Tr [ρ(x)Bs,y] (17)

subject to 0 ≤ ρ(x) ≤ 2−kσ (18)∑
x

Tr[ρ(x)] = 1 (19)

Tr[σ] = 1 (20)
‖Bs,y‖∞ ≤ 1 (21)

Here the maximization is understood over all ρ(x) of arbitrary dimension. Unlike for SDPs
for which one can give an upper bound on the dimension of the vector of an optimal solution,
no such bound is know in this setting. In fact, we do not even know if the quantity Q is
computable.

I Definition 2. Ext is a quantum-proof (k, ε)-extractor if and only if Q(Ext, k) ≤ ε.

To see that this definition coincides with the definition given in the introduction, observe
that for fixed ρ(x), the maximum over Bs,y of the quantity

∑
x

(
δfs(x)=y − 1

M

)
Tr [ρ(x)Bs,y] is

‖
∑
x

(
δfs(x)=y − 1

M

)
ρ(x)‖1. The constraints on ρ(x) and σ ensure that the state

∑
x ρ(x)⊗

|x〉〈x| has conditional min-entropy at least k.

4 Semidefinite relaxations for randomness extractors

4.1 A relaxation for the extractor condition
Motivated by the fact that the two quantities C(Ext, k) and Q(Ext, k) are generally difficult
to understand, we introduce a SDP that, as we show later, provides a relaxation for both of
these quantities. For Ext = {fs}s∈D and fixed k, we define:
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SDP relaxation for error of Ext = {fs}

SDP(Ext, k) := maximize 1
D

∑
s,y,x

(
δfs(x)=y −

1
M

)
~ax ·~bs,y (22)

subject to 0 ≤ ~ax · ~ax′ ≤ 2−k · q(x) (23)
q(x) ≤ 2−k (24)∑
x

q(x) = 1 (25)∑
x,x′

~ax · ~ax′ ≤ 1 (26)

‖bs,y‖2 ≤ 1 (27)

We maximize over all possible dimensions of the vectors ~ax and ~bx. Moreover, the Cauchy-
Schwarz inequality implies that the optimal choice for ~bs,y is∑

x

(
δfs(x)=y − 1

M

)
~ax

‖
∑
x

(
δfs(x)=y − 1

M

)
~ax‖2

, (28)

and thus the objective function of the SDP relaxation becomes

1
D

∑
s,y

∥∥∥∥∥∑
x

(
δfs(x)=y −

1
M

)
~ax

∥∥∥∥∥
2

, (29)

subject to the constraints on the vectors ~ax stated in (22). By simply plugging ~ax = p(x),
q(x) = p(x) and ~bs,y = βs,y, we see that this SDP gives an upper bound on the extractor
program (10).

I Proposition 3. For any Ext and k, C(Ext, k) ≤ SDP(Ext, k). In other words, if
SDP(Ext, k) ≤ ε, then Ext is a (k, ε)-extractor.

This gives a computationally efficient criterion for certifying that an extractor is good.
As we show in Section 4.3, this method can certify that many important constructions are
good extractors. However, this technique does in general not give a tight characterization of
extractors and there can be a large gap between the values C(Ext, k) and SDP(Ext, k) as we
will see in Section 4.4.

4.2 A relaxation for the error against quantum adversaries
A very interesting property about the SDP (22) is that it also gives an upper bound on
the error of an extractor against quantum adversaries. This means that if an extractor
satisfies the stronger property SDP(Ext, k) ≤ ε then it is not only a (k, ε)-extractor but also
a quantum proof (k,

√
2ε)-extractor.

I Theorem 4. For any Ext and k, we have

C(Ext, k) ≤ Q(Ext, k) ≤
√

2 · SDP(Ext, k) . (30)

Proof. Let ρ =
∑
x ρ(x)⊗ |x〉〈x| be a quantum state on QN with Hmin(N |Q)ρ ≥ k. By the

definition of the conditional min-entropy, this implies that there exists σ ∈ S(Q) such that
ρ(x) ≤ 2−kσ for all x ∈ N . We now define the average state ρ̄ =

∑
x ρ(x) and ω = ρ̄+σ

2 , as
well as the vectors ~ax as the list of entries of the matrix 1√

2ω
−1/4ρ(x)ω−1/4. This is so that
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we have ~ax · ~ax′ = 1
2Tr[ω−1/2ρ(x)ω−1/2ρ(x′)]. As the trace of the product of two positive

semidefinite operators is nonnegative, we have ~ax · ~ax′ ≥ 0. Moreover, we have

~ax · ~ax′ = 1
2Tr[ω−1/2ρ(x)ω−1/2ρ(x′)] ≤ 1

2Tr[ω−1/2ρ(x)ω−1/22−kσ] (31)

≤ 1
2 · 2

−kTr[ω−1/2ρ(x)ω−1/22ω] ≤ 2−kTr[ρ(x)] . (32)

We set q(x) = Tr[ρ(x)]. Note that we have q(x) = Tr[ρ(x)] ≤ 2−kTr[σ] = 2−k and∑
x q(x) ≤ 1. We can also write∑
x,x′

~ax · ~ax′ = 1
2Tr[ω−1/2ρ̄ω−1/2ρ̄] ≤ 1

2Tr[ω−1/2ρ̄ω−1/22ω] ≤ 1 . (33)

We now analyze the objective function. We use the following Hölder-type inequality for
operators ‖αβγ‖1 ≤ ‖|α|4‖1/41 ‖|β|2‖

1/2
1 ‖|γ|4‖

1/4
1 , see e.g., [10, Corollary IV.2.6]. The error

the extractor makes on input ρ is given by

1
D

∑
s,y

∥∥∥∥∥∑
x

(
δfs(x)=y −

1
M

)
ρ(x)

∥∥∥∥∥
1

≤ 1
D

∑
s,y

‖ω‖1/41

∥∥∥∥∥∥
(∑

x

(
δfs(x)=y −

1
M

)
ω−1/4ρ(x)ω−1/4

)2
∥∥∥∥∥∥

1/2

1

‖ω‖1/41 (34)

= 1
D

∑
s,y

√√√√√Tr

∑
x,x′

(
δfs(x)=y −

1
M

)(
δfs(x′)=y −

1
M

)
ω−1/2ρ(x)ω−1/2ρ(x′)

 (35)

= 1
D

∑
s,y

√√√√∑
x,x′

(
δfs(x)=y −

1
M

)(
δfs(x′)=y −

1
M

)
2 · ~ax · ~ax′ (36)

=
√

2
D

∑
s,y

∥∥∥∥∥∑
x

(
δfs(x)=y −

1
M

)
~ax

∥∥∥∥∥
2

. (37)

This proves that the error the extractor makes in the presence of quantum adversaries is
upper bounded by

√
2 · SDP(Ext, k). J

4.3 Applications
We now give several applications of the SDP relaxation. We show that many results about
quantum-proof extractors can be shown with the SDP quantity. First, let us consider general
results that do not use the structure of the functions in Ext but simply the extractor’s
parameters. We know the advantage obtained by a quantum adversary compared to a
classical one can by bounded by a function of the number of output bits m or the min-entropy
deficit n− k [6] (for m = 1 this was first shown in [19]). In particular, if m or n− k are small,
then the quantum advantage cannot be large. We show that this is actually a property of
the SDP.

I Theorem 5. For any Ext and k, we have for any ε > 0,

SDP
(
Ext, k + log(1/ε)

)
≤
√

2m
√

C(Ext, k) + ε (38)
SDP(Ext, k) ≤ 3KG2n−kC(Ext, k − 1) , (39)

where KG ≤ 1.8 is Grothendieck’s constant.
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Proof. As Ext is usually clear from the context, we use C(k) and SDP(k) for C(Ext, k)
and SDP(Ext, k). To prove (38), we consider an optimal solution for SDP(k + log(1/ε)).
Define p(x, x′) = ~ax · ~ax′ , with p̄(x) =

∑
x′ p(x, x′). Now consider the set Sε = {x ∈ N :

p̄(x) ≤ εq(x)}. Then
∑
x∈Sε p̄(x) ≤ ε

∑
x∈Sε q(x) ≤ ε. Using the fact that ~ax define a feasible

solution for SDP(k + log(1/ε)), we have for x /∈ Sε, p(x, x′) ≤ 2−(k+log(1/ε))q(x) ≤ 2−kp̄(x).
We can then write using the Cauchy Schwarz inequality,

1
D

∑
s,y

∥∥∥∥∥∑
x

(
δfs(x)=y − 2−m

)
~ax

∥∥∥∥∥
2

≤

√√√√ 1
D

∑
s,y

∥∥∥∥∥∑
x

(
δfs(x)=y − 2−m

)
~ax

∥∥∥∥∥
2

2

√
2m . (40)

We now look at the expression 1
D

∑
s,y

∥∥∑
x

(
δfs(x)=y − 2−m

)
~ax
∥∥2

2 which equals

1
D

∑
s,y

∑
x,x′

(
δfs(x)=y − 2−m

)
·
(
δfs(x′)=y − 2−m

)
p(x, x′) (41)

≤ 1
D

∑
s,y

∑
x

∣∣∣∣∣∑
x′

(
δfs(x)=y − 2−m

)
·
(
δfs(x′)=y − 2−m

)
p(x, x′)

∣∣∣∣∣ (42)

≤ 1
D

∑
s,y

∑
x

∣∣∣∣∣∑
x′

(
δfs(x′)=y − 2−m

)
p(x, x′)

∣∣∣∣∣ . (43)

We separate the sum into x ∈ Sε and x /∈ Sε and get

1
D

∑
s,y

∑
x

∣∣∣∣∣∑
x′

(
δfs(x′)=y − 2−m

)
p(x, x′)

∣∣∣∣∣ (44)

= 1
D

∑
s,y

∑
x

p̄(x)

∣∣∣∣∣∑
x′

(
δfs(x′)=y − 2−m

) p(x, x′)
p̄(x)

∣∣∣∣∣ (45)

=
∑
x∈Sε

p̄(x) 1
D

∑
s,y

∣∣∣∣∣∑
x′

(
δfs(x′)=y − 2−m

) p(x, x′)
p̄(x)

∣∣∣∣∣ (46)

+
∑
x/∈Sε

p̄(x) 1
D

∑
s,y

∣∣∣∣∣∑
x′

(
δfs(x′)=y − 2−m

) p(x, x′)
p̄(x)

∣∣∣∣∣ ≤ ε+ C(k) , (47)

which proves (38).
We now prove the inequality (39). For that, we simply upper bound SDP(Ext, k) by

forgetting several constraints and then apply Grothendieck’s inequality (Theorem 9). Observe
first that for any feasible vectors ~ax for the SDP, we have ‖~ax‖22 ≤ 2−kq(x) ≤ 2−2k.

SDP(Ext, k) ≤ max
{

1
D

∑
s,y,x

(
δfs(x)=y − 2−m

)
~ax ·~bs,y : ‖~ax‖2 ≤ 2−k, ‖~bs,y‖2 ≤ 1

}
(48)

≤ KG max
{

1
D

∑
s,y,x

(
δfs(x)=y − 2−m

)
axbs,y : |ax| ≤ 2−k, |bs,y| ≤ 1

}
(49)

= KG max
{

1
D

∑
s,y

∣∣∣∣∣∑
x

(
δfs(x)=y − 2−m

)
ax

∣∣∣∣∣ : |ax| ≤ 2−k
}

. (50)
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We partition the set of x ∈ N into {x : ax ≥ 0} and {x : ax < 0} and write∣∣∣∣∣∑
x

(
δfs(x)=y − 2−m

)
ax

∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

x:ax≥0

(
δfs(x)=y − 2−m

)
ax

∣∣∣∣∣∣ (51)

+

∣∣∣∣∣ ∑
x:ax<0

(
δfs(x)=y − 2−m

)
(−ax)

∣∣∣∣∣ . (52)

Let us write α+ :=
∑
x:ax≥0 ax. If α+ ≥ 1, then we define p+(x) = max{ax,0}

α+
. Observing

that α+ ≤ 2n−k, we have

1
D

∑
s,y

∣∣∣∣∣∣
∑

x:ax≥0

(
δfs(x)=y − 2−m

)
ax

∣∣∣∣∣∣ = α+ ·
1
D

∑
s,y

∣∣∣∣∣∑
x

(
δfs(x)=y − 2−m

)
p+(x)

∣∣∣∣∣ (53)

≤ α+C(k + log(α+)) ≤ 2n−kC(k) , (54)

where we have used the abbreviation C(k) = C(Ext, k). Otherwise (if α+ < 1), we define
p+(x) = max{ax, 0}+ (1− α+)2−n. We get

1
D

∑
s,y

∣∣∣∣∣∣
∑

x:ax≥0

(
δfs(x)=y − 2−m

)
ax

∣∣∣∣∣∣ (55)

= 1
D

∑
s,y

∣∣∣∣∣∑
x

(
δfs(x)=y − 2−m

)
(p+(x)− (1− α+)2−n)

∣∣∣∣∣ (56)

≤ 1
D

∑
s,y

∣∣∣∣∣∑
x

(
δfs(x)=y − 2−m

)
p+(x)

∣∣∣∣∣+ (1− α+) 1
D

∑
s,y

∣∣∣∣∣∑
x

(
δfs(x)=y −

1
M

)
2−n

∣∣∣∣∣ (57)

≤ C(k − 1) + (1− α+)C(n) . (58)

With a similar argument for the set {x : ax < 0}, we reach the bound

1
D

∑
s,y

∣∣∣∣∣∑
x

(
δfs(x)=y − 2−m

)
ax

∣∣∣∣∣ (59)

≤ max{2 · 2n−kC(k),C(k − 1) + C(n) (60)
+ 2n−kC(k), 2C(k − 1) + (1− α+ − α−)C(n)} ≤ 3 · 2n−kC(k − 1) . (61)

Finally, we get SDP(k) ≤ 3KG2n−kC(k − 1). J

Some specific constructions are also known to be quantum-proof, in particular construc-
tions based on two-universal hash functions [26, 27, 32]. This type of construction is captured
by spectral extractors [8]. For an extractor Ext = {fs}s∈D we define the linear maps [Ext]
and τ that map vectors of dimension N to vectors of dimension DM as follows:

[Ext]
(∑

x

p(x)|x〉〈x|N

)
= 1
D
·
∑
s,y

∑
x

δfs(x)=yp(x)|y〉〈y|M ⊗ |s〉〈s|D (62)

τ

(∑
x

p(x)|x〉〈x|N

)
=
(∑

x

p(x)
)
vM ⊗ vD . (63)
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Note that we used a quantum notation and identified vectors with diagonal matrices. A
spectral (k, ε)-extractor is then defined via the largest eigenvalue bound

λ1

(
[Ext]∗ · [Ext]− τ∗ · τ

)
≤ 2k−m−dε , (64)

where ∗ refers to the adjoint of a linear map. We prove next that for spectral extractor, there
can be at most a quadratic gap between C(Ext, k) and SDP(Ext, k).

I Theorem 6. Let Extspec = {fs}s∈D be a spectral (k, ε)-extractor as defined in (64). Then,
we have

SDP(Extspec, k) ≤
√
ε . (65)

The proof can be found in Appendix B. Another class of extractors that are quantum-
proof are Trevisan based constructions [14, 2]. These are particularly important to un-
derstand because they are the only known quantum-proof constructions with short seed
d = O(poly(logn)) (cf. the optimal parameters (3)). Trevisan’s construction can be thought
of as a composition of one-bit output extractors cleverly interleaved by slightly reusing the
seed. Specifically, the construction is based on a family of subsets S1, . . . , Sm ⊂ {1, . . . , d}
such that for each i we have

|Si| = l and
∑
j<i

2|Si∩Sj | ≤ r(m− 1) , (66)

for some r > 0. Such a family {Si}i∈{1,...,m} is also called weak (l, r)-design. Now, take a
one-bit output extractor Extone = {gt}t∈{0,1}l with gt : N → {0, 1}, and a weak (l, r)-design
as defined in (66). Trevisan then defines a m-bit output extractor

ExtTrev = {fs}s∈D with fs : N →M (67)
fs(x) := gs|S1(x) ◦ gs|S1(x) ◦ · · · ◦ gs|Sm(x) , (68)

where s|Si denotes the l-bits of s that correspond to the position indexed by the set Si, and
◦ means concatenation.6 The basic idea of the proof is to bound the quality of ExtTrev as
a function of the quality of Extone. Then (using Theorem 5) one can relate the quality of
Extone against quantum adversaries to its quality against classical adversaries. We give (in
the Appendix) a concise proof of this result using our notation in terms of the quantum
program (17).

I Theorem 7. Let {Si}i∈{1,...,m} be a weak (l, r)-design as defined in (66), and Extone =
{gt}t∈{0,1}l be a one-bit output extractor. Then, we have for Trevisan’s extractor ExtTrev =
{fs}s∈D as defined in (67)–(68),

Q(ExtTrev, k) ≤ m ·Q(Extone, k − r(m− 1)) (69)

≤ 2m ·
√

C(Extone, k − r(m− 1)− log(1/ε)) + ε , (70)

for any ε > 0.

6 Actual parameters for Trevisan based extractor constructions are, e.g, discussed in detail in [14,
Section 5].
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4.4 Gap between C and SDP
In this section, we show that there can be a large gap between the value C and SDP. In
fact, we show that SDP cannot be used to prove that randomly chosen functions are good
randomness extractors. As discussed in (3), random functions are good extractors with
essentially optimal parameters. In other words, for a family of functions Extrand = {fs}s∈D
chosen at random, we have with very high probability that

C(Extrand, k) ≤ ε for m = k − 2 log(1/ε)−O(1) (71)
d = log(n− k) + 2 log(1/ε) +O(1) . (72)

In contrast to this, we find that the SDP relaxation for random constructions can become
very large for sufficiently small min-entropy k.

I Theorem 8. Let Ext = {fs}s∈D be a family of functions such that

γ1
DN2

M
≤
∑
x,x′,s

δfs(x)=fs(x′) ≤ γ2
DN2

M
, (73)

and k ≤ log
(
γ1

N
M

)
. Then, we have

SDP(Ext, k) ≥ 1
2

√
M

γ2D
. (74)

When the functions fs are chosen at random, then the condition (73) is satisfied with
very high probability for constant values of γ1 and γ2 (see Proposition 11 for a proof). Hence,
we find that for instance if k = n/2, m = n/4 and d = O(logn), with high probability
SDP(Extrand, k) � 2, whereas we have with very high probability C(Extrand, k) ≤ 1

n . As
clearly Q(Ext, k) ≤ 2, this also shows that Q can be much smaller than SDP.

Moreover we can show that for Trevisan’s extractor, we cannot replace Q(ExtTrev) with
SDP(ExtTrev, k) in general in Theorem 7. This is because if the one-bit extractors {gt} in
Trevisan’s construction are chosen at random, then it is possible to show that the condition
(73) is satisfied with high probability for constant values of γ1 and γ2 (see Proposition 11 for
a proof).

Proof of Theorem 8. Use ~ax = α−1/2 ·
∑
s,y δfs(x)=y|s〉|y〉, α =

∑
x,x′

∑
s,y δfs(x)=yδfs(x′)=y.

By definition the normalization condition
∑
x,x′ ~ax · ~ax′ ≤ 1 is satisfied. Moreover, for any

fixed x, x′, we have

~ax · ~ax′ = 1
α

∑
s,y

δfs(x)=yδfs(x′)=y ≤
D

α
≤ 1
γ1

M

N2 ≤
1
γ1

M

N
q(x) , (75)

where we used the lower bound on γ1 and we choose q(x) = 1/N . Now if k ≤ log
(
γ1

N
M

)
, the

min-entropy condition for the vectors is satisfied. Now let us analyze the objective function
by choosing ~bs,y = |s〉|y〉. We find

1
D

∑
s,y

∑
x

(
δfs(x)=y −

1
M

)
~ax ·~bs,y = 1

D

∑
s,y

∑
x

(
δfs(x)=y −

1
M

)
α−1/2δfs(x)=y (76)

= 1
Dα1/2

∑
s,x

(
1− 1

M

)
= N

α1/2

(
1− 1

M

)
≥ 1

2

√
M

γ2D
, (77)

which proves the claim. J
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5 Discussion

Theorem 8 shows limitations of the SDP relaxation presented here. In fact, even though
the error of the extractor C(Ext, k) and Q(Ext, k) are clearly bounded by 2, the value
SDP(Ext, k) can be much larger. In [7], we present an improved SDP relaxation that has
the property of always being bounded by 2. In addition, we propose a converging hierarchy
of SDPs that gives increasingly tight characterizations of quantum-proof extractors.
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A Useful Lemmas

I Theorem 9 (Grothendieck’s inequality). For any real matrix {Aij}, we have

max

∑
i,j

Aij~ai ·~bj : ‖~ai‖2 ≤ 1, ‖~bj‖2 ≤ 1

 (78)

≤ KG ·max

∑
i,j

Aijaibj : ai, bj ∈ R, |ai| ≤ 1, |bj | ≤ 1

 . (79)

I Theorem 10 (Chernoff bound). Let Xi ∈ {0, 1} be independent and identically distributed
random variables, and µ := E {

∑
iXi}. Then, we have

P
{∑

i

Xi ≥ (1 + δ)µ
}
≤
(

eδ

(1 + δ)(1+δ)

)µ
for any δ > 0 (80)

P
{∑

i

Xi ≤ (1− δ)µ
}
≤
(

e−δ

(1− δ)(1−δ)

)µ
for any 0 < δ < 1 . (81)

B Missing Proofs

Proof of Theorem 6. We start with the expression 1
D

∑
s,y ‖

∑
x

(
δfs(x)=y − 1

M

)
~ax‖2 for

the SDP, where the vectors ~ax fulfill the conditions stated in (22). Using Cauchy-Schwarz,
we may bound

1
D

∑
s,y

∥∥∥∥∥∑
x

(
δfs(x)=y −

1
M

)
~ax

∥∥∥∥∥
2

≤

 1
D

∑
s,y

∥∥∥∥∥∑
x

(
δfs(x)=y −

1
M

)
~ax

∥∥∥∥∥
2

2

1/2

2m/2 .

(82)

We now take a closer look at the expression in the brackets. Expanding the norm squared
gives rise to the expression

1
D

∑
s,y

(∑
x

(
δfs(x)=y −

1
M

)
~ax

)
·

(∑
x′

(
δfs(x′)=y −

1
M

)
~ax′

)
(83)

= 1
D

∑
s,y

(∑
x

δfs(x)=y~ax

)
·

(∑
x′

δfs(x′)=y~ax′

)

− 1
D

∑
s,y

1
M

∑
x,x′

δfs(x)=y~ax · ~ax′

− 1
D

∑
s,y

1
M

∑
x,x′

δfs(x′)=y~ax · ~ax′

+ 1
D

1
M2

∑
s,y

∑
x,x′

~ax · ~ax′ . (84)

Let us examine the cross terms:
1
D

∑
s,y

1
M

∑
x,x′

δfs(x)=y~ax · ~ax′ = 1
D

∑
s

1
M

∑
x,x′

~ax · ~ax′ , (85)
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since for each fixed pair s, x ∈ D ×N there is exactly one y ∈M such that fs(x) = y. The
second cross term evaluates analogously to the same value, which is also equal to the fourth
term in the expansion of the norm, and hence we are left with

1
D

∑
s,y

(∑
x

δfs(x)=y~ax

)
·

(∑
x′

δfs(x′)=y~ax′

)
− 1
D

∑
s,y

1
M

(∑
x

~ax

)
· 1
M

(∑
x′

~ax′

)
.

(86)

Introducing the maps ψs and τ from `2(N) to `2(M),

ψs : ~ex 7→
∑
y

δfs(x)=y~ey and τ : ~ex 7→
1
M

∑
y

~ey (87)

this may be written as

1
D

∑
s

ψs(~a) · ψs(~a)− τ(~a) · τ(~a) , (88)

where the dot now means taking the scalar product in the Hilbert space `2(M)⊗H and we
set ~a =

∑
x ~ex ⊗ ~ax ∈ `2(N)⊗H. However, this is up to a factor of 1

D exactly the defining
expression of a spectral extractor. Hence we may bound

1
D

∑
s

ψs(~a) · ψs(~a)− τ(~a) · τ(~a) ≤ 2k ε

M
‖~a‖2 . (89)

The last norm evaluates to

‖~a‖2 =
∑
x

~ax · ~ax ≤ 2−k
∑
x

q(x) = 2−k , (90)

and comparison with (82) gives the desired bound. J

Proof of Theorem 7. Consider a feasible solution of (17) given by ρ(x), σ, Bs,y all acting
on a Hilbert space Q. The objective function can be written as

1
2d
∑
s,y,x

(
δfs(x)=y − 2−m

)
Tr[ρ(x)Bs,y]

= 1
2d
∑
s,x

∑
y∈{0,1}

(
m−1∑
t=0

1
2m−t−1

t+1∏
k=1

δfs(x)k=yk −
1

2m−t
t∏

k=1
δfs(x)k=yk

)
Tr[ρ(x)Bs,y] (91)

=
m−1∑
t=0

1
2d
∑
s,x

∑
y1,y2,...yt+1

t∏
k=1

δfs(x)k=yk

(
δfs(x)t+1=yt+1 −

1
2

)
Tr[ρ(x)Cs,y1,y2,...,yt+1 ] ,

(92)

where we defined

Cs,y1,...,yt,yt+1 := 1
2m−t−1

∑
yt+2,...,ym∈{0,1}

Bs,yt+2,...,ym . (93)

We now start using the particular structure of the extractor in (68). From now, we fix the
value of t and the dependence on t of many variables are omitted to lighten the notation.
The seed s can be specified by a = s|St+1 ∈ {0, 1}l and b = s|Sct+1 ∈ {0, 1}d−l where Sct+1 is
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the complement on St+1 in the set {1, . . . , d}. We will thus interchangeably use s and (a, b).
Using this notation with the structure of fs, we obtain

1
2d
∑
s,y,x

(
δfs(x)=y − 2−m

)
Tr[ρ(x)Bs,y]

=
m−1∑
t=0

1
2d

∑
x

a∈{0,1}l

b∈{0,1}d−l

∑
y1,y2,...yt+1

δhx,b(a)=y1...yt

(
δga(x)=yt+1 −

1
2

)
Tr[ρ(x)Ca,b,y1,y2,...,yt+1 ]

(94)

=
m−1∑
t=0

1
2l

∑
x

a∈{0,1}l

∑
z∈{0,1}

(
δga(x)=z −

1
2

)
1

2d−l
∑

b∈{0,1}d−l
Tr[ρ(x)Ca,b,hx,b(a),z] (95)

where hx,b(a) represents the first t bits of fs(x). Note that for a fixed x and b, the outcome
of this function only depends on the bits of s that belong to one of the sets S1, . . . , St. In
particular, the first bit of hx,b only depends on the substring of a corresponding to indices
in S1 ∩ St+1. Thus, for any x, b, the function hx,b belongs to the family Ft of functions
h : {0, 1}l → {0, 1}t for which the j-th bit hj of h is a function hj : {0, 1}Sj∩St+1 → {0, 1}.
Thus, for any x, b only

∑t
j=1 2|Sj∩St+1| ≤ r(m − 1) bits are sufficient to fully describe the

function hx,b. As a result, |Ft| ≤ 2r(m−1).
Let us define new positive operators on a larger Q⊗H ⊗G system as

ρ̂(x) := 1
2d−l

∑
b∈{0,1}d−l
h∈Ft

ρ(x)⊗ δh=hx,b |h〉〈h|H ⊗ |b〉〈b|G (96)

σ̂ := 1
|Ft|2d−l

∑
b∈{0,1}d−l
h∈Ft

σ ⊗ |h〉〈h|H ⊗ |b〉〈b|G (97)

Ĉa,z :=
∑
b,h∈Ft

Ca,b,h(a),z ⊗ |h〉〈h| ⊗ |b〉〈b| . (98)

Note that σ̂ as well as
∑
x ρ̂(x) have unit trace and ‖Ĉa,z‖∞ ≤ 1. In addition,

ρ̂x ≤
1

2d−l
∑

b∈{0,1}d−l
h∈Ft

ρ(x)⊗ |h〉〈h|H ⊗ |b〉〈b|G ≤ |Ft|2−kσ̂ ≤ 2−k+r(m−1)σ̂ , (99)

where we used the fact that ρ(x) ≤ 2−kσ. This shows that the newly defined operators
ρ̂(x), σ̂, Ĉa,z satisfy the constraints of (17) for the extractor Extone with min-entropy k −
r(m− 1). Looking at the value of the objective function for this solution, we obtain

1
2l
∑
a,z,x

(
δga(x)=z −

1
2

)
Tr[ρ̂(x)Ĉa,z] = 1

2l
∑
a,z,x

(
δga(x)=z −

1
2

)
Tr[ρ̂(x)Ĉa,z] (100)

= 1
2l
∑
a,z,x

(
δga(x)=z −

1
2

)
1

2d−l
∑
b

Tr[ρ(x)Ca,h(a),z] ,

(101)

which is exactly the t-th term in the sum in (95). To relate Q(Extone, k − r(m − 1)) to
C(Extone, k − r(m− 1)− log(1/ε)) + ε, we use Theorem 4 and Theorem 5. J
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I Proposition 11. Suppose the functions fs : N →M from the family {fs}s∈D are chosen
at random with fs(x) and fs′(x′) uniformly distributed and independent whenever x 6= x′.
Then, we have for N ≥ 16 that

P


∣∣∣∣∣∣
∑
x,x′,s

δfs(x)=fs(x′) −
(
DN + DN(N − 1)

M

)∣∣∣∣∣∣ ≥ 1
2
DN(N − 1)

M

 ≤ 1
16 . (102)

This of course includes the case when the functions fs are chosen uniformly and independ-
ently, but also the case of Trevisan’s construction where the one-bit extractor is a randomly
chosen function.

Proof of Proposition 11. We start by separating the cases x = x′ and x 6= x′,∑
x,x′,s

δfs(x)=fs(x′) = DN +
∑
s,x6=x′

δfs(x)=fs(x′) . (103)

We compute the expectation over the choice of f :

E
f

 ∑
s,x6=x′

δfs(x)=fs(x′)

 = DN(N − 1) 1
M

, (104)

simply using the fact then for x 6= x′, fs(x) and fs(x′) are independently chosen. We now
would like to show that with high probability this random variable is close to its expectation.
For that we compute the second moment

E
g


 ∑
s,x6=x′

δfs(x)=fs(x′)

2
 (105)

=
∑

s1,s2,x1 6=x2,x′1 6=x′2

P {fs1(x1) = fs1(x′1), fs2(x2) = fs2(x′2)} (106)

=
∑

s1,s2,x1 6=x2,x′1 6=x′2,{x1,x′1}6={x2,x′2}

P {fs1(x1) = fs1(x′1), fs2(x2) = fs2(x′2)} (107)

+
∑

s1,s2,x1 6=x2,x′1 6=x′2,{x1,x′1}={x2,x′2}

P {fs1(x1) = fs1(x′1), fs1(x2) = fs1(x′2)} (108)

≤ D2N(N − 1)(N(N − 1)− 2) 1
M2 (109)

+ 2
∑

s1,s2,x1 6=x2

P {fs1(x1) = fs1(x′1)} (110)

= D2N(N − 1)(N(N − 1)− 2) 1
M2 + 2D2N(N − 1) 1

M
. (111)

As a result the variance is at most

Var

 ∑
s,x6=x′

δfs(x)=fs(x′)

 (112)

≤ D2N(N − 1)(N(N − 1)− 2) 1
M2 + 2D2N(N − 1) 1

M
−
(
DN(N − 1) 1

M

)2
(113)

≤ 2D2N(N − 1) 1
M

. (114)
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Using Chebyshev’s inequality gives with a standard deviation σ ≤
√

2D
√
N(N − 1)/M we

have

P


∣∣∣∣∣∣
∑
s,x6=x′

δfs(x)=fs(x′) −
DN(N − 1)

M

∣∣∣∣∣∣ ≥ 4σ

 ≤ 1
16 . (115)

But 4σ ≤ 4
√

2D
√
N(N − 1)/M ≤ 1

2
DN(N−1)

M for N ≥ 16. J
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Abstract
We propose an information theoretically secure secret-key quantum money scheme in which the
verification of a coin is classical and consists of only one round; namely, a classical query from
the user to the bank and an accept/reject answer from the bank to the user. A coin can be
verified polynomially (on the number of its qubits) many times before it expires. Our scheme is
an improvement on Gavinsky’s scheme [5], where three rounds of interaction are needed and is
based on the notion of quantum retrieval games.

Moreover, we propose a public-key quantum money scheme which uses one-time memories as
a building block and is computationally secure in the random oracle model. This construction is
derived naturally from our secret-key scheme using the fact that one-time memories are a special
case of quantum retrieval games.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Quantum Money, Quantum Cryptography, Quantum Retrieval Games

Digital Object Identifier 10.4230/LIPIcs.TQC.2015.92

1 Introduction

Wiesner [15] in the early ’80s proposed the idea of creating money whose unforgeability
is guaranteed by the laws of quantum mechanics. Quantum states seemed an ideal way
to encode money, since the no-cloning theorem of quantum states could possibly lead to a
no-cloning theorem of money.

Informally, a quantum money scheme consists of two main processes; a process Bank that
creates valid coins and a process Ver that verifies whether a coin is valid. The use of such
a scheme is straightforward; the authorized bank will produce valid money by running the
process Bank and the users will be able to pay each other and verify that a coin $ is valid by
running the process Ver($).

In Wiesner’s construction a coin consists of several BB84 states (that form a big state
ρ) together with a classical identification string s. The verification of the coin (ρ, s) is a
simple one round protocol in which the user of a coin sends the full coin to the bank and
the bank replies with a yes/no answer. The answer of the bank depends on its secret key
(which corresponds to s) as well as the outcomes it gets by applying a measurement on the
computational or Hadamard basis to ρ. These kinds of schemes are known as (secret-key)
quantum money with quantum verification since the user has to communicate quantumly
with the bank.

Until recently, the question of whether there exist quantum money schemes where the
verification protocol consists only of classical communication was open. Gavinsky [5] answered

© Marios Georgiou and Iordanis Kerenidis;
licensed under Creative Commons License CC-BY

10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015).
Editors: Salman Beigi and Robert König; pp. 92–110

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TQC.2015.92
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


M. Georgiou and I. Kerenidis 93

this question in the affirmative by creating the first secret-key quantum money scheme with
classical verification. His scheme makes use of a new quantum cryptographic idea, that of
quantum retrieval games (QRGs) and its security is information theoretic. However, a clear
drawback in contrast to Wiesner’s scheme is that the verification of a coin consists of three
rounds of interaction between the user and the bank, thus forcing the bank to maintain
a temporary memory for each verification session. In 2013 Molina et al. [11] proposed a
new quantum money scheme with classical verification. In this scheme two rounds (four
messages) are needed for the verification of a coin. Moreover, a drawback of the scheme is
that it requires the bank to be stateful and keep track of which coin belongs to which user.

In 2012, Aaronson and Christiano [1] proposed the idea of public-key quantum money
where no communication with the bank is needed in order to verify the coin. In such a scheme,
although information theoretic security is impossible, computationally secure schemes may
still exist. Classically, it is impossible to create public key money schemes since, in that
case, a coin would consist only of a bitstring and, therefore, the copy of a coin would be
trivial. Public-key quantum money are essentially the optimal kind of money we could hope
for since they can be used as ordinary cash. Although some schemes have been proposed
as candidates for public-key quantum money [1, 4], all of them are based on non-standard
computational hardness conjectures. Moreover, recently one of the two schemes proposed
in [1] was cryptanalyzed by Pena et al. [14].

Our contributions are twofold. First, we give the first information theoretically secure
quantum money scheme that requires only classical communication with the bank, tolerates
errors and the verification consists of a single round, a query to the bank and an answer.
The important contribution of this scheme compared to that of Gavinsky [5] is that in the
latter, the verification requires a three-round interaction with the bank and, therefore, the
bank has to maintain a temporary session memory. Moreover, we have made the proof more
modular and conceptually simpler by introducing a new cryptographic primitive as tool for
the security analysis.

Second, we create a public-key quantum money scheme from one-time memories in the
random oracle model. Considering hash functions as random oracles is a common tool for
the security proofs of cryptographic schemes which is invoked when standard properties of
hash functions (such as collision resistance) are not enough. Briefly, a hash function behaves
as a random oracle if on each query it returns a uniformly random element in its range, being
in the same time consistent with the previous queries; e.i. on the same query it returns the
same answer.

One-time memories are a very natural special case of quantum retrieval games and,
thus, our public-key construction is a simple modification of our secret-key scheme. In our
construction we also make use of the notion of a quantum money mini-scheme proposed by
Aaronson and Christiano [1] (see subsection 2.2). A clear advantage of this scheme compared
to other works in the literature [3, 7, 12] is the direct application of one-time memories to
quantum money without going through one-time programs and this makes our scheme more
efficient. In both our schemes the number of allowed verifications is polynomial on the size
of the coins. Our contributions, compared to previous work are summarized in Table 1.

The paper is structured as follows; in section 2 we give the definitions of secret-key and
public-key quantum money as well as the corresponding secret-key and public-key mini-
schemes. In section 3 we give the necessary tools for the security analysis of our schemes.
Last, in sections 4 and 5 we present our secret-key and public-key constructions respectively.
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94 New Constructions for Quantum Money

Table 1 Comparison between different quantum money schemes. The “Verif.” column indicates
whether the interaction of the verification protocol is Quantum or Classical, the “#Ver.” column
indicates the number of verifications allowed before the coin expires, where n is the number of qubits
of the coin and the “Rounds” column indicates the number of rounds of interaction needed in order
to verify a coin.

Scheme Key Verif. Security #Ver. Rounds

[15] Secret Quantum cryptanalyzed [13, 11] exp(n) 1
[5] Secret Classical Information theoretic poly(n) 3
[11] Secret Classical Information theoretic poly(n) 2
Ours Secret Classical Information theoretic poly(n) 1

[1] (noise-free) Public – cryptanalyzed [14] exp(n) –
[1] (noisy) Public – conj. on polynomials exp(n) –

[4] Public – conj. on knots exp(n) –
Ours Public – security of OTM poly(n) –

2 Quantum Money Definitions

In this section we give the definitions for quantum money. We first define secret-key quantum
money schemes where there is a verification protocol run between a user and the bank in
order to verify a coin. We give a definition of secret-key quantum money mini-schemes, and
claim that there is a direct way to go from a mini-scheme to a full scheme [5], similar to the
public-key case [1]. Then, we give the definition proposed by Aaronson and Christiano [1] of
a public-key quantum money scheme as well as the mini-scheme and we state their standard
construction theorem that makes a full public-money scheme out of a mini-scheme using
signatures.

2.1 Secret-key Quantum Money

Informally, a secret-key quantum money scheme consists of an algorithm that is used by the
bank in order to create valid coins, and a protocol that is run between a holder of a coin and
the bank in order for the holder to verify that the coin is valid. The security requirement
states that it is impossible for an algorithm to create more coins than what it had in the
beginning.

I Definition 1 (Secret-key Quantum Money). A quantum money scheme with classical
verification consists of an algorithm Bank and a verification protocol Ver such that
1. Bank(1n) = $ = (ρ, sn) is the algorithm that creates a quantum coin $ where ρ is a

quantum state and sn is a classical serial number.
2. Ver is a protocol with classical communication, run for a coin $, between a holder H of a

number of coins and the bank B. The final message of this protocol is a bit b sent by the
bank, that corresponds to whether the coin is valid or not. Denote by VerBH($) this final
bit.

Correctness: The scheme is correct if for every honest holder H, Pr[VerBH(Bank(1n)) =
1] = 1− negl(n).
Security: The scheme is secure if for any quantum adversary F who possesses q coins,
interacts at most t times with the bank and finally produces q′ coins $1, · · · , $q′ it holds
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that

Pr

 ∧
i∈[q′]

VerBH($i) = 1

 ∧ (q′ > q)

 ≤ poly(t) · negl(n)

where H is any honest holder.
In general, the security parameter n corresponds to the number of qubits a valid coin consists
of. Note that, although the adversary F may deviate from the verification protocol in an
attempt to create more coins, these coins will be checked for validity by an honest holder
who will correctly follow the protocol. Note that the previous definition gives information
theoretic security; the adversary F is not restricted to be computationally efficient.

As studied by Aaronson and by Gavinsky, it is enough to prove the security of a smaller
scheme (mini-scheme) in order to guarantee security of the full scheme. In the mini-scheme,
the adversary F possesses only one coin $ and interacts t times with the bank in order to
create two coins. Therefore, the security game of the mini-scheme is as before, but the
adversary is allowed to run Ver only for its unique coin $. In this case where the verification
includes interaction with the bank, note that the coin does not need to have a classical serial
number.

I Definition 2 (Secret-key Quantum Money Mini-Scheme). A quantum money mini-scheme
with classical verification consists of an algorithm Bank and a verification protocol Ver such
that
1. Bank(1n) = $ = ρ is the algorithm that creates a quantum coin $ where ρ is a quantum

state.
2. Ver is a classical protocol, run between a holder H of $ and the bank B. The final

message of this protocol is a bit b ∈ {0, 1} sent by the bank, that corresponds to whether
the coin is valid or not. Denote by VerBH($) this final bit.

Correctness: The scheme is correct if for every honest holder H, Pr[VerBH(Bank(1n)) =
1] = 1− negl(n).
Security: The scheme is secure if for any quantum adversary F who interacts at most t
times with the bank and finally produces two coins $1, $2 it holds that

Pr
[(

VerBH($1) = 1 ∧VerBH($2) = 1
)]
≤ poly(t) · negl(n)

where H is any honest holder.
In order to go from a secret-key quantum money mini-scheme to a full scheme, it is enough
for the bank to add a serial number to a coin of the mini-scheme. Then, consulting that
serial number the bank can run the verification protocol of the mini-scheme for that coin.

I Lemma 3 (Mini-scheme to full scheme [5]). There exists a secure secret-key quantum money
full scheme with classical verification if and only if there exists a secure secret-key quantum
money mini-scheme with classical verification.

2.2 Public-key Quantum Money
We now give the definition of a public-key quantum money scheme [1]. In this case we have
three algorithms; one that creates a public key and a secret key, one that uses the secret key
to create coins, and one that uses the public key to verify that a coin is valid.

I Definition 4 (Quantum Money [1]). A public-key quantum money scheme M consists of
three algorithms:
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96 New Constructions for Quantum Money

1. KeyGen(1n) = (sk,pk) that returns a secret key sk and a public key pk.
2. Bank(sk) = $ a randomized algorithm that takes as input the secret key and returns a

coin $.
3. Ver(pk, $) = 0/1 that takes as input the public key pk, and a potential coin $ and either

accepts or rejects.

Correctness: M is correct if for a pair (sk,pk) that is output of KeyGen it holds that

Ver(pk,Bank(sk)) = 1− negl(n)

Security: M is secure if for any polynomial time quantum adversary F that takes as input
the public key pk and q valid coins $1, · · · , $q and outputs q′ potential coins $′1, · · · , $′q′
it holds that

Pr

 ∧
i∈[q′]

Ver(pk, $′i) = 1

 ∧ (q′ > q)

 = negl(n)

Here, n is the security parameter of the scheme and corresponds to the number of bits of sk
as well as the number of qubits of each coin.

Now, as before, we give the notion of public key mini-schemes. A mini-scheme consists
only of an algorithm that creates a coin and an algorithm that verifies a coin. Here the
coin is of the form (s, ρ) where s is a classical string and ρ is a quantum state. Although
anyone can create a coin that passes the verification test (the creation algorithm is public),
the security property states that no algorithm that takes a coin with serial number s can
create an extra valid coin with the same serial s.

I Definition 5 (Quantum Money mini-scheme [1]). A public-key quantum money mini-scheme
M consists of two algorithms:
1. Bank(1n) = $ = (s, ρ) a randomized algorithm that returns a coin $, where s is a classical

serial number and ρ is a quantum state.
2. Ver($) = 0/1 that takes as input a potential coin $ and either accepts or rejects.

Correctness: M is correct if it holds that Ver(Bank(1n)) = 1
Security: M is secure if for any polynomial time quantum adversary F that takes as
input a coin (s, ρ) and outputs two quantum states ρ1, ρ2 it holds that

Pr [(Ver(s, ρ1) = 1 ∧Ver(s, ρ2) = 1)] = negl(n)

Here, n corresponds to the number of qubits of ρ.
The tool that Aaronson and Christiano use in order to go from a public money mini-scheme

to a full scheme is digital signatures that are secure against quantum adversaries.

I Definition 6. A signature scheme S consists of three algorithms:
1. KeyGen(1n) = (sk,pk) that returns a secret key sk and a public key pk.
2. Sign(sk,m) = s that takes as input a secret key and a message m and returns its signature

s.
3. Ver(pk,m, s) = 0/1 that takes as input the public key pk, a message m and a potential

signature s and either accepts or rejects.

Correctness: S is correct if for a pair (sk,pk) that is output of KeyGen it holds that

Ver(pk,m,Sign(sk,m)) = 1
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Security: The security of S is defined by the following game between a Challenger C
and an adversary F . C runs KeyGen(1n) and creates a pair (sk,pk) and gives pk to
F . F picks messages m1, · · · ,mq of its choice and gives them to C. C using sk signs
these messages and replies with their signatures s1, · · · , sq. Finally, F outputs a message-
signature pair (m∗, s∗) and wins if this pair is different from all other pairs (mi, si) for
all i ∈ [q] and if Ver(pk,m∗, s∗) = 1. S is existentially unforgeable under non-adaptive
chosen message attacks if for every polynomial time quantum adversary F it holds that
Pr[Ver(pk,m∗, s∗) = 1] = negl(n).

Here, n is the security parameter of the scheme and corresponds to the number of bits of sk.

I Theorem 7 (Standard Construction [1]). If there exists a secure public-key quantum money
mini-scheme and if there exists an existentially unforgeable under non-adaptive chosen
message attacks signatures scheme, then there exists a secure public-key quantum money
scheme.

Briefly, in this standard construction, a full coin consists of a coin from the mini-scheme
combined with a signature of its serial number.

In the following, therefore, we focus on constructing a secret-key and a public-key
mini-scheme and these can be extended to full schemes using the previous constructions.

3 Tools for security analysis

In this section we define an important tool towards the construction of quantum money, that
of quantum retrieval games (QRG). From a QRG we go through some intermediate notions
of QRG that are more convenient for our money schemes and prove the equivalence between
them.

3.1 Quantum Retrieval Games
Suppose that we have an encoding function that takes as input a classical string x and gives
as output an encoding ρ̃x, which in the quantum case is a mixed quantum state. Suppose,
furthermore, that x is chosen from some distribution and is described by a random variable
X. How easy is it for an algorithm that takes as input only ρ̃x to answer a question about
x? A good way to formalize this question is via a relation σ. Then, we would like to know
how well an optimal algorithm can find an answer a such that (x, a) ∈ σ. For example, σ
could be the identity ((x, a) ∈ σ if and only if x = a) or a function g ((x, a) ∈ σ if and only
if a = g(x)). In the most general setting σ is a relation and therefore there are several valid
answers. Informally, in a quantum retrieval game, an algorithm takes as input ρ̃x and wants
to find an answer for x. In order to succeed in this, it has to find the best decoding procedure
that, when applied to ρ̃x, will give a valid answer. In the quantum case, the best decoding
procedure corresponds to the best measurement of the state ρ̃x and the probability that this
best measurement will give a valid answer is called the physical value of the game.

Note that if ρ̃x is a mixed quantum state it holds that Tr[ρ̃x] = 1. By defining ρx = Pr[X =
x] · ρ̃x we can integrate the randomness of x into the state ρx. Note that ρx � 0, Tr[ρx] ≤ 1,
Pr[X = x] = Tr[ρx] and Tr[

∑
x ρx] = Tr[

∑
x Pr[X = x] · ρ̃x] =

∑
x Pr[X = x] · Tr[ρ̃x] = 1.

It is common to call the string x a secret that takes values from a set of secrets S, a a
potential answer that takes values from a set of answers A and ρx the quantum state that
is the encoding of x. A decoding procedure is a general measurement on the state ρx with
operators {ma}a∈A, each one corresponding to a possible answer.
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maximize
∑

(x,a)∈σ

〈ma, ρx〉

subject to
∑
a∈A

ma = I

ma � 0 ∀a ∈ A

Figure 1 Physical value.

maximize
∑

(x,a)∈σ〈ma, ρx〉∑
x,a〈ma, ρx〉

subject to
∑
a∈A

ma � I

ma � 0 ∀a ∈ A

Figure 2 Selective value.

I Definition 8 (Quantum Retrieval Games [5]). Let S,A ⊆ N, σ ⊆ S × A and ∀x ∈ S let
ρx � 0 such that Tr[

∑
x∈S ρx] = 1. Then the tuple G = (S,A, {ρx}x∈S , σ) is called a

quantum retrieval game (QRG). The physical value of G is denoted by PVal(G) and is the
maximum probability of correctly decoding a state; i.e. producing an answer a ∈ A such
that (x, a) ∈ σ (where the probability is taken over the randomness of x and the randomness
of the decoding procedure).

The physical value of a game can be expressed as the solution of the semidefinite program
of Figure 1. In several cases we are interested in an upper bound of the physical value of
a game. Towards this, it is convenient to define the selective value of the game SVal(G)
which describes the best decoding probability when the measurements {ma}a∈A satisfy the
property:

∑
a∈Ama � I. In other words, the selective value of the game corresponds to the

solution of the relaxation of the SDP of the physical value (Figure 2) and in general it is not
achievable, yet easier to manipulate. It is clear that the selective value of a game is always
greater or equal to its physical value and, thus, an upper bound of the selective value gives
also an upper bound of the physical value. The following theorem by Pastawski et al. [16]
suggests an easy way to compute the selective value of a game.

I Theorem 9 (Selective Value [16]). Let G = (S,A, {ρx}x∈S , σ) be a QRG and let ρ =∑
x∈S ρx. If ρ is invertible then SVal(G) = maxa ‖Oa‖, where Oa =

∑
x:(x,a)∈σ ρ

−1/2ρxρ
−1/2

and ‖ · ‖ denotes the operator norm.

This equality is useful since it is possible to find the selective value of a game without going
through any specific measurement.

In the case we want to play a big QRG that consists of playing in parallel many small
QRGs, it is useful to know what happens to the physical value of that big game. The
following lemma states that the selective value of such a game is multiplicative and therefore
the probability of winning all the QRGs drops exponentially fast on the number of small
games.

I Lemma 10 (Parallel Repetition [16]). Let G1 = (S1, A1, {ρ1x1}x1∈S1 , σ1) and G2 =
(S2, A2, {ρ2x2}x2∈S2 , σ2) be two QRGs. Let also S = S1×S2, A = A1×A2, ρx1x2 = ρ1x1⊗ρ2x2

and (x1x2, a1a2) ∈ σ if and only if (x1, a1) ∈ σ1 and (x2, a2) ∈ σ2. Then for the game
G = (S,A, {ρx1x2}(x1,x2)∈S , σ) it holds that SVal(G) = SVal(G1) · SVal(G2).

Let M1,M2 be the solutions that optimize the selective value for the games G1, G2
respectively. Then the previous equality states that the optimal solution for the product
game G is just the product of the two solutions. This provides an upper bound on the
physical value of the product game G, which is the product of the selective values of the
games G1, G2. It is clear that by taking the product of n games with constant selective value
ε, we can create a game whose physical value is at most εn.

For the construction of our money scheme, it is useful to define another notion of a
QRG, that of 1-out-of-2 QRG. Here, an algorithm is given as before a state ρx, but now
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two relations σa, σb. The basic property that we expect from such a game is that it should
be impossible for any quantum algorithm (quantum measurement), to answer with high
probability both relations correctly, but it is still possible to answer correctly one of them.

I Definition 11 (1-out-of-2 QRG). For a set of secrets S, set of answers A, and two
relations σa, σb we define: Ga = (S,A, {ρx}x∈S , σa), Gb = (S,A, {ρx}x∈S , σb), Gc = (S,A×
A, {ρx}x∈S , σ) where (x, (a, b)) ∈ σ if and only if (x, a) ∈ σa and (x, b) ∈ σb. We say that
G = (S,A, {ρx}x∈S , σa, σb, σ) is an ε−

(2
1
)
QRG if it satisfies the following properties:

1. Correctness: There exist measurements M (a),M (b) such that (M (a)(ρx), x) ∈ σa and
(M (b)(ρx), x) ∈ σb. Equivalently: PVal(Ga) = PVal(Gb) = 1

2. Security: PVal(Gc) ≤ ε
3. Independence: Each answer in σb is independent of the set of answers in σa. Formally, let

Sa be the random variable containing all answers in σa and let B be the random variable
of any answer in σb. Then for any set of answers A′ ⊆ A and any answer b ∈ A, it holds
that

Pr[Sa = A′ ∧B = b] = Pr[Sa = A′] · Pr[B = b]
where the probability is taken over the randomness of the secret x. Symmetrically, each
answer in σa is independent of the set of answers in σb.

In the independence property note that the two sets of answers for the two relations are not
necessarily mutually independent, therefore knowing all answers to σa may give the adversary
an advantage if he wants to find more than one answer to σb. This property will be useful
for a technical part of our proof below. We will call a

(2
1
)
QRG secure if c = 1− negl(n) and

ε ≤ negl(n) where n is the size of the secret x.
Theoretically, it is possible to create games with perfect correctness. However, in practice

it is reasonable to assume that errors may occur and therefore, the correctness may not be
guaranteed. In this case, we can assume that the games Ga and Gb cannot be answered
correctly with probability 1 but only with a constant probability c < 1. Then, we can define
an 1-out-of-2 game as (c, ε)−

(2
1
)
QRG where ε is again the security of the scheme. We can

show that if we repeat such a game n times, we can create a (c′, ε′)−
(2

1
)
QRG where c′ is

now exponentially close to 1 and ε′ is exponentially close to 0.

I Lemma 12. Let c, ε, δ be positive constants such that δ = 2c−ε−1
3 . If there exists a

(c, ε)−
(2

1
)
QRG G, then there exists a

(
1− e− cn

2 δ
2
, e−

εn
3 δ

2
)
−
(2

1
)
QRG G′.

Note that even though the original “small” game may have a considerably large error
probability, we can achieve a quantum retrieval game that tolerates the errors with probability
exponentially close to 1.

3.2 QRGs with Verification
We now define a new version of QRG, that of QRG with verification (

(2
1
)
QRGv) that is

useful for the construction of our money schemes. Informally, in a
(2

1
)
QRGv, an adversary

has some extra help for finding an answer to σa and σb; he is allowed to ask multiple queries
of whether an answer is correct for a relation. What we require from such a game, is that
the winning probability of any such adversary does not increase more than polynomially on
the number of queries it asks.

I Definition 13 (
(2

1
)
QRGv). Let G = (S,A, {ρx}x∈S , σa, σb, σ) be a (c, ε) −

(2
1
)
QRG. We

define the following game G between an adversary F and an algorithm C. C prepares a
normalized state ρx/Tr[ρx] of the game G and gives it to F . Then F is allowed to interact
with C at most t times in the following way:
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1. F picks a σ′ ∈ {σa, σb}, generates an answer d and sends (σ′, d) to C.
2. C returns 1 if and only if (x, d) ∈ σ′.
After t interactions F outputs (a∗1, a∗2) and wins if and only if (x, (a∗1, a∗2)) ∈ σ. We say that
G is a (c, ε) −

(2
1
)
quantum retrieval game with verification (

(2
1
)
QRGv) if it satisfies the

following properties:
1. Correctness: Given any state ρx/Tr[ρx] the probability of answering σa (or σb) is at least

c.
2. Soundness: For any t and for any adversary F interacting the way defined above, it holds

that Pr[F wins] ≤ poly(t) · ε

We would like to argue the following: allowing such an adversary F to check whether a
query (σ′, d) is correct, does not increase considerably his probability of winning. Therefore,
for an exponentially small ε an adversary would require a superpolynomial number of such
interactions in order to have a non-negligible probability of winning. Towards this, we define
below a more restricted version of the game and we show that this definition is equivalent to
that of a

(2
1
)
QRGv.

We now restrict the adversary F in the following manner. Suppose that F is allowed to
interact with C as previously and the i-th interaction is the first interaction when he sends to
C some (σ′, a) such that (x, a) ∈ σ′ (without loss of generality we can assume that σ′ = σa).
Then, for the remaining t − i interactions F is allowed to play only with σb. We call this
game a restricted 1-out-of-2 quantum retrieval game with verification (

(2
1
)
rQRGv) and the

adversary F a restricted adversary. It can be proven that since finding an answer for σa is
independent from any answer of σb, these two games are equivalent. In other words, allowing
the adversary to succeed in more than one interaction with the same relation σ′ does not
help him win the game more than succeeding only once for σ′.

I Lemma 14. Let G = (S,A, {ρx}x∈S , σa, σb, σ) be a (c, ε) −
(2

1
)
QRGv. Then G is also a

(c, ε)−
(2

1
)
rQRGv.

Using the previous lemma we can show that an adversary that is allowed to ask at most t
queries regarding the relations σa, σb does not increase significantly his probability of winning.
More specifically, it can be shown that if the original

(2
1
)
QRG has security ε then allowing

interaction, increases the winning probability at most quadratically in t.

I Theorem 15. If there exists a (c, ε)−
(2

1
)
QRG G′ then there exists a (c, ε)−

(2
1
)
QRGv G.

In particular, any adversary against G has winning probability of at most 4t2 · ε, where t is
the number of queries.

3.3 One-time Memories
For the creation of our public-key scheme we will use the notion of one-time memories (OTM)
defined by Goldwasser et al in [7]. OTM are essentially devices which contain two secrets
xa, xb, however, we are able to extract only one of these secrets. There is a very natural
connection between

(2
1
)
QRG and OTMs as we will see below.

I Definition 16. A (c, ε)−one-time memory (OTM) is a device that has the following
behavior. Suppose that the device is programmed with two n-bit messages xa, xb chosen
from some distribution D. Then:
1. Correctness: There exists an honest strategy M (a) that interacts with the device and

recovers the message xa with probability c. Likewise, there is an honest strategy M (b)

that interacts with the device and recovers the message xb with probability c.
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2. Security: For any strategy M , if X is the random variable corresponding to the classical
output of M , then Pr[X = (xa, xb)] ≤ ε.

We will call the OTM secure if c = 1− negl(n) and ε = negl(n).
Note that in this paper, we deal with quantum OTM, namely the “device” is a quantum

state ρxa,xb
. Although secure OTM are impossible in the plain quantum model even with

computational assumptions, Liu [8, 9, 10] has shown that OTM are possible in the isolated
qubits model, where an adversary can use only local operations and classical communication.
His OTM construction is a quantum state that consists of qubits that do not need to be
entangled and thus it is easier and more efficiently implementable.

It is not hard to see that OTM are equivalent to
(2

1
)
QRG restricted so that the relations

σa, σb are, in fact, functions.

I Lemma 17. There exists a secure
(2

1
)
QRG G = (S,A, {ρx}x∈S , σa, σb, σ) such that the

relations σa, σb are functions if and only if there exists a secure OTM.

Proof. Using G we can create an OTM with secrets xa = σa(x) and xb = σb(x). The OTM
device is simply ρx. Clearly, if there exists an algorithm that can retrieve both secrets from
the OTM then this algorithm can also break G. For the opposite direction, the role of the
encoding ρx is played by the OTM device, which is a quantum state. The secret x of G is
defined as the concatenation of xa and xb and the functions σa, σb are defined such that
σa(xa|xb) = xa and σb(xa|xb) = xb. Clearly, if there exists an algorithm that can retrieve
answers for both σa and σb from the encoding ρx then this algorithm can also break the
OTM. J

Similarly to the QRG with verification, we can define (c, ε)−one-time memories with
verification (OTMv); where the adversary is allowed to choose d ∈ {a, b} and y ∈ {0, 1}n
and ask whether xd = y. Again, a secure OTMv means that c ≥ 1− negl(n) and ε ≤ negl(n).
However, as we have shown, such a power does not really help the adversary.

Finally, a hash based OTMv (hOTM) is an OTMv where the adversary instead of being
allowed to interact in order to find an answer, it is given as input the hashes of the two
answers H(xa), H(xb). This way, if an answer is correct, the adversary can verify that on its
own. It can be shown that if the original OTMv is secure, then the hash based OTMv is
still secure in the random oracle model.

A random oracle is essentially an oracle that behaves as follows. First, it keeps a list L of
pairs of the form (x, y) where x is an element of its domain and y is an element of its range.
In the beginning L is empty. On input x0, first it searches L for a pair of the form (x0, y0),
and if such a pair exists in L then it returns y0. Otherwise, it picks a uniformly random
element y0 from its range, inserts (x0, y0) in the list L, and returns y0. Hash functions are
usually assumed to have this ideal property when other properties such as one-wayness or
collision resistance are not enough for a security proof. When hash functions are used as
random oracles in a proof that a scheme is secure, we say that the scheme is secure in the
random oracle model.

I Definition 18. A hash based one-time memory (hOTM) is a device that has the following
behavior. Suppose that the device is programmed with two n-bit messages xa, xb chosen
from some distribution D. Then:
1. Correctness: There exists an honest strategy M (a) that interacts with the device and

recovers the message xa with probability c = 1− negl(n). Likewise, there is an honest
strategy M (b) that interacts with the device and recovers the message xb with probability
c = 1− negl(n).
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(2
1
)
QRG

(2
1
)
QRGv secret-key

mini-scheme
secret-key
full scheme

Figure 3 From a
(2

1

)
QRG to a secret-key quantum money scheme.

2. Security: For any polynomial time strategy M that takes as input the hash values
H(xa), H(xb), if X is the random variable corresponding to the classical output of M ,
then Pr[X = (xa, xb)] ≤ negl(n)

Note that in contrast to the previous definitions, the security of a hOTM is computational.

I Lemma 19. A secure OTMv is also a secure hOTM in the random oracle model.

Proof. Suppose that there exists a polynomial algorithm F that is able to break the hOTM
property. We can create an algorithm A against the OTMv property. A takes as input a
state ρxa,xb

and is allowed to ask verification queries of the form (d, y), where d ∈ {a, b} and
receive an answer 1 if and only if xd = y. A initiates F by choosing two random values (α, β)
as the hashes of the answers and giving to F the tuple (ρxa,xb

, α, β). When F asks for the
hash of a value y, A makes two queries of the form (a, y), (b, y) and if one of them accepts, A
returns to F the value α or β depending on which of the two queries accepted. If none of the
two accepted, then A returns a random (but consistent with the previous queries) value to F
as a hash of y. When F outputs its two final answers (x∗a, x∗b), A also outputs (x∗a, x∗b). We
can see that F always takes proper answers to its queries (F is allowed to ask only for hash
values) and therefore works as if it attacks the hOTM. Since F is a polynomial algorithm,
it cannot ask more that a polynomial number of hash values and therefore A cannot have
asked more than a polynomial number of queries. Thus, if the winning probability of F is
non-negligible, A has also a non-negligible winning probability. J

4 Secret-key Quantum Money Construction

In this section we create a secret-key mini-scheme and we analyze its security. Our scheme,
in contrast to that proposed by Gavinsky [5], allows a one-round protocol between the bank
and the user to accomplish the verification of a coin: a query to the bank and an answer by
the bank that states whether the coin is valid or not. Therefore, in our scheme the bank
does not need to maintain memory during the verification procedure; it just consults its
secret database and returns the result. In the scheme of Gavinsky, however, the verification
protocol consists of three rounds during which, the bank has to maintain a temporary memory
associated with a specific coin. Furthermore, unlike the scheme of Gavinsky, our proof of
security is simpler, more modular and it includes noise and losses.

Gavinsky has shown that a
(2

1
)
QRG with the following parameters exists:

I Theorem 20 (Hidden Matching QRG [5, 6]). There exists a (1− 2−n, 2−n)−
(2

1
)
QRG G.

Starting from this and using theorem 15 we can create a
(2

1
)
QRGv with the same

parameters. Our construction is essentially a way of going from a
(2

1
)
QRGv to a mini-scheme.

Then, using the reduction from a mini-scheme to a full-scheme, the existence of a
(2

1
)
QRG

leads to the existence of a full quantum money scheme. The sequence of reductions appears
in Figure 3.

We now propose our construction that uses a
(2

1
)
QRGv to create a mini-scheme. The

algorithm Bank and the protocol Ver are defined as follows:
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Bank(1n2) :
1. For i ∈ [n] create Gi = (S,A, {ρxi

}xi
, σa, σb, σ), (1− 2−n, 2−n)−

(2
1
)
QRGv.

2. Create a classical binary register r of size n and initialize it to 0n.
3. Return the state $ = (

⊗
i ρxi

, r) as a coin for the mini-scheme.

Verification protocol for a coin $ = (
⊗

i ρxi
, r):

1. The holder creates an empty set L. Then, for each i ∈ [n] such that ri = 0, the
holder puts i in the set L with probability 1/n1/3. For each i ∈ L the holder picks at
random a relation σ′i ← {σa, σb} and applies to ρxi the measurement M (a) if σ′i = σa
or M (b) if σ′i = σb, in order to retrieve an answer di. Furthermore, for all i ∈ L the
holder sets ri = 1. Finally, the holder sends to the bank the i’s he has picked, the
relation he has picked for each i, as well as the answers di.

2. The bank compares the answers it has received with its secret x1 · · ·xn and accepts
if all answers are correct; namely if for all i ∈ L it holds that (xi, di) ∈ σ′i.

I Remark. The coin is returned to the bank for replacement when the hamming weight of r
is greater than n/4 (more than n/4 of the ρxi

are marked as used). Note that the scheme
consists of O(n2) qubits in total (there are n states ρxi

and each state consists of O(n) qubits)
and that the verification protocol consists of only one round.

I Theorem 21. The scheme is secure; namely any (even computationally unbounded)
adversary who interacts with the bank at most t times has winning probability of at most
e−n

1/3/8 + 4t2 · n · 2−n.

Proof. Suppose there is an adversary F for the mini-scheme, namely when F receives as
input a valid coin $ and after running t verification protocols with the bank, he can produce
two coins $′ = (ρ′1, · · · , ρ′n, r′), $′′ = (ρ′′1 , · · · , ρ′′n, r′′) that can pass the verification protocol
with non-negligible probability ε greater than p(t) · 2−n, for all polynomials p. Then, one
can create an adversary A for the (1− 2−n, 2−n)−

(2
1
)
QRGv, namely when A receives from

the algorithm C as input a state ρ∗ that is the encoding of a secret x∗, and after interacting
t times with the algorithm C, he can win the game with probability greater than p(t) · 2−n
for all polynomials p. By theorem 15 this also implies breaking the security of the

(2
1
)
QRG.

Let A receive as input the state ρ∗, that is the encoding of a secret x∗. He creates an
input for F in the following way:

Bank(1n2):
1. Pick at random i∗ ← [n].
2. For i ∈ [n]−{i∗} create Gi = (S,A, {ρxi

}xi
, σa, σb, σ) where Gi is a (1− 2−n, 2−n)−(2

1
)
QRGv.

3. Create a classical binary register r of size n and initialize it to 0n.
4. Return to F the coin $ = (ρ, r), where ρ = ρx1 ⊗· · ·⊗ρxi∗−1 ⊗ρ∗⊗ρxi∗+1 ⊗· · ·⊗ρxn .

In other words, A creates a totally valid coin, but in the i∗-th position he puts the state
he has as input. For clarity we will denote the secret x∗ as xi∗ . Note that A is able to pretend
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to be the honest bank during the verification protocol with F , since for all i ∈ [n]− {i∗} he
knows the answers to the relations, whereas for the i∗-th state, he can use his own interaction
with the algorithm C in order to decide whether the query asked by F is correct. Therefore,
A simulates the verification protocol between the bank and F in the following way:

1. A receives from F a set L of i’s, a set of challenges σ′i ∈ {σa, σb} and a set of answers
di for each i ∈ L.

2. A returns 1 if all answers are correct; namely, if (xi, di) ∈ σ′i for all i ∈ L. Note that
for those i’s that are different from i∗, A can easily consult his own secret xi in order
to find if the answer is correct. However, for i = i∗, A can make a query (σ′i∗ , di∗) to
the algorithm C in order to find if the answer di∗ is correct.

Hence, A can provide F with a valid initial coin and simulate the bank in the t verification
protocols with F , and in the end, he receives from F two coins $′ = (ρ′1, · · · , ρ′n, r′), $′′ =
(ρ′′1 , · · · , ρ′′n, r′′) that can pass a verification protocol with an honest verifier with non-negligible
probability ε. For the two coins $′, $′′ to be considered as valid, there must be at least 3/4n of
the ρ′i’s denoted as valid and at least 3/4n of the ρ′′i ’s denoted as valid (a state ρ′i is denoted
as valid if r′i = 0). Therefore, there are at least n/2 indices i such that r′i = r′′i = 0. We want
to argue that there must be an index i among them for which A can win the

(2
1
)
QRGv game

with probability greater than p(t) · 2−n for all polynomials p, otherwise the probability that
the adversary F could create two valid coins is negligible.

Let I = {i : r′i = r′′i = 0}. Since the coins $′, $′′ are denoted as valid, it holds that
|I| ≥ n/2. Assume now that two honest verifiers Ver′ and Ver′′ run the verification protocol
for the two coins respectively. Let La, Lb be the sets chosen by the honest verifiers and
L′ = {i ∈ La ∩ Lb : σ′i = σa ∧ σ′′i = σb}, where σ′i, σ′′i are the relations chosen for the index
i by the verification protocols for the two coins. In other words, L′ contains the indices
that where chosen by both Ver′ and Ver′′ in such a way that Ver′ chose σa for this i and
Ver′′ chose σb for this i. It holds that Pr[i ∈ La ∩ Lb] = 1/n2/3 and Pr[i ∈ L′] = 1/4n2/3.
Therefore, Pr[∀i ∈ I : i /∈ L′] = Pr[L′ = ∅] ≤ (1 − 1/4n2/3)n/2 = e−n

1/3/8, since |I| = n/2.
In other words, the probability that there exists an i with r′i = r′′i = 0 such that Ver′ chose
it during the verification protocol and picked the relation σa for it and Ver′′ also chose it
and picked σb for it, is exponentially close to 1. Now it holds that

Pr[F wins] = Pr[Ver′($′) = 1 ∧Ver′′($′′) = 1]
= Pr[L′ = ∅] · Pr[Ver′($′) = 1 ∧Ver′′($′′) = 1|L′ = ∅]
+ Pr[Ver′($′) = 1 ∧Ver′′($′′) = 1 ∧ L′ 6= ∅]

≤ e−n
1/3/8 + Pr[Ver′($′) = 1 ∧Ver′′($′′) = 1 ∧ L′ 6= ∅]

≤ e−n
1/3/8 + Pr[∃i ∈ L′ : (M (a)(ρ′i), xi) ∈ σa ∧ (M (b)(ρ′′i ), xi) ∈ σb]

where M (a),M (b) are the measurements applied to the states of the QRG’s in order to
retrieve an answer to σa, σb respectively. The last line comes from the fact that if L′
is not empty and both verifications succeed, then both verifications must succeed for all
i ∈ L′. Therefore, if Pr[F wins] = ε is non-negligible then Pr[∃i ∈ L′ : (M (a)(ρ′i), xi) ∈
σa ∧ (M (b)(ρ′′i ), xi) ∈ σb] ≥ ε− e−n

1/3/8 is non-negligible as well. This trivially implies that
Pr[∃i ∈ [n] : (M (a)(ρ′i), xi) ∈ σa ∧ (M (b)(ρ′′i ), xi) ∈ σb] ≥ ε− e−n

1/3/8. In other words, with
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OTM
+

random oracle
hOTM

public-key
mini-scheme

public-key
full scheme

signatures [1]

Figure 4 From an OTM to a full public-key quantum money scheme. OTMs in the random
oracle model give hOTM. hOTM imply public-key mini-schemes which, together with signatures,
imply public-key quantum money.

non-negligible probability there exists an index i for which both verifications succeed. At this
point it is clear that the goal of A is just to guess that index i and put ρ∗ in that position.

Overall, the adversary A works as follows: Upon receiving as input the state ρ∗, he picks
a random position i∗, creates the valid coin for F as we described above, receives the states
ρ′i∗ and ρ′′i∗ from F and returns the answers

(
M (a)(ρ′i∗),M (b)(ρ′′i∗)

)
. Now it holds that

Pr[A wins] = Pr[(M (a)(ρ′i∗), xi∗) ∈ σa ∧ (M (b)(ρ′′i∗), xi∗) ∈ σb]
≥ Pr[(M (a)(ρ′i∗), xi∗) ∈ σa ∧ (M (b)(ρ′′i∗), xi∗) ∈ σb|

∃i ∈ [n] : (M (a)(ρ′i), xi) ∈ σa ∧ (M (b)(ρ′′i ), xi) ∈ σb]
· Pr[∃i ∈ [n] : (M (a)(ρ′i), xi) ∈ σa ∧ (M (b)(ρ′′i ), xi) ∈ σb]

≥ 1
n
· Pr[∃i ∈ L′ : (M (a)(ρ′i), xi) ∈ σa ∧ (M (b)(ρ′′i ), xi) ∈ σb]

≥
(
ε− e−n

1/3/8
)
/n

which contradicts the fact that the security of the
(2

1
)
QRGv is 2−n.

Therefore, since by theorem 15 the maximum winning probability of A is 4t2 · 2−n, the
maximum winning probability of F is e−n1/3/8 + 4t2 · 2−n · n. J

5 Public-key Quantum Money Construction

In the construction of a public key scheme, it suffices to create a secure public-key mini-
scheme, and this, combined with signatures, can give a full scheme [1]. The advantage
of our construction is that it is a simple modification of the previous secret key one: the
answers of the bank are encoded in their hash values. Therefore, instead of requiring from
the user to communicate with the bank in order to find out if an answer is valid, the bank
announces the hash values of the answers. It is clear that for a regular QRG there may exist
too many answers and hence giving all these hashes as part of the coin would violate the
correctness of the scheme. Hence, for our construction, we need to use QRG with functions
or equivalently one-time memories. Despite the fact that quantum one-time memories do
not exist unconditionally, they exist in the isolated qubits model.

I Theorem 22 ([8, 9, 10]). There exists a secure OTM in the isolated qubits model.

Using this, together with lemma 19, we get the following corollary.

I Corollary 23. There exists a secure hOTM in the isolated qubits-random oracle model.

Our purpose, now, is to go from hOTM to a public-key mini-scheme. The sequence of
reductions appears in Figure 4.

Since for each OTM there are only two secrets, a hashing of each answer can be given as
part of the coin. Then the verification algorithm works similarly to the secret key scheme. It
chooses each state-game with probability 1/n1/3, it chooses at random whether to retrieve
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the first (xa) or the second (xb) secret for each game, it measures the OTM (using M (a) or
M (b)) in order to retrieve an answer and finally it verifies that the hash value of that answer
is the same as the one given. So the two algorithms Bank and Ver of the mini-scheme are
the following:

Bank(1n2) :
1. For i ∈ [n] create the OTM ρi with secrets xai , xbi ∈ {0, 1}n.
2. Create a classical binary register r of size n and initialize it to 0n.
3. Return $ = ((h1, g1), · · · , (hn, gn), ρ1, · · · , ρn, r) as a coin for the mini-scheme, where

hi = H(xai ), gi = H(xbi ) and H is the hash function. The string (h1, g1), · · · , (hn, gn)
corresponds to the classical serial number of the coin (that has to be signed in order
to give a full coin), and (ρ1, · · · , ρn, r) is the quantum state.

Ver((h1, g1), · · · , (hn, gn), ρ1, · · · , ρn, r):
1. Create an empty set L. Then, for each i ∈ [n] such that ri = 0, put i in the set L

with probability 1/n1/3.
2. For each i ∈ L pick at random di ← {a, b} and measure ρi in order to retrieve an

answer xi ∈ {xai , xbi}; i.e. xi = M (di)(ρi).
3. For all i ∈ L set ri = 1.
4. Accept if for all i ∈ L it holds that H(xi) = hi (if di = a) or H(xi) = gi (if di = b).

As before, the coin is returned to the bank for replacement when the hamming weight of
r is greater that n/4.

I Theorem 24. The scheme is secure.

Proof sketch. The proof follows the same steps as that of the secret-key scheme; a good
adversary F against the mini-scheme can lead to a good adversary A against the hOTM. F
takes as input a coin $ = (sn, ρ), where sn = (h1, g1), · · · , (hn, gn) and ρ = (ρ1, · · · , ρn, r).
At the end, F outputs two states ρ′ = (ρ′1, · · · , ρ′n, r′), ρ′′ = (ρ′′1 , · · · , ρ′′n, r′′) such that both
$′ = (sn, ρ′) and $′′ = (sn, ρ′′) pass the verification test with non-negligible probability. Note
that these two states pass successfully the verification algorithm with the same serial sn and
therefore with the same hash values. As before, we can show that the number of indices that
are denoted as valid in both coins are at least n/2. Furthermore, the probability that none
of them is able to pass the two verification algorithms is negligible (otherwise the winning
probability of F would be negligible). Thus, a non-negligible counterfeiting probability ε of
F implies a non-negligible probability of A to break the hOTM. J

6 Conclusions

We created a secret-key quantum money scheme that is unconditionally secure and has
optimal communication: a single round of classical communication. We also provided a
conceptually simpler and more modular proof. Moreover, if we instantiate the

(2
1
)
QRG with

the Hidden Matching
(2

1
)
QRG, we can tolerate an error rate of up to 12.5%; see lemma 12

in Appendix A. Note that in every verification of the coin we invalidate on average n1/3

quantum states (each consisting of n qubits) and thus the number of allowed verifications
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before the coin is returned to the bank is n/(4 · n1/3) = n2/3/4. Therefore, for a coin of say
1012 qubits, we succeed 2,500 verifications on average. A polynomial number of verifications
is optimal for unconditionally secure schemes, nevertheless, a natural question that still
remains open is whether we can have computationally secure secret-key schemes that allow
exponentially many classical verifications.

In addition, we showed how a simple extension of our secret key construction can give
rise to a public-key quantum money scheme that is computationally secure against quantum
adversaries in the random oracle model given one-time memories. We note that previous
schemes were also based on non-standard computational assumptions. The main open
question is to construct public-key quantum money that are provably secure based on some
standard cryptographic assumptions such as one-way functions.
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A Instantiating a QRG

As shown above, the existence of a (c, ε) −
(2

1
)
QRG implies the existence of a secret-key

quantum money scheme as long as c is reasonably large and ε is any constant smaller than
1. To instantiate such a quantum money scheme one has to give specific quantum retrieval
games with this property.

Hidden Matching QRG [2, 5]
I Definition 25. The Hidden Matching

(2
1
)
QRG G = (S,A, {ρx}x∈S , σa, σb, σ) is defined the

following way: S = {0, 1}4, A = {0, 1} × {0, 1}, |ψx〉 = 1
2
∑
i∈[4](−1)xi |i〉, ρx = 1

16 |ψx〉〈ψx|.
The relation σa is defined as (x, (a, b)) ∈ σa if and only if the following holds: if a = 0 then
x1 ⊕ x2 = b; if a = 1 then x3 ⊕ x4 = b. Similarly, the relation σb is defined as (x, (a, b)) ∈ σb
if and only if the following holds: if a = 0 then x1 ⊕ x3 = b; if a = 1 then x2 ⊕ x4 = b.

I Lemma 26. The Hidden Matching is a (1, 3
4 )−

(2
1
)
QRG.

Proof. The correctness in a noise-free environment we can be succeeded with zero error
probability. Indeed, if we want to find an answer for the relation σa we measure in the basis
{ |1〉+|2〉√

2 , |1〉−|2〉√
2 , |3〉+|4〉√

2 , |3〉−|4〉√
2 } and we return the values (a, b) = (0, 0), (0, 1), (1, 0), (1, 1)

respectively. If we want to find an answer for the relation σb we measure in the basis
{ |1〉+|3〉√

2 , |1〉−|3〉√
2 , |2〉+|4〉√

2 , |2〉−|4〉√
2 } and we return (a, b) = (0, 0), (0, 1), (1, 0), (1, 1) respectively.

For the security of the game, we use Theorem 9. By definition, we have (x, (a1, b1), (a2, b2)) ∈
σ if and only if (x, (a1, b1)) ∈ σa and (x, (a2, b2)) ∈ σb. It holds that ρ =

∑
x∈{0,1}4 ρx = 1

4I

and therefore ρ 1
2 = 2I. In order to find the selective value of the game (S,A×A, {ρx}x∈S , σ)

it is enough to consider one value of Oa for some possible answer a ∈ A×A. For example,
by taking a = ((0, 0), (0, 0)) the values of x that satisfy (x, a) ∈ σ are 0000, 0001, 1110, 1111

and the corresponding density matrices are 1
16

1
4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

, 1
16

1
4


1 1 1 −1
1 1 1 −1
1 1 1 −1
−1 −1 −1 1

,

1
16

1
4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

, 1
16

1
4


1 1 1 −1
1 1 1 −1
1 1 1 −1
−1 −1 −1 1

. Therefore, O((0,0),(0,0)) = 1
4


1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 1


and thus it holds that ‖O((0,0),(0,0))‖ = 3

4 = SVal(G).
For the independence property, we know that for any a12, a34 ∈ {0, 1} it holds that

Pr[x1⊕x2 = a12 ∧x3⊕x4 = a34] = 1/4 and for any bit b ∈ {0, 1}, it holds that Pr[x1⊕x3 =
b] = 1/2. Moreover, Pr[x1 ⊕ x2 = a12 ∧ x3 ⊕ x4 = a34 ∧ x1 ⊕ x3 = b] = 1/8 and thus we see
that the event x1⊕ x3 = b is independent from the event x1⊕ x2 = a12 ∧ x3⊕ x4 = a34. The
same of course holds for the event x2 ⊕ x4 = b. J
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By Lemma 12, it is enough to guarantee that c ≥ 7
8 + δ for some constant δ in order succeed

an exponentially good error tolerance. Thus, the hidden matching
(2

1
)
QRG can tolerate up

to 12.5% of errors.

B Technical proofs

Proof of lemma 12. Let G = (S,A, {ρx}x∈S , σa, σb, σ). We create the following game G′ =
(S′, A′, {ρ′x}x∈S′ , σ′a, σ′b, σ′) by taking the product of n games G. Then we require that
(x1 · · ·xn, a1 · · · an) ∈ σ′a if at least c− δ of the (xi, ai) are in σa and (x1 · · ·xn, b1 · · · bn) ∈
σ′b if at least c − δ of the (xi, bi) are in σb. Furthermore, by definition, it holds that
(x1 · · ·xn, (a1 · · · an, b1 · · · bn)) ∈ σ′ if (x1 · · ·xn, a1 · · · an) ∈ σ′a and (x1 · · ·xn, b1 · · · bn) ∈ σ′b.

Since δ > 0, we have c > (1 + ε)/2 and hence c− δ > 1/2. This implies there exist at least
2c− 2δ − 1 = ε+ δ common values (i’s such that (xi, ai) ∈ σa and (xi, bi) ∈ σb). Therefore,
(x1 · · ·xn, (a1 · · · an, b1 · · · bn)) ∈ σ′ implies that there exist at least ε + δ of the (xi, ai, bi)
that are in σ.

We then analyze its Correctness and its Security. The Correctness c′ of G′ is guaranteed
via the straightforward strategy of independently measuring each of the n states in the basis
that corresponds to σa or to σb. Let Xi be the binary random variable that equals to 1 if
and only if the i-th measurement was successful. Let X =

∑
i∈[n] Xi. Then E[X] = cn and,

since the Xi’s are independent, using Chernoff bound, we have that

c′ ≥ 1− e− cn
2 δ

2

For the Security ε′ of the game, we know that the selective value is always greater or equal
to the physical value and that the former is equal to the product of the individual selective
values. Therefore, as mentioned before, the best measurement strategy that answers correctly
both questions, cannot be better than independently playing the optimal strategy for each of
the n small games. Let Yi be the binary random variable that equals to 1 if and only if the
i-th measurement was successful. Let, also, Y =

∑
i∈[n] Yi. Then, as before, E[Y ] = εn and,

since the Yi’s are independent

ε′ ≤ e− εn
3 (2c−2δ−1−ε)2

= e−
εn
3 δ

2

which is exponentially small in n. J

Proof of lemma 14. The correctness of
(2

1
)
QRGv and

(2
1
)
rQRGv is exactly the same. Fur-

thermore, it is clear that if a non-restricted adversary has probability ε to win, this probability
cannot increase by restricting this adversary. In order to show the equivalence between the
two definitions, it remains to show that a non-restricted adversary has no more power than a
restricted adversary. Without loss of generality, we assume that the first successful query
was for σa. Then, one more success for σa does not help the adversary towards finding an
answer for σa (since, it already knows one). Furthermore, by the independence property, even
knowing all the answers for σa does not give the adversary extra power to find an answer
to σb. Therefore, restricting the adversary to one successful query per relation, does not
decrease his winning probability. More details will appear in the full version of the paper. J

Proof of Theorem 15. The proof of correctness is straightforward. We focus on the security
of G. By lemma 14 it suffices to show that G’ implies an

(2
1
)
rQRGv. By contradiction,

assume that there exists an adversary F against the
(2

1
)
rQRGv G, who interacts t times

with C and wins the game with probability q > p(t) · ε for all polynomials p. We can use

TQC’15
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F in order to create an adversary F ′ who is able to attack the original
(2

1
)
QRG G′ with

probability greater than ε. Since F is restricted after succeeding one interaction with σa it
will continue interacting only by picking σb in its queries. Let E1, E2, E3, E4 be the events
that F does not succeed in any interaction, F succeeds only in a σa interaction, F succeeds
only in a σb interaction, F succeeds in both σa and σb interactions, respectively. Note that,
since F is restricted, only these four events may occur. Denote the probabilities of these
events by p1, p2, p3, p4 respectively. The idea is for F ′ to guess a priori which of the four
events will occur and which queries will be successful. If these guesses are correct then F will
not notice any difference with a real scenario (where F is playing a real

(2
1
)
rQRGv game).

These guesses can succeed with probability proportional to an inverse polynomial and if
they succeed then F ′ can break the QRG. Thus, F ′ can break the non-interactive game the
following way.
1. F ′ takes as input ρx and forwards it to F .
2. F ′ guesses uniformly at random i← [4] which corresponds to which of the four types of

attacks F will play.
a. If i = 1 then in every interaction F ′ returns a 0 to F . When F returns its final answers

(a∗1, a∗2), F ′ returns (a∗1, a∗2).
b. If i = 2 then F ′ chooses at random one of the σa queries and answers it with 1. To all

the others, F ′ answers with 0. When F returns its final answers (a∗1, a∗2), F ′ returns
(a∗1, a∗2).

c. If i = 3 then F ′ chooses at random one of the σb queries and answers it with 1. To all
the others, F ′ answers with 0. When F returns its final answers (a∗1, a∗2), F ′ returns
(a∗1, a∗2).

d. If i = 4 then F ′ chooses at random one of the σa and one of σb questions and answers
them with 1. After the second positive answer, F ′ stops simulating F and returns as
(a∗1, a∗2) the queries that he answered with 1.

Then the winning probability of F ′ can be computed as follows

q = Pr[Fwins]
= p1 Pr[Fwins|E1] + p2 Pr[Fwins|E2] + p3 Pr[Fwins|E3] + p4 Pr[Fwins|E4]
≤ Pr[Fwins|E1] + Pr[Fwins|E2] + Pr[Fwins|E3] + Pr[Fwins|E4]
≤ Pr[F ′wins|E1] + Pr[F ′wins|E2] · t+ Pr[F ′wins|E3] · t+ Pr[F ′wins|E4] · t2

≤ t2 ·
(

Pr[F ′wins|E1] + Pr[F ′wins|E2] + Pr[F ′wins|E3] + Pr[F ′wins|E4]
)

= 4t2 · Pr[F ′wins]

where the third line comes from the fact that F ′ has probability 1, 1
t ,

1
t and 1

t2 respectively
to correctly respond to F ’s queries. In other words, with probability 1/4t2 the view of F is
identical to a real interaction. Therefore for any polynomial p it holds that

p(t)
4t2 · ε < Pr[F ′wins]

and in particular for p(t) = 4t2 it holds that ε < Pr[F ′wins] which contradicts the fact that
G′ is a (c, ε)−

(2
1
)
QRG. Hence we see that a

(2
1
)
QRG implies a

(2
1
)
QRGv. J
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Abstract
Coupling to a thermal bath leads to decoherence of stored quantum information. For a system
of Gaussian fermions, the fermionic analog of linear or Gaussian optics, these dynamics can be
elegantly and efficiently described by evolution of the system’s covariance matrix. Taking both
system and bath to be Gaussian fermionic, we observe that decoherence occurs at a rate that
is independent of the bath temperature. Furthermore, we also consider a weak coupling regime
where the dynamics are Markovian. We present a microscopic derivation of Markovian master
equations entirely in the language of covariance matrices, where temperature independence re-
mains manifest. This is radically different from behaviour seen in other scenarios, such as when
fermions interact with a bosonic bath. Our analysis applies to many Majorana fermion systems
that have been heralded as very robust, topologically protected, qubits. In these systems, it has
been claimed that thermal decoherence can be exponentially suppressed by reducing temperature,
but we find Gaussian decoherence cannot be cooled away.
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1 Introduction

Thermalization through interaction with an external bath is one of the principal mechanisms
by which quantum systems lose information. In quantum technologies, rapid thermalisation
destroys their advantage over classical counterparts. By better understanding these processes,
one hopes to identify and engineer physical systems that act as more robust stores of quantum
information. In topologically ordered systems, information is stored non-locally within the
degenerate ground space of some large many-body system. The primary benefit of topology
is robustness against random adiabatic fluctuations in the system Hamiltonian. Damage
from such noise is exponentially suppressed with system size. Topological systems also have
an energy gap ∆ between the degenerate ground space and excited states, and are said to
be protected by the gap against thermal excitations. A common claim [29] is that thermal
processes occur at a rate e−∆/T , which is sometimes called the Arrhenius law. The bold
conclusion is that topology can exponentially eliminate noise merely by increasing system
size and decreasing temperature.

Of all topological systems, Majorana zero modes have attracted the most attention.
It was theorized that a so-called Kitaev wire supports Majorana zero modes at edges,
which could be realised in simple solid state hetrostructures [1], for example a nanowire
coupled to a conventional s-wave superconductor [22]. This drove a series of experiments,
eventually leading to observations of Majorana edge modes [27, 28, 16]. Beyond topological
robustness, Majorana zero-modes also possess the braiding statistics of non-Abelian Ising
anyons. Though insufficient for direct quantum computation, braiding Ising anyons can
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FIG. 1. A chain of cool Majorana fermions weakly coupled to a large thermal 2-dimensional bath of Majorana fermions. This provides an
example of the general paradigm we work within, though our results apply to all Gaussian systems.

2 Gaussian fermionic master equations

Here we review Gaussian fermionic master equations
following Refs. [10, 11, 15]. The dynamical equation for
such a system is

d�(t)
d t

= X�(t) + �(t)X T + Y, (13)

where, for dissipative dynamics, X is not necessarily skew-
symmetric. In general, X = �H � P where H represents the
unitary component (and is skew symmetric) and P repre-
sents the dissipative part (and is symmetric and positive).
Typically, dissipative systems will have one steady state �ss
that satisfies X�ss +�ssX

T = �Y , and then

�(t) = eX t(�(0)� �ss)e
X T t +�ss. (14)

These very general dynamical equations are the covariance
matrix representation of a class of Lindblad master equa-
tions of the form

d⇢(t)
d t

= i[H,⇢(t)] +
X
µ

(2Lµ⇢(t)L
†
µ � {L†

µLµ,⇢(t)}),
(15)

where the Hamiltonian H must be of the quadratic form
introduced in Eq. (3) and the Lindblad operators are linear
in Majorana operators

Lµ =
X

j

lµ, j c j . (16)

One can prove [10, 11, 15] that such a master equation
gives rise to a Gaussian quantum channel with

X = �H � (M +M⇤), (17)

Y = 4i(M +M⇤), (18)

where M has elements Mj,k =
P
µ lµ, j l

⇤
µ,k. The matrices

X and Y will always be real so that X T = X † and Y T =
Y †. In the literature, there is some discussion of how such
systems decohere Majorana qubits. However, prior work has
centered on only the Kitave wire and has not considered how
variables in Lindblad equations depend on the underlying
system parameters.

3 Rates of thermalisation

We quantify the decoherence by the operator norm of
�(t) := �⇢S (t)��⇢̃S (t). In general, ||�(t)||  2||D(t)||2 and
from the previous section we see that D(t) = eX t . Theorem
IX.3.1 of Bhatia [23] shows that for any X , we have ||eX t || 
||e(X+X †)t/2|| = ||e�P t || as previously employed in this setting
by Bravyi-König [15]. It entails

||�(t)||  2||e�P t ||2 = 2e�2�P t . (19)

We know �P is non-negative, so provided P does not have
any zero eigenvalues there will be exponentially rapid de-
coherence. It is well known that thermalisation rates are
governed by the spectral properties of P. Our contribu-
tion is investigation of the dependence of this spectrum on
microscopic factors.

The above statement holds for any pair of Gaussian states
and any Gaussian channel. We are also interested in the
more specific scenario where the Gaussian states lie in the
degenerate groundspace of a physical Hamiltonian. Eigen-
states of this Hamiltonian can be simultaneously diago-
nalised, and similarly their covariance matrices can be si-
multaneously brought into Williamson normal form. There
exists a special orthogonal matrix O, such that for every
pure Gaussian  that is a eigenstate of the Hamiltonian we
have

� = O

0
B@
M

j

�
 
j ⇢̃

1
CAOT , (20)

where � j 2 {±1} distinguish different eigenstates, and

⇢̃ =
✓

0 1
�1 0

◆
. (21)

For some values of j, the numbers � j tell us whether there
is an excitation present. However, for degenerate Hamiltoni-
ans there are a set of degeneracy indices G, such that � j can
vary without creating excitations for all j 2 G. Therefore,
the covariance matrices of groundstates break up into two
blocks � = O[� G � �E]OT where �E is the same for all

Figure 1 A chain of cool Majorana fermions weakly coupled to a large thermal 2-dimensional
bath of Majorana fermions. This provides an example of the general paradigm we work within,
though our results apply to all Gaussian systems.

demonstrate nonlocality, teleportation and superdense coding [11]. Furthermore, Ising
anyon braiding can be promoted to full quantum computing when supplemented with some
nontopological (noisy) operations [6, 13].

The physics of these Majorana systems is especially tractable as their Hamiltonians are
quadratic in fermion creation and annihilation operators. We say such a system is Gaussian, or
quasifree fermionic, in analogy with Gaussian linear optics. Gaussian states can be described
purely in terms of the expectation value of quadratic observables, which are captured by a
covariance matrix. Furthermore, some dissipative processes can be described within this
powerful covariance matrix formalism [5, 32, 33, 34, 15, 8, 3], and allow single fermions to
hop between system and bath via a†SaB. Single fermion hopping violates conservation of
fermion parity in the system, which is otherwise respected by unitary evolution. It is a toxic
process that can cause errors without creating excitations, circumventing arguments that
energy penalties suppress thermal processes to a rate e−∆/T . In particular, Majorana modes
in the Kitaev wire (see Fig. 1) have been shown to decohere due to fermion hopping at rates
independently of system size or the system gap [10, 25], and we will review these results in
detail. This article considers all Gaussian fermionic systems, not just the Kitave wire, and
how they decohere as a function of temperature. A single fermion appearing in the system
will have a partner appear in the environment, and so perhaps there is hope that a gapped
bath Hamiltonian will provide an energy penalty inhibiting these processes.

We present a very general, yet simple, argument that decoherence is independent of
temperature, assuming only that the system-bath is governed by a Gaussian Hamiltonian.
We extend this argument by providing a microscopic derivation of a master equation in
the weak coupling regime, and again observe temperature independent decoherence. When
fermions couple to bosonic baths, or through quartic fermion-fermion interactions a†SaSa

†
BaB ,

one would instead find a non-trivial temperature dependence. Any real physical system will
experience noise from multiple sources, mostly with temperature dependent rates. However,
fermionic hopping presents a constant background noise that cannot be suppressed through
cooling. This adds to a growing body of work [18, 23, 35, 30] that shows the outlook for
Majorana fermions makes them less promising quantum memories than initially supposed.
Our conclusions can be avoided by going beyond Gaussian fermions, for instance by making
use of complex many-body interactions used in the passive quantum memories reviewed in
Ref. [9]. We discuss how our results demonstrate a break down of the Arrhenius law, whilst
still satisfying a notion of detailed balance. Decoherence of two-level systems, such as spins,
has been studied when they couple to spin or fermion baths [24, 37] where a temperature
dependence is observed but at low temperatures relaxation rates plateau, similarly breaking
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the Arrhenius law. Throughout, we use the phrase thermalize as synonymous with equilibrate
or approach steady state. The reader should not infer that the steady state is the thermal
Gibbs distribution with respect the system Hamiltonian and ambient temperature, as may
not be the case.

2 Covariance Matrix Formalism

Here we present standard techniques for working with Gaussian fermions [5, 32, 33, 34, 15, 8, 3],
and use them to show that decoherence is independent of bath temperature. Relaxation of
Gaussian fermionic open systems has be studied in detail (see e.g. Refs. [21, 38], but these
did not include a model of the bath as also composed of Gaussian fermions. The first step is
to map n Dirac fermions (e.g. electrons) with annihilation and creation operators {an, a†n}
into 2n Majorana operators

c2n−1 = an + a†n , c2n = i(an − a†n). (1)

They are still fermionic in anti-commutation {cj , ck} = δj,k, but differ from Dirac fermions
in that they satisfy c†j = cj and c2j = 1. For any quantum state ρ, the covariance matrix has
real elements composed of second moments

Γj,k = i

2tr[(cjck − ckcj)ρ]. (2)

Due to fermion anticommutation, the covariance matrix is skew-symmetric ΓT = −Γ. Because
of conservation of fermion parity, first moments always vanish tr(cjρ) = 0. For Gaussian
states, expectation values of higher moments are determined by the covariance matrix via
Wick’s theorem. Likewise a quadratic Hamiltonian Ĥ is described by a matrix H so that

Ĥ = i

4
∑
j,k

Hj,kcjck. (3)

Again, H must be real for the Hamiltonian to be Hermitian, and furthermore H can always
be chosen skew-symmetric H = −HT . For a closed quantum system evolving unitarily, the
covariance matrix evolves according to

dΓ(t)
dt

= [Γ(t), H], (4)

where [·, ·] is the commutator. For a time independent Hamiltonian, this results in

Γ(t) = eHtΓ(0)eH
T t. (5)

A joint system-bath covariance matrix has the form

Γ =
(

ΓS −ΓTC
ΓC ΓB

)
, (6)

where ΓS and ΓB represent, respectively, the system and bath covariance matrices, and ΓC
records system-bath correlations. In other words, given a state ρ with covariance matrix Γ,
tracing out the bath gives a reduced density matrix trB(ρ) with covariance matrix ΓS . We
define {· · · }B to denote this process of reducing the covariance matrix, so {Γ}B = ΓS . In
general, the reduced covariance matrix of an open quantum system will be

ΓS(t) = {eHtΓ(0)eH
T t}B . (7)

TQC’15
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For an uncorrelated system ΓC = 0, the covariance matrix has a direct sum form Γ = ΓS⊕ΓB .
The direct sum is linear, so that uncorrelated states have the form Γ = (ΓS ⊕ 0) + (0⊕ ΓB),
where 0 denotes an all zero matrices. The covariance reduction {· · · }B is also linear, and so
uncorrelated states evolve to

ΓS(t) = {eHt(ΓS ⊕ 0)eH
T t}B + {eHt(0⊕ ΓB)eH

T t}B . (8)

Notice that the first term is independent of the bath variables such as temperature, and can
be more compactly written as

{eHt(ΓS ⊕ 0)eH
T t}B = D(t)ΓSD(t)T , (9)

where D(t) := {eHt}B. We are interested in the rate of decoherence. How quickly will
two states become indistinguishable? Consider two different initial covariance matrices
Γρ̃ = Γρ̃S ⊕ ΓB and Γρ = ΓρS ⊕ ΓB , e.g. describing logical encodings of qubit states. The time
evolved difference between these covariance matrices is

δ(t) := ΓρS(t)− Γρ̃S(t) = D(t)(ΓρS − Γρ̃S)D(t)T . (10)

We observe that this is entirely independent of the bath temperature. As δ(t)→ 0, the states
becomes indistinguishable. Using || · · · || to denote the operator norm (the largest singular
value) of a matrix, it is straightforward to show

tr[ic̃j c̃k(ρ− ρ̃)] ≤ ||δ(t)||, (11)

where c̃j and c̃k are any pair of anti-commuting Majorana operators. Therefore, small ||δ(t)||
entails low probability of distinguishing ρ and ρ̃ through a single Gaussian measurement. We
show later that this statement can be extended to completely general measurements. The
operator norm is submultiplicative and transpose invariant so that

||δ(t)|| ≤ ||D(t)||2||(ΓρS − Γρ̃S)|| ≤ 2||D(t)||2, (12)

with smaller ||D(t)|| entailing more decoherence. We have used ||(ΓρS − Γρ̃S)|| ≤ 2 to present
an upperbound that is also independent of the initial state. Without system-bath interactions
D(t) = eHSt is unitary so that ||D(t)|| = 1, but interactions lead to dissipation and
||D(t)|| < 1. Under very general conditions we have determined that Gaussian decoherence
occurs, quite remarkably, independently of the bath temperature. In some instances ||D(t)||
may decrease with time, only to revive later. However, for a sufficiently complex bath we
expect Markovian behavior lead to exponentially fast decoherence ||D(t)|| = e−λt for some λ.
Next we introduce the formalism of Gaussian fermionic master equations, and then proceed
to perform a microscopic derivation assuming weak-coupling. In such derivations various
approximations are made, yet we find they respect temperature invariance.

3 Gaussian fermionic master equations

Here we review Gaussian fermionic master equations following Refs. [5, 32, 8]. The dynamical
equation for such a system is

dΓ(t)
dt

= XΓ(t) + Γ(t)XT + Y, (13)

where, for dissipative dynamics, X is not necessarily skew-symmetric. In general, X = −H−P
where H represents the unitary component (and is skew symmetric) and P represents the
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dissipative part (and is symmetric and positive). Typically, dissipative systems will have one
steady state Γss that satisfies XΓss + ΓssXT = −Y , and then

Γ(t) = eXt(Γ(0)− Γss)eX
T t + Γss. (14)

These very general dynamical equations are the covariance matrix representation of a class
of Lindblad master equations of the form

dρ(t)
dt

= i[H, ρ(t)] +
∑
µ

(2Lµρ(t)L†µ − {L†µLµ, ρ(t)}), (15)

where the Hamiltonian H must be of the quadratic form introduced in Eq. (3) and the
Lindblad operators are linear in Majorana operators

Lµ =
∑
j

lµ,jcj . (16)

One can prove [15, 8] that such a master equation gives rise to a Gaussian quantum channel
with

X = −H − (M +M∗), (17)
Y = 4i(M +M∗), (18)

where M has elements Mj,k =
∑
µ lµ,j l

∗
µ,k. The matrices X and Y will always be real so

that XT = X† and Y T = Y †. In the literature, there is some discussion of how such systems
decohere Majorana qubits. However, prior work has centered on only the Kitave wire and
has not considered how variables in Lindblad equations depend on the underlying system
parameters.

4 Rates of thermalisation

We quantify the decoherence by the operator norm of δ(t) := ΓρS(t) − Γρ̃S(t). In general,
||δ(t)|| ≤ 2||D(t)||2 and from the previous section we see that D(t) = eXt. Theorem IX.3.1
of Bhatia [4] shows that for any X, we have ||eXt|| ≤ ||e(X+X†)t/2|| as previously employed
in this setting by Bravyi-König [8]. Using the shorthand P := (X +X†)/2, this entails

||δ(t)|| ≤ 2||e−Pt||2 = 2e−2λP t. (19)

We know λP is non-negative, so provided P does not have any zero eigenvalues there will
be exponentially rapid decoherence. It is well known that decoherence rates are governed
by the spectral properties of P . Our contribution is investigation of the dependence of this
spectrum on microscopic factors.

The above statement holds for any pair of Gaussian states and any Gaussian channel.
We are also interested in the more specific scenario where the Gaussian states lie in the
degenerate groundspace of a physical Hamiltonian. Eigenstates of this Hamiltonian can be
simultaneously diagonalised, and similarly their covariance matrices can be simultaneously
brought into Williamson normal form. There exists a orthogonal matrix O, such that for
every pure Gaussian ψ that is a eigenstate of the Hamiltonian we have

Γψ = O

⊕
j

γψj ρ̃

OT , (20)
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where γψj ∈ {±1} distinguish different eigenstates, and

ρ̃ =
(

0 1
−1 0

)
. (21)

For some values of j, the numbers γψj tell us whether there is an excitation present. However,
for degenerate Hamiltonians there are a set of degeneracy indices G, such that γψj can vary
without creating excitations for all j ∈ G. Therefore, the covariance matrices of groundstates
break up into two blocks Γψ = O[ΓψG ⊕ ΓE ]OT where ΓE is the same for all groundstates,
and

ΓψG =
⊕
j∈G

γψj ρ̃. (22)

Let us consider two encoded ground states |ψ〉 and |φ〉. We deduce that δ = Γψ − Γφ =
O[(ΓψG − ΓφG)⊕ 0]OT where 0 is a zero matrix.

The matrix representing Hamiltonian dynamics has the same block structure as the
covariance matrices, so that H = O[HG ⊕HE ]OT . When such a system is exposed to an
environment, its dynamics are dictated by some matrix X. In many situations (including
weakly coupled Markovian systems), X will obtain the same block structure as H, so that
X = O[HG ⊕XE ]OT . It follows that

δ(t) := Γψ(t)− Γφ(t) = O[eXGt(ΓψG − ΓφG)eX
T
Gt ⊕ 0]OT . (23)

Defining PG = (XG +X†G)/2, and using the same arguments as earlier we find

||δ(t)|| ≤ e−2λPG
t||(ΓψG − ΓφG)|| ≤ 2e−2λPG

t. (24)

Therefore, the decoherence of encoded ground states is governed by the spectrum of PG =
−(XG +X†G)/2.

The above arguments tell us that two initial Gaussian states undergoing Markovian
dynamics will exponentially converge towards having identical covariance matrices. There-
fore, the probability of distinguishing these states through a single Gaussian measurement
decreases exponentially in time. However, a non-Gaussian measurement or multiple Gaussian
measurements could prove more successful. In general, any strategy for distinguishing two
states can always be captured by an observable M with eigenvalues ±1, with an average
success probability

Pr = 1
2(1 + tr[M(ρ− ρ̃)]). (25)

It is well known that Pr ≤ 1
2 ||ρ− ρ̃||tr where the trace norm is ||A||tr := tr[

√
A†A]. Therefore,

we aim to show convergence in 1-norm. We again compare two initial pure states encoding a
qubit into 4 Majorana modes, and find that the time evolved density matrices states ρ(t)
and ρ̃(t) satisfies

||ρ− ρ̃||tr ≤ 2e−2λPG
t, (26)

This follows quickly from Eq. (24) as we show in App. A.
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5 Derivation of master equation

In this section we present a weak-coupling derivation of a Gaussian master equation in the
covariance matrix formalism. Many of the steps directly mirror those made in a textbook
density matrix derivation (see e.g. Chap 3 of Ref. [31]). We assume both the system, the heat
bath and their interaction is entirely Gaussian. In addition, we make the usual assumptions
involved in deducing master equations, notably that system-bath coupling is weak and that
the system-bath are effectively uncorrelated at all times. The whole system-bath dynamics
are described by a Hamiltonian with block matrix structure

H =
(
HS −HT

I

HI HB

)
, (27)

where HS and HB represent, respectively, the system and bath Hamiltonians and satisfy
Hx = −HT

x for x = S,B. The interaction is represented by HT
I a real-valued, not necessarily

square, matrix. The initial (t = 0) system-bath convariance matrix has the form

Γ(0) =
(

ΓS(0) 0
0 ΓB

)
. (28)

Before proceeding we shift to an interaction picture, defining

Γint(t) := e(HS⊕Hb)tΓ(t)e−(HS⊕Hb)t. (29)

It follows that

dΓint(t)
dt

= [Γint(t), Hint(t)], (30)

where

Hint(t) = e(HS⊕HB)t
(

0 −HI

HI 0

)
e−(HS⊕HB)t. (31)

This simplifies to

Hint(t) =
(

0 −HT
I (t)

HI(t) 0

)
, (32)

where HI(t) = eHBtHIe
−HSt. Once in the interaction picture, we integrate over time to find

Γint(t) = Γint(0) +
∫ t

0
[Γint(s), Hint(s)]ds. (33)

Therefore the time derivative is

dΓint(t)
dt

= [Γint(0), Hint(t)] +
∫ t

0
[[Γint(s), Hint(s)], Hint(t)]ds. (34)

We are only interested in the system covariance matrix, which is the covariance reduction
{...}B of the above expression. It is straightforward to verify {[Γint(0), Hint(t)]}B = 0, so

d{Γint(t)}B
dt

=
∫ t

0
{[[Γint(s), Hint(s)], Hint(t)]}Bds. (35)

Next, we assume the coupling is weak and that the system stays uncorrelated from the bath.
Formally, this entails that Γint(s) → {Γint(t)}B ⊕ ΓB, and also that Hint(s) → Hint(t − s)
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and the integral is extended to infinity. Such assumptions directly mirror those made on the
level of Hilbert spaces and result in the expression

dΓ̃(t)
dt

=
∫ ∞

0
{[[Γint(t), Hint(t− s)], Hint(t)]}Bds, (36)

where have made use of the shorthand Γ̃(t) := {Γint(t)}B . Next we may use our knowledge
of the block structure of the covariance matrices to evaluate the commutator, and find

{[[Γint(t), Hint(t− s)], Hint(t)]}B = −HT
I (t)HI(t− s)Γ̃(t)− Γ̃(t)HT

I (t− s)HI(t)
+ HT

I (t)ΓBHI(t − s) + HT
I (t − s)ΓBHI(t).

Combining this with Eq. (36), and collecting terms to match Eq. (13) we have

dΓ̃(t)
dt

= XΓ̃ + Γ̃XT + Y, (37)

where

X = −
∫ ∞

0
HT
I (t)HI(t− s)ds, (38)

Y =
∫ ∞

0
HT
I (t)ΓBHI(t− s) +HT

I (t− s)ΓBHI(t)ds.

We have succeeded in deriving a form of a Gaussian quantum channel. Though to make
these equations meaningful we require that the integrals converge to finite values. For
finite size matrices the integrands will be periodic functions and typically do not converge
to a finite value. Whereas, in the limit of infinite matrices the eigenvalue spectrum may
become continuous and the integrand may vanish in the large s limit. Furthermore, to yield
Markovian dynamics the resulting X and Y must be time independent. Before proceeding
we can already observe that all ΓB dependence has vanished from X.

Presently, the matrix X still carries an overt time dependence, which can be removed
by making the secular approximation (SA). First we recall the explicit time dependence,
HI(t) = eHBtHIe

−HSt so that

X =
∫ ∞

0
eHStHT

I e
−HBteHB(t−s)HIe

−HS(t−s)ds,

=
∫ ∞

0
eHStHT

I e
HBsHIe

−HS(t−s)ds. (39)

We proceed by noting that HS is real and skew-Hermitian, so it has imaginary eigenvalues
iωj , eigenvectors |j〉, and a diagonal form

HS = i
∑
j

ωj |j〉〈j|. (40)

This entails

X = −
∑
j,k

∫ ∞
s

ei(ωj−ωk)t|j〉〈k|fj,k(s)eiωks,

where

fj,k(s) = 〈j|HT
I e
−HBsHI |k〉. (41)
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The SA asserts that terms with rapidly oscillating phases ei(ωj−ωk)t can be neglected, except
of course when ωj − ωk = 0. This is valid at times longer than the reciprocal of the smallest
energy gaps, t � [minωj 6=ωk

|ωj − ωk|]−1. For now, we assume this to be true, but later
we will show that a much weaker energy gap condition entails many of the same features.
Making the SA leads to:

X = −
∑
j

∑
k;ωk=ωj

|j〉〈k|
∫ ∞

0
eiωksfj,k(s)ds (42)

We see that SA has removed any dependence on t making time evolution Markovian.
Furthermore, the SA forces X to commute with HS , and so X has the same block-diagonal
structure as HS .

All matrices can be decomposed into X = −H − P where H† = −H and P † = P .
Performing just such a decomposition of X we can show, via Bochner’s theorem, that the
Hermitian part P has eigenvalues that are real and nonnegative (see App. C). Furthermore,
both matrices have real-valued elements, so H† = HT and P † = PT , which entails that H
has purely imaginary eigenvalues, just as expected. In Sec. 4 we saw that decoherence rates
are governed by P . Recall that PG is the restriction of P to the kernel of HS (equivalently
the groundspace of the associated Hamiltonian, assuming E0 = 0), and the decoherence rates
between groundstates are governed by the spectrum of PG. Furthermore, this restricted PG
matrix naturally emerges when one considers a relaxed SA assumption.

Recall that the validity of SA required that all energy gaps are large compared to a
relevant time scale. Many interesting topological systems have a degenerate groundspace
with a large gap to the first excited state, but then the spectrum of excitations will be
dense or even a continuum in the large system limit. This means that SA cannot be used to
eliminate transitions between different excited states. However, provided the groundspace
is gapped from excitations, we will have a limited application of SA that decouples X into
O(XG ⊕XE)OT and with XG describing the dynamics within the ground space. Although
SA will not apply to the dynamics XE of the excitations, we saw in Sec. 4 that decoherence
in the groundspace is governed by only XG. In particular, it is dictated by the largest
eigenvalue of PG.

6 Detailed balance and the Arrhenius law

The bath temperature only influences what state we converge to, and not how quickly we
get there. This conclusion is quite remarkable. So much so, that naively it seems to violate
some basic tenet of physics. Two candidates are the Arrhenius law and detailed balance.

The Arrhenius law is an empirical rule of thumb that has been successful in modeling
chemical reactions. Recently, it has been suggested that it may also apply to quantum
memories, though violations have been observed in various settings [24, 37, 40]. The
Arrhenius law predicts that decoherence times scale as e∆/T where ∆ is the system gap.
We have a gapped degenerate ground space, but quasiparticles from the environment can
poison the system without creating an excitation. From this perspective perhaps we should
consider ∆ = 0, and our temperature independence to be consistent with the Arrhenius law.
However, although we have focused on ground space decoherence our observation apply also
to the dynamics of excitations with a discrete spectrum. That is, the rate at which excitation
populations equilibrate is also temperature independent! Indeed, the Arrhenius law is not
a universal law and we conclude that it is absolutely violated in the domain of Gaussian
fermions.
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Detailed balance is a form of microscopic reversibility. It states that at thermal equilibrium
the population transfer is symmetric for each process. Consequently, the rate of transitions
must depend on the temperature. At first this seems to imply that decoherence rates must be
temperature dependent. Indeed, detailed balance has been used to study decoherence times
of spin (qubit) systems with the toric code Hamiltonian [2] and cubic code Hamiltonian [7].
These results revealed an exponential temperature dependence, and so one may expect this
feature to be generic. Though these are highly non-Gaussian systems. In the Gaussian
setting, Temme et al. [38] have rigorously proved very general bounds on thermalization rates.
Their analysis appears to show an explicit temperature dependence, but closer inspection
reveals variables that depend on the specific features of the bath. These variables can be
set, whilst still respecting detailed balance, to precisely cancel all temperature dependence.
We have seen that when the whole system-bath is Gaussian, this is indeed what happens.
To further illustrate that temperature independence is consistent with detailed balance we
present in App. B a very simple classical Markov process where convergence rates decouple
from temperature. Detailed balance has an esteemed history going back to Boltzmann, who
proclaimed it a key axiom of statistical mechanics and used it to great effect. However, there
has been a recent surge of interest in non-equilibrium statistical mechanics, where detailed
balance is violated, both in quantum [39, 14] and classical settings [12].

7 Comments on prior work

Mazza et al. [25] studied the effect of various noise models on the 1-dimensional Kitaev
chain. Their main result is that various Hamiltonian perturbations will decohere the system,
but this decoherence is suppressed by increasing the length of the Kitaev chain. Mazza et
al. conclude their paper by also discussing a more destructive noise model, open systems
dynamics (see pg.4 of Ref. [25]). This model is a master equation with the Hamiltonian of
the standard Kitaev wire (with chemical potential set to zero), and Lindblad operators

Lµ = ηa†µ = η
1
2(c2µ−1 + ic2µ), (43)

which allows for fermions hopping to the environment and where we use η to parameterize
the strength of the hopping. They give numerical plots for decoherence of this model, but it
can also be understood analytically. We proceed by casting these master equations in the
language of covariance matrices, and find

M = η2

4
⊕
j

(
1 i

−i 1

)
. (44)

Composing M +M∗ will cancel the imaginary parts, giving

X = −H − (M +M∗) = −H − η2

2 1, (45)

Note that the eigenvalues of H are purely imaginary so that eHt is unitary, but the dissipative
component adds a constant real negative component. We have that D(t) = eXt = e−η

2t/2eRt

and eXT t = e−η
2t/2eH

T t. Therefore, decoherence occurs at the rate ||D(t)|| = e−η
2t/2. Here

it is clear that system size and Hamiltonian gap play no role, provided η is not a function of
these variables. Mazza et al. do not discuss how η itself might depend on the energy gap or
on temperature.

Budich et al. [10] made similar observations. They considered two models where only the
end of a Kitaev wire couples to the environment. In both models the system-environment
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coupling has the form Hint = Abathc1 where Abath is some operator acting on the bath.
They also considered the standard Kitaev chain with zero chemical potential, so that the
interaction commuted with the system Hamiltonian. They observed rapid decoherence of
Majorana edge modes, with no dependence on the energy gap. These toy models are excellent
ways to illustrate a serious deficit in prior claims to effectiveness of topological protection of
Majorana edge modes. However, they tell us little about what to expect when the interaction
and Hamiltonian do not commute. Furthermore, one may also wish to consider much more
exotic models, such as Majorana fermions in 2D systems or even higher dimensions. These
gaps in previous work are now filled by the more general insights presented here.

8 Conclusions and acknowledgements

We have seen that decoherence of Gaussian fermionic systems cannot be reduced by cooling.
For Markovian dynamics, we provided a microscopic derivation of the master equation
in the weak coupling limit, leading to exponentially fast decoherence. Therefore, to use
Gaussian systems as a quantum memory they must be either highly non-Markovian or
have minimal tunneling with any nearby Gaussian heat baths. Eliminating tunneling is
potentially challenging when in any of the many popular proposals for acquiring topological
order through the proximity effect [17, 36]. In these proposals, electron hopping with an
external s-wave superconductor is the mechanism by which topological robustness is acquired.
Both electron hopping and the superconducting Hamiltonian are Gaussian, and so this opens
the door to temperature invariant decoherence. For such systems it is urgent that we acquire
a better understanding of the proximity effect from an open systems perspective.

After completing this work, the author forwarded the manuscript to Leonardo Mazza who
in return kindly shared several unpublished yet interesting results [26, 19, 20]. These tackle
related problems of interactions with fermionic baths, including various numerical simulations
of small fermionic (and bosonic) baths and numerous analytic insights. Particularly relevant
is Sec. 7 of his PhD thesis [26], where Mazza makes several observations also made here,
although does he not remark on the temperature independence of decoherence rates.

We thank Pieter Kok and Keith Burnett for interesting discussions on Majorana fermions
that lead to this research. We thank Michael Kastoryano, Tomaz Prozen, Jens Eisert and
Leonardo Mazza for comments on the manuscript.
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A Trace norm convergence

We assume initial states of the form ρ(0) = |ψ〉〈ψ| = |ψG〉〈ψG|⊗MG⊥ and ρ̃(0) = |φ〉〈φ|⊗MG⊥

encoding different qubit states. These initial states differ only on 4-Majorana modes within
the groundspace, and the evolution of the covariance matrix shows that this property holds
at later times so that

ρ(t) = ρG(t)⊗MG⊥ , ρ̃(t) = ρ̃G(t)⊗MG⊥ . (46)

Therefore,

||ρ(t)− ρ̃(t)||tr = ||(ρG(t)− ρ′G(t))⊗MG⊥ ||tr
= ||ρG(t)− ρ′G(t)||tr, (47)

where we have used ||A ⊗ B||tr = ||A||tr||B||tr and ||MG⊥ ||tr = 1. The Hilbert space of 4
Majorana modes supports one qubit in the even parity subspace and one qubit in the odd
parity subspace. In other words, ρG(t) = ρ

(0)
G (t)⊕ρ(1)

G (t) and similarly ρ̃G(t) = ρ̃
(0)
G (t)⊕ρ̃(1)

G (t).
Using ||A⊕B||tr = ||A||tr + ||B||tr we have

||ρ(t)− ρ̃(t)||tr =
∑
x=0,1

||ρ(x)
G (t)− ρ̃(x)

G (t)||tr. (48)

For a single qubit, we have ||ρ||tr = maxρ̃∈Btr[ρ̃ρ] where the maximum is over all single qubit
Hermitian unitary operators, such as the Pauli spin operators. In a Majorana encoding
the Pauli spin operators, indeed all single qubit Hermitian unitary operators, are quadratic
observables. These expectation values never exceed the operator norm of the δ(t). Therefore,

||ρ(t)− ρ̃(t)||tr ≤ ||δ(t)||. (49)

Finally, we make use of Eq. (24) to arrive at Eq. (26).
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B Remarks on detailed balance

Here we describe the concept of detailed balance for 2-state systems. We show in this simple
setting the concept is consistent with temperature invariant decoherence rates. Furthermore,
we show that Gaussian 2-mode Markov processes always obey this principle. Consider, a
classical system with two possible states, with probabilities described by a Markov chain

v =
(
v1
v2

)
=
(

p

1− p

)
. (50)

For simplicity we consider time to be in discrete steps, with a transition matrix

P =
(
P1→1 P2→1
P1→2 P2→2

)
, (51)

so that v(t) = P tv. Conserving flow of probability requires Pk→1 + Pk→2 = 1 for k = 1, 2.
We say π is a stationary state of P , if Pπ = π, and where π := (α, 1−α). The process P

satisfies detailed balance if

P1→2α = P2→1(1− α). (52)

One can think of π as a thermal distribution, so α = Z exp(−E1β) and (1−α) = Z exp(−E2β),
where Z = exp(−E1β) + exp(−E2β) is the partition function. As usual, β is inverse
temperature. In this thermal language, detailed balance entails that

P2→1

P1→2
= α

1− α = exp(∆β), (53)

where ∆ is the energy gap E2 − E1. It appears that the (ratio of) transition rates depend
on the temperature of the steady state, and so one might be tempted to conclude that
convergence rates likewise depend on temperature.

The conservation of probability and detailed balance give 3 independent linear constraints
on P , out of the 4 parameters of the matrix. Therefore, the space of valid matrices is
1-dimensional and includes

P1 =
(

1 0
0 1

)
, Pπ =

(
α α

1− α 1− α

)
. (54)

Both matrices satisfy Eq. (52). Furthermore, for all Markov chains v we have P1v = v and
Pπv = π. The whole set of suitable matrices is contained in the span of these matrices,

Pη = (1− η)P1 + ηPπ

=
(
ηα+ (1− η) ηα

η(1− α) η(1− α) + (1− η)

)
, (55)

with 0 ≤ η ≤ min[1/α, 1/(1 − α)] ≤ 2 to ensure Pi→j ∈ [0, 1]. Within these limits, η is a
free parameter. We consider a general initial probability distribution it always has the form
v = π + pρ̃ for some value p, where ρ̃ = (1,−1). It is easy to confirm P1ρ̃ = ρ̃ and Pπρ̃ = 0.
Therefore, Pv = (1− η)v + ηπ = π + p(1− η)ρ̃ and for t time steps this extends to

v(t) = P tv = π + p(1− η)tρ̃. (56)

This clearly shows exponentially rapid convergence to the equilibrium state at a speed
governed by η. More precisely, using any norm || . . . || to measure distance we have

||v(t)− π|| = p|1− η|t||ρ̃||. (57)
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The convergence speed is entirely independent of temperature, and only depends on the
free parameter η. The only temperature dependence lies in η ≤ min[1/α, 1/(1− α)], since
α depends on temperature. However, α ∈ [0, 1] and so the range η ∈ [0, 1] is valid at all
temperatures. Therefore we can consider a family of Markov process with varying temperature
and constant η ∈ [0, 1]. This family is consistent with detailed balance, but has a convergence
rate independent of temperature.

The convergence rate could vary with temperature if η is a non-constant function of
temperature. Although, there is no reason a piori to favour one function for η over another.
Certainly, many possible temperature dependencies are consistent with detailed balance.
Unless, one has a physical model of the encompassing system and can perform a microscopic
derivation of the Markov process, and so derive η. This is exactly what we have performed
for the case of Gaussian fermions, showing the analogous result of temperature independent η.
Lastly, we remark that this entire discussion can be recast in continuous time by considering
P to be the generator of a Markov process with transition matrix Q(t) = ePt.

It is still interesting to ask if Gaussian Markov processes obey detailed balance. Let us
just consider a pair of modes, with a 2-by-2 covariance matrix

Γ =
(

0 −λ
λ 0

)
(58)

The physical system is in one of two states (superpositions are disallowed by fermion parity
superselection), with probability p = (1 + λ)/2 and 1− p = (1− λ)/2. A Markov process
maps Γ→ XΓXT + Y where Y is skew-symmetric. Under this process, we find some x, y
such that λ → xλ + y. Therefore, p → px + 1

2 (1 + y − x) and the probability transition
matrix has the form

P =
( 1

2 (1 + x+ y) 1
2 (1− x+ y)

1
2 (1− x− y) 1

2 (1 + x− y)

)
(59)

In the steady state pss = pssx+ 1
2 (1 + y − x) and so that

pss = 1− x+ y

2(1− x) ,

1− pss = 1− x− y
2(1− x) .

Therefore,

pss

1− pss
= 1− x+ y

1− x− y = P2→1

P1→2
(60)

so that detailed balance is satisfied for all x, y.

C Application of Bochner’s theorem

Here we show that the Hermitian part of X has strictly negative eigenvalues. The proof makes
use of Bochner’s theorem, which relates properties of functions to their Fourier transform.
To introduce this theorem, we first define the concept of functions of positive-type

I Definition 1. An absolutely integrable function φ : C→ C is of positive type if for all sets
of complex numbers {c1, c2, . . .} the following summation is real-valued and positive∑

n,m

c∗ncmφ(cn − cm) ≥ 0. (61)
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Note that being of positive type is very different from a function taking positive values.
Now we can state

I Theorem 2. Bochner’s theorem: Let φ be an absolutely integrable function. The fourier
transformed function φ̃ is a real-valued positive function if and only if φ is of positive type.

Returning to the problem at hand, B = (X +X†)/2 is Hermitian by construction. From
Eq. (41) we already have an expression for X, and considering X† we observe that

X† = −
∑
j

∑
k,ωk=ωj

|k〉〈j|
∫ ∞

0
eiωksf∗j,k(s)ds,

=
∑
j

∑
k,ωk=ωj

|k〉〈j|
∫ −∞

0
eiωksf∗j,k(−s)ds, (62)

where we have made the change of variables s→ −s. Switching the order of integration,

X† = −
∑
j

∑
k,ωk=ωj

|k〉〈j|
∫ 0

−∞
eiωksf∗j,k(−s)ds. (63)

Next, we use that f∗j,k(−s) = fk,j(s), which can be seen from

f∗j,k(−s) = 〈j|H†I e
HBsHI |k〉†,

= 〈k|H†I e
−H†

B
sHI |j〉, (64)

and using H†B = HT
B = −HB we have the result. Applying this to our expression for X†,

and switching the dummy variables j ↔ k gives

X† = −
∑
j

∑
k,ωk=ωj

|j〉〈k|
∫ 0

−∞
eiωksfj,k(s)ds. (65)

This differs from X in only the domain of the integral and so

X† +X = −
∑
j

∑
k,ωk=ωj

|j〉〈k|
∫ ∞
−∞

eiωksfj,k(s)ds.

For each set of variables, j, k, the integral is a Fourier transform of fj,k evaluated at ωk, so

X† +X = −
∑
j

∑
k,ωk=ωj

|j〉〈k|f̃j,k(s)ds.

Notice, we have denoted Fourier transforms with a tilde. Next, we show that fj,k is of
positive-type. For all {c1, c2, . . .}∑

n,m

c∗ncmfj,k(cn − cm) = 〈w|w〉, (66)

where

|w〉 =
∑
m

cme
HBcmHI |k〉. (67)

Since 〈w|w〉 ≥ 0, we can apply Bochner’s theorem and conclude that all f̃j,k(ωk) are positive
and real. If HS is a nondegenerate matrix, then there would be no multiplicity of eigenvectors
with the same eigenvalue and −f̃k,k(ωk) would represent the real-negative eigenvalues of
X +X†. However, for degenerate matrices there is a freedom of choice in the basis {|k〉}, but
we can always set this to be the eigenbasis of X +X†. Therefore, X +X† has real negative
eigenvalues.
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Abstract
We investigate structural properties of the completely positive semidefinite cone CSn

+, consisting
of all the n × n symmetric matrices that admit a Gram representation by positive semidefinite
matrices of any size. This cone has been introduced to model quantum graph parameters as
conic optimization problems. Recently it has also been used to characterize the set Q of bipartite
quantum correlations, as projection of an affine section of it. We have two main results concerning
the structure of the completely positive semidefinite cone, namely about its interior and about
its closure. On the one hand we construct a hierarchy of polyhedral cones which covers the
interior of CSn

+, which we use for computing some variants of the quantum chromatic number
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1 Introduction

General background
Entanglement, one of the most peculiar features of quantum mechanics, allows different
parties to be correlated in a non-classical way. Properties of entanglement can be studied
through the set of bipartite quantum correlations, commonly denoted as Q, consisting of
the conditional probabilities that two physically separated parties can generate by perform-
ing measurements on a shared entangled state. More formally, a conditional probability
distribution (P (a, b|x, y))a∈A,b∈B,x∈X,y∈Y is called quantum if P (a, b|x, y) = ψ†Ea

x ⊗ F b
yψ

for some unit vector ψ in a finite dimensional Hilbert space H and some sets of positive
semidefinite matrices (aka measurement operators) {Ea

x : a ∈ A} and {F b
y : b ∈ B} satisfying∑

a∈A E
a
x = I and

∑
b∈B F

b
y = I for all x ∈ X, y ∈ Y . Clearly, we can equivalently assume

that the unit vector ψ is real valued and that Ea
x , F

b
y are real valued positive symmetric

operators. We will assume this throughout the paper. Here we consider the case of two
parties (aka the bipartite setting) and the sets X,Y (resp., A,B) model the possible inputs
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(resp., outputs) of the two parties, assumed throughout to be finite. While the set of classical
correlations (those obtained using only local and shared randomness) forms a polytope so
that membership can be decided using linear programming, the set Q of quantum correla-
tions is convex but with infinitely many extreme points and its structure is much harder
to characterize. An open question in quantum information is whether allowing an infinite
amount of entanglement, i.e., allowing the Hilbert space H in the above definition to be
infinite dimensional, gives rise to a probability distribution P which is not quantum [28]. In
other words, it is not known whether the set of quantum correlations Q is closed.

A setting which is frequently used to study the power of quantum correlations is the
one of nonlocal games. In a nonlocal game a referee gives to each of the two cooperating
players a question and, without communication throughout the game, they have to answer.
According to some known predicate, which depends on the two questions and on the two
answers, the referee determines whether the players have won or lost the game. In a quantum
strategy the players can use quantum correlations to answer. The quantum coloring game
is a particular nonlocal game that has received a substantial amount of attention lately
[1, 8, 25, 24, 14, 19, 23]. Here, each of the two players receives a vertex of a fixed graph G.
They win if they output the same color upon receiving the same vertex or if they output
different colors on pairs of adjacent vertices. The quantum chromatic number χq(G) is the
minimum number of colors that the players must use as output set in order to win the
coloring game on all input pairs with a quantum strategy. It is not hard to see that if the
players are restricted to classical strategies then the minimum number of colors they need to
win the game on all input pairs is exactly the classical chromatic number χ(G).

Like its classical analog the quantum chromatic number is an NP-hard graph parame-
ter [14]. Moreover, it is also lower bounded by the theta number [25], which can be efficiently
computed with semidefinite programming. However, it appears to be hard to find non-trivial
improved upper and lower bounds to χq(G). With the intention of better understanding
χq(G) and other related quantum graph parameters, two of the authors have introduced the
completely positive semidefinite cone CSn

+ [19].
Throughout Sn is the set of real symmetric n× n matrices and Sn

+ the subset of positive
semidefinite matrices; 〈X,Y 〉 = Tr(XY ) is the trace inner product and Tr(X) =

∑n
i=1 Xii

for X,Y ∈ Sn. Then, CSn
+ consists of all matrices A that admit a Gram representation

by positive semidefinite matrices, i.e., such that A = (〈Xi, Xj〉)n
i,j=1 for some matrices

X1, . . . , Xn ∈ Sd
+ and d ≥ 1. (When we do not want to specify the size of the matrices

in CSn
+ we omit the superscript and write CS+.) Using an equivalent formulation of the

quantum chromatic number proven in [8], it is shown in [19] that the parameter χq(G) can
be rewritten as a feasibility program over the completely positive semidefinite cone:

χq(G) = min t ∈ N s.t. ∃A ∈ CSnt
+ , A ∈ At and LG,t(A) = 0. (1.1)

Here, n is fixed and equal to the number of vertices of the graph G while t is the variable
that triggers the size of the matrix variable A in the above program. Indeed, A is indexed by
V (G)× [t]. With At we represent the affine space in Snt defined by the equations∑

i,j∈[t]

Aui,vj = 1 for u, v ∈ V (G), (1.2)

and with LG,t : Snt → R we denote the linear map defined by

LG,t(A) =
∑

u∈V (G),i6=j∈[t]

Aui,uj +
∑

uv∈E(G),i∈[t]

Aui,vi. (1.3)
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Notice that any matrix in CS+ is positive semidefinite. Moreover it has nonnegative
entries because the inner product of two positive semidefinite matrices is nonnegative. Hence
the condition LG,t(A) = 0 is equivalent to requiring that all the terms in the sum in (1.3)
are equal to zero. The constraint A ∈ At models that the players are using a conditional
probability distribution for their strategy, while LG,t(A) = 0 imposes that they have a
winning strategy for the coloring game. The structure of the matrix cone CS+ is still largely
unknown. In particular it is not known whether the cone CS+ is a closed set.

By replacing in (1.1) the cone CS+ by its closure cl(CS+), we get another graph parameter,
denoted as χ̃q(G). Namely,

χ̃q(G) = min t ∈ N s.t. ∃A ∈ cl(CSnt
+ ), A ∈ At and LG,t(A) = 0. (1.4)

Clearly, χ̃q(G) ≤ χq(G), with equality if CS+ is closed. This parameter, which was introduced
in [19], will be studied in this paper.

Interestingly, Mančinska and Roberson [20] showed recently that the set Q of quantum
bipartite correlations can also be described in terms of the completely positive semidefinite
cone. They show that Q can be obtained as the projection of an affine section of the
completely positive semidefinite cone.

I Theorem 1 ([20]). A conditional probability distribution P = (P (a, b|x, y)) with input sets
X,Y and output sets A,B is quantum (i.e., P ∈ Q) if and only if there exists a matrix
R ∈ CS+ indexed by (X ×A) ∪ (Y ×B) satisfying the conditions:∑

a,a′∈A

Rxa,x′a′ = 1 for all x, x′ ∈ X, (1.5)

∑
b,b′∈B

Ryb,y′b′ = 1 for all y, y′ ∈ Y, (1.6)

∑
a∈A,b∈B

Rxa,yb = 1 for all x ∈ X, y ∈ Y, (1.7)

Rxa,yb = P (a, b|x, y) for all a ∈ A, b ∈ B, x ∈ X, y ∈ Y. (1.8)

In other words, Q = π(CSN
+ ∩ Bt) where N = |(X × A) ∪ (Y × B)|, Bt is the affine space

defined by the constraints (1.5), (1.6) and (1.7), and π is the projection onto the subspace
indexed by (X ×A)× (Y ×B) (defined by (1.8)).

Notice that any feasible matrix R to the above program has the form
(

R1 P

P T R2

)
, where R1 is

indexed byX×A, R2 is indexed by Y ×B and each entry of P is such that Pxa,yb = P (a, b|x, y).
As shown in [20], if the completely positive semidefinite cone is closed then the set Q of

quantum bipartite correlations too is closed. Indeed, the constraints (1.5)-(1.7) imply that
the set CS+ ∩ Bt is bounded. Hence, if CS+ is closed then CS+ ∩ Bt is compact and thus its
projection Q = π(CS+ ∩ Bt) is compact.

Our contributions
The results of this paper are twofold. First we construct a hierarchy of polyhedral cones
that asymptotically covers the interior of the completely positive semidefinite cone CS+.
Moreover we show how this hierarchy can be used to study the quantum chromatic number.
In particular we build a hierarchy of linear programs, among which one of them permits to
compute the variant χ̃q(G) in (1.4) of the parameter χq(G). This idea can also be applied to
compute variants of other versions of the quantum chromatic number; we will indicate how

TQC’15
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to do that for the variant χ̃qa(G) of the parameter χqa(G) considered in [23]. See below for
some details and Sections 2 and 3 for the proofs.

As a second main contribution we provide an explicit description of the closure of the
cone CS+, in terms of tracial ultraproducts of matrix algebras. Moreover we exhibit a larger
cone, containing CS+, which can be interpreted as an infinite dimensional analog of CS+.
This cone consists of the matrices which admit a Gram representation by (a specific class
of) positive semidefinite operators on a possibly infinite dimensional Hilbert space instead
of Gram representations by finite positive semidefinite matrices. We can in fact show that
this larger cone is indeed a closed cone and that it is equal to cl(CS+) if Connes’ embedding
conjecture holds true. Since the description of these cones involve quite some notation and
concepts from operator theory we skip a preliminary description of the used methods and
refer directly to Section 4 which can be read independently of the other part.

In summary, our results give structural information about the completely positive semidef-
inite cone CS+ which come in two flavors, depending whether we consider its interior or its
boundary.

We now give some more details about our first contribution. In a nutshell, the idea for
building the hierarchy of polyhedral cones is to discretize the set of positive semidefinite
matrices by rational ones with bounded entries. Namely, given an integer r ≥ 1, we define the
cone Cn

r as the conic hull of all matrices A that admit a Gram representation by r× r positive
semidefinite matrices X1, . . . , Xn whose entries are rational with denominator at most r and
satisfy

∑n
i=1 Tr(Xi) = 1. We show that the cones Cn

r and their dual cones Dn
r = Cn∗

r satisfy
the following properties:

int(CSn
+) ⊆

⋃
r≥1
Cn

r ⊆ CS
n
+ and CSn∗

+ =
⋂
r≥1
Dn

r .

Moreover, for any fixed r, linear optimization over the cone Cn
r can be performed in polynomial

time in terms of n. This discretization idea was also used in the classical (scalar) setting,
where a hierarchy of polyhedral cones is constructed to approximate the completely positive
cone (consisting of all matrices that admit a Gram representation by nonnegative vectors) and
its dual, the copositive cone (see [29]). Our construction is in fact inspired by this classical
counterpart. Discretization is also widely used in optimization to build good approximations
for polynomial optimization problems over the standard simplex or for evaluating tensor
norms (see e.g. [3], [17], the recent work [6] and references therein).

One of the difficulties in using the cone CS+ for studying the quantum parameter χq(G)
or general quantum correlations in Q stems from the fact that the additional affine conditions
posed on the matrix A ∈ CS+ imply that it must lie on the boundary of the cone CS+. This
is the case for instance for the conditions that A must belong to the affine space At in (1.2),
or the condition LG,t(A) = 0 in (1.3), or the conditions (1.5), (1.6) and (1.7). Since we
do not know whether the cone CS+ is closed, this is why we may get different parameters
depending whether we use the cone CS+ or its closure.

In order to be able to exploit the fact that the cones Cn
r asymptotically cover the full

interior of CSn
+, we will relax the affine constraints (using a small perturbation) to ensure

the existence of a feasible solution in the interior of the cone CS+. In this way we will be
able to get a hierarchy of parameters that can be computed through linear programming
and give the exact value of χ̃q(G). We remark that this result is existential, we can prove
the existence of a linear program permitting to compute the quantum parameter but we do
not know at which stage this happens. This result should be seen in the light of a recent
result of the same flavor proved in [23]. The authors of [23] consider yet another variant
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χqc(G) of the quantum parameter χq(G), satisfying χqc(G) ≤ χq(G), and they show that
χqc(G) can be computed with a positive semidefinite program (also not explicitly known).
The definition of χqc(G) is given below.

Link to other variants of the quantum chromatic number
In the papers [24, 23], Paulsen and coauthors have introduced many variants of the quantum
chromatic number motivated by the study of quantum correlations. We recall two of them,
the parameters χqa(G) and χqc(G), in order to pinpoint the link to our parameter χ̃q(G)
and to our approach.

Recall that the quantum chromatic number χq(G) is the minimum number of colors
that the players must use to always win the corresponding coloring game with a quantum
strategy. In other words, this is the minimum integer t for which there exists a probability
P = (P (i, j|u, v)) ∈ Q with input sets X = Y = V (G) and output sets A = B = [t], such
that P (i, j|u, u) = 0 for all i 6= j ∈ [t] and u ∈ V (G), and P (i, i|u, v) = 0 for all i ∈ [t] and
uv ∈ E(G). For convenience, in the following paragraphs we will omit the dependence of P
on t, which should be considered as implicit. Forcing the probability of these combinations of
inputs and output to be zero imposes that the players have a winning strategy. We combine
those constraints into a single one by defining the linear map LG,t : R(nt)2 → R by

LG,t(P ) =
∑

i 6=j∈[t],u∈V (G)

P (i, j|u, u) +
∑

i∈[t],uv∈E(G)

P (i, i|u, v).

Then, the players have a winning strategy if and only if the probability P satisfies LG,t(P ) = 0.
The following is the original definition of χq(G) in [8]:

χq(G) = min t ∈ N s.t. ∃P ∈ Q with LG,t(P ) = 0.

In [8] it is shown that in the coloring game the optimal quantum strategy is symmetric: the
two players perform the same action upon receiving the same input. This special additional
structure of the coloring game is the reason why χq(G) can be equivalently reformulated as
in (1.1).

The parameter χqa(G) defined in [24] asks the probability P to be in the closure of Q:

χqa(G) = min t ∈ N s.t. ∃P ∈ cl(Q) with LG,t(P ) = 0.

Hence, the following relationship holds: χqa(G) ≤ χq(G).
The authors of [24] (see also [23]) furthermore considered probability distributions arising

from the relativistic point of view. Roughly, instead of assuming that the measurement
operators act on different Hilbert spaces so that joint measurements have a tensor product
structure, in the relativistic model the measurement operators act on a common Hilbert space
and the operators of the two parties commute mutually. In this case, joint measurement
operators have a product structure. More formally, a correlation P = (P (a, b|x, y)) is obtained
from relativistic quantum field theory if it is of the form P (a, b|x, y) = ψ†Ea

xF
b
yψ, where ψ is

a unit vector in a (possibly infinite dimensional) Hilbert space H, Ea
x and F b

y are positive
operators on H satisfying

∑
a∈A E

a
x = I =

∑
b∈B F

b
y for all x ∈ X, y ∈ Y and Ea

xF
b
y = F b

yE
a
x

for all a ∈ A, b ∈ B, x ∈ X, y ∈ Y . We denote by Qc the set of quantum bipartite correlations
arising from the relativistic point of view. The set Qc is closed (see e.g. [12, Proposition 3.4])
and the following inclusions hold:

Q ⊆ cl(Q) ⊆ Qc. (1.9)
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Deciding whether equality Qc = cl(Q) holds is known to be equivalent to Connes’ embedding
conjecture (see [22, 12, 15]) and deciding whether Qc = Q is known as Tsirelson’s problem.

In [24] the parameter χqc(G) is defined as

χqc(G) = min t ∈ N s.t. ∃P ∈ Qc with LG,t(P ) = 0.

In [23] it is shown that χqc(G) can be computed by a positive semidefinite program (after
rounding). This result is existential, meaning that the program is not explicitly known. For
this the authors of [23] use the semidefinite programming hierarchy developed by Navascués,
Pironio and Acín [21] for noncommutative polynomial optimization. This technique can be
applied since the definition of χqc(G) is in terms of products of operators. Note that this
technique cannot be applied to the parameters χqa(G) and χq(G) whose definitions involve
tensor products of operators. It is not know whether the parameters χqa(G) and χq(G) can
be written as semidefinite programs. As pointed out in [23], in view of the inclusions in (1.9),
the following relationships hold between the parameters:

χqc(G) ≤ χqa(G) ≤ χq(G).

Using Theorem 1, we can reformulate the parameters χq(G) and χqa(G) as feasibility
problems over affine sections of the cones CS+ and cl(CS+), respectively. Namely, we have

χq(G) = min t s.t. ∃P ∈ π(CS2nt
+ ∩ Bt) with LG,t(P ) = 0, and

χqa(G) = min t s.t. ∃P ∈ cl(π(CS2nt
+ ∩ Bt)) with LG,t(P ) = 0.

Recall that we introduced the variant χ̃q(G) by replacing the cone CS+ by its closure in the
definition (1.1) of χq(G). Analogously, we introduce the variant χ̃qa(G) by replacing CS+ by
its closure in the above definition of χqa(G). Namely,

χ̃qa(G) = min t s.t. ∃P ∈ π(cl(CS2nt
+ ) ∩ Bt) with LG,t(P ) = 0. (1.10)

Note that the set cl(CS+)∩Bt is bounded, thus compact, so that its projection π(cl(CS+)∩Bt)
is compact too. Hence the inclusion CS+ ∩ Bt ⊆ cl(CS+) ∩ Bt implies:

cl(π(CS+ ∩ Bt)) ⊆ π(cl(CS+) ∩ Bt)

and thus the following relationship: χ̃qa(G) ≤ χqa(G). In Section 3 we will show that χ̃qa

can be computed with a linear program.
Moreover, note that if a matrix A is feasible for the program (1.4) defining χ̃q(G), then the

matrix R = ( A A
A A ) is feasible for the program (1.10) defining χ̃qa(G). Hence, χ̃qa(G) ≤ χ̃q(G)

holds.

The relationship between the parameters χq(G), χqc(G), χqa(G) and χ̃qa(G), χ̃q(G) can
be summarized as follows:

χqc(G) ≤ χqa(G) ≤ χq(G)

≤ ≤

χ̃qa(G) ≤ χ̃q(G)

2 Polyhedral approximations of CS+ and its dual cone CS∗+
In this section we construct hierarchies of polyhedral cones converging asymptotically to the
completely positive cone and its dual. We start in Section 2.1 by recalling the definition
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of CS+ and of CS∗+ as well as some useful properties and introduce the new hierarchy in
Section 2.2. The construction of our polyhedral hierarchy is directly inspired from the
classical case where analogous hierarchies of polyhedral cones exist for approximating the
completely positive cone CPn and the copositive cone COPn; in Appendix A we recall this
construction.

2.1 The completely positive semidefinite cone and its dual
The completely positive semidefinite cone was introduced in [19] to study graph parameters
arising from quantum nonlocal games and quantum information theory. It has also been
considered implicitly in [13].

Recall that a matrix A ∈ Sn is positive semidefinite if and only if it admits a Gram
representation by vectors, i.e., if A = (〈xi, xj〉)n

i,j=1 for some x1, . . . , xn ∈ Rd and d ≥ 1. We
write A � 0 (resp., A � 0) when A is positive semidefinite (resp., positive definite) and Sn

+ is
the set of positive semidefinite matrices.

I Definition 2. The completely positive semidefinite cone CSn
+ is the set of symmetric

matrices A which admit a Gram representation by positive semidefinite matrices, i.e.,
A = (〈Xi, Xj〉)i,j for some X1, . . . , Xn ∈ Sd

+ and d ∈ N.

The completely positive cone CPn is the set of symmetric matrices that admit a Gram
representation by nonnegative vectors: A ∈ CPn if A = (〈xi, xj〉)i,j for some x1, . . . , xn ∈ Rd

+
and d ∈ N. Hence CPn can be considered as the classical analog of CSn

+. Clearly every
completely positive semidefinite matrix is positive semidefinite and nonnegative, and every
completely positive matrix is completely positive semidefinite. That is, we have the following
relationships between these cones:

CPn ⊆ CSn
+ ⊆ Sn

+ ∩ Rn×n
+ .

In [19] it is shown that all these inclusions are strict for n ≥ 5 (see also [13]). For n ≤ 4 it is
well known that CPn = Sn

+ ∩ Rn×n
+ . For this and other properties of CP we refer the reader

to the book [5]. Both CPn and Sn
+ are closed cones, while we do not know whether CSn

+ is
closed.

Moving on to the dual side, as noted in [19], the dual cone of CSn
+ has a simple characteriza-

tion in terms of trace nonnegative polynomials. Given a matrixM ∈ Sn, define the polynomial
pM =

∑n
i,j=1 Mijxixj in n noncommutative variables. ThenM belongs to the dual cone CSn∗

+
precisely when Tr(pM (X1, . . . , Xn)) ≥ 0 for all n-tuples X = (X1, . . . , Xn) ∈ ∪d≥1(Sd

+)n.
If we require nonnegativity only for all X ∈ Rn

+ (i.e., the case d = 1), which amounts to
requiring that the polynomial pM takes nonnegative values when evaluated at any point
in Rn

+, then the matrix M is said to be copositive; COPn denotes the cone of copositive
matrices. The cones CPn and COPn are dual to each other: COPn = CPn∗ and, by duality,
we have the inclusions:

Sn
+ + (Sn ∩ Rn×n

+ ) ⊆ CSn∗
+ ⊆ COP

n.

As will be explained in detail in Section 3, in order to be able to use our polyhedral
hierarchy, we will need to have matrices that are in the interior of CS+. Recall that a
matrix A ∈ CS+ lies in the interior of CS+ if and only if 〈A,M〉 > 0 for all nonzero matrices
M ∈ CS∗+. Hence, A lies in the boundary of CS+ if and only if there exists a nonzero matrix
M ∈ CS∗+ such that 〈A,M〉 = 0. For further reference we observe that matrices in CS+ with
a zero entry, or lying in the affine spaces At or Bt, lie in the boundary of CS+.
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I Lemma 3. Consider a matrix A in the cone CS+ (of appropriate size). Then A lies in
the boundary of CS+ in any of the following cases: (i) A has a zero entry; (ii) A belongs to
the affine space At defined by (1.2), or (iii) A belongs to the affine space Bt defined by the
conditions (1.5), (1.6) and (1.7).

2.2 The new cones Cn
r and Dn

r

We now introduce the cones Cn
r , which will form a hierarchy of inner approximations for the

cone CSn
+, and the cones Dn

r , which will form a hierarchy of outer approximations for the
dual cone CSn∗

+ . These cones are in fact dual to each other, so it suffices to define the cones
Dn

r . The idea is simple and analogous to the idea used in the classical (scalar) case: instead
of requiring trace nonnegativity of the polynomial pM over the full set ∪d≥1(Sd

+)n, we only
ask trace nonnegativity over specific finite subsets. We start with defining the set

∆n = {X = (X1, . . . , Xn) ∈
⋃
d≥1

(Sd
+)n :

n∑
i=1

Tr(Xi) = 1}, (2.1)

which can be seen as the dimension-free matrix analog of the standard simplex ∆n in Rn.
As we now observe, a matrix M belongs to CSn∗

+ if and only if its associated polynomial pM

is trace nonnegative on all n-tuples of rational matrices in ∆n (see Appendix C for a proof).

I Lemma 4. M ∈ CSn∗
+ if and only if Tr(pM (X)) ≥ 0 for all X ∈∆n with rational entries.

This motivates introducing the following subset ∆(n, r) of the set ∆n, obtained by
considering only n-tuples of rational positive semidefinite matrices with denominator at most
r. This set can be seen as a matrix analog of the rational grid point subsets of the standard
simplex ∆n and it permits to define the new cones Dn

r .

I Definition 5. Given an integer r ∈ N, define the set

∆(n, r) = {X ∈∆n : each Xi has rational entries with denominator ≤ r}

and define the cone

Dn
r = {M ∈ Sn : Tr(pM (X)) ≥ 0 ∀X ∈∆(n, r)}.

Next we show that the cone Dn
r is a polyhedral cone. Indeed, as we observe below,

although the set ∆(n, r) is not finite, we may without loss of generality replace in the
definition of Dn

r the set ∆(n, r) by its subset ∆(n, r), obtained by restricting to r × r

matrices X1, . . . , Xn. The next lemma is proved in Appendix C.

I Lemma 6. Define the set

∆(n, r) = {X ∈ (Sr
+)n :

n∑
i=1

Tr(Xi) = 1, each Xi has rational entries with denominator ≤ r}.

Then, equality holds:

Dn
r = {M ∈ Sn : Tr(pM (X)) ≥ 0 ∀X ∈∆(n, r)}.

I Lemma 7. For any fixed r, the cardinality of the set ∆(n, r) is polynomial in terms of
n. More precisely, let γr denote the number of r × r positive semidefinite matrices whose
entries are rational with denominator at most r and whose trace is at most one. Then,
|∆(n, r)| ≤ (γr)r if n ≤ r, and |∆(n, r)| ≤

(
n
r

)
(γr)r if n > r.
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Notice that Tr(pM (X)) =
∑

i,j Mij〈Xi, Xj〉 for any X = (X1, . . . , Xn). Hence, the cone
Dn

r can be equivalently defined as the set of matrices M ∈ Sn satisfying the (finitely many)
linear inequalities:

∑n
i,j=1 Mij〈Xi, Xj〉 ≥ 0 for all (X1, . . . , Xn) ∈∆(n, r). This implies:

I Corollary 8. The cone Dn
r is a polyhedral cone.

As ∆(n, r) ⊆∆(n, r + 1), the sets Dn
r form a hierarchy of outer approximations for CSn∗

+ :

CSn∗
+ ⊆ Dn

r+1 ⊆ Dn
r ⊆ · · · ⊆ Dn

1 .

Hence, CSn∗
+ ⊆

⋂
r≥1Dn

r . In fact, as a direct application of Lemma 4, equality holds.

I Theorem 9. CSn∗
+ =

⋂
r≥1Dn

r .

We will also use the following property of the cones Dn
r .

I Lemma 10. Consider a sequence of matrices (Mr)r≥1 in Sn converging to a matrix
M ∈ Sn. If Mr ∈ Dn

r for all r, then M ∈ CSn∗
+ .

We now turn to the description of the dual cone Cn
r := Dn∗

r . As a direct application of
Lemma 6, we can conclude that Cn

r is the set of conic combinations of matrices which have a
Gram representation by matrices in ∆(n, r); that is,

Cn
r = cone{A ∈ Sn : A = (〈Xi, Xj〉)n

i,j=1 for some (X1, . . . , Xn) ∈∆(n, r)}. (2.2)

By construction, the cones Cn
r are polyhedral and they form a hierarchy of inner approxima-

tions of CSn
+: Cn

1 ⊆ · · · ⊆ Cn
r ⊆ Cn

r+1 ⊆ CS
n
+, with strict inclusion.

I Lemma 11. For any n ≥ 2 and r ≥ 1, we have strict inclusions: Cn
r ( Cn

r+1 ( CSn
+.

Proof. The only fact which needs a proof is that each inclusion is strict. It suffices to show
this for n = 2, since one can extend a matrix A in C2

r to a matrix in Cn
r by adding all zero

coordinates, and the same for CS+. For this we consider a rank 1 matrix A = vvT , where
v = (1 a)T and a is a nonnegative scalar. Then A ∈ CS2

+. If we choose a to be an irrational
number then A cannot belong to any cone C2

r and, if we choose a = 1/(r+ 1), then A belongs
to C2

r+1 but not to C2
r . J

We now show that the union of the cones Cn
r covers the interior of the cone CSn

+.

I Theorem 12. We have the inclusions:

int(CSn
+) ⊆

⋃
r≥1
Cn

r ⊆ CS
n
+.

Proof. We only need to show the first inclusion. For this, consider a matrix A in the interior
of the cone CSn

+ and assume that A does not belong to
⋃

r≥1 Cn
r . Then, for each r ≥ 1, there

exists a hyperplane separating A from the (closed convex) cone Cn
r . That is, there exists

a matrix Mr ∈ Dn
r such that 〈Mr, A〉 < 0 and ‖Mr‖ = 1. Since all matrices Mr lie in a

compact set, the sequence (Mr)r admits a converging subsequence (Mri
)i≥1 which converges

to a matrix M ∈ Sn. By Lemma 10, we know that the matrix M belongs to the cone CSn∗
+

and thus 〈A,M〉 ≥ 0. On the other hand, as 〈A,Mri
〉 < 0 for all i, by taking the limit as i

tends to infinity, we get that 〈A,M〉 ≤ 0. Hence we obtain 〈A,M〉 = 0, which contradicts
the assumption that A lies in the interior of CSn

+. J

It is easy to give an explicit description of the cones Cn
r for small r. For example, Cn

1 is
the set of n× n diagonal nonnegative matrices and Cn

2 is the convex hull of the matrices Eii

and Eii + Eij + Ejj (for i, j ∈ [n]), where Eij denote the elementary matrices in Sn.
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3 LP lower bounds to the quantum chromatic number

In this section we use the polyhedral hierarchy Cn
r (r ≥ 1) to show that the parameter χ̃q(G)

in (1.4) can be written as a linear program. We recall the definition of χ̃q(G):

χ̃q(G) = min t ∈ N s.t. ∃A ∈ cl(CSnt
+ ), A ∈ At and LG,t(A) = 0, (3.1)

where the affine space At is defined in (1.2) and the map LG,t in (1.3). A first natural
approach for building a linear relaxation of χ̃q(G) is to replace the cone cl(CSnt

+ ) in the
definition of χ̃q(G) by the subcone Cn

r , leading to the parameter

`r(G) = min t ∈ N s.t. ∃A ∈ Cnt
r , A ∈ At and LG,t(A) = 0.

As Cnt
r ⊆ CSnt

+ , we have χ̃q(G) ≤ χq(G) ≤ `r(G). Moreover the sequence (`r(G))r is
monotone nonincreasing and thus has a limit (it becomes stationary). However it is not clear
whether the limit is equal to χq(G). If one could claim that for t = χq(G) there is a feasible
matrix A for the program (3.1) which lies in the interior of CSnt

+ then, by Theorem 12, A
would belong to some cone Cnt

r which would imply equality χq(G) = `r(G). However, this
idea cannot work because, as observed in Lemma 3, any matrix feasible for (3.1) lies in the
boundary of CSnt

+ . To go around this difficulty, our strategy is to relax the affine constraints
in (3.1) so to allow feasible solutions in the interior of CSnt

+ .
More precisely, given an integer k ≥ 1, we consider the affine space At

k defined by the
inequalities: |

∑
i,j Aui,vj − 1 | ≤ 1

k for all u, v ∈ V (G). We define the parameter:

λk(G) = min t s.t. ∃A ∈ cl(CSnt
+ ), A ∈ At

k and LG,t(A) ≤ 1
k
. (3.2)

In a first step we show that λk(G) = χ̃q(G) for k large enough.

I Lemma 13. For any graph G, there exists k0 ∈ N such that χ̃q(G) = λk(G) for all k ≥ k0.

Proof. Notice that λk(G) ≤ χ̃q(G) holds for every k ∈ N. Indeed, any matrix solution for
χ̃q(G) is also a solution for λk(G). Moreover, as the sequence (λk(G))k∈N is a monotone
nondecreasing sequence of natural numbers upper bounded by χ̃q(G), there exists a k0 such
that λk(G) = λk0(G) for all k ≥ k0. Let t = λk0(G). For all k ≥ k0 there exists a matrix
Ak ∈ cl(CSnt

+ ) with Ak ∈ At
k and LG,t(Ak) ≤ 1

k . Consider the sequence (Ak)k≥k0 , which is
bounded as all Ak lie in At

k0
. Therefore, the sequence has a converging subsequence to, say,

A where A ∈ cl(CSnt
+ ), A ∈ At and LG,t(A) = 0. Hence, A is a feasible solution for χ̃q(G)

and χ̃q(G) ≤ t = λk0(G) = λk(G) for all k ≥ k0. J

In a second step we show that the new parameter λk(G) can be computed by a linear
program. For this we replace in the definition of λk(G) the cone cl(CSnt

+ ) by the polyhedral
cone Cnt

r , leading to the following parameter:

λr
k(G) = min t s.t. ∃A ∈ Cnt

r , A ∈ At
k and LG,t(A) ≤ 1

k
. (3.3)

Notice that this parameter λr
k(G) can be computed through a linear program since Cnt

r is
polyhedral. We will show that for any graph G there exist integers k0 and r0 such that
χ̃q(G) = λr0

k0
(G). We emphasize that this is an existential result: we do not know for which

integers k0 and r0 such a convergence happens. One of the ingredients to prove the result is
to show the existence of a matrix in the interior of CS+ satisfying certain constraints. To
this end, we will use the matrix Z = I +J ∈ Snt where I and J are, respectively, the identity
and the all-ones matrices. (See Appendix C for the proof of the following lemma.)
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I Lemma 14. The matrix Z = I + J ∈ Snt lies in the interior of CS+. Moreover, we have
that

∑
i,j∈[t] Zui,uj = t2 + t for all u ∈ V (G),

∑
i,j∈[t] Zui,vj = t2 for all u 6= v ∈ V (G) and

LG,t(Z) = nt2 − nt+mt, where m is the number of edges of the graph G.

I Theorem 15. For any graph G there exist k0 and r0 ∈ N such that χ̃q(G) = λr
k(G) for

all k ≥ k0 and all r ≥ r0. Moreover λr0
k0

(G), and thus χ̃q(G), can be computed via a linear
program.

Proof. From Lemma 13 we know that there exists k0 ∈ N such that λk(G) = χ̃q(G) for all
k ≥ k0. In view of this, we just need to show that for this k0 there exists an integer r0 ∈ N
for which λr0

k0
(G) = λk0(G). Let t = λk0(G) = χ̃q(G).

By the definitions (3.2) and (3.3) and the inclusion relationship between the cones Cnt
r , we

have that the sequence of natural numbers (λr
k0

)r∈N is nonincreasing and it is lower bounded
by λk0(G). Hence, there exists a natural number r0 such that λr

k0
(G) = λr0

k0
(G) for all r ≥ r0.

We are left to prove that λr0
k0

(G) ≤ λk0(G) = t.

To this end, we show that there exists a matrix Yk0 ∈ int(CS+) with Yk0 ∈ At
k0

and
LG,t(Yk0) ≤ 1

k0
. This will suffice since then, by Theorem 12, Yk0 ∈ Cnt

r0
for some r0. Therefore,

Yk0 satisfies the conditions in program (3.3) and thus λr0
k0

(G) ≤ t = λk0(G). To show the
existence of such a matrix Yk0 , let A ∈ cl(CS+) be a feasible solution of the program (3.1)
defining χ̃q(G) = t and consider the matrix Z = I + J which belongs to int(CS+) (by
Lemma 14). Then, any convex combination Zε = (1 − ε)A + εZ (for 0 < ε < 1) lies in
the interior of CS+. If we can tune ε so that the new matrix Zε satisfies the conditions
in program (3.3), then we can choose Yk0 = Zε and we are done. We claim that selecting
ε := min{ 1

k0(t2+t−1) ,
1

k0(nt2−nt+mt)} will do the trick. Indeed, for this choice of ε we have
Zε ∈ int(CS+) and LG,t(Zε) = εLG,t(Z) ≤ 1

k0
(use Lemma 14). Moreover, Zε ∈ At

k0
since

for all u, v ∈ V (G) the following holds∣∣ ∑
i,j∈[t]

Yk0 (ui, vj)−1
∣∣ =
∣∣(1−ε)+ε

∑
i,j∈[t]

Zui,vj −1
∣∣ ≤
∣∣−ε+ε

∑
i,j∈[t]

Zui,uj

∣∣ =
∣∣ε(t2 + t−1)

∣∣ ≤ 1
k0
.

Summarizing, from Lemma 13 we know that there exists an integer k0 ∈ N such that
λk0(G) = χ̃q(G) and we just proved that for this k0 there exists an integer r0 ∈ N with the
property that λr0

k0
(G) = λk0(G) = χ̃q(G). J

The same result holds for the parameter χ̃qa(G) introduced in (1.10). For clarity we
repeat its definition in the following form:

χ̃qa(G) = min t ∈ N s.t. ∃A ∈ cl(CS2nt
+ ), A ∈ Bt with LG,t(π(A)) = 0.

Note the analogy with the definition (3.1) of χ̃q(G). The only difference is that we now work
with matrices A of size 2nt (instead of nt) lying in the affine space Bt (instead of At) and
satisfying LG,t(π(A)) = 0 (instead of LG,t(A) = 0). In analogy to the parameter λk(G) we
can define the parameter Λk(G) by doing these replacements and defining the relaxed affine
space Bt

k in the same way as At
k was defined from At. Then the analog of Lemma 13 holds:

there exists an integer k0 such that χ̃qa(G) = Λk(G) for all k ≥ k0. Next, replacing the cone
cl(CS2nt

+ ) by C2nt
r , we get the following parameter Λr

k(G) (the analog of λk
r (G)):

Λr
k(G) = min t ∈ N s.t. A ∈ C2nt

r , A ∈ Bt
k with LG,t(π(A)) ≤ 1

k
.

The analog of Theorem 15 holds, whose proof is along the same lines and thus omitted.

I Theorem 16. For any graph G, there exist k0 and r0 ∈ N such that χ̃qa(G) = Λr
k(G) for

all k ≥ k0 and r ≥ r0. Hence the parameter χ̃qa(G) can be computed by a linear program.
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I Remark 17. The above approach applies also to other quantum graph parameters like the
communication entanglement-assisted coloring number χ∗(G) [7] and analogous variants αq(G)
[25] and α∗(G) [10] of the classical independence number α(G). Hence these parameters can
be expressed by means of a linear program. This applies more generally to binary constraint
system games since, as pointed out by Ji [14], they can be represented as generalized graph
coloring problems to which our approach can be applied.

Similar results can also be obtained for the following class of optimization problems:

min〈C,A〉 s.t. A ∈ cl(CSn
+), A ∈ A with L(A) = 0,

where C ∈ Sn, L a linear functional nonnegative on CSn
+, and A ⊆ Sn an affine space such

that A ∩ CSn
+ is bounded. Then a double hierarchy can be defined in analogous manner,

yielding a sequence of two-parameters linear programs, which converge asymptotically to the
optimum value of the above optimization program.

4 The closure of CS+

In the Introduction we have mentioned that if the completely positive semidefinite cone
would be closed, then the set of quantum correlations would be closed as well (see also
[20]). Although we still do not know whether CS+ is closed, in this section we make a small
progress by giving a new description of the closure of CS+, using the tracial ultraproduct of
matrix algebras Rk×k. More precisely, the closure cl(CS+) consists of the symmetric matrices
having a Gram representation by positive semidefinite operators which belong to the above
mentioned tracial ultraproduct. This ultraproduct will be an algebra of bounded operators
on an infinite dimensional Hilbert space.

A connection between cl(CS+) and the Gram matrices of operators on infinite dimensional
Hilbert spaces has already been made by two of the authors in [19]. Namely, let SN denote
the vector space of all infinite symmetric matrices X = (Xij) indexed by N with finite
L2-norm

∑
i,j≥1 X

2
ij <∞, equipped with the inner product 〈X,Y 〉 =

∑
i,j≥1 XijYij . Using

this notation, we let CSn
∞+ denote the convex cone of matrices A ∈ Sn having a Gram

representation by positive semidefinite matrices in SN. Then it is shown in [19] that
CS+ ⊆ CS∞+ ⊆ cl(CS∞+) = cl(CS+) holds. In particular, the closure of CS+ a priori
contains matrices having a Gram representation by infinite dimensional matrices.

Tracial ultraproducts of matrix algebras, or more generally of finite von Neumann algebras,
are an adapted version of classical ultraproducts from model theory. Since the methods used
might be not familiar to the reader, we recap the construction of tracial ultraproducts. Then
we introduce the new cone CSU+ and show that it is equal to the closure of CS+. Finally,
we present a possibly larger cone CSvN+, containing CS+, which can be seen as an infinite
dimensional analog of the completely positive semidefinite cone. This cone turns out to be
closed. Furthermore, CSvN+ would be equal to cl(CS+) if the embedding problem of Connes
had an affirmative answer. More details about the algebras involved in the general case as
well as on the embedding problem of Connes are given in Appendix B.

4.1 Tracial ultraproducts
The construction of tracial ultraproducts is a standard technique in von Neumann algebras,
see, e.g., the appendix of [4]. Classically one considers complex Hilbert spaces but the
construction works similarly over real Hilbert spaces. Alternatively one can use the complex
construction and ‘realify’ the resulting algebra afterwards, see for instance [2, 18].
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Ultraproducts are constructions with respect to an ultrafilter. We will only consider
ultrafilters on N. Throughout P(N) is the collection of all subsets of N.

I Definition 18. An ultrafilter on the set N is a subset U ⊆ P(N) satisfying the condi-
tions:
(a) ∅ /∈ U ,
(b) if A ⊆ B ⊆ N and A ∈ U then B ∈ U ,
(c) if A,B ∈ U then A ∩B ∈ U ,
(d) for every A ∈ P(N) either A ∈ U or N \A ∈ U .

In particular, any two elements in U need to have non-empty intersection (from (1) and
(3)), which allows only two kinds of ultrafilters: Either every element of U contains a common
element n0 ∈ N or U contains the cofinite sets of N. We are only interested in the second
kind of ultrafilters, which are called free ultrafilters. For a given free ultrafilter U on N we
can define the ultralimit limU ak of a bounded sequence (ak)k∈N of real numbers as follows:

lim
U
ak = a if {k ∈ N : |ak − a| < ε} ∈ U for all ε > 0. (4.1)

Let us have a look at ultralimits in a less formal way. If we have a non-free ultrafilter,
i.e., U = {A ∈ P(N) : k0 ∈ A} for some k0 ∈ N, then limU ak = ak0 for any sequence
(ak)k∈N ⊆ R. The case of a free ultrafilter is more interesting. Then the ultralimit of a
bounded sequence (ak)k∈N will be one of its accumulation points. For example, the sequence
given by ak := (−1)k for all k ∈ N has two accumulation points, and both can be attained as
an ultralimit depending on the choice of the ultrafilter U . In fact, considering the set 2N
of even numbers, we get by conditions (3) and (4) that any ultrafilter contains either 2N
or its complement (the odd numbers 2N + 1) but not both. Hence there is an ultrafilter U
(containing 2N) with limU ak = 1 and an ultrafilter U ′ (containing 2N+1) with limU ′ ak = −1.

I Remark 19. Any bounded sequence of real numbers has an ultralimit and this is unique
for fixed U . In particular, if limk→∞ ak = a then limU ak = a for any free ultrafilter U on N.

We can use ultralimits to construct the tracial ultraproduct of a sequence (Rdk×dk )k∈N
of matrix algebras for dk ∈ N. To simplify notation we letMk = Rk×k denote the matrix
algebra of all k × k matrices and we consider the full sequence (Mk)k∈N, but the same
construction would work for the sequence (Mdk

)k∈N. Here we assume that each Mk is
endowed with the normalized trace trk = 1

k Tr (if the dimension k is clear we might simply
write tr) and the corresponding inner product, so that ‖I‖2 = tr(I) = 1 for the identity
matrix. For T ∈ Mk, ‖T‖ denotes its operator norm and ‖T‖2 its L2-norm, that satisfy
‖ST‖2 ≤ ‖S‖‖T‖2 for S, T ∈Mk. Define the C∗-algebra

`∞(N, (Mk)k) := {(Tk)k∈N ∈
∏
k∈N
Mk : sup

k∈N
‖Tk‖ <∞}.

Every free ultrafilter U on N defines a two-sided ideal

IU := {(Tk)k∈N ∈ `∞(N, (Mk)k) : lim
U
‖Tk‖2 = 0},

which is well-defined since sequences in `∞(N, (Mk)k) are also bounded in the Hilbert-
Schmidt norm. The ideal IU is a maximal ideal and therefore it is closed with respect to the
operator norm. The quotient algebra

MU := `∞(N, (Mk)k)/IU
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is called the tracial ultraproduct of (Mk)k along U . Using the Cauchy-Schwarz inequality it
is easy to show that the map

τU : MU → R, (Tk)k∈N + IU 7→ lim
U

trk(Tk)

is well-defined and defines a tracial state (or trace) onMU , i.e., τU is a normalized positive
linear map satisfying τU (T ∗T ) = τU (TT ∗) for any T ∈ MU . In fact, MU is a finite von
Neumann algebra of type II1 (see Appendix B for definitions). In particular, MU is a
subalgebra of bounded operators on an infinite dimensional Hilbert space. As von Neumann
algebras are in particular C∗ algebras, positive semidefinite operators are exactly squares of
(symmetric) operators.

4.2 Ultraproduct description of cl(CS+)
We are now ready to define the new cone CSU+ which will turn out to be equal to the
closure of CS+. For this, we fix a free ultrafilter U on N and consider the tracial ultraproduct
MU = `∞(N, (Mk)k)/IU where again Mk denotes the full matrix algebra Rk×k for any
k ∈ N. Using this we define

CSU+ := {A ∈ S+ : A = (τU (XiXj)) for some positive semidefinite X1, . . . , Xn ∈MU}.

We note that the trace τU is normalized (i.e., τU (I) = 1) whereas we used the (not normalized)
trace Tr in the definition of CS+. However, both descriptions agree up to rescaling of the
Xi’s.

To show that the closure of CS+ is a subset of CSU+ we will consider a sequence of
matrices A(k) ∈ CSn

+ converging to some A ∈ Sn, i.e., limk→∞A
(k)
ij = Aij for all i, j ∈ [n].

A priori, for each k, there exist an integer dk and matrices X(k)
1 , . . . , X

(k)
n ∈ Sdk

+ such that
A(k) = (tr(X(k)

i X
(k)
j )). The next lemma says that without loss of generality we can assume

dk = k for all k ∈ N (see the Appendix C for a proof).

I Lemma 20. If (Xk)k, (Yk)k ∈
∏

k∈N S
dk
+ are such that the sequence (trdk

(XkYk))k∈N
converges to some a ∈ R, then there exist (X ′k)k, (Y ′k)k ∈

∏
k∈N Sk

+ with trk(X ′kY ′k) → a as
k →∞.

We proceed by showing that the closure of CS+ is equal to CSU+. This is done in two steps.

I Lemma 21. For any free ultrafilter U on N, we have cl(CS+) ⊆ CSU+.

Proof. Let A ∈ cl(CS+) be given. Then there is a sequence of matrices A(k) ∈ CS+
converging to A: limk→∞A

(k)
ij = Aij for all i, j ∈ [n]. For each k, there exist positive

semidefinite matrices X(k)
1 , . . . , X

(k)
n such that A(k) = (tr(X(k)

i X
(k)
j )). By Lemma 20 we

can assume that X(k)
1 , . . . , X

(k)
n ∈ Sk

+. As the matrices A(k) are bounded the matrices
X

(k)
i are bounded as well. Hence the sequence (X(k)

i )k belongs to `∞(N, (Mk)) and we
can consider its image Xi in the tracial ultrapower MU . By the theorem of Łos (see e.g.
[11, Prop. 4.3] and references therein) the operators Xi are positive semidefinite since all
X

(k)
i are positive semidefinite. It suffices now to show that A = (τU (XiXj)) since then

we can conclude that A ∈ CSU+. For this observe that, by the definition of τU , we have:
τU (XiXj) = limU tr(X(k)

i X
(k)
j ) = limU A(k)

ij . On the other hand, as the sequence (A(k)
ij )k

converges to Aij , in view of Remark 19, we have that limU A(k)
ij = Aij . This concludes the

proof. J
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I Theorem 22. For any free ultrafilter U on N, equality cl(CS+) = CSU+ holds.

Proof. In view of Lemma 21 we only have to show the inclusion CSU+ ⊆ cl(CS+). Let
A ∈ CSU+. By assumption, A = (τU (XiXj)) for some positive semidefinite operators
X1, . . . , Xn ∈ MU . As the operators Xi are positive semidefinite, there exist operators
Yi ∈ MU such that Xi = Y 2

i for i ∈ [n], where each element Yi is given by a sequence of
symmetric matrices (Y (k)

i )k ∈
∏

kMk. Further, by definition of τU , for any s ∈ N, the index
set Is = {k ∈ N : |τU (Y 2

i Y
2

j )− tr((Y (k)
i )2(Y (k)

j )2)| ≤ 1
s for all i, j ∈ [n]} belongs to U and is

therefore non-empty. Thus we find for any s ∈ N an index ks ∈ Is. Hence the operators
X

(s)
i := (Y (ks)

i )2 belong to Sks
+ and satisfy∣∣∣τU (XiXj)− tr(X(s)

i X
(s)
j )
∣∣∣ < 1

s
for all i, j ∈ [n] and all s ≥ 1. (4.2)

For each s, the matrix A(s) := (tr(X(s)
i X

(s)
j )) belongs to the cone CS+. Moreover it follows

from (4.2) that the sequence (A(s))s converges to the matrix A as s tends to ∞. This shows
that A belongs to the closure of CS+, which concludes the proof. J

We would like to conclude with another possible description of the closure of CS+ in the
case that Connes’ embedding conjecture turns out to be true.

As mentioned at the beginning of the section, the closure of CS+ contains the cone CS∞+,
i.e., it contains symmetric matrices which have a Gram representation by some class of
positive semidefinite infinite dimensional matrices. Also the given description of cl(CS+) as
CSU+ involves Gram representations by operators on an infinite dimensional Hilbert space.
In regard to the relativistic model of quantum correlations where one allows all (possibly
infinite dimensional) Hilbert spaces one might ask for the most general infinite dimensional
version of CS+. Since one is restricted to operators for which one can define an inner product
(or a trace), a decent candidate for the infinite dimensional analog of CS+ is

CSn
vN+ := {A ∈ Sn

+ : A = (τN (XiXj)) for a finite vN algebra N and psd X1, . . . , Xn ∈ N},

where we allow any finite von Neumann algebra N (with trace τN ). Obviously we have the
chain of inclusions CS+ ⊆ CSU+ ⊆ CSvN+.

Moreover, using the general theory of tracial ultraproducts of von Neumann algebras
(instead of just matrix algebras), one can show with a similar line of reasoning as in Lemma
21 that CSvN+ is closed. Indeed, take a sequence of matrices A(k) ∈ CSn

vN+ converging to
some A ∈ Sn. Then limk→∞A

(k)
ij = Aij for all i, j ∈ [n] and for each k, there exist a finite

von Neumann algebra Nk with trace τk and bounded positive operators X(k)
1 , . . . , X

(k)
n ∈ Nk

such that A(k) = (τk(X(k)
i X

(k)
j )). Fixing a free ultrafilter U one can conclude that the

images Xi of the sequences (X(k)
i )k in the tracial ultraproduct NU = `∞(N, (Nk)k)/IU of

the corresponding finite von Neumann algebras provide a Gram representation for A in the
von Neumann algebra NU . Hence the following statement holds.

I Theorem 23. CSvN+ is a closed cone.

Summarizing we have the inclusions:

cl(CSn
+) = CSn

U+ ⊆ CS
n
vN+ ⊆ Sn

+ ∩ Rn×n
+ .

In this context, we would like to mention that [13] shows the strict inclusion CSn
vN+ (

Sn
+ ∩ Rn×n

+ for any n ≥ 5. Finally, if Connes’ embedding conjecture is true, one can show,
using Proposition 25 from Appendix B, that cl(CS+) = CSvN+.
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A Polyhedral approximations of CPn and COPn

As mentioned above, the copositive cone COPn consists of all matrices M ∈ Sn for which the
polynomial pM =

∑n
i,j=1 Mijxixj is nonnegative over Rn

+. Alternatively, a matrix M ∈ Sn

is copositive if and only if the polynomial pM is nonnegative over the standard simplex

∆n = {x ∈ Rn
+ :

n∑
i=1

xi = 1}.

The idea for constructing outer approximations of the copositive cone is simple and relies
on requiring nonnegativity of the polynomial pM over all rational points in the standard
simplex with given denominator r and letting r grow. This idea is made explicit in [29]
and goes back to earlier work on how to design tractable approximations for quadratic
optimization problems over the standard simplex [3, 16] and more general polynomial
optimization problems [17]. More precisely, for an integer r ≥ 1, define the sets

∆(n, r) = {x ∈ ∆n : rx ∈ Zn}, ∆̃(n, r) =
r⋃

s=1
∆(n, s)

where we restrict to rational points in ∆n with given denominators. The sets ∆̃(n, r) are
nested within the standard simplex: ∆̃(n, r) ⊆ ∆̃(n, r + 1) ⊆ ∆n. Now, following Yildirim
[29], define the cone:

On
r = {M ∈ Sn : xTMx ≥ 0 ∀x ∈ ∆̃(n, r)},

and its dual cone On∗
r , which is the conic hull of all matrices of the form vvT for some

v ∈ ∆̃(n, r). By construction, the cones On
r form a hierarchy of outer approximations for

COPn and their dual cones form a hierarchy of inner approximations for CPn:

COPn ⊆ On
r+1 ⊆ On

r and On∗
r ⊆ On∗

r+1 ⊆ CP
n.

Yildirim [29] shows the following convergence results.

I Theorem 24 ([29]). We have: COPn =
⋂

r≥1On
r . Moreover, int(CPn) ⊆

⋃
r≥1On∗

r ⊆ CP
n

and CPn is equal to the closure of the set
⋃

r≥1On∗
r .
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B Von Neumann algebras and Connes’ embedding problem

We give a short overview of what is needed for our purpose; for details we refer to the
book [27].

A von Neumann algebra N is a unital ∗-subalgebra of the ∗-algebra B(H) of bounded
operators on a Hilbert space H that is closed in the weak operator topology. The weak
operator topology is the weakest topology on B(H) such that the functional B(H)→ C which
maps T 7→ 〈Tx, y〉 is continuous for any x, y ∈ H. In other words, a sequence (Ti)i ∈ B(H)
converges to T ∈ B(H) if for all x, y ∈ H the sequence (〈Tix, y〉)i converges to 〈Tx, y〉.

A factor is a von Neumann algebra with trivial center. Every von Neumann algebra on a
separable Hilbert space is isomorphic to a direct integral of factors, which is the appropriate
analog of matrix block decomposition.

A factor F is finite if it possesses a normal, faithful, tracial state τ : F → C. In particular,
we can always assume that τ(I) = 1. This tracial state τ is unique and gives rise to the
Hilbert-Schmidt norm on F given by ‖T‖2

2 := τ(T ∗T ) for T ∈ F . A von Neumannn algebra
is finite if it decomposes into finite factors. Every finite von Neumann algebra comes with a
trace, which might not be unique.

Von Neumann algebras can be classified into two types depending on the behavior of
their projections (i.e., the elements P ∈ N satisfying P = P ∗ = P 2). If for a given finite
factor F with trace τ the range of τ over all projections P ∈ F is discrete, then F is of type
I. A von Neumann algebra is of type I if it consists only of type I factors. Any finite type I
von Neumann algebra is isomorphic to a matrix algebra over C. The only other possibility
for a finite factor is that τ maps projections (surjectively) onto [0, 1]. Those are II1 factors,
and a von Neumann algebra is of type II1 if it is finite and contains at least one II1 factor.

Connes’ embedding problem asks to which extent II1 factors are close to matrix algebras.
Murray and von Neumann showed that there is a unique II1 factor R which contains an
ascending sequence of finite-dimensional von Neumann subalgebras, i.e. matrix algebras, with
dense union. This factor R is called the hyperfinite II1 factor. There are several constructions
of R, e.g., as infinite tensor product

⊗
n∈NM2(C) of the von Neumann algebras M2(C),

which is the weak closure of the algebraic tensor product
⊗

n∈NM2(C). In fact, any infinite
countable sequence of matrix algebras will do.

Connes conjectured that all separable II1 factors embed (in a trace-preserving way) into an
ultrapower RU of the hyperfinite II1 factor R, where the ultrapower RU is just a short-hand
notation for the ultraproduct `∞(N, (R)k)/IU . Since R contains ascending sequences of
matrix algebras with dense union, any matrix algebraMk embeds into R. One can extend
these embeddings ofMk into R to an embedding of the tracial ultraproductMU into RU
(using a more general construction of ultralimits), hence the finite von Neumann algebra MU
satisfies Connes’ embedding conjecture.

This conjecture is equivalent to a huge variety of other important conjectures in, e.g.,
operator theory, noncommutative real algebraic geometry and quantum information theory.
In particular, as we already mentioned in the introduction, it is equivalent to deciding whether
cl(Q) = Qc holds.

For the alternative description of cl(CS+) in the case that Connes’ embedding conjecture
is a true statement, we will use the following result on finite von Neumann algebras which
embed into RU . The claim is that tracial moments of an embeddable finite factor can be
approximated up to arbitrary precision by matricial tracial moments. This is stated more
formally in the next proposition, for a proof see e.g. [9].
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I Proposition 25. Let (F , τ) be a II1 factor which embeds into RU for some free ultrafilter U .
Then F has matricial microstates, i.e., for any n ∈ N and given self-adjoint T1, . . . , Tn ∈ F
the following holds: for every s ∈ N and ε > 0 there exists d ∈ N and B1, . . . , Bn ∈ Sd such
that

|τ(Ti1 · · ·Tit)− tr(Bi1 . . . Bit))| < ε for all i1, . . . , it ∈ [n], t ≤ s.

C Additional proofs

The proofs of Lemma 3, 7 and 10 are easy and thus omitted.

Proof of Lemma 4
Instead of Lemma 4 we prove the following more elaborate version.

I Lemma 26. For M ∈ Sn, the following assertions are equivalent:
(i) M ∈ CSn∗

+ , i.e., Tr(pM (X)) ≥ 0 for all X ∈ ∪d≥1(Sd
+)n.

(ii) Tr(pM (X)) ≥ 0 for all X ∈∆n.
(iii) Tr(pM (X)) ≥ 0 for all X = (X1, . . . , Xn) ∈∆n with X1 � 0, . . . , Xn � 0.
(iv) Tr(pM (X)) ≥ 0 for all X = (X1, . . . , Xn) ∈ ∆n with X1 � 0, . . . , Xn � 0 and with

rational entries.
(v) Tr(pM (X)) ≥ 0 for all X ∈∆n with rational entries.

Proof. The implications (i) =⇒ (ii) =⇒ (iii) =⇒ (iv), (i) =⇒ (v) and (v) =⇒ (iv) are
clear. We will show that (iv) =⇒ (iii) =⇒ (ii) =⇒ (i).

The implication (ii) =⇒ (i) follows by scaling: Let X ∈ (Sd
+)n with λ =

∑n
i=1 Tr(Xi) > 0

(else, X is identically zero and Tr(pM (X)) = 0). Then, X/λ ∈∆n and thus Tr(pM (X/λ)) ≥ 0,
which implies Tr(pM (X)) ≥ 0.

The remaining implications follow using continuity arguments. Namely, for (iv) =⇒ (iii),
use the fact that the set of rational positive definite matrices is dense within the set of positive
definite matrices and, for (iii) =⇒ (ii), use the fact that the set of positive definite matrices
is dense within the set of positive semidefinite matrices (combined with rescaling). J

Proof of Lemma 6
We show that

Dn
r = {M ∈ Sn : Tr(pM (X)) ≥ 0 ∀X ∈∆(n, r)}.

Proof. The inclusion “⊇" is clear since ∆(n, r) ⊆∆(n, r).
To show the reverse inclusion, take a matrix M such that Tr(pM (X)) ≥ 0 for all

X ∈ ∆(n, r). Consider a n-tuple X = (X1, . . . , Xn) ∈ ∆(n, r). The matrices X1, . . . , Xn

are rational with denominator at most r,
∑n

i=1 Tr(Xi) = 1 and X1, . . . , Xn ∈ Sd
+ with d > r

(else there is nothing to prove). For each i ∈ [n], set Ii = {k ∈ [d] : Xi(k, k) 6= 0} and
notice that Tr(Xi) ≥ |Ii|/r (since each diagonal entry Xi(k, k) indexed by k ∈ Ii is at
least 1/r). Hence we have 1 =

∑n
i=1 Tr(Xi) ≥

∑n
i=1 |Ii|/r, implying

∑n
i=1 |Ii| ≤ r. Then

we can find a set I containing I1 ∪ . . . ∪ In with cardinality |I| = r. As each matrix Xi

has only zero entries outside of its principal submatrix Xi[I] indexed by I, it follows that
Tr(pM (X1, . . . , Xn)) = Tr(pM (X1[I], . . . , Xn[I])) ≥ 0, where the last inequality follows from
the fact that (X1[I], . . . , Xn[I]) belongs to the set ∆(n, r). J
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Proof of Lemma 14
We will only show that the matrix Z = I + J ∈ Snt lies in the interior of CS+, the other
claims are direct verification.

Proof. Assume that there exists a matrix M ∈ CSnt∗
+ such that 〈M, I + J〉 = 0; we show

that M = 0. Indeed, as both I and J lie in CSnt
+ we get that Tr(M) = 0 and 〈J,M〉 = 0.

Observe that since M is copositive its diagonal entries are nonnegative and thus equal to 0,
which in turn implies that all its entries must be nonnegative. Combining with 〈J,M〉 = 0,
we deduce that M is identically zero. J

Proof of Lemma 20
Lemma 20 says that if we have (Xk)k, (Yk)k ∈

∏
k∈N S

dk
+ such that (trdk

(XkYk))k∈N converges
to some a ∈ R, then there exist (X ′k)k, (Y ′k)k ∈

∏
k∈N Sk

+ with trk(X ′kY ′k)→ a as k →∞.

Proof. By possibly reordering the indices we can assume that the sequence (dk)k∈N is
monotonically nondecreasing. First, we modify the sequence (Xk)k in such a way that
dk ≤ k holds for all k ∈ N. For this, if there is some k ∈ N with dk > k we repeat
the preceding element Xk−1 exactly dk − k times before the element Xk. For instance, if
X1 ∈ R+ and X2 ∈ S3

+ (i.e., d1 = 1 and d2 = 3), we replace the sequence (X1, X2, X3, . . . )
by (X1, X1, X2, X3, . . . ). Then the position of Xk is shifted by dk − k to k + dk − k = dk.
If k = 1 we simply add d1 − 1 zero matrices before X1. We do the same with the sequence
(Yk)k. Then the new sequence of inner products is obtained from the original sequence
(trdk

(XkYk))k∈N by replacing each trdk
(XkYk) by dk − k + 1 copies of it if dk > k, and thus

still converges to the limit a.
Thus we can now assume that dk ≤ k for all k ∈ N. We set X ′k :=

√
k

dk
(Xk⊕0k−dk

) ∈ Sk
+

and Y ′k :=
√

k
dk

(Yk ⊕ 0k−dk
) ∈ Sk

+ for every k ∈ N. Then we have

trk(X ′kY ′k) = 1
k

Tr(X ′kY ′k) = 1
k

k

dk
Tr(XkYk) = trdk

(XkYk)

for every k ∈ N. Hence the final sequence (trk(X ′kY ′k))k∈N still converges to a. J
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Abstract
Strongly unforgeable signature schemes provide a more stringent security guarantee than the
standard existential unforgeability. It requires that not only forging a signature on a new message
is hard, it is infeasible as well to produce a new signature on a message for which the adversary
has seen valid signatures before. Strongly unforgeable signatures are useful both in practice and
as a building block in many cryptographic constructions.

This work investigates a generic transformation that compiles any existential-unforgeable
scheme into a strongly unforgeable one, which was proposed by Teranishi et al. [30] and was proven
in the classical random-oracle model. Our main contribution is showing that the transformation
also works against quantum adversaries in the quantum random-oracle model. We develop proof
techniques such as adaptively programming a quantum random-oracle in a new setting, which
could be of independent interest. Applying the transformation to an existential-unforgeable
signature scheme due to Cash et al. [10], which can be shown to be quantum-secure assuming
certain lattice problems are hard for quantum computers, we get an efficient quantum-secure
strongly unforgeable signature scheme in the quantum random-oracle model.
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1 Introduction

Digital signature is a fundamental primitive in modern cryptography and has numerous
applications. In a signature scheme, a signer uses his/her secret key to generate a signature
on a message. Anyone who knows the corresponding public key can verify the integrity of the
message and that it comes from the genuine signer. A standard security notion for digital
signatures is called existential-unforgeable under adaptive chosen-message-attacks (eu-acma
in short). Basically it means that an adversary, without knowing the secret key of a user,
cannot forge a valid signature on a new message. This should hold even if the adversary
has seen a few signatures generated by the honest user on messages adaptively chosen by
the adversary. Another important security notion, stronger than eu-acma, is called strongly
existential-unforgeable (su-acma). Here, in addition to eu-acma, it should be infeasible to
forge a new signature on a previously signed message. Aside from applications in some
practical scenarios [26], su-acma signatures turn out to be a very powerful tool in other
cryptographic constructions. For instance they are used in transforming encryption schemes
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that are secure under chosen-plain-text attacks into secure schemes under chosen-ciphertext-
attacks [13, 6]; and in constructing identity-based blind signatures [15] and group signature
schemes [2, 5].

Strongly unforgeable signature schemes can be obtained from existential-unforgeable ones
via generic transformations [29, 18, 30]. The transformation in [30] (referred to as TOO
hereafter) is particularly interesting because it only needs a mild computational assumption
and the overhead it causes to the efficiency is small. This work studies this transformation in
the quantum setting, where adversaries have the power of processing quantum information.
We want to ask: does TOO transformation still hold in the presence of quantum adversaries,
and furthermore can we obtain quantum-secure su-acma signatures systematically?

There is no quick answer to this question. In general a classically secure cryptographic
construction can completely fall apart against quantum adversaries for at least two reasons.
First of all, quantum computers can solve some problems efficiently which are otherwise be-
lieved hard classically. This breaks the computational assumption in many constructions. For
example, many existing eu-acma signature schemes, the starting point of the transformation,
are based on factoring or discrete logarithm. The TOO transformation itself also uses the
discrete logarithm problem. They are immediately broken by Shor’s quantum algorithms [27].
Naturally we may want to switch to quantum-safe assumptions. For example, we assume
certain lattice problems are hard even against quantum algorithms and then construct
crypto-systems based on them [25, 4]. However, this does not fix everything immediately
due to another reason, which is more subtle. Security of a construction is established by a
security reduction, which is a proof by contradiction showing that if a scheme is not secure,
then one can break a computational assumption. Unfortunately, as pointed out by a line of
works (e.g., [35, 16, 31, 28]), classical security reductions may not hold in the presence of
quantum adversaries due to technical difficulties such as quantum rewinding.

There is an additional complication, which turns out to be the main difficulty towards
making the TOO transformation go through in the quantum setting. Classically, TOO is
proven in the random-oracle model (RO), where a hash function is treated as a truly random
function and all users evaluate the hash function by querying the random function. However
once an adversary becomes quantum, we should naturally allow the queries to be in quantum
superposition. This is formalized as the quantum random-oracle model (QRO) [7]. The bad
news is that many classical tricks in RO become difficult to apply in QRO, if not entirely
impossible. For starters, classically it is trivial to answer random-oracle queries on-the-fly by
generating fresh random value for new queries while maintaining a table to keep consistency.
It is not obvious that some similar trick can handle quantum superposition queries. There
have been a host of works in recent years developing proof techniques in QRO [36, 33, 32],
but many classical techniques are still missing their counterparts in QRO.

Our Contributions. Our main result is showing that the TOO transformation still works
against quantum adversaries in the quantum random-oracle model under reasonable compu-
tational assumptions. Specifically, we first make a simple observation that classically the
TOO transformation actually holds using any (generic) chameleon hash function, rather
than the specific instantiation by the discrete log problem. As our central contribution, we
prove that once the chameleon hash function and the eu-acma signature scheme are both
quantum-safe, then TOO transformation will produce a quantum-safe su-acma signature
scheme in the quantum random-oracle model. In our proof, we develop a technique that
allows for adaptively programming a quantum random-oracle in a new setting. We hope this
technical can find applications and extensions elsewhere.
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Once we have the transformation ready, we demonstrate instantiations of the building
blocks to obtain concrete quantum-safe su-acma schemes. Using tools from [28], it is easy to
verify that the bonsai-tree signature scheme by Cash et al. [10] is eu-acma against quantum
adversaries assuming some lattice problem is quantum-safe1. In [10], a chameleon hash
function was also proposed based on the same computational assumptions, which is easy to
check that it is quantum-safe as well. Putting these pieces together, we can get a quantum-safe
su-acma scheme.

Overview of Our Proof Techniques in QRO. As we mentioned earlier, many proof tech-
niques in classical RO do not immediately go through in the QRO model. Roughly speaking,
the classical proof for the TOO transformation relies on two features in the classical RO model:
the history of queries that an adversary makes to the RO can the recorded, and at various
steps one can assign a fresh random value on an input, since the response at an input needs
not to be determined before being queried. Both become difficult in the quantum setting.
Copying quantum superposition queries which are unknown quantum states is generally
impossible, and apparently a single quantum query of the form

∑
|x, y〉 7→

∑
|x,O(x)⊕ y〉

would “see” the function values at all inputs. It is hence unclear how to change O(x) later
without being caught.

The first issue turns out to be non-essential. The purpose of keeping the RO queries is
to make sure some special input x∗ has not been queried by the adversary. Otherwise x∗
can be used to break some assumption. In the quantum setting, we can just pick one of the
queries at random and measure it. If the overall amplitude that adversary intends to query
at x∗ is high, the probability we recover x∗ is only reduced by essentially a poly-factor (the
number of the adversary’s RO queries).

We then come up with a technique for adaptively programming a QRO in a new setting.
Namely we want to change the function value at various inputs that the adversary has partial
control (e.g., the prefix of these inputs are chosen by the adversary). Intuitively this is
possible when these inputs still have sufficient uncertainty to the adversary. There exist
techniques previously when these input strings are information-theoretically undetermined,
possessing a high min-entropy for example [32, 34]. In contrast, in our case these inputs are
computationally difficult to decide by the adversary. Namely, these inputs remain uncertain to
the adversary unless some computational assumption is broken. We show that this is already
sufficient freedom for programming the answers on these inputs. Being a little more specific,
we show that the computational assumption implies indistinguishability of two functions
which a distinguisher can have quantum access to: one is the all-zero function, and the other
marks a set of strings that could be used to break the computational assumption. This may
be interpreted as a computational analogue of the Grover search lower bound in quantum
query complexity. This enables us to program a quantum random-oracle adaptively. Basically,
the random-oracle embeds one of the preceding functions, and programming the random-
oracle roughly amounts to switching between the two functions. Since the two functions are
indistinguishable, any efficient quantum algorithm querying the random-oracle cannot notice
whether we have re-programmed the quantum random-oracle. From a technical point of view,
these claims may not sound very surprising. Nonetheless, we view them as an interesting
conceptual shift, which is similar in spirit to [11] where the authors showed that computational
constraints can force measurement on a quantum state and cause collapse to particular

1 Actually, we observe a tighter security reduction so that a slightly weaker assumption on the lattice
problem is sufficient.
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subspaces. Our techniques also complements existing ones that are of information-theoretical
flavor.

Related Works. Boneh and Zhandry [8] considered a stronger type of quantum attacks on
signature schemes where an adversary can query a signing oracle in superposition. They
proposed general transformations which amplify schemes that are secure against ordinary
quantum adversaries (i.e., those who only issue classical signing query as we consider in this
work), to achieve security under attacks with superposition signing queries. In contrast, the
transformation in our work only considers ordinary quantum adversaries, but tries to amplify
in terms of the type of forgeries that an adversary can produce. Lyubashevsky [21, 22] applied
the Fiat-Shamir paradigm to construct lattice-based su-acma signatures in the random-oracle
model from identification schemes. However whether these schemes are quantum-secure is
unclear, because proving quantum security of the identification schemes faces the difficulty of
quantum rewinding. More importantly, there is negative evidence that Fiat-Shamir paradigm
may not hold in general in the QRO model [12, 1]. Dagdelen et al. [12] showed that a variant
of Fiat-Shamir works in the QRO model, but only for a very special form of identification
schemes. In a recent work by Unruh [34], a general transformation is proposed, which can
produce (quantum-safe) strongly-unforgeable signatures in the QRO model from general
Σ-protocols. However the overhead is much larger than the Fiat-Shamir transformation, and
the resulting signature schemes are less efficient than what can be obtained from our work.
We remark that there is a generic Merkle-tree approach that produces su-acma schemes out
of su-acma one-time signature schemes, which should still hold against quantum adversaries.
Therefore in principle, lattice-based one-time signatures, as in [23], would suffice for full-
fledged quantum-safe su-acma schemes. However the resulting scheme is usually far less
efficient and costly to manage (because it is typically stateful).

2 Preliminary

We review necessary definitions and cryptographic tools in this section.

I Definition 1 (Signature Scheme). A signature scheme is composed of a triplet of
probabilistic polynomial-time algorithms (G,S, V ), satisfying the following:

G is the key generation algorithm. On running, it produces a pair, (pk, sk). pk is the
public key, or verification key, while sk is the secret key, or signing key.
S is the signing algorithm. Upon input of a message M from a message spaceM, as well
as a secret key sk, it produces a signature σ on that message.
V is the verification algorithm. It takes in a message M , a signature σ, and a public key
pk, and will output either ‘accept’ or ‘reject’.

Signature schemes must satisfy the correctness requirement, which is that for any
(pk, sk) generated by G, and any M ∈M, if σ ← S(M, sk) then V (M,σ, pk) = ‘accept’.

A standard security notion for signature schemes is existential unforgeability under
adaptive chosen message attack (eu-acma).

I Definition 2 (Existential Unforgeability under Adaptive Chosen Message Attack). Consider
the following game between a challenger C and a forger A:
C runs G, and send the resulting pk to A.
A sends up to q messages M1,M2, ...,Mq to C, one at a time. For each message C receives,
she sends back σi = S(Mi, sk) to A.
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A finally outputs a pair (M∗, σ∗) to C. We call this a valid forgery if M∗ 6= Mi∀i ∈
{1, ..., q} and V (M∗, σ∗, pk) = ‘accept’.

If, for polynomially bounded q, it is computationally infeasible for A to come up with
a valid forgery, the scheme is said to be existentially unforgeable under adaptive chosen
message attack.

I Definition 3 (Strong Unforgeability under Adaptive Chosen Message Attack). Strong un-
forgeability under Adaptive Chosen Message attack, or su-acma, is defined in the
same way as eu-acma, except that the pair (M∗, σ∗) that A eventually submits must only
require that (M∗, σ∗) 6= (Mi, σi) for all i, instead of the requirement that M∗ 6= Mi. This
change means that the forgery A submits may either be a new message, or may be a message
that C has already signed, but with a new signature.

Note that by allowing A to submit more kinds of forgeries, if it is still computationally
infeasible for A to succeed, then we know that this type of forgery also cannot be created,
making the scheme in a sense stronger.

Chameleon hash functions. Chameleon hash functions were introduced by Krawczyk and
Rabin [19]. We need a slight generalization proposed in [10]. A family H of chameleon
hash function is a collection of functions h that takes in a message m from a message space
M and some randomness r from a randomness space R, and outputs to a range Y, ie,
h : M× R → Y. The randomness space is associated with some efficiently sampleable
distribution. There are three properties we need for a family of chameleon hash functions:

(Chameleon property) We require an algorithm HG that samples a hash function h ∈ H
together with trapdoor information td satisfying that for any m ∈ M and y ∈ Y, it is
possible to efficiently sample r ← h−1

td (m, y) under the distribution associated with R
such that h(m, r) = y.
(Uniformity) For h← H and r ← R, (h, h(m, r)) is uniform over (H,Y) up to negligible
statistical distance.
(Collision resistance) For a hash function h← H, it is computationally infeasible for an
adversary to find (m, r), (m′, r′), with (m, r) 6= (m′, r′) such that h(m, r) = h(m′, r′).

Quantum Random-Oracle Model. The random oracle model is a technique used in cryp-
tographic proofs. In it, Hash functions are replaced with random oracles. An adversary
is given access to query this random oracle by providing an input, x, and is returned the
response, O(x). These random oracles exist to replace hash functions in our proof. When
we examine the proof in the context of quantum computers, Boneh et al. [7] have pointed
out that since superposition queries to hash functions are possible, to truly capture this in
a model allowing quantum computers, we must allow superposition queries to the random
oracle. So we will allow superpositions of queries to our random oracle,

∑
ax|x, y〉, which

will be responded to with a superposition of answers,
∑
ax|x, y ⊕O(x)〉.

A cryptographic scheme is said to be quantum-safe (or quantum-secure) if the security
conditions still hold once the adversaries become efficient quantum computers. We do not go
into more precise definitions. See for example [16] for details.

3 Getting SU from EU in QRO

In this section we prove our main theorem.
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I Theorem 4. There exists a generic conversion that takes an quantum-safe eu-acma signa-
ture scheme Σ = (G,S, V ) and a family of quantum-safe collision-resistant chameleon hash
functions H and produces a quantum-safe su-acma signature scheme Σ′ = (G′, S′, V ′) in the
quantum random-oracle model.

3.1 The Transformation
We first recall the TOO transformation [30] with a minor change. We use a generic chameleon
hash function instead of an instantiation from the discrete log problem.

G′. On input a security parameter 1n, do the following:
Run G, obtaining (pk, sk).
Run HG obtaining a chameleon hash function h with trapdoor td.
Set pk′ = (pk, h) and sk′ = (sk, td).

S′. On input of message M , do the following:
Sample a random C from the range of h.
Sign C using the signing algorithm S, obtaining σ = S(C, sk)
Compute m = O(M‖σ), where O is a hash function (to be replaced with a random
oracle in the proof).
Using the trapdoor information td, find an r such that h(m, r) = C.
Output σ′ = (σ, r).

V ′. On input of a message M and a signature σ′ = (σ, r), do the following:
Compute m = O(M‖σ) and C = h(m, r).
Output ’Accept’ if and only if V (C, σ, pk) = ’Accept’ (otherwise, output ’Reject’).

The correctness of the algorithm can be seen easily. If σ′ was a signature generated on
M using S′, then C will be the same C generated during the running of S′, and is precisely
what σ is a signature for.

3.2 Main Technical Lemma: Adaptively Programming a Quantum RO
To prove the main theorem, we demonstrate a new scenario where we can adaptively program
a quantum random-oracle. This extends existing works (e.g [32, 33, 34]) from information-
theoretical setting to a computational setting, and we believe it is potentially useful elsewhere.
We will formalize a probabilistic game which we call witness-search. It potentially captures
the essence of numerous security definitions for cryptographic schemes (e.g. signatures).
Then we show that the (computational) hardness of witness-search allows for adaptively
programming a quantum random-oracle.

Let Samp be an instance-sampling algorithm. On input 1n, Samp generates public
information pk, description of a predicate P , and a witness w satisfying P (pk,w) = 1. Define
a witness-search game WS as below.

Witness-Search Game WS

1. Challenger C generates (pk, w, P )← Samp(1n). Ignore w. Let Wpk := {w : P (pk, w) =
1} be the collection of valid witnesses.

2. A receives pk and produces a string ŵ as output.
3. We say A wins the game if ŵ ∈Wpk.

We say WS(Samp) is hard, if for any poly-time A, Pr[A wins] ≤ negl(n). For instance,
Samp could be the KeyGen algorithm of a signature scheme. pk consists of the public key
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and description of the signature scheme. Predicate P is the verification algorithm and a
witness consists of a valid message-signature pair. Security of the signature scheme implies
hardness of WS(Samp).

I Lemma 5 (Hardness of Witness-Search to Programming QRO). Let two experiments E and
E′ be as below. If WS is hard, then ADV := |PrE [b = 1]− PrE′ [b = 1]| ≤ negl(n) .

Note that E′ differs from E only in that we reprogram the random oracle at some point
in E′.

Experiment E

1. Generate (pk, w, P )← Samp(1n).
2. O ← F is drawn uniformly at random from the collection of all functions F .
3. A1 receives pk as input and makes at most q1 queries to O. A1 produces a classical

string x.
4. Set z := O(x‖w).
5. A2 gets (x,w, z) and may access the final state of A1. A2 makes at most q2 queries to
O. It outputs b ∈ {0, 1} at the end.

Experiment E′

1. Generate (pk, w, P )← Samp(1n).
2. O ← F is drawn uniformly at random from the collection of all functions F .
3. A1 makes at most q1 queries to O. It produces a classical string x.
4. Pick a random z ∈R Range(O). Reprogram O to O′: O′(y) = O(y) except that
O′(x‖w) = z.

5. A2 gets (x,w, z) and may access the final state of A1. A2 makes at most q2 queries to
O′. It outputs b ∈ {0, 1} at the end.

To prove Lemma 5, we need another lemma below to pave the road. Roughly we want to
argue that if witness-search is hard, then given an oracle which is either the all-zero function
or a function that marks the witness set Wpk, no efficient algorithms can distinguish them.
This may be intuitively interpreted as a computational analogue of Grover search lower
bound. Its proof can be found in Appendix B.

I Lemma 6. Let f be the all-zero function, and fS be the characteristic function of a set S.
Namely fS(x) = 1 iff. x ∈ S. Define two experiments G and G′ as below. If WS(Samp) is hard,
then for any efficient A making q ≤ poly(n) queries, |PrG[b = 1]− PrG′ [b = 1]| ≤ negl(n).

Experiment G

1. Generate (pk, w, P )← Samp(1n).
2. A is given pk and (quantum) access to f . A makes at most q queries to f and

afterwards w is given to A. It outputs b ∈ {0, 1} and aborts.

Proof of Lemma 5. We use a hybrid argument to prove the theorem. Define Ei, i = 1, . . . , 4
as follows.

E1 := E. (AO1 /AO2 in short.)
E2: identical to E1 except that in step 3, O is replaced by Ō where Ō(y) = O(y) but
Ō(y) = 0 for any y = ·‖w where w ∈Wpk. (AŌ1 /AO2 )
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Experiment G′

1. Generate (pk, w, P ) ← Samp(1n). Let fpk := fWpk , where Wpk = {w : P (w) = 1}.
(i.e., fpk(x) = 1 iff. x ∈Wpk)

2. A is given pk and (quantum) access to fpk. A makes at most q queries to fpk and
afterwards w is given to A. It output b ∈ {0, 1} and aborts.

E3: identical to E2 except that after step 3, we use O′ as defined in E′ instead of O.
Observe that E3 can also be obtained from E′ by substitute Ō for O in step 3. (AŌ1 /AO

′

2 )
E4 := E′. (AO1 /AO

′

2 )

Define ADVi :=
∣∣PrEi

[b = 1]− PrEi+1 [b = 1]
∣∣. We will show that ADV1 and ADV3 are

both negligible using Lemma 6. ADV2 = 0 since in both E2 and E3, the function values
for Wpk are assigned uniformly at random and independent of anything else. Therefore we
conclude that ADV = |PrE [b = 1]− PrE′ [b = 1]| ≤

∑
ADVi = negl(n).

We are only left to prove that ADV1 ≤ negl(n), and ADV3 ≤ negl(n) follows by similar
argument. Suppose for contradiction that there exist (A1,A2) such that ADV1 ≥ 1/p(n)
for some polynomial p(·). We show that this will lead to a contradiction to Lemma 6 that
|PrG[b = 1]−PrG′ [b = 1]| ≤ negl(n), which in turn contradicts the hardness of witness-search.
To see this, we construct an algorithm D from (A1,A2) that runs in G and G′ such that
|PrG[b = 1 : D] − PrG′ [b = 1 : D]| ≥ 1/p(n). Let F be an oracle which ignores the first
part of the input and then applies either all-zero function f or fpk (as defined in G′) on the
second part. Let g be a random function. Define another oracle H := g ◦ F that implements
the following transformation:

|x, y〉 7→|x, y〉 ⊗ |0〉 append an auxiliary register

7→|x, y〉 ⊗ |F (x)〉 compute the negation of F on aux.

7→|x, y ⊕ F (x) · g(x)〉 ⊗ |F (x)〉 controlled-g

7→|x, y ⊕ F (x) · g(x)〉 uncompute negation of F and disgard aux.

Observe that if F is induced from f then H is identical to a random function O. Whereas if
F comes from fpk then H is identical to Ō as in E2. For an algorithm that queries at most
q times to H, we can sample h from a family of 2q-wise independent functions and simulate
H efficiently (with access to F ) without any noticeable difference.

Construction of D
1. D receives pk and an oracle F (one of the two candidates above).
2. D simulates oracle H = g ◦F as defined above. D then simulates A1, for each of query

from A1, it is answered by H with (two) oracle calls to F . Let x be the output of A1.
3. D receives w (from external challenger). It then simulates A2 on input (x,w, z :=

H(x‖w)) and oracle queries are answered by h.
4. D outputs the output of A2.

It is easy to see that if F is induced from f , the view of A1 and A2 is identical to that of
E1. Likewise if F is induced by fpk then it is the same view as in E2. Therefore |PrG[b =
1 : D]− PrG′ [b = 1 : D]| = |PrE1 [b = 1 : (A1,A2)]− PrE2 [b = 1 : (A1,A2)]| ≥ 1/p(n). This
gives a contradiction. J
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3.3 Proof of Theorem 4
Brief Review of Classical Proof. Classical proof roughly goes as follows: consider a forger
A. If (M∗, σ′∗) is the forgery that A eventually submits, we will let C∗ = h(O(M∗‖σ∗), r∗).
Similarly, for a signing query made by the forger Mi, we let Ci = h(O(Mi‖σi), ri).

We then analyze two separate cases. First the instance where C∗ 6= Ci for all i. In this
case we show that this gives a break to the existential unforgeability of the signature scheme
Σ, by way of (C∗, σ∗). Next, we examine the case where C∗ = Ci for some i. In this case we
show that (O(M∗||σ∗), r∗) and (O(Mi||σi), ri) provide a break to the collision resistance of
the chameleon hash function.

For completeness the full classical proof is included in Appendix A. It is adapted from [30]
and we use a generic chameleon hash function instead of a concrete instantiation from the
discrete logarithm problem. There are also changes which by our opinion make the proof
easier to understand.

Proof in the quantum random-oracle model. Let A be the forger making at most q queries,
and let ε be the probability that A succeeds in her forgery. We construct B that either breaks
existential unforgeablity of Σ or can find collisions in H.

Case 1: We define this case as occurring when C∗ 6= Ci for all i.
Firstly, B will be acting as a quantum random oracle for C. To do this, B simply chooses
a 2q-wise independent hash function, O, and for any query A makes, Σαx,z|x, z〉, B
responds with Σαx,z|x,O(x)⊕ z〉.

Construction of Existential Forger B

1. B receives a public key pk from the challenger C
2. B simulates a variant of the strongly-unforgeable game with A:

(i) B generates (h, td)← HG(1n). Initiate A with pk′ = (pk, h)
(ii) B simulates a random-oracle using a 2q-wise independent hash function.
(iii) On the ith signing query Mi from A, B chooses a random Ci. It then signs Ci

by submitting it to C, obtaining σi. It computes mi = O(Mi||σi), and using the
trapdoor information td, finds an ri such that h(mi, ri) = Ci. It sends σ′i = (σi, ri)
to A.

4. Let (M∗, (σ∗, r∗)) be the final forgery produced by A. Output (C∗, σ∗) as the forgery.

From A’s point of view, a 2q-wise independent function is identical to a random func-
tion [36]. Noting that C∗ 6= Ci for all i, and the Ci’s are precisely what was submitted to
C for signing queries, and finally, seeing as this is a valid forgery, so V (C∗, σ∗) =′ accept′,
we can see that B submits (C∗, σ∗) as a valid new forgery, breaking the existential
unforgeability of Σ and winning his game with C. Thus in this case whenever A succeeds,
so does B, and so the probability B succeeds given we are in this case is ε.
Case 2: This case is defined as occurring when C∗ = Ci for some i. In this case we will
show a reduction to break the collision resistance of the chameleon hash function.
It is easy to see that B finds a valid collision as long as A produces a valid forgery,
with overwhelming probability. This is because if C∗ = Ci, then h(O(M∗||σ∗), r∗) =
h(O(Mi||σi), ri). We simply need to ensure that this is not a trivial collision. Note that
since this must be a new forgery, (M∗, σ∗, r∗) 6= (Mi, σi, ri). If r∗ 6= ri, we are done.
Otherwise, we can see thatM∗||σ∗ 6= Mi||σi, and thus since the values for O(Mi||σi) were
chosen uniformly at random, O(M∗||σ∗) 6= O(Mi||σi) with overwhelming probability.
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Construction of Collision-Finding Adversary B

1. B receives h from the challenger, which is sampled from the Chameleon hash function
family.

2. B, playing the role of a challenger, simulates a variant of the strongly-unforgeable
game with A:
(i) B generates (pk, sk)← G(1n). Initialize A with pk′ = (pk, h). For i = {1, . . . , q},
B generates mi uniformly at random and ri ← R (according to the specification
of h). B computes Ci := h(mi, ri) and σi := S(sk, Ci).

(ii) B simulates a random-oracle in the usual way (i.e. t-wise independent hash
function).

(iii) On the ith signing query Mi from A, B reprograms the random-oracle:
O(Mi‖σi)← mi and returns (σi, ri) to A.

4. Let (M∗, (σ∗, r∗)) be the final forgery produced by A. We know C∗ = Ci for some i.
Output (O(M∗||σ∗), r∗), (O(Mi||σi), ri) as the collision.

Therefore if we let EVT be the event that A produces a valid forgery, we only need to
show that EVT occurs with probability Ω(ε) in the construction of B. We prove it by
a hybrid argument which transforms the standard strongly unforgeable game into the
variant as in the construction of B. We will show that the probablity of EVT is esstially
preserved in the hybrid argument.
Let Hyd0 the standard strongly-unforgeable game with A. By hypothesis Pr[EVT :
Hyd0] ≥ ε. Consider the first hybrid Hyd1 that makes only one change to Hyd0: when the
challenger answers a signing query, instead of querying the random-oracle O to obtain
mi := O(Mi‖σi), it samples a random mi and programs the random oracle so that
O(Mi‖σ) = mi. Note that in particular the challenger still uses the trapdoor to find
ri ← h−1(Ci,mi). By Lemma 5, we claim that2 Pr[EVT : Hyd0] − Pr[EVT : Hyd1]| ≤
negl(n). Specifically we instantiate Samp as follows. pk will consists of a public key for
Σ, hash function h, and random messages Ci. P will be the verification algorithm of
Σ. w := σi = S(sk, Ci) is the signature generated by B in 2.i), and Wpk consists of
all strings that form a valid signature of Ci under Σ. WS(Samp) is hard because Σ is
existential-unforgeable.
Hyd2 is obtained by a small change in Hyd1. Instead of sampling a random Ci, it
is obtained by computing h(mi, ri) from random (mi, ri). This change only causes
(statistically) a negligible error. This is because if h← H and ri ← R then Ci := h(mi, ri)
will be uniformly random by the uniformity property of H. In addition the chameleon
property of H tells us that ri ← h−1

td (Ci,mi) is distributed statistically close to sampling
ri ← R. Therefore the order of generating Ci and ri does not matter.
Thus we see that B is able to break the collision-resistance property of the Chameleon
hash function.

In sum, we have shown that if there is an adversary A breaking Σ′, then there is an
adversary who manages to break either the collision resistance of the chameleon hash function
H, or the existential unforgeability of the original signature scheme Σ with probablity Ω(ε).
This contradicts the security of Σ and H if ε ≥ 1/poly(n). Thus we conclude that Theorem 4
holds.

2 More precisely, we need to introduce sub-hybrids and each sub-hybrid makes such a change for just one
signing query.
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4 Discussion

Obtaining a quantum-safe su-acma signature scheme. In [10], the authors presented a
scheme for generating chameleon hash functions, based off the short integer solution problem
for lattices. They also demonstrate a reduction showing an efficient algorithm to break the
collision resistance of the hash function implies an efficient algorithm to break the short
integer solution problem for lattices. Using results from [28] this reduction can be shown
to carry through to the quantum setting. As this problem is currently believed to be hard
even for quantum computers, these chameleon hash functions’ collision resistance remains
even when faced with a quantum adversary. This chameleon hash function scheme can
therefore be used in the transformation in this paper to get a quantum-secure transformation.
This transformation, used with any quantum-safe eu-acma signature scheme will give a
quantum-safe su-acma scheme in the quantum random-oracle model.

When implementing the scheme with the chameleon hash function from [10] we can see
what the overhead would be in an actual realization. Let n ≥ 1, q ≥ 2, and m = O(n log q).
Let k be the output length of the hash function. Then the public key, pk′ will now carry
with it a Zn×m

q matrix, so |pk′| = |pk|+ n(k+m). The secret key now includes a specialized
lattice basis, which can be written as an m×m matrix over Zq, giving us |sk′| = |sk|+m2.
Finally, the signature overhead is the inclusion of a vector in Zm

q , so |σ′| = |σ|+m.
A signature scheme based off the Short Integer Solution problem for lattices is also

presented in [10]. Examining the proof presented there with tools from [28], we can see
that this signature scheme is quantum-safe eu-acma. Applying this transformation to this
scheme, we obtain a quantum-safe su-acma signature scheme. In fact, we can show that
the reduction shown in [10] is not as tight as it could be, and for a message of length k

and at most Q queries, we can show that for adversary F and reduction S, we have that
ADVSIS(SF ) ≥ ADV(F)eu-acma

SIG /(Q(k− logQ)). This is a small improvement over the result
of the paper, showing that ADVSIS(SF ) ≥ ADV(F)eu-acma

SIG /(Q(k − 1) + 1)

Future directions. Our work has studied a very specific transformation that gives a system-
atic way of getting quantum-safe su-acma signatures. There are a few more transformations
in the plain model (i.e. without a random-oracle) [29, 20, 18, 17]. We conjecture that they
also hold against quantum adversaries. If this is the case, it will be meaningful to evaluate
all these transformations and figure out which one is preferable under specific applications.
On the other hand, we chose the Bonsai-tree signature scheme [10] to instantiate the TOO
transformation. There are many recent improvements on lattice-based signatures in terms of
key size and computational efficiency [9, 24, 14], which are shown to be eu-acma classically. If
they can be shown to be quantum-safe, they we can get more efficient quantum-safe su-acma
schemes in the quantum random-oracle model.
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A Classical Proof

Let A be the forger, B the reduction, and C be the challenger. In each case, B and A will be
playing a game of strong unforgeability. Let the probability that A succeeds be ε. In Case 1,
C and B will play a game of existential unforgeability on the signature scheme σ. In case 2,
C and B will play a game of collision resistance on the chameleon hash function h. We show
that if the probability A succeeds in her forgery is ε, then the probability that B succeeds is
≥ 1

2ε− negl(n). At the beginning of the reduction, B will flip a coin, and guess which case
the adversary’s forgery will fall under. Clearly, B will be correct with probability 1

2 .
In our reduction, let the forgery that A eventually submits be (M∗, σ′∗ = (σ∗, r∗)) Let

C∗ = h(O(M∗||σ∗), r∗). Similarly, for each Mi the forger submits to the signing oracle for
signing, there is an associated σ′i and Ci.

TQC’15
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Case 1: C∗ 6= Ci for all i. We show that whenever the forger succeeds in creating a valid
forgery of this type, the reduction succeeds in breaking the existential unforgeability of
the original scheme Σ = (G,S, V ).
C and B will be playing a game of existential unforgeability, while B and A will be playing
a game of strong unforgeability. We will show that whenever A wins her game, B wins
his (so long as the forgery is of the type described above).
The games will play out as follows:
Firstly, B will act as the random oracle for A. In the first case at least (and this will
change only slightly case to case), he can do this in the following way. Whenever A
queries the random oracle with a query, B looks up in a maintained table if that query
has been made before. If it has, he responds with the value he responded with before. If
it has not, he generates a random number and responds with that.
Now we discuss how the game of strong unforgeability transpires.
C sends B a public key pk from the Σ scheme. B will generate a chameleon hash function
h, (with corresponding trapdoor td) and send the public key and hash function to A as
pk′ = (pk, h).
A will start submitting messagesMi to B for signing. For each query, B does the following:

Choose a random m̃i and r̃i and compute Ci = H(m̃i, r̃i)
Sign Ci by submitting it to C as a signing query, obtaining σi

Query Mi||σi to the random oracle, obtaining mi = O(Mi||σi)
Using the trapdoor information td, find an ri such that h(mi, ri) = Ci.
σ′i = (σi, ri)
Send σ′i to A

Eventually, A will submit a valid forgery M∗, σ′∗ = (σ∗, r∗).
Then, B takes these, and computes C∗ = h(O(M∗||σ∗), r∗).
Noting that C∗ 6= Ci for all i, and the Ci’s are precisely what was submitted to C for
signing queries, and finally, seeing as this is a valid forgery, so V (C∗, σ∗) =′ accept′, we can
see that B submits C∗, σ∗ as a valid new forgery, breaking the existential unforgeability
of Σ and winning his game with C.
Thus in this case whenever A succeeds, so does B, and so the probability B succeeds
given we are in this case is ε.
Case 2: This case is defined as occurring when C∗ = Ci for some i. In this case we will
show a reduction to break the collision resistance of the chameleon hash function.
To start with, C sends B the description of a chameleon hash function h, which B will
find a collision for.
B then runs the key generation algorithm of the signature scheme Σ, obtaining (pk, sk).
He then sends pk′ = (pk, h) to A.
For each signing query Mi that A sends to B, B does the following:

Choose a random mi and ri and compute C = h(mi, ri)
Sign Ci using the signing algorithm S, obtaining σ = S(C, sk)
Reprogram the random oracle so that O(Mi||σi) = mi.
σ′i = (σi, ri)
Send σ′i to A.

Note that we have now permitted B to reprogram the random oracle for the purposes of
this proof. Thus it is necessary to show that A will still output a valid forgery.
When A eventually submits her forgery, (M∗, σ∗), we can see that C∗ = Ci for some
i. This implies that h(O(Mi||σi), ri) = h(O(M∗||σ∗), r∗) for that i. This shows us a
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collision for the chameleon hash function h, which is what B is looking for. But we must
take care to ensure that it isn’t a trivial collision.
Note that (Mi, σi, ri) 6= (M∗, σ∗, r∗), simply because both the message and signature of
the forgery can’t be the same as that of one of the Mi’s. So at least one of these values is
different.
If ri 6= r∗, we are done. Otherwise, it must be the case thatM∗||σ∗ 6= Mi||σi. In this case,
since the values for the random oracle are chosen uniformly at random, with overwhelming
probability, O(M∗||σ∗) 6= O(Mi||σi), giving B a collision for h.
So in this case, B will succeed as long as A does up to a negligible probability by Lemma 7.
So the probability B succeeds is ≥ ε− negl(n)

I Lemma 7. For a forger A, let B1 and B2 be as below, and have them play a game of
strong unforgeability with A. Then

|PrB1(A wins)− PrB2(A wins)| ≤ negl(n),

as long as the underlying signature scheme is existentially unforgeable.

B1 is defined to operate exactly as the transformation dictates. B2 will operate as B was
defined to in Case 2 above.

Proof. Say the difference in probability that A wins was not negligible. As the distribution
of all values is the same, the only difference from A’s perspective was that the value of
O(Mi||σi) was changed for each i.

But clearly the only way to have the information that they changed is if A had already
queried O(Mi||σi). But if A does this with non-negligible probability, then we could construct
a reduction to break the existential forgeability of the signature scheme by playing strong
unforgeability with A, and before submitting each Ci to the signing oracle, checking to see if
A had queried Mi||σi to the random oracle. With non-negligible probability, the reduction
finds a σi that is a valid forgery. So he submits this along with Ci and has broken the
existential unforgeability of the scheme. J

Therefore in both cases, as long as B successfully guesses which case the forgery will
fall under, he manages to successfully break either the collision resistance of the chameleon
hash function h, or the existential unforgeability of the original signature scheme Σ. Since B
correctly guesses what case he is in half of the time, his probability of success is ≥ 1

2ε−negl(n).

B Proof of Lemma 6

Proof. Let A be an arbitrary algorithm running in G (or G′). Consider another algorithm
B that runs in an experiment EXT as follows:

Extraction Experiment EXT
1. Generate (pk, w, P )← Samp(1n). Ignore w.
2. B receives pk and picks j ∈R {1, . . . , q} at random.
3. B simulates A on pk and (quantum) access to f . Just before A making the jth query to

f , B measures the register that contains A’s query. Let z be the measurement outcome.

Let pB := PrEXT [z ∈ Wpk] be the probability that the output of E is a valid witness.
Let ε := |PrG[b = 1]− PrG′ [b = 1]|. In both experiment G and G′, pk is selected at random
according to Samp. Let Ppk be the probability that pk is outputted. Then
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ε =
∣∣∣Pr

G
[b = 1]− Pr

G′
[b = 1]

∣∣∣
=

∣∣∣∣∣∣
∑
pk

Pr
G

[b = 1|pk] · Ppk −
∑
pk

Pr
G′

[b = 1|pk] · Ppk

∣∣∣∣∣∣
=
∑
pk

Ppk

∣∣∣Pr
G

[b = 1|pk]− Pr
G′

[b = 1|pk]
∣∣∣ .

Let εpk := |PrG[b = 1|pk]− PrG′ [b = 1|pk]|. Let |φi〉 be the superposition of AG on input
pk when the i’th query is made. Then let qy(|φi〉) be the sum of squared magnitudes in A
querying the oracle on the string y.

Let S = [q] ×Wpk. Let δpk =
∑

(i,y)∈S qy(|φpk
i 〉). We employ a theorem by Bennet et

al. [3], that states that ‖|φpk
i 〉 − |φ̃

pk
i 〉‖ ≤

√
q · δpk. (Here |φ̃pk

i 〉 is defined in the same way as
|φpk

i 〉 but with G′ rather than G).
The same paper [3] also bounds the probability of being able to distinguish the two states,

which corresponds to our probability of distinguishing the two experiments, εpk, telling us
that

εpk ≤ 4 ·
∥∥∥|φpk

i 〉 − |φ̃
pk
i 〉
∥∥∥ ≤ 4

√
q · δpk .

Now note that P pk
B (that is, the probability that EXT outputs a valid witness given pk

is chosen) can be written as

P pk
B =

∑
i∈[0,q]

Pr[i chosen] ·
∑

(j,y)∈S:j=i

qy(|φpk
j 〉)


=1
q

∑
i∈[0,q]

∑
(j,y)∈S:j=i

qy(|φpk
j 〉)

=1
q

∑
(i,y)∈S

qy(|φpk
i 〉) = 1

q
δpk

So we can see that εpk ≤ 4q
√
P pk

B . Then

ε =
∑
pk

Ppkεpk ≤ 4q
∑
pk

Ppk

√
P pk

B

(∗)
≤ 4q

√∑
pk

PpkP
pk
B = 4q

√
PB ,

where (*) applies Jensen’s inequality. Finally, notice that B can be viewed as an adversary
in the witness-search game WS(Samp). Therefore, we conclude that pB ≤ negl(n) by the
hypothesis that WS(Samp) is hard and hence |PrG[b = 1]− PrG′ [b = 1]| ≤ negl(n). J
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Abstract
Quantum query complexity is known to be characterized by the so-called quantum adversary
bound. While this result has been proved in the standard discrete-time model of quantum
computation, it also holds for continuous-time (or Hamiltonian-based) quantum computation,
due to a known equivalence between these two query complexity models. In this work, we revisit
this result by providing a direct proof in the continuous-time model. One originality of our
proof is that it draws new connections between the adversary bound, a modern technique of
theoretical computer science, and early theorems of quantum mechanics. Indeed, the proof of
the lower bound is based on Ehrenfest’s theorem, while the upper bound relies on the adiabatic
theorem, as it goes by constructing a universal adiabatic quantum query algorithm. Another
originality is that we use for the first time in the context of quantum computation a version of
the adiabatic theorem that does not require a spectral gap.
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1 Introduction

The quantum adversary method was originally introduced by Ambainis [2] for lower-bounding
the quantum query complexity Q(f) of a function f . It is based on optimizing a matrix
Γ assigning weights to pairs of inputs. It was later shown by Høyer et al. [18] that using
negative weights also provides a lower bound, which is stronger for some functions. A series of
works [26, 27, 25] then led to the breakthrough result that this generalized adversary bound,
which we will simply call adversary bound from now on, actually characterizes the quantum
query complexity of any function f with boolean output and binary input alphabet. This
is shown by constructing a tight algorithm based on the dual of the semidefinite program
corresponding to the adversary bound1. Finally, Lee et al. [21] have generalized this result
to the quantum query complexity of state conversion, where instead of computing a function
f(x), one needs to convert a quantum state |ρx〉 into another quantum state |σx〉.

All these results where obtained in the usual discrete-time query model, where each query
corresponds to applying a unitary oracle Ox. In this model, an algorithm then consists
in a series of input-independent unitaries U1, U2, . . . , UT , interleaved with oracle calls Ox.
Another natural model is the continuous-time (or Hamiltonian-based) model where the
oracle corresponds to a Hamiltonian Hx, and the algorithm consists in applying a possibly

1 Note that constructing a tight algorithm for a specific problem using this method requires to find an
optimal feasible point for the semidefinite program, so that this method is not necessarily constructive.
The same limitation will affect the universal adiabatic algorithm in the present article.
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time-dependent, but input-independent, driver Hamiltonian HD(t), together with the oracle
Hamiltonian. The two models are related by the fact that the unitary oracle Ox can be
simulated by applying the Hamiltonian oracle Hx for some constant amount of time. This
implies that the continuous-time model is at least as powerful as the discrete-time model. In
the other direction, Cleve et al. [11] have shown that the discrete-time model can simulate
the continuous-time model up to at most a sublogarithmic overhead, which implies that
the continuous- and discrete-time models are equivalent up to a sublogarithmic factor. Lee
et al. [21] later improved this result to a full equivalence of both models, by showing that
the fractional query model, an intermediate model proved in [11] to be equivalent to the
continuous-time model, is also lower bounded by the adversary bound, so that all these
models are characterized by this same bound (in the case of functions, a similar result can be
obtained by extending an earlier proof of Yonge-Mallo, originally considering the adversary
bound with positive weights, to the case of negative weights [30]).

Even though these results imply that the continuous-time quantum query complexity is
characterized by the adversary bound, they do not provide an explicit Hamiltonian-based
query algorithm, except the one obtained from the discrete-time algorithm by replacing
each unitary oracle call by the application of the Hamiltonian oracle for a constant amount
of time. The resulting Hamiltonian of this algorithm then involves many discontinuities
(at all times in between unitary gates), which is not very satisfying from the point of view
of physics, where reasonable Hamiltonians are smooth. However, such discontinuities are
not unavoidable, as for some problems, continuous-time query algorithms based on smooth
Hamiltonians are known.

The first example is unstructured search, for which Farhi and Gutmann [15] proposed
a continuous-time analogue of Grover’s algorithm based on a simple time-independent
Hamiltonian (later, van Dam et al. [29], as well as Roland and Cerf [28], independently
proposed an adiabatic version of this algorithm, based on a slowly varying Hamiltonian).
Algorithms were also developed in the continuous-time model for various problems such
as spatial search [8, 10, 16], oracle identification [23], or element distinctness [9]. In a
seminal paper, Farhi et al. [13] proposed a quantum algorithm for the NAND-tree based
on scattering a wave incoming on the tree, using a time-independent Hamiltonian. It is
precisely this algorithm that, through successive extensions, led to the tight algorithm based
on the adversary bound for any function in [27], but most of these extensions were using the
discrete-time model.

In this article, we give a new continuous-time quantum query algorithm for any state
conversion algorithm based on a slowly varying Hamiltonian, and also provide a direct
proof of its optimality based on Ehrenfest’s theorem, hence proving that the quantum query
complexity of any state conversion problem is characterized by the adversary bound. The
soundness of the adiabatic evolution used in our algorithm relies on a lemma from Avron
and Elgart [4], which does not require the usual gap condition but only weaker spectral
conditions, and was originally introduced to study atoms in quantized radiation fields. To
the best of our knowledge, it is the first time that such an adiabatic theorem without a gap
condition is used in the context of quantum computation.

The structure of the article is as follows. Section 2 is devoted to preliminaries: in
Subsection 2.1, we define the necessary mathematical notions; in Subsection 2.4, we recall the
quantum adiabatic evolution and quantum adiabatic theorems; in Subsection 2.2, we recall
notions of quantum query complexity; and in Section 2.3, the discrete-time adversary method.
Original contributions start in Section 3, where we give a direct proof that the adversary
bound remains a lower bound for continuous-time quantum query complexity (Theorem 20).
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Finally, in Section 4, we present our adiabatic quantum query algorithm AdiaConvert, and
show that it is optimal, implying the characterization of the bounded-error quantum query
complexity (Theorem 21).

2 Preliminaries

2.1 Definitions
Throughout this article, X and Σ are finite sets and n is a positive integer. Σ represents the
alphabet and X represents a subset of words of length n: x ∈ X ⊂ Σn.

I Definition 1 (Matrix norms and inner product). Let A and B be n-by-n matrices
Inner product: 〈A,B〉 = tr(A∗B), where A∗ is the adjoint matrix of A,
Hadamard product: (A ◦B)ij = Aij . Bij ,
Operator norm: ‖A‖ = max|v〉 ‖A|v〉‖‖|v〉‖ = max|u〉,|v〉 〈u|A|v〉

‖|u〉‖.‖|v〉‖ ,
Trace norm: ‖A‖tr = maxB 〈A,B〉‖B‖ .

These definitions imply the following properties:

I Lemma 2. For any n-by-n matrices A,B,C, we have
〈A ◦ C,B〉 = 〈A,B ◦ C∗〉
〈A,B〉 ≤ ‖A‖tr · ‖B‖

In this context, the following matrix norm will be useful:

I Definition 3 (γ2 norm). Let D be a finite set, A a |D|-square matrix. The norm γ2(A) is
defined as

γ2(A) = min
m∈N

|ux〉,|vy〉∈Cm

{
max
x∈D

max
{
‖ |ux〉 ‖2, ‖ |vy〉 ‖2

}∣∣∣∣∣∀x, y ∈ D, Ax,y = 〈ux| vy〉
}
,

= max
|u〉,|v〉

‖|u〉‖=‖|v〉‖=1

‖A ◦ |u〉〈v|‖tr.

In particular, it is shown in [21] that the dual of the Adversary bound can be seen as a
variation of the γ2 norm dubbed the filtered γ2 norm.

I Definition 4 (Filtered γ2 norm). Let D1 and D2 be two finite sets, A, Z1, . . . , Zn matrices
with |D1| rows and |D2| columns, and Z = {Z1, . . . , Zn}. The norm γ2(A|Z) is defined as

γ2(A|Z) = min
m∈N

|ux,j〉,|vy,j〉∈Cm

max
{

max
x∈D1

∑
j

‖ |ux,j〉 ‖2,max
y∈D2

∑
j

‖ |vy,j〉 ‖2
}

subject to ∀(x, y) ∈ D1 ×D2, Ax,y =
∑
j

(Zj)x,y 〈ux,j | vy,j〉 ,

= max
Γ

‖Γ ◦A‖ subject to ∀j ‖Γ ◦ Zj‖ ≤ 1.

I Claim 5 ([22]). For any matrices A, B where A ◦B is defined, ‖A ◦B‖ ≤ γ2(A).‖B‖.

The Hadamard product fidelity is introduced in [22] to characterize the output condition
of quantum query problems. Whereas the usual fidelity compares density matrices, the
Hadamard product fidelity compares Gram matrices (note that if ρ is a Gram matrix and
|u〉 is a normalized state, then ρ ◦ |u〉〈u| is a density matrix).
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I Definition 6 (Hadamard product fidelity). The Hadamard product fidelity between two
Gram matrices ρ and σ is defined as

FH(ρ, σ) = min
|u〉:‖|u〉‖=1

F(ρ ◦ |u〉〈u|, σ ◦ |u〉〈u|),

where F(ρ′, σ′) is the fidelity between two density matrices ρ′ and σ′, defined as F(ρ′, σ′) =
tr
√√

ρ′ σ′
√
ρ′.

We similary define the Hadamard product distance from the trace distance.

I Definition 7 (Hadamard product distance). The Hadamard product distance between two
Gram matrices ρ and σ is defined as

DH(ρ, σ) = max
|u〉:‖|u〉‖=1

D(ρ ◦ |u〉〈u|, σ ◦ |u〉〈u|),

where D(ρ′, σ′) is the trace distance between two density matrices ρ′ and σ′, defined as
D(ρ′, σ′) = 1

2‖ρ
′ − σ′‖tr.

I Theorem 8 ([17]). For any density matrices ρ, σ, we have 1 − D(ρ, σ) ≤ F(ρ, σ) ≤√
1−D2(ρ, σ).

I Corollary 9. For any Gram matrices ρ, σ, we have 1−DH(ρ, σ) ≤ FH(ρ, σ) ≤
√

1−D2
H(ρ, σ).

I Definition 10 (Distance between quantum states). We say that two normalized quantum
states |φ〉 , |ψ〉 ∈ H are ε-distant if ‖|φ〉 − |ψ〉‖ ≤ ε.

2.2 Quantum query complexity
In classical computation, a query algorithm computes a function f : X ⊂ Σn → B where the
input x ∈ X can only be accessed through queries to an oracle that, on input j ∈ [n], outputs
xj ∈ Σ. A query algorithm can be seen as a decision tree [7] where each vertex represents a
decision taken after one query. The depth of the tree then corresponds to the number of
queries used by this algorithm to compute f in the worst case. The query complexity of f is
the minimum depth of all decision trees computing f exactly.

In quantum computation, query complexity can be generalized to state conversion
problems, where one should convert a quantum state |ρx〉 into another state |σx〉, each
depending on the input x, which can once again only be accessed via an oracle. The evaluation
of a function f is the particular case where initial states are independent of x, and final states
are orthonormal for x, y such that f(x) 6= f(y). For any set of quantum states {|ρx〉}x, it is
enough to consider the Gram matrix ρx,y = 〈ρx| ρy〉, because if 〈ρx| ρy〉 =

〈
ρ′x
∣∣ ρ′y〉 for all

x, y, then there exists a unitary transformation U independent of x such that |ρx〉 = U |ρ′x〉
for all x. This implies that a query algorithm for the set of states {|ρ〉}x can be converted
into a query algorithm for the set of states {|ρ′〉}x without additive cost, and vice versa. We
will therefore denote by a pair of Gram matrices (ρ, σ) the problem of converting a set of
states {|ρx〉}x into another set of states {|σx〉}x.

In the discrete-time model of quantum query complexity, we can consider without loss of
generality an oracle Ox acting on an n-dimensional input register and a (|Σ|+ 1)-dimensional
output register as

Ox :


|j〉
∣∣0̄〉 7→ |j〉 |xj〉 ∀j ∈ [n]

|j〉 |xj〉 7→ |j〉
∣∣0̄〉 ∀j ∈ [n]

|j〉 |y〉 7→ |j〉 |y〉 ∀j ∈ [n], y ∈ Σ \ {xj}
(1)
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where 0̄ is an additional output alphabet symbol, that can be seen as a blank symbol. A
query algorithm in this model is then given by a succession of input-independent unitaries Ut
interleaved with oracle calls Ox. The discrete-time quantum query complexity Qdt

0 (ρ, σ) is
the minimum number of oracle calls of any such algorithm converting ρ to σ exactly. (Note
that there exist alternative definitions for the oracle Ox, but they only affect the definition
of Qdt

0 (ρ, σ) by at most a constant factor.)
In the continuous-time model, the oracle is a Hamiltonian HQ(x) of the general form

HQ(x) =
n∑
j=1
|j〉〈j| ⊗ h(xj), (2)

where each {h(y)}y∈Σ is hermitian and satisfies ‖h(y)‖ ≤ 1. In particular, the choice
h(y) = |y−〉〈y−|, where∣∣y±〉 = 1√

2
(
∣∣0̄〉± |y〉), (3)

can be considered as the Hamiltonian analogue of the unitary oracle Ox in equation (1),
since it is easy to check that Ox = e−iHQ(x)∆T for ∆T = π. A query algorithm in this model
then corresponds to applying a Hamiltonian Hx(t) of the form

Hx(t) = HD(t) + α(t)HQ(x) (4)

where HD(t) is the driver Hamiltonian independent of the input x, and |α(t)| ≤ 1 for
all t ∈ [0, T ]. The continuous-time quantum query complexity Qct

0 (ρ, σ) is the minimum
computing time T of any such algorithm converting ρ to σ exactly.

For scenarios where we accept errors, we must distinguish two cases : coherent and
non-coherent quantum state conversion. Concretely, a computation will typically use some
extra workspace and may therefore generate a state |σx, Jx〉, where |Jx〉 is the final state of
the workspace. This might not be desirable if the state generation is used as a subroutine in
a larger quantum algorithm, where we would like to use interferences between the states |σx〉
for different x’s. In that case, we would like to be able to reset the state |Jx〉 to a default
state, so that it does not affect interferences.

We therefore define the following output conditions (both for the discrete- and continuous-
time models)

I Definition 11 (Output condition). A quantum query algorithm acting as unitary Ux for
input x converts ρ to σ with error at most ε if

(coherent case) ∀x ∈ X, Re(〈σx, 0| Ux|ρx, 0〉) ≥
√

1− ε,
(non-coherent case) ∀x ∈ X, ∃ |Jx〉 , Re(〈σx, Jx| Ux|ρx, 0〉) ≥

√
1− ε.

Note that a sufficient condition for Re(〈φ| ψ〉) ≥
√

1− ε is that these states are
√
ε-

distant. Moreover, the output condition for the coherent case has been shown [22] to
be equivalent to FH(σ, σ′) ≥

√
1− ε, where σ′ is the Gram matrix of the output states

|σ′x〉 = Ux |ρx, 0〉. Similarly, in the non-coherent case the output conditions can be rewritten
as FH(σ ◦ J, σ′) ≥

√
1− ε, where J is any Gram matrix of unit vectors (corresponding

to any set of states |Jx〉). This implies that bounded-error and zero-error quantum query
complexities are related as follows.

I Lemma 12 ([22]). For any |X|-by-|X| Gram matrices ρ, σ, we have

Q•ε(ρ, σ) = min
σ′

{
Q•0(ρ, σ′) : FH(σ, σ′) ≥

√
1− ε

}
(5)

Qnc,•
ε (ρ, σ) = min

σ′

{
Q•0(ρ, σ′) : FH(σ ◦ J, σ′) ≥

√
1− ε, J ◦ 1 = 1

}
(6)
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where the superscript nc denotes the non-coherent query complexity (otherwise we consider
the coherent case by default), and the superscript • is either dt or ct.

Computing a function f is equivalent to generating the Gram matrix Fx,y = δf(x),f(y)
from the all-1 Gram matrix Jx,y = 1. In that case, it is not necessary to generate the state
coherently, but one can convert a non-coherent algorithm into a coherent algorithm, so that
we can consider the coherent case without loss of generality.

I Lemma 13 ([22]). For any function f and associated Gram matrix Fx,y = δf(x),f(y), we
have Q•ε(f) = Qnc,•

ε (J, F ) and

Qnc,•
ε (J, F ) ≤ Q•ε(J, F ) ≤ 2Qnc,•

1−
√

1−ε(J, F ).

2.3 Adversary methods
The quantum adversary method is one of main methods to prove lower bounds on quantum
query complexity (the other main method is the polynomial method [5]). Its basic principle
is rather simple: it consists in defining a so-called progress function W whose value is high
at the beginning of the algorithm and should be low at the end of the algorithm if it is
successful. By bounding the change in the progress function for each oracle call, one then
bounds the minimum number of oracle calls necessary for success.

More precisely, let |φx(t)〉 be the state of the algorithm on input x after t queries, and Φt
be the Gram matrix of those states. We define a progress function

W (Φt) = 〈Γ ◦ vv∗,Φt〉 ,

where Γ is a |X|-by-|X| hermitian matrix, called the adversary matrix, and v a unit vector.
We also define the matrices ∆j with entries (∆j)x,y = 1 − δxj ,yj

. The adversary method
relies on the fact that if Γ is chosen so that it satisfies ‖Γ ◦∆j‖ ≤ 1 for all j ∈ [n], then
the progress function can only increase by one after each query (see e.g. [18]), that is,
|W (Φt+1)−W (Φt)| ≤ 1. The difference of the values of the progress function between Φ0 = ρ

and ΦT = σ is then given by

W (Φ0)−W (ΦT ) = 〈Γ ◦ vv∗, ρ− σ〉 = 〈Γ ◦ (ρ− σ), vv∗〉 ≤ T

By optimizing over Γ and v, we obtain the adversary bound:

I Definition 14 ([21, 22], Adversary bound).

Adv?(ρ, σ) = max
Γ
‖Γ ◦ (ρ− σ)‖ subject to ∀j ∈ [n], ‖Γ ◦∆j‖ ≤ 1,

= γ2(ρ− σ|∆) where ∆ = {∆1, . . . ,∆n}.

As shown in [21], Adv? defines a distance between Gram matrices, sometimes called
the query distance. The following simple proposition, comparing the query distance to the
Hadamard product distance DH , will be used in the proof of Theorem 21.

I Proposition 15. For any Gram matrices ρ, σ of size n, DH(ρ, σ) ≤ Adv?(ρ, σ).

Proof. Since the trace distance may be written as D(ρ′, σ′) = maxP :‖P‖≤1
1
2 〈P, (ρ

′ − σ′)〉,
we can reformulate the Hadamard product distance in Definition 7 as

DH(ρ, σ) = max
P :‖P‖≤1/2
|u〉:‖|u〉‖=1

〈P, (ρ− σ) ◦ |u〉〈u|〉 = max
P :‖P‖≤1/2

‖P ◦ (ρ− σ)‖.
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We observe that this form is similar to Adv? in Definition 14, except for the constraints
on P and Γ. We conclude the proof by showing that the constraint on P is stronger, that is,
if ‖P‖ ≤ 1/2 then ‖P ◦∆i‖ ≤ 1 for all i ∈ [n].

Let J be the all-one matrix, and i ∈ [n]. We have

‖P ◦∆i‖ ≤ ‖P‖+ ‖P ◦ (J−∆i)‖ ≤
(

1 + γ2(J−∆i)
)
‖P‖,

where the inequalities follows from the triangle inequality and Claim 5, respectively. We
finally bound γ2(J −∆i) using the minimization form in Definition 3 and an appropriate
choice for {|ux〉 , |vx〉}x. Choosing |ux〉 = |vx〉 = |xi〉, we have 〈ux| vy〉 = (J−∆i)x,y = δxi,yi

,
so that γ2(J−∆i) ≤ 1. J

2.4 Adiabatic quantum computation
Adiabatic quantum computation is a quantum computational model originally proposed by
Farhi et al. [14] for solving instances of the satisfiability problem. This model is based on
the quantum adiabatic theorem introduced by Born and Fock [6] and describing a physical
system evolving under a slowly varying Hamiltonian:

A quantum system with a time-dependent Hamiltonian remains in its instantaneous
eigenstate if the Hamiltonian variation is slow enough and there is a large gap between its

eigenvalue and the rest of the spectrum of the Hamiltonian.

It was later proved that the adiabatic model is equivalent to standard quantum computation
[1]. This statement, as well as the correctness of most adiabatic algorithms, rely on the
existence of a spectral gap.

In order to formally describe adiabatic quantum computation, let us first define the notion
of adiabatic process.

I Definition 16. An adiabatic process on the Hilbert space H is defined by a triplet
{H(s), P (s), τ} with s ∈ [0, 1] where
(a) H(s) is a twice differentiable map from [0, 1] to the space of bounded linear self-adjoint

operators B(H), equipped with the graph norm of H(0).
(b) P (s) are a family of orthogonal rank-one projections onto an eigenvector of H(s) with

continuous eigenvalue λ(s),
(c) τ ∈ R+ is the time scale, which defines the time as t(s) = sτ .

For such an adiabatic process, we can define the unitary operator UA(s) corresponding
to an idealized evolution, which maps the eigenvector in the range of P (0) to the eigenvector
in the range of P (s), that is, UA(s)P (0)U∗A(s) = P (s). Furthermore, the physical evolution,
represented by unitary operator Uτ (s), can be obtained from the Schrödinger equation

i∂sUτ (s) = τH(s)Uτ (s). (7)

Let us note that the analytical conditions given in Definition 16 ensure the existence and
uniqueness of the solution Uτ (s) of this equation with initial condition Uτ (0) = 1 [24].

The quantum adiabatic theorem can be summarized by the following statement

lim
τ→∞

Uτ (s)P (0) = UA(s)P (0) = P (s)UA(s).

Thus Uτ (s)P (0) converge to UA(s)P (0) for large τ , and the norm of their difference
defines the error of the adiabatic process.
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I Definition 17. The error εAP (s) of an adiabatic process {H(s), P (s), τ} is defined as

εAP (s) =
∥∥[Uτ (s)− UA(s)

]
P (0)

∥∥, with εAP = εAP (1).

This definition implies that at the end of the adiabatic evoltion, the physical state will be
εAP -distant from the ideal state.

How slow should the process be, or, equivalently, how large should τ be, to ensure a small
enough adiabatic error? The folk adiabatic condition requires the following bound:

τ >>

∫ 1

0

‖∂sHτ (s)‖
g(s)2 ds, (8)

where the gap g(s) represents the minimal distance between the eigenvalue λ(s) and the
rest of spectrum of H(s). However this folk adiabatic condition is not always sufficient, but
rigorous conditions have been given e.g. by Jansen et al. [19]. Indeed, they proved the
following statement (where we introduce the notation Ȧ(s) = ∂sA(s)).

I Theorem 18 ([19]). Let {H(s), P (s), τ} be an adiabatic process with a gap g = mins∈[0,1] g(s),
Ḣ, Ḧ are bounded operators, and ε > 0, if

τ ≥ 1
ε

[‖Ḣ(0)‖+ ‖Ḣ(1)‖
g2 + max

s∈[0,1]

‖Ḧ(s)‖2

g2 + 7‖Ḣ(s)‖2

g3

]
,

then εAP ≤ ε.

The adiabatic process used in our algorithm introduced in Section 4 does not necessarily
exhibit a gap, and for this reason we use another lemma from Avron and Elgart [4].

I Lemma 19 ([4]). Let {H(s), P (s), τ} be an adiabatic process and ε > 0. Suppose that the
commutator equation

Ṗ (s)P (s) = [H(s), X(s)] (9)

accepts as solution operator X(s) such that both X(s) and Ẋ(s) are bounded. If

τ ≥ max
s∈[0,1]

1
ε

[
2‖X(s)‖+ ‖Ẋ(s)P (s)‖

]
,

then εAP ≤ ε.

This version of the lemma is actually a special case of the statement proved by Avron and
Elgart, adapted to the case of continuous-time quantum computation. For completeness we
reproduce a self-contained proof of this version of the lemma in Appendix A.

3 Adversary lower bound in the continuous-time model

In this section we give a direct proof that the adversary method Adv?(ρ, σ) is a lower-bound
for the zero-error quantum query complexity in the continuous-time model.

I Theorem 20. For any |X|-by-|X| Gram matrices ρ, σ, we have

Qct
0 (ρ, σ) ≥ 1

2Adv?(ρ, σ),

Qct
ε (ρ, σ) ≥ 1

2 min
σ′:FH(σ,σ′)≥

√
1−ε

Adv?(ρ, σ′).
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Proof. Let |φx(t)〉 be the state of the algorithm on input x at time t ∈ [0, T ], and Φt be
the Gram matrix of those states. Let Γ be a |X|-by-|X| hermitian matrix and |v〉 be a
|X|-dimensional unit vector. We consider the following superposition of states:

|Φt〉 =
∑
x

vx |x〉I |φx(t)〉A with trA |Φt〉〈Φt| = Φt ◦ |v〉〈v|,

where A is the actual register of the algorithm, while I is a (virtual) input register that is
introduced for the sake of analysis.

Since each state |φx(t)〉 evolves under the influence of a Hamiltonian Hx(t) as in Equa-
tion (4), the state |Φt〉 evolves under the influence of a global Hamiltonian

H(t) =
∑
x

|x〉〈x| ⊗Hx(t). (10)

Similarly to Subsection 2.3, we consider a progress function

W (Φt) = 〈Γ ◦ |v〉〈v| ,Φt〉
= trI [Γ(Φt ◦ |v〉〈v|)]
= 〈Φt|Γ⊗ 1A |Φt〉
≡ 〈Γ〉t

where we use the usual notation 〈Γ〉t for the expectation value of observable Γ when measuring
state |Φt〉. From Ehrenfest’s theorem [12], this expectation value evolves as

d 〈Γ〉t
dt

= −i 〈[Γ, H(t)]〉t +
〈
∂Γ
∂t

〉
t

,

where the second term is zero since Γ is time-independent. Therefore, we have
dW (Φt)
dt

= −i 〈Φt| [Γ, H(t)] |Φt〉

= −i
∑
x,y

vxv
∗
yΓyx 〈φy(t)|Hx(t)−Hy(t) |φx(t)〉

= −iα(t)
∑
x,y

vxv
∗
yΓyx

∑
j:xj 6=yj

〈φy(t)| |j〉〈j| ⊗ [h(xj)− h(yj)] |φx(t)〉

= −iα(t)
∑
j

∑
x,y

(1− δxjyj
)vxv∗yΓyx[Φjt ]yx

= −iα(t)
∑
j

〈
Γ ◦∆j ,Φjt ◦ |v〉〈v|

〉
,

where we have defined the matrices [Φjt ]yx = 〈φy(t)| |j〉〈j| ⊗ [h(xj)− h(yj)]|φx(t)〉. Using the
properties of the inner product and the fact that |α(t)| ≤ 1, we may bound the variation of
the progress function as∣∣∣∣dW (Φt)

dt

∣∣∣∣ ≤
∣∣∣∣∣∣
∑
j

〈
Γ ◦∆j ,Φjt ◦ |v〉〈v|

〉∣∣∣∣∣∣
≤
∑
j

‖Γ ◦∆j‖.‖Φjt ◦ |v〉〈v|‖tr,

≤
∑
j

‖Γ ◦∆j‖.γ2(Φjt ),

≤ max
j
‖Γ ◦∆j‖ ·

[∑
j

γ2(Φjt )
]
.
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We now show that
∑
j γ2(Φj

t ) ≤ 2. First, as {|j〉〈j|}j∈[n] is a set of orthogonal projectors
defined from the orthogonal basis {|j〉}j∈[n], we have

∑
j γ2(Φjt ) = γ2(

∑
j Φjt ).

Using the minimization form in Definition 3, we show that there exist {|ux〉 , |vx〉}x such
that

∑
j

[
Φjt
]
yx

= 〈uy| vx〉 and maxx
{

max{‖ |vx〉 ‖2, ‖ |ux〉 ‖2}
}
≤ 2. Indeed, let

|ux〉 = −HQ(x) |φx(t)〉 |0〉+ |φx(t)〉 |1〉 , |vx〉 = |φx(t)〉 |0〉+HQ(x) |φx(t)〉 |1〉 .

Then, we have 〈uy| vx〉 =
∑
j [Φ

j
t ]yx, and the upper-bound on the norms of these vectors

follows from the conditions ‖h(y)‖ ≤ 1 for all y, which imply ‖HQ(x)‖ ≤ 1 for all x.
Since

∑
j γ2(Φjt ) ≤ 2, the last bound then reduces to∣∣∣∣dW (Φt)

dt

∣∣∣∣ ≤ 2 max
j
‖Γ ◦∆j‖.

Moreover, for a zero-error algorithm, we also have∣∣ 〈Γ ◦ (σ − ρ), vv∗〉
∣∣ =

∣∣W (ΦT )−W (Φ0)
∣∣

=

∣∣∣∣∣
∫ T

0

dW (Φt)
dt

∣∣∣∣∣
≤ T max

t∈[0,T ]

∣∣∣∣dW (Φt)
dt

∣∣∣∣
≤ 2T max

j
‖Γ ◦∆j‖.

By optimizing over Γ and |v〉, we obtain the zero-error adversary bound T ≥ 1
2Adv?(ρ, σ),

which proves the first part of the theorem. The second part then directly follows from
Lemma 12. J

4 Adiabatic quantum query algorithm

In this section, we build an adiabatic quantum query algorithm AdiaConvert(ρ, σ, ε), for
solving the quantum state conversion problem (ρ, σ), with an error ε and a running time
τ = O(Adv?(ρ, σ)/ε). Together with Theorem 20, this implies that the adversary method
characterizes the quantum query complexity in the time-continuous model for bounded error.

I Theorem 21. For any |X|-by-|X| Gram matrices ρ, σ, we have

Qct
ε (ρ, σ) = O

(Adv?(ρ, σ)
ε

)
.

Description of AdiaConvert

The algorithm acts on a Hilbert space H = HO ⊕HQ⊗HW where HO is the output register,
HQ the query register and HW a workspace register. Without loss of generality, we can
make the initial and target states orthogonal by adding an ancilla qubit in state |0〉 for |ρx〉
and |1〉 for |σx〉. We then define a continuous path from |ρx〉 |0〉 to |σx〉 |1〉:∣∣k+

x (s)
〉
O = cos θ(s) |0, ρx〉O + sin θ(s) |1, σx〉O ,∣∣k−x (s)
〉
O =− sin θ(s) |0, ρx〉O + cos θ(s) |1, σx〉O ,

where θ(s) = π
2 s and s ∈ [0, 1].
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From Definition 14, let
{
|ux,i〉 , |vx,i〉

}
x,i

be vectors witnessing γ2(ρ− σ|∆) = W , with

W
def= Adv?(ρ, σ). We use those states to define the following non-normalized states:∣∣Ψ+

x (s, ε)
〉

=
∣∣k+
x (s)

〉
O + ε√

W

∑
i

∣∣i, x+
i

〉
Q |ux,i〉W ,

∣∣Ψ−x (s, ε)
〉

=
∣∣k−x (s)

〉
O + ξ(s)

√
W

ε

∑
i

∣∣i, x−i 〉Q |vx,i〉W ,

where
∣∣x±i 〉 is defined by (3), and ξ(s) = 2 cos θ(s) sin θ(s). Note that we have

〈
x−i
∣∣ y+

i

〉
=

1
2
[
1− δxi,yi

]
. We also let |ψ±x (s, ε)〉 be their normalized versions.

The algorithm uses as driver Hamiltonian the projection Λ(s, ε) on the vector space
V (s, ε) = span{|Ψ−x (s, ε)〉 |x ∈ X}, and as oracle Hamiltonian, Πx =

∑
i |i, x

−
i 〉〈i, x

−
i |Q ⊗ 1W

(note that ‖Πx‖ ≤ 1).

AdiaConvert(ρ, σ, ε)
1 Prepare the state |0, ρx〉.
2 If Adv?(ρ, σ) < ε/2, do nothing.
3 Otherwise apply the Hamiltonian Hx(s, ε) = Λ(s, ε)−Πx,

where s = t/τ and τ = 15Adv?(ρ,σ)
ε2 , from t = 0 to t = τ .

The action of the algorithm is simple, first, if Adv?(ρ, σ) < ε/2, then we claim, using
Proposition 15 and Corollary 9, that ρ and σ are closed enough, and satisfies the coherent
output condition given in Definition 11.

Otherwise, in order to convert the initial state |0, ρx〉 into a state close enough to the
target state |1, σx〉, we consider the state |ψ+

x (s, ε)〉, which is ε-distant to the state |k+
x (s)〉

interpolating between the initial and target state. We then use the adiabatic process
{Hx(s, ε), Px(s, ε), τ} with failure ε, where Px(s, ε) is the rank-1 orthogonal projection on the
state |ψ+

x (s, ε)〉. The correctness of the adiabatic evolution is based on Lemma 19, where the
solution of Equation (9) follows from Item 5 in Proposition 22. Therefore the final state is
3ε-distant from the target state since the algorithm incurs error ε at the initial state, during
the adiabatic process, and at the target state. This implies that we solve the quantum state
generation problem with error at most 9ε2, and in turn that Qct

9ε2(ρ, σ) ≤ 15Adv?(ρ, σ)/ε2.
The proof of Theorem 21 is the consequence of the existence of the optimal quantum

query algorithm AdiaConvert. As the number of query involved are given by the time scale
τ , the demonstration relies on the derivation of an adiabatic bound linear in Adv?.

In order to prove Theorem 21, we first derive several useful properties of the algorithm
AdiaConvert.

I Proposition 22. For any s, ε ∈ [0, 1] and for all x ∈ X
1. Nx(ε) def= ‖ |Ψ+

x (s, ε)〉 ‖ ≤ 1 + ε2/2,
2. |k+

x (s)〉 and |ψ+
x (s, ε)〉 are ε-distant,

3. Λ(s, ε) |ψ+
x (s, ε)〉 = 0,

4. |ψ+
x (s, ε)〉 is an eigenvector of Hx(s, ε) with eigenvalue λx(s, ε) = 0,

5. 〈ψ+
x (s, ε)|

(
∂s |ψ+

x (s, ε)〉
)

= 0,
6. ∂s |Ψ+

x (s, ε)〉 = π
2Hx(s, ε) |Ψ−x (s, ε)〉 ,

7. ‖ |Ψ−x (s, ε)〉 ‖2 ≤ 1 +W 2/ε2.
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Let us note that Item 5 is the key property that prevents the instantaneous state |ψ+
x (s, ε)〉

from leaking to degenerate subspaces of eigenvalue 0.

Proof.
1. By Definition 4, we have

∑
i ‖ |ux,i〉 ‖2 ≤ γ2(ρ− σ|∆) = W , so that

N2
x(ε) =

∥∥∥ ∣∣Ψ+
x (s, ε)

〉 ∥∥∥2
= 1 + ε2

W

∑
i

∥∥∥ |ux,i〉∥∥∥2
≤ 1 + ε2.

Item 1 then follows from the inequality
√

1 + δ ≤ 1 + δ/2, for δ ∈ [0, 1].
2. The scalar product of these vectors gives〈

ψ+
x (s, ε)

∣∣ k+
x (s)

〉
= 1
Nx(ε)

〈
Ψ+
x (s, ε)

∣∣ k+
x (s)

〉
= 1
Nx(ε) ≥ 1− ε2/2.

Since this scalar product is real, we have∥∥∣∣k+
x (s)

〉
−
∣∣ψ+
x (s, ε)

〉∥∥2 = 2− 2
〈
ψ+
x (s, ε)

∣∣ k+
x (s)

〉
≤ ε2.

3. Remember Λ(s, ε) is the projection on subspace V (s, ε) = span{|Ψ−x (s, ε)〉 |x ∈ X}.
Therefore, it suffices to show that for all x, y ∈ X,

〈
Ψ+
x (s, ε)

∣∣ Ψ−y (s, ε)
〉

= 0. By definition
of |Ψ+

x (s, ε)〉 and |Ψ−x (s, ε)〉, we have〈
Ψ+
x (s, ε)

∣∣ Ψ−y (s, ε)
〉

= − cos θ(s) sin θ(s)
[
ρx,y − σx,y −

∑
j:xj 6=yj

〈ux,j | vy,j〉
]
.

The right hand side is then zero due to the properties of
{
|ux,i〉 , |vx,i〉

}
x,i

in Definition 14.
4. From Item 3 we already know that Λ(s, ε) |ψ+

x (s, ε)〉 = 0. Then by the definition of
Hx(s, ε), we must calculate Πx |ψ+

x (s, ε)〉,

Πy

∣∣ψ+
x (s, ε)

〉
∝
∑
i

[1− δxi,yi
]
∣∣i, x+

i , ux,i
〉
,

which is exactly zero for x = y.
5. The property follows from

∂s
∣∣ψ+
x (s, ε)

〉
= 1
Nx(ε)∂s

∣∣Ψ+
x (s, ε)

〉
= π

2Nx(ε)
∣∣k−x (s)

〉
and the fact that 〈ψ+

x (s, ε)| k−x (s)〉 ∝ 〈k+
x (s)| k−x (s)〉 = 0.

6.

∂s
∣∣Ψ+

x (s, ε)
〉

= π

2
∣∣k−x (s)

〉
= π

2

(
1−Πx

) ∣∣Ψ−x (s, ε)
〉

= π

2

[(
Λ(s, ε)−Πx

)
+
(
1− Λ(s, ε)

)] ∣∣Ψ−x (s, ε)
〉

= π

2Hx(s, ε)
∣∣Ψ−x (s, ε)

〉
.

In the second line, Πx acts as the identity on
∣∣i, x−i 〉. In the third line, the second term is

zero by definition of Λ(s, ε).
7. Similarly to the proof of Item 1 all vectors |vx,i〉 have their norm bounded by W∥∥∥ ∣∣Ψ−x (s, ε)

〉 ∥∥∥2
= 1 + ξ2(s)W

ε2

∑
i

∥∥∥ |vx,i〉∥∥∥2
≤ 1 + W 2

ε2 .

Noting that ξ(s) = sin(2θ(s)). J
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Proof of Theorem 21. Let W = Adv?(ρ, σ). We show that AdiaConvert solves the
quantum state conversion in time τ = 15Wε2 with error at most 9ε2. Let us first con-
sider the case where W < ε/2. Then, Proposition 15 implies DH(ρ, σ) < ε/2, and Corollary 9
concludes that FH(ρ, σ) > 1−ε/2 >

√
1− ε, so that the coherent output condition is already

satisfied by the initial Gram matrix.
We now assume that W ≥ ε/2. Before we go any further, we must justify that the

triplet {Hx(s, ε), Px(s, ε), τ} is an adiabatic process as defined in Definition 16. First by
definition, the state |ψ±x (s, ε)〉 is s-smooth on [0, 1]. It follows that Hx(s, ε) and Px(s, ε) are
also s-smooth. Moreover, by Item 4 of Proposition 22, |ψ+

x (s, ε)〉 is an eigenstate of Hx(s, ε)
with a constant eigenvalue λx(s, ε) = 0.

In order to bound the error of the adiabatic process εAP with Lemma 19, we define an
operator Xx(s, ε), solution of Equation (9), where Xx(s, ε) and Ẋx(s, ε)Px(s, ε) are bounded.

Let Xx(s, ε) = π
2Nx(ε) |Ψ

−
x (s, ε)〉〈ψ+

x (s, ε)|, Items 5 and 6 of Proposition 22 imply

[Hx(s, ε), Xx(s, ε)] = Hx(s, ε)Xx(s, ε) = Ṗx(s, ε)Px(s, ε).

To obtain εAP we derive a bound for Xx(s, ε) and Ẋx(s, ε)Px(s, ε).
First, we have

‖Xx(s, ε)‖2 =
[ π

2Nx(ε)

]2∥∥∥ ∣∣Ψ−x (s, ε)
〉 ∥∥∥2

.

From Item 7 of Proposition 22 and the fact that W ≥ ε/2, we obtain

‖
∣∣Ψ−x (s, ε)

〉
‖2 ≤ 1 + W 2

ε2 ≤ 5W
2

ε2 ,

knowing that Nx(ε) ≥ 1 we obtain the bound : ‖Xx(s, ε)‖ ≤ π
√

5
2

W
ε .

Second, to bound ‖Ẋx(s, ε)Px(s, ε)‖ we derive Xx(s, ε)

Ẋx(s, ε) = π

2Nx(ε)∂s
( ∣∣Ψ−x (s, ε)

〉)〈
ψ+
x (s, ε)

∣∣+ π2

4Nx(ε)
∣∣Ψ−x (s, ε)

〉〈
k−x (s)

∣∣ .
After adding Px(s, ε) on the right, the second term disappears following Item 5 of Proposition
22, and we have

‖Ẋx(s, ε)Px(s, ε)‖2 =
[ π

2Nx(ε)

]2∥∥∥∂s ∣∣Ψ−x (s, ε)
〉 ∥∥∥2

≤
[π

2

]2(π2

4 + π2 cos2(πs)W
ε2

∑
i

‖ |vx,i〉 ‖2
)

≤
[π

2

]2
π2
(1

4 + W 2

ε2

)
≤
[π

2

]2
2π2W

2

ε2 .

Thereby we have all the required conditions to use Lemma 19 for the adiabatic process
{Hx(s, ε), Px(s, ε), τ}, which ensures that εAP ≤ ε if

τ ≥ 15W
ε2 ≥ 1

ε

[W
ε

(
π
√

5 + π2
√

2

)]
.

Let
∣∣ψfx〉 be the output state. Since the initial state |0, ρx〉 and the target state |1, σx〉 are

ε-distant from |ψ+
x (0, ε)〉 and |ψ+

x (1, ε)〉 (Item 2 of Proposition 22) and the adiabatic process

TQC’15



176 A universal adiabatic quantum query algorithm

introduces an additional error of εAB ≤ ε, the output state
∣∣ψfx〉 and the target state |1, σx〉

are 3ε-distant, which implies that Re(
〈
ψfx
∣∣ 1, σx

〉
) ≥
√

1− 9ε2. Therefore, we obtain

Qct
9ε2(ρ, σ) ≤ 15W

ε2 ,

which implies the theorem by setting ε′ = 9ε2. J
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A Appendix: Adiabatic theorem without a gap condition

In this section we give an adapted version of the proof of Lemma 19 in [4]. We derive an
upper bound on the error εAP caused by the adiabatic process without a gap condition. We
use the same notations as in Subsection 2.4.

I Lemma 23 ([4]). Let {H(s), P (s), τ} be an adiabatic process and ε > 0. Suppose that the
commutator equation

Ṗ (s)P (s) = [H(s), X(s)] (11)

accepts as solution operator X(s) such that both X(s) and Ẋ(s) are bounded. If

τ ≥ max
s∈[0,1]

1
ε

[
2‖X(s)‖+ ‖Ẋ(s)P (s)‖

]
,

then εAP ≤ ε.

TQC’15
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Proof of Lemma 19

In order to bound the quantity εAP , we would like to describe an idealized adiabatic evolution
UA(s) that transports the projector P (0) to P (s), such that UA(s)P (0) = P (s)UA(s). To
achieve this, we use a technique given by [20] (later improved in [3]), and define HA(s) as
the adiabatic Hamiltonian

HA(s) = λ(s)1 + i

τ
[Ṗ (s), P (s)], (12)

where [·, ·] is the commutator. We define UA(s) as the solution of the Schrödinger equation
for this Hamiltonian, that is,

i∂sUA(s) = τHA(s)UA(s), (13)

with the initial condition UA(0) = 1. The existence and uniqueness of UA(s) follows from
the analytical properties in Definition 16. Moreover we show that UA(s) has the desired
property.

I Lemma 24 ([20], Intertwining property).

UA(s)P (0) = P (s)UA(s). (14)

The proof of this property uses the following fact.

I Fact 25. For any orthogonal projector P we have P = P 2, so that Ṗ = ṖP + PṖ and
PṖP = 0 .

Proof of Lemma 24. Since UA(s) is the solution of the differential equation i∂sX(s) =
τHA(s)X(s) with X(0) = 1, then every other solution of this equation has the form
X(s) = UA(s)X(0). All we need to do is prove that P (s)UA(s) is also a solution. Indeed,
this implies that P (s)UA(s) = UA(s)X(0), and by setting s = 0 we obtain P (0) = X(0).
Using Fact 25, we have

i∂s
(
P (s)UA(s)

)
= iṖ (s)UA(s) + P (s)τHA(s)UA(s)
= iṖ (s)UA(s) + τλ(s)P (s)UA(s) + iP (s)[Ṗ (s), P (s)]UA(s)
= τλ(s)P (s)UA(s) + i

(
Ṗ (s)− P (s)Ṗ (s)

)
UA(s)

= τλ(s)P (s)UA(s) + iṖ (s)P (s)UA(s)
=
(
τλ(s)1 + i[Ṗ (s), P (s)]

)
P (s)UA(s)

= τHA(s)P (s)UA(s)

J

In order to prove Lemma 19, we need two more claims.
Note that εAP (s) can be rewritten as ‖

(
Ω(s)− 1

)
P (0)‖, where Ω(s) = U∗τ (s)UA(s).

I Claim 26. Ω̇(s)P (0) = U∗τ (s)Ṗ (s)UA(s)P (0)

Proof. Using (7) and (12), we note that Ω̇(s) = U∗τ (s)
[
iτ
(
H(s)−λ(s)1

)
+[Ṗ (s), P (s)]

]
UA(s).

The claim follows from the intertwining property (Lemma 24), Fact 25 and H(s)P (s) =
λ(s)P (s). J

I Claim 27. Let Φ(s) = e−iτλ(s)
1 and VA(s) = Φ∗(s)UA(s). Then VA(s) satisfies the

intertwining property (14), that is, VA(s)P (0) = P (s)VA(s), as well as the Schrödinger
equation V̇A(s) = [Ṗ (s), P (s)]VA(s).
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Proof. The fact that VA(s) satisfies the intertwining property is immediate since UA(s)
satisfies this property and Φ(s), being proportional to the identity, commutes with any
operator. The fact that it satisfies the Schrödinger equation follows from the facts that
Φ(s) satisfies iΦ̇(s) = τλ(s)Φ(s), UA(s) satisfies iU̇A(s) = τHA(s)UA(s), and both terms of
HA(s) = λ(s)1 + i

τ [Ṗ (s), P (s)] commute. J

Let X(s) an operator solution of Ṗ (s)P (s) = [H(s), X(s)], then(
Ω(s)− 1

)
P (0)

=
∫ s

0
Ω̇(s′)ds′P (0)

=
∫ s

0
U∗τ (s′)Ṗ (s′)UA(s′)ds′P (0)

=
∫ s

0
U∗τ (s′)Φ(s′)Ṗ (s′)VA(s′)ds′P (0)

=
∫ s

0
U∗τ (s′)Φ(s′)[H(s′), X(s′)]VA(s′)ds′P (0)

=
∫ s

0
U∗τ (s′)Φ(s′)[H(s′)− λ(s′)]X(s′)VA(s′)ds′P (0)

= 1
iτ

∫ s

0
∂s′ [U∗τ (s′)Φ(s′)]X(s′)VA(s′)ds′P (0)

= 1
iτ

[
U∗τ (s′)Φ(s′)X(s′)VA(s′)

]s
0
P (0)− 1

iτ

∫ s

0
U∗τ (s′)Φ(s′)∂s′ [X(s′)VA(s′)]ds′P (0)

= 1
iτ

[
U∗τ (s′)X(s′)UA(s′)

]s
0
P (0)− 1

iτ

∫ s

0
U∗τ (s′)[Ẋ(s′) +X(s′)Ṗ (s′)]UA(s′)ds′P (0)

We explain line by line:
(1 → 2) We use Claim 26.
(2 → 3) We rearrange the expression using UA(s) = Φ(s)VA(s) and the fact that Φ(s)

commutes with any operator.
(3 → 4) We use the intertwining property for VA(s) (Claim 27) and Equation (11).
(6 → 7) We integrate by parts.
The third term in the last line is null, because X(s) = X(s)P (s) and the intertwining
property (Lemma 24) yields the expression PṖP , which is zero by Fact 25. Using the triangle
inequality, the fact that a norm is preserved by unitary operations and can only decrease
under projections, we finally have

εAP (s) = ‖
(
Ω(s)− 1

)
P (0)‖

≤ 1
τ

[
‖X(0)‖+ ‖X(s)‖+ s max

s′∈[0,s]
‖Ẋ(s′)P (s′)‖

]
≤ 1
τ

max
s∈[0,1]

[
2‖X(s)‖+ ‖Ẋ(s)P (s)‖

]
This conclude the proof. J
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Abstract
The capability of a given channel to transmit information is, a priori, distinct from its capability
to distribute random correlations. Despite that, for classical channels, the capacity to distribute
information and randomness turns out to be the same, even with the assistance of auxiliary
communication. In this work we show that this is no longer true for quantum channels when
feedback is allowed. We prove this by constructing a channel that is noisy for the transmission of
information but behaves as a virtual noiseless channel for randomness distribution when assisted
by feedback communication. Our result can be seen as a way of unlocking quantum randomness
internal to the channel.
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1 Summary

Randomness and information are different concepts. We think of information of as that which
is sent as a specific message to another person or machine. On the other hand, randomness
can be intuitively understood as the outcome of a noisy process. Information and randomness
being different concepts, the capability to distribute them over a channel could, a priori, be
inequivalent resources. More precisely, the capability to distribute a bit of randomness is
a weaker resource than the potential to communicate a bit of information over a channel,
because if Alice is capable of distributing a bit of information to Bob over a noisy channel
she can also locally generate a pair of correlated bits and transmit one to Bob, generating
a bit of shared randomness. Therefore, the capacity R(E) of randomness distribution of a
noisy channel E is in principle higher than that of information communication C(E), i.e.,
C(E) ≤ R(E).

We may also ask about the capacity of a channel to communicate or distribute randomness
when auxiliary classical communication is allowed. For communication, we thus have the
capacity of the channel assisted by feedback C←, the capacity assisted by auxiliary forward
communication C→ and the capacity assisted by two-way classical communication C↔. Since
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the auxiliary forward communication can be used to communicate by itself, we must subtract
the amount of auxiliary forward communication from the gross communication rates in
the definitions of the later two quantities. For the distribution of shared randomness we
can similarly define rates R←, R→, R↔, but in this case we must subtract both forward
and backward auxiliary communication, as both of these may be used to establish shared
randomness by themselves.

In the setting with feedback assistance, the tradeoff between the gross rate of randomness
distribution and the rate of feedback allowed was characterised (among many other things)
by Ahlswede and Csiszár in [2]. A corollary of their result is that R←(E) = C(E) for classical
channels. To our knowledge the only previous work studying the generation of shared
randomness in a quantum scenario was the work of Devetak and Winter [6] on the distillation
of common randomness from bipartite quantum states. That work considered a static scenario
of distillation of randomness from a quantum state already shared between Alice and Bob,
where in this manuscript we are interested on a dynamic scenario of randomness distribution
over quantum channels.

In section 3 we show that, for general quantum channels E , the entanglement-assisted
capacity [12] of E , CE(E), is an upper bound on the largest of the randomness distribution
capacities, R↔(E). Since CE(E) is equal to C(E) for classical-quantum channels (which
include classical channels), this establishes the equality

R(E) = R←(E) = R→(E) = R↔(E) = C(E)

for such channels. A simple argument can be used to show that we also have

C(E) = C←(E) = C→(E) = C↔(E)

for such classical-quantum channels, so in this case all eight quantities are then same. When
the channel is classical

C(E) = max
PX

I(X : Y ), (1)

where X and Y are the input and output to a single use of the channel E with X distributed
according to PX [1].

As opposed to the classical regime, where all capacities turn out to be equal, in the
quantum scenario randomness distribution and communication remain equivalent only when
we consider unassisted or forward assisted classical communication. That is, for general
channels E , we have C(E) = R(E) = C→(E) = R→(E), as shown in subsection 4.1.

In section 4.2 we show that, for quantum-classical channels E , feedback allows the upper
bound in terms of CE(E) to be achieved, and therefore

R←(E) = R↔(E) = CE(E).

On the other hand, since quantum-classical channels are entanglement-breaking, a result
of Bowen and Nagarajan [3] tells us that C←(E) = C(E), so any quantum-classical channel
with C(E) < CE(E) also demonstrates a separation C←(E) < R←(E). Holevo has shown that
there are many such channels [4], and we give an explicit example, where the randomness
distribution protocol is noiseless, in subsection 4.3.

2 Definitions

Our definitions in this section are based on those used by Ahlswede and Csiszár in [2], and
Devetak and Winter [6].
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E E

A0 A1 A2 A3 A4 J

B0 B1 B2 B3 B4 K

X1

Y1

Z1 Z2

X2

Y2

Figure 1 An example of a two-way assisted randomness distillation protocol which makes two
uses of the channel E . Time runs left to right. Classical systems are shown as double lines, quantum
systems as solid lines. Empty boxes represent local processing. We denote by Aj Alice’s system,
and by Bj Bob’s system, immediately after step j of the protocol. The communication is either
forward communication via one use of the noisy channel E , where Alice inputs Xi and Bob receives
the output Yi, or forward/backward auxiliary noiseless classical communication Zi.

A two-way assisted randomness distribution protocol for a channel E consists of local
generation of random variables A0 and B0 followed by a finite number of steps, each consisting
of communication followed by local processing. The communication is either (i) forward
communication via one use of the noisy channel E , where Alice makes an input Xi and Bob
receives the output Yi; (ii) forward auxiliary noiseless classical communication; (iii) backward
auxiliary noiseless classical communication.

Suppose we have a protocol of n+m steps where n of the steps are of type (i) and the
other m steps are of type (ii) or (iii). We denote by Aj Alice’s system, and by Bj Bob’s
system, immediately after step j of the protocol. At the end of the protocol, Alice must
produce random variable J and Bob must produce K, both of which take values in the same
alphabet AK , by local processing of their respective final systems Am+n and Am+n. An
example of such a protocol with n = m = 2 is illustrated in Figure 1.

We require that

log |AK | ≤ exp(cn) (2)

for some constant c independent of n (but depending on the channel E). We say that the
protocol is ε-good if Pr(J 6= K) ≤ ε. By Fano’s inequality and (2), an ε-good protocol has

H(K|J) ≤ εcn+ 1 (3)

We denote the data transmitted in each instance of auxiliary communication (regardless
of whether it is forward or backward) by Zk, where k ∈ {1, . . . ,m}, in temporal order.

If the total auxiliary communication Z := Z(m) := (Z1, . . . , Zm) has |AZ | possible values
(we require this number to be finite for any given protocol), then this alone would allow the
parties to establish log |AZ | bits of perfect common randomness without using E at all! We
therefore subtract log |AZ | from the final amount of common randomness established and
hence define the net rate of the protocol is

1
n

(H(K)− log |AZ |).

A forward-assisted randomness distribution protocol is one in which all steps are of
type (i) or (ii). A back-assisted randomness distribution protocol is one in which all steps
are of type (i) or (iii). An unassisted randomness distribution protocol is one in which all
steps are of type (i).



R. Garcia-Patron, W. Matthews, and A. Winter 183

I Definition 1. We say a net rate R is achieved by two-way protocols for channel E if for
all ε > 0 and all sufficiently large n, there is an ε-good protocol for n noisy channel uses
with net rate no less than R. We define R↔(E) to be the supremum of net rates achieved
by two-way protocols; R→(E) to be the supremum of net rates achieved by forward-assisted
protocols; R←(E) to be the supremum of net rates achieved by back-assisted protocols; and
R(E) to be the supremum of net rates achieved by unassisted protocols;

It follows immediately from the definitions that

R(E) ≤ R→(E) ≤ R↔(E) and R(E) ≤ R←(E) ≤ R↔(E). (4)

3 Classical equality between information and randomness distribution

In this section we will show that R↔(E) can be no larger than the entanglement-assisted
capacity of E , CE(E). Since CE(E) = C(E) for classical channels (and, more generally, for
classical-quantum channels), this establishes that

C(E) = R←(E) = R→(E) = R↔(E)

for such channels. We note that common randomness distribution via a classical channel E
and noiseless feedback was considered by Ahslwede and Csiszar in [2], and that the equality
C(E) = R←(E) is a corollary of their Theorem 4.3.

It was shown by Bennett, Shor, Smolin and Thapliyal [12], that the entanglement-assisted
classical capacity of a channel EY←X is given by

CE(E) = max
ρRX

I(R : Y)EY←XρRX . (5)

We will show that the same formula is an upper bound on R↔(E).

I Theorem 2. For any channel E, R↔(E) ≤ CE(E).

Proof. Let us consider a protocol which makes n uses of the channel E and m auxiliary
communication steps. For k ∈ {1, . . . , n}, let Xk denote the input system, and Yk the output
system, for the k-th use of the noisy channel.

Initially, Alice and Bob have systems A0 and B0 which are uncorrelated in that I(A0 :
B0) = 0. We may assume without loss of generality that any local randomness used in
the protocol is already present in the state of these systems. We may assume without loss
of generality that at each step Alice and Bob have retained a full record of all auxiliary
communication up to that step.

Suppose that at step j of the protocol, Bob sends Alice Zk by auxiliary back communica-
tion. Then we may bound

I(Aj : Bj)
(a)
≤ I(Aj−1Zk : Bj)

(b)
≤ I(Aj−1Zk : Bj−1)

=I(Aj−1 : Bj−1) +H(Zk|Aj−1)−H(Zk|Aj−1Bj−1)
(c)
≤I(Aj−1 : Bj−1) +H(Zk|Aj−1)

(d)
≤ I(Aj−1 : Bj−1) +H(Zk|Z(k−1)) (6)

where (a) and (b) are data processing, (c) is because, since Zk is classical,H(Zk|Aj−1Bj−1) ≥
0 and (d) is because Aj−1 includes Z(k−1). A similar argument establishes the same inequality
when Alice sends Bob Zk by auxiliary forward communication, instead.
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Now consider the case where Alice makes an input Xk to the noisy channel E at step j,
with Bob receiving output Yk. Then

I(Aj : Bj)
(a)
≤ I(Aj : Bj−1Yk)
=I(Aj : Yk) + I(Aj : Bj−1|Yk)
=I(Aj : Yk) + I(AjYk : Bj−1)− I(Yk : Bj−1)

(b)
≤I(Aj : Yk) + I(AjYk : Bj−1)
(c)
≤I(Aj : Yk) + I(Aj−1 : Bj−1)
(d)
≤CE(E) + I(Aj−1 : Bj−1). (7)

Here, (a) and (c) are by data processing, (b) is positivity of mutual information, and (d) is
by the result of Bennett, Shor, Smolin and Thapliyal.

Recall that Z := Z(m) is the total record of auxiliary communication. Starting with
I(An+m : Bn+m), and repeatedly invoking the inequality (6) or (7) depending on the type of
step, we obtain

I(An+m : Bn+m) ≤I(B0 : A0) + nCE(E) +
m∑
k=1

H(Zk|Z(k−1))

=nCE(E) +H(Z)
≤nCE(E) + log |AZ |, (8)

where the equality is by the chain rule and I(B0 : A0) = 0. Finally, we bound the net rate R
of the protocol by

R = 1
n

(H(K)− log |AZ |) = 1
n

(I(K : J) +H(K|J)− log |AZ |)
(a)
≤ 1
n

(I(An+m : Bn+m) +H(K|J)− log |AZ |)
(b)
≤ 1
n

(nCE(E) + log |AZ |+ ncε+ 1− log |AZ |)
(c)=CE(E) + cε+ 1/n

where (a) is data processing, (b) is by inequalities (8) and (3), and (c) by is Shannon’s noisy
channel coding theorem. Recalling the definition of R↔, we have established that

R↔(E) ≤ CE(E). (9)

J

We also claimed that C(E) = C←(E) = C→(E) = C↔(E) for classical-quantum channels.
In fact, we can show that this is true of any entanglement-breaking channel. The general
equality C(E) = C←(E) is established in the next section. Now, note that we can write

C↔(E) = sup
m
{C←(E ⊗ Am)− logm}

where Am is a classical identity channel with m input symbols. Since E and Am are both
entanglement-breaking, we have

C←(E ⊗ Am) = C(E ⊗ Am) = C(E) + C(Am) = C(E) + logm
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C  = C→ <

R  = R→

1 3 2

4

=

1 1

41

=

< R← ? R↔

C← < C↔<

?

Figure 2 Relations between the communication (C) and randomness distribution (R) capacities.
Note that an equality means that both capacities are equal for all channels; On the other hand,
an inequality means that we know of at least one channel where one is strictly higher, which does
not preclude the possibility that for other channels they may be equal. (1) It is easy to prove
C = R = C→ = R→, see Section 4.1 below. (2) Corollary of [11], using echo-correctable channels.
(3) Corollary of [9], using random-phase coupling channels. (4) Our result in subsection 4.2. The
relations between R←(E), R↔(E) and C↔(E), i.e., whether they are equal for all channels or there
are some examples of strict separation between them, remains an open question.

by Bowen-Nagarajan [3], the HSW theorem [7, 8], and the fact that the Holevo information
is additive for entanglement breaking channels [10]. Therefore,

C←(E) = C↔(E) = C(E)

for entanglement-breaking E .

4 Quantum scenario

As opposed to the classical scenario, where all capacities of randomness distribution and
information transmission, collapse into a single quantity given by Shannon’s capacity, quantum
channels have a richer behaviour depicted in Figure 2. The only similarity between the
quantum and classical scenario is restricted to the unassisted and forward assisted capacities
where, as shown in subsection 4.1 below, one can prove the equality

C(E) = R(E) = C→(E) = R→(E). (10)

The situation changes radically for feedback and two-way assisted capacities. It was shown
in [11] that by concatenating an echo-correctable channel and a depolarizing channel one
can obtain an entanglement-breaking channel exhibiting a strict separation C←(E) < C↔(E).
Subsequently, in [9], the possibility of a strict separation C→(E) < C←(E) was shown using
random-phase coupling channels (also informally called rocket channels). In subsection 4.2
below we show that there can be a separation C←(E) < R←(E). As a corollary we also
obtain the separation R→(E) < R←(E).

4.1 Equality between unassisted and forward-assisted capacities
It is straightforward to see that C(E) ≤ C→(E) and R(E) ≤ R→(E) (assistance can only
increase the rate), C(E) ≤ R(E) (if you can send a bit of information you can also distribute
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E E

A0 A1 A2 A3 R J

B0

K

X1

Y1

Z1

X2

Y2

Z2

τJZYn

Figure 3 An example of a forward assisted randomness distillation protocol which makes two
uses of the channel E . Without loss of generality, Bob waits until receiving all communication from
Alice to perform his local processing, and obtain K.

a bit of shared randomness) and similarly C→(E) ≤ R→(E), because in both cases we
only subtract the assisting forward communicaiton. In order to prove the equality between
unassisted and forward-assisted capacities in eq. (10), it is sufficient to prove that the
highest of the four capacities, R→(E), is upper-bounded by the lowest of them, i.e. that
R→(E) ≤ C(E).

Since Bob does not send anything back to Alice during a forward-assisted protocol, there
is no loss of generality if Alice makes all n uses of the noisy channel, sends all auxiliary
classical communication and computes her share of the common randomness, J , before Bob
does anything, as illustrated in Figure 3. We denote by R all systems retained by Alice, from
which she computes her share of the common randomness.

Let Xn be the n input systems, and Yn the n output systems, for the n uses of the
noisy channel E⊗n. We introduce a register Z which stores the value of the auxiliary
forward communication Z, which can take one of |AZ | values. After Alice has made all her
communication to Bob, the state of the ZYnR system is

σZYnR =
∑
z

p(z)|z〉〈z|Z ⊗ E⊗nYn←Xnρ
(z)
XnR (11)

where ρ(z)
XnR is the state of the XnR, conditioned on Z = z. Now, Alice performs a measurement

E(j) (POVM of outcome j) on the system R to obtain her share J of the common randomness,
which is stored in register J. At this point the state of the system is

τJZYn =
∑
z

q(j|z)p(z)|j〉〈j|J ⊗ |z〉〈z|Z ⊗ E⊗nYn←Xnρ
(z,j)
Xn , (12)

where

q(j|z)ρ(z,j)
Xn := TrRE(j)Rρ

(z)
XnR

defines the states ρ(z,j)
Xn and conditional distribution q(j|z).

Then Bob performs a measurement on the ZYn system to obtain his share of randomness
K. We can bound the mutual information between the shares by

I(J : K)
(a)
≤ I(J : ZYn)τ = I(J : Yn)τ + I(J : Z|Yn)τ
=I(J : Yn)τ +H(Z)τ − I(Z : Yn)τ −H(Z|J,Yn)τ

(b)
≤I(J : Yn)τ +H(Z)τ

(c)
≤ χ(E⊗n) + log |AZ | (13)
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where (a) is data processing, (b) is because τ is separable with respect to the Z/JYn

bipartition so H(Z|JYn) ≥ 0, and by positivity of mutual information, and (c) is because
I(J : Yn) ≤ χ(E⊗n). We use this to bound the net rate R of the protocol thus

R = 1
n

(H(K)− log |AZ |) = 1
n

(I(K : J) +H(K|J)− log |AZ |)

≤ 1
n

(χ(E⊗n) + log |AZ |+H(K|J)− log |AZ |) ≤
1
n
χ(E⊗n) + cε+ 1/n,

and therefore R→(E) ≤ limn→∞
1
nχ(E⊗n) = C(E), where the equality is the Holevo-

Schumacher-Westmoreland theorem [7, 8].

4.2 Quantum-classical channels; separation C←(E) < R←(E)
Suppose that EY←X is a quantum-classical channel. That is, a channel of the form

EY←X : ρX 7→
∑
y∈AY

|y〉〈y|Y trE(y)XρX (14)

where {E(y)X : y ∈ AY } is a POVM on X. In this case we can show that there is a
back-assisted randomness distribution which achieves the upper-bound CE(E) for two-way
assisted protocols, and therefore:

I Theorem 3. For quantum-classical channels EY←X, R←(E) = R↔(E) = CE(E).

We just need to show achievability: One way that n uses of a quantum-classical channel
can be used to produce randomness with auxiliary back communication is as follows. Alice
locally prepares n copies of a state ψRX and applies the n uses of the channel to Xn. This
results in n copies of a quantum-classical state∑

y

p(y)ρ(y)R ⊗ |y〉〈y|Y = EY←XψRX (15)

being shared between Alice and Bob, with Bob holding the classical register Y , and p(y) :=
trRXE(y)XψRX and ρ(y)R := trXE(y)XψRX/p(y). Now, in the proof of the classical-quantum
Slepian-Wolf theorem of Devetak and Winter [5] it was shown that, for any 0 < ε < 1/2 and
δ > 0, and all sufficiently large n, we can find |AZ | disjoint subsets {Cz : z ∈ AZ} of AnY
such that
(i) the probability that Y n fails to belong to one of the subsets is not more than 2ε,
(ii) given the knowledge Y n ∈ Cz, Alice can perform a measurement on Rn which identifies

Y n with probability of error no more than ε,
(iii) 1

n log |AZ | ≤ H(Y |R) + 2δ.
This suggests the following protocol: Bob takes K = Y n as his share of the common

randomness (so H(K) = nH(Y )) and sends Alice the identity Z of a subset CZ containing
Y n (if such exists) whereupon Alice measures Rn to obtain an estimate J of Y n. This
protocol has Pr(K 6= J) ≤ 3ε and net rate

1
n

(H(K)− log |AZ |) ≥ H(Y )−H(Y |R)− 2δ = I(Y : R)− 2δ.

Therefore, by optimising over the choice of ψXR in the protocol, we have established that

R←(E) ≥ max
ψXR

I(Y : R)EY←XψXR = CE(E), (16)

TQC’15



188 Quantum Enhancement of Randomness Distribution

where CE(E) is the entanglement-assisted capacity of E , and the equality is the theorem of
Bennett, Shor, Smolin and Thapliyal [12].

Now, quantum-classical channels are entanglement breaking. It was shown by Bowen and
Nagarajan [3] that classical feedback cannot increase the classical capacity of entanglement
breaking channels, so we have C←(E) = C(E). Meanwhile, in [4], Holevo has given examples
of quantum-classical channels with CE(E) > C(E). By Theorem 3 and Bowen-Nagarajan,
these channels also exhibit a separation R←(E) > C←(E). To be more specific, consider the
case where the POVM elements determining E are rank-one projectors onto pair-wise linearly
independent subspaces. Then C(E) ≤ CE(E) = log d, and Holevo shows that the inequality
is strict unless the the POVM is a orthonormal basis measurement [4].

4.3 Specific example
Given two rank-1 projective measurements E(0) and E(1) on a d-dimensional system X with
outcomes in {1, . . . , d} we may construct a quantum-classical channel FY←X whose input
system is X and whose output is a pair Y = (M,G) where M is a bit chosen uniformly at
random, and G is the result of performing the measurement E(M) on X. So, M tells us which
basis was measured and G tells us the result of that measurement. Without loss of generality
we can take E(0) to be the computational basis measurement.

Since the POVM corresponding to this classical-quantum channel has rank-one elements
we already know that

R←(F) = CE(F) = log d. (17)

In Figure 4 we illustrate a protocol which distributes 1 + log d bits of perfectly correlated
randomness with one use of F and a single bit of communication from Bob to Alice, thus
attaining a net rate of log d bits per channel use, perfectly.

On the other hand, if we choose E(1) so that the two measurement bases are mutual
unbiased, it is not hard to establish that C←(F) = C(F) = χ(F) ≤ 1

2 log d: The first two
equalities are because the channel is entanglement breaking. It remains to upper bound the
Holevo information χ(F). Suppose that the input to the channel is drawn from an ensemble
{(p(w), ψ(w)) : w = 1, . . . k} with ensemble average ρ =

∑k
w=1 p(w)ψ(w). Maximising

H(M,G)ρ −
∑
w

p(w)H(M,G)ψ(w) (18)

over all ensembles, we obtain the Holevo information χ(F), and since the channel is entan-
glement breaking, we know that C←(F) = C(F) = χ(F). Clearly

H(M,G)ρ ≤ 1 + log d (19)

while, for any state ψ,

H(M,G)ψ =H(M) +H(G|M = 0)ψ Pr(M = 0) +H(G|M = 1)ψ Pr(M = 1)

=1 + 1
2 (H(G|M = 0)ψ +H(G|M = 1)ψ) .

If the measurements correspond to mutually unbiased bases then, according to Maassen and
Uffink’s entropic uncertainty relation [14], we have

H(M,G)ψ ≥ 1 + 1
2 log d, (20)
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Figure 4 Sharing 1 + log d bits of perfect randomness with one use of the channel F (the contents
of the dashed rectangle) and one bit of back communication: Alice locally prepares a maximally
entangled state φRX and inputs X to the channel. We can view the channel as performing a unitary
controlled by the bit M and then performing a computational basis measurement to yield G. Alice
sets Z = M and sends Z to Bob, who performs Ū (the complex conjugate of U) iff Z = 1 and then
performs a computational basis measurement on R to yield a value Ĝ. By the U ⊗ Ū invariance
of φ, Ĝ = G with probability one, so if Alice sets J = (Ĝ, Z) and Bob sets K = (G,M) then
Pr(K = J) = 1, and K is uniformly distributed. Local operations are surrounded by dotted lines.

and substituting the bounds (19) and (20) into (18),

C←(E) = C(E) = χ(E) ≤ 1
2 log d.

This upper bound is indeed tight for both, C←(E) and C(E), as the channel E can be
transformed with some post-processing on Bob’s side into an erasure channel (if M = 1 erase
register G) of error probability 1/2. Therefore (feedback-assisted) error-correcting codes for
the erasure channel can be used to saturate the bound C(E) = C←(E) = 1/2 log d.

5 Conclusion

Despite being, a priori, different things, we have seen that the capacity for a classical channel
to distribute shared randomness and to send information are the same, with arbitrary
classical assistance. For quantum channels, we have shown that the entanglement-assisted
capacity CE(E) is a general upper bound for R↔(E), and shown that this bound can be
achieved using only back-communication for quantum-classical channels. Using this result we
have established that strict separations C←(E) < R←(E) are possible for quantum-classical
channels. We give an explicit example for which R←(E) = log d while C←(E) = 1

2 log d.
Our result shows that contrary to what is predicted by classical information theory, where

the optimal way of distributing randomness is to generate it locally and distribute it through
the channel, quantum mechanics allows for the activation of randomness initially locked
inside the channel, which boost the amount of shared randomness generated in the process.
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Abstract
Unitary 2-designs are random unitary matrices which, in contrast to their Haar-distributed coun-
terparts, have been shown to be efficiently realized by quantum circuits. Most notably, unitary
2-designs are known to achieve decoupling, a fundamental primitive of paramount importance in
quantum Shannon theory. Here we prove that unitary 2-designs can be implemented approxim-
ately using random diagonal-unitaries.
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1 Introduction

With coherent implementations of quantum circuits becoming a reality, the question of the
practical realization of protocols in quantum information science has been a particular focus
of the field in recent years. Indeed, quantum information theory itself is concerned with
the evolution of quantum systems and decoupling represents one of the most fundamental
primitives [1, 2, 3, 4]. Moreover, this protocol characterizes the conditions under which
two, initially correlated, quantum systems will decohere completely, after evolution and the
protocol itself is achieved using so-called Haar random unitaries [5, 6].

While Haar random unitaries are a powerful theoretical tool, the number of gates required
to achieve their implementation grows exponentially in the system size. Unitary designs
represent finite approximations of Haar random unitaries and, unitary 2-designs in particular,
have been shown to efficiently achieve the decoupling protocol [7]. Moreover, unitary designs
and the analysis of their performance have been widely studied [8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18]. Unitary 2-designs have been shown to be achieved using Clifford circuits [8, 9]
and random quantum circuits [12, 13, 14, 15] and among the most notable of results is the
recent breakthrough of Cleve et al. [18] demonstrating a “near linear” implementation of an
exact unitary 2-design.
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This motivates the question of how simply unitary 2-designs can be achieved. In this
paper we show that unitary 2-designs can be realized to arbitrary precision by random
diagonal-unitaries. Along with theoretical interest, the significance of this result lies in
its simple implementation. Indeed, a quantum circuit for the implementation consists of
repeating single-qubit phase gates, the controlled-Z gates, and the Hadamard gates. The first
two parts are commuting, and they can be applied, in principle, simultaneously. Moreover,
the depth of the non-commuting part, i.e. the Hadamard gates, is O(1). These features of
our implementation leads to a vast reduction in the execution time of the overall circuit. This
work also provides a concrete application of commuting quantum circuits. Little is known
about their concrete applications [19, 20] though they are known to provide a quantum
advantage in computational tasks [21, 22]. The present authors have also shown that the
decoupling theorem can be achieved by random-diagonal unitaries [23].

The article is organised as follows. We begin by introducing the necessary definitions and
notation in Section 2. The main results are presented in Section 3, with the statement that
unitary 2-designs can be achieved using random diagonal-unitary matrices given by Theorem
5 and the implementation given by Corollary 6. Proofs of the main results are presented in
Section 4, along with statements of the necessary lemmas. Indeed, Lemma 8 is of particular
importance in our analysis.

2 Preliminaries

2.1 Notation
We consider a system composed of N qubits and denote by H, the corresponding Hilbert
space and by d = 2N the dimension of H. The set of bounded operators and states on H are
denoted by B(H) and S(H) := {ρ ∈ B(H)|ρ ≥ 0, trρ = 1}, respectively.

We will make use of various norms throughout the article, defined as follows. The
p-norm of X ∈ B(H) is defined by ||X||p := (tr|X|p)1/p for p ≥ 1. For a superoperator
C : B(H) → B(H), we use a family of superoperator norms ||C||q→p (q, p ≥ 1) and the
diamond norm [24] defined by

||C||q→p = sup
X 6=0

||C(X)||p
||X||q

, ||C||� := sup
k
||C ⊗ idk||1→1, (1)

respectively, where idk is the identity map acting on a Hilbert space of dimension k. Note
that it is known that k ≤ d is sufficient to obtain the diamond norm [24].

2.2 Random unitary matrices and their t-designs
We begin with the definition of random unitary matrices, before discussing their role in
quantum information science, leading to the definition of unitary t-designs and approxima-
tions.

I Definition 1 (Haar random unitary matrices [25]). Let U(d) be the unitary group of degree
d, and denote the Haar measure (i.e. the unique unitarily invariant probability measure,
thus often called uniform distribution) on U(d) by HU(d). A Haar random unitary matrix U
is a U(d)-valued random variable distributed according to the Haar measure, U ∼ HU(d).

I Definition 2 (Random X- and Z-diagonal-unitary matrices [19]). Let DW,diag be the set of
unitary matrices diagonal in the Pauli-W basis {|n〉W }

d−1
n=0 (W = X,Z), given by{∑d−1

n=0 e
iϕn |n〉〈n|W : ϕn ∈ [0, 2π) for n ∈ [0, . . . , d − 1]

}
. Let DW denote a probability
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measure on it induced by a uniform probability measure on its parameter space [0, 2π)d.
A random W -diagonal-unitary matrix DW is a DW,diag-valued random variable distributed
according to DW , DW ∼ DW .

The random unitary matrices, defined above, have been applied to a wide variety of
problems in quantum information science (see e.g. [16] for a summary) and have been used
to investigate typical properties in physical systems [26, 27, 28, 29]. However, they cannot be
efficiently implemented by quantum circuits, since the number of random numbers needed for
the implementation scales exponentially with the number of qubits in the system. This fact
has lead to the investigation of their approximation, that is, to the definition and performance
analysis of unitary t-designs [8, 9, 10, 11, 12, 13, 14, 16, 15, 17, 18].

Indeed, a unitary t-design is a random variable taking values in the unitary group that
simulate, up to the tth order, the statistical moments of a given random unitary matrix. To
define a unitary t-design for a random unitary matrix U , let G(t)

U (X) be a superoperator given
by G(t)

U (X) := EU [U⊗tXU†⊗t] for any X ∈ B(H⊗t), where EU represents an expectation over
U . Then, an ε-approximate unitary t-design is defined as follows.

I Definition 3 (ε-approximate unitary t-designs [9, 14]). A random unitary matrix U ∈ U(d)
is called an ε-approximate unitary t-design if ||G(t)

U −G
(t)
UH
||� ≤ ε, where UH is a Haar random

unitary matrix.

I Definition 4 (ε-approximate diagonal-unitary t-designs [19]). A random diagonal-unitary
matrix U ∈ DW,diag (W = X,Z) is called an ε-approximate W -diagonal-unitary t-design if
||G(t)
U − G

(t)
DW ||� ≤ ε, where DW is a random W -diagonal unitary matrix.

In these definitions, the designs are called exact when ε = 0. Note that there are
various definitions of ε-approximate unitary t-designs, a summary of which can be found in
Ref. [16]. Most definitions are equivalent in the sense that, if U is an ε-approximate unitary
t-design in one definition, it is also an ε′-approximate unitary t-design in other definitions for
ε′ = poly(dt)ε.

3 Main results

3.1 A unitary 2-design by random diagonal-unitary matrices
We study an implementation of a unitary 2-design using random diagonal-unitary matrices.
We alternately apply independent random Z- and X-diagonal-unitary matrices, and show
that this strategy approaches a unitary 2-design, after a number of repetitions `. A random
unitary matrix obtained by this process is given by

D[`] := DZ
`+1D

X
` D

Z
` · · ·DX

2 D
Z
2 D

X
1 D

Z
1 . (2)

where DW
i are independent W -diagonal-unitary matrices (i = 1, . . . , `+ 1, W = X,Z). The

D[`] can, equivalently, be expressed as

D[`] =
1∏
i=`

D
′Z
i D

X
i D

Z
i , (3)

where all random diagonal-unitary matrices are taken independently. We will use this
particular expression of D[`] in the remainder of the article.
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194 Implementing Unitary 2-Designs Using Random Diagonal-unitary Matrices

Note that, since a random X-diagonal-unitary matrix can be obtained by conjugating a
random Z-diagonal-unitary matrix by Hadamard gates, D[`] can equivalently be expressed
as

D[`] = DZ
2`+1

1∏
i=2`

(H⊗NDZ
i ), (4)

where H⊗N is the tensor product of N Hadamard gates acting on all N qubits. From this
point of view, the Hadamard gates are the only non-commuting part of D[`]. We will use
this expression when we consider an efficient implementation of D[`] in Subsection 3.2.

Our main result shows that D[`] quickly approaches a unitary 2-design with increasing `.
The formal statement is given by Theorem 5 below.

I Theorem 5 (D[`] is an approximate unitary 2-design). A random unitary matrix D[`], acting
on N qubits, is an ε-approximate unitary 2-design for ` ≥ 2 + 1

N (1 + log 1/ε). Conversely,
D[`] cannot be an ε-approximate unitary 2-design if ` ≤ 1

N log 1/ε.

I Remark. The significance of Theorem 5 lies in the efficiency of its implementation. Moreover,
since a random unitary matrix D[`] can be separated into commuting (random Z-diagonal-
unitary matrices) and non-commuting (the Hadamard gates) parts, and the number of
non-commuting gates for the implementation scales linearly with the system size, this
construction of an approximate unitary 2-design has a simple practical implementation. We
expand upon this point in the following subsection.

3.2 Implementation of D[`] by a quantum circuit
We show that a unitary 2-design achieved by D[`] can be efficiently implemented by a
quantum circuit. We do so by only considering a random Z-diagonal-unitary matrix DZ ,
since D[`] is composed simply of DZ along with Hadamard matrices.

Since the exact implementation of DZ is not efficient, we replace it by a random diagonal
unitary matrix that is efficiently implementable. As we only need the second moments of
DZ for the implementation of a unitary 2-design, this is achieved by an exact Z-diagonal-
unitary 2-design. An efficient implementation of an exact Z-diagonal-unitary t-design by a
diagonal quantum circuit for any t ∈ N is provided in Ref. [30]. As its corollary, an exact
Z-diagonal-unitary 2-design is implemented in the following way.

I Corollary 6 (Exact implementation of Z-diagonal-unitary 2-designs). An exact Z-diagonal-
unitary 2-design is obtained by applying single-qubit phase gates diag{1, eiϕk} on all qubits,
where each phase ϕk is randomly and independently chosen from {0, 2π/3, 4π/3} with k ∈
[1, . . . , N ], followed by probabilistic applications of the controlled-Z gate on every pair of
qubits, where each controlled-Z gate is applied with probability 1/2.

Using this implementation, an approximate unitary 2-design can be implemented by
repeating the following three steps (see also Fig. 1):
1. Apply single-qubit phase gates diag(1, eiϕ), which are diagonal in the Pauli-Z basis, with

ϕ ∈ {0, 2π/3, 4π/3} a random phase on all qubits.
2. Apply the controlled-phase gates diag(1, 1, 1, eiθ), diagonal in the Pauli-Z basis, with a

random phase θ ∈ {0, π} on all pairs of qubits.
3. Apply the Hadamard gates on all qubits.

Note that the two-qubit phase gate, applied in the second step, is equivalent to a random
application of the controlled-Z gate with probability 1/2 in Corollary 6, since θ is randomly



Y. Nakata, C. Hirche, C. Morgan, and A. Winter 195

ϕ1

ϕ2

ϕ3

ϕN−1

ϕN

θ1,1

θ1,2

θ1,N−1

θN−1,N

H

H

H

H

H

Step 1 Step 2 Step 3

Z-diagonal-unitary 2-design

Figure 1 The figure depicts a building block of the quantum circuit that implements a unitary
2-design according to D[`], given by Eq. (4). All the gates in the implementation of a Z-diagonal-
unitary 2-design are diagonal in the Pauli-Z basis and, hence, can be applied simultaneously. One-
and two-qubit gates in the first and the second step are given by diag(1, eiϕk ) and diag(1, 1, 1, eiθl,r ),
respectively. The phases ϕk (k = 1, · · · , N) and θl,r (l, r = 1, · · · , N , l 6= r) are chosen from
{0, 2π/3, 4π/3} and {0, π}, respectively, uniformly at random. The one-qubit gates H represent the
Hadamard gates.

chosen from {0, π}. We conclude from Theorem 5 and Corollary 6 that an ε-approximate
unitary 2-design can be implemented with at most 3N(N + 1

2 log 1/ε) +O(N) one- or two-
qubit gates, most of which are commuting. Numerical evidence for this observation has
previously been found in Ref. [12, 13]

In terms of the number of gates, this implementation is as efficient as most of the
previously known implementations of a unitary 2-design [9, 8, 14], but is not as efficient
as a recently discovered near-linear construction of an exact unitary 2-design [18]. Our
implementation of a unitary 2-design has another merit in view of commutativity of the gates,
resulting in an instant property of the circuit in the sense that all the commuting parts of the
circuit can be, in principle, applied simultaneously. In many physical systems for a quantum
circuit, quantum gates are implemented by adding external electromagnetic fields [31]. If the
circuit is composed of non-commuting gates, each field implementing a quantum gate should
be applied in sequence, which results in a relatively long implementation time. In contrast,
no ordering is imposed for commuting circuits and all the fields can be applied at once. Since
our construction of a unitary 2-design uses a quantum circuit, where only the non-commuting
part is the third step and is depth one, the practical time of our implementation is drastically
reduced compared to the implementations using non-commuting gates scattered over the
circuits. This also results in a robust implementation. Hence, our construction of a unitary
2-design may be preferable to other constructions from an experimental point of view.

This construction is also preferable for measurement-based quantum computation (MBQC)
[32, 33]. In MBQC, computation is performed by single-qubit measurements on a certain
type of multi-partite entangled pure states, known as cluster states. The measurement
basis for implementing quantum gates, with the exception of Clifford gates, depends on
the outcomes of previous measurements. This adaptivity of measurement basis in MBQC
makes it challenging to experimentally perform. When we implement a unitary 2-design
by D[`] in MBQC, adaptive measurements are not necessary since all the gates are either
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196 Implementing Unitary 2-Designs Using Random Diagonal-unitary Matrices

commuting (the first and the second steps) or Clifford (the third step). The implementation
is also uniform in the sense that it is invariant under permutations of qubits. Hence, a
unitary 2-design is obtained by simple MBQC where all the qubits in a cluster state can be
simultaneously measured in prefixed bases.

4 Proofs

4.1 Auxiliary lemmas
In the following we provide the lemmas needed in the proof of Theorem 5. We begin by
introducing some additional notation.

We denote the Pauli-Z and Pauli-X bases by {|i〉}i=0,··· ,d−1 and {|α〉}α=0,··· ,d−1, respect-
ively. That is, the Pauli-Z basis is always labelled by Latin alphabets and the Pauli-X basis
by Greek ones. We also denote the coefficients of |α〉 in the basis of {|i〉} by αi/

√
d, namely,

αi =
√
d〈i|α〉. Similarly, we define iα :=

√
d〈α|i〉. Note that they are always ±1, and αi = iα.

We also use the following quantity f ijkl ;

f ijkl = 2
d3

(d−1∑
α=0

αiαjαkαl

)2
. (5)

The f ijkl satisfy the following relations (see Appendix A for the proof).

I Lemma 7. The quantity f ijkl is in {0, 2/d} and satisfies f ijkl = fklij ,
∑
i>j f

ij
kl = 1 and∑

s>t f
ij
stf

st
kl = f ijkl .

We use several operators in B(H⊗2). First, we denote by I, F, LZ , and LX , the identity op-
erator, the swap operator defined by

∑
i,j |ij〉〈ji|, LZ :=

∑
i |ii〉〈ii|, and LX :=

∑
α |αα〉〈αα|,

respectively. The operator LW is defined in the Pauli-W basis and is dependent on the
basis. We also denote by Psym and Panti the projection operators onto the symmetric and
antisymmetric subspaces of H⊗2 , which are equal to (I + F)/2 and (I− F)/2, respectively.
Using these operators, we define states Πsym, Πanti, and ΛW (W = X,Z), which are given
by Psym/trPsym, Panti/trPanti, and LW /trLW , respectively. The normalization factors are
given by

trPsym = d(d+ 1)
2 , trPanti = d(d− 1)

2 , trLW = d. (6)

The main part of the proof is concerned with the completely-positive and trace-preserving
(CPTP) map R from B(H⊗2) to itself defined by R = G(2)

DZ ◦ G(2)
DX ◦ G(2)

DZ , where G(2)
U for a

random unitary matrix U is defined in Subsection 2.

I Lemma 8. Let B be the basis in H⊗2 given by {|ii〉}d−1
i=0 ∪ {|φij〉}i>j ∪ {|ψij〉}i>j, where

|φij〉 := 1√
2 (|ij〉 + |ji〉) and |ψij〉 := 1√

2 (|ij〉 − |ji〉). Then, for all |p〉 6= |q〉 ∈ B and all
integers `, it holds R`(|p〉〈q|) = 0, and

R`(|ii〉〈ii|) = (1− d−2`)Πsym + d−2`ΛZ (7)

R`(|φij〉〈φij |) = a`Πsym + b`ΛZ + d−`
∑
k>l

f ijkl |φkl〉〈φkl| (8)

R`(|ψij〉〈ψij |) = (1− d−`)Πanti + d−`
∑
k>l

f ijkl |ψkl〉〈ψkl| , (9)
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where

a` = 1− d`+1 + d` − 2
d2`(d− 1) , (10)

b` = 2 d` − 1
d2`(d− 1) . (11)

Proof. We first investigate R(|ii〉〈kk|), R(|φij〉〈φkl|), and R(|ψij〉〈ψkl|) (i > j and k > l).
As each input state is in the Pauli-Z basis, we obtain

R(|ii〉〈kk|) = δikG(2)
DZ ◦ G(2)

DX (|ii〉〈ii|) (12)

R(|φij〉〈φkl|) = δikδjlG(2)
DZ ◦ G(2)

DX (|φij〉〈φij |) (13)

R(|ψij〉〈ψkl|) = δikδjlG(2)
DZ ◦ G(2)

DX (|ψij〉〈ψij |). (14)

Using the relation G(2)
DX (|ii〉〈ii|) = 1

d2

(
I + F−LX

)
, and I and F are invariant under G(2)

DZ , the
R(|ii〉〈kk|) is calculated to be

R(|ii〉〈kk|) = 1
d2 δik

[(
1− 1

d

)(
I + F

)
+ 1
d
LZ
]
. (15)

Note that this implies that R(|ii〉〈ii|) is independent of i. For R(|φij〉〈φkl|) and R(|ψij〉〈ψkl|),
simple calculations lead to

G(2)
DX (|ij〉〈ij|) = 1

d2

(
I +

∑
α,β

αiαjβiβj |αβ〉〈βα| − LX
)

(16)

G(2)
DX (|ij〉〈ji|) = 1

d2

(∑
α,β

αiαjβiβj |αβ〉〈αβ|+ F− LX
)
, (17)

and similar relations for G(2)
DZ (|αβ〉〈αβ|) and G(2)

DZ (|αβ〉〈βα|). Hence, we obtain

R(|φij〉〈φkl|) = 1
d2 δikδjl

[(
1− 2

d

)(
I + F

)
+ 2
d
LZ + d

∑
s>t

f ijst |φst〉〈φst|
]

(18)

R(|ψij〉〈ψkl|) = 1
d2 δikδjl

[
I− F + d

∑
s>t

f ijst |ψst〉〈ψst|
]
, (19)

where we use, e.g. αi = iα for the derivation.
We next show that other terms, such asR(|φij〉〈kk|), R(|ψij〉〈kk|), R(|φij〉〈ψkl|) and their

conjugates, are zero. Amongst these terms, all except R(|φij〉〈ψij |) and its conjugate vanish
after the first application of G(2)

DZ . For R(|φij〉〈ψij |), R(|φij〉〈ψij |) = G(2)
DZ ◦ G(2)

DX (|φij〉〈ψij |),
since |φij〉〈ψij | is not changed by G(2)

DZ . The G(2)
DX (|φij〉〈ψij |) term is expanded to be

G(2)
DX (|φij〉〈ψij |) = 1

2

(
G(2)
DX (|ij〉〈ij|)− G(2)

DX (|ij〉〈ji|) + G(2)
DX (|ji〉〈ij|)− G(2)

DX (|ji〉〈ji|).
)
(20)

This is calculated using Eqs. (16) and (17). As the right hand sides of both Eqs. (16)
and (17) are invariant under the exchange of i and j, G(2)

DX (|φij〉〈ψij |) is zero, which implies
R(|φij〉〈ψij |) = R(|ψij〉〈φij |) = 0.

Finally, we investigate R`(|ii〉〈ii|), R`(|φij〉〈φij |), and R`(|ψij〉〈ψij |). Since we have

R(LZ) = 1
d

[(
1− 1

d

)(
I + F

)
+ 1
d
LZ
]
, (21)
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from Eq. (15), R(I) = I, and R(F) = F, it is observed from Eq. (15) that R`(|ii〉〈ii|) is a
linear combination of I + F and LZ . Using this fact, it is straightforward to obtain

R`(|ii〉〈ii|) = 1− d−2`

d(d+ 1) (I + F) + d−2`−1LZ , (22)

which is rewritten, in terms of Πsym = 1
d(d+1) (I + F) and ΛZ = 1

dLZ , as

R`(|ii〉〈ii|) = (1− d−2`)Πsym + d−2`ΛZ . (23)

Similarly, R`(|φij〉〈φij |) (R`(|ψij〉〈ψij |)) is given by a linear combination of I + F, LZ ,
and

∑
s>t f

ij
st |φst〉〈φst| (I− F and

∑
s>t f

ij
st |ψst〉〈ψst|). This can be seen to hold, since

R
(∑
s>t

f ijst |φst〉〈φst|
)

= 1
d2

[(
1− 2

d

)(
I + F

)
+ 2
d
LZ
]

+ 1
d

∑
s>t

∑
k>l

f ijstf
st
kl |φkl〉〈φkl| (24)

= 1
d2

[(
1− 2

d

)(
I + F

)
+ 2
d
LZ
]

+ 1
d

∑
k>l

f ijkl |φkl〉〈φkl| , (25)

where we have used
∑
s>t f

kl
st = 1 and

∑
s>t f

ij
stf

st
kl = f ijkl due to Lemma 7, and similarly

R
(∑
s>t

f ijst |ψst〉〈ψst|
)

= 1
d2

(
I− F

)
+ 1
d

∑
k>l

f ijkl |ψkl〉〈ψkl| . (26)

Hence, to obtain R`(|φij〉〈φij |) and R`(|ψij〉〈ψij |), we set

R`(|φij〉〈φij |) = a
(+)
` (I + F) + b

(+)
` LZ + c

(+)
`

∑
k>l

f ijkl |φkl〉〈φkl| (27)

R`(|ψij〉〈ψij |) = a
(−)
` (I− F) + c

(−)
`

∑
k>l

f ijkl |ψkl〉〈ψkl| , (28)

and derive the coefficients using their recurrence relations. From Eqs. (18) and (19), the
coefficients for n = 1 are given by

a
(+)
1 = 1

d2

(
1− 2

d

)
, b

(+)
1 = 2

d3 , c
(+)
1 = 1

d
, (29)

a
(−)
1 = 1

d2 , c
(−)
1 = 1

d
. (30)

From Eqs. (18), (19), (25), and (26), recurrence relations for a(±)
` , b(+)

` , and c(±)
` are given by

a
(+)
`+1 = a

(+)
` + 1

d

(
1− 1

d

)
b
(+)
` + 1

d2

(
1− 2

d

)
c
(+)
` , b

(+)
`+1 =

b
(+)
`

d2 +
2c(+)
`

d3 , c
(+)
`+1 =

c
(+)
`

d
,

(31)

and

a
(−)
`+1 = a

(+)
` +

c
(−)
`

d2 , c
(−)
`+1 =

c
(−)
`

d
. (32)

Solving these relations, we obtain

a
(+)
` = 1

d(d+ 1) −
d`+1 + d` − 2
d2`+1(d2 − 1) , b

(+)
` = 2(d` − 1)

d2`+1(d− 1) , c
(+)
` = d−`, (33)
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and

a
(−)
` = 1− d−`

d(d− 1) , c
(−)
` = d−`. (34)

Thus, we have

R`(|φij〉〈φij |) =
(

1− d`+1 + d` − 2
d2`(d− 1)

)
Πsym + 2 d` − 1

d2`(d− 1)ΛZ + 1
d`

∑
k>l

f ijkl |φkl〉〈φkl| (35)

R`(|ψij〉〈ψij |) =
(
1− 1

d`
)
Πanti + 1

d`

∑
k>l

f ijkl |ψkl〉〈ψkl| . (36)

This concludes the proof. J

We will also make use of upper and lower bounds of the diamond norm, in terms of a
superoperator norm.

I Lemma 9. Let C be a linear map from B(H) (dimH = D) to B(H′) (dimH′ = D′). Then,

||C||1→1 ≤ ||C||� ≤
√
DD′||C||1→1. (37)

Lemma 9 is a well-known relation (see, e.g. [16]). Nevertheless, for the sake of complete-
ness, we present a proof below.

Proof. The first inequality holds by definition. To show the second inequality, we use
a property of a superoperator norm ||E||1→2 such that, for any map E acting on B(HK)
where HK is a K-dimensional Hilbert space, ||E ⊗ idk||1→2 = ||E||1→2 for k ∈ N [34]. It
also satisfies the following chain of inequalities ||E||1→2 ≤ ||E||1→1 ≤

√
K||E||1→2 due to

||X||2 ≤ ||X||1 ≤
√
K||X||2 for X ∈ B(HK). Using these relations, we obtain

||C||� = ||C ⊗ idD||1→1 ≤
√
DD′||C ⊗ idD||1→2 =

√
DD′||C||1→2 ≤

√
DD′||C||1→1. (38)

J

4.2 Proof of the main result

Proof. Now we can prove Theorem 5. To this end, we investigate ||G(2)
D[`] − G

(2)
UH
||1→1, where

UH is a Haar random unitary matrix. In terms of the operators ρ ∈ B(H⊗2) satisfying
||ρ||1 = 1, it is given by

sup
ρ∈B(H⊗2)
||ρ||1=1

||G(2)
D[`](ρ)− G(2)

UH
(ρ)||1. (39)

Note that ρ may be assumed to be Hermitian, but not necessarily positive semidefinite.
Due to Schur-Weyl duality [35], the latter term G(2)

UH
(ρ) is given by

G(2)
UH

(ρ) = (trPsymρ)Πsym + (trPantiρ)Πanti. (40)
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On the other hand, the former term G(2)
D[`](ρ) is equal to R`(ρ) since

G(2)
D[`](ρ) = ED[`][(D[`])⊗2ρ(D[`])†⊗2] (41)

=
1∏
i=`

ED′Z
i
EDX

i
EDZ

i
[
(
U
′Z
i DX

i D
Z
i

)⊗2
ρ
(
D
′Z
i D

X
i D

Z
i

)†⊗2] (42)

=
(
G(2)
DZ ◦ G(2)

DX ◦ G(2)
DZ

)`
(ρ) (43)

= R`(ρ), (44)

where the second line is obtained using the fact that the random diagonal-unitary matrices
are independent.

Due to Lemma 8, for all ρ ∈ B(H⊗2), we have

R`(ρ) =
(
(1− d−2`)s0 + a`s1

)
Πsym + (d−2`s0 + b`s1)ΛZ + (1− d−`)s2Πanti

+ d−`
∑
i>j

∑
k>l

f ijkl
(
ρφij |φkl〉〈φkl| + ρψij |ψkl〉〈ψkl|

)
, (45)

where a` and b` are given by Lemma 8, ρφij = trρ |φij〉〈φij |, ρψij = trρ |ψij〉〈ψij |, s0 = trρLZ ,
s1 = trρ(Psym − LZ), and s2 = trρPanti. Using trPsymρ = s0 + s1, this leads to

G(2)
UH

(ρ)− G(2)
D[`](ρ) =

(
d−2`s0 + (1− a`)s1

)
Πsym − (d−2`s0 + b`s1)ΛZ + d−`s2Πanti

− d−`
∑
i>j

∑
k>l

f ijkl
(
ρφij
|φkl〉〈φkl| + ρψij

|ψkl〉〈ψkl|
)
. (46)

Since Πsym = 2
d(d+1)

(∑
i |ii〉〈ii|+

∑
i>j |φij〉〈φij |

)
, Πanti = 2

d(d−1)
∑
i>j |ψij〉〈ψij |, and ΛZ =

1
d

∑
i |ii〉〈ii|, Eq. (46) is already diagonal in the basis B = {|ii〉}d−1

i=0 ∪ {|φij〉}i>j ∪ {|ψij〉}i>j .
Thus, its 1-norm is exactly calculated to be

||G(2)
UH

(ρ)− G(2)
D[`](ρ)||1 = d

∣∣∣∣ 2
d(d+ 1)

(
d−2`s0 + (1− a`)s1

)
− 1
d

(d−2`s0 + b`s1)
∣∣∣∣

+
∑
k>l

(∣∣∣∣ 2
d(d+ 1)

(
d−2`s0+(1−a`)s1

)
−d−`

∑
i>j

f ijklρφij

∣∣∣∣+∣∣∣∣ 2
d(d− 1)d

−`s2−d−`
∑
i>j

f ijklρψij

∣∣∣∣).
(47)

The first term in Eq. (47) is simply equal to |2s1−(d−1)s0|
d2`(d+1) , which is smaller than or equal to

2|s1|+(d−1)|s0|
d2`(d+1) due to the triangle inequality. In the following, we evaluate upper and lower

bounds of the second and the third terms.
The second term is bounded from above, again due to the triangle inequality, by∑
k>l

(
2

d(d+ 1)
(
d−2`|s0|+ |1− a`||s1|

)
+ d−`

∑
i>j

f ijkl |ρφij
|
)
, (48)

where we have used the fact that f ijkl is non-negative. Substituting a` and using Lemma 7,
i.e.,

∑
k>l f

ij
kl = 1, it is bounded from above by

(d− 1)|trρLZ |
d2`(d+ 1) + (d`+1 + d` − 2)|trρ(Psym − LZ)|

d2`(d+ 1) + 1
d`

tr|ρ|(Psym − LZ). (49)
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Similarly, an upper bound of the third term in Eq. (47) is given by 1
d` (|trρPanti|+ tr|ρ|Panti).

From these upper bounds, an upper bound of ||G(2)
D[`](ρ) − G

(2)
UH

(ρ)||1 is given as follows,
using |s0| = |trρLZ | ≤ tr|ρ|LZ , |s1| = |trρ(Psym−LZ)| ≤ tr|ρ|(Psym−LZ), |s2| = |trρPanti| ≤
tr|ρ|Panti, and Psym + Panti = I,

||G(2)
D[`](ρ)− G(2)

UH
(ρ)||1 ≤

2(d− 1)
d2`(d+ 1)tr|ρ|LZ + 2

d`
tr|ρ|(I− LZ), (50)

where we dropped the negative term − 2
d2`(d+1) |trρ(Psym − LZ)|. Denoting tr|ρ|LZ and

tr|ρ|(I− LZ) by p0 and p1, respectively, we have

||G(2)
D[`](ρ)− G(2)

UH
(ρ)||1 ≤

2(d− 1)
d2`(d+ 1)p0 + 2

d`
p1. (51)

From this, we obtain an upper bound of supρ∈B(H⊗2),||ρ||1=1 ||G
(2)
D[`](ρ) − G

(2)
UH

(ρ)||1. Since
||ρ||1 = 1 implies that p0 and p1 satisfy p0 + p1 = 1, and they are positive by definition,
Eq. (51) is a convex sum of 2(d−1)

d2`(d+1) and 2
d` , where the latter is larger than the former. Hence,

the supremum is given by (p0, p1) = (0, 1), resulting in

sup
ρ∈B(H⊗2),||ρ||1=1

||G(2)
D[`](ρ)− G(2)

UH
(ρ)||1 ≤

2
d`
. (52)

A lower bound of supρ∈B(H⊗2),||ρ||1=1 ||G
(2)
D[`](ρ)− G(2)

UH
(ρ)||1 is obtained by substituting a

specific instance of ρ given by Φi0j0 := |φi0j0〉〈φi0j0 | (i0 > j0), which gives

||G(2)
D[`](Φi0j0)− G(2)

UH
(Φi0j0)||1 = 2

d2`(d+ 1) +
∑
k>l

∣∣∣∣ 2
d(d+ 1)

d`+1 + d` − 2
d2`(d− 1) − 1

d`
f i0j0
kl

∣∣∣∣, (53)

from Eq. (47). Since f i0j0
kl satisfies f i0j0

kl = 0, 2/d for any k > l and
∑
k>l f

i0j0
kl = 1 from

Lemma 7, the number of (k, l) (k > l) for which f i0j0
kl is nonzero is d/2. Due to this fact, we

can exactly calculate Eq. (53) as follows:

||G(2)
D[`](Φi0j0)− G(2)

UH
(Φi0j0)||1 = 2

d2`(d+ 1) + d

2

∣∣∣∣ 2
d(d+ 1)

d`+1 + d` − 2
d2`(d− 1) − 2

d`+1

∣∣∣∣
+
(
d(d− 1)

2 − d

2

)
2

d(d+ 1)
d`+1 + d` − 2
d2`(d− 1) , (54)

which is simplified to be

||G(2)
D[`](Φi0j0)− G(2)

UH
(Φi0j0)||1 = 2

d`
− 2d

`+1 + d` − 2
d2`(d2 − 1) . (55)

Hence, we obtain

sup
ρ∈B(H⊗2),||ρ||1=1

||G(2)
D[`](ρ)− G(2)

UH
(ρ)||1 ≥

2
d`
− 2d

`+1 + d` − 2
d2`(d2 − 1) ≥

2
d`

[
1− 2d

d2 − 1

]
. (56)

From these bounds, we obtain, using Lemma 9, upper and lower bounds of G(2)
D[`] − G

(2)
UH

in terms of the diamond norm,

2
d`
− 2d

`+1 + d` − 2
d2`(d2 − 1) ≤ ||G

(2)
D[`] − G

(2)
UH
||� ≤

2
d`−2 . (57)

This implies that D[`] is not an ε-approximate unitary 2-design if ` ≤ log ε−1

N , as the lower
bound in Eq. (57) is strictly greater than 1/d` if d > 3, and is an ε-approximate unitary
2-design if ` ≥ 2 + 1+log ε−1

N , and concludes the proof. J
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5 Conclusion

We have proven that an approximate unitary 2-design can be achieved by alternately applying
independent random Z- and X-diagonal unitary matrices. We have shown that one iteration
of random Z- and X-diagonal unitary matrices is not sufficient, but it rapidly converges to
an ε-approximate unitary 2-design after a number of iterations. We have also provided an
implementation of our construction by a quantum circuit composed of O

(
N(N+log 1/ε)

)
one-

or two-qubit gates, most of which are diagonal in the Pauli-Z basis. This implementation is,
in terms of the number of gates, as efficient as many of other constructions using the Clifford
circuits and random quantum circuits. An advantage unique to our implementation is its
simple form. As the diagonal part can be applied simultaneously and the non-commuting
part is depth O(1), the practical time for the implementation will be vastly reduced compared
to other implementations. Further applications of random diagonal-unitary matrices for
decoupling can be found in Ref. [23].
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A Proof of Lemma 7

Proof. The statement f ijkl = fklij follows from the definition of f ijkl . We first show that

f ijkl is either 0 or 2/d. As f ijkl is defined by f ijkl = 2
d3

(∑d−1
α=0 αiαjαkαl

)2
, we investigate∑d−1

α=0 αiαjαkαl. This is invariant even if Pauli X is applied on the m-th qubit for any
m ∈ [1, · · · , N ], which we denote by Xm, since

d−1∑
α=0

αiαjαkαl = d2
d−1∑
α=0
〈α|i〉〈α|j〉〈α|k〉〈α|l〉 (58)

= d2
d−1∑
α=0
〈α|Xm |i〉 〈α|Xm |j〉 〈α|Xm |k〉 〈α|Xm |l〉 . (59)

This is due to 〈α|Xm = ±〈α|. Hence, we assume |i〉 = |0〉⊗N without loss of generality,
resulting in αi = 1 for all α. The

∑d−1
α=0 αjαkαl still has another invariance, that is,

d−1∑
α=0

αjαkαl = d
√
d

d−1∑
α=0
〈α|j〉〈α|k〉〈α|l〉 (60)

= d
√
d

d−1∑
α=0
〈α|Zm |j〉 〈α|Zm |k〉 〈α|Zm |l〉 , (61)

due to the summation over all α, where Zm is the Pauli-Z operator acting on the m-th qubit.
We then assume αj = 1 for j = 0, · · · , d/2− 1 and αj = −1 for j = d/2, · · · , d− 1 without
loss of generality. This leads to

d−1∑
α=0

αiαjαkαl =
(d/2−1∑

α=0
−

d−1∑
α=d/2

)
αkαl. (62)

Denoting |α〉 by
∣∣α1α2 · · ·αN

〉
(αm = ±), where |±〉 are the eigenbasis of the Pauli-X with

eigenvalues ±1, respectively, and similarly denoting |k〉 and |l〉 in binary such as |k1 · · · kN 〉
(km = 0, 1), (

∑d/2−1
α=0 −

∑d−1
α=d/2)αkαl is rewritten as

∑
α2,··· ,αN =±

(
〈+|k1〉〈+|l1〉〈α2 · · ·αN |k1 · · · kN 〉〈α2 · · ·αN |l1 · · · lN 〉

− 〈−|k1〉〈−|l1〉〈α2 · · ·αN |k1 · · · kN 〉〈α2 · · ·αN |l1 · · · lN 〉
)
. (63)

When k1 = l1, this is simply zero. When k1 6= l1, this is equal to 2N = d. Thus, fklij ∈ {0, 2/d}.
We next show

∑
k>l f

ij
kl = 1 for any i > j.

∑
k>l

f ijkl = 2
d3

∑
k>l

(∑
α

αiαjαkαl

)2
(64)

= 1
d3

∑
α,β

αiαjβiβj

(∑
k,l

αkαlβkβl −
∑
k

α2
kβ

2
k

)
. (65)
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As
∑
k α

2
kβ

2
k = d due to αk = ±1, we obtain

1
d3

∑
α,β

αiαjβiβj
∑
k

α2
kβ

2
k = 1

d2

∑
α,β

αiαjβiβj (66)

=
(∑

α

〈i|α〉〈α|j〉
)2

(67)

= 0, (68)

where we used that i 6= j for the last line. Hence,

∑
k>l

f ijkl = 1
d3

∑
α,β

αiαjβiβj

(∑
k

αkβk

)2
. (69)

As
∑
k αkβk is given by 1

d2

∑
k |α〉〈k| |k〉〈β| =

1
d2 δαβ , we obtain∑

k>l

f ijkl = 1
d

∑
α,β

αiαjβiβjδα,β = 1. (70)

We finally show
∑
s>t f

ij
stf

st
kl = f ijkl . To this end, we define a set Ξij for i > j by

Ξij :=
{

(s, t)|s, t ∈ {1, · · · , N}, s > t, f ijst = 2
d

}
. Since f ijkl ∈ {0, 2/d} and

∑
k>l f

ij
kl = 1 for

any i > j, the number of elements in Ξij ,denoted by |Ξij |, is d/2. Due to the definition
of f ijst , Ξij is also given in terms of αi’s by Ξij =

{
(s, t)|s, t ∈ {1, · · · , N}, s > t, ∀α ∈

[0, · · · , d− 1], αsαt = αiαj
}
. From this, it is observed that ∀i > j and ∀k > l, Ξij is either

equal to Ξkl or has no intersection with Ξkl, i.e. Ξij ∩ Ξkl = ∅.
In terms of Ξij , fklij = 2

dδkl∈Ξij
, where δkl∈Ξij

= 1 if (k, l) ∈ Ξij and 0 otherwise. Note
that, as fklij = f ijkl , δkl∈Ξij

= δij∈Ξkl
. Using this notation, we have

∑
s>t

f ijstf
st
kl =

(
2
d

)2∑
s>t

δst∈Ξkl
δst∈Ξij

(71)

=
(

2
d

)2∑
s>t

δst∈Ξkl∩Ξij . (72)

When Ξkl = Ξij , this is equal to 2
d as |Ξkl| = d/2. In this case, fklij = 2

dδkl∈Ξij
= 2

d since
(k, l) ∈ Ξkl = Ξij , implying

∑
s>t f

ij
stf

st
kl = fklij . When Ξkl ∩ Ξij = ∅, Eq. (72) is equal to

zero, and fklij is also zero by definition. Hence,
∑
s>t f

ij
stf

st
kl = fklij holds even in this case.

Since Ξij is either Ξkl or satisfies Ξij ∩ Ξkl = ∅, this concludes the proof. J
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Abstract
We study two basic graph parameters, the chromatic number and the orthogonal rank, in the
context of classical and quantum exact communication complexity. In particular, we consider
two types of communication problems that we call promise equality and list problems. For both
of these, it was already known that the one-round classical and one-round quantum complexities
are characterized by the chromatic number and orthogonal rank of a certain graph, respectively.

In a promise equality problem, Alice and Bob must decide if their inputs are equal or not. We
prove that classical protocols for such problems can always be reduced to one-round protocols
with no extra communication. In contrast, we give an explicit instance of a promise problem
that exhibits an exponential gap between the one- and two-round exact quantum communication
complexities. Whereas the chromatic number thus captures the complete complexity of promise
equality problems, the hierarchy of “quantum chromatic numbers” (starting with the orthogonal
rank) giving the quantum communication complexity for every fixed number of communication
rounds thus turns out to enjoy a much richer structure.

In a list problem, Bob gets a subset of some finite universe, Alice gets an element from Bob’s
subset, and their goal is for Bob to learn which element Alice was given. The best general lower
bound (due to Orlitsky) and upper bound (due to Naor, Orlitsky, and Shor) on the classical
communication complexity of such problems differ only by a constant factor. We exhibit an
example showing that, somewhat surprisingly, the four-round protocol used in the bound of Naor
et al. can in fact be optimal. Finally, we pose a conjecture on the orthogonality rank of a certain
graph whose truth would imply an intriguing impossibility of round elimination in quantum
protocols for list problems, something that works trivially in the classical case.
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parameter appears frequently in computer science and mathematics; it is well-known to
be NP-hard to compute and has recently found a number of meaningful generalizations
in the context of non-local games and entanglement-assisted zero-error information theory.
One of those generalizations is the orthogonal rank of a graph, denoted ξ(G) and defined as
follows. An orthogonal representation of a graph is an assignment of complex unit vectors
to the vertices such that adjacent vertices receive orthogonal vectors. The orthogonal rank
is the minimum dimension of such a representation. Similar to the chromatic number,
the orthogonal rank is NP-hard to compute, which follows from a result of Peeters [29,
Theorem 3.1]. In this paper, we study both of these graph parameters in the context of
communication complexity.

Classical communication complexity. Since its introduction by Yao [34] communication
complexity has become a standard model in computational complexity that enjoys a wide
variety of connections to other areas in theoretical computer science [22]. Here two parties,
Alice and Bob, receive inputs x, y from sets X ,Y (resp.) and need to compute the value f(x, y)
of a two-variable function f known to them in advance. Usually each party has insufficient
information to solve the problem alone, meaning they have to exchange information about
each others’ inputs. The idea that communication is expensive motivates the study of
the communication complexity of f , which counts the minimal number of bits that the
parties must exchange on worst-case inputs. Throughout this paper, we consider only exact
(deterministic) communication protocols, and we will omit the word exact from now on. Of
particular importance to this paper is the distinction between one-round protocols, where all
communication flows from Alice to Bob, and multi-round protocols, where they take turns in
sending messages from one party to the other.

Quantum communication complexity. In yet another celebrated paper, Yao [35] introduced
quantum communication complexity, where to compute the value f(x, y) the parties are allowed
to transmit qubits back and forth. The study of this model has also become a well-established
discipline in theoretical computer science and quantum information theory. The most basic
question that arises when considering the classical and quantum models is whether they are
actually substantially different. An upper bound on the possible difference between these
models was proved by Kremer [21, Theorem 4].1

I Theorem 1.1 (Kremer). Any quantum protocol that uses ` qubits of communication can be
turned into a 2O(`)-bit one-round classical protocol for the same problem.

The first large gap between exact classical and quantum communication complexity was
demonstrated by Buhrman, Cleve, and Wigderson [7], who gave a problem admitting a one-
round quantum protocol that is exponentially more efficient than any (one- or multi-round)
classical protocol.

The chromatic number and orthogonal rank naturally show up in two types of communi-
cation problems that we call promise equality and list problems, discussed next.

1.1 Promise equality
In a promise equality problem, Alice and Bob are either given equal inputs or a pair of distinct
inputs from a subset D of

(X
2
)
(D is known to them in advance). Their goal is to decide

whether they have equal or different inputs.

1 The result stated here is actually a slight generalization of Kremer’s result (which focuses on boolean
functions) that can be proved in the same way; for completeness we give a proof in Appendix A.
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Classical complexity of promise problems. It was shown by de Wolf [11, Theorem 8.5.1]
that if G = (X ,D) is the graph with vertex set X and edge set D, then the one-round classical
communication of the problem equals dlogχ(G)e. Analogously, for each positive integer r one
can define a “level-r” chromatic number of the graph corresponding to the communication
complexity of protocols that proceed in r rounds or less. For general communication problems,
using more rounds can decrease the total communication, as is the case for the general
Pointer Jumping Problem for example, where for every positive integer m there is an instance
for which any m-round protocol requires exponentially more communication than the best
(m + 1)-round protocol [22]. However, we show that this is not true for promise equality
problems (Lemma 2.1 below), meaning that for such problems the chromatic number not
only gives rise to the one-round complexity, but their overall communication complexity.

Quantum complexity of promise problems. The one-round quantum communication com-
plexity of promise equality problems is characterized by the orthogonal rank. It is not difficult
to see that a one-round quantum protocol of a promise equality problem is equivalent to an
orthogonal representation of the associated graph G = (X ,D); the vectors correspond to the
states that Alice would send to Bob and orthogonality is required for Bob’s measurement to
tell whether they got equal inputs or not. Viewing the orthogonal rank as the “one-round
quantum chromatic number” of the graph G naturally leads one to define a hierarchy of such
numbers where the level-r quantum chromatic number corresponds to the communication
complexity of r-round quantum protocols. One might expect that, as in the classical case,
this hierarchy is redundant in that the levels all carry the same number. However, one of our
main results shows that in the quantum setting, this is not the case.

I Theorem 1.2. There exist absolute constants c, C ∈ (0,∞) and an infinite family of
promise equality problems (Xn,Dn)n∈N such that:

The one-round quantum communication complexity of (Xn,Dn) is at least cn.
There is a two-round quantum protocol for (Xn,Dn) using at most C logn qubits.

During our analysis of the particular promise problem used for Theorem 1.2 we answer
an open question of Gruska, Qiu, and Zheng [18]. To explain this, we briefly elaborate on
what goes into our result. The problem we consider is simple: Let n be a positive integer
multiple of 8. Alice and Bob are given n-bit strings x and y, respectively, that are either
equal or differ in exactly n/4 coordinates and they must distinguish between the two cases.
We denote this problem by EQ-

(
n
n/4
)
. Similar promise equality problems were studied before.

Buhrman, Cleve, and Wigderson [7] showed the first exponential gap between classical and
quantum communication with the problem EQ-

(
n
n/2
)
, where Alice and Bob get n-bit strings

that are either equal or differ in exactly half of the entries (for n a multiple of 4). They
used a distributed version of the Deutsch–Jozsa algorithm to give a one-round O(logn)-qubit
quantum protocol for this problem, while a celebrated graph-theoretic result of Frankl and
Rödl [14] implies that the classical communication complexity is at least Ω(n). Similar
results were shown (based on similar techniques) in the above-mentioned paper [18] for the
analogous problem EQ-

(
n
αn

)
when α > 1/2, and the authors pose as an open problem to

determine the quantum communication complexity of EQ-
(
n
αn

)
when α < 1/2.

We show that the one-round quantum communication complexity of EQ-
(
n
n/4
)
is at

least Ω(n) and we give a two-round protocol for it that uses at most O(logn) qubits. For
the proof of the first bound we use the famous Lovász theta number, which lower bounds
the orthogonal rank and therefore the one-round quantum communication complexity. We
prove a lower bound on the theta number using the theory of association schemes and known
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properties of the roots of the Krawtchouk polynomials. Our two-round protocol is based on
a distributed version of Grover’s algorithm. With a little extra technical work our results can
be extended to any of the problems EQ-

(
n
αn

)
with constant α < 1/2. In light of Kremer’s

Theorem and the obvious fact that the one-round classical communication complexity is at
least its quantum counterpart, we thus settle the question of [18].

1.2 The list problem
In the list problem, inputs are picked from a subset D ⊆ X × Y and the parties’ goal is for
Bob to learn Alice’s input. The reason for the name “list problem” is that Bob’s input y
may just as well be given to him as the list (subset) of all of Alice’s possible inputs x
satisfying (x, y) ∈ D. A list problem can thus equivalently be given by a family L ⊆ 2X of
lists, where Bob gets a list L ∈ L, Alice gets an element x ∈ L, and Bob must learn x. We
refer to this communication problem as L-list.

Classical complexity of list problems. Witsenhausen [33] observed that the one-round
classical communication complexity of the list problem is characterized by the chromatic
number of the graph with vertex set X and whose edge set consists of the pairs of distinct
elements appearing together in some list L ∈ L. Denoting this graph by GL, the one-round
communication complexity equals dlogχ(GL)e. The multi-round communication complexity
of the list problem was also studied before. Orlitsky [28, Corollary 3 and Lemma 3] proved
the following lower bound in terms of the chromatic number of GL, and the cardinality of
the largest list, denoted ω(L) = max{|L| : L ∈ L} (not to be confused with the cardinality
of the largest clique ω(GL) in the graph GL, which can be larger).

I Theorem 1.3 (Orlitsky). For every family L ⊆ 2X , the classical communication complexity
of L-list is at least max{log logχ(GL), logω(L)}.

The basic idea behind the above result is that Alice must send sufficient information for
Bob to be able to distinguish among ω(L) elements, and that any multi-round protocol can be
simulated by a one-round protocol with at most an exponential difference in communication.
In the same work, Orlitsky [28, Theorem 4] gave a two-round classical protocol based on
perfect hashing functions that nearly achieves the above lower bound.

I Theorem 1.4 (Orlitsky). For every family L ⊆ 2X , the two-round classical communication
complexity of L-list is at most log logχ(GL) + 3 logω(L) + 4.

It thus follows from Witsenhausen’s observation and Theorem 1.4 that list problems have
exponentially more efficient two-round protocols than one-round protocols. But Theorem 1.3
shows that—in stark contrast with the Pointer Jumping Problem—using more than two
rounds cannot decrease the total amount of communication by more than a factor of 4,
since obviously log logχ(GL) + 3 logω(L) ≤ 4 max{log logχ(GL), logω(L)}. The natural
question that thus arises is if the lower bound of Theorem 1.3 can be attained by using more
than two rounds of communication. Towards answering this question, Naor, Orlitsky, and
Shor [27, Corollary 1] slightly improved on Theorem 1.4 and showed that the four-round
communication complexity gets to within a factor of about 3 of the lower bound.

I Theorem 1.5 (Naor–Orlitsky–Shor). For every family L ⊆ 2X , the four-round classical
communication complexity of L-list is at most log logχ(GL) + 2 logω(L) + 3 log logω(L) + 7.

As our contribution to this line of work we show that, surprisingly, for some list problems
the four-round protocol of Naor, Orlitsky, and Shor is in fact asymptotically optimal, thus
answering the above question in the negative.
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I Theorem 1.6. For any ε > 0 there exists a set X and a family L ⊆ 2X such that the
classical communication complexity of L-list is at least log logχ(GL) + (2 − ε) logω(L).
Moreover, there exists such an (X ,L) pair for which ω(L) = logχ(GL).

In particular, our result gives a family of list problems with communication complexity
at least (3− ε) max{log logχ(GL), logω(L)} for any ε > 0.

Quantum complexity of list problems and quantum round elimination. The one-round
quantum communication complexity of list problems is given by dlog ξ(GL)e, which follows
from the same considerations as for the promise equality problems (see Lemma 3.4). Based
on a conjecture we make about the orthogonal rank of a certain family of graphs, we believe
that in the context of quantum communication complexity, list problems may have the
interesting property of resisting a quantum analogue of round elimination.

In classical communication complexity, round elimination reduces the number of rounds
of a given protocol by having the parties send some extra information instead. Consider
the following basic example, where we start with a two-round (logn + 1)-bit protocol in
which Bob starts by sending Alice a single bit and Alice replies with an logn-bit string.
This protocol can easily be turned into a one-round 2 logn-bit protocol by having Alice
directly send Bob two logn-bit strings, one corresponding to the case where Bob sends a 0
in the two-round protocol and another for if he sends a 1. Then Bob can just pick the string
corresponding to the bit he would have sent based on his input and solve the problem.

A quantum analogue of the above example would turn a two-round (logn + 1)-qubit
protocol into a one-round 2 logn-qubit protocol. We conjecture that the following family of
list problems is a counterexample to the existence of such an analogue. For an even positive
integer n and d ∈ [n], let Ld ⊆ 2{0,1}n be the family of all lists L ⊆ {0, 1}n of maximal
cardinality such that all strings in L have Hamming distance exactly d. The example we
consider is given by the family K = Ln/2 ∪ · · · ∪ Ln. Similar to the classical example above,
we give a simple two-round protocol for K-list.

I Theorem 1.7. For K ⊆ 2{0,1}n as above, there exists a two-round protocol for K-list
where Bob sends Alice a single qubit and Alice replies with a (1 + logn)-qubit message.

It is easy to see that the graph GK = ({0, 1}n, E) associated with K has edge set E given
by all pairs of strings with Hamming distance in {n/2, . . . , n}.

I Conjecture 1.8. The graph GK as above satisfies ξ(GK) ≥ nω(1).

By the relation between the one-round quantum communication complexity of list prob-
lems and the orthogonal rank of their associated graphs, it follows that the validity of the
above conjecture would imply that the exact one-round quantum communication complexity
of the above problem is super-logarithmic in n, in marked contrast with the classical example
of round elimination.

1.3 Connections to other work
Our work strengthens a link between communication complexity and graph theory established
by de Wolf [11]. Orthogonal representations appear in the context of zero-error information
theory. Indeed they were introduced by Lovász [26] to settle a famous problem of Shannon
concerning the (classical) capacity of the 5-cycle and they serve as proxies for entanglement-
assisted schemes [8, 9, 24, 5, 6, 10]. They also appear in the context of non-local games [8,
16, 31]. Nevertheless the orthogonal rank is poorly understood. To the best of our knowledge,
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our result is the first time a lower bound on the dimension was used. The use of the Lovász
theta number in the context of communication complexity problems also appears to be new
and we hope that it may find further applications there in the future. Finally, quantum
variants of the chromatic number that appeared in for example non-local games [8, 31]
and zero-error information theory [6, 10] can be interpreted as quantum communication
complexities of promise equality problems in various different communication models, which
puts those parameters in a more unified framework.

Outline of the paper. In Section 2 we study the promise equality problem and in particular
we prove Theorem 1.2. In Section 3 we discuss the list problem and prove Theorem 1.6 and
Theorem 1.7.

2 Promise Equality

Recall that in a promise equality problem, Alice and Bob each receive an input from a set X
with the promise that their inputs either are equal or come from a subset D of

(X
2
)
(known

to the players beforehand). The goal is to distinguish between the two cases. To any promise
equality problem, we associate the graph G = (X ,D).

2.1 General properties of promise equality
Recall that the one-round classical communication complexity of the problem equals dlogχ(G)e.
We begin by proving that the chromatic number of the associated graph actually gives the
overall communication complexity.

I Lemma 2.1. For any promise equality problem, the classical communication complexity is
attained with a single round of communication.

Proof. We show how to transform a k-round communication protocol into a one-round
protocol that uses the same amount of bits. To summarize, the idea is that Alice mimics all
the rounds of communication assuming that her input is equal to Bob’s one, and sends them
in one-round. He then checks whether the message received is consistent with his input. If
this is not the case, then he knows that the two strings are different, otherwise he completes
the protocol.

More formally, fix an optimal protocol P that requires k rounds, where k ≥ 2. Suppose
that Alice has input x and Bob has y. We assume that the first round of communication is
from Alice to Bob, but the same reasoning applies in the other case. For i odd, let ai be the
message that Alice would send to Bob on the i-th round of communication if she followed
protocol P and used the knowledge of the messages exchanged in the previous rounds and of
her input x. Similarly, for i even, let b̂i be the message that Bob would send to Alice on the
i-th round of communication if he had y = x as input, followed the protocol P and used the
knowledge derived by the previous rounds. Using the protocol P , Alice can mimic Bob’s
rounds of communication under the assumption that Bob’s input is equal to x. Alice uses
her input x to produce the string a1b̂2a3 . . . aib̂i+1 . . . ak and sends it to Bob in one round.
From his input y, Bob constructs the messages bi that he would have produced during the
protocol P , with the knowledge of Alice’s messages a` and his messages b` for all ` < i. If
there exists an index i such that bi 6= b̂i, then x must be different from y. Otherwise, Bob
uses the transcript a1b̂2a3 . . . aib̂i+1 . . . ak to finish the protocol and either outputs x = y

or x 6= y. We have constructed a one-round communication protocol P̂ whose worst-case
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transcript length is at most as long as the one of the original protocol P . Since P is an
optimal protocol so must be P̂ . J

As already mentioned, de Wolf [11, Theorem 8.5.2] showed that one-round quantum
protocols are related to orthogonal representations. We include a proof here for completeness.

I Theorem 2.2 (de Wolf). Consider a promise equality problem defined by the sets X and
D, then its one-round quantum communication complexity is equal to dlog ξ(G)e, where
G = (X ,D).

The proof of the above result uses the following standard lemma (see for example [6]).

I Lemma 2.3 (Orthogonality Lemma). Let ρ1, . . . , ρ` ∈ Cd×d be a collection of Hermitian
positive semidefinite matrices. Then the following are equivalent:
1. We have ρiρj = 0 for every i 6= j ∈ [`].
2. There exists a measurement consisting of positive semidefinite matrices P 1, . . . , P `, P⊥ ∈

Cd×d such that Tr(P iρj) = δij Tr(ρj) and Tr(P⊥ρj) = 0 for every i, j ∈ [`].
In particular, a collection of pure states |φ1〉, . . . , |φ`〉 ∈ Cd can be perfectly distinguished

with a quantum measurement if and only if they are pairwise orthogonal.

Proof of Theorem 2.2. Let P be an optimal one-round protocol for the considered promise
equality problem. Without loss of generality, Alice sends pure state |φx〉 ∈ Cd on input x ∈ X .
For any pair (x, y) ∈ D, |φx〉 and |φy〉 have to be perfectly distinguishable and therefore, in
view of Lemma 2.3, they must be orthogonal. Hence, the map φ : X → Cd where φ(x) = |φx〉
is a d-dimensional orthonormal representation of G = (X ,D) and ξ(G) ≤ d.

On the other hand, let φ be a d-dimensional orthonormal representation of the graph
G = (X ,D) and consider the one-round quantum protocol that transmits φ(x) ∈ Cd on input
x ∈ X . This uses log d-qubits of communication. From Lemma 2.3 we know that Bob can use
his input y to perform a quantum measurement that allows him to learn whether his input
is equal or not to Alice’s one. Thus, the one-round quantum communication complexity of
this equality problem is at most dlog ξ(G)e. J

2.2 Proof of Theorem 1.2
The rest of this section will be devoted to the proof of Theorem 1.2, which shows that there is
a family of promise equality problems where allowing two rounds of quantum communication
is exponentially more efficient than a single round. The problem that exhibits this separation
is EQ-

(
n
n/4
)
, where Alice and Bob each receive a n-bit string that are either equal or differ in

exactly n/4 positions (with n multiple of 8). We denote by H(n, n/4) the graph associated
with this problem. For any n, d ∈ N, let H(n, d) be the graph which has all the n-bit strings
as vertex set, such that two vertices are adjacent if their Hamming distance is d. We split
the proof in two parts: in Section 2.2.1 we bound the one-round quantum communication
complexity and in Section 2.2.2 we give the two-round protocol.

2.2.1 One-round quantum communication complexity of EQ-
(
n

n/4

)
The main result of this section is the following theorem.

I Theorem 2.4. The one-round quantum communication complexity of EQ-
(
n
n/4
)
is at

least Ω(n).
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To prove Theorem 2.4, we use Theorem 2.2 and thus set out to bound the orthogonal
rank of the graph H(n, n/4). We prove the desired bound in three steps: first, we show that
the Lovász theta number is a lower bound for the orthogonal rank; second, we use structural
properties of H(n, n/4) together with known properties of the theta number to reformulate
this bound in terms of the eigenvalues of the adjacency matrix of this graph; third, we bound
the eigenvalues to get the desired result.

We remark that in the following proofs we consider a more general situation than just
the graph H(n, n/4). Indeed, the statement of Theorem 2.4 holds for any problem EQ-

(
n
αn

)
where α ∈ (0, 1/2) and where both n and α · n are even.

Step 1: The Lovász theta number. This parameter was introduced by Lovász [26] to
upper bound the Shannon capacity of a graph. Among its many equivalent definitions, we
will use the following primal and dual formulations:

ϑ(G) = max
∑

i,j∈V (G)

Xij s.t. X � 0, Tr(X) = 1, Xij = 0 ∀ij ∈ E(G),

ϑ(G) = min t s.t. X � 0, Xii = t− 1 ∀i ∈ V (G), Xij = −1 ∀ij ∈ E(G),
(1)

where X � 0 means that X is a symmetric positive semidefinite matrix. The graph G, called
the complement of a graph G, has the same vertex set as the original graph and a pair of
vertices is adjacent if and only if it is non adjacent in G.

Lovász [26] proved that ϑ lower bounds the minimum dimension of an orthonormal
representation where the vectors are real valued. Note that this is slightly different from
our setting where we allow the vectors to have complex entries. However, we show that
the Lovász theta number is also a lower bound for ξ(G). The proof is an adaptation to the
complex case of a known proof [23].

I Lemma 2.5. For any graph G, we have ξ(G) ≥ ϑ(G).

Proof. Let n = |V (G)| and label the vertices of the graph G by {1, 2, . . . , n}. Suppose
that the orthogonal rank of G is equal to d and that u1, . . . , un ∈ Cd are the unit vectors
forming an orthogonal representation of G. For every vertex of the graph i ∈ [n], define a
matrix Ui := uiu

†
i and U0 := Id. Let Z be a (n+ 1)× (n+ 1) matrix where the i, j-th entry

Zij := 〈Ui, Uj〉 = Tr(U†jUi) for every i, j ∈ {0} ∪ [n]. Notice that Z is positive semidefinite
since it is the Gram matrix of a set of complex vectors. Moreover, Z is real valued and we get
that Z00 = d, Z0i = 〈I, uiu†i 〉 = 1 and Zii = 〈uiu†i , uiu

†
i 〉 = (u†iui)2 = 1 for all i ∈ V (G) and

that Zij = (u†iuj)(u
†
jui) ≥ 0 for all i, j ∈ V (G) with equality if ij ∈ E(G). By taking the

Schur complement2 in Z with respect to the entry Z00, we obtain a new symmetric positive
semidefinite matrix X with Xii = 1− 1/d for all i ∈ V (G) and Xij = −1/d for all ij ∈ E(G).
Rescaling X by d, we get a feasible solution for the minimization program in (1) of ϑ(G)
with value d. We conclude that d = ξ(G) ≥ ϑ(G). J

Step 2: Eigenvalue bound on the theta number. In the second step we show the following
useful bound on the theta number of the graph H(n, d) in terms of the eigenvalues of its

2 Let X be a symmetric matrix of the form X =
(
α bT

b A

)
, where b ∈ Rn−1 and α > 0. X is positive

semidefinite if and only if A− bbT /α is positive semidefinite. The matrix A− bbT /α is called the Schur
complement in X with respect to the entry α.
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adjacency matrix. For the remainder of this step, by the eigenvalues of a graph we mean the
eigenvalues of its adjacency matrix.

I Lemma 2.6. For every positive integer n and d ∈ [n], we have ϑ(H(n, d)) ≥ 1−
(
n
d

)
/λmin,

where λmin is the smallest eigenvalue of H(n, d).

The proof of the above lemma uses the fact that for graphs with certain structural
properties, the Lovász theta number is characterized by their eigenvalues. Let us recall the
following standard definitions. Let G = (V,E) be a graph. A permutation π : V → V is
edge preserving if for every edge {u, v} ∈ E, we have {π(u), π(v)} ∈ E. The graph G is
vertex-transitive if for every pair of vertices u, v ∈ V there is an edge-preserving permutation
π : V → V such that π(u) = v. Moreover, G is edge-transitive if for every pair of edges
{u1, v1}, {u2, v2} ∈ E, there is an edge-preserving permutation π : V → V such that
π(u1) = u2 and π(v1) = v2. Lovász [26] showed that if a graph is both vertex- and edge-
transitive, then the theta number is given by a simple formula involving its eigenvalues.

I Lemma 2.7 (Lovász). For a positive integer n let G be an n-vertex graph with eigenvalues
λ1 ≥ · · · ≥ λn. If G is both vertex- and edge-transitive, then ϑ(G) = 1− λ1/λn.

Proof of Lemma 2.6. We start by showing that H(n, d) is vertex-transitive. Given any pair
of vertices u, v ∈ {0, 1}n of H(n, d), consider the automorphism of the graph H(n, d) that
maps x 7→ x ⊕ u ⊕ v where ⊕ is the bit-wise addition. This map preserves the Hamming
distance, and therefore the adjacencies, between the vertices and sends u 7→ v. Hence H(n, d)
is vertex-transitive.

To show that H(n, d) is edge-transitive, fix any two edges uv and st and let p = u⊕ v,
q = s ⊕ t. Noting that the n-bit strings p and q have the same Hamming weight d, let π
be a permutation of the indices such that π(p) = q. We define ν to be an automorphism
that sends a vertex x to π(x⊕ u)⊕ s. The map ν preserves the edges of H(n, d) and, since
the permutation π maps the all-zero string to itself and p to q, we have that ν(u) = s and
ν(v) = t. Hence, H(n, d) is edge-transitive.

Finally, since the largest eigenvalue of a vertex-transitive graph is equal to its degree, we
clearly have λ1(H(n, d)) =

(
n
d

)
. The result now follows from Lemma 2.7. J

Step 3: Bound on the smallest eigenvalue of H(n, d). Finally, we prove an upper bound
on the magnitude of the smallest eigenvalue of H(n, d).

I Lemma 2.8. Let d and n be even positive integers such that d < n/2. Then, the smallest
eigenvalue λmin of the graph H(n, d) is a negative number such that

|λmin| ≤

√√√√ 2n
(
n
d

)( n

n/2−
√
d(n−d)

) .
The proof of the lemma uses the following facts from coding theory that can be found in

the survey [12]. The eigenvalues of H(n, d) play a fundamental role in the theory of Hamming
association schemes, where they are expressed in terms of a set of orthogonal polynomials
known as the (binary) Krawtchouk polynomials. For a positive integer n and d = 0, 1, . . . , n,
the Krawtchouk polynomial Kn

d ∈ R[x] is a degree-d polynomial that is uniquely defined by

Kn
d (x) =

d∑
j=0

(−1)j
(
x

j

)(
n− x
d− j

)
, x = 0, 1, . . . , n.
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When n and d are even, then Kn
d is symmetric about the point x = n/2. Moreover, these

polynomials satisfy the important orthogonality relation

n∑
x=0

(
n

x

)
Kn
d (x)Kn

d′(x) = δd,d′

(
n

d

)
2n. (2)

The set of distinct eigenvalues of H(n, d) turns out to be {Kn
d (0),Kn

d (1), . . . ,Kn
d (n)}. Crucial

to our proof of Lemma 2.8 then, is the following result of Levenshtein [25, Theorem 6.1]
characterizing the smallest roots of the Krawtchouk polynomials.

I Theorem 2.9 (Levenshtein). Let n be a positive integer and d ∈ [n]. Then, Kn
d has exactly d

distinct roots and its smallest root is given by

n/2−max
z

( d−2∑
i=0

zizi+1
√

(i+ 1)(n− i)
)
, (3)

where the maximum is over all vectors z = (z0, . . . , zd−1) on the real Euclidean unit sphere.

This implies the following general bound on the location of the smallest root of Kn
d . The

bound is stated for instance in [20], but since we were unable to find a published proof we
include one here for completeness.

I Corollary 2.10. Let n and d be positive integers such that d < n/2. Then, the smallest
root of Kn

d lies in the interval
[
n/2−

√
(n− d)d, n/2

]
.

Proof. It is clear that (3) is trivially upper bounded by n/2. We focus on the lower bound.
To this end, let z = (z0, . . . , zd−1) be a real unit vector achieving the maximum in (3).
For i ∈ {0, 1, . . . , d − 1} define the numbers ai = zi

√
n− i and bi = zi+1

√
i+ 1. By the

Cauchy-Schwarz inequality,

( d−2∑
i=0

zizi+1
√

(i+ 1)(n− i)
)2

=
( d−2∑
i=0

aibi

)2

≤
( d−2∑
i=0

a2
i

)( d−2∑
j=0

b2
j

)

=
( d−2∑
i=0

a2
i

)( d−1∑
j=1

b2
j−1

)

≤
( d−1∑
i=0

a2
i

)( d−1∑
j=0

b2
j−1

)

=
( d−1∑
i=0

z2
i (n− i)

)( d−1∑
j=0

z2
j j
)

=
(
n−

d−1∑
i=0

z2
i i
)( d−1∑

j=0
z2
j j
)
, (4)

where in the last equality we used the fact that z is a unit vector. Observe that the sum∑d−1
i=0 z

2
i i lies in the interval [0, d− 1]. Hence, since d < n/2, (4) is at most max{(n− t)t :

t ∈ [0, d− 1]} = (n− (d− 1))(d− 1) ≤ (n− d)d. J
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Proof of Lemma 2.8. Since the trace of a matrix equals the sum of its eigenvalues and the
trace of an adjacency matrix is zero, it follows that λmin < 0.

Recall that the eigenvalues of H(n, d) belong to the set {Kn
d (x) : x = 0, 1, . . . , n}.

Moreover, since by our assumption n and d are even, the polynomial Kn
d is symmetric

about the point n/2. Also observe that Kn
d (0) > 0 and hence the first time this polynomial

assumes a negative value is somewhere beyond its smallest root, i.e. the smallest x for which
Kn
d (x) < 0 lies in between the smallest root and n/2. It therefore follows from Corollary 2.10

and from the fact that Kn
d is symmetric about the point n/2 that λmin = Kn

d (x?) for some
integer x? ∈ [n/2−

√
(n− d)d, n/2].

Clearly (2) implies that

n∑
x=0

(
n

x

)
Kn
d (x)2 =

(
n

d

)
2n.

Hence,(
n

x?

)
Kn
d (x?)2 ≤

(
n

d

)
2n

and we can conclude that

|λmin|2 = |Kn
d (x?)|2 ≤

2n
(
n
d

)(
n
x?

) ≤ 2n
(
n
d

)( n

n/2−
√

(n−d)d
) . J

Putting everything together. To conclude this section, we combine the main lemmas of
the above three steps to prove Theorem 2.4.

Proof of Theorem 2.4. Combining Lemmas 2.5, 2.6, and 2.8 gives

ξ(H(n, d)) ≥ ϑ
(
H(n, d)

)
≥ 1−

(
n

d

)
/λmin ≥ 1 +

√(
n
d

)( n

n/2−
√

(n−d)d
)

2n . (5)

We take the logarithm and use Stirling’s approximation: log
(
n
k

)
=
(
H(k/n) + o(1)

)
n, where

H(ε) = −ε log(ε)− (1− ε) log(1− ε) is the binary entropy function and the o(1) term goes to
zero as n→∞ (see for example [32, p. 64]). Then, for α = d/n, logarithm of (5) is at least

1
2 log

((n
d

)( n

n/2−
√

(n−d)d
)

2n

)
= n

2

(
H(α) +H

(
1/2−

√
(1− α)α

)
− 1 + o(1)

)
.

A simple check gives that H(α) + H(1/2 −
√

(1− α)α) − 1 > 0 for any α ∈ (0, 1/2). In
particular, log ξ(H(n, n/4)) ≥ Ω(n). J

2.2.2 Two-round quantum communication
Using a distributed version of Grover’s search algorithm, we find a quantum communication
protocol that solves EQ-

(
n
n/4
)
with a logarithmic number of qubits.

I Theorem 2.11. The two-round quantum communication complexity of EQ-
(
n
n/4
)
is at

most 2dlogne+ 1 qubits.
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Proof. Let x and y be the inputs of Alice and Bob, respectively, and z = x ⊕ y be their
bit-wise addition. The promise ensures that either |z| = 0 if x = y or |z| = n/4 in the case
where x 6= y.

If a bit string z ∈ {0, 1}n is known to contain exactly n/4 entries that are 1, Grover’s
algorithm [17] is able to find one of these entries without error [2], needing only a single
query to the string z. For any string we define the query unitary Uz =

∑n
i=1(−1)zi |i〉〈i|

and we define |s〉 = 1√
n

∑n
i=1 |i〉 to be the uniform superposition of all basis states. Then

G = 2|s〉〈s| − I is a unitary operation known as the Grover diffusion operator.
The quantum communication protocol can be viewed as combining Grover’s algorithm

with a special case of the simulation theorem given by Buhrman, Cleve and Wigderson [7,
Theorem 2.1]. We want to perform the algorithm on the effective string z = x⊕ y, using the
fact that performing a single query Uz is the same as performing the operations Ux and Uy
in sequence, i.e., Uz = UxUy = UyUx.

At the start of the protocol, Bob first creates the state Uy|s〉 and sends this state over to
Alice using dlogne qubits. Alice first applies Ux to the incoming state and then applies the
Grover operator G. The final state of Grover’s algorithm is 1√

n/4

∑
i s.t. zi=1 |i〉 if |z| = n/4.

That is, in the case that x 6= y Grover’s algorithm has produced a superposition over all
indices i such that xi 6= yi. Alice measures the state, obtaining some index i∗ such that
xi∗ 6= yi∗ if x 6= y. Then she sends i∗ and the value xi∗ over to Bob using dlogne+ 1 qubits.
He outputs ‘equal’ if and only if xi∗ = yi∗ . The total communication cost of the protocol is
then 2dlogne+ 1 qubits. J

This protocol can be extended to efficiently solve the equivalent problem for other distances
than n/4 in constant rounds, by using a more general exact version of the Grover search
algorithm. The construction is described in Appendix B.

3 The list problem

In this section, we consider the L-list problem: Bob gets a list L ∈ L from a family L ⊆ 2X
of lists, Alice gets an element x ∈ L, and Bob must learn x.

3.1 Classical communication complexity of the list problem

Here we prove Theorem 1.6. The list problem that gives the result is simple: For positive
integers k,N such that 2 ≤ k ≤ N , we consider the list problem L =

([N ]
k

)
, where the family

of lists consists of all k-element subsets of [N ]. Note that for this problem, Theorem 1.5 gives
a four-round protocol using at most log logN + 2 log k +O(log log k) bits of communication.

I Theorem 3.1. The classical communication complexity of
([N ]
k

)
-list is at least

log logN + 2 log(k − 1)− log log(k − 1)−O(1).

To see that this implies Theorem 1.6 note that for L as above, we clearly have ω(L) = k

and that GL is the complete graph on N vertices, giving χ(GL) = N . Hence, the bound in
the above theorem can be written as log logχ(GL) + (2− o(1)) logω(L), where the term o(1)
goes to zero as k →∞. Choosing k = logN then gives the second part of the theorem.

To prove Theorem 3.1, we use a bound on the size of cover-free families due to Dýachkov
and Rykov [13]; see [30, 15] for simplified proofs (in English).
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I Definition 3.2. Let r be a positive integer and S be a finite set. A family F ⊆ 2S of at
least r + 1 subsets is r-cover-free if every subfamily of r + 1 distinct sets F0, F1, . . . , Fr ∈ F
satisfies F0 * F1 ∪ · · · ∪ Fr.

I Theorem 3.3 (Dýachkov–Rykov). There exists an absolute constant c > 0 such that the
following holds. Let N and r be positive integers such that N ≥ r + 1 and r ≥ 2. Let S be a
finite set. Let F ⊆ 2S be an r-cover free family consisting of N sets. Then,

|S| ≥ cr2 logN
log r .

Proof of Theorem 3.1. For a positive integer C, suppose that the communication complexity
of
([N ]
k

)
-list is C. Fix such a protocol and for every input pair (x, L) in the

([N ]
k

)
-list

problem, define the transcript Tx,L ∈ {0, 1} ∪ {0, 1}2 ∪ · · · ∪ {0, 1}C as the concatenation of
the parties’ messages in the order they are sent during their conversation on input (x, L).
Let T be the set of said transcripts.

For each transcript T ∈ T , denote by TA the sequence of Alice’s messages in T , to be
understood as a sequence of strings indexed by her rounds in the conversation. Let F =
{Fx}x∈X ⊆ 2T be the family where each Fx is the collection of transcripts T ∈ T that
is consistent with x being Alice’s input and that agrees on TA. We claim that F is a
(k − 1)-cover free family. To see this, take any k sets of F , say Fx0 , . . . , Fxk−1 , and let L be
the corresponding k-element list {x0, . . . , xk−1}. Consider the transcript Tx0,L of the input
pair (x0, L). Clearly, Tx0,L ∈ Fx0 . We show that Tx0,L 6∈ Fxi

for each i ∈ {1, . . . , k − 1},
which gives the claim as this implies that Fx0 6⊆ Fx1 ∪ · · · ∪ Fxk−1 . Suppose that Tx0,L ∈ Fxi

holds for some i ∈ {1, . . . , k − 1}. This means that Alice sends identical message sequences
on inputs x0 and xi and therefore that Bob is not able to distinguish between these two cases
for the input pair (x0, L), contradicting our assumption that we started with a functional
protocol.

We also claim that F consists of at least N sets. Indeed, for every pair x, y ∈ [N ], there
is a list L ∈

([N ]
k

)
containing both x and y. Since we must have TAx,L 6= TAy,L for Bob to be

able to distinguish x and y on input L, the inputs x and y induce distinct transcript sets.
It thus follows from Theorem 3.3 that the total number of distinct transcripts is at least

|T | ≥ c(k − 1)2 logN
log(k − 1) .

Hence, since T ⊆ {0, 1} ∪ {0, 1}2 ∪ · · · ∪ {0, 1}C , we have

2C+1 − 1
2− 1 =

C∑
l=0

2l ≥ c(k − 1)2 logN
log(k − 1) ,

for some absolute constant c > 0. Taking logarithms now gives the claim. J

3.2 Quantum communication complexity of the list problem
Analogous to Witsenhausen’s result, the one-round quantum communication complexity of a
list problem is characterized in terms of the orthogonality dimension of its associated graph.

I Lemma 3.4. For every family L ⊆ 2X , the one-round quantum communication complexity
of L-list equals dlog ξ(GL)e.
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Proof. Consider an optimal one-round protocol. Without loss of generality, we can assume
that Alice sends to Bob a pure state |φx〉 ∈ Cd on input x ∈ X . Then, given a list L ∈ L,
Bob has a measurement that allows him to distinguish the states {|φx〉 : x ∈ L}. It thus
follows from Lemma 2.3 that these states must be orthogonal. In particular, since for every
list L ∈ L, each pair of distinct elements x, y ∈ L forms an edge in GL, the vectors |φx〉,
x ∈ X , form a d-dimensional orthogonal representation. Hence, ξ(GL) ≤ d.

Conversely, let f : V (GL)→ Cd be an orthogonal representation of GL. Then, for every
list L ∈ L, the vectors {f(x) : x ∈ L} are pairwise orthogonal. If Bob gets a list L ∈ L and
Alice gets an element x ∈ L, it follows from Lemma 2.3 that there is a quantum measurement
allowing Bob to uniquely identify x when Alice sends f(x) using log d-qubits. Hence, the
one-round quantum communication complexity is at most dlog ξ(GL)e. J

For multi-round protocols, a quantum analogue of Theorem 1.3 also holds.

I Lemma 3.5. For every family L ⊆ 2X , the quantum communication complexity of L-list
is at least max{Ω(log logχ(GL)), logω(L)}.

Proof. Kremer’s Theorem (Theorem 1.1) shows that there is at most an exponential difference
between the (multi-round) quantum and one-round classical communication complexity.
Hence, by Witsenhausen’s result, the former is at least Ω(log logχ(GL)). Moreover, on the
worst input Bob has to be able to distinguish among ω(L) different elements. Hence, logω(L)
bits of information must be communicated and Holevo’s Theorem [19] says that to retrieve
logω(L) bits of information logω(L) qubits are necessary. J

3.3 Proof of Theorem 1.7

Recall that we are considering the following family of lists. For an even positive integer n
and d ∈ [n], let Ld ⊆ 2{0,1}n be the family of all lists L ⊆ {0, 1}n of maximal cardinality
such that all strings in L have Hamming distance exactly d. We denote by K the union
Ln/2 ∪ · · · ∪ Ln.

Proof of Theorem 1.7. Let ` = dlogne and U be an (`+ 1)-qubit unitary matrix satisfying

U |0〉 |0〉⊗` = |0〉 |0〉⊗`

U |1〉 |0〉⊗` = 1√
n
|1〉

n∑
i=1
|i〉.

Moreover, for any 2`-bit string z, we define the conditional query unitary Uz which acts on
the computational basis states as Uz|0〉|i〉 = |0〉|i〉 and Uz|1〉|i〉 = (−1)zi |1〉|i〉. For a small
technicality, if n is not a power of 2, i.e. ` > logn, we will map any n-bit string to a 2`-bit
string obtained by padding zeros to the original string. We can now explain the protocol.

Suppose that Bob receives a list L ∈ Ld and Alice a string x ∈ L. From L, Bob computes
the distance d and he sends to Alice a single qubit γ|0〉+

√
1− γ2|1〉 where γ2 = 1− n

2d > 0.
Alice pads ` zero qubits to the one she received and then applies in sequence the unitaries U
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and Ux, obtaining the state

|φx〉 := UxU
(
γ|0〉|0〉⊗` +

√
1− γ2|1〉|0〉⊗`

)
= Ux

(
γ|0〉|0〉⊗` +

√
1− γ2

n

n∑
i=1
|1〉|i〉

)

= γ|0〉|0〉⊗` +
√

1− γ2

n

n∑
i=1

(−1)xi |1〉|i〉

which she sends to Bob, using dlogne+ 1 qubits. Notice that if x, y ∈ {0, 1}n differ in exactly
d positions, then the states |φx〉 and |φy〉 are orthogonal to each other. Hence, by Lemma 2.3,
using the list L Bob can perform a measurement that allows him to learn Alice’s input x.
This protocol requires a total communication of dlogne+ 2 qubits. J
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A Kremer’s Theorem

Here we prove Kremer’s Theorem (Theorem 1.1), which we restate for convenience. The
original proof by Kremer [21] applied to boolean functions; we give a slight generalization of
the statement so that it applies to functions with arbitrary range. It is important to notice
that the statements in this section hold for general communication protocols, not only exact
ones.

I Theorem A.1. Let ` be a positive integer, X,Y,R be finite sets and D ⊆ X × Y . Let
f : D → R be a function and suppose that f admits an `-qubit quantum protocol. Then, there
exists a one-round 2O(`)-bit classical protocol for f .

The proof uses the following lemma of Yao [35] and Kremer [21]. To reduce the amount
of notation needed in the proof we assume that the parties use the following general protocol.
At any point during the protocol, both Alice and Bob have a private quantum register. If it is
Alice’s turn to communicate, say `-qubits, she appends a fresh `-qubit register to her existing
register, applies a unitary to both registers and sends the `-qubit register over to Bob, who
then absorbs the `-qubit register into his private register. If it’s his turn to communicate,
Bob operates similarly. This assumption will allow us to deal more easily with protocols in
which different numbers of qubits are sent in each round.

I Lemma A.2 (Yao–Kremer). Let ` be a positive integer, X,Y,R be finite sets and D ⊆ X×Y .
Suppose that there exists an r-round quantum protocol for a function f : D → R, where `i
qubits are communicated in round i ∈ [r]. Then, the final state of the protocol on input
(x, y) ∈ D can be written as∑

αu(x)βu(y)|Au(x)〉|Bu(y)〉,

where the sum is over all u ∈ {0, 1}`1 × · · · × {0, 1}`r , the αu(x), βu(y) are complex numbers
and the |Au(x)〉, |Bu(y)〉 are complex unit vectors.

Proof. By induction on r. The base case r = 1 is trivial, since then Alice sends Bob
an `-qubit state. For some i ∈ {2, 3, . . . , r}, suppose that after i− 1 rounds the state is given
by ∑

αv(x)βv(y)|Av(x)〉|Bv(y)〉,

where the sum is over all v ∈ {0, 1}`1 × · · ·× {0, 1}`i−1 . Assume that the i-th round is Alice’s
turn (the case of Bob’s turn is handled similarly). She appends a fresh `i-qubit register to
her current register, causing the state to become∑

αv(x)βv(y)|Av(x)〉|01 · · · 0`i
〉|Bv(y)〉.

Next, she applies a unitary over both of her registers, turning the state into

∑
αv(x)βv(y)

 ∑
w∈{0,1}`i

γw|Av,w(x)〉|w〉

 |Bv(y)〉,

where γw is a complex number (which might depend on x) and for some unit vectors |Av,w(x)〉.
Now define

αv,w(x) := αv(x)γw, βv,w(y) := βv(y) and |Bv,w(y)〉 := |w〉|Bv(y)〉,
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so that after the ith round, after Alice has sent the `i-qubit register to Bob, the state equals∑
v,w

αv,w(x)βv,w(y)|Av,w(x)〉|Bv,w(y)〉.

After r rounds the state thus looks like as claimed in the lemma. J

Proof of Theorem 1.1. Assume that the protocol proceeds in r rounds and that `i qubits
are communicated during round i ∈ [r]. By Lemma A.2 the final state of the protocol can be
written as∑

αu(x)βu(y)|Au(x)〉|Bu(y)〉,

To produce his output, Bob performs a measurement {M1, . . . ,Mk} on his register. For
each pair u,v ∈ {0, 1}`1 × · · · × {0, 1}`r and j ∈ [k] we define the complex numbers

au,v(x) := αu(x)αv(x)〈Au(x)|Av(x)〉
bju,v(x) := βu(y)βv(y)〈Bu(y)|Mj |Bv(y)〉.

Then, the probability that Bob gets measurement outcome j equals

pj(x, y) =
∑
u,v

au,v(x)bju,v(y).

The classical one-round protocol works in the following way. Let ` be the total communi-
cation of the protocol and define ãu,v(x) as an approximation of au,v(x) using 2`+ 4 bits for
the real part and 2` + 4 bits for the imaginary part, so that |ãu,v(x) − au,v(x)| ≤ 2−2`−3.
Alice’s message consists of all 22` numbers ãu,v(x), making the total communication cost
O(`22`) bits. Bob calculates his approximation of the probability of getting outcome j as

p̃j(x, y) =
∑
u,v

ãu,v(x)bju,v(y).

We can bound the difference between this approximation and the acceptance probability
of the original quantum protocol by

|p̃j(x, y)− pj(x, y)| =
∣∣∣∑

u,v

(
ãu,v(x)− au,v(x)

)
bju,v(y)

∣∣∣
≤
∑
u,v

∣∣ãu,v(x)− au,v(x)
∣∣ ∣∣bju,v(y)

∣∣
≤ 2−2`−322` ≤ 1

8 .

Therefore, given a quantum protocol with sufficiently high success probability, in this
paper in particular probability 1, Bob can (deterministically) choose the unique outcome
j for which p̃j(x, y) is strictly greater than 1

2 , and this outcome j is equal to the function
value f(x, y), by correctness of the original quantum protocol. J

B Multi-round quantum protocols for EQ-
(
n

αn

)
with α < 1/2

Using distributed versions of Grover’s search algorithm, we find multi-round quantum
communication protocols that solve the EQ-

(
n
αn

)
problem for α < 1/2 with a logarithmic

number of qubits. For α = 1/4, this statement is proven in Theorem 2.11.
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When d = α · n where α ∈ (1/4, 1/2), we can pad zeros to the inputs such that the
new strings are either equal or differ in exactly 1/4-th of the positions and run the above
two-rounds protocol on the new strings. This is the simple key idea behind the following
theorem.

I Theorem B.1. For d = α · n with α ∈ (1/4, 1/2), the two-round quantum communication
complexity of EQ-

(
n
αn

)
is at most 2dlogne+ 2dlog(4α)e+ 1 qubits.

Proof. Let x and y be Alice’s and Bob’s inputs. They know that x and y are either equal or
they differ in exactly d = α · n positions where d > n/4. Suppose that Alice and Bob pad
their respective inputs with k consecutive zeros with k = 4d− n. The new bit strings x̂ and
ŷ have length n′ = n+ k = 4d and they are either equal or differ in exactly α′ · n′ = n′/4
positions.

Alice and Bob can now run the distributed Grover’s search protocol described in the
proof of Theorem 2.11 on the new inputs x̂, ŷ ∈ {0, 1}n′ . The total communication cost is
2dlogn′e+ 1 = 2dlog(4α · n)e+ 1 ≤ 2dlogne+ 2dlog(4α)e+ 1 qubits. J

For d = α · n where α ∈ (0, 1/4), we need to introduce some technicalities to ensure an
exact version of Grover’s search algorithm.

I Theorem B.2. For d = α · n with α ∈ (0, 1/4), the quantum communication complexity
of EQ-

(
n
αn

)
is at most O(logn) qubits. The quantum communication protocol uses O( 1√

α
)

rounds.

Proof. If a n-bit string z is known to contain exactly d entries that are 1, Grover’s algorithm
can be modified such that it finds an index for one of them with certainty [3, Theorem 16]
[4, 1]. The number of queries ` that the exact version of Grover’s algorithm needs in this
case is given by

` =

 π

4 arcsin
√

d
n

− 1
2

 < π

4

√
n

d
+ 1 .

The exact version of Grover’s algorithm is the same as the original algorithm, except for
an adapted final step, which uses a parametrized diffusion operator G(φ) and partial query
Vz(ϕ), where φ and ϕ are angles that depend on the Hamming distance d. As these angles
do not have a nice closed formula, we refer the reader to [3, Equation (12)] for the relation
that φ and ϕ must satisfy. Here

Vz(ϕ)|j〉 =
{
|j〉 if zj = 0
eiϕ|j〉 if zj = 1

and

G(φ) = FnV0(φ)F †n ,

where Fn is the n× n discrete quantum Fourier transform.3
Take x, y ∈ {0, 1}n to be the input strings of Alice and Bob and let z = x ⊕ y. As in

the proof of the n/4 case of Theorem 2.11, we turn this search algorithm into a quantum
communication protocol by writing a single query Uz = UxUy = UyUx. We can use the

3 Note that if n is a power of 2, it is also possible to use the n× n Hadamard transform.
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commutativity of Ux and Uy to save rounds: The exact Grover’s algorithm is performed by
executing the operations

G(φ)Vz(ϕ)GUz . . . GUz︸ ︷︷ ︸
`−1 times

on starting state |s〉 = 1√
n

∑n
i=1 |i〉. Since we can write two alternations as GUzGUz =

GUxUyGUyUx, alternating whether Alice or Bob executes the query first that round, only
`− 1 rounds are needed for the `− 1 ordinary Grover iterations. Alice starts the protocol if
` is even, and Bob sends the first message if ` is odd.

For the final step, the players need to simulate a query Vz(ϕ) by local operations that
depend only on x or y. At this point in the protocol it is Alice’s turn to communicate. She
currently holds the state

|ψ〉 = GUz . . . GUz︸ ︷︷ ︸
`−1 times

|s〉 .

Now Alice adds an auxiliary qubit that starts in |0〉 state. Define the unitary operation
Qx by its action on the computational basis states as

Qx|j〉|b〉 = |j〉|b⊕ xj〉

and the (diagonal) unitary matrix Ry(ϕ) as

Ry(ϕ)|j〉|b〉 = eiϕ(b⊕yj)|j〉|b〉 .

Now Alice first applies Qx on the state |ψ〉|0〉, sends this state to Bob who performs
Ry(ϕ), sending the state back to Alice who again performs Qx. It is easy to check that
QxRy(ϕ)Qx|ψ〉|0〉 = (Vz(ϕ)⊗ I)|ψ〉|0〉, therefore Alice now discards the auxiliary qubit and
applies G(φ) to finish the simulation of the exact version of Grover’s algorithm.

The final state of the exact Grover’s algorithm is 1√
d

∑
i s.t. zi=1 |i〉 if |z| = d. If Alice

has this state in her possession, she performs a measurement in the computational basis,
obtaining an index i∗ such that xi∗ 6= yi∗ if x 6= y. Then she sends i∗ and the value xi∗ over
to Bob, who outputs ‘equal’ if and only if xi∗ = yi∗ . This final message consists of dlogne+ 1
qubits. By the correctness of the exact Grover’s algorithm, this protocol correctly outputs
‘not equal’ if the Hamming distance between x and y is the fixed value d. Therefore we
turned a `-query execution of the exact version of Grover’s algorithm into a protocol that
uses (`+ 2)dlogne+ 2 qubits of communication in `+ 2 rounds. J
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Abstract
We study the robustness of the bucket brigade quantum random access memory model introduced
by Giovannetti, Lloyd, and Maccone [Phys. Rev. Lett. 100, 160501 (2008)]. Due to a result of
Regev and Schiff [ICALP’08 pp. 773], we show that for a class of error models the error rate per
gate in the bucket brigade quantum memory has to be of order o(2−n/2) (where N = 2n is the size
of the memory) whenever the memory is used as an oracle for the quantum searching problem. We
conjecture that this is the case for any realistic error model that will be encountered in practice,
and that for algorithms with super-polynomially many oracle queries the error rate must be
super-polynomially small, which further motivates the need for quantum error correction. We
introduce a circuit model for the quantum bucket brigade architecture and argue that quantum
error correction for the circuit causes the quantum bucket brigade architecture to lose its primary
advantage of a small number of “active” gates, since all components have to be actively error
corrected.
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1 Introduction

A random access memory (RAM) is a device that stores information in an array of memory
cells in the form of bits. In contrast to other types of information storage devices, the access
latency to any memory cell is constant and does not depend on the location of the information
in the RAM. Information stored in the RAM is retrieved by inputting the address of the
desired memory cell in a routing circuit. Any address in a RAM with N = 2n memory cells
can by addressed via a unique n bit input query string. The corresponding output register
contains the contents of the addressed memory location.
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The typical physical implementation of the addressing mechanism uses the fanout ar-
chitecture [17, 26], in which the routing scheme corresponds to a binary tree. Each node
consists of a pair of transistors which routes the electronic signal down one of the two paths
to the subsequent level. In the fanout architecture, a given level has all nodes sharing the
same routing direction (left or right), set by the corresponding address bit. An n bit query
string determines a unique path in the binary tree, corresponding to the desired memory
location. In the process, O(2n) transistors are activated.

Alternative routing schemes with O(poly(n)) activated transistors have been proposed,
corresponding to exponentially lower energy consumption. One such example is the “bucket
brigade” scheme [13, 12]. However, most of the classical implementations follow the simpler
fanout architecture, as the power consumption of RAM is negligible in comparison with the
power consumption of other components in the architecture.

The classical RAM addressing scheme can be generalized to a quantum RAM (which we
simply call qRAM from here on) scheme, where the input is a quantum state, the routing
components are inherently quantum, and the information stored can be either classical, i.e.
|0〉 or |1〉 but not a superposition of both, or quantum, i.e. any arbitrary superposition of |0〉
and |1〉. In the present paper we consider qRAM that stores only classical information. Such
memory allows querying superposition of addresses∑

j

αj |j〉|0〉
qRAM−→

∑
j

αj |j〉|mj〉, (1)

where
∑

j αj |j〉 is a superposition of queried addresses and |mj〉 represents the content of
the j-th memory location. A memory that stores classical information but allows queries
in superposition is required for quantum algorithms such as Grover’s search on a classical
database [23], collision finding [6], element distinctness [1], dihedral hidden subgroup problem
[20] and various practical applications mentioned in [3]. In fact, such a quantum memory
plays the role of the oracle and is ideal in implementing any oracle-based quantum algorithm,
in which the oracle is used to query classical data in superposition.

A conceptually simple physical implementation of a qRAM corresponds to a direct
generalization of the fanout architecture used in classical RAMs. However, the number of
faulty components that can be tolerated by the quantum architecture is of prime importance
due to the difficulty in maintaining quantum coherence. This motivates searching for schemes
with fewer faulty components. A fundamental assumption of the qRAM architecture is that
“active” gates1 are the only ones with significant errors.

In this paper we investigate the bucket brigade qRAM proposal introduced in [13, 12].
Assuming one requires a constant error probability for the oracle query, then with the bucket
brigade error model it suffices to have an error rate that is on the order of O(1/n2). In
the bucket brigade model, one assumes that each computational path only contains O(n)

1 The concept of “active” gates introduced in [13, 12] is somewhat unnatural when extended to quantum
gates. At the physical level, a gate is considered active if it physically acts on its input. Since the
qRAM may be in a superposition of querying many (or all) possible bit values in the memory, every
gate may be in a superposition of being active or not. Implicitly, there is a physical process that is
checking whether each gate is active, and then acting in that case, and such a process will not be perfect
in practice. Translated into the circuit model, such gates may be modelled as controlled-gates, i.e. gates
that act on its input provided that the control qubit is set to |1〉. Therefore, such a gate is considered
“active” if its control is set to |1〉 and “non-active” otherwise.
In practice, even non-active gates will be prone to errors. The implicit assumption is that these errors
are much smaller than the errors in active gates, and the focus of the bucket brigade models is to reduce
the impact of the higher order errors found in the active part of a gate.
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components that are faulty, and that a total of O(n2) faulty operations are performed. One
can argue that it is optimistic to assume that the so-called “non-active” components will
be completely error-free. And, one could counter-argue that the error rates will be much
lower, and thus ignored for problem instances of appropriate size. For the purposes of this
article, we set aside these concerns and accept the premise of there only being O(n) faulty
components.

In contrast to such a qRAM, if one just used a regular fanout circuit for the lookup, with
no error correction, one would need to maintain quantum coherence over an exponential
number of components [12]. In order to achieve a constant error rate for the query in this
case, one would need to implement a fault-tolerant version of the look-up circuit, which would
normally incur an overhead that is polynomial in n. One advantage of bucket brigade qRAM
is thus to bypass the poly-log overhead of fault tolerant quantum error correction needed
to achieve a constant error rate for a look-up. Such an error rate would be sufficient if the
qRAM is used in an algorithm making a constant number of queries, for example, for certain
state generation algorithms [22, 14]. In general, for an algorithm with inverse polynomially
many queries, it would suffice to reduce the query error rate to be inverse polynomial in n,
e.g. [21, 11].

In this article, we firstly shed doubt on the usefulness of a qRAM that provides queries
with constant probability of error, when used with algorithms that make super-polynomially
many oracle queries. As an aside, we note that if the imperfect query operation is assumed
to be unitary, and if one can apply the inverse of this imperfect query, then one can apply
simple amplification methods to achieve queries with arbitrarily small error δ using a number
of repetitions that is proportional to log(1/δ). It was shown that this logarithmic overhead
is not necessary for quantum searching [16] and other problems [9]. However, there is no
reason to expect the errors in a realistic qRAM to behave this way, and in this article we
consider incoherent errors.

We first show that a very simple model of incoherent physical errors induces an overall
query error similar to the one described by Regev and Schiff [25]. Consequently, a qRAM
that produces queries with constant error will not permit the quadratic speed-up in Grover’s
search algorithm or any other quantum search algorithm one might design. We show that
one cannot escape achieving an error rate that is super-polynomially small. We conjecture
that this error model nullifies the asymptotic speed-ups of other quantum query algorithms
as well, and leave as open questions the extension of this result to other important query
problems.

This negative result implies the need for some means of error reduction for the qRAM,
with a look-up error rate exponential in n. For consistency we assume a physical error rate
that is inverse polynomial in n, the logarithm of the size of the database. We thus explore a
natural approach, using quantum error correcting codes, to provide this error reduction, and
argue that the apparent advantage of qRAM disappears in this case; in principle, one can
make the error rate arbitrarily small, however the advantage of a small number of activated
gates in the bucket brigade architecture appears to be lost when active error correction has to
be performed on each gate. The main motivation for the quantum bucket brigade approach
over a straightforward binary-tree approach is that the equivalent of the active gates are the
only gates prone to error, and thus an inverse polynomial in n error rate suffices in order to
achieve an overall constant error per qRAM look-up.

The remainder of this paper is organized as follows. In Sec. 2 we describe the bucket
brigade qRAM architecture and prove that for the Regev and Schiff model [25] the error
rate per gate must scale as inverse polynomial in the size of the database. In Sec. 3 we
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|•⟩

|0⟩
|1⟩

Ground state

Figure 1 Representation of the energy levels
of a qutrit used at the nodes of the routing binary
tree. The states |0〉 and |1〉 form a metastable
subspace since the energy difference between the
states is required to be much smaller than the
difference between the ground state |•〉 and |0〉.

|•⟩ Qutrit in wait state

|•⟩ |•⟩

|m101⟩|m000⟩ |m001⟩ |m010⟩ |m011⟩ |m100⟩ |m110⟩ |m111⟩

|•⟩

|•⟩

Input: |010⟩ |0⟩

|1⟩

|0⟩

Figure 2 (Color online) Bucket brigade
scheme for a qRAM with 8 memory locations.
The address register is |010〉, corresponding to
the memory location m010. The path 0→ 1→ 0
is established by sequentially introducing the
address qubits |010〉 into the root of the tree.

develop and analyze a simple error model that provides intuition for the overall behaviour of
the memory with realistic noisy environments. In Sec. 4, in order to discuss approaches for
introducing quantum error correction inside the qRAM architecture, we introduce a circuit
model for the bucket brigade architecture. We then argue in Sec. 5 that a fault-tolerant
bucket brigade qRAM loses the advantage of small number of active components. Finally, in
Sec. 6 we conclude and present some open problems and directions for future research.

2 Quantum RAM Architectures

In [13, 12], Giovanetti et al. proposed a quantum bucket brigade addressing scheme requiring
only O(n) activations per memory call. The nodes of the routing binary tree are three level
quantum systems (qutrits), with an energy spectrum schematically depicted in Fig. 1.

The 2n qutrits at the nodes of the binary tree are initially prepared in the ground state
|•〉, named the “wait” state, and the memory address is specified by the n-qubit state
|a0a1 . . . an−1〉. At time t0, the address qubit |a0〉 is input at the root of the tree and it
interacts with the qutrit at node 0 changing its state from |•〉 to |a0〉. The states {|0〉, |1〉} of
the node qutrit are coupled to two spatial directions (paths), right and left respectively. The
role of the coupling is to route the following incoming address photon along the correct path
of the binary routing tree. At time t1, the subsequent address qubit |a1〉 is input at the root
of the tree. The address qubit |a1〉 interacts with the qutrit at node 0 and is physically routed
down the left or right path of the tree depending upon the state |a0〉 of node 0. Consequently
it changes the state of the corresponding node at level 1 to |a1〉. The process continues
until all the remaining address qubits are sent through the tree, with the k-th address qubit
changing the state of the node at the k-th level from |•〉 to |ak〉. After O(n2) time steps2, a
routing path is assigned from the root of the tree to the desired memory location, with only
n nodes in the path (one node per level) having a state different from |•〉. A bucket brigade
routing scheme for an 23-address qRAM is schematically depicted in Fig. 2. The proposed
physical implementation of bucket brigade in [12] uses atoms in a cavity as routing nodes
and polarization photon states as addressing qubits.

2 The k-th address qubit interacts with the first k − 1 routing nodes, followed by a single interaction
with the corresponding node at the k-th level. Considering each interaction takes a single time step,
the k-th address qubit changes the state of the corresponding node at the k-th level after k time steps.
Considering there are a total of n address qubits, the overall time required is O(n2).
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In [12], the authors claim that the bucket brigade scheme is coherent as long as the error
per gate, ε scales as O(1/n2). For this error scaling, as n increases, the overall error rate of
the qRAM oracle asymptotically approaches a constant. Yet constant overall error rates are
not favourable for some important quantum algorithms. For example, Regev and Schiff [25]
showed that the quadratic speed-up in Grover’s searching algorithm vanishes when using
oracles with a constant error rate. Namely, in order to regain the quadratic speed-up, the
error rate per oracle call should scale no worse than O(2−n/2) (therefore the error rate not
only needs to be non-constant it must vanish at a fast enough rate with increasing n).

In the next few sections, we construct a simple model of bucket brigade qRAM with
errors and show in Appendix A that Regev and Schiff error model [25] resembles the model
we construct. Based on this resemblance and assuming O(n2) faulty operations per memory
call, we conjecture that in order to implement the qRAM for quantum searching, the overall
error rate per memory call has to be in O(2−n/2). In fact, for this to hold, the error rate
per gate ε should decrease faster than 1/f(n), where f(n) ∈ ω(2n/2). Thus ε has to be in
o(2−n/2) and hence much smaller than O(1/n2), since the overall error rate per memory call
must scale as

1−
(

1− 1
f(n)

)O(n2)
∈ Ω

(
n2

f(n)

)
, (2)

and in order to satisfy

1−
(

1− 1
f(n)

)O(n2)
∈ O(2−n/2), (3)

it is required that

f(n) ∈ Ω
(
n22n/2

)
=⇒ 1

f(n) ∈ O
(

1
n22n/2

)
=⇒ ε ∈ o(2−n/2). (4)

Recently Hong et al. [15] proposed a bucket brigade qRAM scheme in which the number
of time steps required per memory call is reduced from O(n2) to O(n). While this reduction
decreases the overall error rate, the error rate per gate ε must still be in o(2−n/2).

The need for super-polynomially small (in n) error rate per gate for real world applications
motivates a more thorough analysis of the bucket brigade qRAM scheme and the need for
quantum error correction, these topics being the subject of the following sections.

3 Errors Analysis

In this section we introduce a simple toy error model for the physical implementation proposed
in [12], in which the qutrits are implemented by trapped atoms in cavities. The address
qubits are implemented by photons that propagate along the network of cavities, and excite
the corresponding qutrit to either of the states |0〉 or |1〉, depending on their polarization. In
this way, the incoming address photons create a “path” through the binary tree of cavities,
leading to the desired memory location. The readout is performed by injecting a “bus” qubit
(photon) at the root of the tree that interacts with the desired memory location, copies its
value (the states stored by the memory are |0〉 or |1〉, and not any superposition), and finally
is sent back along the routing tree exiting through the root with the corresponding memory
location content. For more details about the physical model an interested reader is referred
to [12].
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3.1 Toy Error Model
In the following we assume that the only source of errors in the above model is due to random
flips between the states |0〉 and |1〉 of the qutrit. We assume a typical symmetric bit-flip error,
in which at each time step the state |j〉 can either flip to |j ⊕ 1〉 with probability ε or remain
unchanged with probability 1− ε. The motivation for considering this error model is that,
since the states {|0〉, |1〉} are close together in the energy spectrum, significantly less energy
is required to cause a flip between them, hence such flips are more likely to occur. In reality,
there may be other sources of errors such as coupling errors, decaying of excited qutrit states
to the ground state, loss of photons during the routing process and so on. However, our toy
model illustrates the effects of an error that would naturally occur in a realistic physical
realization of a qRAM. There is no reason to expect these other sources of errors would help
matters (otherwise, one could seek to deliberately introduce or simulate such errors).

It is not hard to observe that any error in the routing process can propagate through the
tree resulting in various possibilities. Considering all possible errors in such a model, the
possible paths that the bus photon could take in the final step termed as right path, wrong
path and no-path, respectively. For convenience, we further assume the operations used to
un-compute the path information encoded in the qRAM are error-free.

1) Right path. This scenario occurs when no flips (errors) arise during the routing process.
In this ideal scenario, the bus reaches the correct location in the qRAM as specified by the
input address. Fig. 2 depicts an example of a right path given an input address |010〉.

To compute the probability prp of such an event, we require that no bit flip occurs at
each of the j levels. Taking the intersection of such events for all n− 1 levels of the binary
tree gives the probability of the right path

prp =
n−1∏
j=0

(1− ε)n−j = (1− ε)

n−1∑
j=0

(n−j)

= (1− ε)n(n+1)/2. (5)

2) Wrong path. This error refers to the cases wherein the the bus reaches any other location
in the qRAM other than the location corresponding to the input address. A wrong path
error occurs at level i if the state |j〉 of the active routing qutrit at level i flips to |j ⊕ 1〉
and no other errors occur subsequently (at later time steps). The scenario where another
error occurs at a later time step in the levels preceding to the j-th level leads to a no-path
error which we discuss later. The following two figures illustrate two possible wrong paths for
the input address |010〉. In Fig. 3, the error is assumed to occur in the third time step, due
to which the bus accesses the wrong location corresponding to |011〉. In Fig. 4, the error
is assumed to occur in the second time step, with the bus wrongly accessing the location
corresponding to |000〉.

In order to calculate the probability of a wrong path occurring, we consider the probability
of any path occurring, regardless of whether it is the right or wrong path, we denote this
probability by ppath. Suppose the state |ψj〉 is being routed down the qRAM circuit to the
j-th level. If any of the (j − 2) first routing nodes have flipped then the state will be routed
down an unexpected branch and will not excite the j-th level of the tree, resulting in a
no-path. The probability of success at this given time step is therefore (1− ε)j−1, where ε is
the probability of a node flipping, recall we must include the level-0 root node here. This
can only for levels 2 and above. The overall probability of success is therefore the product
of each of the individual probabilities of success at each time step (including the time step
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|•⟩ |•⟩

|m101⟩|m000⟩ |m001⟩ |m010⟩ |m011⟩ |m100⟩ |m110⟩ |m111⟩

|•⟩

|•⟩

Input: |010⟩ |0⟩

|1⟩

|1⟩

Figure 3 (Color online) Example of a wrong
path produced by an error at the third time step,
given the address |010〉.

|•⟩ |•⟩

|m101⟩|m000⟩ |m001⟩ |m010⟩ |m011⟩ |m100⟩ |m110⟩ |m111⟩

|•⟩

|•⟩

Input: |010⟩ |0⟩

|0⟩

|0⟩

Figure 4 (Color online) Example of a wrong
path produced by an error at the second time
step, given the address |010〉.

|•⟩ |•⟩

|m101⟩|m000⟩ |m001⟩ |m010⟩ |m011⟩ |m100⟩ |m110⟩ |m111⟩

|•⟩ |•⟩

Input: |010⟩

|1⟩

|1⟩

|•⟩

Figure 5 (Color online) Example of a no-path
given the address |010〉.

to send the bus qubit down the tree to recover the information stored in the RAM). This
probability is given by:

ppath = pwp + prp =
n∏

j=2
(1− ε)j−1 = (1− ε)

n∑
j=2

(j−1)

= (1− ε)n(n−1)/2. (6)

As we computed before the probability of a right path prp in Eq. (5), the probability of a
wrong path is then

pwp = ppath − prp = (1− ε)n(n−1)/2 − (1− ε)n(n+1)/2. (7)

3) No-path. This error refers to the scenario where the bus never reaches any location
of the qRAM. Such an error arises when a bit flip error occurs in levels 0 to n − 3. The
smallest such tree where this error can occur is therefore a three-level tree (corresponding to
a qRAM with 23 memory cells), as shown in Fig. 5. The difference between a wrong path and
a no-path is that, in the latter, the bus photon does not reach the memory address, hence
does not read any information, whereas in the former scenario the bus reaches the wrong
address in the qRAM and after the un-computing stage, the bus contains the information of
some particular address in the qRAM.

We present an example of a no-path error in Fig. 5, for an input address 010. At the first
time instant, the first address photon (i.e. |0〉) activates the switch (qutrit) in the first layer
of the tree. At the second time instant, the address photon |1〉 interacts with the switch in
the first layer, now in state |0〉, to decide the direction in which it has to be routed. Assuming
no error during the second time step, the second address photon is correctly routed to the
left path. Assume now that at the third time instant, a flip error occurs on the root qutrit,
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which flips its state from |0〉 to |1〉. The third address photon would then be incorrectly
routed to the path on the right. As it can be seen from Fig. 5, at the third time instant there
are two activated switches in the second level. The readout bus photon can no longer reach
any of the memory locations, and will be lost in the second level of routing tree.

The probability of a no-path event is simply

pnp = 1− pwp − prp = 1− (1− ε)n(n−1)/2. (8)

If the qRAM is used to implement a quantum oracle O, then O will be faulty, with an
error model described by

ρ
O→ prpÔρÔ

† + pwpEwp(ρ) + pnpEnp(ρ), (9)

with Ô denoting a perfect oracle. Here Ewp(·) and Enp(·) are error channels that corresponds
to the wrong path and no-path errors, respectively.

Our error model Eq. (9) is less optimistic than the one of Regev and Schiff [25] of the form
ρ

O→ (1− p)ÔρÔ† + pρ. The main difference is that the latter does not mix the amplitudes
of the initial starting superposition state in Grover’s search algorithm, whereas our model
decoheres the system much faster due to the non-trivial errors Ewp and Enp. Although we
do not have a proof that the quantum query complexity of our model cannot be less than
the one considered in [25] (i.e. linear in N), we argue (based on a formal proof for a similar
decoherence model, see Appendix A) that this is indeed the case.

3.2 Asymptotic Behaviour
In Figs. 6, 7 and 8 we analyze the probabilities of the three types of errors discussed
in the previous subsection. The parameters of interest are the error probability per gate,
denoted by ε, the overall fidelity of the addressing circuit (i.e. the probability of a right-path),
denoted by prp, and the number of levels in the qRAM addressing binary tree denoted by n
(corresponding to 2n memory locations).

For a fixed ε, we see that the no-path behaviour becomes the dominating term in the
error model, asymptotically with n, as depicted in Fig. 6.

For a fixed n, again the no-path term dominates when the error per gate ε becomes large,
see Fig. 7.

Finally, for a fixed desired overall fidelity prp, the maximum allowed error probability per
gate ε to achieve the overall fidelity prp decays exponentially as a function of n, as plotted in
Fig. 8.

From Fig. 8 it can be seen that, the error rate per gate of O(1/n2) (blue line in Fig. 8)
as considered in Giovannetti et al. [12] is more optimistic than our error rate ε(n) (red line
in Fig. 8)

For larger output fidelity prp, ε(n) will always be bounded above by 1/n2, with the gap
between the two increasing as prp approaches towards 1. Asymptotically in n, the two graphs
converge towards zero.

Simply, the difference between our error ε(n) and the one in [12] can best be understood
by investigating the series expansion

prp = (1− ε)n2
= 1 + 2 log(1− ε) 1

n(n+ 1) +O( 1
n4 ). (10)

In [12] the authors considered only the first order 1/n2 as a desirable error rate per gate.
However, when the output fidelity prp approaches 1, this approximation is no longer accurate,
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Figure 6 (Color online) Comparison of errors
for fixed ε as a function of n.

Figure 7 (Color online) Comparison of errors
for fixed n as a function of ε.

Figure 8 (Color online) Required ε (in di-
mensionless units of 10−2) as a function of n, for
a fixed circuit fidelity. GLM denotes the model
proposed in [12].

and higher order terms are important. As mentioned at the end of Sec. 2, inverse polynomial
error rates are not good enough in implementing Grover’s search with a qRAM-based oracle.
In fact, overall error rates of at most O(2−n/2) are essential.

The dominant no-path error term poses a fundamental implementation problem, due
to lack of oracle information, similar (see Appendix A) to the noise model investigated by
Regev and Schiff [25]. If in the future, qRAM designs could be constructed without the
presence of such a no-path term (i.e. with only wrong-path noise), one can attempt error
correction to efficiently reduce the error rate. We demonstrate in Appendix B a possible
error correction scheme for a simplified wrong-path term governed by bit-flip channels, then
show however that the scheme is not applicable to our errormodel or to the Regev and Schiff
error model [25].

4 Circuit Model

In Fig. 9 we present a circuit description for an N = 23 qubit bucket brigade qRAM, in
which the memory contains only states in the computational basis {|0〉, |1〉}. Our circuit is
immediately extendable to N = 2n and closely simulates the physical model proposed in [12].

The circuit description of the bucket brigade addressing scheme accounts for the temporal
aspects of the bucket brigade scheme. Namely, since the address qubits are introduced into
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|m100⟩

|a2⟩

|0⟩

|1⟩

|a0⟩
|a1⟩

|m000⟩
|m001⟩
|m010⟩
|m011⟩

|m110⟩
|m111⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|m101⟩

|out⟩

Figure 9 (Color online) Circuit for bucket brigade qRAM. Nodes to the left of the memory cell
are routing nodes. The dashed squares represents the memory locations. The first layer of nodes
immediately to the right of the memory are the coupling nodes. Finally, the nodes on the right
are the read out nodes. A possible input is e.g. |a0a1a2〉 = |010〉, for which the circuit reads the
memory location m010. The path leading to the location m010 is represented in blue colour, and
the active routing and readout nodes are highlighted. One could more closely mimic the physical
flow of information in the bucket brigade qRAM by adding an additional qubit at each node in the
binary tree we see in the diagram. Then, for each k = 0, . . . , n− 1, we add an initial controlled-NOT
gate to copy ak to the root node, followed by a series of O(2k) controlled-SWAPs that will bring
the value of ak to the unique node in level k defined by the bits a0, a1, . . . , ak−1. While this adds
exponentially many gates, it does not change the overall gate complexity, and these additional gates
only add O(k) to the depth of the circuit. This also illustrates that the exponential depth implicit
in the circuit we describe in the diagram can easily be reduced to polynomial depth by mimicking
the ideas presented in the qRAM proposal. We leave the circuit diagram in this simpler form, since
it does not affect our arguments in Sections 3 and 5.

the binary tree architecture sequentially, the circuit description should respect this ordering.
The input to the circuit are the address qubits |a0a1 . . . an〉. The circuit resembles a binary
tree composed of 2n − 1 routing nodes, 2n memory cells and 2n readout nodes that perform
the inverse operations of the routing circuit, used to decouple the qRAM from the address
qubits. Additionally, a bus qubit is introduced that interacts with the memory nodes to
extract the information stored in the appropriate memory location. It is worth noting that
this bus qubit as described may not be physically realistic since it may interact with all the
bits in the qRAM. We leave it as such, for simplicity. In practice, if such a non-local qubit is
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not feasible, one may either work with a phase shift oracle (as described in Ch. 8 of [19]), or
one may use a binary-tree circuit to bring the result of the qRAM look-up to a specific qubit
that will be accessed by the quantum algorithm that performs the look-up.

The address qubit |a0〉 is used to activate the appropriate branch at the first level of the
routing. The address qubit is coupled via a CNOT to an ancillary state prepared in the
state |0〉. This qubit then serves as one of the input qubits along with an additional qubit
prepared in the |1〉 state for the routing node (a CNOT gate with the first qubit as control).
Depending on the state of the address qubit, the resulting two-qubit output of the routing
node will have a single excited qubit in the |1〉 state, which we shall call the activated qubit.
The activated branch of the tree governs the routing of the subsequent interactions with
the address qubits, playing the role of the routing atom in the case of the bucket brigade
outlined in [12].

The two qubits at the exit of the level-0 routing node serve as inputs to the second
register of the two level-1 routing nodes. These qubits control which of the routing nodes
are activated at the next level of the qRAM binary tree architecture. Namely, the qubit
that is excited in the |1〉 state allows for the coupling between the address qubit and an
introduced |0〉 state ancilla via a Toffoli gate. Therefore the input to the active routing
node is either |01〉 or |11〉 depending on the state of the address qubit |a1〉. Effectively,
the routing operation given by a CNOT gate activates a branch of the tree. For the node
that is non-active, the state at the output of the previous level is |0〉, meaning the Toffoli
is not activated and the resulting input and output state to the routing node remains |00〉.
Therefore, after two routing node levels, the output of the routing qubits is composed of
22 qubits, with only a single branch being excited depending on the state of the first two
address qubits |a0a1〉. Therefore, this corresponds to an isometry:

|00〉a0a1 → |0001〉, |01〉a0a1 → |0010〉, |10〉a0a1 → |0100〉, |11〉a0a1 → |1000〉, (11)

where the excited output qubits in the |1〉 state represent an active physical path for the
subsequent qRAM operations. This procedure is repeated for n levels, where at the k-th level
there are 2k Toffoli gates and routing nodes. The 2k Toffoli gates are required to route of the
address qubit |ak〉 through the previous k levels and the routing node establish the output
states in order to route the subsequent address qubits. Since such a circuit performs the
appropriate unitary mapping of the address qubits for all computational basis state inputs,
by linearity it will extend to all superpositions of input address qubits. An example of the
routing procedure for a three-qubit input address state |010〉 is presented in Fig. 9, where
the blue highlighted nodes correspond to the activated nodes.

After the completion of the n routing node levels, memory readout is performed. The
reading is performed by introducing a bus qubit prepared in the |0〉 state which is the target
of 2n Toffoli gates. Each of the 2n qubits at the output of the qRAM routing nodes pair with
one of the memory cells to serve as control qubits for the Toffoli gates. Since only a single
output qubit from the routing scheme is activated, only a single Toffoli gate couples with
a memory location to the bus qubit. The bus qubit is represented by the bottom qubit in
Fig. 9 while the 23 memory qubits are represented between the qRAM routing architecture
and the bus qubit.

Having completed the coupling of the address qubit, the state of the qRAM routing qubits
must be decoupled from the address and bus qubits. Each of the gates from the routing
circuit are performed in reverse order, which corresponds to performing the inverse unitary
coupling transformation between the address qubits and the routing qubits. The resulting
state couples the address qubits with the corresponding memory qubit and has decouples
the routing qubits to their input ancillary states.
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5 Error Correction

The results from Sec. 3 motivate the need for quantum error correction to be implemented
at each node in order to protect against errors that may cause detrimental faults in path
information.

5.1 Imposing a quantum error correcting code
In choosing a quantum error correcting code (QECC) to protect the path information
that is stored in each node, it is essential to choose an encoding that can be implemented
fault-tolerantly, to allow for the generalization to large computational systems. Moreover,
the QECC should be chosen such that it can naturally be incorporated from the quantum
computer that is accessing the qRAM. In order to analyze the desired error correction
properties of a bucket brigade qRAM architecture we consider the circuit presented in Fig. 9.
The key gate components at each site are the CNOT and Toffoli gates.

The most natural construction of a QECC that can implement such operations with
minimal overhead would be the 15-qubit Reed-Muller code. The reason for choosing such a
code would be that decomposing the gate operations in the routing circuit as a sequence
of CNOT and Toffoli gates has the advantage that each of these gates can be implemented
in a transversal manner. Transversality is defined as the ability to implement a logical
gate by applying physical gates that have support at at most a single location per encoded
codeblock: it is the most natural way to guarantee fault-tolerance. However, if the quantum
computing device leads more naturally to another form of quantum error correction encoding,
methods such as state distillation or other schemes for universal fault-tolerance can be
used [8, 24, 4, 18, 2].

The focus of many fault-tolerant implementations are through the CSS code construc-
tion [28, 10, 29]. A CSS quantum code is constructed using two classical error correcting
codes, each individually used to address X and Z type errors. Given that any quantum error
can be decomposed in terms of a linear combination of Pauli operators, developing an error
correcting code that can address both types of errors will be sufficient for the construction of
a QECC.

Let CX be a classical error correcting code of length n that has the associated parity
check matrix HX , where each 0 in the parity check matrix of the classical code is replaced
by the two-dimensional identity matrix I and each 1 in the classical parity check matrix is
replaced by the Pauli X operator. Similarly, let CZ be a second classical error correcting
code of length n with an associated parity check matrix HZ , where each 1 in the classical
parity check matrix has been now replaced by the Pauli Z operator. If C⊥X ⊆ CZ then by
combining the stabilizers generated from the parity check matrices of both codes, HX and
HZ , the resulting stabilizer code forms a QECC. The number of physical qubits in the code
is n, the number of logical qubits is given by kX + kZ − n, where ki is the number of logical
states in the given classical code i and the distance of the code is at least the minimum of
the distance of the two classical codes. One of the many appealing features of the CSS code
construction is the transversality of the CNOT gate, a feature of the X and Z stabilizers
being independent. A particular example of a CSS code is the 15-qubit Reed-Muller code
mentioned above.

5.2 Number of activations in a CSS code
In the implementation of Giovanetti et al. [12], one of the primary advantages is the number
of gate activations that are needed per level of the bucket brigade scheme. More simply, a
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CNOT (Toffoli) gate in their scheme is “activated” only when the control qubit(s) is (are)
in the state |1〉. Since only one register is in such a state at a given level, the total number
of activations can thus be kept low. In a physical implementation, this is relevant as an
activated path may represent the presence of a physical excitation without which no physical
process occurs, therefore one can think of these non-activated gates as in fact being the
identity operation. However, such an advantage vanishes when imposing a CSS code in order
to protect from errors due to the symmetry in the number of |0〉 and |1〉 states the logical
states encoding the path information.

In the CSS code construction, two classical codes were taken to form a QECC. Therefore,
given some codeword of the classical code c ∈ CZ , the equivalent quantum state written out
in computation basis |c〉 must be stabilized by the Z generators of the code, by definition of
being a codeword of the classical code CZ . However, in order to be a logical state of the CSS
code, it must also be stabilized by the elements of the group generated by the X stabilizers.
Therefore, the codestate will be the superposition of the application of all X stabilizers
upon |c〉,

|c+ C⊥Z 〉 =
∑

x∈C⊥
Z

|c+ x〉 = 1
2n−kX

∏
i

(I⊗n + SX,i)|c〉, (12)

where {SX,i} are the generators of the X stabilizer group, equivalently given by the rows of
the parity check matrix HX .

Consider the form of Eq. (12), given the state |c〉 written in the computational basis,
the action of the operator (I⊗n + SX,1) will be the equally weighted superposition of the
state |c〉 and SX,1|c〉, which will differ at the location where SX,1 has a Pauli X in its
description. Therefore, at these locations half of the states in the superposition will have a
physical |0〉 state and half will have a physical |1〉 state. Then acting upon the state with
the operator (I⊗n + SX,2) will have the same effect on all the states in the superposition,
with now an even number of physical |0〉 and |1〉 states occurring at location with Pauli X
in SX,2. Repeating this for all X generators, any location with a X operator in one of the
stabilizers will necessarily have half of the states in the superposition in each of the physical
basis states. In order for the code to protect against any arbitrary single qubit error, each
physical qubit must be protected by at least one X stabilizer operator with support the given
location, otherwise it would be vulnerable to a single Z error at this location. As such, all
relevant CSS codesstate will have an equal number of each of the physical basis states when
writing out the expansion of the state in the computational basis.

In a physical implementation, such as that of Giovanetti et al. [12], a qubit in the state |1〉
represents an activated physical process, and as such the advantage of the bucket brigade
scheme is that the number of such processes are kept low. However, due to the symmetry
in the number of activations that must exist in both the logical ground and excited states,
this advantage no longer exists when considering CSS codes. More generally, non-symmetric
codes, that is codes where the logical |0〉 state and logical |1〉 have a differing number of
physical states in the excited state |1〉, are not desirable for the purposes of error correction
as they will be more susceptible to Z errors. The three-qubit repetition code is an extreme
example of such a property.

In principle, for the physical error model discussed in Section 3, one can envision using
the detection of a photon lost in the routing structure as a means to correct for no-path
errors (see Fig. 5). However, detecting the exact node at which a photon was lost reveals
path information about the state being read by the qRAM (since the previous node in the
routing structure would have necessarily been activated by the address qubits) which leads
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to a loss of coherence in the system. Therefore, any photon detection has to identify the
level at which the photon was lost, while not revealing exactly where. It is hard to envisage
a practical means for experimentally realizing a photon detection with this property (for
example, by somehow symmetrizing the loss of the photon across the exponentially many
nodes at a given level). Furthermore, even if this is achieved, one still faces the problem that
the lost photon contained path information. Thus, destroying the photon with this path
information is equivalent to a dephasing error leading to a further loss of coherence.

In conclusion, if one encodes each node of the bucket brigade qRAM in an error correcting
code, then all nodes of the circuit are activated at a physical level, and essentially the qRAM
architecture becomes equivalent to a fanout architecture. Even it the latter case, designing a
good quantum error correcting code is highly non-trivial. An important issue is that the
syndrome measurement should not reveal any information whatsoever about the physical
location of the nodes affected by errors. Otherwise, path information is being revealed, which
decoheres the system.

6 Conclusions and open questions

We analyzed the robustness of the bucket brigade qRAM scheme introduced in [13, 12] under
an optimistic error model. The primary advantage of the bucket brigade scheme is the need
for a polynomial in n (rather than exponential) number of gate activations per memory
reading. Yet, we give evidence for the hypothesis that for realistic error models, whenever
the qRAM is used as a oracle for quantum searching, its error rate per gate has to scale as
o(2−n/2). Such an error rate is exponentially smaller than the error O(1/n2) proposed in
[12] (which is sufficient for algorithms with low query complexity), motivating the need for
quantum error correction.

We argued that using traditional error correcting techniques offsets the main advantage
of the bucket brigade scheme when used with algorithms that make super-polynomially
many oracle queries. Since each component of the routing architecture has to be actively
error corrected in order to protect against detrimental faults, the overall scheme requires an
exponential number of physical gate activations, even if the number of logical gate activations
remains polynomial.

An interesting open question is the existence of a realistic architecture-specific error
correction technique that could recover the polynomial number of physical gate activations
of the routing scheme while still guaranteeing fault-tolerance. For example, if one tries to
use an error correction mechanism whereby one only uses multi-qubit code states along the
active path, then one has the problem of extracting syndromes and applying corrections in a
way that does not identify which path has the non-trivial syndromes (since such information
would lead to decoherence). If in this case, for example, one attempts to extract the syndrome
without leaving a trace of which node in a given level it came from, then the problem seems
at least as challenging as implementing a reliable qRAM.

Moreover, it would be interesting to investigate whether the requirement for a super-
polynomial suppression of the error rate is a characteristic of quantum searching algorithms
or a more general feature of query complexity with faulty oracles.
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A A simple decoherence model

Let us consider the error model considered in [25],

Rp(ρ) := (1− p)ÔρÔ† + pρ, (13)

with Ô denoting the perfect oracle for quantum searching and let us define

Dq(ρ) := (1− q)ρ+ q ~Xρ ~X† (14)

as the multi-qubit bit-flip channel where ~X is a shorthand notation for a tensor product of
σX bit-flip operators acting on some fixed subset of the oracle qubits. The proof technique
presented below for Dq also applies to the case of multi-qubit dephasing channels).

The error model proposed in this paper (see Eq. (9)) is

O(ρ) := prpÔρÔ
† + pwpEwp(ρ) + pnpEnp(ρ). (15)

We show that the composition Rp ◦ Dq resembles (although it is not exactly the same) our
error model Eq. (9), for suitable chosen p and q. It follows immediately that Ω(N) lower
bound for the searching algorithm considered in [25] is also a lower bound for the composition
Rp ◦ Dq, since channel composition cannot decrease the query complexity (one can simply
incorporate Dq into an appropriate unitary for the Rp algorithm).

A simple calculation yields:

Rp ◦ Dq(ρ) = (1− p)ÔDq(ρ)Ô† + pDq(ρ)

= (1− p)(1− q)ÔρÔ† + (1− p)qÔ( ~Xρ ~X†)Ô† + p(1− q)ρ+ pq ~Xρ ~X†

= (1− p)(1− q)ÔρÔ† + (1− p)qÔ( ~Xρ ~X†)Ô† + pDq(ρ). (16)
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We now identify the coefficients in Eq. (15) and Eq. (16)


prp = (1− p)(1− q)
pwp = (1− p)q
pnp = p, (17)

and note that for any given probabilities prp, pwp, pnp satisfying prp + pwp + pnp = 1, the
system of equations Eq. (17) has the solution


p = pnp

q = pwp

pwp + prp
. (18)

We can therefore write

Rp ◦ Dq(ρ) = prpÔρÔ
† + pwpÔ( ~Xρ ~X†)Ô† + pnpDq(ρ). (19)

Comparing Eq. (15) and Eq. (19), we observe that the term Ô( ~Xρ ~X†)Ô† is very similar to
our wrong path term Ewp(ρ) (the error that corresponds to reading out an incorrect memory
location). The last term term Dq(ρ) in Eq. (19) is not of the form of our no-path error term
Enp(ρ), as the latter consists of depolarizing channels of different strengths depending on the
position of the address qubit (i.e., the qubits are affected in decreasing order of significance,
that is, the first qubit is affected the most, whilst the last one the least). However, Dq(ρ) is a
decohering term, which seems to be a “weaker” form of noise than Enp(ρ). We showed above
that even with this weaker decoherence term the quadratic speedup of any searching algorithm
is lost. Therefore we have strong reasons to believe that adding a stronger decoherence term
will not lower the quantum query complexity for the quantum searching problem. A rigorous
proof of this conjecture remains an open problem.

B Error correction schemes

B.1 Correcting simple bit-flip errors
We show below that for a qRAM governed by a toy error model of the form

O(ρ) = (1− p)ÔρÔ† + pÔ( ~Xρ ~X†)Ô†, (20)

the query error rate can be made arbitrarily small by using quantum error correction. Here Ô
denotes the perfect oracle and ~X represents a multi-qubit bit-flip channel (a tensor product
of individual bit-flip operators acting on an arbitrary subset of qubits). While such error
models are not realistic for the architecture presented in this work, it may be that future
designs allow for simpler error propagation. Such schemes could benefit from quantum error
correction to sufficiently reduce their error rate to enable Grover search.

As Grover’s algorithm requires O(
√
N) steps, one desires a target logical error rate of

δ = O(1/
√
N). Since the faulty oracle has an error model that consists of a bit flip channel

followed by the perfect oracle call, one can use a quantum error correcting code and apply
the oracle in parallel along the qubits composing the code. The parallelism of the oracle calls
mimics majority counting and allows for error correction to be performed between logical
oracle call steps. For simplicity, we provide an example that corrects against bit flip errors
only using the repetition code, however such an analysis could be extended to correct for



S. Arunachalam, V. Gheorghiu, T. Jochym-O’Connor, M. Mosca, and P. V. Srinivasan 243

phase flips using code families such as the color codes [5], higher dimensional Shor codes [27],
or triorthogonal codes [7].

For example, consider an oracle of the form |a〉|b〉 → |a〉|b⊕ f(a)〉, where a, b ∈ {0, 1}. A
logical oracle call that uses an n-qubit repetition code behaves as follows for states in the
computational basis:

|a〉|b〉 V→ |a〉⊗n|b〉⊗n Ô⊗n

−→ |a〉⊗n|b⊕ f(a)〉⊗n, (21)

where V denotes the isometric encoding. Therefore, given a repetition code of length d,
the code corrects for all errors up to d/2− 1 physical bit flips by majority counting, using
non-destructive Z-type stabilizer measurements. Therefore, the logical error rate becomes
pL = pd/2. Choosing d large enough allows the logical error rate to satisfy pL = pd/2 < δ,
where δ is the desired target fidelity. Therefore

d >
2 log δ
log p =

2 log
(

1/
√
N
)

log p = n

log (1/p) . (22)

Each of the n address qubits that serve as input to the oracle call must be encoded into
a repetition code of length d. Hence, the total number of oracle calls for the complete
Grover search algorithm is O(nd

√
N) = O(n2

√
N) = O(

√
N(logN)2). As such, there is a

logarithmic penalty for error correction, yet the scaling is not linear as in the error model of
Regev and Schiff [25].

B.2 The failure of repetition codes for Regev and Schiff error model
The above error correction scheme is not applicable to the error model presented in [25],
described by Rp(ρ) = (1 − p)ÔρÔ† + pρ, since the failure of an oracle call can lead to an
uncorrectable error, as demonstrated below. Consider the following example of the 3-qubit
repetition code, where rather than all three oracles calls succeeding, the oracle call on the
first set of qubits fails. The computational states evolve as:

|000〉|000〉 Ô2Ô3−→ |000〉|0f(0)f(0)〉 (23)

|111〉|000〉 Ô2Ô3−→ |111〉|0f(1)f(1)〉. (24)

Consider the action of such a faulty oracle on the encoded state (|000〉 + |111〉)/
√

2, for
f(0) = 0 and f(1) = 1 . The resulting mapping is

1√
2

(|000〉+ |111〉)⊗ |000〉 Ô2Ô3−→ 1√
2

(|000〉|000〉+ |111〉|011〉). (25)

The syndrome check operators for the repetition code are the parity check operators
{Z1Z2, Z2Z3}. They are used to determine if an oracle call has failed by measuring the ancilla
qubits. However, the measurement collapses the state to either |000〉|000〉 or |111〉|011〉.
Upon applying the appropriate correction based on the measured syndromes, the resulting
state becomes either |000〉|000〉 or |111〉|111〉. Therefore, the logical oracle call has failed,
since the correct result must yield the superposition (|000〉|000〉+ |111〉|111〉)/

√
2.

As expected, the error correction properties of the repetition code are not in violation of
the results of Ref. [25], which state that a linear number of noisy black-box oracle calls are
required, even with the addition of error correction.
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B.3 The failure of repetition codes for our error model
Consider the oracle error model:

O(ρ) := prpÔρÔ
† + pwpEwp(ρ) + pnpEnp(ρ), (26)

where Ô is the perfect oracle call while Ewp(ρ) and Enp(ρ) are the wrong path and no-path
terms, respectively. We model the wrong path term as a convex combinations of bit-flip
channels followed by perfect oracle calls. An example of one of those terms is the second
term in Equation 20. We model the no-path term as taking any input state and mapping it
to a fixed state |g〉, which represents the loss of a qubit to be replaced by any fixed ancillary
state. It should be noted that in the no-path case, the readout ancilla state does not change.
Consider the action of the noisy channel on the five-qubit repetition code. Each instance of
the channel has a certain probability of failure given by the associated weights. Focusing on
one particular instance where the first address photon is lost and the second is affected by a
bit flip, the resulting mapping on the computational basis states is given by:

|00000〉|00000〉−→|g1000〉|0f(1)f(0)f(0)f(0)〉 (27)
|11111〉|00000〉−→|g0111〉|0f(0)f(1)f(1)f(1)〉. (28)

Again choosing f(0) = 0 and f(1) = 1, a superposition of input states in the computational
basis evolves as

1
2P [(|00000〉+ |11111〉)⊗ |00000〉]−→1

2 (P [|g1000〉 ⊗ |01000〉] + P [|g0111〉 ⊗ |00111〉]) ,
(29)

where P[•] denotes the projector onto its argument. The measurement of the stabilizers of
the 5-qubit code on the ancillary states results in the collapse of the state into one of two
terms depending on the syndrome measured. Note that the no-path term is the term that
destroys coherence, similarly to the error term in the Regev and Schiff model [25].
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Abstract
Two distinct methods for measuring topological charge in a nonabelian anyonic system have been
discussed in the literature: projective measurement of a single point-like quasiparticle and inter-
ferometric measurement of the total topological charge of a group of quasiparticles. Projective
measurement by definition is only applied near a point and will project to a topological charge
sector near that point. Thus, if it is to be applied to a group of anyons to project to a total charge,
then the anyons must first be fused one by one to obtain a single anyon carrying the collective
charge. We show that interferometric measurement is strictly stronger: Any protocol involving
projective measurement can be simulated at low overhead by another protocol involving only
interferometric measurement.

1998 ACM Subject Classification J.2 Physical Sciences and Engineering

Keywords and phrases anyons, measurement, interferometry, physics

Digital Object Identifier 10.4230/LIPIcs.TQC.2015.245

1 Introduction

We clarify a foundational issue regarding the relative power of two computational schemes
which have been long proposed for nonabelian anyons. The two are projective measurement
[8] and interferometric measurement; abstractly [11, 10, 5, 4, 1] and in a physical system, [7].

The discussion is restricted to the basic case: unitary modular tensor categories (UMTC)
[13]. This is a mathematical idealization of a (2 + 1)-dimension topological quantum field
theory (TQFT). The unitary requirement is necessary for the system to be a legitimate model
of the non-dissipative physics of the low energy states of a gapped quantum mechanical system.
The modularity assumption is a nonsingularity requirement. Abstractly this condition assures
us that the quantum system can be consistently defined on a physical torus (and this implies
all surfaces [12]) – the system is not tied to the plane. Concretely it tells us that every
topologically nontrivial excitation (or equivalently “quasiparticle” or “anyon”) of the theory
a is detected by its braiding with some other anyon b (see page 29 of [1]). For example, when
anyons a and b are mutually abelian, i.e., have a unique fusion channel c, braiding assumes
the form:

b a

OO OO
= Mb,a

b a

OO OO
, Mb,a a nontrivial phase.

Modularity implies that for each nontrivial particle a, there is a (possibly composite) b so
that not only is Mb,a 6= 1 but Mb,a 6= Mb,a′ , a′ = a, a′ an anyon of the theory. Even for
non-abelian theories, modularity implies that particles are distinguished via braiding.
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Figure 1

This distinguishability was exploited in [1, 4] to give a full analysis of anyonic interfero-
meters of Mach-Zehnder and Fabry-Perot designs. We note that much of the applied and
even experimental literature on measuring topological charge, e.g. [14], has focused on Fabry-
Perot geometries. In the low tunnelling (single pass) limit, the Fabry-Perot interferometer
determines the same evolution of the system density matrix ρ as the simpler Mach-Zehnder
interferometer. Even so, the evolution of ρ under operation of the interferometer is quite
complicated. Fortunately, and this is the main conclusion of [1, 4], there is an easy topological
interpretation of the asymptotic action of an interferometer, Inta, which has converged to a
measurement “a”, meaning the total topological charge within the interferometric loop has
been measured to be that of an anyon of type a. See Figure 1. Furthermore, convergence to
this limit is efficient – exponentially fast.

In contrast, a projective measurement Proja to particle type a is the Hermitian orthogonal
projection to that particle sector. It is visualized as occurring by bringing some external
prob, such as an STM tip, up to an isolated point-like anyon and directly detecting some,
perhaps non-universal, signature of that particular particle type in that particular system.
For example, even for an electrically neutral ψ, in ν = 5

2 fractional quantum Hall effect
(FQHE), higher moments of the electric field might provide a signature. In any case, it is
this hope which has led to the projective measurement model.

We now show that within the UMTC formalism, any protocol using projective measure-
ment can be efficiently simulated by a protocol which instead uses interferometric measure-
ment.

To do this we first need to define, through a density matrix diagram, the asymptotic
topological action of Inta. The diagrams, Figure 2b and on, have a |ket〉〈bra| aspect when
read from top to bottom. The diagrams in |ket〉〈bra| format, of course, represent operators
(density matrices), and Figure 2a represents a state vector (|ket〉). It should be noted that
such representations of operators and states obey topological rules [13] and may or may not
correspond bit by bit to a physical process.

We start with a vacuum and create a, perhaps complex, system of anyons which we divide
into two halves “inside” and “outside” the interferometer. In Figure 2 these two halves at
any given time are depicted simply as points, but they may represent composite anyons, in
dual groups, drawn out of the vacuum.
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Figure 2

Figure 3

From [1, 4], Inta asymptotically transforms from Figure 2b to Figure 3, assuming that
the measurement outcome a, indeed, has nonzero probability. In Figure 3 and below, we
drop overall nonzero scalars from the diagrams.

Notation: ωa is the ath row of the normalized S-matrix which operates as a projector
onto the a particle:

b

ωa = δa,b

b

.

The presence of ωa is expected – it projects onto the a-particle type sector. The ω0 loop
has long been regarded as an unfortunate but unavoidable consequence of running the
interferometer. ω0 encodes a kind of decoherence between inside and outside caused by the
intervening stream of prob particles b. In [4], this severing of charge lines k running from
the inside to the outside of the interferometer was called anyonic charge line decoherence.
Topologically, ω0 surgers the a-lines (Figure 3c) so that a and ā have forgotten that they
came out of the vacuum together – they are no longer correlated.

The presence of this ω0-loop leads to a general supposition in the community that Inta

and Proja were incomparable: Inta permits non-demolition measurement, as the internal
correlations within the two groups of quasiparticles, inside and outside, are not disturbed,
whereas in order to obtain a localized particle on which to apply Proja, the internal structure
of the quasiparticle group to be measured would first need to be destroyed by a series of
fusions (which produces decoherence even if the fusion outcomes are presumed not to be
observed). In contrast, Proja does not cause anyonic charge line decoherence between the
measured subsystem from its complement. Each seemed to have its own peculiar advantages
and disadvantages with respect to the preservation of quantum information.

However, we will now show that the anyonic charge line decoherence of a and ā can be
reversed (oddly, this oximoron is possible in a topological system) by additional interferometric
measurements. The key observation is that if after Inta we interferometrically measure the
collective state of ā ∪ a, there is still a nonzero probability of observing the outcome 0, the
trivial particle. This is because if the two lines in Figure 3c are recoupled, the F -symbol,
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Figure 4

F ā,a
ā,a;0,0 6= 0, reflecting the fact that a particle and its uncorrelated antiparticle may fuse into

the vacuum. (This, in fact, is the definition of an antiparticle.) Suppose we measure ā ∪ a
and observe 0, so that Int0 is applied to the system. The result is given in Figure 4.

We see that Int0 has restored us to the situation we would have been in if the ω0 loop
associated to the initial Inta had not been present. The decoherence has been reversed.

Of course it is not certain that the second measurement will result in Int0; other outcomes
Intk are also possible. But now there is an easy “ping-pong” strategy (referred to as “forced
measurement” in [3]): Bounce back and forth between measuring the initial inside – which will
always return outcome a, Inta will be applied on the odd steps of this cycle, and measuring
the entire system ā ∪ a. Each of the odd steps decoheres the inside and outside of the initial
interferometer and returns the density matrix to that shown in Figure 3c. Actually, since
on the odd steps 3, 5, 7, . . ., there is no doubt that topological charge a will be measured,
it is not necessary to read the output of the interferometer, but merely to run the probe
particles around the initial loop, thus producing anyonic charge line decoherence. Each of
these even step measurements on the entire system constitute an independent chance to
apply Int0. Because of independence, the tail event that after 2t measurements Int0 has not
been applied decays exponentially in t. The exact exponential rate is easily calculated from
the data of any particular UMTC. Since F ā,a

ā,a;0,0 = 1
da
, charge 0 is observed at each step 2t

with probability p =
(

1
da

)2
, so the exponential rate of decay in t is 2 loge

(
1− 1

d2
a

)
.

2 Conclusion and outlook

We have shown how to “projectively”1 measure the total topological charge with repeated
interferometric measurements of groups of anyons without decohering the group from its
complement. In contrast, projective measurement of anyonic charge is in the usual model [8]
limited to projecting to the topological charge of a single anyon. A priori, this looks like a
strictly weaker operation.

It should be remarked, though, that as with all issues of complexity, at this point in
history there are no “lower bounds.”

Any proof that it is impossible to simulate interferometric measurement by projective
measurement would necessarily rely on complexity assumptions. We regard this as an area
for future work.

However, evidence of the enhanced strength of interferometric measurement is presented
in a series of papers [2, 9] on universal gate systems for qubit and qutrit systems within
SU(2)4 and its Jones-Kauffman partner. Previously a universal protocol for a certain qutrit

1 We place “projectively” in quotes because unlike the usual usage in the arena of anyonic systems, this
measurement is both nonlocal and nondemolitional. It is projective in the usual quantum mechanical
sense of Hermitian orthogonal projection onto an eigenbasis, in this case the eigenbasis of total topological
charge.
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within SU(2)4 was found [6] using projective measurement but the argument appears quite
special and not applicable to qubits.

We call attention to a shortcut for graphically exploring interferometry protocols. Because
of the iterative process we have just described for eliminating the decohering ω0-loops
associated to interferometric measurement, one may proceed – in the manner of a person
writing computer code in a higher order language – only to manipulate the |ket〉 which
describes the current state of the system of anyons. The |ket〉 is used at any given time to
describe the state that has been pulled out of the vacuum. It is not necessary to double the
diagram by adding the dual bra (and the linking |ket〉〈bra| by ω0-loops). Any ω0-loop will
eventually be removed by some even numbered step of our protocol. Thus it is not really
necessary to draw the ω0-loops, or even the 〈bra|, but merely to keep track of the |ket〉. In
the end, if a density matrix ρ is desired, one may obtain ρ as the outer product of the final
|ket〉final with its dual 〈bra|final, ρ = |ket〉final〈bra|final.
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