35th IARCS Annual Conference on
Foundations of Software Technology
and Theoretical Computer Science

FSTTCS 2015, December 16-18, 2015, Bangalore, India

Edited by
Prahladh Harsha

G. Ramalingam

\\v LIPICS

LIPlcs — Vol. 45 — FSTTCS 2015 www.dagstuhl.de/lipics

Editors

Prahladh Harsha G. Ramalingam

Tata Institute of Fundamental Research Microsoft Research India
Mumbai 400005 Bangalore 560001

India India
prahladh@tifr.res.in grama@microsoft.com

ACM Classification 1998

D.2.4 Software/Program Verification, F.1.1 Models of Computation, F.1.2 Modes of Computation, F.1.3
Complexity Measures and Classes, F.2.2 Nonnumerical Algorithms and Problems, F.3.1 Specifying and
Verifying and Reasoning about Programs, F.4.1 Mathematical Logic, F.4.3 Formal Languages

ISBN 978-3-939897-97-2

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-97-2.

Publication date
December, 2015

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPlcs.FSTTCS.2015.i

ISBN 978-3-939897-97-2 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-939897-97-2
http://www.dagstuhl.de/dagpub/978-3-939897-97-2
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.i
http://www.dagstuhl.de/dagpub/978-3-939897-97-2
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

LIPlcs — Leibniz International Proceedings in Informatics

LIPlcs is a series of high-quality conference proceedings across all fields in informatics. LIPlcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (TU Miinchen)

Chris Hankin (Imperial College London)

Deepak Kapur (University of New Mexico)

Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Catuscia Palamidessi (INRIA)

Wolfgang Thomas (Chair, RWTH Aachen)

Pascal Weil (CNRS and University Bordeaux)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

FSTTCS 2015

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Preface
Conference Organization

External Reviewers

Invited Talks

Bypassing Worst Case Analysis: Tensor Decomposition and Clustering

Moses S. Charikar e

Checking Correctness of Concurrent Objects: Tractable Reductions to Reachability
Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza

Reachability Problems for Continuous Linear Dynamical Systems

James Worrell

Convexity, Bayesianism, and the Quest Towards Optimal Algorithms

Boaz Barak

Beyond Matrix Completion

Ankur Mottra

Relational Refinement Types for Higher-Order Shape Transformers

Suresh Jagannathan

Contributed Papers
Session 1A

Robust Reoptimization of Steiner Trees

Keshav Goyal and Tobias Momke,

Minimizing Weighted £,-Norm of Flow-Time in the Rejection Model

Anamitra Roy Choudhury, Syamantak Das, and Amit Kumar

On Correcting Inputs: Inverse Optimization for Online Structured Prediction

Hal Daumé III, Samir Khuller, Manish Purohit, and Gregory Sanders

Dynamic Sketching for Graph Optimization Problems with Applications to
Cut-Preserving Sketches

Sepehr Assadi, Sanjeev Khanna, Yang Li, and Val Tannen

Session 1B

Weighted Strategy Logic with Boolean Goals Over One-Counter Games

Patricia Bouyer, Patrick Gardy, and Nicolas Markey

Decidability in the Logic of Subsequences and Supersequences

Prateek Karandikar and Philippe Schnoebelen

xi

xiii

84

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).

Editors: Prahladh Harsha and G. Ramalingam

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

vi

Contents

Fragments of Fixpoint Logic on Data Words
Thomas Colcombet and Amaldev Manuel i, 98

Efficient Algorithms for Morphisms over Omega-Regular Languages
Lukas Fleischer and Manfred Kufleitnerciiiiiiiiiiiiniininiinn.. 112

Session 2A
Approximating the Regular Graphic TSP in Near Linear Time
Ashish Chiplunkar and Sundar Vishwanathanccccciiiiiiiiiiin. 125

On Weighted Bipartite Edge Coloring
Arindam Khan and Mohit Singh 136

Deciding Orthogonality in Construction-A Lattices
Karthekeyan Chandrasekaran , Venkata Gandikota, and Elena Grigorescu 151

Session 2B

Ordered Tree-Pushdown Systems
Lorenzo Clemente, Pawel Parys, Sylvain Salvati, and Igor Walukiewicz 163

One-way Definability of Sweeping Transducers
Féliz Baschenis, Olivier Gauwin, Anca Muscholl, and Gabriele Puppis 178

What’s Decidable about Availability Languages?
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Roland Meyer, and Mehdi Seyed Salehi 192

Session 3A

Towards Better Separation between Deterministic and Randomized Query Complexity
Sagnik Mukhopadhyay and Swagato Sanyal i 206

Dimension, Pseudorandomness and Extraction of Pseudorandomness
Manindra Agrawal, Diptarka Chakraborty, Debarati Das, and Satyadev Nandakumar 221

On the NP-Completeness of the Minimum Circuit Size Problem
John M. Hitchcock and A. Pavamc.oouuiiiiiiiiiiiiinininnn. 236

Counting Euler Tours in Undirected Bounded Treewidth Graphs
Nikhil Balaji, Samir Datta, and Venkatesh Ganesanccccouiionn.. 246

Session 3B

Revisiting Robustness in Priced Timed Games
Shibashis Guha, Shankara Narayanan Krishna, Lakshmi Manasa,
and Ashutosh Trivedi o e e 261

Simple Priced Timed Games are not That Simple
Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Engel Lefaucheux, and Benjamin
MONMEGE ..o 278

Contents

Quantitative Games under Failures
Thomas Brihaye, Gilles Geeraerts, Azel Haddad, Benjamin Monmege, Guillermo A.
Pérez, and Gabriel Renault 293

Games with Delays — A Frankenstein Approach
Dietmar Berwanger and Marie van den Bogaard oo 307

Session 4A
Forbidden Extension Queries
Sudip Biswas, Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan 320

On Density, Threshold and Emptiness Queries for Intervals in the Streaming Model
Arijit Bishnu, Amit Chakrabarti, Subhas C. Nandy, and Sandeep Sen 336

Clustering on Sliding Windows in Polylogarithmic Space
Viadimir Braverman, Harry Lang, Keith Levin, and Morteza Monemizadeh 350

Session 4B

Congestion Games with Multisets of Resources and Applications in Synthesis
Guy Avni, Orna Kupferman, and Tami Tamir o ... 365

The Sensing Cost of Monitoring and Synthesis
Shaull Almagor, Denis Kuperberg, and Orna Kupferman 380

An w-Algebra for Real-Time Energy Problems
David Cachera, Uli Fahrenberg, and Azel Legayc.cooiiiiiiiiiiniiiin... 394

Session 5A

Parameterized Complexity of Secluded Connectivity Problems
Fedor V. Fomin, Petr A. Golovach, Nikolay Karpov, and Alexander S. Kulikov ... 408

Parameterized Algorithms for Deletion to (r, £)-Graphs
Sudeshna Kolay and Fahad Panolan i, 420

Finding Even Subgraphs Even Faster
Prachi Goyal, Pranabendu Misra, Fahad Panolan, Geevarghese Philip, and Saket Saurabh
434

The Parameterized Complexity of the
Minimum Shared Edges Problem
Till Fluschnik, Stefan Kratsch, Rolf Niedermeier, and Manuel Sorge 448

Session 5B
Control Improvisation
Daniel J. Fremont, Alexandre Donzé, Sanjit A. Seshia, and David Wessel 463

A Provably Correct Sampler for Probabilistic Programs
Chung-Kil Hur, Aditya V. Nori, Sriram K. Rajamani, and Selva Samuel 475

vii

FSTTCS 2015

viii

Contents

On the Problem of Computing the Probability of Regular Sets of Trees
Henryk Michalewski and Matteo Mio ... 489

Probabilistic Regular Expressions and MSO Logic on Finite Trees
Thomas Weidner ettt 503

Session 6A

Rumors Across Radio, Wireless, and Telephone
Jennifer Iglesias, Rajmohan Rajaraman, R. Ravi, and Ravi Sundaram 517

The Price of Local Power Control in Wireless Scheduling
Magnis M. Halldorsson and Tigran Tonoyanc.ccciiiiiiiiinioan.. 529

Allocation of Divisible Goods Under Lexicographic Preferences
Leonard J. Schulman and Vijay V. Vazirani o iiiiiiiiiiiiii... 543

Session 6B

On the Expressiveness of Multiparty Sessions
Romain Demangeon and Nobuko Yoshida o ... 560

Secure Refinements of Communication Channels
Vincent Cheval, Véronique Cortier, and Eric le Morvan 575

Failure-aware Runtime Verification of Distributed Systems
David Basin, Felix Klaedtke, and Eugen Zalinescuc.cccuviiiiiiian... 590

Preface

The 35th TARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2015), organized annually by the Indian Association for Research
in Computing Science (IARCS), was held at the Indian Institute of Science, Bangalore, from
December 16 to December 18, 2015.

The program consisted of 6 invited talks and 42 contributed papers. This proceedings
volume contains the contributed papers and abstracts of invited talks presented at the
conference. The proceedings of FSTTCS 2015 is published as a volume in the LIPIcs series
under a Creative Commons license, with free online access to all, and with authors retaining
rights over their contributions.

The 42 contributed papers were selected from a total of 117 submissions. We thank the
program committee for its efforts in carefully evaluating and making these selections. We
thank all those who submitted their papers to FSTTCS 2015. We also thank the external
reviewers for sending their informative and timely reviews.

We are particularly grateful to the invited speakers: Boaz Barak (Harvard University
& Microsoft Research), Ahmed Bouajjani (LIAFA, CNRS & Univ. Paris Diderot), Moses
Charikar (Stanford University), Suresh Jagannathan (Purdue University), Ankur Moitra
(MIT), and James Worrell (University of Oxford) who readily accepted our invitation to
speak at the conference.

There were two pre-conference workshops, Clustering Theory and Practice (CTAP) and
the 17th International Workshop on Verification of Infinite State Systems (INFINITY 2015)
and two post-conference workshops, Algorithmic Verification of Real-Time Systems (AVeRTS)
and Applications of Fourier Analysis to Theoretical Computer Science (FOURIER). We
thank Arnab Bhattacharyya (IISc Bangalore), Aiswarya Cyriac (Uppsala University), Amit
Deshpande (Microsoft Research), Frédéric Herbreteau (Univ. Bordeaux, LaBRI), Ravishankar
Krishnaswamy (Microsoft Research), M. Praveen (Chennai Mathematical Institute), and
Krishna S. (IIT Bombay) for organizing these workshops.

On the administrative side, we thank the organizing committee led by Prof. Aditya
Kanade (IISc Bangalore) and Prof. Deepak D’Souza (IISc Bangalore), who put in many
months of effort in ensuring excellent conference and workshop arrangements at the Indian
Institute of Science.

We would also like to thank Madhavan Mukund, Venkatesh Raman, and S. P. Suresh for
promptly responding to our numerous questions and requests relating to the organization
of the conference. We also thank the Easychair team whose software has made it very
convenient to do many conference related tasks. Finally, we thank the Dagstuhl LIPIcs staff
for their coordination in the production of this proceedings, particularly Marc Herbstritt
who was very prompt and helpful in answering our questions.

Prahladh Harsha and G. Ramalingam
December 2015

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Conference Organization

Programme Chairs

Prahladh Harsha (TIFR)
G. Ramalingam (Microsoft Research)

Programme Committee

Andrej Bogdanov (The Chinese University of Hong Kong)
Amit Deshpande (Microsoft Research)

Fedor Fomin (Univ. Bergen)

Naveen Garg (IIT Delhi)

Sariel Har-Peled (Univ. Illinois, Urbana-Champaign)
Nutan Limaye (IIT Bombay)

Meena Mahajan (IMSc)

Ruta Mehta (Georgia Tech.)

Alantha Newman (CNRS-Univ. Grenoble Alpes & G-SCOP)
Debmalya Panigrahi (Duke University)

Prasad Raghavendra (Univ. California, Berkeley)
Ramprasad Saptharishi (Tel Aviv University)
Pranab Sen (TIFR)

Suresh Venkatasubramanian (Univ. Utah)

Magnus Wahlstrom (Royal Holloway, Univ. London)
S. Akshay (IIT Bombay)

Parosh Abdulla (Uppsala University)

Erika Abraham (RWTH Aachen University)

Franck Cassez (Macquarie University)

Avik Chaudhuri (Facebook)

Thomas Colcombet (LIAFA, CNRS & Univ. Paris Diderot)
Stephanie Delaune (LSV, CNRS & ENS Cachan)
Javier Esparza (TU Munich)

Ashutosh Gupta (TIFR)

Ranjit Jhala (Univ. California, San Diego)

Roland Meyer (Univ. Kaiserslautern)

V. Krishna Nandivada (IIT Madras)

R. Ramanujam (IMSc)

Sriram Sankaranarayanan (Univ. Colorado Boulder)
Nishant Sinha (IBM Research)

S. P. Suresh (Chennai Mathematical Institute)

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

xii Conference Organization

Organizing Committee

Deepak D’Souza (IISc Bangalore), co-chair
Rahul Gupta (IISc Bangalore)

Inzemamul Haque (IISc Bangalore)

Sabuj Kumar Jena (IISc Bangalore)
Shalini Kaleeswaran (IISc Bangalore)
Aditya Kanade (IISc Bangalore), co-chair
Pallavi Maiya (IISc Bangalore)

Suvam Mukherjee (IISc Bangalore)
Anirudh Santhiar (IISc Bangalore)

Conference Organization

External Reviewers

Adsul, Bharat
Aiswarya, C.
Batmalle, Hadrien
Bhattachar, Sayan
Brenguier, Romain
Broadbent, Christopher
Cadilhac, Michagl
Chakarov, Aleksandar
Chini, Peter
Chistikov, Dmitry
Cormode, Graham
Curticapean, Radu
D’Souza, Deepak
Elberfeld, Michael
Forbes, Michael A.
Fox, Kyle

Freeman, Rupert
Gairing, Martin

Ge, Rong

Gibson, Matt

Gujar, Sujit

Gyori, Benjamin
Hague, Matthew
Hoffmann, Philipp
Holik, Lukas

Im, Sungjin

Jones, Mark
Karmarkar, Hrishikesh
Kell, Nathaniel
Kretinsky, Jan
Kufleitner, Manfred
Kulkarni, Janardhan
Kupferman, Orna
Lengal, Ondrej
Lodaya, Kamal
Luttenberger, Michael
Mayr, Richard
Mckenzie, Pierre
Misra, Neeldhara
Mogavero, Fabio
Monmege, Benjamin
Mukund, Madhavan
Muskalla, Sebastian

Natarajan, Raja

xiii

Aggarwal, Divesh
Ambainis, Andris
Bhaskar, Umang
Brazdil, Tomas
Brihaye, Thomas
Brotherston, James
Castro, Pablo
Chakraborty, Souymodip
Chiplunkar, Ashish
Chitnis, Rajesh
Cryan, Mary
D’Osualdo, Emanuele
Delzanno, Giorgio
Escoffier, Bruno
Forejt, Vojtech
Francis, Mathew
Furbach, Florian
Gaspers, Serge

Ghica, Dan

Golovach, Petr
Gupta, Manoj
Hofner, Peter

Haney, Samuel
Hofmann, Martin
Horn, Florian

Jain, Rahul
Karandikar, Prateek
Kayal, Neeraj
Kratsch, Stefan
Krishnaswamy, Ravishankar
Kuich, Werner
Kumar, Mrinal
Lagerkvist, Victor
Lin, Anthony Widjaja
Lohrey, Markus
Manuel, Amaldev
McGregor, Andrew
Mellies, Paul-André
Mnich, Matthias
Mohammad, Meesum Syed
Mukhopadhyay, Partha
Muscholl, Anca
Nasre, Meghana
Nimbhorkar, Prajakta

FSTTCS 2015

Conference Organization

Norman, Gethin
Otop, Jan

Panolan, Fahad
Park, Sungwoo
Paul, Soumya
Phawade, Ramchandra
Pilipczuk, Micha
Raman, Venkatesh
Roy, Sambuddha
Sabharwal, Yogish
Satti, Srinivasa Rao
Saurabh, Saket
Schmitz, Sylvain
Shah, Simoni
Soltys, Karolina
Sreejith, A V
Srivathsan, B
Sundararajan, Vaishnavi
Vishnoi, Nisheeth
Wilde, Mark
Yazdanbod, Sadra

Nyman, Ulrik
Panageas, loannis
Paperman, Charles
Parrow, Joachim
Pavan, A
Pilipczuk, Marcin
Praveen, M.

Reidl, Felix

S., Krishna
Sanchez, Cesar
Saurabh, Nitin
Schewe, Sven

Seth, Anil

Simon, Sunil Easaw
Sproston, Jeremy
Srinivasan, Srikanth
Streicher, Thomas
Swamy, Chaitanya
Weidner, Thomas
Wojtczak, Dominik
Zetzsche, Georg

Bypassing Worst Case Analysis: Tensor
Decomposition and Clustering

Moses S. Charikar

Computer Science Department, Stanford University
Stanford, CA, USA
moses@cs.stanford.edu

—— Abstract

Typical worst case analysis of algorithms has led to a rich theory, but suffers from many pitfalls.
This has inspired several approaches to bypass worst case analysis. In this talk, I will describe

two vignettes from recent work in this realm.

In the first part of the talk, I will discuss tensor decomposition — a natural higher dimensional
analog of matrix decomposition. Low rank tensor decompositions have proved to be a powerful
tool for learning generative models, and uniqueness results give them a significant advantage over
matrix decomposition methods. Yet, they pose significant challenges for algorithm design as most
problems about tensors are NP-hard. I will discuss a smoothed analysis framework for analyzing
algorithms for tensor decomposition which models realistic instances of learning problems and
allows us to overcome many of the usual limitations of using tensor methods.

In the second part of the talk, I will explore the phenomenon of convex relaxations returning
integer solutions. Clearly this is not true in the worst case. I will discuss instances of discrete
optimization problems where, for a suitable distribution on inputs, LP and SDP relaxations
produce integer solutions with high probability. This has been studied in the context of LP
decoding, sparse recovery, stochastic block models and so on. I will mention some recent results
for clustering problems: when points are drawn from a distribution over k sufficiently separated
clusters, the well known k-median relaxation and a (not so well known) SDP relaxation for
k-means exactly recover the clusters.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity
Keywords and phrases tensor decomposition, smoothed analysis, convex relaxations, integrality
Digital Object Identifier 10.4230/LIPIcs. FSTTCS.2015.1

Category Invited Talk

© Moses S. Charikar;
37 licensed under Creative Commons License CC-BY

35th TARCS Annual Conf. Foundations of Software Technology Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 1-1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Checking Correctness of Concurrent Objects:
Tractable Reductions to Reachability

Ahmed Bouajjani!, Michael Emmi?, Constantin Enea3, and
Jad Hamza3

1 Université Paris Diderot and Institut Universitaire de France, Paris, France
abou@liafa.univ-paris-diderot.fr

2 IMDEA Software Institute, Madrid, Spain
michael.emmi@imdea.org

3 Université Paris Diderot, Paris, France
{cenea, jad.hamza}@liafa.univ-paris-diderot.fr

—— Abstract

Efficient implementations of concurrent objects such as semaphores, locks, and atomic collec-
tions including stacks and queues are vital to modern computer systems. Programming them is
however error prone. To minimize synchronization overhead between concurrent object-method
invocations, implementors avoid blocking operations like lock acquisition, allowing methods to
execute concurrently. However, concurrency risks unintended inter-operation interference. Their
correctness is captured by observational refinement which ensures conformance to atomic refer-
ence implementations. Formally, given two libraries L; and Lo implementing the methods of
some concurrent object, we say Lj refines Lo if and only if every computation of every program
using L; would also be possible were Lo used instead.

Linearizability [11], being an equivalent property [8, 5], is the predominant proof technique
for establishing observational refinement: one shows that each concurrent execution has a linear-
ization which is a valid sequential execution according to a specification, given by an abstract
data type or atomic reference implementation.

However, checking linearizability is intrinsically hard. Indeed, even in the case where method
implementations are finite-state and object specifications are also finite-state, and when a fixed
number of threads (invoking methods in parallel) is considered, the linearizability problem is
EXPSPACE-complete [9], and it becomes undecidable when the number of threads is unboun-
ded [3]. These results show in particular that there is a complexity/decidability gap between
the problem of checking linearizability and the problem of checking reachability (i.e., the dual
of checking safety/invariance properties), the latter being, PSPACE-complete and EXPSPACE-
complete in the above considered cases, respectively.

We address here the issue of investigating cases where tractable reductions of the observational
refinement/linearizability problem to the reachability problem, or dually to invariant checking,
are possible. Our aim is (1) to develop algorithmic approaches that avoid a systematic exploration
of all possible linearizations of all computations, (2) to exploit existing techniques and tools for
efficient invariant checking to check observational refinement, and (3) to establish decidability
and complexity results for significant classes of concurrent objects and data structures.

We present two approaches that we have proposed recently. The first approach [5] introduces
a parameterized approximation schema for detecting observational refinement violations. This
approach exploits a fundamental property of shared-memory library executions: their histories
are interval orders, a special case of partial orders which admit canonical representations in
which each operation o is mapped to a positive-integer-bounded interval I(0). Interval orders are
equipped with a natural notion of length, which corresponds to the smallest integer constant for
which an interval mapping exists. Then, we define a notion of bounded-interval-length analysis,
and demonstrate its efficiency, in terms of complexity, coverage, and scalability, for detecting
observational refinement bugs.

1@.) Ahmed Bouajjani,.Michael Emmi,.Constantin Enea, and Jad Hamza;

5v icensed under Creative Commons License CC-BY
35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 2-4

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Bouajjani, M. Emmi, C. Enea, and J. Hamza

The second approach [4] focuses on a specific class of abstract data types, including common
concurrent objects and data structures such as stacks and queues. We show that for this class of
objects, the linearizability problem is actually as hard as the control-state reachability problem.
Indeed, we prove that in this case, the existence of linearizability violations (i.e., finite compu-
tations that are not linearizable), can be captured completely by a finite number of finite-state
automata, even when an unbounded number of parallel operations is allowed (assuming that
libraries are data-independent).

Related work. Several semi-automated approaches for proving linearizability, and thus obser-
vational refinement, have relied on annotating operation bodies with linearization points [2, 12,
13, 15, 16], to reduce the otherwise-exponential space of possible history linearizations to one
single linearization. These methods often rely on programmer annotation, and do not admit
conclusive evidence of a violation in the case of a failed proof.

Existing automated methods for proving linearizability of an atomic object implementation
are also based on reductions to safety verification [1, 10, 15]. Abdulla et al. [1] is and Vafei-
adis [15] consider implementations where operation’s linearization points are fixed to particular
source-code locations. Such approaches are incomplete since not all implementations have fixed
linearization points (see for instance [7]). Aspect-oriented proofs [10] reduce linearizability to
the verification of four simpler safety properties. However, this approach has only been applied
to queues, and has not produced a fully automated and complete proof technique. Dodds et
al. [7] prove linearizability of stack implementations with an automated proof assistant. Their
approach does not lead to full automation however, e.g., by reduction to safety verification.

Automated approaches for detecting linearizability violations such as Line-Up [6] enumerate
the exponentially-many possible history linearizations. This exponential cost effectively limits
such approaches to executions with few operations. Colt [14]’s approach mitigates this cost
with programmer-annotated linearization points, as in the previously-mentioned approaches, and
ultimately suffers from the same problem: a failed proof only indicates incorrect annotation.

1998 ACM Subject Classification D.2.4 Software/Program Verification, D.2.5 Testing and De-
bugging

Keywords and phrases Concurrent objects, Linearizability, Verification, Bug detection

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.2

Category Invited Talk

—— References

1 Parosh Aziz Abdulla, Frédéric Haziza, Lukas Holik, Bengt Jonsson, and Ahmed Rezine.
An integrated specification and verification technique for highly concurrent data structures.
In TACAS, pages 324-338, 2013.

2 Daphna Amit, Noam Rinetzky, Thomas W. Reps, Mooly Sagiv, and Eran Yahav. Com-
parison under abstraction for verifying linearizability. In CAV’07, volume 4590 of LNCS,
pages 477-490, 2007.

3 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza. Verifying concurrent
programs against sequential specifications. In ESOP’13. Springer, 2013.

4 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza. On reducing linear-
izability to state reachability. In Automata, Languages, and Programming — 42nd Inter-
national Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II,
volume 9135 of Lecture Notes in Computer Science, pages 95—107. Springer, 2015.

FSTTCS 2015

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.2

4

Checking Correctness of Libraries of Concurrent Objects

10

11

12

13

14

15

16

Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza. Tractable refinement
checking for concurrent objects. In POPL’15. ACM, 2015.

Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan. Line-Up: a com-
plete and automatic linearizability checker. In PLDI’10, pages 330-340. ACM, 2010.

Mike Dodds, Andreas Haas, and Christoph M. Kirsch. A scalable, correct time-stamped
stack. In POPL’15. ACM, 2015.

Ivana Filipovic, Peter W. O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstraction for
concurrent objects. Theor. Comput. Sci., 411(51-52):4379-4398, 2010.

Jad Hamza. On the complexity of linearizability. In 3rd Intern. Conf. on Networked
Systems, NETYS’15, Agadir, Morocco, volume 9466 of Lecture Notes in Computer Science.
Springer, 2015.

Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis. Aspect-oriented linearizability
proofs. In CONCUR, pages 242-256, 2013.

Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463-492, 1990.

Yang Liu, Wei Chen, Yanhong A. Liu, and Jun Sun. Model checking linearizability via
refinement. In FM’09, volume 5850 of LNCS, pages 321-337, 2009.

Peter W. O’Hearn, Noam Rinetzky, Martin T. Vechev, Eran Yahav, and Greta Yorsh.
Verifying linearizability with hindsight. In PODC’10, pages 85-94. ACM, 2010.

Ohad Shacham, Nathan Grasso Bronson, Alex Aiken, Mooly Sagiv, Martin T. Vechev, and
Eran Yahav. Testing atomicity of composed concurrent operations. In OOPSLA’11, pages
51-64. ACM, 2011.

Viktor Vafeiadis. Automatically proving linearizability. In CAV’10, volume 6174 of LNCS,
pages 450-464, 2010.

Shao Jie Zhang. Scalable automatic linearizability checking. In ICSE’11, pages 1185-1187.
ACM, 2011.

Reachability Problems for Continuous Linear
Dynamical Systems*

James Worrell
Department of Computer Science, University of Oxford

Parks Road, Oxford OX1 3QD, UK
james.worrell@cs.ox.ac.uk

—— Abstract

This talk is about reachability problems for continuous-time linear dynamical systems. A central
decision problem in this area is the Continuous Skolem Problem [1], which asks to determine the
existence of a zero of a real-valued function f satisfying an ordinary linear differential equation

FY tan f"V 4 tagf =0

with coefficients ag, ...,a,_1 € Q and initial conditions f(0),..., f*~1(0) € Q. An alternative
formulation of the problem asks whether the solution z(t) € R™ of a given differential equation
2/ = Az + b, with A a rational n x n matrix and b a rational n-dimensional vector, reaches a
given halfspace.

The nomenclature Continuous Skolem Problem arises by analogy with the Skolem Problem
for linear recurrence sequences [4]. The latter problem asks whether a sequence of integers
satisfying a given linear recurrence has a zero term. Decidability is open for both the discrete
and continuous versions of the Skolem Problem.

We show that the Continuous Skolem Problem lies at the heart of many natural computational
problems on linear dynamical systems, such as reachability in continuous-time Markov chains
and linear hybrid automata. We describe some recent work, done in collaboration with Chonev
and Ouaknine [2, 3], that uses results in transcendence theory and real algebraic geometry to
obtain decidability for certain variants of the problem. In particular, we consider a bounded
version of the Continuous Skolem Problem, corresponding to time-bounded reachability. We
prove decidability of the bounded problem assuming Schanuel’s conjecture, a central conjecture
in transcendence theory. We also describe some partial decidability results in the unbounded
case in the case of functions f satisfying differential equations of fixed low order.

Finally, we give evidence of significant mathematical obstacles to proving decidability of the
Continuous Skolem Problem in full generality by exhibiting some number-theoretic consequences
of the existence of a decision procedure for this problem.

1998 ACM Subject Classification G.1.7 Ordinary Differential Equations

Keywords and phrases Linear Differential Equations, Continuous-Time Markov Chains, Hybrid
Automata, Schanuel’s Conjecture

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.5

Category Invited Talk

* This work was partially supported by the EPSRC.

© James Worrell;
37 licensed under Creative Commons License CC-BY

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 56

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Reachability Problems for Continuous Linear Dynamical Systems

—— References

1 Paul C. Bell, Jean-Charles Delvenne, Raphaél M. Jungers, and Vincent D. Blondel. The
Continuous Skolem-Pisot Problem. Theoretical Computer Science, 411(40-42):3625-3634,
2010.

2 Ventsislav Chonev, Joél Ouaknine, and James Worrell. On the decidability of the Bounded
Continuous Skolem Problem. CoRR, abs/1506.00695, 2015.

3 Ventsislav Chonev, Joél Ouaknine, and James Worrell. On the decidability of the continuous
infinite zeros problem. CoRR, abs/1507.03632, 2015.

4 V. Halava, T. Harju, M. Hirvensalo, and J. Karhumaéki. Skolem’s Problem — on the border
between decidability and undecidability. Technical Report 683, Turku Centre for Computer
Science, 2005.

Convexity, Bayesianism, and the Quest Towards
Optimal Algorithms
Boaz Barak

Harvard SEAS, Cambridge, M A, US, and Microsoft Research, Cambridge, MA, US
info@boazbarak.org

—— Abstract

In this high level and accessible talk I will describe a recent line of works aimed at trying to

understand the intrinsic complexity of computational problems by finding optimal algorithms
for large classes of such problems. In particular, I will talk about efforts centered on convex
programming as a source for such candidate algorithms. As we will see, a byproduct of this effort
is a computational analog of Bayesian probability that is of its own interest.

I will demonstrate the approach using the example of the planted clique (also known as hidden
clique) problem — a central problem in average case complexity with connections to machine
learning, community detection, compressed sensing, finding Nash equilibrium and more. While
the complexity of the planted clique problem is still wide open, this line of works has led to
interesting insights on it.

1998 ACM Subject Classification F. Theory of Computation

Keywords and phrases Convex programming, Bayesian probability, Average-case complexity,
Planted clique

Digital Object ldentifier 10.4230/LIPIcs. FSTTCS.2015.7

Category Invited Talk

© Boaz Barak;
37 licensed under Creative Commons License CC-BY

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 7-7

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Beyond Matrix Completion

Ankur Moitra
Department of Mathematics, MIT

Cambridge, MA, USA
moitra@mit.edu

—— Abstract

In this talk, we study some of the statistical and algorithmic problems that arise in recommenda-
tion systems. We will be interested in what happens when we move beyond the matrix setting, to
work with higher order objects — namely, tensors. To what extent does inference over more com-
plex objects yield better predictions, but at the expense of the running time? We will explore the
computational vs. statistical tradeoffs for some basic problems about recovering approximately
low rank tensors from few observations, and will show that our algorithms are nearly optimal
among all polynomial time algorithms, under natural complexity-theoretic assumptions.

This is based on joint work with Boaz Barak.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity
Keywords and phrases matrix completion, recommendation systems, tensor prediction
Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.8

Category Invited Talk

© Ankur Moitra;
Bv licensed under Creative Commons License CC-BY

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 88

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Relational Refinement Types for Higher-Order
Shape Transformers
Suresh Jagannathan

Department of Computer Science, Purdue University, IN, US
suresh@cs.purdue.edu

—— Abstract

Understanding, discovering, and proving useful properties of sophisticated data structures are
central problems in program verification. A particularly challenging exercise for shape analyses
involves reasoning about sophisticated shape transformers that preserve the shape of a data
structure (e.g., the data structure skeleton is always maintained as a balanced tree) or the
relationship among values contained therein (e.g., the in-order relation of the elements of a tree
or the parent-child relation of the elements of a heap) across program transformations.

In this talk, we consider the specification and verification of such transformers for ML pro-
grams. The structural properties preserved by transformers can often be naturally expressed
as inductively-defined relations over the recursive structure evident in the definitions of the
datatypes they manipulate. By carefully augmenting a refinement type system with support
for reasoning about structural relations over algebraic datatypes, we realize an expressive yet
decidable specification language, capable of capturing useful structural invariants, which can
nonetheless be automatically verified using off-the-shelf type checkers and theorem provers. No-
tably, our technique generalizes to definitions of parametric relations for polymorphic data types
which, in turn, lead to highly composable specifications over higher-order polymorphic shape
transformers.

1998 ACM Subject Classification D.2.4 Software/Program Verification-Correctness proofs, For-
mal Methods, D.3.2 Applicative (Functional) Languages, F.3.1 Specifying and Verifying and
Reasoning about Programs

Keywords and phrases Relational Specifications; Inductive and Parametric Relations; Refine-
ment Types, Shape Analysis, Data Structure Verification

Digital Object ldentifier 10.4230/LIPIcs. FSTTCS.2015.9

Category Invited Talk

© Suresh Jagannathan;
37 licensed under Creative Commons License CC-BY

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 9-9

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Robust Reoptimization of Steiner Trees*

Keshav Goyal' and Tobias Mémke?

1 IIT Delhi, India, mt5100599@maths.iitd.ac.in
2 Saarland University, Germany, moemke@cs.uni-saarland.de

——— Abstract

In reoptimization problems, one is given an optimal solution to a problem instance and a local
modification of the instance. The goal is to obtain a solution for the modified instance. The
additional information about the instance provided by the given solution plays a central role: we
aim to use that information in order to obtain better solutions than we are able to compute from
scratch.

In this paper, we consider Steiner tree reoptimization and address the optimality requirement
of the provided solution. Instead of assuming that we are provided an optimal solution, we relax
the assumption to the more realistic scenario where we are given an approximate solution with
an upper bound on its performance guarantee.

We show that for Steiner tree reoptimization there is a clear separation between local modi-
fications where optimality is crucial for obtaining improved approximations and those instances
where approximate solutions are acceptable starting points. For some of the local modifications
that have been considered in previous research, we show that for every fixed ¢ > 0, approx-
imating the reoptimization problem with respect to a given (1 + €)-approximation is as hard
as approximating the Steiner tree problem itself (whereas with a given optimal solution to the
original problem it is known that one can obtain considerably improved results). Furthermore,
we provide a new algorithmic technique that, with some further insights, allows us to obtain
improved performance guarantees for Steiner tree reoptimization with respect to all remaining
local modifications that have been considered in the literature: a required node of degree more
than one becomes a Steiner node; a Steiner node becomes a required node; the cost of one edge
is increased.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases reoptimization, approximation algorithms, Steiner tree problem, robust-
ness

Digital Object Identifier 10.4230/LIPIcs. FSTTCS.2015.10

1 Introduction

The Steiner tree problem (STP) is one of the most studied problems in the area of network
design. We are given a graph G with nodes V(G), edges E(G), and a cost function
c: E(G) = Rxq, as well as a set R C V(G) of required nodes (also called regular nodes or
terminals). The objective is to find a minimum cost tree 7" within G such that R C V(7).
The Steiner tree problem is known to be APX-hard [8], and the currently best approximation
algorithm has a performance guarantee of In4 + e ~ 1.387 [24].

* Research partially funded by Deutsche Forschungsgemeinschaft grant BL511/10-1 and by the Indo-
German Max Planck Center for Computer Science (IMPECS).

© Keshav Goyal and Tobias Mémke;

oY licensed under Creative Commons License CC-BY
35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 10-24

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

K. Goyal and T. Momke

We consider the Steiner tree problem with respect to reoptimization, a framework for
dynamic algorithms in the context of NP-hard problems. We are given two related instances
I and I’ of an algorithmic problem together with a solution SOL to the instance I, and our
goal is to compute a solution to I’. The relation between I and I’ is determined by an
operation that we call local modification.

The concept of reoptimization is motivated by the observation that instead of computing
new solutions from scratch, oftentimes we can reuse the effort spent to solve problems similar
to the one at hand. For instance, let us consider a large circuit where certain components
have to be connected. The components are the required nodes and there are points that
may be used by several connections, the Steiner nodes. Now suppose that a long and costly
computation has led to an almost optimal solution. Afterwards the requirements change:
either an additional component has to be placed to a point that previously was a Steiner
node or a component is removed, which turns a required node into a Steiner node. In such a
situation it would seem wasteful to discard the entire previous effort.

Classically, when considering reoptimization problems one assumes that SOL is an optimal
solution. The reason for this assumption is that assuming optimality considerably reduces the
formal overhead and therefore facilitates to concentrate on the main underlying properties of
the reoptimization problem. We show, however, that assuming optimality is not without
loss of generality. Let us assume that ¢(SoL) is a (1 + €) factor larger than the cost of an
optimal solution. Then we say that a Steiner tree reoptimization algorithm is robust, if it
is an approximation algorithm and its performance guarantee is « - (1 4+ O(e)), where « is
its performance guarantee when ¢ = 0. Intuitive, this definition ensures that for ¢ — 0, the

performance guarantee converges smoothly towards «, independent of the given instance.

We consider robustness of reoptimization algorithms to be a crucial feature, since in real

world applications close to optimal solutions are much more frequent than optimal solutions.

We address all local modifications that have previously been considered for Steiner tree

reoptimization. We classify these modifications into two groups, according to their robustness.

The first group contains those problems where obtaining a robust reoptimization algorithm
implies to provide an approximation algorithm for the (non-reoptimization) Steiner tree
problem with matching performance guarantee. The second group of problems allows for
improved robust reoptimization algorithms compared to STP approximation algorithms.

For all reoptimization problems of the second group that have previously been considered
(and that are known to be NP-hard [15]), we provide robust reoptimization algorithms that,
for € — 0, obtain better performance guarantees than the previous results with optimality
assumption [12, 13].

1.1 Local Modifications and Our Contribution

There are ten local modifications that previously have been considered for the Steiner tree
problem. The two most studied modifications address the set of required nodes: we either

declare a required node to be a Steiner node, or a Steiner node to be a required node.

Here, STPT~ resp. STPT* denote the corresponding reoptimization problems. We show, in
Section 4, that finding a robust reoptimization algorithm for STP?~ is as hard as finding a
Steiner tree approximation algorithm with matching approximation ratio. If one, however,
excludes that the node ¢ declared to be a Steiner node is a leaf in the given instance, we
provide a robust reoptimization algorithm with improved performance ratio (see Table 1 for
an overview of the achieved improvements). We show that in contrast to STP®~ STPH+
always allows for improved robust reoptimization algorithms. The next interesting type of
local modification is to modify the cost of a single edge. We do not require the cost function

11

FSTTCS 2015

12

Robust Reoptimization of Steiner Trees

to be metric. In particular, in the shortest path metric induced by the modified edge cost,
the cost of several edges may be changed. We call the modification where the cost of one
edge is increased STPE™, and the converse local modification where the cost of one edge is
decreased is STPF~. We provide an improved robust reoptimization algorithm for STP¥*
and show that robust reoptimization for STPZ~ is as hard as approximating the Steiner
tree problem itself (analogous to general STPR_). The two local modifications to remove an
edge from the graph and to add an edge to the graph reduce to STPP™ resp. STPY~ in a
straightforward manner.

The remaining four local modifications are the removal or addition of a required node or
a Steiner node. It is known that the local modification where required or Steiner nodes are
removed is as hard as Steiner tree approximation, even if we are given an optimal solution to
the old problem [15]. We show that adding a required node or a Steiner node to the graph
causes robust reoptimization to be as hard as STP approximation.

One of the key insights that leads to our improved algorithms is that for all local
modifications that allow for robust reoptimization algorithms, we can replace the given
Steiner tree by a k-restricted Steiner tree of roughly the same cost. At the same time, we
have the promise that there is an almost optimal Steiner tree for the modified instance that
is k-restricted. This property allows us to handle certain subgraphs of Steiner trees called full
components. (i) We remove entire full components from the given Steiner tree and perform
optimal computations to obtain a feasible solutions to the modified instance, and (ii) we
guess entire full components of the Steiner tree that we aim to compute. The new insights
simplify and generalize the previous approaches to Steiner tree reoptimization and therefore
give raise to more sophisticated analyses than before.!

Due to space constraints, we restrict the presentation to analyzing STP®~ and STPF*
as these local modification give the best overview of the used techniques and ideas.

)

1.2 Related Work

The concept of reoptimization was first mentioned by Schiffter [29] in the context of
postoptimality analysis for a scheduling problem. Since then, the concept of reoptimization
has been investigated for several different problems, including the traveling salesman problem
[1, 5, 14, 18, 7, 28], the rural postman problem [3], fast reoptimization of the spanning
tree problem [23], the knapsack problem [2], covering problems [11], the shortest common
superstring problem [10], maximum weight induced heredity problems [21], and scheduling
[29, 6, 20]. There are several overviews on reoptimization [4, 22, 17, 31].

The Steiner tree reoptimization problem in general weighted graphs was previously
investigated in [9, 26, 16, 15, 12, 13], see Table 1.

2 Preliminaries

We denote a Steiner tree instance by (G, R, ¢), where G is an undirected graph, R C V(G)
is the set of required nodes, and c¢: E(G) — Rx¢ is a cost function. The Steiner nodes of
(G, R, c) are the nodes S = V(G) \ R.

Since c¢ is symmetric, we sometimes use the simplified notation ¢(u,v) = ¢(v,u) instead

of c({u,v}).

1 We note that with some additional effort, it would also be possible to adapt the technique of Bild and
Zych [13] and use them for our results.

K. Goyal and T. Momke

Table 1 Comparison of approximation ratios of the Steiner Tree Reoptimization problem for the
different types of local modifications. To increase the readability, all values ¢, d in the approximation
ratios are omitted. The numerical values are rounded up at the third digit and we assume 5 = 1.387,
the approximation ratio In(4) + € of the Steiner tree approximation algorithm of Byrka et al. [24]
with small enough e.

Local Modification Our Results Previous Results
Sol: (1 + €)-Approx. Sol: Optimal Solution
Expression | Value Expression Value
STP®~ (internal node) s 1.204 2= [13] 1.219
STP®~ (leaf node) not robust 1.204 gg:f [13] 1.219
ife=0
R 108—7 36-2
STPH* e 1.204 =2 2] 1.219
E 76—4 26—1
STP®* = 1.256 £ 13] 1.29
STP®~ not robust 1.387 =g 1.246
assuming metricity
Add Node not robust 1.387 without [24]: 1.5 [26] 1.387
Remove Node not robust 1.387 As hard as STP approx. [15] | 1.387

For two graphs G, G’, we define G U G’ to be the graph with node set V(G) U V(G’) and
edge set F(G) U E(G’) (i.e., we do not keep multiple edges). For an edge e, G — e is G with
e removed from F(G). We define G — G’ to be the graph with node set V(G) \ (V(G') N S)
and edge set E(G) \ E(G"). We emphasize that we do not remove required vertices.

In Steiner tree algorithms, it is standard to consider the edge-costs to be metric. The
reason is that forming the metric closure (i.e., using the shortest path metric) does not
change the cost of an optimal solution: if we replacing an edge of a Steiner tree by the
shortest path between the two ends, we obtain a valid Steiner tree again.

In the context of reoptimization, however, we cannot assume the cost function to be
metric without loss of generality, because the triangle inequality restricts the effect of local
changes. Therefore in the following we have to carefully distinguish between metric and
general cost functions.

For a given Steiner tree, its full components are exactly those maximal subtrees that have
all leaves are in R and all internal nodes are in S. Note that for a given Steiner tree T', we
may remove leaves if they are not in R; we still have a Steiner tree, and its cost did not
increase. Therefore we may assume that T' is composed of full components. A k-restricted
Steiner tree is a Steiner tree where each full component has at most k£ nodes from R.

» Lemma 1 (Borchers, Du [19]). For an arbitrary € > 0 there is a k € O.(1) such that for
all Steiner tree instances (G, R, ¢) with optimal solution OPT of cost opt and ¢ is a metric,
there is a k-restricted Steiner tree T of cost at most (1 + €)opt which can be obtained from
OPT in polynomial time.

We assume that in k-restricted Steiner trees T" where c¢ is a metric, the Steiner nodes
v € V(T)N S have a degree of deg(v) > 3. This is without loss of generality, since deg(v) > 2
by the definition of k-restricted Steiner trees; if deg(v) = 2 and w, w are the neighbors of v,
c(u,v) + e(v,w) > c(u,w). We replace {u,v}, {v,w} by {u,w} without increasing the cost
of T' and without changing the property that T is k-restricted.

13

FSTTCS 2015

14 Robust Reoptimization of Steiner Trees

Input : A Steiner tree instance (G, R, ¢),

a Steiner forest F' in G with trees Fy, Fy, ..., Fp
Output : A Steiner tree T’
Set G' := G/F such that F; is contracted to v;;
Set R’ :={v; : V(F;) N R # 0};
Compute a minimum Steiner tree T” of (G', R/, ¢);
Obtain T from T” by expanding F.

Algorithm 1: CONNECT

Within the entire text, OPT denotes an optimal solution and opt denotes the cost of
an optimal solution. We will often add sub- and superscripts to OPT and opt in order to
distinguish between various types of (close to) optimal solutions.

3 Connecting Forests and Guessing Components

We state two algorithms that we will use repeatedly within the subsequent sections. The
first algorithm, CONNECT, was introduced by Bockenhauer et al. [16] and has been used in
all previous Steiner tree reoptimization results. The algorithm connects components of a
Steiner forest F' of G in order to obtain a feasible Steiner tree T'. The idea is that we start
from a partial solution with few components that together contain all required vertices, and
we use an exact computation to complete the solution. In CONNECT we use the following
notation. Denote by G/V’ for V! C V(G) the contraction of V' in G. We write G/F instead
of G/V(F), if F is a subgraph of G. Note that after contracting a component there may
be multiedges. Here, we treat multigraphs as simple graphs, where we only consider the
cheapest edge of each multiedge. For ease of presentation, we slightly abuse notation and
use the cost function ¢ for both the graph before and the graph after the contraction.

Clearly, the graph T computed by CONNECT is a Steiner tree. If the number of components
¢ of the forest F given as input is a constant, by using the Dreyfuss-Wagner algorithm [25]?
to compute 7', CONNECT runs in polynomial time. The graph T' computed by CONNECT
is the minimum cost Steiner tree that contains F', since all Steiner trees that contain F
determine feasible solutions 7”.

The second algorithm of this section, GUESS, which is motivated from the CONNECT
algorithm of [13] and presented here in a different manner, provides a mechanism to profit
from guessing full components of an optimal k-restricted Steiner tree: we compress the
guessed full components to single vertices and this way we obtain a new instance to which
we apply known approximation algorithms. We call GUESS by simply writing GUESS(), if
the instance and k are clear from the context and A is a S-approximation algorithm. Note
that for instance GUESS(3k) means that £ = 3k.

» Lemma 2. For an arbitrary € > 0, let k be the parameter obtained from Lemma 1. Let A
be a polynomial time B-approrimation algorithm for the Steiner tree problem. Furthermore,
let OPTy, be an optimal k-restricted solution of cost opty, to the Steiner tree instance (G, R, c)
where ¢ is a metric. Then, for £ € O.(1), GUESS runs in polynomial time and computes a
Steiner tree T of cost at most (1 + €)(8 — B¢ + ¢)opt, where Copty, is the total cost of the ¢
mazximum weight full components of OPTy and opt is the cost of an optimal solution.

2 We refer to Hougardy et al. [27] for an overview of further exact Steiner tree algorithms that, depending
on the given parameters, may be faster than Dreyfuss-Wagner.

K. Goyal and T. Momke

Input : A Steiner tree instance (G, R, ¢) with ¢ metric, numbers ¢, k € N|
and a Steiner tree approximation algorithm A
Output : A Steiner Tree T
Run A on (G, R, ¢) and obtain a Steiner tree T’
foreach S = {51, 55, ...,S¢} such that
S; CV with |S;| <2k and 2 <|S;NR| <k for1 <i<{do
For each i, compute a minimum spanning tree T; with V(T;) = S;;
Contract each T; to a required node r;;
Run A on the resulting instance;
Obtain 7" by expanding the contracted components of each r;;
if ¢(T") < ¢(T') then
Replace T by T".

Algorithm 2: GUESsS

Proof. We first analyze the running time of the algorithm. Since A runs in polynomial time,
we only have to consider the number of families & that we have to test. This number is
bounded from above by (Zf; (7;))5, since we only choose sets of size at most 2k. Since
both k£ and ¢ are constants, this number is polynomial in n.

Next we analyze the cost of T'. Since we assume that for each Steiner node v € SNV (OPTy,),
deg(v) > 3, we conclude that all full components of OPTj have at most 2k nodes. Therefore
there is a family S considered by GUESS such that the classes of S are exactly the node sets of
the ¢ maximum weight full components of OPTj. Contracting a minimum spanning tree T; is
equivalent to contracting the full component with required nodes RN S; in OPTy. We finish
the proof by applying a standard argument that was used, for instance, by Bockenhauer et
al. [14]. The cost of an optimal Steiner tree before expanding the full components is bounded
from above by opt;, — (opt,,, and expanding the full components adds (opt;,. Therefore we
obtain ¢(T') < B(opt;, — Copty,) + Copty, = (8 — B¢+ ¢)opt,. By our choice of k and Lemma 1,
opty, < (1 + €)opt and therefore ¢(T) < (14 €)(8 — B¢ + ¢)opt. <

In the subsequent proofs, we will repeatedly obtain a value 7 such that { > (o — 1 — €)n,
where « is the actual performance ratio of the considered approximation algorithm. By
simple arithmetics and assuming that (1 + €)(8 — B¢ + ¢) tends to (8 — 5¢ + ¢) for € chosen
sufficiently small, Lemma 2 implies

< BABn—n+eBn—mn)
- 1+8n—n

: (1)

The reason for our assumption is that we can choose k£ in Lemma 1 and therefore the
additional error is arbitrarily small.®> We avoid complicated formalisms and instead slightly
relax the approximation ratios in theorem statements by adding an arbitrarily small value
d > 0 whenever the proofs use (1).

4 A Required Node Becomes a Steiner Node

The variant of the minimum Steiner tree reoptimization problem where a node is declared to
be a Steiner node (STP™) is defined as follows.

3 Note that in contrast to the error from Lemma 1, we cannot control the error of the given solutions.

15

FSTTCS 2015

16

Robust Reoptimization of Steiner Trees

Input :An instance (G, R, c, OPTgld,t) of STPf”
Output : A Steiner tree T’
while degg,roa(t) = 1 do // We assume that either € =0 or deggpra(t) > 1
Set ' := child(¢); // The node adjacent to ¢ in OpT?d
Remove ¢ from OPT?ld and R, rename t’ to t, and set t € R;
// Now (G, R,c,0pt%d t) is the changed instance
Transform OPT? to a k-restricted solution OPTS},‘C1 such that optg}g < (1 + e)optd,
where € tends to 0 for large enough k;
Set T := OpT?'d; // Note that optd < opt?'y
Let C%,C%, ... be the full components of OPTS},? such that
t € V(C}) for all i and ¢(Cf) < ¢(C%) for i < j;
Set F := OPT‘;I,(Ci - C - C% - C%; // Ignore C% if it does not exist
Set Ty := CONNECT(F');
Set T3 := GUESS(3k);
Set T'=T; with i = minarg;c 5 33{c(7})}.

Algorithm 3: DECLARESTEINER

Given: A parameter € > 0, a Steiner tree instance (G, R, ¢), a solution OPT?ld to (G, R,¢)
such that opt®!d < (1 + €)opt®'d, and a node t € R.
Solution: A Steiner tree solution to (G, R\ {t},c).

An instance of STPf_ is a tuple (G, R, ¢, OPTgld, t). If e = 0, we skip the index and write
STP®~. Without loss of generality we assume that c is a metric: we may use the metric
closure since the local modification does not change G or c.

The algorithm DECLARESTEINER starts with reducing the instance to one where the
changed required node has a degree of at least two, using a known technique. Afterwards
it transforms the given solution to a k-restricted Steiner tree (note that the order of these
two steps is important). The remaining algorithm outputs the best of three solutions that
intuitively can be described as follows: we either keep the old solution; or we remove up
to three full components incident to t to obtain a partial solution that we complete again
using CONNECT; or we guess a partial solution that is at least as large as the 3k largest
full-components of an optimal solution and complete these components to a solution using
the best available approximation algorithm.

The following theorem indicates that in general we have to require € = 0 for instances of
STP?™ with deg(t) = 1.

» Theorem 3. For an arbitrary € > 0, let A be a polynomial time a-approximation algorithm
for STPff. Then there is a polynomial time a-approzimation algorithm for the Steiner tree
problem.

Proof. Given a Steiner tree instance (G, R, ¢), let opt™®™ be the cost of an optimal solution.
We construct a STP§/7 instance (G', R/, ¢/, OPTgld,t) from (G, R,c). We first compute a
minimum spanning tree T of G[R]. Note that G[R] is a complete graph since we assume c
to be metric, and ¢(T) < 20pt"®¥, as shown by Takahashi and Matsuyama [30]; we assume
w.l.0.g. that a < 2. We obtain G’ by combining G and a new node ¢ as follows. We set
V(G") :=V(G)U{t} and E(G') = E(G) U {t,t'} for a node ¢’ € R. Then we obtain ¢’ from
¢ by setting ¢/(t,t') = ¢(T) - (1 — €) /e and forming the metric closure. We set R = RU {t}
and obtain a solution OPT?'? to (G/, R',¢) by adding {t,t} to T. Finally, we obtain the

€

Steiner tree T by applying A to (G', R', ¢, OPTgld7 t).

K. Goyal and T. Momke

Observe that T cannot contain an edge incident to ¢, since all of those edges are more
expensive than 7. Therefore T is a Steiner tree of (G, R, c). Conversely, all Steiner trees of
(G, R, c) are feasible solutions to (G', R, ¢/, OPT?ld, t). We conclude that T provides an «
approximation, i.e., T is a feasible solution to (G, R, c) and ¢(T") < aopt™®™.

To finish the proof, we have to show that OPTSld was a valid solution given to A, i.e., its
cost opt®'d is at most a factor (1 + €) larger than optimum. Clearly, OPT®? is a Steiner tree
of (G',R',¢'). Let opt®? be the cost of an optimal Steiner trees for (G', R,).

opt?d o(T) +c(t,t') < 20pt™™ + c(t,t') opt™*V
opt®d opt™®Y 4 c(t,t') T opt™v +c(t,t') ~ opt™®¥ + opt™eV .

b:1—1—6.

€

For all remaining cases, DECLARESTEINER profits from knowing OPT?ld.

» Theorem 4. Let (G, R,c, Ot) be an instance of STPE™ with deggproa(t) > 2 or
€ =0. Then, for an arbitrary § > 0, DECLARESTEINER. is an approximation algorithm for
STPf‘* with performance guarantee

(108 — 7+ 2¢ — 2¢0)(1 + ¢)
78 — 4+ 5e — 2¢f3

+4.

For the approximation ratio § = In(4) + €” from [24] with ¢ and § chosen sufficiently
small, we obtain an approximation ratio of less than 1.204 - (1 +¢).

4.1 Proof of Theorem 4

Since k is a constant, all steps of DECLARESTEINER except for the call of CONNECT clearly
run in polynomial time. To see that also the call of CONNECT does, observe that removing the
edges and Steiner nodes of a full component increases the number of connected components
by at most k£ — 1.

We continue with showing the claimed upper bound on the performance guarantee. Before
we show the main result, we introduce two simplification steps. First, we show that we can
restrict our attention to the case deg(t) = 2 in OPT?},?. Our analysis simultaneously gives a
new proof for the previous best reoptimization result [13]. Subsequently we reduce the class
of considered instances to those where all optimal solution to (G, R\ {t}, ¢) have a special
structure.

We start with analyzing the case where deg(¢) = 1. If this case appears in the while loop,
by our assumption we have ¢ = 0 and thus OPT?ld is an optimal solution. The transformation
of DECLARESTEINER within the while loop reduces the instance to one where deg(t) > 2
[16]. When transforming the resulting solution OPT‘Sjld to OPTS},?, generally ¢ could become a
degree-one vertex. We use, however, that this is not the case when applying the algorithm of
Borchers and Du [19]: The algorithm considers the full components separately, which implies
that initially the degrees of all required vertices are one. Each full component is replaced by
a graph where each required vertex has a degree of at least one. Consequently, the degree of
no required vertex is decreased.

For the remaining proof, we assume degOPTgli (t) > 2. We prove the following technical

lemma, which is needed for our subsequent argumentation.

» Lemma 5. There is a collection C of at most 3k full components of OPTL™ such that
F UC is a connected graph.

17

FSTTCS 2015

18

Robust Reoptimization of Steiner Trees

Proof. Observe that F' has less than 3k connected components, and each of them contains
nodes from R. We use that the full components of OPT,.*" only intersect in R. Since OPT,®"
is connected, by the pigeonhole principle it has a full component C' that contains required
nodes from two distinct components of F. Thus adding C' to F reduces the number of

components. Now the claim follows inductively. |

Let a = ¢(T) /opt™™ > 1 be the performance ratio of DECLARESTEINER. Thus, in the
following we want to determine an upper bound on a. We may assume

opt‘;lg > aopt™®? (2)

since otherwise, T} already gives an approximation ratio better than «.
We define v = ¢(CONNECT(F)) — ¢(F), the cost to connect F. Let d be the number of
full components removed from OPTE};: to obtain F, i.e., d € {2,3}.

» Lemma 6. For an arbitrary 6 > 0, the performance ratio o of DECLARESTEINER is

bounded from above by 1 + % + 4.

Proof. We have ¢(C?) + ¢(C%) + ¢(C%) > d - ¢(C?) assuming ¢(C}) < ¢(CY) for i < d.
We determine the following constraints. Since Ct + OPT"*" contains a feasible solution

to (G, R, c),

opt™®™ + ¢(C1) > opt°d. (3)
Furthermore,
optdy — c(CF) — ¢(C3) — ¢(C5) + 7 > aopt™™ (4)

since ¢(T5) is at most as large as the left hand side of (4).
We assume opt‘g}g tends to opt®'? for large enough k and then use (3) to replace opt® in

(2) to obtain

t a—1-—¢ new

> ——— opt "7,
o(C) 2 ———o°p ()
By applying (3) and (5) to (4), we obtain

d
1+e

v > - (a—1—¢€)opt"™. (6)
Finally, ¢ > v/optp®", by Lemma 5. Therefore, due to Lemma 2 and assumption that e
due to transformation to k-restricted tree tends to zero for large enough k,

B — By/optp™ + /optp™ > a. (7)

Now the claim follows if we assume opt;°™ tends to opt™®™ for large enough k and replace v
in (7) by the right hand side of (6), where we used that 5 > 1. <

We note that for d = 2 and € = 0, the upper bound on the performance guarantee due to
Lemma 6 matches the previously best performance guarantee [13]. For d = 3, the value is
better than the aimed-for value from Theorem 4. Observe that a straightforward extension
of DECLARESTEINER would allow us to consider values of d larger than three.

Due to Lemma 6, in the following we may assume that deg(t) = 2. Next, we analyze the
structure of OPT‘E’}S and OPT"V. Let Ry = (RNV(CH)\ {t} and Ry = (RNV(C)) \ {t}.

K. Goyal and T. Momke

€1 €2
U1 V2
Fy

N

Figure 1 Structure of OPT?'{. The paths Py and P, are drawn with thick lines.

We partition F into forests F; and F5 such that F} contains exactly the trees T' of F' with
V(T)N Ry # 0 and F» contains the remaining trees T”, with V(T") N Ry # 0 (see Fig. 1).

Let v1 € V(C%) and ve € V(CE) such that e; = {t,v1} € E(C?) and e3 = {t,v2} € E(CY).

Let P, be a minimum cost path in OPT‘G’},‘Q1
in OPTS},‘? from t to Ro. Observe that P; contains e; and that P, contains e;. We define
k1 :=c(Py), k| :=c(e1), and k] = ¢(P1) — c¢(e1). Analogously, kg := ¢(Ps), kb := c(ez), and
kY = c¢(P3) — c(e2). Note that we do not exclude that v; € Ry or v2 € Rs. In this case kY
resp. ki are zero.

To simplify the presentation, we define &’ := (k] + k5)/2 and & := (k{ + k%) /2. Since
Py, P, are minimum cost paths, ¢(C%) > k] + 2x and ¢(C%) > k% + 2«4, which implies

from ¢ to Ry and let P, be a minimum cost path

c(C) + ¢(Ch) > 25" + 4K". (8)
We have opt™®¥ + &} + & > opt®d and opt™®™ + k) + k4 > opt°'d. Therefore,
Optnew + K + K > OptOId. (9)

» Lemma 7. Suppose there are at least two edge disjoint paths in OPT,"" between V (F})

and V(Fy). Then, for an arbitrary 6 > 0, the performance guarantee of DECLARESTEINER
(11B-8)(1+e) | &5

is bounded from above by 8F—513¢c

Proof. Let P’ and P” be two edge-disjoint paths within OPT;®" between V (F) and V (F3)

such that none of their internal nodes are in V(OPTS},?). Without loss of generality, we

assume that ¢(P’) < ¢(P"). We will also assume that opt7®" tends to opt™" for large enough
k. Then, additionally to the previous constraints, we obtain the following.

opt2 — 28" + ¢(P') = opt?} — K| — K + ¢(P') > aopt™®” (10)

¢ optf™ = o(P') + e(P") = 2¢(P) (11)

From (9) and (10) and assuming opt?},‘j

tends to opt?? for large enough k, we obtain
(P> (a—1—¢€opt"™ + (1 —e)r’ — (1 +)K", (12)

and thus, due to (11) and (2),(9),

4
(I+e)

Copti™ > 2((a—1—€)opt™™ +(1—€)k’' — (1+€)r") > (a—1—¢€)opt™™ —4x". (13)

19

FSTTCS 2015

20

Robust Reoptimization of Steiner Trees

Furthermore, by using (8) and (9) in (4), we obtain
7> (a—1—€opt"™ + (1 —e)r’ + (3 —€)r".

and thus, due to (2) and (9) and the fact that (optp®™ > ~,

2
optpeY > a—1—€)opt™™ + 2x". 14
A linear combination of (13) and (14) with coefficients one and two gives ¢ > %, by

assuming that optp®" tends to opt™®™ for large enough k. Using (1) we obtain

< (118 - 8)(1 +¢)

0. <
- 88—-5+3¢ +

Since the value obtained by Lemma 7 is better than the aimed-for ratio, from now on we
can restrict our focus to instances where in OPT,®Y, there are no two edge-disjoint paths
between F} and F5. In particular, this means that there is exactly one full component L

in OpPT,°Y that connects Fy and Fy. Since we assumed that there are no Steiner nodes of

degree two in OPTL®™, there is exactly one edge ey, in L such that removing ey, leaves two

connected components of OPT;®", one containing R; and the other one containing Ry. Let
Pr, be a minimum cost path between V(Fy) and V(F») in L (and thus Py, clearly contains
er). Let P} be the subpath of P, between F; and ey and let P? be the subpath of P,
between Fy and er. We define A := c¢(Pr), N = c(er), Y = c¢(P}), and N = c(P?).
Similar to above, we define A’ := (A + AJ)/2. Note that A — X = 2\". It follows easily
that ¢(L) > N +4)\". Let L' be a forest with a minimum number of full components from
OPT,®™ such that OPTZ}% — O — C% + L' is connected. From Lemma 5, we obtain that L’
contains at most 3k full components and thus we considered guessing L’ when computing T3
in DECLARESTEINER. We define £ := ¢(L') — X —4)”. Since L’ contains L, £ is non-negative.

To find an upper bound on the value of «, we maximize a subject to the constraints (2),
(9) and the following constraints.

new

By removing ey, from OpPT;”" and adding the paths P, and P», we obtain a feasible

solution to (G, R, c); conversely, by removing e; and ey from OPT‘;I,Sl and adding Pr,, we

obtain a feasible solution to (G, R\ t,¢) that is considered in T5. Therefore

optR®Y + 2k’ + 2" — X > opt°ld, (15)
opt2y — 26" + N 42X > aopt™™. (16)

In T we also consider to remove C?, C& completely and to add L’. Therefore
opt2 — 2" — 4K + N + 4N + £ > aopt™™. (17)

Due to Lemma 2 and assumption that € due to transformation to k-restricted tree tends
to zero for large enough k, we may assume

B—=BC+(= (18)
In T3, one of the considered guesses is L’ and therefore

C-optp®™ > N 4+ 4N\ + &, (19)

We assume that opt;®" and opt‘é’},ﬂl
enough k and then scale the values such that op

tends to opt™% and op‘c‘gld

t"“" = 1. Then we perform the following

respectively for large

K. Goyal and T. Momke

replacements. We replace opt®? in (9) and in (15) by using (2); we use (9) to replace opt°!
in (16); we use (9) to replace opt°® in (17). We keep (18) and (19). This way we obtain a
linear program that maximizes « subject to the following constrains.

-k —k"+a/(l+e) <1
=26 = 26"+ N +a/(l4+€) <1
I—er' —14+er”" =N -2XN+a <1l+e
I—er'+B—€er”" =N —-4N' —¢+a <1l+e€
B-1C+a <p
N4+4XN"+€6—-¢C <0

Now we obtain the dual linear program

minimize Y1 +y2 + (L4 €)ys + (1 + €)ya + Bys
s.t.: —y1 =2y +(1—€ys+(1—€)ys >0
1 —2y2 —(1+e)ys+(3—€)ya >0
Yy2—Ys—yat+tys =0
—2y3 —4dys+4ys >0
—yYs+ys >0
B=1ys—ys =0
yi/(I+e)+y2/(L+e)+ys+ystys >1

To finish the proof, we consider the following feasible solution. We set

_2B-1)0+e(1—-2¢)

e S vy Y2 =y1/2;

yz = y1/(1 — 2¢); ya =y1/(1 - 2e);
B 3(1+¢)(1—2¢) _ 3

Y5 = (1= 26)(78 — 4+ 5e — 2¢8) Y6 =51 —2e)

With these values, the objective function value matches the claimed value in Theorem 4. By
weak duality, we obtained an upper bound on the value of « in the primal linear program,
which finishes the proof.

5 Increased Edge Cost

We now consider the reoptimization variant where the edge cost of one edge is increased,
STPET. 1f e is the edge of G with increased cost, we define ¢™V: E(G) — Rxg as ™% (¢/) =
c(e’) for all edges €’ € E(G)\ {e} and ¢"®¥(e) is the increased cost. Then the formal definition
of the reoptimization variant is as follows.

Given: A parameter ¢ > 0, a Steiner tree instance (G, R, ¢), a solution OPT?ld to (G, R, ¢)

such that opt®'d < (1 + €)opt®!d, and a cost "V (e) > c(e) for an edge e € E(G).
Solution: A Steiner tree solution to (G, R, ¢*%).

Observe that the cost function obtained after applying the local modification in general
new

is not a metric, and OPT." is assumed to live in the metric closure according to the new
cost function.

» Theorem 8. Let (G,R,c, OPTSld,e,cncw(e)) be an instance of STPfUr. Then, for an

arbitrary 6 > 0, EDGEINCREASE is a (%ﬁﬁ*@ —|—6) -approzimation algorithm for STPff

21

FSTTCS 2015

22

Robust Reoptimization of Steiner Trees

Input :An instance (G, R, c, OPTgld,e,cnew(e)) of STPCEJr
Output: A Steiner tree T
Transform OPT?? to a k-restricted solution OPTS},‘S such that optg}g < (1 + ex)optHd
where ¢, tends to 0 for large enough k;
Set T} := OPTgld;
Set T := GUESS(k + 1), with respect to ¢V (e);
Set T' = T; with i = minarg;c g o3 {c(T))}-
Algorithm 4: EDGEINCREASE

Proof. Let us introduce the following notation. To emphasize which of the two instances
we consider, we write c®4(e) instead of c(e), where e is the edge with increased cost. We

assume that e € E(OPTS}S), as otherwise T would be good enough already. Therefore the

graph OPT‘E’},‘Ci — e has exactly two connected components F; and Fy. Similar to the previous
proof, we define Ry := RNV(F}) and Ry := RNV (Fy).

In OPTS},‘?, let K be the full component that contains e. Let P be a minimum cost path
from Ry to Ry within K. Then we set x := c(P) — c®(e).

In OPTy®Y, there is a full component L of cost A such that V(L) contains nodes from both
Ry and Ry. If L has two edge-disjoint paths between R; and Ra, we define A’ = 0. Otherwise
there is an edge ey, € E(L) such that ey, is a cut edge in Fy U F, U L, and X := ¢(er,). We
obtain the following inequalities, where as before oo = ¢(T") /opt™©¥.

Removing e and adding a shortest path between R; and R within L gives a feasible

solution to (G, R, ¢™*V). Therefore T3 is good enough unless

optZf — c?(e) + A/2+ N /2 > aopt™™. (20)

One feasible solution to the original instance is to remove e, and to add P. Therefore we
obtain

optE™ — X + () + Kk > opt°ld. (21)

We obtain an additional constraint by observing that in addition to using ey, within
OPT?" the required vertices of K have to be connected. Let K; be the tree of K — e that
contains Ry NV(K). We see K; as a rooted tree with the root r1 contained in e = {ry,r2}.
Let us fix any two vertices u # v € V(K7) \ {r}, with parents v,v’. Then the minimum
distance between the two subtrees rooted at w,u’ is at least max{c(u,v),c(u’,v")}. The
same argumentation holds for Ky, which we define analogous to K (it contains Ry NV (K),
and has the root ry). By traversing a path from V(K7) N Ry to r; within K; and from
V(K2) N Ry to 7o, and adding the distances, we conclude that there is a collection of at
most k full components in OPT.®" that without counting ey, have a total cost of at least x.
Therefore, using 715,

Coptp®™ > X + k.

From these constraints, we obtain the claimed result using arguments similar to those of the
previous section. <

Acknowlegment. We would like to thank Anna Zych for some helpful comments and the
anonymous reviewers for helping to improve the presentation.

K. Goyal and T. Momke

—— References

1

10

11

12

13

14

15

16

17

Claudia Archetti, Luca Bertazzi, and Maria Grazia Speranza. Reoptimizing the traveling
salesman problem. Networks, 42(3):154-159, 2003.

Claudia Archetti, Luca Bertazzi, and Maria Grazia Speranza. Reoptimizing the 0-1 knap-
sack problem. Discrete Applied Mathematics, 158(17):1879-1887, 2010.

Claudia Archetti, Gianfranco Guastaroba, and Maria Grazia Speranza. Reoptimizing the
rural postman problem. Computers €& OR, 40(5):1306-1313, 2013.

Giorgio Ausiello, Vincenzo Bonifaci, and Bruno Escoffier. Complexity and approximation
in reoptimization. Imperial College Press/World Scientific, 2011.

Giorgio Ausiello, Bruno Escoffier, Jérome Monnot, and Vangelis Th. Paschos. Reoptimiza-
tion of minimum and maximum traveling salesman’s tours. Journal of Discrete Algorithms,
7(4):453-463, 20009.

Michael A. Bender, Martin Farach-Colton, Sindor P. Fekete, Jeremy T. Fineman, and Seth
Gilbert. Reallocation problems in scheduling. In Proc. of the 25th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA 2013), pages 271-279. ACM, 2013.
Tobias Berg and Harald Hempel. Reoptimization of traveling salesperson problems: Chang-
ing single edge-weights. In Proc. of the Third International Conference on Language and
Automata Theory and Applications (LATA 2009), volume 5457 of LNCS, pages 141-151.
Springer, 2009.

Marshall W. Bern and Paul E. Plassmann. The Steiner problem with edge lengths 1 and
2. Information Processing Letters, 32(4):171-176, 1989.

Davide Bilo, Hans-Joachim Bockenhauer, Juraj Hromkovi¢, Richard Krélovi¢, Tobias
Momke, Peter Widmayer, and Anna Zych. Reoptimization of Steiner trees. In Proc. of the
11th Scandinavian Workshop on Algorithm Theory (SWAT 2008), volume 5124 of LNCS,
pages 258-269, 2008.

Davide Bilo, Hans-Joachim Béckenhauer, Dennis Komm, Richard Kralovic, Tobias Momke,
Sebastian Seibert, and Anna Zych. Reoptimization of the shortest common superstring
problem. Algorithmica, 61(2):227-251, 2011.

Davide Bilo, Peter Widmayer, and Anna Zych. Reoptimization of weighted graph and
covering problems. In Proc. of the 6th International Workshop on Approximation and
Online Algorithms (WAOA 2008), volume 5426 of Lecture Notes in Computer Science,
pages 201-213. Springer, 2008.

Davide Bilo and Anna Zych. New reoptimization techniques employed to Steiner tree
problem. In Proceedings of the 6th Latin-American Algorithms, Graphs and Optimization
Symposium (LAGOS 11), 2011.

Davide Bilo and Anna Zych. New advances in reoptimizing the minimum Steiner tree
problem. In Mathematical Foundations of Computer Science 2012, pages 184-197. Springer,
2012.

Hans-Joachim Boéckenhauer, Luca Forlizzi, Juraj Hromkovi¢, Joachim Kneis, Joachim
Kupke, Guido Proietti, and Peter Widmayer. On the approximability of TSP on local
modifications of optimally solved instances. Algorithmic Operations Research, 2(2):83-93,
2007.

Hans-Joachim Bockenhauer, Karin Freiermuth, Juraj Hromkovi¢, Tobias Mémke, Andreas
Sprock, and Bjorn Steffen. The Steiner tree reoptimization problem in graphs with sharp-
ened triangle inequality. Journal of Discrete Algorithms, 11:73-86, 2012.

Hans-Joachim Bockenhauer, Juraj Hromkovic¢, Richard Kralovi¢, Tobias Moémke, and Peter
Rossmanith. Reoptimization of Steiner trees: Changing the terminal set. Theoretical
Computer Science, 410(36):3428-3435, 2009.

Hans-Joachim Bockenhauer, Juraj Hromkovi¢, Tobias Momke, and Peter Widmayer. On
the hardness of reoptimization. In Proc. of the 34th International Conference on Current

23

FSTTCS 2015

24

Robust Reoptimization of Steiner Trees

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Trends in Theory and Practice of Computer Science (SOFSEM 2008), volume 4910 of
LNCS, pages 50-65, 2008.

Hans-Joachim Béckenhauer and Dennis Komm. Reoptimization of the metric deadline T'SP.
Journal of Discrete Algorithms, 8(1):87-100, 2010.

Al Borchers and Ding-Zhu Du. The k-Steiner ratio in graphs. SIAM Journal on Computing,
26(3):857-869, 1997.

Nicolas Boria and Federico Della Croce. Reoptimization in machine scheduling. Theoretical
Computer Science, 540:13-26, 2014.

Nicolas Boria, Jérome Monnot, and Vangelis Th Paschos. Reoptimization of maximum
weight induced hereditary subgraph problems. Theoretical Computer Science, 514:61-74,
2013.

Nicolas Boria and Vangelis T Paschos. A survey on combinatorial optimization in dynamic
environments. RAIRO-Operations Research, 45(03):241-294, 2011.

Nicolas Boria and Vangelis Th Paschos. Fast reoptimization for the minimum spanning
tree problem. Journal of Discrete Algorithms, 8(3):296-310, 2010.

Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvof}, and Laura Sanita. Steiner tree
approximation via iterative randomized rounding. Journal of the ACM, 60(1):6, 2013.

S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks, 1:195-207,
1971/72.

Bruno Escoffier, Martin Milani¢, and Vangelis Th. Paschos. Simple and fast reoptimizations
for the Steiner tree problem. Algorithmic Operations Research, 4(2):86-94, 2009.

Stefan Hougardy, Jannik Silvanus, and Jens Vygen. Dijkstra meets Steiner: a fast exact
goal-oriented Steiner tree algorithm. arXiv preprint arXiv:1406.0492, 2014.

Jérome Monnot. A note on the traveling salesman reoptimization problem under vertex
insertion. Inf. Process. Lett., 115(3):435-438, 2015.

Markus W Schéffter. Scheduling with forbidden sets. Discrete Applied Mathematics,
72(1):155-166, 1997.

Hiromitsu Takahashi and Akira Matsuyama. An approximate solution for the Steiner
problem in graphs. Mathematica Japonica, 24(6):573-577, 1979/80.

Anna Zych. Reoptimization of NP-hard problems. PhD thesis, Diss., Eidgenossische Tech-
nische Hochschule ETH Ziirich, Nr. 20257, 2012, 2012.

Minimizing Weighted £,-Norm of Flow-Time in
the Rejection Model

Anamitra Roy Choudhury!, Syamantak Das?, and Amit Kumar?

1 IBM Research, India
anamchou@in.ibm. com

2 IIT Delhi, India
{sdas,amitk}@cse.iitd.ernet.in

—— Abstract

We consider the online scheduling problem to minimize the weighted £,-norm of flow-time of jobs.
We study this problem under the rejection model introduced by Choudhury et al. (SODA 2015)
— here the online algorithm is allowed to not serve an e-fraction of the requests. We consider the

restricted assignments setting where each job can go to a specified subset of machines. Our main
result is an immediate dispatch non-migratory 1/ 9 _competitive algorithm for this problem
when one is allowed to reject at most e-fraction of the total weight of jobs arriving. This is in
contrast with the speed augmentation model under which no online algorithm for this problem
can achieve a competitive ratio independent of p.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Approximation algorithms, Flow time, Scheduling problem, Rejection
model

Digital Object Identifier 10.4230/LIPIcs. FSTTCS.2015.25

1 Introduction

The problem of minimizing average flow-time, also known as response-time or waiting time,
is of central importance in the scheduling literature [20, 5, 15, 2]. In the online setting
of this problem, jobs arrive over time and need to be scheduled on machines, which may
have varying characteristics. The flow-time of a job is defined as the difference between its
completion time and release date, and we would like the jobs to have small flow-time. One
way of measuring this is to take £,-norm of the flow-time of jobs, where the parameter p
could vary depending on the particular application — varying p would mean balancing the
trade-off between fairness and average response time. In this paper, we shall consider the
well-studied subset-parallel (i.e., the restricted assignment) model, where each job j specifies
a processing requirement p;, but can be processed on a subset of the machines only.

The framework of competitive analysis for such problems turns out to be too pessimistic —
it is known that there is no online algorithm for minimizing the average flow-time of jobs in the
restricted assignment setting (even if we restrict all job sizes to 1) [16]. One popular approach
toward handling this negative result is by providing the online algorithm slightly more
power than the off-line adversary. Kalyanasundaram and Pruhs [19] introduced the speed-
augmentation model where the machines of the online algorithm have slightly more speed
than those of the offline algorithm. The speed augmentation model has been very successful
in analyzing performance of natural algorithms for minimizing average flow-time in various
scheduling settings. Anand et al. [4] showed that a natural greedy algorithm is constant
competitive for minimizing average (weighted) flow-time in the restricted assignment setting
© Anamitra Roy Choudhury, Syamantak Das, and Amit Kumar;

licensed under Creative Commons License CC-BY
35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 25-37

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26

Minimizing Weighted £,-Norm of Flow-Time in the Rejection Model

(and in the more general unrelated machines setting) if we provide the online algorithm with
(1+ ¢)-extra speed. Im and Moseley [18] extended this result to give an O(p/e?)-competitive
algorithm for minimizing the £,-norm of weighted flow-time. However, they showed that the
linear dependence on p was necessary (for any immediate dispatch algorithm) even if we
allow constant-speedup and all weights are 1. In the extreme case when p becomes infinity,
it is known that one cannot obtain better than O(logm)-competitive algorithm (where m
denotes the number of machines) even if we allow constant speed-up.

To address the apparent inability of the speed-augmentation model to handle large values
of p, Choudhury et al. [13] considered a different job rejection model. Here, we allow the
online algorithm to reject an e-fraction of the jobs, where € is an arbitrary small positive
constant, whereas the off-line optimum is required to schedule all the jobs. This model seems
to give more power to the online algorithm than that by the speed augmentation model — the
latter model gives uniformly extra speed to all machines, whereas in the former model, we
could trade-off across machines (by rejecting more jobs assigned to a particular machine at
the expense of fewer rejected jobs to other machines). Choudhury et al. [13] formalized this
intuition by giving a constant competitive algorithm for the problem of minimizing weighted
{so-norm of flow-time if the online algorithm is allowed to reject e-fraction of the weight of the
jobs. In this paper, we extend this result by showing that one can get a constant competitive
algorithm even for the problem of minimizing weighted ¢,-norm of flow-time of jobs, if we
are allowed to reject e-fraction of the weight of the jobs. Note that the competitive ratio has
no dependence on p, and so, we get a stronger result as compared to the speed-augmentation
model (though we seem to provide more power to the online algorithm).

Our algorithm is based on reducing the problem of minimizing ¢,-norm to that of
minimizing fo.-norm (with some more job rejections). But this requires one to track the
average £,-norm of jobs released so far (in an off-line optimum algorithm). This turns out to
be non-trivial, as this quantity could go up or down with time, and tracking it while not
exceeding the optimal value at any time forms the heart of our algorithm. We state the main
theorem of the paper as follows.

» Theorem 1. If the online algorithm is allowed to reject e-fraction of the weight of the
jobs arrived so far, then there exists an O(1/'?)-competitive algorithm for the problem of
minimizing weighted £p-norm of the flow-time of jobs in the restricted assignments setting.

Organization of the paper. In Section 2, we formally describe the problems considered in
this paper. For sake of clarity, we give details of the special case when p is 1 (i.e., the average
flow-time), and all weights are 1. The extension to the weighted case carries over using ideas
in Choudhury et al. [13], and the result for ¢,-norm for arbitrary p follows without much
changes — details of these changes are described in Section 7. In Section 4, we give an overview
of the new ideas in this paper. The scheduling algorithm is described in Section 5. The
algorithm is split in two parts — algorithm A first ensures that all queues are bounded, and
subsequently, we give algorithm B which uses A to construct the actual schedule. Analysis
of these algorithms is given in Section 6.

2 Problem Statement

We consider the online problem of scheduling jobs over multiple machines in the subset-
parallel (i.e., the restricted assignment) setting. Here, jobs arrive over time. Each job j
specifies a processing requirement p; and a subset S; of the machines on which it can be
processed. Let r; denote the release date (i.e., the arrival time) of job j. In the weighted

A.R. Choudhury, S. Das, and A. Kumar

version of the problems, each job j also specifies a non-negative weight w;. In this paper, we
consider algorithms which follow the immediate-dispatch policy: when a job j arrives at time
rj, it is dispatched to one of the machines. Recall that we do not allow migration of jobs
across machines, and so, the job gets processed on the machine to which it gets dispatched.

Given a schedule S, the flow-time of a job in the schedule S, F°(j) is defined as the
difference between its completion time in & and 7;. The goal of our algorithm is to minimize
the weighted /,-norm of the flow-time of jobs, defined as (3_; w; FS(§)P)V/P. We allow
the online algorithm to reject an e-fraction of the total weight of the jobs — note that the
algorithm could reject a job immediately on its arrival, or much later after dispatching the
job to a machine. Here ¢ is a positive (small enough) constant. Thus, we only consider
the total flow-time of jobs which do not get rejected by the online algorithm. However, the
optimal off-line algorithm is required to schedule all the jobs.

In this paper, we give details of the more special SumFlowTime problem, where we seek

to minimize the total sum of the flow-time of jobs (i.e., all job weights are 1, and p is 1).
The extension to the general case follows along predictable lines and is outlined in Section 7.

3 Related Work

There has been considerable work on scheduling with the objective of minimizing a suitable
norm of the flow-time of jobs. For the objective of average flow-time of jobs, a logarithmic
competitive algorithm in the identical machines setting is known [20, 5]. Garg and Kumar [15]
and subsequently Anand et al. [2] extended this result to the related machines setting. Garg
and Kumar [16] showed that the problem becomes considerably harder in the restricted

assignment setting and no online algorithm with bounded competitive ratio is possible.

Bansal and Pruhs [8] showed that the competitive ratio can be as high as Q(n¢) for the
problem of minimizing ¢, (for any 1 < p < co) norm, where n is the number of jobs, even for
a single machine. For minimizing the maximum flow-time in the identical machines model,
Ambiihl and Mastrolilli [1] gave a simple 2-competitive algorithm. However, Anand et al. [3]
showed that the competitive ratio of any online algorithm for the restricted assignment
setting is as high as Q(m), where m is the number of machines.

The speed augmentation was first proposed by Kalyanasundaram and Pruhs [19] who
used it to get an O(1/e)-competitive algorithm for minimizing flow time on a single machine
in the non clairvoyant setting. Bansal and Pruhs [8] proved that several natural scheduling
algorithms are O(1/e)-competitive algorithm for minimizing ¢,, norm (for any 1 < p < 00) of
flow-time of jobs in the single machine setting. Golovin et al. [17] extended this result to
parallel machines setting. Chekuri et al. [12] showed that the immediate dispatch algorithm
of Avrahami and Azar [5] is also O(1/¢)-competitive for all £, norms (p > 1).

In the general setting of unrelated machines with speed augmentation, Chadha et al. [10]
gave an O(1/e2)-competitive algorithm for minimizing the sum of flow-time of jobs, which
was improved and extended to the case of £, norm of flow-time by Im and Moseley [18]
and Anand et al. [4]. Tm and Moseley [18] present an O(p/c?+2/P) immediate dispatch and
non-migratory algorithm for minimizing the ¢, norm of weighted flow-time in unrelated
machine; they also show that any immediate dispatch non migratory online algorithm with
speed s > 1 has competitive ratio Q(p/s). Anand et al. [3] showed that for the problem of
minimizing weighted ¢, norm of flow time of jobs, one cannot obtain competitive ratio better
than (51_0%) even with non-immediate dispatch. The last two lower bounds hold even
in the restricted assignment model.

For minimizing the maximum (unweighted) flow time on unrelated machines, Anand et al.

[3] gave a O(1/¢e)-competitive, (1 + ¢)-speed algorithm; however their algorithm is not an

27

FSTTCS 2015

28

Minimizing Weighted £,-Norm of Flow-Time in the Rejection Model

immediate dispatch algorithm. In fact, Azar et al. [6] showed that any immediate dispatch
algorithm with constant speedup is Q(log m)-competitive in the restricted assignment setting.
In the maximum weighted flow-time case, this lower bound holds even if we allow non-
immediate dispatch [3].

Scheduling with Rejection. There has been considerable work on online scheduling with
job rejections in the prize collecting setting where one incurs an extra cost for non-scheduled
jobs (see e.g. [9, 14, 7, 11]).

4 Our Techniques

Here we outline the main ideas of our algorithm (which we call algorithm A). The first
idea is to start with the result of Choudhury et al. [13]. They consider the same setting as
ours — jobs arriving online in the subset parallel setting. Given parameters € and T, their
schedule processes all but e-fraction of the jobs. Assuming that there a schedule for which
the foo-norm of the flow-time of jobs is at most 7', they give an online algorithm where the
flow-time of all the non-rejected jobs is at most O(T'/e?).
For our problem, let us assume that we know the number of jobs n, and the optimal value
T} of the total flow-time of these jobs. From this it follows that at least (1 —¢)-fraction of the
jobs will have flow-time at most T* = T} /(en). Conversely, if we can have a schedule which
ensures that all but e-fraction of jobs have flow-time at most 7™, then the total flow-time of
jobs which are not rejected is O(T} /e). Thus, we have converted the problem of minimizing
the ¢1-norm to that of minimizing the ¢,.-norm of flow-time. So it seems natural to apply
the result of Choudhury et al. mentioned above to our problem. However there are two main
issues:
The result of [13] assumes that the parameter T is such that there is a schedule for which
the maximum flow-time of all jobs is at most T. For us, we have a parameter T* such
that there is a (off-line) schedule for which the maximum flow-time of all but e-fraction
of the jobs is at most T*/e. We prove a generalization of the result of [13], where the
online algorithm can reject 7e-fraction of the jobs, whereas we compare it with an offline
schedule for minimizing maximum flow-time of all but e-fraction of the jobs. This requires
going through the calculations of [13] and making some subtle changes to accommodate
the changed settings.
The more serious issue turns out to be the fact that we really do not know the values T*.
In [13], as is usual in such problems, one starts with a small guess T of T* — whenever
the algorithm rejects more than e-fraction of the jobs, they double the guess T and start
afresh. This ensures that the T will never go beyond twice the optimal value T*. Here,
we cannot adopt this strategy. Suppose the input consists of two phases: an initial phase
with lot of jobs such that they have high objective value (both in terms of ¢; and £,
norms), and a second phase where jobs arrive over a much longer period of time, and
so their flow-time are small. Our algorithm will need to increase the value of T" during
the first phase. However, it cannot work with a high value of T during the second phase
— otherwise, it may allow the jobs in the second phase to last much longer than in an
optimal solution. The problem arises from the fact that T™ is defined as the ratio of two
parameters, both of which change (in fact, increase) with time, and so, if we are trying
to keep track of T, we will need to both increase and decrease the estimate 7.

We now describe the details about how we handle the second problem above. As mentioned
above, we maintain a variable 7" which is supposed to track the value T* = 15 /(en). We

A.R. Choudhury, S. Das, and A. Kumar

start with a slightly weaker goal: we want to maintain a schedule such that at all times the
queue size (i.e., the total remaining processing time of the jobs in the queue) on any machine
remains bounded by T'/ 9, We divide the execution of our algorithm into phases — during
a phase P, we shall not change the value of estimate T' (denoted by est(P)). During a phase,
we shall work with the algorithm of Choudhury et al. [13] (by supplying it the estimate
T = est(P)). The phase will be terminated by one of the following two events:

Case 1: We reject too many jobs in this phase (i.e., at least O(e) times the number of job
arrivals): here, we show that if N jobs arrive during this phase, then the optimal value of
the £1 norm of these jobs is Q(NTe3). This lower bound allows us to pay for the flow-time
of these jobs incurred by our algorithm (which will be NT'/e9()). Further, we can end this
phase, and start a new phase P’ with est(P’) = ¢T, where ¢ = 2/e. We call such phases
good phases. Whenever a good phase ends at a time ¢, we push its state on a stack S. More
formally, we push a new entry e on the stack S, where e is the tuple (T, Q(t), J). Here, Q(t)
denotes the jobs which are waiting to be processed on the queues of one of the machines, and
J is a set of jobs for which we can argue that the optimal value is large. Note that we have
shelved the jobs Q(t) on the stack, and we will start with empty queues in the next phase.

Case 2: A lot of jobs arrive during this phase: this is the worrying case, because if NV jobs
arrive during this phase, then we may have paid Q(NT) for their total flow-time, but the
optimum value could be much less. The only way to pay for these jobs would be to charge
to the lower bound obtained from previous good phases (stored in the stack S). Whenever

we charge to a phase in the top of the stack, we pop it so that it does not get charged again.

Now, we would like to end this phase and start a new phase with a smaller value of the

estimate T. We face several obstacles here:
The first obstacle is that if ¢ denotes the current time, then we would need to reduce the
number of jobs in the queues of the machines. Our analysis requires that for any phase
P, the queue sizes remain bounded by about est(P)/ £9() | Therefore, we are going to
reduce the value of est(P), then we may need to reduce the queue sizes as well. This
would mean rejecting jobs in the queues of the machines. Now this can be done provided
we do not reject too many jobs. Assuming this is the case, we can start a new phase with
a reduced estimate of T'/c. However, note that in beginning of the new phase, we will
still have non-empty job queues. Therefore, Case 1 (for the new phase) above needs to
take these jobs into account as well.
In the discussion above, when we are trying to reduce the queue sizes at time ¢, suppose
we are not able to do so (because we would end up rejecting too many jobs). Here,
we argue that even the optimal ¢;-norm of the flow-time of jobs in this phase will be

Q(NTe3). Thus, this phase again behaves like a good phase, and we save its state on S.

Further, we start a new phase P’ with estimate T again.

5 The scheduling algorithm

We first describe the algorithm A and then extend it to the actual scheduling algorithm.

We now give all the details of 4. We maintain a variable T' during the algorithm. The
variable T' will change in powers of a constant ¢. For a phase P, we shall use s(P) and e(P)
to denote its starting and ending time. We also have a stack S which is initially empty, and
the variable e¢o, will denote the entry at the top of the stack. Each entry e in the stack will
be a tuple corresponding a phase P: (est(P),Q(e(P)),J), where Q(t) denotes the jobs in

29

FSTTCS 2015

30

Minimizing Weighted £,-Norm of Flow-Time in the Rejection Model

Algorithm DispatchJob(Job j):

If jis T-big
Reject the job
Else
Let j be of class k.
If for all i € S;, load; y(rj) +p; > - T.
Reject the job
Else
Dispatch j to machine ¢ € S; for which load, x(r;) is
minimum.

Figure 1 Algorithm for dispatching a job.

the queues of all the machines at time ¢, and J will be a set of jobs (for which we will argue
that the optimal value is also large).

We first describe the job dispatch rule. Some definitions first. Let 5 denote a constant
(which will be roughly O(1/¢)). We say that a job j is of class k if p; lies in the interval
(8%, BE*+1). For a machine 4, time ¢, and class k, let Q; x(t) denote the jobs of class k waiting
in the queue of machine ¢ at time ¢; and define the load, 1 () as the total remaining processing
time of the jobs in @; x(t). The job dispatch rule is described in Figure 1. A job is said
to be T'-big if its size is at least T - (¢/2) and T'-small otherwise. Thus, the algorithm just
considers the queue sizes on each machine corresponding to the class to which j belongs. If
all such queues are already full to their limit o7 (where a = O(1/¢?)), we reject the job,
else we dispatch it to the one with the smallest load on it.

We now describe the rule according to which jobs are processed on a machine. This is
identical to that in [13], but we give it here (in Figure 2) for sake of completeness. It tries to
balance two aspects: (i) process small jobs first, and (ii) process jobs from that class for which
the corresponding queue is close to its allowable limit. Finally, we describe the algorithm
A in Figure 3. Let P denote the current phase, and PP"¢Y denote the previous phase. The
algorithm distinguishes two cases: (i) PP"®" was a good phase, i.e., est(PP™") < est(P) =T,
or (ii) PP™¥ was a bad phase, i.e., est(PP"*V) > est(P). If the former case happens, the
phase P begins with empty queues of all machines, whereas in the latter case, it begins with
non-empty queue sizes. The variable P’ is meant to be PP"®’ in the latter case, whereas
it is undefined (or empty) in the former. The variable A(P) keeps track of the set of jobs
arrived so far in P, whereas the variable A’(P) keeps track of the set of jobs arrived in both
P and P’. The variable R(P) denotes the set of jobs which get rejected during the current
phase. The variables a(P), a’(P) and r(P) respectively denote the cardinality of the sets
A(P), A/(P) and R(P). Let P*P denote the phase corresponding to the entry in the top of
the stack S. In case est(P°P) is T or T'/c, we define Q*°P to be Q(e(P*t°P)), i.e., the jobs
which were shelved to the stack during this phase. Otherwise Qt°P is set empty.

We now discuss the various steps in A. We start with the estimate T to be 0, and P
as the current phase. Recall that P’ denotes the previous phase if the previous phase was
a bad phase, else it is empty. When a job j arrives, we will increment the counters a(P),
@' (P) which counts the number of jobs arrived so far in P and P U P’ respectively. Normally,
we will just call DispatchJob(j). However, this procedure will reject j if j happens to
T-big. Now if very few (i.e., 1/¢) jobs have arrived so far, then we do not want to reject any

A.R. Choudhury, S. Das, and A. Kumar

Algorithm ProcessJob(i,t):

* . load,ﬂ,yk(t)
k* := argmax; =5

Process the earliest released job from the queue Q; g+ (%)
(use a fixed tie-breaking rule).

Figure 2 Algorithm for deciding which job gets processed at time ¢ on a machine 1.

job. Thus, if this case happens in the initial period of this phase (when not many jobs have
arrived), we simply end this phase, and start a new phase with a much higher estimate — this

phase will be a good phase because this job’s processing time serves as a good lower bound.

Note one subtlety — we will consider job j again in the next phase (because we haven’t called
DispatchJob(j) yet).

In the algorithm, we define two procedures — EndGoodPhase and EndBadPhase.

The first one assumes that the current phase has ended as a good phase, while the latter one
assumes otherwise. The procedure EndGoodPhase just ends the current phase by pushing
a new entry on the stack, resetting the value of T', and initializing all queues to empty. The
second procedure simply resets the value of T, but does not disturb the queues — the jobs in
these queues carry over to the next phase.

Finally, we have a procedure QueuedJobs(v), where v is a parameter. This procedure
finds the minimal collection of jobs which need to be removed from each of the queues
Qi(k,t), where t denotes the current time, in the reverse order in which they were added to
these queues, such that the total remaining processing time of jobs in each of the queues is
at most v. It returns the set of such jobs.

As discussed before, algorithm A tries to maintain a schedule such that for all machines
i, class k and time ¢, the queues Q; 1 (¢) remains bounded by est(P)/s°(), where P denotes
the phase containing time ¢. Note that @; »(¢) only counts the jobs which arrive over this
phase (and may be the jobs which were present initially in the queues of the machines if
the previous phase was a bad phase). It does not count the jobs which have been shelved
in the stack S. We will however prove a stronger property: for any processing class k and
an estimate T, let JX be the set of jobs of class k which arrived during phases P for which
est(P) was T; and let Jr = Ui J% denote the set of all such jobs. Then, at any time ¢
and machine 7, the total remaining processing time of jobs in Jqli which were dispatched

O The fact, however, by itself is not sufficient to

o)

to machine ¢ remains bounded by T'/e
guarantee that we can finish any job of Jr within T'/e time. We now present our actual
algorithm (algorithm B) which ensures that the flow time of every job of Jr (with some

additional rejections over algorithm A) is bounded to at most 7'/?(1).

The scheduling algorithm B. We here state our final scheduling algorithm. We will be
using the result of Choudhury et al. [13] for the GenWtdMaxFlowTime problem. In the
GenWtdMaxFlowTime problem, a job j has two weights associated with it, the rejection-weight

w'” and flow-time-weight wgf)

; the first one is used for counting the rejection weight of
rejected jobs, while the second one is used in the weighted flow-time expression. The objective
of the problem is to minimize the maximum over all jobs j of wj(-f)Fj, where F}; denotes
the flow-time of job j in a schedule; and we are allowed to reject jobs of rejection-weight
at most € times the total rejection-weight of all the jobs. The objective value is compared

with the offline optimum which is not allowed to reject any job. In order to describe their

31

FSTTCS 2015

32 Minimizing Weighted £,-Norm of Flow-Time in the Rejection Model

Algorithm A:

Initialize:
T+ 0, P+ 0; a(P),a (P),r(P) + 0; A(P), A'(P), R(P) + 0.
Phase(P):
1. When a job j arrives at current time ¢
(i) If j is T-big and a(P) < 1/,
call EndGoodPhase(T, Q(t), A(P) U{j}, [p;]).
(ii) Else
— Update A(P) «+— A(P)U{j},a(P) < a(P) +1
— Update A'(P) < A'(P)U {j},d'(P) < d/(P)+1
— call DispatchJob(j)
— if this job gets rejected,
update R(P) <~ R(P)U{j},r(P) «+ r(P)+1
2. If r(P)>7e-d(P)
(i) call EndGoodPhase(T, Q(t), A'(P),cT).
3. 1t a(P) > (IQ(s(P)]) + QP2
(i) Reject the jobs in Q(s(P)) U Q*°P.
(i) If est(P*P) =T or T'/c, pop the stack S.
(iii) Let J + QueuedJobs(T/c).
(iv) If |J| < Tea(P)
Reject all jobs in J and Call EndBadPhase(T/c).
(v) Else Call EndGoodPhase(T,Q(t), A(P),T).

EndGoodPhase(Ty, J1, Jo, Ts):

1. Push (71, Jy, J2) on the stack S.
2. Update T < smallest value of ¢* above or equal to T5, for integer k.
3. Initialize all queues to empty.
4. Start a new phase P with
A(P),A'(P),R(P) + 0,a(P),ad'(P),r(P) < 0.

EndBadPhase(T}):

1. Update T < T;.

2. The queues on all machines remain unchanged.

3. Set P’ to be the current phase P.

4. Start a new phase P with A'(P) « A(P'), A(P) «+ 0.
a'(P) + |A/(P)|,R(P) + 0,7(P),a(P) « 0.

Figure 3 Algorithm A.

result, we also need to define flow-time-weight class and rejection-weight-density class. A

()

job j with processing time p;, rejection-weight wy) and flow-time-weight w;'’ s of flow-

time-weight class k if 2% < w§f) < gkt Similarly, it is of rejection-weight-density class k if

2k < wﬁr)/pj < 2F+1 For a job j with remaining processing time p; at some time during a
)]

schedule, its remaining weighted processing time is simply w;"” - p}. Then we have

A.R. Choudhury, S. Das, and A. Kumar

» Theorem 2 ([13]). Suppose there is an immediate dispatch schedule for an instance of the
GenWtdMaxFlowTime problem with the following property: for every flow-time-weight class
k and rejection-weight-density-class k', time t and machine i, the total remaining weighted
processing times of such jobs waiting in the queue of machine i at time t is at most T, for a
parameter T'. Then, one can construct another immediate dispatch schedule which dispatches
each job to the same machine as in the given schedule, and which may reject some jobs
of rejection weight O(g) times the total rejection weight of all jobs, such that the weighted
flow-time of every job is at most T /e*.

We now present algorithm B. This algorithm first maps our instance Z to an instance Z'
of the GenWtdMaxFlowTime problem and then invokes the above theorem to get a schedule
for Z'. We show that the corresponding schedule for Z has the desired properties.

Our algorithm B will emulate algorithm A — when a job j arrives, it is dispatched
according to A: if A rejects this job, B also rejects it; and if A dispatches it to machine 7,
then B also dispatches this job to i. Further, if j does not get rejected, B adds the job to the
instance Z' with the same release date and processing requirement. If the current time (at
which j is released) belongs to a phase P of schedule A, then we set w§f) to 1 /est(P). We

set wj(.r) to 1. Now we invoke the theorem above to build a schedule for Z’. This schedule may
reject some more jobs, but dispatches jobs to the same machine as in B. Thus, we can use
the same schedule for 7 as well. This completes the description of our scheduling algorithm.

6 Analysis

We here give the analysis of the schedules A and B.

Algorithm A. We first show that algorithm A does not reject too many jobs.
» Lemma 3. Algorithm A rejects O(e)-fraction of the jobs.

Proof. We argue that the total number of jobs rejected in a phase P is at most O(g) times
the total number of jobs released during this phase and the previous phase. Summing over
all phases, this will prove the desired result.

Algorithm 4 employs the following job rejections within a particular phase:

(a) Whenever a job arrives, the DispatchJob routine may reject the job - by Step 2
of the algorithm, the total number of such jobs is at most 7ea’(P) + 1 < 8ed/(P),
because we know that a’(P) > 1/e (indeed, if a’(P) < 1/e, then it is easy to check that
DispatchJob will reject a job j only is it is T-big. But then we should have terminated
this phase in Step 1(i) of the algorithm.)

(b) Rejection of jobs in Step 3: Note that steps 3(i) and 3(iv) can be executed at most once
during a phase, because after these steps, we will end this phase. The conditions in Step
3 clearly state that the number of such job rejections is O(ga’(P)). <

Next we state the main technical property of algorithm A. This is where we show that
for good phases, we get a lower bound on the optimal solution as well. Suppose the entry
(est(P), @, S) be pushed to the stack S at the end of a good phase P. Then the following
lemma 4 gives a lower bound on the optimal flow-time of the jobs of S. Since A(P) C S,
the lower bound also holds for the jobs arriving in the phase P. The proof of this lemma is
deferred to the full version; the proof uses ideas from [13], but requires many new details as
well.

33

FSTTCS 2015

34

Minimizing Weighted £,-Norm of Flow-Time in the Rejection Model

» Lemma 4. Suppose the entry (est(P),Q,S) be pushed to the stack S at the end of a good
phase P. The total flow-time of any (off-line) algorithms on the set of jobs in S is at least
g2 .|9| - est(P)/c.

Recall that for any class k, and parameter T, J{ﬁ denotes the set of jobs of class k£ which
arrived during those phases P for which est(P) was T; and Jr denotes Uy J%.

» Lemma 5. Algorithm A ensures that at any time t, machine i and class k, the total
remaining processing time of jobs of Jqli, which have been dispatched to a machine i, at a
time t is at most O(aT).

Proof. We shall prove some invariant properties of the stack S. The lemma will follow from
these properties. Note that an entry in the stack was pushed in Steps 1(i), or 2(i) or 3(v).
For each such entry e, let T, denote the estimate for the corresponding phase. For the sake
of writing down the invariants, we define a related quantity, 7, as follows: if e was pushed on
the stack due to Steps 1(i) or 2(i), we define 7, = T.. Else we set T, = T, /c. Consider a time
t, and let P denote the current phase, and T be est(P). Let the entries in the stack (from
top to bottom order) be ey, ..., ex. Then, the following property holds: 7' > T/ > ... >T{ .

We prove this by induction on t. For t = 0, there is no entry in the stack, and so this
statement is true trivially. Now, suppose this is true for some time ¢ during a phase P, and
again, let T denote est(P). If this phase ends in Steps 1(i) or 2(i), then we push another
entry e in the stack with T, = T/ = T. Further, the estimate for the next phase is strictly
larger than T'. Therefore, the condition continues to hold in the next phase.

Now, suppose the current phase P ends in Step 3(iv). If the stack top entry e satisfied
T! =T/c, then T, would be T or T'/c. Hence, we would have popped such an entry in Step
3(ii). So when this phase ends, the top entry e in the stack would have T/ < T'/c?. The next
phase would have estimate equal to T'/c. Therefore, the invariant continues to hold in the
next phase as well.

Finally, suppose the current phase ends in Step 3(v). As argued above, we will pop out
any entry with 7T, = T'/c. Further, we push a new entry e with 7., = T'/¢, and the estimate
for the next phase is T. Thus the invariant holds in this case as well.

The statement of the lemma is clearly true for jobs released in a particular phase (by
the properties of the DispatchJob algorithm. Now the above invariant implies that for any
parameter T', the jobs from Jr which are still alive (i.e., waiting to be processed) can come
from at most two phases. Thus, the lemma is true. |

Algorithm B. We now discuss the properties of algorithm B. We first show that the
flow-time of the jobs in a particular phase is bounded by the estimate for that phase.

» Lemma 6. Algorithm B ensures that the flow time of every job of Jp (which is not rejected)
is at most O(aT'/e*).

Proof. We use the notation while discussing algorithm B. Since the rejection weights are all
1, the rejection-weight-density class essentially becomes the same as the definition of class
based on processing time only. Assuming c is a power of 2, it follows that each flow-time-
weight-class corresponds to a particular value of the estimate T (since the estimates are
powers of ¢). Now, Lemma 5 shows that for a particular class k and estimate T', and a time
t and machine 7, the total remaining processing time of jobs from J% at time ¢ on machine i
is at most O(aT). Hence, their total remaining weighted-processing time is O(«) — note that
this bound holds for all jobs (irrespective of k and T'). Applying Theorem 2, we get that the

A.R. Choudhury, S. Das, and A. Kumar

schedule B incurs weighted flow-time of O(a/e?) for such jobs, and so, the actual flow-time
O(aT/e%). <

Having bounded the flow-time of jobs in our schedule, we now give the lower bound of
the corresponding quantity for the off-line optimum. Our main technical lemma 4 already
lower bounds the optimum value for a specific good phase. The following claim follows easily
from this result.

» Claim 7. The total flow-time of jobs released during good phases is at most O(1/e'!) times
the optimal value.

Proof. The proof directly follows from Lemma 4 and Lemma 6, and the fact that |A’(P)| <
|S| < |A'(P)|, where the entry (est(P),Q,S) is pushed to the stack S at the end of the
good phase P, and |A’(P)| is at most the number of jobs released during P and the previous
phase. <

It remains to bound the flow-time of jobs released during bad phases. Before this, we
make an important observation.

» Claim 8. For any phase P, the set of jobs in Q(s(P)), i.e., the jobs waiting in the queues
of the machines at the beginning of this phase, could have only arrived during the previous
phase.

Proof. Let P’ be the phase preceding to P. If P’ is a good phase, then P will start with
empty queues, so there is nothing to prove. If P’ is a bad phase, it will remove the jobs in
Q(s(P")) (in Step 3(i)), and so, the only jobs which carry over to phase P must have been
released during P’. |

» Lemma 9. The total flow-time of jobs released during bad phases is at most O(1/e'?)-times
the optimal value.

Proof. Let By,...,B; be a maximal sequence of bad phases, and let Gy denote the good
phase preceding B;. In Step 3 of the algorithm A, each of the phases B; may pop an entry
from the stack — let this entry correspond to a good phase G;. Note that G is same as
G1. We know that est(G;) > est(B;)/c. For phase P, let N(P) denote the number of jobs
released during that phase. For phase B;, we must have ended it when the condition in
Step 3 was satisfied. Therefore, N(B;) is at most (N(G;) + N(B;_1))/e, if i > 1 (using

the above claim). Lemma 6 shows that the total flow-time of jobs during By,..., B; is at
most 22:1 N(B;) - %53) If T denotes est(By), then est(B;) = ci_l Therefore, the total
flow-time of the jobs released during By, ..., B; is at most
l
aT
Z N(B;) - praspes (1)
i=1
We also know that N(B;) < 1/e- (N(G;) + N(B;—1). Since ¢ = 2/¢, we get
ol aT aT
N(B;))- —— — N(B;_1) - ——— < N(Gy) - ————.
(Bi) ci—1gd (1) 2ci—2:4 = (Gi) 9ci—2:4

Summing the above for all i, we get

oT
ZN(Bi).CZ 1472621\7 'Cv T

35

FSTTCS 2015

36

Minimizing Weighted £,-Norm of Flow-Time in the Rejection Model

Now observe that est(G;) > %, and Lemma 4 implies that the total flow-time of the
jobs released during Gy, ..., G is at least Y, Q(e® - N(G;) - est(G;)), which is at least Q('?)
times the total flow-time of the jobs released during By, ..., B;. Now, we sum this up over
all maximal sequences of bad phases, and observe that G; is uniquely determined by B;(a

stack entry once popped never gets pushed back again). <

7 Extension to weighted £, norm

We first outline the steps needed to extend our results to the case where each job j has a
weight w;. Let W denote the total weight of arriving jobs, and let T} denote the optimal
value T7 of the total weighted flow-time of these jobs. It is easy to see that jobs of total
weight at least (1 — &)W will have (unweighted) flow-time at most 7* = T7/(eW). Thus,
we modify algorithm 4 to maintain a variable T which is supposed to track the value T* =
T /(eW).

We say a job j with processing time p;, and weight w; is of density class k if gk <
Z—j < BkFL for some constant B (which will be roughly O(1/¢)). The job dispatch and job
processing rule is same as the algorithm for the unweighted case, with the only difference
that now Q; x(t) and load; ;(t) are defined for every density class k. Rest of the details of
A remain unchanged, except for the fact that a(P),a’(P),r(P) now keep track of the total
weight of corresponding jobs. The algorithm B remains unchanged except for the fact that

T

for a job j, it sets w; * to its weight w.

We now show how our results extend to the problem of minimizing the ¢, norm of the
flow time of the jobs, for some positive constant p. For sake of clarity, we argue about the
unweighted case only, though the weighted case follows similarly. Let us assume that we
know the total number of the jobs released n, and the optimal value T} of the ¢, norm of the
flow-time of these jobs. From this it follows that at least (1 — ¢)-fraction of the total number
of jobs will have (unweighted) flow-time at most T* = T} /(en)'/P. Thus in algorithm A,
we maintain a variable T which is supposed to track the value T* = T} /(en)'/P. Also, we
increase or decrease T in factors of ¢ = (2/¢)*/P. The rest of the algorithms A and B remains

as it is for the problem of minimizing the ¢; norm of the flow time of jobs.

—— References

1 Christoph Ambiihl and Monaldo Mastrolilli. On-line scheduling to minimize max flow time:
an optimal preemptive algorithm. Oper. Res. Lett., 33(6):597-602, 2005.

2 S. Anand. Algorithms for flow time scheduling. PhD thesis, Indian Institute of Technology,
Delhi, December 2013.

3 S. Anand, Karl Bringmann, Tobias Friedrich, Naveen Garg, and Amit Kumar. Minimizing
maximum (weighted) flow-time on related and unrelated machines. In ICALP (1), pages
13-24, 2013.

4 S. Anand, Naveen Garg, and Amit Kumar. Resource augmentation for weighted flow-time
explained by dual fitting. In SODA, pages 1228-1241, 2012.

5 Nir Avrahami and Yossi Azar. Minimizing total flow time and total completion time with
immediate dispatching. In SPAA, pages 11-18, 2003.

6 Yossi Azar, Joseph (Seffi) Naor, and Raphael Rom. The competitiveness of on-line assign-
ments. In Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 203-210, 1992.

7 Nikhil Bansal, Avrim Blum, Shuchi Chawla, and Kedar Dhamdhere. Scheduling for flow-
time with admission control. In Proc. ESA, 2003, 2003.

A.R. Choudhury, S. Das, and A. Kumar

10

11

12

13

14

15

16

17

18

19

20

Nikhil Bansal and Kirk Pruhs. Server scheduling in the lp norm: a rising tide lifts all boat.
In STOC, pages 242-250, 2003.

Yair Bartal, Stefano Leonardi, Alberto Marchetti-Spaccamela, Jiri Sgall, and Leen Stougie.
Multiprocessor scheduling with rejection. SIAM J. Discrete Math., 13(1):64-78, 2000.
Jivitej S. Chadha, Naveen Garg, Amit Kumar, and V. N. Muralidhara. A competitive al-
gorithm for minimizing weighted flow time on unrelatedmachines with speed augmentation.
In STOC, pages 679-684, 2009.

Ho-Leung Chan, Sze-Hang Chan, Tak Wah Lam, Lap-Kei Lee, and Jiangiao Zhu. Non-
clairvoyant weighted flow time scheduling with rejection penalty. In SPAA, pages 246254,
2012.

Chandra Chekuri, Ashish Goel, Sanjeev Khanna, and Amit Kumar. Multi-processor
scheduling to minimize flow time with epsilon resource augmentation. In STOC, pages
363-372, 2004.

Anamitra Roy Choudhury, Syamantak Das, Naveen Garg, and Amit Kumar. Rejecting
jobs to minimize load and maximum flow-time. In SODA, pages 1114-1133, 2015.

Leah Epstein and Hanan Zebedat-Haider. Preemptive online scheduling with rejection of
unit jobs on two uniformly related machines. J. Scheduling, 17(1):87-93, 2014.

Naveen Garg and Amit Kumar. Better algorithms for minimizing average flow-time on
related machines. In ICALP (1), pages 181-190, 2006.

Naveen Garg and Amit Kumar. Minimizing average flow-time : Upper and lower bounds.
In FOCS, pages 603-613, 2007.

Daniel Golovin, Anupam Gupta, Amit Kumar, and Kanat Tangwongsan. All-norms and
all-/,-norms approximation algorithms. In FSTTCS, pages 199-210, 2008.

Sungjin Im and Benjamin Moseley. Online scalable algorithm for minimizing ;k-norms of
weighted flow time on unrelated machines. In SODA, pages 95-108, 2011.

Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. In FOCS,
pages 214-221, 1995.

Stefano Leonardi and Danny Raz. Approximating total flow time on parallel machines. J.
Comput. Syst. Sci., 73(6):875-891, 2007.

37

FSTTCS 2015

On Correcting Inputs: Inverse Optimization for
Online Structured Prediction®

Hal Daumé III, Samir Khuller, Manish Purohit, and
Gregory Sanders

Computer Science Department
University of Maryland, College Park, MD, US
{hal,samir,manishp,gsanders}@cs.umd.edu

——— Abstract

Algorithm designers typically assume that the input data is correct, and then proceed to find
“optimal” or “sub-optimal” solutions using this input data. However this assumption of correct
data does not always hold in practice, especially in the context of online learning systems where
the objective is to learn appropriate feature weights given some training samples. Such scenarios
necessitate the study of inverse optimization problems where one is given an input instance as
well as a desired output and the task is to adjust the input data so that the given output is indeed
optimal. Motivated by learning structured prediction models, in this paper we consider inverse
optimization with a margin, i.e., we require the given output to be better than all other feasible
outputs by a desired margin. We consider such inverse optimization problems for maximum
weight matroid basis, matroid intersection, perfect matchings in bipartite graphs, minimum cost
maximum flows, and shortest paths and derive the first known results for such problems with
a non-zero margin. The effectiveness of these algorithmic approaches to online learning for
structured prediction is also discussed.

1998 ACM Subject Classification 1.2.6 Learning
Keywords and phrases Inverse Optimization, Structured Prediction, Online Learning

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.38

1 Introduction

Algorithm designers generally assume that the input data is sacrosanct and correct. Al-
gorithms are then typically run on this input data to compute “optimal” or “sub-optimal”
solutions quickly whether it be the computation of a maximum spanning tree, a maximum
matching, max weight arborescence, or shortest paths. However, with an increasing reliance
on automatic methods to collect data, as well as in systems that learn, this assumption does
not always hold. The input data can be erroneous (even though it may be approximately
correct), and it becomes important to “adjust” the input data to achieve certain desired
conditions.

A simple example can be used to illustrate the main point — suppose we are given a
weighted graph G = (V, E) and a spanning tree T, and told that T' should be a maximum
weight spanning tree in G. The goal now is to perturb the edge weights of the graph G,
minimizing the Ly norm of the perturbation, so that 7" is indeed the optimal spanning tree.
This kind of problem has been studied previously in the form of “Inverse Optimization”

* Partially supported by NSF grants 11S-1451430 and CCF-1217890.

© Hal Daumé IIT and Samir Khuller and Manish Purohit, and Gregory Sanders;

Bv licensed under Creative Commons License CC-BY
35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 38-51

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.38
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

H. Daumé Ill, S. Khuller, M. Purohit, and G. Sanders

root

/\AA

dog catches the red ball

Figure 1 Example dependency parse tree. The tree describes the relations between head words
and their dependents in the sentence.

problems. However, we wish to accomplish a stronger goal of making sure that the given
tree T is better than every other tree in G by a given margin §.

Our initial motivation for studying this problem comes from the structured prediction
task in machine learning [15, 20, 3, 22, 24]. For concreteness and ease of exposition, we
now describe structured prediction in the context of predicting dependency parse trees for
natural language sentences. Given an English sentence, its dependency parse is a rooted,
directed tree that indicates the dependencies between different words in the sentence as
shown in Figure 1. The input sentence can be represented as a complete, directed graph on
the words of the sentence that is parameterized by features on the edges. Given a learned
model (represented as a vector of parameters), the weight of an edge is computed as the
inner product of its feature vector and the model. As linguistic constraints dictate that the
required dependency parse must form a rooted, spanning arborescence of the graph, one can
use off-the-shelf combinatorial algorithms [9, 2] to find the highest weight arborescence. The
learning problem is thus to find a parameter vector such that once the edges are weighted by
the inner products, running a combinatorial optimization algorithm would return the desired
parse tree. At “training time”, we are given a sentence as well as its correct parse tree and the
problem that we need to solve is exactly the inverse optimization problem - given the current
model and the parse tree, say T, find the minimum perturbation to the model so that the
combinatorial optimization algorithm would return T'. It is well established in the learning
theory literature that achieving a large margin solution enables better generalization [6]. We
consider minimizing the Ly norm because of connections to prior work [14]. In particular, for
applications in structured prediction, the convergence and error bounds (included in Section
6) require Ly norm minimization.

In our work we consider such inverse optimization problems with a margin in a general
matroid setting. We consider both the problem of modifying the weights of the elements of a
matroid, so that a given basis is a maximum weight basis (with a given margin of §) and
the considerably harder problem of matroid intersection where a given basis of two matroids
should have weight higher (by at least §) than any other set of elements that is a basis in
the two matroids. This framework captures two special cases which are useful for structured
prediction - namely maximum weight bipartite matching (useful for language translation)
and maximum weight arborescence (useful for sentence parsing). We also consider d-margin
inverse optimization problems for a number of other classical combinatorial optimization
problems such as perfect matchings, minimum cost flows and shortest path trees. In addition,
we present a generic framework for online learning for structured prediction using the
corresponding inverse optimization problem as a subroutine and present convergence and
error bounds on this framework.

1.1 Related Work

Inverse optimization problems have been widely studied in the Operations Research literature.

Most prior work however has focused on minimizing the L; or L., norms between the weight

39

FSTTCS 2015

40

On Correcting Inputs: Inverse Optimization for Online Structured Prediction

vectors and, more importantly, do not allow non-zero margin (4). Heuberger [13] provides
an excellent survey of the diverse inverse optimization problems that have been tackled.
Both the inverse matroid optimization [8] and matroid intersection [16] have previously been
studied in the setting of minimizing the L; norm and with zero margin. However, they use
techniques that are specialized to minimizing the L; norm of the perturbation and do not
extend to minimizing the Lo norm. At the same time, these approaches to do not generalize
to the general case of inverse optimization with non-zero margins.

In typical global models for structured prediction (for e.g. see [15, 17, 24, 3, 5, 18]), the
discrete optimization problem is considered a “black box”. By treating the combinatorial
problem as a black box, these methods lose the ability to precisely reason about how certain
changes to the underlying parameter vector can affect the eventual output. The simplest
approach to solving the online structured prediction problem is the structured perceptron [3].
On each example, the structured perceptron makes a prediction based on its current model.
If this prediction is incorrect, the algorithm suffers unit loss and updates its parameters with
a simple linear update that moves the predictor closer to the truth and further from the
current best guess. While empirically successful in a number of problems, this particular
update is relatively imprecise: there are typically an exponential number of possible outputs
for any given input, and simply promoting the correct one and demoting the models’ current
prediction may do very little to move the model as far as it needs to go. An alternative
approach is the large margin discriminative approach [6] that seeks to change the parameters
as little as possible subject to the constraint that the true output has a higher score than
all incorrect outputs. However, such an approach is often computationally infeasible for
structured prediction as there are usually an exponential number of potential outputs.
McDonald et al. [18] circumvent this infeasibility by using a k-best list of possible outputs
and restrict the set of constraints to require that the true output has a higher score than the
incorrect outputs on the k-best list. This has been shown to be effective for small values of &k
on simple parsing tasks [18]. However, for more complex tasks, like machine translation, one
needs more complicated update frameworks [1]. In this work we show that the large margin
discriminative approach is applicable to a wide range of problems in structured prediction
using techniques from inverse combinatorial optimization.

In the context of online prediction, the most related work to ours is that of Taskar et
al. [22], who also consider structured prediction using inverse bipartite matchings. They define
a loss function that measures, against a ground truth matching, the number of mispredicted
edges in the found matching. This “Hamming distance” style loss function nicely decomposes
over the structure of the graph and thereby admits an efficient “loss augmented” inference
solution, in which correct edges are penalized during learning. (The idea is that if correct
edges are penalized, but the model still produces the correct matching, then it has done
so with a sufficiently large margin.) This idea only works in the case of decomposable loss
functions, or the simpler 0-margin formulation. In comparison, our approach works both for
decomposable loss functions as well as “zero/one loss” over the entire structure. Furthermore,
our approach generalizes to arbitrary matroid intersection problems and minimum cost flows
and thus is applicable to a much wider range of structured prediction problems.

1.2 Contribution and Techniques

A lot of prior work in the inverse optimization literature formulates the problem as a linear
program and then uses strong duality conditions to find the new perturbed weights. However,
such techniques cannot be extended to handle a non-zero margin that is required by the
application to structured prediction. We formulate inverse optimization to minimize the

H. Daumé Ill, S. Khuller, M. Purohit, and G. Sanders

L5 norm of the perturbations as a quadratic program and use problem specific optimality
conditions to determine a concise set of linear constraints that are both necessary and
sufficient to guarantee the required margin. In particular, one of the key ingredients is a set
of polynomially many linear constraints that ensure that an appropriately defined auxiliary
graph does not contain small directed cycles. We note that our formulations can easily be
adapted to minimize the L; norm of the perturbations by simply modifying the objective
and using linear programming.

We obtain concise formulations for exactly solving §-margin inverse optimization problems
for (i) maximum weight matroid basis, (i) maximum weight basis in the intersection of two
matroids, (iii) shortest s-t path, (iv) shortest path tree, (v) minimum cost maximum flow in
a directed graph.

We also present convergence results for the generic online learning framework for structured
prediction motivating our study.

The rest of the paper is organized as follows. In Section 2, we formally define §-margin
inverse optimization. In Sections 3 and 4, we present our results on inverse optimization for
matroids, and matroid intersections respectively. In Section 5, we present a more efficient
algorithm for the special case of inverse perfect matchings in bipartite graphs. In Section
6, we describe an online learning framework for structured prediction as an application.
The proofs of convergence and error bounds for this learning framework as well as some
preliminary experimental results for our learning model are included in the full version of
this paper [7]. We also defer the results for inverse optimization for shortest path trees and
minimum cost flow problems to the full version.

2 Problem Description

As explained in the introduction, we require a given solution to be better than all other
feasible solutions by a margin of §. We now formalize this notion of d-optimality.

» Definition 1 (6-Optimality). For a maximization problem P, let F denote the set of feasible
solutions, let w be the weight vector, ¢(w, A) denote the cost of feasible solution A under
weights w, and let 6 > 0 be a scalar. A feasible solution S € F is called é-optimal under
weights w if and only if

c(w,8) > c(w,S")+4d, VS'(#£S)eF.

d-optimality for minimization problems is defined similarly. All problems we consider in
this work can be classified as d-margin inverse optimization.

» Definition 2 (6-Margin Inverse Optimization). For a given optimization problem P, let F
denote the set of feasible solutions, let w be the weight vector, let § > 0 be a scalar, and let
S € F be a given feasible solution. §-Margin Inverse optimization is to find a new weight
vector w’ minimizing ||w’ — w||2 (L2 norm) such that S is the d-optimal solution of P under
weights w'.

In the following sections we consider J-margin inverse optimization for a number of
problems mentioned earlier.

3 Maximum weight matroid basis

In order to provide intuition about the type of problems we propose to solve in this paper,
we first begin with the simple case of Inverse Matroid Optimization. We recall the definition
of a matroid.

41

FSTTCS 2015

42

On Correcting Inputs: Inverse Optimization for Online Structured Prediction

» Definition 3 (Matroid). A matroid is a pair M = (X,Z) where X is a ground set of
elements and Z is a family of subsets of X (called Independent sets) such that
() T#6.
(ii) (Hereditary) If B € Z, and A C B, then A € 7.
(iii) (Exchange property) If A, B € 7, and |A| < |B|, then there exists some element e € B\ A
such that AU {e} € Z.

» Definition 4 (Matroid Basis and Circuit). Let M = (X, Z) be a matroid. Then any maximal
independent set in Z is called a basis of the matroid. Conversely, any minimal dependent set
is called a circuit.

For the inverse problem we are given a matroid M = (X, 7), a weight function w on the
elements, and a basis B of M. The goal is to find a weight function w’ so that B is the
d-optimal basis of M under the new weights. As it is well known that a spanning tree is a
basis of a graphical matroid, this inverse matroid optimization problem directly generalizes
the inverse maximum spanning tree problem.

We first state a simple optimality condition for a given basis B of a matroid M. An easy
generalization of [21] for 6 > 0 gives the following lemma.

» Lemma 5 (Corollary 39.12b in [21]). A given basis B of a matroid M is d-optimal (under
weight function w) if and only if for any f ¢ B, and each e € C(f), w(e) —w(f) > 0, where
Cp(f) denotes the unique circuit in BU{f}.

We thus have a set of polynomially many linear constraints that are necessary and sufficient
for the given basis B to be J-optimal. The inverse matroid optimization problem can then
be formulated as a linearly constrained quadratic problem as follows -

min > (w'(e) —w(e))* subj. to: (1)
ecX
w'(e) —w'(f) 26, Vf¢ B,Vee Cp(f) (2)

Such a program with a quadratic objective and linear constraints can be solved in
polynomial time and a number of practical solvers such as [12] are available.

4 Matroid Intersection

Similar to the case with a single matroid, we need to derive a necessary and sufficient
condition for a common basis B of two matroids to be J-optimal. We can establish such an
optimality condition with the help of an exchange graph associated with the basis B and
matroids M; and M.

» Definition 6 (Exchange Graph). Given two matroids My = (X,Z;) and My = (X, Z,),
a weight function w : X — R™T, and a common basis B, an exchange graph is a directed,
bipartite graph G = (V, A) with a length function [on edges that is defined as follows.

V=BUX\B (3)
A=A UA, (4)
A ={(z,y)lr € B,y e X\ B,B— {2} +{y} € i } (5)
Ay ={(y,z)|lr € B,y e X\ B,B—{z} + {y} € Io} (6)

)
I(s) = {w(m) %f 5 i (x,y) € A4
—w(y) if s=(y,z) € As

H. Daumé Ill, S. Khuller, M. Purohit, and G. Sanders

The above graph captures the exchange operations that can be performed. An edge
(e, f) implies that deleting e and adding f to B preserves independence w.r.t matroid
M; and similarly for the other direction. As the graph is bipartite, every cycle is of
even length - a cycle C = (21,91, 22,¥2, ... 2k, Y, 1) corresponds to constructing a set
B" =B —{x1,22,... 2, U{y1,y2,..., Yk Further

k

w(B") = w(B) =Y wlw;) + Y w(y) =w(B) - 1(C)

i=1 i=1

where [(C) = Y. I(e) is the sum of lengths of edges in the cycle C. We are now in a position
to present the J-optimality condition of B in terms of the exchange graph. Fujishige [11]
shows the following lemma for the case of 6 = 0. We include the extended proof for general §
margin here for completeness. It is important to note that while there are other optimality
conditions for matroid intersection such as the weight decomposition theorem by Frank [10],
these conditions do not easily generalize for non-zero §.

» Lemma 7 (Matroid Intersection d-optimality condition). The given common basis B is
d-optimal if and only if the exchange graph G contains no directed cycle C such that

ZeEC l(e) < J.

Proof. We'll refer to two well-known lemmas [21] regarding the relationship between bases of
a matroid and matchings in the exchange graph. Let G; = (V, A1) and G = (V, A3) be the
subgraphs of G induced by the two matroids respectively. Further for B’ C X, let G(B, B’)
denote the subgraph induced on the G by the vertex sets B\ B’ and B’ \ B.

» Lemma 8 (Corollary 39.12a in [21]). If B’ is a basis of matroid My [Ma], then G1(B, B’)
[G2(B, B')] contains a perfect matching.

» Lemma 9 (Corollary 39.13 in [21]). For B’ C X, if G1(B, B")[G2(B, B’)] has a unique
perfect matching, then B’ is a basis of My [M3].

Sufficiency: This is the easy direction. Let B’ be any common basis other than B. Applying
Lemma 8, we know that G(B, B’) has two perfect matchings (one each in G;(B, B’) and
G2(B, B’)). Union of these two perfect matchings yields a collection of cycles C. Further,
by construction, by traversing these cycles, one can transform B — B’ and hence, we
have w(B') = w(B) — > e [(C). Therefore, since we have I(C) > ¢ for all cycles, we are
guaranteed that w(B’) < w(B) — § as desired.

Necessity: Ideally, we would like to say that every cycle in G leads to a swapping such that
the set so obtained is also independent in both the matroids. This would immediately imply
that a cycle of small length would lead to a common basis B’ which is not much smaller
than B.

However, the presence of a cycle simply implies the presence of a perfect matching (one
in each direction) which may not be unique. For example, Figure 2 shows an instance of an
arborescence problem (left), and the associated exchange graph (right). Here G contains a
cycle a-x-b-y-a which leads to a new set x,y, c which is not an arborescence.

In the previous example, observe that if the cycle a-x-b-y-a were to have small weight,
that would imply that at least one of a-y-a or b-x-b cycles too has small weight both of which
lead to a feasible solution. This observation motivates us to look at the smallest cycle of
weight less than ¢ and hope that it does induce an unique perfect matching.

43

FSTTCS 2015

44 On Correcting Inputs: Inverse Optimization for Online Structured Prediction

Figure 2 Instance showing every cycle in G need not lead to a common basis.

Suppose that the graph has a cycle having weight less than 6. Let C be the smallest (in
terms of number of arcs) such cycle. Look at the graph induced by the vertex set of the cycle.
We claim that this induced subgraph has a unique perfect matching (one in each direction).
Here we prove the claim for one direction. C being an even cycle trivially contains a perfect
matching M from B-side to X \ B-side. Suppose there exists another perfect matching M.
For every edge (z,y) in M’ \ M, the edge along with the path between y and = in C cause a
cycle. Further, each such cycle is smaller (number of edges) than C.

Let M denote the matching M with edge directions reversed. The union of M’ and
M now forms a collection of cycles. Consider any such cycle D. WLOG let the cycle be
(%0, Yo, T1, Y1, - - - » Thy Yk, To) such that the (z;41,%;) are edges in M (i.e. (y;,zi41) € M) and
(xi,9;) € M'. [All arithmetic is modulo k + 1]. We’ll now be interested in the length of the
path between these vertices in the original cycle C. Let C; denote the cycle formed by the
edge (x;,y;) and the path between y; and z; in C. We have,

1(C;) =1(C) = l(Path from z; to y; in C) + I((zi,v:))
Since (z;,y;—1) € M,

[(Path from z; to y; in C) = I((z4,yi—1)) + {(Path from y;_; to y; in C)
Further since by construction I((z,y;)) = I((z,y;))(= w(x)), we have

1(C;) = 1(C) — l(Path from y;_1 to y; in C)
Let P;,_1_,; denote this path. Summing over all (z;,y;) edges in D, we get

k
> UC) = KI(C) = (I(Pesso) + U(Poss1) + .+ U(Pr—15k))
i=0
= kI(C) — K'1(C)

1 Since we start from yg, go around the C' and reach y; back

= K"1(C)
< k"6

The sum of k weights is less than k"0 with k" < k, which implies

3C;, such that I(C;) < §

But this is a contradiction since C' was the smallest cycle having weight less than §.
Hence, the perfect matching M is unique. Similarly, the perfect matching induced by C' in

H. Daumé Ill, S. Khuller, M. Purohit, and G. Sanders

the other direction too is unique. Applying Lemma 9 successively on both sides, we know
that B’ obtained by exchanging as per C' is a common basis for both matroids. Further, we
have

w(B') = w(B) —1(C)
w(B') >w(B)—4§

Hence we have proved that if G has a cycle with small weight, then B is not d-optimal,
thus proving the necessity of the claim. |

4.1 Lower bounding cycles

In order to use Lemma 7 to solve the inverse matroid intersection problem efficiently using
quadratic programming, we need a way to formulate this condition as a polynomial number
of linear constraints. We now explore a technique to express the condition that a given
graph has no small (of length less than) cycles concisely. Say we are given a directed graph
G = (V, A) and our task is to assign edge-lengths so that all cycles in G have weight at least
0. Letting the edge-lengths to be variables, the feasible region in this case is unbounded and
is defined by a constraint for every cycle in G, i.e. we have the region R; in m dimensions
defined by

Rl'

Z le >96 For all cycles C (8)
ecC
Of course, this formulation has an exponential number of constraints. Although the ellipsoid
algorithm can be used to solve the quadratic program in polynomial time, it is often too
slow for practical use. We now show that we can obtain a concise extended formulation by
adding a few extra variables.
Suppose we have variables d,, representing the shortest distance between vertices = and
y. In this case, the graph has no cycle of weight less than ¢ if and only if d,, > § for all
vertices x (assume d,, = oo, if = is not in any cycle). Consider the region Ry in m + n?
dimensions:

R2 :
dey < l(ay) For all (z,y) € A (9)
dyz < dayy + l(y2) For all z,z € V and y s.t. (y,2) € A (10)
Ay >0 Forallz € V (11)

Constraints (9) and (10) enforce triangle inequality, and (11) enforce the condition that all
cycles are large. We now prove that optimizing any function of [over R; is equivalent to
optimizing the same over R.

» Lemma 10. R, is identical to the projection of Ry on the m dimensions corresponding to

the edge-lengths.

Proof.
R; C Projection(R3): Let [: E — R denote a point in R;. Since the constraints (9) and
(10) are always valid for a true distance function, let d : VxV — R denote the actual distance

function in the graph induced by . Such a d definitely satisfies constraints (9) and (10).

Additionally, for all vertices x belonging to some cycle, since all cycles under [have weight at
least 9, we have d, > §. For a vertex = which does not belong to any cycle, one can simply
set dgp = 0.

45

FSTTCS 2015

46

On Correcting Inputs: Inverse Optimization for Online Structured Prediction

Projection(Rz2) C Ry: Consider a point in Ry. We now have the lengths of edges I. as
well as some d,, values. Consider any cycle C = (z1,22,..., 2k, 1) in the graph. Applying
constraint (10) repeatedly we get

dxlxl < l(wwz) + l(wzwz) .o+ l(ﬁk—lwk) + l(wkw1) (12)
and also by constraint (11), we have

deyzy, >0 (13)

Hence we have, l(z,2,) + l(@yzg) + -+ + lap_120) T lapar) = 0, 1€ D cole > 0 which means
that the [, values are feasible in R;. >

Hence, optimizing any function of the [, variables over R; is equivalent to optimizing it
over Ry. However, Ry has only m + mn + n constraints and n? + m variables.

4.2 Putting it together

Lemmas 7 and 10 suggest a way to solve the §-margin inverse matroid intersection problem.
As per the requirements of Lemma 7, given the two matroids and the common basis B,
construct the exchange graph G = (V,; A = A; U Ay). Let w : X — RT be the original
weight function and let w’ be the new weight function which we desire. If [is the arc
lengths of G, according to the construction of Lemma 7, I, = w’(z) and [, = —w’(y) where
x € B,y € S\ B. Further, the objective that we minimize is the Ly norm of w — w’. We can
now add these additional constraints and the objective to the region Rs as per Lemma 10 to
obtain the minimum change on the weights of elements so that the exchange graph has no
small cycles and hence B is d—optimal.

min Z(w’(e) —w(e))? subj. to (14)
ceX

lyy = W' (2), V(z,y) € Ay (15)

lyz = —w'(y), Y(y,z) € As (16)

Aoy < oy, V(x,y) € A (17)

Apz < dgy + 1y, Vo, 2 € V\V(y,z) € A (18)

dow > 0, VeV (19)

4.3 Maximum Weight Arborescence

Given a directed graph, a r-arborescence (also known as a branching) is the directed analogue
of a spanning tree and is defined as a set of edges T spanning all vertices such that every
vertex (except r) has exactly one incoming edge in 7. Tt is well known that an arborescence
in a directed graph is a basis in the intersection of a graphical matroid and a partition
matroid. We analyze the complexity of the above technique for the special case of maximum
weight arborescence. Let G denote the graph in question having n vertices and m edges.

The exchange graph G, has a vertex for every edge of G, i.e., ne;, = m. The bipartition
of G, is such that we have components of size n and m — n respectively. Hence we have
Mer = O(mn). As seen in Section 4.1, we use O(n?,) variables and O(mezne,) contraints.
Thus, putting it all together, we have a quadratic program with O(m?) variables and O(m?n)
constraints.

H. Daumé Ill, S. Khuller, M. Purohit, and G. Sanders

The inverse maximum weight arborescence problem is important as it can used as a
subroutine in the online learning for dependency parsing [19]. The dependency parse tree
of a sentence can be represented as an arborescence over a graph consisting of every word
in the sentence as a node. In full version of the paper [7], we show experimental results for
dependency parsing using our framework.

4.3.1 Shortest s — t paths

Given a weighted graph G = (V, E,w), a path P between terminals s and ¢, and a margin §,
the inverse shortest s-¢ path problem is to find a minimum perturbation to w (minimizing the
Lo norm) so that P is shorter than all other paths between s and ¢ by at least ¢ under the
new weight function. As shown by [26], the inverse shortest s-t path problem can be reduced
to the inverse arborescence problem. Let G’ be G augmented by adding zero weight edges
from ¢ to all other vertices. It can be easily observed that P is the shortest s-t path in G if
and only if P and a subset of the zero weight edges form the minimum weight s-arborescence
of G'. Thus we can use an algorithm for inverse minimum weight arborescence to solve the
inverse shortest path problem.!

5 Perfect Matchings in Bipartite Graphs

For the bipartite maximum weight perfect matching inverse problem, the previous technique
yields a quadratic program having O(m?) variables and O(m?) constraints as the exchange
graph is sparse. In this section we show that we can in fact obtain more concise formulations.
Recall that for a given edge weighted, bipartite graph G = (X UY, E,w), and a perfect
matching M, an alternating cycle is a cycle in G in which edges alternate between those
that belong to M and those that do not. An alternating cycle C' is called §-augmenting, if
>eccnm w(€) < Xeecyar wle) + 6. The following characterization of a §-optimal perfect
matching is well known.

» Lemma 11. A perfect matching M is d-optimal if and only if the graph contains no
d-augmenting cycles.

The central idea is to construct a directed graph H on just the nodes of X such that any
directed cycle in H will correspond to an alternating cycle in G (w.r.t to the matching M)
and vice versa. We construct H = (X, A) to be a directed graph such that (z,2) € A if and
only if 3y € Y such that (z,y) € M and (y,z) € E; further let I(z,2) = w(z,y) — w(y, 2).
Figure 3 shows an example of this construction.

» Proposition 12. The auziliary graph H has a directed cycle of length less than ¢ if and
only if G has a d-augmenting alternating cycle.

Proof.

If: Let C = (z0, 0,21, Y1,---, Tk, Yk, To) be a J-augmenting cycle in G where all (x;,y;) € M.
By construction, H has a cycle C' = (zg,21,...,2k,29) and [(C") = Zfzo(w(xi,y,;) —
w(yi, Tiy1)) (modulo k+ 1) =37 oy wle) = X oeonn wle) <9

! Inverse minimum weight arborescence problem can be solved similar to the inverse maximum weight
arborescence problem.

47

FSTTCS 2015

48

On Correcting Inputs: Inverse Optimization for Online Structured Prediction

Graph H

____ edgesinG
_ matched edges in Mg

Figure 3 Example to show construction of H from a bipartite graph G and matching M.

Only If: Let C = (zg,21,...,Tk, %) be a cycle in H with I(C) < 4. By construction, 3
cycle C" = (x0,Y0,%1,Y1, -, Tk; Yk, To) in G. Now, I(C) = Zfzo(w(!ﬂuyz‘) —w(yi, Tit1))
(modulo k+1) =3~ ¢ orrpr wle) =2 .conar w(e). Thus C” is a 5-augmenting cycle in G. <

Using Lemma 11 and Proposition 12 along with Lemma 10, we can formulate the
inverse perfect matching problem as a quadratic program having O(n?) variables and O(mn)
constraints.

6 Application: Online learning for structured prediction

In this section, we present a framework for online learning using inverse combinatorial
optimization. The structured prediction task is to predict a discrete combinatorial structure
(such as an arborescence) given a structured input (such as a graph). The learning task is to
learn model parameters so that solving a combinatorial optimization problem on the input
instance would return the desired output structure. Structured prediction is extensively used
in natural language processing tasks such as obtaining parse trees of a sentence, or automatic
language translation.

In the online learning setting, we are presented with a set of T' training samples. These
consist of an input x; (for instance, a sentence) and an output y; (for instance, a syntactic
analysis of this sentence described as an arborescence on a graph over the words in the
sentence [25, 19]). Each edge in this graph is parameterized by a set of F' features that, for
instance, indicate how likely one word is to be the subject of another. Thus, each training
sample is a pair (z,y:) where x; is a graph parameterized by features on edges, and y; is
the desired output sub-structure (such as a spanning tree, or an arborescence, or a matching
depending on the application). The task is to learn a vector (of length F') of parameters 6
such that when edge weights are computed as inner products between the 8 and the edge’s
features, the output obtained by computing an optimal sub-structure (spanning tree, etc.) is
the desired output with some margin.

Algorithm 1 describes the generic online learning framework for structured prediction. It
is parameterized by an user-defined loss function ¢(y;,9) that specifies the loss incurred by
the prediction § with respect to the training solution g;. Algorithm 1 is an adaptation of the
Passive-Aggressive MIRA algorithm [4] for structured prediction.

Note that the minimization problem solved for each training sample is exactly J-inverse
optimization where we minimize the perturbations to the feature parameters instead of the
edge weights. In this framework, the different inverse optimization problems we considered
have applications for different structured predictions. For example, maximum weight arbor-

H. Daumé Ill, S. Khuller, M. Purohit, and G. Sanders

6,=0

fort=1toT do

Obtain training example z;, y;

w + weight function s.t. w(e) = 6; - fe where f, is feature vector of edge e

9 +— optimal sub-structure for graph x; under weights w

Suffer loss 6; = £(y:, §)

Update 0,1 = argming, ||6' — 8,]|3 such that
w’ < weight function s.t. w’(e) = @’ - f. where f. is feature vector of edge e
y; is the d;-optimal sub-structure for graph x; under weights w’

end

Return 67,4
Algorithm 1: Generic online learning framework.

escences are used to predict the parse tree of a sentence [25, 19], while maximum weight
matchings are used for language translation and word alignments [23].

Since we have shown that we can efficiently solve the inverse optimization problems for a
variety of combinatorial structures, we can extend the error bounds of the MIRA algorithm [4]
to work for learning the corresponding structured prediction models. In this section, we

present both convergence results and loss bounds for our generic online learning framework.

The proofs for these bounds closely follow those in Crammer’s Ph. D. dissertation [4] and are
included in the full version. The statement of the convergence result depends on a set of

dual variables obtained from the optimization problem in the “Update” step of Algorithm 1.

This implicitly encodes constraints over all possible outputs; we denote the dual variable
zt/'
dual variables is bounded by a constant independent of 7', which implies convergence of the

learning algorithm.

for output y on the t** example by af. We can show that the cumulative sum of these

» Theorem 1 (Convergence). Let {(xs,y:)}1; be a sequence of structured examples. Let
0" be any vector that separates the data with a positive margin 6* > 0. Assume the loss
function is upper bounded: ¢(y;, §) < A. Then the cumulative sum of coefficients is upper
bounded by:

>3y <aa (11 0

yeyt

However, it is not enough to show that the algorithm converges: it could converge to a useless

solution! We wish to show that in the process of learning it does not make too many errors.

In particular, we show that Algorithm 1 incurs a total hinge loss bounded by a constant
also independent of T', which implies that at some point it has exactly solved the learning
problem.

» Theorem 2 (Total Loss). Under the same assumptions as above, assume further that the
norm of the examples are bounded by R. Then, the cumulative hinge loss (#Hs,) suffered by
the algorithm over T trials is bounded by:

> s (1)) < 84 (P) (21)

t=1

49

FSTTCS 2015

50

On Correcting Inputs: Inverse Optimization for Online Structured Prediction

—— References

1

10

11

12
13

14

15

16

17

18

19

20

21

David Chiang. Hope and fear for discriminative training of statistical translation models.
Journal of Machine Learning Research, 2012.

Y.J. Chu and T.H. Liu. On the shortest arborescence of a directed graph. Science Sinica,
14:1396-1400, 1965.

Michael Collins. Discriminative training methods for hidden Markov models: Theory and
experiments with perceptron algorithms. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2002.

Koby Crammer. Online Learning of Complexr Categorical Problems. PhD thesis, Hebrew
University of Jerusalem, 2004.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. On-
line passive-aggressive algorithms. Journal of Machine Learning Research (JMLR), 2006.
Koby Crammer and Yoram Singer. Ultraconservative online algorithms for multiclass prob-
lems. Journal of Machine Learning Research (JMLR), 2003.

Hal Daumé ITI, Samir Khuller, Manish Purohit, and Gregory Sanders. On correcting inputs:
Inverse optimization for online structured prediction. CoRR, 2015. http://arxiv.org/abs/
1510.03130.

Mauro Dell’Amico, Francesco Maffioli, and Federico Malucelli. The base-matroid and in-
verse combinatorial optimization problems. Discrete applied mathematics, 128(2):337-353,
2003.

J. Edmonds. Optimum branchings. Journal of Research of the National Bureau of Stand-
ards, 71B:233-240, 1967.

Andrés Frank. A weighted matroid intersection algorithm. Journal of Algorithms, 2(4):328-
336, 1981.

Satoru Fujishige. A primal approach to the independent assignment problem. Journal of
the Operations Research Society of Japan, 20(1):1-15, 1977.

Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2012.

Clemens Heuberger. Inverse combinatorial optimization: A survey on problems, methods,
and results. Journal of Combinatorial Optimization, 8(3):329-361, 2004.

Jyrki Kivinen and Manfred Warmuth. Exponentiated gradient versus gradient descent for
linear predictors. In Symposium on the Theory of Computing (STOC), 1995.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data. In Proceedings of the Interna-
tional Conference on Machine Learning (ICML), pages 282-289, 2001.

Cai Mao-Cheng and Yanjun Li. Inverse matroid intersection problem. Mathematical Meth-
ods of Operations Research, 45(2):235-243, 1997.

David McAllester, Michael Collins, and Fernando Pereira. Case-factor diagrams for struc-
tured probabilistic modeling. In Proceedings of the Converence on Uncertainty in Artificial
Intelligence (UAI), 2004.

Ryan McDonald, Koby Crammer, and Fernando Pereira. Online large-margin training of
dependency parsers. In Proceedings of the Conference of the Association for Computational
Linguistics (ACL), 2005.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajic. Non-projective depend-
ency parsing using spanning tree algorithms. In Proceedings of the Joint Conference on
Human Language Technology Conference and Empirical Methods in Natural Language Pro-
cessing (HLT/EMNLP), 2005.

Vasin Punyakanok and Dan Roth. The use of classifiers in sequential inference. In Advances
in Neural Information Processing Systems (NIPS), 2001.

Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer Verlag, 2003.

http://arxiv.org/abs/1510.03130
http://arxiv.org/abs/1510.03130

H. Daumé Ill, S. Khuller, M. Purohit, and G. Sanders

22

23

24

25

26

Ben Taskar, Vassil Chatalbashev, Daphne Koller, and Carlos Guestrin. Learning structured
prediction models: A large margin approach. In Proceedings of the International Conference
on Machine Learning (ICML), pages 897-904, 2005.

Ben Taskar, Simon Lacoste-Julien, and Dan Klein. A discriminative matching approach to
word alignment. In Proceedings of EMNLP 2005, 2005.

Toannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasmine Altun. Large
margin methods for structured and interdependent output variables. Journal of Machine
Learning Research (JMLR), 6:1453-1484, Sep 2005.

Daniel Zeman. A statistical approach to parsing of czech. Prague Bulletin of Mathematical
Linguistics, 69:29c37, 1998.

Hu Zhiquan and Liu Zhenhong. A strongly polynomial algorithm for the inverse shortest
arborescence problem. Discrete applied mathematics, 82(1):135-154, 1998.

51

FSTTCS 2015

Dynamic Sketching for Graph Optimization
Problems with Applications to Cut-Preserving
Sketches*

Sepehr Assadi’, Sanjeev Khanna', Yang Lif, and Val Tannen?

University of Pennsylvania, Philadelphia, US
{sassadi,sanjeev,yangli2,val}@cis.upenn.edu

—— Abstract

In this paper, we introduce a new model for sublinear algorithms called dynamic sketching. In
this model, the underlying data is partitioned into a large static part and a small dynamic part
and the goal is to compute a summary of the static part (i.e, a sketch) such that given any
update for the dynamic part, one can combine it with the sketch to compute a given function.
We say that a sketch is compact if its size is bounded by a polynomial function of the length of
the dynamic data, (essentially) independent of the size of the static part.

A graph optimization problem P in this model is defined as follows. The input is a graph
G(V,E) and a set T C V of k terminals; the edges between the terminals are the dynamic part
and the other edges in G are the static part. The goal is to summarize the graph G into a
compact sketch (of size poly(k)) such that given any set @) of edges between the terminals, one
can answer the problem P for the graph obtained by inserting all edges in @ to G, using only
the sketch.

We study the fundamental problem of computing a maximum matching and prove tight
bounds on the sketch size. In particular, we show that there exists a (compact) dynamic sketch
of size O(k?) for the matching problem and any such sketch has to be of size Q(k?). Our sketch
for matchings can be further used to derive compact dynamic sketches for other fundamental
graph problems involving cuts and connectivities. Interestingly, our sketch for matchings can
also be used to give an elementary construction of a cut-preserving vertex sparsifier with space
O(kC?) for k-terminal graphs, which matches the best known upper bound; here C is the total
capacity of the edges incident on the terminals. Additionally, we give an improved lower bound
(in terms of C') of Q(C/logC) on size of cut-preserving vertex sparsifiers, and establish that
progress on dynamic sketching of the s-t max-flow problem (either upper bound or lower bound)
immediately leads to better bounds for size of cut-preserving vertex sparsifiers.

1998 ACM Subject Classification F.2.0 Analysis of Algorithms and Problem Complexity
Keywords and phrases Small-space Algorithms, Maximum Matchings, Vertex Sparsifiers

Digital Object Identifier 10.4230/LIPIcs. FSTTCS.2015.52

1 Introduction

Massive data sets are arising more and more frequently in many application domains.
Traditional gold standards of computational efficiency, namely, linear-time and linear-space,
no longer seem sufficient for managing and analyzing such massive data sets. As a result, a

* The full version of the paper can be found at [5].
T Supported in part by National Science Foundation grants CCF-1116961, CCF-1552909, and IIS-1447470.
¥ Supported in part by National Science Foundation grants IIS 1217798 and 1302212.

© Sepehr Assadi, Sanjeev Khanna, Yang Li, and Val Tannen;

licensed under Creative Commons License CC-BY
35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 52-68

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.52
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Assadi, S. Khanna, Y. Li, and V. Tannen

beautiful new area of sublinear algorithms has developed over the past two decades — these
are algorithms whose resource requirements are substantially smaller than the size of the
input on which they operate. A rich theory of sublinear algorithms has emerged, and has
brought remarkable new insights into combinatorial structure of well-studied optimization
problems (see, for instance, the surveys [23, 25, 27], and references therein).

In recent years, graph optimization problems have received a lot of attention in the study
of sublinear algorithms in various models, and the streaming model of computation is one of
the most popular examples. In the streaming model, an algorithm is presented with a stream
of edge insertions and deletions and is required to give an answer to a pre-specified graph
problem at the end of the stream. Unfortunately, for many fundamental graph problems,
no small space streaming algorithm is possible. For instance, [10] showed that determining
whether or not there is a path from a specific vertex s to a specified vertex ¢ in a directed
graph requires £2(n?) space even for streams with only edge insertions; here n denotes the
number of vertices in the input graph. This immediately implies that computing the length
of the s-t shortest path, the value of the minimum cut between s and ¢, or the edge/vertex
connectivity between s and t also requires £2(n?) space since the output of these problems
is non-zero only when there is a path from s to . The same lower bound is also obtained
for computing the size of the maximum matching [10]. In fact, most of recent works for
graph problem focus on approximation algorithms developed under the semi-streaming model
introduced in [10], where an algorithm is allowed to output an approximate answer while using
space linear in n. But is there hope left for exact sublinear algorithms? More specifically,
is there a non-trivial model where sublinear algorithms are achievable for outputting exact
answers for fundamental graph problems like matchings, connectivities, cuts, etc.?

In this paper, we explore this direction by considering the case where the input graph
only undergoes local changes, and study how local changes influence the solutions of several
fundamental graph problems. The goal is to exploit the locality of these updates and compress
the rest of the graph into a small-size sketch that is able to answer queries regarding a specific
problem (e.g. the s-t edge connectivity problem) for every possible local changes made to
the graph. We introduce a model in this spirit and in the rest of this section, we formally
define the model, discuss the connection to existing models, and summarize our results.

1.1 The Dynamic Sketching Model

We define the dynamic sketching model, where algorithms are required to construct data
structures (called sketches) that are composable with local updates to the underlying data.
Specifically, for graph problems in the dynamic sketching model, we consider the following
setup (see Section 1.1 in the full version [5] for a more general definition which is not restricted
to graph problems). Given a graph optimization problem P, an input graph G(V, E) on
n vertices with k vertices identified as terminals T = {q1,...,qx}, the goal of k-dynamic
sketching for P is to construct a sketch I' such that given any possible subset of the edges
between the terminals (a query), we can solve the problem P using only the information
contained in the sketch I'. Formally,

» Definition 1. Given a graph-theoretic problem P, a k-dynamic sketching scheme for P is
a pair of algorithms with the following properties.
(i) A compression algorithm that given any input graph G(V,E) with a set T of k
terminals, outputs a data structure I' (i.e, a dynamic sketch).
(i) An extraction algorithm that given any subset of the edges between the terminals,
i.e, a query @, and the sketch I', outputs the answer to the problem P for the graph,
denoted by G, obtained by inserting all edges in @ to G (without further access to G).

53

FSTTCS 2015

54

Dynamic Sketching for Graph Optimization Problems

We allow both compression and extraction algorithms to be randomized and err with
some small probability. Furthermore, we say a sketching scheme is compact if it constructs
dynamic sketches of size poly(k), where the size of a sketch is measured by the number of
machine words of length O(logn).

We should note right away that of course not every graph problem admits a compact
dynamic sketch. For example, one can show that any dynamic sketch for the mazimum clique
problem or the minimum vertex cover problem requires min{{(n), ZQ(k)} space (see the full
version of the paper [5], Section 6).

1.2 Connection to Existing Models

Streaming. Any single-pass streaming algorithm with space requirement s can be used as
a dynamic sketching scheme with a sketch of size s: run the streaming algorithm on graph
G(V, E) for the static data and store the state of the algorithm as the sketch; continue running
the algorithm using the stored state when the dynamic data is presented. However, note that
a streaming algorithm directly gives a compact scheme only when the space requirement is
logarithmic in n, which, as we just discussed, is not the case for nearly all fundamental graph
optimization problems. In the following, we use the s-t shortest path problem as an example
to elaborate the distinction between the two models. Our results in Section 2, illustrates a
similar distinction for the case of the maximum matching problem.

As we already mentioned, outputting the length of the s-t shortest path requires Q(n?)
space in the streaming model. We now give a simple dynamic sketching scheme for the s-t
shortest problem with a sketch of size O(k?). The input to the s-t shortest path problem
in the k-dynamic sketching model is a weighted graph G, a set T of terminals, and two
designated vertices s and t. Without loss of generality, we can assume s and ¢ are terminals;
otherwise we can add them to the set of terminals and record their edges to the other
terminals in O(k) space. The compression algorithm creates a graph H with V(H) = T,
where for any pair of terminals ¢; and g¢;, a directed edge from g; to ¢; is added to H with
weight equal to the weight of a shortest path from ¢; to ¢; in G. The size of H is O(k?).
To obtain the answer for each query @, the extraction algorithm adds the edges in @ to H,
building a small graph H?, and compute the shortest path from s to t in H?. It is easy to
see that the weights of the shortest paths between s and ¢t in H? and G? are equal, thus H
can be used as a dynamic sketch for the s-t shortest path problem.

Linear sketches. A very strong notion of sketching for handling arbitrary changes to the
original data is linear sketching, which corresponds to applying a randomized low-dimensional
linear transformation to the input data. This allows for compressing the data into a smaller
space while (approximately) preserving some desired property of the input. Moreover,
composability of these sketches (as they are linear transformations) allow them to handle
arbitrary changes to the input data. Linear sketching technique has been successfully applied
to various graph problems, mainly involving cuts and connectivity [2, 3, 14] (see also [23] for
a survey of such results in dynamic graph streams). However, these results use space that
is prohibitively large for dynamic sketching (a linear dependence on n), and typically only
yield approximation answers.

Kernelization. Dynamic sketching shares some similarity to Kernelization developed in
parametrized complexity [17, 16, 11] in the following two aspects. Firstly, the number of
terminals k in dynamic sketching may be viewed as a parameter. However, the main difference
here is that for dynamic sketching, k is a parameter of the model, while for kernelization, the

S. Assadi, S. Khanna, Y. Li, and V. Tannen

parameter is usually the size of the solution, which is the property of the input rather than
the model. Secondly, since a kernel for an instance of a problem is defined to be an equivalent
instance of the same problem with size bounded by a function of a fixed parameter of the
problem, both dynamic sketching and kernelization are in the spirit of compression. However,
the techniques developed in kernelization do not directly carry over to dynamic sketching for
the following two reasons. Firstly, kernelization typically focuses only on static data and
secondly, the space target in kernelization (which is different compare to dynamic sketching)
is normally polynomial in the parameter (usually the size of the solution to the problem)
which could be Q(n) in the dynamic sketching model. Finally, it is worth mentioning that
there are problems (e.g. minimum vertex cover) that admit polynomial size kernels, while it
can be shown that the dynamic sketching for these problem require sketches of size 29(%)
(see the full version of the paper [5], Section 6).

Provisioning. We should note that dynamic sketching shares some ancestry with provision-
ing, a technique developed by [8] for avoiding repeated expensive computations in what-if
analysis, where the input data is formed by k known overlapping subsets of some universe,
and the goal is to compress these subsets so as to answer a specific database query when
only some of those subsets are presented at run-time. Note that a main distinction between
the two model is that in provisioning the dynamic input is neither small nor local.

1.3 Our Results

Maximum matching. The main focus of this paper is on the maximum matching prob-
lem [20] in the dynamic sketching model, and its applications to various others problems. We
give a dynamic sketching scheme with a sketch of size O(k?), using a technique based on an
algebraic formulation of the matchings introduced by Tutte [29]. At a high level, we store a
sketch that computes the rank of the Tutte matriz (see Definition 4) of the underlying graph.
Since the queries only affect O(k?) entries of the Tutte matrix, we can compress this matrix
using algebraic operations into a few small matrices of dimensions k x k. Storing the small
matrices as the sketch and modifying the related entries when a query is presented allows us
to compute the rank of the original Tutte matrix, and hence the maximum matching size.
Furthermore, we prove that our sketching scheme is optimal in terms of its space requirement
(up to a logarithmic factor). In particular, we show that any dynamic sketching scheme for
the matching problem has to store a sketch of size Q(k?) bits. We emphasize that the lower
bound is information-theoretic; it holds even if the compression and extraction algorithms
are computationally unbounded.

Cut-preserving sketches. Interestingly, we discovered that our scheme for matchings can
be used to design a cut-preserving sketch, which is the information-theoretic version of
a cut-preserving vertex sparsifier [12, 24, 19]. Given a capacitated graph G (assume all
capacities are integers) with a set T of k terminals, a cut-preserving vertex sparsifier (or a
sparsifier for short) of G is a graph H with T C V(H) (V(H) denotes the set of vertices of
H) such that for any bipartition S and T \ S of terminals, the value of the minimum cut
between S and 7'\ S in G is preserved in H. A vertex sparsifier where the stored data is not
restricted to be a graph is called a cut-preserving sketch.

In recent years, cut-preserving vertex sparsifiers have been extensively studied (see, for
example, [6, 9, 7, 4]). For instance, exact sparsifiers with 22" vertices are shown by [12, 15],
and sparsifiers with O(C?) vertices are shown by [17], where C is the total capacity of the
edges incident on the terminals. Additionally, the size of any exact sparsifier is shown to be

55

FSTTCS 2015

56

Dynamic Sketching for Graph Optimization Problems

22(k) [18, 15]. Cut-preserving sketches are also studied in the literature [4, 18, 16], where the
best construction is known to be of size O(kC?) by [16]. Moreover, the 2%*) lower bound
of [18] is also shown to hold for the cut-preserving sketches.

We show that our dynamic sketching scheme for matchings can be used to obtain an
elementary construction of a cut-preserving sketch of size O(kC?) that matches the best
known upper bound of [16]. [16] showed that given a graph G and a set of k terminals T,
a single gammoid can be used to produce a matroid that encodes all terminal vertex cuts.
The authors then use the result of [22] to show how to obtain a matrix representation of this
gammoid with O(k?) entries of O(k) bits each (see Corollary 3.2 of [16]). Using standard
techniques, one can use this sketch for vertex cuts to obtain an sketch for edge cuts (i.e, a
cut-preserving sketch) that requires O(kC?) space. Our construction, on the other hand, uses
the connection between matchings and the Tutte matrix followed by a simple reduction from
cut-preserving sketches to the maximum matching problem. We believe that the simplicity
of this construction and its connection to dynamic sketches for the matching problem is of
independent interest and gives further insights into the structure of cut-preserving sketches.
Moreover, we prove an improved lower bound (in terms of C) of Q(C/log C) bits on the size
of any cut-preserving sketch; prior to our work, the best lower bound in terms of C is Q(C*®)
for some small constant € > 0 obtained by [18].

s-t edge-connectivity and s-t maximum flow. As it turns out, any cut preserving sketch
can be (almost directly) used to obtain a dynamic sketching scheme for the s-t edge-
connectivity problem. However, using our lower bound for cut-preserving sketches, the
resulting sketch size for edge-connectivity would be Q(C/log C'), where C could be as large
as n (hence the sketch is not compact). To obtain a compact sketch for edge-connectivity,
we further design a dynamic sketching scheme which directly uses our dynamic sketching
scheme for matchings, and obtain compact sketches of size O(k*). We further establish that
cut-preserving sketches are, in fact, more related to the s-t maximum flow problem, in the
sense that progress on either upper bound or lower bound on size of dynamic sketches for
the s-t maximum flow problem immediately leads to better bounds for size of cut-preserving
sketches.

Minimum spanning tree. Finally, we present an O(k)-size dynamic sketch for the minimum
spanning tree (MST) problem. Our idea for creating a compact dynamic sketch for MST is
as follows. First of all, it is easy to see that if we add an edge to a graph, an MST of the
resulting graph can be created by adding the edge to an MST of the original graph. Hence,
it is sufficient to store an MST H of the original graph as a sketch. But this sketch is of
size Q(n). We show that H can be compressed into a tree H' such that all leaf nodes are
terminals and there are at most O(k) internal nodes in this tree; moreover, for any query Q,
the weights of the MSTs in G and H'? are equal. Hence, H' can be stored as a dynamic
sketch. Due to the space constraints, the proof of this result is deferred entirely to the full
version of the paper [5] (see Section 5).

Organization. The rest of the paper is organized as follows. We first introduce our dynamic
sketching scheme for the maximum matching problem in Section 2 and prove its optimality in
terms of the sketch size. Then, in Section 3.1, we show how to use our sketching scheme for
the matching problem to construct a cut-preserving sketch. Next, we provide our improved
lower bound on the size of cut-preserving sketches in Section 3.2. We further establish the
connection between cut-preserving sketches and s-t edge-connectivity (and s-t maximum

S. Assadi, S. Khanna, Y. Li, and V. Tannen 57

flow) and introduce a compact dynamic sketch for edge connectivity in Section 4. Finally,
we conclude the paper with some future directions in Section 5.

Notation. We denote by [n] the set {1,2,...,n}. The bold-face upper-case letters represent
matrices. A matrix with a ‘tilde’ on top (e.g. M) denotes a symbolic matrix, i.e, a matrix
containing formal variables. For any prime p, Z, denotes the field of integers modulo p.

For any undirected graph G, we use v(G) to denote the size of a maximum matching in
G. For any directed graph G(V, E), an edge e = (u,v) is directed from u to v, where we
say u is the tail and v is the head of e. For any vertex v € V, d*(v) (resp. d~ (v)) denotes
the number of outgoing (resp. incoming) edges of v. For a capacitated graph, ¢t (v) (resp.
¢ (v)) denotes the total capacity of the outgoing (resp. incoming) edges of v. We assume all
the capacities are integers and can be stored in a single machine word of size O(logn).

2 The Maximum Matching Problem

In this section, we provide our results for the maximum matching problem. In particular, we
show that,

» Theorem 2. For any 0 < § < 1, there exists a randomized k-dynamic sketching scheme
for the mazimum matching problem with a sketch of size O(k*1og (1/6)), which answers any
query correctly with probability at least 1 — 6.

Furthermore, we prove that the sketch size obtained in Theorem 2 is tight (up to an
O(logn) factor). Formally,

» Theorem 3. For any k > 2, any k-dynamic sketching scheme for the maximum matching
problem that answers any query correctly with probability at least 2/3, requires a dynamic
sketch of size Q(k?) bits.

Our sketching scheme for the proof of Theorem 2 relies on an algebraic formulation for
the matching problem due to Tutte [29]. In the remainder of this section, we present this
algebraic formulation, state our sketching scheme for matchings and proves its correctness
and then present our lower bound result.

Algebraic formulation for the matching problem. The following matrix was first introduced
by Tutte [29].

» Definition 4 (Tutte matrix [29]). Suppose G(V, E) is an undirected graph. The Tutte

matriz of G is the following symbolic matrix M of dimension n x n.

xz;; if(i,j)e Fandi<j

MiJ‘ =94 —Zj if (4,7) € K and i > j

0 otherwise
where the x; ; are distinct formal variables.

Lovész [21] established the following result for computing the size of a maximum matching
using Tutte matrix (see also [26] for more details on performing the computations over a
finite field).

FSTTCS 2015

58

Dynamic Sketching for Graph Optimization Problems

» Lemma 5 ([21, 26]). Let G be an undirected graph with n vertices and the mazimum
matching size of v(G). For any prime p > n, let Z,, be the field of integers modulo p. Suppose
M is the Tutte matriz of G and M is the matriz obtained by evaluating each variable in M
by a number chosen independently and uniformly at random from Z,; then:
Pr (rank(M) = 20(G)) > 1 — ~
p
Note that the computation of rank(M) is also done over the field Z,,.

2.1 An O(k?) size upper bound

In this section, we provide our k-dynamic sketching scheme for the maximum matching
problem and prove Theorem 2.

Notation. Suppose the input is an undirected graph G(V, F) with a set T = {q1,...,qx} of
k terminals. Let p be any prime of magnitude ©(n/d); we perform the algebraic computations
in the field Z,. Let M be the Tutte matrix of the graph obtained by adding all edges between
the terminals to G, where the first k£ rows and k columns correspond to the vertices in 7.
We decompose M into four sub matrices K,]§, 6, and D as follows:

N — Ngkxk ~]~3k><(n—k)
Co—tyxk Dm—r)x(n—t)

Compression algorithm: The compression algorithm consists of 4 steps. Each of them
performs a simple algebraic manipulation on the Tutte matrix M.

Step 1. For each non-zero entry of M that corresponds to an edge in G (i.e., not between
the terminals), assign an integer chosen uniformly at random from Z,. Denote the resulting
matrix by,

M, = Asxk Bix(n—k)
Clr—rtyxk Dm—k)x(n—k)

Note that except for A, all sub-matrices in Ml are no longer symbolic.

Step 2. Let r = rank(D). Use elementary row and column operations to change D into
a diagonal matrix diag(1,...,1,0,...,0) with only r non-zero entries. Note that after this
process, matrices B and C would also change, but the symbolic matrix A remains unchanged.
We denote the matrix Ml after this process by,

. Ak Xpxr B k)
M, = Y,k Ly Orx(nfkfr)

Cl(n,k,’r)xk O(nfkfr)xr O(nfkf'r‘)x(nfkfr)

Step 3. Use the sub-matrix I, in Mg to zero out the matrix X by elementary row
operations. Similarly, zero out Y by elementary column operations. Note that after this
process, the matrix A would be added by a linear combination of the rows in Y, denoted by
A’. Denote the resulting matrix by,

- Ak + Al Oixr Bl (n—k—r)
M3: Orxk Irxr 0

C/(n—k—r)xk 0 0

S. Assadi, S. Khanna, Y. Li, and V. Tannen

Step 4. Consider the matrix B’ in l\N/Ig; pick a maximal set of linearly independent columns
from B’ (if less than k columns are picked, arbitrarily pick from the remaining columns until
having picked k columns), denoted by B}, ,. Do the same for the matrix C’ (but using
linearly independent rows) and create C}, ;. Finally, pick k2 numbers from Z,, independently
and uniformly at random and form a matrix of dimension k x k, denoted by A. Store the
value r (i.e., the rank of D), the matrix A, and three k x k matrices A’, B” and C” as the
sketch.

Extraction algorithm: Given a query @), create the matrix AQ from A by zeroing out every
entry that corresponds to an edge not in (). Evaluate A by Ag and obtain a (non-symbolic)
matrix A. Construct a matrix M as follows,

M = [Aka + Al B%xk]

"
Ckxk Ok xk

Return (rank(M) + r) /2 as the maximum matching size.
We now prove the correctness of this scheme and show that it satisfies the bound given
in Theorem 2 and hence prove this theorem.

Proof of Theorem 2. Since the prime p is of magnitude ©(n/d), any number in Z, requires
O(log(n/d)) = O(logn +1log(1/4)) bits to store, which is at most O(log(1/d)) machine words.
The compression algorithm stores a number r, which needs O(logn) bits, four matrices
of dimension k x k, where each entry is a number in Z, and requires O(log(1/d)) space.
Therefore, the total sketch size is O(k?log(1/8)). We now prove the correctness.

We need to show that for each query @, the extraction algorithm correctly outputs the
matching size with probability at least 1 — §. By Lemma 5,

Pr (rank(M) = 2v(G9)) > 1 — 2 >1-9
p

Here M is the (randomly evaluated) Tutte matrix of the graph obtained by applying the
query @ to G, i.e., GY. Since the extraction algorithm outputs (rank(M) + r) /2 as the

matching size, it suffices for us to show that rank(M) + r = rank(M).
More specifically, the extraction algorithm evaluates A by assigning a (pre-selected)
random number to each entry that corresponds to an edge in @, i.e, the matrix Ag. For

the sake of analysis, assume this is done before the compression algorithm is executed.

Then, at the first step of the compression algorithm, all entries of the matrices B, C, D are
randomly and independently evaluated. Combined with evaluating A by AQ, the resulting
matrix (denoted by M;) is obtained from randomly and independently evaluating every
non-zero entry of the Tutte matrix of the graph G®. In other words, it suffices to show that
rank(M;) = rank(M) + 7.

Since step 2 and step 3 only perform elementary row/column operations on the matrix,
the rank does not change. For the matrix M;; obtained after step 3, denote by Mgj the
matrix after evaluating the A part in Mg,. M3 is non-symbolic and it suffices to prove that

rank(Ms) = rank(M) + r. Note that after reordering rows and columns of M3, M3 can be
rewritten as

Ak +A;c><k B;cx(n—k:—r) 0
C/(nfkrfr)xk 0 0
0 0 Lxr

59

FSTTCS 2015

60

Dynamic Sketching for Graph Optimization Problems

Therefore, the rank of M3 is equal to r plus the rank of the following sub-matrix of Msj.

M, = Ak/><k+A;f><k Bl ()

C(n—k—r)xk: 0
We now show that M, has the same rank as M. Since the matrix C” (in step 4 of the
compression algorithm) contains a maximal set of linearly independent rows of C’, each
remaining row of C’ is a linear combination of the rows in C”. Therefore, all remaining rows
in C’ can be zero-out using elementary row operations. Hence, the rank of My is equal to
the rank of the following matrix

Apxk + A?ﬁ))(k‘ B;cx(nfkfr)
M; = C;clxlc 0
0(n—2k—7‘)><k 0

Similarly, using elementary column operations, the sub-matrix B’ in M5 can be made into
[B” 0y (n—2k—r)] Without changing the rank, and the resulting matrix has the same rank
as M. <

2.2 An Q(k?) size lower bound

In this section, we prove an Q(k?) bits lower bound on the sketch size of any k-dynamic
sketching scheme for the matching problem, which implies that our space upper bound in
Theorem 2 is tight (up to a logarithmic factor). We establish this lower bound by reducing
from the MEMBERSHIP problem studied in communication complexity defined as follows.

The MEMBERSHIP Problem

Input: Alice is given a set S C [N] and Bob is given an element e* € [N].
Goal: Alice has to send a message to Bob such that Bob can determine whether e* € S or
not.

It is well-known that in order for Bob to succeed with probability at least 2/3, Alice has
to send a message of size Q(N) bits [1], where the probability is taken over the random coin
tosses of Alice and Bob.

Reduction. For simplicity, assume N is a perfect square. Given any S C [N], Alice
constructs a graph G(V, E) with a set T of k terminals as follows:
The vertex set V = {u,w} UV, UVy U V3 UV, where |V;| = V/N for any i < 4 and
T = {u,w} UV, UV,. We will use vﬁi) to denote the j-th vertex in V.
For any i € [V/N], vgl) (resp. vi(‘g)) is connected to U£2) (resp. 054)); i.e, there is perfect
matching between V7 and V5 (resp. V3 and Vy).
Fix a bijection o : [N] + [V/N] x [V/NJ; for any element e € S with o(e) = (4, j), 112(2) is
connected to vj(-3
Note that in this construction, n = 4v/N +2 and k = 2v/N + 2, and initially there is no edge
between the terminals.
Alice constructs this graph, run the compression algorithm of the dynamic sketching
scheme on it and sends the sketch to Bob. Let @ be the query in which, for o(e*) = (4,),
(1) () js connected to w. Bob queries the sketch with @, finds

u is connected to v; * and v;

S. Assadi, S. Khanna, Y. Li, and V. Tannen

the maximum matching size in G%, and returns e* € [S] iff the maximum matching size is
2VN + 1 in G9.
The proof of the following lemma can be found in the full version [5] (Lemma 2.2).

» Lemma 6. v(G?) = 2v/N + 1 if and only if e* € S.

Theorem 3 now follows from Lemma 6, along with the lower bound of Q(N) = Q(k?) on
the communication complexity of the MEMBERSHIP problem.

3 Cut-Preserving Sketches

We establish a connection between k-dynamic sketching schemes for the maximum matching
problem and cut-preserving sketches. In particular, we use our dynamic sketching scheme
for the matching problem in Section 2 to design an exact cut-preserving sketch (i.e, an
information-theoretic vertex sparsifier) with size O(kC?), where C is the total capacity of
the edges incident on the terminals. This matches the best known upper bound on the space
requirement of cut-preserving sketches. We further provide an improved lower bound of
Q(C/log C) on the size of any cut-preserving sketch. Throughout this section, we will use
the term bipartition cut to refer to a cut between a bipartition of the terminals and the term
terminal cut to refer to a cut which separates two arbitrary disjoint subsets of terminals
(not necessarily a bipartition). With a slight abuse of notation, we refer to the value of
the minimum cut for a bipartition/terminal cut as the value of the bipartition/terminal cut
directly.

Before we present our results, we make a general remark about the property of all

cut-preserving sparsifiers (and sketches) that is also used crucially in our lower bound proof.

In [18], a generalized sparsifier is defined as a sparsifier that preserves the minimum cut
between all disjoint subsets of terminals, i.e, terminal cuts and not only bipartition cuts. The
authors then point out that their upper bound results, as well as the previous constructions
of cut sparsifiers in [12], also satisfy this general definition. The following simple claim gives
an explanation why all known cut sparsifiers satisfy this general definition.

» Claim 1. Suppose H is a cut sparsifier of the graph G(V, E) with terminals T that preserves
the value of all bipartition cuts. Then, H also preserves the value of all terminal cuts.

Proof. For any two disjoint subsets of terminals A, B C T, any cut separating A and B in
G must form a bipartition (S,5) of the terminals, and since H preserves the value of all
minimum cuts like (S, 5), the (A, B) minimum cut value in H is also equal to the minimum
cut value in G. In the case that H is a cut-preserving sketch, the (A, B) minimum cut can
be answered by querying H with all bipartition cuts that separate (A, B), and outputting
the smallest value. |

3.1 An O(kC?) Size Cut-Preserving Sketch

In this section, we construct a cut-preserving sketch for any digraph G and a set of terminals
T. We achieve this by constructing an instance G’ of the maximum matching problem in
the dynamic sketching model and show that the value of any terminal cut (A, B) in G can
be computed using a carefully designed query for the maximum matching size in G’. Our
reduction is based on a classical result relating edge connectivity and bipartite matching due
to [13] (see also [28], Section 16.7).

61

FSTTCS 2015

62

Dynamic Sketching for Graph Optimization Problems

» Theorem 7. For any directed graph G with a set of k terminals, there is an exact cut-
preserving sketch that uses space O(kC?), where C' is the total capacity of the edges incident
on the terminals.

Without loss of generality, we will replace each edge in G with capacity c, with c. parallel
edges and still denote the new graph with G. Consider the following cut-preserving sketch.

A cut-preserving sketch

Input: A graph G with m edges and a set T of terminals.

Compression: Construct a bipartite graph G'(L, R, E’) with terminals 7" as follows

and create a dynamic sketch for the maximum matching problem for G’ and T".

a. For each edge e in G, create two vertices e~ (in L) and e™ (in R).

b. For any terminal ¢ in T and any outgoing (resp. incoming) edge e of ¢, create
a vertex ¢—¢ in R (resp. ¢~ ¢ in L). ¢7¢ (resp. ¢ ¢), along with e~ (resp. e™),
belongs to the set T” of terminals in G’.

c. For each edge e in G, there is an edge between vertices e~ and e™ in G’.

d. For any two edges e; and e; in G where the tail of e; is the head of es, there is an
edge between the vertices ef” and e; in G'.

Extraction: Given any two disjoint subsets A, B C T', let Q4 g be the query where for

any terminal ¢ in A (resp. in B) and any outgoing (resp. incoming) edge e of ¢, an

edge between the vertices ¢7¢ and e~ (resp. ¢ ¢ and e™) is inserted in G'.

Return v(G'@4.2) — m, where v(G'?4.8) is the maximum matching size in G'?4.5.

The total number of terminals in G’ is 2C, and the total number of different A-B pairs
(i.e., the total number of different possible queries) is at most 3¥. To ensure that every
query is answered correctly, by Theorem 2, the sketch size is O(kC?). We now prove the
correctness.

Proof. For any A, B C T, denote the value of the minimum A-B cut (which is equal to
the edge-connectivity from A to B), by ¢(A4, B). Recall that for a graph G, v(G) denotes
the maximum matching size in G. We prove that v(G'?4.2) —m = c¢(A, B). Let M be the
matching in G942 where for each edge e in G, e~ is matched with e*; hence |M| = m.

We first show that if ¢(A, B) =, then M can be augmented by [vertex disjoint paths
and hence v(G'®4.2) > m + [. There are [edge-disjoint path P;, Ps,..., P, from A to B in
G. For each path P; = (e1,ea,...,¢;), where e; starts with a terminal ¢, € A and e; ends
with a terminal ¢, € B, create a path P/ = (q,7¢, e ,¢e],€5,-- -, ej,qb‘_eﬂ') in Q45 It
is straightforward to verify that the P! paths are valid verter-disjoint paths in G’94.2 and
moreover, form disjoint augmenting paths of the matching M.

We now show that if the maximum matching M* in G’ is of size m + [, then ¢(4, B) > .
The symmetric difference between M and M* forms a graph with [augmenting paths of the
matching M. Each augmenting path must start and end with a vertex of the form ¢—¢ or
q* ¢ since they are the only vertices that are unmatched in M. Since every ¢ ¢ is in R and
every ¢ ¢ is in L, each augmenting path must start with a ¢—¢ vertex and ends with a ¢* ¢
vertex. Using the reversed transformation as in the previous case, the [augmenting paths

can be converted into [edge disjoint paths from A to B in G. <

e

S. Assadi, S. Khanna, Y. Li, and V. Tannen

3.2 An Q(C) Size Lower Bound
In this section, we provide a lower bound on the size of any cut-preserving sketch.

» Theorem 8. For any integer C' > 0, any cut-preserving sketch for k-terminal undirected
graphs, where the total capacity of edges incident on the terminals is equal to C, requires

Q(C/log C) bits.

To prove this lower bound, we show how to encode a binary vector of length N :=
Q(C/logC) in an undirected graph G, so that given only a cut-preserving sketch for G, one
can recover any entry of this vector. Standard information-theoretical arguments (similar
to the lower bound for the MEMBERSHIP problem in Section 2) then imply that size of the
cut-preserving sketch has to be of size Q(N) = Q(C/log C). We emphasize that while in the
proof we assume the cut-preserving sketch has to return the value of minimum cuts between
any subsets (A4, B) of the terminals (even when they are not a bipartition), by Claim 1, this
is without loss of generality; hence, the lower bound holds also for cut-preserving sketches
that only guarantee to preserve minimum cuts for bipartitions.

Construction. Let k' = k — 2. For simplicity, assume k' is even, and let N = (’,i) For any
2

N-dimensional binary vector v € {0,1}¥, we define a graph Gy (V, E) as follows:

Vertices: The set of vertices of Gy is V = {s,t}U{q1, ..., g }U{u1, ..., up FU{v1, ..., 0N}
and the k terminals are T'= {s,q1, ..., q,t}.

Edges: Let S = {S51,...,Sn} be a collection of all (k’/2)-size subsets of {q1,...,qr}. The
set of edges are defined as:

For any i € [k'], there is an edge (g;, u;) with capacity N.

For any i € [k], there is an edge (s, u;) with capacity N.

For any j € [N], there is an edge (v;,t) with capacity 1.

A vertex u; is connected to a vertex v; with an edge of capacity 1 iff v, =1 or ¢; ¢ S;.

Additionally, if u; is connected to v;, there are two more edges f1 = (s,v;) and fa = (u;,t)
each with capacity 1.

There is an edge (s,t) with capacity kN —m, where m is the number of edges between
{u1,...,up'} and {vg,...,ox}.

To recover the vector v from a cut-preserving sketch of Gy, we will consider the terminal
cuts (A4, B) where A = {s}US; for some S; € S and B = {t}. We further denote the terminal
cut (A, B) corresponding to picking S; € S in the part A by TC(S;). We define the output
profile of a graph Gy € G to be an N-dimensional vector op(Gy) where the i-th entry of
op(Gy) is equal to the value of the terminal cut TC(S;). We show that there is a one-to-one
correspondence between the vector v and op(Gy).

» Lemma 9. Let 1 be the N -dimensional vector of all ones. There exists a value c independent
of v such that op(Gy) =v+c- 1.

Proof. Fix an ¢ € [N] and consider TC(S;). We argue that the maximum flow value from
{s}US; to {t} is (k+ 1)N — 1 + v;; the lemma then follows from the max-flow min-cut
duality and the choice of ¢ = (k+ 1)N — 1.

In Gy, we can first send a flow of size kN from s to ¢ by sending one unit of flow along
every s — v; — u; — t path for any edge of the form (u;,v;) (m units of flow in total) and
kN —m units of flow over the (s,t) edge. After this process, the residual graph of G becomes

63

FSTTCS 2015

64

Dynamic Sketching for Graph Optimization Problems

a directed graph where any edge of the form (uj,v;) is directed from u; to v;. Now consider
any vertex v, where p # i. There exists at least one terminal ¢; € S; (in fact, in S; \ 5p),
such that there is an edge between u; and v, in G. Since in the residual graph of G, this
edge is directed from u; to v,, we can send one unit of flow over this edge also through the
path ¢; = u; — v, — t. Hence, in Gy, we can always send kN + N —1 = (k+1)N — 1 units
of flow from {s} US; to {¢}.

First suppose the i-th entry of v is equal to 1; then there is an edges from u; to v; for
any ¢; € S;. In particular, we can send one extra unit of flow over one of these edges to ¢,
hence having a flow of size (k + 1)N entering ¢. Since the total capacity of the edges incident
on t is (k+ 1)N, this ensures that the max-flow is also (k + 1)N.

Now suppose the i-th entry of v is equal to 0. For the vertex v;, by construction, there is
no edge from any u; to v;, where ¢; € S;. Hence in the residual graph of G, there is no
path from {s} U S; to {¢}, meaning that the maximum flow in this case is (k4 1)N — 1. This
completes the proof. <

Proof of Theorem 8. Lemma 9 ensures that for any graph Gy, there is a one-to-one cor-
respondence between the value of i-th entry in v and i-th entry in op(Gy). Assuming that
the cut-preserving sketch is able to answer each terminal cut (deterministically or even
with a sufficiently small constant probability of error), we can recover i-th bit of v;, from
the i-th index in op(Gy) with a constant probability. Standard information-theoretical
arguments imply that the size of the cut-preserving has to be Q(N). Moreover, since
N = 220k = Q(C/k) = Q(C/logC) in this construction, we obtain the final bound of
Q(C/log C) bits on the sketch size. <

We should point out for the case of randomized cut-preserving sketches that are only
guaranteed to have a constant probability of failure over bipartition cuts (and not necessarily
terminal cuts), we first need to reduce the probability of error to 27* before performing the
described construction (and applying Claim 1) which results in a lower bound of Q(C/ log® C).

We further point out that, as a corollary of Theorem 8, we also obtain a simple proof for
a lower bound of 2°F) on size of cut-preserving sketches (see [18, 15]).

4 The s-t Edge-Connectivity Problem

In this section, we study dynamic sketching for the s-t edge-connectivity problem. As it
turns out, any cut-preserving sketch can be directly adapted to a dynamic sketching scheme
for the s-t edge-connectivity problem as follows. Given a graph G with a set T of k terminals
and two designated vertices s and t, create a cut-preserving sketch for G with terminals
T U{s,t}. Note that given a query Q (i.e., a set of edges among T'), the s-t minimum cut
(which is equal to the s-t edge-connectivity) will partition T'U {s, ¢} into two sets T, and T3,
where T, contains s and T} contains . Hence, the minimum cut from T to T} is equal to the
minimum cut from s to t. The cut-preserving sketch can answer the minimum cut from T to
T; in the original graph, and the additional cut value caused by the query is simply the total
number of the edges from Ty to T;. Therefore, if we enumerate all possible partitions of the
terminals that separate s and ¢, and compute the minimum cut for each partition as above,
the smallest minimum cut among those partitions is equal to the minimum cut from s to ¢.

Nevertheless, by our lower bound on the size of cut-preserving sketches (Theorem 8),
a dynamic sketching scheme constructed as above, will have a linear dependency on the
total degree of the vertices in T'U {s, ¢}, which could be as large as the number of vertices
in the graph. To resolve this issue, we propose a scheme which directly uses our dynamic

S. Assadi, S. Khanna, Y. Li, and V. Tannen

sketching scheme for the maximum matching problem and achieve a sketch of size O(k*).
The reduction is in the same spirit as the one we used for cut-preserving sketches. But note
that the main differences is that unlike the case for cut-preserving sketches, in the dynamic
sketching problem the set of edges in the original graph changes which require additional
care.

» Theorem 10. For any 6 > 0, there exists a randomized k-dynamic sketching scheme for
the s-t edge-connectivity problem with a sketch of size O(k*log(1/8)), which answers any
query correctly with probability at least 1 — 6.

Given a digraph G with two designated vertices s and t, along with a set of T" terminals,
recall that, for the query Qv where an edge is inserted between each (ordered) pair of
terminals, GO denotes the graph after applying the query Qv to G. Assume s does not
have any incoming edge and ¢ does not have any outgoing edge, since removing them will
not affect the s-t edge-connectivity. We further assume that s are ¢t are not terminals. This
is without loss of generality since we can create two vertices s’ and t’ that are not terminals,
while adding d*(s) (resp. d~(t)) new vertices and for each of these vertices v, adding an
edge from s’ to v and v to s (resp. ¢ to v and v to ¢'). In this new graph, the s'-t’ edge
connectivity is equal to the s-t edge-connectivity in G and s’,t’ are not terminals. Consider
the following dynamic sketching scheme.

A dynamic sketching scheme for the s-t edge-connectivity problem

Input: A graph G with m edges, two designated vertices s and ¢, and a set T of k

terminals.

Compression: Construct a bipartite graph G'(L, R, E’) with a set T of terminals as

follows and create a dynamic sketch for the maximum matching problem for G’ and

T.

a. For each edge e in G, if e starts with s, create a vertex et (in R), if e ends with
t create a vertex e~ (in L), otherwise, create two vertices et (in R) and e~ (in L).

b. For each edge e between two terminals in G, create two vertices é* and é7; é~ and
ét, along with e~ and eT, are terminals of G'.

c. For each edge e in G where both e~ and e* exist, there is an edge between e~ and
et.

d. For any two edges e; and ey in G where the tail of e; is the head of €2, there is
an edge between e and e .

Extraction: Given any query Q of G, let Q' be the query of G’ where

a. For each edge e in @, insert an edge between e~ and e™.

b. For each edge ¢ in Qv \ Q, insert an edge between e~ and é*, and between e and

e”.
c. Let the maximum matching size of G’?" be v. Output v — (m + 2k — |Q|).

The total number of terminals in G’ is 4k%2. Hence by Theorem 2, the sketch size is
O(k*log(1/8)). The correctness of the reduction is similar in spirit to the proof of Theorem 7
and is deferred to the full version [5] (see Section 4.1).

We conclude this section by remarking that there exists an equivalence between dynamic
sketching the capacitated version of the s-t edge connectivity problem (i.e., the s-t maximum
flow problem) and cut-preserving sketches. In particular,

65

FSTTCS 2015

66

Dynamic Sketching for Graph Optimization Problems

» Theorem 11. Any cut-preserving sketch can be adapted to a dynamic sketching scheme
for the s-t maximum flow problem while increasing the number of terminals by at most 2,
and vice versa.

The proof of this theorem together with a detailed discussion on the similarity of the
s-t maximum flow problem and cut-preserving sketches is provided in Section 4.2 of the
full version of the paper [5]. However, we point out here that Theorem 11 combined with
Theorem 8, proves a similar 2% lower bound on size of dynamic sketches for the s-t
maximum flow problem. In other words, this problem does not admit a compact dynamic
sketch.

5 Conclusions

In this paper we have introduced dynamic sketching, a new approach for compressing data
sets separated into static and dynamic parts. We studied dynamic sketching for graph
problems where the dynamic part consists of k vertices and the edges between them may
get modified in an arbitrary manner (a query). We showed that the maximum matching
problem admits a sketch of size O(k?) and the space bound is tight. Moreover, this sketch
can be used to obtain cut-preserving sketches of size O(kC?), and dynamic sketches for s-t
edge-connectivity of size O(k*).

There are problems (even in P) for which any dynamic sketch requires 292(k) space. An
interesting direction for future work is to identify broad classes of problems that admit
compact dynamic sketches, i.e, sketches of size poly(k).

Some data compression schemes (most notably, cut sparsifiers and kernelization results)
generate as compressed representation an instance of the original problem, while the sketches
we introduced do not fall into this category. A natural question is to understand if there
exist polynomial-size “sparsifier-like” compressed representations for matchings and s-t edge
connectivity in the dynamic sketching model.

Finally, while our work narrows the gap between upper and lower bounds on the size of
a cut-preserving sketches, it remains an intriguing open question to get an asymptotically
tight bound on the size of cut-preserving sketches.

Acknowledgments. We are grateful to Chandra Chekuri and Michael Saks for helpful
discussions.

—— References

1 Farid M. Ablayev. Lower bounds for one-way probabilistic communication complexity and
their application to space complexity. Theor. Comput. Sci., 157(2):139-159, 1996.

2 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via
linear measurements. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA, pages 459-467, 2012.

3 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification,
spanners, and subgraphs. In Proceedings of the 81st ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS, pages 5-14, 2012.

4 Alexandr Andoni, Anupam Gupta, and Robert Krauthgamer. Towards (1+¢)-approximate
flow sparsifiers. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pages 279-293, 2014.

S. Assadi, S. Khanna, Y. Li, and V. Tannen

10

11

12

13

14

15

16

17

18

19

20

21

Sepehr Assadi, Sanjeev Khanna, Yang Li, and Val Tannen. Dynamic sketching for graph
optimization problems with applications to cut-preserving sketches. CoRR, abs/1510.03252,
2015.

Moses Charikar, Tom Leighton, Shi Li, and Ankur Moitra. Vertex sparsifiers and abstract
rounding algorithms. In 51th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS, pages 265-274, 2010.

Julia Chuzhoy. On vertex sparsifiers with steiner nodes. In Proceedings of the 44th Sym-
posium on Theory of Computing Conference, STOC, pages 673-688, 2012.

Daniel Deutch, Zachary G. Ives, Tova Milo, and Val Tannen. Caravan: Provisioning for
what-if analysis. In Sixth Biennial Conference on Innovative Data Systems Research, CIDR,
2013.

Matthias Englert, Anupam Gupta, Robert Krauthgamer, Harald Récke, Inbal Talgam-
Cohen, and Kunal Talwar. Vertex sparsifiers: New results from old techniques. In Approxim-
ation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 13th
International Workshop, APPROX, and 14th International Workshop, RANDOM, pages
152-165, 2010.

Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. In Automata, Languages and Programming:
31st International Colloquium, ICALP, pages 531-543, 2004.

Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct
peps for NP. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
STOC, pages 133-142, 2008.

Torben Hagerup, Jyrki Katajainen, Naomi Nishimura, and Prabhakar Ragde. Character-
izing multiterminal flow networks and computing flows in networks of small treewidth. J.
Comput. Syst. Sci., 57(3):366-375, 1998.

Alan J Hoffman. Some recent applications of the theory of linear inequalities to extremal
combinatorial analysis. In Proc. Sympos. Appl. Math, volume 10, pages 113-127. World
Scientific, 1960.

Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sidford.
Single pass spectral sparsification in dynamic streams. In 55th IEEE Annual Symposium
on Foundations of Computer Science, FOCS, pages 561-570, 2014.

Arindam Khan and Prasad Raghavendra. On mimicking networks representing minimum
terminal cuts. Inf. Process. Lett., 114(7):365-371, 2014.

Stefan Kratsch and Magnus Wahlstrém. Compression via matroids: a randomized polyno-
mial kernel for odd cycle transversal. In Proceedings of the Twenty-Third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, pages 94-103, 2012.

Stefan Kratsch and Magnus Wahlstrom. Representative sets and irrelevant vertices: New
tools for kernelization. In 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS, pages 450-459, 2012.

Robert Krauthgamer and Inbal Rika. Mimicking networks and succinct representations
of terminal cuts. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pages 1789-1799, 2013.

Frank Thomson Leighton and Ankur Moitra. Extensions and limits to vertex sparsification.
In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC, pages 47-56,
2010.

L. Lovéasz and D. Plummer. Matching Theory. AMS Chelsea Publishing Series. American
Mathematical Soc., 2009.

Léaszl6 Lovasz. On determinants, matchings, and random algorithms. In FCT, pages 565—
574, 1979.

67

FSTTCS 2015

68

Dynamic Sketching for Graph Optimization Problems

22

23

24

25

26

27

28

29

Déniel Marx. A parameterized view on matroid optimization problems. Theor. Comput.
Sci., 410(44):4471-4479, 2009.

Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Record, 43(1):9-20,
2014.

Ankur Moitra. Approximation algorithms for multicommodity-type problems with guaran-
tees independent of the graph size. In 50th Annual IEEE Symposium on Foundations of
Computer Science, FOCS, pages 3—12, 2009.

S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends
in Theoretical Computer Science, 1(2), 2005.

Michael O. Rabin and Vijay V. Vazirani. Maximum matchings in general graphs through
randomization. J. Algorithms, 10(4):557-567, 1989.

Ronitt Rubinfeld and Asaf Shapira. Sublinear time algorithms. SIAM J. Discrete Math.,
25(4):1562-1588, 2011.

Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer, 2003.

William T Tutte. The factorization of linear graphs. Journal of the London Mathematical
Society, 1(2):107-111, 1947.

Weighted Strategy Logic with Boolean Goals Over
One-Counter Games”*
Patricia Bouyer, Patrick Gardy, and Nicolas Markey

LSV — CNRS, ENS Cachan, Université Paris-Saclay, France
firstname.lastname@lsv.fr

—— Abstract

Strategy Logic is a powerful specification language for expressing non-zero-sum properties of
multi-player games. SL conveniently extends the logic ATL with explicit quantification and
assignment of strategies. In this paper, we consider games over one-counter automata, and a
quantitative extension 1cSL of SL with assertions over the value of the counter. We prove two
results: we first show that, if decidable, model checking the so-called Boolean-goal fragment of
1cSL has non-elementary complexity; we actually prove the result for the Boolean-goal fragment
of SL over finite-state games, which was an open question in [32]. As a first step towards proving
decidability, we then show that the Boolean-goal fragment of 1cSL over one-counter games enjoys
a nice periodicity property.

1998 ACM Subject Classification F.4.1. Mathematical Logic
Keywords and phrases Temporal logics, multi-player games, strategy logic, quantitative games

Digital Object Identifier 10.4230/LIPIcs. FSTTCS.2015.69

1 Introduction

Model checking. Model checking [19] has been developed for almost 40 years as a formal
method for verifying correctness of computerized systems: this technique first consists in
representing the system under study as a mathematical model (a finite-state transition
system (a.k.a. Kripke structure), in the most basic setting), expressing the correctness
property in some logical formalism (usually, using various temporal logics such as LTL [35]
or CTL [18, 36]), and running an algorithm that exhaustively explores the set of behaviours
of the model for proving or disproving the property.

Over the years, model checking has been extended in various directions, in order to take
into account richer models and more precise properties. Several families of quantitative
models (e.g. weighted Kripke structures [12], counter automata [25], timed automata [1]) and
temporal logics [29, 24, 2, 7, 9, among others] have been defined and studied. Those formalisms
conveniently extend the qualitative setting; they provide powerful ways of representing
quantities, while in several cases keeping reasonably efficient model-checking algorithms.

Multi-agent systems (a.k.a. graph games [42, 4]) form another direction where model
checking has been extended for reasoning about the interactions between components of a
computerized system. Temporal logics have been extended accordingly [3, 16, 34, 20], in
order to express the existence of winning strategies in multi-player games. Among the most
popular approaches, the logic ATL [3] has limited expressive power but enjoys reasonably
efficient model-checking algorithms, while the more expressive Strategy Logic (SL) [16, 34]
extends LTL with explicit manipulation of strategies, and can express very rich non-zero-sum

* This work was partially supported by FP7 projects Cassting (601148) and ERC EQualIS (308087).

© Patricia Bouyer, Patrick Gardy, and Nicolas Markey;

licensed under Creative Commons License CC-BY
35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 69-83

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.69
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

70

Weighted Strategy Logic with Boolean Goals Over One-Counter Games

properties of games, including equilibria; however, model checking SL is non-elementary.
Several fragments of SL have recently been introduced in order to mitigate the complexity of
the model-checking problem while retaining the interesting aspects of SL [33, 13].
Quantitative games, combining both extensions, have also been widely considered. This
includes games on weighted graphs [23, 14, 31, 8], games on counter systems or VASS [39, 11],
or timed games [5, 21]. A large part of these works have focused on “simple” objectives, such
as mean-payoff objectives [23], energy constraints [14, 8], or combinations thereof [15, 26].

Our contribution. In this paper, we consider a quantitative extension of SL over quantitative
games. While such extensions have already been proven decidable for ATL [31, 43|, we focus
here on a quantitative extension of the richer logic SL, more specifically, its so-called Boolean-
goal fragment SL[BG] [32]. SL with Boolean goals restricts SL by preventing arbitrary nesting
of strategy quantifiers within temporal modalities. This and several other fragments of SL
have been introduced in [32] with the aim of getting more efficient model-checking algorithms.
However, while several fragments have been shown to have 2-EXPTIME model-checking
algorithms, the exact complexity of SL[BG] remained open.

We prove that model checking (the flat fragment of) SL[BG] is Tower-complete, thus
negatively answering the open question whether SL[BG] would enjoy more efficient model-
checking algorithm than SL. This hardness result obviously extends to the quantitative
version 1cSL[BG] of SL[BG] over one-counter games. On the way to proving decidability of
the model-checking problem for this logic, we then show that 1cSL[BG] over one-counter
games enjoys a nice periodicity property: for any given formula, there is a threshold above
which truth value of the formula is periodic (w.r.t. the value of the counter).

Related works. Several works have focused on one-counter models: two-player games with
parity objectives have been proven PSPACE-complete [39]; this was recently extended to a
quantitative extension of ATL [43], which is thus closely related to our paper. Model checking
LTL and CTL over one-counter automata is also PSPACE-complete [28, 27]. Quantitative
extensions of those logics have been studied in [22, 7, 9]. In many cases, they lead to
undecidability of the model-checking problem. Games on VASS have also been considered,
but reachability is only decidable in restricted cases [11, 37].

Games over integer-weighted graphs have a different flavour, as the behaviours do not
depend on the value of the accumulated weight. Those games have been extensively considered
with various quantitative objectives (e.g. mean-payoff [23, 44], energy [14, 8], and combinations
thereof [15, 17]), and with objectives expressed in temporal logics [31, 6].

2 Definitions

» Definition 1. Let AP be a set of atomic propositions, and Agt be a set of agents. A I1-counter
concurrent game structure (1cCGS for short) is a tuple G = (Loc, label, Act, Tabyg 1, Wgt{071}>
where

Loc is a finite set of locations;

label: Loc — 2AP labels locations with atomic propositions;

Act is a finite set of actions;

Tabg: Loc x Act"® — Loc and Taby : Loc x Act"® — Loc are two transition tables;

Wat, : Loc x Act 8 — {0,1} and Wagt, : Loc x Act*8" — {—1,0,1} assign a weight to each

transition of the transition tables.

P. Bouyer, P. Gardy, and N. Markey

A finite path in a 1cCGS G is a finite non-empty sequence of configurations p =
Yoy1Y2 - - - Tk, Where for all 0 < ¢ < k, the configuration ; is a pair (¢;,¢;) with ¢; € Loc and
¢; € IN. For such a path, we denote by last(p) its last element ~;, and we let |p| = k. number

of transitions An nfinite path is an infinite sequence of configurations with the same property.

We denote by Path (resp. InfPath) the set of finite (resp. infinite) paths. The length of an
infinite path is +00. For 0 < i < |p|, p(¢) represents the ¢ + 1-th element v; of p. For a
path p and 0 < i < |p|, we denote by p<; the prefix of p until position 4, i.e. the finite path
p(0)p(1) ... p(3).

A strategy for some agent a € Agt is a function o,: Path — Act. We write Strat for the
set of strategies. Given a finite path (or history) in the game, a strategy o, returns the action
that agent a will play next. A strategy o4 for a coalition of agents A C Agt is a function
assigning a strategy o4(a) to each agent a € A. Given a strategy o4 for coalition A, we say
that a path p respects o4 after a finite prefix « if, writing p(i) = (¢;,¢;) for all 0 < i < |p|,
the following two conditions hold:

for all 0 < ¢ < ||, we have p(i) = 7(4)

for all |7| <14 < |p| — 1, we have that ¢;11 = Tabs(¢;, m) and ¢;11 = ¢; + Wgt,(p<;, m),

where s = 0 if ¢; = 0 and s = 1 otherwise, and m is an action vector satisfying

m(a) = oa(a)(p<,) for all a € A.

Notice that the value of the counter always remains nonnegative as Wgt, only returns
nonnegative values. Given a finite path 7, we denote by Out(m,c4) the set of paths that
respect the strategy o4 after prefix m. Notice that if o4 assigns a strategy to all the agents,
then Out(m, 0 4) contains a single path, which we write out(m,c4).

» Remark. Several semantics have been given to quantitative games, see [37]. The semantics
chosen here, with zero tests (using Tabg, Taby), allows to easily express the three semantics
studied in [37]. Hence our algorithms apply in all these settings. It is worth noticing that
the hardness proof holds for the non-quantitative setting, hence also for all three semantics
mentioned above.

We now define our weighted extension of Strategy Logic [16, 34]:

» Definition 2. Let AP be a set of atomic propositions, Agt be a set of agents, and Var be a
finite set of strategy variables. Formulas in 1cSL are built from the following grammar:

1SLagu=plente S| ¢ | Ve | Xp|dU | Jz. ¢ | bind(a —). ¢

where p ranges over AP, S is a subset of IN that can be described as S, U (Sz, +k-IN), where
fin

The logic SL is the fragment of 1cSL where no counter constraint cnt € S or cnt € Spy is

used. The logic 1cLTL is the fragment of 1cSL where no strategy quantifiers 3z. ¢ and no

strategy bindings bind(a — x). ¢ are used. Finally, LTL is the intersection of SL and 1cLTL.

The set of free agents and variables of a formula ¢ of 1cSL, which we write free(¢),
contains the agents and variables that have to be associated with a strategy before ¢ can be

! This allows to express standard counter constraints like cnt > 5 (using negation) or periodic constraint
like cnt = 4 mod 7. Notice that our periodicity result is not a consequence of the periodicity of the
quantitative assertions, and would also hold with assertions of the form cnt ~ n.

S are finite subsets of IN and k € IN is a period!, x ranges over Var, and a ranges over Agt.

71

FSTTCS 2015

72

Weighted Strategy Logic with Boolean Goals Over One-Counter Games

evaluated. It is defined inductively as follows:

free(p) =@ for p € AP free(X ¢) = Agt U free(¢)
free(cnt€ S) =@ forne N free(p U v)) = Agt U free(¢) U free(v))
free(— @) = free(¢) free(¢p V1)) = free(¢) U free(t))

free(9) if a ¢ free(¢)

free(dx. ¢) = free z} free(bind(a —). ¢) =
Ge- ¢) @)\ L2} (bind(a =). 9) {(free(gb) U{z})\{a} otherwise

A formula ¢ is closed if free(¢) = 0.

We can now define the semantics of 1cSL. Let G be a 1cCGS, 7 be a path, i be a position
along 7, and x: Var U Agt --» Strat be a partial valuation (or context) with domain dom(x).
Let ¢ € SL such that free(¢) C dom(x). Whether ¢ holds true at position i along 7 within
context x is defined inductively as follows:

G, milEyD iff p € label(¢;) (writing 7(3) = (4;,¢i))
G,milEycenteS iff c €8 (writing (i) = (€, ¢;))
G.milEy " iff G, iy d1
G,mikEy p1Vey o iff G, mil=y ¢1 or G, il=y ¢
G, m iy X iff G,pi+1lEy (writing p = out(m<,, X|Agt))
Gg,milEy p1 Uy iff 3k >i. G, p,k =y ¢2 and

Vi<j<k.GpjEx b (writing p = out(m<4, X|Agt))
G, m, iy Jx. 1 ifft 3Jo € Strat. G, 7,1 Fyjemo] O1
G,m,i =y bind(a — z). ¢1 iff G, 7,1 Fylamsx(x)] P1

Notice that the constraint that free(¢) C dom(x) is preserved at each step.

» Remark. One may notice that the relation G, w,i =, ¢ does not depend on the suffix
of m after position i. Moreover, writing o7 for the strategy ¢’ such that o’(p) = o(7<; - p),
it is easily proved that G, m,i |=, ¢ if, and only if, G,7,0 =,/ ¢, where ¥'(z) = X(@)7=
for all 2 € VarU Agt (we will later write x7= for x’). As the satisfaction relation does not
depend on the suffix of 7 after position i, we may also write G,~ =, ¢, where v = m(i).
In the sequel, we may even omit to mention G when it is clear from the context, and simply
write v =y ¢.

» Remark. We write (a9 ¢ as a shorthand for 3o,. bind(a — 0,). ¢, when we do not need to
have hands on o, in the rest of the formula. Similarly, [-a-] ¢ stands for = ¢a) —¢. This con-
struct (a) ¢ precisely corresponds to the strategy quantification used in the logic ATL. [30],
but it should be noticed that it does not correspond to the strategy quantifier of ATL [3].

In the sequel, we also use other classical shorthands such as T, defined as pV —p for
some p (hence it is always true); F ¢ as a shorthand for T U ¢, meaning that ¢ holds at
a later position; and G ¢, defined as = F — ¢, meaning that ¢ holds true at every future
position.

Several fragments of SL have recently been defined and studied [32]. Those fragments
restrict the use of strategy bindings and quantifications. In the present paper, we are mainly
interested in the quantitative extension of the fragment SL[BG]. Before defining 1cSL[BG],
we first introduce its flat fragment 1cSLY[BG]:

1cSL°[BG] 3 ¢ := = | ¢V o | Iz. ¢ | bind(a — z). ¢ | ¥
Ypu=plente S|y |vVvy [Xy [Uy

P. Bouyer, P. Gardy, and N. Markey

Figure 1 The 3-player turn-based game for the reduction to SL model checking.

» Remark. Any closed formula ¢ in 1cSL°[BG] can be written in prenex form as

p(Var). f((B:(Agt,Var). ti)1<in)

where p(Var) is a series of strategy quantifiers involving all variables in Var, f is a Boolean
combination over n atoms, and for every 1 < ¢ < n, (; assigns a strategy from Var to each
agent of Agt, and v; is a 1cLTL formula.

1cSL[BG] then extends 1cSL°[BG] by allowing nesting closed formulas at the level of
atomic propositions. Formally, we defined the depth-i fragment as

1cSL'BG] 3 ¢ := ¢ | ¢V | 3z. ¢ | bind(a — z). ¢ | 1
Ypu=plgi—i|ente S|y YV | Xy [Uy

where ¢;_1 ranges over closed formulas of 1cSL"![BG]. We let 1cSL[BG] be the union of
the fragments 1cSL'[BG] for all ¢ € IN. It can be checked that if we drop the quantitative
constraints from 1cSL[BG], we precisely get the logic SL[BG] of [32].

3 Hardness of SL[BG] model checking

In this section, we prove that the model-checking problem for SL[BG] is Tower-hard (the com-
plexity class Tower is the union of all classes k-EXPTIME when k ranges over IN [38]).
We actually prove the result for (the flat fragment of) SL[BG], closing a question left open
in [32].

» Theorem 3. Model checking SL[BG], and hence 1cSL[BG], is Tower-hard.
We give a sketch of the proof here, and develop the full proof in [10].

Sketch of proof. We prove this result by encoding the satisfiability problem for QLTL into
the model-checking problem for SL[BG]. QLTL is the extension of LTL with quantification
over atomic propositions [40]: formulas in QLTL are of the form ® =Vp;3ps...Vp,—13pn. @
where ¢ is in LTL. Notice that we only consider strictly alternating formulas for the sake
of readability. The general case can be handled similarly. Formula 3p. ¢ holds true over a
word w: IN — 2AP if there exists a word w’: IN — 2AP with w’(i)N(AP\ {p}) = w(i)N(AP\{p})
and w’ |= ¢ for all . Universal quantification is defined similarly. It is well-known that model
checking (and satisfiability) of QLTL is Tower-complete [41]. We reduce the satisfiability of
QLTL into a model-checking problem for a SL[BG] formula involving n +4 players (where n is
the number of quantifiers in the QLTL formula), and three additional quantifier alternations.

73

FSTTCS 2015

74

Weighted Strategy Logic with Boolean Goals Over One-Counter Games

©, D1, P2 — ¥, 'P1,P2 @, P1, P2 @, P1, P2

—P1, P2
vw P
P1, D2 Y PR p1, D2 p1, P2 Y PR P1,P2
) "
P1, P2

®, D1, P2 ®, 7 P1, P2 —®,P1, P2 —Y,P1,D2
NP1, P2 U P1, P2
PP O p1,p2
P1, P2

Figure 2 Biichi automaton for G (p2 < X p1).

—P1,P2
P1,P2 —Pp1, P2 \
O Pl o p O P - p1,p2
D)

Before developing this technical encoding, we first present an example of a reduction to
plain SL, which already contains most of the intuitions of our reduction to SL[BG]. Consider
the QLTL formula

® =Vp;1. Ip2. G (p2 & Xp1).

To solve the satisfiability problem of this formula via SL, we use the three-player turn-
based game depicted on Fig. 1. In that game, Player Blue controls the blue state s, while
Players Red and Green control the square states a; and aso, respectively. Fix a strategy of
Player Red: this strategy will be evaluated only in red state aj, hence after histories of the
form s™ - a;. Hence a strategy of Player Red can be seen as associating with each integer n a
value for p;. In other words, a strategy for Player Red defines a labeling of the time line
with atomic proposition p;. Similarly for Player Green and proposition ps.

It remains to use this correspondence for encoding our QLTL formula. We have to express
that for any strategy oreq of Player Red, there is a strategy ogreen of Player Green under
which, at each step along the path that stays in s forever, Player Blue can enforce X X py if,
and only if, he can enforce X X p; one step later. In the end, the formula reads as follows:

[Red-] (Green) (Blue) G (@/\((Blue) X X (o)) & (X (Blue) X X @)) 1)

One may notice that the above property is not in SL[BG]: for instance, the subformula
(Bluey XX @ is not closed. We provide a different construction, refining the ideas above,
in order to reduce QLTL satisfiability to SL[BG] model checking.

In order to do so, we take another approach for encoding the LTL formula, since our
technique of encoding p; with (Blue) XX @ is not compatible with getting a formula
in SL[BG]. Instead, we will use a Biichi automaton encoding the formula; another player, say
Player Black, will be in charge of selecting states of the Biichi automaton at each step. Using
the same trick as above in the game structure on the left of Fig. 3, a strategy for Player Black
can be seen as a mapping from IN to states of the Biichi automaton. Our formula will ensure
that this sequence of states is in accordance with the atomic propositions selected by the
square players in states a;, and that it forms an accepting run of the Biichi automaton.

For our example, an eight-state Biichi automaton associated with the (LTL part of the)
QLTL formula is depicted on Fig. 2. Notice that smaller automata exist for this property (for
instance, the four states on the right could be merged into a single one), but for technical
reasons in our construction, we require that each state of the Biichi automaton corresponds to
a single valuation of the atomic propositions, hence the number of states must be a multiple
of 21API. Accordingly, we augment our game structure of Fig. 1 with eight extra states, as
depicted on the left of Fig. 3. Again, a strategy of Player Black (controlling state b) defines
a sequence of states of the Biichi automaton.

P. Bouyer, P. Gardy, and N. Markey 75

O O
©, 7 p1, P2 ©, 7 P1, P2 @ Q
O O ay v
P, P1, P2 ©, D1, P2 -

@, P1, P2 Y, P1, P2 .Q
0 0 @ @&
¢, p1,mp2) (@, p1, P2 .Q)
1Y))

Figure 3 The concurrent game for the reduction to SL[BG] model checking.

} (s, ,9)"
vo.purple l a IIE
Ho.ggange 0%
(o™, | o B4
Hagange o 5
Eaiurple l a l m
Eairange y 5
JorPe | a By
bl
Joap° l s @]
i | E 7
3o 5 5]
Hablue l s l lII

acc

Figure 4 Visualization of the strategies selected by W, on history (s, o, v)*.

It then remains to “synchronize” the run of the Biichi automaton with the valuations
of the atomic propositions, selected by the players controlling the square states. This is
achieved by taking the product of the game we just built with two extra one-player structures,
as depicted on the right of Fig. 3. The product gives rise to a concurrent game, where
one transition is taken simultaneously in the main structure and in the Purple and Orange
structures. In this product, as long as Player Blue remains in s and Player Purple remains
in «, a strategy of Player Orange (controlling state «) either remains in ~ forever, or it
can be characterized by a value n € IN. Similarly, as long as Player Blue remains in s and
Player Orange remains in v, a strategy of Player Purple (controlling state «) either loops
forever in «, or can be uniquely characterized by a pair (k,p;), where k is the number of
times the loop over « is taken before entering state [3; corresponding to p; € AP.

Our construction can then be divided in two steps:
First, with any strategy of Player Purple (characterized by (k,p;) for the interesting

cases), we associate auxiliary strategies of Players Blue, Purple and Orange satisfying
certain properties, that can be enforced by an SL[BG] formula ¥,,; Fig. 4 should help

visualizing the associated strategies; in particular, strategies o ", ailue and Ufr“rple
characterize position k + 1 (which will be useful for checking transitions of the Biichi

automaton), while opes and ops® are Player-Blue strategies that either go to the Biichi

part or to the proposition part of the main part of the game.

FSTTCS 2015

76

Weighted Strategy Logic with Boolean Goals Over One-Counter Games

Then, using those strategies, we write another SL[BG] formula to enforce that the
transitions of the Biichi automaton are correctly applied, following the valuations of the
atomic propositions selected in the square states, and that an accepting state is visited
infinitely many times.

The construction of the game structure G¢ depicted on Fig. 3 is readily extended to any
number of atomic propositions, and to any Biichi automaton. We now explain how we build
our SL[BG] formula replacing Formula (1), and ensuring correctness of our reduction.

We do not detail the first step mentioned above and assume that a formula ¥, has
been written, which properly generates auxiliary strategies, as depicted on Fig. 4 (see [10]).
Instead we focus on the Biichi automaton simulation. We look for a strategy of Player Black
that will mimic the run of the Biichi automaton, following the valuation of the atomic
propositions selected by the square players A; to A,. We also require that the run of the
Biichi automaton be accepting.

The formula ¥ enforcing these constraints is as follows?:

VUAl JoA2. .. VoAn-1, JoAn, JobRk pind(cAt, 042, ... oAn-1, gAn oblack gomnee) g,

A /\ (bind (o, 07" ™)F q) < (bind (o, 07" ™) F q) (1)
pi,p; EAP q€Q

A ((bind(he,omP). F) = (ind(oi5,, 0™\ Fo)) ()

DIEAP g€Q)|p;€Elabel(q)
N
/\ ((bmd(blue O_purple) F _‘pi) j(bind(UglgfhwUpurple)- \/ Fq)) (803)
AP 9€Q|pi ¢label(q)
/\ bind(Ugli;fhi,Upurple)- Fg= \/ blnd(blue PurPIe) Fq (¢4)
q€Q q’ €succ(q)
A\
bind(o2e, 08P). \/ Fq (v
g€accept(Q)

We now analyze formula U:

black yeturns the same move after any history of the

Formula (¢7) requires that strategy o
form (s, o, 7)*(b, Bi,), whichever B; has been selected by oPUrP'e;

Formulas (p2) and (¢3) constrain the state of the Biichi automaton to correspond to the
valuation of the atomic propositions selected. Because of the universal quantification
over oPUPle this property will be enforced at all positions and for all atomic propositions;
Formula (¢4) additionally requires that two consecutive states of the run of the Biichi
automaton indeed correspond to a transition;

finally, Formula (¢5) states that for any position (selected by oPP'¢) there exists a later
position (given by ¢PUP'¢) at which the run of the Biichi automaton visits an accepting
state.

The correctness of the construction is then stated in the next lemma, whose proof can be
found in [10].

2 We notice that ¥ is not syntactically in SL[BG], as some bindings appear before quantifications in Wayx.
However, quantifiers in W,,x could be moved before the bindings of W.

P. Bouyer, P. Gardy, and N. Markey

» Lemma 4. Formula ® in QLTL is satisfiable if, and only if, Formula U in SL[BG] holds
true in state (s, a,7y) of the game Go. <

» Remark. SL[BG] and several other fragments were defined in [32, 33] with the aim of getting
more tractable fragments of SL. In particular, the authors advocate for the restriction to
behavioural strategies: this forbids strategies that prescribe actions depending of what other
strategies would prescribe later on, or after different histories. Non-behavioural strategies
are thus claimed to have limited interest in practice; moreover, they are suspected of being
responsible for the non-elementary complexity of SL model-checking. Our hardness result
strengthens the latter claim, as SL[BG] is known for not having behavioral strategies.

» Remark. We had to rely on a Biichi auto- o 0 0 £y e
maton instead of directly using the original . : . : . : . : . L E ¢
LTL formula directly in the SL[BG] formula. FOLF L LR AT
This is because we need to evaluate the for- é é\ é\ é\ (//'

p O O O O

mula not on a real path of our game struc- b _.

The figure on the right represents this situation for the game structure of Fig. 1: the path on
which the LTL formula is given by the red and green circle states, which define the valuations

ture, but on a sequence of “unions” of states.

for p; and ps.

4 Periodicity of 1cSL[BG] model checking

In this section we prove our periodicity property for 1cSL[BG]. We inductively define the
function tower: IN x IN — IN as tower (a,0) = a and tower (a,b + 1) = 2t°*er(@?) This encodes

towers of exponentials of the form 22 .

» Theorem 5. Let G be a 1cCGS, and ¢ be a 1cSL[BG] formula. Then there exist a threshold

h >0 and a period A > 0 for the truth value of ¢ over G. That is, for every configuration

(q,¢) of G with ¢ > h, for every k € N, G, (q,c) = ¢ if, and only if, G, (q,c+ k- A) |E .
Furthermore the order of magnitude for h + A is bounded by

|Q|'22|‘P\
tower [max ny, max kg+1
0€Subf(p) 0€Subf(yp)

where Subf(yp) is the set of 1cSL[BG] formulas of p, kg is the number of quantifier alternations
in 0, and ng is the number of different bindings used in 0.

The rest of this section is devoted to developing the proof of this result, though not with
full details. Detailed proofs of intermediate results are given in [10].

We first prove this property for the flat fragment 1cSL0[BG}, and then extend it to the
full 1cSL[BG].

4.1 The flat fragment 1cSL°[BG|

We fix a 1cCGS G and a formula ¢ = Q121 ... Qrzk. f((Bigi)i1<i<n) in 1cSLO[BG], where for
every 1 < j <k, we have Q; € {3,V} (assuming quantifiers strictly alternate), f is a Boolean
formula over n atoms, and for every 1 < i < n, §; is a complete binding for the players’
strategies, and ¢; is a 1cLTL formula. We write M for the maximal constant appearing in
one of the finite sets describing a counter constraint S appearing in ¢.

77

FSTTCS 2015

78

Weighted Strategy Logic with Boolean Goals Over One-Counter Games

For every 1 <i < n, we let D; be a deterministic (counter) parity automaton that recog-
nizes formula ¢; (this is the standard LTL-to-(deterministic parity) automata construction in
which quantitative constraints are seen as atoms). A run of G is read in a standard way, with
the additional condition that quantitative constraints labelling a state should be satisfied by
the counter value when the state is traversed (a state can be labelled by a constraint cnt € S,
with S arbitrarily complex—it does not impact the description of the automaton).

The proof proceeds by showing that, above some threshold, the truth value of ¢ is periodic
w.r.t. counter values. To prove this, we define an equivalence relation over counter values
that generates identical strategic possibilities (in a sense that will be made clear later on).

4.1.1 Definition of an equivalence relation

Fix a configuration v = (¢,¢) in G, pick for every 1 < i < n a state d; in the automaton D;,
and define the tuple D = (dy,...,d,). For every context xj for variables {z1,...,z},
we define the level-0 identifier Id,, (v, D) as:

ldy, (v, D) = {i | 1 <i < n and out(y, B;[xk]) is accepted by D; from d; }

where (;[xx] assigns a strategy from xj to each player in Agt following f;.

Assuming we have defined level-(k — j + 1) identifiers Id,, , (v, D) for every partial
context x;41 for variables {z1,..., 211}, we define the level-(k — j) identifier Idy (v, D) for
every partial context X, for variables {z1,...,z;} as follows:

ldy, (v, D) = {ldy,,, (v, D) ‘ Xj+1 is a context for {z1,...,x;11} that extends x; }.

There is a unique level-k identifier for every configuration v = (¢, ¢) and every D, which
corresponds to the empty context. It somehow contains full information about what kinds of
strategies can be used in the game (this is a hierarchical information set, which contains all
level-j identifiers for j < k).

Let P be the least common multiple of all the periods appearing in periodic quantitative
assertions used in formula ¢. We define the following equivalence on counter values:

c~c if and only if, ¢=¢ mod P and VD. V.. Idg((¢,c), D) = Idy((¢, '), D).

Combinatorics. Given a configuration (¢, ¢) and a tuple D, the number of possible values for
the level-0 identifier is tower (n, 1), and for the level-j identifier it is tower (n, j + 1). Hence,
the number ind.. of equivalence classes of the relation ~ satisfies

‘ 191 lel
ind < P - (tower (n, k + 1))(|Q| M,) < P - (tower (n, k + 1))(@"22 ")

with |Q| the number of states in G. We let M = M +ind.. + 1. By the pigeon-hole principle,
there must exist M < h < b’ < M such that h ~ }'.

4.1.2 Periodicity property

We define A = b/ — h, and now prove that it is a period for ¢ for counter values larger
than or equal to h. Assume that v = (¢,¢) is a configuration such that ¢ > h, and define
v = (¢,c+ A) (note that ¢ + A > h'). We show that G, |= ¢ if, and only if, G,v |= ¢.

P. Bouyer, P. Gardy, and N. Markey 79

= Shifta ()
A
p '
identical (but shifted) strategies
h/
h °
/ \ equivalent strategies (h ~ h')

Figure 5 Construction in Lemma 6 (case (ii)

» Notations. For the rest of this proof, we fix the following notations:

1. if p is a run starting with counter value a > ¢, then either the counter always remains
above ¢ along p (in which case we say that p is fully above c), or it eventually hits value c,
and we define p\ . for the smallest prefix of p such that last(p\.) has counter value c;

2. let p be a run that is fully above M, and let ¢ be the least counter value appearing in p.
For every v > M — ¢, we write Shift, (p) for the run p’ obtained from p by shifting the
counter value by v. It is a real run since the counter values along p’ are also all above M.

3. if D is a tuple of states of the deterministic automata D;, and if p is a finite run of G
that is fully above M, then we write D, for the image of D after reading p.

Let 0 < j < k. We assume that x; and x’; are two contexts for {z1,...,z;}, and D is a
tuple of states of the D;’s. We write Ra’ﬁy,)(xj, X;) if the following property holds for any
run p from ~:

(i) if p is fully above h (or equivalently, if p’ = Shift(p), which starts from +/, is fully
above 1), then for every 1< g < J, x;(24)(p) = x}(x0) ()

(ii) if p is not fully above h (equivalently, if p’ = Shift,A(p) is not fully above k'), then we
decompose p (resp. p') w.r.t. h (resp. h') and write p = p\p - p and p' = p{,, - . Then:

ldy, ., (last(pyn). D)= Iy, — (last(p), D)

P\ ne

with D = Dyy, = D_H,/w/. Recall that Xipoh shifts all strategies in context x; after

the prefix p\j (that is, x; is the strategy such that ij(w) = x;(p\n - m) for every).
We then have:

» Lemma 6. Fiz 0 < j <k, and assume that R@"Q,)(Xj,xg) holds true. Then:

1. for every strategy v for xJH from ~, one can build a strategy T (v) for x;41 from ~" such

that IR?JH(XJ U{v}, xj U{T (v)}) holds true;

2. for every strategy v’ for xj41 from v', one can build a strategy T —1(v') for xj41 from v

such that R(V’le(xj U{T (")}, X U{v'}) holds true.

Sketch of proof. The idea is the following: either we are in case (1), in which case identical
(but shifted) strategies can be applied; or we are in case (2), in which case identical (but shifted)
strategies can be applied until counter value h (resp. h') is hit, in which case equality of
identifiers allows to apply equivalent strategies. The construction is illustrated in Fig. 5. <«

We use this lemma to transfer a proof that v =g ¢ to a proof that 4" =y ¢. We decompose
the proof of this equivalence into two lemmas:

FSTTCS 2015

80

Weighted Strategy Logic with Boolean Goals Over One-Counter Games

» Lemma 7. Fiz D° for the tuple of initial states of the D;’s. Assume that Rg:;’f)(x, xX')
holds (for full contexts x and x'). Let 1 < i < n, and write p = Out(y, Bi[x]) and p' =
Out(', Bi[X']). Then p |= ¢; if and only if p' = ¢;. In particular, v =y f((Bidi)i<i<n) if
and only if v By f((Bidi)1<i<n)-

Sketch of proof. As long as runs are above h (resp. h’) they visit states that satisfy exactly
the same atomic properties (atomic propositions and counter constraints), hence they progress
in each D; along the same run. When value h (resp. h’) is hit, they are generated by strategies
that have the same level-0 id, which precisely means they are equivalently accepted by each D;.
Hence both outcomes satisfy the same formulas ¢; under binding f3;[x] (resp. 5i[X’]). <

We finally show the following lemma, by induction on the context, and by noticing that
h ~ R/ precisely implies the induction property at level 0.

» Lemma 8. v =y ¢ if and only if v’ |=¢ .

This allows to conclude with the following corollary:

» Corollary 9. A is a period for the satisfiability of ¢ for configurations with counter values
larger than or equal to h.

2|99\
Furthermore, h + A is bounded by M + P - (tower (n, k + 1))|Q|'H1§is RN

» Remark. Note that the above proof of existence of a period, though effective (a period
can be computed by computing the truth of identifier predicates), does not allow for an
algorithm to decide the model-checking problem. One possible idea to lift that periodicity
result to an effective algorithm would be to bound the counter values; however things are not
so easy: in Fig. 5, equivalent strategies from h and h’ might generate runs with (later on)
counter values larger than h or h’. The decidability status of 1cSL'[BG] (and of 1cSL[BG])
model checking remains open.

4.2 Extension to 1cSL[BG]

We explain how we can extend the previous periodicity analysis to the full logic 1cSL[BG].
We fix a formula of 1cSL*™ [BG]

=011 ...Qrxy - f((Bidi)i<i<n)

with the same notations than the ones at the beginning of the previous subsection, but ¢;
can use closed formulas of 1cSL¥[BG] as subformulas.

Let W, be the set of closed subformulas of 1cSLk[BG] that appear directly under the
scope of some ¢;. We will replace subformulas of ¥, by other formulas involving only (new)
atomic propositions and counter constraints. Pick ¢ € V. Let hy and Ay be the threshold
and the period mentioned in Corollary 9. For every location £ of the game, the set of counter
values ¢ such that (£, ¢) = 1 can be written as Sg’ (we use a non-periodic set for the values
smaller than h, and a periodic set of period Ay for the values above hy)—note that we know
such a set exists, even though there is (for now) no effective procedure to express it. The size
of formula S;b is 1 (we do not take into account the complexity of writing the precise sets
used in the constraint). Expand the set of atomic propositions AP with an extra atomic
proposition for each location, say p, for location ¢, which holds only at location ¢. For every
Y € U, replace that occurrence of ¥ in ¢ by formula A,.; p, — (cnt € SY). This defines
formula ', which is now a 1cSL0[BG] formula, and holds equivalently (w.r.t.) from every

P. Bouyer, P. Gardy, and N. Markey

configuration of G. The size of ¢’ is that of . We apply the result of the previous subsection
and get a proof of periodicity of the satisfaction relation for ¢’, hence for ¢.

It remains to compute bounds on the overall period A, and threshold h,. The modulo
constraints in ¢’ involve periods Ay, (¢ € ¥,,), and the constants used are bounded by h.
So the bound M, is bounded by max(maxyecw(hy), M) where M, is the maximal constant
used in ¢, and the value P, is the l.c.m. of the periods used in ¢ (call it P,) and of the
Ay’s (for 1 € ¥,): hence Py < P, - maxyew, (Ay)#l Hence for formula ¢/, we get

‘Q‘_QQW’/\
ho + Ay < My + Py - tower (ng, ky + 1) +1
We infer the following order of magnitude for hy, + A, where wy, = maxyey, wy:

2\%0\
Wy R w\pw + MJ@W . (maXAw)hP‘ . tower (n(p7 ktp + 1)|Q|2

_22\50\
~ MJ;‘" ~w1f,0l - tower (ny, ky + 1)‘Q‘

Using notations of Theorem 5, the order of magnitude can therefore be bounded by

|l

IQ|-22
tower (max ng, max kg+ 1>
0eSubf () 6Subf ()

» Remark. Note that this proof is non-constructive, even for the period and the threshold,
since it relies on the model-checking of subformulas, which we don’t know how to do. We can
nevertheless effectively compute a threshold and a period by taking the l.c.m. of all the
integers up to the bound over the period and threshold given in this proof.

5 Conclusion

In this paper, we investigated a quantitative extension of Strategy Logic (and more precisely,
of its Boolean-Goal fragment) over games played on one-counter games. We proved that the
corresponding model-checking problem enjoys a nice periodicity property, which we see as a
first step towards proving decidability of the problem. We proved however that, if decidable,
the problem is hard; this is proved by showing that model checking the fragment SL[BG] over
finite-state games is Tower-hard, hence answering an open question from [32].

We are now trying to see how our periodicity property can be used to prove decidability
of the model-checking problem. While such a periodicity property helps getting effective
algorithms for model checking CTL over one-counter machines [28], the game setting used
here makes things much harder. Other further works also include the more general logic 1cSL,
whose decidability status (and complexity) is also open. Finally, we did not manage to
extend our hardness proof to turn-based games. It would be nice to understand whether the
restriction to turn-based games would make 1cSL[BG] (and SL[BG]) model checking easier.

—— References

1 R. Alur and D. L. Dill. Automata for modeling real-time systems. In ICALP’90, LNCS
443, pp. 322-335. Springer, 1990.

2 R. Alur and T. A. Henzinger. A really temporal logic. J. of the ACM, 41(1):181-203, 1994.

3 R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J. of the
ACM, 49(5):672-713, 2002.

4 K. Apt and E. Gradel. Lectures in Game Theory for Computer Scientists. Cambridge
University Press, 2011.

81

FSTTCS 2015

82

Weighted Strategy Logic with Boolean Goals Over One-Counter Games

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed automata. In
SSC’98, pp. 469-474. Elsevier Science, 1998.

A. Bohy, V. Bruyere, E. Filiot, and J.-F. Raskin. Synthesis from LTL specifications with
mean-payoff objectives. In TACAS’13, LNCS 7795, pp. 169-184. Springer, 2013.

U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman. Temporal specifications
with accumulative values. ACM Transactions on Computational Logic, 15(4):27:1-27:25,
2014.

P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, and J. Srba. Infinite runs in
weighted timed automata with energy constraints. In FORMATS’08, LNCS 5215, pp. 33-47.
Springer, 2008.

P. Bouyer, P. Gardy, and N. Markey. Quantitative verification of weighted Kripke structures.
In ATVA’14, LNCS 8837, pp. 64-80. Springer, 2014.

P. Bouyer, P. Gardy, and N. Markey. Weighted strategy logic with boolean goals over
one-counter games. Research Report LSV-15-08, Laboratoire Spécification et Vérification,
ENS Cachan, France, 2015. 26 pages.

T. Brazdil, P. Jancar, and A. Kucera. Reachability games on extended vector addition
systems with states. In ICALP’10, LNCS 6199, pp. 478-489. Springer, 2010.

S. V. A. Campos and E. M. Clarke. Real-time symbolic model checking for discrete time
models. In Real-time symbolic model checking for discrete time models, AMAST Series in
Computing 2, pp. 129-145. World Scientific, 1995.

P. Cermék, A. Lomuscio, and A. Murano. Verifying and synthesising multi-agent systems
against one-goal strategy logic specifications. In AAAI’'15, pp. 2038-2044. AAAI Press,
2015.

A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Resource interfaces. In
EMSOFT’03, LNCS 2855, pp. 117-133. Springer, 2003.

K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Generalized mean-payoff and
energy games. In FSTTCS’10, LIPIcs 8, pp. 505-516. Leibniz-Zentrum fiir Informatik,
2010.

K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy logic. In CONCUR’07, LNCS
4703, pp. 59-73. Springer, 2007.

K. Chatterjee, M. Randour, and J.-F. Raskin. Strategy synthesis for multi-dimensional
quantitative objectives. Research Report 1201.5073, arXiv, 2012.

E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using
branching-time temporal logic. In LOP’81, LNCS 131, pp. 52-71. Springer, 1982.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press, 2000.

A. Da Costa, F. Laroussinie, and N. Markey. ATL with strategy contexts: Expressiveness
and model checking. In FSTTCS’10, LIPIcs 8, pp. 120-132. Leibniz-Zentrum fiir Informatik,
2010.

L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga. The element of
surprise in timed games. In CONCUR’03, LNCS 2761, pp. 142-156. Springer, 2003.

S. Demri and R. Gascon. The effects of bounding syntactic resources on Presburger LTL.
Journal of Logic and Computation, 19(6):1541-1575, 2009.

A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. International
Journal of Game Theory, 8(2):109-113, 1979.

E. A. Emerson, A. K.-L. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal
reasoning. Real-Time Systems, 4:331-352, 1992.

J. Esparza and M. Nielsen. Decidability issues for Petri nets — a survey. FATCS Bulletin,
52:244-262, 1994.

U. Fahrenberg, L. Juhl, K. G. Larsen, and J. Srba. Energy games in multiweighted auto-
mata. In ICTAC’11, LNCS 6916, pp. 95-115. Springer, 2011.

http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/ rr-lsv-2015-06.pdf
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/ rr-lsv-2015-06.pdf

P. Bouyer, P. Gardy, and N. Markey

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

S. Goller, C. Haase, J. Ouaknine, and J. Worrell. Model checking succinct and parametric
one-counter automata. In ICALP’10, LNCS 6199, pp. 575-586. Springer, 2010.

S. Goller and M. Lohrey. Branching-time model checking of one-counter processes. In
STACS’10, LIPIcs 20, pp. 405-416. Leibniz-Zentrum fiir Informatik, 2010.

R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Sys-
tems, 2(4):255-299, 1990.

F. Laroussinie and N. Markey. Augmenting ATL with strategy contexts. Inf. & Comp.,
2015. To appear.

F. Laroussinie, N. Markey, and G. Oreiby. Model-checking timed ATL for durational
concurrent game structures. In FORMATS’06, LNCS 4202, pp. 245-259. Springer, 2006.
F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. Reasoning about strategies: On
the model-checking problem. ACM Transactions on Computational Logic, 15(4):34:1-34:47,
2014.

F. Mogavero, A. Murano, and L. Sauro. A behavioral hierarchy of strategy logic. In
CLIMA’14, LNAI 8624, pp. 148-165. Springer, 2014.

F. Mogavero, A. Murano, and M. Y. Vardi. Reasoning about strategies. In FSTTCS’10,
LIPIcs 8, pp. 133-144. Leibniz-Zentrum fiir Informatik, 2010.

A. Pnueli. The temporal logic of programs. In FOCS’77, pp. 46-57. IEEE Comp. Soc.
Press, 1977.

J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in CESAR.
In SOP’82, LNCS 137, pp. 337-351. Springer, 1982.

J. Reichert. On the complexity of counter reachability games. In RP’13, pp. 196-208.

Abdulla, Parosh Aziz and Potapov, Igor, 2013.

S. Schmitz. Complexity hierarchies beyond elementary. Research Report ¢s.CC/1312.5686,
arXiv, 2013.

O. Serre. Parity games played on transition graphs of one-counter processes. In FoSSaCS’06,
LNCS 3921, pp. 337-351. Springer, 2006.

A. P. Sistla. Theoretical Issues in the Design and Verification of Distributed Systems. PhD
thesis, Harvard University, Cambridge, Massachussets, USA, 1983. ?

A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for Biichi automata,

with applications to temporal logic. In ICALP’85, LNCS 194, pp. 465-474. Springer, 1985.

W. Thomas. Infinite games and verification (extended abstract of a tutoral). In CAV’02,
LNCS 2404, pp. 58—64. Springer, 2002.
S. Vester. On the complexity of model-checking branching and alternating-time temporal

logics in one-counter systems. In ATVA’15, LNCS, Lecture Notes in Computer Science.

Springer, 2015.
U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theor.
Computer Science, 158(1-2):343-359, 1996.

83

FSTTCS 2015

Decidability in the Logic of Subsequences and
Supersequences”

Prateek Karandikar' and Philippe Schnoebelen?

1 LIAFA, University Paris Diderot, France
2 Laboratoire Specification & Verification (LSV), Cachan, France

—— Abstract

We consider first-order logics of sequences ordered by the subsequence ordering, aka sequence
embedding. We show that the ¥y theory is undecidable, answering a question left open by
Kuske. Regarding fragments with a bounded number of variables, we show that the FO? theory
is decidable while the FO? theory is undecidable.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.4.3 Formal Languages

Keywords and phrases subsequence, subword, logic, first-order logic, decidability, piecewise-
testability, Simon’s congruence

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.84

1 Introduction

A subsequence of a (finite) sequence v = (z1,...,2¢) is a sequence obtained from u by
removing any number of elements. For example, if u = (a,b,a,b,a) then v’ = (b,b,a) is a
subsequence of u, a fact we denote with u' £ u. Other examples that work for any u are
u E u (remove nothing) and () = w.

In this paper we consider decidability and complexity questions for the first-order logic
of finite sequences with the subsequence ordering as the only predicate. The notion of
subsequence is certainly a fundamental one in logic, and it occurs prominently in several
areas of computer science: in pattern matching (of texts, of DNA strings, etc.), in coding
theory, in algorithmics, and in many other areas. We also note that sequences and their
subsequences are a special case of a more general notion where a family of finite labelled
structures (e.g., trees, or graphs, or ..) are compared via a notion of embedding. Closer to our
own motivations, the automatic verification of unreliable channel systems and related problems
generate many formulae where the subsequence ordering appears prominently [2, 4, 8, 11].

While decision methods for logics of sequences have been considered in several contexts,
the corresponding logics usually do not include the subsequence predicate: they rather
consider the prefix ordering, and/or membership in a regular language, and/or functions for
taking contiguous subsequences or computing the length of sequences, see, e.g., [10, 7, 1].

As far as we know, Kuske’s article [12] is the only one that specifically considers the
decidability of the first-order logic of the subsequence ordering per se. The article also
considers more complex orderings since these decidability questions first occurred in automated

* The first author was partially supported by Tata Consultancy Services and the CEFIPRA Raman-
Charpak fellowship. This work was done when he was affiliated to Chennai Mathematical Institute,
India and LSV, ENS Cachan, France.

© Prateek Karandikar and Philippe Schnoebelen;

licensed under Creative Commons License CC-BY
35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 84-97

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.84
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P. Karandikar and Ph. Schnoebelen

deduction under the name of ordered constraints solving and they involve rather specific
orderings on terms and strings [5].

Kuske considers the first-order logic of subsequences over a set of atoms A, denoted
FO(A*,), and notes that the undecidability of its ¥4 theory can be seen by reinterpreting
an earlier undecidability result from [6] for the first-order logic of the lexicographic path
ordering. He then shows that already the X3 theory is undecidable even when A contains
only two elements, and also shows that the 3; theory is decidable so that the status of the
Yo theory remains open.

Our contribution. In this paper we show that the X5 theory of the subsequence ordering
is undecidable. On the positive side, we show that the FO? theory is decidable (but FO3 is
not). We also prove some complexity bounds for the decidable fragments: the 3; theory is
NP-complete and the FO? theory is PSPACE-hard.

Outline of the paper. The relevant definitions and basic results are given in section 2.
Section 3 develops the reduction that proves undecidability for the >y and FO? theories.

Section 4 presents a further reduction that proves undecidability for the ¥y theory even
when constants are not allowed in the formulae. Then section 5 shows decidability for the
two-variable fragment FO?.

Since our constructions heavily rely on concepts and results from formal language theory,
we shall from now on speak of “words”, and “letters” (from an “alphabet”) rather than

sequences and atoms. Note however that the logic FO(A*, =) is defined for any kind of set A.

2 Basic notions

Let A = {ay,as,...} be a set called alphabet, whose elements are called letters. In this paper

we only consider finite alphabets for ease of exposition but without any real loss of generality.

A word is a finite sequence of letters like aac and we use u, v, ..., to denote words, and A*
to denote the set of all words over A. Concatenation of word is written multiplicatively, and
e denotes the empty word. We also use regular expressions like (ab + ¢)* to denote regular
languages (i.e., subsets of A*). The length of a word w is denoted |u| and, for a € A, we let
|u|o, denote the number of occurrences of a in u.

We say that a word w is a subword (i.e., a subsequence) of v, written v = v, when v is some

ai---a, and v can be written under the form vgaiv; - - - a,v, for some vy, vy,...,v, € A*.

We say a word u is a factor of a word v if there exist words v; and v such that v = vyuwvs. For
B c A, and w € A*, we define the projection of w onto B, denoted as wg(w), as the subword
of w obtained by removing all letters in A\B. For example, 7,) (abcaccbbc) = ababb.

We assume familiarity with basic notions of first-order logic as exposed in, e.g., [9]: bound
and free occurrences of variables, etc.

In particular, for n € N, the fragment FO™ consists of all formulae that only use at most
n distinct variables (these can have multiple occurrences inside the formula).

The fragments %,, and II,, of FO(A*, C) are defined inductively as follows:

an atomic formula is in ¥,, and II,, for all n € N;

a negated formula —¢ is in X, iff ¢ is in I1,,, it is in II,, iff ¢ is in X,,;

a conjunction ¢ A ¢ is in X, (resp., in II,,) iff both ¢ and ¢’ are;

For n > 0, an existentially quantified 3x¢ is in %, iff ¢ is, it is in 11, iff ¢ is in X,,_1;

For n > 0, a universally quantified Vz¢ is in 11, iff ¢ is, it is in X, iff ¢ is in 1T, 1.

85

FSTTCS 2015

86

Decidability in the Logic of Subsequences and Supersequences

Note that we do not require formulae to be in prenex normal form when defining the ¥,, and
I1,, fragments: for example the formula V2 Jy(z = y A 3z —(z E y)) is simultaneously in I,
and FO%.

In this article we consider three versions of FO(A*, £), the first-order logic of subsequences

over A:

The pure logic: the signature consists of only one predicate symbol, “C”, denoting the
subword relation. One also uses a countable set X = {x,2/,y, z,...} of variables ranging
over words in A* and the usual logical symbols.

Note that there is no way in the pure logic to refer to specific elements of A in the logic.
However, whether a formula ¢ is true, denoted }=4% ¢, may depend on A (in fact, its
cardinality). For example, the closed formula

Vr,y(rEyvyEw),

stating that = is a total ordering, is true if, and only if, A contains at most one letter.

The basic logic: extends the pure logic by adding all words u € A* as constant symbols
(denoting themselves). For example, assuming A contains a, b and ¢, one can write the
following sentence:

Jz(ab = x A bc E x A abc &)

which is true, as witnessed by the valuation x — bcab.

The extended logic: further allows all regular expressions as unary predicates (with the
expected semantics). For these predicates we adopt a more natural notation, writing e.g.
x € expr rather than Peg,. (). For example, the extended logic allows writing

Vz([Fy(y € (ab)* Az S y)] < x € (a+b)¥)

which states that the regular language (a + b)* is the downward closure of (ab)*, i.e., the

set of all subwords of its words.

When writing formulae we freely use abbreviations like z = y for x £ y A —~(y E z) and
x 3y for y & z. Note that equality can be defined as an abbreviation since t &y A y & x is
equivalent to x = y. Finally, we use negated symbols as in « &£ y or x ¢ (ab)* with obvious
meaning.

When we write FO(A*, £) without any qualification we refer by default to the basic logic.
The pure logic is apparently a very restricted logic, where one may hardly express more than
generic properties of the subword ordering like saying that (A*,C) is a total ordering, or is a
lattice. However, Theorem 3.1 below shows that the pure logic is quite expressive.

We conclude this expository section with

» Theorem 2.1. The truth problem for the X1 fragment of FO(A*,E) is NP-complete even
when restricting to a fized alphabet.

Proof sketch. The upper bound follows from the decidability proof in [12] since it is proved
there that a satisfiable quantifier-free formula ¢(z1,...,z,) can be satisfied with words of
size in O(n) assigned to the x;’s. Guessing linear-sized witnesses u1, ..., u, and checking
that =% ¢(u1,...,u,) can be done in NP.

For the lower bound, we reduce from boolean satisfiability. Consider a boolean formula
¢(z1,...,2,) over n boolean variables. We reduce it to an FO(A*,C) formula in the ¥,
fragment

1/) = Hz,ml, . 7In(¢/)

P. Karandikar and Ph. Schnoebelen

where ¢’ is obtained from ¢ by replacing each occurrence of x; with z; = z (hence replacing
—z; with z; & z). Then, for any alphabet A with at least one letter, ¢ is satisfiable if and

only if =% 1. <

3 Undecidability for X,

We are interested in solving the truth problem. This asks, given an alphabet A and a sentence
¢ € FO(A*,), whether ¢ is true in the structure (A* &), written =4+ ¢. Restricted
versions of the truth problems are obtained for example by fixing A (we then speak of the
truth problem over A) and/or by restricting to a fragment of the logic.

This section is devoted to proving the following main result.

» Theorem 3.1 (Undecidability). The truth problem for FO(A*,E) is undecidable even when
restricted to formulae in the ¥o N FO® fragment of the basic logic.

This is done by encoding Post’s Correspondence Problem in FO(A*,). The reduction is
described in several stages.

3.1 Expressing simple properties

We start with a list of increasingly complex properties and show how to express them in the
basic FO(A*, £) logic. We keep track of what fragment is used, with regards to both the
number of distinct variables, and the quantifier alternation depth.

Note that when we claim that a property with m free variables can be expressed in FO™
(necessarily n = m), we mean that the formula only uses at most n variables including the m
free variables.

We let A = {ay,...,as} denote an arbitrary alphabet, use B to denote subsets of A, and
a, b, ... to denote arbitrary letters from A.

P1. “ € B* " can be expressed in o n FO': using

/\ akx.

acA\B

P2. “ wp(y) = = ” can be expressed in II; n FO®: building on P1, we use

Vz((:EyAzeB*) = zcua),

noting that 7p(y) & x is equivalent to 75 (y) E mp(x).
P3. “ 2 = w(y) ” can be expressed in II; n FO®: building on P1, P2, and using

m(y) Sx AT EYATEB*.

P4. “ wp(x) = wp(y) ” can be expressed in IT; ~n FO®: building on P2, and using

me(y) S ATR(T) Y.

P5. “x caA* ", ie., “ x starts with a
on P1, and using

', can be expressed in X5 N FO3: building

EIz(aEZ/\ [/\ baiz]AzEx/\wA\{a}(x)Ez).
beA\{a}

87

FSTTCS 2015

88 Decidability in the Logic of Subsequences and Supersequences

Here the first two conjuncts require that z contains an occurrence of a and cannot start
with another letter. The last two conjuncts require that z is a subword of which has at
least all the occurrences in z of all letters other than a.
Clearly, the mirror property “z € A*a” can be expressed in ¥ N FO? too.

P6. “ x ¢ A*aaA* " can be expressed in X5 n FO?: building on P3, and using

Hy(y = Ta\(a}(T) A Vz[(aa CzAYyCzAzEZ) = \/ aba = z]) .
beA\{a}

Note that this is equivalent to “ x does not have aa as a factor”. Here z & z implies that
any two occurrences of a in z must come from x. Furthermore, if these are not contiguous
in x they cannot be contiguous in z in view of y = 74\ (a3 (7) E 2.

» Remark 3.2. Note that the “y = 74\ (q)(2)” subformula in P6 uses one variable apart
from y and x. We use the same variable name z that is used later in the formula, so that the
formula is in FO®. We similarly reuse variable names whenever possible in later formulae.

P7. “ 2 ¢ A*BBA* " can be expressed in 5 n FO3: as in P6 with

Hy(y:wA\B(x)AVz/\ [(ad EzryCzrzCz) = \/abd;z]).
a,a’eB be A\B

¢

Note that this is equivalent to “ x has no factor in BB .

P8. “ |wp(xz)| = 2 ” can be expressed in X n FO': using
(\/ aa';x) A /\ ad'ad” & x .
a,a’'eB a,a’,a”eB

3.2 Expressing regular properties

Building on the previous formulae, our next step is to show how any regular property can be
expressed in the basic logic by using an enlarged alphabet.

» Lemma 3.3. For any reqular L = A* there is an extended alphabet A’ 2 A and a formula
pr(z) in Xy A FO? over A’ such that for all u e A™, uw e L if and only if =% ér(u).

Proof. Let A= (Q,A,d,I,F) be a NFA recognising L so that u € L iff A has an accepting
run on input u. We define ¢, (z) so that it states the existence of such a run, i.e., we put
or(x) =3y Ya(z,y) where ¥ 4(z,y) expresses that “y is an accepting run of A over x.”
Let A" € A0 Q, assuming w.l.o.g. that A and @Q are disjoint. A run ¢y —> ¢ —
.25 ¢, of A can be seen as a word qoa1qi1as . .. angy in A™*. We now define 14 (z,y) as

the conjunction ¢ (z,y) A ¥ae(x,y), with

(y has no factor from AA) A (y has no factor from QQ)
=, (\/y begins with ¢) A (\/ y ends with q) A (ma(y) =),

qel qeF

Yo =

(r & 2z A 2 E y A 2z has exactly two occurrences of letters from Q)
Vz ()

:>(\/ \/qaa’q';zv \/ qaq’;z)

q,9'€Q a,a’e A (g,a,9")€d

Here 17 reuses simple properties from the previous subsection and states that y is a word
alternating between @ (states of A) and A (proper letters), starting with an initial state of A

P. Karandikar and Ph. Schnoebelen

and ending with an accepting state, hence has the required form gga; ... a,q,. Furthermore,
ma(y) = xz ensures that y has the form of an accepting run over z. Note that it also ensures
x € A*.

With 5, one further ensures that the above y respects the transition table of A, i.e.,
that (gi—1,ai,q;) € § for i = 1,...,n. Indeed, assume z € A’* satisfies x & z E y and
contains two occurrences from ¢). Thus z is a1...a;qiai110i42 ... 0;qj0j410542 ... ay for
some 1 < ¢ < j<n. Ifnow j>1i+1 then z contains ¢;a;11a,4+2¢; as a subword and the
disjunction after the implication is fulfilled. However, if j =i + 1, the only way to fulfil the
disjunction is to have (gj_1,a;,¢;) € 6.

Finally, 4 (z,y) exactly states that y is an accepting run for and }=4/% ¢ (u) holds iff
we L. One easily checks that ¢; is in £y n FO?, 15 is in II; n FO?, so that ¥4 and ¢, are
in ¥5 N FO3. We reuse variables wherever possible to ensure that only three variables are
used (see remark 3.2). For example, the implementation of “y has no factor from QQ” from
P7 needs two other variables, and here we use x and z for it. <

3.3 Encoding Post’s Correspondence Problem

It is now easy to reduce Post’s Correspondence Problem to the truth problem for the basic
FO(A*,C) logic.

Suppose we have a PCP instance P consisting of pairs (ui,v1),...(tn,v,) over the
alphabet T'. We let N = {1,...,n}, consider the alphabet A iy N, and define

(1)

, e (lup + - +nuy)t A 2 e (lvg + -+ nv,) "t
¢op =3z, x .
A n(x) =7y (2) A mp(z) = 7r(2)
Clearly, ¢p is true iff the PCP instance has a solution.

It remains to check that ¢p is indeed a formula in the 35 fragment: this relies on
Lemma 3.3 for expressing membership in two regular languages, and the P4 properties for
ensuring that z and z’ contain the same indexes from N and the same letters from I'. Finally,
we note that ¢p is also a FO® formula.

4 Undecidability for the pure logic

In this section we give a stronger version of the undecidability for the ¥ fragment.

» Theorem 4.1 (Undecidability for the pure logic). The truth problem for FO(A* E) is
undecidable even when restricted to formulae in the Yo fragment of the pure logic.

The proof is by constructing a 3o formula ¢ (z1,...) in the pure logic that defines all the
letters and constant words we need to reuse the reduction from the previous section.

Kuske solves the problem in the special case of a formula using only {e, a, b, ab, ba, aa, bb,
aba, bab} as constants [12]. We provide a more generic construction whereby all words (up
to a fixed length) can be defined in a single X5 formula. One inherent difficulty is that it
is impossible to properly define constant words in the pure logic. Of course, with the pure
logic one can only define properties up to a bijective renaming of the letters, so ¢ (x1,...)
will only define letters and words up to renaming. But a more serious problem is that we
can only define properties invariant by mirroring as we now explain.

For a word u = ajas . ..ap, we let @ denote its mirror image ag . . . asa;.

» Lemma 4.2 (Invariance by mirrorring). If ¥(x1,...,2,) is a formula in the pure logic and
Uly ..Uy are words in A*) then = ax o(uy, ... uy) if, and only if, =% &(u1, ..., uy).

89

FSTTCS 2015

90

Decidability in the Logic of Subsequences and Supersequences

Proof Sketch. By structural induction on ¢, noting that the only atomic formulae in the
pure logic have the form = & y, and that v E v iff u £ v for any u,v € A*. <

4.1 Defining letters and short constant words

We now define 1 (z1, . ..). In our construction ¢ has the form ¥ A ¥g A -+ A 1013 and features
a large number of free variables. We describe the construction in several stages, explaining
what valuation of its free variables can make 1 true. We start with

Vy(z Cy) (¥1)
A /\1@4:]'@1 x; Ezj (2)
AN VylyEri = (miEyvyE2)] (¥s3)

Here 1)1 implies z = ¢, then o implies x; # € so that ¥3 requires that each x; is a single
letter and furthermore z1, ..., x, must be different letters as required by 5.
We continue with:

AN (xi Ca?aa?ta; AVylyEa? = (ySa; valc y)]) (14)

Note that n new free variables, %, ..., 22

least two letters (it must contain z; strictly). But it also requires that any subword of z? is €
or z; or z7, thus z?
In the same style we introduce new free variables 3, ..., 23 and x%,..., 2% and require

that 3 equals z;x;z;, and that m? equals x;x;x;x; with:

are involved. First ¢4 requires that any z? has at

has length 2 and can only be x;x;.

AN (@ ead aad Ea? AVylyEad = (x;

7 %

In

) (¥s)

Yy
v)1) (¥6)

I N
I

yE:l:?v
Yyl v

BN

A/\?=1(xf’zfoxf$mf/\Vy[yEx = (x:

We introduce new free variables {yi7j}1<i¢j<n and conjuncts:

A Nicigjen VWY EY,; = yE2zva, Eyva;Cy) (vs)
N /\1si;&j<n(xi = yij AT E Yig A Eyi A f? & yij) (¥9)
N /\1<i¢j<n (yi,j i3 yj,i) (¥10)

Here 13 requires that any y; ; only contains letters among x; and z;, and 1y requires that it
contains exactly one occurrence of x; and one of x;. So that y; ; is either x;x; or z;x;. With
110 we require that y;; is, among z;z; and z;x;, the word not assigned to y; ;.

Now, in view of Lemma 4.2, it is impossible to fix e.g. y; ; = x;x;. However we can force
all y; ; to have “the same orientation”. Let i, j, k be three different indexes in {1,...,n} and
consider the following formula

VylyEt = yCzva, Cyve,Syvae Zy) (&)
Sijhp=3t| A aiCtraddtaa; CtaalEtna,Staa] Tt (&2)
AN Y EtAY i EEAYik ELAYRi EEAY R ELAYL; ET (&3)

We claim that, in conjunction with the earlier 1-conjuncts, £ A §2 A €3 requires t = z;z;2;2)
or t = xpx;xjx;: indeed by &, ¢ only contains letters among {x;,x;,zx}, then by &, t
contains exactly 2 occurrences of x; and exactly one occurrence each of x; and xj, then
by &3, t has x;x; and x;x; as subwords, so the single occurrence of z; is between the two
occurrences of x; and, by &3 again, the occurrence of zj is outside the two x; occurrences.
Finally, satisfying &; ; 1 requires y; » and y; . to have the same orientation.

P. Karandikar and Ph. Schnoebelen

We continue the construction of ¢ with:

A /\1@‘;&3‘@ Ak(;é{z’,j} §ijik (¢11)

As just explained, this will force all ¥; ;s to have the same orientation, i.e., any satisfying
assignment will have y; ; = z;x; for all 4, j, or y; ; = x;x; for all 4, 5.

4.2 Defining long constant words

Once we have defined all words of length 2 (up to mirroring) over the alphabet {z1,...,2,}
(up to renaming), it is easier to systematically define all words of length 3, 4, etc. Actually,
we only use constant words of length at most 4 for the formula ¢ from section 3.

The general strategy relies on a technical lemma we now explain. For n € N we say that
two words u and v are n-equivalent, written u ~,, v, if u and v have the same set of subwords
of length up to n. Thus ~,, is the piecewise-testability congruence introduced by Simon,
see [16, 15].

» Lemma 4.3. Letn =2, and let u and v be words of length n+ 1 with u # v. Then u #, v.

Proof. See appendix. <

We can thus introduce new variables y; jr and y; j k. for all 4,5, k,m € {1,...,n}
(allowing repetitions of indexes) and require y; jr = ;T and Y j km = TiT;TETm, UP
to mirroring but with the same orientation for all the y;,, . ;’s. Then we complete the
construction of ¥ with the following conjuncts:

A /\1<i,j,k<n “formula defining y; jr” (112)

A Nicijkmen formula defining yi jxm ™ (113)

In order to require that, for example, y; 52 = 12522, it is enough to:
enumerate all words of length upto 2, and for each say whether it is or is not a subword
of Y152 (V15 E Y152 AT E Y152 A-..),
and require that y; 5 2 has length 3, by saying that every subword of y; 5 o is itself or is
one of the words of length upto 2, and that y; 5o is distinct from all these words.
The correctness of the construction is guaranteed by Lemma 4.3.
Once all 3-letter words have been defined, we can use them to define 4-letter words (and
if needed, 5-letter words, and so on) simlarly, with correctness following from Lemma 4.3.
Finally, we let ¢/, be obtained from the formula ¢p —see Eq. (1) page 89— by replacing
every constant letter a; € A by the variable z;, and every constant word a;, ...a;, € A* by
the variable y;,, . ;, (we use z for the constant word €, and 7 for the constant word x;z;).
Now we define ¥p with

¢7>EHZ(1/)1/\--~/\¢13/\¢9>)

where Z = {z,21,...,Zpn, @}, ..., 20, 23, 23,21, .. Y11, Yir,..iys - - -} cOllects all the free
variables we used in 1 A -+ A U13.

Noting that each 1; as well as ¢, is a ¥y formula, we get that the resulting 1p is a ¥
formula in the pure logic that is true in (A*, =) iff the PCP instance P is positive. This
concludes the proof of Theorem 4.1.

91

FSTTCS 2015

92

Decidability in the Logic of Subsequences and Supersequences

4.3 Undecidability for a fixed alphabet

The above Theorem 4.1 applies to the truth problem for unbounded alphabet, i.e., where we
ask whether =44 ¢ for given A and ¢. In this proof, the alphabet A depends on the PCP
instance P since it includes symbols for the states of the regular automata that define the
languages (luy + -+ +nuy,)* and (lvy + - - - + nv,)t in Eq. (1), and further includes symbols
in N={1,...,n}.

It is possible to further show undecidability of the ¥y fragment even for a fixed alphabet
A as we now explain. For this we consider a variant of Post’s Correspondence Problem:

» Definition 4.4. The variant PCP problem asks, given an alphabet T, pairs (u1,vy),...,
(tun,v,) over T', and an extra word w € I'*, whether there exists a sequence iy,...,ip over
{1,...,n} such that wu;, ... u;, = v, ... 0.

» Lemma 4.5. There is a fired I' and a fized sequence of pairs over I' for which the variant
PCP problem (with only w as input) is undecidable.

Proof Sketch. One adapts the standard undecidability proof for PCP. Instead of reducing
from the question whether a given TM halts, one reduces from the question whether a
fixed TM accepts a given input. Note that in the case of a universal TM, the problem is
undecidable. Fixing the TM will lead to a fixed sequence of pairs (u1,v1), ..., (uy,vy,), and
the input of the TM will provide the w parameter of the problem. |

» Theorem 4.6 (Undecidability for fixed alphabet). There exists a fixed alphabet A such that
the truth problem for the pure logic FO(A*, &) is undecidable even when restricted to formulae
mn 22.

Proof Sketch. We adapt the proof of Theorems 3.1 and 4.1 by reducing from the variant
PCP problem with fixed I and sequence of pairs. The encoding formula can be

(2)

. /(zel™ (lug + - +nu,)" Ax’Ep(1v1+~~+m}n)+>
=3z,x

ATp(z) = A wn(z) =7n(2") A rror (2) = oo (2)

to be compared with Eq. (1). Here we use I = {a,b, ..}, a renamed copy of I' = {a,b, ..},
to be able to extract the w prefix in . The word @ is simply w from the variant PCP
instance with all letters from I" replaced by corresponding letters from I'V. We then need
to extend the language (lvy + --- + nv,) for 2’ so that letters from I can be used in
place of the corresponding letters from I'. This is done by applying a simple transduction

def a1\ *
P (Unerl2] 0 [2])

In the end, we only use two fixed regular languages, and thus a fixed alphabet A. Note
however that encoding the input w will require using constant words of unbounded lengths.
Here we rely on the fact that our reduction from basic to pure logic can define constant
words of arbitrary length in the ¥, fragment. |

5 Decidability for the FO? fragment

In this section we show that for finite alphabets, the truth problem for the 2-variable fragment
FO?(A*, =) is decidable. The proof was first sketched by Kuske [13].

y =

P. Karandikar and Ph. Schnoebelen 93

5.1 Rational relations

We recall the basics of rational relations. See [3, Chap. 3] or [14, Chap. 4] for more details.
For finite alphabets A and B, the rational relations between A* and B* are defined as
the subsets of A* x B* recognised by asynchronous transducers. The set of rational relations
between A* and B* is exactly the closure of the finite subsets of A* x B* under union,
concatenation, and Kleene star.
For example, it is easy to see that the subword relation, seen as a subset of A* x A* is a
rational relation [3, Example I11.5.9], and that the strict subword relation is rational too:*

<= (L) <= (Ul =

Define now the incomparability relation over A* denoted 1, by v L v iff u &£ v A v &£ u.
» Lemma 5.1. The incomparability relation over A* is a rational relation.

Proof. We cannot simply use the fact that & and 3 are rational relations since rational
relations are not closed under intersection. The way out is to express incomparability as a
union L =Ty u T, of rational relations, using the following equivalence

(u,v)eTy (u,v)eT>

N -

ulov iff (WEvaful <|u))v@EuAv] <. (3)

The equivalence holds since |u| > |v| implies u & v.
We show (see Coro. 5.3) that T3 is rational. A symmetric reasoning shows that T5 is
rational. This concludes since the union of two rational relations is rational. <

In the following proof, we write w(0 : —i] to denote the prefix of length |w| — ¢ of an arbitrary
word w (assuming 0 < i < |w)).

» Lemma 5.2. (u,v) € T} iff there exists an integer £, a factorisation u = ajas . ..apau’ of
u, and a factorisation v = viaivaas ... veaghv’ of v such that

ai,...,ap € A andwvy,...,vp € A* are such that a; does not occur inv; for alli=1,... ¢,

a,be A are two letters with a # b, and

u',v' € A* are two suffizes with |u'| = |[v'].

Proof. The («<=) direction is clear: the listed conditions guarantee |u| < |v| and u & .

To see the (=) direction, we assume (u,v) € T} and write u = a; ... a,, with n = |u],
knowing that n > 0 since u &£ v. We say that i € {0,...,n} is good if u(0: —i] E v(0: —i],
and bad otherwise. Clearly, n is good and 0 is bad. Let m > 0 be the smallest good index: it
is easy to check that taking £ =n —m, a = agy1 and v’ = agio...a, proves the claim. <«

» Corollary 5.3. T} is a rational relation.

Proof. Lemma 5.2 directly translates as

o= (U] ul)- (L)

1 When writing such regular expressions we use the vector notation [g] to denote (z,y). Note that the
domain and the range of the relation correspond to the bottom and, resp., the top, lines of the vectors.
We use - to mean concatenation.

FSTTCS 2015

94

Decidability in the Logic of Subsequences and Supersequences

5.2 Decidability for FO?

Let R & {=,c,3, 1} consists of the following four relations on A*: equality, strict subword

relation, its inverse, and incomparability. These four relations form a partition of A* x A*,
i.e., for all u,v € A*, exactly one of u = v, u = v, u 3 v, and u L v holds.

For any R € R and language L < A*, we define the preimage of L by R, denoted R~1(L),
as being the language {z € A* : 3y € L : (z,y) € R}. We saw in section 5.1 that each
relation R € R is rational: we deduce that R=*(L) is regular whenever L is. Furthermore,
using standard automata-theoretic techniques, a description of the preimage R~!(L) can be
computed effectively from a description of L.

In the following we consider FO? formulae using only z and y as variables. We allow
formulae to have regular predicates of the form x € L for fixed regular languages L (i.e., we
consider the extended logic). Furthermore, we consider a variant of the logic where we use
the binary relations =, = and L instead of &. This will be convenient later. The two variants
are equivalent, even when restricting to FO™ or ¥, fragments: in one direction we observe
that = £ y can be defined with z = y v & = y, in the other direction one defines x = y with
rEyAryExand x Ly withax & yaydz Wealso use x 3 y as shorthand for y = x.

» Lemma 5.4. Let ¢(x) be an FO? formula with at most one free variable. Then there
exists a regular language Ly S A* such that ¢(x) is equivalent to x € Ly. Furthermore, a
description for Ly can be computed effectively from ¢.

Proof. By structural induction on ¢(z). If ¢(x) is an atomic formula of the form x € L, the
result is immediate. If ¢(x) is an atomic formula that uses a binary predicate R from R, the
fact that it has only one free variable means that ¢(z) is a trivial z =z, or x =z, or ..., so
that Ly is A™ or (.

For compound formulae of the form —¢'(x) or ¢1(z) v ¢2(x), we use the induction
hypothesis and the fact that regular languages are closed under boolean operations.

There remains the case where ¢(x) has the form y ¢'(x,y). We first replace any
subformulae of ¢’ having the form 3z ¢ (x,y) or Iy ¢ (x,y) with equivalent formulae of the
form y € Ly or x € Ly respectively, for appropriate languages Ly, using the induction
hypothesis. Thus we may assume that ¢’ is quantifier-free. We now rewrite ¢’ by pushing all
negations inside with the following meaning-preserving transformations:

= =(11 v P2) = —h1 A~ —(P1 A t2) = —h1 v 1o
and then eliminating negations completely with:
—'(Z € L) — Z € (A*\L) —'(21 Rl 2:2) — 21 R2 Z2 V 21 R3 22 V 21 R4 z2

where Ry, R, R3, Ry are relations such that R = {Ry, Ra, R3, R4}. Thus, we may now assume
that ¢’ is a positive boolean combination of atomic formulae. We write ¢’ in disjunctive
normal form, that is, as a disjunction of conjunctions of atomic formulae. Observing that
Jy(p1 v ¢2) is equivalent to Ty ¢1 v Jy o, we assume w.l.o.g. that ¢’ is just a conjunction of
atomic formulae. Any atomic formula of the form = € L, for some L, can be moved outside
the existential quantification, since Jy(x € L A ¢) is equivalent to x € L A Iy 1. All atomic
formulae of the form y € L can be combined into a single one, since regular languages are
closed under intersection.

Finally we may assume that ¢'(x,y) is a conjunction of a single atomic formula of the
form y € L (if no such formula appears, we can write y € A*), and some combination of
atomic formulae among x = y, * 3y, z = y, and x L y. If at least two of these appear, then

P. Karandikar and Ph. Schnoebelen

their conjunction is unsatisfiable, and so ¢(z) is equivalent to z € . If none of them appear,
Jy(y € L) is equivalent to x € A* (or to x € & if L is empty). If exactly one of them appears,
say « Ry, then 3y (y € L A zRy)) is equivalent to x € Ly for Ly = R~*(L), which is regular
as observed earlier. <

» Theorem 5.5. The truth problem for FO*(A*,C) is decidable.

Proof. Lemma 5.4 provides a recursive procedure for computing the set of words that make
@(x) true. When ¢ is a closed formula, this set is A* or ¢ depending on whether ¢ is true
or not. <

5.3 Hardness for FO?

The main question left open in this paper is the complexity of the decidable FO? theory.

The recursive procedure described in Lemma 5.4 is potentially non-elementary since nested
negations lead to nested complementations of regular languages.

Our preliminary attempts suggest that the question is difficult. At the moment we can
only demonstrate the following lower bound.

» Theorem 5.6. Truth checking for the basic logic, restricting to FO? sentences which only
use letters (that is, words of length 1) as constants, is PSPACE-hard.

Proof. We reduce from TQBF, the truth problem for quantified boolean formulae. W.l.o.g.

a given instance of TQBF has the form ¢’ = Ip1Vps ... Ipan_1Yp2n@.

Consider the alphabet A with 4n letters, T; and F; for each 1 <7 < 2n. A word w € A*
is intended to encode a (partial) boolean valuation V,, of the variables py,...,pan: if T;
appears in w, V,(p;) = true, and if F; appears in w, V,,(p;) = false. We do not consider
“inconsistent” words, in which both T; and F; appear. Observe that if x and y represent
partial valuations and = = y, then V, extends V. Conversely, any valuation extending V
can be represented by a suitable 3’ with = & 7/.

For each i, let ¢;(w) be a formula that says “the domain of V,, is {x1,...,x;}":

/\ (GewvFcwaA—-(l;cwaF,cw)A /\ (T; £ wA Fj; & w)

1<j<i i<j<2n
We now translate the given TQBF instance ¢’ into an FO? sentence 1 in our logic:

¢ =3a(pi(2) AVY((p2(y) Az Sy) = Ja(ps(a) AySaa...
A3z(p2n-1(2) Ay E a2 A VY((p2n(2) Az Ey) = ¢))...)))

where v is obtained from ¢ by replacing each p; with T; = y.

The formula 1" uses the two variables z and y alternately, to build up suitable valuations
with the appropriate alternation of 3 and V. It is easy to see that ¢’ is true if and only if 1’
is true.

Finally, it was not necessary to assume that ¢’ had a strict alternation of 3 and V, but it
makes the presentation of the proof simpler. |

6 Concluding remarks

We considered the first-order logic of the subsequence ordering and investigated decidability
and complexity questions. It was known that the X3 theory is undecidable and that the 3
theory is decidable. We settled the status of the s fragment by showing that it has an

95

FSTTCS 2015

96

Decidability in the Logic of Subsequences and Supersequences

undecidable theory, even when restricting to formulae using no constants. To remain in the
Yo fragment, our reduction encoded language-theoretic problems rather than undecidable
number-theoretic logical fragments as is more usual.

We also showed that the FO? theory of the subsequence ordering is decidable using
automata-theoretic techniques. The FO? fragment is quite interesting. We note that it
encompasses modal logics where the subsequence ordering correspond to one step (or its
reverse) as used in the verification of unreliable channel systems.

Finally, we provided some new complexity results like Theorems 2.1 and 5.6.

We can list a few interesting directions suggested by this work. First, on the fundamental
side, the main question left open is the precise complexity of the FO? theory.

Regarding applications, it would be interesting to see how the decidability results can be
extended to slightly richer logics (perhaps with some extra functions or predicates, or some
additional logical constructs) motivated by specific applications in automated reasoning or
program verification.

Acknowledgements. We thank Dietrich Kuske who outlined the proof of Theorem 5.5.

—— References

1 P. A. Abdulla, M. Faouzi Atig, Yu-Fang Chen, L. Holik, A. Rezine, P. Rimmer, and
J. Stenman. String constraints for verification. In Proc. CAV 2014, volume 8559 of Lecture
Notes in Computer Science, pages 150-166. Springer, 2014.

2 P. A. Abdulla, A. Collomb-Annichini, A. Bouajjani, and B. Jonsson. Using forward reacha-
bility analysis for verification of lossy channel systems. Formal Methods in System Design,
25(1):39-65, 2004.

3 J. Berstel. Transductions and Context-Free Languages. B. G. Teubner, Stuttgart, 1979.

4 P. Bouyer, N. Markey, J. Ouaknine, Ph. Schnoebelen, and J. Worrell. On termination and
invariance for faulty channel machines. Formal Aspects of Computing, 24(4-6):595-607,
2012.

5 H. Comon. Solving symbolic ordering constraints. Int. J. Foundations of Computer Science,
1(4):387-412, 1990.

6 H. Comon and R. Treinen. Ordering constraints on trees. In Proc. CAAP ’94, volume 787
of Lecture Notes in Computer Science, pages 1-14. Springer, 1994.

7 V. Ganesh, M. Minnes, A. Solar-Lezama, and M. C. Rinard. Word equations with length
constraints: What’s decidable? In Proc. HVC 2012, volume 7857 of Lecture Notes in
Computer Science, pages 209-226. Springer, 2013.

8 Ch. Haase, S. Schmitz, and Ph. Schnoebelen. The power of priority channel systems. Logical
Methods in Comp. Science, 10(4:4), 2014.

9 J. Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge University
Press, 2009.

10 P. Hooimeijer and W. Weimer. StrSolve: solving string constraints lazily. Autom. Softw.
Eng., 19(4):531-559, 2012.

11 P. Karandikar and Ph. Schnoebelen. Generalized Post embedding problems. Theory of
Computing Systems, 56(4):697-716, 2015.

12 D. Kuske. Theories of orders on the set of words. RAIRO Theoretical Informatics and
Applications, 40(1):53-74, 2006.

13 D. Kuske. Private email exchanges, April 2014.

14 J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.

P. Karandikar and Ph. Schnoebelen

15 J. Sakarovitch and I. Simon. Subwords. In M. Lothaire, editor, Combinatorics on words,

volume 17 of Encyclopedia of Mathematics and Its Applications, chapter 6, pages 105-142.

Cambridge Univ. Press, 1983.
16 1. Simon. Piecewise testable events. In Proc. 2nd GI Conf. on Automata Theory and Formal

Languages, volume 33 of Lecture Notes in Computer Science, pages 214-222. Springer, 1975.

A Proof of Lemma 4.3

Assume |u| = |v] =n + 1 and u # v as in the statement of the Lemma.

We say that a word w distinguishes u and v if w is a subword of exactly one of u and v.

We have to prove that there exists such a distinguisher w with |w| < n.

Writing a word w € A* under the form w = a7 ...a}* where each a; is a letter so that

a; #a;4q foralli=1,...,k—1and n; =1 for all i = 1, ..,k is called the block factorisation
of w. Here k is the number of blocks in w. We now consider several cases:

Assume that u has only one block. Then u = a™*! for some a € A, and some one-letter
word distinguishes u and v. The same reasoning applies if v has only one block.
Assume that u and v have at least two blocks each, and there is some letter a € A such
that |ulq # |v]s. Then a* distinguishes u and v for some k < n.

We are left to deal with cases where v and v have have at least two blocks, and have the
same Parikh image, that is, |u|, = |v|, for every a € A.

Assume now that u has exactly two blocks. Then u € a™b* for some a,b € A with a # b.

Since v has the same number of a’s and b’s but differs from u, we must have ba = v. But
ba & u, so ba is a distinguisher (here we use the assumption that n > 2).

Finally assume that u has at least three blocks. Pick a block B of u which is neither the
first nor the last, and let a be the unique letter belonging to B. Let £ = |ul, and write u
as u = spasia...asy. Then

[so] +...+|sel = (n+1)—2.

At least two of the numbers |sg|,...,|s¢| are strictly positive, since the two blocks
immediately to the left and right of B both exist, and both do not have a. Thus for all 4,
lsi] < (n+1)—¢.

Since |v|, = ¢, we can write v = tpatja...atp. We assume u ~, v and obtain a
contradiction. For each 4 such that 0 < i < £, consider the word z; = a’s;a’~%. We have
|z;| < n, and z; £ u. Since u ~, v, we have z; = v. Since both z; and v have exactly ¢
occurrences of a, we have s; C t;. This holds for all 4, so u = v. But |u| = |v|, so u = v,
which is a contradiction.

97

FSTTCS 2015

Fragments of Fixpoint Logic on Data Words*

Thomas Colcombet! and Amaldev Manuel?

1 LIAFA, CNRS, Université Paris 7-Paris Diderot, Paris, France
thomas.colcombet@liafa.univ-paris-diderot.fr

2 MIMUW, University of Warsaw, Poland
amal@mimuw.edu.pl

—— Abstract

We study fragments of a p-calculus over data words whose primary modalities are ‘go to next
position’ (X9), ‘go to previous position’ (YY), ‘go to next position with the same data value’ (X¢),
‘go to previous position with the same data value (Y¢). Our focus is on two fragments that are
called the bounded mode alternation fragment (BMA) and the bounded reversal fragment (BR).
BMA is the fragment of those formulas that whose unfoldings contain only a bounded number of
alternations between global modalities (X9,Y9) and class modalities (X¢,Y¢). Similarly BR is the
fragment of formulas whose unfoldings contain only a bounded number of alternations between
left modalities (Y9,Y¢) and right modalities (X9,X¢). We show that these fragments are decidable
(by inclusion in Data Automata), enjoy effective Boolean closure, and contain previously defined
logics such as the two variable fragment of first-order logic and DataLLTL. More precisely the
definable language in each formalism obey the following inclusions that are effective.

FO? C DatalL.TL € BMA ¢ BR C v C Data Automata .

Our main contribution is a method to prove inexpressibility results on the fragment BMA by
reducing them to inexpressibility results for combinatorial expressions. More precisely we prove
the following hierarchy of definable languages,

) = BMA° C BMA' C--- C BMA C BR,

where BMAPF is the set of all formulas whose unfoldings contain at most k—1 alternations between
global modalities (X9,Y9) and class modalities (X¢,Y¢). Since the class BMA is a generalisation
of FO? and DataLTL the inexpressibility results carry over to them as well.

1998 ACM Subject Classification F.4.1 Mathematical Logic
Keywords and phrases Data words, Data automata, Fixpoint logic

Digital Object ldentifier 10.4230/LIPIcs. FSTTCS.2015.98

1 Introduction

Data words are words of the form (ay,dy)...(an,d,) € (X x D)* where ¥ is a finite set of
letters and D is an infinite domain of data values. Typically the alphabet 3 abstracts a finite
set of actions or events and the set of data values D models some sort of identity information.
Thus, data words can model a number of scenarios where the information is linearly ordered
and it is composed of finite as well as unbounded elements. For example the authors of [1]
imagine X as the actions of a finite program and D as process ids. Then, an execution trace

* The research leading to these results has received funding from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n® 259454.

© Thomas Colcombet and Amaldev Manuel;

Bv licensed under Creative Commons License CC-BY
35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 98-111

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.98
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

T. Colcombet and A. Manuel

of a system with unbounded instances of the program can be modeled as a data word in
which each action is associated with the identifier of the process which has generated it.

The paradigmatic question in the study of data words is to develop suitable models (in
particular automata and logics) to specify properties of data words. Sure enough there exists
a rich variety of models for specifying properties of data words that includes Data Automata
[4], Register Automata [14, 9], Pebble Automata [18], Class Memory Automata [1], Class
Automata [2], Walking Automata [17], Variable Automata [12], First-Order logic with two
variables [4], guarded MSO logic [5], DataLTL [15], Freeze-Logics[9, 13], Logic of Repeating
Values [8], XPath [10, 11], Regular expressions [16], Data Monoids [3] etc.

In this work we further study a modal fixpoint logic on data words that we introduced in
[6]. This logic is composed of four modalities that allow to evaluate formulas on the successor,
class successor (the nearest future position with the same data value), predecessor and class
predecessor (nearest past position with the same data value) positions, Y9,Y¢. In addition
there is a couple of zeroary modalities that describes whether these positions coincide or
not. To build the formulas, besides the usual Boolean operations, it is allowed to form the
least and greatest fixpoints of formulas . In [6] it is shown that the satisfiability problem
for the set of formulas that use only least fixpoints is undecidable, whereas the fragment
that consists of only greatest fixpoints is subsumed by Data Automata and hence it has
a decidable satisfiability problem. The main result of the work was the decidability of an
alternation-free fragment of the logic that further bounds the number of change of directions
in evaluating the formulas by using a generalisation of Data Automata.

Contributions

In the present paper, we aim at restricting the power of the above p-calculus logic for data
words for obtaining classes that are closed under all Boolean connectives, mirroring, and
enjoy decidability of emptiness and universality. We consider two restricted fragments that
achieve this goal. The first one, called BMA (for Bounded Mode Alternation) syntactically
bounds the number of changes between class and global modes. The second, called BR (for
Bounded Reversal), syntactically bounds the number of changes between left modalities and
right modalities.

It is easy to show that BMA is contained in Data Automata. It is not very difficult to
show that BMA is subsumed by BR, that is to say for every formula in BMA there is an
equivalent one in BR. Our main result is the strictness of this last inclusion, i.e. that there
is a formula in BR for which there is no equivalent formula in BMA. This proof uses a deep
result from combinatorics called the Hales-Jewett theorem. As a proof device we use a sort of
circuits called combinatorial expressions that were introduced in [7]. These expressions define
functions over an infinite domain (for instance the integers). They are built by composing
gates that are functions of two kinds, either the function has a bounded arity, or the function
has a bounded domain. In [7] it is shown that certain properties (a property is a function
that has a binary codomain) for instance the given sequence of positive integers has ged 1 or

the given sequence of integers sum to 0 cannot be computed by expressions of fixed depth.

We use a variant of this theorem in this paper to show that there is a formula in BR for which
there is no equivalent one in BMA. More precisely it is shown that there is a specific formula
in BR such that if it has an equivalent formula in BMA, then it is possible to construct
expressions of fixed depth for a particular property and since that particular property cannot
be computed by fixed depth expressions, we derive a contradiction. One thing to note is that
since the techniques developed in [7] are general enough to derive impossibility results for a
large family of properties, correspondingly the proof method developed here can be used to
show inexpressibility results for a variety of formulas.

99

FSTTCS 2015

100

Fragments of Fixpoint Logic on Data Words

Now we examine the implications of our result in a larger context. As mentioned earlier,
the results mentioned here have very close connection with Data Automata (DA for short).
The well known feature of DA is that it subsumes the logic FO? (X, <, +1,~, +°1) on data
words where X denotes the unary predicates indicating the letters, < is the linear order on
positions, +1 is the successor relation on positions, ~ is the equivalence relation on positions
with respect to the data values (i.e. i ~ j if d; = d;), and +°1 is the class successor relation.
It is known that data languages recognisable by DA are closed under union, intersection and
letter-to-letter projection, but not under complementation [4]. Since FO? formulas are closed
under Boolean operations, it is evident that Data Automata strictly subsumes the logic FO?2.
This observation prompts the question that if there are other classes subsumed by DA that
are closed under Boolean operations. The fragments introduced in the paper answer this
question positively. Note only that, there are automata theoretic characterisations that are
natural variants of DA for both these fragments (we only present the one for BMA).

Another and perhaps more important question is how to show that a given data language
is not expressible in FO?. Note that in some cases, using the techniques on words over finite
alphabets it is possible to show that a given data language is not definable in FO? (for
instance to show that data words of even length are not definable in FO?). We are interested
in those cases where such reductions are not possible, in particular where the property given
is dependent on the data values. We don’t have a complete solution to this problem yet,
but our method to prove inexpressibility results on BMA offers a partial answer. This is
because the logic FO? (3, <, +1,~, +¢1), as it is shown in this paper, is equivalent to the
unary fragment of a temporal logic, namely DataL.TL [15], which is a strict subfragment of
BMA. DataLLTL is the temporal logic where usual temporal operators such as until, future,
past etc. exist both on the linear order on positions (called the global order) as well as on
the suborders formed by subsets of positions that share the same data value (called the class
orders). For instance the temporal operator F9¢p is true a position if there is a position in the
future that satisfies the formula ¢, whereas the formula F€y is true at a position if there is a
future position that has the same data value as the current position and that satisfies the
formula ¢. The unary fragment of DatalLTL is the subclass of formulas that uses only the
unary temporal operators (such as FI9, P9 F¢ etc). Since every such operator is expressible in
FO? it is immediate that unary DatalTL is subsumed by the logic FO2. But the converse
direction, which is shown in the paper, is not obvious, since it is not immediate how to
translate formulas like Jy (a(x) A b(y) Ax < y Az # y). Thus inexpressibility results on the
fragment BMA renders directly corresponding results on all sublogics including FO? and
DataLTL.

Finally let us also note that the translations outlined in this paper, namely

FO? C DatalL,TL C BMA C BR C v C DA,

constitutes an alternate proof the main result of [4] that FO? is subsumed by DA. The proof
in [4] is a direct translation of FO? formulas by a intricate case analysis. Our proof, however,
is modular and makes use of analogous constructions from automata theory on finite words.

Related work

As mentioned already this work is strongly related to DataLTL, FO? and DA. One other
very popular ecosystem on data words is that of Register Automata and the associated logics
such as Freeze LTL, Freeze u-calculus, Xpath [9, 13, 8, 10, 11] etc. Our inexpressibility result
implies that BMA is incomparable to Register Automata (in particular nondeterministic 1-
Register Automata). Since all our modalities are expressible in terms of successor, predecessor,

T. Colcombet and A. Manuel

Figure 1 A data word and its graph. Dotted and thick arrows denote the successor and class
successor relations respectively.

freeze operator and fixpoint operators, our fixpoint logic is subsumed by Freeze p-calculus
of [13]. However it should be noted that the latter logic is highly undecidable [9]. The
decidable fragment of Freeze p-calculus (and also Freeze LTL) is unidirectional (only future
modalities) but our logic is naturally two-way. Finally the decidable two-way fragment of
Freeze LTL, namely Simple Freeze LTL is equivalent to FO? and hence it is subsumed by
BMA. Therefore our method of proving inexpressibility extends to this logic as well.

Structure of the document

In Section 2 we present the definition of our fixpoint logic and give some examples. In Section
3 we recall the composition operator (comp) on sets of formulas and define the fragments
BMA and BR using it. Thereafter, a characterisation of the class BMA in terms of cascades
of automata, that is used in the proof of the separation theorem, is given. In Section 4, first
we recollect the paradigm of combinatorial expressions and state the necessary results for
our purpose. Afterwards it shown how to translate a cascade on data words with a specific
structure to expressions and the separation theorem is proved. In Section 5 we conclude.

2 p-Calculus on Data Words

In this section, we recall the basics of the p-calculus on data words [6].
Fix an infinite set D of data values. Data words are words of the form

u=(a1,dy) - (an,d,) € (X x D)*

where Y is a finite alphabet of letters. Indices in a word are called positions. A maximal
set of positions in uw with the same data value is called a class. The set of classes in
u define an equivalence relation ~, called the class relation, on the set of positions of
u. Given a permutation o of D, it can be applied on a data word as expected, yielding

o(u) = (a1,0(dy)) ... (an,0(d,)). The data words u and o(u) have the same class relation.

A data language is a set of data words that is invariant under such applications of the
permutations of D.

For our purposes, it is convenient to see data words as graphs in the following manner. To
each data word w = (a1,d1) ... (an,dy) € (X x D)* associate the graph G,, = ([n], ¢, +1, +°1)
where [n] is the set of positions {1,...,n}, £: 3 — 2[is the labelling function £(a) = {i |
a; = a}, the binary relation +1 denotes the successor relation on positions, i.e., +1(i,j)
if j =4+ 1, and the binary relation +°1 denotes the class successor relation on positions,
i.e., +°1(3,5) if i < j, d; = d;, and d,,, # d; for all i <m < j. We call predecessor relation
(resp., class predecessor relation) the reverse of the successor relation (resp., class successor
relation). We implicitly identify a data word with its graph. Figure 1 shows a data word
and its corresponding graph.

Seen as such graphs, data words are naturally prone to the use of temporal logics. Let
Prop = {p,q,...} and Var = {x,y,...} be countable sets of propositional variables and

101

FSTTCS 2015

102

Fragments of Fixpoint Logic on Data Words

[fst?]w = {1} Xl = [elw —1
[lst°]w = {n} [Y¢lw = [¢lw +1
[fstTw = {i | fj=i—° 1} [Xplw = [p]w =1
[istw = {i | 3 =i+ 1} [Ye¢lw = [p]w +° 1
[e1 A @2]w = [e1]w N [w2]w [Slo ={i]i+1=i+1}
[p1V p2]w = [1]w U [@2]w [Plo={ili-1=i-"1}
[pz.olw = 0{S S [n] | [Pluwle@):=s) € S} [Plw = €(p)
[va.plw = U{S S [n] [S C [lupe@)=s} [=plw = [n] \ £(p)

[2]w = £(2)

Figure 2 Semantics of p-calculus on data words w = ([n], +1, +°1, £).

fixpoint variables respectively. The p-calculus on data words is the set of all formulas ¢
respecting the following syntax:

p=x|A|-A|Mp|eVeloNe|pz.p|vee
where M:=X9|X°|Y9|Y° and A:=pe€ Prop|S|P]| fst] fst? | lst® | lst?

The elements of M are called modalities, and the ones of A, atoms. The set of zeroary
modalities {fst®, fst9, Ist®, IstY, P, S} will be denoted by the symbol Z for the rest of the paper.

The semantic of a formula ¢, over a data word w is the set of positions of w where “p is
true” (denoted as [¢]). The formal definition is given in Figure 2. The different constructs
have their expected meaning, keeping in mind that the class modalities X¢, Y¢, fst¢, Ist® have
to be interpreted on the word restricted to the current data value. The modality S (resp., P)
holds at a position 7 if the successor and class successor i coincide (resp. the predecessor and
class predecessor coincide).

Note that in this definition of the logic, negations in a formula are located at the leaves. It
is nevertheless possible, as usual, to negate such formulas by pushing the negation toward the
leaves, but this requires a bit of care when negating modalities and fixpoints. For instance,
—X¢p is not equivalent to X°—p, but to Ist® V X*—p. Similar arguments have to be used
for all modalities. Following these ideas, we define the dual modalities X9 = IstY V X9,
Yo = fstI vV Y9, X¢p = Ist° V X¢p and Y¢p = fst® vV Y. These modalities are considered
dual since X9¢p = —X9—, ... Similarly pz.o(x) = —vz.~p(—x).

Next we lay out some terminology and abbreviations which we will use in the subsequent
sections. Let A denote either p or v. Every occurrence of a fixpoint variable x in a subformula
Az.¢p of a formula is called bound. All other occurrences of x are called free. A formula is
called a sentence if all the fixpoint variables in ¢ are bound. If ¢(z1, ..., x,) is a formula with
free variables x1, . .., 2,, then by ©(¢1,...,1,) we mean the formula obtained by substituting
1; for each x; in . As usual the bound variables of p(z1,...,z,) may require a renaming
to avoid the capture of the free variables of 1;’s. For a sentence ¢ and a position 7 in the
word w, we denote by w,i = ¢ if i € [¢],. The notation w = ¢ abbreviates the case when
i = 1. The data language of a sentence ¢, denoted as L(¢p), is the set of data words w such
that w = .

By p-fragment we mean the subset of p-calculus which uses only p-fixpoints. Similarly
v-fragment stands for the subset which uses only v-fixpoints.

T. Colcombet and A. Manuel

» Example 1 (temporal modalities). An example of a formula would be ¢ U9 ¢ which holds if
1 holds in the future, and ¢ holds in between. This can be implemented as px.1 V (¢ A X9x)
The formula Ut = pz.ypV (@ AX x) is similar, but for the fact that it refers only to the class
of the current position. The formula F9¢p abbreviates T U9 ¢, and its dual is G = =FI—¢p.
The constructs 89, S¢, P9, P¢, HY and H¢, are defined analogously, using past modalities, and
correspond respectively to U9, U¢, FI9, F¢, GY and G°. For instance, F°P°yp expresses that there
is a position in the class that satisfies ¢ and FP¢(p A X¢G—p A ¥°H —p) expresses that there
exists exactly one position which satisfies ¢ in the class.

3 The bounded reversal and bounded mode alternation fragments

In this section we introduce the bounded mode alternation and bounded reversal fragments
(BMA and BR) and compare these two fragments between themselves and with other logics
(Theorem 5).

3.1 Definition of the fragments

Before delving into the technical details let us outline the intuition behind each of the
fragments. The four modalities X9, Y9 X¢ and Y¢ can be divided along two axis. Based on
the directions: there are the left modalities Y9, Y¢, and right modalities X9, X¢. Based on the
modes: there are global modalities X9, Y9, and class modalities X¢, Y¢. The BR and BMA

fragments are defined by limiting the number of alternation between this types of modalities.

This is formally achieved using the operation comp that we define now.
Let ¥ be a set of y-calculus formulas. Define the sets comp®(¥) for i € N inductively
comp®(¥) = (),
comp™H (W) = {W(p1,. .., 0n) | V(21, .. 20) €V, ©1,..., 0, € comp’(¥)} in which the
substitution ¥ (p1,...,v,) is allowed only if none of the free variables of o1, ..., ¢, get
bound in ¥(p1,. .., ©n).

The set of formulas comp(¥) is defined as comp(¥) = |J,cy comp’(¥). For a formula
¥ € comp(V), the comp-height of ¢ in comp(¥) in the least ¢ such that v is in comp*(¥).

We are now ready to define the BR and BMA fragments of the p-calculus. For a set of
modalities M, define formulas(M) to be the set of formulas that uses only the modalities M
apart from the zeroary modalities.

» Definition 2. The BMA and the BR fragments of p-calculus are respectively:

BMA = comp (formulas ({X9,Y9}) U formulas ({X°,Y°})),
and BR = comp (formulas ({X9,X°}) U formulas ({Y9,Y})) .

Further, BMA* denotes the subset of BMA with comp-height k. Similarly BR* stands for
the subset of BR with comp-height k.

» Example 3. Let

1 =ve. (X% VXIpuy.(¢ AN YY), w2 = vx. (X¢st? V XYIx) ,
w3 = px.((vy.q VX)) VX2 vV Yix), and g = pr. (XX V p).

The formula ¢; is in BR? and in BMA3. The formula ¢ is neither in BR nor in BMA. The
formula 3 is in BMA? but not in BR. The formula ¢4 is in BR! but not in BMA.

103

FSTTCS 2015

104

Fragments of Fixpoint Logic on Data Words

» Example 4. Consider the language Ly, that contains the data words such that, by applying
k-times the sequence of the global successor followed by the class successor, one reaches a
position labeled with letter a. The language L is the union of all Ly for k ranging over all
non-negative integers. The language Ly is defined by ¢y, and L by ¢ defined as follows:

k-times

—N—
pr = X9X°...X9Xq, and o =pz.(X9XcVa).

The formula ¢y, is in BR! and in BMAZ?*. The formula ¢ is in BR', but not in BMA. Later
in Section 4 we will prove that a variant of L is not definable by any formula in BMA.

Let us now state the main theorem of this section, namely the inclusions between the
fragments of the p-calculus in terms of the data languages defined. Below DataLTL denotes
the temporal logic on data words consisting of the modalities {S, P, X9, Y9, X¢,Y¢, U9, S9,U°, S},
uDataLTL is the unary sublogic consisting of the modalities {S, P,X9,X¢, Y9, Y¢, F¢, F9, P9 P}
and v denotes the fragment of the u-calculus containing only the greatest fixpoints (v’s).

» Theorem 5. The following inclusions hold for definable languages,

FO*(%, <, +1,~, +°1) = uDataLTL C DatalLTL C BMA C BR C v C DA .

3.2 Characterising BMA as cascades of automata

Next we give a characterisation of BMA in terms of cascades of finite state automata. It
is classical that composition (comp) corresponds to the natural operation of composing
sequential transducers that compute subset of subformulas that are true at each position.
Given a p-calculus formula ¢ over words, we can see it as a transducer that reads the input,
and labels every position with one extra bit of information denoting the truth value of the
formula ¢ at that position. Under this view, the composition of formulas corresponds to
applying the transducers in sequence: the first transducer reads the input, and adds some
extra labelling on it. Then a second transducer reads the resulting word, and processes it in
a similar way, etc... If we push this view further, we can establish exact correspondences
between the class BMA, and suitable cascades of transducers. Furthermore, the comp-height
of the formula matches the number of transducers involved in the cascade.

First we introduce some notation. Given a data word w = (a1,dy) - - - (an, dy) the string
projection of w, denoted by str(w), is the word a; - - - a,. For a class S = {i1,...,4,,} the
class projection corresponding to S, denoted as str(w|s), is the finite word a;, - - - a;,, . For a
word u = by - - - by, the relabelling of w by w is the data word (b1,d;) ... (by,dy). Similarly
the relabelling of the class S in w by by - - by, is the data word (a},dy)--- (al,,d,) where
a; =b; if ¢ = i; and a; otherwise.

The marking of a position 7 in the data word w, in notation m(i), is the subset of zeroary
modalities Z satisfied by i. The marked string projection of w, denoted as mstr(w), is the
word (ay,m(1))---(an,m(n)) over the alphabet ¥ x 2%. For a class S = {iy,...,i,} the
marked class projection of S is the finite word (a;,,m(i1)) - - - (@i, ,m(in)), and it is denoted
as mstr(w|g).

A functional letter-to-letter transducer A : ¥* — I'* over words is a nondeterministic
finite state letter-to-letter transducer such that every input word w € ¥* has at most one
output word A(w) € I'*.

We next disclose two forms of transductions possible by a word transducer on data words.
Let A: (X x 2%)* — I'* be a functional letter-to-letter transducer.

T. Colcombet and A. Manuel

The automaton A acts as a global transducer when it runs on the marked string projection
mstr(w) of the input data word w € (3 x D)*. If the run succeeds then the unique output
data word w’ € (' x D)* = A(w) (by abuse of notation) is the relabelling of w with the word
A(mstr(w)).

Automaton A is a class transducer when for each class S in the input data word w, a
copy of the automaton A runs on the marked class projection mstr(w|g). If all the runs
succeed then the unique output data word A(w) (by abuse of notation) is the relabelling of
each class of S of w by A (mstr(w|s)).

» Definition 6. A cascade of class and global transducers over data words (hereafter simply
cascade) C is a sequence (¥ = Yo, A41,%1,...,%,-1,Ap, 5,) such that A;,..., A, is a
sequence of class and global transducers over data words and for each 7, the transducer A;
has input alphabet ¥;_; x 2% and output alphabet ;. Sets £g, ¥, are respectively the input
and output alphabets of the cascade C and n is the height of the cascade.

The cascade C has a successful run on a given data word w if there is a sequence of data
words wg = w, w1, . .., Wn—1, W, such that each transducer A; has a successful run on w;_1
outputing the data word w;. The data word w, is the output of the cascade C, in notation
C(w) = wy,. The language accepted by the cascade C, denoted as L(C), is the set of all data
words w on which C has a successful run.

Two cascades C; and Cy can be composed to form the cascade C; o Cy if the output
alphabet of C; and the input alphabet of Cy are the same. Composition of cascades is the
natural analogue of composition of formulas; this is expressed by the following proposition.

» Proposition 7. Let L be a set of data words. Then the following statements are equival-
ent.

1. L is definable by a formula in BMA of comp-height k.

2. L is recognisable by a cascade of height k.

4 Separation of the fragments BMA and BR

In this section we prove the main theorem of the paper, namely the separation of the
fragments of BMA and BR. More precisely it is shown that there is a formula in BR that
has no equivalent formula in BMA. We start by presenting our technical tool, namely
combinatorial expressions [7].

4.1 Combinatorial expressions

Put simply, combinatorial expressions are circuits over a data domain €. For our purposes it
is sufficient to assume that £ is a set that contains all the usual data types such as Booleans,
integers, finite words etc. We form expressions by composing variables (denoted by X,Y
etc.) and functions (denoted by f, g etc.) whose domains and ranges are explicitly specified.
A variable X has range E C &, denoted as X : FE, if it takes values from the set . We say a
function f: By X --- X By, — F, where Eq,...,E,, F C &, has arity k, domain E1 X -+ X Ej,
and range F'. The expressions are built using two specific classes of functions (called gates),
namely:

binary functions — when k < 2, and,

finitary functions — when each of Eq,..., E} is finite.

For example the addition on integers + : Z X Z — 7Z is a binary function, whereas the
Boolean disjunction of k inputs V : {0,1}* — {0, 1} is a finitary function.

105

FSTTCS 2015

106

Fragments of Fixpoint Logic on Data Words

» Definition 8. Combinatorial expressions are defined inductively;
a variable X : E is a combinatorial expression with range E, and depth 0.

if f:E) x---Xx E, — F is a binary or a finitary function, and ¢1, ..., t; are combinatorial
expressions with ranges E1, ..., By and depths dy, ..., dj respectively, then f(¢1,..., k)
is a combinatorial expression with range F' and depth max(ds,...,dx) + 1.

Let t(X) be a combinatorial expression that contains (possibly vacuously) the variables
X=X;: FEq,..., X, : E,. For the valuation a = a4, ..., a,, where a; € E; for each i, of the
variables X, the value of the expression ¢, denoted as t(a), is defined inductively; if ¢ is a
variable X; then t(a) = a;, and if t = f(t1,...,t;) then t(a) = f(t1(a),...,tx(a)). Assume
F C € is the range of the expression ¢. Naturally ¢ defines a map [t] : @ — t(a) from the set
Ey x--- x E, to the set F'. Given amap m : By X --- X B, = F, where Ey,...,E,,F C¢&,
we say the map is recognised by an expression ¢ if [t] = m. A particular case is when the
range of the map m is restricted to a set of size two (without loss of generality {0,1}); in
which case we say that t recognises the property {ai,...,a, : m(ay,...,a,) =1}

» Example 9. Each map f: E" — F, for some E, F C £ n € N, has an expression of depth
[logn] + 1 recognising it. Let cat : E* x E* — E* be the concatenation operation on words
over the alphabet E and let ¢(X; : E,..., X, : E) be an expression of depth [logn] that
consists of only the function cat and that computes the concatenation of the inputs. Let
u: E* — F be a binary function on words over E such that u(e; ---e,) = f(e1,...,e,). The
map f is recognised by expression u(t(X; : F,..., X, : E)).

» Example 10. Consider the set P, of n-tuples (uq,...,u,) of words in {0,1}* that all have
equal length. The property P, is recognised by the expression

t= /\ (el (Xl,XQ) yoeny el (Xl,Xn) s el (Xg,Xg) geeny el (XQ,Xn) gy 6l<Xn_1,Xn))

where / is the Boolean conjunction on n - (n — 1)/2 inputs and el : A* x A* — {0,1} is the
function on words defined as el(u,v) = 1 iff the words u and v are of the same length. The
function /\ is finitary and the function el is binary. The expression ¢ has depth 2.

In the previous example, regardless of the value of n the expression ¢ has a constant
depth. But there exists properties for which it is not the case.

» Definition 11. Let V,, be the set of n-tuples (ug,...,u,) of words over the alphabet {0,1}
such that:

1. the words uq,...,u, are of the same length, and;

2. there exists a position 1 <14 < |u;| such that the ith letter of each of u; to u,, is 1.

It is shown in [7] that,

» Theorem 12. There is no expression of depth at most k that recognises the property Vor 4.

4.2 Separation results

We now apply the above theorem to derive our inexpressibility results. The idea is to define
a data language B, that corresponds to the property V,, and to show that if there is a
BMA-formula of comp-height k recognising B,, then there is a combinatorial expression of
depth O(k) (precise bound disclosed later) recognising the property V,,. This claim along
with the Theorem 12 implies a lower bound on the comp-height of formulas defining the
language B,,.

T. Colcombet and A. Manuel

For the proof we rely on data words with a special structure that encode a sequence of
words. Let vq,...,v, € X* be words of identical and even length, say 2¢ € N. A data word
w € (X x D)* is a coding of the words vy, ...,v, € 5*, denoted as w = coding(vy, . .., vy,), if
w = w; - wy, wWith v1 = str(wy), ..., v, = str(w,) and the class relation is the set of tuples
(k-204+2i,(k+1)-204+2i—1) for 0 <k <n—1,1<i </ the position k - 2¢ + 2i is the
ith even position in the block wy11 and (k4 1) - 2¢ + 2i — 1 is the ith odd position in the
block wg42. Coding is only defined for words of identical even length and hereafter whenever
we say coding(vy,...,v,) it is understood that vy, ..., v, are of identical even length.

A data word w is a n-coding (or simply a coding when the value n is clear from the
context) if it is the coding of some words vy, ..., v, € X*. We write n-Codings for the set of
all n-codings.

a aa a b bbb b c c d d>d d

Figure 3 The coding of the words aaaa, bbbb, ccce, dddd € {a, b, c,d}*.

Next we introduce some gates and expressions that we use in the proofs. If w is the
coding of uq,...,u, € ¥* then mstr(w) = my(uy) - ma(uz) - - - ma(un—1) - m3(uy,) for binary
gates my, ma, m3 : X* — (X x 24)* such that:

1. For or all words u = ay---agp € X*,20 > 2

{fst?, fst€,Ist} ifi=1,
{fst®, Ist“} if 4 is odd and 7 # 1,

{fst°} if 7 is even.

mi(u) = (ay,21) - - - (ag¢, x2¢) where x; =

{lst®} if i is odd,

{fst°} if i is even.

{Ist°} if ¢ is odd,

{fst®, Ist“} if 4 is even and ¢ # 2/,
{fst®, Ist®, Ist9} if ¢ = 2.

ms(u) = (ay,21) - - - (age, x2¢) where x; =

ma(u) = (ay,21) - - - (az¢, x2¢) where z; = {

2. For each word ab € 32,

mq(ab) = (a, {fst®, fst?, Ist°})(b, {fst,S}) , ma(ab) = (a,{lst,P})(b, {fst®,S}) ,
ms(ab) = (a, {Ist®, P})(b, {fst®, Ist®, Ist}) .

3. For words of odd length the functions my, mq, m3 are fixed arbitrarily.

Let ise : ¥* — {0,1} be the binary gate defined as ise(w) = 1 precisely when w € ¥*
is not the empty word. Let bI : ¥* x {0,1} — X* be the binary function bI(z,1) = =
and bI(x,0) = e. For variables X = X; : ¥*,..., X,, : ¥*, let NE(X) be the expression
NA(ise(X1), ..., ise(X,,)) of depth 2 that recognises the property that none of the input words
is the empty word. Sometimes we use these gates and expressions over other alphabets, and
then it is understood that the domains of the functions are appropriately defined.

Next we prove that class transductions and global transductions on n-codings can be
defined by expressions of fixed height (irrespective of n). To summarise the intuition,
let w = wy---w, be the coding of the words uy,...,u, € X* such that str(w;) = w;.
Assume A : (X x 24)* — I'* is a class transducer that has a successful run on w and let
Alw) =w' = wi---w), € (I' x D)* where w, is a relabelling of w;. Observe that the only

107

FSTTCS 2015

108

Fragments of Fixpoint Logic on Data Words

other positions in the class of a position in w; appear either in w;_; or w;y1. Therefore to
compute str(w}) it suffices to know the words u;_1, u;, u;41 and hence there is an expression
that takes as inputs u;_1, u;, u;41 and outputs the word str(w}).

» Lemma 13. For ecach class transducer A : (¥ x 2%4)* — T'* and each n € N there
exist combinatorial expressions e1(X),...,en(X), where X = X1 : ¥*,...,X,, : ¥*, of
depth 7 such that for all n-tuple u = (uy,...,u,) of words in X* of identical even length

coding(e1 (), . .., en(w)) = A(coding(w)) .

Next we prove a similar claim for global transducers. The idea is as follows. Assume
A (3 x 22)* — I'* is a global transducer and let w = wy - - - w,, be the coding of the words
Uly. .., Uy € 3* such that str(w;) = u;. Assume that A has a successful run on w and let
Aw) =w' = wy---w), € (I x D)* where w, is a relabelling of w;. To compute str(w}) it
suffices to know the word wu; and the pair (p,q) of states of the automaton A which are
respectively the state of the automaton A before and after reading the word mstr(u;) on the
unique run on mstr(w). Among these, the pair (p,¢) can be computed a finitary function
that aggregates the set of all possible partial runs of A on each of the words uy, ..., u, and

hence an expression of fixed height can compute the word str(w}).

» Lemma 14. For each global transducer A : (X x 2%)* — T'* and each n € N there
exist combinatorial expressions e1(X),...,en(X), where X = X; : ¥*,..., X, : ©*, of
depth 5 such that for all n-tuple © = (u1,...,u,) of words in X* of identical even length
coding(e1 (), ..., en(n)) = A(coding(u)) .

The above two lemmas can be generalised to a similar claim on cascades by induction (on
the height of the cascade).

» Lemma 15. For a cascade C = (Ay, ..., Ax) with input alphabet ¥, and each n € N there
exist combinatorial expressions 61()_(), e en()_(), where X = X, : 3%, ..., X,, : 2%, of depth
at most 7k such that for all n-tuple @ = (uq,...,u,) of words in X* of identical even length
coding(ey(a), . .., en(u)) = C(coding(w)) .

Next we define a data language B,, that corresponds to the property V,,.

For a word w = ajas ...a; € {0,1}* we let pad(w) = lajlas - - - 1la;. We will also use pad
as a binary gate. A bridge in a data word w is a sequence of positions along a path that
consists of alternating class successor and global successor edges. Formally the sequence
of positions iy, ...,1, forms a bridge in w if there exists a sequence of successor and class
successor edges eq,...e,—1 in w such that for each 1 < j < n, e; = (4;,4;41) and for each
1<j<n—1,e;is asuccessor edge iff ;11 is a class successor edge. A bridge is a-labelled,
for a € 3, if all the positions in the bridge are labelled by the letter a.

» Definition 16. Let B,, C ({0,1} x D) be the set of all data words w such that w has a
1-labelled bridge 41, .. .,%2,—1 (connected by a path of 2n—2 edges), and
1. all positions to the left of i1 are first positions of classes,
2. all positions to the right of is, ;1 are last positions of classes, and
3. the path corresponding to the bridge starts with a class successor edge.
Define the data language B = |J,—, By.
The language B,, is defined by the BMA formula (also in unary-DataL'TL) of comp-height
2n + 1,

where 1X9¢ stands for the formula (1 A X9¢),

F9 (H9fst° A (1X°1X9)"G91st°) and 1X°p for (1 A X%p). v

T. Colcombet and A. Manuel

Similarly the language B is defined by the BR formula
fst€ U9 (px.(1X°1X92 V 1X°1X9G71st)) . (2)

» Proposition 17. Let (u1,...,uy) be a tuple of words of identical length over the alphabet
{0,1}. Then the following are equivalent.

1. (u1,...,up) € Vy.

2. The data word w = coding(pad(u1), ..., pad(uy)) is in the language B,,.

1 a1 " C1brS1 by C1-erS1 ¢ Cledivl ds

Figure 4 The data word w corresponding to the words ajaz, b1bs, cica,d1d2, and a bridge of
length 7 in w.

For a data language L C (¥ x D)* we write L° = {w € (X x D)* | w ¢ L} for
the complement of L. The data language L C (X x D)" separates the data languages
L1,Ly C (X xD) if L,NL=0and Ly;_; C L for some i € {0,1}. A cascade C (respectively

a formula @) separates the data languages Ly, Lo if L(C) (respectively L(p)) separates L1, L.

» Lemma 18. If there is a cascade C of height k that separates the data languages L1 =
B, Nn-Codings, Ly = (B,,)° N n-Codings then there is a combinatorial expression of depth
7k + 4 recognising the property V,,.

Proof. Assume that C is a cascade of height k separating the languages L1, Ls. Since
cascades (of height k) are closed under complementation, without loss of generality assume
that L(C) 2 Ly and L(C) N Ly = (. Therefore the cascade C produces an output on a
data word n-Codings 3 w € ({0,1} x D)* if and only if w is in the language B,. Let
e1(X),...,en(X), for X = X; :{0,1}*,..., X,, : {0,1}*, be the combinatorial expressions of
depth at most Tk, guaranteed by the Lemma 15 such that for all n-tuple @ = (uq, ..., uy) of
words in {0, 1}* of identical even length, coding(e1(a),...,e, (1)) = C(coding(w)).

Let pad(X) stand for the vector of expressions pad(X1), ..., pad(X,). We claim that the
expression

e = \(NE(ex(pad(X)),..., en(pad(X)),t(X1, ..., X0)) ,

where t is the expression from Example 10 for the alphabet {0,1} that checks if all the input
words are of the same length, computes the property V,. The expression e has depth at most
Tk + 4. To show the claim it is enough to verify that for a tuple u = (uq,...,u,) of words
from {0,1}* of equal length, none of the words vy = e;(pad(u)), ..., v, = ey (pad(w)) is the
empty word if and only if u € V,,. By Lemma 15, the words v; to v, are nonempty iff C
accepts the data word w = coding(pad(u)). By assumption, the data word w is accepted by
the cascade C iff w € B,,. By Lemma 17, the data word w is in the language B,, iff u is in
the property V,,. Hence the claim is proved. |

We are now ready for the main theorem;

Theorem 19 (Separation). Let N = Tk+4.

The data languages L1 = Byn 1 N (2V+1)-Codings and Ly = (Ban 1) N (2N +1)-Codings

are not separable by a formula in BMA of comp-height k.

2. The data language Bon 1 is not definable by a formula in BMA of comp-height k.

3. Class of BMA definable languages form a hierarchy under composition height; more
precisely for every k there exists a BMA-formula ¢ with comp-height k that has no
equivalent formula of comp-height k—1.

4. The class of BMA definable languages is strictly subsumed by the class of BR definable

languages.

=V

109

FSTTCS 2015

110

Fragments of Fixpoint Logic on Data Words

Proof.

1.

5

Proof by contradiction. Assume that the data languages L1, Lo are separable by a BMA
formula ¢ of comp-height k. This implies that there is cascade of height k separating
L1, Ly. By Lemma 18 there is an expression of depth IV recognising the property Vor ;.
This is in contradiction with Theorem 12.

Follows from (1).

From (2) and the Equation (1), By~ is definable by a BMA formula of comp-height
2-(2N 4+1) 41 but not by any formula of comp-height k. Therefore (1) the set of languages
defined by BMAF is strictly contained in the set of languages defined by BMAZ (2" +1)+1,
It only remains to separate the languages definable by BMA* and the languages definable
by BMA®+1 for all k. We prove this claim by contradiction. Assume that (x) there is some
m € N such that for every formula in BMA™*! there is an equivalent formula in BMA™.
We claim that for every formula in BMA™%2 there is an equivalent formula in BMA™ as
well. To prove the claim, let x = (1, ..., ¢,) be an arbitrary formula in BMA™*2 such
that 1 € BMA! and ¢,...,¢, € BMA™*L. By assumption (x) there exist formulas
@Y, € BMA™ equivalent to the formulas @1, ..., ¢, respectively. Therefore the
formula X' = (¢, ..., ¢)) is equivalent to the formula y and is in BMA™*!. Applying
the assumption (x) again there is a formula x” € BMA™ equivalent to x’ and hence also
to x, and hence the claim is proved. Extending this argument, by induction on k, it can
be shown that for every formula in BMA™%F there is an equivalent formula in BMA™.
This is in contradiction with the statement (). Hence the statement is proved.

We claim that the data language B is not definable by any BMA formula. For the sake
of contradiction, assume that there is a BMA formula ¢ of comp-height k recognising
the language B and let C be the cascade of height k corresponding to ¢. We claim
that the cascade C separates the languages L, and Lo. Clearly, by definition of the
language B, L; C B. We need to show that Lo N B = () and it suffices to prove that
for every w € (2V+1)-Codings if w € B then w ¢ (By~n,;)°. Since any coding w in
(2N 4-1)-Codings either belongs to By~ or does not belong to B, it follows that if w € B
then w & (Byny1)°. Therefore the cascade C separates the languages Ly and Ly which
contradicts (1) and hence the claim follows. On the other hand, since B is definable by a
formula in BR (Equation 2), the statement is proved. <

Conclusion

In this paper we studied the some fragments of p-calculus over data words. We disclosed two
fragments that are: the Bounded Reversal fragment (BR) and the Bounded Mode Alternation
fragment (BMA) and proved they are separate. BR and BMA happen to form Boolean
algebras making them very natural, and relatively expressive logics over data words. We also
establish the relationship with earlier logics like FO? or DataLTL.

—— References

1

Henrik Bjorklund and Thomas Schwentick. On notions of regularity for data languages.
Theor. Comput. Sci., 411(4-5):702-715, 2010.

M. Bojanczyk and S. Lasota. An extension of data automata that captures xpath. In Logic
in Computer Science (LICS), 2010, pages 243-252, July 2010.

Mikotaj Bojanczyk. Data monoids. In STACS, pages 105-116, 2011.

Mikotaj Bojanczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.
Two-variable logic on data words. ACM Trans. Comput. Log., 12(4):27, 2011.

T. Colcombet and A. Manuel

10

11

12

13

14

15

16

17

18

Thomas Colcombet, Clemens Ley, and Gabriele Puppis. On the use of guards for logics
with data. In MFCS, volume 6907 of LNCS, pages 243-255. Springer, 2011.

Thomas Colcombet and Amaldev Manuel. Generalized data automata and fixpoint logic.
In FSTTCS 2014, volume 29 of LIPIcs, pages 267278, 2014.

Thomas Colcombet and Amaldev Manuel. Combinatorial expressions and lower bounds.
In STACS 2015, volume 30 of LIPIcs, pages 249-261, 2015.

S. Demri, D. Figueira, and M. Praveen. Reasoning about data repetitions with counter
systems. In Logic in Computer Science (LICS), 2013, pages 33-42, June 2013.

Stéphane Demri and Ranko Lazi¢. LTL with the freeze quantifier and register automata.
ACM Transactions on Computational Logic, 10(3), April 2009.

D. Figueira. Alternating register automata on finite data words and trees. Logical Methods
in Computer Science, 8(1), 2012.

D. Figueira. Decidability of downward XPath. ACM Transactions on Computational Logic,
13(4), 2012.

O. Grumberg, O. Kupferman, and S. Sheinvald. Variable automata over infinite alphabets.

In Language and Automata Theory and Applications, pages 561-572. Springer, 2010.

M. Jurdzinski and R. Lazic. Alternating automata on data trees and xpath satisfiability.

ACM Trans. Comput. Log., 12(3):19, 2011.

Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci.,
134(2):329-363, 1994.

Ahmet Kara, Thomas Schwentick, and Thomas Zeume. Temporal logics on words with
multiple data values. In FSTTCS, volume 8 of LIPIcs, pages 481-492, 2010.

L. Libkin and D. Vrgoc. Regular expressions for data words. In LPAR, volume 7180 of
Lecture Notes in Computer Science, pages 274-288. SPRINGER, 2012.

A. Manuel, A. Muscholl, and G. Puppis. Walking on data words. In Computer Science
Theory and Applications, volume 7913 of LNCS, pages 64—75. Springer, 2013.

F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite
alphabets. ACM Transactions on Computational Logic, 5(3):403-435, 2004.

111

FSTTCS 2015

Efficient Algorithms for Morphisms over
Omega-Regular Languages®

Lukas Fleischer and Manfred Kufleitner

FMI, University of Stuttgart
Universititsstrafle 38, 70569 Stuttgart, Germany
{fleischer,kufleitner}@fmi.uni-stuttgart.de

—— Abstract

Morphisms to finite semigroups can be used for recognizing omega-regular languages. The so-

called strongly recognizing morphisms can be seen as a deterministic computation model which
provides minimal objects (known as the syntactic morphism) and a trivial complementation pro-
cedure. We give a quadratic-time algorithm for computing the syntactic morphism from any
given strongly recognizing morphism, thereby showing that minimization is easy as well. In ad-
dition, we give algorithms for efficiently solving various decision problems for weakly recognizing
morphisms. Weakly recognizing morphism are often smaller than their strongly recognizing coun-
terparts. Finally, we describe the language operations needed for converting formulas in monadic
second-order logic (MSO) into strongly recognizing morphisms, and we give some experimental
results.

1998 ACM Subject Classification F.4.1 Mathematical Logic; F.4.3 Formal Languages

Keywords and phrases Biichi automata, omega-regular language, syntactic semigroup, recogniz-
ing morphism, MSO

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.112

1 Introduction

Automata over finite words have a huge number of effective closure properties. Moreover,
many problems such as minimization or equivalence of deterministic automata admit very
efficient algorithms [6, 7]. The situation over infinite words is quite similar, but with the
major difference that many operations are less efficient. There are many different automaton
models for accepting languages of infinite words, the so-called w-regular languages. Each
of these models has its advantages and disadvantages. For instance, deterministic Biichi
automata are less powerful than nondeterministic Biichi automata [15]. And only very few
automaton models admit efficient minimization algorithms; for example, minimization of
deterministic finite automata can be applied to the lasso automata in [2].

The theory of finite semigroups and automata is tightly connected [11]. Since the
semigroup for a language can be exponentially bigger than its automaton, semigroups have
very rarely been considered in the context of efficient algorithms. There is also an algebraic
approach to w-regular languages by using morphisms to finite semigroups, see e.g. [9, 15].
Among the many nice properties of this approach are minimal morphisms — the so-called
syntactic morphisms —and easy complementation. As for finite words, the semigroup for an
w-regular language can be exponentially bigger than its Biichi automaton. However, since
many operations for w-regular languages are less efficient than for regular languages over

* This work was supported by the DFG grants DI 435/5-2 and KU 2716/1-1.

© Lukas Fleischer and Manfred Kufleitner;

Bv licensed under Creative Commons License CC-BY
35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 112-124

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.112
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

L. Fleischer and M. Kufleitner

finite words, the drawback of this exponential blow-up in size is less serious. This is even
more so when minimizing all intermediate objects.

A typical algorithm for computing the syntactic morphism of a regular language over
finite words is to minimize the (deterministic) automaton defined by the Cayley graph of
a morphism, and then the syntactic morphism is given by the transition semigroup of the
minimal automaton. This approach does not work for infinite words and we therefore give a
direct algorithm for computing the syntactic morphism. Our algorithm is an adaptation of
Hopcroft’s minimization algorithm [6] and its running time is quadratic in the size of the
semigroup. We show that this is rather optimal.

There are two different modes for recognizing omega-regular languages by a morphism
to a finite semigroup: weak and strong recognition. Strong recognition is a special case of
weak recognition. Fasy complementation and the computation of the syntactic morphism
only works for strong recognition. We show how to test whether a given weak recognition
is actually strong. Another useful tool for morphisms is the computation of the so-called
conjugacy classes.

As an application, we consider the translation of MSO formulas into strongly recognizing
morphisms. To this end, we show that a powerset construction preserves strong recognition,
and that this construction can be used for computing the image under a length-preserving
morphism. Finally, we give the test results of some translations from MSO to strong
recognition. Deciding the satisfiability of an MSO formula is non-elementary [13] and
therefore, minimization of intermediate objects is usually very helpful for solving some special
cases. This is confirmed by our test results.

2 Preliminaries

Words. Let A be a finite alphabet. The elements of A are called letters. A finite word is a
sequence aias - - - a, of letters of A and an infinite word is an infinite sequence ajas - --. The
empty word is denoted by €. The set of non-empty finite words over A is A*. Let K be a set
of finite words and let L be a set of infinite words. We set KL = {ua |u e K,a € L}, KT =
{ugug - -u, | n>1,u; € K} and K* = K™ U {e}. Moreover, if ¢ ¢ K we define the infinite
iteration K¥ = {ujug--- | u; € K}. A natural extension to K C A* is K* = (K \ {e})“.

Finite semigroups. Let S be a finite semigroup. An element e of S is idempotent if €2 = e.

The set of idempotent elements of S is denoted by E(S) = {e € S| e? =e¢}. For each s € S

the set {s* | k > 1} of all powers of s is finite and it contains exactly one idempotent element.

A semigroup S is called X -generated if X is a subset of S and every element of S can be
written as a product of elements of X. The right Cayley graph of an X-generated semigroup
S has S as vertices and its labeled edges are the triples of the form (s, a, sa) for s € S and

a € X. The left Cayley graph of S is defined analogously with edges of the form (s, a,as).

The definitions of Cayley graphs depend on the choice of the set X. In the following, when a

surjective morphism h: A* — S is given, we choose X = h(A) as the set of generators.
Green’s relations are an important tool in the study of finite semigroups. We denote by

S' the monoid that is obtained by adding a new neutral element 1 to S. For s,t € S let

s R t if there exist ¢,¢' € S such that sq =t and t¢' = s,
s L t if there exist p,p’ € St such that ps =t and p't = s.

These relations are equivalence relations and the equivalence classes of R (resp. £) are
called R-classes (resp. L-classes). The R-classes (resp. L-classes) of a semigroup S can be

113

FSTTCS 2015

114

Efficient Algorithms for Morphisms over Omega-Regular Languages

computed in time linear in |S| by applying Tarjan’s algorithm to the right (resp. left) Cayley
graph of S, see [5].

An element (s,e) € S x E(S) is a linked pair if se = s. Two linked pairs (s, e) and (¢, f)
are conjugate, written as (s,e) ~ (t, f), if there exist x,y € S such that sz = ¢, vy = e and
yx = f. The conjugacy relation ~ on the set of linked pairs is an equivalence relation, see
e.g. [9]. The equivalence classes of ~ are called conjugacy classes. A set P of linked pairs is
closed under conjugation if it is a union of conjugacy classes.

Recognition by morphisms. A language L C A is regular (or w-regular) if it is recognized
by some finite Biichi automaton, see e.g. [3]. The family of regular languages is closed under
Boolean operations, i.e., set union, set intersection and complementation. We now describe
algebraic recognition modes for regular languages. Let h: AT — S be a morphism onto a
finite semigroup S. For s € S, we set [s] = h~1(s) and for P C S x S, we set

(Pl= U sl

(s,t)eP

if h is understood from the context. A language L C A% is weakly recognized by a morphism
h: AT — S if there exists a set of linked pairs P C S x E(S) with L = [P]. If in addition P is
closed under conjugation, then h strongly recognizes L. Another well-known characterisation
of strong recognition is the following, see e.g. [4].

» Proposition 1. Let h: AT — S be a morphism onto a finite semigroup. Then h strongly
recognizes L if and only if [s|[t] N L # O implies [s][t]* C L for all s,t € S.

The syntactic congruence =y, of a language L C A¥ is defined over AT as u =, v if the
equivalences

(zuy)z” € L & (zvy)z® € L and
z(zuy)” € L < z(zvy)® € L

hold for all finite words x,y,z € A*. Our definition is slightly different but equivalent to
the syntactic congruence introduced by Arnold [1]. The congruence classes of =, form the
so-called syntactic semigroup A* /=y, and the syntactic morphism hy: AT — AT /= is the
natural quotient map. If L is regular, the syntactic semigroup of L is finite and hj, strongly
recognizes L [1, 9].

Model of computation. Morphisms h: AT — S are given implicitly through a mapping
f+ A— S with f(a) = h(a) for all a € A. We assume that for finite semigroups S, multipli-
cations can be performed in constant time. Some algorithms only perform multiplications
of the form h(a) - s or s- h(a) where h is a morphism, s is an element of S and a is a
letter. In that case, semigroups can be represented efficiently by their left and right Cayley
graphs. For two elements s,t € S we can check in constant time whether s = ¢ and it is
possible to organize elements of S in a hash map such that operations on subsets of S can
be implemented efficiently. When a set P C S x S is part of the input, we assume that for
each s,t € S one can check in constant time whether (s,t) € P.

3 Conversion between Biichi automata, weak and strong recognition

In this section, we describe well-known constructions for the conversion between the different
acceptance modes for regular languages. For details and proofs, we refer to [9, 10, 15].

L. Fleischer and M. Kufleitner

3.1 From Biichi automata to strong recognition

In the case of finite words, when proving that each regular language is recognizable by
a morphism onto a finite semigroup, one usually considers the transition semigroup of a
finite automaton. However, when applying the same construction to Biichi automata, the
resulting morphism only weakly recognizes the language. In this section, we describe a
construction to convert a Biichi automaton A = (Q, A, 4,1, F) into a semigroup S and a
morphism h: AT — S that strongly recognizes L(A).

For states p,q € Q and a finite word v € AT, we write p — ¢ if there exists a sequence
9001414242 " * * qn—1anGn With go = p, ¢n = q and (gi, a;+1,gi+1) € 0 for all i € {0,...,n —1}.
If, additionally, ¢; € F for some i € {0,...,n}, we write p % q. We now assign to each word

u € AT a Q x Q matrix h(u) defined by

1 ifp&qbutnotp%q
(h(u))pg = 4 2 ifp%)q

0 otherwise

A routine verification shows that this naturally extends the image of AT under h to a
semigroup S. We say that a linked pair (R, E) where R = (rpq)pqeq and E = (epq)p.qcq is
accepting if there exist states p,q € @ such that r,, > 1 and e4q = 2. One can now verify
that the set P of all accepting linked pairs is closed under conjugation and that [P] = L(.A).

3.2 From weak recognition to Biichi automata

Suppose we are given a morphism h: AT — S onto a finite semigroup S that weakly
recognizes a language L, i.e., L = [P] for some set of linked pairs P C S x E(S). One can
use the following construction from [10] to obtain a Biichi automaton A with L(.A) = L.

The set of states is Q@ = S x E(S9), the set of initial states is I = P and the set of
final states is F' = {1} x E(S). The transition relation § consists of all tuples of the form
((s,e),a,(t,e)) € Q@ x A x Q where h(a)t = s or h(a)t = se.

By combining the constructions from this and the previous subsection, we also obtain a
construction to convert a morphism that weakly recognizes a language L into a morphism
that strongly recognizes L. There are also direct, more efficient constructions, to perform
this conversion, see e.g. [9]. The converse direction is trivial since, by definition, a morphism
h: AT — S that strongly recognizes a language L also weakly recognizes L.

4 Computing conjugacy classes

When designing an algorithm that takes a set of linked pairs P C S x E(S) as input, it
is often convenient to assume that P is closed under conjugation. However, this is not
always the case in practice: The input set P might be a proper subset of its closure under
conjugation @ such that [P] = [Q]. In this section, we describe an algorithm to compute
the conjugacy classes efficiently. It justifies the assumption that P is always closed under
conjugation in the following sections, particularly in Section 6.

As a warm-up, we first describe how to compute the set F' of linked pairs. The linked
pairs are exactly the pairs of the form (se, e) with s € S and e € E(S). Thus, we first check
for each element e € S whether e? = e. If the outcome of the check is positive, we perform a
depth-first search in the left Cayley graph of S, starting at element e. For each element s that
is visited, (s, e) is a linked pair. The total running time of this routine is O(|S| + |A] - |F]).

115

FSTTCS 2015

116

Efficient Algorithms for Morphisms over Omega-Regular Languages

An equivalence relation = on the set of linked pairs is called left-stable if for all p € S
and for linked pairs (s, e), (¢, f) with (s,e) = (¢, f), we have (ps, e) = (pt, f). We define an
equivalence relation & on the set of linked pairs by (s,e) = (¢, f) if and only if e LS Rt L f
or (s,e) = (t, f). Its relationship to conjugacy is captured in the following Lemma:

» Lemma 2. The conjugacy relation ~ is the finest left-stable equivalence relation coarser
than ~.

Proof. It follows directly from the definitions of linked pairs and conjugacy that ~ is left-
stable. Let (s,e) and (¢, f) be linked pairs with (s,e) = (¢, f) and (s,e) # (¢, f). Since
s R t, there exist q, ¢ € S such that sq =t and t¢’ = s. We set © = eq and y = fq'. Now,
sx = seq = sq = t. Moreover, since s L e, there exists p € S* with ps = e. Thus, we have
Ty = eqy = psqy = pty = ptfq’ = ptq¢’ = ps = e. A similar argument can be used to show
that yx = f. Hence, (s,e) and (¢, f) are conjugate, and ~ is indeed coarser than .

In order to show that ~ is the finest relation with these properties, we consider an
arbitrary left-stable equivalence relation ~ on the set of linked pairs which is coarser than ==.
We show that (s,e) ~ (¢, f) implies (s,e) ~ (¢, f). Let z,y € S such that sz =, zy = e and
yx = f. Then we have ex = xyz = zf and zfy = zyxy = ¢ = e, which shows that e R zf.
Furthermore we have xzf £ f, since yzf = f? = f. By the definition of ~, this means that
(e;e) = (af, f) and since ~ refines ~, it follows that (e,e) ~ (af, f). Left-stability yields
(s,¢) = (se,€) = (s, f) = (t,). <

Since R-classes and L-classes can be computed in time linear in the size of the semigroup,
this allows us to efficiently compute the conjugacy classes as shown in Algorithm 1. We use
a so-called disjoint-set data structure that provides two operations on a partition. Find(s, e)
returns a unique element from the class that contains (s, e), i.e., if (s,e) and (¢, f) are in the
same class, we have Find(s,e) = Find(¢, f). Union((s, e), (¢, f)) merges the classes of (s, e)
and (t, f). To simplify the notation we also introduce an operation Union™ (R) for subsets R
of S x S that merges all classes with elements in R. Union™ (R) can be implemented using
|R| — 1 atomic Union operations. The partition is initialized with singleton sets {(s,e)} for
all linked pairs (s,e). The second data structure used in the algorithm is a set 7' C 2%

Algorithm 1 Computing conjugacy classes

initialize T with the non-trivial equivalence classes of ~
for all R € T do Union™(R) end for
while T # () do
remove some set R from T
for all a € A do
R« 0
for all (s,e) € R do R’ + R'U{Find(h(a)s,e)} end for
if |R'| > 1 then
Union™ (R')
T+ TU{R'}
end if
end for
end while

To prove the correctness and running time of the algorithm, one can combine Lemma 2
with arguments similar to those given in the correctness and running time proofs of the

L. Fleischer and M. Kufleitner

Hopcroft-Karp equivalence test [7]. We first show that the relation induced by the final
partition is left-stable:

» Lemma 3. Let (s,e) and (¢, f) be linked pairs of the same class upon termination, then,
for each a € A, the pairs (h(a)s,e) and (h(a)t, f) are in the same class as well.

Proof. We write Find,(s,e) = Find;(¢, f) if (s,e) and (¢, f) belong to the same class after
the i-th iteration of the while-loop. The index oo is used to describe the situation upon
termination.

Let i be minimal such that for some pairs (s,e), (¢, f) and a letter a € A, we have
Find;(s,e) = Find;(¢, f) and Findy, (h(a)s,e) # Findy (h(a)t, f). Note that ¢ > 0 because
otherwise, a set containing both (s,e) and (¢, f) would be added to T during initializa-
tion. Hence, there exists a pair (s',¢’) with Find;_;(s’,¢’) = Find;_1(s,e) and a pair
(', f') with Find; (¢, f') = Find;_1(¢, f) such that Union™ (R) is executed for some set
R D {(s',€),(t', f)}. By choice of i, we have Find(h(a)s,e) = Finds(h(a)s’,e’) and
Finde (h(a)t, f) = Findeo(h(a)t’, f). Since we add the set R to T in iteration ¢, the
equality Find(h(a)s’,e’) = Findo (h(a)t’, ') holds as well, and thus Find (h(a)s,e) =
Findw (h(a)t, f), a contradiction. <

There is of course a dual statement for the pairs (s - h(a),e) and (¢ - h(a), f).

» Theorem 4. Let F be the set of linked pairs of S. When Algorithm 1 terminates, the
classes of the partition correspond to the conjugacy classes of F. Furthermore, the algorithm
executes at most

|F| — 1 Union operations and

2|A| (|F| — 1) Find operations.

Proof. By Lemma 3, the relation induced by the final partition is left-stable and throughout
the main algorithm, two classes are only merged when required to establish this property.
Thus, the relation is the finest left-stable equivalence relation coarser than ~ and, by Lemma 2,
equivalent to the conjugacy relation.

The number of Union operations is bounded by |F| — 1 since each operation reduces
the number of classes in the partitions by 1. Let Ry, ..., Ry be the sets that are added to
T during the execution of the algorithm. Whenever one of the sets R; is inserted into T,
|R;] — 1 Union operations are executed. Thus, we have

k

S (R 1) < [F| - 1.

i=1
When R; is removed from T, exactly |4]| - |R;| Find operations are executed in the same
iteration of the while-loop. The total number of Find operations is therefore bounded by

k
DAL R <Y IAl- (2|Ri| —2) < 2]4] - (|F| - 1)

i=1 i=1
where the first inequality follows from the fact that each of the sets R; contains at least two
elements. <

A sequence of n Union- and m Find-operations can be performed in O(n + m - a(n)) time
where a(n) denotes the extremely slow-growing inverse Ackermann function [14]. Thus,
when considering a fixed-size alphabet, the total running time of our algorithm is “almost
linear” in the number of linked pairs.

117

FSTTCS 2015

118

Efficient Algorithms for Morphisms over Omega-Regular Languages

5 Testing for strong recognition

Common decision problems, such as the universality problem or the inclusion problem, are
easy in the case of strong recognition. In the context of weak recognition, the algorithm
presented in this section is a powerful tool to answer a broad range of similar problems.
Given a morphism h: AT — S onto a finite semigroup S and two sets of linked pairs
P,Q C S x E(S), it can be used to check whether [P] C [Q]. In particular, it allows for
testing whether the morphism strongly recognizes a language L = [P] by first computing the
closure @ of P under conjugation and then using the algorithm to test whether [Q] C [P].
The algorithm maintains two sets R,T C S x S x S. The former keeps record of the
elements that are added to T during the course of the algorithm. To simplify the presentation,
we define x - a~! to be the set of all elements p € S! which satisfy the equation p- h(a) = .

Algorithm 2 Testing for strong recognition

initialize R and T with the set {(s,e,1) | (s,e) € P}
while T' # () do
remove some element (s,z,y) from T
if z =1 then return “[P] Z [Q]” end if
if (sz,yzyz) € Q then
forallac A,pez-a~! do
if (s,p,h(a)y) € R then add (s,p,h(a)y) to R and to T end if
end for
end if
end while
return “[P] C [Q]”

The following technical Lemma is crucial for the correctness proof of the algorithm:

» Lemma 5. Let u,v € A" and let (s,e) and (h(u),h(v)) be linked pairs. Then uv® is
contained in [s][e]* if and only if there exists a factorization v = vivy such that v1 # €,
h(uvy) = s and h(vavvy) = e.

Proof. Let v = ajag - - a, with n > 1 and a; € A. If uv® is contained in [s][e]*, there exists
a factorization uv” = u'vjvh - -+ such that h(u') = s and h(v]) = e for all 4 > 1. Since u and
v are finite words, there exist indices j > i > 1, powers k, ¢ > 1 and a position m € {1,...,n}
such that w'vjvh-- vl | = ww*ajay---a,, and CAVSREE v;- = Uy 1Gma2 - Gpvtaras - ap,.
We set v1 = ajag - @y, and V9 = Ayp41Gmi2 - - - A Then vivy = v,

h(uvy) = h(uww*aias - - - an,) = h(u/'vivh---v)_) =se’™' =sand
L i / j—i+1
h(vavv1) = h(@mi1@mi2 - anv @102 - am) = h(vjv; g ---v;) =€/ =e.
To prove the converse direction, consider the factorization uv® = uwvy (vavvy)®. <

To simplify the proofs of the following two Lemmas, we extend h to a monoid morphism
hl: A* — St by setting h'(u) = h(u) for all u € AT and hl(e) = 1.

» Lemma 6. If the difference [P]\ [Q] is non-empty, the algorithm returns “[P] € [Q]”

Proof. By the closure properties of regular languages, we know that there exists a word a =
u(arag -+ an)¥ € [P)\[Q]. Let s = h(u) and e = h(ayaz - - - a,). Lemma 5 shows that we can
assume without loss of generality that (s, e) is contained in P. We now prove by induction on

L. Fleischer and M. Kufleitner

the parameter k that upon termination, we have (s, h'(ajas - - - a), h'(aks1ak42- -+ an)) € R
for all k € {0,...,n}. In particular, by considering the case k = 0, we see that the element
(s,1,€e) is added to R. Since every element added to R is also added to @, the algorithm
returns “[P] Z [Q]”.

The base case k = n is covered by the initialization of the set R. Let now k < n,
x = h'(ajas---apr1) and y = h'(api2aks3---a,). By the induction hypothesis, we know
that the tuple (s, z,y) is added to T during the course of the algorithm. Consider the iteration
when this tuple is removed from T'. Because of o ¢ [@], we know that (sz,yzyx) € Q. Thus
the inner loop guarantees that (s, h'(ajas - --ag), h*(ags1ak42 - - ay)) is added to R. <

» Lemma 7. If the algorithm returns “[P] Z [Q]”, the difference [P]\ [Q] is non-empty.

Proof. We construct a word in the difference [P]\ [Q]. For every triple (s,e, 1) that is added
to R during the initialization, we define w[s, e, 1] = . If a triple (s,p, h(a)y) is added to R
later, we set w[s,p, h(a)y] = a - w[s,p - h(a),y]. For every (s,z,y) ¢ R, the word wls, z, y]
is undefined. If w[s,z,y] is defined, its image under h' is y and we have (s,zy) € P. Both
properties are easy to prove by induction.

Let (s,1,y) be the triple that was removed from T immediately before the termination of
the algorithm. Consider an arbitrary word u € [s] and set v = w([s, 1,y]. We have (s,y) € P
and thus wv* € [P]. For every factorization v = viave where v1,v2 € A* and a € A, the
word w[s, ht(v1), ht(avy)] is defined as avy and thus, the tuple (h(uvia), h(vavvia)) is not
contained in Q. In view of Lemma 5, this shows that uwv* ¢ [Q)]. <

We are now able to state the main result of this section:

» Theorem 8. Given a morphism h: AT — S onto a finite semigroup S and two sets of
linked pairs P,Q C S x E(S), one can check in O(|A| -|S|*) time whether [P] C [Q)].

Proof. The correctness of Algorithm 2 follows from the previous two Lemmas. Since R
contains at most (|S|+1)? elements when the algorithm terminates, the outer loop is executed
at most (|S| + 1)® times. Moreover, for all a € A and s,t € S with s # ¢, the sets s-a~! and
t-a~! are disjoint. Thus, each element p € S is considered at most |A| - (|S] + 1)? times in
the inner loop. If R is implemented as a bit field and 7" is implemented as a linked list, all
operations take constant time. This shows that the total running time is in O(|4] - |S]*). <

6 Computation of the syntactic morphism

In this section, we present an algorithm to compute the syntactic semigroup for a given
language. The syntactic homomorphism is obtained as a byproduct. One can show that
the syntactic semigroup is the smallest semigroup strongly recognizing a language [1, 9], so
this operation is in some sense analogous to minimization of finite automata. The most
important difference is that our algorithm requires only quadratic time, whereas minimization
is PSPACE-hard in the case of Biichi automata [8, 12].

Let S be a finite semigroup, let h: AT — S be a surjective morphism and let P be a
set of linked pairs that is closed under conjugation. To make the following notation more
readable, we define @) to be the maximal subset of S x S such that [P] = [Q].

» Lemma 9. Let u,v € AT. Then uwv® € [P] if and only if (h(u), h(v)) € Q.

Proof. Suppose that uv” € [P]. By Proposition 1 we have [h(u)][h(v)]¥ C [P] = [Q]. Since

@ is maximal, the pair (h(u), h(v)) is contained in Q. The converse implication is trivial. <«

119

FSTTCS 2015

120

Efficient Algorithms for Morphisms over Omega-Regular Languages

We now define a equivalence relation = on S by s = ¢t if for all z € S, we have

(2,8) € Q & (2,t) € Q and
(s,2) €Q & (t,2) € Q.

Moreover, let = be the coarsest congruence on S that refines = i.e., s = t if xsy = zty for all
z,y € S'. We denote by [s]= the equivalence class {t € S | t = s} of an element s € S. The
relation = is closely related to the syntactic congruence, as confirmed by the following result:

» Proposition 10. The quotient semigroup S/= is isomorphic to AT /=y .

Proof. We first define a morphism g: AT — S/= by setting g(u) = [h(u)]= for all u € A™.
Let now u,v € A*. By Lemma 9, we have h(u) = h(v) if and only if hr(u) = hz(v). Thus,
go hzl is a semigroup isomorphism. <

The computation of the syntactic semigroup requires two steps:

1. Compute the partition induced by the equivalence relation .

2. Refine the partition until the underlying equivalence relation becomes a congruence.
The first step can be performed in time quadratic in the size of the semigroup. For the

second step, we can adapt Hopcroft’s minimization algorithm for finite automata [6]. For
C C S and a € A, we define

C-a'={seS|s-ha)eC} and a ' - C={scS|h(a) -s€C}.

The full algorithm is shown in Algorithm 3. It relies on the Split routine that is usually
implemented as part of a partition refinement data structure, see e.g. [6] for details. Its
semantics is shown in Algorithm 4. In addition to modifying the partition, that routine also
updates a set T C 2% that is used in the main algorithm.

Algorithm 3 Computing the syntactic semigroup

initialize a partition with a single class S
for all s € S do
Split({t € S| (s,t) € Q})
Split({t € S| (t,s) € Q})
end for
initialize T with the non-trivial classes of the partition
while T # () do
remove some set C from T

for all a € A do

Split(C - a~1) > Refine the partition and update T
Split(a=! - C) > Refine the partition and update T'
end for
end while

The next Lemma shows that upon termination, the equivalence relation induced by the
partition is indeed a congruence:

» Lemma 11. If, upon termination, the elements s and t belong to the same class of the
partition, then, for each a € A, the elements h(a)s and h(a)t are in the same class as well.

L. Fleischer and M. Kufleitner

Algorithm 4 The Split operation to refine a partition P

procedure Split(X)
for all C' € P do
Cl %CﬂX7 CQ<—C\X
if C; # 0 and Cy # () then
P (P\{C}) U{C1,Co}

if C € T then
T« (T\{C}HUu{C,Cs}
else
if |C1| < |C3| then T + TU{C,} else T < T U{Cs} end if
end if
end if
end for

end procedure

Proof. Suppose that h(a) - s and h(a) - ¢ belong to different classes. These elements are split
either during the initialization or in the main loop. In either case, a set C that contains
either h(a) - s or h(a) -t is added to T. When this set is removed from T, the operation
Split(a=! - C) asserts that s and ¢ lie in different classes as well. A dual argument holds in
the right-sided case. |

There is of course a dual statement for the elements s - h(a) and ¢ - h(a).
» Theorem 12. The syntactic morphism can be computed in O(|S|* + |A| - |S|log|S]) time.

Proof. Let us first argue that Algorithm 3 is correct. The partition is initialized with the
equivalence classes of . A class is only split when it is necessary to restore the left-stability
or right-stability. Upon termination, the relation induced by the partition is a congruence, as
stated in Lemma 11. Thus, it is the coarsest congruence that refines = and hence equivalent
to =.

For the analysis of the running time, we assume that the operation Split(X) can be
implemented in time linear in [X|. Then the initialization clearly takes O(|S|*) time. We
denote by C1,...,Cj the sets that are added to T during the course of the algorithm. Let
s € Sandlet ng ={i]|1<i<k,s€C;} be the number of sets C; containing s. At any
point in time, there is at most one set in T’ that contains s. If such a set C is removed
from T and another set C’ with s € C’ is added to T at a later point in time, we have that
|C’] < |C| /2. Thus, the inequality n, < log |S]| holds for all s € S and we have

k
Z Z(|C§ a4 |a71 Cil) = Z (Ns-n(a) + Ph(ays) < 2|A|-[S]log|S].

i=1a€A s€S,a€A

Consequently, the total running time of the while-loop is in O(|A| - |S|log |S|), assuming that
T is implemented efficiently, e.g. as a linked list. <

If the alphabet A is fixed and the semigroup S becomes large, the running time is dominated
by the initialization. However, the following result implies that the algorithm we presented
is quite optimal.

» Proposition 13. Let k € N and let A € R be a strictly positive number. One cannot
compute the syntactic morphism in time O(|A|" - |S|*™).

121

FSTTCS 2015

122

Efficient Algorithms for Morphisms over Omega-Regular Languages

Proof. We assume that there exists a deterministic algorithm and a constant ¢ > 1, such that
every input of size n = |S| and m = |A| /2 can be minimized in time T'(n,m) < c-mF.n2=2.
Since ¢, k and \ are constant, there exists an integer m € N with 2*™ > 16¢- m”. Consider
an alphabet A = {1,...,2m} satisfying this condition.

We define A; = {1,...,m} and Ay = {m+1,...,2m}, S; = (241 \ {0}) x {0} and
Sy = {0} x (242 \ {0}). The set S = S; U S, forms a semigroup with the multiplication

(X0, Xa) - (V1. ¥s) = {@’XQ Y A=Y=

(X1UY7,0) otherwise
Furthermore, let h: AT — S be defined by h(a) = ({a},0) for all a € A; and h(b) = (0, {b})
for all b € Ay. Let F be the set of linked pairs of S. It is easy to verify that S; x So C F.
Moreover, two tuples (s, e), (t, f) € S1 x Sy are conjugate if and only if (s,e) = (¢, f). The
number of conjugacy classes of S is at least |S| - [Sa| = 2m~1.2m~1 = 4m=1 The size of S
is n = [S1| + |G| < 2™ + 2™ = 2mTL,

Consider the execution of the algorithm on input h and P = F. Since [P] = AY,
the algorithm returns the trivial semigroup. We denote by (s1,€1), (S2,€2), ..., (s¢, €¢) the
sequence of linked pairs for which the algorithm checks whether (s;,¢;) € P. We have
(< T(n,m) <c-mF-n?A <de-mb-22m=2Am — 16c.mF . 27Am . 4m=1 < 4m—1 and thus,
there is a conjugacy class C such that (s;,e;) & C for all ¢ € {1,...,¢}. Since the algorithm
is deterministic, the execution sequence on input @ = P\ C is the same, and the algorithm
returns, again, the trivial semigroup consisting of one element. However, [Q] # A% and thus,
the algorithm is incorrect. <

One can also show that, independent of the alphabet size, it is impossible to compute the
syntactic morphism in time O(|S|>~*). However, the proof is a bit more involved [4].

7 Language operations on morphisms

One of the merits of strong recognition is that complementation is easy. If a morphism
h: AT — S onto a finite semigroup S strongly recognizes a language L C A%, it also strongly
recognizes the complement A¥ \ L. As in the case of finite words, we can use direct products
for unions and intersections.

Another operation on languages which is of particular interest when it comes to converting
MSO formulas to strongly recognizing morphisms are so-called length-preserving morphisms.
Suppose we are given alphabets A, B and a length-preserving morphism 7: AT — BT,
i.e.,, m(a) € B for all a € A. We naturally extend this morphism to infinite words by setting
m(aras---) = w(ai)m(az) - -+ and to languages L C A¥ by setting n(L) = {n(a) | @ € L}.

» Proposition 14. Let m: A™ — B™ be a length-preserving morphism, let S be a finite
semigroup and let h: AT — S be a surjective morphism that strongly recognizes a language
L C A“. Then there exist a semigroup T of size 2! and a morphism g: BT — T that
strongly recognizes m(L).

Proof. We first define T to be the set 2° of all subsets of S and extend it to a semigroup
by defining an associative multiplication X - Y = {zy |2z € X,y € Y}. The morphism
g: BT — T is uniquely defined by g(a) = h(7~1(a)) for all a € B.

Let us now verify that g strongly recognizes 7(L). Consider a linked pair (s,e) and two
infinite words a, 8 € g71(s)(g~*(e))*. By Proposition 1, it suffices to show that o € 7(L)
implies § € w(L). If « is contained in 7(L), we can conclude by Ramsey’s theorem that

L. Fleischer and M. Kufleitner

Table 1 Experimental results for different parameter values.

Pk Yk Xk
|5] |F| |P| 5] |F| 1P| S| |F| 1P|
k=2 4 5 1 12 15 10 7 14 11
k=3 8 22 1 43 50 41 11 26 15
k=4 16 74 1 148 163 146 17 61 30
k=5 32 232 1 539 570 537 41 227 85
k=6 64 710 1 1863 1926 1861 105 716 184

there exists a linked pair (, f) of S with t € s, f € e and h=1(t)(h"1(f))* N L # 0. By
assumption, h strongly recognizes L and thus, we have h=1(¢)(h~!(f))* C L. Since we know
that there exists an infinite word uvjvs - -+ € 77 1(8) such that h(u) =t and h(v;) = f for all
¢ > 1, this immediately yields uvivy - -+ € L and hence § € 7(L). <

8 Experimental results

In order to test the algorithms and constructions in practice, we implemented the conversion
of MSO formulas into strongly recognizing morphisms. The constructions described in
Section 7 are used to recursively convert the formulas, and all intermediate results are
minimized using the algorithm from Section 6. For details on MSO logic over infinite words
and its connexion to regular languages, we refer to [15, 16]. The conversion to strongly
recognizing morphisms instead of Biichi automata has the advantage that all intermediate
objects can be minimized efficiently. Table 1 shows the size of the computed syntactic
semigroup S, the number of linked pairs F' and the size of the accepting set P (which is
closed unter conjugation) for the following three families of MSO formulas with parameter
k > 1 and free second-order variables Xy11 = X7, Xo, ..., Xi:

k
or = Vo \J(@<yAyeX)
=1
k
Vavy (y =z +1) = N\(z € Xi =y € Xia)
=1

Yy

k
Xk = Vm/\(l’ eX,—>y<ynyeXic1Vy € Xin)))
i=1
All computations were made on a Intel Core i5-3320M with 4GiB of RAM. The execution
time was less than three seconds for each formula.

9 Summary and Outlook

We described several algorithms for weakly recognizing morphisms and strongly recognizing
morphisms over infinite words. Our tests indicate that strongly recognizing morphisms, when
combined with the minimization algorithm presented in Section 6, are a practical alternative
to automata-based models when it comes to deciding properties of MSO formulas.

Some of the algorithms leave room for optimization. In particular, it would be interesting
to see whether there is a linear-time algorithm to compute conjugacy classes and whether
the running time of the algorithm described in Section 5 can be improved to O(|A| - [S?]).

123

FSTTCS 2015

124

Efficient Algorithms for Morphisms over Omega-Regular Languages

—— References

1

10

11

12

13

14

15

16

A. Arnold. A syntactic congruence for rational w-languages. Theoretical Comput. Sci.,
39:333-335, 1985.

H. Calbrix, M. Nivat, and A. Podelski. Ultimately periodic words of rational w-languages.
In MFCS 94, Proceedings, volume 802 of LNCS, pages 554-566. Springer, 1994.

V. Diekert and P. Gastin. First-order definable languages. In J. Flum, E. Gridel, and
T. Wilke, editors, Logic and Automata: History and Perspectives, Texts in Logic and Games,
pages 261-306. Amsterdam University Press, 2008.

L. Fleischer and M. Kufleitner. Efficient Algorithms for Morphisms over Omega-Regular
Languages. CoRR, abs/1509.06215, 2015.

V. Froidure and J.-E. Pin. Algorithms for computing finite semigroups. In F. Cucker and
M. Shub, editors, Foundations of Computational Mathematics, pages 112-126. Springer,
1997.

J. Hopceroft. An nlogn algorithm for minimizing states in a finite automaton. In Z. Kohavi
and A. Paz, editors, Theory of Machines and Computations, pages 189-196. Academic
Press, New York, 1971.

J. Hopcroft and R. Karp. A linear algorithm for testing equivalence of finite automata.
Technical report, Dept. of Computer Science, Cornell Univ., December 1971.

A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions with
squaring requires exponential space. In 13th Annual Symposium on Switching and Automata
Theory, pages 125-129. IEEE Computer Society, 1972.

D. Perrin and J.-E. Pin. Infinite words, volume 141 of Pure and Applied Mathematics.
Elsevier, 2004.

J.-P. Pécuchet. Varietés de semisgroupes et mots infinis. In STACS 86, volume 210 of
LNCS, pages 180-191. Springer, 1986.

M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of
Research and Development, 3:114-125, 1959. Reprinted in E. F. Moore, editor, Sequential
Machines: Selected Papers, Addison-Wesley, 1964.

A. P. Sistla, M. Y. Vardi, and P. L. Wolper. The complementation problem for Biichi
automata with applications to temporal logic. Theoretical Comput. Sci., 49(2-3):217-237,
1987.

L. J. Stockmeyer. The complexity of decision problems in automata theory and logic. PhD
thesis, TR 133, M.I.T., Cambridge, 1974.

R. E. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM, 22(2):215-
225, Apr. 1975.

W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theo-
retical Computer Science, chapter 4, pages 133-191. Elsevier, 1990.

W. Thomas. Languages, automata and logic. In A. Salomaa and G. Rozenberg, editors,
Handbook of Formal Languages, volume 3, Beyond Words, pages 389-455. Springer, Berlin,
1997.

Approximating the Regular Graphic TSP in Near
Linear Time

Ashish Chiplunkar!? and Sundar Vishwanathan?

1 Amazon Development Center
Bangalore, India
ashish.chiplunkar@gmail.com
2 Department of Computer Science and Engineering
Indian Institute of Technology Bombay
Mumbai, India
sundar@cse.iitb.ac.in

—— Abstract

We present a randomized approximation algorithm for computing traveling salesperson tours in
undirected regular graphs. Given an n-vertex, k-regular graph, the algorithm computes a tour of
length at most (1 + ﬁfiéﬁ)) n, with high probability, in O(nklog k) time. This improves upon
the result by Vishnoi ([27], FOCS 2012) for the same problem, in terms of both approximation
factor, and running time. Furthermore, our result is incomparable with the recent result by Feige,
Ravi, and Singh ([10], IPCO 2014), since our algorithm runs in linear time, for any fixed k. The
key ingredient of our algorithm is a technique that uses edge-coloring algorithms to sample a
cycle cover with O(n/logk) cycles, with high probability, in near linear time.

Additionally, we also give a deterministic % +0 (ﬁ) factor approximation algorithm for the

TSP on n-vertex, k-regular graphs running in time O(nk).
1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity
Keywords and phrases traveling salesperson problem, approximation, linear time

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.125

1 Introduction

Given a complete undirected graph with positive real valued weights on the edges, the
traveling salesperson problem (TSP) is to find a minimum weight cycle that visits each
vertex exactly once. This problem was among the first few proved NP-Complete by Karp
[15]. In the absence of any structural restriction on the weight function, the TSP is hard to
approximate within any constant factor ([26], [24]).

The most widely researched restriction of the TSP is the METRICTSP, where the vertices
form a metric space with the weight function as the metric. This simple imposition of the
triangle inequality over the weights allowed Christofides [7] to efficiently construct tours
with an approximation ratio of 3/2. No improvement has been made on this upper bound in
the last 35 years. However, for the case when the metric is Euclidean with a fixed number
of dimensions (the EUCLIDEANTSP), polynomial time approximation schemes are known
[1, 18, 23, 3].

The possibility of existence of a polynomial time approximation scheme for the MET-
RICTSP was ruled out early on by the proof of its APX-hardness given by Papadimitriou
and Yannakakis [22]. The first explicitly proven lower bound on the approximation factor
was 5381/5380 by Engebretsen [9] (for the METRICTSP with distances 1, and 2). This was
? Ashish Chiplunkar. and Sundar Vi§hwanathan;

5v icensed under Creative Commons License CC-BY
35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 125-135

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.125
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

126

Approximating the Regular Graphic TSP in Near Linear Time

followed by a series of improvements: 3813/3812 by Béockenhauer and Seibert [5], 220/219 by
Papadimitriou and Vempala [21], 185/184 by Lampis [17], and finally, 123/122 by Karpinski,
Lampis, and Schmied [16], which is the best lower bound known currently. The reader is
referred to [16] for a nice overview of recent advances in many natural restrictions of the
METRICTSP.

An important sub-class of the METRICTSP is the GRAPHTSP, where the weight function
on the edges arises from the shortest path distances in some unweighted undirected graph.
This is believed to be the most promising candidate for capturing the computational hardness
of the METRICTSP. GRAPHTSP is APX-hard too, as a consequence of its MAX-SNP
hardness [22] and the PCP theorem [2]. The best known lower bound of 4/3 on the integrality
gap of the Held-Karp LP relaxation [13] of the METRICTSP is observed on an instance of
the GRAPHTSP.

Gharan, Saberi and Singh [12] achieved the first improvement over Christofides [7]
algorithm for the GRAPHTSP with an approximation ratio strictly less than 3/2, which was
shortly followed by Momke and Svensson’s [19] bound of 1.461. Mucha [20] later improved
the analysis of Momke and Svensson’s [19] algorithm and demonstrated a bound of 13/9.
Currently, the best known bound is 7/5, given by Sebo and Vygen [25]. It is widely believed
that the Held-Karp relaxation has an integrality gap of precisely 4/3, and this has been
proven for cubic graphs [6].

Vishnoi [27] opened up a new line of interesting work by arguing that approximating
the GRAPHTSP might possibly get better with increasing edge density. He studied the
GRAPHTSP on regular graphs (the REGGRAPHTSP), and proved that approximation factors
arbitrarily close to 1 can be achieved, as the degree of the regular graph becomes larger. The
reader is referred to to Vishnoi [27] for a nice survey on the METRICTSP in general, and an
interesting discussion on this line of work.

The main technical contribution of Vishnoi’s paper is an algorithm for the REGGRAPHTSP
with an approximation factor of (1 4 4/64/Ink) on regular graphs with degree k. Given a k-
regular graph with n vertices, the algorithm first samples a cycle cover using Jerrum, Sinclair
and Vigoda’s algorithm [14] for sampling a matching from an almost uniform distribution
over the perfect matchings in the natural bipartite version of the input graph. This cycle
cover is guaranteed to have O(n/v/Ink) cycles with high probability. These cycles are then
connected using two copies of a spanning tree on the graph formed by contracting the cycles.
This yields a tour of length at most (1 4+ /64/In k)n with probability 1 — 1/n. The running
time of this algorithm is dictated by the running time of the sampling method, which is
around O(n'? log® n). This can be improved marginally by using a faster sampling algorithm,
for example, the algorithm by Bezdkovd, Stefankovic, Vazirani and Vigoda [4].

In a follow-up paper, Feige, Ravi, and Singh [10] improve the approximation ratio for
the REGGRAPHTSP to 1 + O(1/vk). They use a randomized procedure to construct
vertex disjoint paths in the input graph which, in expectation, contain (1 — O(1/Vk))n
edges. They connect these paths arbitrarily using another O(n/v/k) edges, resulting in a tree
with O(n/v'k) vertices of odd degree. Then they show that these vertices can be matched
with paths of total length O(n/vk), that is, they have a T-join of size O(n/Vk), resulting
in an Eulerian graph. Short-cutting an Euler tour of this graph yields a (1 + O(1/Vk))-
approximation. The running time of this algorithm is dictated by the time taken to find the
T-join, which is O(n?).

Here we propose an alternative method for solving the REGGRAPHTSP, which achieves
an approximation factor better than Vishnoi’s. More importantly, our algorithm runs in
linear time, for every fixed k.

A. Chiplunkar and S. Vishwanathan

» Theorem 1. Fix an € > 0. There is an algorithm which, given a connected k-reqular
undirected graph on n vertices, runs in time O(nklogk), and outputs a TSP tour of cost

at most (1 + 4{; 1(2;1;)5) n with high probability (specifically, probability of failure decaying

exponentially with n).

The idea behind improving the running time is to replace the Jerrum-Sinclair-Vigoda
subroutine in Vishnoi’s algorithm by a much faster sampling subroutine. Although the Jerrum-
Sinclair-Vigoda algorithm comes with stringent guarantees about the resulting sampling
distribution, such guarantees are not requisite for Vishnoi’s algorithm. On the other hand,
while our sampling distribution on the cycle covers may be quite far from uniform, we
demonstrate bounds on the measure concentration around cycle covers with few cycles, using
simple counting arguments. We describe the algorithm in Section 2, and analyze it in Section
3.

While derandomizing our algorithm seems like a difficult problem, we also have a simple
deterministic linear time algorithm that achieves a % + 0 (ﬁ) factor approximation. Here,
the main idea is to traverse the graph in a depth-first-like manner and keep removing long
cycles. These cycles cover a good fraction of the vertices. The cycles and the uncovered
vertices can then be connected by a spanning tree. We devote Section 4 for this algorithm
and its analysis.

2 The Randomized Algorithm

The high level idea behind our algorithm is similar to that of Vishnoi’s. Find a cycle cover of
the graph, and then connect the cycles using a spanning tree. Recall that a cycle cover of a
graph is a collection of vertex-disjoint cycles that cover all its vertices. We wish to construct
a cycle cover such that it has a small number of cycles with high probability. It is folklore
that cycle covers in a graph correspond to matchings in the natural encoding of the given
graph as a bipartite graph (see Definition 3). Indeed, Vishnoi selects a random matching in
such an encoding.

Given a k-regular graph, we intend to first partition the edges into cycle covers in a
randomized manner, and then select the best cycle cover. Our algorithm to find the partition
uses ideas from the Gabow-Kariv algorithm [11], which finds a minimum edge-coloring of an
input graph. However, the Gabow-Kariv algorithm works only on graphs with vertex degrees
which are powers of two. Therefore, we attempt to reduce the degree to a power of two, for
which we need to work with directed regular graphs and their bipartite encodings.

» Definition 2. We say that a directed graph is k-regular if the in-degree as well as the
out-degree of each vertex is k. A cycle cover in a directed graph is a 1-regular subgraph of
the graph.

» Definition 3. The bipartite encoding of a directed graph G = (V, A) is the bipartite graph
B = (V, Vg, E), where V, and Vg contain vertices vy, and vg respectively, for each v € V,
and E contains the edge {ur,vg} for each arc (u,v) € A.

From the definition, it is easy to see a natural bijection between the cycle covers of a
directed graph and perfect matchings of its bipartite encoding. Analogously, our algorithm
to partition the arcs of a regular directed graph into cycle covers can also be seen as an
algorithm to partition the edges of a regular bipartite graph into perfect matchings.

The reason for working with directed graphs is that one can effectively partition the edges
of a k-regular directed graph into k cycle covers. As a consequence, we have the following

127

FSTTCS 2015

128

Approximating the Regular Graphic TSP in Near Linear Time

lemma which ensures there is no loss of generality if we restrict our attention to the case
where the degree k is a power of two. This lemma relies on the algorithm by Cole, Ost, and
Schirra [8], which partitions the edges of any given k-regular bipartite undirected graph with
n vertices into perfect matchings, and runs in time O(nklogk).

» Lemma 4. Given a K-regular directed graph G' = (V, A") with n vertices and k < K,

there is an algorithm which outputs a k-regular subgraph G = (V, A) of G’, and runs in time
O(nKlogK).

Proof. The algorithm constructs the bipartite encoding B’ of G’. Therefore, B’ is a K-regular
bipartite graph. The algorithm then partitions the edges of B’ into K perfect matchings,
using the Cole-Ost-Schirra algorithm, and then deletes an arbitrary set of K — k matchings.
This gives a k-regular bipartite subgraph B of B’. The algorithm returns G = (V, A), where
A C A’ consisting of arcs which correspond to edges in B. |

Henceforth, we will assume that & is a power of 2. Otherwise, if 2! < k < 2!+ for some
I € N, we preprocess the given graph using the algorithm from Lemma 4 to obtain a 2'-regular
subgraph. We randomly partition the arcs of the subgraph into cycle covers, and then pick
the best cycle cover.

» Definition 5. Let G = (V, A) be a k-regular directed graph. A cycle cover coloring of this
graph is an ordered partition of the arc set A into k cycle covers. Formally, it is a function
c:A—{1,...,k}, such that for each i € {1,...,k}, the set ¢~1(i) is a cycle cover of G.

In other words, for any vertex v and color ¢, exactly one arc leaving v and exactly one
arc entering v have color i. In fact, the algorithm from Lemma 4 creates an arbitrary such
coloring. Thus, regular directed graphs have efficiently constructible cycle cover colorings.
However, the cycle cover coloring resulting from the degree reduction algorithm might not
contain a cycle cover with a small number of cycles. To address this issue, we next describe
a procedure to construct a random cycle cover coloring of a k-regular graph. This falls into
the “divide and conquer” paradigm, where the “conquer” step involves partitioning the edges
of a 2-regular directed graph into two cycle covers, and relies on the following lemma.

» Lemma 6. The arcs of a 2-regqular directed graph can be partitioned into two cycle covers
in linear time.

Proof. Construct the bipartite encoding of the 2-regular graph. Since the in-degree and
out-degree of each vertex in the bipartite graph is two, the bipartite encoding is a 2-regular
undirected graph, that is, a collection of vertex disjoint cycles of even length. Partition the
edges of the bipartite encoding into two perfect matchings. Each of these two matchings
encodes a cycle cover of the original directed graph. |

Our procedure to generate a random cycle cover coloring of a given k-regular directed
graph, which forms the heart of the approximation algorithm claimed in Theorem 1, is given
by Algorithm 1, and we call it RANDCYCLECOVERCOLORING. It is easily verified that the
running time T'(n, k) of RANDCYCLECOVERCOLORING on a k-regular graph with n vertices
is given by the recurrence T'(n, k) = T(2n, k/2) + O(nk). This yields T'(n, k) = O(nklogk).
Theorem 7 states that the random cycle cover coloring contains, with high probability, a
cycle cover with a small number of components. The proof is deferred to the next section.

» Theorem 7. Fiz ane > 0. Let G be a k-regular directed graph with n vertices, where k is
a power of 2. The algorithm RANDCYCLECOVERCOLORING, on input G, outputs a random
cycle cover coloring of G, which with high probability contains a cycle cover with at most
(2+In2+¢e)n/lnk components. The algorithm runs in time O(nklogk).

A. Chiplunkar and S. Vishwanathan

Algorithm 1 RANDCYCLECOVERCOLORING(G)

1: {INPUT: G, a k-regular n vertex directed graph with k being a power of 2; OUTPUT:
A random cycle cover coloring of G.}

2: If Kk =1 return G with each arc colored 1.

3: Convert G into a k/2-regular digraph H = (V' A’) with 2n vertices, by splitting every
vertex v into a pair of vertices: vy and vy. Distribute the arcs incident on v randomly
among vy and vy, so that each gets half of the incoming and half of the outgoing arcs.

4: Recursively call RANDCYCLECOVERCOLORING(H) to obtain an edge coloring ¢/ : A" —
{1,...,k/2} of H.

5: Fuse the pairs of vertices back to obtain G with the coloring ¢’. For each 4, the edges
colored i constitute a 2-regular directed graph. Call it G;.

6: For each ¢ € {1,...,k/2}, partition the arcs of G; into two cycle covers, using Lemma 6.

Recolor one of these cycle covers with color i + k/2.

It is worth noting that failure probability of RANDCYCLECOVERCOLORING decays
exponentially with n, and the parameter € only affects the rate of this decay. The algorithm
itself (and hence, its running time) is independent of ¢.

Theorem 1 follows from Theorem 7 in the following manner. Given a connected K-regular
undirected graph over the vertex set V of size n, construct the directed graph G’ = (V, A’) in
the obvious manner: for each edge {u, v} of the undirected graph, include the arcs (u,v) and
(v,u) in A’. Clearly, G’ is a K-regular directed graph. Use the degree reduction algorithm
from Lemma 4 to get a regular graph G = (V, A) with degree k = 2l°2 K] Now run the

procedure RANDCYCLECOVERCOLORING on G to get a random cycle cover coloring of G.

Choose the best cycle cover from this cycle cover coloring. This cycle cover contains at most
(2+In2+e)n/Ink cycles, with high probability.

The rest of the processing is routine. Take the multi-set E of edges in the original graph
which correspond to the arcs constituting the cycle cover. (If both arcs (u,v) and (v,u)
belong to the cycle cover, then take edge {u,v} with multiplicity two.) Contract these edges,
and find a spanning tree of the resulting minor. Duplicate the edges of the spanning tree,
so that these edges and the edges in E form an Eulerian spanning subgraph of G. Find an

Euler tour in this graph and short-cut it to get a TSP tour of G. The cost of this tour is at

(24+1n2+¢e)n 441n 442¢
k= (1 + Tak/2)

O(nk), that is, linear in the size of the graph.

most n + 2 X) n, and this post-processing can be done in time

3 Analysis of RANDCYCLECOVERCOLORING

We first bound from above the probability of getting any fixed cycle cover coloring.

» Lemma 8. Consider a fized cycle cover coloring ¢ of the k-regular directed graph G' = (V, A),
where k is a power of 2, let and n = |V|. The probability that RANDCYCLECOVERCOLORING,
on input G’, outputs ¢ is at most f(n, k), where

Kk 1"
Proof. By induction on k. The claim is trivial for K = 1. Assume now that & > 1. Consider

the coloring ¢ : A — {1,...,k/2} given by

d(e) = { c(e) if c(e) < k/2

c(e) —k/2 otherwise

129

FSTTCS 2015

130

Approximating the Regular Graphic TSP in Near Linear Time

If a run of the algorithm outputs the coloring ¢, then it must obtain the coloring ¢’ at the
end of the recursion step. In order to obtain the coloring ¢’ at the end of the recursion step,
it is necessary that for all v € V and i € {1,...,k/2}, the two arcs having their tails (resp.
heads) at v and colored 7 in ¢/, must separate during the splitting of the vertex v. Thus, the
probability that the arcs having tails (resp. heads) at v get distributed correctly between vg

2
and v, is 2k/2/(k’;2). The probability that the vertex v gets split correctly is [2’“/2/(&2)} .

Therefore, the probability that all n vertices get split correctly is [2’“/ 2/ (k%)} 2n, since the
vertices are split independently.

The probability of obtaining ¢’ after the recursive call, given that all vertices split correctly,
is at most f(2n, k/2), by induction. Thus, the probability that RANDCYCLECOVERCOLORING
outputs c is at most

ok/2 n B ok/2 n (k/2)k/2 2"7 Lk "7
l(,gjg)] Xf(z”’k/z)‘h,;;g] <\iomre) = lgap) = 10w

Using the fact, In(k!) > k1lnk — k, arising from the Stirling’s approximation, we have

We next bound from above the number of cycle covers with exactly r components.

» Lemma 9. Let G = (V, A) be a k-regular directed graph with n vertices (where k is not
necessarily a power of 2). The number of cycle covers of G having r cycles is at most (7:) k™.

Proof. Number the vertices of G arbitrarily. Consider a cycle cover C' C A of G which has
r components, and let (51,...,5,) be the partition of V' induced by C, where Sy, ..., S,
are sorted by the smallest numbered vertices that they contain. We associate the tuple
(IS1l, -, [Sx]) with C.

Given a tuple (s1,...,s,) such that Y ;_; s; = n, let us upper bound the number of cycle
covers C' of G that could be associated with this tuple. Since each cycle in G has length at
least 2, we have each s; > 2, and hence r < n/2. Let (S1,...,S5,) be the partition induced by

C, sorted by the smallest numbered vertices that they contain; s; = |S;|. Given Si,...,S;—1,
the smallest numbered vertex vg not in S; U --- U S;_1 must be in S;, and that must be
the smallest numbered vertex in S; too. Let the cycle containing vy in C be (vg,...,vs,-1)
where S; = {vg,...,vs;—1}. Then each v; must be one of the k out-neighbors of v;_;. Thus,
given S1,...,5;_1, the number of possibilities for S; is at most k% ~!. Therefore, the number
of cycle covers of G associated with the tuple (s1,...,s,) is at most f2ima (571 — gt
Finally, by elementary counting, the number of tuples (s1,...,s;), for a fixed r, such
that Z;zl s; = n and each s; > 2, is (";III) < (Z) for r <mn/2. Thus, the number of cycle
covers of G having r cycles is at most (:f) k™. <

Now we are ready to prove Theorem 7.

Proof of Theorem 7. Given a k-regular directed graph G with n vertices, let t = |[yn/Ink],
where v > 2 is a constant independent of n as well as k, which we will fix later. Call a cycle
cover of G bad if it contains more than ¢ components; else call it good. Call a cycle cover
coloring ¢ : A — {1,...,k} of G bad if for each i, the cycle cover ¢~1(i) is bad; else call it

A. Chiplunkar and S. Vishwanathan

good. We need to prove an upper bound on the probability of failure, that is, the probability
that the random cycle cover coloring sampled by RANDCYCLECOVERCOLORING is bad.

Since each cycle in G has length at least two, a cycle cover can contain at most n/2
components. Thus, if ¢ > n/2, there is nothing to prove. So assume ¢t < n/2. By Lemma 9,
the number of bad cycle covers is at most

n/2

5 (= (G- (Jereegr e

r=t+1

where the first inequality follows from the fact that the function r — (:f) k™7 attains its

n+1 n+1
k+1 k+1

cover colorings is at most the number of ordered tuples of k£ bad cycle covers, which is at

maximum at | 7?1 | < ¢, and it is non-increasing in “ J,n} The number of bad cycle

most

X . nk
(ﬁ)kwkk’“(”*“ < (ﬁ>k2nkkk(”*ﬁ“) _ (ﬁ)kw (k> Kk
2 2 2 &

Let ¢ be the random cycle cover coloring output by the algorithm. By Lemma 8 and equation
(1), the probability that ¢ is bad is given by

k nk 2\ kn nk k
Pr[c is bad] < (g) onk (;) k* x (2) = <€72_2> % (%) ik

We take v =2+ 1In2 + ¢ so that 2/e7~2 < 1. This results in probability of failure decaying
exponentially as n increases. <

4 The Deterministic Approximation Algorithm

The approach here is the similar to that of the randomized algorithm: find a small number of
cycles in the graph covering a large number of vertices, and connect them using a spanning
tree. The main difference is that while we construct a cycle cover in the previous algorithm,
here we find a collection of vertex-disjoint cycles covering almost half the vertices. As before,
we contract the cycles, and connect them and the uncovered vertices together with a spanning
tree. Algorithm 2 essentially does a depth-first traversal, while repeatedly removing long
cycles and vertices that cannot be fit in long cycles.

From the description, it is clear that this algorithm runs in time O(nk), and that it finds
cycles of length no less than d = 2v/k. In order to derive the approximation ratio of our

algorithm, we first need to bound from above the size of the set B returned by LONGCYCLES.

Let m = |B].

n(k—2)

» Lemma 10. m S m

Proof. Suppose the set B of vertices returned by the algorithm is {uq,...,u,}, with the
vertices added in the order uy,...,u,,. Consider the snapshot of the algorithm when the
vertex u; was added to B. At that time, vertices uq,...,u;_1 were already removed from H
and added to B, ujy1,..., Uy, were still present in H, and u; was the last vertex in P. If
w € {Uit1,.-.,Un} is a neighbor of u;, then u must be in P, otherwise, some neighbor of
u; would have been appended to P, rather than u; getting removed from P. Further, the
distance between v and u; on P would be less than d — 1, otherwise, a cycle would have
been removed instead. Thus, the number of neighbors of u; among w;1,...,u, must be
at most d — 2. Therefore, the number of edges in the subgraph of G induced by B is less

131

FSTTCS 2015

132

Approximating the Regular Graphic TSP in Near Linear Time

Algorithm 2 LoNGCYCLES(G)

1: {INPUT: G = (V, E), a k-regular n vertex directed graph; OUTPUT: A collection of
cycles C, each having length at least 2v/k, and a set B of vertices not in any cycle in C 3

2: Tnitialize H := G, C =10, B:=0, P:= (), d = 2Vk.

3: {P always remains a path in H.}

4: while H is nonempty do

5. if P is empty then

6: Add an arbitrary vertex of H to P.

7. else

8: {Suppose P = (v1,...,v¢) with ¢t > 0.}

9: if v; has a neighbor v in H outside P then

10: Append u to P.

11: else if ¢ > d and v; has a neighbor vs in P for s <t—d+ 1 then
12: Remove the vertices vg, Vg1, ...,0i—1,v; from P and H; add this cycle to C.
13: else

14: Remove v; from P and H, and add it to B.

15: end if

16: end if

17: end while
18: Return C, B.

than (d — 2)m. As a consequence, the number of edges in G between B and V' \ B is at least
km —2(d — 2)m = (k — 2d + 4)m.

Next, the number of vertices in V' \ B is n — m and this is exactly the set of vertices
covered by cycles in C. For each vertex in V' \ B, at most k — 2 of the k edges incident on it
have their other endpoint in B. Thus, the number of edges between B and V' \ B is at most

(n —m)(k —2). Hence (k — 2d 4+ 4)m < (n — m)(k — 2), which implies m < %. <

The above lemma implies that almost half of the vertices are covered by cycles in C. We
next use it to prove the approximation ratio.

» Theorem 11. Consider the algorithm for finding a TSP tour, which runs LONGCYCLES on
the input graph, and connects the cycles in C using two copies of a spanning tree of the graph

obtained by contracting the cycles. The approximation ratio of this algorithm is % +0 (ﬁ)

Proof. Since the vertex-disjoint cycles in C cover n — m vertices, and each cycle contains at
least d vertices, the number of cycles in C is at most (n —m)/d, and hence, the number of
components to be connected using a spanning tree is at most (n —m)/d +m. The TSP tour
that the algorithm constructs consists of the cycles in C, and two copies of a spanning tree in
the graph obtained by contracting the cycles. The former contributes n — m edges, while the

A. Chiplunkar and S. Vishwanathan

latter contributes at most 2(n — m)/d + 2m — 2 edges. Thus, the cost of the tour is at most

nfm+w+2m72 = n<1+2>+m(12)2
(D)t ()
<

1+2+L
" d T 2k—d+1)

_ o (2y2, 473
B 2 d 2k-—-d+1)
where we have used Lemma 10 for the first inequality. For d = © (\/E), the cost of the

tour turns out to be n (% + 0 (ﬁ)) Thus, the algorithm achieves a % + O (ﬁ) factor
approximation.

5 Concluding Remarks

Vishnoi’s algorithm as well as both of our algorithms work only on regular graphs. Extending
these to work on a larger class of graphs, with weaker assumptions about the vertex degrees,
is an interesting problem, and will involve new techniques. Indeed, Feige et al. [10] have
initiated research on this front. We used the number of vertices as a lower bound on the cost
of the optimal TSP tour. Extending to a larger class of graphs will require a tighter lower
bound, and the cost of the Held-Karp relaxation is one such candidate. Even for regular
graphs, we do not know a hardness of approximation result, as a function of the degree k.
Indeed improving the approximation factor to 1 + O(1/k) cannot be ruled out.

We would like to see whether our algorithm can be derandomized to get a (1 4 o(1))-
approximation, possibly with some loss in the running time. We strongly feel that the
following related avenues are worth exploring: first, to determine the best approximation
ratio that can be achieved by deterministic algorithms for the REGGRAPHTSP, and second,
to determine the best approximation ratio that can be achieved by linear time deterministic
algorithms.

Finally, we feel it would be interesting to use edge coloring ideas to come up with fast
sampling procedures which give better guarantee on the resulting sampling distribution on
matchings, than ours.

Acknowledgments. The authors thank Nisheeth Vishnoi and Parikshit Gopalan for some
initial discussions. The authors also thank Ayush Choure for his substantial contribution to
this paper.

—— References

1 Sanjeev Arora. Polynomial time approximation schemes for euclidean traveling salesman
and other geometric problems. J. ACM, 45(5):753-782, 1998.

2 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. J. ACM, 45(3):501-555, 1998.

3 Yair Bartal and Lee-Ad Gottlieb. A linear time approximation scheme for euclidean TSP.
In FOCS, pages 698-706. IEEE, 2013.

133

FSTTCS 2015

134

Approximating the Regular Graphic TSP in Near Linear Time

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Ivona Bezdkovd, Daniel Stefankovic, Vijay V. Vazirani, and Eric Vigoda. Accelerating
simulated annealing for the permanent and combinatorial counting problems. SIAM J.
Comput., 37(5):1429-1454, 2008.

Hans-Joachim Bockenhauer and Sebastian Seibert. Improved lower bounds on the approx-
imability of the traveling salesman problem. ITA, 34(3):213-255, 2000.

Sylvia Boyd, René Sitters, Suzanne van der Ster, and Leen Stougie. The traveling salesman
problem on cubic and subcubic graphs. Math. Program., 144(1-2):227-245, 2014.

Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman prob-
lem. Technical report, Graduate School of Industrial Administration, Carnegie Mellon
University, 1976.

Richard Cole, Kirstin Ost, and Stefan Schirra. Edge-coloring bipartite multigraphs in
O(FElog D) time. Combinatorica, 21(1):5-12, 2001.

Lars Engebretsen. An explicit lower bound for TSP with distances one and two. Algorith-
mica, 35(4):301-318, 2003.

Uriel Feige, R. Ravi, and Mohit Singh. Short tours through large linear forests. In IPCO,
volume 8494 of Lecture Notes in Computer Science, pages 273-284. Springer, 2014.
Harold N. Gabow and Oded Kariv. Algorithms for edge coloring bipartite graphs and
multigraphs. SIAM J. Comput., 11(1):117-129, 1982.

Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. A randomized rounding approach
to the traveling salesman problem. In FOCS, pages 550-559. IEEE, 2011.

Michael Held and Richard M. Karp. The traveling-salesman problem and minimum span-
ning trees. Operations Research, 18:1138-1162, 1970.

Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation al-
gorithm for the permanent of a matrix with nonnegative entries. J. ACM, 51(4):671-697,
2004.

Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, The IBM Research Symposia Series, pages 85-103. Plenum Press, New York,
1972.

Marek Karpinski, Michael Lampis, and Richard Schmied. New inapproximability bounds
for TSP. In ISAAC, volume 8283 of Lecture Notes in Computer Science, pages 568-578.
Springer, 2013.

Michael Lampis. Improved inapproximability for TSP. In APPROX-RANDOM, volume
7408 of Lecture Notes in Computer Science, pages 243-253. Springer, 2012.

Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A
simple polynomial-time approximation scheme for geometric TSP, k-MST, and related
problems. SIAM J. Comput., 28(4):1298-1309, 1999.

Tobias Mémke and Ola Svensson. Approximating graphic TSP by matchings. In FOCS,
pages 560-569. IEEE, 2011.

Marcin Mucha. 13/9-approximation for graphic TSP. In STACS, volume 14 of LIPIes,
pages 30-41. Schloss Dagstuhl — Leibniz-Zentrum fuer Informatik, 2012.

Christos H. Papadimitriou and Santosh Vempala. On the approximability of the traveling
salesman problem. Combinatorica, 26(1):101-120, 2006.

Christos H. Papadimitriou and Mihalis Yannakakis. The traveling salesman problem with
distances one and two. Mathematics of Operations Research, 18(1):1-11, 1993.

Satish Rao and Warren D. Smith. Approximating geometrical graphs via “spanners” and
“banyans”. In STOC, pages 540-550. ACM, 1998.

Sartaj Sahni and Teofilo F. Gonzalez. P-complete approximation problems. J. ACM,
23(3):555-565, 1976.

A. Chiplunkar and S. Vishwanathan

25

26

27

Andrés Sebo and Jens Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-
tsp, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combinatorica,
34(5):597-629, 2014.

Luca Trevisan. Inapproximability of combinatorial optimization problems. Electronic Col-
loguium on Computational Complezity (ECCC), 2004(065), 2004.

Nisheeth K. Vishnoi. A permanent approach to the traveling salesman problem. In FOCS,
pages 76-80. IEEE, 2012.

135

FSTTCS 2015

On Weighted Bipartite Edge Coloring

Arindam Khan*! and Mohit Singh?

1 Georgia Institute of Technology
Atlanta, USA
akhan67@gatech.edu

2 Microsoft Research
Redmond, USA
mohits@microsoft.com

—— Abstract

We study WEIGHTED BIPARTITE EDGE COLORING problem, which is a generalization of two
classical problems: BIN PACKING and EDGE COLORING. This problem has been inspired from
the study of Clos networks in multirate switching environment in communication networks. In
WEIGHTED BIPARTITE EDGE COLORING problem, we are given an edge-weighted bipartite multi-
graph G = (V, E) with weights w : E — [0,1]. The goal is to find a proper weighted coloring
of the edges with as few colors as possible. An edge coloring of the weighted graph is called a
proper weighted coloring if the sum of the weights of the edges incident to a vertex of any color
is at most one. Chung and Ross conjectured 2m — 1 colors are sufficient for a proper weighted
coloring, where m denotes the minimum number of unit sized bins needed to pack the weights
of all edges incident at any vertex. We give an algorithm that returns a coloring with at most
[2.2223m] colors improving on the previous result of ng by Feige and Singh. Our algorithm
is purely combinatorial and combines the Konig’s theorem for edge coloring bipartite graphs
and first-fit decreasing heuristic for bin packing. However, our analysis uses configuration linear
program for the bin packing problem to give the improved result.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Edge coloring, Bin packing, Clos networks, Approximation algorithms,
Graph algorithms.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.136

1 Introduction

Clos networks were introduced by Clos [3] in the context of designing interconnection
networks with small number of links to route multiple simultaneous connection requests
such as telephone calls. Since then it has found various applications in data communications
and parallel computing systems [1, 11]. The symmetric 3-stage Clos network is generally
considered to be the most basic multistage interconnection network. Let C(m, u,) denote a
symmetric 3-stage Clos network, where the input (first) stage consists of r crossbars (switches)
of size m x p, the center (second) stage consists of p crossbars of size r x r and the output
(third) stage consists of r crossbars of size pu x m. Moreover, there exists one link between
every center switch and each of the r input or output switch. No link exists between other
pair of switches.

* A part of this work was done when the author was interning at Microsoft Research. The author also
thanks NSF EAGER award grants CCF-1415496 and CCF-1415498.

© Arindam Khan and Mohit Singh;

Bv licensed under Creative Commons License CC-BY
35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 136-150

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.136
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Khan and M. Singh

A request frame is a collection of connection requests between inlets and outlets in the
network such that each inlet or outlet is associated with at most one request. A request
frame is routable if all requests are routed through a middle switch such that no two requests
share same link. An interconnection network is called to be rearrangeably nonblocking if all
request frames are routable. In the classic switching environment all connection requests fully
use a link and all have same bandwidth. However in modern networks, different requests
might have different bandwidths (due to wide range of traffic such as voice, video, facsimile
etc.) and may be combined in a given link if the combined request does not exceed the
link capacity. In this multirate setting, a connection request is a triple (7, j, w) where ¢, j, w

are inlet, outlet and demand of the connection respectively, and all links have capacity one.

Here a request frame is a collection of connection requests between inlets and outlets in the
network such that the total weight of all requests in the frame for any particular inlet or
outlet is at most one. The central question in 3-stage Clos networks is finding the minimum
number of crossbars p (= p(m,r)) in the middle stage such that all request frames are
routable. It is more interesting to obtain bounds independent of r.

Nonblocking rearrangeable properties of 3-stage Clos network C'(m, u,r) can be translated
to the following graph theoretic problem. Formally, in WEIGHTED BIPARTITE EDGE COLORING
problem, we are given an edge-weighted bipartite (multi)-graph G := (V, E) with bipartitions
A, B (|A| = |B| = r) and edge weights w : E — [0,1]. Let w. denote the weight of edge
e € E. The goal is to obtain a proper weighted coloring of all edges with minimum number of
colors. An edge coloring of the weighted bipartite graph is called a proper weighted coloring
if the sum of the same color edges incident to a vertex is at most one for any color and any
vertex. Here the sets A and B correspond to the input and output switches, edge (u,v)
corresponds to a request between input switch u and output switch v. A routable request
frame translates into the condition that weights of all incident edges to any vertex can be
proper weighted colored using m colors (or packed into m unit sized bins) and the switches
in the middle stage correspond to the colors (or bins). We refer the reader to Correa and
Goemauns [5] for detailed discussion of this reduction.

The weighted bipartite edge coloring problem naturally generalizes two classically studied
problems, the EDGE COLORING PROBLEM and the BIN PACKING PROBLEM. If all edge weights
are one, this problem reduces to the classical edge coloring problem. On the other hand, if
there is only one vertex in each partition in the bipartite graph, this problem reduces to the
bin packing problem.

Now let us introduce some notation. Let x/,(G) denote the minimum number of colors
needed to obtain a proper weighted coloring of G. Let m,r € Z™, and pu(m,r) = mazgx.,(G)
where the maximum is taken over all bipartite graphs G = (AU B, E) with |A| = |B| =7
and where m is the maximum over all the vertices of the number of unit-sized bins needed
to pack the weights of incident edges. Chung and Ross [2] made the following conjecture.

» Conjecture 1. Given an instance of the WEIGHTED BIPARTITE EDGE COLORING problem,
there is a proper weighted coloring using at most 2m —1 colors where m denotes the mazimum
over all the vertices of the number of unit-sized bins needed to pack the weights of edges
incident at the vertex. In other words, p(m,r) < 2m — 1.

There has been a series of results achieving weaker bounds on p(m,r) (see related works for
details), the current best bound by Feige and Singh [7] shows that u(m,r) < 2.25m.

137

FSTTCS 2015

138

On Weighted Bipartite Edge Coloring

1.1 Our results and techniques.

Our main result is to make progress towards resolution of Conjecture 1 by showing u(m, r) <
20m 4 o(m).

» Theorem 2. There is a polynomial time algorithm for the WEIGHTED BIPARTITE EDGE
COLORING problem which returns a proper weighted coloring using at most [2.2223m/ colors
where m denotes the maximum over all the vertices of the number of unit-sized bins needed
to pack the weights of incident edges.

In our algorithm and analysis, we exploit that WEIGHTED BIPARTITE EDGE COLORING
problem displays features of the classical edge coloring problem as well as the bin packing
problem. Our algorithm starts by decomposing the heavy weight edges into matchings by
applying Koénig’s theorem to find an edge coloring of the subgraph induced by these edges.
For the light weight edges, we employ the first-fit decreasing heuristic where we consider the
remaining edges in decreasing order of weight and give them the first available color. The
detailed algorithm is given in Figure 1 and builds on the algorithm by Feige and Singh [7].

Our work diverges from previous results on this problem in the analysis of this simple
combinatorial algorithm. We employ strong mathematical formulations for the bin packing
problem; in particular, we use the configuration linear program (LP) for the bin packing
problem. This linear program has been used to design the best approximation algorithm for
the bin packing problem [12, 17, 9]. In our work, we use it as follows. We show that if the
algorithm is not able to a color an edge (u,v), then the edges incident at u or v cannot be
packed in m bins as promised. To show this, we formulate the configuration linear program
for the two bin packing problems, one induced by edges incident at u and the other induced
by edges incident at v. We then construct feasible dual solutions to one of these linear
programs of value more than m. Appealing to linear programming duality, it implies that
the optimal primal value, and therefore the optimal bin packing number, is more than m
for at least one of the programs, giving us the desired contradiction. While the weights on
the edges incident at u (or v) can be arbitrary reals between 0 and 1, we group the items
according to weight classes and how our algorithm colors these edges. This allows us to
reduce the number of item types, reducing the complexity of the configuration LP and makes
it easier to analyze. While the grouping according to weight classes is natural in bin packing
algorithms; the grouping based on the output of our algorithm helps us relate the fact that
the edge (u,v) could not be colored by our algorithm to the bin packing bound at u and
v. We mention two additional extensions of our techniques to the problem. Firstly, a more
careful and detailed analysis (based on computer search) can improve the bounds slightly
showing the current bound is not tight. Secondly, our analysis can also be extended to show
[2.2m] colors are sufficient when all edge weights are more than 1/4.

1.2 Related Works

Edge-coloring problem has been one of the central problems in graph theory and discrete
mathematics since its appearance in 1880 [21] in relation with the four-color problem. The
chromatic index of a graph is the number of colors required to color the edges of the graph
such that no two adjacent edges have the same color. Three classical results on edge coloring
are Konig’s theorem [14] for coloring a bipartite graph with A colors, Vizing’s theorem [22]
for coloring any simple graph with A + 1 colors and Shanon’s theorem [18] for coloring any
multigraph with at most 3A/2 colors where A is the maximum degree of the graph. Though
one can find optimal edge coloring for a bipartite graph in polynomial time using Konig’s

A. Khan and M. Singh

1. F+ 0, ¢+ 2.2223.

2. Include edges with weight > v = %0 in F' in nonincreasing order of weight
maintaining the property that degp(v) < [tm] for all v € V.

3. Decompose F into r = [tm] matchings M, ..., M, and color them using colors
1,...,7. Let F; « M; foreach 1 <i<r.

4. Add remaining edges in nonincreasing order of weight to any of the F;’s main-
taining that weighted degree of each color at each vertex is at most one, i.e.,
ZeGJ(v)ﬂFi we < 1foreachveVandl<i<r.

Figure 1 Algorithm for Edge Coloring Weighted Bipartite Graphs.

theorem, Holyer [10] showed that it is NP-hard even to decide whether the chromatic index
of a cubic graph is 3 or 4. We refer the readers to [20] for a survey on edge coloring.

On the other hand classical bin packing problem is NP-hard and has been studied extens-
ively from the classical work of Garey et al. [8]. The problem finds numerous applications
in scheduling, logistics, layout design and other resource allocation problems. The present
best polynomial time algorithm is due to Hoberg and Rothvof [9] based on rounding of
configuration LP using connections to discrepancy [17] and achieves a logarithmic additive
error. However only known hardness bound is Opt 4+ 1 assuming P # NP. We refer the
readers to [4] for a survey on the current literature for bin packing.

Now we review the literature related to weighted bipartite edge coloring. First, we
introduce some more notation. When the weight function w : E — I is restricted to a
subinterval I C [0, 1], then we denote the minimum number of colors by py(m,r). Slepian
[19] showed that p1(m,r) = m using Konig’s theorem. Melen and Turner [15] showed
that o, g)(m,r) < 175 for B < 1. In particular, p1/2)(m,7) < 2m — 1. There has been a
series of work improving the bounds for u(m,r) [2, 6, 16, 5]. The best known lower bound
for p(m,r) is 5/4 due to Ngo and Vu [16]. Correa and Goemans introduced a novel graph
decomposition result and perfect packing of an associated continuous bin packing instance to
show p(m,r) < 2.5480m + o(m). The present best algorithm is due to Feige and Singh [7]
who showed p(m,r) < 977”. Their result holds even if m is the maximum over all the vertices
of the total weight of edges incident at the vertex. For other related results, see [7].

2 Edge Coloring Weighted Bipartite Graphs
In this section we present our main result and prove Theorem 2.

» Theorem 3 (Restatement of Theorem 2). There is a polynomial time algorithm for the
WEIGHTED BIPARTITE EDGE COLORING problem which returns a proper weighted coloring
using at most [2.2223m] colors where m denotes the mazimum over all the vertices of the
number of unit-sized bins needed to pack the weights of incident edges.

Our complete algorithm for edge-coloring weighted bipartite graphs is given in Figure 1.
In the algorithm, we set a threshold v = % and consider the subgraph induced by edges with
weights more than v and apply a combination of Kénig’s Theorem and a greedy algorithm
with [tm] colors where ¢ = 2.2223 > 20/9. The remaining edges of weights at most v are
then added greedily.

139

FSTTCS 2015

140

On Weighted Bipartite Edge Coloring

Analysis

Now we prove Theorem 2. Though the algorithm is purely combinatorial, the analysis
uses configuration LP and other techniques from bin packing to prove the correctness

of the algorithm. First, we state the Koénig’s Theorem since we use it as a subroutine in our
algorithm to ensure a decomposition of F' into [¢tm] matchings.

» Theorem 4 ([14]). Given a bipartite graph G = (V, E), there exists a coloring of edges
with A = max,cvdegp(v) colors such that all edges incident at a common vertex receive a
distinct color. Moreover, such a coloring can be found in polynomial time.

The following lemma from Correa and Goemans [5] (it was also implicit in [6]) ensures
that if the algorithm succeeds in coloring all edges of weight at least ~y, the greedy coloring
will be able to color the remaining edges of weight at most ~.

» Lemma 5 ([5, 6]). Consider a bipartite weighted graph G = (V, E) with a coloring of all
edges of weight > v using at least f_—mv colors for some v > 0. Then the greedy coloring will
succeed in coloring the edges with weight at most v without any additional colors.

In our setting, we have v = 1—10 and the number of colors is < %Om = 12_"i and thus

Lemma 5 applies. Hence, it suffices to show the algorithm is able to color allwedges with
weight > % using [tm] colors as the remaining smaller edges can be colored greedily. Thus,
w.l.o.g, we assume that the graph has no edges of weight < % and prove the following lemma.

» Lemma 6. If all edges have weight more than {5 and t = 2.2223 (> 20/9) then the
algorithm in Figure 1 returns a coloring of all edges using [tm] colors such that the weighted
degree of each color at each vertex is at most one, i.e., Zeeé(v)ﬂFi we < 1.

Proof. Suppose for the sake of contradiction, the algorithm is not able to color all edges. Let
e := (u,v) be the first edge that cannot be colored by any color in Step (3) or Step (4) of the
algorithm. Let the weight of edge e, we, be a. Moreover, when e is considered in Step (2),
degree of either u or v is already [tm] else we would have included e in F. Without loss of
generality let that vertex be u, i.e., degr(u) = [tm]. Now we characterize the colors F; of
edges incident at v and consider the edges incident at w and v to get a series of inequalities.
Thereafter, we show that o < 1/3 and use these inequalities to arrive at a contradiction.

For each color 1 < i < [tml], either 3 c5ynp Wy > 1= 0r Yo resiynrm Wy > 1— o,
else we can color e in Step (4). Let Hy, = {i[}_;cs5(,)nr, wr > 1 —a}, fm = [H,|. Now for
each color @ ¢ H,, we have }_ cs0,)np, wy > 1 — a. Moreover, degp(u) = [tm] and for all
edge f € 6(u), we have wy > « as the edges were considered in nonincreasing order of weight.
Hence, for each color 1 <i < [tm], there is an edge incident at u colored with color ¢ with
weight at least a. Let us call a color i tight at wif 3~ cs5)qp, wr > (1 —a) and a color i
open at wif 3- cs5npm Wy € [, 1 —a]. Let 7 be the number of tight colors at u and 6 be
the number of open colors at u. Thus we have,

T > (t=p)m (1)
0 = (tm—71)<pBm (2)

Now consider all edges incident on v. We get, m > fm(1 — «)
= 1>p1-a) (3)
Similarly considering all edges incident on u, we get: m > (tm — fm)(1 — a) + (Bm)a

= 1>t(l—a)+B(2a—-1) (4)

A. Khan and M. Singh

Now a unit sized bin can contain at most two items with weight > 1/3. As all edges
incident to a vertex can be packed into m unit sized bins, there can be at most 2m edges
incident to a vertex with weight > 1/3. Since ¢ > 2, we get that all edges with weight more
than § must have been included in F in Step (2). Thus a < 1/3.

Thus we get from (3): B<1l/(1—a)<3/2 (5)

Now there are two cases:
Case A: o < 1/4. Consider the RHS of (4): (1 — a) + 8(2a — 1). Now,

t(l—a)+pB2a—-1)—1 > t(la)((ll_Qj))l, [From (3)]
20l —a)?=9(1—2a) —9(1 —)
> 50— o) [t > 20/9]
(200® —13a+2) (da—1)(5a —2)
> 91— a) = 91 —a) >0,as 0 <1/4

Thus t(1 — a) + f(2a — 1) > 1, which contradicts (4).

Case B: 1/4 < o < 1/3. In this case, we will show in Lemma 7 that if 3 < 13/9, then all
edges incident at u can not be packed in m bins. On the other hand, in Lemma 14 we
show that if 5 > 13/9, then all edges incident at v can not be packed in m bins.

This two facts together give us the desired contradiction.

» Lemma 7. If 5 < 13/9, then edges incident at u can not be packed in m bins.

Proof. To give a lower bound on the number of bins required, we will consider a relaxation
to the bin packing problem for edges incident at vertex u and show that the optimal value of
the relaxation, and thus the optimal number of bins required, is greater than m. The lower
bound will be exhibited by constructing a feasible dual solution to the relaxation to the bin
packing problem.

Since degp(u) = [tm] when edge e was considered in Step (2) of the algorithm and not

included in F', we have that all edges incident at w in F' have weight at least the weight of e.

Moreover, edges are considered in the decreasing order of weight in Step (4), the weight of
all edges incident at u when e is considered in Step (4) is > w.. We restrict our attention to
these edges incident at u with weight > « and show that they cannot be packed in m unit
sized bins. Let us divide these edges incident at u into three size classes.

Large L :={f € 6(u) : wy € (1/2,1]}.

Medium M :={f € 6(u) : wy € (1/3,1/2]}.

Small S :={f € 6(u) : wy € [a,1/3]}.

First we have the following observation.

» Observation 8. In any bin packing solution, in any bin there can be at most one item
from L, two items from LU M and three items from LUM U S.

Now consider the following two simple claims.

» Claim 9. Edges in L UM are included in Step (2) of Algorithm 1 and are a subset of F'.

Proof. If we are unable to add an edge f in Step (2), it means one of its endpoints have
[tm] > 2m edges with weight > wy. Since all edges incident at any vertex v € V can be
packed in m bins, there are at most 2m edges incident at it with weight more than % Thus
all edges of weight more than %, i.e., all edges in L U M must be included in F in Step (2) of
the algorithm. |

141

FSTTCS 2015

142

On Weighted Bipartite Edge Coloring

» Claim 10. For any color i, there is at most one edge in L U M with color i.

Proof. As all edges in L U M must be included in F' in Step (2) of the algorithm. In Step (3)
of the algorithm, we include at most one edge of F' incident at any vertex in each F;. Thus
each color class obtains at most one edge incident at each vertex from F' and therefore, from
LUM. <

Using the observation and the above claim, we itemize the configuration of each of the
tight colors depending on the size of edges with that color. Note that tight colors must have
weight >1—-a>1-1/3=2/3.

1. If the tight color has a single edge f. Then we have that wy > % and only possibility is
1)(L); Here by (L), we denote that the bin contains only one item and that item is an
item from the set L.

2. If the tight color contains exactly two edges. Here (S, S) is not tight as the total weight
of edges in such a bin is < 2/3. So, the bin can contain at most one item from S. On the
other hand, the bin can contain at most one item from L U M from Claim 10. Thus the
possible size types of these edges are ii)(L, S);iii) (M, S); As above, by (L, S) we denote
that the bin contains only two items: exactly one item from set L and exactly one item
from S.

3. If the tight color contains three edges. The bin can contain at most one item from LU M
from Claim 10. However if it contains one L item, sum of weights of three items exceeds
one. Thus the only possible size types of these edges are iv)(M, S, S);v)(S, S, 9).

Now consider the following LP: LPy;, (u):

5
min E Yi
i=1

1+ xstaxzst+rgtas > T (6)
Nty = xT1t+axet+n (7)

Yy1+2ys+ys > T3+ T4+ 20 (8)
Yy2+ys+2ys+3ys > wxo+a3+ 224+ 3w5 + 23 (9)

21 +2t+z > 0 (10)

zj, Yk, 21 > 0 Vjeblkel5],lel3 (11)

» Lemma 11. The optimal number of unit sized bins needed to pack all edges incident at u
is at least the optimum value of L Py (u).

Proof. Given a feasible packing of edges incident at w in at most m unit sized bins, we
construct a feasible solution (Z,y, z) to the linear programming relaxation whose objective
is at most the number of unit sized bins needed in the packing. In the feasible solution
(Z,9, Z), the variables Z and Z are constructed using the coloring given by the algorithm. The
variables y are constructed using the optimal bin packing.

We first define the variables x. Let x1,Ts,T3,Z4,T5 be the number of tight colors at u
of type (L), (L, S),(M,S), (M, S,S),(S,S,S5), respectively. Since the coloring of the edges
incident at wu is one of the five types described above and there are at least 7 tight colors,
we have that E?Zl Z; > 7 and thus the solution satisfies constraint (6). Now we define the
variables Zz1, z2, 23 to be the number of items in open colors from L, M and S respectively.
There are 6 open colors. Each open color contains at least one item L U M U S. Thus,
Z1 + Z2 + z3 > 0 and thus the solution satisfies constraint (10).

A. Khan and M. Singh

To construct the solution ¥, we will group the bins in the optimal bin packing solutions
depending on the subset of items present in them into five classes and the number of bins in
each class will define the variables §. The constraints (7)-(9) will correspond to making sure
that the optimal bin packing solution has appropriate number of items of each size type.

Now let us characterize the possible bin configurations to explain constraints (7)-(9).

» Claim 12. Consider any feasible bin packing of edges incident at u restricted to edges in
LUMUS. Then each bin must contain items which correspond to a subset of one of the
following 5 configurations or subsets of these configurations.

Cli(L,M) CQZ(L,S) CgI(M,M,S)
Cy: (M,8S,5S) Cs: (S,5,9)

Proof. Observe that in any bin there can be at most one item from L, two items from LU M
and three items from L U M U S. Now let us consider two cases.

1. If the bin contains an item from L. In this case, the bin can not contain three items as
the sum of their weights exceeds one. So, it can contain at most one item from L and one
item from M U .S. Thus C7 and Cy cover such two cases.

2. If the bin does not contain any item from L. In this case, the bin can contain three items
from M U S and at most two of these items can be from M. Thus C3,Cy and C5 cover such
possibilities. |

We map each configuration in the optimal bin packing solution to one of types C; where
the configuration is either C; or its subset. Let y; denote the number of bins mapped to type
C; for each 1 <7 < 5. We now count the number of items of each type to show feasibility of
the constraints of the linear program.

Constraint (7). Items of type L equal Z; 4+ Z2 + z; and can only be contained in

configuration Cy and Cy. Thus we have §; + y2 > 1 + T2 + 21 satisfying constraint (7).

Constraint (8). Items of type M equal Z3+Z4+ 22 and are contained once in configurations

C1, Cy and twice in configuration C5. Thus we have 1 + 2y3 + 44 > T3+ T4 + 22 satisfying

constraint (8).

Constraint (9). Items of type S equal Zy + T3 + 2Z4 + 3Z5 + z3 and occur once in

configurations Cs, (3, twice in configurations Cy and thrice in C5. Thus, we have

Yo + Ys + 2ys + 3ys > T + T3 + 224 + 3T5 + z3 showing feasibility of constraint (9).
This implies that (Z, g, z) is a feasible solution to L Py, and its objective equals the number of
bins needed to pack the edges incident at u in unit sized bins. Thus we have the lemma. <«

We now show a contradiction by showing the optimal value of the LPy;,(u) is more than m.

» Lemma 13. The optimal solution to LPy;,(u) is strictly more than m.

Proof. We prove this by considering the dual linear program of the LPy;,(u). Since every
feasible solution to the dual LP gives a lower bound on the objective of the primal L Py, (u),
it is enough to exhibit a feasible dual solution of objective strictly more than m to prove the
lemma. Now the dual of the LPy;, is given in the next page.

A feasible dual solution is: vy = 2,03 = 2,v3 = $,v4 = 5,05 = 1.

143

FSTTCS 2015

144

On Weighted Bipartite Edge Coloring

maxr T-vi+0-vs

Subject to:

v17v2§0, '1)17'11271}4S07
1)1*1)37’[)430, 017U372U4§0,
v —3vg <0, v2 +wv3 <1,

va +va <1, 2u3 +wvg < 1,

v3 4+ 2v4 < 1, 3ug < 1,

vs —v2 <0, vs —v3 <0,

vs —vg <0, v; >0 ViE[S]

Thus dual optima > %T —|—§ and we need at least these many colors to color items in 7 tight
colors and 6 open colors. Using the fact that 6 =tm — 7,7 > (t — f)m and ¢t > %Orm B < %3,
we obtain that the number bins required to pack all items incident on u is:

> T0u > crti(tm—T) = 27+ x(tm)
= T-U1 V4 = 3’7’ 3 m T = 37’ 3 m
1 1 2t B8 2 20 1 13

> Z(t— ~(t > Zm-Lm > Sy =

= gt=fmaglim) = gm=gm 3 g T3y "
Thus the number bins required to pack all items incident on w is strictly greater than m.
This is a contradiction. <
This concludes the proof of Lemma 7. |

» Lemma 14. If 5 > 13/9, then edges incident at v can not be packed in m bins.

Proof. Similar to the previous lemma, to give a lower bound on the number of bins required,
we will consider a relaxation to the bin packing problem for edges incident at vertex v and
show that the optimal value of the relaxation, and thus the optimal number of bins required,
is greater than m. Again, the lower bound will be exhibited by constructing a feasible dual
solution to the relaxation to the bin packing problem.

As B(1 — a) < 1, we get,

a>1-1/8>4/13>0.3. (12)

Let us call a color ¢ tight at v if Zfe&(v)ﬂFi wy > (1 —a). Now consider any tight color
B at v. At most one edge f in B was colored in Step (3) of the algorithm and remaining
edges (if any) in B were colored in Step (4) of the algorithm. Now, wy can be smaller than
we as it might be the case that when e was considered in Step (2) then already degree of
other endpoint u was [tm]. However, edges are considered in the nonincreasing order of
weight in Step (4), thus the weight of all edges incident at v when e is considered in Step (4)
is also > w,. Thus, all the remaining edges (if any) in B that were colored in Step (4) of the
algorithm have weight more than «.

We restrict our attention to the edges at tight colors at v and show that if g > 1—93 they
cannot be packed in m unit sized bins. Let us divide these edges incident at u into four size
classes.

Large L :={f € 6(v) : wy € (1/2,1]}.

Medium M :={f € 6(v) : wy € (1/3,1/2]}.

Small S :={f € d(v) : wy € [, 1/3]}.

Tiny T := {f € §(v) : wy € (1/10,)}.

A. Khan and M. Singh

First we have the following observation.

» Observation 15. In any bin packing solution, in any bin there can be at most one item
from L, two items from LUM , three items from LUMUS and nine items from LUMUSUT.

Now let us claim the following.

» Claim 16. For any tight color i at v, all edges added in Step (4) of the algorithm are in S.
As a corollary, there is at most one edge incident on v with color i that is in LU M UT and
it can only be added in Step (2) of the algorithm.

Proof. From Claim 9, it follows that all edges in L U M must be included in F' in Step (2)
of the algorithm. On the other hand, all edges colored in Step (4) have weight more than a,
they can not be in T. Hence, only edges in S are colored in Step (4). Edges in LUM UT are
colored in Step (3). In Step (3) of the algorithm, we include at most one edge of F' incident
at any vertex in each F;. Thus each color class obtains at most one edge incident at each
vertex from F and therefore, from LUM UT. <

Using the observation and the claim, we itemize the configuration of each of the tight
colors depending on the size of edges with that color. Note that in this case tight colors have
weight more than 1 —a >1-1/3 =2/3.

1. If the tight color has a single edge f. Then we have that w; > 2/3 and only possibility is
1)(L); Here by (L), we again denote that the bin contains only one item and that item is
an item from the set L.

2. If the tight color contains exactly two edges. From Claim 16, the bin can contain at most
one item from L U M UT. On the other hand, (S, S) or (T,5) has weight < 2/3. So the
bin can contain at most one item from S and one item from L U M. Thus the possible
size types of these edges are ii)(L, S);#ii)(M, S); As above, by (L, S) we denote that the
bin contains only two items: exactly one item from set L and exactly one item from S.

3. If the tight color contains three edges. From Claim 16, the bin can contain at most one
item from L UM UT. However if the bin contains an item from L, the sum of weights of
an item from L and two items from S exceeds one. Thus the possible size types of these
edges are w)(M, S, S);v)(S, S, S);vi)(T, S, 5).

Now consider the following configuration LP based on the items at v: LPy;,(v):

19
min E Yi
i=1

r1+ a2+ ax3+ra+as+a6 > Bm (13)

Yia > T3 (14)

Yst+yot+yiotyis = 22 (15)

Y3 +yr +yo Y11 +2y12 + Y16 > T3 (16)

Y2+ 2ys+ys +yio+yi1 + 213 +yir > 24 (17)

31 + 2y +2ys +ya +2ys + Yo +yr +ys +yis > zo+ a3+ 224 + 325 + 226 (18)
(3ys + 3ys + 3y7 + ys + Yo + Y10 + 3y11 + Y12

+3y13 + 3y14 + 4y15 + 6y16 + 6y17 + 6y1s + 9y10) > 76 (19)

yi,xr > 0 Vje[19],k € [6] (20)

» Lemma 17. The optimal number of unit sized bins needed to pack all edges incident at u
is at least the optimum value of L Py, (v).

145

FSTTCS 2015

146

On Weighted Bipartite Edge Coloring

Proof. Given a feasible packing of edges incident at v in at most m unit sized bins, we
construct a feasible solution (Z,y) to the linear programming relaxation whose objective is
at most the number of unit sized bins needed in the packing. In the feasible solution (Z,),
the variables & are constructed using the coloring given by the algorithm. The variables ¥
are constructed using the optimal bin packing.

We first define the variables z. Let &1, T2, T3, T4, T5, g be the number of tight colors at
v of type (L), (L, S), (M, S), (M,S,S),(S,S,S),(T,S,S), respectively. Since the coloring of
the edges incident at v is one of the six types described above and there are at least fm
tight colors at v, we have that S°°_, #; > #m and thus the solution satisfies constraint (13).

To construct the solution y, we will group the bins in the optimal bin packing solutions
depending on the subset of items present in them into nineteen classes and the number of
bins in each class will define the variables y. The constraints (14)-(19) will correspond to
making sure that the optimal bin packing solution has appropriate number of items of each
size type.

To define the 19 different classes of bin types in the optimal solution, we need to further
classify items according to size. Let L1, Lo C L be the set of large edges that appear in the
configurations of the type (L) and (L, .S), respectively, in the tight colors.

As for any item l; € Ly, w;;, +a > 1. We get,

w, >1—a>1-1/3=2/3. (21)

Let M7, My be the set of medium edges that appear in the tight colors of type (M, S)
and (M, S, S), respectively.

We now have the following claim where we characterize the possible bin configurations.
We show that each bin contains items which correspond to one of 19 possible configurations
or their subsets.

» Claim 18. Consider any feasible bin packing of edges incident at v restricted to edges in
LUMUSUT. Then each bin must contain items which correspond to a subset of one of the
following 19 configurations.

C1:(S,8,8) Cy: (Ms, S, S) Cs: (M, S, S)

Cy : (Ma, My, S) Cs: (S,8,T,T,T) Cs : (M, S,T,T,T)
Cr: (My, S, T,T,T) Cs: (L2, 8,T) Co : (L2, My, T)

Cho : (L2, M2, T) Cui : (My, My, T, T, T) Cia: (My, My, T, T, T)
Cis : (Mo, My, T, T, T) Cu : (L1, T,T,T) Cis: (Lo, T,T,T,T)
Cis: (My,T,T,T,T,T,T) Cir: (Ma,T,T,T,T,T,T) Cis: (S, T,T,T,T,T,T)
Cy: (T,T,T,T,T,T,T,T,T)

Proof. Observe that since item in L have weight more than %, items in M have weight more
1 &, th

1 15> there
can be at most one item from L, two items items from L U M, at most three items in total
from LU M U S and at most nine items from L U M U S UT in any feasible packing.

1. Bins with three items from D := LUM US. As the sum of weights of three elements from

D is more than 3a > 0.9, elements from 7' can not appear in these bins as 3 + w¢ > 1

than %, items in S have weight more than + and items in 7" have weight more than

for any f € T. Moreover, configurations which contain at least one item of L cannot have
three items from D without the weight exceeding one. Thus, the packing can contain only
items from M and S. When the bin contains only S items, it corresponds to configuration
C;. Packings which contain one item from M; U M5 and two items from S are exactly
the configurations Cs, C'.

A. Khan and M. Singh

Now let us consider the case when we have two items from M; U Ms. First observe that
for each h € My, there exists a s € S such that (h, s) are the only edges colored with a
tight color. Thus we have that wy, +w, > 1 — . But then for any other i/ € M; U Ms
and s’ € S, we have that

wy, +wp +wy > wp +ws +a>1 (22)

where the inequality follows since wy, > w, and wy > «. This implies that configurations
of type (My, My, S) or (M7, M, S) are not feasible. Hence, the only possible remaining
configuration is Cy.

2. Bins with two items from D. Here we consider maximal configurations which are not
subsets of configurations which contain three items from D. When the configuration
contains two items s1,s2 € S, we have that ws, + ws, > 0.6 and thus the only maximal
configuration is Cs. Configurations Cg, C7 cover the case when the configuration contains
one item from S and one item from M. Let [€ Li. Since [appears alone in a tight
color, we have that w; + « > 1. Since every item in M U S has weight at least «, there
is no valid configuration with two items from D such that one of them is in L. If the
configuration contains ly € Lo and g € M7 U Mo U S, it can at most contain one element
t €T as wy, +wg +w; > 0.9. Thus configurations Cg cover the case when there is one
item from .S and one item from L. Now we are left with cases when there are no S items
in the bin. If there is one L item and one M item, Cy, Co cover such possibilities.
Similarly if the configuration contains two items from M, it can contain at most 3 elements
from T'. Configurations Ci1, Ci2, C13 cover all such the possibilities.

3. Bins with one item from D. Here we consider configurations which are not subsets of
configurations which contain at least two items from D. Note that as for any item Iy € Ly,
from inequality (21), w;, > 2/3. Thus (L1, T,T,T) is the maximal configuration containing
one L item. (14 is the corresponding configuration. The other four possible configurations
are C15,Chg, C17, C1g where the bins contain one item from Lo, M7, M5, S respectively.
In these case the number of T" items are upper bounded by 4, 6, 6, 6 respectively from the
lower bound of size of items in the corresponding classes in D.

4. Bins with no item from D. Only possible maximal configuration is Cg. «
We map each configuration in the optimal bin packing solution to one of types C; where

the configuration is either C; or its subset. Let y; denote the number of bins mapped to type

C; for each 1 < i < 19. We now count the number of items of each type to show feasibility

of the constraints of the linear program.

Constraint (14). Items of type L; equal Z; and can only be contained in configuration
C14. Thus we have 14 > Z7.

Constraint (15). Similarly, items of type Lo equal Z5. They are contained in configurations
Cg, 09, ClO and 015. Thus we have Ys + Yo + Y10 + Y15 = Ta.

Constraint (16). Items of type M; equal Z3 and are contained once in configurations
Cs,C7,Cy,Ch1,C16 and twice in configuration Ci5. Thus we have y3 + y7 + 4o + y11 +
2912 + Y16 = T3-

Constraint (17). Items of type Ms equal Z4 and are contained once in configurations
Cy, Cg, Cho,C11,Cr7 and twice in configurations Cy, C13. Thus we have yo + 2y4 + 46 +
Y10 + Y11 + 2013 + Y17 > T4 satisfying constraint (17).

Constraint (18). Items of type S equal s + T3 + 274 + 3Z5 + 2T and occur once in
configurations Cy, Cs, C7, Cs, C1g, twice in configurations Cs, C3,Cs5 and thrice in Cj.
Thus, we have 3y1 + 292 + 2y3 + Ya + 25 + Y6 + Y7 + Ys + Y18 = T2 + T3 + 274 + 375 + 2T6.

147

FSTTCS 2015

148

On Weighted Bipartite Edge Coloring

Constraint (19). Items of type T equal Zg and occur once in configurations Cg, Cy, C1g,
thrice in configurations C5, Cg, C7, Cq1, C12, C13, C14, four times in configuration Cis, six
times in configurations C14, C17, C1s and nine times in configurations C19. Thus, we have
(3Y5+3Y6+3y7+ys+yo+y10+3Y11+3712+3Y13+3y14+4Y15+6716+6717+6718+9Y19) > Ts-
This implies that (z,y) is a feasible solution to LPy;,(v) and its objective equals the number
of bins needed to pack the edges incident at v in unit sized bins. Thus we have the lemma. <«

We now show a contradiction by showing the optimal value of the LPy;,(v) is more than
m.

» Lemma 19. The optimal solution to the LPy;,(v) is strictly more than m.

Proof. We prove this by considering the dual linear program of the LPy;,(v). Since every
feasible solution to the dual LP gives a lower bound on the objective of the primal LPy;,(v),
it is enough to exhibit a feasible dual solution of objective strictly more than m to prove the
lemma. Now the dual of the LP;;,(v) is given below:

max SBm - vy

Subject to:

A feasible dual solution is: v; =

v —vz <0,

v1 —va — vs <0,
v — 3ve < 0,
3U6§1,

v4 + 2v6 < 1,

2ve¢ + 3v7 < 1,

vs +ve + 3vr < 1,
vz +vs+vr <1,
vg +vs + 3v7 < 1,
2us + 3v7 < 1,

vz +4vr < 1,

vs + 6v7 < 1,

Jur <1,

9 _
13,02 =

vy — vz —ve <0,
v —vs — 2vg < 0,
v1 — 2v6 — v7 <0,
vs + 2v6 < 1,

2u5 +vg < 1,

vs + ve + 3v7 < 1,
v3 +ve +v7r <1,
v3 +vs +vr <1,
2us +3v7 < 1,

vg 4+ 3v7r < 1,

vy 4 6v7 < 1,

ve + 6v7 < 1,
v>0 Yielr).

9 _ T _
13> U3 = 13,04 =

_ 4 —
U6—ﬁ,1}7—§.

Thus dual optima is at least Sm - 1% > m. Thus, we need more than m bins to pack all items

incident at v, a contradiction. <
This completes the proof of Lemma 14. |
Therefore, the proof of Theorem 2 is complete. <

If we assume that all edges have weight more than 1/4, then similar analysis will attain
2.2m colors are sufficient. For the proof, we refer the readers to [13].

» Theorem 20. If all edges have weight more than 1/4, then there is a polynomial time
algorithm for the WEIGHTED BIPARTITE EDGE COLORING problem which returns a proper
weighted coloring using at most [2.2m] colors where m is denotes the maximum over all the
vertices of the number of unit-sized bins needed to pack the weights of incident edges, i.e.,
pex qy(m,r) < [2.2m].

A. Khan and M. Singh

3

Conclusion

Considering the case 1/4 > « > 1/5 separately, might improve the bound by more case
analysis. However we can attain at most 35m/16 ~ 2.19m by that. Finding a better approx-
imation algorithm (independent of m) or inapproximability, and extending our techniques to
general graphs will be interesting.

Acknowledgements. We thank Prasad Tetali for helpful discussions.

—— References

1

10

11

12

13

14

15

16

17

18

John Beetem, Monty Denneau, and Don Weingarten. The gf11 supercomputer. In Inter-
national Symposium on Computer architecture, pages 108-115, 1985.

Shun-Ping Chung and Keith W. Ross. On nonblocking multirate interconnection networks.
SIAM Journal on Computing, 20(4):726-736, 1991.

C. Clos. A study of nonblocking switching networks. Bell System Technical Journal,
32(2):406-424, 1953.

Edward G. Coffman Jr, Janos Csirik, Gdbor Galambos, Silvano Martello, and Daniele
Vigo. Bin packing approximation algorithms: survey and classification. In Handbook of
Combinatorial Optimization, pages 455-531. Springer, 2013.

J. Correa and M. X. Goemans. Improved bounds on nonblocking 3-stage clos networks.
SIAM Journal of Computing, 37:870-894, 2007.

D. Z. Du, B. Gao, F. K. Hwang, and J. H. Kim. On multirate rearrangeable clos networks.
SIAM Journal of Computing, 28(2):463-470, 1999.

Uriel Feige and Mohit Singh. Edge coloring and decompositions of weighted graphs. In
ESA, pages 405-416, 2008.

Michael R. Garey, Ronald L. Graham, and Jeffrey D. Ullman. Worst-case analysis of
memory allocation algorithms. In STOC, pages 143-150. ACM, 1972.

Rebecca Hoberg and Thomas Rothvo. A logarithmic additive integrality gap for bin
packing. CoRR, abs/1503.08796, 2015.

Ian Holyer. The NP-completeness of edge-coloring. STAM Journal on Computing, 10(4):718-
720, 1981.

A. Ttoh, W. Takahashi, H. Nagano, M. Kurisaka, and S. Iwasaki. Practical implementation
and packaging technologies for a large-scale atm switching system. Journal of Selected
Areas in Communications, 9:1280-1288, 1991.

Narendra Karmarkar and Richard M Karp. An efficient approximation scheme for the
one-dimensional bin-packing problem. In FOCS, pages 312-320. IEEE, 1982.

Arindam Khan. Approzimation Algorithms for Multidimensional Bin Packing. PhD thesis,
Georgia Institute of Technology, Atlanta, 2015.

D. Kénig. Graphok és alkalmazasuk a determindnsok és a halmazok elméletére. Mathem-
atikai és Természettudomdnyi Ertesito, 34:104-119, 1916.

Riccardo Melen and Jonathan S. Turner. Nonblocking multirate distribution networks.
IEEE Transactions on Communications, 41(2):362-369, 1993.

Hung Q. Ngo and Van H. Vu. Multirate rearrangeable clos networks and a generalized
edge-coloring problem on bipartite graphs. STAM J. Comput., 32(4):1040-1049, 2003.
Thomas RothvoB. Approximating bin packing within o(log opt * log log opt) bins. In
FOCS, pages 20-29, 2013.

Claude E. Shannon. A theorem on coloring the lines of a network. Journal of Mathematics
and Physics, 28(2):148-151, 1949.

149

FSTTCS 2015

150

On Weighted Bipartite Edge Coloring

19

20

21

22

T. D. Slepian. Two theorems on a particular crossbar switching. unpublished manuscript,
1958.

Michael Stiebitz, Diego Scheide, Bjarne Toft, and Lene M. Favrholdt. Graph Edge Coloring:
Vizing’s Theorem and Goldberg’s Conjecture, volume 75. John Wiley & Sons, 2012.

Peter Guthrie Tait. Remarks on the colouring of maps. Proc. Roy. Soc. Edinburgh,
10(729):501-503, 1880.

V. G. Vizing. On an estimate of the chromatic class of a p-graph (in russian). Diskret.
Analiz, 3:23-30, 1964.

Deciding Orthogonality in Construction-A Lattices

Karthekeyan Chandrasekaran !, Venkata Gandikota?, and
Elena Grigorescu?

1 University of Illinois, Urbana-Champaign, IL, USA
karthe@illinois.edu

2 Purdue University, West Lafayette, IN, USA
vgandiko@purdue.edu

3 Purdue University, West Lafayette, IN, USA
elena-g@purdue.edu”

—— Abstract

Lattices are discrete mathematical objects with widespread applications to integer programs as
well as modern cryptography. A fundamental problem in both domains is the Closest Vector
Problem (popularly known as CVP). It is well-known that CVP can be easily solved in lattices
that have an orthogonal basis if the orthogonal basis is specified. This motivates the orthogon-
ality decision problem: verify whether a given lattice has an orthogonal basis. Surprisingly, the
orthogonality decision problem is not known to be either NP-complete or in P.

In this paper, we focus on the orthogonality decision problem for a well-known family of
lattices, namely Construction-A lattices. These are lattices of the form C + ¢Z", where C
is an error-correcting g-ary code, and are studied in communication settings. We provide a
complete characterization of lattices obtained from binary and ternary codes using Construction-
A that have an orthogonal basis. This characterization leads to an efficient algorithm solving the
orthogonality decision problem, which also finds an orthogonal basis if one exists for this family
of lattices. We believe that these results could provide a better understanding of the complexity
of the orthogonality decision problem in general.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Orthogonal Lattices, Construction-A, Orthogonal Decomposition, Lat-
tice isomorphism

Digital Object Identifier 10.4230/LIPIcs. FSTTCS.2015.151

1 Introduction

A lattice is the set of integer linear combinations of a set of basis vectors B € R™*™ namely
L =L(B)={zB |z € Z™}. Lattices are well-studied fundamental mathematical objects
that have been used to model diverse discrete structures such as in the area of integer
programming [7], or in factoring integers [14] and factoring rational polynomials [8]. In a
groundbreaking result, Ajtai [1] demonstrated the potential of computational problems on
lattices to cryptography, by showing average case/worst case equivalence between lattice
problems related to finding short vectors in a lattice. This led to renewed interest in the
complexity of two fundamental lattice problems: the Shortest Vector Problem (SVP) and the
Closest Vector Problem (CVP). Concretely, in SVP, given a basis B one is asked to output a
shortest non-zero vector in the lattice, and in CVP, given a basis B and a target t € R™, one
is asked to output a lattice vector closest to t.

* The research of V. G. and of E. G. was partially funded by Purdue Research Foundation grants.

© Karthekeyan Chandrasekaran, Venkata Gandikota, and Elena Grigorescu;
37 licensed under Creative Commons License CC-BY

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).

Editors: Prahladh Harsha and G. Ramalingam; pp. 151-162

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.151
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

152

Deciding Orthogonality in Construction-A Lattices

Both SVP and CVP are NP-hard even to approximate up to subpolynomial factors (see
[12] for a survey), and a great deal of research in complexity theory has been devoted to
finding families of lattices for which SVP/CVP are easy. A simplest lattice for which CVP is
easy is Z™: indeed, finding the closest lattice vector to a target ¢ € R™ amounts to rounding
the entries of ¢ to the nearest integer. Surprisingly, given an arbitrary basis B, it is not
known how to efficiently verify whether the lattice generated by B is isomorphic to Z™ upto
an orthogonal transformation. Further, given an arbitrary basis for a lattice, it is not known
how to decide efficiently if the lattice has an orthogonal basis (an orthogonal basis is a basis
in which all vectors are pairwise orthogonal). Similar to the case of Z™, having access to
an orthogonal basis leads to an efficient algorithm to solve CVP, but finding an orthogonal
basis given an arbitrary basis appears to be non-trivial, with no known efficient algorithms.

Deciding if a lattice is equivalent to Z", and deciding if a lattice has an orthogonal basis,
are special cases of the more general Lattice Isomorphism Problem (LIP). In LIP, given
lattices L and Ly presented by their bases, one is asked to decide if they are isomorphic,
meaning if there exists an orthogonal transformation that takes one to the other. LIP has
been studied in [13, 15, 6] and is known to have a n®(™ algorithm [6]. Recent results of
[10, 9] show that in certain highly symmetric lattices, isomorphism to Z" can be decided
efficiently.

The complexity of LIP is not well understood, and is part of the broader study of
isomorphism between mathematical objects, of which Graph Isomorphism (GI) is a well-
known elusive problem [2]. Interestingly, there is a polynomial time reduction from GI to
LIP [15].

Given that LIP, deciding isomorphism to Z", and deciding whether a lattice has an
orthogonal basis appear to be difficult problems for arbitrary input lattices, it is natural to
address families of lattices where these problems are solvable efficiently. In this work, we
focus on the problem of deciding orthogonality for a particular family of lattices, commonly
known as Construction-A lattices [5]. A Construction-A lattice L is obtained from a linear
error-correcting code C' over a finite field of ¢ elements! (denoted F,) as L = C + ¢Z". We
resolve the problem of deciding orthogonality in Construction-A lattices for ¢ = 2 and ¢ = 3
showing an efficient algorithm. In addition, the algorithm outputs an orthogonal basis of the
lattice if such a basis exists.

Our main technical contribution is a decomposition theorem for Construction-A lattices
that admit an orthogonal basis. A natural way to obtain an orthogonal Construction-A
lattice is by taking direct products of lower dimensional orthogonal lattices. We show that
this is the only possible way and that the lower dimensional orthogonal lattices indeed have
constant dimension. We believe that our contributions are a step towards gaining a better
understanding of lattice isomorphism problems for more general classes of lattices.

Extending our results to values ¢ > 3 might require new techniques. For higher ¢, a
decomposition characterization seems to require a complete characterization of weighing
matrices of weight ¢ which is a known open problem. In particular, a direct product
decomposition characterization of weighing matrices for the case of ¢ = 4 is known. However,
the parts in the direct product decomposition may not be of constant dimension. As a
consequence, the lattice decomposition theorem, if true, would only suggest that orthogonal
Construction-A lattices necessarily decompose into direct products of lattices, which could be
high-dimensional. So designing an efficient algorithm for the orthogonality decision problem
exploiting the direct product decomposition characterization appears to be non-trivial.

! The term ‘Construction-A’ strictly refers to the case ¢ = 2, but we will not make the distinction in this
paper.

K. Chandrasekaran, V. Gandikota, and E. Grigorescu

1.1 Our results and techniques

As mentioned above, we start by showing a structural decomposition of orthogonal lattices
of the form C + 2Z™ and C + 3Z™ into constant-size orthogonal lattices. We remark that
the decomposition holds up to permutations of the coordinates, and we use the notation
Cy 2 C5 and Ly = Lo to denote the equivalence of codes and lattices under permutation of
coordinates. We use the notation Li ® Lo to denote the direct product of two lattices.

» Theorem 1. Let Lo = C + 2Z" be a lattice obtained from a binary linear code C C Fy.
Then the following statements are equivalent:

1. L¢ is orthogonal.

2. Lo =2 ®;L;, where each L; is either Z, or 27, or the 2-dimensional lattice generated by

1 1
the rows of the matriz [1 1] .

3. C 2 ®;C;, where each C; is either a length-1 binary linear code C {0,1}, or the length-2
binary linear code {00,11}.

The decomposition characterization leads to an efficient algorithm to verify if a given
lattice obtained from a binary linear code using Construction-A is orthogonal. For the
purposes of this algorithmic problem, the input consists of a basis to the lattice. The
algorithm finds the component codes given by the characterization thereby computing the
orthogonal basis for such a lattice.

» Theorem 2. Given a basis for a lattice L obtained from a binary linear code C' C Fy
using Construction-A, there exists an algorithm running in time O(n®) that verifies if L is
orthogonal, and if so, it outputs an orthogonal basis.

We obtain a similar decomposition and algorithm for lattices obtained from ternary codes.
For succinctness of presentation we define the following integer matrix:

O = =
o
I
—_
|
—_

» Theorem 3. Let Lo = C + 3Z™ be a lattice obtained from a ternary linear code C' C F¥.

Then the following statements are equivalent:

1. L¢ is orthogonal.

2. Lo 2 ®;L;, where each L; is either Z, or 3Z, or the 4-dimensional lattice generated by
the rows of a matriz T (M) obtained from M by negating some subset of columns.

3. C 2 ®,;C;, where each C; is either a linear length-1 ternary code, or the linear length-4
ternary code generated by the rows of (T(M) mod 3) € F3**, where T(M) is obtained
from M by negating some subset of its columns.

» Theorem 4. Given a basis for a lattice L obtained from a ternary linear code using
Construction-A, there exists an algorithm running in time O(n®) that verifies if L is ortho-
gonal, and if so, it outputs an orthogonal basis.

In the interests of space, we prove Theorems 3 and 4 here and defer the proofs of Theorems
1 and 2 to the full version of this work [4].

153

FSTTCS 2015

154

Deciding Orthogonality in Construction-A Lattices

2 Preliminaries

We denote by [n] the set of positive integers up to n, the n x n identity matrix by I,, and its
jt row by e;. For a vector b € R", let b; denote its j** coordinate, and ||b]| denote its fo
norm.

A lattice L C R™ is said to be of full rank if it is generated by n linearly independent
vectors. A lattice L is said to be orthogonal if it has a basis B such that the rows of B are
pairwise orthogonal vectors. A lattice L is integral if it is contained in Z™, namely any basis
for L only consists of integer vectors.

We will denote by IF, a finite field with ¢ elements. A linear code C of length n over F,
is a vectorspace C' C Fy. A linear code is specified by a generator matrix G that consists of
linearly independent vectors in Fy. If C' C F3 it is called a binary code, and if C' C F} it is
called a ternary code.

The Construction-A of a lattice Lc from a linear code C' C Fy, where ¢ is a prime, is
defined as Lo :=={c+q-z | c€ ¢(C),z € Z"}, where ¢ is the the (real embedding) mapping
i € Fq — i € Z. Construction-A is often abbreviated as L¢c = C + ¢Z".

For any vector v = (v1,- -+ ,v,) € Z" define v mod ¢ = (v; mod ¢q,--- ,v, mod q) € Fy.

» Claim 5. Let q be a prime. If gZ" C L then C = L mod q is a linear code over Fy.

Proof. Let v € L and v = (v mod ¢) + gz for some z € Z™, where here we abuse notation
and view v mod g as embedded into the integers, instead of a vector in Fj. Since ¢Z" C L, it
follows that v — gz = v mod ¢ € L. To show that C = L mod q is a linear code over [y, let
¢1,¢2 € C. Then ¢1 + ¢o € L (where the addition is over Z), and so (¢; +¢2) mod g € C. <

We will use the following immediate claim about product of lattices generated from codes.

» Claim 6. Let L = C + qZ", for some q-ary linear code C C Fy. If L = Ly ® La, and
L1 CZF, then L1 = Cy + qZF and Ly = Cy + qZ™ %, for g-ary linear codes Ci and Co that
are projections of C' on the coordinates corresponding to Ly and Lo respectively.

A matrix U is unimodular if U € Z™*™ and det(U) € {£1}. Two different bases Bj, Bo
give rise to the same lattice if and only if there exists a unimodular matrix U such that
By = UBs.

The Hermite Normal Form (HNF) basis for a full rank lattice L C R™ is a square,
non-singular, upper triangular matrix B C R™*™ such that off-diagonal elements satisfy :
OSbi,j<bj,j fOI‘&HlSi<jSTL.

» Fact 7. [11] There exists an efficient algorithm which on input a set of rational vectors B,
computes a basis for the lattice generated by B: the algorithm simply computes the unique
HNF basis of the lattice generated by B.

We note that Lo = C + ¢Z™ contains ¢Z" as a sublattice and hence it is a full rank
lattice.

» Fact 8. A basis B for the lattice Lo specified by the generator matriz G for the code C can
be computed efficiently by taking the HNF of the matrixz [C; } . Conversely, given a basis B

n

of Lc, the generator matriz for C' can be computed efficiently by finding a basis for B mod ¢
by row reduction over F,.

K. Chandrasekaran, V. Gandikota, and E. Grigorescu

A weighing matriz of order n and weight k is a n X n matrix with entries in {0,1,—1}
such that each row and column has exactly k non-zero entries and the row vectors are
orthogonal to each other. By definition, a weighing matrix W satisfies WW7T = kI,,. For
matrices A € R™*™ and B € R"2*"2 we denote the (n; + na) x (n1 + ng)-dimensional
block-diagonal matrix obtained using blocks A and B by A ® B. We will use the following
characterization of weighing matrices of weight 2 and 3. Please refer to the full version [4]
for the proofs of Theorem 9 and Theorem 10.

» Theorem 9 ([3]). A matriz W is a weighing matriz of order n and weight 2 if and only if
W can be obtained from

n/2 1 1
2)

by negating some rows and columns and by interchanging some rows and columns.

» Theorem 10 ([3]). A matriz W is a weighing matriz of order n and weight 3 if and only
if W can be obtained from ®;L=/411M by negating some rows and columns and by interchanging

some rows and columns.

3 Orthogonal Lattices from Ternary Codes

In this section we focus on lattices obtained from ternary linear codes using Construction-A.

In Section 3.1, we show that any orthogonal lattice obtained from a ternary linear codes by
Construction-A is equivalent to a product lattice whose components are one-dimensional
or four-dimensional. In Section 3.2, we show that given a lattice obtained from a ternary
linear code by Construction-A, there exists an efficient algorithm to verify if the lattice is
orthogonal.

3.1 Decomposition Characterization

We prove Theorem 3 in this subsection.

Proof of Theorem 3. We show that (1) = (2) and (2) = (3) to complete the equivalence of
the three statements.

(1) = (2): We show that Lo = C' + 3Z" is orthogonal if and only if it decomposes into direct
product of lower dimensional orthogonal lattices, Lo = ®;L;.

If Lc 2 ®;L; such that each L; is orthogonal, then L¢ is also orthogonal, since Lo has
a block diagonal basis where each block is itself an orthogonal matrix (by definition, a
1 x 1-dimensional matrix is orthogonal) .

We prove the other side by induction on the dimension, n of the lattice Lo. For the base
case consider n = 1. Since L is integral, contains 3Z and is of the form C + 3Z for some
ternary code C| it follows that L has to be either Z or 3Z. Let us assume the induction
hypothesis for all n — 1 or lower dimensional orthogonal lattices obtained from ternary linear
codes using construction-A.

Let Lo be an n-dimensional orthogonal lattice and B be its orthogonal basis. Since L¢
is an integral lattice, B has only integral entries. The next two claims summarize certain
properties of the entries of the basis matrix B.

» Claim 11. For every row b of B and for every j € [n], we have that 3|b;| € {0, ||b|?, 3||b]|*}.

155

FSTTCS 2015

156

Deciding Orthogonality in Construction-A Lattices

Proof. Since B is an orthogonal basis, BBT = D, where D is the diagonal matrix with

d; = ||b™]|?, where b®) denotes the i** basis vector.
6|2 0 0 --- 0
0 ||b(2)||2 0 .- 0
0 0 0 - o2

We know that 3Z" C L¢ so, 3e; € L¢ for every j € [n]. Therefore, there is an integral
matrix X € Z™*" such that XB = 3I,, i.e. 3B~! € Z™*™. Since we started with an
orthogonal basis B,

B—l _ BTD—l c lznxn
3 .
Each column of BT D=1 is given by b/||b||?, where b is a basis vector. Therefore, for any
Jj € [n], 3b; is a multiple of [|b]|?, formally
3b; = 0 mod ||b]|? for all j € [n], and rows b of B. (1)

Since b; is integral and |b;| < ||b]|? for every j € [n], it follows from the above equation that
31b;| € {0, 1b]12,2]|b]|%, 3]|b]|*}. Suppose there exists j € [n] such that 3|b;| = 2||b||2. Since
b is a basis vector, it follows that b is not all zeroes. Hence b; # 0. We can re-write the
condition 3|b;| = 2||b||? as 3|b;| =237 Rearranging the terms, we have

;| (3 —2[b;]) =2> b7

i

7,11

Since the RHS is a sum of squares, it is always non-negative. The LHS is non-zero since
b; € Z\ {0}. So the LHS should be strictly positive Therefore, |b;| € (0,3/2) NZ and hence
\b | = 1. However, this implies that 3, b? = 1/2, contradicting the fact that b is integral.
Hence, 3||b;|| = 2Hb||2 is impossible. <

» Claim 12. Let b be a row of B.

1. If there exists j € [n] such that 3|b;| = 3||b||?, then b; = +1 and by = 0 for every
e\ {}-

2. If there exists j € [n] such that 3|b;| = ||b||* and b; = £3, then by = 0 for every
e\ {}-

3. If there exists j € [n] such that 3|b;| = ||b||? and b; = £1, then there exist ji, ja € [n]\{j},
such that |bj,| = |bj,| =1 and by =0 for every j' € [n]\ {4, 41,72}

4. If there exists j € [n] such that 3|b;| = [|b]|, then b; € {0, 1,43} for every j' € [n].

Proof.

1. Since, ||b]|*> = >°1, b?, and each b; € Z, we conclude that |b;| = 1 and the remaining
coordinates in b have to be 0, i.e bjy = 0 for all j' € [n]\ {j}.

2. Follows from 3|b;| = ||b||* and b being integral.

3. We can re-write the condition 3|b;| = ||b]|? as 3[b;| = > "

we have

105 (3= 1bs]) = 0. (2)

i#]

=1 b?. Rearranging the terms,

If b; = £1, then), £ b? = 2. Further, b is integral. Hence, b has exactly 2 other non-zero
coordinates bj, ,b;,, 7 # j1, j2, such that |b;, | = |b;,| = 1.

K. Chandrasekaran, V. Gandikota, and E. Grigorescu

4. We have equation (2). The RHS is a sum of squares and hence the LHS is non-negative.
Moreover, b is not all-zeroes vector implies that b; # 0. Therefore, |b;| € (0,3] N Z. If
b; = £2, then in order to satisfy Z#j b? = 2 using integral b;’s, exactly two coordinates
bj,,bj, should be £1, where j # ji,j.. However, in this case, 3|b;,| = 3|b;,| = 3 &
{0,]|6]|? = 6, 3]|b]|> = 18}, thus contradicting Claim 11. The conclusion follows from parts
(2) and (3). <

Using the properties of the orthogonal basis B of L given in Claims 11 and 12, we show
that B is equivalent (up to permutations of its columns) to a block diagonal matrix, i.e

B, 0 - 0

0 By --- 0
B .]

: .0

0 0 --- By

where each B; is either the 1 x 1 matrix [1] or the 1 x 1 matrix [3] or the 4 x 4 matrix
obtained from M by negating a subset of its columns, 7 (M). It follows that Lo & ®;L;
such that B; is the basis for the lower dimensional lattice L;.

Let us pick a row b of B with the smallest support. Fix an index j € [n] to be the index
of a non-zero entry with minimum absolute value in b, i.e. j = argming{|bx|}. Asbis a
row of a basis matrix, b cannot be the all-zeroes vector and therefore there exists a j € [n]
such that |b;| > 0. Since we are only interested in equivalence (that allows for permutation
of coordinates), we may assume without loss of generality that j = 1 by permuting the
coordinates. By Claim 11, we have that 3|b1| € {||b]|?, 3]|b]|*}. We consider each of these
cases separately.

1. Suppose 3|b;| = 3||b]|?>. By Claim 12(1), b = (£1,0,...,0). Since B is an orthogonal
basis, (b,0’) =0 =b] =0 for all b’ # b € B. The orthogonality of B therefore forces all
other basis vectors to take a value of 0 at the 1°¢ coordinate. Thus B is of the form

Therefore, we obtain Lo 2 Z ® L', where L’ is an orthogonal (n — 1)-dimensional lattice
generated by the basis matrix restricted to the coordinates other than 1, say, B’. From
Claim 6, it follows that L’ = C" 4 3Z"~! for some ternary linear code C’ C F2~*. Thus
L/ satisfies the induction hypothesis and we have the desired decomposition.

2. Suppose 3|bi| = ||b]|%. We can re-write this condition as 3|b1| = >, b?. Rearranging
the terms, we have

by| (3= [ba]) = > 0.

i#£1

Since the RHS is a sum of squares, it should be non-negative.

(i) If RHS is 0, then b; = £3 and therefore, it follows from Claim 12(2) that b =
(£3,0,...,0). The orthogonality of B forces all other basis vectors to take a value of

157

FSTTCS 2015

158

Deciding Orthogonality in Construction-A Lattices

0 at the 1% coordinate.

Therefore, we obtain Lo = 3Z ® L', where L' is an orthogonal (n — 1)-dimensional
lattice generated by the basis matrix restricted to the coordinates other than 1, say
B’. From Claim 6, it follows that L' = C’ + 3Z™! for some ternary linear code
C' C Fg_l. Thus L' satisfies the induction hypothesis and we have the desired
decomposition.

(ii) If RHS is strictly positive, then |b1] € (0,3) NZ = {1,2}. By Claim 12(4), by # £2.
Therefore, by = £1. By Claim 12(3), we have that b has exactly three non-zero
coordinates and they are +1. By permuting the coordinates of B, we can write
b=(£1,4£1,+£1,0,---,0).

Since we picked the row b to be the one with the smallest support, it follows that
every row has at least 3 non-zero coordinates. By Claims 11 and 12(1), this is
possible only if for every other row ¥', there exists j* € [n] such that 3|0/, | = [|']|*.
By Claim 12(4), every other row b’ has all its coordinates in {0, £1, £3}. By Claim
12(2), every other row b’ has none of its coordinates in {£3}. Therefore, every other
row b’ has all its coordinates in {0,£1}. By Claim 12(3), every row of the basis
matrix has the same form as b: they have exactly three non-zero entries each of
which is 1.

Since the rows of the basis matrix are orthogonal, it follows that the basis matrix
B is a weighing matrix of order n with weight 3. By Theorem 10, B is obtained
from ®,,/4M by either negating some rows or columns and by interchanging rows or
columns. We recall that interchanging or negating the rows of the basis matrix of
a lattice preserves the basis property while interchanging columns is equivalent to
permuting the coordinates. Hence Lo = L(B) = ®?:/411L(7}(M)), where each T;(M)
is a 4 X 4 matrix obtained by negating a subset of columns of M.

(2) = (3): We now show that Le decomposes into direct product of lower dimensional lattices,
Lc =2 ®;L; if and only if the code C also decomposes, C' = ®,C;.

Let Lo = ®;L;. Without loss of generality, we can consider Lo = ®;L;. We have C = L¢
mod 3 = ®;L; mod 3. We observe that if L; has dimension n;, then L; O 3Z™. Therefore,
C; = L; mod 3 is a ternary code. Let C; := L; mod 3 for every i. Then C = ®,C;. (If c € C,
then ¢ € L and hence the projection of ¢ to the subset of coordinates corresponding to L; is
in C;. Let ¢; € C; for every i. The concatenated vector ®;c; is in ®;L; mod 3 and hence is

in C.)
To show the other side, let C' = ®;C;, where each C; C F5* and n =), n;. Therefore
Le=C+32" 2 ®,C; + 372" = ®,(C; + 3Z™), since Z" = ®;Z™:. <

3.2 The algorithm

Theorem 3 shows that a lattice of the form C'+ 3Z" is orthogonal if and only if the underlying
code decomposes into direct product of ternary linear codes isomorphic to {0,1,2} or {0} or
the four dimensional code generated by T (M) mod 3, where 7 (M) is obtained from matrix
M by negating a subset of its columns. We now give a polynomial time algorithm which
finds the decomposition of the code C into the component codes, C;, if there exists one.

K. Chandrasekaran, V. Gandikota, and E. Grigorescu

Algorithm 1 decompose — length — 1(G):
Input: G ={g1,...,9n} € F§ (A generator for the code C)

1. for j € {l,--- ,n} do

2: Let G’ + projection of vectors in G on coordinates [n] \ {;j}

3: For g € G', define ¢°, g', g? € F¥ as the n-dimensional vectors obtained by extending
g using 0, 1 and 2 along the j’th coordinate respectively.

4. if ¢° ¢', g?> € C for all g € G’ then

5: return j

6: return FAIL

Therefore, if the lattice Lo is orthogonal, the algorithm decides in polynomial time if it is
orthogonal and also gives the orthogonal basis for the lattice.

The algorithm recursively finds the component codes. If it is unable to decompose the
code at any stage, then it declares that Lo is not orthogonal. At every step we check
if ¢ = {0,1,2} x C" or {0} x C" or Cy(pr) x C" where Crppy is the code generated by
T (M) mod 3 and then recurse on C".

Proof of Theorem 4. Given a basis for Lo as input, we first compute the generator for C'.
From Theorem 3, we know that if Lo is orthogonal, then C = ®,;C; where each C; is either
the length-1 code {0, 1,2} or the length-1 code {0} or a 4-dimensional code generated by
the rows of 7 (M) mod 3 where 7 (M) obtained from matrix M by negating a subset of its
columns.

The algorithm therefore in each step decides if C = {0,1,2} ® C' or C = {0} C’ or
C = Crry ® C', where Cr () denotes the code generated by 7 (M) mod 3. Theorem 13
shows that using Algorithm 1 we can check in O(n?) time, if C = {0, 1,2} ® C’. The same
algorithm can be modified to check in O(n?) time, if C' = {0} ® C’. Theorem 14 shows
that Algorithm 2 can verify if C' = Cry ® C' in O(n") time. If any one of the algorithms
finds a decomposition, then we recurse in the lower dimensional code C’ to find further
decomposition. We recurse at most n times. If all the algorithms fail to find a decomposition,
then L¢ is not orthogonal. Therefore, it takes O(n®) time to decide if L is orthogonal. <

We now describe the individual algorithms to verify if C' = {0,1,2} @ C' or C Z {0} @ C’
or C'= CT(M) ®C".
» Theorem 13. Let C be a ternary linear code and G = {g1,...,gn} € Fy*" be its generator.
Then Algorithm 1 decides if C = {0,1,2} @ C’ for some linear code C' C F3~' and if so
outputs the coordinate corresponding to the direct product decomposition. Moreover the
algorithm runs in time O(n?).

Proof. For j € [n], let C’]i_ C F3~! be the projection of C on the indices [n] \ {j} and for a

vector ¢ € CL, let ¢, ¢!, c* € F% be extensions of ¢ using 0, 1,2 respectively along the j’th
J

coordinate. We note that C' = {0,1,2} ® C’ for some ternary linear code C’ if and only if
there exists an index j € [n], such that

02{0,01,02| VCEC’]’—,}. (3)

From the definition of CZ, it follows that C' C {c?, ¢, c? | V c € C;r} up to a permutation of
coordinates. So, the algorithm just needs to verify if the other side of the containment holds
for some j.

159

FSTTCS 2015

160

Deciding Orthogonality in Construction-A Lattices

Algorithm 2 decompose — length — 4(G):
Input: G € F3*" (Generator for C)

1: for jl,jg,jg,j4€{1,2,“- ,7’L} do

2: Let G’ + projection of vectors in G on coordinates [n] \ {j1, j2, j3, ja }

3: Let G” « projection of vectors in G on coordinates {j1, jo, js, ja}

4 for SC[4] do

5 Let T(M) < M with columns in S negated

6 if Cr(y) = Code generated by G” then

7 For g € G’ define gP*, gP2, gP3, gP* € F% be n-dimensional vectors obtained by
extending g using the rows of 7 (M) along the ji, j2, j3, ja coordinates.
if gPr,gP2,gP3,gP4 € C for all g € G’ then

: return ji,j2,j3,js and T (M)

10: return FAIL

© ®

Let G’ be the set of vectors of G projected on the coordinates [n] \ {j}. Algorithm 1
verifies if g, g' and g2 are codewords in C, for every vector g € G’. We now show that this
is sufficient. Since C' is a code, if ¢*, g*, g% € C for every g € G’, then all linear combinations
of these vectors are also in C. Therefore, {c’,c!,c? | Vce C’é} cc.

It takes O(n?) time to compute a parity check matrix from the generator G' and O(n?)
time to verify if an input vector is a codeword using the parity check matrix. For every
possible choice of the index j, Algorithm 1 checks if each of the 3n vectors of the form
g%, g', g% are C. Therefore, Algorithm 1 takes O(n*) time to decide if C = {0,1,2} ® C’. =

» Theorem 14. Let C be a ternary linear code and G = {g1,...,g9n} € F3*" be its generator.
For a matriz T (M) obtained by negating a subset of columns of M, let Cr(ary be the length-4
code whose generators are the rows of T(M). Then Algorithm 2 decides if C = Cy(py®@C” for
some linear codes C' C]Fg*4 and Cry C F3 and if so outputs the coordinates corresponding
to the direct product decomposition as well as the matriz T (M). Moreover the algorithm runs
in time O(n").

Proof. For 1 < j; < jo < j3 < js < m, let Cgl'll-,jz,js,m be the projection of C' on the indices
{jl,jg,jg,j4}. We first verify if C/

i invjs.ja 18 the code generated by the rows of T (M)
(denoted as C'rary) for some T (M) which is obtained by negating a subset of columns of M.

We would like to check if every ¢ € C7 , . . is in C7(yr) and vice versa. For this purpose, it

is sufficient to check if the generator vectors of C/

J1,J2,J3:Ja
row of T(M) is a codeword in C7 ; . .. We know that the generators of C7| are

J1,J2:93:Ja
contained in G” where G” is the set of vectors in G projected on the indices {j1, j2, j3, 74}

Once we fix T (M) such that C?

J1,J2,J3,J4

are codewords in C7(pr) and each

= Cry, to see if C = Crpy @ C' for some

ternary linear code C’ C IFgL_4. Define C’J’.—1 odaqa 1O be the projection of C on the indices
[n] \ {J1, J2, j3,ja}. For a vector ¢ € C’J’.—1 o dada? let ¢? € F3 be the extensions of ¢ using a

codeword p € Cy(ar) along the ji, ja, j3, j4 coordinates. We note that C' = Cr () ® C” for
some ternary linear code C’ if and only if there exist indices ji, j2, J3, ja € [n], such that

C:{CP|C€CIT***,])€CT(M)}. (4)

J1,32,93:Ja

K. Chandrasekaran, V. Gandikota, and E. Grigorescu

From the definition of C- - - - and C} , . . (= Cr(ur)), it follows that C' C {c? | c €
J1,J2,33,74 J1,J2,73,74
CJ/}jE ol € Crmy}- So, the algorithm just needs to verify if the other side of the

containment holds for some indices j1, j2, j3, ja-

Let G’ be the set of vectors of G projected on the coordinates [n] \ {j1, jo, j3,ja}. Al-
gorithm 2 verifies if gP°, gP1, ¢gP3 and gP+ are codewords in C, for every vector g € G'. We
now show that this is sufficient. Since C is a code, if gP°o, gPt, gP3, gP4 € C for every g € G’
and p; € T (M), then all linear combinations of these vectors are also in C. Therefore,

D [
(P leeCl 5 nmwP€CTant €C.

There are 244% possible choices of 7 (M) including permutations. For each matrix 7 (M),
it takes O(n) time to verify if Cr(np) = CF, ;, ;. ... As we had seen that it takes O(n?) time
to verify if an input vector is a codeword using the parity check matrix. We perform this
check for 4n vectors of the form {gPo, gP1, gP3, gP4 | g € G'}. So, for a given T (M) such that
Crny = CF, 4, s It takes O(n?) time to verify C' = Oy @ C'.

Therefore, for every possible choice of {41, j2, j3, ja}, Algorithm 2 takes O(n?) time to
verify if C' = Cry) ® C'. Since there are at most (Z) possible choices of indices, it takes

O(n") time in total to decide if C' = Crpp ® C”. <

Acknowledgments. We thank Daniel Dadush for helpful suggestions and pointers.

—— References

1 Mikl6s Ajtai. Generating hard instances of lattice problems (extended abstract). In STOC,
pages 99-108, 1996.

2 Laszlo Babai. Automorphism groups, isomorphism, reconstruction. In Handbook of Com-
binatorics, volume chapter 27, pages 1447-1540. North-Holland, 1996.

3 H.C. Chan, C.A. Rodger, and J. Seberry. On inequivalent weighing matrices. Ars Combin-
atoria, 21(A):229-333, 1986.

4 Karthekeyan Chandrasekaran, Venkata Gandikota, and Elena Grigorescu. Deciding Ortho-
gonality in Construction-A Lattices. Under Preparation, 2015.

5 John H. Conway and Neil J. A. Sloane. Sphere Packings, Lattices and Groups. Springer-
Verlag, New York, 1998.

6 Ishay Haviv and Oded Regev. On the lattice isomorphism problem. In Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014,
Portland, Oregon, USA, January 5-7, 2014, pages 391-404, 2014.

7 Ravi Kannan. Improved algorithms for integer programming and related lattice problems.
In Proceedings of the 15th Annual ACM Symposium on Theory of Computing, 25-27 April,
1983, Boston, Massachusetts, USA, pages 193-206, 1983.

8 Arjen K. Lenstra, Hendrik W. Lenstra, and Léaszlo Lovasz. Factoring polynomials with
rational coefficients. Mathematische Annalen, 261:515-534, 1982.

9 Hendrik W. Lenstra and Alice Silverberg. Lattices with symmetries. Manuscript, 2014.

10 Hendrik W. Lenstra and Alice Silverberg. Revisiting the gentry-szydlo algorithm. In
Advances in Cryptology — CRYPTO 201/, volume 8616 of Lecture Notes in Computer
Science, pages 280-296. Springer Berlin Heidelberg, 2014.

11 Daniele Micciancio. Lecture notes on lattice algorithms and applications, Winter 2010.
Lecture 2.

12 Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Post-Quantum Cryp-
tography, pages 147-191. Springer Berlin Heidelberg, 2009.

13 Wilhelm Plesken and Bernd Souvignier. Computing isometries of lattices. J. Symb. Com-
put., 24(3/4):327-334, 1997.

161

FSTTCS 2015

162 Deciding Orthogonality in Construction-A Lattices

14 Claus-Peter Schnorr. Factoring integers by CVP algorithms. In Number Theory and Cryp-
tography — Papers in Honor of Johannes Buchmann on the Occasion of His 60th Birthday,
pages 73-93, 2013.

15 Mathieu Dutour Sikiric, Achill Schiirmann, and Frank Vallentin. Complexity and al-
gorithms for computing voronoi cells of lattices. Math. Comput., 78(267):1713-1731, 2009.

Ordered Tree-Pushdown Systems

Lorenzo Clemente*!, Pawel Parys!, Sylvain Salvati?, and
Igor Walukiewicz?

1 University of Warsaw
Warsaw, Poland

2 CNRS, Université de Bordeaux, INRIA
Bordeaux, France

—— Abstract

We define a new class of pushdown systems where the pushdown is a tree instead of a word. We
allow a limited form of lookahead on the pushdown conforming to a certain ordering restriction,
and we show that the resulting class enjoys a decidable reachability problem. This follows from
a preservation of recognizability result for the backward reachability relation of such systems.
As an application, we show that our simple model can encode several formalisms generalizing
pushdown systems, such as ordered multi-pushdown systems, annotated higher-order pushdown
systems, the Krivine machine, and ordered annotated multi-pushdown systems. In each case, our
procedure yields tight complexity.

1998 ACM Subject Classification D.1.1 [Model checking]: Software/Program Verification, D.2.4
[Applicative (Functional) Programming]: Programming techniques, F.1.1 [Automata]: Models
of Computation, F.3.1 [Specifying and Verifying and Reasoning about Programs]: Mechanical
verification, F.4.1 [Lambda calculus and related systems]: Mathematical Logic

Keywords and phrases reachability analysis, saturation technique, pushdown automata, ordered
pushdown automata, higher-order pushdown automata, higher-order recursive schemes, simply-
typed lambda calculus, Krivine machine

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.163

1 Introduction

Context. Modeling complex systems requires to strike the right balance between the
accuracy of the model, and the complexity of its analysis. A successful example is given
by pushdown systems, which are a popular class of infinite-state systems arising in diverse
contexts, such as language processing, data-flow analysis, security, computational biology, and
program verification. Many interesting analyses reduce to checking reachability in pushdown
systems, which can be decided in PTIME using, e.g., the popular saturation technique [5, 14]
(cf. also the recent survey [10]). Pushdown systems have been generalized in several directions.
One of them are tree-pushdown systems [15], where the pushdown is a tree instead of a word.
Unlike for ordinary pushdown systems, non-destructive lookahead on the tree pushdown
leads to undecidability. In this work we propose an ordering condition permitting a limited
non-destructive lookahead on a tree pushdown.

* This work was partially supported by the National Science Center (decision DEC-2013/09/B/ST6/01575).

T This work was partially supported by the National Science Center (decision DEC-2012/07/D/ST6/02443).

¥ This work was partially supported by the Technische Universitédt Miinchen — Institute for Advanced
Study, funded by the German Excellence Initiative and the European Union Seventh Framework
Programme, grant n. 291763.

© Lorenzo Clemente, Pawel Parys, Sylvain Salvati, and Igor Walukiewicz;
37 licensed under Creative Commons License CC-BY

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).

Editors: Prahladh Harsha and G. Ramalingam; pp. 163-177

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.163
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

164

Ordered Tree-Pushdown Systems

A seemingly unrelated generalization is ordered multi-pushdown systems [6, 3, 2], where
several linear pushdowns are available instead of just one. Since already two unrestricted
linear pushdowns can simulate a Turing machine, an ordering restriction is put on popping
transitions, requiring that all pushdowns smaller than the popped one are empty. Reachability
in this model is 2-EXPTIMEc [3].

Higher-order pushdown systems provide another type of generalization. Here pushdowns
can be nested inside other pushdowns [23, 20]. Collapsible pushdown systems [21, 17]
additionally enrich pushdown symbols with collapse links to inner sub-pushdowns. This
allows the automaton to push a new symbol and to save, at the same time, the current
context in which the symbol is pushed, and to later return to this context via a collapse
operation. Annotated pushdown systems [7] (cf. also [19]) provide a simplification of collapsible
pushdown systems by replacing collapse links with arbitrary pushdown annotations'. The
Krivine machine [24] is a related model which evaluates terms in simply-typed AY-calculus.
Reachability in all these models is (n — 1)-EXPTIMEc [7, 24] (where n is the order of nesting
pushdowns/functional parameters), and one exponential higher in the presence of alternation.
Even more general, ordered annotated multi-pushdown systems [16] have several annotated
pushdown systems under an ordering restriction similar to [3] in the first-order case. They
subsume both ordered multi-pushdown systems and annotated pushdown systems. The
saturation method (cf. [10]) has been adapted to most of these models, and it is the basis
of the prominent MOPED tool [13] for the analysis of pushdown systems, as well as the
C-SHORe model-checker for annotated pushdown systems [8].

Contributions. Motivated by a unification of the results above, we introduce ordered tree-
pushdown systems. These are tree-pushdown systems with a limited destructive lookahead
on the pushdown. We introduce an order between pushdown symbols, and we require that,
whenever a sub-pushdown is read, all sub-pushdowns of smaller order must be discarded.
The obtained model is expressive enough to simulate all the systems mentioned above, and
is still not Turing-powerful thanks to the ordering condition. Our contributions are:

(i) A general preservation of recognizability result for ordered tree-pushdown systems.

(ii) A conceptually simple saturation algorithm working on finite tree automata representing
sets of configurations (instead of more ad-hoc automata models), subsuming and unifying
previous constructions.

(iii) A short and simple correctness proof.

(iv) Direct encodings of several popular extensions of pushdown systems, such as ordered
multi-pushdown systems, annotated pushdown systems, the Krivine machine, and
ordered annotated multi-pushdown systems.

(v) Encoding of our model into Krivine machines with states, that in turn are equivalent
to collapsible pushdown automata.

(vi) A complete complexity characterization of reachability in ordered tree-pushdown systems
and natural subclasses thereof.

Related work. Our work can be seen as a generalization of the saturation method for
collapsible pushdown automata [7] to a broader class of rewriting systems. This method has

L Collapsible and annotated systems generate the same configuration graphs when started from the

same initial configuration, since new annotations can only be created to sub-pushdowns of the current
pushdown. However, annotated pushdown systems have a richer backward reachability set which
includes non-constructible pushdowns.

L. Clemente, P. Parys, S. Salvati, and |. Walukiewicz

been already generalized in [16] to multi-stack higher-order systems; in particular for ordered,
phase-bounded, and scope-bounded restrictions. Another related work is a saturation method
for recursive program schemes [9]. Schemes are equivalent to AY'-calculus, so our formalism
can be used to obtain a saturation method for schemes.

Ordered tree-pushdown systems proposed in the present paper unify these approaches.
The encodings of the above mentioned systems are direct and work step-to-step. By contrast,
the encoding of the Krivine machine to higher-order pushdowns is rather sophisticated [17, 26],
and even more so its proof of correctness. The converse encoding of annotated higher-order
pushdowns into Krivine machines is conceptually easier, but technically quite long for at
least two reasons: a state has to be encoded by a tuple of terms, and transitions of the
automaton need to be implemented with beta-reduction.

Concerning multi-pushdown systems, there exist restrictions that we do not cover in this
paper. In [16] decidability is proved for annotated multi-pushdowns with phase-bounded
and scope-bounded restrictions. For standard multi-pushdown systems, split-width has been
proposed as a unifying restriction [12].

Outline. In Sec. 2 we introduce common notions. In Sec. 3 we define our model and we
present our saturation-based algorithm to decide reachability. In Sec. 4 we show that ordered
systems can optimally encode several popular formalisms. In Sec. 5 we discuss the notion of
safety from the Krivine machine and higher-order pushdown automata, and how it relates to
our model. In Sec. 6 we conclude with some perspectives on open problems. Full proofs can
be found in the technical report [11].

2 Preliminaries

We work with rewriting systems on ranked trees, and with alternating tree automata. The
novelty is that every letter of the ranked alphabet will have an order. A tree has the order
determined by the letter in the root. The order itself is used to constrain rewriting rules.
An alternating transition system is a tuple S = (C, —), where C is the set of configurations
and —C C x 2€ is the alternating transition relation. For two sets of configurations A, B < C
we define A —1 B iff, for every c € A, either c € B, or there exists C' < B s.t. ¢ — C, and
we denote by —7 its reflexive and transitive closure. The set of predecessors of a set of

configurations C < C is Pre*(C) = {c | {c¢} —F C}.

Ranked trees. Let N be the set of non-negative integers, and let N- be the set of strictly
positive integers. A node is an element u € N* ;. A node uis a child of anode vifu=1v-1
for some i € Nog. A tree domain is a non-empty prefix-closed set of nodes D < N* s.t., if
w-(i+1)e D, then u-i€ D for every i € Nog. A leaf is a node w in D without children. A
ranked alphabet is a pair (X, rank) of a set of symbols ¥ together with a ranking function
rank : ¥ — N. A Y-tree is a function ¢t : D — X, where D is a tree domain, s.t., for every
node w in D labelled with a symbol ¢(u) of rank k, u has precisely k children. For a Y-tree
t:D — ¥ and a label a € 3, let t~%(a) = {u € D | t(u) = a} be the set of nodes labelled
with a. For a tree t and a node u therein, the subtree of t at w is defined as expected. We
denote by 7(X) the set of Y-trees.

Order of a tree. In this paper we will give a restriction on a tree rewriting system guaran-
teeing that Pre™(C) is regular for every regular set C. This restriction will use the notion of
an order of a tree. The order of a tree is simply determined by the order of the symbol in

165

FSTTCS 2015

166

Ordered Tree-Pushdown Systems

the root. Therefore, we suppose that our alphabet ¥ comes with a function ord : ¥ — N.
The order of a tree t is ord(t) := ord(¢(g)).

Rewriting. Let Vy, Vi, ... be pairwise disjoint infinite sets of variables; and let V = | J,, Va.
We consider the extended alphabet ¥ U V where a variable x € V,, has rank 0 and order n.
We will work with the set T(X,V) of (2 u V)-trees. For such a tree ¢, let V(¢) be the set
of variables appearing in it. We say that ¢ is linear if each variable in V(¢) appears exactly
once in t. For some (X U V)-tree u, t is u-ground if V(t) n V(u) = &. A substitution is a
finite partial mapping o : V — T (2 u V) respecting orders, i.e., ord(c(x)) = ord(x). Given a
(X U V)-tree t and a substitution o, to is the (X U V)-tree obtained by replacing each variable
x in t in the domain of o with o(x). A rewrite rule over ¥ is a pair [— r of (X U V)-trees [
and r s.t. V(r) € V(1) and [is linear.?

Alternating tree automata. An alternating tree automaton (or just tree automaton) is a
tuple A = (3,Q,A) where ¥ is a finite ranked alphabet, @ is a finite set of states, and
ACQx X x(29)% is a set of alternating transitions of the form p —%> Py --- P,, with a of
rank n. We say that A is non-deterministic if, for every transition as above, all P;’s are
singletons, and we omit the braces in this case. An automaton is ordered if, for every state p
and symbols a,b s.t. p — --- and p LI , we have ord(a) = ord(b). We assume w.l.o.g.
that automata are ordered, and we denote by ord(p) the order of state p. The transition
relation is extended to a set of states P < Q by defining P - P, - -- P, iff, for every p € P,
there exists a transition p — P{--- P?, and P; = |J,cp Py for every j € {1,...,n}. It will
be useful later in the definition of the saturation procedure to define run trees not just on
ground trees, but also on trees possibly containing variables. A variable of order k is treated
like a leaf symbol which is accepted by all states of the same order. Let P S @ be a set
of states, and let t : D — (X U V) be an input tree. A run tree from P on t is a 29-tree?
5 : D — 29 over the same tree domain D s.t. s(¢) = P, and:

(i) if t(u) = a is not a variable and of rank n, then s(u) > s(u-1)---s(u-n), and

(i) if ¢(u) = x then Vp € s(u), ord(p) = ord(x).
The language recognized by a set of states P < @, denoted by L(P), is the set of Y-trees ¢
s.t. there exists a run tree from P on t.

3 Ordered tree-pushdown systems

We introduce a generalization of pushdown systems, where the pushdown is a tree instead of
a word. An alternating ordered tree-pushdown system (AOTPS) of order n € N.j is a tuple
S ={(n,%, P,R) where ¥ is an ordered alphabet containing symbols of order at most n, P is
a finite set of control locations, and R is a set of rules of the form p,l — S,r s.t. p € P and
S € P. Moreover, [— r is a rewrite rule over X of one of the two forms:

(shallow): a(uq,...,um) —>1r or (deep): a(uy,...,uk,b(V1,. .., Ums), Ukily--sUm) — T

Notice that we require that all the variables appearing on the r.h.s. r also appear on the Lh.s. [. All our
results carry over even by allowing some variables on the r.h.s. 7 not to appear on the Lh.s. [, but we
forbid this for simplicity of presentation.

Strictly speaking 29 does not have a rank Jorder. It is easy to duplicate each subset at every rank/order
to obtain an ordered alphabet, which we avoid for simplicity.

L. Clemente, P. Parys, S. Salvati, and |. Walukiewicz

where each u;,v; is either r-ground or a variable, and for the second form we require
(ordering condition): if ord(u;) < ord(d), then wu; is r-ground; for i = 1,...,m.

The rules in R where [— r is of the first form are called shallow, the others are deep. The
tree b(vy, ...,V) in a deep rule is called the lookahead subtree of I. A rule l — r is flat if each
u;,vj is just a variable. Let Rqmq(y) be the set of deep rules, where the lookahead symbol b is
of order ord(b). For example, a(x,y) — c(a(x,y),x) is shallow and flat, but a(b(x),y) — c(x,y)
is deep (and flat); here necessarily ord(y) > ord(b). Finally, a(c,d,x) — b(x) is not flat since ¢
and d are not variables. In Sec. 4 we provide more examples of such rewrite rules by encoding
many popular formalisms. While [must be linear, » may be non-linear, thus sub-trees can be

duplicated. The size of S is S| := [E[+|P|+|R|[, where [R[:= X, ;5 1er (1+ [+]S|+]r]).

Rewrite rules induce an alternating transition system (Cs, —s) by root rewriting. The
set of configurations Cs consists of pairs (p,t) with p € P and ¢t € T(X), and, for every
configuration (p,t), set of control locations S € P, and tree u, (p,t) —s S x {u} if there
exists a rule ((p,1) — (S,r)) € R and a substitution o s.t. t = lo and u = ro.

Let A = (3,Q,A) be a tree automaton s.t. P € Q. The language of configurations
recognized by A from P is L(A, P) := {(p,t) eC | pe Pand t € L(p)}. Given an initial
configuration (po,tg) € C and a tree automaton A recognizing a regular set of target
configurations L£(A, P) < C, the reachability problem for S amounts to determining whether
(po, to) € Pre™(L(A, P)).

3.1 Reachability analysis

We present a saturation-based procedure to decide reachability in AOTPSs. This also shows
that backward reachability relation preserves regularity.

» Theorem 3.1 (Preservation of recognizability). Let S be an order-n AOTPS and let C
be regular set of configurations. Then, Pre®(C) is effectively regular, and an automaton
recognizing it can be built in n-fold exponential time.

Let S = (n,3, P,R) be an AOTPS. The target set C is given as a tree automaton A =
(E,Q,A) s.t. LA, P) = C. W.lo.g. we assume that in 4 initial states (states in P) have
no incoming transitions. Classical saturation algorithms for pushdown automata proceed
by adding transitions to the original automaton .4, until no more new transitions can be
added. Here, due to the lookahead of the l.h.s. of deep rules, we need to also add new
states to the automaton. However, the total number of new states is bounded once the
order of the AOTPS is fixed, which guarantees termination. We construct a tree automaton
B ={2,Q', A" recognizing Pre*(L(A, P)), where @’ is obtained by adding states to @, and
A’ by adding transitions to A, according to a saturation procedure described below.

For every rule (p,l — S,7) € R and for every subtree v of [we create a new state p¥ of
the same order as v recognizing all -trees that can be obtained by replacing variables in v
by arbitrary trees, i.e., L(p¥) = {vo |0 :V — T(2), vo € T(X)}; recall that the substitution
should respect the order. Let Qg be the set of such p¥’s, and let Ay contain the required
transitions. Notice that |Qol, |Ao| < |R].

In order to deal with deep rules we add new states in the following stratified way. Let

ne1 = QU Qo. We define sets Q7 ..., Q] inductively starting with @;,. Assume that Q}_;
is already defined. We make @} contain @} ;. Then we add to @Q; states for every deep
rule g € R; of the form p,a(uy, ..., ug,b(...), uks1,-..,un) — S,r, with ord(b) = i. For
simplicity of notation, let us suppose that wuy, ..., u; are of order at most ord(b), and that

167

FSTTCS 2015

168

Ordered Tree-Pushdown Systems

k41, - - -, Uy, are of order strictly greater than ord(b)*. We add to @} states:
(9, Pes1y---, Pn)e Q) forall Poyr,...,Pp S Qhyq.

In particular, to @Q,, we add states of the form (g) since n is the maximal order. We define
the set of states in B to be Q' := Q.

We add transitions to B in an iterative process until no more transitions can be added.
During the saturation process, we maintain the following invariant: For 1 <1 < n, states
in Q\Q;,, recognize only trees of order i. Therefore, B is also an ordered tree automaton.
Formally, A’ is the least set containing A U Ag and closed under adding transitions according
to the following procedure. Take a deep rule

g = (paa(ula"'7uk7b(vl7"'7Um’)7uk+la"'7um) - S7T) € 7?'ord(b)

and assume as before that the order of u; is at most ord(b) for j < k, and strictly bigger
than ord(b) otherwise. We consider a run tree ¢ from S on r in B. For every j =1,...,m
we set: P! = {p*} if u; is r-ground, and P} = [J¢(r~'(x)) if u; = x is a variable appearing
in r. The set | Jt(r~'(x)) collects all states of B from which the subtree for which x can

be replaced must be accepted. Moreover, for the lookahead subtree b(vy, ..., vy), we let
Pl ={(g,P}.1.-.., P})}. Analogously, we define Si,..., S’ , considering vi,..., vy instead
of uy,...,up,. Then, we add two transitions:

p— Pl PiPiPL ---PL and (g, Ppyq,...,PL) —> St St (1)
Thanks to the ordering condition, P} ..., P}, < Q;rd(b)H, s0 (g, Pl q,...,PL) is indeed a

state in Q' d(b)" For a shallow rule g the procedure is the same but ignoring the part about
the b(v1, ...,V) component; so only one rule is added in this case.

» Lemma 3.2 (Correctness of saturation). For A and B be as above, L(B, P) = Pre™(L(A, P)).

The correctness proof, even though short, is presented in App. A of the technical report [11].
The right-in-left inclusion is by straightforward induction on the number of rewrite steps to
reach L£(A, P). The left-in-right inclusion is more subtle, but with an appropriate invariant
of the saturation process it also follows by a direct inspection.

3.2 Complexity

The reachability problem for AOTPSs can be solved using the saturation procedure from
Theorem 3.1. For an initial configuration (pg,tp) € C and an automaton A recognizing a
regular set of target configurations £(A, P), we construct B as in the previous section, and
then test (po,to) € L(B, P). In this section we will analyze the complexity of this procedure
in several relevant cases. All lower-bounds follow from the reductions presented in Sec. 4.

Let m > 1 be the maximal rank of any symbol in 3. Using the notation from the
previous subsection, we have that |Q/, | < Q| + |R|, |Q},| < |Q}41| + |R|, and for every
ke {1, n =1} Q4] < [Qh| + IRI - 20m 19kl < 0 (1R] - 20~ 1%l and thus
Q'] < exp,_1(O((m —1)-(|Q| +|R]))), where expy(z) = z and, for i > 0, exp; ;(z) =
2¢%:(z) The size of the transition relation is at most one exponential more than the number
of states, thus |A’| < exp,,(O((m —1)- (|Q] +|R|))). This implies:

4 This assumption is w.l.0.g. since one can always add shallow rules to reorder subtrees and put them in
the required form.

L. Clemente, P. Parys, S. Salvati, and |. Walukiewicz

» Theorem 3.3. Reachability in order-n AOTPSs is n-EXPTIMEc.

We identify four subclasses of AOTPSs, for which the reachability problem is of progressively
decreasing complexity. First, we can save one exponential if we consider control-state
reachability for the class of non-deterministic, flat AOTPSs. A system is non-deterministic
when for every rule p,l — S,r, the set S is a singleton. A system is flat when its rules
p,l — S,r are flat (defined on page 167). Control-state reachability of a given set of locations
T < P means that the language of final configurations is T' x 7 (X). A proof of the theorem
below is presented in App. B of the technical report [11].

» Theorem 3.4. Control-state reachability in order-n non-deterministic flat AOTPSs is
(n — 1)-EXPTIMEc, where n = 2.

Second, we consider the class of linear non-deterministic systems. Suppose that we consider
non-deterministic reachability, i.e., that A is non-deterministic. When § is linear, i.e.,
variables in the r.h.s. of rules in R appear exactly once, then all P!’s and S!’s in (1) are
singletons, and thus B is also non-deterministic. Consequently, the only states from Q;\Q;,
that are used by rewriting rules have the form (g, {pr+1},. .., {Pm}) for pry1,...,pm € Qi ;-
Therefore, there are at most O((|Q| + [R|)™ V") states and O(|R] - |Q’|™) transitions, and

B is thus doubly exponential in n.

» Theorem 3.5. The non-deterministic reachability problem in linear non-deterministic
AOTPSs is 2-EXPTIMEc.

The next simplification is when the system is shallow in the sense that it does not have
deep rules. In this case we do not need to add states recursively (Q' := Q U Qq), and we
thus avoid the multiple exponential blow-up. Similarly, when the system is unary, i.e., the
maximal rank is m = 1, only polynomially many states are added.

» Theorem 3.6. Reachability in shallow as well as in unary AOTPSs is EXPTIMEc.

If moreover the system is non-deterministic, then we get PTIME complexity, provided the
rank of the letters in the alphabet is bounded.

» Theorem 3.7. Non-deterministic reachability in unary non-deterministic AOTPSs and in
shallow non-deterministic AOTPSs of fized rank is in PTIME.

3.3 Expressiveness

In the next section we give a number of examples of systems that can be directly encoded in
AOTPSs. Before that, we would like to underline that AOTPSs can themselves be encoded
into collapsible pushdown systems. We formally formulate this equivalence in terms of
Krivine machines with states, which are defined later in Sec. 4.3. The details of this reduction
are presented in App. E of the technical report [11].

» Theorem 3.8. Every AOTPS of order n can be encoded in a Krivine machine with states
of the same level s.t. every rewriting step of the AOTPS corresponds to a number of reduction
steps of the Krivine machine.

Since parity games over the configuration graph of the Krivine machine with states are

known to be decidable [25], this equivalence yields decidability of parity games over AOTPSs.

However, in this paper we concentrate on reachability properties of AOTPSs, which are
decidable thanks to our simple saturation algorithm from Sec. 3.1. No such saturation
algorithm was previously known for the Krivine machine with states.

169

FSTTCS 2015

170

Ordered Tree-Pushdown Systems

4 Applications

In this section, we give several examples of systems that can be encoded as AOTPSs.
Ordinary alternating pushdown systems (and even prefix-rewrite systems) can be easily
encoded as unary AOTPSs by viewing a word as a linear tree; the ordering condition is
trivial since symbols have rank < 1. Moreover, tree-pushdown systems [15] can be seen as
shallow AOTPSs. By Theorem 3.6, reachability is in EXPTIME for both classes, and, by
Theorem 3.7, it reduces to PTIME for the non-alternating variant (for fixed maximal rank).

In the rest of the section, we show how to encode four more sophisticated classes of systems,
namely ordered multi-pushdown systems (Sec. 4.1), annotated higher-order pushdown systems
(Sec. 4.2), the Krivine machine with states (Sec. 4.3), and ordered annotated multi-pushdown
systems (Sec. 4.4), and we show that reachability for these models (except the last one) can
be decided with tight complexity bounds using our conceptually simple saturation procedure.

4.1 Ordered multi-pushdown systems

In an ordered multi-pushdown system there are n pushdowns. Symbols can be pushed on
any pushdown, but only the first non-empty pushdown can be popped [6, 3, 2]. This is
equivalent to saying that to pop a symbol from the k-th pushdown, the contents of the
previous pushdowns 1,...,%k — 1 should be discarded. Formally, an alternating ordered
multi-pushdown system is a tuple O = (n,T',Q, A), where n € N.q is the order of the system
(i.e., the number of pushdowns), I' is a finite pushdown alphabet, @ is a finite set of control
locations, and A € @Q x O,, x 29 is a set of rules of the form (p, 0, P) with pe Q, P < @, and
o a pushdown operation in O,, := {push,(a), pop,(a) | 1 < k < n,a €T'}. We say that O is
non-deterministic when P is a singleton for every rule. A multi-pushdown system induces an
alternating transition system (Co, —o) where the set of configurations is Co = Q x (I'*)™, and
the transitions are defined as follows: for every (p, pushy(a), P) € A there exists a transition
(p,wi,...,wy) =0 P x {(wy,...,a wg,...,wy,)}, and for every (p, popy(a), P) € A there
exists a transition (p,wy,...,a - wg,...,w,) 20 P x {(g,...,e,wg, -+ ,wy,)}. For c € Co
and T < @, the (control-state) reachability problem for O asks whether ¢ € Pre®(T x (I'*)™).

Encoding. We show that an ordered multi-pushdown system can be simulated by an
AOTPS. The idea is to encode the k-th pushdown as a linear tree of order k, and to
encode a multi-pushdown as a tree of linear pushdowns. Let | and e be two new sym-
bols not in ', let T’} = T' u{Ll}, and let ¥ = (I'y x {1,...,n}) U {8} be an ordered
alphabet, where a symbol (a,i) € T'y x {i} has order 4, rank 1 if a« € T and rank 0 if
a = L. Moreover, o has rank n and order 1. For simplicity, we write a’ instead of
(a,7). A multi-pushdown w,...,wy,, where each w; = a;;. .. Gjn; is encoded as the
tree enc(wy, ..., wy) = O(a}’l(a}g(. I) TR ay1(ay5(... 1L™))). For an ordered multi-
pushdown system O = (n,T',Q, A) we define an equivalent AOTPS § ={(n, %, Q, R) with &
defined as above, and set of rules R defined as follows (we use the convention that variable
xi has order k): For every push rule (p, push,(a), P) € A, we have a rule (p, o(x1,...,%,) —
P,e(xq,...,a"(x),...,x,)) € R, and for every pop rule (p,pop,(a),P) € A, we have
(p,o(x1,...,a"(xx),...,x,) — Pyo(LY ... LF"1 xp xpt1,...,%,)) € R. Both kinds of rules
above are linear, and the latter one satisfies the ordering condition since lower-order variables
X1,...,Xp—1 are discarded. It is easy to see that (p,w1,...,wy,) =% P x {(w],...,w),)} if,
and only if, (p,enc(wi,...,wy,)) =% P x {enc(w},...,w})}. Thus, the encoding preserves
reachability properties. By Theorem 3.3, we obtain an n-EXPTIME upper-bound for reacha-
bility in alternating multi-pushdown systems of order n. Moreover, since S is linear, and

L. Clemente, P. Parys, S. Salvati, and |. Walukiewicz

since S is non-deterministic when O is non-deterministic, by Theorem 3.5 we recover the
optimal 2-EXPTIMEc complexity proved by [3] (cf. also [2]).

» Theorem 4.1 ([3]). Reachability in alternating ordered multi-pushdown systems is in
n-EXPTIME, and 2-EXPTIMEc for the non-deterministic variant.

Reachability for the alternating version of the model (in n-EXPTIME) was not previously
known.

4.2 Annotated higher-order pushdown systems

Let T' be a finite pushdown alphabet. In the following, we fix an order n > 1, and we
let 1 < k < n range over orders. For our purpose, it is convenient to expose the topmost
pushdown at every order recursively.® We define I'y,, the set of annotated higher-order
pushdowns (stacks) of order k, simultaneously for all k € {1,...,n}, as the least set containing
the empty pushdown (), and, whenever u; € I'1,..., ux € I'y, v; € IT'; for some j € {1,...,n},
then {a",u1,...,u;) € I'y. Similarly, if we do not consider stack annotations v;’s, we obtain
the set of higher-order pushdowns of order k. Operations on annotated pushdowns are as
follows. The operation pushz pushes a symbol b € I' on the top of the topmost order-1 stack
and annotates it with the topmost order-k stack, push, duplicates the topmost order-(k — 1)
stack, pop; removes the topmost order-(k — 1) stack, and collapse;, replaces the topmost
order-k stack with the order-k stack annotating the topmost symbol:

push? ((a™, uy, . . ., un)) = (DO M08 (at i ug, L g),

push, ((a™, w1, ..., upy) =a" ug, ... up—1,{a" Usy .o U, Ukt 1y -« Un),
popy (Ca™,v1, .oy Uk—1, {0 ULy o ooy Uk Yy U1y ey Up) = (DY UL, ooy U),
collapsey, (a1 V2 g o)) = (B 01,y Uy Uk s - - - 5 U -

Let O,, = UZ=1{pushZ, push,,, popy,, collapse, | b € T'} be the set of stack operations. Similarly,
one can define operations pushb and pop;, on stacks without annotations (but not collapse;,, or
pushi). An alternating order-n annotated pushdown system is a tuple P = (n, T, Q, A), where
T is a finite stack alphabet, @ is a finite set of control locations, and A € Q x I’ x O,, x 29
is a set of rules. An alternating order-n pushdown system (i.e., without annotations) is as P

above, except that we consider non-annotated stack and operations on non-annotated stacks.

An annotated pushdown system induces a transition system {Cp, —p), where Cp = Q x T,
and the transition relation is defined as (p,w) —p P x {w'} whenever (p,a,o, P) € A with
w = {a*, -y and w' = o(w). Thus, a rule (p,a,o, P) first checks that the topmost stack
symbol is a, and then applies the transformation provided by the stack operation o to the
current stack (which may, or may not, change the topmost stack symbol a). Given c € Cp
and T' € Q, the (control-state) reachability problem for P asks whether ¢ € Pre®(T x I',,).

Encoding. We represent annotated pushdowns as trees. Let > be the ordered alphabet
containing, for each k € {1,...,n}, an end-of-stack symbol 1* € ¥ of rank 0 and order
k. Moreover, for each a € T and order k € {1,...,n}, there is a symbol {a,k) € ¥ of
order k and rank k + 1 representing the root of a tree encoding a stack of order k. An
order-k stack is encoded as a tree recursively by ency(¢{)) = L* and ency({a™, uy,...,ux)) =
{a, k)(enc;(u),ency(uy),...,enck(ug)), where i is the order of u. Let P = (n,T’,Q,A) be an

5 Our definition is equivalent to [7].

171

FSTTCS 2015

172

Ordered Tree-Pushdown Systems

annotated pushdown system. We define an equivalent AOTPS S = (n, %, Q, R), where ¥ is
as defined above, and R contains a rule p,I — P, for each rule in (p,a,0, P) € A and orders
m,my, where | — r is as follows (cf. also Fig. 1 in the appendix of the technical report [11]
for a pictorial representation). We use the convention that a variable subscripted by ¢ has

order i, and we write x;._; for (x;,...,x;), and similarly for z;_;:
<a7 n>(Yma Xl..n) i <b7 TL>(<(Z, k>(Ym7 Xl..k)a <a7 1>(Yma X1)7 X2..7’L) lf 0= pUSh27
{a,) (Y X1.m) = {0) (Yims X1k =15 E)(Yms X1..k), Xkt 1..0) if o = pushy,
<a7 n>(zlml yZ1..k—15 <b7 k>(ym,7 Xl..k)a Xk+1..n) - <b7 n>(ym7 Xl..n) if o = popg,
Ca, n)(Cby k) (Yims X1k)s 21 ks Xkt 1.m) = By 1) (Yms X1..m) if 0 = collapse,.

The last two rules satisfy the ordering condition of AOTPSs since only higher-order variables
Xk+1,---,%y are not discarded. It is easy to see that (p,w) —% P x {w'} if, and only if,
(p,ency(w)) =% Px{enc,(w')}. Consequently, the encoding preserves reachability properties.
Since an annotated pushdown system of order n is simulated by a flat AOTPS of the same
order, the following complexity result is an immediate consequence of Theorems 3.3 and 3.4.

» Theorem 4.2 ([7]). Reachability in alternating annotated pushdown systems of order n
and in non-deterministic annotated pushdown systems of order n + 1 is n-EXPTIMEc.

4.3 Krivine machine with states

We show that the Krivine machine evaluating simply-typed AY-terms can be encoded as
an AOTPS. Essentially, this encoding was already given in the presentation of the Krivine
machine operating on AY-terms from [24], though not explicitly given as tree pushdowns. In
this sense, this provides the first saturation algorithm for the Krivine machine, thus yielding
an optimal reachability procedure. Moreover, in App. E of the technical report [11] we
present also a converse reduction (as announced earlier in Theorem 3.8), thus showing that
the two models are in fact equivalent.

A type is either the basic type 0 or « — 3 for types a, . The level of a type is level(0) = 0
and level(a — f) = max(level(a) + 1, level(3)). We abbreviate a« — --- — a — 3 as a* — 3.
Let V = {z{*,252,...} be a countably infinite set of typed variables, and let I" be a ranked
alphabet. A term is either

(i) a constant a® 0 €T,

(ii) a variable z* € V,

(iii) an abstraction (Az®.M”?)*=8,

(iv) an application (M*~#N*)? or

(v) a fixpoint (Y Me)«,
We sometimes omit the type annotation from the superscript, in order to simplify the
notation. For a given term M, its set of free variables is defined as usual. A term M is
closed if it does not have any free variable. We denote by A(M) be the set of sub-terms of M.
An environment p is a finite type-preserving function assigning closures to variables, and a
closure C'® is a pair consisting of a term of type o and an environment, as expressed by the
following mutually recursive grammar: p ::= & | p[z® — C®] and C* ::= (M, p). We say
that a closure (M, p) is wvalid if p binds all variables which are free in M (and no others),
and moreover p(z®) is itself a valid closure for each free variable 2% in M. Sometimes, we
need to restrict an environment p by discarding some bindings in order to turn a closure
(M, p) into a valid one. Given a term M and an environment p, the restriction of p to
M, denoted p| A 18 obtained by removing from p all bindings for variables which are not

L. Clemente, P. Parys, S. Salvati, and |. Walukiewicz

free in M. In this way, if (M, p) is a closure where p assigns valid closures to at least all
variables which are free in M, then (M,p‘M) is a valid closure. In a closure (M, p), M is
called the skeleton, and it determines the type and level of the closure. Let CI*(M) be the
set of valid closures of type o with skeleton in A(M). An alternating Krivine machine® with
states of level [€ Nog is a tuple M = (I, T, Q, K°, A), where (I, Q, A) is an alternating tree
automaton (in which a constant a® =0 e T is seen as a letter a of rank k), and KU is a closed
term of type 0 s.t. the level of any sub-term in A(K?) is at most /. In the following, let
a=aj; — -+ — ap — 0. The Krivine machine M induces a transition system (Caq, — 1),
where in a configuration (p,C*,C{*,...,C*) € Cum, p € Q, C* € CI*(K") is the head
closure, and C7* € C1* (K©),...,Cg* € Cl**(K") are the argument closures. The transition
relation — »4 depends on the structure of the skeleton of the head closure. It is deterministic
except when the head is a constant in I', in which case the transitions in A control how
the state changes (cf. also Fig. 2 in the appendix of the technical report [11] for a pictorial
representation):

(p, (xa,p),Cfl’,..7Cgk) — M {(p,p(xo‘),Cfl,...,C',?k)},
(b, (MON,), 052, CF) —aa {0 (M p|yo)s (N pl e,). O, G,
(p, (Y M™%, p), Cf, o, CRF) = {0, (MO, p), (Y M), p), CFY, ., CR™)},
)

(p, (A2 M, p), C5°,..., %) = {(ps (M®, pla® > C5°]). O, . CR¥)},
(pa (aokeo’p),C?,...,Cg — M (Pl X {C?}) U---u (Pk > {018})
for every p — P; --- P, € A.

We say that M is non-deterministic if (T, @, A) is non-deterministic and all letters in " have
rank at most 1. Given ¢ € Cypq and T € Q, the (control-state) reachability problem for M
asks whether ¢ € Pre*(T x (| Cl*(K®) x Ol (K°) x - -+ x Cl9+(K"))).

a=q;——ap—0

Encoding. Following [24], we encode valid closures and configurations of the Krivine
machine as ranked trees. Fix a Krivine machine M = (I,T',Q, K°, A) of level I. We assume
a total order on all variables <xfl7...,x5"> appearing in K°. For a type a, we define
ord(a) = I — level(). We construct an AOTPS S = (I, %, Q’,R) of order [as follows. The
ordered alphabet is

¥ ={N*| N*e A(K°) A level(a) <1} U {[N®] | N*e A(K°)} U {L; | ie{l,...,n}}.

Here, N is a symbol of rank(N®) = n and ord(N®) = ord(«). Moreover, if « = a; — -+- —
ap — 0 for some k > 0, then [N®] is a symbol of rank([N®]) = n + k and ord([N?]) = I
(in fact, ord([N®]) is irrelevant, as [N?] is used only in the root). Finally, 1; is a leaf
of order i. The set of control locations is Q' = Q U U(pi»Pl-nPk)eA{(l’Pl)’ cooy (ky Pe)}.
A closure (N®,p) is encoded recursively as enc(N%, p) = N%(¢y,...,t,), where, for every
ie{l,...,n},

(i) if x; € FV(N®) then t; = enc(p(x;)), and

(i) ti = Lorg(s,) otherwise (recall that j3; is the type of x;).
A configuration ¢ = (p,(N%,p),CT,...,Cp*) is encoded as the tree enc(c)
= [N*](t1,...,tn,enc(CT"),...,enc(Cy*)), where the first n subtrees encode the closure
(N“,p), i.e, enc(N®, p) = N*(t1,...,t,). The encoding is extended point-wise to sets of

5 Cf. also [22] for a definition of the Krivine machine in a different context.

173

FSTTCS 2015

174

Ordered Tree-Pushdown Systems

configurations. Notice that K° uses only variables of level at most [— 1 (the subterm Az®.N
introducing z® is of level higher by one), so all skeletons in an environment are of order at
most [— 1. Similarly, skeletons in argument closures are of level at most [— 1; only the head
closure may have a skeleton of level I. Thus we do not need symbols N¢ for level(a) = .

Below, we assume that o« = a1 — --- — a3 — 0, that variable y; has order ord(a;)
for every j € {0,...,k}, and that variables x; and z; have order ord(8;) for every i €
{1,...,n}. Notice that ord(a) < ord(a),...,ord(ay). Moreover, we write x = (X1, ...,Xn),

z={21,...,2,), and y = {y1, ..., Y. Finally, by x|M we mean the tuple which is the same
as x, except that positions corresponding to variables not free in M are replaced by the
symbol Loq(,)- R contains the following rules:

P, [28](z1,. .o, Zim1, M¥(X), Ziy1, - - -, Zn’)’) — {p}, [M](x,y),

P [IMEN(%,y2, -+ yk) = D} MO (X s N (X oy)5 Y2, -+ VE),

p, [YM7%](x,y) — {p}, [M*7](x, Y M*7*(x),y),

D, [Az° . M*|(x,y0,¥) = {p}, [M](X1, - -, %=1, Y0, Xit1s - - - s Xn, ¥),

P, [a” 0 (x,y) = (1P, ... (k, P} [0) (x,y) Y(p - Py P € A,
(i, P), [0 012y, yit, MP(X), Yign, - yi) — Pi [MP](x).

The first rule satisfies the ordering condition since the shared variables y; are of order strictly
higher than ord(M®). A direct inspection of the rules shows that, for a configuration ¢ and a
set of configurations D, we have ¢ —%, D if, and only if, enc(c) —% enc(D). Therefore, the
encoding preserves reachability properties. Since a Krivine machine of level n is simulated by
a flat AOTPS of order n, the following is an immediate consequence of Theorems 3.3 and 3.4.

» Theorem 4.3 ([1]). Reachability in alternating Krivine machines with states of level n
and in non-deterministic Krivine machines with states of level n + 1 is n-EXPTIMEc.

4.4 Ordered annotated multi-pushdown systems

Ordered annotated multi-pushdown systems are the common generalization of ordered multi-
pushdown systems and annotated pushdown systems [16]. Such a system is comprised of
m > 0 annotated higher-order pushdowns arranged from left to right, where each pushdown is
of order n > 0. While push operations are unrestricted, pop and collapse operations implicitly
destroy all pushdowns to the left of the pushdown being manipulated, in the spirit of [6, 3, 2].
[16] has shown that reachability in this model can be decided in mn-fold exponential time, by
using a saturation-based construction leveraging on the previous analysis for the first-order
case [6, 3, 2]. In App. F of the technical report [11], we provide a simple encoding of an
annotated multi-pushdown system with parameters (m,n) into an AOTPS of order mn. It
is essentially obtained by taking together our previous encodings of ordered (cf. Sec. 4.1)
and annotated systems (cf. Sec. 4.2). As a consequence of this encoding, by using the fact
that an AOTPS of order mn can be encoded by a Krivine machine of the same level (by
Theorem. 3.8), and by recalling the known fact that the latter can be encoded by a 1-stack
annotated multi-pushdown system of order mn [26], we deduce that the concurrent behavior
of an ordered m-stack annotated multi-pushdown system of order n can be sequentialized
into a 1-stack annotated pushdown system of order mn (thus at the expense of an increase
in order). The following complexity result is a direct consequence of Theorem 3.3.

» Theorem 4.4 ([16]). Reachability in alternating ordered annotated multi-pushdown systems
of parameters (m,n) is in (mn)-EXPTIME.

L. Clemente, P. Parys, S. Salvati, and |. Walukiewicz

We remark that our result is for alternating systems, while [16] considers non-deterministic
systems and obtain (m(n — 1))-EXPTIME complexity. It seems that their method can be
extended to alternating systems, and then the complexity becomes (mn)-EXPTIME as well.

5 Safety

The notion of safety has been made explicit by Knapik, Niwinski, and Urzyczyn [20] who
identified the class of safe recursive schemes. They have shown that this class defines the
same set of infinite trees as higher-order pushdown systems, i.e., the systems from Sec. 4.2
but without annotations. Blum and Ong [4] have extended the notion of safety to the
simply-typed A-calculus in a clear way. Then [26] adapted it to AY-calculus, and have shown
that safe \Y-terms correspond to higher-order pushdown automata without annotation.

There is a simple notion of safety for AOTPSs that actually corresponds to safety for
pushdown systems and terms. We say that a (X u V)-tree is safe when looking from the root
to the leafs the order does never increase. Formally, a tree u is safe if every subtree ¢ thereof
has order ord(t) < ord(u) and it is itself safe. A rewrite rule | — r is safe if both [and r are
safe. We say that S is safe if all its rules are safe.

As a first example, let us look at the encoding of annotated higher-order pushdown
systems from Sec. 4.2. If we drop annotation then higher-order pushdowns are represented by
safe trees, and all the rules are safe in the sense above. The case of Krivine machines is more
difficult to explain, because it would need the definition of safety from [26]. In particular,
one would have to partition variables into lambda-variables and Y -variables, which we avoid
in the current presentation for simplicity. In the full version of the paper we will show that
safe terms are encoded by safe trees, and that all the rules of the encoding of the Krivine
machine preserve safety. Finally, we remark that the translation from AOTPSs to the Krivine
machine with states previously announced in Theorem 3.8 can be adapted to produce a safe
Krivine machine with states from a safe AOTPS.

6 Conclusions

We have introduced a novel extension of pushdown automata which is able to capture several
sophisticated models thanks to a simple ordering condition on the tree-pushdown. While
ordered tree-pushdown systems are not more expressive than annotated higher-order push-
down systems, or than Krivine machines, they offer some conceptual advantages. Compared
to Krivine machines, they have states, and typing is replaced by a lighter mechanism of
ordering; for example, the translation from our model back to the Krivine machine is much
more cumbersome. Compared to annotated pushdown automata, the tree-pushdown is more
versatile than a higher-order stack; for example, one can compare the encoding of the Krivine
machine into our model to its encoding to annotated pushdown automata. We hope that
ordered tree-pushdown systems will help to establish more connections with other models, as
we have done in this paper with multi-pushdown systems.

There exist restrictions of multi-pushdown systems that we do not cover in this paper.
Reachability games are decidable for phase-bounded multi-pushdown systems [27]. We can
encode the phase-bounded restriction directly in our tree-pushdown systems, but we do
not know how to deal with the scope-bounded restriction. Encoding the scope-bounded
restriction would give an algorithm for reachability games over such systems, but we do not
know if the problem is decidable.

Our general saturation algorithm can be used to verify reachability properties. We plan
to extend it to the more general parity properties, in the spirit of [18]. We leave as future

175

FSTTCS 2015

176

Ordered Tree-Pushdown Systems

work implementing our saturation algorithm, leveraging on subsumption techniques to keep
the search space as small as possible.

Acknowledgments. We kindly acknowledge stimulating discussions with Irene Durand,
Géraud Sénizergues, and Jean-Marc Talbot, and the anonymous reviewers for their helpful

comments.

—— References

1 K. Aehlig. A finite semantics of simply-typed lambda terms for infinite runs of automata.
Log. Methods Comput. Sci., 3(1):1-23, 2007.

2 M. Atig. Model-checking of ordered multi-pushdown automata. Log. Methods Comput. Sci.,
8(3), 09 2012.

3 M. Atig, B. Bollig, and P. Habermehl. Emptiness of multi-pushdown automata is 2ETIME-
complete. In Proc. of DLT’08, pages 121-133. Springer, 2008.

4 W. Blum and C.-H. L. Ong. The safe lambda calculus. Log. Methods Comput. Sci., 5(1),
2009.

5 A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:
Application to model-checking and saturation method. In Proc. of CONCUR’97, volume
1243 of LNCS, pages 135-150, 1997.

6 L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi-Reghizzi. Multi-push-down languages
and grammars. Int. J. Found. Comput. Sci., 7(3):253-292, 1996.

7 C. Broadbent, A. Carayol, M. Hague, and O. Serre. A saturation method for collapsible
pushdown systems. In Proc. of ICALP’12, volume 7392 of LNCS, pages 165-176, 2012.

8 C. Broadbent, A. Carayol, M. Hague, and O. Serre. C-SHORe: A collapsible approach to
higher-order verification. In Proc. of ICFP ’13, pages 13-24. ACM, 2013.

9 C. Broadbent and N. Kobayashi. Saturation-based model checking of higher-order recursion
schemes. In In Proc. of CSL’13, pages 129-148, 2013.

10 A. Carayol and M. Hague. Saturation algorithms for model-checking pushdown systems.
In Proc. of AFL’14, volume 151 of EPTCS, pages 1-24, 5 2014.

11 L. Clemente, P. Parys, S. Salvati, and I. Walukiewicz. Ordered tree-pushdown systems.
Technical report, University of Warsaw, October 2015. http://arxiv.org/abs/1510.
03278.

12 A. Cyriac, P. Gastin, and K. Narayan Kumar. MSO decidability of multi-pushdown systems
via split-width. In In Proc. of CONCUR’12, pages 547-561, 2012.

13 J. Esparza and S. Schwoon. A BDD-based model checker for recursive programs. In Proc.
of CAV’01, pages 324-336. Springer-Verlag, 2001.

14 A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model checking
pushdown systems. In Proc. of INFINITY 97, volume 9, pages 27-37, 1997.

15 1. Guessarian. Pushdown tree automata. Theor. Comp. Sys., 16:237-263, 1983.

16 Matthew H. Saturation of concurrent collapsible pushdown systems. In Proc. of
FSTTCS’13, volume 24 of LIPIcs, pages 313-325, Dagstuhl, Germany, 2013.

17 M. Hague, A. Murawski, C.-H. L. Ong, and O. Serre. Collapsible pushdown automata and
recursion schemes. In Proc. of LICS 08, pages 452-461, 2008.

18 M. Hague and C.-H. L. Ong. A saturation method for the modal mu-calculus over pushdown
systems. Inform. and Comput., 209(5):799 — 821, May 2011.

19 A. Kartzow and P. Parys. Strictness of the collapsible pushdown hierarchy. In Proc. of
MFCS’12, pages 566-577. Springer, 2012.

20 T. Knapik, D. Niwiniski, and P. Urzyczyn. Higher-order pushdown trees are easy. In Proc.

of FOSSACS’02, volume 2303 of LNCS, pages 205—222, 2002.

http://arxiv.org/abs/1510.03278
http://arxiv.org/abs/1510.03278

L. Clemente, P. Parys, S. Salvati, and |. Walukiewicz

21

22

23
24

25

26

27

T. Knapik, D. Niwinski, P. Urzyczyn, and 1. Walukiewicz. Unsafe grammars and panic
automata. In Proc. of ICALP’05, pages 1450-1461. Springer-Verlag, 2005.

J.-L. Krivine. A call-by-name lambda-calculus machine. Higher Order Symbol. Comput.,
20:199-207, September 2007.

A. Maslov. Multilevel stack automata. Probl. Peredachi Inf., 12(1):55-62, 1976.

S. Salvati and I. Walukiewicz. Krivine machines and higher-order schemes. In Proc. of
ICALP’11, volume 6756 of LNCS, pages 162-173. Springer-Verlag, 2011.

S. Salvati and I. Walukiewicz. Krivine machines and higher-order schemes. Inf. Comput.,
239(0):340-355, 2014.

S. Salvati and I. Walukiewicz. Simply typed fixpoint calculus and collapsible pushdown
automata. Math. Struct. in Comp. Science, pages 1-47, 5 2015.

A. Seth. Global reachability in bounded phase multi-stack pushdown systems. In Tayssir
Touili, Byron Cook, and Paul Jackson, editors, Proc. of CAV’10, volume 6174 of LNCS,
pages 615—-628. Springer, 2010.

177

FSTTCS 2015

One-way Definability of Sweeping Transducers*

Félix Baschenis, Olivier Gauwin, Anca Muscholl, and
Gabriele Puppis

Université de Bordeaux, LaBRI & CNRS, France
{fbaschen,ogauwin,anca,gpuppis}@labri.fr

—— Abstract

Two-way finite-state transducers on words are strictly more expressive than one-way transducers.
It has been shown recently how to decide if a two-way functional transducer has an equivalent one-
way transducer, and the complexity of the algorithm is non-elementary. We propose an alternative
and simpler characterization for sweeping functional transducers, namely, for transducers that
can only reverse their head direction at the extremities of the input. Our algorithm works
in 2EXPSPACE and, in the positive case, produces an equivalent one-way transducer of doubly
exponential size. We also show that the bound on the size of the transducer is tight, and that
the one-way definability problem is undecidable for (sweeping) non-functional transducers.

1998 ACM Subject Classification F. Theory of Computation, F.4.3 Formal Languages
Keywords and phrases Regular word transductions, sweeping transducers, one-way definability

Digital Object ldentifier 10.4230/LIPIcs. FSTTCS.2015.178

1 Introduction

Regular word languages form the best understood class of languages. They enjoy several
characterizations, in particular by different kinds of finite-state automata. For instance,
two-way finite-state automata have the same expressive power as one-way automata. This
result has been established independently by Rabin and Scott [9] and Shepherdson [10].
Besides automata, regular languages have logical and algebraic characterizations, namely
through monadic second-order logic and congruences of finite index.

Transducers extend automata by producing outputs with each transition. A run generates
an output word by concatenating the words produced by its transitions. A transducer thus
defines a relation over words. It is called functional when this relation is a function. For
finite-state transducers, expressiveness is different than for finite-state automata. As an
example, two-way transducers are strictly more expressive than one-way transducers. For
instance, the function that maps a word to its mirror image can be done by a back-and-forth
pass over the input, but no one-way transducer can do it.

As seen above, we lose some robustness when going from automata to transducers. On
the other hand, some of the classical characterizations of regular languages generalize well
to transducers. An important result is the equivalence of functional two-way transducers
and Ehrenfeucht-Courcelle’s monadic-second order transductions [5] over words. Another
characterization of two-way transducers was provided through a new model called streaming
string transducers [1, 2], that process the input one-way and store the output in write-only

* This work was partially supported by the ExStream project (ANR-13-JS02-0010) and the Technische
Universitiat Miinchen — Institute for Advanced Study, funded by the German Excellence Initiative and
the European Union Seventh Framework Programme under grant agreement n® 291763.

© Félix Baschenis, Olivier Gauwin, Anca Muscholl, and Gabriele Puppis;

Bv licensed under Creative Commons License CC-BY
35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 178-191

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.178
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

F. Baschenis, O. Gauwin, A. Muscholl, and G. Puppis

registers. Finally, first-order transductions are known to be equivalent to aperiodic streaming
transducers [7] and to aperiodic two-way transducers [4].

The question whether a functional two-way word transducer is equivalent to a one-way
transducer has been solved recently in [6]. The algorithm proposed by [6] takes a two-way
transducer S and builds a one-way transducer 7 that is “maximal” in the following sense: (1)
all accepting runs of 7 produce correct outputs, and (2) all runs of S that can be performed
one-way are realized by 7. As a consequence, the two-way transducer S has an equivalent
one-way transducer if and only if the constructed one-way transducer 7 has the same domain
as S, which is a decidable problem. The problem is that the upper bound on both the
decision procedure and the size of the constructed one-way transducer is non-elementary.

The main contribution of this paper is an elementary procedure for deciding whether a
functional two-way word transducer is equivalent to a one-way transducer, for the particular
class of sweeping transducers. While two-way transducers can reverse their head direction at
any position of the input, sweeping transducers can only reverse it at the first and last position.
Unsurprisingly, sweeping transducers are strictly less expressive than two-way transducers,
and the following example shows the difference: on input uy a us a ... a up—1 a uy,
where the words u; contain no occurrence of a, the two-way transducer produces as output
Up G Up—1 @ ... a Uz au; (we assume that the alphabet contains at least two letters).

Our decision procedure works in doubly exponential space and, when it succeeds, it
produces an equivalent one-way transducer of doubly exponential size. We show that the
bound on the size of the transducer is tight for any decision algorithm producing an equivalent
one-way transducer from a sweeping transducer. This improves the PSPACE lower bound
from [6]. The non-elementary procedure described in [6] relies on Rabin-Scott’s construction
for automata, and works by eliminating basic zigzags in runs. Our procedure is closer to
the textbook approach (due to Shepherdson) and uses crossing sequences. This requires a
decomposition of runs which is incomparable with the zigzag decomposition of [6]. Finally,
we show that the one-way definability problem becomes undecidable for non-functional
transducers.

Overview

Section 2 defines transducers and related concepts. Section 3 defines decomposition of
runs and gives the construction of a one-way transducer based on such decompositions. In
Section 4 we show that all one-way-definable runs admit a decomposition. Section 5 provides
the lower bound and the undecidability result. A long version of the paper can be found on
http://www.labri.fr/perso/anca/Publications/fsttcs15.pdf

2 Preliminaries

Transducers

A two-way transducer is a tuple (3, A, Q, I, F,), where ¥ (resp., A) is a finite input (resp.,
output) alphabet, @ is a finite set of states, I (resp., F) is a subset of) representing the
initial (resp., final) states, and 6 C @ x ¥ x A* x @ x {left, right} is a finite set of transition
rules describing, for each state and input symbol, the possible output string, target state, and

direction of movement. We talk of a one-way transducer whenever § C Q x X x A* x Q x {right}.

The size of a transducer is its number of states.
According to standard practice, the states of one-way automata and transducers are
usually located between the letters of the input word w = a; ...a,. For this it is convenient

179

FSTTCS 2015

http://www.labri.fr/perso/anca/Publications/fsttcs15.pdf

180

One-way Definability of Sweeping Transducer

to introduce n + 1 positions 0,1,...,n and think of each position ¢ > 0 (resp., 0) as a
placeholder between the i-th and the ¢ + 1-th symbols (resp., just before the first symbol a;).
Moreover, since here we deal with two-way devices, a single position can be visited several
times along a run. Thus, to describe a run of a two-way transducer on input v = ay ... an,
we will associate states with locations, namely, with pairs (z,y) where x is a position among
0,1,...,n and y is an integer representing the number of reversals performed up to a certain
point — for short, we call this number y the level of the location.

A run is a sequence of locations, labelled by states and connected by edges, called
transitions. The state at location £ = (z,y) of a run p is denoted p(¢). The transitions must
connect pairs of locations that are either at adjacent positions and on the same level, or at
the same position and on adjacent levels. In addition, each transition is labelled with a pair
a/v consisting of an input symbol a and an output v. There are four types of transitions:

(- 1,29+ 1) <L (5,25 +1) (i~ 1,29) L (i,29)
/C12y+2 (i — 12y—|—13/

(1,2y + 1) (i —1,2y)

Note that the transitions between locations at even levels are all directed from left to
right, while the transitions at odd levels are directed from right to left. More precisely,
the upper left (resp., upper right) transition may occur in a run p on u = ay...a, if
(p(i72y + 1),a,v,p(@ — 1,2y + 1),|eft) (resp., (p(z — 1,2y),a,v,p(i,2y),right)) is a valid
transition rule of 7 and a = a,. Similarly, the lower left (resp., lower right) transition may
occur if (p(i, 2y +1),a,v, p(i, 2y +2), right) (resp., (p(i —1,2y),a,v, p(i — 1,2y + 1), left)) is a
valid transition rule of 7 and a = a,. For technical reasons (namely, to enable distinguished
transitions at the extremities of the input word), we will introduce the special fresh symbols
> and < and allow the lower left (resp., lower right) transition also when ¢ =0 and a = >
(resp., when i = |u| and a = <).

Given a sequence 1, ..., Ty, a factor denotes any contiguous subsequence x;, . .., x;, for
1<i<j<n. Arunon theinput u =ay...a, is said to be successful if it starts at the lower
left location (0,0) with an initial state of 7 and ends at the upper right location (|u|, Y¥max)
in a final state of 7. The output produced by a run is the concatenation of the outputs of
its transitions, and it is denoted by out(p). We denote by dom(7) the language of all words
u that admit a successful run of 7. We order the locations along a run p by letting ¢; < {5
if £5 is reachable from ¢; following the transitions in p. Given two locations ¢; < {5 of a run
p, we denote by p[fq, £a] the factor of the run that starts in ¢; and ends in ¢5. Note that
plé1, £2] is also a run, hence the notation out(p[@l,fg]) is consistent.

Further assumptions

We will mostly work with two-way transducers that are sweeping. This means that on every
successful run, the head can change direction only at the extremities of the input. In other
words, the lower right (resp., lower left) transition is possible only if @ = < (resp., a = 1>).

A transducer T is functional if, for each input word u, all successful runs on u produce
the same output. In this case 7 (u) denotes the unique output produced on input w.

Unless otherwise stated, we will assume that all transducers are sweeping and functional.
Note that functionality is a decidable property, as stated below. The proof is similar to the
decidability proof of equivalence of streaming string transducers [1] and reduces the problem
to the reachability of a 1-counter automaton of exponential size.

F. Baschenis, O. Gauwin, A. Muscholl, and G. Puppis

» Proposition 1. Functionality of two-way transducers can be decided in polynomial space.
This problem is PSPACE-hard even for sweeping transducers.

Without loss of generality, we can also assume that the successful runs of a functional
transducer are normalized, namely, they never visit two locations with the same position,
the same state and both either at an even level or at an odd level. Indeed, if this were not
the case, say if a successful run p visits two locations ¢1 = (x,y1) and 5 = (x, y2) such that
p(l1) = p(¢2) and y1, yo are both even or both odd, then the output produced by p between
¢ and {5 is either empty — in which case we could remove p[fq, 2] and obtain an equivalent
successful run — or is non-empty — in which case, by repeating p[f1, {2], we could obtain
successful runs that produces different outputs on the same input, thus contradicting the
assumption that the transducer is functional.

Crossing sequences

Consider a run p of a transducer on input v = aj ...a,. For each position z € {0,1...,n},
we are interested in the sequence of states labelling the locations at position x. Formally,
we define the crossing sequence of p at x as the tuple plz = (p(z,y0), ..., p(x,yn)), where
Yo < ... < yp are exactly the levels of the locations of p of the form (z,y), with y € N (if the
transducer is sweeping, we simply have y; =). If the considered run p is successful, then
the bottom and top locations at position = have even levels, and the outgoing transitions

move rightward. In particular, every crossing sequence