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Preface

The 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2015), organized annually by the Indian Association for Research
in Computing Science (IARCS), was held at the Indian Institute of Science, Bangalore, from
December 16 to December 18, 2015.

The program consisted of 6 invited talks and 42 contributed papers. This proceedings
volume contains the contributed papers and abstracts of invited talks presented at the
conference. The proceedings of FSTTCS 2015 is published as a volume in the LIPIcs series
under a Creative Commons license, with free online access to all, and with authors retaining
rights over their contributions.

The 42 contributed papers were selected from a total of 117 submissions. We thank the
program committee for its efforts in carefully evaluating and making these selections. We
thank all those who submitted their papers to FSTTCS 2015. We also thank the external
reviewers for sending their informative and timely reviews.

We are particularly grateful to the invited speakers: Boaz Barak (Harvard University
& Microsoft Research), Ahmed Bouajjani (LIAFA, CNRS & Univ. Paris Diderot), Moses
Charikar (Stanford University), Suresh Jagannathan (Purdue University), Ankur Moitra
(MIT), and James Worrell (University of Oxford) who readily accepted our invitation to
speak at the conference.

There were two pre-conference workshops, Clustering Theory and Practice (CTAP) and
the 17th International Workshop on Verification of Infinite State Systems (INFINITY 2015)
and two post-conference workshops, Algorithmic Verification of Real-Time Systems (AVeRTS)
and Applications of Fourier Analysis to Theoretical Computer Science (FOURIER). We
thank Arnab Bhattacharyya (IISc Bangalore), Aiswarya Cyriac (Uppsala University), Amit
Deshpande (Microsoft Research), Frédéric Herbreteau (Univ. Bordeaux, LaBRI), Ravishankar
Krishnaswamy (Microsoft Research), M. Praveen (Chennai Mathematical Institute), and
Krishna S. (IIT Bombay) for organizing these workshops.

On the administrative side, we thank the organizing committee led by Prof. Aditya
Kanade (IISc Bangalore) and Prof. Deepak D’Souza (IISc Bangalore), who put in many
months of effort in ensuring excellent conference and workshop arrangements at the Indian
Institute of Science.

We would also like to thank Madhavan Mukund, Venkatesh Raman, and S. P. Suresh for
promptly responding to our numerous questions and requests relating to the organization
of the conference. We also thank the Easychair team whose software has made it very
convenient to do many conference related tasks. Finally, we thank the Dagstuhl LIPIcs staff
for their coordination in the production of this proceedings, particularly Marc Herbstritt
who was very prompt and helpful in answering our questions.

Prahladh Harsha and G. Ramalingam
December 2015
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Bypassing Worst Case Analysis: Tensor
Decomposition and Clustering
Moses S. Charikar

Computer Science Department, Stanford University
Stanford, CA, USA
moses@cs.stanford.edu

Abstract
Typical worst case analysis of algorithms has led to a rich theory, but suffers from many pitfalls.
This has inspired several approaches to bypass worst case analysis. In this talk, I will describe
two vignettes from recent work in this realm.

In the first part of the talk, I will discuss tensor decomposition – a natural higher dimensional
analog of matrix decomposition. Low rank tensor decompositions have proved to be a powerful
tool for learning generative models, and uniqueness results give them a significant advantage over
matrix decomposition methods. Yet, they pose significant challenges for algorithm design as most
problems about tensors are NP-hard. I will discuss a smoothed analysis framework for analyzing
algorithms for tensor decomposition which models realistic instances of learning problems and
allows us to overcome many of the usual limitations of using tensor methods.

In the second part of the talk, I will explore the phenomenon of convex relaxations returning
integer solutions. Clearly this is not true in the worst case. I will discuss instances of discrete
optimization problems where, for a suitable distribution on inputs, LP and SDP relaxations
produce integer solutions with high probability. This has been studied in the context of LP
decoding, sparse recovery, stochastic block models and so on. I will mention some recent results
for clustering problems: when points are drawn from a distribution over k sufficiently separated
clusters, the well known k-median relaxation and a (not so well known) SDP relaxation for
k-means exactly recover the clusters.
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Checking Correctness of Concurrent Objects:
Tractable Reductions to Reachability
Ahmed Bouajjani1, Michael Emmi2, Constantin Enea3, and
Jad Hamza3

1 Université Paris Diderot and Institut Universitaire de France, Paris, France
abou@liafa.univ-paris-diderot.fr

2 IMDEA Software Institute, Madrid, Spain
michael.emmi@imdea.org

3 Université Paris Diderot, Paris, France
{cenea,jad.hamza}@liafa.univ-paris-diderot.fr

Abstract
Efficient implementations of concurrent objects such as semaphores, locks, and atomic collec-
tions including stacks and queues are vital to modern computer systems. Programming them is
however error prone. To minimize synchronization overhead between concurrent object-method
invocations, implementors avoid blocking operations like lock acquisition, allowing methods to
execute concurrently. However, concurrency risks unintended inter-operation interference. Their
correctness is captured by observational refinement which ensures conformance to atomic refer-
ence implementations. Formally, given two libraries L1 and L2 implementing the methods of
some concurrent object, we say L1 refines L2 if and only if every computation of every program
using L1 would also be possible were L2 used instead.

Linearizability [11], being an equivalent property [8, 5], is the predominant proof technique
for establishing observational refinement: one shows that each concurrent execution has a linear-
ization which is a valid sequential execution according to a specification, given by an abstract
data type or atomic reference implementation.

However, checking linearizability is intrinsically hard. Indeed, even in the case where method
implementations are finite-state and object specifications are also finite-state, and when a fixed
number of threads (invoking methods in parallel) is considered, the linearizability problem is
EXPSPACE-complete [9], and it becomes undecidable when the number of threads is unboun-
ded [3]. These results show in particular that there is a complexity/decidability gap between
the problem of checking linearizability and the problem of checking reachability (i.e., the dual
of checking safety/invariance properties), the latter being, PSPACE-complete and EXPSPACE-
complete in the above considered cases, respectively.

We address here the issue of investigating cases where tractable reductions of the observational
refinement/linearizability problem to the reachability problem, or dually to invariant checking,
are possible. Our aim is (1) to develop algorithmic approaches that avoid a systematic exploration
of all possible linearizations of all computations, (2) to exploit existing techniques and tools for
efficient invariant checking to check observational refinement, and (3) to establish decidability
and complexity results for significant classes of concurrent objects and data structures.

We present two approaches that we have proposed recently. The first approach [5] introduces
a parameterized approximation schema for detecting observational refinement violations. This
approach exploits a fundamental property of shared-memory library executions: their histories
are interval orders, a special case of partial orders which admit canonical representations in
which each operation o is mapped to a positive-integer-bounded interval I(o). Interval orders are
equipped with a natural notion of length, which corresponds to the smallest integer constant for
which an interval mapping exists. Then, we define a notion of bounded-interval-length analysis,
and demonstrate its efficiency, in terms of complexity, coverage, and scalability, for detecting
observational refinement bugs.
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The second approach [4] focuses on a specific class of abstract data types, including common
concurrent objects and data structures such as stacks and queues. We show that for this class of
objects, the linearizability problem is actually as hard as the control-state reachability problem.
Indeed, we prove that in this case, the existence of linearizability violations (i.e., finite compu-
tations that are not linearizable), can be captured completely by a finite number of finite-state
automata, even when an unbounded number of parallel operations is allowed (assuming that
libraries are data-independent).

Related work. Several semi-automated approaches for proving linearizability, and thus obser-
vational refinement, have relied on annotating operation bodies with linearization points [2, 12,
13, 15, 16], to reduce the otherwise-exponential space of possible history linearizations to one
single linearization. These methods often rely on programmer annotation, and do not admit
conclusive evidence of a violation in the case of a failed proof.

Existing automated methods for proving linearizability of an atomic object implementation
are also based on reductions to safety verification [1, 10, 15]. Abdulla et al. [1] is and Vafei-
adis [15] consider implementations where operation’s linearization points are fixed to particular
source-code locations. Such approaches are incomplete since not all implementations have fixed
linearization points (see for instance [7]). Aspect-oriented proofs [10] reduce linearizability to
the verification of four simpler safety properties. However, this approach has only been applied
to queues, and has not produced a fully automated and complete proof technique. Dodds et
al. [7] prove linearizability of stack implementations with an automated proof assistant. Their
approach does not lead to full automation however, e.g., by reduction to safety verification.

Automated approaches for detecting linearizability violations such as Line-Up [6] enumerate
the exponentially-many possible history linearizations. This exponential cost effectively limits
such approaches to executions with few operations. Colt [14]’s approach mitigates this cost
with programmer-annotated linearization points, as in the previously-mentioned approaches, and
ultimately suffers from the same problem: a failed proof only indicates incorrect annotation.
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Reachability Problems for Continuous Linear
Dynamical Systems∗
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Abstract
This talk is about reachability problems for continuous-time linear dynamical systems. A central
decision problem in this area is the Continuous Skolem Problem [1], which asks to determine the
existence of a zero of a real-valued function f satisfying an ordinary linear differential equation

f (n) + an−1f (n−1) + . . . + a0f = 0

with coefficients a0, . . . , an−1 ∈ Q and initial conditions f(0), . . . , f (n−1)(0) ∈ Q. An alternative
formulation of the problem asks whether the solution x(t) ∈ Rn of a given differential equation
x′ = Ax + b, with A a rational n × n matrix and b a rational n-dimensional vector, reaches a
given halfspace.

The nomenclature Continuous Skolem Problem arises by analogy with the Skolem Problem
for linear recurrence sequences [4]. The latter problem asks whether a sequence of integers
satisfying a given linear recurrence has a zero term. Decidability is open for both the discrete
and continuous versions of the Skolem Problem.

We show that the Continuous Skolem Problem lies at the heart of many natural computational
problems on linear dynamical systems, such as reachability in continuous-time Markov chains
and linear hybrid automata. We describe some recent work, done in collaboration with Chonev
and Ouaknine [2, 3], that uses results in transcendence theory and real algebraic geometry to
obtain decidability for certain variants of the problem. In particular, we consider a bounded
version of the Continuous Skolem Problem, corresponding to time-bounded reachability. We
prove decidability of the bounded problem assuming Schanuel’s conjecture, a central conjecture
in transcendence theory. We also describe some partial decidability results in the unbounded
case in the case of functions f satisfying differential equations of fixed low order.

Finally, we give evidence of significant mathematical obstacles to proving decidability of the
Continuous Skolem Problem in full generality by exhibiting some number-theoretic consequences
of the existence of a decision procedure for this problem.
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Convexity, Bayesianism, and the Quest Towards
Optimal Algorithms
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Abstract
In this high level and accessible talk I will describe a recent line of works aimed at trying to
understand the intrinsic complexity of computational problems by finding optimal algorithms
for large classes of such problems. In particular, I will talk about efforts centered on convex
programming as a source for such candidate algorithms. As we will see, a byproduct of this effort
is a computational analog of Bayesian probability that is of its own interest.

I will demonstrate the approach using the example of the planted clique (also known as hidden
clique) problem – a central problem in average case complexity with connections to machine
learning, community detection, compressed sensing, finding Nash equilibrium and more. While
the complexity of the planted clique problem is still wide open, this line of works has led to
interesting insights on it.
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Abstract
In this talk, we study some of the statistical and algorithmic problems that arise in recommenda-
tion systems. We will be interested in what happens when we move beyond the matrix setting, to
work with higher order objects – namely, tensors. To what extent does inference over more com-
plex objects yield better predictions, but at the expense of the running time? We will explore the
computational vs. statistical tradeoffs for some basic problems about recovering approximately
low rank tensors from few observations, and will show that our algorithms are nearly optimal
among all polynomial time algorithms, under natural complexity-theoretic assumptions.

This is based on joint work with Boaz Barak.
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Relational Refinement Types for Higher-Order
Shape Transformers
Suresh Jagannathan

Department of Computer Science, Purdue University, IN, US
suresh@cs.purdue.edu

Abstract
Understanding, discovering, and proving useful properties of sophisticated data structures are
central problems in program verification. A particularly challenging exercise for shape analyses
involves reasoning about sophisticated shape transformers that preserve the shape of a data
structure (e.g., the data structure skeleton is always maintained as a balanced tree) or the
relationship among values contained therein (e.g., the in-order relation of the elements of a tree
or the parent-child relation of the elements of a heap) across program transformations.

In this talk, we consider the specification and verification of such transformers for ML pro-
grams. The structural properties preserved by transformers can often be naturally expressed
as inductively-defined relations over the recursive structure evident in the definitions of the
datatypes they manipulate. By carefully augmenting a refinement type system with support
for reasoning about structural relations over algebraic datatypes, we realize an expressive yet
decidable specification language, capable of capturing useful structural invariants, which can
nonetheless be automatically verified using off-the-shelf type checkers and theorem provers. No-
tably, our technique generalizes to definitions of parametric relations for polymorphic data types
which, in turn, lead to highly composable specifications over higher-order polymorphic shape
transformers.

1998 ACM Subject Classification D.2.4 Software/Program Verification-Correctness proofs, For-
mal Methods, D.3.2 Applicative (Functional) Languages, F.3.1 Specifying and Verifying and
Reasoning about Programs

Keywords and phrases Relational Specifications; Inductive and Parametric Relations; Refine-
ment Types, Shape Analysis, Data Structure Verification

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.9

Category Invited Talk

© Suresh Jagannathan;
licensed under Creative Commons License CC-BY

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 9–9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


Robust Reoptimization of Steiner Trees∗

Keshav Goyal1 and Tobias Mömke2
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Abstract
In reoptimization problems, one is given an optimal solution to a problem instance and a local
modification of the instance. The goal is to obtain a solution for the modified instance. The
additional information about the instance provided by the given solution plays a central role: we
aim to use that information in order to obtain better solutions than we are able to compute from
scratch.

In this paper, we consider Steiner tree reoptimization and address the optimality requirement
of the provided solution. Instead of assuming that we are provided an optimal solution, we relax
the assumption to the more realistic scenario where we are given an approximate solution with
an upper bound on its performance guarantee.

We show that for Steiner tree reoptimization there is a clear separation between local modi-
fications where optimality is crucial for obtaining improved approximations and those instances
where approximate solutions are acceptable starting points. For some of the local modifications
that have been considered in previous research, we show that for every fixed ε > 0, approx-
imating the reoptimization problem with respect to a given (1 + ε)-approximation is as hard
as approximating the Steiner tree problem itself (whereas with a given optimal solution to the
original problem it is known that one can obtain considerably improved results). Furthermore,
we provide a new algorithmic technique that, with some further insights, allows us to obtain
improved performance guarantees for Steiner tree reoptimization with respect to all remaining
local modifications that have been considered in the literature: a required node of degree more
than one becomes a Steiner node; a Steiner node becomes a required node; the cost of one edge
is increased.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases reoptimization, approximation algorithms, Steiner tree problem, robust-
ness
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1 Introduction

The Steiner tree problem (STP) is one of the most studied problems in the area of network
design. We are given a graph G with nodes V (G), edges E(G), and a cost function
c : E(G)→ R≥0, as well as a set R ⊆ V (G) of required nodes (also called regular nodes or
terminals). The objective is to find a minimum cost tree T within G such that R ⊆ V (T ).
The Steiner tree problem is known to be APX-hard [8], and the currently best approximation
algorithm has a performance guarantee of ln 4 + ε ≈ 1.387 [24].

∗ Research partially funded by Deutsche Forschungsgemeinschaft grant BL511/10-1 and by the Indo-
German Max Planck Center for Computer Science (IMPECS).
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We consider the Steiner tree problem with respect to reoptimization, a framework for
dynamic algorithms in the context of NP-hard problems. We are given two related instances
I and I ′ of an algorithmic problem together with a solution Sol to the instance I, and our
goal is to compute a solution to I ′. The relation between I and I ′ is determined by an
operation that we call local modification.

The concept of reoptimization is motivated by the observation that instead of computing
new solutions from scratch, oftentimes we can reuse the effort spent to solve problems similar
to the one at hand. For instance, let us consider a large circuit where certain components
have to be connected. The components are the required nodes and there are points that
may be used by several connections, the Steiner nodes. Now suppose that a long and costly
computation has led to an almost optimal solution. Afterwards the requirements change:
either an additional component has to be placed to a point that previously was a Steiner
node or a component is removed, which turns a required node into a Steiner node. In such a
situation it would seem wasteful to discard the entire previous effort.

Classically, when considering reoptimization problems one assumes that Sol is an optimal
solution. The reason for this assumption is that assuming optimality considerably reduces the
formal overhead and therefore facilitates to concentrate on the main underlying properties of
the reoptimization problem. We show, however, that assuming optimality is not without
loss of generality. Let us assume that c(Sol) is a (1 + ε) factor larger than the cost of an
optimal solution. Then we say that a Steiner tree reoptimization algorithm is robust, if it
is an approximation algorithm and its performance guarantee is α · (1 +O(ε)), where α is
its performance guarantee when ε = 0. Intuitive, this definition ensures that for ε→ 0, the
performance guarantee converges smoothly towards α, independent of the given instance.
We consider robustness of reoptimization algorithms to be a crucial feature, since in real
world applications close to optimal solutions are much more frequent than optimal solutions.

We address all local modifications that have previously been considered for Steiner tree
reoptimization. We classify these modifications into two groups, according to their robustness.
The first group contains those problems where obtaining a robust reoptimization algorithm
implies to provide an approximation algorithm for the (non-reoptimization) Steiner tree
problem with matching performance guarantee. The second group of problems allows for
improved robust reoptimization algorithms compared to STP approximation algorithms.

For all reoptimization problems of the second group that have previously been considered
(and that are known to be NP-hard [15]), we provide robust reoptimization algorithms that,
for ε→ 0, obtain better performance guarantees than the previous results with optimality
assumption [12, 13].

1.1 Local Modifications and Our Contribution
There are ten local modifications that previously have been considered for the Steiner tree
problem. The two most studied modifications address the set of required nodes: we either
declare a required node to be a Steiner node, or a Steiner node to be a required node.
Here, STPR− resp. STPR+ denote the corresponding reoptimization problems. We show, in
Section 4, that finding a robust reoptimization algorithm for STPR− is as hard as finding a
Steiner tree approximation algorithm with matching approximation ratio. If one, however,
excludes that the node t declared to be a Steiner node is a leaf in the given instance, we
provide a robust reoptimization algorithm with improved performance ratio (see Table 1 for
an overview of the achieved improvements). We show that in contrast to STPR−, STPR+

always allows for improved robust reoptimization algorithms. The next interesting type of
local modification is to modify the cost of a single edge. We do not require the cost function
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12 Robust Reoptimization of Steiner Trees

to be metric. In particular, in the shortest path metric induced by the modified edge cost,
the cost of several edges may be changed. We call the modification where the cost of one
edge is increased STPE+, and the converse local modification where the cost of one edge is
decreased is STPE−. We provide an improved robust reoptimization algorithm for STPE+

and show that robust reoptimization for STPE− is as hard as approximating the Steiner
tree problem itself (analogous to general STPR−). The two local modifications to remove an
edge from the graph and to add an edge to the graph reduce to STPE+ resp. STPE− in a
straightforward manner.

The remaining four local modifications are the removal or addition of a required node or
a Steiner node. It is known that the local modification where required or Steiner nodes are
removed is as hard as Steiner tree approximation, even if we are given an optimal solution to
the old problem [15]. We show that adding a required node or a Steiner node to the graph
causes robust reoptimization to be as hard as STP approximation.

One of the key insights that leads to our improved algorithms is that for all local
modifications that allow for robust reoptimization algorithms, we can replace the given
Steiner tree by a k-restricted Steiner tree of roughly the same cost. At the same time, we
have the promise that there is an almost optimal Steiner tree for the modified instance that
is k-restricted. This property allows us to handle certain subgraphs of Steiner trees called full
components. (i) We remove entire full components from the given Steiner tree and perform
optimal computations to obtain a feasible solutions to the modified instance, and (ii) we
guess entire full components of the Steiner tree that we aim to compute. The new insights
simplify and generalize the previous approaches to Steiner tree reoptimization and therefore
give raise to more sophisticated analyses than before.1

Due to space constraints, we restrict the presentation to analyzing STPR− and STPE+,
as these local modification give the best overview of the used techniques and ideas.

1.2 Related Work
The concept of reoptimization was first mentioned by Schäffter [29] in the context of
postoptimality analysis for a scheduling problem. Since then, the concept of reoptimization
has been investigated for several different problems, including the traveling salesman problem
[1, 5, 14, 18, 7, 28], the rural postman problem [3], fast reoptimization of the spanning
tree problem [23], the knapsack problem [2], covering problems [11], the shortest common
superstring problem [10], maximum weight induced heredity problems [21], and scheduling
[29, 6, 20]. There are several overviews on reoptimization [4, 22, 17, 31].

The Steiner tree reoptimization problem in general weighted graphs was previously
investigated in [9, 26, 16, 15, 12, 13], see Table 1.

2 Preliminaries

We denote a Steiner tree instance by (G,R, c), where G is an undirected graph, R ⊆ V (G)
is the set of required nodes, and c : E(G) → R≥0 is a cost function. The Steiner nodes of
(G,R, c) are the nodes S = V (G) \R.

Since c is symmetric, we sometimes use the simplified notation c(u, v) = c(v, u) instead
of c({u, v}).

1 We note that with some additional effort, it would also be possible to adapt the technique of Bilò and
Zych [13] and use them for our results.
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Table 1 Comparison of approximation ratios of the Steiner Tree Reoptimization problem for the
different types of local modifications. To increase the readability, all values ε, δ in the approximation
ratios are omitted. The numerical values are rounded up at the third digit and we assume β = 1.387,
the approximation ratio ln(4) + ε of the Steiner tree approximation algorithm of Byrka et al. [24]
with small enough ε.

Local Modification Our Results Previous Results
Sol: (1 + ε)-Approx. Sol: Optimal Solution
Expression Value Expression Value

STPR− (internal node) 10β−7
7β−4 1.204 3β−2

2β−1 [13] 1.219
STPR− (leaf node) not robust 1.204 3β−2

2β−1 [13] 1.219
if ε = 0

STPR+ 10β−7
7β−4 1.204 3β−2

2β−1 [12] 1.219
STPE+ 7β−4

4β−1 1.256 2β−1
β

[13] 1.29
STPE− not robust 1.387 5β−3

3β−1 [9] 1.246
assuming metricity

Add Node not robust 1.387 without [24]: 1.5 [26] 1.387
Remove Node not robust 1.387 As hard as STP approx. [15] 1.387

For two graphs G,G′, we define G ∪G′ to be the graph with node set V (G) ∪ V (G′) and
edge set E(G) ∪E(G′) (i. e., we do not keep multiple edges). For an edge e, G− e is G with
e removed from E(G). We define G−G′ to be the graph with node set V (G) \ (V (G′) ∩ S)
and edge set E(G) \ E(G′). We emphasize that we do not remove required vertices.

In Steiner tree algorithms, it is standard to consider the edge-costs to be metric. The
reason is that forming the metric closure (i. e., using the shortest path metric) does not
change the cost of an optimal solution: if we replacing an edge of a Steiner tree by the
shortest path between the two ends, we obtain a valid Steiner tree again.

In the context of reoptimization, however, we cannot assume the cost function to be
metric without loss of generality, because the triangle inequality restricts the effect of local
changes. Therefore in the following we have to carefully distinguish between metric and
general cost functions.

For a given Steiner tree, its full components are exactly those maximal subtrees that have
all leaves are in R and all internal nodes are in S. Note that for a given Steiner tree T , we
may remove leaves if they are not in R; we still have a Steiner tree, and its cost did not
increase. Therefore we may assume that T is composed of full components. A k-restricted
Steiner tree is a Steiner tree where each full component has at most k nodes from R.

I Lemma 1 (Borchers, Du [19]). For an arbitrary ε > 0 there is a k ∈ Oε(1) such that for
all Steiner tree instances (G,R, c) with optimal solution Opt of cost opt and c is a metric,
there is a k-restricted Steiner tree T of cost at most (1 + ε)opt which can be obtained from
Opt in polynomial time.

We assume that in k-restricted Steiner trees T where c is a metric, the Steiner nodes
v ∈ V (T )∩S have a degree of deg(v) ≥ 3. This is without loss of generality, since deg(v) ≥ 2
by the definition of k-restricted Steiner trees; if deg(v) = 2 and u,w are the neighbors of v,
c(u, v) + c(v, w) ≥ c(u,w). We replace {u, v}, {v, w} by {u,w} without increasing the cost
of T and without changing the property that T is k-restricted.
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14 Robust Reoptimization of Steiner Trees

Input :A Steiner tree instance (G,R, c),
a Steiner forest F in G with trees F1, F2, . . . , F`

Output :A Steiner tree T
Set G′ := G/F such that Fi is contracted to vi;
Set R′ := {vi : V (Fi) ∩R 6= ∅};
Compute a minimum Steiner tree T ′ of (G′, R′, c);
Obtain T from T ′ by expanding F .

Algorithm 1: Connect

Within the entire text, Opt denotes an optimal solution and opt denotes the cost of
an optimal solution. We will often add sub- and superscripts to Opt and opt in order to
distinguish between various types of (close to) optimal solutions.

3 Connecting Forests and Guessing Components

We state two algorithms that we will use repeatedly within the subsequent sections. The
first algorithm, Connect, was introduced by Böckenhauer et al. [16] and has been used in
all previous Steiner tree reoptimization results. The algorithm connects components of a
Steiner forest F of G in order to obtain a feasible Steiner tree T . The idea is that we start
from a partial solution with few components that together contain all required vertices, and
we use an exact computation to complete the solution. In Connect we use the following
notation. Denote by G/V ′ for V ′ ⊆ V (G) the contraction of V ′ in G. We write G/F instead
of G/V (F ), if F is a subgraph of G. Note that after contracting a component there may
be multiedges. Here, we treat multigraphs as simple graphs, where we only consider the
cheapest edge of each multiedge. For ease of presentation, we slightly abuse notation and
use the cost function c for both the graph before and the graph after the contraction.

Clearly, the graph T computed by Connect is a Steiner tree. If the number of components
` of the forest F given as input is a constant, by using the Dreyfuss-Wagner algorithm [25]2
to compute T ′, Connect runs in polynomial time. The graph T computed by Connect
is the minimum cost Steiner tree that contains F , since all Steiner trees that contain F

determine feasible solutions T ′.
The second algorithm of this section, Guess, which is motivated from the CONNECT

algorithm of [13] and presented here in a different manner, provides a mechanism to profit
from guessing full components of an optimal k-restricted Steiner tree: we compress the
guessed full components to single vertices and this way we obtain a new instance to which
we apply known approximation algorithms. We call Guess by simply writing Guess(`), if
the instance and k are clear from the context and A is a β-approximation algorithm. Note
that for instance Guess(3k) means that ` = 3k.

I Lemma 2. For an arbitrary ε > 0, let k be the parameter obtained from Lemma 1. Let A
be a polynomial time β-approximation algorithm for the Steiner tree problem. Furthermore,
let Optk be an optimal k-restricted solution of cost optk to the Steiner tree instance (G,R, c)
where c is a metric. Then, for ` ∈ Oε(1), Guess runs in polynomial time and computes a
Steiner tree T of cost at most (1 + ε)(β − βζ + ζ)opt, where ζoptk is the total cost of the `
maximum weight full components of Optk and opt is the cost of an optimal solution.

2 We refer to Hougardy et al. [27] for an overview of further exact Steiner tree algorithms that, depending
on the given parameters, may be faster than Dreyfuss-Wagner.
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Input :A Steiner tree instance (G,R, c) with c metric, numbers `, k ∈ N,
and a Steiner tree approximation algorithm A

Output :A Steiner Tree T
Run A on (G,R, c) and obtain a Steiner tree T ;
foreach S = {S1, S2, . . . , S`} such that
Si ⊆ V with |Si| ≤ 2k and 2 ≤ |Si ∩R| ≤ k for 1 ≤ i ≤ ` do

For each i, compute a minimum spanning tree Ti with V (Ti) = Si;
Contract each Ti to a required node ri;
Run A on the resulting instance;
Obtain T ′ by expanding the contracted components of each ri;
if c(T ′) < c(T ) then

Replace T by T ′.
Algorithm 2: Guess

Proof. We first analyze the running time of the algorithm. Since A runs in polynomial time,
we only have to consider the number of families S that we have to test. This number is
bounded from above by

(∑2k
i=2
(
n
i

))`, since we only choose sets of size at most 2k. Since
both k and ` are constants, this number is polynomial in n.

Next we analyze the cost of T . Since we assume that for each Steiner node v ∈ S∩V (Optk),
deg(v) ≥ 3, we conclude that all full components of Optk have at most 2k nodes. Therefore
there is a family S considered by Guess such that the classes of S are exactly the node sets of
the ` maximum weight full components of Optk. Contracting a minimum spanning tree Ti is
equivalent to contracting the full component with required nodes R ∩ Si in Optk. We finish
the proof by applying a standard argument that was used, for instance, by Böckenhauer et
al. [14]. The cost of an optimal Steiner tree before expanding the full components is bounded
from above by optk − ζoptk, and expanding the full components adds ζoptk. Therefore we
obtain c(T ) ≤ β(optk− ζoptk) + ζoptk = (β−βζ + ζ)optk. By our choice of k and Lemma 1,
optk ≤ (1 + ε)opt and therefore c(T ) ≤ (1 + ε)(β − βζ + ζ)opt. J

In the subsequent proofs, we will repeatedly obtain a value η such that ζ ≥ (α− 1− ε)η,
where α is the actual performance ratio of the considered approximation algorithm. By
simple arithmetics and assuming that (1 + ε)(β − βζ + ζ) tends to (β − βζ + ζ) for ε chosen
sufficiently small, Lemma 2 implies

α ≤ β + βη − η + ε(βη − η)
1 + βη − η

. (1)

The reason for our assumption is that we can choose k in Lemma 1 and therefore the
additional error is arbitrarily small.3 We avoid complicated formalisms and instead slightly
relax the approximation ratios in theorem statements by adding an arbitrarily small value
δ > 0 whenever the proofs use (1).

4 A Required Node Becomes a Steiner Node

The variant of the minimum Steiner tree reoptimization problem where a node is declared to
be a Steiner node (STPR−ε ) is defined as follows.

3 Note that in contrast to the error from Lemma 1, we cannot control the error of the given solutions.

FSTTCS 2015



16 Robust Reoptimization of Steiner Trees

Input :An instance (G,R, c,Optold
ε , t) of STPR−ε

Output :A Steiner tree T
while degOptold

ε
(t) = 1 do // We assume that either ε = 0 or degOptold

ε
(t) > 1

Set t′ := child(t); // The node adjacent to t in Optold
ε

Remove t from Optold
ε and R, rename t′ to t, and set t ∈ R;

// Now (G,R, c, Optold
ε , t) is the changed instance

Transform Optold
ε to a k-restricted solution Optold

ε,k such that optold
ε,k ≤ (1 + εk)optold

ε ,
where εk tends to 0 for large enough k;
Set T1 := Optold

ε ; // Note that optold
ε ≤ optold

ε,k

Let Ct1, Ct2, . . . be the full components of Optold
ε,k such that

t ∈ V (Cti ) for all i and c(Cti ) ≤ c(Ctj) for i < j;
Set F := Optold

ε,k − Ct1 − Ct2 − Ct3; // Ignore Ct3 if it does not exist
Set T2 := Connect(F );
Set T3 := Guess(3k);
Set T = Ti with i = min argj∈{1,2,3}{c(Tj)}.

Algorithm 3: DeclareSteiner

Given: A parameter ε > 0, a Steiner tree instance (G,R, c), a solution Optold
ε to (G,R, c)

such that optold
ε ≤ (1 + ε)optold, and a node t ∈ R.

Solution: A Steiner tree solution to (G,R \ {t}, c).
An instance of STPR−ε is a tuple (G,R, c,Optold

ε , t). If ε = 0, we skip the index and write
STPR−. Without loss of generality we assume that c is a metric: we may use the metric
closure since the local modification does not change G or c.

The algorithm DeclareSteiner starts with reducing the instance to one where the
changed required node has a degree of at least two, using a known technique. Afterwards
it transforms the given solution to a k-restricted Steiner tree (note that the order of these
two steps is important). The remaining algorithm outputs the best of three solutions that
intuitively can be described as follows: we either keep the old solution; or we remove up
to three full components incident to t to obtain a partial solution that we complete again
using Connect; or we guess a partial solution that is at least as large as the 3k largest
full-components of an optimal solution and complete these components to a solution using
the best available approximation algorithm.

The following theorem indicates that in general we have to require ε = 0 for instances of
STPR−ε with deg(t) = 1.

I Theorem 3. For an arbitrary ε > 0, let A be a polynomial time α-approximation algorithm
for STPR−ε . Then there is a polynomial time α-approximation algorithm for the Steiner tree
problem.

Proof. Given a Steiner tree instance (G,R, c), let optnew be the cost of an optimal solution.
We construct a STPR−ε instance (G′, R′, c′, Optold

ε , t) from (G,R, c). We first compute a
minimum spanning tree T̃ of G[R]. Note that G[R] is a complete graph since we assume c
to be metric, and c(T̃ ) ≤ 2optnew, as shown by Takahashi and Matsuyama [30]; we assume
w. l. o. g. that α < 2. We obtain G′ by combining G and a new node t as follows. We set
V (G′) := V (G) ∪ {t} and E(G′) = E(G) ∪ {t, t′} for a node t′ ∈ R. Then we obtain c′ from
c by setting c′(t, t′) = c(T̃ ) · (1− ε)/ε and forming the metric closure. We set R′ = R ∪ {t}
and obtain a solution Optold

ε to (G′, R′, c′) by adding {t, t′} to T̃ . Finally, we obtain the
Steiner tree T by applying A to (G′, R′, c′,Optold

ε , t).
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Observe that T cannot contain an edge incident to t, since all of those edges are more
expensive than T̃ . Therefore T is a Steiner tree of (G,R, c). Conversely, all Steiner trees of
(G,R, c) are feasible solutions to (G′, R′, c′,Optold

ε , t). We conclude that T provides an α
approximation, i. e., T is a feasible solution to (G,R, c) and c(T ) ≤ αoptnew.

To finish the proof, we have to show that Optold
ε was a valid solution given to A, i. e., its

cost optold
ε is at most a factor (1 + ε) larger than optimum. Clearly, Optold

ε is a Steiner tree
of (G′, R′, c′). Let optold be the cost of an optimal Steiner trees for (G′, R′, c′).

optold
ε

optold = c(T̃ ) + c(t, t′)
optnew + c(t, t′) ≤

2optnew + c(t, t′)
optnew + c(t, t′) ≤ 1 + optnew

optnew + optnew · 1−ε
ε

= 1 + ε.

J

For all remaining cases, DeclareSteiner profits from knowing Optold
ε .

I Theorem 4. Let (G,R, c,Optold
ε , t) be an instance of STPR−ε with degOptold

ε
(t) ≥ 2 or

ε = 0. Then, for an arbitrary δ > 0, DeclareSteiner is an approximation algorithm for
STPR−ε with performance guarantee

(10β − 7 + 2ε− 2εβ)(1 + ε)
7β − 4 + 5ε− 2εβ + δ.

For the approximation ratio β = ln(4) + ε′′ from [24] with ε′′ and δ chosen sufficiently
small, we obtain an approximation ratio of less than 1.204 · (1 + ε).

4.1 Proof of Theorem 4
Since k is a constant, all steps of DeclareSteiner except for the call of Connect clearly
run in polynomial time. To see that also the call of Connect does, observe that removing the
edges and Steiner nodes of a full component increases the number of connected components
by at most k − 1.

We continue with showing the claimed upper bound on the performance guarantee. Before
we show the main result, we introduce two simplification steps. First, we show that we can
restrict our attention to the case deg(t) = 2 in Optold

ε,k . Our analysis simultaneously gives a
new proof for the previous best reoptimization result [13]. Subsequently we reduce the class
of considered instances to those where all optimal solution to (G,R \ {t}, c) have a special
structure.

We start with analyzing the case where deg(t) = 1. If this case appears in the while loop,
by our assumption we have ε = 0 and thus Optold

ε is an optimal solution. The transformation
of DeclareSteiner within the while loop reduces the instance to one where deg(t) ≥ 2
[16]. When transforming the resulting solution Optold

ε to Optold
ε,k , generally t could become a

degree-one vertex. We use, however, that this is not the case when applying the algorithm of
Borchers and Du [19]: The algorithm considers the full components separately, which implies
that initially the degrees of all required vertices are one. Each full component is replaced by
a graph where each required vertex has a degree of at least one. Consequently, the degree of
no required vertex is decreased.

For the remaining proof, we assume degOptold
ε,k

(t) ≥ 2. We prove the following technical
lemma, which is needed for our subsequent argumentation.

I Lemma 5. There is a collection C of at most 3k full components of Optnew
k such that

F ∪ C is a connected graph.
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18 Robust Reoptimization of Steiner Trees

Proof. Observe that F has less than 3k connected components, and each of them contains
nodes from R. We use that the full components of Optnew

k only intersect in R. Since Optnew
k

is connected, by the pigeonhole principle it has a full component C that contains required
nodes from two distinct components of F . Thus adding C to F reduces the number of
components. Now the claim follows inductively. J

Let α = c(T )/optnew ≥ 1 be the performance ratio of DeclareSteiner. Thus, in the
following we want to determine an upper bound on α. We may assume

optold
ε,k ≥ αoptnew (2)

since otherwise, T1 already gives an approximation ratio better than α.
We define γ = c(Connect(F ))− c(F ), the cost to connect F . Let d be the number of

full components removed from Optold
ε,k to obtain F , i. e., d ∈ {2, 3}.

I Lemma 6. For an arbitrary δ > 0, the performance ratio α of DeclareSteiner is
bounded from above by 1 + β−1+ε(β−1)(d+1)

1+(β−1)d+ε + δ.

Proof. We have c(Ct1) + c(Ct2) + c(Ct3) ≥ d · c(Ct1) assuming c(Ct1) ≤ c(Cti ) for i ≤ d.
We determine the following constraints. Since Ct1 + Optnew contains a feasible solution

to (G,R, c),

optnew + c(Ct1) ≥ optold. (3)

Furthermore,

optold
ε,k − c(Ct1)− c(Ct2)− c(Ct3) + γ ≥ αoptnew (4)

since c(T2) is at most as large as the left hand side of (4).
We assume optold

ε,k tends to optold
ε for large enough k and then use (3) to replace optold in

(2) to obtain

c(Ct1) ≥ α− 1− ε
1 + ε

optnew. (5)

By applying (3) and (5) to (4), we obtain

γ ≥ d

1 + ε
· (α− 1− ε)optnew. (6)

Finally, ζ ≥ γ/optnew
k , by Lemma 5. Therefore, due to Lemma 2 and assumption that ε

due to transformation to k-restricted tree tends to zero for large enough k,

β − βγ/optnew
k + γ/optnew

k ≥ α. (7)

Now the claim follows if we assume optnew
k tends to optnew for large enough k and replace γ

in (7) by the right hand side of (6), where we used that β ≥ 1. J

We note that for d = 2 and ε = 0, the upper bound on the performance guarantee due to
Lemma 6 matches the previously best performance guarantee [13]. For d = 3, the value is
better than the aimed-for value from Theorem 4. Observe that a straightforward extension
of DeclareSteiner would allow us to consider values of d larger than three.

Due to Lemma 6, in the following we may assume that deg(t) = 2. Next, we analyze the
structure of Optold

ε,k and Optnew. Let R1 = (R ∩ V (Ct1)) \ {t} and R2 = (R ∩ V (Ct2)) \ {t}.
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t

v1 v2

e1 e2

F1 F2

Figure 1 Structure of Optold
ε,k . The paths P1 and P2 are drawn with thick lines.

We partition F into forests F1 and F2 such that F1 contains exactly the trees T of F with
V (T ) ∩R1 6= ∅ and F2 contains the remaining trees T ′, with V (T ′) ∩R2 6= ∅ (see Fig. 1).

Let v1 ∈ V (Ct1) and v2 ∈ V (Ct2) such that e1 = {t, v1} ∈ E(Ct1) and e2 = {t, v2} ∈ E(Ct2).
Let P1 be a minimum cost path in Optold

ε,k from t to R1 and let P2 be a minimum cost path
in Optold

ε,k from t to R2. Observe that P1 contains e1 and that P2 contains e2. We define
κ1 := c(P1), κ′1 := c(e1), and κ′′1 = c(P1)− c(e1). Analogously, κ2 := c(P2), κ′2 := c(e2), and
κ′′2 = c(P2)− c(e2). Note that we do not exclude that v1 ∈ R1 or v2 ∈ R2. In this case κ′′1
resp. κ′′2 are zero.

To simplify the presentation, we define κ′ := (κ′1 + κ′2)/2 and κ′′ := (κ′′1 + κ′′2)/2. Since
P1, P2 are minimum cost paths, c(Ct1) ≥ κ′1 + 2κ′′1 and c(Ct2) ≥ κ′2 + 2κ′′2 , which implies

c(Ct1) + c(Ct2) ≥ 2κ′ + 4κ′′. (8)

We have optnew + κ′1 + κ′′1 ≥ optold and optnew + κ′2 + κ′′2 ≥ optold. Therefore,

optnew + κ′ + κ′′ ≥ optold. (9)

I Lemma 7. Suppose there are at least two edge disjoint paths in Optnew
k between V (F1)

and V (F2). Then, for an arbitrary δ > 0, the performance guarantee of DeclareSteiner
is bounded from above by (11β−8)(1+ε)

8β−5+3ε + δ.

Proof. Let P ′ and P ′′ be two edge-disjoint paths within Optnew
k between V (F1) and V (F2)

such that none of their internal nodes are in V (Optold
ε,k ). Without loss of generality, we

assume that c(P ′) ≤ c(P ′′). We will also assume that optnew
k tends to optnew for large enough

k. Then, additionally to the previous constraints, we obtain the following.

optold
ε,k − 2κ′ + c(P ′) = optold

ε,k − κ′1 − κ′2 + c(P ′) ≥ αoptnew (10)

ζ · optnew
k ≥ c(P ′) + c(P ′′) ≥ 2c(P ′) (11)

From (9) and (10) and assuming optold
ε,k tends to optold

ε for large enough k, we obtain

c(P ′) ≥ (α− 1− ε)optnew + (1− ε)κ′ − (1 + ε)κ′′, (12)

and thus, due to (11) and (2),(9),

ζoptnew
k ≥ 2((α−1−ε)optnew +(1−ε)κ′−(1+ε)κ′′) ≥ 4

(1 + ε) (α−1−ε)optnew−4κ′′. (13)
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20 Robust Reoptimization of Steiner Trees

Furthermore, by using (8) and (9) in (4), we obtain

γ ≥ (α− 1− ε)optnew + (1− ε)κ′ + (3− ε)κ′′.

and thus, due to (2) and (9) and the fact that ζoptnew
k ≥ γ,

ζoptnew
k ≥ 2

(1 + ε) (α− 1− ε)optnew + 2κ′′. (14)

A linear combination of (13) and (14) with coefficients one and two gives ζ ≥ 8(α−1−ε)
3(1+ε) , by

assuming that optnew
k tends to optnew for large enough k. Using (1) we obtain

α ≤ (11β − 8)(1 + ε)
8β − 5 + 3ε + δ. J

Since the value obtained by Lemma 7 is better than the aimed-for ratio, from now on we
can restrict our focus to instances where in Optnew

k , there are no two edge-disjoint paths
between F1 and F2. In particular, this means that there is exactly one full component L
in Optnew

k that connects F1 and F2. Since we assumed that there are no Steiner nodes of
degree two in Optnew

k , there is exactly one edge eL in L such that removing eL leaves two
connected components of Optnew

k , one containing R1 and the other one containing R2. Let
PL be a minimum cost path between V (F1) and V (F2) in L (and thus PL clearly contains
eL). Let P 1

L be the subpath of PL between F1 and eL and let P 2
L be the subpath of PL

between F2 and eL. We define λ := c(PL), λ′ := c(eL), λ′′1 := c(P 1
L), and λ′′2 := c(P 2

L).
Similar to above, we define λ′′ := (λ′′1 + λ′′2)/2. Note that λ − λ′ = 2λ′′. It follows easily
that c(L) ≥ λ′ + 4λ′′. Let L′ be a forest with a minimum number of full components from
Optnew

k such that Optold
ε,k − Ct1 − Ct2 + L′ is connected. From Lemma 5, we obtain that L′

contains at most 3k full components and thus we considered guessing L′ when computing T3
in DeclareSteiner. We define ξ := c(L′)−λ′−4λ′′. Since L′ contains L, ξ is non-negative.

To find an upper bound on the value of α, we maximize α subject to the constraints (2),
(9) and the following constraints.

By removing eL from Optnew
k and adding the paths P1 and P2, we obtain a feasible

solution to (G,R, c); conversely, by removing e1 and e2 from Optold
ε,k and adding PL, we

obtain a feasible solution to (G,R \ t, c) that is considered in T2. Therefore

optnew
k + 2κ′ + 2κ′′ − λ′ ≥ optold, (15)

optold
ε,k − 2κ′ + λ′ + 2λ′′ ≥ αoptnew. (16)

In T2 we also consider to remove Ct1, Ct2 completely and to add L′. Therefore

optold
ε,k − 2κ′ − 4κ′′ + λ′ + 4λ′′ + ξ ≥ αoptnew. (17)

Due to Lemma 2 and assumption that ε due to transformation to k-restricted tree tends
to zero for large enough k, we may assume

β − βζ + ζ ≥ α. (18)

In T3, one of the considered guesses is L′ and therefore

ζ · optnew
k ≥ λ′ + 4λ′′ + ξ. (19)

We assume that optnew
k and optold

ε,k tends to optnew and optold
ε respectively for large

enough k and then scale the values such that optnew = 1. Then we perform the following
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replacements. We replace optold in (9) and in (15) by using (2); we use (9) to replace optold

in (16); we use (9) to replace optold in (17). We keep (18) and (19). This way we obtain a
linear program that maximizes α subject to the following constrains.

−κ′ − κ′′ + α/(1 + ε) ≤ 1
−2κ′ − 2κ′′ + λ′ + α/(1 + ε) ≤ 1

(1− ε)κ′ − (1 + ε)κ′′ − λ′ − 2λ′′ + α ≤ 1 + ε

(1− ε)κ′ + (3− ε)κ′′ − λ′ − 4λ′′ − ξ + α ≤ 1 + ε

(β − 1)ζ + α ≤ β
λ′ + 4λ′′ + ξ − ζ ≤ 0

Now we obtain the dual linear program

minimize y1 + y2 + (1 + ε)y3 + (1 + ε)y4 + βy5
s.t.: −y1 − 2y2 + (1− ε)y3 + (1− ε)y4 ≥ 0

−y1 − 2y2 − (1 + ε)y3 + (3− ε)y4 ≥ 0
y2 − y3 − y4 + y6 ≥ 0
−2y3 − 4y4 + 4y6 ≥ 0

−y4 + y6 ≥ 0
(β − 1)y5 − y6 ≥ 0

y1/(1 + ε) + y2/(1 + ε) + y3 + y4 + y5 ≥ 1

To finish the proof, we consider the following feasible solution. We set

y1 = 2(β − 1)(1 + ε)(1− 2ε)
7β − 4 + 5ε− 2εβ ; y2 = y1/2;

y3 = y1/(1− 2ε); y4 = y1/(1− 2ε);

y5 = 3(1 + ε)(1− 2ε)
(1− 2ε)(7β − 4 + 5ε− 2εβ) ; y6 = 3y1

2(1− 2ε) .

With these values, the objective function value matches the claimed value in Theorem 4. By
weak duality, we obtained an upper bound on the value of α in the primal linear program,
which finishes the proof.

5 Increased Edge Cost

We now consider the reoptimization variant where the edge cost of one edge is increased,
STPE+

ε . If e is the edge of G with increased cost, we define cnew : E(G)→ R≥0 as cnew(e′) =
c(e′) for all edges e′ ∈ E(G)\{e} and cnew(e) is the increased cost. Then the formal definition
of the reoptimization variant is as follows.

Given: A parameter ε > 0, a Steiner tree instance (G,R, c), a solution Optold
ε to (G,R, c)

such that optold
ε ≤ (1 + ε)optold, and a cost cnew(e) ≥ c(e) for an edge e ∈ E(G).

Solution: A Steiner tree solution to (G,R, cnew).

Observe that the cost function obtained after applying the local modification in general
is not a metric, and Optnew

ε,k is assumed to live in the metric closure according to the new
cost function.

I Theorem 8. Let (G,R, c,Optold
ε , e, cnew(e)) be an instance of STPE+

ε . Then, for an
arbitrary δ > 0, EdgeIncrease is a

( 7β−4+ε(4β−4)
4β−1 +δ

)
-approximation algorithm for STPE+

ε .
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Input :An instance (G,R, c,Optold
ε , e, cnew(e)) of STPE+

ε

Output :A Steiner tree T
Transform Optold

ε to a k-restricted solution Optold
ε,k such that optold

ε,k ≤ (1 + εk)optold
ε

where εk tends to 0 for large enough k;
Set T1 := Optold

ε ;
Set T2 := Guess(k + 1), with respect to cnew(e);
Set T = Ti with i = min argj∈{1,2}{c(Tj)}.

Algorithm 4: EdgeIncrease

Proof. Let us introduce the following notation. To emphasize which of the two instances
we consider, we write cold(e) instead of c(e), where e is the edge with increased cost. We
assume that e ∈ E(Optold

ε,k ), as otherwise T1 would be good enough already. Therefore the
graph Optold

ε,k − e has exactly two connected components F1 and F2. Similar to the previous
proof, we define R1 := R ∩ V (F1) and R2 := R ∩ V (F2).

In Optold
ε,k , let K be the full component that contains e. Let P be a minimum cost path

from R1 to R2 within K. Then we set κ := c(P )− cold(e).
In Optnew

k , there is a full component L of cost λ such that V (L) contains nodes from both
R1 and R2. If L has two edge-disjoint paths between R1 and R2, we define λ′ = 0. Otherwise
there is an edge eL ∈ E(L) such that eL is a cut edge in F1 ∪ F2 ∪ L, and λ′ := c(eL). We
obtain the following inequalities, where as before α = c(T )/optnew.

Removing e and adding a shortest path between R1 and R2 within L gives a feasible
solution to (G,R, cnew). Therefore T2 is good enough unless

optold
ε,k − cold(e) + λ/2 + λ′/2 ≥ αoptnew. (20)

One feasible solution to the original instance is to remove eL and to add P . Therefore we
obtain

optnew
k − λ′ + cold(e) + κ ≥ optold. (21)

We obtain an additional constraint by observing that in addition to using eL, within
Optnew

k the required vertices of K have to be connected. Let K1 be the tree of K − e that
contains R1 ∩ V (K). We see K1 as a rooted tree with the root r1 contained in e = {r1, r2}.
Let us fix any two vertices u 6= u′ ∈ V (K1) \ {r}, with parents v, v′. Then the minimum
distance between the two subtrees rooted at u, u′ is at least max{c(u, v), c(u′, v′)}. The
same argumentation holds for K2, which we define analogous to K1 (it contains R2 ∩ V (K),
and has the root r2). By traversing a path from V (K1) ∩ R1 to r1 within K1 and from
V (K2) ∩ R2 to r2, and adding the distances, we conclude that there is a collection of at
most k full components in Optnew

k that without counting eL have a total cost of at least κ.
Therefore, using T2,

ζoptnew
k ≥ λ′ + κ.

From these constraints, we obtain the claimed result using arguments similar to those of the
previous section. J
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Abstract
We consider the online scheduling problem to minimize the weighted `p-norm of flow-time of jobs.
We study this problem under the rejection model introduced by Choudhury et al. (SODA 2015)
– here the online algorithm is allowed to not serve an ε-fraction of the requests. We consider the
restricted assignments setting where each job can go to a specified subset of machines. Our main
result is an immediate dispatch non-migratory 1/εO(1)-competitive algorithm for this problem
when one is allowed to reject at most ε-fraction of the total weight of jobs arriving. This is in
contrast with the speed augmentation model under which no online algorithm for this problem
can achieve a competitive ratio independent of p.
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Keywords and phrases Approximation algorithms, Flow time, Scheduling problem, Rejection
model
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1 Introduction

The problem of minimizing average flow-time, also known as response-time or waiting time,
is of central importance in the scheduling literature [20, 5, 15, 2]. In the online setting
of this problem, jobs arrive over time and need to be scheduled on machines, which may
have varying characteristics. The flow-time of a job is defined as the difference between its
completion time and release date, and we would like the jobs to have small flow-time. One
way of measuring this is to take `p-norm of the flow-time of jobs, where the parameter p
could vary depending on the particular application – varying p would mean balancing the
trade-off between fairness and average response time. In this paper, we shall consider the
well-studied subset-parallel (i.e., the restricted assignment) model, where each job j specifies
a processing requirement pj , but can be processed on a subset of the machines only.

The framework of competitive analysis for such problems turns out to be too pessimistic –
it is known that there is no online algorithm for minimizing the average flow-time of jobs in the
restricted assignment setting (even if we restrict all job sizes to 1) [16]. One popular approach
toward handling this negative result is by providing the online algorithm slightly more
power than the off-line adversary. Kalyanasundaram and Pruhs [19] introduced the speed-
augmentation model where the machines of the online algorithm have slightly more speed
than those of the offline algorithm. The speed augmentation model has been very successful
in analyzing performance of natural algorithms for minimizing average flow-time in various
scheduling settings. Anand et al. [4] showed that a natural greedy algorithm is constant
competitive for minimizing average (weighted) flow-time in the restricted assignment setting
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(and in the more general unrelated machines setting) if we provide the online algorithm with
(1 + ε)-extra speed. Im and Moseley [18] extended this result to give an O(p/ε2)-competitive
algorithm for minimizing the `p-norm of weighted flow-time. However, they showed that the
linear dependence on p was necessary (for any immediate dispatch algorithm) even if we
allow constant-speedup and all weights are 1. In the extreme case when p becomes infinity,
it is known that one cannot obtain better than O(logm)-competitive algorithm (where m
denotes the number of machines) even if we allow constant speed-up.

To address the apparent inability of the speed-augmentation model to handle large values
of p, Choudhury et al. [13] considered a different job rejection model. Here, we allow the
online algorithm to reject an ε-fraction of the jobs, where ε is an arbitrary small positive
constant, whereas the off-line optimum is required to schedule all the jobs. This model seems
to give more power to the online algorithm than that by the speed augmentation model – the
latter model gives uniformly extra speed to all machines, whereas in the former model, we
could trade-off across machines (by rejecting more jobs assigned to a particular machine at
the expense of fewer rejected jobs to other machines). Choudhury et al. [13] formalized this
intuition by giving a constant competitive algorithm for the problem of minimizing weighted
`∞-norm of flow-time if the online algorithm is allowed to reject ε-fraction of the weight of the
jobs. In this paper, we extend this result by showing that one can get a constant competitive
algorithm even for the problem of minimizing weighted `p-norm of flow-time of jobs, if we
are allowed to reject ε-fraction of the weight of the jobs. Note that the competitive ratio has
no dependence on p, and so, we get a stronger result as compared to the speed-augmentation
model (though we seem to provide more power to the online algorithm).

Our algorithm is based on reducing the problem of minimizing `p-norm to that of
minimizing `∞-norm (with some more job rejections). But this requires one to track the
average `p-norm of jobs released so far (in an off-line optimum algorithm). This turns out to
be non-trivial, as this quantity could go up or down with time, and tracking it while not
exceeding the optimal value at any time forms the heart of our algorithm. We state the main
theorem of the paper as follows.

I Theorem 1. If the online algorithm is allowed to reject ε-fraction of the weight of the
jobs arrived so far, then there exists an O(1/ε12)-competitive algorithm for the problem of
minimizing weighted `p-norm of the flow-time of jobs in the restricted assignments setting.

Organization of the paper. In Section 2, we formally describe the problems considered in
this paper. For sake of clarity, we give details of the special case when p is 1 (i.e., the average
flow-time), and all weights are 1. The extension to the weighted case carries over using ideas
in Choudhury et al. [13], and the result for `p-norm for arbitrary p follows without much
changes – details of these changes are described in Section 7. In Section 4, we give an overview
of the new ideas in this paper. The scheduling algorithm is described in Section 5. The
algorithm is split in two parts – algorithm A first ensures that all queues are bounded, and
subsequently, we give algorithm B which uses A to construct the actual schedule. Analysis
of these algorithms is given in Section 6.

2 Problem Statement

We consider the online problem of scheduling jobs over multiple machines in the subset-
parallel (i.e., the restricted assignment) setting. Here, jobs arrive over time. Each job j

specifies a processing requirement pj and a subset Sj of the machines on which it can be
processed. Let rj denote the release date (i.e., the arrival time) of job j. In the weighted
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version of the problems, each job j also specifies a non-negative weight wj . In this paper, we
consider algorithms which follow the immediate-dispatch policy: when a job j arrives at time
rj , it is dispatched to one of the machines. Recall that we do not allow migration of jobs
across machines, and so, the job gets processed on the machine to which it gets dispatched.

Given a schedule S, the flow-time of a job in the schedule S, FS(j) is defined as the
difference between its completion time in S and rj . The goal of our algorithm is to minimize
the weighted `p-norm of the flow-time of jobs, defined as (

∑
j wjF

S(j)p)1/p. We allow
the online algorithm to reject an ε-fraction of the total weight of the jobs – note that the
algorithm could reject a job immediately on its arrival, or much later after dispatching the
job to a machine. Here ε is a positive (small enough) constant. Thus, we only consider
the total flow-time of jobs which do not get rejected by the online algorithm. However, the
optimal off-line algorithm is required to schedule all the jobs.

In this paper, we give details of the more special SumFlowTime problem, where we seek
to minimize the total sum of the flow-time of jobs (i.e., all job weights are 1, and p is 1).
The extension to the general case follows along predictable lines and is outlined in Section 7.

3 Related Work

There has been considerable work on scheduling with the objective of minimizing a suitable
norm of the flow-time of jobs. For the objective of average flow-time of jobs, a logarithmic
competitive algorithm in the identical machines setting is known [20, 5]. Garg and Kumar [15]
and subsequently Anand et al. [2] extended this result to the related machines setting. Garg
and Kumar [16] showed that the problem becomes considerably harder in the restricted
assignment setting and no online algorithm with bounded competitive ratio is possible.
Bansal and Pruhs [8] showed that the competitive ratio can be as high as Ω(nc) for the
problem of minimizing `p (for any 1 < p <∞) norm, where n is the number of jobs, even for
a single machine. For minimizing the maximum flow-time in the identical machines model,
Ambühl and Mastrolilli [1] gave a simple 2-competitive algorithm. However, Anand et al. [3]
showed that the competitive ratio of any online algorithm for the restricted assignment
setting is as high as Ω(m), where m is the number of machines.

The speed augmentation was first proposed by Kalyanasundaram and Pruhs [19] who
used it to get an O(1/ε)-competitive algorithm for minimizing flow time on a single machine
in the non clairvoyant setting. Bansal and Pruhs [8] proved that several natural scheduling
algorithms are O(1/ε)-competitive algorithm for minimizing `p norm (for any 1 < p <∞) of
flow-time of jobs in the single machine setting. Golovin et al. [17] extended this result to
parallel machines setting. Chekuri et al. [12] showed that the immediate dispatch algorithm
of Avrahami and Azar [5] is also O(1/ε)-competitive for all `p norms (p ≥ 1).

In the general setting of unrelated machines with speed augmentation, Chadha et al. [10]
gave an O(1/ε2)-competitive algorithm for minimizing the sum of flow-time of jobs, which
was improved and extended to the case of `p norm of flow-time by Im and Moseley [18]
and Anand et al. [4]. Im and Moseley [18] present an O(p/ε2+2/p) immediate dispatch and
non-migratory algorithm for minimizing the `p norm of weighted flow-time in unrelated
machine; they also show that any immediate dispatch non migratory online algorithm with
speed s > 1 has competitive ratio Ω(p/s). Anand et al. [3] showed that for the problem of
minimizing weighted `p norm of flow time of jobs, one cannot obtain competitive ratio better
than Ω

(
p

ε1−O(1/p)

)
even with non-immediate dispatch. The last two lower bounds hold even

in the restricted assignment model.
For minimizing the maximum (unweighted) flow time on unrelated machines, Anand et al.

[3] gave a O(1/ε)-competitive, (1 + ε)-speed algorithm; however their algorithm is not an
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immediate dispatch algorithm. In fact, Azar et al. [6] showed that any immediate dispatch
algorithm with constant speedup is Ω(logm)-competitive in the restricted assignment setting.
In the maximum weighted flow-time case, this lower bound holds even if we allow non-
immediate dispatch [3].

Scheduling with Rejection. There has been considerable work on online scheduling with
job rejections in the prize collecting setting where one incurs an extra cost for non-scheduled
jobs (see e.g. [9, 14, 7, 11]).

4 Our Techniques

Here we outline the main ideas of our algorithm (which we call algorithm A). The first
idea is to start with the result of Choudhury et al. [13]. They consider the same setting as
ours – jobs arriving online in the subset parallel setting. Given parameters ε and T , their
schedule processes all but ε-fraction of the jobs. Assuming that there a schedule for which
the `∞-norm of the flow-time of jobs is at most T , they give an online algorithm where the
flow-time of all the non-rejected jobs is at most O(T/ε2).

For our problem, let us assume that we know the number of jobs n, and the optimal value
T ?1 of the total flow-time of these jobs. From this it follows that at least (1−ε)-fraction of the
jobs will have flow-time at most T ? = T ?1 /(εn). Conversely, if we can have a schedule which
ensures that all but ε-fraction of jobs have flow-time at most T ?, then the total flow-time of
jobs which are not rejected is O(T ?1 /ε). Thus, we have converted the problem of minimizing
the `1-norm to that of minimizing the `∞-norm of flow-time. So it seems natural to apply
the result of Choudhury et al. mentioned above to our problem. However there are two main
issues:

The result of [13] assumes that the parameter T is such that there is a schedule for which
the maximum flow-time of all jobs is at most T . For us, we have a parameter T ? such
that there is a (off-line) schedule for which the maximum flow-time of all but ε-fraction
of the jobs is at most T ?/ε. We prove a generalization of the result of [13], where the
online algorithm can reject 7ε-fraction of the jobs, whereas we compare it with an offline
schedule for minimizing maximum flow-time of all but ε-fraction of the jobs. This requires
going through the calculations of [13] and making some subtle changes to accommodate
the changed settings.
The more serious issue turns out to be the fact that we really do not know the values T ?.
In [13], as is usual in such problems, one starts with a small guess T of T ? – whenever
the algorithm rejects more than ε-fraction of the jobs, they double the guess T and start
afresh. This ensures that the T will never go beyond twice the optimal value T ?. Here,
we cannot adopt this strategy. Suppose the input consists of two phases: an initial phase
with lot of jobs such that they have high objective value (both in terms of `1 and `∞
norms), and a second phase where jobs arrive over a much longer period of time, and
so their flow-time are small. Our algorithm will need to increase the value of T during
the first phase. However, it cannot work with a high value of T during the second phase
– otherwise, it may allow the jobs in the second phase to last much longer than in an
optimal solution. The problem arises from the fact that T ? is defined as the ratio of two
parameters, both of which change (in fact, increase) with time, and so, if we are trying
to keep track of T ?, we will need to both increase and decrease the estimate T .

We now describe the details about how we handle the second problem above. As mentioned
above, we maintain a variable T which is supposed to track the value T ? = T ?1 /(εn). We
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start with a slightly weaker goal: we want to maintain a schedule such that at all times the
queue size (i.e., the total remaining processing time of the jobs in the queue) on any machine
remains bounded by T/εO(1). We divide the execution of our algorithm into phases – during
a phase P , we shall not change the value of estimate T (denoted by est(P )). During a phase,
we shall work with the algorithm of Choudhury et al. [13] (by supplying it the estimate
T = est(P )). The phase will be terminated by one of the following two events:

Case 1: We reject too many jobs in this phase (i.e., at least O(ε) times the number of job
arrivals): here, we show that if N jobs arrive during this phase, then the optimal value of
the `1 norm of these jobs is Ω(NTε3). This lower bound allows us to pay for the flow-time
of these jobs incurred by our algorithm (which will be NT/εO(1)). Further, we can end this
phase, and start a new phase P ′ with est(P ′) = cT , where c = 2/ε. We call such phases
good phases. Whenever a good phase ends at a time t, we push its state on a stack S. More
formally, we push a new entry e on the stack S, where e is the tuple (T,Q(t), J). Here, Q(t)
denotes the jobs which are waiting to be processed on the queues of one of the machines, and
J is a set of jobs for which we can argue that the optimal value is large. Note that we have
shelved the jobs Q(t) on the stack, and we will start with empty queues in the next phase.

Case 2: A lot of jobs arrive during this phase: this is the worrying case, because if N jobs
arrive during this phase, then we may have paid Ω(NT ) for their total flow-time, but the
optimum value could be much less. The only way to pay for these jobs would be to charge
to the lower bound obtained from previous good phases (stored in the stack S). Whenever
we charge to a phase in the top of the stack, we pop it so that it does not get charged again.
Now, we would like to end this phase and start a new phase with a smaller value of the
estimate T . We face several obstacles here:

The first obstacle is that if t denotes the current time, then we would need to reduce the
number of jobs in the queues of the machines. Our analysis requires that for any phase
P , the queue sizes remain bounded by about est(P )/εO(1). Therefore, we are going to
reduce the value of est(P ), then we may need to reduce the queue sizes as well. This
would mean rejecting jobs in the queues of the machines. Now this can be done provided
we do not reject too many jobs. Assuming this is the case, we can start a new phase with
a reduced estimate of T/c. However, note that in beginning of the new phase, we will
still have non-empty job queues. Therefore, Case 1 (for the new phase) above needs to
take these jobs into account as well.
In the discussion above, when we are trying to reduce the queue sizes at time t, suppose
we are not able to do so (because we would end up rejecting too many jobs). Here,
we argue that even the optimal `1-norm of the flow-time of jobs in this phase will be
Ω(NTε3). Thus, this phase again behaves like a good phase, and we save its state on S.
Further, we start a new phase P ′ with estimate T again.

5 The scheduling algorithm

We first describe the algorithm A and then extend it to the actual scheduling algorithm.
We now give all the details of A. We maintain a variable T during the algorithm. The
variable T will change in powers of a constant c. For a phase P , we shall use s(P ) and e(P )
to denote its starting and ending time. We also have a stack S which is initially empty, and
the variable etop will denote the entry at the top of the stack. Each entry e in the stack will
be a tuple corresponding a phase P : (est(P ), Q(e(P )), J), where Q(t) denotes the jobs in
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Algorithm DispatchJob(Job j):

If j is T -big
Reject the job

Else
Let j be of class k.
If for all i ∈ Sj , loadi,k(rj) + pj ≥ α · T .

Reject the job
Else

Dispatch j to machine i ∈ Sj for which loadi,k(rj) is
minimum.

Figure 1 Algorithm for dispatching a job.

the queues of all the machines at time t, and J will be a set of jobs (for which we will argue
that the optimal value is also large).

We first describe the job dispatch rule. Some definitions first. Let β denote a constant
(which will be roughly O(1/ε)). We say that a job j is of class k if pj lies in the interval
[βk, βk+1). For a machine i, time t, and class k, let Qi,k(t) denote the jobs of class k waiting
in the queue of machine i at time t; and define the loadi,k(t) as the total remaining processing
time of the jobs in Qi,k(t). The job dispatch rule is described in Figure 1. A job is said
to be T -big if its size is at least T · (ε/2) and T -small otherwise. Thus, the algorithm just
considers the queue sizes on each machine corresponding to the class to which j belongs. If
all such queues are already full to their limit αT (where α = O(1/ε3)), we reject the job,
else we dispatch it to the one with the smallest load on it.

We now describe the rule according to which jobs are processed on a machine. This is
identical to that in [13], but we give it here (in Figure 2) for sake of completeness. It tries to
balance two aspects: (i) process small jobs first, and (ii) process jobs from that class for which
the corresponding queue is close to its allowable limit. Finally, we describe the algorithm
A in Figure 3. Let P denote the current phase, and P prev denote the previous phase. The
algorithm distinguishes two cases: (i) P prev was a good phase, i.e., est(P prev) ≤ est(P ) = T ,
or (ii) P prev was a bad phase, i.e., est(P prev) > est(P ). If the former case happens, the
phase P begins with empty queues of all machines, whereas in the latter case, it begins with
non-empty queue sizes. The variable P ′ is meant to be P prev in the latter case, whereas
it is undefined (or empty) in the former. The variable A(P ) keeps track of the set of jobs
arrived so far in P , whereas the variable A′(P ) keeps track of the set of jobs arrived in both
P and P ′. The variable R(P ) denotes the set of jobs which get rejected during the current
phase. The variables a(P ), a′(P ) and r(P ) respectively denote the cardinality of the sets
A(P ), A′(P ) and R(P ). Let P top denote the phase corresponding to the entry in the top of
the stack S. In case est(P top) is T or T/c, we define Qtop to be Q(e(P top)), i.e., the jobs
which were shelved to the stack during this phase. Otherwise Qtop is set empty.

We now discuss the various steps in A. We start with the estimate T to be 0, and P
as the current phase. Recall that P ′ denotes the previous phase if the previous phase was
a bad phase, else it is empty. When a job j arrives, we will increment the counters a(P ),
a′(P ) which counts the number of jobs arrived so far in P and P ∪P ′ respectively. Normally,
we will just call DispatchJob(j). However, this procedure will reject j if j happens to
T -big. Now if very few (i.e., 1/ε) jobs have arrived so far, then we do not want to reject any
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Algorithm ProcessJob(i, t):

k? := argmaxk
loadi,k(t)

βk .
Process the earliest released job from the queue Qi,k?(t)

(use a fixed tie-breaking rule).

Figure 2 Algorithm for deciding which job gets processed at time t on a machine i.

job. Thus, if this case happens in the initial period of this phase (when not many jobs have
arrived), we simply end this phase, and start a new phase with a much higher estimate – this
phase will be a good phase because this job’s processing time serves as a good lower bound.
Note one subtlety – we will consider job j again in the next phase (because we haven’t called
DispatchJob(j) yet).

In the algorithm, we define two procedures – EndGoodPhase and EndBadPhase.
The first one assumes that the current phase has ended as a good phase, while the latter one
assumes otherwise. The procedure EndGoodPhase just ends the current phase by pushing
a new entry on the stack, resetting the value of T , and initializing all queues to empty. The
second procedure simply resets the value of T , but does not disturb the queues – the jobs in
these queues carry over to the next phase.

Finally, we have a procedure QueuedJobs(v), where v is a parameter. This procedure
finds the minimal collection of jobs which need to be removed from each of the queues
Qi(k, t), where t denotes the current time, in the reverse order in which they were added to
these queues, such that the total remaining processing time of jobs in each of the queues is
at most v. It returns the set of such jobs.

As discussed before, algorithm A tries to maintain a schedule such that for all machines
i, class k and time t, the queues Qi,k(t) remains bounded by est(P )/εO(1), where P denotes
the phase containing time t. Note that Qi,k(t) only counts the jobs which arrive over this
phase (and may be the jobs which were present initially in the queues of the machines if
the previous phase was a bad phase). It does not count the jobs which have been shelved
in the stack S. We will however prove a stronger property: for any processing class k and
an estimate T , let JkT be the set of jobs of class k which arrived during phases P for which
est(P ) was T ; and let JT = ∪kJkT denote the set of all such jobs. Then, at any time t
and machine i, the total remaining processing time of jobs in JkT which were dispatched
to machine i remains bounded by T/εO(1). The fact, however, by itself is not sufficient to
guarantee that we can finish any job of JT within T/εO(1) time. We now present our actual
algorithm (algorithm B) which ensures that the flow time of every job of JT (with some
additional rejections over algorithm A) is bounded to at most T/εO(1).

The scheduling algorithm B. We here state our final scheduling algorithm. We will be
using the result of Choudhury et al. [13] for the GenWtdMaxFlowTime problem. In the
GenWtdMaxFlowTime problem, a job j has two weights associated with it, the rejection-weight
w

(r)
j and flow-time-weight w(f)

1 ; the first one is used for counting the rejection weight of
rejected jobs, while the second one is used in the weighted flow-time expression. The objective
of the problem is to minimize the maximum over all jobs j of w(f)

j Fj , where Fj denotes
the flow-time of job j in a schedule; and we are allowed to reject jobs of rejection-weight
at most ε times the total rejection-weight of all the jobs. The objective value is compared
with the offline optimum which is not allowed to reject any job. In order to describe their
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Algorithm A:

Initialize:
T ← 0, P ′ ← ∅; a(P ), a′(P ), r(P )← 0; A(P ), A′(P ), R(P )← ∅.

Phase(P):
1. When a job j arrives at current time t

(i) If j is T -big and a(P ) ≤ 1/ε,
call EndGoodPhase(T,Q(t), A(P ) ∪ {j}, dpje).

(ii) Else
– Update A(P )← A(P ) ∪ {j}, a(P )← a(P ) + 1
– Update A′(P )← A′(P ) ∪ {j}, a′(P )← a′(P ) + 1
– call DispatchJob(j)
– if this job gets rejected,

update R(P )← R(P ) ∪ {j}, r(P )← r(P ) + 1
2. If r(P ) ≥ 7ε · a′(P )

(i) call EndGoodPhase(T,Q(t), A′(P ), cT ).
3. If a(P ) ≥ (|Q(s(P )|) + |Qtop|)/ε

(i) Reject the jobs in Q(s(P )) ∪Qtop.
(ii) If est(P top) = T or T/c, pop the stack S.
(iii) Let J ← QueuedJobs(T/c).
(iv) If |J | ≤ 7εa(P )

Reject all jobs in J and Call EndBadPhase(T/c).
(v) Else Call EndGoodPhase(T,Q(t), A(P ), T ).

EndGoodPhase(T1, J1, J2, T2):

1. Push (T1, J1, J2) on the stack S.
2. Update T ← smallest value of ck above or equal to T2, for integer k.
3. Initialize all queues to empty.
4. Start a new phase P with

A(P ), A′(P ), R(P )← ∅, a(P ), a′(P ), r(P )← 0.

EndBadPhase(T1):

1. Update T ← T1.
2. The queues on all machines remain unchanged.
3. Set P ′ to be the current phase P .
4. Start a new phase P with A′(P )← A(P ′), A(P )← ∅.

a′(P )← |A′(P )|, R(P )← ∅, r(P ), a(P )← 0.

Figure 3 Algorithm A.

result, we also need to define flow-time-weight class and rejection-weight-density class. A
job j with processing time pj , rejection-weight w(r)

j and flow-time-weight w(f)
j is of flow-

time-weight class k if 2k ≤ w(f)
j < 2k+1. Similarly, it is of rejection-weight-density class k if

2k ≤ w(r)
j /pj < 2k+1. For a job j with remaining processing time p′j at some time during a

schedule, its remaining weighted processing time is simply w(f)
j · p′j . Then we have
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I Theorem 2 ([13]). Suppose there is an immediate dispatch schedule for an instance of the
GenWtdMaxFlowTime problem with the following property: for every flow-time-weight class
k and rejection-weight-density-class k′, time t and machine i, the total remaining weighted
processing times of such jobs waiting in the queue of machine i at time t is at most T , for a
parameter T . Then, one can construct another immediate dispatch schedule which dispatches
each job to the same machine as in the given schedule, and which may reject some jobs
of rejection weight O(ε) times the total rejection weight of all jobs, such that the weighted
flow-time of every job is at most T/ε4.

We now present algorithm B. This algorithm first maps our instance I to an instance I ′
of the GenWtdMaxFlowTime problem and then invokes the above theorem to get a schedule
for I ′. We show that the corresponding schedule for I has the desired properties.

Our algorithm B will emulate algorithm A – when a job j arrives, it is dispatched
according to A: if A rejects this job, B also rejects it; and if A dispatches it to machine i,
then B also dispatches this job to i. Further, if j does not get rejected, B adds the job to the
instance I ′ with the same release date and processing requirement. If the current time (at
which j is released) belongs to a phase P of schedule A, then we set w(f)

j to 1/est(P ). We
set w(r)

j to 1. Now we invoke the theorem above to build a schedule for I ′. This schedule may
reject some more jobs, but dispatches jobs to the same machine as in B. Thus, we can use
the same schedule for I as well. This completes the description of our scheduling algorithm.

6 Analysis

We here give the analysis of the schedules A and B.

Algorithm A. We first show that algorithm A does not reject too many jobs.

I Lemma 3. Algorithm A rejects O(ε)-fraction of the jobs.

Proof. We argue that the total number of jobs rejected in a phase P is at most O(ε) times
the total number of jobs released during this phase and the previous phase. Summing over
all phases, this will prove the desired result.

Algorithm A employs the following job rejections within a particular phase:
(a) Whenever a job arrives, the DispatchJob routine may reject the job - by Step 2

of the algorithm, the total number of such jobs is at most 7εa′(P ) + 1 ≤ 8εa′(P ),
because we know that a′(P ) ≥ 1/ε (indeed, if a′(P ) < 1/ε, then it is easy to check that
DispatchJob will reject a job j only is it is T -big. But then we should have terminated
this phase in Step 1(i) of the algorithm.)

(b) Rejection of jobs in Step 3: Note that steps 3(i) and 3(iv) can be executed at most once
during a phase, because after these steps, we will end this phase. The conditions in Step
3 clearly state that the number of such job rejections is O(εa′(P )). J

Next we state the main technical property of algorithm A. This is where we show that
for good phases, we get a lower bound on the optimal solution as well. Suppose the entry
(est(P ), Q, S) be pushed to the stack S at the end of a good phase P . Then the following
lemma 4 gives a lower bound on the optimal flow-time of the jobs of S. Since A(P ) ⊆ S,
the lower bound also holds for the jobs arriving in the phase P . The proof of this lemma is
deferred to the full version; the proof uses ideas from [13], but requires many new details as
well.
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I Lemma 4. Suppose the entry (est(P ), Q, S) be pushed to the stack S at the end of a good
phase P . The total flow-time of any (off-line) algorithms on the set of jobs in S is at least
ε2 · |S| · est(P )/c.

Recall that for any class k, and parameter T , JkT denotes the set of jobs of class k which
arrived during those phases P for which est(P ) was T ; and JT denotes ∪kJkT .

I Lemma 5. Algorithm A ensures that at any time t, machine i and class k, the total
remaining processing time of jobs of JkT , which have been dispatched to a machine i, at a
time t is at most O(αT ).

Proof. We shall prove some invariant properties of the stack S. The lemma will follow from
these properties. Note that an entry in the stack was pushed in Steps 1(i), or 2(i) or 3(v).
For each such entry e, let Te denote the estimate for the corresponding phase. For the sake
of writing down the invariants, we define a related quantity, T ′e as follows: if e was pushed on
the stack due to Steps 1(i) or 2(i), we define T ′e = Te. Else we set T ′e = Te/c. Consider a time
t, and let P denote the current phase, and T be est(P ). Let the entries in the stack (from
top to bottom order) be e1, . . . , ek. Then, the following property holds: T > T ′e1

> . . . > T ′ek
.

We prove this by induction on t. For t = 0, there is no entry in the stack, and so this
statement is true trivially. Now, suppose this is true for some time t during a phase P , and
again, let T denote est(P ). If this phase ends in Steps 1(i) or 2(i), then we push another
entry e in the stack with Te = T ′e = T . Further, the estimate for the next phase is strictly
larger than T . Therefore, the condition continues to hold in the next phase.

Now, suppose the current phase P ends in Step 3(iv). If the stack top entry e satisfied
T ′e = T/c, then Te would be T or T/c. Hence, we would have popped such an entry in Step
3(ii). So when this phase ends, the top entry e in the stack would have T ′e ≤ T/c2. The next
phase would have estimate equal to T/c. Therefore, the invariant continues to hold in the
next phase as well.

Finally, suppose the current phase ends in Step 3(v). As argued above, we will pop out
any entry with T ′e = T/c. Further, we push a new entry e with T ′e = T/c, and the estimate
for the next phase is T . Thus the invariant holds in this case as well.

The statement of the lemma is clearly true for jobs released in a particular phase (by
the properties of the DispatchJob algorithm. Now the above invariant implies that for any
parameter T , the jobs from JT which are still alive (i.e., waiting to be processed) can come
from at most two phases. Thus, the lemma is true. J

Algorithm B. We now discuss the properties of algorithm B. We first show that the
flow-time of the jobs in a particular phase is bounded by the estimate for that phase.

I Lemma 6. Algorithm B ensures that the flow time of every job of JT (which is not rejected)
is at most O(αT/ε4).

Proof. We use the notation while discussing algorithm B. Since the rejection weights are all
1, the rejection-weight-density class essentially becomes the same as the definition of class
based on processing time only. Assuming c is a power of 2, it follows that each flow-time-
weight-class corresponds to a particular value of the estimate T (since the estimates are
powers of c). Now, Lemma 5 shows that for a particular class k and estimate T , and a time
t and machine i, the total remaining processing time of jobs from JkT at time t on machine i
is at most O(αT ). Hence, their total remaining weighted-processing time is O(α) – note that
this bound holds for all jobs (irrespective of k and T ). Applying Theorem 2, we get that the
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schedule B incurs weighted flow-time of O(α/ε4) for such jobs, and so, the actual flow-time
is O(αT/ε4). J

Having bounded the flow-time of jobs in our schedule, we now give the lower bound of
the corresponding quantity for the off-line optimum. Our main technical lemma 4 already
lower bounds the optimum value for a specific good phase. The following claim follows easily
from this result.

I Claim 7. The total flow-time of jobs released during good phases is at most O(1/ε11) times
the optimal value.

Proof. The proof directly follows from Lemma 4 and Lemma 6, and the fact that |A′(P )| ≤
|S| ≤ |A′(P )|, where the entry (est(P ), Q, S) is pushed to the stack S at the end of the
good phase P , and |A′(P )| is at most the number of jobs released during P and the previous
phase. J

It remains to bound the flow-time of jobs released during bad phases. Before this, we
make an important observation.

I Claim 8. For any phase P , the set of jobs in Q(s(P )), i.e., the jobs waiting in the queues
of the machines at the beginning of this phase, could have only arrived during the previous
phase.

Proof. Let P ′ be the phase preceding to P . If P ′ is a good phase, then P will start with
empty queues, so there is nothing to prove. If P ′ is a bad phase, it will remove the jobs in
Q(s(P ′)) (in Step 3(i)), and so, the only jobs which carry over to phase P must have been
released during P ′. J

I Lemma 9. The total flow-time of jobs released during bad phases is at most O(1/ε12)-times
the optimal value.

Proof. Let B1, . . . , Bl be a maximal sequence of bad phases, and let G0 denote the good
phase preceding B1. In Step 3 of the algorithm A, each of the phases Bi may pop an entry
from the stack – let this entry correspond to a good phase Gi. Note that G0 is same as
G1. We know that est(Gi) ≥ est(Bi)/c. For phase P , let N(P ) denote the number of jobs
released during that phase. For phase Bi, we must have ended it when the condition in
Step 3 was satisfied. Therefore, N(Bi) is at most (N(Gi) + N(Bi−1))/ε, if i ≥ 1 (using
the above claim). Lemma 6 shows that the total flow-time of jobs during B1, . . . , Bl is at
most

∑l
i=1 N(Bi) · αest(Bi)

ε4 . If T denotes est(B1), then est(Bi) = T
ci−1 . Therefore, the total

flow-time of the jobs released during B1, . . . , Bl is at most
l∑
i=1

N(Bi) ·
αT

ci−1ε4 . (1)

We also know that N(Bi) ≤ 1/ε · (N(Gi) +N(Bi−1). Since c = 2/ε, we get

N(Bi) ·
αT

ci−1ε4 −N(Bi−1) · αT

2ci−2ε4 ≤ N(Gi) ·
αT

2ci−2ε4 .

Summing the above for all i, we get∑
i

N(Bi) ·
αT

ci−1ε4 ≤ 2c
∑
i

N(Gi) ·
αT

ci−1ε4 .
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Now observe that est(Gi) ≥ T
ci , and Lemma 4 implies that the total flow-time of the

jobs released during G1, . . . , Gl is at least
∑
i Ω(ε3 ·N(Gi) · est(Gi)), which is at least Ω(ε12)

times the total flow-time of the jobs released during B1, . . . , Bl. Now, we sum this up over
all maximal sequences of bad phases, and observe that Gi is uniquely determined by Bi(a
stack entry once popped never gets pushed back again). J

7 Extension to weighted `p norm

We first outline the steps needed to extend our results to the case where each job j has a
weight wj . Let W denote the total weight of arriving jobs, and let T ?1 denote the optimal
value T ?1 of the total weighted flow-time of these jobs. It is easy to see that jobs of total
weight at least (1 − ε)W will have (unweighted) flow-time at most T ? = T ?1 /(εW ). Thus,
we modify algorithm A to maintain a variable T which is supposed to track the value T ? =
T ?1 /(εW ).

We say a job j with processing time pj , and weight wj is of density class k if βk ≤
wj

pj
< βk+1, for some constant β (which will be roughly O(1/ε)). The job dispatch and job

processing rule is same as the algorithm for the unweighted case, with the only difference
that now Qi,k(t) and loadi,k(t) are defined for every density class k. Rest of the details of
A remain unchanged, except for the fact that a(P ), a′(P ), r(P ) now keep track of the total
weight of corresponding jobs. The algorithm B remains unchanged except for the fact that
for a job j, it sets w(r)

j to its weight wj .
We now show how our results extend to the problem of minimizing the `p norm of the

flow time of the jobs, for some positive constant p. For sake of clarity, we argue about the
unweighted case only, though the weighted case follows similarly. Let us assume that we
know the total number of the jobs released n, and the optimal value T ?1 of the `p norm of the
flow-time of these jobs. From this it follows that at least (1− ε)-fraction of the total number
of jobs will have (unweighted) flow-time at most T ? = T ?1 /(εn)1/p. Thus in algorithm A,
we maintain a variable T which is supposed to track the value T ? = T ?1 /(εn)1/p. Also, we
increase or decrease T in factors of c = (2/ε)1/p. The rest of the algorithms A and B remains
as it is for the problem of minimizing the `1 norm of the flow time of jobs.
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Abstract
Algorithm designers typically assume that the input data is correct, and then proceed to find
“optimal” or “sub-optimal” solutions using this input data. However this assumption of correct
data does not always hold in practice, especially in the context of online learning systems where
the objective is to learn appropriate feature weights given some training samples. Such scenarios
necessitate the study of inverse optimization problems where one is given an input instance as
well as a desired output and the task is to adjust the input data so that the given output is indeed
optimal. Motivated by learning structured prediction models, in this paper we consider inverse
optimization with a margin, i.e., we require the given output to be better than all other feasible
outputs by a desired margin. We consider such inverse optimization problems for maximum
weight matroid basis, matroid intersection, perfect matchings in bipartite graphs, minimum cost
maximum flows, and shortest paths and derive the first known results for such problems with
a non-zero margin. The effectiveness of these algorithmic approaches to online learning for
structured prediction is also discussed.
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1 Introduction

Algorithm designers generally assume that the input data is sacrosanct and correct. Al-
gorithms are then typically run on this input data to compute “optimal” or “sub-optimal”
solutions quickly whether it be the computation of a maximum spanning tree, a maximum
matching, max weight arborescence, or shortest paths. However, with an increasing reliance
on automatic methods to collect data, as well as in systems that learn, this assumption does
not always hold. The input data can be erroneous (even though it may be approximately
correct), and it becomes important to “adjust” the input data to achieve certain desired
conditions.

A simple example can be used to illustrate the main point – suppose we are given a
weighted graph G = (V,E) and a spanning tree T , and told that T should be a maximum
weight spanning tree in G. The goal now is to perturb the edge weights of the graph G,
minimizing the L2 norm of the perturbation, so that T is indeed the optimal spanning tree.
This kind of problem has been studied previously in the form of “Inverse Optimization”
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A dog catches the red ball

root

Figure 1 Example dependency parse tree. The tree describes the relations between head words
and their dependents in the sentence.

problems. However, we wish to accomplish a stronger goal of making sure that the given
tree T is better than every other tree in G by a given margin δ.

Our initial motivation for studying this problem comes from the structured prediction
task in machine learning [15, 20, 3, 22, 24]. For concreteness and ease of exposition, we
now describe structured prediction in the context of predicting dependency parse trees for
natural language sentences. Given an English sentence, its dependency parse is a rooted,
directed tree that indicates the dependencies between different words in the sentence as
shown in Figure 1. The input sentence can be represented as a complete, directed graph on
the words of the sentence that is parameterized by features on the edges. Given a learned
model (represented as a vector of parameters), the weight of an edge is computed as the
inner product of its feature vector and the model. As linguistic constraints dictate that the
required dependency parse must form a rooted, spanning arborescence of the graph, one can
use off-the-shelf combinatorial algorithms [9, 2] to find the highest weight arborescence. The
learning problem is thus to find a parameter vector such that once the edges are weighted by
the inner products, running a combinatorial optimization algorithm would return the desired
parse tree. At “training time”, we are given a sentence as well as its correct parse tree and the
problem that we need to solve is exactly the inverse optimization problem - given the current
model and the parse tree, say T , find the minimum perturbation to the model so that the
combinatorial optimization algorithm would return T . It is well established in the learning
theory literature that achieving a large margin solution enables better generalization [6]. We
consider minimizing the L2 norm because of connections to prior work [14]. In particular, for
applications in structured prediction, the convergence and error bounds (included in Section
6) require L2 norm minimization.

In our work we consider such inverse optimization problems with a margin in a general
matroid setting. We consider both the problem of modifying the weights of the elements of a
matroid, so that a given basis is a maximum weight basis (with a given margin of δ) and
the considerably harder problem of matroid intersection where a given basis of two matroids
should have weight higher (by at least δ) than any other set of elements that is a basis in
the two matroids. This framework captures two special cases which are useful for structured
prediction - namely maximum weight bipartite matching (useful for language translation)
and maximum weight arborescence (useful for sentence parsing). We also consider δ-margin
inverse optimization problems for a number of other classical combinatorial optimization
problems such as perfect matchings, minimum cost flows and shortest path trees. In addition,
we present a generic framework for online learning for structured prediction using the
corresponding inverse optimization problem as a subroutine and present convergence and
error bounds on this framework.

1.1 Related Work
Inverse optimization problems have been widely studied in the Operations Research literature.
Most prior work however has focused on minimizing the L1 or L∞ norms between the weight
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vectors and, more importantly, do not allow non-zero margin (δ). Heuberger [13] provides
an excellent survey of the diverse inverse optimization problems that have been tackled.
Both the inverse matroid optimization [8] and matroid intersection [16] have previously been
studied in the setting of minimizing the L1 norm and with zero margin. However, they use
techniques that are specialized to minimizing the L1 norm of the perturbation and do not
extend to minimizing the L2 norm. At the same time, these approaches to do not generalize
to the general case of inverse optimization with non-zero margins.

In typical global models for structured prediction (for e.g. see [15, 17, 24, 3, 5, 18]), the
discrete optimization problem is considered a “black box”. By treating the combinatorial
problem as a black box, these methods lose the ability to precisely reason about how certain
changes to the underlying parameter vector can affect the eventual output. The simplest
approach to solving the online structured prediction problem is the structured perceptron [3].
On each example, the structured perceptron makes a prediction based on its current model.
If this prediction is incorrect, the algorithm suffers unit loss and updates its parameters with
a simple linear update that moves the predictor closer to the truth and further from the
current best guess. While empirically successful in a number of problems, this particular
update is relatively imprecise: there are typically an exponential number of possible outputs
for any given input, and simply promoting the correct one and demoting the models’ current
prediction may do very little to move the model as far as it needs to go. An alternative
approach is the large margin discriminative approach [6] that seeks to change the parameters
as little as possible subject to the constraint that the true output has a higher score than
all incorrect outputs. However, such an approach is often computationally infeasible for
structured prediction as there are usually an exponential number of potential outputs.
McDonald et al. [18] circumvent this infeasibility by using a k-best list of possible outputs
and restrict the set of constraints to require that the true output has a higher score than the
incorrect outputs on the k-best list. This has been shown to be effective for small values of k
on simple parsing tasks [18]. However, for more complex tasks, like machine translation, one
needs more complicated update frameworks [1]. In this work we show that the large margin
discriminative approach is applicable to a wide range of problems in structured prediction
using techniques from inverse combinatorial optimization.

In the context of online prediction, the most related work to ours is that of Taskar et
al. [22], who also consider structured prediction using inverse bipartite matchings. They define
a loss function that measures, against a ground truth matching, the number of mispredicted
edges in the found matching. This “Hamming distance” style loss function nicely decomposes
over the structure of the graph and thereby admits an efficient “loss augmented” inference
solution, in which correct edges are penalized during learning. (The idea is that if correct
edges are penalized, but the model still produces the correct matching, then it has done
so with a sufficiently large margin.) This idea only works in the case of decomposable loss
functions, or the simpler 0-margin formulation. In comparison, our approach works both for
decomposable loss functions as well as “zero/one loss” over the entire structure. Furthermore,
our approach generalizes to arbitrary matroid intersection problems and minimum cost flows
and thus is applicable to a much wider range of structured prediction problems.

1.2 Contribution and Techniques
A lot of prior work in the inverse optimization literature formulates the problem as a linear
program and then uses strong duality conditions to find the new perturbed weights. However,
such techniques cannot be extended to handle a non-zero margin that is required by the
application to structured prediction. We formulate inverse optimization to minimize the
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L2 norm of the perturbations as a quadratic program and use problem specific optimality
conditions to determine a concise set of linear constraints that are both necessary and
sufficient to guarantee the required margin. In particular, one of the key ingredients is a set
of polynomially many linear constraints that ensure that an appropriately defined auxiliary
graph does not contain small directed cycles. We note that our formulations can easily be
adapted to minimize the L1 norm of the perturbations by simply modifying the objective
and using linear programming.

We obtain concise formulations for exactly solving δ-margin inverse optimization problems
for (i) maximum weight matroid basis, (ii) maximum weight basis in the intersection of two
matroids, (iii) shortest s-t path, (iv) shortest path tree, (v) minimum cost maximum flow in
a directed graph.

We also present convergence results for the generic online learning framework for structured
prediction motivating our study.

The rest of the paper is organized as follows. In Section 2, we formally define δ-margin
inverse optimization. In Sections 3 and 4, we present our results on inverse optimization for
matroids, and matroid intersections respectively. In Section 5, we present a more efficient
algorithm for the special case of inverse perfect matchings in bipartite graphs. In Section
6, we describe an online learning framework for structured prediction as an application.
The proofs of convergence and error bounds for this learning framework as well as some
preliminary experimental results for our learning model are included in the full version of
this paper [7]. We also defer the results for inverse optimization for shortest path trees and
minimum cost flow problems to the full version.

2 Problem Description

As explained in the introduction, we require a given solution to be better than all other
feasible solutions by a margin of δ. We now formalize this notion of δ-optimality.

I Definition 1 (δ-Optimality). For a maximization problem P , let F denote the set of feasible
solutions, let w be the weight vector, c(w,A) denote the cost of feasible solution A under
weights w, and let δ ≥ 0 be a scalar. A feasible solution S ∈ F is called δ-optimal under
weights w if and only if

c(w, S) ≥ c(w, S′) + δ, ∀S′(6= S) ∈ F .

δ-optimality for minimization problems is defined similarly. All problems we consider in
this work can be classified as δ-margin inverse optimization.

I Definition 2 (δ-Margin Inverse Optimization). For a given optimization problem P , let F
denote the set of feasible solutions, let w be the weight vector, let δ ≥ 0 be a scalar, and let
S ∈ F be a given feasible solution. δ-Margin Inverse optimization is to find a new weight
vector w′ minimizing ||w′ − w||2 (L2 norm) such that S is the δ-optimal solution of P under
weights w′.

In the following sections we consider δ-margin inverse optimization for a number of
problems mentioned earlier.

3 Maximum weight matroid basis

In order to provide intuition about the type of problems we propose to solve in this paper,
we first begin with the simple case of Inverse Matroid Optimization. We recall the definition
of a matroid.
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I Definition 3 (Matroid). A matroid is a pair M = (X, I) where X is a ground set of
elements and I is a family of subsets of X (called Independent sets) such that
(i) I 6= φ.
(ii) (Hereditary) If B ∈ I, and A ⊆ B, then A ∈ I.
(iii) (Exchange property) If A,B ∈ I, and |A| < |B|, then there exists some element e ∈ B\A

such that A ∪ {e} ∈ I.

I Definition 4 (Matroid Basis and Circuit). Let M = (X, I) be a matroid. Then any maximal
independent set in I is called a basis of the matroid. Conversely, any minimal dependent set
is called a circuit.

For the inverse problem we are given a matroid M = (X, I), a weight function w on the
elements, and a basis B of M. The goal is to find a weight function w′ so that B is the
δ-optimal basis of M under the new weights. As it is well known that a spanning tree is a
basis of a graphical matroid, this inverse matroid optimization problem directly generalizes
the inverse maximum spanning tree problem.

We first state a simple optimality condition for a given basis B of a matroid M. An easy
generalization of [21] for δ ≥ 0 gives the following lemma.

I Lemma 5 (Corollary 39.12b in [21]). A given basis B of a matroid M is δ-optimal (under
weight function w) if and only if for any f /∈ B, and each e ∈ CB(f), w(e)−w(f) ≥ δ, where
CB(f) denotes the unique circuit in B ∪ {f}.

We thus have a set of polynomially many linear constraints that are necessary and sufficient
for the given basis B to be δ-optimal. The inverse matroid optimization problem can then
be formulated as a linearly constrained quadratic problem as follows -

min
w′

∑
e∈X

(w′(e)− w(e))2 subj. to: (1)

w′(e)− w′(f) ≥ δ, ∀f /∈ B, ∀e ∈ CB(f) (2)

Such a program with a quadratic objective and linear constraints can be solved in
polynomial time and a number of practical solvers such as [12] are available.

4 Matroid Intersection

Similar to the case with a single matroid, we need to derive a necessary and sufficient
condition for a common basis B of two matroids to be δ-optimal. We can establish such an
optimality condition with the help of an exchange graph associated with the basis B and
matroids M1 and M2.

I Definition 6 (Exchange Graph). Given two matroids M1 = (X, I1) and M2 = (X, I2),
a weight function w : X → R+, and a common basis B, an exchange graph is a directed,
bipartite graph G = (V,A) with a length function l on edges that is defined as follows.

V = B ∪X \B (3)
A = A1 ∪A2 (4)
A1 = {(x, y)|x ∈ B, y ∈ X \B,B − {x}+ {y} ∈ I1} (5)
A2 = {(y, x)|x ∈ B, y ∈ X \B,B − {x}+ {y} ∈ I2} (6)

l(s) =
{
w(x) if s = (x, y) ∈ A1

−w(y) if s = (y, x) ∈ A2
(7)
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The above graph captures the exchange operations that can be performed. An edge
(e, f) implies that deleting e and adding f to B preserves independence w.r.t matroid
M1 and similarly for the other direction. As the graph is bipartite, every cycle is of
even length - a cycle C = (x1, y1, x2, y2, . . . xk, yk, x1) corresponds to constructing a set
B′′ = B − {x1, x2, . . . xk} ∪ {y1, y2, . . . , yk}. Further

w(B′′) = w(B)−
k∑
i=1

w(xi) +
k∑
i=1

w(yi) = w(B)− l(C)

where l(C) =
∑
e∈C l(e) is the sum of lengths of edges in the cycle C. We are now in a position

to present the δ-optimality condition of B in terms of the exchange graph. Fujishige [11]
shows the following lemma for the case of δ = 0. We include the extended proof for general δ
margin here for completeness. It is important to note that while there are other optimality
conditions for matroid intersection such as the weight decomposition theorem by Frank [10],
these conditions do not easily generalize for non-zero δ.

I Lemma 7 (Matroid Intersection δ-optimality condition). The given common basis B is
δ-optimal if and only if the exchange graph G contains no directed cycle C such that∑
e∈C l(e) ≤ δ.

Proof. We’ll refer to two well-known lemmas [21] regarding the relationship between bases of
a matroid and matchings in the exchange graph. Let G1 = (V,A1) and G2 = (V,A2) be the
subgraphs of G induced by the two matroids respectively. Further for B′ ⊂ X, let G(B,B′)
denote the subgraph induced on the G by the vertex sets B \B′ and B′ \B.

I Lemma 8 (Corollary 39.12a in [21]). If B′ is a basis of matroid M1 [M2], then G1(B,B′)
[G2(B,B′)] contains a perfect matching.

I Lemma 9 (Corollary 39.13 in [21]). For B′ ⊆ X, if G1(B,B′)[G2(B,B′)] has a unique
perfect matching, then B′ is a basis of M1 [M2].

Sufficiency: This is the easy direction. Let B′ be any common basis other than B. Applying
Lemma 8, we know that G(B,B′) has two perfect matchings (one each in G1(B,B′) and
G2(B,B′)). Union of these two perfect matchings yields a collection of cycles C. Further,
by construction, by traversing these cycles, one can transform B → B′ and hence, we
have w(B′) = w(B)−

∑
C∈C l(C). Therefore, since we have l(C) > δ for all cycles, we are

guaranteed that w(B′) < w(B)− δ as desired.

Necessity: Ideally, we would like to say that every cycle in G leads to a swapping such that
the set so obtained is also independent in both the matroids. This would immediately imply
that a cycle of small length would lead to a common basis B′ which is not much smaller
than B.

However, the presence of a cycle simply implies the presence of a perfect matching (one
in each direction) which may not be unique. For example, Figure 2 shows an instance of an
arborescence problem (left), and the associated exchange graph (right). Here G contains a
cycle a-x-b-y-a which leads to a new set x, y, c which is not an arborescence.

In the previous example, observe that if the cycle a-x-b-y-a were to have small weight,
that would imply that at least one of a-y-a or b-x-b cycles too has small weight both of which
lead to a feasible solution. This observation motivates us to look at the smallest cycle of
weight less than δ and hope that it does induce an unique perfect matching.

FSTTCS 2015



44 On Correcting Inputs: Inverse Optimization for Online Structured Prediction

a b

c

x

y

b

a

c

x

y

Figure 2 Instance showing every cycle in G need not lead to a common basis.

Suppose that the graph has a cycle having weight less than δ. Let C be the smallest (in
terms of number of arcs) such cycle. Look at the graph induced by the vertex set of the cycle.
We claim that this induced subgraph has a unique perfect matching (one in each direction).
Here we prove the claim for one direction. C being an even cycle trivially contains a perfect
matching M from B-side to X \B-side. Suppose there exists another perfect matching M ′.
For every edge (x, y) in M ′ \M , the edge along with the path between y and x in C cause a
cycle. Further, each such cycle is smaller (number of edges) than C.

Let M̄ denote the matching M with edge directions reversed. The union of M ′ and
M̄ now forms a collection of cycles. Consider any such cycle D. WLOG let the cycle be
(x0, y0, x1, y1, . . . , xk, yk, x0) such that the (xi+1, yi) are edges in M (i.e. (yi, xi+1) ∈ M̄) and
(xi, yi) ∈M ′. [All arithmetic is modulo k + 1]. We’ll now be interested in the length of the
path between these vertices in the original cycle C. Let Ci denote the cycle formed by the
edge (xi, yi) and the path between yi and xi in C. We have,

l(Ci) = l(C)− l(Path from xi to yi in C) + l((xi, yi))

Since (xi, yi−1) ∈M ,

l(Path from xi to yi in C) = l((xi, yi−1)) + l(Path from yi−1 to yi in C)

Further since by construction l((x, yi)) = l((x, yj))(= ±w(x)), we have

l(Ci) = l(C)− l(Path from yi−1 to yi in C)

Let Pi−1→i denote this path. Summing over all (xi, yi) edges in D, we get

k∑
i=0

l(Ci) = kl(C)− (l(Pk→0) + l(P0→1) + . . .+ l(Pk−1→k))

= kl(C)− k′l(C)

↑ Since we start from yk, go around the C and reach yk back

= k′′l(C)
< k′′δ

The sum of k weights is less than k′′δ with k′′ < k, which implies

∃Ci, such that l(Ci) < δ

But this is a contradiction since C was the smallest cycle having weight less than δ.
Hence, the perfect matching M is unique. Similarly, the perfect matching induced by C in
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the other direction too is unique. Applying Lemma 9 successively on both sides, we know
that B′ obtained by exchanging as per C is a common basis for both matroids. Further, we
have

w(B′) = w(B)− l(C)
w(B′) > w(B)− δ

Hence we have proved that if G has a cycle with small weight, then B is not δ-optimal,
thus proving the necessity of the claim. J

4.1 Lower bounding cycles
In order to use Lemma 7 to solve the inverse matroid intersection problem efficiently using
quadratic programming, we need a way to formulate this condition as a polynomial number
of linear constraints. We now explore a technique to express the condition that a given
graph has no small (of length less than δ) cycles concisely. Say we are given a directed graph
G = (V,A) and our task is to assign edge-lengths so that all cycles in G have weight at least
δ. Letting the edge-lengths to be variables, the feasible region in this case is unbounded and
is defined by a constraint for every cycle in G, i.e. we have the region R1 in m dimensions
defined by

R1 :∑
e∈C

le ≥ δ For all cycles C (8)

Of course, this formulation has an exponential number of constraints. Although the ellipsoid
algorithm can be used to solve the quadratic program in polynomial time, it is often too
slow for practical use. We now show that we can obtain a concise extended formulation by
adding a few extra variables.

Suppose we have variables dxy representing the shortest distance between vertices x and
y. In this case, the graph has no cycle of weight less than δ if and only if dxx ≥ δ for all
vertices x (assume dxx = ∞, if x is not in any cycle). Consider the region R2 in m + n2

dimensions:

R2 :
dxy ≤ l(xy) For all (x, y) ∈ A (9)
dxz ≤ dxy + l(yz) For all x, z ∈ V and y s.t. (y, z) ∈ A (10)
dxx ≥ δ For all x ∈ V (11)

Constraints (9) and (10) enforce triangle inequality, and (11) enforce the condition that all
cycles are large. We now prove that optimizing any function of l over R1 is equivalent to
optimizing the same over R2.

I Lemma 10. R1 is identical to the projection of R2 on the m dimensions corresponding to
the edge-lengths.

Proof.
R1 ⊆ Projection(R2): Let l : E → R denote a point in R1. Since the constraints (9) and
(10) are always valid for a true distance function, let d : V×V → R denote the actual distance
function in the graph induced by l. Such a d definitely satisfies constraints (9) and (10).
Additionally, for all vertices x belonging to some cycle, since all cycles under l have weight at
least δ, we have dxx ≥ δ. For a vertex x which does not belong to any cycle, one can simply
set dxx =∞.
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Projection(R2) ⊆ R1: Consider a point in R2. We now have the lengths of edges le as
well as some dxy values. Consider any cycle C = (x1, x2, . . . , xk, x1) in the graph. Applying
constraint (10) repeatedly we get

dx1x1 ≤ l(x1x2) + l(x2x3) + . . .+ l(xk−1xk) + l(xkx1) (12)

and also by constraint (11), we have

dx1x1 ≥ δ (13)

Hence we have, l(x1x2) + l(x2x3) + . . .+ l(xk−1xk) + l(xkx1) ≥ δ, i.e.
∑
e∈C le ≥ δ which means

that the le values are feasible in R1. J

Hence, optimizing any function of the le variables over R1 is equivalent to optimizing it
over R2. However, R2 has only m+mn+ n constraints and n2 +m variables.

4.2 Putting it together
Lemmas 7 and 10 suggest a way to solve the δ-margin inverse matroid intersection problem.
As per the requirements of Lemma 7, given the two matroids and the common basis B,
construct the exchange graph G = (V,A = A1 ∪ A2). Let w : X → R+ be the original
weight function and let w′ be the new weight function which we desire. If l is the arc
lengths of G, according to the construction of Lemma 7, lxy = w′(x) and lyx = −w′(y) where
x ∈ B, y ∈ S \B. Further, the objective that we minimize is the L2 norm of w−w′. We can
now add these additional constraints and the objective to the region R2 as per Lemma 10 to
obtain the minimum change on the weights of elements so that the exchange graph has no
small cycles and hence B is δ−optimal.

min
w′

∑
e∈X

(w′(e)− w(e))2 subj. to: (14)

lxy = w′(x), ∀(x, y) ∈ A1 (15)
lyx = −w′(y), ∀(y, x) ∈ A2 (16)
dxy ≤ lxy, ∀(x, y) ∈ A (17)
dxz ≤ dxy + lyz, ∀x, z ∈ V,∀(y, z) ∈ A (18)
dxx ≥ δ, ∀x ∈ V (19)

4.3 Maximum Weight Arborescence
Given a directed graph, a r-arborescence (also known as a branching) is the directed analogue
of a spanning tree and is defined as a set of edges T spanning all vertices such that every
vertex (except r) has exactly one incoming edge in T . It is well known that an arborescence
in a directed graph is a basis in the intersection of a graphical matroid and a partition
matroid. We analyze the complexity of the above technique for the special case of maximum
weight arborescence. Let G denote the graph in question having n vertices and m edges.

The exchange graph Gex has a vertex for every edge of G, i.e., nex = m. The bipartition
of Gex is such that we have components of size n and m− n respectively. Hence we have
mex = O(mn). As seen in Section 4.1, we use O(n2

ex) variables and O(mexnex) contraints.
Thus, putting it all together, we have a quadratic program with O(m2) variables and O(m2n)
constraints.
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The inverse maximum weight arborescence problem is important as it can used as a
subroutine in the online learning for dependency parsing [19]. The dependency parse tree
of a sentence can be represented as an arborescence over a graph consisting of every word
in the sentence as a node. In full version of the paper [7], we show experimental results for
dependency parsing using our framework.

4.3.1 Shortest s− t paths
Given a weighted graph G = (V,E,w), a path P between terminals s and t, and a margin δ,
the inverse shortest s-t path problem is to find a minimum perturbation to w (minimizing the
L2 norm) so that P is shorter than all other paths between s and t by at least δ under the
new weight function. As shown by [26], the inverse shortest s-t path problem can be reduced
to the inverse arborescence problem. Let G′ be G augmented by adding zero weight edges
from t to all other vertices. It can be easily observed that P is the shortest s-t path in G if
and only if P and a subset of the zero weight edges form the minimum weight s-arborescence
of G′. Thus we can use an algorithm for inverse minimum weight arborescence to solve the
inverse shortest path problem.1

5 Perfect Matchings in Bipartite Graphs

For the bipartite maximum weight perfect matching inverse problem, the previous technique
yields a quadratic program having O(m2) variables and O(m2) constraints as the exchange
graph is sparse. In this section we show that we can in fact obtain more concise formulations.
Recall that for a given edge weighted, bipartite graph G = (X ∪ Y,E,w), and a perfect
matching M , an alternating cycle is a cycle in G in which edges alternate between those
that belong to M and those that do not. An alternating cycle C is called δ-augmenting, if∑
e∈C∩M w(e) <

∑
e∈C\M w(e) + δ. The following characterization of a δ-optimal perfect

matching is well known.

I Lemma 11. A perfect matching M is δ-optimal if and only if the graph contains no
δ-augmenting cycles.

The central idea is to construct a directed graph H on just the nodes of X such that any
directed cycle in H will correspond to an alternating cycle in G (w.r.t to the matching M)
and vice versa. We construct H = (X,A) to be a directed graph such that (x, z) ∈ A if and
only if ∃y ∈ Y such that (x, y) ∈ M and (y, z) ∈ E; further let l(x, z) = w(x, y) − w(y, z).
Figure 3 shows an example of this construction.

I Proposition 12. The auxiliary graph H has a directed cycle of length less than δ if and
only if G has a δ-augmenting alternating cycle.

Proof.

If: Let C = (x0, y0, x1, y1, . . . , xk, yk, x0) be a δ-augmenting cycle inG where all (xi, yi) ∈M .
By construction, H has a cycle C ′ = (x0, x1, . . . , xk, x0) and l(C ′) =

∑k
i=0(w(xi, yi) −

w(yi, xi+1)) (modulo k + 1) =
∑
e∈C∩M w(e)−

∑
e∈C\M w(e) < δ.

1 Inverse minimum weight arborescence problem can be solved similar to the inverse maximum weight
arborescence problem.
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Figure 3 Example to show construction of H from a bipartite graph G and matching M .

Only If: Let C = (x0, x1, . . . , xk, x0) be a cycle in H with l(C) < δ. By construction, ∃
cycle C ′ = (x0, y0, x1, y1, . . . , xk, yk, x0) in G. Now, l(C) =

∑k
i=0(w(xi, yi) − w(yi, xi+1))

(modulo k+1) =
∑
e∈C′∩M w(e)−

∑
e∈C′\M w(e). Thus C ′ is a δ-augmenting cycle in G. J

Using Lemma 11 and Proposition 12 along with Lemma 10, we can formulate the
inverse perfect matching problem as a quadratic program having O(n2) variables and O(mn)
constraints.

6 Application: Online learning for structured prediction

In this section, we present a framework for online learning using inverse combinatorial
optimization. The structured prediction task is to predict a discrete combinatorial structure
(such as an arborescence) given a structured input (such as a graph). The learning task is to
learn model parameters so that solving a combinatorial optimization problem on the input
instance would return the desired output structure. Structured prediction is extensively used
in natural language processing tasks such as obtaining parse trees of a sentence, or automatic
language translation.

In the online learning setting, we are presented with a set of T training samples. These
consist of an input xt (for instance, a sentence) and an output yt (for instance, a syntactic
analysis of this sentence described as an arborescence on a graph over the words in the
sentence [25, 19]). Each edge in this graph is parameterized by a set of F features that, for
instance, indicate how likely one word is to be the subject of another. Thus, each training
sample is a pair (xt, yt) where xt is a graph parameterized by features on edges, and yt is
the desired output sub-structure (such as a spanning tree, or an arborescence, or a matching
depending on the application). The task is to learn a vector (of length F ) of parameters θ
such that when edge weights are computed as inner products between the θ and the edge’s
features, the output obtained by computing an optimal sub-structure (spanning tree, etc.) is
the desired output with some margin.

Algorithm 1 describes the generic online learning framework for structured prediction. It
is parameterized by an user-defined loss function `(yt, ŷ) that specifies the loss incurred by
the prediction ŷ with respect to the training solution yt. Algorithm 1 is an adaptation of the
Passive-Aggressive MIRA algorithm [4] for structured prediction.

Note that the minimization problem solved for each training sample is exactly δ-inverse
optimization where we minimize the perturbations to the feature parameters instead of the
edge weights. In this framework, the different inverse optimization problems we considered
have applications for different structured predictions. For example, maximum weight arbor-
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θ1 = 0
for t = 1 to T do

Obtain training example xt, yt
w ← weight function s.t. w(e) = θt · fe where fe is feature vector of edge e
ŷ ← optimal sub-structure for graph xt under weights w
Suffer loss δt = `(yt, ŷ)
Update θt+1 = argminθ′ ||θ

′ − θt||22 such that
w′ ← weight function s.t. w′(e) = θ′ · fe where fe is feature vector of edge e
yt is the δt-optimal sub-structure for graph xt under weights w′

end
Return θT+1

Algorithm 1: Generic online learning framework.

escences are used to predict the parse tree of a sentence [25, 19], while maximum weight
matchings are used for language translation and word alignments [23].

Since we have shown that we can efficiently solve the inverse optimization problems for a
variety of combinatorial structures, we can extend the error bounds of the MIRA algorithm [4]
to work for learning the corresponding structured prediction models. In this section, we
present both convergence results and loss bounds for our generic online learning framework.
The proofs for these bounds closely follow those in Crammer’s Ph.D. dissertation [4] and are
included in the full version. The statement of the convergence result depends on a set of
dual variables obtained from the optimization problem in the “Update” step of Algorithm 1.
This implicitly encodes constraints over all possible outputs; we denote the dual variable
for output y on the tth example by αty. We can show that the cumulative sum of these
dual variables is bounded by a constant independent of T , which implies convergence of the
learning algorithm.

I Theorem 1 (Convergence). Let {(xt, yt)}Tt=1 be a sequence of structured examples. Let
θ∗ be any vector that separates the data with a positive margin δ∗ > 0. Assume the loss
function is upper bounded: `(yt, ŷ) ≤ A. Then the cumulative sum of coefficients is upper
bounded by:

T∑
t=1

∑
y∈Yt

αty ≤ 2A
(
||θ∗||
δ∗

)2
. (20)

However, it is not enough to show that the algorithm converges: it could converge to a useless
solution! We wish to show that in the process of learning it does not make too many errors.
In particular, we show that Algorithm 1 incurs a total hinge loss bounded by a constant
also independent of T , which implies that at some point it has exactly solved the learning
problem.

I Theorem 2 (Total Loss). Under the same assumptions as above, assume further that the
norm of the examples are bounded by R. Then, the cumulative hinge loss (Hδt

) suffered by
the algorithm over T trials is bounded by:

T∑
t=1
Hδt

(θt, (xt, yt)) ≤ 8A
(
R ||θ∗||
δ∗

)2
. (21)
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Abstract
In this paper, we introduce a new model for sublinear algorithms called dynamic sketching. In
this model, the underlying data is partitioned into a large static part and a small dynamic part
and the goal is to compute a summary of the static part (i.e, a sketch) such that given any
update for the dynamic part, one can combine it with the sketch to compute a given function.
We say that a sketch is compact if its size is bounded by a polynomial function of the length of
the dynamic data, (essentially) independent of the size of the static part.

A graph optimization problem P in this model is defined as follows. The input is a graph
G(V,E) and a set T ⊆ V of k terminals; the edges between the terminals are the dynamic part
and the other edges in G are the static part. The goal is to summarize the graph G into a
compact sketch (of size poly(k)) such that given any set Q of edges between the terminals, one
can answer the problem P for the graph obtained by inserting all edges in Q to G, using only
the sketch.

We study the fundamental problem of computing a maximum matching and prove tight
bounds on the sketch size. In particular, we show that there exists a (compact) dynamic sketch
of size O(k2) for the matching problem and any such sketch has to be of size Ω(k2). Our sketch
for matchings can be further used to derive compact dynamic sketches for other fundamental
graph problems involving cuts and connectivities. Interestingly, our sketch for matchings can
also be used to give an elementary construction of a cut-preserving vertex sparsifier with space
O(kC2) for k-terminal graphs, which matches the best known upper bound; here C is the total
capacity of the edges incident on the terminals. Additionally, we give an improved lower bound
(in terms of C) of Ω(C/ logC) on size of cut-preserving vertex sparsifiers, and establish that
progress on dynamic sketching of the s-t max-flow problem (either upper bound or lower bound)
immediately leads to better bounds for size of cut-preserving vertex sparsifiers.
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1 Introduction

Massive data sets are arising more and more frequently in many application domains.
Traditional gold standards of computational efficiency, namely, linear-time and linear-space,
no longer seem sufficient for managing and analyzing such massive data sets. As a result, a
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beautiful new area of sublinear algorithms has developed over the past two decades – these
are algorithms whose resource requirements are substantially smaller than the size of the
input on which they operate. A rich theory of sublinear algorithms has emerged, and has
brought remarkable new insights into combinatorial structure of well-studied optimization
problems (see, for instance, the surveys [23, 25, 27], and references therein).

In recent years, graph optimization problems have received a lot of attention in the study
of sublinear algorithms in various models, and the streaming model of computation is one of
the most popular examples. In the streaming model, an algorithm is presented with a stream
of edge insertions and deletions and is required to give an answer to a pre-specified graph
problem at the end of the stream. Unfortunately, for many fundamental graph problems,
no small space streaming algorithm is possible. For instance, [10] showed that determining
whether or not there is a path from a specific vertex s to a specified vertex t in a directed
graph requires Ω(n2) space even for streams with only edge insertions; here n denotes the
number of vertices in the input graph. This immediately implies that computing the length
of the s-t shortest path, the value of the minimum cut between s and t, or the edge/vertex
connectivity between s and t also requires Ω(n2) space since the output of these problems
is non-zero only when there is a path from s to t. The same lower bound is also obtained
for computing the size of the maximum matching [10]. In fact, most of recent works for
graph problem focus on approximation algorithms developed under the semi-streaming model
introduced in [10], where an algorithm is allowed to output an approximate answer while using
space linear in n. But is there hope left for exact sublinear algorithms? More specifically,
is there a non-trivial model where sublinear algorithms are achievable for outputting exact
answers for fundamental graph problems like matchings, connectivities, cuts, etc.?

In this paper, we explore this direction by considering the case where the input graph
only undergoes local changes, and study how local changes influence the solutions of several
fundamental graph problems. The goal is to exploit the locality of these updates and compress
the rest of the graph into a small-size sketch that is able to answer queries regarding a specific
problem (e.g. the s-t edge connectivity problem) for every possible local changes made to
the graph. We introduce a model in this spirit and in the rest of this section, we formally
define the model, discuss the connection to existing models, and summarize our results.

1.1 The Dynamic Sketching Model
We define the dynamic sketching model, where algorithms are required to construct data
structures (called sketches) that are composable with local updates to the underlying data.
Specifically, for graph problems in the dynamic sketching model, we consider the following
setup (see Section 1.1 in the full version [5] for a more general definition which is not restricted
to graph problems). Given a graph optimization problem P , an input graph G(V,E) on
n vertices with k vertices identified as terminals T = {q1, . . . , qk}, the goal of k-dynamic
sketching for P is to construct a sketch Γ such that given any possible subset of the edges
between the terminals (a query), we can solve the problem P using only the information
contained in the sketch Γ. Formally,

I Definition 1. Given a graph-theoretic problem P , a k-dynamic sketching scheme for P is
a pair of algorithms with the following properties.
(i) A compression algorithm that given any input graph G(V,E) with a set T of k

terminals, outputs a data structure Γ (i.e, a dynamic sketch).
(ii) An extraction algorithm that given any subset of the edges between the terminals,

i.e, a query Q, and the sketch Γ, outputs the answer to the problem P for the graph,
denoted by GQ, obtained by inserting all edges in Q to G (without further access to G).
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We allow both compression and extraction algorithms to be randomized and err with
some small probability. Furthermore, we say a sketching scheme is compact if it constructs
dynamic sketches of size poly(k), where the size of a sketch is measured by the number of
machine words of length O(logn).

We should note right away that of course not every graph problem admits a compact
dynamic sketch. For example, one can show that any dynamic sketch for the maximum clique
problem or the minimum vertex cover problem requires min{Ω(n), 2Ω(k)} space (see the full
version of the paper [5], Section 6).

1.2 Connection to Existing Models
Streaming. Any single-pass streaming algorithm with space requirement s can be used as
a dynamic sketching scheme with a sketch of size s: run the streaming algorithm on graph
G(V,E) for the static data and store the state of the algorithm as the sketch; continue running
the algorithm using the stored state when the dynamic data is presented. However, note that
a streaming algorithm directly gives a compact scheme only when the space requirement is
logarithmic in n, which, as we just discussed, is not the case for nearly all fundamental graph
optimization problems. In the following, we use the s-t shortest path problem as an example
to elaborate the distinction between the two models. Our results in Section 2, illustrates a
similar distinction for the case of the maximum matching problem.

As we already mentioned, outputting the length of the s-t shortest path requires Ω(n2)
space in the streaming model. We now give a simple dynamic sketching scheme for the s-t
shortest problem with a sketch of size O(k2). The input to the s-t shortest path problem
in the k-dynamic sketching model is a weighted graph G, a set T of terminals, and two
designated vertices s and t. Without loss of generality, we can assume s and t are terminals;
otherwise we can add them to the set of terminals and record their edges to the other
terminals in O(k) space. The compression algorithm creates a graph H with V (H) = T ,
where for any pair of terminals qi and qj , a directed edge from qi to qj is added to H with
weight equal to the weight of a shortest path from qi to qj in G. The size of H is O(k2).
To obtain the answer for each query Q, the extraction algorithm adds the edges in Q to H,
building a small graph HQ, and compute the shortest path from s to t in HQ. It is easy to
see that the weights of the shortest paths between s and t in HQ and GQ are equal, thus H
can be used as a dynamic sketch for the s-t shortest path problem.

Linear sketches. A very strong notion of sketching for handling arbitrary changes to the
original data is linear sketching, which corresponds to applying a randomized low-dimensional
linear transformation to the input data. This allows for compressing the data into a smaller
space while (approximately) preserving some desired property of the input. Moreover,
composability of these sketches (as they are linear transformations) allow them to handle
arbitrary changes to the input data. Linear sketching technique has been successfully applied
to various graph problems, mainly involving cuts and connectivity [2, 3, 14] (see also [23] for
a survey of such results in dynamic graph streams). However, these results use space that
is prohibitively large for dynamic sketching (a linear dependence on n), and typically only
yield approximation answers.

Kernelization. Dynamic sketching shares some similarity to Kernelization developed in
parametrized complexity [17, 16, 11] in the following two aspects. Firstly, the number of
terminals k in dynamic sketching may be viewed as a parameter. However, the main difference
here is that for dynamic sketching, k is a parameter of the model, while for kernelization, the
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parameter is usually the size of the solution, which is the property of the input rather than
the model. Secondly, since a kernel for an instance of a problem is defined to be an equivalent
instance of the same problem with size bounded by a function of a fixed parameter of the
problem, both dynamic sketching and kernelization are in the spirit of compression. However,
the techniques developed in kernelization do not directly carry over to dynamic sketching for
the following two reasons. Firstly, kernelization typically focuses only on static data and
secondly, the space target in kernelization (which is different compare to dynamic sketching)
is normally polynomial in the parameter (usually the size of the solution to the problem)
which could be Ω(n) in the dynamic sketching model. Finally, it is worth mentioning that
there are problems (e.g. minimum vertex cover) that admit polynomial size kernels, while it
can be shown that the dynamic sketching for these problem require sketches of size 2Ω(k)

(see the full version of the paper [5], Section 6).

Provisioning. We should note that dynamic sketching shares some ancestry with provision-
ing, a technique developed by [8] for avoiding repeated expensive computations in what-if
analysis, where the input data is formed by k known overlapping subsets of some universe,
and the goal is to compress these subsets so as to answer a specific database query when
only some of those subsets are presented at run-time. Note that a main distinction between
the two model is that in provisioning the dynamic input is neither small nor local.

1.3 Our Results
Maximum matching. The main focus of this paper is on the maximum matching prob-
lem [20] in the dynamic sketching model, and its applications to various others problems. We
give a dynamic sketching scheme with a sketch of size O(k2), using a technique based on an
algebraic formulation of the matchings introduced by Tutte [29]. At a high level, we store a
sketch that computes the rank of the Tutte matrix (see Definition 4) of the underlying graph.
Since the queries only affect O(k2) entries of the Tutte matrix, we can compress this matrix
using algebraic operations into a few small matrices of dimensions k × k. Storing the small
matrices as the sketch and modifying the related entries when a query is presented allows us
to compute the rank of the original Tutte matrix, and hence the maximum matching size.
Furthermore, we prove that our sketching scheme is optimal in terms of its space requirement
(up to a logarithmic factor). In particular, we show that any dynamic sketching scheme for
the matching problem has to store a sketch of size Ω(k2) bits. We emphasize that the lower
bound is information-theoretic; it holds even if the compression and extraction algorithms
are computationally unbounded.

Cut-preserving sketches. Interestingly, we discovered that our scheme for matchings can
be used to design a cut-preserving sketch, which is the information-theoretic version of
a cut-preserving vertex sparsifier [12, 24, 19]. Given a capacitated graph G (assume all
capacities are integers) with a set T of k terminals, a cut-preserving vertex sparsifier (or a
sparsifier for short) of G is a graph H with T ⊆ V (H) (V (H) denotes the set of vertices of
H) such that for any bipartition S and T \ S of terminals, the value of the minimum cut
between S and T \ S in G is preserved in H. A vertex sparsifier where the stored data is not
restricted to be a graph is called a cut-preserving sketch.

In recent years, cut-preserving vertex sparsifiers have been extensively studied (see, for
example, [6, 9, 7, 4]). For instance, exact sparsifiers with 22k vertices are shown by [12, 15],
and sparsifiers with O(C3) vertices are shown by [17], where C is the total capacity of the
edges incident on the terminals. Additionally, the size of any exact sparsifier is shown to be
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2Ω(k) [18, 15]. Cut-preserving sketches are also studied in the literature [4, 18, 16], where the
best construction is known to be of size O(kC2) by [16]. Moreover, the 2Ω(k) lower bound
of [18] is also shown to hold for the cut-preserving sketches.

We show that our dynamic sketching scheme for matchings can be used to obtain an
elementary construction of a cut-preserving sketch of size O(kC2) that matches the best
known upper bound of [16]. [16] showed that given a graph G and a set of k terminals T ,
a single gammoid can be used to produce a matroid that encodes all terminal vertex cuts.
The authors then use the result of [22] to show how to obtain a matrix representation of this
gammoid with O(k2) entries of O(k) bits each (see Corollary 3.2 of [16]). Using standard
techniques, one can use this sketch for vertex cuts to obtain an sketch for edge cuts (i.e, a
cut-preserving sketch) that requires O(kC2) space. Our construction, on the other hand, uses
the connection between matchings and the Tutte matrix followed by a simple reduction from
cut-preserving sketches to the maximum matching problem. We believe that the simplicity
of this construction and its connection to dynamic sketches for the matching problem is of
independent interest and gives further insights into the structure of cut-preserving sketches.
Moreover, we prove an improved lower bound (in terms of C) of Ω(C/ logC) bits on the size
of any cut-preserving sketch; prior to our work, the best lower bound in terms of C is Ω(Cε)
for some small constant ε > 0 obtained by [18].

s-t edge-connectivity and s-t maximum flow. As it turns out, any cut preserving sketch
can be (almost directly) used to obtain a dynamic sketching scheme for the s-t edge-
connectivity problem. However, using our lower bound for cut-preserving sketches, the
resulting sketch size for edge-connectivity would be Ω(C/ logC), where C could be as large
as n (hence the sketch is not compact). To obtain a compact sketch for edge-connectivity,
we further design a dynamic sketching scheme which directly uses our dynamic sketching
scheme for matchings, and obtain compact sketches of size O(k4). We further establish that
cut-preserving sketches are, in fact, more related to the s-t maximum flow problem, in the
sense that progress on either upper bound or lower bound on size of dynamic sketches for
the s-t maximum flow problem immediately leads to better bounds for size of cut-preserving
sketches.

Minimum spanning tree. Finally, we present an O(k)-size dynamic sketch for the minimum
spanning tree (MST) problem. Our idea for creating a compact dynamic sketch for MST is
as follows. First of all, it is easy to see that if we add an edge to a graph, an MST of the
resulting graph can be created by adding the edge to an MST of the original graph. Hence,
it is sufficient to store an MST H of the original graph as a sketch. But this sketch is of
size Ω(n). We show that H can be compressed into a tree H ′ such that all leaf nodes are
terminals and there are at most O(k) internal nodes in this tree; moreover, for any query Q,
the weights of the MSTs in GQ and H ′Q are equal. Hence, H ′ can be stored as a dynamic
sketch. Due to the space constraints, the proof of this result is deferred entirely to the full
version of the paper [5] (see Section 5).

Organization. The rest of the paper is organized as follows. We first introduce our dynamic
sketching scheme for the maximum matching problem in Section 2 and prove its optimality in
terms of the sketch size. Then, in Section 3.1, we show how to use our sketching scheme for
the matching problem to construct a cut-preserving sketch. Next, we provide our improved
lower bound on the size of cut-preserving sketches in Section 3.2. We further establish the
connection between cut-preserving sketches and s-t edge-connectivity (and s-t maximum
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flow) and introduce a compact dynamic sketch for edge connectivity in Section 4. Finally,
we conclude the paper with some future directions in Section 5.

Notation. We denote by [n] the set {1, 2, . . . , n}. The bold-face upper-case letters represent
matrices. A matrix with a ‘tilde’ on top (e.g. M̃) denotes a symbolic matrix, i.e, a matrix
containing formal variables. For any prime p, Zp denotes the field of integers modulo p.

For any undirected graph G, we use ν(G) to denote the size of a maximum matching in
G. For any directed graph G(V,E), an edge e = (u, v) is directed from u to v, where we
say u is the tail and v is the head of e. For any vertex v ∈ V , d+(v) (resp. d−(v)) denotes
the number of outgoing (resp. incoming) edges of v. For a capacitated graph, c+(v) (resp.
c−(v)) denotes the total capacity of the outgoing (resp. incoming) edges of v. We assume all
the capacities are integers and can be stored in a single machine word of size O(logn).

2 The Maximum Matching Problem

In this section, we provide our results for the maximum matching problem. In particular, we
show that,

I Theorem 2. For any 0 < δ < 1, there exists a randomized k-dynamic sketching scheme
for the maximum matching problem with a sketch of size O(k2 log (1/δ)), which answers any
query correctly with probability at least 1− δ.

Furthermore, we prove that the sketch size obtained in Theorem 2 is tight (up to an
O(logn) factor). Formally,

I Theorem 3. For any k ≥ 2, any k-dynamic sketching scheme for the maximum matching
problem that answers any query correctly with probability at least 2/3, requires a dynamic
sketch of size Ω(k2) bits.

Our sketching scheme for the proof of Theorem 2 relies on an algebraic formulation for
the matching problem due to Tutte [29]. In the remainder of this section, we present this
algebraic formulation, state our sketching scheme for matchings and proves its correctness
and then present our lower bound result.

Algebraic formulation for the matching problem. The following matrix was first introduced
by Tutte [29].

I Definition 4 (Tutte matrix [29]). Suppose G(V,E) is an undirected graph. The Tutte
matrix of G is the following symbolic matrix M̃ of dimension n× n.

M̃i,j =


xi,j if (i, j) ∈ E and i < j

−xj,i if (i, j) ∈ E and i > j

0 otherwise

where the xi,j are distinct formal variables.

Lovász [21] established the following result for computing the size of a maximum matching
using Tutte matrix (see also [26] for more details on performing the computations over a
finite field).
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I Lemma 5 ([21, 26]). Let G be an undirected graph with n vertices and the maximum
matching size of ν(G). For any prime p > n, let Zp be the field of integers modulo p. Suppose
M̃ is the Tutte matrix of G and M is the matrix obtained by evaluating each variable in M̃
by a number chosen independently and uniformly at random from Zp; then:

Pr (rank(M) = 2ν(G)) ≥ 1− n

p

Note that the computation of rank(M) is also done over the field Zp.

2.1 An O(k2) size upper bound
In this section, we provide our k-dynamic sketching scheme for the maximum matching
problem and prove Theorem 2.

Notation. Suppose the input is an undirected graph G(V,E) with a set T = {q1, . . . , qk} of
k terminals. Let p be any prime of magnitude Θ(n/δ); we perform the algebraic computations
in the field Zp. Let M̃ be the Tutte matrix of the graph obtained by adding all edges between
the terminals to G, where the first k rows and k columns correspond to the vertices in T .
We decompose M̃ into four sub matrices Ã, B̃, C̃, and D̃ as follows:

M̃ =
[

Ãk×k B̃k×(n−k)
C̃(n−k)×k D̃(n−k)×(n−k)

]

Compression algorithm: The compression algorithm consists of 4 steps. Each of them
performs a simple algebraic manipulation on the Tutte matrix M̃.

Step 1. For each non-zero entry of M̃ that corresponds to an edge in G (i.e., not between
the terminals), assign an integer chosen uniformly at random from Zp. Denote the resulting
matrix by,

M̃1 =
[

Ãk×k Bk×(n−k)
C(n−k)×k D(n−k)×(n−k)

]
Note that except for Ã, all sub-matrices in M̃1 are no longer symbolic.

Step 2. Let r = rank(D). Use elementary row and column operations to change D into
a diagonal matrix diag(1, . . . , 1, 0, . . . , 0) with only r non-zero entries. Note that after this
process, matrices B and C would also change, but the symbolic matrix Ã remains unchanged.
We denote the matrix M̃1 after this process by,

M̃2 =

 Ãk×k Xk×r B′k×(n−k−r)
Yr×k Ir×r 0r×(n−k−r)

C′(n−k−r)×k 0(n−k−r)×r 0(n−k−r)×(n−k−r)


Step 3. Use the sub-matrix Ir×r in M̃2 to zero out the matrix X by elementary row
operations. Similarly, zero out Y by elementary column operations. Note that after this
process, the matrix Ã would be added by a linear combination of the rows in Y, denoted by
A′. Denote the resulting matrix by,

M̃3 =

Ãk×k + A′k×k 0k×r B′k×(n−k−r)
0r×k Ir×r 0

C′(n−k−r)×k 0 0
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Step 4. Consider the matrix B′ in M̃3; pick a maximal set of linearly independent columns
from B′ (if less than k columns are picked, arbitrarily pick from the remaining columns until
having picked k columns), denoted by B′′k×k. Do the same for the matrix C′ (but using
linearly independent rows) and create C′′k×k. Finally, pick k2 numbers from Zp, independently
and uniformly at random and form a matrix of dimension k × k, denoted by Â. Store the
value r (i.e., the rank of D), the matrix Â, and three k × k matrices A′, B′′ and C′′ as the
sketch.

Extraction algorithm: Given a query Q, create the matrix ÂQ from Â by zeroing out every
entry that corresponds to an edge not in Q. Evaluate Ã by ÂQ and obtain a (non-symbolic)
matrix A. Construct a matrix M̂ as follows,

M̂ =
[
Ak×k + A′k×k B′′k×k

C′′k×k 0k×k

]

Return
(
rank(M̂) + r

)
/2 as the maximum matching size.

We now prove the correctness of this scheme and show that it satisfies the bound given
in Theorem 2 and hence prove this theorem.

Proof of Theorem 2. Since the prime p is of magnitude Θ(n/δ), any number in Zp requires
O(log(n/δ)) = O(logn+ log(1/δ)) bits to store, which is at most O(log(1/δ)) machine words.
The compression algorithm stores a number r, which needs O(logn) bits, four matrices
of dimension k × k, where each entry is a number in Zp and requires O(log(1/δ)) space.
Therefore, the total sketch size is O(k2 log(1/δ)). We now prove the correctness.

We need to show that for each query Q, the extraction algorithm correctly outputs the
matching size with probability at least 1− δ. By Lemma 5,

Pr
(
rank(M) = 2ν(GQ)

)
≥ 1− n

p
≥ 1− δ

Here M is the (randomly evaluated) Tutte matrix of the graph obtained by applying the
query Q to G, i.e., GQ. Since the extraction algorithm outputs

(
rank(M̂) + r

)
/2 as the

matching size, it suffices for us to show that rank(M̂) + r = rank(M).
More specifically, the extraction algorithm evaluates Ã by assigning a (pre-selected)

random number to each entry that corresponds to an edge in Q, i.e, the matrix ÂQ. For
the sake of analysis, assume this is done before the compression algorithm is executed.
Then, at the first step of the compression algorithm, all entries of the matrices B,C,D are
randomly and independently evaluated. Combined with evaluating Ã by ÂQ, the resulting
matrix (denoted by M1) is obtained from randomly and independently evaluating every
non-zero entry of the Tutte matrix of the graph GQ. In other words, it suffices to show that
rank(M1) = rank(M̂) + r.

Since step 2 and step 3 only perform elementary row/column operations on the matrix,
the rank does not change. For the matrix M̃3 obtained after step 3, denote by M3 the
matrix after evaluating the Ã part in M̃3. M3 is non-symbolic and it suffices to prove that
rank(M3) = rank(M̂) + r. Note that after reordering rows and columns of M3, M3 can be
rewritten asAk×k + A′k×k B′k×(n−k−r) 0

C′(n−k−r)×k 0 0
0 0 Ir×r



FSTTCS 2015



60 Dynamic Sketching for Graph Optimization Problems

Therefore, the rank of M3 is equal to r plus the rank of the following sub-matrix of M3.

M4 =
[

Ak×k + A′k×k B′k×(n−k−r)
C′(n−k−r)×k 0

]

We now show that M4 has the same rank as M̂. Since the matrix C′′ (in step 4 of the
compression algorithm) contains a maximal set of linearly independent rows of C′, each
remaining row of C′ is a linear combination of the rows in C′′. Therefore, all remaining rows
in C′ can be zero-out using elementary row operations. Hence, the rank of M4 is equal to
the rank of the following matrix

M5 =

Ak×k + A′k×k B′k×(n−k−r)
C′′k×k 0

0(n−2k−r)×k 0


Similarly, using elementary column operations, the sub-matrix B′ in M5 can be made into
[B′′ 0k×(n−2k−r)] without changing the rank, and the resulting matrix has the same rank
as M̂. J

2.2 An Ω(k2) size lower bound
In this section, we prove an Ω(k2) bits lower bound on the sketch size of any k-dynamic
sketching scheme for the matching problem, which implies that our space upper bound in
Theorem 2 is tight (up to a logarithmic factor). We establish this lower bound by reducing
from the Membership problem studied in communication complexity defined as follows.

The Membership Problem

Input: Alice is given a set S ⊆ [N ] and Bob is given an element e∗ ∈ [N ].
Goal: Alice has to send a message to Bob such that Bob can determine whether e∗ ∈ S or
not.

It is well-known that in order for Bob to succeed with probability at least 2/3, Alice has
to send a message of size Ω(N) bits [1], where the probability is taken over the random coin
tosses of Alice and Bob.

Reduction. For simplicity, assume N is a perfect square. Given any S ⊆ [N ], Alice
constructs a graph G(V,E) with a set T of k terminals as follows:

The vertex set V = {u,w} ∪ V1 ∪ V2 ∪ V3 ∪ V4, where |Vi| =
√
N for any i ≤ 4 and

T = {u,w} ∪ V1 ∪ V4. We will use v(i)
j to denote the j-th vertex in Vi.

For any i ∈ [
√
N ], v(1)

i (resp. v(3)
i ) is connected to v(2)

i (resp. v(4)
i ); i.e, there is perfect

matching between V1 and V2 (resp. V3 and V4).
Fix a bijection σ : [N ] 7→ [

√
N ]× [

√
N ]; for any element e ∈ S with σ(e) = (i, j), v(2)

i is
connected to v(3)

j .
Note that in this construction, n = 4

√
N + 2 and k = 2

√
N + 2, and initially there is no edge

between the terminals.
Alice constructs this graph, run the compression algorithm of the dynamic sketching

scheme on it and sends the sketch to Bob. Let Q be the query in which, for σ(e∗) = (i, j),
u is connected to v(1)

i and v
(4)
j is connected to w. Bob queries the sketch with Q, finds
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the maximum matching size in GQ, and returns e∗ ∈ [S] iff the maximum matching size is
2
√
N + 1 in GQ.
The proof of the following lemma can be found in the full version [5] (Lemma 2.2).

I Lemma 6. ν(GQ) = 2
√
N + 1 if and only if e∗ ∈ S.

Theorem 3 now follows from Lemma 6, along with the lower bound of Ω(N) = Ω(k2) on
the communication complexity of the Membership problem.

3 Cut-Preserving Sketches

We establish a connection between k-dynamic sketching schemes for the maximum matching
problem and cut-preserving sketches. In particular, we use our dynamic sketching scheme
for the matching problem in Section 2 to design an exact cut-preserving sketch (i.e, an
information-theoretic vertex sparsifier) with size O(kC2), where C is the total capacity of
the edges incident on the terminals. This matches the best known upper bound on the space
requirement of cut-preserving sketches. We further provide an improved lower bound of
Ω(C/ logC) on the size of any cut-preserving sketch. Throughout this section, we will use
the term bipartition cut to refer to a cut between a bipartition of the terminals and the term
terminal cut to refer to a cut which separates two arbitrary disjoint subsets of terminals
(not necessarily a bipartition). With a slight abuse of notation, we refer to the value of
the minimum cut for a bipartition/terminal cut as the value of the bipartition/terminal cut
directly.

Before we present our results, we make a general remark about the property of all
cut-preserving sparsifiers (and sketches) that is also used crucially in our lower bound proof.
In [18], a generalized sparsifier is defined as a sparsifier that preserves the minimum cut
between all disjoint subsets of terminals, i.e, terminal cuts and not only bipartition cuts. The
authors then point out that their upper bound results, as well as the previous constructions
of cut sparsifiers in [12], also satisfy this general definition. The following simple claim gives
an explanation why all known cut sparsifiers satisfy this general definition.

I Claim 1. Suppose H is a cut sparsifier of the graph G(V,E) with terminals T that preserves
the value of all bipartition cuts. Then, H also preserves the value of all terminal cuts.

Proof. For any two disjoint subsets of terminals A,B ⊆ T , any cut separating A and B in
G must form a bipartition (S, S) of the terminals, and since H preserves the value of all
minimum cuts like (S, S), the (A,B) minimum cut value in H is also equal to the minimum
cut value in G. In the case that H is a cut-preserving sketch, the (A,B) minimum cut can
be answered by querying H with all bipartition cuts that separate (A,B), and outputting
the smallest value. J

3.1 An O(kC2) Size Cut-Preserving Sketch

In this section, we construct a cut-preserving sketch for any digraph G and a set of terminals
T . We achieve this by constructing an instance G′ of the maximum matching problem in
the dynamic sketching model and show that the value of any terminal cut (A,B) in G can
be computed using a carefully designed query for the maximum matching size in G′. Our
reduction is based on a classical result relating edge connectivity and bipartite matching due
to [13] (see also [28], Section 16.7).
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I Theorem 7. For any directed graph G with a set of k terminals, there is an exact cut-
preserving sketch that uses space O(kC2), where C is the total capacity of the edges incident
on the terminals.

Without loss of generality, we will replace each edge in G with capacity ce with ce parallel
edges and still denote the new graph with G. Consider the following cut-preserving sketch.

A cut-preserving sketch

Input: A graph G with m edges and a set T of terminals.
Compression: Construct a bipartite graph G′(L,R,E′) with terminals T ′ as follows
and create a dynamic sketch for the maximum matching problem for G′ and T ′.
a. For each edge e in G, create two vertices e− (in L) and e+ (in R).
b. For any terminal q in T and any outgoing (resp. incoming) edge e of q, create

a vertex q→e in R (resp. q←e in L). q→e (resp. q←e), along with e− (resp. e+),
belongs to the set T ′ of terminals in G′.

c. For each edge e in G, there is an edge between vertices e− and e+ in G′.
d. For any two edges e1 and e2 in G where the tail of e1 is the head of e2, there is an

edge between the vertices e+
1 and e−2 in G′.

Extraction: Given any two disjoint subsets A,B ⊆ T , let QA,B be the query where for
any terminal q in A (resp. in B) and any outgoing (resp. incoming) edge e of q, an
edge between the vertices q→e and e− (resp. q←e and e+) is inserted in G′.
Return ν(G′QA,B )−m, where ν(G′QA,B ) is the maximum matching size in G′QA,B .

The total number of terminals in G′ is 2C, and the total number of different A-B pairs
(i.e., the total number of different possible queries) is at most 3k. To ensure that every
query is answered correctly, by Theorem 2, the sketch size is O(kC2). We now prove the
correctness.

Proof. For any A,B ⊆ T , denote the value of the minimum A-B cut (which is equal to
the edge-connectivity from A to B), by c(A,B). Recall that for a graph G, ν(G) denotes
the maximum matching size in G. We prove that ν(G′QA,B )−m = c(A,B). Let M be the
matching in GQA,B where for each edge e in G, e− is matched with e+; hence |M | = m.

We first show that if c(A,B) = l, then M can be augmented by l vertex disjoint paths
and hence ν(G′QA,B ) ≥ m+ l. There are l edge-disjoint path P1, P2, . . . , Pl from A to B in
G. For each path Pi = (e1, e2, . . . , ej), where e1 starts with a terminal qa ∈ A and ej ends
with a terminal qb ∈ B, create a path P ′i = (qa

→e1 , e−1 , e
+
1 , e
−
2 , . . . , e

+
j , qb

←ej ) in G′QA,B . It
is straightforward to verify that the P ′i paths are valid vertex-disjoint paths in G′QA,B and
moreover, form disjoint augmenting paths of the matching M .

We now show that if the maximum matching M∗ in G′ is of size m+ l, then c(A,B) ≥ l.
The symmetric difference between M and M∗ forms a graph with l augmenting paths of the
matching M . Each augmenting path must start and end with a vertex of the form q→e or
q←e since they are the only vertices that are unmatched in M . Since every q→e is in R and
every q←e is in L, each augmenting path must start with a q→e vertex and ends with a q←e

vertex. Using the reversed transformation as in the previous case, the l augmenting paths
can be converted into l edge disjoint paths from A to B in G. J
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3.2 An Ω̃(C) Size Lower Bound
In this section, we provide a lower bound on the size of any cut-preserving sketch.

I Theorem 8. For any integer C > 0, any cut-preserving sketch for k-terminal undirected
graphs, where the total capacity of edges incident on the terminals is equal to C, requires
Ω(C/ logC) bits.

To prove this lower bound, we show how to encode a binary vector of length N :=
Ω(C/ logC) in an undirected graph G, so that given only a cut-preserving sketch for G, one
can recover any entry of this vector. Standard information-theoretical arguments (similar
to the lower bound for the Membership problem in Section 2) then imply that size of the
cut-preserving sketch has to be of size Ω(N) = Ω(C/ logC). We emphasize that while in the
proof we assume the cut-preserving sketch has to return the value of minimum cuts between
any subsets (A,B) of the terminals (even when they are not a bipartition), by Claim 1, this
is without loss of generality; hence, the lower bound holds also for cut-preserving sketches
that only guarantee to preserve minimum cuts for bipartitions.

Construction. Let k′ = k − 2. For simplicity, assume k′ is even, and let N =
(

k′
k′
2

)
. For any

N -dimensional binary vector v ∈ {0, 1}N , we define a graph Gv(V,E) as follows:

Vertices: The set of vertices of Gv is V = {s, t}∪{q1, . . . , qk′}∪{u1, . . . , uk′}∪{v1, . . . , vN}
and the k terminals are T = {s, q1, . . . , qk′ , t}.

Edges: Let S = {S1, . . . , SN} be a collection of all (k′/2)-size subsets of {q1, . . . , qk′}. The
set of edges are defined as:

For any i ∈ [k′], there is an edge (qi, ui) with capacity N .
For any i ∈ [k′], there is an edge (s, ui) with capacity N .
For any j ∈ [N ], there is an edge (vj , t) with capacity 1.
A vertex uj is connected to a vertex vi with an edge of capacity 1 iff vi = 1 or qj /∈ Si.
Additionally, if uj is connected to vi, there are two more edges f1 = (s, vi) and f2 = (uj , t)
each with capacity 1.
There is an edge (s, t) with capacity kN −m, where m is the number of edges between
{u1, . . . , uk′} and {v1, . . . , vN}.

To recover the vector v from a cut-preserving sketch of Gv, we will consider the terminal
cuts (A,B) where A = {s}∪Si for some Si ∈ S and B = {t}. We further denote the terminal
cut (A,B) corresponding to picking Si ∈ S in the part A by TC(Si). We define the output
profile of a graph Gv ∈ G to be an N -dimensional vector op(Gv) where the i-th entry of
op(Gv) is equal to the value of the terminal cut TC(Si). We show that there is a one-to-one
correspondence between the vector v and op(Gv).

I Lemma 9. Let 1 be the N -dimensional vector of all ones. There exists a value c independent
of v such that op(Gv) = v + c · 1.

Proof. Fix an i ∈ [N ] and consider TC(Si). We argue that the maximum flow value from
{s} ∪ Si to {t} is (k + 1)N − 1 + vi; the lemma then follows from the max-flow min-cut
duality and the choice of c = (k + 1)N − 1.

In Gv, we can first send a flow of size kN from s to t by sending one unit of flow along
every s→ vl → uj → t path for any edge of the form (uj , vl) (m units of flow in total) and
kN−m units of flow over the (s, t) edge. After this process, the residual graph of Gv becomes
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a directed graph where any edge of the form (uj , vl) is directed from uj to vl. Now consider
any vertex vp where p 6= i. There exists at least one terminal qj ∈ Si (in fact, in Si \ Sp),
such that there is an edge between uj and vp in Gv. Since in the residual graph of Gv, this
edge is directed from uj to vp, we can send one unit of flow over this edge also through the
path qj → uj → vp → t. Hence, in Gv, we can always send kN +N − 1 = (k+ 1)N − 1 units
of flow from {s} ∪ Si to {t}.

First suppose the i-th entry of v is equal to 1; then there is an edges from uj to vi for
any qj ∈ Si. In particular, we can send one extra unit of flow over one of these edges to t,
hence having a flow of size (k+ 1)N entering t. Since the total capacity of the edges incident
on t is (k + 1)N , this ensures that the max-flow is also (k + 1)N .

Now suppose the i-th entry of v is equal to 0. For the vertex vi, by construction, there is
no edge from any uj to vi, where qj ∈ Si. Hence in the residual graph of Gv, there is no
path from {s} ∪Si to {t}, meaning that the maximum flow in this case is (k+ 1)N − 1. This
completes the proof. J

Proof of Theorem 8. Lemma 9 ensures that for any graph Gv, there is a one-to-one cor-
respondence between the value of i-th entry in v and i-th entry in op(Gv). Assuming that
the cut-preserving sketch is able to answer each terminal cut (deterministically or even
with a sufficiently small constant probability of error), we can recover i-th bit of vi, from
the i-th index in op(Gv) with a constant probability. Standard information-theoretical
arguments imply that the size of the cut-preserving has to be Ω(N). Moreover, since
N = 2Ω(k) = Ω(C/k) = Ω(C/ logC) in this construction, we obtain the final bound of
Ω(C/ logC) bits on the sketch size. J

We should point out for the case of randomized cut-preserving sketches that are only
guaranteed to have a constant probability of failure over bipartition cuts (and not necessarily
terminal cuts), we first need to reduce the probability of error to 2−k before performing the
described construction (and applying Claim 1) which results in a lower bound of Ω(C/ log2 C).

We further point out that, as a corollary of Theorem 8, we also obtain a simple proof for
a lower bound of 2Ω(k) on size of cut-preserving sketches (see [18, 15]).

4 The s-t Edge-Connectivity Problem

In this section, we study dynamic sketching for the s-t edge-connectivity problem. As it
turns out, any cut-preserving sketch can be directly adapted to a dynamic sketching scheme
for the s-t edge-connectivity problem as follows. Given a graph G with a set T of k terminals
and two designated vertices s and t, create a cut-preserving sketch for G with terminals
T ∪ {s, t}. Note that given a query Q (i.e., a set of edges among T ), the s-t minimum cut
(which is equal to the s-t edge-connectivity) will partition T ∪ {s, t} into two sets Ts and Tt,
where Ts contains s and Tt contains t. Hence, the minimum cut from Ts to Tt is equal to the
minimum cut from s to t. The cut-preserving sketch can answer the minimum cut from Ts to
Tt in the original graph, and the additional cut value caused by the query is simply the total
number of the edges from Ts to Tt. Therefore, if we enumerate all possible partitions of the
terminals that separate s and t, and compute the minimum cut for each partition as above,
the smallest minimum cut among those partitions is equal to the minimum cut from s to t.

Nevertheless, by our lower bound on the size of cut-preserving sketches (Theorem 8),
a dynamic sketching scheme constructed as above, will have a linear dependency on the
total degree of the vertices in T ∪ {s, t}, which could be as large as the number of vertices
in the graph. To resolve this issue, we propose a scheme which directly uses our dynamic
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sketching scheme for the maximum matching problem and achieve a sketch of size O(k4).
The reduction is in the same spirit as the one we used for cut-preserving sketches. But note
that the main differences is that unlike the case for cut-preserving sketches, in the dynamic
sketching problem the set of edges in the original graph changes which require additional
care.

I Theorem 10. For any δ > 0, there exists a randomized k-dynamic sketching scheme for
the s-t edge-connectivity problem with a sketch of size O(k4 log(1/δ)), which answers any
query correctly with probability at least 1− δ.

Given a digraph G with two designated vertices s and t, along with a set of T terminals,
recall that, for the query Q∀ where an edge is inserted between each (ordered) pair of
terminals, GQ∀ denotes the graph after applying the query Q∀ to G. Assume s does not
have any incoming edge and t does not have any outgoing edge, since removing them will
not affect the s-t edge-connectivity. We further assume that s are t are not terminals. This
is without loss of generality since we can create two vertices s′ and t′ that are not terminals,
while adding d+(s) (resp. d−(t)) new vertices and for each of these vertices v, adding an
edge from s′ to v and v to s (resp. t to v and v to t′). In this new graph, the s′-t′ edge
connectivity is equal to the s-t edge-connectivity in G and s′, t′ are not terminals. Consider
the following dynamic sketching scheme.

A dynamic sketching scheme for the s-t edge-connectivity problem

Input: A graph G with m edges, two designated vertices s and t, and a set T of k
terminals.
Compression: Construct a bipartite graph G′(L,R,E′) with a set T ′ of terminals as
follows and create a dynamic sketch for the maximum matching problem for G′ and
T ′.
a. For each edge e in GQ∀ , if e starts with s, create a vertex e+ (in R), if e ends with

t create a vertex e− (in L), otherwise, create two vertices e+ (in R) and e− (in L).
b. For each edge e between two terminals in G, create two vertices ê+ and ê−; ê− and

ê+, along with e− and e+, are terminals of G′.
c. For each edge e in G where both e− and e+ exist, there is an edge between e− and

e+.
d. For any two edges e1 and e2 in GQ∀ where the tail of e1 is the head of e2, there is

an edge between e+
1 and e−2 .

Extraction: Given any query Q of G, let Q′ be the query of G′ where
a. For each edge e in Q, insert an edge between e− and e+.
b. For each edge e in Q∀ \Q, insert an edge between e− and ê+, and between e+ and

ê−.
c. Let the maximum matching size of G′Q′ be ν. Output ν − (m+ 2k2 − |Q|).

The total number of terminals in G′ is 4k2. Hence by Theorem 2, the sketch size is
O(k4 log(1/δ)). The correctness of the reduction is similar in spirit to the proof of Theorem 7
and is deferred to the full version [5] (see Section 4.1).

We conclude this section by remarking that there exists an equivalence between dynamic
sketching the capacitated version of the s-t edge connectivity problem (i.e., the s-t maximum
flow problem) and cut-preserving sketches. In particular,
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I Theorem 11. Any cut-preserving sketch can be adapted to a dynamic sketching scheme
for the s-t maximum flow problem while increasing the number of terminals by at most 2,
and vice versa.

The proof of this theorem together with a detailed discussion on the similarity of the
s-t maximum flow problem and cut-preserving sketches is provided in Section 4.2 of the
full version of the paper [5]. However, we point out here that Theorem 11 combined with
Theorem 8, proves a similar 2Ω(k) lower bound on size of dynamic sketches for the s-t
maximum flow problem. In other words, this problem does not admit a compact dynamic
sketch.

5 Conclusions

In this paper we have introduced dynamic sketching, a new approach for compressing data
sets separated into static and dynamic parts. We studied dynamic sketching for graph
problems where the dynamic part consists of k vertices and the edges between them may
get modified in an arbitrary manner (a query). We showed that the maximum matching
problem admits a sketch of size O(k2) and the space bound is tight. Moreover, this sketch
can be used to obtain cut-preserving sketches of size O(kC2), and dynamic sketches for s-t
edge-connectivity of size O(k4).

There are problems (even in P) for which any dynamic sketch requires 2Ω(k) space. An
interesting direction for future work is to identify broad classes of problems that admit
compact dynamic sketches, i.e, sketches of size poly(k).

Some data compression schemes (most notably, cut sparsifiers and kernelization results)
generate as compressed representation an instance of the original problem, while the sketches
we introduced do not fall into this category. A natural question is to understand if there
exist polynomial-size “sparsifier-like” compressed representations for matchings and s-t edge
connectivity in the dynamic sketching model.

Finally, while our work narrows the gap between upper and lower bounds on the size of
a cut-preserving sketches, it remains an intriguing open question to get an asymptotically
tight bound on the size of cut-preserving sketches.

Acknowledgments. We are grateful to Chandra Chekuri and Michael Saks for helpful
discussions.
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Abstract
Strategy Logic is a powerful specification language for expressing non-zero-sum properties of
multi-player games. SL conveniently extends the logic ATL with explicit quantification and
assignment of strategies. In this paper, we consider games over one-counter automata, and a
quantitative extension 1cSL of SL with assertions over the value of the counter. We prove two
results: we first show that, if decidable, model checking the so-called Boolean-goal fragment of
1cSL has non-elementary complexity; we actually prove the result for the Boolean-goal fragment
of SL over finite-state games, which was an open question in [32]. As a first step towards proving
decidability, we then show that the Boolean-goal fragment of 1cSL over one-counter games enjoys
a nice periodicity property.
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1 Introduction

Model checking. Model checking [19] has been developed for almost 40 years as a formal
method for verifying correctness of computerized systems: this technique first consists in
representing the system under study as a mathematical model (a finite-state transition
system (a.k.a. Kripke structure), in the most basic setting), expressing the correctness
property in some logical formalism (usually, using various temporal logics such as LTL [35]
or CTL [18, 36]), and running an algorithm that exhaustively explores the set of behaviours
of the model for proving or disproving the property.

Over the years, model checking has been extended in various directions, in order to take
into account richer models and more precise properties. Several families of quantitative
models (e.g. weighted Kripke structures [12], counter automata [25], timed automata [1]) and
temporal logics [29, 24, 2, 7, 9, among others] have been defined and studied. Those formalisms
conveniently extend the qualitative setting; they provide powerful ways of representing
quantities, while in several cases keeping reasonably efficient model-checking algorithms.

Multi-agent systems (a.k.a. graph games [42, 4]) form another direction where model
checking has been extended for reasoning about the interactions between components of a
computerized system. Temporal logics have been extended accordingly [3, 16, 34, 20], in
order to express the existence of winning strategies in multi-player games. Among the most
popular approaches, the logic ATL [3] has limited expressive power but enjoys reasonably
efficient model-checking algorithms, while the more expressive Strategy Logic (SL) [16, 34]
extends LTL with explicit manipulation of strategies, and can express very rich non-zero-sum
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properties of games, including equilibria; however, model checking SL is non-elementary.
Several fragments of SL have recently been introduced in order to mitigate the complexity of
the model-checking problem while retaining the interesting aspects of SL [33, 13].

Quantitative games, combining both extensions, have also been widely considered. This
includes games on weighted graphs [23, 14, 31, 8], games on counter systems or VASS [39, 11],
or timed games [5, 21]. A large part of these works have focused on “simple” objectives, such
as mean-payoff objectives [23], energy constraints [14, 8], or combinations thereof [15, 26].

Our contribution. In this paper, we consider a quantitative extension of SL over quantitative
games. While such extensions have already been proven decidable for ATL [31, 43], we focus
here on a quantitative extension of the richer logic SL, more specifically, its so-called Boolean-
goal fragment SL[BG] [32]. SL with Boolean goals restricts SL by preventing arbitrary nesting
of strategy quantifiers within temporal modalities. This and several other fragments of SL
have been introduced in [32] with the aim of getting more efficient model-checking algorithms.
However, while several fragments have been shown to have 2 -EXPTIME model-checking
algorithms, the exact complexity of SL[BG] remained open.

We prove that model checking (the flat fragment of) SL[BG] is Tower-complete, thus
negatively answering the open question whether SL[BG] would enjoy more efficient model-
checking algorithm than SL. This hardness result obviously extends to the quantitative
version 1cSL[BG] of SL[BG] over one-counter games. On the way to proving decidability of
the model-checking problem for this logic, we then show that 1cSL[BG] over one-counter
games enjoys a nice periodicity property: for any given formula, there is a threshold above
which truth value of the formula is periodic (w.r.t. the value of the counter).

Related works. Several works have focused on one-counter models: two-player games with
parity objectives have been proven PSPACE-complete [39]; this was recently extended to a
quantitative extension of ATL [43], which is thus closely related to our paper. Model checking
LTL and CTL over one-counter automata is also PSPACE-complete [28, 27]. Quantitative
extensions of those logics have been studied in [22, 7, 9]. In many cases, they lead to
undecidability of the model-checking problem. Games on VASS have also been considered,
but reachability is only decidable in restricted cases [11, 37].

Games over integer-weighted graphs have a different flavour, as the behaviours do not
depend on the value of the accumulated weight. Those games have been extensively considered
with various quantitative objectives (e.g. mean-payoff [23, 44], energy [14, 8], and combinations
thereof [15, 17]), and with objectives expressed in temporal logics [31, 6].

2 Definitions

IDefinition 1. Let AP be a set of atomic propositions, and Agt be a set of agents. A 1-counter
concurrent game structure (1cCGS for short) is a tuple G = 〈Loc, label,Act,Tab{0,1},Wgt{0,1}〉
where

Loc is a finite set of locations;
label : Loc→ 2AP labels locations with atomic propositions;
Act is a finite set of actions;
Tab0 : Loc× ActAgt → Loc and Tab1 : Loc× ActAgt → Loc are two transition tables;
Wgt0 : Loc×ActAgt → {0, 1} and Wgt1 : Loc×ActAgt → {−1, 0, 1} assign a weight to each
transition of the transition tables.
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A finite path in a 1cCGS G is a finite non-empty sequence of configurations ρ =
γ0γ1γ2 . . . γk, where for all 0 ≤ i ≤ k, the configuration γi is a pair (`i, ci) with `i ∈ Loc and
ci ∈ N. For such a path, we denote by last(ρ) its last element γk, and we let |ρ| = k. number
of transitions An infinite path is an infinite sequence of configurations with the same property.
We denote by Path (resp. InfPath) the set of finite (resp. infinite) paths. The length of an
infinite path is +∞. For 0 ≤ i < |ρ|, ρ(i) represents the i + 1-th element γi of ρ. For a
path ρ and 0 ≤ i < |ρ|, we denote by ρ≤i the prefix of ρ until position i, i.e. the finite path
ρ(0)ρ(1) . . . ρ(i).

A strategy for some agent a ∈ Agt is a function σa : Path→ Act. We write Strat for the
set of strategies. Given a finite path (or history) in the game, a strategy σa returns the action
that agent a will play next. A strategy σA for a coalition of agents A ⊆ Agt is a function
assigning a strategy σA(a) to each agent a ∈ A. Given a strategy σA for coalition A, we say
that a path ρ respects σA after a finite prefix π if, writing ρ(i) = (`i, ci) for all 0 ≤ i ≤ |ρ|,
the following two conditions hold:

for all 0 ≤ i < |π|, we have ρ(i) = π(i)
for all |π| ≤ i < |ρ| − 1, we have that `i+1 = Tabs(`i,m) and ci+1 = ci + Wgts(ρ≤i,m),
where s = 0 if ci = 0 and s = 1 otherwise, and m is an action vector satisfying
m(a) = σA(a)(ρ≤i) for all a ∈ A.

Notice that the value of the counter always remains nonnegative as Wgt0 only returns
nonnegative values. Given a finite path π, we denote by Out(π, σA) the set of paths that
respect the strategy σA after prefix π. Notice that if σA assigns a strategy to all the agents,
then Out(π, σA) contains a single path, which we write out(π, σA).

I Remark. Several semantics have been given to quantitative games, see [37]. The semantics
chosen here, with zero tests (using Tab0,Tab1), allows to easily express the three semantics
studied in [37]. Hence our algorithms apply in all these settings. It is worth noticing that
the hardness proof holds for the non-quantitative setting, hence also for all three semantics
mentioned above.

We now define our weighted extension of Strategy Logic [16, 34]:

I Definition 2. Let AP be a set of atomic propositions, Agt be a set of agents, and Var be a
finite set of strategy variables. Formulas in 1cSL are built from the following grammar:

1cSL 3 φ ::= p | cnt ∈ S | ¬φ | φ∨φ | Xφ | φUφ | ∃x. φ | bind(a 7→ x). φ

where p ranges over AP, S is a subset of N that can be described as S1
fin∪

(
S2
fin +k ·N

)
, where

Sifin are finite subsets of N and k ∈ N is a period1, x ranges over Var, and a ranges over Agt.
The logic SL is the fragment of 1cSL where no counter constraint cnt ∈ S or cnt ∈ S[k] is
used. The logic 1cLTL is the fragment of 1cSL where no strategy quantifiers ∃x. φ and no
strategy bindings bind(a 7→ x). φ are used. Finally, LTL is the intersection of SL and 1cLTL.

The set of free agents and variables of a formula φ of 1cSL, which we write free(φ),
contains the agents and variables that have to be associated with a strategy before φ can be

1 This allows to express standard counter constraints like cnt ≥ 5 (using negation) or periodic constraint
like cnt = 4 mod 7. Notice that our periodicity result is not a consequence of the periodicity of the
quantitative assertions, and would also hold with assertions of the form cnt ∼ n.
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evaluated. It is defined inductively as follows:

free(p) = ∅ for p ∈ AP free(Xφ) = Agt ∪ free(φ)
free(cnt ∈ S) = ∅ for n ∈ N free(φUψ) = Agt ∪ free(φ) ∪ free(ψ)

free(¬φ) = free(φ) free(φ∨ψ) = free(φ) ∪ free(ψ)

free(∃x. φ) = free(φ) \ {x} free(bind(a 7→ x). φ) =
{

free(φ) if a /∈ free(φ)
(free(φ) ∪ {x}) \ {a} otherwise

A formula φ is closed if free(φ) = ∅.
We can now define the semantics of 1cSL. Let G be a 1cCGS, π be a path, i be a position

along π, and χ : Var ∪ Agt 99K Strat be a partial valuation (or context) with domain dom(χ).
Let φ ∈ SL such that free(φ) ⊆ dom(χ). Whether φ holds true at position i along π within
context χ is defined inductively as follows:

G, π, i |=χ p iff p ∈ label(`i) (writing π(i) = (`i, ci))
G, π, i |=χ cnt ∈ S iff ci ∈ S (writing π(i) = (`i, ci))
G, π, i |=χ ¬φ1 iff G, π, i 6|=χ φ1

G, π, i |=χ φ1 ∨φ2 iff G, π, i |=χ φ1 or G, π, i |=χ φ2

G, π, i |=χ Xφ1 iff G, ρ, i+ 1 |=χ φ1 (writing ρ = out(π≤i, χ|Agt))
G, π, i |=χ φ1 Uφ2 iff ∃k ≥ i. G, ρ, k |=χ φ2 and

∀i ≤ j < k. G, ρ, j |=χ φ1 (writing ρ = out(π≤i, χ|Agt))
G, π, i |=χ ∃x. φ1 iff ∃σ ∈ Strat. G, π, i |=χ[x 7→σ] φ1

G, π, i |=χ bind(a 7→ x). φ1 iff G, π, i |=χ[a7→χ(x)] φ1

Notice that the constraint that free(φ) ⊆ dom(χ) is preserved at each step.
I Remark. One may notice that the relation G, π, i |=χ φ does not depend on the suffix
of π after position i. Moreover, writing σ−−→π≤i for the strategy σ′ such that σ′(ρ) = σ(π≤i · ρ),
it is easily proved that G, π, i |=χ φ if, and only if, G, π′, 0 |=χ′ φ, where χ′(x) = χ(x)−−→π≤i
for all x ∈ Var ∪ Agt (we will later write χ−−→π≤i for χ

′). As the satisfaction relation does not
depend on the suffix of π after position i, we may also write G, γ |=χ′ φ, where γ = π(i).
In the sequel, we may even omit to mention G when it is clear from the context, and simply
write γ |=χ φ.
I Remark. We write 〈·a·〉φ as a shorthand for ∃σa. bind(a 7→ σa). φ, when we do not need to
have hands on σa in the rest of the formula. Similarly, [·a·]φ stands for ¬ 〈·a·〉 ¬φ. This con-
struct 〈·a·〉φ precisely corresponds to the strategy quantification used in the logic ATLsc [30],
but it should be noticed that it does not correspond to the strategy quantifier of ATL [3].

In the sequel, we also use other classical shorthands such as >, defined as p∨¬ p for
some p (hence it is always true); Fφ as a shorthand for >Uφ, meaning that φ holds at
a later position; and Gφ, defined as ¬F ¬φ, meaning that φ holds true at every future
position.

Several fragments of SL have recently been defined and studied [32]. Those fragments
restrict the use of strategy bindings and quantifications. In the present paper, we are mainly
interested in the quantitative extension of the fragment SL[BG]. Before defining 1cSL[BG],
we first introduce its flat fragment 1cSL0[BG]:

1cSL0[BG] 3 φ ::= ¬φ | φ∨φ | ∃x. φ | bind(a 7→ x). φ | ψ
ψ ::= p | cnt ∈ S | ¬ψ | ψ ∨ψ | Xψ | ψUψ
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s

a1

a2

p1

¬ p1

¬ p2

p2

Figure 1 The 3-player turn-based game for the reduction to SL model checking.

I Remark. Any closed formula ϕ in 1cSL0[BG] can be written in prenex form as

℘(Var). f
(

(βi(Agt,Var). ψi)1≤i≤n

)
where ℘(Var) is a series of strategy quantifiers involving all variables in Var, f is a Boolean
combination over n atoms, and for every 1 ≤ i ≤ n, βi assigns a strategy from Var to each
agent of Agt, and ψi is a 1cLTL formula.

1cSL[BG] then extends 1cSL0[BG] by allowing nesting closed formulas at the level of
atomic propositions. Formally, we defined the depth-i fragment as

1cSLi[BG] 3 φ ::= ¬φ | φ∨φ | ∃x. φ | bind(a 7→ x). φ | ψ
ψ ::= p | φi−1 | cnt ∈ S | ¬ψ | ψ ∨ψ | Xψ | ψUψ

where φi−1 ranges over closed formulas of 1cSLi−1[BG]. We let 1cSL[BG] be the union of
the fragments 1cSLi[BG] for all i ∈ N. It can be checked that if we drop the quantitative
constraints from 1cSL[BG], we precisely get the logic SL[BG] of [32].

3 Hardness of SL[BG] model checking

In this section, we prove that the model-checking problem for SL[BG] is Tower-hard (the com-
plexity class Tower is the union of all classes k-EXPTIME when k ranges over N [38]).
We actually prove the result for (the flat fragment of) SL[BG], closing a question left open
in [32].

I Theorem 3. Model checking SL[BG], and hence 1cSL[BG], is Tower-hard.

We give a sketch of the proof here, and develop the full proof in [10].

Sketch of proof. We prove this result by encoding the satisfiability problem for QLTL into
the model-checking problem for SL[BG]. QLTL is the extension of LTL with quantification
over atomic propositions [40]: formulas in QLTL are of the form Φ = ∀p1∃p2 . . . ∀pn−1∃pn. ϕ
where φ is in LTL. Notice that we only consider strictly alternating formulas for the sake
of readability. The general case can be handled similarly. Formula ∃p. ϕ holds true over a
word w : N→ 2AP if there exists a word w′ : N→ 2AP with w′(i)∩(AP\{p}) = w(i)∩(AP\{p})
and w′ |= ϕ for all i. Universal quantification is defined similarly. It is well-known that model
checking (and satisfiability) of QLTL is Tower-complete [41]. We reduce the satisfiability of
QLTL into a model-checking problem for a SL[BG] formula involving n+ 4 players (where n is
the number of quantifiers in the QLTL formula), and three additional quantifier alternations.
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ϕ, p1, p2

ϕ, p1,¬ p2

ϕ,¬ p1, p2

ϕ,¬ p1,¬ p2 ¬ϕ, p1, p2¬ϕ, p1,¬ p2

¬ϕ,¬ p1, p2¬ϕ,¬ p1,¬ p2

p1, p2

p1,¬ p2 ¬ p1,
p2

¬ p1,¬ p2

p1,
¬ p2

p1, p2

¬ p1,¬ p2

¬ p1, p2

p1, p2
p1,¬ p2
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¬ p1,¬ p2
p1,
¬ p2 p1, p2

¬ p1,¬ p2 ¬ p1, p2

¬ p1, p2

¬ p1,¬ p2

p1, p2

p1,¬ p2

Figure 2 Büchi automaton for G (p2⇔X p1).

Before developing this technical encoding, we first present an example of a reduction to
plain SL, which already contains most of the intuitions of our reduction to SL[BG]. Consider
the QLTL formula

Φ = ∀p1. ∃p2. G (p2⇔X p1).

To solve the satisfiability problem of this formula via SL, we use the three-player turn-
based game depicted on Fig. 1. In that game, Player Blue controls the blue state s, while
Players Red and Green control the square states a1 and a2, respectively. Fix a strategy of
Player Red: this strategy will be evaluated only in red state a1, hence after histories of the
form sn · a1. Hence a strategy of Player Red can be seen as associating with each integer n a
value for p1. In other words, a strategy for Player Red defines a labeling of the time line
with atomic proposition p1. Similarly for Player Green and proposition p2.

It remains to use this correspondence for encoding our QLTL formula. We have to express
that for any strategy σRed of Player Red, there is a strategy σGreen of Player Green under
which, at each step along the path that stays in s forever, Player Blue can enforce XX p2 if,
and only if, he can enforce XX p1 one step later. In the end, the formula reads as follows:

[·Red·] 〈·Green·〉 〈·Blue·〉G
(
ss ∧( 〈·Blue·〉XX p2p2 )⇔(X 〈·Blue·〉XX p1p1 )

)
(1)

One may notice that the above property is not in SL[BG]: for instance, the subformula
〈·Blue·〉XX p2p2 is not closed. We provide a different construction, refining the ideas above,
in order to reduce QLTL satisfiability to SL[BG] model checking.

In order to do so, we take another approach for encoding the LTL formula, since our
technique of encoding pi with 〈·Blue·〉XX pipi is not compatible with getting a formula
in SL[BG]. Instead, we will use a Büchi automaton encoding the formula; another player, say
Player Black, will be in charge of selecting states of the Büchi automaton at each step. Using
the same trick as above in the game structure on the left of Fig. 3, a strategy for Player Black
can be seen as a mapping from N to states of the Büchi automaton. Our formula will ensure
that this sequence of states is in accordance with the atomic propositions selected by the
square players in states ai, and that it forms an accepting run of the Büchi automaton.

For our example, an eight-state Büchi automaton associated with the (LTL part of the)
QLTL formula is depicted on Fig. 2. Notice that smaller automata exist for this property (for
instance, the four states on the right could be merged into a single one), but for technical
reasons in our construction, we require that each state of the Büchi automaton corresponds to
a single valuation of the atomic propositions, hence the number of states must be a multiple
of 2|AP|. Accordingly, we augment our game structure of Fig. 1 with eight extra states, as
depicted on the left of Fig. 3. Again, a strategy of Player Black (controlling state b) defines
a sequence of states of the Büchi automaton.
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¬ p2

p2
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ϕ, p1, p2

ϕ,¬ p1, p2

ϕ, p1,¬ p2

ϕ,¬ p1,¬ p2

¬ϕ, p1, p2

¬ϕ,¬ p1, p2

¬ϕ, p1,¬ p2

¬ϕ,¬ p1,¬ p2

α

β1 β2

γ

δ

Figure 3 The concurrent game for the reduction to SL[BG] model checking.

(s, α, γ)k

∃σorange∞ γ

∀σpurple α βl

∃(σpurplei )i α βi
∃σorange= γ δ
∃σpurple+ α βl′
∃σorange+ γ δ
∃σpurpleacc α βl′′

∃σblueAP s al

∃σblueBüchi s b
∃σblue+ s b
∃σblueacc s b

Figure 4 Visualization of the strategies selected by Ψaux on history (s, α, γ)k.

It then remains to “synchronize” the run of the Büchi automaton with the valuations
of the atomic propositions, selected by the players controlling the square states. This is
achieved by taking the product of the game we just built with two extra one-player structures,
as depicted on the right of Fig. 3. The product gives rise to a concurrent game, where
one transition is taken simultaneously in the main structure and in the Purple and Orange
structures. In this product, as long as Player Blue remains in s and Player Purple remains
in α, a strategy of Player Orange (controlling state γ) either remains in γ forever, or it
can be characterized by a value n ∈ N. Similarly, as long as Player Blue remains in s and
Player Orange remains in γ, a strategy of Player Purple (controlling state α) either loops
forever in α, or can be uniquely characterized by a pair (k, pl), where k is the number of
times the loop over α is taken before entering state βl corresponding to pl ∈ AP.

Our construction can then be divided in two steps:
First, with any strategy of Player Purple (characterized by (k, pl) for the interesting
cases), we associate auxiliary strategies of Players Blue, Purple and Orange satisfying
certain properties, that can be enforced by an SL[BG] formula Ψaux; Fig. 4 should help
visualizing the associated strategies; in particular, strategies σorange+ , σblue+ and σpurple+
characterize position k + 1 (which will be useful for checking transitions of the Büchi
automaton), while σblueBüchi and σ

blue
AP are Player-Blue strategies that either go to the Büchi

part or to the proposition part of the main part of the game.

FSTTCS 2015



76 Weighted Strategy Logic with Boolean Goals Over One-Counter Games

Then, using those strategies, we write another SL[BG] formula to enforce that the
transitions of the Büchi automaton are correctly applied, following the valuations of the
atomic propositions selected in the square states, and that an accepting state is visited
infinitely many times.

The construction of the game structure GΦ depicted on Fig. 3 is readily extended to any
number of atomic propositions, and to any Büchi automaton. We now explain how we build
our SL[BG] formula replacing Formula (1), and ensuring correctness of our reduction.

We do not detail the first step mentioned above and assume that a formula Ψaux has
been written, which properly generates auxiliary strategies, as depicted on Fig. 4 (see [10]).
Instead we focus on the Büchi automaton simulation. We look for a strategy of Player Black
that will mimic the run of the Büchi automaton, following the valuation of the atomic
propositions selected by the square players A1 to An. We also require that the run of the
Büchi automaton be accepting.

The formula Ψ enforcing these constraints is as follows2:

∀σA1 . ∃σA2 . . . . ∀σAn−1 . ∃σAn . ∃σblack. bind(σA1 , σA2 , . . . , σAn−1 , σAn , σblack, σorange
∞ ). Ψaux

∧ ∧
pi,pj∈AP

∧
q∈Q

(bind(σblueBüchi, σ
purple
i )F q)⇔(bind(σblueBüchi, σ

purple
j )F q) (ϕ1)

∧ ∧
pi∈AP

((
bind(σblueAP , σ

purple). F pi
)
⇒
(
bind(σblueBüchi, σ

purple).
∨

q∈Q|pi∈label(q)

F q
))

(ϕ2)

∧ ∧
pi∈AP

((
bind(σblueAP , σ

purple). F ¬ pi
)
⇒
(
bind(σblueBüchi, σ

purple).
∨

q∈Q|pi /∈label(q)

F q
))

(ϕ3)

∧ ∧
q∈Q

bind(σblueBüchi, σ
purple). F q⇒

∨
q′∈succ(q)

bind(σblue+ , σpurple+ ). F q′ (ϕ4)

∧
bind(σblueacc , σ

purple
acc ).

∨
q∈accept(Q)

F q (ϕ5)

We now analyze formula Ψ:
Formula (ϕ1) requires that strategy σblack returns the same move after any history of the
form (s, α, γ)k(b, βi, γ), whichever βi has been selected by σpurple;
Formulas (ϕ2) and (ϕ3) constrain the state of the Büchi automaton to correspond to the
valuation of the atomic propositions selected. Because of the universal quantification
over σpurple, this property will be enforced at all positions and for all atomic propositions;
Formula (ϕ4) additionally requires that two consecutive states of the run of the Büchi
automaton indeed correspond to a transition;
finally, Formula (ϕ5) states that for any position (selected by σpurple), there exists a later
position (given by σpurpleacc ) at which the run of the Büchi automaton visits an accepting
state.

The correctness of the construction is then stated in the next lemma, whose proof can be
found in [10].

2 We notice that Ψ is not syntactically in SL[BG], as some bindings appear before quantifications in Ψaux.
However, quantifiers in Ψaux could be moved before the bindings of Ψ.
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I Lemma 4. Formula Φ in QLTL is satisfiable if, and only if, Formula Ψ in SL[BG] holds
true in state (s, α, γ) of the game GΦ. J

I Remark. SL[BG] and several other fragments were defined in [32, 33] with the aim of getting
more tractable fragments of SL. In particular, the authors advocate for the restriction to
behavioural strategies: this forbids strategies that prescribe actions depending of what other
strategies would prescribe later on, or after different histories. Non-behavioural strategies
are thus claimed to have limited interest in practice; moreover, they are suspected of being
responsible for the non-elementary complexity of SL model-checking. Our hardness result
strengthens the latter claim, as SL[BG] is known for not having behavioral strategies.

|= φ
p1 p1 p1

p2 p2
I Remark. We had to rely on a Büchi auto-
maton instead of directly using the original
LTL formula directly in the SL[BG] formula.
This is because we need to evaluate the for-
mula not on a real path of our game struc-
ture, but on a sequence of “unions” of states.
The figure on the right represents this situation for the game structure of Fig. 1: the path on
which the LTL formula is given by the red and green circle states, which define the valuations
for p1 and p2.

4 Periodicity of 1cSL[BG] model checking

In this section we prove our periodicity property for 1cSL[BG]. We inductively define the
function tower : N×N→ N as tower (a, 0) = a and tower (a, b+ 1) = 2tower(a,b). This encodes

towers of exponentials of the form 22.
..
a

.

I Theorem 5. Let G be a 1cCGS, and ϕ be a 1cSL[BG] formula. Then there exist a threshold
h ≥ 0 and a period Λ ≥ 0 for the truth value of ϕ over G. That is, for every configuration
(q, c) of G with c ≥ h, for every k ∈ N, G, (q, c) |= ϕ if, and only if, G, (q, c+ k · Λ) |= ϕ.

Furthermore the order of magnitude for h+ Λ is bounded by

tower
(

max
θ∈Subf(ϕ)

nθ, max
θ∈Subf(ϕ)

kθ + 1
)|Q|·22|ϕ|

where Subf(ϕ) is the set of 1cSL[BG] formulas of ϕ, kθ is the number of quantifier alternations
in θ, and nθ is the number of different bindings used in θ.

The rest of this section is devoted to developing the proof of this result, though not with
full details. Detailed proofs of intermediate results are given in [10].

We first prove this property for the flat fragment 1cSL0[BG], and then extend it to the
full 1cSL[BG].

4.1 The flat fragment 1cSL0[BG]
We fix a 1cCGS G and a formula ϕ = Q1x1 . . . Qkxk. f((βiφi)1≤i≤n) in 1cSL0[BG], where for
every 1 ≤ j ≤ k, we have Qj ∈ {∃,∀} (assuming quantifiers strictly alternate), f is a Boolean
formula over n atoms, and for every 1 ≤ i ≤ n, βi is a complete binding for the players’
strategies, and φi is a 1cLTL formula. We write M for the maximal constant appearing in
one of the finite sets describing a counter constraint S appearing in ϕ.

FSTTCS 2015
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For every 1 ≤ i ≤ n, we let Di be a deterministic (counter) parity automaton that recog-
nizes formula φi (this is the standard LTL-to-(deterministic parity) automata construction in
which quantitative constraints are seen as atoms). A run of G is read in a standard way, with
the additional condition that quantitative constraints labelling a state should be satisfied by
the counter value when the state is traversed (a state can be labelled by a constraint cnt ∈ S,
with S arbitrarily complex—it does not impact the description of the automaton).

The proof proceeds by showing that, above some threshold, the truth value of ϕ is periodic
w.r.t. counter values. To prove this, we define an equivalence relation over counter values
that generates identical strategic possibilities (in a sense that will be made clear later on).

4.1.1 Definition of an equivalence relation
Fix a configuration γ = (`, c) in G, pick for every 1 ≤ i ≤ n a state di in the automaton Di,
and define the tuple D = (d1, . . . , dn). For every context χk for variables {x1, . . . , xk},
we define the level-0 identifier Idχk(γ,D) as:

Idχk(γ,D) =
{
i
∣∣ 1 ≤ i ≤ n and out(γ, βi[χk]) is accepted by Di from di

}
where βi[χk] assigns a strategy from χk to each player in Agt following βi.

Assuming we have defined level-(k − j + 1) identifiers Idχj+1(γ,D) for every partial
context χj+1 for variables {x1, . . . , xj+1}, we define the level-(k − j) identifier Idχj (γ,D) for
every partial context χj for variables {x1, . . . , xj} as follows:

Idχj (γ,D) =
{

Idχj+1(γ,D)
∣∣ χj+1 is a context for {x1, . . . , xj+1} that extends χj

}
.

There is a unique level-k identifier for every configuration γ = (`, c) and every D, which
corresponds to the empty context. It somehow contains full information about what kinds of
strategies can be used in the game (this is a hierarchical information set, which contains all
level-j identifiers for j < k).

Let P be the least common multiple of all the periods appearing in periodic quantitative
assertions used in formula ϕ. We define the following equivalence on counter values:

c ∼ c′ if, and only if, c = c′ mod P and ∀D. ∀`. Id∅((`, c), D) = Id∅((`, c′), D).

Combinatorics. Given a configuration (`, c) and a tuple D, the number of possible values for
the level-0 identifier is tower (n, 1), and for the level-j identifier it is tower (n, j + 1). Hence,
the number ind∼ of equivalence classes of the relation ∼ satisfies

ind∼ ≤ P · (tower (n, k + 1))
(
|Q|·
∏

1≤i≤n
22|φi|

)
≤ P · (tower (n, k + 1))

(
|Q|·22|ϕ|

)
with |Q| the number of states in G. We let M = M + ind∼ + 1. By the pigeon-hole principle,
there must exist M < h < h′ ≤M such that h ∼ h′.

4.1.2 Periodicity property
We define Λ = h′ − h, and now prove that it is a period for ϕ for counter values larger
than or equal to h. Assume that γ = (`, c) is a configuration such that c ≥ h, and define
γ′ = (`, c+ Λ) (note that c+ Λ ≥ h′). We show that G, γ |= ϕ if, and only if, G, γ′ |= ϕ.
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h′

h

Λ

•
γ

•
γ′ = ShiftΛ(γ)

Λ

•

•
identical (but shifted) strategies

equivalent strategies (h ∼ h′)

Figure 5 Construction in Lemma 6 (case (ii)).

I Notations. For the rest of this proof, we fix the following notations:
1. if ρ is a run starting with counter value a > c, then either the counter always remains

above c along ρ (in which case we say that ρ is fully above c), or it eventually hits value c,
and we define ρ%c for the smallest prefix of ρ such that last(ρ%c) has counter value c;

2. let ρ be a run that is fully above M , and let c be the least counter value appearing in ρ.
For every ν ≥M − c, we write Shiftν(ρ) for the run ρ′ obtained from ρ by shifting the
counter value by ν. It is a real run since the counter values along ρ′ are also all above M .

3. if D is a tuple of states of the deterministic automata Di, and if ρ is a finite run of G
that is fully above M , then we write D+ρ for the image of D after reading ρ.

Let 0 ≤ j ≤ k. We assume that χj and χ′j are two contexts for {x1, . . . , xj}, and D is a
tuple of states of the Di’s. We write RD,j(γ,γ′)(χj , χ

′
j) if the following property holds for any

run ρ from γ:
(i) if ρ is fully above h (or equivalently, if ρ′ = Shift+Λ(ρ), which starts from γ′, is fully

above h′), then for every 1 ≤ g ≤ j, χj(xg)(ρ) = χ′j(xg)(ρ′);
(ii) if ρ is not fully above h (equivalently, if ρ′ = Shift+Λ(ρ) is not fully above h′), then we

decompose ρ (resp. ρ′) w.r.t. h (resp. h′) and write ρ = ρ%h · ρ and ρ′ = ρ′%h′ · ρ′. Then:

Idχj−−→ρ%h
(last(ρ%h), D̃) = Idχ′

j
−−−→
ρ′

%h′
(last(ρ′%h′), D̃)

with D̃ = D+ρ%h = D+ρ′
%h′

. Recall that χj−−→ρ%h
shifts all strategies in context χj after

the prefix ρ%h (that is, χj is the strategy such that χj−−→ρ%h
(π) = χj(ρ%h · π) for every π).

We then have:

I Lemma 6. Fix 0 ≤ j < k, and assume that RD,j(γ,γ′)(χj , χ
′
j) holds true. Then:

1. for every strategy v for xj+1 from γ, one can build a strategy T (v) for xj+1 from γ′ such
that RD,j+1

(γ,γ′) (χj ∪ {v}, χ′j ∪ {T (v)}) holds true;
2. for every strategy v′ for xj+1 from γ′, one can build a strategy T −1(v′) for xj+1 from γ

such that RD,j+1
(γ,γ′) (χj ∪ {T −1(v′)}, χ′j ∪ {v′}) holds true.

Sketch of proof. The idea is the following: either we are in case (1), in which case identical
(but shifted) strategies can be applied; or we are in case (2), in which case identical (but shifted)
strategies can be applied until counter value h (resp. h′) is hit, in which case equality of
identifiers allows to apply equivalent strategies. The construction is illustrated in Fig. 5. J

We use this lemma to transfer a proof that γ |=∅ ϕ to a proof that γ′ |=∅ ϕ. We decompose
the proof of this equivalence into two lemmas:
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I Lemma 7. Fix D0 for the tuple of initial states of the Di’s. Assume that RD
0,k

(γ,γ′)(χ, χ
′)

holds (for full contexts χ and χ′). Let 1 ≤ i ≤ n, and write ρ = Out(γ, βi[χ]) and ρ′ =
Out(γ′, βi[χ′]). Then ρ |= φi if and only if ρ′ |= φi. In particular, γ |=χ f((βiφi)1≤i≤n) if
and only if γ′ |=χ′ f((βiφi)1≤i≤n).

Sketch of proof. As long as runs are above h (resp. h′) they visit states that satisfy exactly
the same atomic properties (atomic propositions and counter constraints), hence they progress
in each Di along the same run. When value h (resp. h′) is hit, they are generated by strategies
that have the same level-0 id, which precisely means they are equivalently accepted by each Di.
Hence both outcomes satisfy the same formulas φi under binding βi[χ] (resp. βi[χ′]). J

We finally show the following lemma, by induction on the context, and by noticing that
h ∼ h′ precisely implies the induction property at level 0.

I Lemma 8. γ |=∅ ϕ if and only if γ′ |=∅ ϕ.

This allows to conclude with the following corollary:

I Corollary 9. Λ is a period for the satisfiability of ϕ for configurations with counter values
larger than or equal to h.

Furthermore, h+ Λ is bounded by M + P · (tower (n, k + 1))|Q|·
∏

1≤i≤
22|ϕ|

+ 1.

I Remark. Note that the above proof of existence of a period, though effective (a period
can be computed by computing the truth of identifier predicates), does not allow for an
algorithm to decide the model-checking problem. One possible idea to lift that periodicity
result to an effective algorithm would be to bound the counter values; however things are not
so easy: in Fig. 5, equivalent strategies from h and h′ might generate runs with (later on)
counter values larger than h or h′. The decidability status of 1cSL1[BG] (and of 1cSL[BG])
model checking remains open.

4.2 Extension to 1cSL[BG]
We explain how we can extend the previous periodicity analysis to the full logic 1cSL[BG].
We fix a formula of 1cSLk+1[BG]

ϕ = Q1x1 . . . Qkxk · f((βiφi)1≤i≤n)

with the same notations than the ones at the beginning of the previous subsection, but φi
can use closed formulas of 1cSLk[BG] as subformulas.

Let Ψϕ be the set of closed subformulas of 1cSLk[BG] that appear directly under the
scope of some φi. We will replace subformulas of Ψϕ by other formulas involving only (new)
atomic propositions and counter constraints. Pick ψ ∈ Ψϕ. Let hψ and Λψ be the threshold
and the period mentioned in Corollary 9. For every location ` of the game, the set of counter
values c such that (`, c) |= ψ can be written as Sψ` (we use a non-periodic set for the values
smaller than hψ and a periodic set of period Λψ for the values above hψ)—note that we know
such a set exists, even though there is (for now) no effective procedure to express it. The size
of formula Sψ` is 1 (we do not take into account the complexity of writing the precise sets
used in the constraint). Expand the set of atomic propositions AP with an extra atomic
proposition for each location, say p` for location `, which holds only at location `. For every
ψ ∈ Ψϕ, replace that occurrence of ψ in ϕ by formula

∧
`∈L p` → (cnt ∈ Sψ` ). This defines

formula ϕ′, which is now a 1cSL0[BG] formula, and holds equivalently (w.r.t. ϕ) from every
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configuration of G. The size of ϕ′ is that of ϕ. We apply the result of the previous subsection
and get a proof of periodicity of the satisfaction relation for ϕ′, hence for ϕ.

It remains to compute bounds on the overall period Λϕ and threshold hϕ. The modulo
constraints in ϕ′ involve periods Λψ (ψ ∈ Ψϕ), and the constants used are bounded by hψ.
So the bound Mϕ′ is bounded by max(maxψ∈Ψ(hψ),Mϕ) where Mϕ is the maximal constant
used in ϕ, and the value Pϕ′ is the l.c.m. of the periods used in ϕ (call it Pϕ) and of the
Λψ’s (for ψ ∈ Ψϕ): hence Pϕ′ ≤ Pϕ ·maxψ∈Ψϕ(Λψ)|ϕ| Hence for formula ϕ′, we get

hϕ′ + Λϕ′ ≤ Mϕ′ + Pϕ′ · tower (nϕ, kϕ + 1)|Q|·2
2|ϕ
′|

+ 1

We infer the following order of magnitude for hϕ + Λϕ, where ωΨϕ = maxψ∈Ψϕ ωψ:

ωϕ ≈ ωΨϕ +M |ϕ|ϕ · (max Λψ)|ϕ| · tower (nϕ, kϕ + 1)|Q|·2
2|ϕ|

≈M |ϕ|ϕ · ω
|ϕ|
Ψϕ · tower (nϕ, kϕ + 1)|Q|·2

2|ϕ|

Using notations of Theorem 5, the order of magnitude can therefore be bounded by

tower
(

max
θ∈Subf(ϕ)

nθ, max
θ∈Subf(ϕ)

kθ + 1
)|Q|·22|ϕ|

.

I Remark. Note that this proof is non-constructive, even for the period and the threshold,
since it relies on the model-checking of subformulas, which we don’t know how to do. We can
nevertheless effectively compute a threshold and a period by taking the l.c.m. of all the
integers up to the bound over the period and threshold given in this proof.

5 Conclusion

In this paper, we investigated a quantitative extension of Strategy Logic (and more precisely,
of its Boolean-Goal fragment) over games played on one-counter games. We proved that the
corresponding model-checking problem enjoys a nice periodicity property, which we see as a
first step towards proving decidability of the problem. We proved however that, if decidable,
the problem is hard; this is proved by showing that model checking the fragment SL[BG] over
finite-state games is Tower-hard, hence answering an open question from [32].

We are now trying to see how our periodicity property can be used to prove decidability
of the model-checking problem. While such a periodicity property helps getting effective
algorithms for model checking CTL over one-counter machines [28], the game setting used
here makes things much harder. Other further works also include the more general logic 1cSL,
whose decidability status (and complexity) is also open. Finally, we did not manage to
extend our hardness proof to turn-based games. It would be nice to understand whether the
restriction to turn-based games would make 1cSL[BG] (and SL[BG]) model checking easier.
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Abstract
We consider first-order logics of sequences ordered by the subsequence ordering, aka sequence
embedding. We show that the Σ2 theory is undecidable, answering a question left open by
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deduction under the name of ordered constraints solving and they involve rather specific
orderings on terms and strings [5].

Kuske considers the first-order logic of subsequences over a set of atoms A, denoted
FOpA˚,Ďq, and notes that the undecidability of its Σ4 theory can be seen by reinterpreting
an earlier undecidability result from [6] for the first-order logic of the lexicographic path
ordering. He then shows that already the Σ3 theory is undecidable even when A contains
only two elements, and also shows that the Σ1 theory is decidable so that the status of the
Σ2 theory remains open.

Our contribution. In this paper we show that the Σ2 theory of the subsequence ordering
is undecidable. On the positive side, we show that the FO2 theory is decidable (but FO3 is
not). We also prove some complexity bounds for the decidable fragments: the Σ1 theory is
NP-complete and the FO2 theory is PSPACE-hard.

Outline of the paper. The relevant definitions and basic results are given in section 2.
Section 3 develops the reduction that proves undecidability for the Σ2 and FO3 theories.
Section 4 presents a further reduction that proves undecidability for the Σ2 theory even
when constants are not allowed in the formulae. Then section 5 shows decidability for the
two-variable fragment FO2.

Since our constructions heavily rely on concepts and results from formal language theory,
we shall from now on speak of “words”, and “letters” (from an “alphabet”) rather than
sequences and atoms. Note however that the logic FOpA˚,Ďq is defined for any kind of set A.

2 Basic notions

Let A “ ta1, a2, . . .u be a set called alphabet, whose elements are called letters. In this paper
we only consider finite alphabets for ease of exposition but without any real loss of generality.
A word is a finite sequence of letters like aac and we use u, v, . . . , to denote words, and A˚
to denote the set of all words over A. Concatenation of word is written multiplicatively, and
ε denotes the empty word. We also use regular expressions like pab` cq˚ to denote regular
languages (i.e., subsets of A˚). The length of a word u is denoted |u| and, for a P A, we let
|u|a denote the number of occurrences of a in u.

We say that a word u is a subword (i.e., a subsequence) of v, written u Ď v, when u is some
a1 ¨ ¨ ¨ an and v can be written under the form v0a1v1 ¨ ¨ ¨ anvn for some v0, v1, . . . , vn P A

˚.
We say a word u is a factor of a word v if there exist words v1 and v2 such that v “ v1uv2. For
B Ď A, and w P A˚, we define the projection of w onto B, denoted as πBpwq, as the subword
of w obtained by removing all letters in AzB. For example, πta,bupabcaccbbcq “ ababb.

We assume familiarity with basic notions of first-order logic as exposed in, e.g., [9]: bound
and free occurrences of variables, etc.

In particular, for n P N, the fragment FOn consists of all formulae that only use at most
n distinct variables (these can have multiple occurrences inside the formula).

The fragments Σn and Πn of FOpA˚,Ďq are defined inductively as follows:
an atomic formula is in Σn and Πn for all n P N;
a negated formula  φ is in Σn iff φ is in Πn, it is in Πn iff φ is in Σn;
a conjunction φ^ φ1 is in Σn (resp., in Πn) iff both φ and φ1 are;
For n ą 0, an existentially quantified Dxφ is in Σn iff φ is, it is in Πn iff φ is in Σn´1;
For n ą 0, a universally quantified @xφ is in Πn iff φ is, it is in Σn iff φ is in Πn´1.

FSTTCS 2015



86 Decidability in the Logic of Subsequences and Supersequences

Note that we do not require formulae to be in prenex normal form when defining the Σn and
Πn fragments: for example the formula @x Dypx Ď y ^ Dx px Ď yqq is simultaneously in Π2
and FO2.

In this article we consider three versions of FOpA˚,Ďq, the first-order logic of subsequences
over A:
The pure logic: the signature consists of only one predicate symbol, “Ď”, denoting the

subword relation. One also uses a countable set X “ tx, x1, y, z, . . .u of variables ranging
over words in A˚ and the usual logical symbols.
Note that there is no way in the pure logic to refer to specific elements of A in the logic.
However, whether a formula φ is true, denoted |ùA˚ φ, may depend on A (in fact, its
cardinality). For example, the closed formula

@x, ypx Ď y _ y Ď xq ,

stating that Ď is a total ordering, is true if, and only if, A contains at most one letter.
The basic logic: extends the pure logic by adding all words u P A˚ as constant symbols

(denoting themselves). For example, assuming A contains a, b and c, one can write the
following sentence:

Dxpab Ď x^ bc Ď x^ abc Ď xq

which is true, as witnessed by the valuation x ÞÑ bcab.
The extended logic: further allows all regular expressions as unary predicates (with the

expected semantics). For these predicates we adopt a more natural notation, writing e.g.
x P expr rather than Pexprpxq. For example, the extended logic allows writing

@x
`“

Dypy P pabq˚ ^ x Ď yq
‰

ô x P pa` bq˚
˘

which states that the regular language pa` bq˚ is the downward closure of pabq˚, i.e., the
set of all subwords of its words.

When writing formulae we freely use abbreviations like x Ă y for x Ď y ^  py Ď xq and
x Ě y for y Ď x. Note that equality can be defined as an abbreviation since x Ď y ^ y Ď x is
equivalent to x “ y. Finally, we use negated symbols as in x Ď y or x R pabq˚ with obvious
meaning.

When we write FOpA˚,Ďq without any qualification we refer by default to the basic logic.
The pure logic is apparently a very restricted logic, where one may hardly express more than
generic properties of the subword ordering like saying that pA˚,Ďq is a total ordering, or is a
lattice. However, Theorem 3.1 below shows that the pure logic is quite expressive.

We conclude this expository section with

I Theorem 2.1. The truth problem for the Σ1 fragment of FOpA˚,Ďq is NP-complete even
when restricting to a fixed alphabet.

Proof sketch. The upper bound follows from the decidability proof in [12] since it is proved
there that a satisfiable quantifier-free formula φpx1, . . . , xnq can be satisfied with words of
size in Opnq assigned to the xi’s. Guessing linear-sized witnesses u1, . . . , un and checking
that |ùA˚ φpu1, . . . , unq can be done in NP.

For the lower bound, we reduce from boolean satisfiability. Consider a boolean formula
φpx1, . . . , xnq over n boolean variables. We reduce it to an FOpA˚,Ďq formula in the Σ1
fragment

ψ ” Dz, x1, . . . , xnpφ
1q
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where φ1 is obtained from φ by replacing each occurrence of xi with xi Ď z (hence replacing
 xi with xi Ď z). Then, for any alphabet A with at least one letter, φ is satisfiable if and
only if |ùA˚ ψ. J

3 Undecidability for Σ2

We are interested in solving the truth problem. This asks, given an alphabet A and a sentence
φ P FOpA˚,Ďq, whether φ is true in the structure pA˚,Ďq, written |ùA˚ φ. Restricted
versions of the truth problems are obtained for example by fixing A (we then speak of the
truth problem over A) and/or by restricting to a fragment of the logic.

This section is devoted to proving the following main result.

I Theorem 3.1 (Undecidability). The truth problem for FOpA˚,Ďq is undecidable even when
restricted to formulae in the Σ2 X FO3 fragment of the basic logic.

This is done by encoding Post’s Correspondence Problem in FOpA˚,Ďq. The reduction is
described in several stages.

3.1 Expressing simple properties
We start with a list of increasingly complex properties and show how to express them in the
basic FOpA˚,Ďq logic. We keep track of what fragment is used, with regards to both the
number of distinct variables, and the quantifier alternation depth.

Note that when we claim that a property with m free variables can be expressed in FOn

(necessarily n ě m), we mean that the formula only uses at most n variables including the m
free variables.

We let A “ ta1, ..., a`u denote an arbitrary alphabet, use B to denote subsets of A, and
a, b, ... to denote arbitrary letters from A.

P1. “ x P B˚ ” can be expressed in Σ0 X FO1: using
ľ

aPAzB

a Ď x .

P2. “ πBpyq Ď x ” can be expressed in Π1 X FO3: building on P1, we use

@z
`

pz Ď y ^ z P B˚q ùñ z Ď x
˘

,

noting that πBpyq Ď x is equivalent to πBpyq Ď πBpxq.
P3. “ x “ πBpyq ” can be expressed in Π1 X FO3: building on P1, P2, and using

πBpyq Ď x^ x Ď y ^ x P B˚ .

P4. “ πBpxq “ πBpyq ” can be expressed in Π1 X FO3: building on P2, and using

πBpyq Ď x^ πBpxq Ď y .

P5. “ x P aA˚ ”, i.e., “ x starts with a ”, can be expressed in Σ2 X FO3: building
on P1, and using

Dz
´

a Ď z ^
“

ľ

bPAztau

ba Ď z
‰

^ z Ď x^ πAztaupxq Ď z
¯

.
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Here the first two conjuncts require that z contains an occurrence of a and cannot start
with another letter. The last two conjuncts require that z is a subword of x which has at
least all the occurrences in x of all letters other than a.
Clearly, the mirror property “x P A˚a” can be expressed in Σ2 X FO3 too.

P6. “ x R A˚aaA˚ ” can be expressed in Σ2 X FO3: building on P3, and using

Dy
´

y “ πAztaupxq ^ @z
“

paa Ď z ^ y Ď z ^ z Ď xq ùñ
ł

bPAztau

aba Ď z
‰

¯

.

Note that this is equivalent to “ x does not have aa as a factor”. Here z Ď x implies that
any two occurrences of a in z must come from x. Furthermore, if these are not contiguous
in x they cannot be contiguous in z in view of y “ πAztaupxq Ď z.

I Remark 3.2. Note that the “y “ πAztaupxq” subformula in P6 uses one variable apart
from y and x. We use the same variable name z that is used later in the formula, so that the
formula is in FO3. We similarly reuse variable names whenever possible in later formulae.

P7. “ x R A˚BBA˚ ” can be expressed in Σ2 X FO3: as in P6 with

Dy
´

y “ πAzBpxq ^ @z
ľ

a,a1PB

“

paa1 Ď z ^ y Ď z ^ z Ď xq ùñ
ł

bPAzB

aba1 Ď z
‰

¯

.

Note that this is equivalent to “ x has no factor in BB ”.
P8. “ |πBpxq| “ 2 ” can be expressed in Σ0 X FO1: using

´

ł

a,a1PB

aa1 Ď x
¯

^
ľ

a,a1,a2PB

aa1a2 Ď x .

3.2 Expressing regular properties
Building on the previous formulae, our next step is to show how any regular property can be
expressed in the basic logic by using an enlarged alphabet.

I Lemma 3.3. For any regular L Ď A˚ there is an extended alphabet A1 Ě A and a formula
φLpxq in Σ2 X FO3 over A1 such that for all u P A1˚, u P L if and only if |ùA1˚ φLpuq.

Proof. Let A “ pQ,A, δ, I, F q be a NFA recognising L so that u P L iff A has an accepting
run on input u. We define φLpxq so that it states the existence of such a run, i.e., we put
φLpxq ” Dy ψApx, yq where ψApx, yq expresses that “y is an accepting run of A over x.”

Let A1 def
“ A Y Q, assuming w.l.o.g. that A and Q are disjoint. A run q0

a1
ÝÑ q1

a2
ÝÑ

. . .
an
ÝÝÑ qn of A can be seen as a word q0a1q1a2 . . . anqn in A1˚. We now define ψApx, yq as

the conjunction ψ1px, yq ^ ψ2px, yq, with

ψ1 ”

py has no factor from AAq ^ py has no factor from QQq

^
`

ł

qPI

y begins with q
˘

^
`

ł

qPF

y ends with q
˘

^ pπApyq “ xq ,

ψ2 ” @z

˜ px Ď z ^ z Ď y ^ z has exactly two occurrences of letters from Qq

ùñ

´

ł

q,q1PQ

ł

a,a1PA

qaa1q1 Ď z _
ł

pq,a,q1qPδ

qaq1 Ď z
¯

¸

.

Here ψ1 reuses simple properties from the previous subsection and states that y is a word
alternating between Q (states of A) and A (proper letters), starting with an initial state of A
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and ending with an accepting state, hence has the required form q0a1 . . . anqn. Furthermore,
πApyq “ x ensures that y has the form of an accepting run over x. Note that it also ensures
x P A˚.

With ψ2, one further ensures that the above y respects the transition table of A, i.e.,
that pqi´1, ai, qiq P δ for i “ 1, . . . , n. Indeed, assume z P A1˚ satisfies x Ď z Ď y and
contains two occurrences from Q. Thus z is a1 . . . aiqiai`1ai`2 . . . ajqjaj`1aj`2 . . . an for
some 1 ď i ă j ď n. If now j ą i ` 1 then z contains qiai`1ai`2qj as a subword and the
disjunction after the implication is fulfilled. However, if j “ i` 1, the only way to fulfil the
disjunction is to have pqj´1, aj , qjq P δ.

Finally, ψApx, yq exactly states that y is an accepting run for x and |ùA1˚ φLpuq holds iff
u P L. One easily checks that ψ1 is in Σ2 X FO3, ψ2 is in Π1 X FO3, so that ψA and φL are
in Σ2 X FO3. We reuse variables wherever possible to ensure that only three variables are
used (see remark 3.2). For example, the implementation of “y has no factor from QQ” from
P7 needs two other variables, and here we use x and z for it. J

3.3 Encoding Post’s Correspondence Problem
It is now easy to reduce Post’s Correspondence Problem to the truth problem for the basic
FOpA˚,Ďq logic.

Suppose we have a PCP instance P consisting of pairs pu1, v1q, . . . pun, vnq over the
alphabet Γ. We let N “ t1, . . . , nu, consider the alphabet A def

“ ΓYN , and define

φP ” Dx, x
1

ˆ

x P p1u1 ` ¨ ¨ ¨ ` nunq
` ^ x1 P p1v1 ` ¨ ¨ ¨ ` nvnq

`

^ πN pxq “ πN px
1q ^ πΓpxq “ πΓpx

1q

˙

. (1)

Clearly, φP is true iff the PCP instance has a solution.
It remains to check that φP is indeed a formula in the Σ2 fragment: this relies on

Lemma 3.3 for expressing membership in two regular languages, and the P4 properties for
ensuring that x and x1 contain the same indexes from N and the same letters from Γ. Finally,
we note that φP is also a FO3 formula.

4 Undecidability for the pure logic

In this section we give a stronger version of the undecidability for the Σ2 fragment.

I Theorem 4.1 (Undecidability for the pure logic). The truth problem for FOpA˚,Ďq is
undecidable even when restricted to formulae in the Σ2 fragment of the pure logic.

The proof is by constructing a Σ2 formula ψpx1, . . .q in the pure logic that defines all the
letters and constant words we need to reuse the reduction from the previous section.

Kuske solves the problem in the special case of a formula using only tε, a, b, ab, ba, aa, bb,
aba, babu as constants [12]. We provide a more generic construction whereby all words (up
to a fixed length) can be defined in a single Σ2 formula. One inherent difficulty is that it
is impossible to properly define constant words in the pure logic. Of course, with the pure
logic one can only define properties up to a bijective renaming of the letters, so ψpx1, . . .q

will only define letters and words up to renaming. But a more serious problem is that we
can only define properties invariant by mirroring as we now explain.

For a word u “ a1a2 . . . a`, we let ru denote its mirror image a` . . . a2a1.

I Lemma 4.2 (Invariance by mirrorring). If ψpx1, . . . , xnq is a formula in the pure logic and
u1, . . . , un are words in A˚, then |ùA˚ φpu1, . . . , unq if, and only if, |ùA˚ φpĂu1, . . . ,Ăunq.
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Proof Sketch. By structural induction on φ, noting that the only atomic formulae in the
pure logic have the form x Ď y, and that u Ď v iff ru Ď rv for any u, v P A˚. J

4.1 Defining letters and short constant words
We now define ψpx1, . . .q. In our construction ψ has the form ψ1^ψ2^¨ ¨ ¨^ψ13 and features
a large number of free variables. We describe the construction in several stages, explaining
what valuation of its free variables can make ψ true. We start with

@ypz Ď yq (ψ1)
^
Ź

1ďi“jďn xi Ď xj (ψ2)

^
Źn
i“1 @yry Ď xi ùñ pxi Ď y _ y Ď zqs (ψ3)

Here ψ1 implies z “ ε, then ψ2 implies xi ‰ ε so that ψ3 requires that each xi is a single
letter and furthermore x1, . . . , xn must be different letters as required by ψ2.

We continue with:

^
Źn
i“1

`

xi Ď x2
i ^ x

2
i Ď xi ^ @yry Ď x2

i ùñ py Ď xi _ x
2
i Ď yqs

˘

(ψ4)

Note that n new free variables, x2
1, . . . , x

2
n are involved. First ψ4 requires that any x2

i has at
least two letters (it must contain xi strictly). But it also requires that any subword of x2

i is ε
or xi or x2

i , thus x2
i has length 2 and can only be xixi.

In the same style we introduce new free variables x3
1, . . . , x

3
n and x4

1, . . . , x
4
n and require

that x3
i equals xixixi, and that x4

i equals xixixixi with:

^
Źn
i“1

`

x2
i Ď x3

i ^ x
3
i Ď x2

i ^ @yry Ď x3
i ùñ py Ď x2

i _ x
3
i Ď yqs

˘

(ψ5)
^
Źn
i“1

`

x3
i Ď x4

i ^ x
4
i Ď x3

i ^ @yry Ď x4
i ùñ py Ď x3

i _ x
4
i Ď yqs

˘

(ψ6)

We introduce new free variables tyi,ju1ďi‰jďn and conjuncts:

^
Ź

1ďi‰jďn @y py Ď yi,j ùñ y Ď z _ xi Ď y _ xj Ď yq (ψ8)

^
Ź

1ďi‰jďn
`

xi Ď yi,j ^ xj Ď yi,j ^ x
2
i Ď yi,j ^ x

2
j Ď yi,jq (ψ9)

^
Ź

1ďi‰jďn
`

yi,j Ď yj,i
˘

(ψ10)

Here ψ8 requires that any yi,j only contains letters among xi and xj , and ψ9 requires that it
contains exactly one occurrence of xi and one of xj . So that yi,j is either xixj or xjxi. With
ψ10 we require that yj,i is, among xixj and xjxi, the word not assigned to yi,j .

Now, in view of Lemma 4.2, it is impossible to fix e.g. yi,j “ xixj . However we can force
all yi,j to have “the same orientation”. Let i, j, k be three different indexes in t1, . . . , nu and
consider the following formula

ξi,j,k ” Dt

»

–

@ypy Ď t ùñ y Ď z _ xi Ď y _ xj Ď y _ xk Ď yq pξ1q

^ x2
i Ď t^ x3

i Ď t^ xj Ď t^ x2
j Ď t^ xk Ď t^ x2

k Ď t pξ2q

^ yi,j Ď t^ yj,i Ď t^ yi,k Ď t^ yk,i Ď t^ yj,k Ď t^ yk,j Ď t pξ3q

fi

fl

We claim that, in conjunction with the earlier ψ-conjuncts, ξ1^ ξ2^ ξ3 requires t “ xixjxixk
or t “ xkxixjxi: indeed by ξ1, t only contains letters among txi, xj , xku, then by ξ2, t
contains exactly 2 occurrences of xi and exactly one occurrence each of xj and xk, then
by ξ3, t has xixj and xjxi as subwords, so the single occurrence of xj is between the two
occurrences of xi and, by ξ3 again, the occurrence of xk is outside the two xi occurrences.
Finally, satisfying ξi,j,k requires yi,k and yj,k to have the same orientation.
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We continue the construction of ψ with:

^
Ź

1ďi‰jďn
Ź

kRti,ju ξi,j,k (ψ11)

As just explained, this will force all yi,j ’s to have the same orientation, i.e., any satisfying
assignment will have yi,j “ xixj for all i, j, or yi,j “ xjxi for all i, j.

4.2 Defining long constant words
Once we have defined all words of length 2 (up to mirroring) over the alphabet tx1, . . . , xnu

(up to renaming), it is easier to systematically define all words of length 3, 4, etc. Actually,
we only use constant words of length at most 4 for the formula φP from section 3.

The general strategy relies on a technical lemma we now explain. For n P N we say that
two words u and v are n-equivalent, written u „n v, if u and v have the same set of subwords
of length up to n. Thus „n is the piecewise-testability congruence introduced by Simon,
see [16, 15].

I Lemma 4.3. Let n ě 2, and let u and v be words of length n` 1 with u ‰ v. Then u n v.

Proof. See appendix. J

We can thus introduce new variables yi,j,k and yi,j,k,m for all i, j, k,m P t1, . . . , nu
(allowing repetitions of indexes) and require yi,j,k “ xixjxk and yi,j,k,m “ xixjxkxm, up
to mirroring but with the same orientation for all the yi1,...,i` ’s. Then we complete the
construction of ψ with the following conjuncts:

^
Ź

1ďi,j,kďn “formula defining yi,j,k” (ψ12)

^
Ź

1ďi,j,k,mďn “formula defining yi,j,k,m” . (ψ13)

In order to require that, for example, y1,5,2 “ x1x5x2, it is enough to:
enumerate all words of length upto 2, and for each say whether it is or is not a subword
of y1,5,2 (y1,5 Ď y1,5,2 ^ x

2
1 Ď y1,5,2 ^ . . .),

and require that y1,5,2 has length 3, by saying that every subword of y1,5,2 is itself or is
one of the words of length upto 2, and that y1,5,2 is distinct from all these words.

The correctness of the construction is guaranteed by Lemma 4.3.
Once all 3-letter words have been defined, we can use them to define 4-letter words (and

if needed, 5-letter words, and so on) simlarly, with correctness following from Lemma 4.3.
Finally, we let φ1P be obtained from the formula φP —see Eq. (1) page 89— by replacing

every constant letter ai P A by the variable xi, and every constant word ai1 . . . ai` P A˚ by
the variable yi1,...,i` (we use z for the constant word ε, and x2

i for the constant word xixi).
Now we define ψP with

ψP ” DZ pψ1 ^ ¨ ¨ ¨ ^ ψ13 ^ φ
1
Pq

where Z “ tz, x1, . . . , xn, x
1
1, . . . , x

1
n, x

2
1, x

3
1, x

4
1, . . . , y1,1, . . . , yi1,...,i` , . . .u collects all the free

variables we used in ψ1 ^ ¨ ¨ ¨ ^ ψ13.
Noting that each ψi as well as φ1P is a Σ2 formula, we get that the resulting ψP is a Σ2

formula in the pure logic that is true in pA˚,Ďq iff the PCP instance P is positive. This
concludes the proof of Theorem 4.1.
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4.3 Undecidability for a fixed alphabet

The above Theorem 4.1 applies to the truth problem for unbounded alphabet, i.e., where we
ask whether |ùA˚ φ for given A and φ. In this proof, the alphabet A depends on the PCP
instance P since it includes symbols for the states of the regular automata that define the
languages p1u1`¨ ¨ ¨`nunq

` and p1v1`¨ ¨ ¨`nvnq
` in Eq. (1), and further includes symbols

in N “ t1, . . . , nu.
It is possible to further show undecidability of the Σ2 fragment even for a fixed alphabet

A as we now explain. For this we consider a variant of Post’s Correspondence Problem:

I Definition 4.4. The variant PCP problem asks, given an alphabet Γ, pairs pu1, v1q, . . . ,

pun, vnq over Γ, and an extra word w P Γ˚, whether there exists a sequence i1, . . . , i` over
t1, . . . , nu such that w ui1 . . . ui` “ vi1 . . . vi` .

I Lemma 4.5. There is a fixed Γ and a fixed sequence of pairs over Γ for which the variant
PCP problem (with only w as input) is undecidable.

Proof Sketch. One adapts the standard undecidability proof for PCP. Instead of reducing
from the question whether a given TM halts, one reduces from the question whether a
fixed TM accepts a given input. Note that in the case of a universal TM, the problem is
undecidable. Fixing the TM will lead to a fixed sequence of pairs pu1, v1q, . . . , pun, vnq, and
the input of the TM will provide the w parameter of the problem. J

I Theorem 4.6 (Undecidability for fixed alphabet). There exists a fixed alphabet A such that
the truth problem for the pure logic FOpA˚,Ďq is undecidable even when restricted to formulae
in Σ2.

Proof Sketch. We adapt the proof of Theorems 3.1 and 4.1 by reducing from the variant
PCP problem with fixed Γ and sequence of pairs. The encoding formula can be

” Dx, x1
ˆ

x P Γ1˚ ¨ p1u1 ` ¨ ¨ ¨ ` nunq
` ^ x1 P ρp1v1 ` ¨ ¨ ¨ ` nvnq

`

^ πΓ1pxq “ ŵ ^ πN pxq “ πN px
1q ^ πΓYΓ1pxq “ πΓYΓ1px

1q

˙

(2)

to be compared with Eq. (1). Here we use Γ1 “ tâ, b̂, ..u, a renamed copy of Γ “ ta, b, ..u,
to be able to extract the w prefix in x. The word ŵ is simply w from the variant PCP
instance with all letters from Γ replaced by corresponding letters from Γ1. We then need
to extend the language p1v1 ` ¨ ¨ ¨ ` nvnq for x1 so that letters from Γ1 can be used in
place of the corresponding letters from Γ. This is done by applying a simple transduction
ρ
def
“

´

Ť

aPΓ
“

a
a

‰

Y
“

â
a

‰

¯˚

.
In the end, we only use two fixed regular languages, and thus a fixed alphabet A. Note

however that encoding the input w will require using constant words of unbounded lengths.
Here we rely on the fact that our reduction from basic to pure logic can define constant
words of arbitrary length in the Σ2 fragment. J

5 Decidability for the FO2 fragment

In this section we show that for finite alphabets, the truth problem for the 2-variable fragment
FO2

pA˚,Ďq is decidable. The proof was first sketched by Kuske [13].
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5.1 Rational relations
We recall the basics of rational relations. See [3, Chap. 3] or [14, Chap. 4] for more details.

For finite alphabets A and B, the rational relations between A˚ and B˚ are defined as
the subsets of A˚ˆB˚ recognised by asynchronous transducers. The set of rational relations
between A˚ and B˚ is exactly the closure of the finite subsets of A˚ ˆ B˚ under union,
concatenation, and Kleene star.

For example, it is easy to see that the subword relation, seen as a subset of A˚ ˆA˚ is a
rational relation [3, Example III.5.9], and that the strict subword relation is rational too:1

Ď “

˜

ď

aPA

„

a

ε



Y

„

a

a



¸˚

, Ă “ Ď ¨

˜

ď

aPA

„

a

ε



¸

¨ Ď .

Define now the incomparability relation over A˚, denoted K, by u K v iff u Ď v ^ v Ď u.

I Lemma 5.1. The incomparability relation over A˚ is a rational relation.

Proof. We cannot simply use the fact that Ď and Ě are rational relations since rational
relations are not closed under intersection. The way out is to express incomparability as a
union K “ T1 Y T2 of rational relations, using the following equivalence

u K v iff

pu,vqPT1
hkkkkkkkkkkikkkkkkkkkkj

pu Ď v ^ |u| ď |v|q _

pu,vqPT2
hkkkkkkkkkkikkkkkkkkkkj

pv Ď u^ |v| ď |u|q . (3)

The equivalence holds since |u| ą |v| implies u Ď v.
We show (see Coro. 5.3) that T1 is rational. A symmetric reasoning shows that T2 is

rational. This concludes since the union of two rational relations is rational. J

In the following proof, we write wp0 : ´is to denote the prefix of length |w|´ i of an arbitrary
word w (assuming 0 ď i ď |w|q.

I Lemma 5.2. pu, vq P T1 iff there exists an integer `, a factorisation u “ a1a2 . . . a`au
1 of

u, and a factorisation v “ v1a1v2a2 . . . v`a`bv
1 of v such that

a1, . . . , a` P A and v1, . . . , v` P A
˚ are such that ai does not occur in vi for all i “ 1, . . . , `,

a, b P A are two letters with a ‰ b, and
u1, v1 P A˚ are two suffixes with |u1| “ |v1|.

Proof. The pðùq direction is clear: the listed conditions guarantee |u| ď |v| and u Ď v.
To see the p ùñ q direction, we assume pu, vq P T1 and write u “ a1 . . . an, with n “ |u|,

knowing that n ą 0 since u Ď v. We say that i P t0, . . . , nu is good if up0 : ´is Ď vp0 : ´is,
and bad otherwise. Clearly, n is good and 0 is bad. Let m ą 0 be the smallest good index: it
is easy to check that taking ` “ n´m, a “ a``1 and u1 “ a``2 . . . an proves the claim. J

I Corollary 5.3. T1 is a rational relation.

Proof. Lemma 5.2 directly translates as

T1 “

˜

ď

aPA

«

ď

b‰a

„

b

ε



ff˚

¨

„

a

a



¸˚

¨

˜

ď

a

ď

b‰a

„

b

a



¸

¨

˜

ď

a,a1

„

a1

a



¸˚

.

J

1 When writing such regular expressions we use the vector notation
“ y

x

‰

to denote px, yq. Note that the
domain and the range of the relation correspond to the bottom and, resp., the top, lines of the vectors.
We use ¨ to mean concatenation.
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5.2 Decidability for FO2

Let R def
“ t“,Ă,Ą,Ku consists of the following four relations on A˚: equality, strict subword

relation, its inverse, and incomparability. These four relations form a partition of A˚ ˆA˚,
i.e., for all u, v P A˚, exactly one of u “ v, u Ă v, u Ą v, and u K v holds.

For any R P R and language L Ď A˚, we define the preimage of L by R, denoted R´1pLq,
as being the language tx P A˚ : Dy P L : px, yq P Ru. We saw in section 5.1 that each
relation R P R is rational: we deduce that R´1pLq is regular whenever L is. Furthermore,
using standard automata-theoretic techniques, a description of the preimage R´1pLq can be
computed effectively from a description of L.

In the following we consider FO2 formulae using only x and y as variables. We allow
formulae to have regular predicates of the form x P L for fixed regular languages L (i.e., we
consider the extended logic). Furthermore, we consider a variant of the logic where we use
the binary relations Ă, “ and K instead of Ď. This will be convenient later. The two variants
are equivalent, even when restricting to FOm or Σm fragments: in one direction we observe
that x Ď y can be defined with x Ă y _ x “ y, in the other direction one defines x Ă y with
x Ď y ^ y Ď x and x K y with x Ď y ^ y Ď x. We also use x Ą y as shorthand for y Ă x.

I Lemma 5.4. Let φpxq be an FO2 formula with at most one free variable. Then there
exists a regular language Lφ Ď A˚ such that φpxq is equivalent to x P Lφ. Furthermore, a
description for Lφ can be computed effectively from φ.

Proof. By structural induction on φpxq. If φpxq is an atomic formula of the form x P L, the
result is immediate. If φpxq is an atomic formula that uses a binary predicate R from R, the
fact that it has only one free variable means that φpxq is a trivial x “ x, or x Ă x, or . . . , so
that Lφ is A˚ or H.

For compound formulae of the form  φ1pxq or φ1pxq _ φ2pxq, we use the induction
hypothesis and the fact that regular languages are closed under boolean operations.

There remains the case where φpxq has the form Dy φ1px, yq. We first replace any
subformulae of φ1 having the form Dx ψpx, yq or Dy ψpx, yq with equivalent formulae of the
form y P Lψ or x P Lψ respectively, for appropriate languages Lψ, using the induction
hypothesis. Thus we may assume that φ1 is quantifier-free. We now rewrite φ1 by pushing all
negations inside with the following meaning-preserving transformations:

  ψ Ñ ψ  pψ1 _ ψ2q Ñ  ψ1 ^ ψ2  pψ1 ^ ψ2q Ñ  ψ1 _ ψ2

and then eliminating negations completely with:

 pz P Lq Ñ z P pA˚zLq  pz1 R1 z2q Ñ z1 R2 z2 _ z1 R3 z2 _ z1 R4 z2

where R1, R2, R3, R4 are relations such that R “ tR1, R2, R3, R4u. Thus, we may now assume
that φ1 is a positive boolean combination of atomic formulae. We write φ1 in disjunctive
normal form, that is, as a disjunction of conjunctions of atomic formulae. Observing that
Dypφ1 _ φ2q is equivalent to Dy φ1 _ Dy φ2, we assume w.l.o.g. that φ1 is just a conjunction of
atomic formulae. Any atomic formula of the form x P L, for some L, can be moved outside
the existential quantification, since Dypx P L^ ψq is equivalent to x P L^ Dy ψ. All atomic
formulae of the form y P L can be combined into a single one, since regular languages are
closed under intersection.

Finally we may assume that φ1px, yq is a conjunction of a single atomic formula of the
form y P L (if no such formula appears, we can write y P A˚), and some combination of
atomic formulae among x Ă y, x Ą y, x “ y, and x K y. If at least two of these appear, then
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their conjunction is unsatisfiable, and so φpxq is equivalent to x P H. If none of them appear,
Dypy P Lq is equivalent to x P A˚ (or to x P H if L is empty). If exactly one of them appears,
say x R y, then Dy py P L^ xRyqq is equivalent to x P Lφ for Lφ “ R´1pLq, which is regular
as observed earlier. J

I Theorem 5.5. The truth problem for FO2
pA˚,Ďq is decidable.

Proof. Lemma 5.4 provides a recursive procedure for computing the set of words that make
φpxq true. When φ is a closed formula, this set is A˚ or H depending on whether φ is true
or not. J

5.3 Hardness for FO2

The main question left open in this paper is the complexity of the decidable FO2 theory.
The recursive procedure described in Lemma 5.4 is potentially non-elementary since nested
negations lead to nested complementations of regular languages.

Our preliminary attempts suggest that the question is difficult. At the moment we can
only demonstrate the following lower bound.

I Theorem 5.6. Truth checking for the basic logic, restricting to FO2 sentences which only
use letters (that is, words of length 1) as constants, is PSPACE-hard.

Proof. We reduce from TQBF, the truth problem for quantified boolean formulae. W.l.o.g.
a given instance of TQBF has the form φ1 “ Dp1@p2 . . . Dp2n´1@p2nφ.

Consider the alphabet A with 4n letters, Ti and Fi for each 1 ď i ď 2n. A word w P A˚
is intended to encode a (partial) boolean valuation Vw of the variables p1, . . . , p2n: if Ti
appears in w, Vwppiq “ true, and if Fi appears in w, Vwppiq “ false. We do not consider
“inconsistent” words, in which both Ti and Fi appear. Observe that if x and y represent
partial valuations and x Ď y, then Vy extends Vx. Conversely, any valuation extending Vx
can be represented by a suitable y1 with x Ď y1.

For each i, let ϕipwq be a formula that says “the domain of Vw is tx1, . . . , xiu”:
ľ

1ďjďi
ppTj Ď w _ Fj Ď wq ^  pTj Ď w ^ Fj Ď wqq ^

ľ

iăjď2n
pTj Ď w ^ Fj Ď wq

We now translate the given TQBF instance φ1 into an FO2 sentence ψ1 in our logic:

ψ1 “ Dxpϕ1pxq ^ @yppϕ2pyq ^ x Ď yq ùñ Dxpϕ3pxq ^ y Ď x^ . . .

^Dxpϕ2n´1pxq ^ y Ď x^ @yppϕ2npxq ^ x Ď yq ùñ ψqq . . .qqq

where ψ is obtained from φ by replacing each pi with Ti Ď y.
The formula ψ1 uses the two variables x and y alternately, to build up suitable valuations

with the appropriate alternation of D and @. It is easy to see that φ1 is true if and only if ψ1
is true.

Finally, it was not necessary to assume that φ1 had a strict alternation of D and @, but it
makes the presentation of the proof simpler. J

6 Concluding remarks

We considered the first-order logic of the subsequence ordering and investigated decidability
and complexity questions. It was known that the Σ3 theory is undecidable and that the Σ1
theory is decidable. We settled the status of the Σ2 fragment by showing that it has an

FSTTCS 2015



96 Decidability in the Logic of Subsequences and Supersequences

undecidable theory, even when restricting to formulae using no constants. To remain in the
Σ2 fragment, our reduction encoded language-theoretic problems rather than undecidable
number-theoretic logical fragments as is more usual.

We also showed that the FO2 theory of the subsequence ordering is decidable using
automata-theoretic techniques. The FO2 fragment is quite interesting. We note that it
encompasses modal logics where the subsequence ordering correspond to one step (or its
reverse) as used in the verification of unreliable channel systems.

Finally, we provided some new complexity results like Theorems 2.1 and 5.6.

We can list a few interesting directions suggested by this work. First, on the fundamental
side, the main question left open is the precise complexity of the FO2 theory.

Regarding applications, it would be interesting to see how the decidability results can be
extended to slightly richer logics (perhaps with some extra functions or predicates, or some
additional logical constructs) motivated by specific applications in automated reasoning or
program verification.

Acknowledgements. We thank Dietrich Kuske who outlined the proof of Theorem 5.5.
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A Proof of Lemma 4.3

Assume |u| “ |v| “ n` 1 and u ‰ v as in the statement of the Lemma.
We say that a word w distinguishes u and v if w is a subword of exactly one of u and v.

We have to prove that there exists such a distinguisher w with |w| ď n.

Writing a word w P A˚ under the form w “ an1
1 . . . ank

k where each ai is a letter so that
ai ‰ ai`1 for all i “ 1, . . . , k ´ 1 and ni ě 1 for all i “ 1, .., k is called the block factorisation
of w. Here k is the number of blocks in w. We now consider several cases:

Assume that u has only one block. Then u “ an`1 for some a P A, and some one-letter
word distinguishes u and v. The same reasoning applies if v has only one block.
Assume that u and v have at least two blocks each, and there is some letter a P A such
that |u|a ‰ |v|a. Then ak distinguishes u and v for some k ď n.
We are left to deal with cases where u and v have have at least two blocks, and have the
same Parikh image, that is, |u|a “ |v|a for every a P A.
Assume now that u has exactly two blocks. Then u P a`b` for some a, b P A with a ‰ b.
Since v has the same number of a’s and b’s but differs from u, we must have ba Ď v. But
ba Ď u, so ba is a distinguisher (here we use the assumption that n ě 2).
Finally assume that u has at least three blocks. Pick a block B of u which is neither the
first nor the last, and let a be the unique letter belonging to B. Let ` “ |u|a and write u
as u “ s0as1a . . . as`. Then

|s0| ` . . .` |s`| “ pn` 1q ´ ` .

At least two of the numbers |s0|, . . . , |s`| are strictly positive, since the two blocks
immediately to the left and right of B both exist, and both do not have a. Thus for all i,
|si| ă pn` 1q ´ `.
Since |v|a “ `, we can write v “ t0at1a . . . at`. We assume u „n v and obtain a
contradiction. For each i such that 0 ď i ď `, consider the word zi “ aisia

`´i. We have
|zi| ď n, and zi Ď u. Since u „n v, we have zi Ď v. Since both zi and v have exactly `
occurrences of a, we have si Ď ti. This holds for all i, so u Ď v. But |u| “ |v|, so u “ v,
which is a contradiction.
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Abstract
We study fragments of a µ-calculus over data words whose primary modalities are ‘go to next
position’ (Xg), ‘go to previous position’ (Yg), ‘go to next position with the same data value’ (Xc),
‘go to previous position with the same data value (Yc)’. Our focus is on two fragments that are
called the bounded mode alternation fragment (BMA) and the bounded reversal fragment (BR).
BMA is the fragment of those formulas that whose unfoldings contain only a bounded number of
alternations between global modalities (Xg, Yg) and class modalities (Xc, Yc). Similarly BR is the
fragment of formulas whose unfoldings contain only a bounded number of alternations between
left modalities (Yg, Yc) and right modalities (Xg, Xc). We show that these fragments are decidable
(by inclusion in Data Automata), enjoy effective Boolean closure, and contain previously defined
logics such as the two variable fragment of first-order logic and DataLTL. More precisely the
definable language in each formalism obey the following inclusions that are effective.

FO2 ( DataLTL ( BMA ( BR ( ν ⊆ Data Automata .

Our main contribution is a method to prove inexpressibility results on the fragment BMA by
reducing them to inexpressibility results for combinatorial expressions. More precisely we prove
the following hierarchy of definable languages,

∅ = BMA0 ( BMA1 ( · · · ( BMA ( BR ,

where BMAk is the set of all formulas whose unfoldings contain at most k−1 alternations between
global modalities (Xg, Yg) and class modalities (Xc, Yc). Since the class BMA is a generalisation
of FO2 and DataLTL the inexpressibility results carry over to them as well.
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1 Introduction

Data words are words of the form (a1, d1) . . . (an, dn) ∈ (Σ×D)∗ where Σ is a finite set of
letters and D is an infinite domain of data values. Typically the alphabet Σ abstracts a finite
set of actions or events and the set of data values D models some sort of identity information.
Thus, data words can model a number of scenarios where the information is linearly ordered
and it is composed of finite as well as unbounded elements. For example the authors of [1]
imagine Σ as the actions of a finite program and D as process ids. Then, an execution trace
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of a system with unbounded instances of the program can be modeled as a data word in
which each action is associated with the identifier of the process which has generated it.

The paradigmatic question in the study of data words is to develop suitable models (in
particular automata and logics) to specify properties of data words. Sure enough there exists
a rich variety of models for specifying properties of data words that includes Data Automata
[4], Register Automata [14, 9], Pebble Automata [18], Class Memory Automata [1], Class
Automata [2], Walking Automata [17], Variable Automata [12], First-Order logic with two
variables [4], guarded MSO logic [5], DataLTL [15], Freeze-Logics[9, 13], Logic of Repeating
Values [8], XPath [10, 11], Regular expressions [16], Data Monoids [3] etc.

In this work we further study a modal fixpoint logic on data words that we introduced in
[6]. This logic is composed of four modalities that allow to evaluate formulas on the successor,
class successor (the nearest future position with the same data value), predecessor and class
predecessor (nearest past position with the same data value) positions, Yg, Yc. In addition
there is a couple of zeroary modalities that describes whether these positions coincide or
not. To build the formulas, besides the usual Boolean operations, it is allowed to form the
least and greatest fixpoints of formulas . In [6] it is shown that the satisfiability problem
for the set of formulas that use only least fixpoints is undecidable, whereas the fragment
that consists of only greatest fixpoints is subsumed by Data Automata and hence it has
a decidable satisfiability problem. The main result of the work was the decidability of an
alternation-free fragment of the logic that further bounds the number of change of directions
in evaluating the formulas by using a generalisation of Data Automata.

Contributions
In the present paper, we aim at restricting the power of the above µ-calculus logic for data
words for obtaining classes that are closed under all Boolean connectives, mirroring, and
enjoy decidability of emptiness and universality. We consider two restricted fragments that
achieve this goal. The first one, called BMA (for Bounded Mode Alternation) syntactically
bounds the number of changes between class and global modes. The second, called BR (for
Bounded Reversal), syntactically bounds the number of changes between left modalities and
right modalities.

It is easy to show that BMA is contained in Data Automata. It is not very difficult to
show that BMA is subsumed by BR, that is to say for every formula in BMA there is an
equivalent one in BR. Our main result is the strictness of this last inclusion, i.e. that there
is a formula in BR for which there is no equivalent formula in BMA. This proof uses a deep
result from combinatorics called the Hales-Jewett theorem. As a proof device we use a sort of
circuits called combinatorial expressions that were introduced in [7]. These expressions define
functions over an infinite domain (for instance the integers). They are built by composing
gates that are functions of two kinds, either the function has a bounded arity, or the function
has a bounded domain. In [7] it is shown that certain properties (a property is a function
that has a binary codomain) for instance the given sequence of positive integers has gcd 1 or
the given sequence of integers sum to 0 cannot be computed by expressions of fixed depth.
We use a variant of this theorem in this paper to show that there is a formula in BR for which
there is no equivalent one in BMA. More precisely it is shown that there is a specific formula
in BR such that if it has an equivalent formula in BMA, then it is possible to construct
expressions of fixed depth for a particular property and since that particular property cannot
be computed by fixed depth expressions, we derive a contradiction. One thing to note is that
since the techniques developed in [7] are general enough to derive impossibility results for a
large family of properties, correspondingly the proof method developed here can be used to
show inexpressibility results for a variety of formulas.
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Now we examine the implications of our result in a larger context. As mentioned earlier,
the results mentioned here have very close connection with Data Automata (DA for short).
The well known feature of DA is that it subsumes the logic FO2 (Σ, <,+1,∼,+c1) on data
words where Σ denotes the unary predicates indicating the letters, < is the linear order on
positions, +1 is the successor relation on positions, ∼ is the equivalence relation on positions
with respect to the data values (i.e. i ∼ j if di = dj), and +c1 is the class successor relation.
It is known that data languages recognisable by DA are closed under union, intersection and
letter-to-letter projection, but not under complementation [4]. Since FO2 formulas are closed
under Boolean operations, it is evident that Data Automata strictly subsumes the logic FO2.
This observation prompts the question that if there are other classes subsumed by DA that
are closed under Boolean operations. The fragments introduced in the paper answer this
question positively. Note only that, there are automata theoretic characterisations that are
natural variants of DA for both these fragments (we only present the one for BMA).

Another and perhaps more important question is how to show that a given data language
is not expressible in FO2. Note that in some cases, using the techniques on words over finite
alphabets it is possible to show that a given data language is not definable in FO2 (for
instance to show that data words of even length are not definable in FO2). We are interested
in those cases where such reductions are not possible, in particular where the property given
is dependent on the data values. We don’t have a complete solution to this problem yet,
but our method to prove inexpressibility results on BMA offers a partial answer. This is
because the logic FO2 (Σ, <,+1,∼,+c1), as it is shown in this paper, is equivalent to the
unary fragment of a temporal logic, namely DataLTL [15], which is a strict subfragment of
BMA. DataLTL is the temporal logic where usual temporal operators such as until, future,
past etc. exist both on the linear order on positions (called the global order) as well as on
the suborders formed by subsets of positions that share the same data value (called the class
orders). For instance the temporal operator Fgϕ is true a position if there is a position in the
future that satisfies the formula ϕ, whereas the formula Fcϕ is true at a position if there is a
future position that has the same data value as the current position and that satisfies the
formula ϕ. The unary fragment of DataLTL is the subclass of formulas that uses only the
unary temporal operators (such as Fg, Pg, Fc etc). Since every such operator is expressible in
FO2 it is immediate that unary DataLTL is subsumed by the logic FO2. But the converse
direction, which is shown in the paper, is not obvious, since it is not immediate how to
translate formulas like ∃y (a(x) ∧ b(y) ∧ x < y ∧ x 6∼ y). Thus inexpressibility results on the
fragment BMA renders directly corresponding results on all sublogics including FO2 and
DataLTL.

Finally let us also note that the translations outlined in this paper, namely

FO2 ( DataLTL ( BMA ( BR ( ν ⊆ DA,

constitutes an alternate proof the main result of [4] that FO2 is subsumed by DA. The proof
in [4] is a direct translation of FO2 formulas by a intricate case analysis. Our proof, however,
is modular and makes use of analogous constructions from automata theory on finite words.

Related work
As mentioned already this work is strongly related to DataLTL, FO2 and DA. One other
very popular ecosystem on data words is that of Register Automata and the associated logics
such as Freeze LTL, Freeze µ-calculus, Xpath [9, 13, 8, 10, 11] etc. Our inexpressibility result
implies that BMA is incomparable to Register Automata (in particular nondeterministic 1-
Register Automata). Since all our modalities are expressible in terms of successor, predecessor,
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Figure 1 A data word and its graph. Dotted and thick arrows denote the successor and class
successor relations respectively.

freeze operator and fixpoint operators, our fixpoint logic is subsumed by Freeze µ-calculus
of [13]. However it should be noted that the latter logic is highly undecidable [9]. The
decidable fragment of Freeze µ-calculus (and also Freeze LTL) is unidirectional (only future
modalities) but our logic is naturally two-way. Finally the decidable two-way fragment of
Freeze LTL, namely Simple Freeze LTL is equivalent to FO2 and hence it is subsumed by
BMA. Therefore our method of proving inexpressibility extends to this logic as well.

Structure of the document
In Section 2 we present the definition of our fixpoint logic and give some examples. In Section
3 we recall the composition operator (comp) on sets of formulas and define the fragments
BMA and BR using it. Thereafter, a characterisation of the class BMA in terms of cascades
of automata, that is used in the proof of the separation theorem, is given. In Section 4, first
we recollect the paradigm of combinatorial expressions and state the necessary results for
our purpose. Afterwards it shown how to translate a cascade on data words with a specific
structure to expressions and the separation theorem is proved. In Section 5 we conclude.

2 µ-Calculus on Data Words

In this section, we recall the basics of the µ-calculus on data words [6].
Fix an infinite set D of data values. Data words are words of the form

u = (a1, d1) · · · (an, dn) ∈ (Σ×D)∗

where Σ is a finite alphabet of letters. Indices in a word are called positions. A maximal
set of positions in u with the same data value is called a class. The set of classes in
u define an equivalence relation ∼, called the class relation, on the set of positions of
u. Given a permutation σ of D, it can be applied on a data word as expected, yielding
σ(u) = (a1, σ(d1)) . . . (an, σ(dn)). The data words u and σ(u) have the same class relation.
A data language is a set of data words that is invariant under such applications of the
permutations of D.

For our purposes, it is convenient to see data words as graphs in the following manner. To
each data word w = (a1, d1) . . . (an, dn) ∈ (Σ×D)∗ associate the graph Gw = ([n], `,+1,+c1)
where [n] is the set of positions {1, . . . , n}, ` : Σ→ 2[n] is the labelling function `(a) = {i |
ai = a}, the binary relation +1 denotes the successor relation on positions, i.e., +1(i, j)
if j = i+ 1, and the binary relation +c1 denotes the class successor relation on positions,
i.e., +c1(i, j) if i < j, di = dj , and dm 6= di for all i < m < j. We call predecessor relation
(resp., class predecessor relation) the reverse of the successor relation (resp., class successor
relation). We implicitly identify a data word with its graph. Figure 1 shows a data word
and its corresponding graph.

Seen as such graphs, data words are naturally prone to the use of temporal logics. Let
Prop = {p, q, . . .} and Var = {x, y, . . .} be countable sets of propositional variables and
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[[fstg]]w = {1} [[Xgϕ]]w = [[ϕ]]w − 1
[[lstg]]w = {n} [[Ygϕ]]w = [[ϕ]]w + 1
[[fstc]]w = {i | @j = i−c 1} [[Xcϕ]]w = [[ϕ]]w −c 1
[[lstc]]w = {i | @j = i+c 1} [[Ycϕ]]w = [[ϕ]]w +c 1

[[ϕ1 ∧ ϕ2]]w = [[ϕ1]]w ∩ [[ϕ2]]w [[S]]w = {i | i+ 1 = i+c 1}
[[ϕ1 ∨ ϕ2]]w = [[ϕ1]]w ∪ [[ϕ2]]w [[P]]w = {i | i− 1 = i−c 1}

[[µx.ϕ]]w = ∩{S ⊆ [n] | [[ϕ]]w[`(x):=S] ⊆ S} [[p]]w = `(p)
[[νx.ϕ]]w = ∪{S ⊆ [n] | S ⊆ [[ϕ]]w[`(x):=S]} [[¬p]]w = [n] \ `(p)

[[x]]w = `(x)

Figure 2 Semantics of µ-calculus on data words w = ([n],+1,+c1, `).

fixpoint variables respectively. The µ-calculus on data words is the set of all formulas ϕ
respecting the following syntax:

ϕ := x | A | ¬A | Mϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | µx.ϕ | νx.ϕ
where M := Xg | Xc | Yg | Yc and A := p ∈ Prop | S | P | fstc | fstg | lstc | lstg

The elements of M are called modalities, and the ones of A, atoms. The set of zeroary
modalities {fstc, fstg, lstc, lstg,P,S} will be denoted by the symbol Z for the rest of the paper.

The semantic of a formula ϕ, over a data word w is the set of positions of w where “ϕ is
true” (denoted as [[ϕ]]w). The formal definition is given in Figure 2. The different constructs
have their expected meaning, keeping in mind that the class modalities Xc, Yc, fstc, lstc have
to be interpreted on the word restricted to the current data value. The modality S (resp., P)
holds at a position i if the successor and class successor i coincide (resp. the predecessor and
class predecessor coincide).

Note that in this definition of the logic, negations in a formula are located at the leaves. It
is nevertheless possible, as usual, to negate such formulas by pushing the negation toward the
leaves, but this requires a bit of care when negating modalities and fixpoints. For instance,
¬Xcϕ is not equivalent to Xc¬ϕ, but to lstc ∨ Xc¬ϕ. Similar arguments have to be used
for all modalities. Following these ideas, we define the dual modalities X̃gϕ ≡ lstg ∨ Xgϕ,
Ỹgϕ ≡ fstg ∨ Ygϕ, X̃cϕ ≡ lstc ∨ Xcϕ and Ỹcϕ ≡ fstc ∨ Ycϕ. These modalities are considered
dual since X̃gϕ ≡ ¬Xg¬ϕ, . . . Similarly µx.ϕ(x) ≡ ¬νx.¬ϕ(¬x).

Next we lay out some terminology and abbreviations which we will use in the subsequent
sections. Let λ denote either µ or ν. Every occurrence of a fixpoint variable x in a subformula
λx.ψ of a formula is called bound. All other occurrences of x are called free. A formula is
called a sentence if all the fixpoint variables in ϕ are bound. If ϕ(x1, . . . , xn) is a formula with
free variables x1, . . . , xn, then by ϕ(ψ1, . . . , ψn) we mean the formula obtained by substituting
ψi for each xi in ϕ. As usual the bound variables of ϕ(x1, . . . , xn) may require a renaming
to avoid the capture of the free variables of ψi’s. For a sentence ϕ and a position i in the
word w, we denote by w, i |= ϕ if i ∈ [[ϕ]]w. The notation w |= ϕ abbreviates the case when
i = 1. The data language of a sentence ϕ, denoted as L(ϕ), is the set of data words w such
that w |= ϕ.

By µ-fragment we mean the subset of µ-calculus which uses only µ-fixpoints. Similarly
ν-fragment stands for the subset which uses only ν-fixpoints.
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I Example 1 (temporal modalities). An example of a formula would be ϕ Ug ψ which holds if
ψ holds in the future, and ϕ holds in between. This can be implemented as µx.ψ ∨ (ϕ ∧ Xgx)
The formula ϕUcψ = µx.ψ∨(ϕ∧Xcx) is similar, but for the fact that it refers only to the class
of the current position. The formula Fgϕ abbreviates > Ug ϕ, and its dual is Ggϕ = ¬Fg¬ϕ.
The constructs Sg, Sc, Pg, Pc, Hg and Hc, are defined analogously, using past modalities, and
correspond respectively to Ug, Uc, Fg, Fc, Gg and Gc. For instance, FcPcϕ expresses that there
is a position in the class that satisfies ϕ and FcPc(ϕ∧ X̃cGc¬ϕ∧ ỸcHc¬ϕ) expresses that there
exists exactly one position which satisfies ϕ in the class.

3 The bounded reversal and bounded mode alternation fragments

In this section we introduce the bounded mode alternation and bounded reversal fragments
(BMA and BR) and compare these two fragments between themselves and with other logics
(Theorem 5).

3.1 Definition of the fragments
Before delving into the technical details let us outline the intuition behind each of the
fragments. The four modalities Xg, Yg, Xc and Yc can be divided along two axis. Based on
the directions: there are the left modalities Yg, Yc, and right modalities Xg, Xc. Based on the
modes: there are global modalities Xg, Yg, and class modalities Xc, Yc. The BR and BMA
fragments are defined by limiting the number of alternation between this types of modalities.
This is formally achieved using the operation comp that we define now.

Let Ψ be a set of µ-calculus formulas. Define the sets compi(Ψ) for i ∈ N inductively
comp0(Ψ) = ∅,
compi+1(Ψ) = {ψ(ϕ1, . . . , ϕn) | ψ(x1, . . . , xn) ∈ Ψ, ϕ1, . . . , ϕn ∈ compi(Ψ)} in which the
substitution ψ(ϕ1, . . . , ϕn) is allowed only if none of the free variables of ϕ1, . . . , ϕn get
bound in ψ(ϕ1, . . . , ϕn).

The set of formulas comp(Ψ) is defined as comp(Ψ) =
⋃

i∈N compi(Ψ). For a formula
ψ ∈ comp(Ψ), the comp-height of ψ in comp(Ψ) in the least i such that ψ is in compi(Ψ).

We are now ready to define the BR and BMA fragments of the µ-calculus. For a set of
modalities M , define formulas(M) to be the set of formulas that uses only the modalities M
apart from the zeroary modalities.

I Definition 2. The BMA and the BR fragments of µ-calculus are respectively:

BMA = comp (formulas ({Xg, Yg}) ∪ formulas ({Xc, Yc})) ,
and BR = comp (formulas ({Xg, Xc}) ∪ formulas ({Yg, Yc})) .

Further, BMAk denotes the subset of BMA with comp-height k. Similarly BRk stands for
the subset of BR with comp-height k.

I Example 3. Let

ϕ1 = νx.(Xcx ∨ Xgµy.(q ∧ Ycy)), ϕ2 = νx. (Xclstg ∨ XcYgx) ,
ϕ3 = µx.((νy. q ∨ Xcy) ∨ Xgx ∨ Ygx), and ϕ4 = µx.(XcXgx ∨ p).

The formula ϕ1 is in BR2 and in BMA3. The formula ϕ2 is neither in BR nor in BMA. The
formula ϕ3 is in BMA2 but not in BR. The formula ϕ4 is in BR1 but not in BMA.
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I Example 4. Consider the language Lk that contains the data words such that, by applying
k-times the sequence of the global successor followed by the class successor, one reaches a
position labeled with letter a. The language L is the union of all Lk for k ranging over all
non-negative integers. The language Lk is defined by ϕk and L by ϕ defined as follows:

ϕk =
k-times︷ ︸︸ ︷

XgXc . . . XgXc a, and ϕ = µx.(XgXcx ∨ a) .

The formula ϕk is in BR1 and in BMA2k. The formula ϕ is in BR1, but not in BMA. Later
in Section 4 we will prove that a variant of L is not definable by any formula in BMA.

Let us now state the main theorem of this section, namely the inclusions between the
fragments of the µ-calculus in terms of the data languages defined. Below DataLTL denotes
the temporal logic on data words consisting of the modalities {S,P, Xg, Yg, Xc, Yc, Ug, Sg, Uc, Sc},
uDataLTL is the unary sublogic consisting of the modalities {S,P, Xg, Xc, Yg, Yc, Fc, Fg, Pg, Pc}
and ν denotes the fragment of the µ-calculus containing only the greatest fixpoints (ν’s).

I Theorem 5. The following inclusions hold for definable languages,

FO2(Σ, <,+1,∼,+c1) = uDataLTL ( DataLTL ( BMA ⊆ BR ( ν ⊆ DA .

3.2 Characterising BMA as cascades of automata
Next we give a characterisation of BMA in terms of cascades of finite state automata. It
is classical that composition (comp) corresponds to the natural operation of composing
sequential transducers that compute subset of subformulas that are true at each position.
Given a µ-calculus formula ϕ over words, we can see it as a transducer that reads the input,
and labels every position with one extra bit of information denoting the truth value of the
formula ϕ at that position. Under this view, the composition of formulas corresponds to
applying the transducers in sequence: the first transducer reads the input, and adds some
extra labelling on it. Then a second transducer reads the resulting word, and processes it in
a similar way, etc... If we push this view further, we can establish exact correspondences
between the class BMA, and suitable cascades of transducers. Furthermore, the comp-height
of the formula matches the number of transducers involved in the cascade.

First we introduce some notation. Given a data word w = (a1, d1) · · · (an, dn) the string
projection of w, denoted by str(w), is the word a1 · · · an. For a class S = {i1, . . . , im} the
class projection corresponding to S, denoted as str(w|S), is the finite word ai1 · · · aim . For a
word u = b1 · · · bn, the relabelling of w by u is the data word (b1, d1) . . . (bn, dn). Similarly
the relabelling of the class S in w by b1 · · · bm is the data word (a′1, d1) · · · (a′n, dn) where
a′i = bj if i = ij and ai otherwise.

The marking of a position i in the data word w, in notation m(i), is the subset of zeroary
modalities Z satisfied by i. The marked string projection of w, denoted as mstr(w), is the
word (a1,m(1)) · · · (an,m(n)) over the alphabet Σ × 2Z . For a class S = {i1, . . . , in} the
marked class projection of S is the finite word (ai1 ,m(i1)) · · · (ain

,m(in)), and it is denoted
as mstr(w|S).

A functional letter-to-letter transducer A : Σ∗ → Γ∗ over words is a nondeterministic
finite state letter-to-letter transducer such that every input word w ∈ Σ∗ has at most one
output word A(w) ∈ Γ∗.

We next disclose two forms of transductions possible by a word transducer on data words.
Let A : (Σ× 2Z)∗ → Γ∗ be a functional letter-to-letter transducer.
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The automaton A acts as a global transducer when it runs on the marked string projection
mstr(w) of the input data word w ∈ (Σ×D)∗. If the run succeeds then the unique output
data word w′ ∈ (Γ×D)∗ = A(w) (by abuse of notation) is the relabelling of w with the word
A(mstr(w)).

Automaton A is a class transducer when for each class S in the input data word w, a
copy of the automaton A runs on the marked class projection mstr(w|S). If all the runs
succeed then the unique output data word A(w) (by abuse of notation) is the relabelling of
each class of S of w by A (mstr(w|S)).

I Definition 6. A cascade of class and global transducers over data words (hereafter simply
cascade) C is a sequence 〈Σ = Σ0,A1,Σ1, . . . ,Σn−1,An,Σn〉 such that A1, . . . ,An is a
sequence of class and global transducers over data words and for each i, the transducer Ai

has input alphabet Σi−1× 2Z and output alphabet Σi. Sets Σ0,Σn are respectively the input
and output alphabets of the cascade C and n is the height of the cascade.

The cascade C has a successful run on a given data word w if there is a sequence of data
words w0 = w,w1, . . . , wn−1, wn such that each transducer Ai has a successful run on wi−1
outputing the data word wi. The data word wn is the output of the cascade C, in notation
C(w) = wn. The language accepted by the cascade C, denoted as L(C), is the set of all data
words w on which C has a successful run.

Two cascades C1 and C2 can be composed to form the cascade C1 ◦ C2 if the output
alphabet of C1 and the input alphabet of C2 are the same. Composition of cascades is the
natural analogue of composition of formulas; this is expressed by the following proposition.

I Proposition 7. Let L be a set of data words. Then the following statements are equival-
ent.
1. L is definable by a formula in BMA of comp-height k.
2. L is recognisable by a cascade of height k.

4 Separation of the fragments BMA and BR

In this section we prove the main theorem of the paper, namely the separation of the
fragments of BMA and BR. More precisely it is shown that there is a formula in BR that
has no equivalent formula in BMA. We start by presenting our technical tool, namely
combinatorial expressions [7].

4.1 Combinatorial expressions
Put simply, combinatorial expressions are circuits over a data domain E . For our purposes it
is sufficient to assume that E is a set that contains all the usual data types such as Booleans,
integers, finite words etc. We form expressions by composing variables (denoted by X,Y
etc.) and functions (denoted by f, g etc.) whose domains and ranges are explicitly specified.
A variable X has range E ⊆ E , denoted as X : E, if it takes values from the set E. We say a
function f : E1× · · · ×Ek → F , where E1, . . . , Ek, F ⊆ E , has arity k, domain E1× · · · ×Ek

and range F . The expressions are built using two specific classes of functions (called gates),
namely:

binary functions — when k ≤ 2, and,
finitary functions — when each of E1, . . . , Ek is finite.

For example the addition on integers + : Z× Z→ Z is a binary function, whereas the
Boolean disjunction of k inputs ∨ : {0, 1}k → {0, 1} is a finitary function.
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I Definition 8. Combinatorial expressions are defined inductively;
a variable X : E is a combinatorial expression with range E, and depth 0.
if f : E1×· · ·×Ek → F is a binary or a finitary function, and t1, . . . , tk are combinatorial
expressions with ranges E1, . . . , Ek and depths d1, . . . , dk respectively, then f(t1, . . . , tk)
is a combinatorial expression with range F and depth max(d1, . . . , dk) + 1.

Let t(X̄) be a combinatorial expression that contains (possibly vacuously) the variables
X̄ = X1 : E1, . . . , Xn : En. For the valuation ā = a1, . . . , an, where ai ∈ Ei for each i, of the
variables X̄, the value of the expression t, denoted as t(ā), is defined inductively; if t is a
variable Xi then t(ā) = ai, and if t = f(t1, . . . , tk) then t(ā) = f(t1(ā), . . . , tk(ā)). Assume
F ⊆ E is the range of the expression t. Naturally t defines a map [[t]] : ā→ t(ā) from the set
E1 × · · · × En to the set F . Given a map m : E1 × · · · × En → F , where E1, . . . , En, F ⊆ E ,
we say the map is recognised by an expression t if [[t]] = m. A particular case is when the
range of the map m is restricted to a set of size two (without loss of generality {0, 1}); in
which case we say that t recognises the property {a1, . . . , an : m(a1, . . . , an) = 1}.

I Example 9. Each map f : En → F , for some E,F ⊆ E , n ∈ N, has an expression of depth
dlogne+ 1 recognising it. Let cat : E∗ × E∗ → E∗ be the concatenation operation on words
over the alphabet E and let t(X1 : E, . . . ,Xn : E) be an expression of depth dlogne that
consists of only the function cat and that computes the concatenation of the inputs. Let
u : E∗ → F be a binary function on words over E such that u(e1 · · · en) = f(e1, . . . , en). The
map f is recognised by expression u(t(X1 : E, . . . ,Xn : E)).

I Example 10. Consider the set Pn of n-tuples (u1, . . . , un) of words in {0, 1}∗ that all have
equal length. The property Pn is recognised by the expression

t =
∧

(el (X1, X2) , . . . , el (X1, Xn) , el (X2, X3) , . . . , el (X2, Xn) , . . . , el(Xn−1, Xn))

where
∧

is the Boolean conjunction on n · (n− 1)/2 inputs and el : A∗ ×A∗ → {0, 1} is the
function on words defined as el(u, v) = 1 iff the words u and v are of the same length. The
function

∧
is finitary and the function el is binary. The expression t has depth 2.

In the previous example, regardless of the value of n the expression t has a constant
depth. But there exists properties for which it is not the case.

I Definition 11. Let Vn be the set of n-tuples (u1, . . . , un) of words over the alphabet {0, 1}
such that:
1. the words u1, . . . , un are of the same length, and;
2. there exists a position 1 ≤ i ≤ |u1| such that the ith letter of each of u1 to un is 1.

It is shown in [7] that,

I Theorem 12. There is no expression of depth at most k that recognises the property V2k+1.

4.2 Separation results
We now apply the above theorem to derive our inexpressibility results. The idea is to define
a data language Bn that corresponds to the property Vn and to show that if there is a
BMA-formula of comp-height k recognising Bn then there is a combinatorial expression of
depth O(k) (precise bound disclosed later) recognising the property Vn. This claim along
with the Theorem 12 implies a lower bound on the comp-height of formulas defining the
language Bn.
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For the proof we rely on data words with a special structure that encode a sequence of
words. Let v1, . . . , vn ∈ Σ∗ be words of identical and even length, say 2` ∈ N. A data word
w ∈ (Σ×D)∗ is a coding of the words v1, . . . , vn ∈ Σ∗, denoted as w = coding(v1, . . . , vn), if
w = w1 · · ·wn with v1 = str(w1), . . . , vn = str(wn) and the class relation is the set of tuples
(k · 2`+ 2i, (k + 1) · 2`+ 2i− 1) for 0 ≤ k < n− 1, 1 ≤ i ≤ `; the position k · 2`+ 2i is the
ith even position in the block wk+1 and (k + 1) · 2`+ 2i− 1 is the ith odd position in the
block wk+2. Coding is only defined for words of identical even length and hereafter whenever
we say coding(v1, . . . , vn) it is understood that v1, . . . , vn are of identical even length.

A data word w is a n-coding (or simply a coding when the value n is clear from the
context) if it is the coding of some words v1, . . . , vn ∈ Σ∗. We write n-Codings for the set of
all n-codings.

a a a a b b b b c c c c d d d d

Figure 3 The coding of the words aaaa, bbbb, cccc, dddd ∈ {a, b, c, d}∗.

Next we introduce some gates and expressions that we use in the proofs. If w is the
coding of u1, . . . , un ∈ Σ∗ then mstr(w) = m1(u1) ·m2(u2) · · ·m2(un−1) ·m3(un) for binary
gates m1,m2,m3 : Σ∗ → (Σ× 2Z)∗ such that:
1. For or all words u = a1 · · · a2` ∈ Σ∗, 2` > 2

m1(u) = (a1, x1) · · · (a2`, x2`) where xi =


{fstg, fstc, lstc} if i = 1,
{fstc, lstc} if i is odd and i 6= 1,
{fstc} if i is even.

m2(u) = (a1, x1) · · · (a2`, x2`) where xi =
{
{lstc} if i is odd,
{fstc} if i is even.

m3(u) = (a1, x1) · · · (a2`, x2`) where xi =


{lstc} if i is odd,
{fstc, lstc} if i is even and i 6= 2`,
{fstc, lstc, lstg} if i = 2`.

2. For each word ab ∈ Σ2,

m1(ab) = (a, {fstc, fstg, lstc})(b, {fstc,S}) , m2(ab) = (a, {lstc,P})(b, {fstc,S}) ,
m3(ab) = (a, {lstc,P})(b, {fstc, lstc, lstg}) .

3. For words of odd length the functions m1,m2,m3 are fixed arbitrarily.

Let isε : Σ∗ → {0, 1} be the binary gate defined as isε(w) = 1 precisely when w ∈ Σ∗
is not the empty word. Let bI : Σ∗ × {0, 1} → Σ∗ be the binary function bI (x, 1) = x

and bI (x, 0) = ε. For variables X̄ = X1 : Σ∗, . . . , Xn : Σ∗, let NE(X̄) be the expression∧
(isε(X1), . . . , isε(Xn)) of depth 2 that recognises the property that none of the input words

is the empty word. Sometimes we use these gates and expressions over other alphabets, and
then it is understood that the domains of the functions are appropriately defined.

Next we prove that class transductions and global transductions on n-codings can be
defined by expressions of fixed height (irrespective of n). To summarise the intuition,
let w = w1 · · ·wn be the coding of the words u1, . . . , un ∈ Σ∗ such that str(wi) = ui.
Assume A : (Σ × 2Z)∗ → Γ∗ is a class transducer that has a successful run on w and let
A(w) = w′ = w′1 · · ·w′n ∈ (Γ × D)∗ where w′i is a relabelling of wi. Observe that the only
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other positions in the class of a position in wi appear either in wi−1 or wi+1. Therefore to
compute str(w′i) it suffices to know the words ui−1, ui, ui+1 and hence there is an expression
that takes as inputs ui−1, ui, ui+1 and outputs the word str(w′i).

I Lemma 13. For each class transducer A : (Σ × 2Z)∗ → Γ∗ and each n ∈ N there
exist combinatorial expressions e1(X̄), . . . , en(X̄), where X̄ = X1 : Σ∗, . . . , Xn : Σ∗, of
depth 7 such that for all n-tuple ū = (u1, . . . , un) of words in Σ∗ of identical even length
coding(e1(ū), . . . , en(ū)) = A(coding(ū)) .

Next we prove a similar claim for global transducers. The idea is as follows. Assume
A : (Σ× 2Z)∗ → Γ∗ is a global transducer and let w = w1 · · ·wn be the coding of the words
u1, . . . , un ∈ Σ∗ such that str(wi) = ui. Assume that A has a successful run on w and let
A(w) = w′ = w′1 · · ·w′n ∈ (Γ × D)∗ where w′i is a relabelling of wi. To compute str(w′i) it
suffices to know the word ui and the pair (p, q) of states of the automaton A which are
respectively the state of the automaton A before and after reading the word mstr(ui) on the
unique run on mstr(w). Among these, the pair (p, q) can be computed a finitary function
that aggregates the set of all possible partial runs of A on each of the words u1, . . . , un and
hence an expression of fixed height can compute the word str(w′i).

I Lemma 14. For each global transducer A : (Σ × 2Z)∗ → Γ∗ and each n ∈ N there
exist combinatorial expressions e1(X̄), . . . , en(X̄), where X̄ = X1 : Σ∗, . . . , Xn : Σ∗, of
depth 5 such that for all n-tuple ū = (u1, . . . , un) of words in Σ∗ of identical even length
coding(e1(ū), . . . , en(ū)) = A(coding(ū)) .

The above two lemmas can be generalised to a similar claim on cascades by induction (on
the height of the cascade).

I Lemma 15. For a cascade C = 〈A1, . . . ,Ak〉 with input alphabet Σ, and each n ∈ N there
exist combinatorial expressions e1(X̄), . . . , en(X̄), where X̄ = X1 : Σ∗, . . . , Xn : Σ∗, of depth
at most 7k such that for all n-tuple ū = (u1, . . . , un) of words in Σ∗ of identical even length
coding(e1(ū), . . . , en(ū)) = C(coding(ū)) .

Next we define a data language Bn that corresponds to the property Vn.
For a word w = a1a2 . . . al ∈ {0, 1}∗ we let pad(w) = 1a11a2 · · · 1al. We will also use pad

as a binary gate. A bridge in a data word w is a sequence of positions along a path that
consists of alternating class successor and global successor edges. Formally the sequence
of positions i1, . . . , in forms a bridge in w if there exists a sequence of successor and class
successor edges e1, . . . en−1 in w such that for each 1 ≤ j < n, ej = (ij , ij+1) and for each
1 ≤ j < n− 1, ej is a successor edge iff ej+1 is a class successor edge. A bridge is a-labelled,
for a ∈ Σ, if all the positions in the bridge are labelled by the letter a.

I Definition 16. Let Bn ⊆ ({0, 1} × D)∗ be the set of all data words w such that w has a
1-labelled bridge i1, . . . , i2n−1 (connected by a path of 2n−2 edges), and
1. all positions to the left of i1 are first positions of classes,
2. all positions to the right of i2n−1 are last positions of classes, and
3. the path corresponding to the bridge starts with a class successor edge.
Define the data language B =

⋃∞
n=1 Bn.

The language Bn is defined by the BMA formula (also in unary-DataLTL) of comp-height
2n+ 1,

Fg (Hgfstc ∧ (1Xc1Xg)nGglstc) where 1Xgϕ stands for the formula (1 ∧ Xgϕ),
and 1Xcϕ for (1 ∧ Xcϕ). (1)
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Similarly the language B is defined by the BR formula

fstc Ug (µx.(1Xc1Xgx ∨ 1Xc1XgGglstc)) . (2)

I Proposition 17. Let (u1, . . . , un) be a tuple of words of identical length over the alphabet
{0, 1}. Then the following are equivalent.
1. (u1, . . . , un) ∈ Vn.
2. The data word w = coding(pad(u1), . . . , pad(un)) is in the language Bn.

1 a1 1 a2 1 b1 1 b2 1 c1 1 c2 1 d1 1 d2
Figure 4 The data word w corresponding to the words a1a2, b1b2, c1c2, d1d2, and a bridge of

length 7 in w.

For a data language L ⊆ (Σ × D)∗ we write Lc = {w ∈ (Σ × D)∗ | w 6∈ L} for
the complement of L. The data language L ⊆ (Σ×D)∗ separates the data languages
L1, L2 ⊆ (Σ×D)∗ if Li ∩L = ∅ and L1−i ⊆ L for some i ∈ {0, 1}. A cascade C (respectively
a formula ϕ) separates the data languages L1, L2 if L(C) (respectively L(ϕ)) separates L1, L2.

I Lemma 18. If there is a cascade C of height k that separates the data languages L1 =
Bn ∩ n-Codings, L2 = (Bn)c ∩ n-Codings then there is a combinatorial expression of depth
7k + 4 recognising the property Vn.

Proof. Assume that C is a cascade of height k separating the languages L1, L2. Since
cascades (of height k) are closed under complementation, without loss of generality assume
that L(C) ⊇ L1 and L(C) ∩ L2 = ∅. Therefore the cascade C produces an output on a
data word n-Codings 3 w ∈ ({0, 1} × D)∗ if and only if w is in the language Bn. Let
e1(X̄), . . . , en(X̄), for X̄ = X1 : {0, 1}∗, . . . , Xn : {0, 1}∗, be the combinatorial expressions of
depth at most 7k, guaranteed by the Lemma 15 such that for all n-tuple ū = (u1, . . . , un) of
words in {0, 1}∗ of identical even length, coding(e1(ū), . . . , en(ū)) = C(coding(ū)).

Let pad(X̄) stand for the vector of expressions pad(X1), . . . , pad(Xn). We claim that the
expression

e =
∧

(NE(e1(pad(X̄)), . . . , en(pad(X̄)), t(X1, . . . , Xn)) ,

where t is the expression from Example 10 for the alphabet {0, 1} that checks if all the input
words are of the same length, computes the property Vn. The expression e has depth at most
7k + 4. To show the claim it is enough to verify that for a tuple ū = (u1, . . . , un) of words
from {0, 1}∗ of equal length, none of the words v1 = e1(pad(ū)), . . . , vn = en(pad(ū)) is the
empty word if and only if ū ∈ Vn. By Lemma 15, the words v1 to vn are nonempty iff C
accepts the data word w = coding(pad(ū)). By assumption, the data word w is accepted by
the cascade C iff w ∈ Bn. By Lemma 17, the data word w is in the language Bn iff ū is in
the property Vn. Hence the claim is proved. J

We are now ready for the main theorem;

I Theorem 19 (Separation). Let N = 7k+4.
1. The data languages L1 = B2N +1∩ (2N +1)-Codings and L2 = (B2N +1)c∩ (2N +1)-Codings

are not separable by a formula in BMA of comp-height k.
2. The data language B2N +1 is not definable by a formula in BMA of comp-height k.
3. Class of BMA definable languages form a hierarchy under composition height; more

precisely for every k there exists a BMA-formula ϕ with comp-height k that has no
equivalent formula of comp-height k−1.

4. The class of BMA definable languages is strictly subsumed by the class of BR definable
languages.
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Proof.
1. Proof by contradiction. Assume that the data languages L1, L2 are separable by a BMA

formula ϕ of comp-height k. This implies that there is cascade of height k separating
L1, L2. By Lemma 18 there is an expression of depth N recognising the property V2N +1.
This is in contradiction with Theorem 12.

2. Follows from (1).
3. From (2) and the Equation (1), B2N +1 is definable by a BMA formula of comp-height

2 ·(2N +1)+1 but not by any formula of comp-height k. Therefore (†) the set of languages
defined by BMAk is strictly contained in the set of languages defined by BMA2·(2N +1)+1.
It only remains to separate the languages definable by BMAk and the languages definable
by BMAk+1, for all k. We prove this claim by contradiction. Assume that (?) there is some
m ∈ N such that for every formula in BMAm+1 there is an equivalent formula in BMAm.
We claim that f or every formula in BMAm+2 there is an equivalent formula in BMAm as
well. To prove the claim, let χ = ψ(ϕ1, . . . , ϕn) be an arbitrary formula in BMAm+2 such
that ψ ∈ BMA1 and ϕ1, . . . , ϕn ∈ BMAm+1. By assumption (?) there exist formulas
ϕ′1, . . . , ϕ

′
n ∈ BMAm equivalent to the formulas ϕ1, . . . , ϕn respectively. Therefore the

formula χ′ = ψ(ϕ′1, . . . , ϕ′n) is equivalent to the formula χ and is in BMAm+1. Applying
the assumption (?) again there is a formula χ′′ ∈ BMAm equivalent to χ′ and hence also
to χ, and hence the claim is proved. Extending this argument, by induction on k, it can
be shown that for every formula in BMAm+k there is an equivalent formula in BMAm.
This is in contradiction with the statement (†). Hence the statement is proved.

4. We claim that the data language B is not definable by any BMA formula. For the sake
of contradiction, assume that there is a BMA formula ϕ of comp-height k recognising
the language B and let C be the cascade of height k corresponding to ϕ. We claim
that the cascade C separates the languages L1 and L2. Clearly, by definition of the
language B, L1 ⊆ B. We need to show that L2 ∩ B = ∅ and it suffices to prove that
for every w ∈ (2N +1)-Codings if w ∈ B then w 6∈ (B2N +1)c. Since any coding w in
(2N +1)-Codings either belongs to B2N +1 or does not belong to B, it follows that if w ∈ B
then w 6∈ (B2N +1)c. Therefore the cascade C separates the languages L1 and L2 which
contradicts (1) and hence the claim follows. On the other hand, since B is definable by a
formula in BR (Equation 2), the statement is proved. J

5 Conclusion

In this paper we studied the some fragments of µ-calculus over data words. We disclosed two
fragments that are: the Bounded Reversal fragment (BR) and the Bounded Mode Alternation
fragment (BMA) and proved they are separate. BR and BMA happen to form Boolean
algebras making them very natural, and relatively expressive logics over data words. We also
establish the relationship with earlier logics like FO2 or DataLTL.
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Abstract
Morphisms to finite semigroups can be used for recognizing omega-regular languages. The so-
called strongly recognizing morphisms can be seen as a deterministic computation model which
provides minimal objects (known as the syntactic morphism) and a trivial complementation pro-
cedure. We give a quadratic-time algorithm for computing the syntactic morphism from any
given strongly recognizing morphism, thereby showing that minimization is easy as well. In ad-
dition, we give algorithms for efficiently solving various decision problems for weakly recognizing
morphisms. Weakly recognizing morphism are often smaller than their strongly recognizing coun-
terparts. Finally, we describe the language operations needed for converting formulas in monadic
second-order logic (MSO) into strongly recognizing morphisms, and we give some experimental
results.
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1 Introduction

Automata over finite words have a huge number of effective closure properties. Moreover,
many problems such as minimization or equivalence of deterministic automata admit very
efficient algorithms [6, 7]. The situation over infinite words is quite similar, but with the
major difference that many operations are less efficient. There are many different automaton
models for accepting languages of infinite words, the so-called ω-regular languages. Each
of these models has its advantages and disadvantages. For instance, deterministic Büchi
automata are less powerful than nondeterministic Büchi automata [15]. And only very few
automaton models admit efficient minimization algorithms; for example, minimization of
deterministic finite automata can be applied to the lasso automata in [2].

The theory of finite semigroups and automata is tightly connected [11]. Since the
semigroup for a language can be exponentially bigger than its automaton, semigroups have
very rarely been considered in the context of efficient algorithms. There is also an algebraic
approach to ω-regular languages by using morphisms to finite semigroups, see e.g. [9, 15].
Among the many nice properties of this approach are minimal morphisms—the so-called
syntactic morphisms—and easy complementation. As for finite words, the semigroup for an
ω-regular language can be exponentially bigger than its Büchi automaton. However, since
many operations for ω-regular languages are less efficient than for regular languages over
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finite words, the drawback of this exponential blow-up in size is less serious. This is even
more so when minimizing all intermediate objects.

A typical algorithm for computing the syntactic morphism of a regular language over
finite words is to minimize the (deterministic) automaton defined by the Cayley graph of
a morphism, and then the syntactic morphism is given by the transition semigroup of the
minimal automaton. This approach does not work for infinite words and we therefore give a
direct algorithm for computing the syntactic morphism. Our algorithm is an adaptation of
Hopcroft’s minimization algorithm [6] and its running time is quadratic in the size of the
semigroup. We show that this is rather optimal.

There are two different modes for recognizing omega-regular languages by a morphism
to a finite semigroup: weak and strong recognition. Strong recognition is a special case of
weak recognition. Easy complementation and the computation of the syntactic morphism
only works for strong recognition. We show how to test whether a given weak recognition
is actually strong. Another useful tool for morphisms is the computation of the so-called
conjugacy classes.

As an application, we consider the translation of MSO formulas into strongly recognizing
morphisms. To this end, we show that a powerset construction preserves strong recognition,
and that this construction can be used for computing the image under a length-preserving
morphism. Finally, we give the test results of some translations from MSO to strong
recognition. Deciding the satisfiability of an MSO formula is non-elementary [13] and
therefore, minimization of intermediate objects is usually very helpful for solving some special
cases. This is confirmed by our test results.

2 Preliminaries

Words. Let A be a finite alphabet. The elements of A are called letters. A finite word is a
sequence a1a2 · · · an of letters of A and an infinite word is an infinite sequence a1a2 · · · . The
empty word is denoted by ε. The set of non-empty finite words over A is A+. Let K be a set
of finite words and let L be a set of infinite words. We set KL = {uα | u ∈ K,α ∈ L}, K+ =
{u1u2 · · ·un | n > 1, ui ∈ K} and K∗ = K+ ∪ {ε}. Moreover, if ε 6∈ K we define the infinite
iteration Kω = {u1u2 · · · | ui ∈ K}. A natural extension to K ⊆ A∗ is Kω = (K \ {ε})ω.

Finite semigroups. Let S be a finite semigroup. An element e of S is idempotent if e2 = e.
The set of idempotent elements of S is denoted by E(S) =

{
e ∈ S | e2 = e

}
. For each s ∈ S

the set
{
sk | k > 1

}
of all powers of s is finite and it contains exactly one idempotent element.

A semigroup S is called X-generated if X is a subset of S and every element of S can be
written as a product of elements of X. The right Cayley graph of an X-generated semigroup
S has S as vertices and its labeled edges are the triples of the form (s, a, sa) for s ∈ S and
a ∈ X. The left Cayley graph of S is defined analogously with edges of the form (s, a, as).
The definitions of Cayley graphs depend on the choice of the set X. In the following, when a
surjective morphism h : A+ → S is given, we choose X = h(A) as the set of generators.

Green’s relations are an important tool in the study of finite semigroups. We denote by
S1 the monoid that is obtained by adding a new neutral element 1 to S. For s, t ∈ S let

s R t if there exist q, q′ ∈ S1 such that sq = t and tq′ = s,

s L t if there exist p, p′ ∈ S1 such that ps = t and p′t = s.

These relations are equivalence relations and the equivalence classes of R (resp. L) are
called R-classes (resp. L-classes). The R-classes (resp. L-classes) of a semigroup S can be
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computed in time linear in |S| by applying Tarjan’s algorithm to the right (resp. left) Cayley
graph of S, see [5].

An element (s, e) ∈ S × E(S) is a linked pair if se = s. Two linked pairs (s, e) and (t, f)
are conjugate, written as (s, e) ∼ (t, f), if there exist x, y ∈ S such that sx = t, xy = e and
yx = f . The conjugacy relation ∼ on the set of linked pairs is an equivalence relation, see
e.g. [9]. The equivalence classes of ∼ are called conjugacy classes. A set P of linked pairs is
closed under conjugation if it is a union of conjugacy classes.

Recognition by morphisms. A language L ⊆ Aω is regular (or ω-regular) if it is recognized
by some finite Büchi automaton, see e.g. [3]. The family of regular languages is closed under
Boolean operations, i.e., set union, set intersection and complementation. We now describe
algebraic recognition modes for regular languages. Let h : A+ → S be a morphism onto a
finite semigroup S. For s ∈ S, we set [s] = h−1(s) and for P ⊆ S × S, we set

[P ] =
⋃

(s,t)∈P

[s][t]ω

if h is understood from the context. A language L ⊆ Aω is weakly recognized by a morphism
h : A+ → S if there exists a set of linked pairs P ⊆ S×E(S) with L = [P ]. If in addition P is
closed under conjugation, then h strongly recognizes L. Another well-known characterisation
of strong recognition is the following, see e.g. [4].

I Proposition 1. Let h : A+ → S be a morphism onto a finite semigroup. Then h strongly
recognizes L if and only if [s][t]ω ∩ L 6= ∅ implies [s][t]ω ⊆ L for all s, t ∈ S.

The syntactic congruence ≡L of a language L ⊆ Aω is defined over A+ as u ≡L v if the
equivalences

(xuy)zω ∈ L⇔ (xvy)zω ∈ L and
z(xuy)ω ∈ L⇔ z(xvy)ω ∈ L

hold for all finite words x, y, z ∈ A∗. Our definition is slightly different but equivalent to
the syntactic congruence introduced by Arnold [1]. The congruence classes of ≡L form the
so-called syntactic semigroup A+/≡L and the syntactic morphism hL : A+ → A+/≡L is the
natural quotient map. If L is regular, the syntactic semigroup of L is finite and hL strongly
recognizes L [1, 9].

Model of computation. Morphisms h : A+ → S are given implicitly through a mapping
f : A→ S with f(a) = h(a) for all a ∈ A. We assume that for finite semigroups S, multipli-
cations can be performed in constant time. Some algorithms only perform multiplications
of the form h(a) · s or s · h(a) where h is a morphism, s is an element of S and a is a
letter. In that case, semigroups can be represented efficiently by their left and right Cayley
graphs. For two elements s, t ∈ S we can check in constant time whether s = t and it is
possible to organize elements of S in a hash map such that operations on subsets of S can
be implemented efficiently. When a set P ⊆ S × S is part of the input, we assume that for
each s, t ∈ S one can check in constant time whether (s, t) ∈ P .

3 Conversion between Büchi automata, weak and strong recognition

In this section, we describe well-known constructions for the conversion between the different
acceptance modes for regular languages. For details and proofs, we refer to [9, 10, 15].
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3.1 From Büchi automata to strong recognition
In the case of finite words, when proving that each regular language is recognizable by
a morphism onto a finite semigroup, one usually considers the transition semigroup of a
finite automaton. However, when applying the same construction to Büchi automata, the
resulting morphism only weakly recognizes the language. In this section, we describe a
construction to convert a Büchi automaton A = (Q,A, δ, I, F ) into a semigroup S and a
morphism h : A+ → S that strongly recognizes L(A).

For states p, q ∈ Q and a finite word u ∈ A+, we write p u−→ q if there exists a sequence
q0a1q1a2q2 · · · qn−1anqn with q0 = p, qn = q and (qi, ai+1, qi+1) ∈ δ for all i ∈ {0, . . . , n− 1}.
If, additionally, qi ∈ F for some i ∈ {0, . . . , n}, we write p u−→

F
q. We now assign to each word

u ∈ A+ a Q×Q matrix h(u) defined by

(h(u))pq =


1 if p u−→ q but not p u−→

F
q

2 if p u−→
F
q

0 otherwise

A routine verification shows that this naturally extends the image of A+ under h to a
semigroup S. We say that a linked pair (R,E) where R = (rpq)p,q∈Q and E = (epq)p,q∈Q is
accepting if there exist states p, q ∈ Q such that rpq > 1 and eqq = 2. One can now verify
that the set P of all accepting linked pairs is closed under conjugation and that [P ] = L(A).

3.2 From weak recognition to Büchi automata
Suppose we are given a morphism h : A+ → S onto a finite semigroup S that weakly
recognizes a language L, i.e., L = [P ] for some set of linked pairs P ⊆ S ×E(S). One can
use the following construction from [10] to obtain a Büchi automaton A with L(A) = L.

The set of states is Q = S1 × E(S), the set of initial states is I = P and the set of
final states is F = {1} × E(S). The transition relation δ consists of all tuples of the form
((s, e), a, (t, e)) ∈ Q×A×Q where h(a)t = s or h(a)t = se.

By combining the constructions from this and the previous subsection, we also obtain a
construction to convert a morphism that weakly recognizes a language L into a morphism
that strongly recognizes L. There are also direct, more efficient constructions, to perform
this conversion, see e.g. [9]. The converse direction is trivial since, by definition, a morphism
h : A+ → S that strongly recognizes a language L also weakly recognizes L.

4 Computing conjugacy classes

When designing an algorithm that takes a set of linked pairs P ⊆ S × E(S) as input, it
is often convenient to assume that P is closed under conjugation. However, this is not
always the case in practice: The input set P might be a proper subset of its closure under
conjugation Q such that [P ] = [Q]. In this section, we describe an algorithm to compute
the conjugacy classes efficiently. It justifies the assumption that P is always closed under
conjugation in the following sections, particularly in Section 6.

As a warm-up, we first describe how to compute the set F of linked pairs. The linked
pairs are exactly the pairs of the form (se, e) with s ∈ S and e ∈ E(S). Thus, we first check
for each element e ∈ S whether e2 = e. If the outcome of the check is positive, we perform a
depth-first search in the left Cayley graph of S, starting at element e. For each element s that
is visited, (s, e) is a linked pair. The total running time of this routine is O(|S|+ |A| · |F |).
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An equivalence relation ≡ on the set of linked pairs is called left-stable if for all p ∈ S
and for linked pairs (s, e), (t, f) with (s, e) ≡ (t, f), we have (ps, e) ≡ (pt, f). We define an
equivalence relation ≈ on the set of linked pairs by (s, e) ≈ (t, f) if and only if e L s R t L f
or (s, e) = (t, f). Its relationship to conjugacy is captured in the following Lemma:

I Lemma 2. The conjugacy relation ∼ is the finest left-stable equivalence relation coarser
than ≈.

Proof. It follows directly from the definitions of linked pairs and conjugacy that ∼ is left-
stable. Let (s, e) and (t, f) be linked pairs with (s, e) ≈ (t, f) and (s, e) 6= (t, f). Since
s R t, there exist q, q′ ∈ S1 such that sq = t and tq′ = s. We set x = eq and y = fq′. Now,
sx = seq = sq = t. Moreover, since s L e, there exists p ∈ S1 with ps = e. Thus, we have
xy = eqy = psqy = pty = ptfq′ = ptq′ = ps = e. A similar argument can be used to show
that yx = f . Hence, (s, e) and (t, f) are conjugate, and ∼ is indeed coarser than ≈.

In order to show that ∼ is the finest relation with these properties, we consider an
arbitrary left-stable equivalence relation ' on the set of linked pairs which is coarser than ≈.
We show that (s, e) ∼ (t, f) implies (s, e) ' (t, f). Let x, y ∈ S such that sx = t, xy = e and
yx = f . Then we have ex = xyx = xf and xfy = xyxy = e2 = e, which shows that e R xf .
Furthermore we have xf L f , since yxf = f2 = f . By the definition of ≈, this means that
(e, e) ≈ (xf, f) and since ≈ refines ', it follows that (e, e) ' (xf, f). Left-stability yields
(s, e) = (se, e) ' (sxf, f) = (t, f). J

Since R-classes and L-classes can be computed in time linear in the size of the semigroup,
this allows us to efficiently compute the conjugacy classes as shown in Algorithm 1. We use
a so-called disjoint-set data structure that provides two operations on a partition. Find(s, e)
returns a unique element from the class that contains (s, e), i.e., if (s, e) and (t, f) are in the
same class, we have Find(s, e) = Find(t, f). Union((s, e), (t, f)) merges the classes of (s, e)
and (t, f). To simplify the notation we also introduce an operation Union+(R) for subsets R
of S × S that merges all classes with elements in R. Union+(R) can be implemented using
|R| − 1 atomic Union operations. The partition is initialized with singleton sets {(s, e)} for
all linked pairs (s, e). The second data structure used in the algorithm is a set T ⊆ 2F .

Algorithm 1 Computing conjugacy classes
initialize T with the non-trivial equivalence classes of ≈
for all R ∈ T do Union+(R) end for
while T 6= ∅ do

remove some set R from T

for all a ∈ A do
R′ ← ∅
for all (s, e) ∈ R do R′ ← R′ ∪ {Find(h(a)s, e)} end for
if |R′| > 1 then

Union+(R′)
T ← T ∪ {R′}

end if
end for

end while

To prove the correctness and running time of the algorithm, one can combine Lemma 2
with arguments similar to those given in the correctness and running time proofs of the
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Hopcroft-Karp equivalence test [7]. We first show that the relation induced by the final
partition is left-stable:

I Lemma 3. Let (s, e) and (t, f) be linked pairs of the same class upon termination, then,
for each a ∈ A, the pairs (h(a)s, e) and (h(a)t, f) are in the same class as well.

Proof. We write Findi(s, e) = Findi(t, f) if (s, e) and (t, f) belong to the same class after
the i-th iteration of the while-loop. The index ∞ is used to describe the situation upon
termination.

Let i be minimal such that for some pairs (s, e), (t, f) and a letter a ∈ A, we have
Findi(s, e) = Findi(t, f) and Find∞(h(a)s, e) 6= Find∞(h(a)t, f). Note that i > 0 because
otherwise, a set containing both (s, e) and (t, f) would be added to T during initializa-
tion. Hence, there exists a pair (s′, e′) with Findi−1(s′, e′) = Findi−1(s, e) and a pair
(t′, f ′) with Findi−1(t′, f ′) = Findi−1(t, f) such that Union+(R) is executed for some set
R ⊇ {(s′, e′), (t′, f ′)}. By choice of i, we have Find∞(h(a)s, e) = Find∞(h(a)s′, e′) and
Find∞(h(a)t, f) = Find∞(h(a)t′, f ′). Since we add the set R to T in iteration i, the
equality Find∞(h(a)s′, e′) = Find∞(h(a)t′, f ′) holds as well, and thus Find∞(h(a)s, e) =
Find∞(h(a)t, f), a contradiction. J

There is of course a dual statement for the pairs (s · h(a), e) and (t · h(a), f).

I Theorem 4. Let F be the set of linked pairs of S. When Algorithm 1 terminates, the
classes of the partition correspond to the conjugacy classes of F . Furthermore, the algorithm
executes at most
|F | − 1 Union operations and
2 |A| (|F | − 1) Find operations.

Proof. By Lemma 3, the relation induced by the final partition is left-stable and throughout
the main algorithm, two classes are only merged when required to establish this property.
Thus, the relation is the finest left-stable equivalence relation coarser than ≈ and, by Lemma 2,
equivalent to the conjugacy relation.

The number of Union operations is bounded by |F | − 1 since each operation reduces
the number of classes in the partitions by 1. Let R1, . . . , Rk be the sets that are added to
T during the execution of the algorithm. Whenever one of the sets Ri is inserted into T ,
|Ri| − 1 Union operations are executed. Thus, we have

k∑
i=1

(
|Ri| − 1

)
6 |F | − 1.

When Ri is removed from T , exactly |A| · |Ri| Find operations are executed in the same
iteration of the while-loop. The total number of Find operations is therefore bounded by

k∑
i=1
|A| · |Ri| 6

k∑
i=1
|A| · (2 |Ri| − 2) 6 2 |A| · (|F | − 1)

where the first inequality follows from the fact that each of the sets Ri contains at least two
elements. J

A sequence of n Union- and m Find-operations can be performed in O(n+m · α(n)) time
where α(n) denotes the extremely slow-growing inverse Ackermann function [14]. Thus,
when considering a fixed-size alphabet, the total running time of our algorithm is “almost
linear” in the number of linked pairs.
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5 Testing for strong recognition

Common decision problems, such as the universality problem or the inclusion problem, are
easy in the case of strong recognition. In the context of weak recognition, the algorithm
presented in this section is a powerful tool to answer a broad range of similar problems.
Given a morphism h : A+ → S onto a finite semigroup S and two sets of linked pairs
P,Q ⊆ S × E(S), it can be used to check whether [P ] ⊆ [Q]. In particular, it allows for
testing whether the morphism strongly recognizes a language L = [P ] by first computing the
closure Q of P under conjugation and then using the algorithm to test whether [Q] ⊆ [P ].

The algorithm maintains two sets R, T ⊆ S × S × S. The former keeps record of the
elements that are added to T during the course of the algorithm. To simplify the presentation,
we define x · a−1 to be the set of all elements p ∈ S1 which satisfy the equation p · h(a) = x.

Algorithm 2 Testing for strong recognition
initialize R and T with the set {(s, e, 1) | (s, e) ∈ P}
while T 6= ∅ do

remove some element (s, x, y) from T

if x = 1 then return “[P ] 6⊆ [Q]” end if
if (sx, yxyx) 6∈ Q then

for all a ∈ A, p ∈ x · a−1 do
if (s, p, h(a)y) 6∈ R then add (s, p, h(a)y) to R and to T end if

end for
end if

end while
return “[P ] ⊆ [Q]”

The following technical Lemma is crucial for the correctness proof of the algorithm:

I Lemma 5. Let u, v ∈ A+ and let (s, e) and (h(u), h(v)) be linked pairs. Then uvω is
contained in [s][e]ω if and only if there exists a factorization v = v1v2 such that v1 6= ε,
h(uv1) = s and h(v2vv1) = e.

Proof. Let v = a1a2 · · · an with n > 1 and ai ∈ A. If uvω is contained in [s][e]ω, there exists
a factorization uvω = u′v′1v

′
2 · · · such that h(u′) = s and h(v′i) = e for all i > 1. Since u and

v are finite words, there exist indices j > i > 1, powers k, ` > 1 and a position m ∈ {1, . . . , n}
such that u′v′1v′2 · · · v′i−1 = uvka1a2 · · · am and v′iv′i+1 · · · v′j = am+1am+2 · · · anv`a1a2 · · · am.
We set v1 = a1a2 · · · am and v2 = am+1am+2 · · · an. Then v1v2 = v,

h(uv1) = h(uvka1a2 · · · am) = h(u′v′1v′2 · · · v′i−1) = sei−1 = s and
h(v2vv1) = h(am+1am+2 · · · anv`a1a2 · · · am) = h(v′iv′i+1 · · · v′j) = ej−i+1 = e.

To prove the converse direction, consider the factorization uvω = uv1(v2vv1)ω. J

To simplify the proofs of the following two Lemmas, we extend h to a monoid morphism
h1 : A∗ → S1 by setting h1(u) = h(u) for all u ∈ A+ and h1(ε) = 1.

I Lemma 6. If the difference [P ] \ [Q] is non-empty, the algorithm returns “[P ] 6⊆ [Q]”.

Proof. By the closure properties of regular languages, we know that there exists a word α =
u(a1a2 · · · an)ω ∈ [P ] \ [Q]. Let s = h(u) and e = h(a1a2 · · · an). Lemma 5 shows that we can
assume without loss of generality that (s, e) is contained in P . We now prove by induction on
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the parameter k that upon termination, we have (s, h1(a1a2 · · · ak), h1(ak+1ak+2 · · · an)) ∈ R
for all k ∈ {0, . . . , n}. In particular, by considering the case k = 0, we see that the element
(s, 1, e) is added to R. Since every element added to R is also added to Q, the algorithm
returns “[P ] 6⊆ [Q]”.

The base case k = n is covered by the initialization of the set R. Let now k < n,
x = h1(a1a2 · · · ak+1) and y = h1(ak+2ak+3 · · · an). By the induction hypothesis, we know
that the tuple (s, x, y) is added to T during the course of the algorithm. Consider the iteration
when this tuple is removed from T . Because of α 6∈ [Q], we know that (sx, yxyx) 6∈ Q. Thus
the inner loop guarantees that (s, h1(a1a2 · · · ak), h1(ak+1ak+2 · · · an)) is added to R. J

I Lemma 7. If the algorithm returns “[P ] 6⊆ [Q]”, the difference [P ] \ [Q] is non-empty.

Proof. We construct a word in the difference [P ] \ [Q]. For every triple (s, e, 1) that is added
to R during the initialization, we define w[s, e, 1] = ε. If a triple (s, p, h(a)y) is added to R
later, we set w[s, p, h(a)y] = a · w[s, p · h(a), y]. For every (s, x, y) 6∈ R, the word w[s, x, y]
is undefined. If w[s, x, y] is defined, its image under h1 is y and we have (s, xy) ∈ P . Both
properties are easy to prove by induction.

Let (s, 1, y) be the triple that was removed from T immediately before the termination of
the algorithm. Consider an arbitrary word u ∈ [s] and set v = w[s, 1, y]. We have (s, y) ∈ P
and thus uvω ∈ [P ]. For every factorization v = v1av2 where v1, v2 ∈ A∗ and a ∈ A, the
word w[s, h1(v1), h1(av2)] is defined as av2 and thus, the tuple (h(uv1a), h(v2vv1a)) is not
contained in Q. In view of Lemma 5, this shows that uvω 6∈ [Q]. J

We are now able to state the main result of this section:

I Theorem 8. Given a morphism h : A+ → S onto a finite semigroup S and two sets of
linked pairs P,Q ⊆ S × E(S), one can check in O(|A| · |S|3) time whether [P ] ⊆ [Q].

Proof. The correctness of Algorithm 2 follows from the previous two Lemmas. Since R
contains at most (|S|+1)3 elements when the algorithm terminates, the outer loop is executed
at most (|S|+ 1)3 times. Moreover, for all a ∈ A and s, t ∈ S with s 6= t, the sets s · a−1 and
t · a−1 are disjoint. Thus, each element p ∈ S1 is considered at most |A| · (|S|+ 1)2 times in
the inner loop. If R is implemented as a bit field and T is implemented as a linked list, all
operations take constant time. This shows that the total running time is in O(|A| · |S|3). J

6 Computation of the syntactic morphism

In this section, we present an algorithm to compute the syntactic semigroup for a given
language. The syntactic homomorphism is obtained as a byproduct. One can show that
the syntactic semigroup is the smallest semigroup strongly recognizing a language [1, 9], so
this operation is in some sense analogous to minimization of finite automata. The most
important difference is that our algorithm requires only quadratic time, whereas minimization
is PSPACE-hard in the case of Büchi automata [8, 12].

Let S be a finite semigroup, let h : A+ → S be a surjective morphism and let P be a
set of linked pairs that is closed under conjugation. To make the following notation more
readable, we define Q to be the maximal subset of S × S such that [P ] = [Q].

I Lemma 9. Let u, v ∈ A+. Then uvω ∈ [P ] if and only if (h(u), h(v)) ∈ Q.

Proof. Suppose that uvω ∈ [P ]. By Proposition 1 we have [h(u)][h(v)]ω ⊆ [P ] = [Q]. Since
Q is maximal, the pair (h(u), h(v)) is contained in Q. The converse implication is trivial. J
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We now define a equivalence relation ∼= on S by s ∼= t if for all z ∈ S, we have

(z, s) ∈ Q⇔ (z, t) ∈ Q and
(s, z) ∈ Q⇔ (t, z) ∈ Q.

Moreover, let ≡ be the coarsest congruence on S that refines ∼=, i.e., s ≡ t if xsy ∼= xty for all
x, y ∈ S1. We denote by [s]≡ the equivalence class {t ∈ S | t ≡ s} of an element s ∈ S. The
relation ≡ is closely related to the syntactic congruence, as confirmed by the following result:

I Proposition 10. The quotient semigroup S/≡ is isomorphic to A+/≡L.

Proof. We first define a morphism g : A+ → S/≡ by setting g(u) = [h(u)]≡ for all u ∈ A+.
Let now u, v ∈ A+. By Lemma 9, we have h(u) ≡ h(v) if and only if hL(u) = hL(v). Thus,
g ◦ h−1

L is a semigroup isomorphism. J

The computation of the syntactic semigroup requires two steps:
1. Compute the partition induced by the equivalence relation ∼=.
2. Refine the partition until the underlying equivalence relation becomes a congruence.
The first step can be performed in time quadratic in the size of the semigroup. For the
second step, we can adapt Hopcroft’s minimization algorithm for finite automata [6]. For
C ⊆ S and a ∈ A, we define

C · a−1 = {s ∈ S | s · h(a) ∈ C} and a−1 · C = {s ∈ S | h(a) · s ∈ C} .

The full algorithm is shown in Algorithm 3. It relies on the Split routine that is usually
implemented as part of a partition refinement data structure, see e.g. [6] for details. Its
semantics is shown in Algorithm 4. In addition to modifying the partition, that routine also
updates a set T ⊆ 2S that is used in the main algorithm.

Algorithm 3 Computing the syntactic semigroup
initialize a partition with a single class S
for all s ∈ S do

Split({t ∈ S | (s, t) ∈ Q})
Split({t ∈ S | (t, s) ∈ Q})

end for
initialize T with the non-trivial classes of the partition
while T 6= ∅ do

remove some set C from T

for all a ∈ A do
Split(C · a−1) . Refine the partition and update T
Split(a−1 · C) . Refine the partition and update T

end for
end while

The next Lemma shows that upon termination, the equivalence relation induced by the
partition is indeed a congruence:

I Lemma 11. If, upon termination, the elements s and t belong to the same class of the
partition, then, for each a ∈ A, the elements h(a)s and h(a)t are in the same class as well.
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Algorithm 4 The Split operation to refine a partition P
procedure Split(X)

for all C ∈ P do
C1 ← C ∩X, C2 ← C \X
if C1 6= ∅ and C2 6= ∅ then
P ← (P \ {C}) ∪ {C1, C2}
if C ∈ T then

T ← (T \ {C}) ∪ {C1, C2}
else

if |C1| 6 |C2| then T ← T ∪ {C1} else T ← T ∪ {C2} end if
end if

end if
end for

end procedure

Proof. Suppose that h(a) · s and h(a) · t belong to different classes. These elements are split
either during the initialization or in the main loop. In either case, a set C that contains
either h(a) · s or h(a) · t is added to T . When this set is removed from T , the operation
Split(a−1 · C) asserts that s and t lie in different classes as well. A dual argument holds in
the right-sided case. J

There is of course a dual statement for the elements s · h(a) and t · h(a).

I Theorem 12. The syntactic morphism can be computed in O(|S|2 + |A| · |S| log |S|) time.

Proof. Let us first argue that Algorithm 3 is correct. The partition is initialized with the
equivalence classes of ∼=. A class is only split when it is necessary to restore the left-stability
or right-stability. Upon termination, the relation induced by the partition is a congruence, as
stated in Lemma 11. Thus, it is the coarsest congruence that refines ∼= and hence equivalent
to ≡.

For the analysis of the running time, we assume that the operation Split(X) can be
implemented in time linear in |X|. Then the initialization clearly takes O(|S|2) time. We
denote by C1, . . . , Ck the sets that are added to T during the course of the algorithm. Let
s ∈ S and let ns = {i | 1 6 i 6 k, s ∈ Ci} be the number of sets Ci containing s. At any
point in time, there is at most one set in T that contains s. If such a set C is removed
from T and another set C ′ with s ∈ C ′ is added to T at a later point in time, we have that
|C ′| 6 |C| /2. Thus, the inequality ns 6 log |S| holds for all s ∈ S and we have

k∑
i=1

∑
a∈A

(∣∣Ci · a−1∣∣+
∣∣a−1 · Ci

∣∣) =
∑

s∈S,a∈A

(
ns·h(a) + nh(a)·s

)
6 2 |A| · |S| log |S|.

Consequently, the total running time of the while-loop is in O(|A| · |S| log |S|), assuming that
T is implemented efficiently, e.g. as a linked list. J

If the alphabet A is fixed and the semigroup S becomes large, the running time is dominated
by the initialization. However, the following result implies that the algorithm we presented
is quite optimal.

I Proposition 13. Let k ∈ N and let λ ∈ R be a strictly positive number. One cannot
compute the syntactic morphism in time O(|A|k · |S|2−λ).
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Proof. We assume that there exists a deterministic algorithm and a constant c > 1, such that
every input of size n = |S| and m = |A| /2 can be minimized in time T (n,m) 6 c ·mk · n2−λ.
Since c, k and λ are constant, there exists an integer m ∈ N with 2λm > 16c ·mk. Consider
an alphabet A = {1, . . . , 2m} satisfying this condition.

We define A1 = {1, . . . ,m} and A2 = {m+ 1, . . . , 2m}, S1 = (2A1 \ {∅}) × {∅} and
S2 = {∅} × (2A2 \ {∅}). The set S = S1 ∪ S2 forms a semigroup with the multiplication

(X1, X2) · (Y1, Y2) =
{

(∅, X2 ∪ Y2) if X1 = Y1 = ∅
(X1 ∪ Y1, ∅) otherwise

Furthermore, let h : A+ → S be defined by h(a) = ({a} , ∅) for all a ∈ A1 and h(b) = (∅, {b})
for all b ∈ A2. Let F be the set of linked pairs of S. It is easy to verify that S1 × S2 ⊆ F .
Moreover, two tuples (s, e), (t, f) ∈ S1 × S2 are conjugate if and only if (s, e) = (t, f). The
number of conjugacy classes of S is at least |S1| · |S2| > 2m−1 · 2m−1 = 4m−1. The size of S
is n = |S1|+ |S2| 6 2m + 2m = 2m+1.

Consider the execution of the algorithm on input h and P = F . Since [P ] = Aω,
the algorithm returns the trivial semigroup. We denote by (s1, e1), (s2, e2), . . . , (s`, e`) the
sequence of linked pairs for which the algorithm checks whether (si, ei) ∈ P . We have
` 6 T (n,m) 6 c ·mk · n2−λ < 4c ·mk · 22m−λm = 16c ·mk · 2−λm · 4m−1 < 4m−1 and thus,
there is a conjugacy class C such that (si, ei) 6∈ C for all i ∈ {1, . . . , `}. Since the algorithm
is deterministic, the execution sequence on input Q = P \ C is the same, and the algorithm
returns, again, the trivial semigroup consisting of one element. However, [Q] 6= Aω and thus,
the algorithm is incorrect. J

One can also show that, independent of the alphabet size, it is impossible to compute the
syntactic morphism in time O(|S|2−λ). However, the proof is a bit more involved [4].

7 Language operations on morphisms

One of the merits of strong recognition is that complementation is easy. If a morphism
h : A+ → S onto a finite semigroup S strongly recognizes a language L ⊆ Aω, it also strongly
recognizes the complement Aω \ L. As in the case of finite words, we can use direct products
for unions and intersections.

Another operation on languages which is of particular interest when it comes to converting
MSO formulas to strongly recognizing morphisms are so-called length-preserving morphisms.
Suppose we are given alphabets A, B and a length-preserving morphism π : A+ → B+,
i.e., π(a) ∈ B for all a ∈ A. We naturally extend this morphism to infinite words by setting
π(a1a2 · · · ) = π(a1)π(a2) · · · and to languages L ⊆ Aω by setting π(L) = {π(α) | α ∈ L}.

I Proposition 14. Let π : A+ → B+ be a length-preserving morphism, let S be a finite
semigroup and let h : A+ → S be a surjective morphism that strongly recognizes a language
L ⊆ Aω. Then there exist a semigroup T of size 2|S| and a morphism g : B+ → T that
strongly recognizes π(L).

Proof. We first define T to be the set 2S of all subsets of S and extend it to a semigroup
by defining an associative multiplication X · Y = {xy | x ∈ X, y ∈ Y }. The morphism
g : B+ → T is uniquely defined by g(a) = h(π−1(a)) for all a ∈ B.

Let us now verify that g strongly recognizes π(L). Consider a linked pair (s, e) and two
infinite words α, β ∈ g−1(s)(g−1(e))ω. By Proposition 1, it suffices to show that α ∈ π(L)
implies β ∈ π(L). If α is contained in π(L), we can conclude by Ramsey’s theorem that
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Table 1 Experimental results for different parameter values.

ϕk ψk χk

|S| |F | |P | |S| |F | |P | |S| |F | |P |

k = 2 4 5 1 12 15 10 7 14 11
k = 3 8 22 1 43 50 41 11 26 15
k = 4 16 74 1 148 163 146 17 61 30
k = 5 32 232 1 539 570 537 41 227 85
k = 6 64 710 1 1863 1926 1861 105 716 184

there exists a linked pair (t, f) of S with t ∈ s, f ∈ e and h−1(t)(h−1(f))ω ∩ L 6= ∅. By
assumption, h strongly recognizes L and thus, we have h−1(t)(h−1(f))ω ⊆ L. Since we know
that there exists an infinite word uv1v2 · · · ∈ π−1(β) such that h(u) = t and h(vi) = f for all
i > 1, this immediately yields uv1v2 · · · ∈ L and hence β ∈ π(L). J

8 Experimental results

In order to test the algorithms and constructions in practice, we implemented the conversion
of MSO formulas into strongly recognizing morphisms. The constructions described in
Section 7 are used to recursively convert the formulas, and all intermediate results are
minimized using the algorithm from Section 6. For details on MSO logic over infinite words
and its connexion to regular languages, we refer to [15, 16]. The conversion to strongly
recognizing morphisms instead of Büchi automata has the advantage that all intermediate
objects can be minimized efficiently. Table 1 shows the size of the computed syntactic
semigroup S, the number of linked pairs F and the size of the accepting set P (which is
closed unter conjugation) for the following three families of MSO formulas with parameter
k > 1 and free second-order variables Xk+1 = X1, X2, . . . , Xk:

ϕk = ∀x
k∧
i=1
∃y (x < y ∧ y ∈ Xi)

ψk = ∀x∀y (y = x+ 1)→
k∧
i=1

(x ∈ Xi → y ∈ Xi+1)

χk = ∀x
k∧
i=1

(x ∈ Xi → ∃y (x < y ∧ (y ∈ Xi−1 ∨ y ∈ Xi+1)))

All computations were made on a Intel Core i5-3320M with 4GiB of RAM. The execution
time was less than three seconds for each formula.

9 Summary and Outlook

We described several algorithms for weakly recognizing morphisms and strongly recognizing
morphisms over infinite words. Our tests indicate that strongly recognizing morphisms, when
combined with the minimization algorithm presented in Section 6, are a practical alternative
to automata-based models when it comes to deciding properties of MSO formulas.

Some of the algorithms leave room for optimization. In particular, it would be interesting
to see whether there is a linear-time algorithm to compute conjugacy classes and whether
the running time of the algorithm described in Section 5 can be improved to O(|A| ·

∣∣S2
∣∣).
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Abstract
We present a randomized approximation algorithm for computing traveling salesperson tours in
undirected regular graphs. Given an n-vertex, k-regular graph, the algorithm computes a tour of
length at most

(
1 + 4+ln 4+ε

ln k−O(1)

)
n, with high probability, in O(nk log k) time. This improves upon

the result by Vishnoi ([27], FOCS 2012) for the same problem, in terms of both approximation
factor, and running time. Furthermore, our result is incomparable with the recent result by Feige,
Ravi, and Singh ([10], IPCO 2014), since our algorithm runs in linear time, for any fixed k. The
key ingredient of our algorithm is a technique that uses edge-coloring algorithms to sample a
cycle cover with O(n/ log k) cycles, with high probability, in near linear time.

Additionally, we also give a deterministic 3
2 +O

(
1√
k

)
factor approximation algorithm for the

TSP on n-vertex, k-regular graphs running in time O(nk).

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases traveling salesperson problem, approximation, linear time

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.125

1 Introduction

Given a complete undirected graph with positive real valued weights on the edges, the
traveling salesperson problem (TSP) is to find a minimum weight cycle that visits each
vertex exactly once. This problem was among the first few proved NP-Complete by Karp
[15]. In the absence of any structural restriction on the weight function, the TSP is hard to
approximate within any constant factor ([26], [24]).

The most widely researched restriction of the TSP is the MetricTSP, where the vertices
form a metric space with the weight function as the metric. This simple imposition of the
triangle inequality over the weights allowed Christofides [7] to efficiently construct tours
with an approximation ratio of 3/2. No improvement has been made on this upper bound in
the last 35 years. However, for the case when the metric is Euclidean with a fixed number
of dimensions (the EuclideanTSP), polynomial time approximation schemes are known
[1, 18, 23, 3].

The possibility of existence of a polynomial time approximation scheme for the Met-
ricTSP was ruled out early on by the proof of its APX-hardness given by Papadimitriou
and Yannakakis [22]. The first explicitly proven lower bound on the approximation factor
was 5381/5380 by Engebretsen [9] (for the MetricTSP with distances 1, and 2). This was
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followed by a series of improvements: 3813/3812 by Böckenhauer and Seibert [5], 220/219 by
Papadimitriou and Vempala [21], 185/184 by Lampis [17], and finally, 123/122 by Karpinski,
Lampis, and Schmied [16], which is the best lower bound known currently. The reader is
referred to [16] for a nice overview of recent advances in many natural restrictions of the
MetricTSP.

An important sub-class of the MetricTSP is the GraphTSP, where the weight function
on the edges arises from the shortest path distances in some unweighted undirected graph.
This is believed to be the most promising candidate for capturing the computational hardness
of the MetricTSP. GraphTSP is APX-hard too, as a consequence of its MAX-SNP
hardness [22] and the PCP theorem [2]. The best known lower bound of 4/3 on the integrality
gap of the Held-Karp LP relaxation [13] of the MetricTSP is observed on an instance of
the GraphTSP.

Gharan, Saberi and Singh [12] achieved the first improvement over Christofides [7]
algorithm for the GraphTSP with an approximation ratio strictly less than 3/2, which was
shortly followed by Mömke and Svensson’s [19] bound of 1.461. Mucha [20] later improved
the analysis of Mömke and Svensson’s [19] algorithm and demonstrated a bound of 13/9.
Currently, the best known bound is 7/5, given by Sebö and Vygen [25]. It is widely believed
that the Held-Karp relaxation has an integrality gap of precisely 4/3, and this has been
proven for cubic graphs [6].

Vishnoi [27] opened up a new line of interesting work by arguing that approximating
the GraphTSP might possibly get better with increasing edge density. He studied the
GraphTSP on regular graphs (the RegGraphTSP), and proved that approximation factors
arbitrarily close to 1 can be achieved, as the degree of the regular graph becomes larger. The
reader is referred to to Vishnoi [27] for a nice survey on the MetricTSP in general, and an
interesting discussion on this line of work.

The main technical contribution of Vishnoi’s paper is an algorithm for the RegGraphTSP
with an approximation factor of (1 +

√
64/ ln k) on regular graphs with degree k. Given a k-

regular graph with n vertices, the algorithm first samples a cycle cover using Jerrum, Sinclair
and Vigoda’s algorithm [14] for sampling a matching from an almost uniform distribution
over the perfect matchings in the natural bipartite version of the input graph. This cycle
cover is guaranteed to have O(n/

√
ln k) cycles with high probability. These cycles are then

connected using two copies of a spanning tree on the graph formed by contracting the cycles.
This yields a tour of length at most (1 +

√
64/ ln k)n with probability 1− 1/n. The running

time of this algorithm is dictated by the running time of the sampling method, which is
around O(n10 log3 n). This can be improved marginally by using a faster sampling algorithm,
for example, the algorithm by Bezáková, Stefankovic, Vazirani and Vigoda [4].

In a follow-up paper, Feige, Ravi, and Singh [10] improve the approximation ratio for
the RegGraphTSP to 1 + O(1/

√
k). They use a randomized procedure to construct

vertex disjoint paths in the input graph which, in expectation, contain (1−O(1/
√
k))n

edges. They connect these paths arbitrarily using another O(n/
√
k) edges, resulting in a tree

with O(n/
√
k) vertices of odd degree. Then they show that these vertices can be matched

with paths of total length O(n/
√
k), that is, they have a T-join of size O(n/

√
k), resulting

in an Eulerian graph. Short-cutting an Euler tour of this graph yields a (1 + O(1/
√
k))-

approximation. The running time of this algorithm is dictated by the time taken to find the
T-join, which is O(n3).

Here we propose an alternative method for solving the RegGraphTSP, which achieves
an approximation factor better than Vishnoi’s. More importantly, our algorithm runs in
linear time, for every fixed k.
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I Theorem 1. Fix an ε > 0. There is an algorithm which, given a connected k-regular
undirected graph on n vertices, runs in time O(nk log k), and outputs a TSP tour of cost
at most

(
1 + 4+ln 4+ε

ln(k/2)

)
n with high probability (specifically, probability of failure decaying

exponentially with n).

The idea behind improving the running time is to replace the Jerrum-Sinclair-Vigoda
subroutine in Vishnoi’s algorithm by a much faster sampling subroutine. Although the Jerrum-
Sinclair-Vigoda algorithm comes with stringent guarantees about the resulting sampling
distribution, such guarantees are not requisite for Vishnoi’s algorithm. On the other hand,
while our sampling distribution on the cycle covers may be quite far from uniform, we
demonstrate bounds on the measure concentration around cycle covers with few cycles, using
simple counting arguments. We describe the algorithm in Section 2, and analyze it in Section
3.

While derandomizing our algorithm seems like a difficult problem, we also have a simple
deterministic linear time algorithm that achieves a 3

2 +O
(

1√
k

)
factor approximation. Here,

the main idea is to traverse the graph in a depth-first-like manner and keep removing long
cycles. These cycles cover a good fraction of the vertices. The cycles and the uncovered
vertices can then be connected by a spanning tree. We devote Section 4 for this algorithm
and its analysis.

2 The Randomized Algorithm

The high level idea behind our algorithm is similar to that of Vishnoi’s. Find a cycle cover of
the graph, and then connect the cycles using a spanning tree. Recall that a cycle cover of a
graph is a collection of vertex-disjoint cycles that cover all its vertices. We wish to construct
a cycle cover such that it has a small number of cycles with high probability. It is folklore
that cycle covers in a graph correspond to matchings in the natural encoding of the given
graph as a bipartite graph (see Definition 3). Indeed, Vishnoi selects a random matching in
such an encoding.

Given a k-regular graph, we intend to first partition the edges into cycle covers in a
randomized manner, and then select the best cycle cover. Our algorithm to find the partition
uses ideas from the Gabow-Kariv algorithm [11], which finds a minimum edge-coloring of an
input graph. However, the Gabow-Kariv algorithm works only on graphs with vertex degrees
which are powers of two. Therefore, we attempt to reduce the degree to a power of two, for
which we need to work with directed regular graphs and their bipartite encodings.

I Definition 2. We say that a directed graph is k-regular if the in-degree as well as the
out-degree of each vertex is k. A cycle cover in a directed graph is a 1-regular subgraph of
the graph.

I Definition 3. The bipartite encoding of a directed graph G = (V,A) is the bipartite graph
B = (VL, VR, E), where VL and VR contain vertices vL and vR respectively, for each v ∈ V ,
and E contains the edge {uL, vR} for each arc (u, v) ∈ A.

From the definition, it is easy to see a natural bijection between the cycle covers of a
directed graph and perfect matchings of its bipartite encoding. Analogously, our algorithm
to partition the arcs of a regular directed graph into cycle covers can also be seen as an
algorithm to partition the edges of a regular bipartite graph into perfect matchings.

The reason for working with directed graphs is that one can effectively partition the edges
of a k-regular directed graph into k cycle covers. As a consequence, we have the following
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lemma which ensures there is no loss of generality if we restrict our attention to the case
where the degree k is a power of two. This lemma relies on the algorithm by Cole, Ost, and
Schirra [8], which partitions the edges of any given k-regular bipartite undirected graph with
n vertices into perfect matchings, and runs in time O(nk log k).

I Lemma 4. Given a K-regular directed graph G′ = (V,A′) with n vertices and k < K,
there is an algorithm which outputs a k-regular subgraph G = (V,A) of G′, and runs in time
O(nK logK).

Proof. The algorithm constructs the bipartite encoding B′ of G′. Therefore, B′ is aK-regular
bipartite graph. The algorithm then partitions the edges of B′ into K perfect matchings,
using the Cole-Ost-Schirra algorithm, and then deletes an arbitrary set of K − k matchings.
This gives a k-regular bipartite subgraph B of B′. The algorithm returns G = (V,A), where
A ⊆ A′ consisting of arcs which correspond to edges in B. J

Henceforth, we will assume that k is a power of 2. Otherwise, if 2l < k < 2l+1 for some
l ∈ N, we preprocess the given graph using the algorithm from Lemma 4 to obtain a 2l-regular
subgraph. We randomly partition the arcs of the subgraph into cycle covers, and then pick
the best cycle cover.

I Definition 5. Let G = (V,A) be a k-regular directed graph. A cycle cover coloring of this
graph is an ordered partition of the arc set A into k cycle covers. Formally, it is a function
c : A −→ {1, . . . , k}, such that for each i ∈ {1, . . . , k}, the set c−1(i) is a cycle cover of G.

In other words, for any vertex v and color i, exactly one arc leaving v and exactly one
arc entering v have color i. In fact, the algorithm from Lemma 4 creates an arbitrary such
coloring. Thus, regular directed graphs have efficiently constructible cycle cover colorings.
However, the cycle cover coloring resulting from the degree reduction algorithm might not
contain a cycle cover with a small number of cycles. To address this issue, we next describe
a procedure to construct a random cycle cover coloring of a k-regular graph. This falls into
the “divide and conquer” paradigm, where the “conquer” step involves partitioning the edges
of a 2-regular directed graph into two cycle covers, and relies on the following lemma.

I Lemma 6. The arcs of a 2-regular directed graph can be partitioned into two cycle covers
in linear time.

Proof. Construct the bipartite encoding of the 2-regular graph. Since the in-degree and
out-degree of each vertex in the bipartite graph is two, the bipartite encoding is a 2-regular
undirected graph, that is, a collection of vertex disjoint cycles of even length. Partition the
edges of the bipartite encoding into two perfect matchings. Each of these two matchings
encodes a cycle cover of the original directed graph. J

Our procedure to generate a random cycle cover coloring of a given k-regular directed
graph, which forms the heart of the approximation algorithm claimed in Theorem 1, is given
by Algorithm 1, and we call it RandCycleCoverColoring. It is easily verified that the
running time T (n, k) of RandCycleCoverColoring on a k-regular graph with n vertices
is given by the recurrence T (n, k) = T (2n, k/2) +O(nk). This yields T (n, k) = O(nk log k).
Theorem 7 states that the random cycle cover coloring contains, with high probability, a
cycle cover with a small number of components. The proof is deferred to the next section.

I Theorem 7. Fix an ε > 0. Let G be a k-regular directed graph with n vertices, where k is
a power of 2. The algorithm RandCycleCoverColoring, on input G, outputs a random
cycle cover coloring of G, which with high probability contains a cycle cover with at most
(2 + ln 2 + ε)n/ ln k components. The algorithm runs in time O(nk log k).
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Algorithm 1 RandCycleCoverColoring(G)
1: {INPUT: G, a k-regular n vertex directed graph with k being a power of 2; OUTPUT:

A random cycle cover coloring of G.}
2: If k = 1 return G with each arc colored 1.
3: Convert G into a k/2-regular digraph H = (V ′, A′) with 2n vertices, by splitting every

vertex v into a pair of vertices: v0 and v1. Distribute the arcs incident on v randomly
among v0 and v1, so that each gets half of the incoming and half of the outgoing arcs.

4: Recursively call RandCycleCoverColoring(H) to obtain an edge coloring c′ : A′ −→
{1, . . . , k/2} of H.

5: Fuse the pairs of vertices back to obtain G with the coloring c′. For each i, the edges
colored i constitute a 2-regular directed graph. Call it Gi.

6: For each i ∈ {1, . . . , k/2}, partition the arcs of Gi into two cycle covers, using Lemma 6.
Recolor one of these cycle covers with color i+ k/2.

It is worth noting that failure probability of RandCycleCoverColoring decays
exponentially with n, and the parameter ε only affects the rate of this decay. The algorithm
itself (and hence, its running time) is independent of ε.

Theorem 1 follows from Theorem 7 in the following manner. Given a connected K-regular
undirected graph over the vertex set V of size n, construct the directed graph G′ = (V,A′) in
the obvious manner: for each edge {u, v} of the undirected graph, include the arcs (u, v) and
(v, u) in A′. Clearly, G′ is a K-regular directed graph. Use the degree reduction algorithm
from Lemma 4 to get a regular graph G = (V,A) with degree k = 2blog2 Kc. Now run the
procedure RandCycleCoverColoring on G to get a random cycle cover coloring of G.
Choose the best cycle cover from this cycle cover coloring. This cycle cover contains at most
(2 + ln 2 + ε)n/ ln k cycles, with high probability.

The rest of the processing is routine. Take the multi-set E of edges in the original graph
which correspond to the arcs constituting the cycle cover. (If both arcs (u, v) and (v, u)
belong to the cycle cover, then take edge {u, v} with multiplicity two.) Contract these edges,
and find a spanning tree of the resulting minor. Duplicate the edges of the spanning tree,
so that these edges and the edges in E form an Eulerian spanning subgraph of G. Find an
Euler tour in this graph and short-cut it to get a TSP tour of G. The cost of this tour is at
most n+ 2× (2+ln 2+ε)n

ln k ≤
(

1 + 4+ln 4+2ε
ln(K/2)

)
n, and this post-processing can be done in time

O(nk), that is, linear in the size of the graph.

3 Analysis of RandCycleCoverColoring

We first bound from above the probability of getting any fixed cycle cover coloring.

I Lemma 8. Consider a fixed cycle cover coloring c of the k-regular directed graph G′ = (V,A),
where k is a power of 2, let and n = |V |. The probability that RandCycleCoverColoring,
on input G′, outputs c is at most f(n, k), where

f(n, k) =
[
kk

(k!)2

]n
Proof. By induction on k. The claim is trivial for k = 1. Assume now that k > 1. Consider
the coloring c′ : A −→ {1, . . . , k/2} given by

c′(e) =
{
c(e) if c(e) < k/2
c(e)− k/2 otherwise
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If a run of the algorithm outputs the coloring c, then it must obtain the coloring c′ at the
end of the recursion step. In order to obtain the coloring c′ at the end of the recursion step,
it is necessary that for all v ∈ V and i ∈ {1, . . . , k/2}, the two arcs having their tails (resp.
heads) at v and colored i in c′, must separate during the splitting of the vertex v. Thus, the
probability that the arcs having tails (resp. heads) at v get distributed correctly between v0

and v1 is 2k/2/
(
k
k/2
)
. The probability that the vertex v gets split correctly is

[
2k/2/

(
k
k/2
)]2

.

Therefore, the probability that all n vertices get split correctly is
[
2k/2/

(
k
k/2
)]2n

, since the
vertices are split independently.

The probability of obtaining c′ after the recursive call, given that all vertices split correctly,
is at most f(2n, k/2), by induction. Thus, the probability that RandCycleCoverColoring
outputs c is at most[

2k/2(
k
k/2
)]2n

× f(2n, k/2) =
[

2k/2(
k
k/2
)]2n

×
[

(k/2)k/2

((k/2)!)2

]2n

=
[
kk

(k!)2

]n
= f(n, k)

J

Using the fact, ln(k!) ≥ k ln k − k, arising from the Stirling’s approximation, we have

f(n, k) =
[
kk

(k!)2

]n
≤
[

kk

(k/e)2k

]n
=
(
e2

k

)kn
(1)

We next bound from above the number of cycle covers with exactly r components.

I Lemma 9. Let G = (V,A) be a k-regular directed graph with n vertices (where k is not
necessarily a power of 2). The number of cycle covers of G having r cycles is at most

(
n
r

)
kn−r.

Proof. Number the vertices of G arbitrarily. Consider a cycle cover C ⊆ A of G which has
r components, and let (S1, . . . , Sr) be the partition of V induced by C, where S1, . . . , Sr
are sorted by the smallest numbered vertices that they contain. We associate the tuple
(|S1|, . . . , |Sr|) with C.

Given a tuple (s1, . . . , sr) such that
∑r
i=1 si = n, let us upper bound the number of cycle

covers C of G that could be associated with this tuple. Since each cycle in G has length at
least 2, we have each si ≥ 2, and hence r ≤ n/2. Let (S1, . . . , Sr) be the partition induced by
C, sorted by the smallest numbered vertices that they contain; si = |Si|. Given S1, . . . , Si−1,
the smallest numbered vertex v0 not in S1 ∪ · · · ∪ Si−1 must be in Si, and that must be
the smallest numbered vertex in Si too. Let the cycle containing v0 in C be (v0, . . . , vsi−1)
where Si = {v0, . . . , vsi−1}. Then each vj must be one of the k out-neighbors of vj−1. Thus,
given S1, . . . , Si−1, the number of possibilities for Si is at most ksi−1. Therefore, the number
of cycle covers of G associated with the tuple (s1, . . . , sr) is at most k

∑r

i=1
(si−1) = kn−r.

Finally, by elementary counting, the number of tuples (s1, . . . , sr), for a fixed r, such
that

∑r
i=1 si = n and each si ≥ 2, is

(
n−r−1
r−1

)
<
(
n
r

)
for r ≤ n/2. Thus, the number of cycle

covers of G having r cycles is at most
(
n
r

)
kn−r. J

Now we are ready to prove Theorem 7.

Proof of Theorem 7. Given a k-regular directed graph G with n vertices, let t = bγn/ ln kc,
where γ > 2 is a constant independent of n as well as k, which we will fix later. Call a cycle
cover of G bad if it contains more than t components; else call it good. Call a cycle cover
coloring c : A −→ {1, . . . , k} of G bad if for each i, the cycle cover c−1(i) is bad; else call it
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good. We need to prove an upper bound on the probability of failure, that is, the probability
that the random cycle cover coloring sampled by RandCycleCoverColoring is bad.

Since each cycle in G has length at least two, a cycle cover can contain at most n/2
components. Thus, if t ≥ n/2, there is nothing to prove. So assume t < n/2. By Lemma 9,
the number of bad cycle covers is at most

n/2∑
r=t+1

(
n

r

)
kn−r ≤

(n
2 − t

)(n
t

)
kn−t ≤ n

2 · 2
n · kn−t

where the first inequality follows from the fact that the function r 7−→
(
n
r

)
kn−r attains its

maximum at bn+1
k+1 c < t, and it is non-increasing in

[
bn+1
k+1 c, n

]
. The number of bad cycle

cover colorings is at most the number of ordered tuples of k bad cycle covers, which is at
most(n

2

)k
2nkkk(n−t) ≤

(n
2

)k
2nkkk(n−

γn
ln k+1) =

(n
2

)k
2nk

(
k

eγ

)nk
kk

Let c be the random cycle cover coloring output by the algorithm. By Lemma 8 and equation
(1), the probability that c is bad is given by

Pr[c is bad] ≤
(n

2

)k
2nk

(
k

eγ

)nk
kk ×

(
e2

k

)kn
=
(

2
eγ−2

)nk
×
(n

2

)k
kk

We take γ = 2 + ln 2 + ε so that 2/eγ−2 < 1. This results in probability of failure decaying
exponentially as n increases. J

4 The Deterministic Approximation Algorithm

The approach here is the similar to that of the randomized algorithm: find a small number of
cycles in the graph covering a large number of vertices, and connect them using a spanning
tree. The main difference is that while we construct a cycle cover in the previous algorithm,
here we find a collection of vertex-disjoint cycles covering almost half the vertices. As before,
we contract the cycles, and connect them and the uncovered vertices together with a spanning
tree. Algorithm 2 essentially does a depth-first traversal, while repeatedly removing long
cycles and vertices that cannot be fit in long cycles.

From the description, it is clear that this algorithm runs in time O(nk), and that it finds
cycles of length no less than d = 2

√
k. In order to derive the approximation ratio of our

algorithm, we first need to bound from above the size of the set B returned by LongCycles.
Let m = |B|.

I Lemma 10. m ≤ n(k−2)
2(k−d+1)

Proof. Suppose the set B of vertices returned by the algorithm is {u1, . . . , um}, with the
vertices added in the order u1, . . . , um. Consider the snapshot of the algorithm when the
vertex ui was added to B. At that time, vertices u1, . . . , ui−1 were already removed from H

and added to B, ui+1, . . . , um were still present in H, and ui was the last vertex in P . If
u ∈ {ui+1, . . . , um} is a neighbor of ui, then u must be in P , otherwise, some neighbor of
ui would have been appended to P , rather than ui getting removed from P . Further, the
distance between u and ui on P would be less than d − 1, otherwise, a cycle would have
been removed instead. Thus, the number of neighbors of ui among ui+1, . . . , um must be
at most d − 2. Therefore, the number of edges in the subgraph of G induced by B is less
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Algorithm 2 LongCycles(G)
1: {INPUT: G = (V,E), a k-regular n vertex directed graph; OUTPUT: A collection of

cycles C, each having length at least 2
√
k, and a set B of vertices not in any cycle in C.}

2: Initialize H := G, C = ∅, B := ∅, P := (), d = 2
√
k.

3: {P always remains a path in H.}
4: while H is nonempty do
5: if P is empty then
6: Add an arbitrary vertex of H to P .
7: else
8: {Suppose P = (v1, . . . , vt) with t > 0.}
9: if vt has a neighbor u in H outside P then

10: Append u to P .
11: else if t ≥ d and vt has a neighbor vs in P for s ≤ t− d+ 1 then
12: Remove the vertices vs, vs+1, . . . , vt−1, vt from P and H; add this cycle to C.
13: else
14: Remove vt from P and H, and add it to B.
15: end if
16: end if
17: end while
18: Return C, B.

than (d− 2)m. As a consequence, the number of edges in G between B and V \B is at least
km− 2(d− 2)m = (k − 2d+ 4)m.

Next, the number of vertices in V \ B is n −m and this is exactly the set of vertices
covered by cycles in C. For each vertex in V \B, at most k − 2 of the k edges incident on it
have their other endpoint in B. Thus, the number of edges between B and V \B is at most
(n−m)(k − 2). Hence (k − 2d+ 4)m ≤ (n−m)(k − 2), which implies m ≤ n(k−2)

2(k−d+1) . J

The above lemma implies that almost half of the vertices are covered by cycles in C. We
next use it to prove the approximation ratio.

I Theorem 11. Consider the algorithm for finding a TSP tour, which runs LongCycles on
the input graph, and connects the cycles in C using two copies of a spanning tree of the graph
obtained by contracting the cycles. The approximation ratio of this algorithm is 3

2 +O
(

1√
k

)
.

Proof. Since the vertex-disjoint cycles in C cover n−m vertices, and each cycle contains at
least d vertices, the number of cycles in C is at most (n−m)/d, and hence, the number of
components to be connected using a spanning tree is at most (n−m)/d+m. The TSP tour
that the algorithm constructs consists of the cycles in C, and two copies of a spanning tree in
the graph obtained by contracting the cycles. The former contributes n−m edges, while the
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latter contributes at most 2(n−m)/d+ 2m− 2 edges. Thus, the cost of the tour is at most

n−m+ 2(n−m)
d

+ 2m− 2 = n

(
1 + 2

d

)
+m

(
1− 2

d

)
− 2

≤ n

(
1 + 2

d

)
+ n(k − 2)

2(k − d+ 1)

(
1− 2

d

)
≤ n

(
1 + 2

d
+ k − 2

2(k − d+ 1)

)
= n

(
3
2 + 2

d
+ d− 3

2(k − d+ 1)

)

where we have used Lemma 10 for the first inequality. For d = Θ
(√

k
)
, the cost of the

tour turns out to be n
(

3
2 +O

(
1√
k

))
. Thus, the algorithm achieves a 3

2 + O
(

1√
k

)
factor

approximation. J

5 Concluding Remarks

Vishnoi’s algorithm as well as both of our algorithms work only on regular graphs. Extending
these to work on a larger class of graphs, with weaker assumptions about the vertex degrees,
is an interesting problem, and will involve new techniques. Indeed, Feige et al. [10] have
initiated research on this front. We used the number of vertices as a lower bound on the cost
of the optimal TSP tour. Extending to a larger class of graphs will require a tighter lower
bound, and the cost of the Held-Karp relaxation is one such candidate. Even for regular
graphs, we do not know a hardness of approximation result, as a function of the degree k.
Indeed improving the approximation factor to 1 +O(1/k) cannot be ruled out.

We would like to see whether our algorithm can be derandomized to get a (1 + o(1))-
approximation, possibly with some loss in the running time. We strongly feel that the
following related avenues are worth exploring: first, to determine the best approximation
ratio that can be achieved by deterministic algorithms for the RegGraphTSP, and second,
to determine the best approximation ratio that can be achieved by linear time deterministic
algorithms.

Finally, we feel it would be interesting to use edge coloring ideas to come up with fast
sampling procedures which give better guarantee on the resulting sampling distribution on
matchings, than ours.

Acknowledgments. The authors thank Nisheeth Vishnoi and Parikshit Gopalan for some
initial discussions. The authors also thank Ayush Choure for his substantial contribution to
this paper.
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Abstract
We study weighted bipartite edge coloring problem, which is a generalization of two
classical problems: bin packing and edge coloring. This problem has been inspired from
the study of Clos networks in multirate switching environment in communication networks. In
weighted bipartite edge coloring problem, we are given an edge-weighted bipartite multi-
graph G = (V,E) with weights w : E → [0, 1]. The goal is to find a proper weighted coloring
of the edges with as few colors as possible. An edge coloring of the weighted graph is called a
proper weighted coloring if the sum of the weights of the edges incident to a vertex of any color
is at most one. Chung and Ross conjectured 2m − 1 colors are sufficient for a proper weighted
coloring, where m denotes the minimum number of unit sized bins needed to pack the weights
of all edges incident at any vertex. We give an algorithm that returns a coloring with at most
d2.2223me colors improving on the previous result of 9m

4 by Feige and Singh. Our algorithm
is purely combinatorial and combines the König’s theorem for edge coloring bipartite graphs
and first-fit decreasing heuristic for bin packing. However, our analysis uses configuration linear
program for the bin packing problem to give the improved result.
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Keywords and phrases Edge coloring, Bin packing, Clos networks, Approximation algorithms,
Graph algorithms.
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1 Introduction

Clos networks were introduced by Clos [3] in the context of designing interconnection
networks with small number of links to route multiple simultaneous connection requests
such as telephone calls. Since then it has found various applications in data communications
and parallel computing systems [1, 11]. The symmetric 3-stage Clos network is generally
considered to be the most basic multistage interconnection network. Let C(m,µ, r) denote a
symmetric 3-stage Clos network, where the input (first) stage consists of r crossbars (switches)
of size m× µ, the center (second) stage consists of µ crossbars of size r × r and the output
(third) stage consists of r crossbars of size µ×m. Moreover, there exists one link between
every center switch and each of the r input or output switch. No link exists between other
pair of switches.
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A request frame is a collection of connection requests between inlets and outlets in the
network such that each inlet or outlet is associated with at most one request. A request
frame is routable if all requests are routed through a middle switch such that no two requests
share same link. An interconnection network is called to be rearrangeably nonblocking if all
request frames are routable. In the classic switching environment all connection requests fully
use a link and all have same bandwidth. However in modern networks, different requests
might have different bandwidths (due to wide range of traffic such as voice, video, facsimile
etc.) and may be combined in a given link if the combined request does not exceed the
link capacity. In this multirate setting, a connection request is a triple (i, j, w) where i, j, w
are inlet, outlet and demand of the connection respectively, and all links have capacity one.
Here a request frame is a collection of connection requests between inlets and outlets in the
network such that the total weight of all requests in the frame for any particular inlet or
outlet is at most one. The central question in 3-stage Clos networks is finding the minimum
number of crossbars µ (= µ(m, r)) in the middle stage such that all request frames are
routable. It is more interesting to obtain bounds independent of r.

Nonblocking rearrangeable properties of 3-stage Clos network C(m,µ, r) can be translated
to the following graph theoretic problem. Formally, in weighted bipartite edge coloring
problem, we are given an edge-weighted bipartite (multi)-graph G := (V,E) with bipartitions
A,B (|A| = |B| = r) and edge weights w : E → [0, 1]. Let we denote the weight of edge
e ∈ E. The goal is to obtain a proper weighted coloring of all edges with minimum number of
colors. An edge coloring of the weighted bipartite graph is called a proper weighted coloring
if the sum of the same color edges incident to a vertex is at most one for any color and any
vertex. Here the sets A and B correspond to the input and output switches, edge (u, v)
corresponds to a request between input switch u and output switch v. A routable request
frame translates into the condition that weights of all incident edges to any vertex can be
proper weighted colored using m colors (or packed into m unit sized bins) and the switches
in the middle stage correspond to the colors (or bins). We refer the reader to Correa and
Goemans [5] for detailed discussion of this reduction.

The weighted bipartite edge coloring problem naturally generalizes two classically studied
problems, the edge coloring problem and the bin packing problem. If all edge weights
are one, this problem reduces to the classical edge coloring problem. On the other hand, if
there is only one vertex in each partition in the bipartite graph, this problem reduces to the
bin packing problem.

Now let us introduce some notation. Let χ′w(G) denote the minimum number of colors
needed to obtain a proper weighted coloring of G. Let m, r ∈ Z+, and µ(m, r) = maxGχ

′
w(G)

where the maximum is taken over all bipartite graphs G = (A ∪ B,E) with |A| = |B| = r

and where m is the maximum over all the vertices of the number of unit-sized bins needed
to pack the weights of incident edges. Chung and Ross [2] made the following conjecture.

I Conjecture 1. Given an instance of the weighted bipartite edge coloring problem,
there is a proper weighted coloring using at most 2m−1 colors where m denotes the maximum
over all the vertices of the number of unit-sized bins needed to pack the weights of edges
incident at the vertex. In other words, µ(m, r) ≤ 2m− 1.

There has been a series of results achieving weaker bounds on µ(m, r) (see related works for
details), the current best bound by Feige and Singh [7] shows that µ(m, r) ≤ 2.25m.
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1.1 Our results and techniques.
Our main result is to make progress towards resolution of Conjecture 1 by showing µ(m, r) ≤
20m

9 + o(m).

I Theorem 2. There is a polynomial time algorithm for the weighted bipartite edge
coloring problem which returns a proper weighted coloring using at most d2.2223me colors
where m denotes the maximum over all the vertices of the number of unit-sized bins needed
to pack the weights of incident edges.

In our algorithm and analysis, we exploit that weighted bipartite edge coloring
problem displays features of the classical edge coloring problem as well as the bin packing
problem. Our algorithm starts by decomposing the heavy weight edges into matchings by
applying König’s theorem to find an edge coloring of the subgraph induced by these edges.
For the light weight edges, we employ the first-fit decreasing heuristic where we consider the
remaining edges in decreasing order of weight and give them the first available color. The
detailed algorithm is given in Figure 1 and builds on the algorithm by Feige and Singh [7].

Our work diverges from previous results on this problem in the analysis of this simple
combinatorial algorithm. We employ strong mathematical formulations for the bin packing
problem; in particular, we use the configuration linear program (LP) for the bin packing
problem. This linear program has been used to design the best approximation algorithm for
the bin packing problem [12, 17, 9]. In our work, we use it as follows. We show that if the
algorithm is not able to a color an edge (u, v), then the edges incident at u or v cannot be
packed in m bins as promised. To show this, we formulate the configuration linear program
for the two bin packing problems, one induced by edges incident at u and the other induced
by edges incident at v. We then construct feasible dual solutions to one of these linear
programs of value more than m. Appealing to linear programming duality, it implies that
the optimal primal value, and therefore the optimal bin packing number, is more than m
for at least one of the programs, giving us the desired contradiction. While the weights on
the edges incident at u (or v) can be arbitrary reals between 0 and 1, we group the items
according to weight classes and how our algorithm colors these edges. This allows us to
reduce the number of item types, reducing the complexity of the configuration LP and makes
it easier to analyze. While the grouping according to weight classes is natural in bin packing
algorithms; the grouping based on the output of our algorithm helps us relate the fact that
the edge (u, v) could not be colored by our algorithm to the bin packing bound at u and
v. We mention two additional extensions of our techniques to the problem. Firstly, a more
careful and detailed analysis (based on computer search) can improve the bounds slightly
showing the current bound is not tight. Secondly, our analysis can also be extended to show
d2.2me colors are sufficient when all edge weights are more than 1/4.

1.2 Related Works
Edge-coloring problem has been one of the central problems in graph theory and discrete
mathematics since its appearance in 1880 [21] in relation with the four-color problem. The
chromatic index of a graph is the number of colors required to color the edges of the graph
such that no two adjacent edges have the same color. Three classical results on edge coloring
are König’s theorem [14] for coloring a bipartite graph with ∆ colors, Vizing’s theorem [22]
for coloring any simple graph with ∆ + 1 colors and Shanon’s theorem [18] for coloring any
multigraph with at most 3∆/2 colors where ∆ is the maximum degree of the graph. Though
one can find optimal edge coloring for a bipartite graph in polynomial time using König’s
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1. F ← ∅, t← 2.2223.
2. Include edges with weight > γ = 1

10 in F in nonincreasing order of weight
maintaining the property that degF (v) ≤ dtme for all v ∈ V .

3. Decompose F into r = dtme matchings M1, . . . ,Mr and color them using colors
1, . . . , r. Let Fi ←Mi for each 1 ≤ i ≤ r.

4. Add remaining edges in nonincreasing order of weight to any of the Fi’s main-
taining that weighted degree of each color at each vertex is at most one, i.e.,∑
e∈δ(v)∩Fi

we ≤ 1 for each v ∈ V and 1 ≤ i ≤ r.

Figure 1 Algorithm for Edge Coloring Weighted Bipartite Graphs.

theorem, Holyer [10] showed that it is NP-hard even to decide whether the chromatic index
of a cubic graph is 3 or 4. We refer the readers to [20] for a survey on edge coloring.

On the other hand classical bin packing problem is NP-hard and has been studied extens-
ively from the classical work of Garey et al. [8]. The problem finds numerous applications
in scheduling, logistics, layout design and other resource allocation problems. The present
best polynomial time algorithm is due to Hoberg and Rothvoß [9] based on rounding of
configuration LP using connections to discrepancy [17] and achieves a logarithmic additive
error. However only known hardness bound is Opt + 1 assuming P 6= NP. We refer the
readers to [4] for a survey on the current literature for bin packing.

Now we review the literature related to weighted bipartite edge coloring. First, we
introduce some more notation. When the weight function w : E → I is restricted to a
subinterval I ⊆ [0, 1], then we denote the minimum number of colors by µI(m, r). Slepian
[19] showed that µ[1,1](m, r) = m using König’s theorem. Melen and Turner [15] showed
that µ[0,B](m, r) ≤ m

1−B for B ≤ 1. In particular, µ[0,1/2](m, r) ≤ 2m− 1. There has been a
series of work improving the bounds for µ(m, r) [2, 6, 16, 5]. The best known lower bound
for µ(m, r) is 5/4 due to Ngo and Vu [16]. Correa and Goemans introduced a novel graph
decomposition result and perfect packing of an associated continuous bin packing instance to
show µ(m, r) ≤ 2.5480m+ o(m). The present best algorithm is due to Feige and Singh [7]
who showed µ(m, r) ≤ 9m

4 . Their result holds even if m is the maximum over all the vertices
of the total weight of edges incident at the vertex. For other related results, see [7].

2 Edge Coloring Weighted Bipartite Graphs

In this section we present our main result and prove Theorem 2.

I Theorem 3 (Restatement of Theorem 2). There is a polynomial time algorithm for the
weighted bipartite edge coloring problem which returns a proper weighted coloring
using at most d2.2223me colors where m denotes the maximum over all the vertices of the
number of unit-sized bins needed to pack the weights of incident edges.

Our complete algorithm for edge-coloring weighted bipartite graphs is given in Figure 1.
In the algorithm, we set a threshold γ = 1

10 and consider the subgraph induced by edges with
weights more than γ and apply a combination of König’s Theorem and a greedy algorithm
with dtme colors where t = 2.2223 > 20/9. The remaining edges of weights at most γ are
then added greedily.
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Analysis
Now we prove Theorem 2. Though the algorithm is purely combinatorial, the analysis
uses configuration LP and other techniques from bin packing to prove the correctness
of the algorithm. First, we state the König’s Theorem since we use it as a subroutine in our
algorithm to ensure a decomposition of F into dtme matchings.

I Theorem 4 ([14]). Given a bipartite graph G = (V,E), there exists a coloring of edges
with ∆ = maxv∈V degE(v) colors such that all edges incident at a common vertex receive a
distinct color. Moreover, such a coloring can be found in polynomial time.

The following lemma from Correa and Goemans [5] (it was also implicit in [6]) ensures
that if the algorithm succeeds in coloring all edges of weight at least γ, the greedy coloring
will be able to color the remaining edges of weight at most γ.

I Lemma 5 ([5, 6]). Consider a bipartite weighted graph G = (V,E) with a coloring of all
edges of weight > γ using at least 2m

1−γ colors for some γ > 0. Then the greedy coloring will
succeed in coloring the edges with weight at most γ without any additional colors.

In our setting, we have γ = 1
10 and the number of colors is ≤ 20

9 m = 2m
1− 1

10
and thus

Lemma 5 applies. Hence, it suffices to show the algorithm is able to color all edges with
weight > 1

10 using dtme colors as the remaining smaller edges can be colored greedily. Thus,
w.l.o.g, we assume that the graph has no edges of weight ≤ 1

10 and prove the following lemma.

I Lemma 6. If all edges have weight more than 1
10 and t = 2.2223 (> 20/9) then the

algorithm in Figure 1 returns a coloring of all edges using dtme colors such that the weighted
degree of each color at each vertex is at most one, i.e.,

∑
e∈δ(v)∩Fi

we ≤ 1.

Proof. Suppose for the sake of contradiction, the algorithm is not able to color all edges. Let
e := (u, v) be the first edge that cannot be colored by any color in Step (3) or Step (4) of the
algorithm. Let the weight of edge e, we, be α. Moreover, when e is considered in Step (2),
degree of either u or v is already dtme else we would have included e in F . Without loss of
generality let that vertex be u, i.e., degF (u) = dtme. Now we characterize the colors Fi of
edges incident at u and consider the edges incident at u and v to get a series of inequalities.
Thereafter, we show that α ≤ 1/3 and use these inequalities to arrive at a contradiction.

For each color 1 ≤ i ≤ dtme, either
∑
f∈δ(v)∩Fi

wf > 1 − α or
∑
f∈δ(u)∩Fi

wf > 1 − α,
else we can color e in Step (4). Let Hv = {i|

∑
f∈δ(v)∩Fi

wf > 1− α}, βm = |Hv|. Now for
each color i /∈ Hv, we have

∑
f∈δ(u)∩Fi

wf > 1− α. Moreover, degF (u) = dtme and for all
edge f ∈ δ(u), we have wf ≥ α as the edges were considered in nonincreasing order of weight.
Hence, for each color 1 ≤ i ≤ dtme, there is an edge incident at u colored with color i with
weight at least α. Let us call a color i tight at u if

∑
f∈δ(u)∩Fi

wf > (1− α) and a color i
open at u if

∑
f∈δ(u)∩Fi

wf ∈ [α, 1− α]. Let τ be the number of tight colors at u and θ be
the number of open colors at u. Thus we have,

τ ≥ (t− β)m (1)
θ = (tm− τ) ≤ βm (2)

Now consider all edges incident on v. We get, m > βm(1− α)

⇒ 1 > β(1− α) (3)

Similarly considering all edges incident on u, we get: m > (tm− βm)(1− α) + (βm)α

⇒ 1 > t(1− α) + β(2α− 1) (4)
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Now a unit sized bin can contain at most two items with weight > 1/3. As all edges
incident to a vertex can be packed into m unit sized bins, there can be at most 2m edges
incident to a vertex with weight > 1/3. Since t > 2, we get that all edges with weight more
than 1

3 must have been included in F in Step (2). Thus α ≤ 1/3.

Thus we get from (3): β < 1/(1−α) ≤ 3/2 (5)

Now there are two cases:
Case A: α ≤ 1/4. Consider the RHS of (4): t(1− α) + β(2α− 1). Now,

t(1− α) + β(2α− 1)− 1 > t(1− α)− (1− 2α)
(1− α) − 1, [From (3)]

≥ 20(1− α)2 − 9(1− 2α)− 9(1− α)
9(1− α) [∵ t > 20/9]

≥ (20α2 − 13α+ 2)
9(1− α) = (4α− 1)(5α− 2)

9(1− α) ≥ 0, as α ≤ 1/4

Thus t(1− α) + β(2α− 1) > 1, which contradicts (4).
Case B: 1/4 < α ≤ 1/3. In this case, we will show in Lemma 7 that if β ≤ 13/9, then all

edges incident at u can not be packed in m bins. On the other hand, in Lemma 14 we
show that if β > 13/9, then all edges incident at v can not be packed in m bins.

This two facts together give us the desired contradiction.

I Lemma 7. If β ≤ 13/9, then edges incident at u can not be packed in m bins.

Proof. To give a lower bound on the number of bins required, we will consider a relaxation
to the bin packing problem for edges incident at vertex u and show that the optimal value of
the relaxation, and thus the optimal number of bins required, is greater than m. The lower
bound will be exhibited by constructing a feasible dual solution to the relaxation to the bin
packing problem.

Since degF (u) = dtme when edge e was considered in Step (2) of the algorithm and not
included in F , we have that all edges incident at u in F have weight at least the weight of e.
Moreover, edges are considered in the decreasing order of weight in Step (4), the weight of
all edges incident at u when e is considered in Step (4) is ≥ we. We restrict our attention to
these edges incident at u with weight ≥ α and show that they cannot be packed in m unit
sized bins. Let us divide these edges incident at u into three size classes.

Large L := {f ∈ δ(u) : wf ∈ (1/2, 1]}.
Medium M := {f ∈ δ(u) : wf ∈ (1/3, 1/2]}.
Small S := {f ∈ δ(u) : wf ∈ [α, 1/3]}.

First we have the following observation.

I Observation 8. In any bin packing solution, in any bin there can be at most one item
from L, two items from L ∪M and three items from L ∪M ∪ S.

Now consider the following two simple claims.

I Claim 9. Edges in L ∪M are included in Step (2) of Algorithm 1 and are a subset of F .

Proof. If we are unable to add an edge f in Step (2), it means one of its endpoints have
dtme > 2m edges with weight ≥ wf . Since all edges incident at any vertex v ∈ V can be
packed in m bins, there are at most 2m edges incident at it with weight more than 1

3 . Thus
all edges of weight more than 1

3 , i.e., all edges in L∪M must be included in F in Step (2) of
the algorithm. J
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I Claim 10. For any color i, there is at most one edge in L ∪M with color i.

Proof. As all edges in L∪M must be included in F in Step (2) of the algorithm. In Step (3)
of the algorithm, we include at most one edge of F incident at any vertex in each Fi. Thus
each color class obtains at most one edge incident at each vertex from F and therefore, from
L ∪M . J

Using the observation and the above claim, we itemize the configuration of each of the
tight colors depending on the size of edges with that color. Note that tight colors must have
weight > 1− α ≥ 1− 1/3 = 2/3.
1. If the tight color has a single edge f . Then we have that wf > 2

3 and only possibility is
i)(L); Here by (L), we denote that the bin contains only one item and that item is an
item from the set L.

2. If the tight color contains exactly two edges. Here (S, S) is not tight as the total weight
of edges in such a bin is ≤ 2/3. So, the bin can contain at most one item from S. On the
other hand, the bin can contain at most one item from L ∪M from Claim 10. Thus the
possible size types of these edges are ii)(L, S); iii)(M,S); As above, by (L, S) we denote
that the bin contains only two items: exactly one item from set L and exactly one item
from S.

3. If the tight color contains three edges. The bin can contain at most one item from L∪M
from Claim 10. However if it contains one L item, sum of weights of three items exceeds
one. Thus the only possible size types of these edges are iv)(M,S, S); v)(S, S, S).

Now consider the following LP: LPbin(u):

min

5∑
i=1

yi

x1 + x2 + x3 + x4 + x5 ≥ τ (6)
y1 + y2 ≥ x1 + x2 + z1 (7)

y1 + 2y3 + y4 ≥ x3 + x4 + z2 (8)
y2 + y3 + 2y4 + 3y5 ≥ x2 + x3 + 2x4 + 3x5 + z3 (9)

z1 + z2 + z3 ≥ θ (10)
xj , yk, zl ≥ 0 ∀j ∈ [5], k ∈ [5], l ∈ [3] (11)

I Lemma 11. The optimal number of unit sized bins needed to pack all edges incident at u
is at least the optimum value of LPbin(u).

Proof. Given a feasible packing of edges incident at u in at most m unit sized bins, we
construct a feasible solution (x̄, ȳ, z̄) to the linear programming relaxation whose objective
is at most the number of unit sized bins needed in the packing. In the feasible solution
(x̄, ȳ, z̄), the variables x̄ and z̄ are constructed using the coloring given by the algorithm. The
variables ȳ are constructed using the optimal bin packing.

We first define the variables x̄. Let x̄1, x̄2, x̄3, x̄4, x̄5 be the number of tight colors at u
of type (L), (L, S), (M,S), (M,S, S), (S, S, S), respectively. Since the coloring of the edges
incident at u is one of the five types described above and there are at least τ tight colors,
we have that

∑5
i=1 x̄i ≥ τ and thus the solution satisfies constraint (6). Now we define the

variables z̄1, z̄2, z̄3 to be the number of items in open colors from L,M and S respectively.
There are θ open colors. Each open color contains at least one item L ∪M ∪ S. Thus,
z̄1 + z̄2 + z̄3 ≥ θ and thus the solution satisfies constraint (10).
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To construct the solution ȳ, we will group the bins in the optimal bin packing solutions
depending on the subset of items present in them into five classes and the number of bins in
each class will define the variables ȳ. The constraints (7)-(9) will correspond to making sure
that the optimal bin packing solution has appropriate number of items of each size type.

Now let us characterize the possible bin configurations to explain constraints (7)-(9).

I Claim 12. Consider any feasible bin packing of edges incident at u restricted to edges in
L ∪M ∪ S. Then each bin must contain items which correspond to a subset of one of the
following 5 configurations or subsets of these configurations.

C1 : (L,M) C2 : (L, S) C3 : (M,M,S)
C4 : (M,S, S) C5 : (S, S, S)

Proof. Observe that in any bin there can be at most one item from L, two items from L∪M
and three items from L ∪M ∪ S. Now let us consider two cases.
1. If the bin contains an item from L. In this case, the bin can not contain three items as
the sum of their weights exceeds one. So, it can contain at most one item from L and one
item from M ∪ S. Thus C1 and C2 cover such two cases.
2. If the bin does not contain any item from L. In this case, the bin can contain three items
from M ∪ S and at most two of these items can be from M . Thus C3, C4 and C5 cover such
possibilities. J

We map each configuration in the optimal bin packing solution to one of types Ci where
the configuration is either Ci or its subset. Let ȳi denote the number of bins mapped to type
Ci for each 1 ≤ i ≤ 5. We now count the number of items of each type to show feasibility of
the constraints of the linear program.

Constraint (7). Items of type L equal x̄1 + x̄2 + z̄1 and can only be contained in
configuration C1 and C2. Thus we have ȳ1 + ȳ2 ≥ x̄1 + x̄2 + z̄1 satisfying constraint (7).
Constraint (8). Items of typeM equal x̄3+x̄4+z̄2 and are contained once in configurations
C1, C4 and twice in configuration C3. Thus we have ȳ1 +2ȳ3 + ȳ4 ≥ x̄3 + x̄4 + z̄2 satisfying
constraint (8).
Constraint (9). Items of type S equal x̄2 + x̄3 + 2x̄4 + 3x̄5 + z̄3 and occur once in
configurations C2, C3, twice in configurations C4 and thrice in C5. Thus, we have
ȳ2 + ȳ3 + 2ȳ4 + 3ȳ5 ≥ x̄2 + x̄3 + 2x̄4 + 3x̄5 + z̄3 showing feasibility of constraint (9).

This implies that (x̄, ȳ, z̄) is a feasible solution to LPbin and its objective equals the number of
bins needed to pack the edges incident at u in unit sized bins. Thus we have the lemma. J

We now show a contradiction by showing the optimal value of the LPbin(u) is more than m.

I Lemma 13. The optimal solution to LPbin(u) is strictly more than m.

Proof. We prove this by considering the dual linear program of the LPbin(u). Since every
feasible solution to the dual LP gives a lower bound on the objective of the primal LPbin(u),
it is enough to exhibit a feasible dual solution of objective strictly more than m to prove the
lemma. Now the dual of the LPbin is given in the next page.

A feasible dual solution is: v1 = 2
3 , v2 = 2

3 , v3 = 1
3 , v4 = 1

3 , v5 = 1
3 .
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max τ · v1 + θ · v5

Subject to:
v1 − v2 ≤ 0, v1 − v2 − v4 ≤ 0,
v1 − v3 − v4 ≤ 0, v1 − v3 − 2v4 ≤ 0,
v1 − 3v4 ≤ 0, v2 + v3 ≤ 1,
v2 + v4 ≤ 1, 2v3 + v4 ≤ 1,
v3 + 2v4 ≤ 1, 3v4 ≤ 1,
v5 − v2 ≤ 0, v5 − v3 ≤ 0,
v5 − v4 ≤ 0, vi ≥ 0 ∀i ∈ [5]

Thus dual optima ≥ 2τ
3 + θ

3 and we need at least these many colors to color items in τ tight
colors and θ open colors. Using the fact that θ = tm− τ, τ ≥ (t− β)m and t > 20

9 m,β ≤
13
9 ,

we obtain that the number bins required to pack all items incident on u is:

≥ τ · v1 + θ · v4 ≥ 2
3τ + 1

3(tm− τ) = 1
3τ + 1

3(tm)

≥ 1
3(t− β)m+ 1

3(tm) ≥ 2t
3 m−

β

3m > m(2
3 ·

20
9 −

1
3 ·

13
9 ) = m

Thus the number bins required to pack all items incident on u is strictly greater than m.
This is a contradiction. J

This concludes the proof of Lemma 7. J

I Lemma 14. If β > 13/9, then edges incident at v can not be packed in m bins.

Proof. Similar to the previous lemma, to give a lower bound on the number of bins required,
we will consider a relaxation to the bin packing problem for edges incident at vertex v and
show that the optimal value of the relaxation, and thus the optimal number of bins required,
is greater than m. Again, the lower bound will be exhibited by constructing a feasible dual
solution to the relaxation to the bin packing problem.

As β(1− α) < 1, we get,

α > 1− 1/β ≥ 4/13 > 0.3. (12)

Let us call a color i tight at v if
∑
f∈δ(v)∩Fi

wf > (1− α). Now consider any tight color
B at v. At most one edge f in B was colored in Step (3) of the algorithm and remaining
edges (if any) in B were colored in Step (4) of the algorithm. Now, wf can be smaller than
we as it might be the case that when e was considered in Step (2) then already degree of
other endpoint u was dtme. However, edges are considered in the nonincreasing order of
weight in Step (4), thus the weight of all edges incident at v when e is considered in Step (4)
is also ≥ we. Thus, all the remaining edges (if any) in B that were colored in Step (4) of the
algorithm have weight more than α.

We restrict our attention to the edges at tight colors at v and show that if β > 13
9 they

cannot be packed in m unit sized bins. Let us divide these edges incident at u into four size
classes.

Large L := {f ∈ δ(v) : wf ∈ (1/2, 1]}.
Medium M := {f ∈ δ(v) : wf ∈ (1/3, 1/2]}.
Small S := {f ∈ δ(v) : wf ∈ [α, 1/3]}.
Tiny T := {f ∈ δ(v) : wf ∈ (1/10, α)}.
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First we have the following observation.

I Observation 15. In any bin packing solution, in any bin there can be at most one item
from L, two items from L∪M , three items from L∪M ∪S and nine items from L∪M ∪S∪T .

Now let us claim the following.

I Claim 16. For any tight color i at v, all edges added in Step (4) of the algorithm are in S.
As a corollary, there is at most one edge incident on v with color i that is in L ∪M ∪ T and
it can only be added in Step (2) of the algorithm.

Proof. From Claim 9, it follows that all edges in L ∪M must be included in F in Step (2)
of the algorithm. On the other hand, all edges colored in Step (4) have weight more than α,
they can not be in T . Hence, only edges in S are colored in Step (4). Edges in L∪M ∪T are
colored in Step (3). In Step (3) of the algorithm, we include at most one edge of F incident
at any vertex in each Fi. Thus each color class obtains at most one edge incident at each
vertex from F and therefore, from L ∪M ∪ T . J

Using the observation and the claim, we itemize the configuration of each of the tight
colors depending on the size of edges with that color. Note that in this case tight colors have
weight more than 1− α ≥ 1− 1/3 = 2/3.
1. If the tight color has a single edge f . Then we have that wf > 2/3 and only possibility is

i)(L); Here by (L), we again denote that the bin contains only one item and that item is
an item from the set L.

2. If the tight color contains exactly two edges. From Claim 16, the bin can contain at most
one item from L ∪M ∪ T . On the other hand, (S, S) or (T, S) has weight ≤ 2/3. So the
bin can contain at most one item from S and one item from L ∪M . Thus the possible
size types of these edges are ii)(L, S); iii)(M,S); As above, by (L, S) we denote that the
bin contains only two items: exactly one item from set L and exactly one item from S.

3. If the tight color contains three edges. From Claim 16, the bin can contain at most one
item from L ∪M ∪ T . However if the bin contains an item from L, the sum of weights of
an item from L and two items from S exceeds one. Thus the possible size types of these
edges are iv)(M,S, S); v)(S, S, S); vi)(T, S, S).

Now consider the following configuration LP based on the items at v: LPbin(v):

min

19∑
i=1

yi

x1 + x2 + x3 + x4 + x5 + x6 ≥ βm (13)
y14 ≥ x1 (14)

y8 + y9 + y10 + y15 ≥ x2 (15)
y3 + y7 + y9 + y11 + 2y12 + y16 ≥ x3 (16)

y2 + 2y4 + y6 + y10 + y11 + 2y13 + y17 ≥ x4 (17)
3y1 + 2y2 + 2y3 + y4 + 2y5 + y6 + y7 + y8 + y18 ≥ x2 + x3 + 2x4 + 3x5 + 2x6 (18)
(3y5 + 3y6 + 3y7 + y8 + y9 + y10 + 3y11 + 3y12

+3y13 + 3y14 + 4y15 + 6y16 + 6y17 + 6y18 + 9y19) ≥ x6 (19)
yj , xk ≥ 0 ∀j ∈ [19], k ∈ [6] (20)

I Lemma 17. The optimal number of unit sized bins needed to pack all edges incident at u
is at least the optimum value of LPbin(v).
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Proof. Given a feasible packing of edges incident at v in at most m unit sized bins, we
construct a feasible solution (x̄, ȳ) to the linear programming relaxation whose objective is
at most the number of unit sized bins needed in the packing. In the feasible solution (x̄, ȳ),
the variables x̄ are constructed using the coloring given by the algorithm. The variables ȳ
are constructed using the optimal bin packing.

We first define the variables x̄. Let x̄1, x̄2, x̄3, x̄4, x̄5, x̄6 be the number of tight colors at
v of type (L), (L, S), (M,S), (M,S, S), (S, S, S), (T, S, S), respectively. Since the coloring of
the edges incident at v is one of the six types described above and there are at least βm
tight colors at v, we have that

∑6
i=1 x̄i ≥ βm and thus the solution satisfies constraint (13).

To construct the solution ȳ, we will group the bins in the optimal bin packing solutions
depending on the subset of items present in them into nineteen classes and the number of
bins in each class will define the variables ȳ. The constraints (14)-(19) will correspond to
making sure that the optimal bin packing solution has appropriate number of items of each
size type.

To define the 19 different classes of bin types in the optimal solution, we need to further
classify items according to size. Let L1, L2 ⊆ L be the set of large edges that appear in the
configurations of the type (L) and (L, S), respectively, in the tight colors.

As for any item l1 ∈ L1, wl1 + α > 1. We get,

wl1 > 1− α ≥ 1− 1/3 = 2/3. (21)

Let M1,M2 be the set of medium edges that appear in the tight colors of type (M,S)
and (M,S, S), respectively.

We now have the following claim where we characterize the possible bin configurations.
We show that each bin contains items which correspond to one of 19 possible configurations
or their subsets.

I Claim 18. Consider any feasible bin packing of edges incident at v restricted to edges in
L∪M ∪ S ∪ T . Then each bin must contain items which correspond to a subset of one of the
following 19 configurations.

C1 : (S, S, S) C2 : (M2, S, S) C3 : (M1, S, S)
C4 : (M2,M2, S) C5 : (S, S, T, T, T ) C6 : (M2, S, T, T, T )
C7 : (M1, S, T, T, T ) C8 : (L2, S, T ) C9 : (L2,M1, T )
C10 : (L2,M2, T ) C11 : (M1,M2, T, T, T ) C12 : (M1,M1, T, T, T )
C13 : (M2,M2, T, T, T ) C14 : (L1, T, T, T ) C15 : (L2, T, T, T, T )
C16 : (M1, T, T, T, T, T, T ) C17 : (M2, T, T, T, T, T, T ) C18 : (S, T, T, T, T, T, T )
C19 : (T, T, T, T, T, T, T, T, T )

Proof. Observe that since item in L have weight more than 1
2 , items in M have weight more

than 1
3 , items in S have weight more than 1

4 and items in T have weight more than 1
10 , there

can be at most one item from L, two items items from L ∪M , at most three items in total
from L ∪M ∪ S and at most nine items from L ∪M ∪ S ∪ T in any feasible packing.
1. Bins with three items from D := L∪M ∪S. As the sum of weights of three elements from

D is more than 3α > 0.9, elements from T can not appear in these bins as 3α+ wf > 1
for any f ∈ T . Moreover, configurations which contain at least one item of L cannot have
three items from D without the weight exceeding one. Thus, the packing can contain only
items from M and S. When the bin contains only S items, it corresponds to configuration
C1. Packings which contain one item from M1 ∪M2 and two items from S are exactly
the configurations C2, C3.
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Now let us consider the case when we have two items from M1 ∪M2. First observe that
for each h ∈M1, there exists a s ∈ S such that (h, s) are the only edges colored with a
tight color. Thus we have that wh + ws > 1− α. But then for any other h′ ∈M1 ∪M2
and s′ ∈ S, we have that

wh + wh′ + ws′ ≥ wh + ws + α > 1 (22)

where the inequality follows since wh′ ≥ ws and ws′ ≥ α. This implies that configurations
of type (M1,M1, S) or (M1,M2, S) are not feasible. Hence, the only possible remaining
configuration is C4.

2. Bins with two items from D. Here we consider maximal configurations which are not
subsets of configurations which contain three items from D. When the configuration
contains two items s1, s2 ∈ S, we have that ws1 + ws2 > 0.6 and thus the only maximal
configuration is C5. Configurations C6, C7 cover the case when the configuration contains
one item from S and one item from M . Let l ∈ L1. Since l appears alone in a tight
color, we have that wl + α > 1. Since every item in M ∪ S has weight at least α, there
is no valid configuration with two items from D such that one of them is in L1. If the
configuration contains l2 ∈ L2 and g ∈M1 ∪M2 ∪ S, it can at most contain one element
t ∈ T as wl2 + wg + wt > 0.9. Thus configurations C8 cover the case when there is one
item from S and one item from L. Now we are left with cases when there are no S items
in the bin. If there is one L item and one M item, C9, C10 cover such possibilities.
Similarly if the configuration contains two items fromM , it can contain at most 3 elements
from T . Configurations C11, C12, C13 cover all such the possibilities.

3. Bins with one item from D. Here we consider configurations which are not subsets of
configurations which contain at least two items from D. Note that as for any item l1 ∈ L1,
from inequality (21), wl1 > 2/3. Thus (L1, T, T, T ) is the maximal configuration containing
one L1 item. C14 is the corresponding configuration. The other four possible configurations
are C15, C16, C17, C18 where the bins contain one item from L2,M1,M2, S respectively.
In these case the number of T items are upper bounded by 4, 6, 6, 6 respectively from the
lower bound of size of items in the corresponding classes in D.

4. Bins with no item from D. Only possible maximal configuration is C19.
J

We map each configuration in the optimal bin packing solution to one of types Ci where
the configuration is either Ci or its subset. Let ȳi denote the number of bins mapped to type
Ci for each 1 ≤ i ≤ 19. We now count the number of items of each type to show feasibility
of the constraints of the linear program.

Constraint (14). Items of type L1 equal x̄1 and can only be contained in configuration
C14. Thus we have ȳ14 ≥ x̄1.
Constraint (15). Similarly, items of type L2 equal x̄2. They are contained in configurations
C8, C9, C10 and C15. Thus we have ȳ8 + ȳ9 + ȳ10 + ȳ15 ≥ x̄2.
Constraint (16). Items of type M1 equal x̄3 and are contained once in configurations
C3, C7, C9, C11, C16 and twice in configuration C12. Thus we have ȳ3 + ȳ7 + ȳ9 + ȳ11 +
2ȳ12 + ȳ16 ≥ x̄3.
Constraint (17). Items of type M2 equal x̄4 and are contained once in configurations
C2, C6, C10, C11, C17 and twice in configurations C4, C13. Thus we have ȳ2 + 2ȳ4 + ȳ6 +
ȳ10 + ȳ11 + 2ȳ13 + ȳ17 ≥ x̄4 satisfying constraint (17).
Constraint (18). Items of type S equal x̄2 + x̄3 + 2x̄4 + 3x̄5 + 2x̄6 and occur once in
configurations C4, C6, C7, C8, C18, twice in configurations C2, C3, C5 and thrice in C1.
Thus, we have 3ȳ1 + 2ȳ2 + 2ȳ3 + ȳ4 + 2ȳ5 + ȳ6 + ȳ7 + ȳ8 + ȳ18 ≥ x̄2 + x̄3 + 2x̄4 + 3x̄5 + 2x̄6.
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Constraint (19). Items of type T equal x̄6 and occur once in configurations C8, C9, C10,
thrice in configurations C5, C6, C7, C11, C12, C13, C14, four times in configuration C15, six
times in configurations C16, C17, C18 and nine times in configurations C19. Thus, we have
(3ȳ5+3ȳ6+3ȳ7+ȳ8+ȳ9+ȳ10+3ȳ11+3ȳ12+3ȳ13+3ȳ14+4ȳ15+6ȳ16+6ȳ17+6ȳ18+9ȳ19) ≥ x̄6.

This implies that (x̄, ȳ) is a feasible solution to LPbin(v) and its objective equals the number
of bins needed to pack the edges incident at v in unit sized bins. Thus we have the lemma. J

We now show a contradiction by showing the optimal value of the LPbin(v) is more than
m.

I Lemma 19. The optimal solution to the LPbin(v) is strictly more than m.

Proof. We prove this by considering the dual linear program of the LPbin(v). Since every
feasible solution to the dual LP gives a lower bound on the objective of the primal LPbin(v),
it is enough to exhibit a feasible dual solution of objective strictly more than m to prove the
lemma. Now the dual of the LPbin(v) is given below:

max βm · v1

Subject to:
v1 − v2 ≤ 0, v1 − v3 − v6 ≤ 0,
v1 − v4 − v6 ≤ 0, v1 − v5 − 2v6 ≤ 0,
v1 − 3v6 ≤ 0, v1 − 2v6 − v7 ≤ 0,
3v6 ≤ 1, v5 + 2v6 ≤ 1,
v4 + 2v6 ≤ 1, 2v5 + v6 ≤ 1,
2v6 + 3v7 ≤ 1, v5 + v6 + 3v7 ≤ 1,
v4 + v6 + 3v7 ≤ 1, v3 + v6 + v7 ≤ 1,
v3 + v4 + v7 ≤ 1, v3 + v5 + v7 ≤ 1,
v4 + v5 + 3v7 ≤ 1, 2v4 + 3v7 ≤ 1,
2v5 + 3v7 ≤ 1, v2 + 3v7 ≤ 1,
v3 + 4v7 ≤ 1, v4 + 6v7 ≤ 1,
v5 + 6v7 ≤ 1, v6 + 6v7 ≤ 1,
9v7 ≤ 1, vi ≥ 0 ∀i ∈ [7].

A feasible dual solution is: v1 = 9
13 , v2 = 9

13 , v3 = 7
13 , v4 = 5

13 , v5 = 1
13 , v6 = 4

13 , v7 = 1
13 .

Thus dual optima is at least βm · 9
13 > m. Thus, we need more than m bins to pack all items

incident at v, a contradiction. J

This completes the proof of Lemma 14. J

Therefore, the proof of Theorem 2 is complete. J

If we assume that all edges have weight more than 1/4, then similar analysis will attain
2.2m colors are sufficient. For the proof, we refer the readers to [13].

I Theorem 20. If all edges have weight more than 1/4, then there is a polynomial time
algorithm for the weighted bipartite edge coloring problem which returns a proper
weighted coloring using at most d2.2me colors where m is denotes the maximum over all the
vertices of the number of unit-sized bins needed to pack the weights of incident edges, i.e.,
µ( 1

4 ,1](m, r) ≤ d2.2me.



A. Khan and M. Singh 149

3 Conclusion

Considering the case 1/4 ≥ α > 1/5 separately, might improve the bound by more case
analysis. However we can attain at most 35m/16 ≈ 2.19m by that. Finding a better approx-
imation algorithm (independent of m) or inapproximability, and extending our techniques to
general graphs will be interesting.

Acknowledgements. We thank Prasad Tetali for helpful discussions.
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Abstract
Lattices are discrete mathematical objects with widespread applications to integer programs as
well as modern cryptography. A fundamental problem in both domains is the Closest Vector
Problem (popularly known as CVP). It is well-known that CVP can be easily solved in lattices
that have an orthogonal basis if the orthogonal basis is specified. This motivates the orthogon-
ality decision problem: verify whether a given lattice has an orthogonal basis. Surprisingly, the
orthogonality decision problem is not known to be either NP-complete or in P.

In this paper, we focus on the orthogonality decision problem for a well-known family of
lattices, namely Construction-A lattices. These are lattices of the form C + qZn, where C

is an error-correcting q-ary code, and are studied in communication settings. We provide a
complete characterization of lattices obtained from binary and ternary codes using Construction-
A that have an orthogonal basis. This characterization leads to an efficient algorithm solving the
orthogonality decision problem, which also finds an orthogonal basis if one exists for this family
of lattices. We believe that these results could provide a better understanding of the complexity
of the orthogonality decision problem in general.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
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tice isomorphism
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1 Introduction

A lattice is the set of integer linear combinations of a set of basis vectors B ∈ Rm×n, namely
L = L(B) = {xB | x ∈ Zm}. Lattices are well-studied fundamental mathematical objects
that have been used to model diverse discrete structures such as in the area of integer
programming [7], or in factoring integers [14] and factoring rational polynomials [8]. In a
groundbreaking result, Ajtai [1] demonstrated the potential of computational problems on
lattices to cryptography, by showing average case/worst case equivalence between lattice
problems related to finding short vectors in a lattice. This led to renewed interest in the
complexity of two fundamental lattice problems: the Shortest Vector Problem (SVP) and the
Closest Vector Problem (CVP). Concretely, in SVP, given a basis B one is asked to output a
shortest non-zero vector in the lattice, and in CVP, given a basis B and a target t ∈ Rn, one
is asked to output a lattice vector closest to t.
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Both SVP and CVP are NP-hard even to approximate up to subpolynomial factors (see
[12] for a survey), and a great deal of research in complexity theory has been devoted to
finding families of lattices for which SVP/CVP are easy. A simplest lattice for which CVP is
easy is Zn: indeed, finding the closest lattice vector to a target t ∈ Rn amounts to rounding
the entries of t to the nearest integer. Surprisingly, given an arbitrary basis B, it is not
known how to efficiently verify whether the lattice generated by B is isomorphic to Zn upto
an orthogonal transformation. Further, given an arbitrary basis for a lattice, it is not known
how to decide efficiently if the lattice has an orthogonal basis (an orthogonal basis is a basis
in which all vectors are pairwise orthogonal). Similar to the case of Zn, having access to
an orthogonal basis leads to an efficient algorithm to solve CVP, but finding an orthogonal
basis given an arbitrary basis appears to be non-trivial, with no known efficient algorithms.

Deciding if a lattice is equivalent to Zn, and deciding if a lattice has an orthogonal basis,
are special cases of the more general Lattice Isomorphism Problem (LIP). In LIP, given
lattices L1 and L2 presented by their bases, one is asked to decide if they are isomorphic,
meaning if there exists an orthogonal transformation that takes one to the other. LIP has
been studied in [13, 15, 6] and is known to have a nO(n) algorithm [6]. Recent results of
[10, 9] show that in certain highly symmetric lattices, isomorphism to Zn can be decided
efficiently.

The complexity of LIP is not well understood, and is part of the broader study of
isomorphism between mathematical objects, of which Graph Isomorphism (GI) is a well-
known elusive problem [2]. Interestingly, there is a polynomial time reduction from GI to
LIP [15].

Given that LIP, deciding isomorphism to Zn, and deciding whether a lattice has an
orthogonal basis appear to be difficult problems for arbitrary input lattices, it is natural to
address families of lattices where these problems are solvable efficiently. In this work, we
focus on the problem of deciding orthogonality for a particular family of lattices, commonly
known as Construction-A lattices [5]. A Construction-A lattice L is obtained from a linear
error-correcting code C over a finite field of q elements1 (denoted Fq) as L = C + qZn. We
resolve the problem of deciding orthogonality in Construction-A lattices for q = 2 and q = 3
showing an efficient algorithm. In addition, the algorithm outputs an orthogonal basis of the
lattice if such a basis exists.

Our main technical contribution is a decomposition theorem for Construction-A lattices
that admit an orthogonal basis. A natural way to obtain an orthogonal Construction-A
lattice is by taking direct products of lower dimensional orthogonal lattices. We show that
this is the only possible way and that the lower dimensional orthogonal lattices indeed have
constant dimension. We believe that our contributions are a step towards gaining a better
understanding of lattice isomorphism problems for more general classes of lattices.

Extending our results to values q > 3 might require new techniques. For higher q, a
decomposition characterization seems to require a complete characterization of weighing
matrices of weight q which is a known open problem. In particular, a direct product
decomposition characterization of weighing matrices for the case of q = 4 is known. However,
the parts in the direct product decomposition may not be of constant dimension. As a
consequence, the lattice decomposition theorem, if true, would only suggest that orthogonal
Construction-A lattices necessarily decompose into direct products of lattices, which could be
high-dimensional. So designing an efficient algorithm for the orthogonality decision problem
exploiting the direct product decomposition characterization appears to be non-trivial.

1 The term ‘Construction-A’ strictly refers to the case q = 2, but we will not make the distinction in this
paper.
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1.1 Our results and techniques

As mentioned above, we start by showing a structural decomposition of orthogonal lattices
of the form C + 2Zn and C + 3Zn into constant-size orthogonal lattices. We remark that
the decomposition holds up to permutations of the coordinates, and we use the notation
C1 ∼= C2 and L1 ∼= L2 to denote the equivalence of codes and lattices under permutation of
coordinates. We use the notation L1 ⊗ L2 to denote the direct product of two lattices.

I Theorem 1. Let LC = C + 2Zn be a lattice obtained from a binary linear code C ⊆ Fn
2 .

Then the following statements are equivalent:
1. LC is orthogonal.
2. LC

∼= ⊗iLi, where each Li is either Z, or 2Z, or the 2-dimensional lattice generated by

the rows of the matrix
[
1 1
1 −1

]
.

3. C ∼= ⊗iCi, where each Ci is either a length-1 binary linear code ⊆ {0, 1}, or the length-2
binary linear code {00, 11}.

The decomposition characterization leads to an efficient algorithm to verify if a given
lattice obtained from a binary linear code using Construction-A is orthogonal. For the
purposes of this algorithmic problem, the input consists of a basis to the lattice. The
algorithm finds the component codes given by the characterization thereby computing the
orthogonal basis for such a lattice.

I Theorem 2. Given a basis for a lattice L obtained from a binary linear code C ⊆ Fn
2

using Construction-A, there exists an algorithm running in time O(n6) that verifies if L is
orthogonal, and if so, it outputs an orthogonal basis.

We obtain a similar decomposition and algorithm for lattices obtained from ternary codes.
For succinctness of presentation we define the following integer matrix:

M =


1 1 1 0
1 −1 0 1
1 0 −1 −1
0 1 −1 1

 .
I Theorem 3. Let LC = C + 3Zn be a lattice obtained from a ternary linear code C ⊆ Fn

3 .
Then the following statements are equivalent:
1. LC is orthogonal.
2. LC

∼= ⊗iLi, where each Li is either Z, or 3Z, or the 4-dimensional lattice generated by
the rows of a matrix T (M) obtained from M by negating some subset of columns.

3. C ∼= ⊗iCi, where each Ci is either a linear length-1 ternary code, or the linear length-4
ternary code generated by the rows of (T (M) mod 3) ∈ F4×4

3 , where T (M) is obtained
from M by negating some subset of its columns.

I Theorem 4. Given a basis for a lattice L obtained from a ternary linear code using
Construction-A, there exists an algorithm running in time O(n8) that verifies if L is ortho-
gonal, and if so, it outputs an orthogonal basis.

In the interests of space, we prove Theorems 3 and 4 here and defer the proofs of Theorems
1 and 2 to the full version of this work [4].
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2 Preliminaries

We denote by [n] the set of positive integers up to n, the n× n identity matrix by In and its
jth row by ej . For a vector b ∈ Rn, let bj denote its jth coordinate, and ‖b‖ denote its `2
norm.

A lattice L ⊆ Rn is said to be of full rank if it is generated by n linearly independent
vectors. A lattice L is said to be orthogonal if it has a basis B such that the rows of B are
pairwise orthogonal vectors. A lattice L is integral if it is contained in Zn, namely any basis
for L only consists of integer vectors.

We will denote by Fq a finite field with q elements. A linear code C of length n over Fq

is a vectorspace C ⊆ Fn
q . A linear code is specified by a generator matrix G that consists of

linearly independent vectors in Fn
q . If C ⊆ Fn

2 it is called a binary code, and if C ⊆ Fn
3 it is

called a ternary code.
The Construction-A of a lattice LC from a linear code C ⊆ Fn

q , where q is a prime, is
defined as LC := {c+ q · z | c ∈ φ(C), z ∈ Zn}, where φ is the the (real embedding) mapping
i ∈ Fq 7→ i ∈ Z. Construction-A is often abbreviated as LC = C + qZn.

For any vector v = (v1, · · · , vn) ∈ Zn define v mod q = (v1 mod q, · · · , vn mod q) ∈ Fn
q .

I Claim 5. Let q be a prime. If qZn ⊆ L then C = L mod q is a linear code over Fq.

Proof. Let v ∈ L and v = (v mod q) + qz for some z ∈ Zn, where here we abuse notation
and view v mod q as embedded into the integers, instead of a vector in Fn

q . Since qZn ⊆ L, it
follows that v − qz = v mod q ∈ L. To show that C = L mod q is a linear code over Fq, let
c1, c2 ∈ C. Then c1 + c2 ∈ L (where the addition is over Z), and so (c1 + c2) mod q ∈ C. J

We will use the following immediate claim about product of lattices generated from codes.

I Claim 6. Let L = C + qZn, for some q-ary linear code C ⊆ Fn
q . If L ∼= L1 ⊗ L2, and

L1 ⊆ Zk, then L1 ∼= C1 + qZk and L2 ∼= C2 + qZn−k, for q-ary linear codes C1 and C2 that
are projections of C on the coordinates corresponding to L1 and L2 respectively.

A matrix U is unimodular if U ∈ Zn×n and det(U) ∈ {±1}. Two different bases B1, B2
give rise to the same lattice if and only if there exists a unimodular matrix U such that
B1 = UB2.

The Hermite Normal Form (HNF) basis for a full rank lattice L ⊆ Rn is a square,
non-singular, upper triangular matrix B ⊆ Rn×n such that off-diagonal elements satisfy :
0 ≤ bi,j < bj,j for all 1 ≤ i < j ≤ n.

I Fact 7. [11] There exists an efficient algorithm which on input a set of rational vectors B,
computes a basis for the lattice generated by B: the algorithm simply computes the unique
HNF basis of the lattice generated by B.

We note that LC = C + qZn contains qZn as a sublattice and hence it is a full rank
lattice.

I Fact 8. A basis B for the lattice LC specified by the generator matrix G for the code C can

be computed efficiently by taking the HNF of the matrix
[
G

qIn

]
. Conversely, given a basis B

of LC , the generator matrix for C can be computed efficiently by finding a basis for B mod q

by row reduction over Fq.
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A weighing matrix of order n and weight k is a n× n matrix with entries in {0, 1,−1}
such that each row and column has exactly k non-zero entries and the row vectors are
orthogonal to each other. By definition, a weighing matrix W satisfies WWT = kIn. For
matrices A ∈ Rn1×n1 and B ∈ Rn2×n2 , we denote the (n1 + n2) × (n1 + n2)-dimensional
block-diagonal matrix obtained using blocks A and B by A⊗B. We will use the following
characterization of weighing matrices of weight 2 and 3. Please refer to the full version [4]
for the proofs of Theorem 9 and Theorem 10.

I Theorem 9 ([3]). A matrix W is a weighing matrix of order n and weight 2 if and only if
W can be obtained from

⊗n/2
i=1

[
1 1
1 −1

]
by negating some rows and columns and by interchanging some rows and columns.

I Theorem 10 ([3]). A matrix W is a weighing matrix of order n and weight 3 if and only
if W can be obtained from ⊗n/4

i=1M by negating some rows and columns and by interchanging
some rows and columns.

3 Orthogonal Lattices from Ternary Codes

In this section we focus on lattices obtained from ternary linear codes using Construction-A.
In Section 3.1, we show that any orthogonal lattice obtained from a ternary linear codes by
Construction-A is equivalent to a product lattice whose components are one-dimensional
or four-dimensional. In Section 3.2, we show that given a lattice obtained from a ternary
linear code by Construction-A, there exists an efficient algorithm to verify if the lattice is
orthogonal.

3.1 Decomposition Characterization
We prove Theorem 3 in this subsection.

Proof of Theorem 3. We show that (1) ≡ (2) and (2) ≡ (3) to complete the equivalence of
the three statements.

(1) ≡ (2): We show that LC = C + 3Zn is orthogonal if and only if it decomposes into direct
product of lower dimensional orthogonal lattices, LC

∼= ⊗iLi.
If LC

∼= ⊗iLi such that each Li is orthogonal, then LC is also orthogonal, since LC has
a block diagonal basis where each block is itself an orthogonal matrix (by definition, a
1× 1-dimensional matrix is orthogonal) .

We prove the other side by induction on the dimension, n of the lattice LC . For the base
case consider n = 1. Since L is integral, contains 3Z and is of the form C + 3Z for some
ternary code C, it follows that L has to be either Z or 3Z. Let us assume the induction
hypothesis for all n− 1 or lower dimensional orthogonal lattices obtained from ternary linear
codes using construction-A.

Let LC be an n-dimensional orthogonal lattice and B be its orthogonal basis. Since LC

is an integral lattice, B has only integral entries. The next two claims summarize certain
properties of the entries of the basis matrix B.

I Claim 11. For every row b of B and for every j ∈ [n], we have that 3|bj | ∈ {0, ‖b‖2, 3‖b‖2}.

FSTTCS 2015
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Proof. Since B is an orthogonal basis, BBT = D, where D is the diagonal matrix with
di = ‖b(i)‖2, where b(i) denotes the ith basis vector.

D =


‖b(1)‖2 0 0 · · · 0

0 ‖b(2)‖2 0 · · · 0
...

...
. . .

...
0 0 0 · · · ‖b(n)‖2


We know that 3Zn ⊆ LC so, 3ej ∈ LC for every j ∈ [n]. Therefore, there is an integral

matrix X ∈ Zn×n such that XB = 3In, i.e. 3B−1 ∈ Zn×n. Since we started with an
orthogonal basis B,

B−1 = BTD−1 ∈ 1
3Z

n×n.

Each column of BTD−1 is given by b/‖b‖2, where b is a basis vector. Therefore, for any
j ∈ [n], 3bj is a multiple of ‖b‖2, formally

3bj ≡ 0 mod ‖b‖2 for all j ∈ [n], and rows b of B. (1)

Since bj is integral and |bj | ≤ ‖b‖2 for every j ∈ [n], it follows from the above equation that
3|bj | ∈ {0, ‖b‖2, 2‖b‖2, 3‖b‖2}. Suppose there exists j ∈ [n] such that 3|bj | = 2‖b‖2. Since
b is a basis vector, it follows that b is not all zeroes. Hence bj 6= 0. We can re-write the
condition 3|bj | = 2‖b‖2 as 3|bj | = 2

∑n
i=1 b

2
i . Rearranging the terms, we have

|bj | (3− 2|bj |) = 2
∑
i 6=j

b2i .

Since the RHS is a sum of squares, it is always non-negative. The LHS is non-zero since
bj ∈ Z \ {0}. So the LHS should be strictly positive. Therefore, |bj | ∈ (0, 3/2) ∩ Z and hence
|bj | = 1. However, this implies that

∑
i 6=j b

2
i = 1/2, contradicting the fact that b is integral.

Hence, 3||bj || = 2‖b‖2 is impossible. J

I Claim 12. Let b be a row of B.
1. If there exists j ∈ [n] such that 3|bj | = 3‖b‖2, then bj = ±1 and bj′ = 0 for every

j′ ∈ [n] \ {j}.
2. If there exists j ∈ [n] such that 3|bj | = ‖b‖2 and bj = ±3, then bj′ = 0 for every

j′ ∈ [n] \ {j}.
3. If there exists j ∈ [n] such that 3|bj | = ‖b‖2 and bj = ±1, then there exist j1, j2 ∈ [n]\{j},

such that |bj1 | = |bj2 | = 1 and bj′ = 0 for every j′ ∈ [n] \ {j, j1, j2}.
4. If there exists j ∈ [n] such that 3|bj | = ‖b‖2, then b′j ∈ {0,±1,±3} for every j′ ∈ [n].

Proof.
1. Since, ‖b‖2 =

∑n
i=1 b

2
i , and each bi ∈ Z, we conclude that |bj | = 1 and the remaining

coordinates in b have to be 0, i.e bj′ = 0 for all j′ ∈ [n] \ {j}.
2. Follows from 3|bj | = ‖b‖2 and b being integral.
3. We can re-write the condition 3|bj | = ‖b‖2 as 3|bj | =

∑n
i=1 b

2
i . Rearranging the terms,

we have

|bj | (3− |bj |) =
∑
i 6=j

b2i . (2)

If bj = ±1, then
∑

i 6=j b
2
i = 2. Further, b is integral. Hence, b has exactly 2 other non-zero

coordinates bj1 , bj2 , j 6= j1, j2, such that |bj1 | = |bj2 | = 1.
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4. We have equation (2). The RHS is a sum of squares and hence the LHS is non-negative.
Moreover, b is not all-zeroes vector implies that bj 6= 0. Therefore, |bj | ∈ (0, 3] ∩ Z. If
bj = ±2, then in order to satisfy

∑
i6=j b

2
i = 2 using integral bi’s, exactly two coordinates

bj1 , bj2 should be ±1, where j 6= j1, j2. However, in this case, 3|bj1 | = 3|bj2 | = 3 6∈
{0, ‖b‖2 = 6, 3‖b‖2 = 18}, thus contradicting Claim 11. The conclusion follows from parts
(2) and (3). J

Using the properties of the orthogonal basis B of LC given in Claims 11 and 12, we show
that B is equivalent (up to permutations of its columns) to a block diagonal matrix, i.e

B ∼=


B1 0 · · · 0
0 B2 · · · 0
...

. . . 0
0 0 · · · Bk


where each Bi is either the 1 × 1 matrix [1] or the 1 × 1 matrix [3] or the 4 × 4 matrix
obtained from M by negating a subset of its columns, T (M). It follows that LC

∼= ⊗iLi

such that Bi is the basis for the lower dimensional lattice Li.
Let us pick a row b of B with the smallest support. Fix an index j ∈ [n] to be the index

of a non-zero entry with minimum absolute value in b, i.e. j = arg mink{|bk|}. As b is a
row of a basis matrix, b cannot be the all-zeroes vector and therefore there exists a j ∈ [n]
such that |bj | > 0. Since we are only interested in equivalence (that allows for permutation
of coordinates), we may assume without loss of generality that j = 1 by permuting the
coordinates. By Claim 11, we have that 3|b1| ∈ {‖b‖2, 3‖b‖2}. We consider each of these
cases separately.

1. Suppose 3|b1| = 3‖b‖2. By Claim 12(1), b = (±1, 0, . . . , 0). Since B is an orthogonal
basis, 〈b, b′〉 = 0⇒ b′1 = 0 for all b′ 6= b ∈ B. The orthogonality of B therefore forces all
other basis vectors to take a value of 0 at the 1st coordinate. Thus B is of the form

B =


±1 0 · · · 0
0

B′
...
0

 .

Therefore, we obtain LC
∼= Z⊗ L′, where L′ is an orthogonal (n− 1)-dimensional lattice

generated by the basis matrix restricted to the coordinates other than 1, say, B′. From
Claim 6, it follows that L′ = C ′ + 3Zn−1 for some ternary linear code C ′ ⊆ Fn−1

3 . Thus
L′ satisfies the induction hypothesis and we have the desired decomposition.

2. Suppose 3|b1| = ‖b‖2. We can re-write this condition as 3|b1| =
∑n

i=1 b
2
i . Rearranging

the terms, we have

|b1| (3− |b1|) =
∑
i 6=1

b2i .

Since the RHS is a sum of squares, it should be non-negative.

(i) If RHS is 0, then b1 = ±3 and therefore, it follows from Claim 12(2) that b =
(±3, 0, . . . , 0). The orthogonality of B forces all other basis vectors to take a value of
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0 at the 1st coordinate.

B =


±3 0 · · · 0
0

B′
...
0


Therefore, we obtain LC

∼= 3Z⊗ L′, where L′ is an orthogonal (n− 1)-dimensional
lattice generated by the basis matrix restricted to the coordinates other than 1, say
B′. From Claim 6, it follows that L′ = C ′ + 3Zn−1 for some ternary linear code
C ′ ⊆ Fn−1

3 . Thus L′ satisfies the induction hypothesis and we have the desired
decomposition.

(ii) If RHS is strictly positive, then |b1| ∈ (0, 3) ∩ Z = {1, 2}. By Claim 12(4), b1 6= ±2.
Therefore, b1 = ±1. By Claim 12(3), we have that b has exactly three non-zero
coordinates and they are ±1. By permuting the coordinates of B, we can write
b ≡ (±1,±1,±1, 0, · · · , 0).
Since we picked the row b to be the one with the smallest support, it follows that
every row has at least 3 non-zero coordinates. By Claims 11 and 12(1), this is
possible only if for every other row b′, there exists j′ ∈ [n] such that 3|b′j′ | = ‖b′‖2.
By Claim 12(4), every other row b′ has all its coordinates in {0,±1,±3}. By Claim
12(2), every other row b′ has none of its coordinates in {±3}. Therefore, every other
row b′ has all its coordinates in {0,±1}. By Claim 12(3), every row of the basis
matrix has the same form as b: they have exactly three non-zero entries each of
which is ±1.
Since the rows of the basis matrix are orthogonal, it follows that the basis matrix
B is a weighing matrix of order n with weight 3. By Theorem 10, B is obtained
from ⊗n/4M by either negating some rows or columns and by interchanging rows or
columns. We recall that interchanging or negating the rows of the basis matrix of
a lattice preserves the basis property while interchanging columns is equivalent to
permuting the coordinates. Hence LC = L(B) ∼= ⊗n/4

i=1L(Ti(M)), where each Ti(M)
is a 4× 4 matrix obtained by negating a subset of columns of M .

(2) ≡ (3): We now show that LC decomposes into direct product of lower dimensional lattices,
LC
∼= ⊗iLi if and only if the code C also decomposes, C ∼= ⊗iCi.

Let LC
∼= ⊗iLi. Without loss of generality, we can consider LC = ⊗iLi. We have C = LC

mod 3 = ⊗iLi mod 3. We observe that if Li has dimension ni, then Li ⊇ 3Zni . Therefore,
Ci = Li mod 3 is a ternary code. Let Ci := Li mod 3 for every i. Then C = ⊗iCi. (If c ∈ C,
then c ∈ L and hence the projection of c to the subset of coordinates corresponding to Li is
in Ci. Let ci ∈ Ci for every i. The concatenated vector ⊗ici is in ⊗iLi mod 3 and hence is
in C.)
To show the other side, let C ∼= ⊗iCi, where each Ci ⊆ Fni

3 and n =
∑

i ni. Therefore
LC = C + 3Zn ∼= ⊗iCi + 3Zn ∼= ⊗i(Ci + 3Zni), since Zn ∼= ⊗iZni . J

3.2 The algorithm
Theorem 3 shows that a lattice of the form C+3Zn is orthogonal if and only if the underlying
code decomposes into direct product of ternary linear codes isomorphic to {0, 1, 2} or {0} or
the four dimensional code generated by T (M) mod 3, where T (M) is obtained from matrix
M by negating a subset of its columns. We now give a polynomial time algorithm which
finds the decomposition of the code C into the component codes, Ci, if there exists one.
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Algorithm 1 decompose− length− 1(G):
Input: G = {g1, . . . , gn} ∈ Fn

3 (A generator for the code C)

1: for j ∈ {1, · · · , n} do
2: Let G′ ← projection of vectors in G on coordinates [n] \ {j}
3: For g ∈ G′, define g0, g1, g2 ∈ Fn

3 as the n-dimensional vectors obtained by extending
g using 0, 1 and 2 along the j’th coordinate respectively.

4: if g0, g1, g2 ∈ C for all g ∈ G′ then
5: return j

6: return FAIL

Therefore, if the lattice LC is orthogonal, the algorithm decides in polynomial time if it is
orthogonal and also gives the orthogonal basis for the lattice.

The algorithm recursively finds the component codes. If it is unable to decompose the
code at any stage, then it declares that LC is not orthogonal. At every step we check
if C ∼= {0, 1, 2} × C ′ or {0} × C ′ or CT (M) × C ′ where CT (M) is the code generated by
T (M) mod 3 and then recurse on C ′.

Proof of Theorem 4. Given a basis for LC as input, we first compute the generator for C.
From Theorem 3, we know that if LC is orthogonal, then C ∼= ⊗iCi where each Ci is either
the length-1 code {0, 1, 2} or the length-1 code {0} or a 4-dimensional code generated by
the rows of T (M) mod 3 where T (M) obtained from matrix M by negating a subset of its
columns.

The algorithm therefore in each step decides if C ∼= {0, 1, 2} ⊗ C ′ or C ∼= {0} ⊗ C ′ or
C ∼= CT (M) ⊗ C ′, where CT (M) denotes the code generated by T (M) mod 3. Theorem 13
shows that using Algorithm 1 we can check in O(n4) time, if C ∼= {0, 1, 2} ⊗ C ′. The same
algorithm can be modified to check in O(n4) time, if C ∼= {0} ⊗ C ′. Theorem 14 shows
that Algorithm 2 can verify if C ∼= CT (M) ⊗ C ′ in O(n7) time. If any one of the algorithms
finds a decomposition, then we recurse in the lower dimensional code C ′ to find further
decomposition. We recurse at most n times. If all the algorithms fail to find a decomposition,
then LC is not orthogonal. Therefore, it takes O(n8) time to decide if LC is orthogonal. J

We now describe the individual algorithms to verify if C ∼= {0, 1, 2}⊗C ′ or C ∼= {0}⊗C ′
or C ∼= CT (M) ⊗ C ′.

I Theorem 13. Let C be a ternary linear code and G = {g1, . . . , gn} ∈ Fn×n
3 be its generator.

Then Algorithm 1 decides if C ∼= {0, 1, 2} ⊗ C ′ for some linear code C ′ ⊆ Fn−1
3 and if so

outputs the coordinate corresponding to the direct product decomposition. Moreover the
algorithm runs in time O(n4).

Proof. For j ∈ [n], let C ′
j
⊆ Fn−1

3 be the projection of C on the indices [n] \ {j} and for a
vector c ∈ C ′

j
, let c0, c1, c2 ∈ Fn

3 be extensions of c using 0, 1, 2 respectively along the j’th
coordinate. We note that C ∼= {0, 1, 2} ⊗ C ′ for some ternary linear code C ′ if and only if
there exists an index j ∈ [n], such that

C =
{
c0, c1, c2 | ∀ c ∈ C ′

j

}
. (3)

From the definition of C ′
j
, it follows that C ⊆ {c0, c1, c2 | ∀ c ∈ Cj

′} up to a permutation of
coordinates. So, the algorithm just needs to verify if the other side of the containment holds
for some j.
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Algorithm 2 decompose− length− 4(G):
Input: G ∈ Fn×n

3 (Generator for C)

1: for j1, j2, j3, j4 ∈ {1, 2, · · · , n} do
2: Let G′ ← projection of vectors in G on coordinates [n] \ {j1, j2, j3, j4}
3: Let G′′ ← projection of vectors in G on coordinates {j1, j2, j3, j4}
4: for S ⊆ [4] do
5: Let T (M)←M with columns in S negated
6: if CT (M) ≡ Code generated by G′′ then
7: For g ∈ G′ define gp1 , gp2 , gp3 , gp4 ∈ Fn

3 be n-dimensional vectors obtained by
extending g using the rows of T (M) along the j1, j2, j3, j4 coordinates.

8: if gp1 , gp2 , gp3 , gp4 ∈ C for all g ∈ G′ then
9: return j1, j2, j3, j4 and T (M)

10: return FAIL

Let G′ be the set of vectors of G projected on the coordinates [n] \ {j}. Algorithm 1
verifies if g0, g1 and g2 are codewords in C, for every vector g ∈ G′. We now show that this
is sufficient. Since C is a code, if g0, g1, g2 ∈ C for every g ∈ G′, then all linear combinations
of these vectors are also in C. Therefore, {c0, c1, c2 | ∀ c ∈ C ′

j
} ⊆ C.

It takes O(n2) time to compute a parity check matrix from the generator G and O(n2)
time to verify if an input vector is a codeword using the parity check matrix. For every
possible choice of the index j, Algorithm 1 checks if each of the 3n vectors of the form
g0, g1, g2 are C. Therefore, Algorithm 1 takes O(n4) time to decide if C ∼= {0, 1, 2}⊗C ′. J

I Theorem 14. Let C be a ternary linear code and G = {g1, . . . , gn} ∈ Fn×n
3 be its generator.

For a matrix T (M) obtained by negating a subset of columns of M , let CT (M) be the length-4
code whose generators are the rows of T (M). Then Algorithm 2 decides if C ∼= CT (M)⊗C ′ for
some linear codes C ′ ⊆ Fn−4

3 and CT (M) ⊆ F4
3 and if so outputs the coordinates corresponding

to the direct product decomposition as well as the matrix T (M). Moreover the algorithm runs
in time O(n7).

Proof. For 1 ≤ j1 < j2 < j3 < j4 ≤ n, let C ′′j1,j2,j3,j4
be the projection of C on the indices

{j1, j2, j3, j4}. We first verify if C ′′j1,j2,j3,j4
is the code generated by the rows of T (M)

(denoted as CT (M)) for some T (M) which is obtained by negating a subset of columns of M .
We would like to check if every c ∈ C ′′j1,j2,j3,j4

is in CT (M) and vice versa. For this purpose, it
is sufficient to check if the generator vectors of C ′′j1,j2,j3,j4

are codewords in CT (M) and each
row of T (M) is a codeword in C ′′j1,j2,j3,j4

. We know that the generators of C ′′j1,j2,j3,j4
are

contained in G′′ where G′′ is the set of vectors in G projected on the indices {j1, j2, j3, j4}.
Once we fix T (M) such that C ′′j1,j2,j3,j4

= CT (M), to see if C ∼= CT (M) ⊗ C ′ for some
ternary linear code C ′ ⊆ Fn−4

3 . Define C ′
j̄1,j̄2,j̄3,j̄4

to be the projection of C on the indices
[n] \ {j1, j2, j3, j4}. For a vector c ∈ C ′

j̄1,j̄2,j̄3,j̄4
, let cp ∈ Fn

3 be the extensions of c using a
codeword p ∈ CT (M) along the j1, j2, j3, j4 coordinates. We note that C ∼= CT (M) ⊗ C ′ for
some ternary linear code C ′ if and only if there exist indices j1, j2, j3, j4 ∈ [n], such that

C =
{
cp | c ∈ C ′j̄1,j̄2,j̄3,j̄4

, p ∈ CT (M)

}
. (4)
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From the definition of C ′
j̄1,j̄2,j̄3,j̄4

and C ′′j1,j2,j3,j4
(= CT (M)), it follows that C ⊆ {cp | c ∈

C ′
j̄1,j̄2,j̄3,j̄4

, p ∈ CT (M)}. So, the algorithm just needs to verify if the other side of the
containment holds for some indices j1, j2, j3, j4.

Let G′ be the set of vectors of G projected on the coordinates [n] \ {j1, j2, j3, j4}. Al-
gorithm 2 verifies if gp0 , gp1 , gp3 and gp4 are codewords in C, for every vector g ∈ G′. We
now show that this is sufficient. Since C is a code, if gp0 , gp1 , gp3 , gp4 ∈ C for every g ∈ G′
and pi ∈ T (M), then all linear combinations of these vectors are also in C. Therefore,
{cp | c ∈ C ′

j̄1,j̄2,j̄3,j̄4
, p ∈ CT (M)} ⊆ C.

There are 2444 possible choices of T (M) including permutations. For each matrix T (M),
it takes O(n) time to verify if CT (M) = C ′′j1,j2,j3,j4

. As we had seen that it takes O(n2) time
to verify if an input vector is a codeword using the parity check matrix. We perform this
check for 4n vectors of the form {gp0 , gp1 , gp3 , gp4 | g ∈ G′}. So, for a given T (M) such that
CT (M) = C ′′j1,j2,j3,j4

, It takes O(n3) time to verify C ∼= CT (M) ⊗ C ′.
Therefore, for every possible choice of {j1, j2, j3, j4}, Algorithm 2 takes O(n3) time to

verify if C ∼= CT (M) ⊗ C ′. Since there are at most
(

n
4
)
possible choices of indices, it takes

O(n7) time in total to decide if C ∼= CT (M) ⊗ C ′. J
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Abstract
We define a new class of pushdown systems where the pushdown is a tree instead of a word. We
allow a limited form of lookahead on the pushdown conforming to a certain ordering restriction,
and we show that the resulting class enjoys a decidable reachability problem. This follows from
a preservation of recognizability result for the backward reachability relation of such systems.
As an application, we show that our simple model can encode several formalisms generalizing
pushdown systems, such as ordered multi-pushdown systems, annotated higher-order pushdown
systems, the Krivine machine, and ordered annotated multi-pushdown systems. In each case, our
procedure yields tight complexity.
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1 Introduction

Context. Modeling complex systems requires to strike the right balance between the
accuracy of the model, and the complexity of its analysis. A successful example is given
by pushdown systems, which are a popular class of infinite-state systems arising in diverse
contexts, such as language processing, data-flow analysis, security, computational biology, and
program verification. Many interesting analyses reduce to checking reachability in pushdown
systems, which can be decided in PTIME using, e.g., the popular saturation technique [5, 14]
(cf. also the recent survey [10]). Pushdown systems have been generalized in several directions.
One of them are tree-pushdown systems [15], where the pushdown is a tree instead of a word.
Unlike for ordinary pushdown systems, non-destructive lookahead on the tree pushdown
leads to undecidability. In this work we propose an ordering condition permitting a limited
non-destructive lookahead on a tree pushdown.
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A seemingly unrelated generalization is ordered multi-pushdown systems [6, 3, 2], where
several linear pushdowns are available instead of just one. Since already two unrestricted
linear pushdowns can simulate a Turing machine, an ordering restriction is put on popping
transitions, requiring that all pushdowns smaller than the popped one are empty. Reachability
in this model is 2-EXPTIMEc [3].

Higher-order pushdown systems provide another type of generalization. Here pushdowns
can be nested inside other pushdowns [23, 20]. Collapsible pushdown systems [21, 17]
additionally enrich pushdown symbols with collapse links to inner sub-pushdowns. This
allows the automaton to push a new symbol and to save, at the same time, the current
context in which the symbol is pushed, and to later return to this context via a collapse
operation. Annotated pushdown systems [7] (cf. also [19]) provide a simplification of collapsible
pushdown systems by replacing collapse links with arbitrary pushdown annotations1. The
Krivine machine [24] is a related model which evaluates terms in simply-typed λY -calculus.
Reachability in all these models is pn´ 1q-EXPTIMEc [7, 24] (where n is the order of nesting
pushdowns/functional parameters), and one exponential higher in the presence of alternation.
Even more general, ordered annotated multi-pushdown systems [16] have several annotated
pushdown systems under an ordering restriction similar to [3] in the first-order case. They
subsume both ordered multi-pushdown systems and annotated pushdown systems. The
saturation method (cf. [10]) has been adapted to most of these models, and it is the basis
of the prominent MOPED tool [13] for the analysis of pushdown systems, as well as the
C-SHORe model-checker for annotated pushdown systems [8].

Contributions. Motivated by a unification of the results above, we introduce ordered tree-
pushdown systems. These are tree-pushdown systems with a limited destructive lookahead
on the pushdown. We introduce an order between pushdown symbols, and we require that,
whenever a sub-pushdown is read, all sub-pushdowns of smaller order must be discarded.
The obtained model is expressive enough to simulate all the systems mentioned above, and
is still not Turing-powerful thanks to the ordering condition. Our contributions are:
(i) A general preservation of recognizability result for ordered tree-pushdown systems.
(ii) A conceptually simple saturation algorithm working on finite tree automata representing

sets of configurations (instead of more ad-hoc automata models), subsuming and unifying
previous constructions.

(iii) A short and simple correctness proof.
(iv) Direct encodings of several popular extensions of pushdown systems, such as ordered

multi-pushdown systems, annotated pushdown systems, the Krivine machine, and
ordered annotated multi-pushdown systems.

(v) Encoding of our model into Krivine machines with states, that in turn are equivalent
to collapsible pushdown automata.

(vi) A complete complexity characterization of reachability in ordered tree-pushdown systems
and natural subclasses thereof.

Related work. Our work can be seen as a generalization of the saturation method for
collapsible pushdown automata [7] to a broader class of rewriting systems. This method has

1 Collapsible and annotated systems generate the same configuration graphs when started from the
same initial configuration, since new annotations can only be created to sub-pushdowns of the current
pushdown. However, annotated pushdown systems have a richer backward reachability set which
includes non-constructible pushdowns.
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been already generalized in [16] to multi-stack higher-order systems; in particular for ordered,
phase-bounded, and scope-bounded restrictions. Another related work is a saturation method
for recursive program schemes [9]. Schemes are equivalent to λY -calculus, so our formalism
can be used to obtain a saturation method for schemes.

Ordered tree-pushdown systems proposed in the present paper unify these approaches.
The encodings of the above mentioned systems are direct and work step-to-step. By contrast,
the encoding of the Krivine machine to higher-order pushdowns is rather sophisticated [17, 26],
and even more so its proof of correctness. The converse encoding of annotated higher-order
pushdowns into Krivine machines is conceptually easier, but technically quite long for at
least two reasons: a state has to be encoded by a tuple of terms, and transitions of the
automaton need to be implemented with beta-reduction.

Concerning multi-pushdown systems, there exist restrictions that we do not cover in this
paper. In [16] decidability is proved for annotated multi-pushdowns with phase-bounded
and scope-bounded restrictions. For standard multi-pushdown systems, split-width has been
proposed as a unifying restriction [12].

Outline. In Sec. 2 we introduce common notions. In Sec. 3 we define our model and we
present our saturation-based algorithm to decide reachability. In Sec. 4 we show that ordered
systems can optimally encode several popular formalisms. In Sec. 5 we discuss the notion of
safety from the Krivine machine and higher-order pushdown automata, and how it relates to
our model. In Sec. 6 we conclude with some perspectives on open problems. Full proofs can
be found in the technical report [11].

2 Preliminaries

We work with rewriting systems on ranked trees, and with alternating tree automata. The
novelty is that every letter of the ranked alphabet will have an order. A tree has the order
determined by the letter in the root. The order itself is used to constrain rewriting rules.

An alternating transition system is a tuple S “ xC,Ñy, where C is the set of configurations
and ÑĎ Cˆ 2C is the alternating transition relation. For two sets of configurations A,B Ď C
we define A Ñ1 B iff, for every c P A, either c P B, or there exists C Ď B s.t. c Ñ C, and
we denote by Ñ˚

1 its reflexive and transitive closure. The set of predecessors of a set of
configurations C Ď C is Pre˚pCq “ tc | tcu Ñ˚

1 Cu.

Ranked trees. Let N be the set of non-negative integers, and let Ną0 be the set of strictly
positive integers. A node is an element u P N˚ą0. A node u is a child of a node v if u “ v ¨ i

for some i P Ną0. A tree domain is a non-empty prefix-closed set of nodes D Ď N˚ą0 s.t., if
u ¨ pi` 1q P D, then u ¨ i P D for every i P Ną0. A leaf is a node u in D without children. A
ranked alphabet is a pair pΣ, rankq of a set of symbols Σ together with a ranking function
rank : Σ Ñ N. A Σ-tree is a function t : D Ñ Σ, where D is a tree domain, s.t., for every
node u in D labelled with a symbol tpuq of rank k, u has precisely k children. For a Σ-tree
t : D Ñ Σ and a label a P Σ, let t´1paq “ tu P D | tpuq “ au be the set of nodes labelled
with a. For a tree t and a node u therein, the subtree of t at u is defined as expected. We
denote by T pΣq the set of Σ-trees.

Order of a tree. In this paper we will give a restriction on a tree rewriting system guaran-
teeing that Pre˚pCq is regular for every regular set C. This restriction will use the notion of
an order of a tree. The order of a tree is simply determined by the order of the symbol in
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the root. Therefore, we suppose that our alphabet Σ comes with a function ord : Σ Ñ N.
The order of a tree t is ordptq :“ ordptpεqq.

Rewriting. Let V0,V1, . . . be pairwise disjoint infinite sets of variables; and let V “
Ť

n Vn.
We consider the extended alphabet ΣY V where a variable x P Vn has rank 0 and order n.
We will work with the set T pΣ,Vq of pΣ Y Vq-trees. For such a tree t, let Vptq be the set
of variables appearing in it. We say that t is linear if each variable in Vptq appears exactly
once in t. For some pΣ Y Vq-tree u, t is u-ground if Vptq X Vpuq “ H. A substitution is a
finite partial mapping σ : V Ñ T pΣY Vq respecting orders, i.e., ordpσpxqq “ ordpxq. Given a
pΣYVq-tree t and a substitution σ, tσ is the pΣYVq-tree obtained by replacing each variable
x in t in the domain of σ with σpxq. A rewrite rule over Σ is a pair lÑ r of pΣY Vq-trees l
and r s.t. Vprq Ď Vplq and l is linear.2

Alternating tree automata. An alternating tree automaton (or just tree automaton) is a
tuple A “ xΣ, Q,∆y where Σ is a finite ranked alphabet, Q is a finite set of states, and
∆ Ď Qˆ Σˆ p2Qq˚ is a set of alternating transitions of the form p

a
ÝÑ P1 ¨ ¨ ¨Pn, with a of

rank n. We say that A is non-deterministic if, for every transition as above, all Pj ’s are
singletons, and we omit the braces in this case. An automaton is ordered if, for every state p
and symbols a, b s.t. p a

ÝÑ ¨ ¨ ¨ and p b
ÝÑ ¨ ¨ ¨ , we have ordpaq “ ordpbq. We assume w.l.o.g.

that automata are ordered, and we denote by ordppq the order of state p. The transition
relation is extended to a set of states P Ď Q by defining P a

ÝÑ P1 ¨ ¨ ¨Pn iff, for every p P P ,
there exists a transition p a

ÝÑ P p1 ¨ ¨ ¨P
p
n , and Pj “

Ť

pPP P
p
j for every j P t1, . . . , nu. It will

be useful later in the definition of the saturation procedure to define run trees not just on
ground trees, but also on trees possibly containing variables. A variable of order k is treated
like a leaf symbol which is accepted by all states of the same order. Let P Ď Q be a set
of states, and let t : D Ñ pΣ Y Vq be an input tree. A run tree from P on t is a 2Q-tree3
s : D Ñ 2Q over the same tree domain D s.t. spεq “ P , and:
(i) if tpuq “ a is not a variable and of rank n, then spuq a

ÝÑ spu ¨ 1q ¨ ¨ ¨ spu ¨ nq, and
(ii) if tpuq “ x then @p P spuq, ordppq “ ordpxq.
The language recognized by a set of states P Ď Q, denoted by LpP q, is the set of Σ-trees t
s.t. there exists a run tree from P on t.

3 Ordered tree-pushdown systems

We introduce a generalization of pushdown systems, where the pushdown is a tree instead of
a word. An alternating ordered tree-pushdown system (AOTPS) of order n P Ną0 is a tuple
S “ xn,Σ, P,Ry where Σ is an ordered alphabet containing symbols of order at most n, P is
a finite set of control locations, and R is a set of rules of the form p, lÑ S, r s.t. p P P and
S Ď P . Moreover, lÑ r is a rewrite rule over Σ of one of the two forms:

(shallow): apu1, . . . , umq Ñ r or (deep): apu1, . . . , uk, bpv1, . . . , vm1q, uk`1, . . . , umq Ñ r

2 Notice that we require that all the variables appearing on the r.h.s. r also appear on the l.h.s. l. All our
results carry over even by allowing some variables on the r.h.s. r not to appear on the l.h.s. l, but we
forbid this for simplicity of presentation.

3 Strictly speaking 2Q does not have a rank/order. It is easy to duplicate each subset at every rank/order
to obtain an ordered alphabet, which we avoid for simplicity.
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where each ui, vj is either r-ground or a variable, and for the second form we require

(ordering condition): if ordpuiq ď ordpbq, then ui is r-ground; for i “ 1, . . . ,m.

The rules in R where lÑ r is of the first form are called shallow, the others are deep. The
tree bpv1, . . . , vm1q in a deep rule is called the lookahead subtree of l. A rule lÑ r is flat if each
ui, vj is just a variable. Let Rordpbq be the set of deep rules, where the lookahead symbol b is
of order ordpbq. For example, apx, yq Ñ cpapx, yq, xq is shallow and flat, but apbpxq, yq Ñ cpx, yq
is deep (and flat); here necessarily ordpyq ą ordpbq. Finally, apc, d, xq Ñ bpxq is not flat since c
and d are not variables. In Sec. 4 we provide more examples of such rewrite rules by encoding
many popular formalisms. While l must be linear, r may be non-linear, thus sub-trees can be
duplicated. The size of S is |S| :“ |Σ|`|P |`|R|, where |R| :“

ř

pp,lÑS,rqPRp1`|l|`|S|`|r|q.
Rewrite rules induce an alternating transition system xCS ,ÑSy by root rewriting. The

set of configurations CS consists of pairs pp, tq with p P P and t P T pΣq, and, for every
configuration pp, tq, set of control locations S Ď P , and tree u, pp, tq ÑS S ˆ tuu if there
exists a rule ppp, lq Ñ pS, rqq P R and a substitution σ s.t. t “ lσ and u “ rσ.

Let A “ xΣ, Q,∆y be a tree automaton s.t. P Ď Q. The language of configurations
recognized by A from P is LpA, P q :“ tpp, tq P C | p P P and t P Lppqu. Given an initial
configuration pp0, t0q P C and a tree automaton A recognizing a regular set of target
configurations LpA, P q Ď C, the reachability problem for S amounts to determining whether
pp0, t0q P Pre˚pLpA, P qq.

3.1 Reachability analysis
We present a saturation-based procedure to decide reachability in AOTPSs. This also shows
that backward reachability relation preserves regularity.

I Theorem 3.1 (Preservation of recognizability). Let S be an order-n AOTPS and let C
be regular set of configurations. Then, Pre˚pCq is effectively regular, and an automaton
recognizing it can be built in n-fold exponential time.

Let S “ xn,Σ, P,Ry be an AOTPS. The target set C is given as a tree automaton A “

xΣ, Q,∆y s.t. LpA, P q “ C. W.l.o.g. we assume that in A initial states (states in P ) have
no incoming transitions. Classical saturation algorithms for pushdown automata proceed
by adding transitions to the original automaton A, until no more new transitions can be
added. Here, due to the lookahead of the l.h.s. of deep rules, we need to also add new
states to the automaton. However, the total number of new states is bounded once the
order of the AOTPS is fixed, which guarantees termination. We construct a tree automaton
B “ xΣ, Q1,∆1y recognizing Pre˚pLpA, P qq, where Q1 is obtained by adding states to Q, and
∆1 by adding transitions to ∆, according to a saturation procedure described below.

For every rule pp, lÑ S, rq P R and for every subtree v of l we create a new state pv of
the same order as v recognizing all Σ-trees that can be obtained by replacing variables in v
by arbitrary trees, i.e., Lppvq “ tvσ | σ : V Ñ T pΣq, vσ P T pΣqu; recall that the substitution
should respect the order. Let Q0 be the set of such pv’s, and let ∆0 contain the required
transitions. Notice that |Q0| , |∆0| ď |R|.

In order to deal with deep rules we add new states in the following stratified way. Let
Q1n`1 “ QYQ0. We define sets Q1n, . . . , Q11 inductively starting with Q1n. Assume that Q1i`1
is already defined. We make Q1i contain Q1i`1. Then we add to Q1i states for every deep
rule g P Ri of the form p, apu1, . . . , uk, bp. . . q, uk`1, . . . , umq Ñ S, r, with ordpbq “ i. For
simplicity of notation, let us suppose that u1, . . . , uk are of order at most ordpbq, and that
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uk`1, . . . , um are of order strictly greater than ordpbq4. We add to Q1i states:

pg, Pk`1, . . . , Pmq P Q
1
i for all Pk`1, . . . , Pm Ď Q1i`1.

In particular, to Qn we add states of the form pgq since n is the maximal order. We define
the set of states in B to be Q1 :“ Q11.

We add transitions to B in an iterative process until no more transitions can be added.
During the saturation process, we maintain the following invariant: For 1 ď i ď n, states
in Q1izQ1i`1 recognize only trees of order i. Therefore, B is also an ordered tree automaton.
Formally, ∆1 is the least set containing ∆Y∆0 and closed under adding transitions according
to the following procedure. Take a deep rule

g “ pp, apu1, . . . , uk, bpv1, . . . , vm1q, uk`1, . . . , umq Ñ S, rq P Rordpbq

and assume as before that the order of uj is at most ordpbq for j ď k, and strictly bigger
than ordpbq otherwise. We consider a run tree t from S on r in B. For every j “ 1, . . . ,m
we set: P tj “ tpuju if uj is r-ground, and P tj “

Ť

tpr´1pxqq if uj “ x is a variable appearing
in r. The set

Ť

tpr´1pxqq collects all states of B from which the subtree for which x can
be replaced must be accepted. Moreover, for the lookahead subtree bpv1, . . . , vm1q, we let
P tb “ tpg, P

t
k`1, . . . , P

t
mqu. Analogously, we define St1, . . . , Stm1 considering v1, . . . , vm1 instead

of u1, . . . , um. Then, we add two transitions:

p
a
ÝÑ P t1 ¨ ¨ ¨P

t
kP

t
bP

t
k`1 ¨ ¨ ¨P

t
m and pg, P tk`1, . . . , P

t
mq

b
ÝÑ St1 . . . S

t
m1 . (1)

Thanks to the ordering condition, P tk`1, . . . , P
t
m Ď Q1ordpbq`1, so pg, P

t
k`1, . . . , P

t
mq is indeed a

state in Q1ordpbq. For a shallow rule g the procedure is the same but ignoring the part about
the bpv1, . . . , vm1q component; so only one rule is added in this case.

I Lemma 3.2 (Correctness of saturation). For A and B be as above, LpB, P q “ Pre˚pLpA, P qq.

The correctness proof, even though short, is presented in App. A of the technical report [11].
The right-in-left inclusion is by straightforward induction on the number of rewrite steps to
reach LpA, P q. The left-in-right inclusion is more subtle, but with an appropriate invariant
of the saturation process it also follows by a direct inspection.

3.2 Complexity
The reachability problem for AOTPSs can be solved using the saturation procedure from
Theorem 3.1. For an initial configuration pp0, t0q P C and an automaton A recognizing a
regular set of target configurations LpA, P q, we construct B as in the previous section, and
then test pp0, t0q P LpB, P q. In this section we will analyze the complexity of this procedure
in several relevant cases. All lower-bounds follow from the reductions presented in Sec. 4.

Let m ą 1 be the maximal rank of any symbol in Σ. Using the notation from the
previous subsection, we have that

ˇ

ˇQ1n`1
ˇ

ˇ ď |Q| ` |R|, |Q1n| ď
ˇ

ˇQ1n`1
ˇ

ˇ ` |R|, and for every
k P t1, . . . , n ´ 1u, |Q1k| ď

ˇ

ˇQ1k`1
ˇ

ˇ ` |R| ¨ 2pm´1q¨|Q1k`1| ď O
´

|R| ¨ 2pm´1q¨|Q1k`1|
¯

, and thus
|Q1| ď expn´1pOppm´ 1q ¨ p|Q| ` |R|qqq, where exp0pxq “ x and, for i ě 0, expi`1pxq “

2expipxq. The size of the transition relation is at most one exponential more than the number
of states, thus |∆1| ď expnpOppm´ 1q ¨ p|Q| ` |R|qqq. This implies:

4 This assumption is w.l.o.g. since one can always add shallow rules to reorder subtrees and put them in
the required form.
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I Theorem 3.3. Reachability in order-n AOTPSs is n-EXPTIMEc.

We identify four subclasses of AOTPSs, for which the reachability problem is of progressively
decreasing complexity. First, we can save one exponential if we consider control-state
reachability for the class of non-deterministic, flat AOTPSs. A system is non-deterministic
when for every rule p, l Ñ S, r, the set S is a singleton. A system is flat when its rules
p, lÑ S, r are flat (defined on page 167). Control-state reachability of a given set of locations
T Ď P means that the language of final configurations is T ˆ T pΣq. A proof of the theorem
below is presented in App. B of the technical report [11].

I Theorem 3.4. Control-state reachability in order-n non-deterministic flat AOTPSs is
pn´ 1q-EXPTIMEc, where n ě 2.

Second, we consider the class of linear non-deterministic systems. Suppose that we consider
non-deterministic reachability, i.e., that A is non-deterministic. When S is linear, i.e.,
variables in the r.h.s. of rules in R appear exactly once, then all P ti ’s and Sti ’s in (1) are
singletons, and thus B is also non-deterministic. Consequently, the only states from Q1izQ

1
i`1

that are used by rewriting rules have the form pg, tpk`1u, . . . , tpmuq for pk`1, . . . , pm P Q
1
i`1.

Therefore, there are at most Opp|Q| ` |R|qpm´1qn
q states and Op|R| ¨ |Q1|mq transitions, and

B is thus doubly exponential in n.

I Theorem 3.5. The non-deterministic reachability problem in linear non-deterministic
AOTPSs is 2-EXPTIMEc.

The next simplification is when the system is shallow in the sense that it does not have
deep rules. In this case we do not need to add states recursively (Q1 :“ Q YQ0), and we
thus avoid the multiple exponential blow-up. Similarly, when the system is unary, i.e., the
maximal rank is m “ 1, only polynomially many states are added.

I Theorem 3.6. Reachability in shallow as well as in unary AOTPSs is EXPTIMEc.

If moreover the system is non-deterministic, then we get PTIME complexity, provided the
rank of the letters in the alphabet is bounded.

I Theorem 3.7. Non-deterministic reachability in unary non-deterministic AOTPSs and in
shallow non-deterministic AOTPSs of fixed rank is in PTIME.

3.3 Expressiveness
In the next section we give a number of examples of systems that can be directly encoded in
AOTPSs. Before that, we would like to underline that AOTPSs can themselves be encoded
into collapsible pushdown systems. We formally formulate this equivalence in terms of
Krivine machines with states, which are defined later in Sec. 4.3. The details of this reduction
are presented in App. E of the technical report [11].

I Theorem 3.8. Every AOTPS of order n can be encoded in a Krivine machine with states
of the same level s.t. every rewriting step of the AOTPS corresponds to a number of reduction
steps of the Krivine machine.

Since parity games over the configuration graph of the Krivine machine with states are
known to be decidable [25], this equivalence yields decidability of parity games over AOTPSs.
However, in this paper we concentrate on reachability properties of AOTPSs, which are
decidable thanks to our simple saturation algorithm from Sec. 3.1. No such saturation
algorithm was previously known for the Krivine machine with states.
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4 Applications

In this section, we give several examples of systems that can be encoded as AOTPSs.
Ordinary alternating pushdown systems (and even prefix-rewrite systems) can be easily
encoded as unary AOTPSs by viewing a word as a linear tree; the ordering condition is
trivial since symbols have rank ď 1. Moreover, tree-pushdown systems [15] can be seen as
shallow AOTPSs. By Theorem 3.6, reachability is in EXPTIME for both classes, and, by
Theorem 3.7, it reduces to PTIME for the non-alternating variant (for fixed maximal rank).

In the rest of the section, we show how to encode four more sophisticated classes of systems,
namely ordered multi-pushdown systems (Sec. 4.1), annotated higher-order pushdown systems
(Sec. 4.2), the Krivine machine with states (Sec. 4.3), and ordered annotated multi-pushdown
systems (Sec. 4.4), and we show that reachability for these models (except the last one) can
be decided with tight complexity bounds using our conceptually simple saturation procedure.

4.1 Ordered multi-pushdown systems
In an ordered multi-pushdown system there are n pushdowns. Symbols can be pushed on
any pushdown, but only the first non-empty pushdown can be popped [6, 3, 2]. This is
equivalent to saying that to pop a symbol from the k-th pushdown, the contents of the
previous pushdowns 1, . . . , k ´ 1 should be discarded. Formally, an alternating ordered
multi-pushdown system is a tuple O “ xn,Γ, Q,∆y, where n P Ną0 is the order of the system
(i.e., the number of pushdowns), Γ is a finite pushdown alphabet, Q is a finite set of control
locations, and ∆ Ď QˆOnˆ 2Q is a set of rules of the form pp, o, P q with p P Q, P Ď Q, and
o a pushdown operation in On :“ tpushkpaq, popkpaq | 1 ď k ď n, a P Γu. We say that O is
non-deterministic when P is a singleton for every rule. A multi-pushdown system induces an
alternating transition system xCO,ÑOy where the set of configurations is CO “ QˆpΓ˚qn, and
the transitions are defined as follows: for every pp, pushkpaq, P q P ∆ there exists a transition
pp, w1, . . . , wnq ÑO P ˆ tpw1, . . . , a ¨ wk, . . . , wnqu, and for every pp, popkpaq, P q P ∆ there
exists a transition pp, w1, . . . , a ¨ wk, . . . , wnq ÑO P ˆ tpε, . . . , ε, wk, ¨ ¨ ¨ , wnqu. For c P CO
and T Ď Q, the (control-state) reachability problem for O asks whether c P Pre˚pT ˆ pΓ˚qnq.

Encoding. We show that an ordered multi-pushdown system can be simulated by an
AOTPS. The idea is to encode the k-th pushdown as a linear tree of order k, and to
encode a multi-pushdown as a tree of linear pushdowns. Let K and ‚ be two new sym-
bols not in Γ, let ΓK “ Γ Y tKu, and let Σ “ pΓK ˆ t1, . . . , nuq Y t‚u be an ordered
alphabet, where a symbol pa, iq P ΓK ˆ tiu has order i, rank 1 if a P Γ and rank 0 if
a “ K. Moreover, ‚ has rank n and order 1. For simplicity, we write ai instead of
pa, iq. A multi-pushdown w1, . . . , wn, where each wj “ aj,1 . . . aj,nj is encoded as the
tree encpw1, . . . , wnq :“ ‚pa1

1,1pa
1
1,2p. . .K

1qq, . . . , ann,1pa
n
n,2p. . .K

nqqq. For an ordered multi-
pushdown system O “ xn,Γ, Q,∆y we define an equivalent AOTPS S “ xn,Σ, Q,Ry with Σ
defined as above, and set of rules R defined as follows (we use the convention that variable
xk has order k): For every push rule pp, pushkpaq, P q P ∆, we have a rule pp, ‚px1, . . . , xnq Ñ
P, ‚px1, . . . , a

kpxkq, . . . , xnqq P R, and for every pop rule pp, popkpaq, P q P ∆, we have
pp, ‚px1, . . . , a

kpxkq, . . . , xnq Ñ P, ‚pK1, . . . ,Kk´1, xk, xk`1, . . . , xnqq P R. Both kinds of rules
above are linear, and the latter one satisfies the ordering condition since lower-order variables
x1, . . . , xk´1 are discarded. It is easy to see that pp, w1, . . . , wnq Ñ

˚
O P ˆ tpw11, . . . , w

1
nqu if,

and only if, pp, encpw1, . . . , wnqq Ñ
˚
S P ˆ tencpw11, . . . , w1nqu. Thus, the encoding preserves

reachability properties. By Theorem 3.3, we obtain an n-EXPTIME upper-bound for reacha-
bility in alternating multi-pushdown systems of order n. Moreover, since S is linear, and
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since S is non-deterministic when O is non-deterministic, by Theorem 3.5 we recover the
optimal 2-EXPTIMEc complexity proved by [3] (cf. also [2]).

I Theorem 4.1 ([3]). Reachability in alternating ordered multi-pushdown systems is in
n-EXPTIME, and 2-EXPTIMEc for the non-deterministic variant.

Reachability for the alternating version of the model (in n-EXPTIME) was not previously
known.

4.2 Annotated higher-order pushdown systems
Let Γ be a finite pushdown alphabet. In the following, we fix an order n ě 1, and we
let 1 ď k ď n range over orders. For our purpose, it is convenient to expose the topmost
pushdown at every order recursively.5 We define Γk, the set of annotated higher-order
pushdowns (stacks) of order k, simultaneously for all k P t1, . . . , nu, as the least set containing
the empty pushdown x y, and, whenever u1 P Γ1, . . . , uk P Γk, vj P Γj for some j P t1, . . . , nu,
then xavj , u1, . . . , uky P Γk. Similarly, if we do not consider stack annotations vj ’s, we obtain
the set of higher-order pushdowns of order k. Operations on annotated pushdowns are as
follows. The operation pushbk pushes a symbol b P Γ on the top of the topmost order-1 stack
and annotates it with the topmost order-k stack, pushk duplicates the topmost order-pk ´ 1q
stack, popk removes the topmost order-pk ´ 1q stack, and collapsek replaces the topmost
order-k stack with the order-k stack annotating the topmost symbol:

pushbkpxau, u1, . . . , unyq “ xb
xau,u1,...,uky, xau, u1y, u2, . . . , uny,

pushkpxau, u1, . . . , unyq “ xa
u, u1, . . . , uk´1, xa

u, u1, . . . , uky, uk`1, . . . , uny,

popkpxau, v1, . . . , vk´1, xb
v, u1, . . . , uky, uk`1, . . . , unyq “ xb

v, u1, . . . , uny,

collapsekpxaxb
v,v1,...,vky, u1, . . . , unyq “ xb

v, v1, . . . , vk, uk`1, . . . , uny.

Let On “
Ťn
k“1tpushbk, pushk, popk, collapsek | b P Γu be the set of stack operations. Similarly,

one can define operations pushb and popk on stacks without annotations (but not collapsek, or
pushbk). An alternating order-n annotated pushdown system is a tuple P “ xn,Γ, Q,∆y, where
Γ is a finite stack alphabet, Q is a finite set of control locations, and ∆ Ď Qˆ ΓˆOn ˆ 2Q
is a set of rules. An alternating order-n pushdown system (i.e., without annotations) is as P
above, except that we consider non-annotated stack and operations on non-annotated stacks.
An annotated pushdown system induces a transition system xCP ,ÑPy, where CP “ Qˆ Γn,
and the transition relation is defined as pp, wq ÑP P ˆ tw1u whenever pp, a, o, P q P ∆ with
w “ xau, ¨ ¨ ¨y and w1 “ opwq. Thus, a rule pp, a, o, P q first checks that the topmost stack
symbol is a, and then applies the transformation provided by the stack operation o to the
current stack (which may, or may not, change the topmost stack symbol a). Given c P CP
and T Ď Q, the (control-state) reachability problem for P asks whether c P Pre˚pT ˆ Γnq.

Encoding. We represent annotated pushdowns as trees. Let Σ be the ordered alphabet
containing, for each k P t1, . . . , nu, an end-of-stack symbol Kk P Σ of rank 0 and order
k. Moreover, for each a P Γ and order k P t1, . . . , nu, there is a symbol xa, ky P Σ of
order k and rank k ` 1 representing the root of a tree encoding a stack of order k. An
order-k stack is encoded as a tree recursively by enckpx yq “ Kk and enckpxau, u1, . . . , ukyq “

xa, kypencipuq, enc1pu1q, . . . , enckpukqq, where i is the order of u. Let P “ xn,Γ, Q,∆y be an

5 Our definition is equivalent to [7].
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annotated pushdown system. We define an equivalent AOTPS S “ xn,Σ, Q,Ry, where Σ is
as defined above, and R contains a rule p, lÑ P, r for each rule in pp, a, o, P q P ∆ and orders
m,m1, where lÑ r is as follows (cf. also Fig. 1 in the appendix of the technical report [11]
for a pictorial representation). We use the convention that a variable subscripted by i has
order i, and we write xi..j for pxi, . . . , xjq, and similarly for zi..j :

xa, nypym, x1..nq Ñ xb, nypxa, kypym, x1..kq, xa, 1ypym, x1q, x2..nq if o “ pushbk,
xa, nypym, x1..nq Ñ xa, nypym, x1..k´1, xa, kypym, x1..kq, xk`1..nq if o “ pushk,
xa, nypz1m1

, z1..k´1, xb, kypym, x1..kq, xk`1..nq Ñ xb, nypym, x1..nq if o “ popk,
xa, nypxb, kypym, x1..kq, z1..k, xk`1..nq Ñ xb, nypym, x1..nq if o “ collapsek.

The last two rules satisfy the ordering condition of AOTPSs since only higher-order variables
xk`1, . . . , xn are not discarded. It is easy to see that pp, wq Ñ˚

P P ˆ tw1u if, and only if,
pp, encnpwqq Ñ˚

S Pˆtencnpw1qu. Consequently, the encoding preserves reachability properties.
Since an annotated pushdown system of order n is simulated by a flat AOTPS of the same
order, the following complexity result is an immediate consequence of Theorems 3.3 and 3.4.

I Theorem 4.2 ([7]). Reachability in alternating annotated pushdown systems of order n
and in non-deterministic annotated pushdown systems of order n` 1 is n-EXPTIMEc.

4.3 Krivine machine with states
We show that the Krivine machine evaluating simply-typed λY -terms can be encoded as
an AOTPS. Essentially, this encoding was already given in the presentation of the Krivine
machine operating on λY -terms from [24], though not explicitly given as tree pushdowns. In
this sense, this provides the first saturation algorithm for the Krivine machine, thus yielding
an optimal reachability procedure. Moreover, in App. E of the technical report [11] we
present also a converse reduction (as announced earlier in Theorem 3.8), thus showing that
the two models are in fact equivalent.

A type is either the basic type 0 or αÑ β for types α, β. The level of a type is levelp0q “ 0
and levelpαÑ βq “ maxplevelpαq ` 1, levelpβqq. We abbreviate αÑ ¨ ¨ ¨ Ñ αÑ β as αk Ñ β.
Let V “ txα1

1 , xα2
2 , . . . u be a countably infinite set of typed variables, and let Γ be a ranked

alphabet. A term is either
(i) a constant a0kÑ0 P Γ,
(ii) a variable xα P V,
(iii) an abstraction pλxα.MβqαÑβ ,
(iv) an application pMαÑβNαqβ , or
(v) a fixpoint pYMαÑαqα.
We sometimes omit the type annotation from the superscript, in order to simplify the
notation. For a given term M , its set of free variables is defined as usual. A term M is
closed if it does not have any free variable. We denote by ΛpMq be the set of sub-terms of M .
An environment ρ is a finite type-preserving function assigning closures to variables, and a
closure Cα is a pair consisting of a term of type α and an environment, as expressed by the
following mutually recursive grammar: ρ ::“ H | ρrxα ÞÑ Cαs and Cα ::“ pMα, ρq. We say
that a closure pM,ρq is valid if ρ binds all variables which are free in M (and no others),
and moreover ρpxαq is itself a valid closure for each free variable xα in M . Sometimes, we
need to restrict an environment ρ by discarding some bindings in order to turn a closure
pM,ρq into a valid one. Given a term M and an environment ρ, the restriction of ρ to
M , denoted ρ

ˇ

ˇ

M
, is obtained by removing from ρ all bindings for variables which are not
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free in M . In this way, if pM,ρq is a closure where ρ assigns valid closures to at least all
variables which are free in M , then pM,ρ

ˇ

ˇ

M
q is a valid closure. In a closure pM,ρq, M is

called the skeleton, and it determines the type and level of the closure. Let ClαpMq be the
set of valid closures of type α with skeleton in ΛpMq. An alternating Krivine machine6 with
states of level l P Ną0 is a tuple M “ xl,Γ, Q,K0,∆y, where xΓ, Q,∆y is an alternating tree
automaton (in which a constant a0kÑ0 P Γ is seen as a letter a of rank k), and K0 is a closed
term of type 0 s.t. the level of any sub-term in ΛpK0q is at most l. In the following, let
α “ α1 Ñ ¨ ¨ ¨ Ñ αk Ñ 0. The Krivine machine M induces a transition system xCM,ÑMy,
where in a configuration pp, Cα, Cα1

1 , . . . , Cαkk q P CM, p P Q, Cα P ClαpK0q is the head
closure, and Cα1

1 P Clα1pK0q, . . . , Cαkk P ClαkpK0q are the argument closures. The transition
relation ÑM depends on the structure of the skeleton of the head closure. It is deterministic
except when the head is a constant in Γ, in which case the transitions in ∆ control how
the state changes (cf. also Fig. 2 in the appendix of the technical report [11] for a pictorial
representation):

pp, pxα, ρq, Cα1
1 , . . . , Cαkk q ÑM tpp, ρpxαq, Cα1

1 , . . . , Cαkk qu,

pp, pMαNα1 , ρq, Cα2
2 , . . . , Cαkk q ÑM tpp, pMα, ρ

ˇ

ˇ

Mαq, pN
α1 , ρ

ˇ

ˇ

Nα1 q, C
α2
2 , . . . , Cαkk qu,

pp, pYMαÑα, ρq, Cα1
1 , . . . , Cαkk q ÑM tpp, pMαÑα, ρq, ppYMqα, ρq, Cα1

1 , . . . , Cαkk qu,

pp, pλxα0 .Mα, ρq, Cα0
0 , . . . , Cαkk q ÑM tpp, pMα, ρrxα0 ÞÑ Cα0

0 sq, Cα1
1 , . . . , Cαkk qu,

pp, pa0kÑ0, ρq, C0
1 , . . . , C

0
kq ÑM pP1 ˆ tC

0
1uq Y ¨ ¨ ¨ Y pPk ˆ tC

0
kuq

for every p a
ÝÑ P1 ¨ ¨ ¨Pk P ∆.

We say that M is non-deterministic if xΓ, Q,∆y is non-deterministic and all letters in Γ have
rank at most 1. Given c P CM and T Ď Q, the (control-state) reachability problem for M
asks whether c P Pre˚pT ˆ p

Ť

α“α1Ñ¨¨¨ÑαkÑ0 Cl
αpK0q ˆ Clα1pK0q ˆ ¨ ¨ ¨ ˆ ClαkpK0qqq.

Encoding. Following [24], we encode valid closures and configurations of the Krivine
machine as ranked trees. Fix a Krivine machine M “ xl,Γ, Q,K0,∆y of level l. We assume
a total order on all variables xxβ1

1 , . . . , xβnn y appearing in K0. For a type α, we define
ordpαq “ l ´ levelpαq. We construct an AOTPS S “ xl,Σ, Q1,Ry of order l as follows. The
ordered alphabet is

Σ “ tNα | Nα P ΛpK0q ^ levelpαq ă lu Y trNαs | Nα P ΛpK0qu Y tKi | i P t1, . . . , nuu.

Here, Nα is a symbol of rankpNαq “ n and ordpNαq “ ordpαq. Moreover, if α “ α1 Ñ ¨ ¨ ¨ Ñ

αk Ñ 0 for some k ě 0, then rNαs is a symbol of rankprNαsq “ n ` k and ordprNαsq “ l

(in fact, ordprNαsq is irrelevant, as rNαs is used only in the root). Finally, Ki is a leaf
of order i. The set of control locations is Q1 “ Q Y

Ť

pp
a
ÝÑP1¨¨¨PkqP∆

tp1, P1q, . . . , pk, Pkqu.
A closure pNα, ρq is encoded recursively as encpNα, ρq “ Nαpt1, . . . , tnq, where, for every
i P t1, . . . , nu,
(i) if xi P FVpNαq then ti “ encpρpxiqq, and
(ii) ti “ Kordpβiq otherwise (recall that βi is the type of xi).
A configuration c “ pp, pNα, ρq, Cα1

1 , . . . , Cαkk q is encoded as the tree encpcq
“ rNαspt1, . . . , tn, encpCα1

1 q, . . . , encpCαkk qq, where the first n subtrees encode the closure
pNα, ρq, i.e., encpNα, ρq “ Nαpt1, . . . , tnq. The encoding is extended point-wise to sets of

6 Cf. also [22] for a definition of the Krivine machine in a different context.
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configurations. Notice that K0 uses only variables of level at most l´ 1 (the subterm λxα.N

introducing xα is of level higher by one), so all skeletons in an environment are of order at
most l´ 1. Similarly, skeletons in argument closures are of level at most l´ 1; only the head
closure may have a skeleton of level l. Thus we do not need symbols Nα for levelpαq “ l.

Below, we assume that α “ α1 Ñ ¨ ¨ ¨ Ñ αk Ñ 0, that variable yj has order ordpαjq
for every j P t0, . . . , ku, and that variables xi and zi have order ordpβiq for every i P

t1, . . . , nu. Notice that ordpαq ă ordpα1q, . . . , ordpαkq. Moreover, we write x “ xx1, . . . , xny,
z “ xz1, . . . , zny, and y “ xy1, . . . , yky. Finally, by x

ˇ

ˇ

M
we mean the tuple which is the same

as x, except that positions corresponding to variables not free in M are replaced by the
symbol Kordpβiq. R contains the following rules:

p, rxαi spz1, . . . , zi´1,M
αpxq, zi`1, . . . , zn, yq Ñ tpu, rMαspx, yq,

p, rMαNα1spx, y2, . . . , ykq Ñ tpu, rMαspx
ˇ

ˇ

Mα , N
α1px

ˇ

ˇ

Nα1 q, y2, . . . , ykq,
p, rYMαÑαspx, yq Ñ tpu, rMαÑαspx, Y MαÑαpxq, yq,
p, rλxα0

i .Mαspx, y0, yq Ñ tpu, rMαspx1, . . . , xi´1, y0, xi`1, . . . , xn, yq,

p, ra0kÑ0spx, yq Ñ tp1, P1q, . . . , pk, Pkqu, ra
0kÑ0spx, yq @pp

a
ÝÑ P1 ¨ ¨ ¨Pkq P ∆,

pi, Piq, ra
0kÑ0spz, y1, . . . , yi´1,M

0
i pxq, yi`1, . . . , ykq Ñ Pi, rM

0
i spxq.

The first rule satisfies the ordering condition since the shared variables yi are of order strictly
higher than ordpMαq. A direct inspection of the rules shows that, for a configuration c and a
set of configurations D, we have cÑ˚

M D if, and only if, encpcq Ñ˚
S encpDq. Therefore, the

encoding preserves reachability properties. Since a Krivine machine of level n is simulated by
a flat AOTPS of order n, the following is an immediate consequence of Theorems 3.3 and 3.4.

I Theorem 4.3 ([1]). Reachability in alternating Krivine machines with states of level n
and in non-deterministic Krivine machines with states of level n` 1 is n-EXPTIMEc.

4.4 Ordered annotated multi-pushdown systems
Ordered annotated multi-pushdown systems are the common generalization of ordered multi-
pushdown systems and annotated pushdown systems [16]. Such a system is comprised of
m ą 0 annotated higher-order pushdowns arranged from left to right, where each pushdown is
of order n ą 0. While push operations are unrestricted, pop and collapse operations implicitly
destroy all pushdowns to the left of the pushdown being manipulated, in the spirit of [6, 3, 2].
[16] has shown that reachability in this model can be decided in mn-fold exponential time, by
using a saturation-based construction leveraging on the previous analysis for the first-order
case [6, 3, 2]. In App. F of the technical report [11], we provide a simple encoding of an
annotated multi-pushdown system with parameters pm,nq into an AOTPS of order mn. It
is essentially obtained by taking together our previous encodings of ordered (cf. Sec. 4.1)
and annotated systems (cf. Sec. 4.2). As a consequence of this encoding, by using the fact
that an AOTPS of order mn can be encoded by a Krivine machine of the same level (by
Theorem. 3.8), and by recalling the known fact that the latter can be encoded by a 1-stack
annotated multi-pushdown system of order mn [26], we deduce that the concurrent behavior
of an ordered m-stack annotated multi-pushdown system of order n can be sequentialized
into a 1-stack annotated pushdown system of order mn (thus at the expense of an increase
in order). The following complexity result is a direct consequence of Theorem 3.3.

I Theorem 4.4 ([16]). Reachability in alternating ordered annotated multi-pushdown systems
of parameters pm,nq is in pmnq-EXPTIME.
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We remark that our result is for alternating systems, while [16] considers non-deterministic
systems and obtain pmpn´ 1qq-EXPTIME complexity. It seems that their method can be
extended to alternating systems, and then the complexity becomes pmnq-EXPTIME as well.

5 Safety

The notion of safety has been made explicit by Knapik, Niwiński, and Urzyczyn [20] who
identified the class of safe recursive schemes. They have shown that this class defines the
same set of infinite trees as higher-order pushdown systems, i.e., the systems from Sec. 4.2
but without annotations. Blum and Ong [4] have extended the notion of safety to the
simply-typed λ-calculus in a clear way. Then [26] adapted it to λY -calculus, and have shown
that safe λY -terms correspond to higher-order pushdown automata without annotation.

There is a simple notion of safety for AOTPSs that actually corresponds to safety for
pushdown systems and terms. We say that a pΣY Vq-tree is safe when looking from the root
to the leafs the order does never increase. Formally, a tree u is safe if every subtree t thereof
has order ordptq ď ordpuq and it is itself safe. A rewrite rule lÑ r is safe if both l and r are
safe. We say that S is safe if all its rules are safe.

As a first example, let us look at the encoding of annotated higher-order pushdown
systems from Sec. 4.2. If we drop annotation then higher-order pushdowns are represented by
safe trees, and all the rules are safe in the sense above. The case of Krivine machines is more
difficult to explain, because it would need the definition of safety from [26]. In particular,
one would have to partition variables into lambda-variables and Y -variables, which we avoid
in the current presentation for simplicity. In the full version of the paper we will show that
safe terms are encoded by safe trees, and that all the rules of the encoding of the Krivine
machine preserve safety. Finally, we remark that the translation from AOTPSs to the Krivine
machine with states previously announced in Theorem 3.8 can be adapted to produce a safe
Krivine machine with states from a safe AOTPS.

6 Conclusions

We have introduced a novel extension of pushdown automata which is able to capture several
sophisticated models thanks to a simple ordering condition on the tree-pushdown. While
ordered tree-pushdown systems are not more expressive than annotated higher-order push-
down systems, or than Krivine machines, they offer some conceptual advantages. Compared
to Krivine machines, they have states, and typing is replaced by a lighter mechanism of
ordering; for example, the translation from our model back to the Krivine machine is much
more cumbersome. Compared to annotated pushdown automata, the tree-pushdown is more
versatile than a higher-order stack; for example, one can compare the encoding of the Krivine
machine into our model to its encoding to annotated pushdown automata. We hope that
ordered tree-pushdown systems will help to establish more connections with other models, as
we have done in this paper with multi-pushdown systems.

There exist restrictions of multi-pushdown systems that we do not cover in this paper.
Reachability games are decidable for phase-bounded multi-pushdown systems [27]. We can
encode the phase-bounded restriction directly in our tree-pushdown systems, but we do
not know how to deal with the scope-bounded restriction. Encoding the scope-bounded
restriction would give an algorithm for reachability games over such systems, but we do not
know if the problem is decidable.

Our general saturation algorithm can be used to verify reachability properties. We plan
to extend it to the more general parity properties, in the spirit of [18]. We leave as future
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work implementing our saturation algorithm, leveraging on subsumption techniques to keep
the search space as small as possible.

Acknowledgments. We kindly acknowledge stimulating discussions with Irène Durand,
Géraud Sénizergues, and Jean-Marc Talbot, and the anonymous reviewers for their helpful
comments.
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Abstract
Two-way finite-state transducers on words are strictly more expressive than one-way transducers.
It has been shown recently how to decide if a two-way functional transducer has an equivalent one-
way transducer, and the complexity of the algorithm is non-elementary. We propose an alternative
and simpler characterization for sweeping functional transducers, namely, for transducers that
can only reverse their head direction at the extremities of the input. Our algorithm works
in 2ExpSpace and, in the positive case, produces an equivalent one-way transducer of doubly
exponential size. We also show that the bound on the size of the transducer is tight, and that
the one-way definability problem is undecidable for (sweeping) non-functional transducers.
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1 Introduction

Regular word languages form the best understood class of languages. They enjoy several
characterizations, in particular by different kinds of finite-state automata. For instance,
two-way finite-state automata have the same expressive power as one-way automata. This
result has been established independently by Rabin and Scott [9] and Shepherdson [10].
Besides automata, regular languages have logical and algebraic characterizations, namely
through monadic second-order logic and congruences of finite index.

Transducers extend automata by producing outputs with each transition. A run generates
an output word by concatenating the words produced by its transitions. A transducer thus
defines a relation over words. It is called functional when this relation is a function. For
finite-state transducers, expressiveness is different than for finite-state automata. As an
example, two-way transducers are strictly more expressive than one-way transducers. For
instance, the function that maps a word to its mirror image can be done by a back-and-forth
pass over the input, but no one-way transducer can do it.

As seen above, we lose some robustness when going from automata to transducers. On
the other hand, some of the classical characterizations of regular languages generalize well
to transducers. An important result is the equivalence of functional two-way transducers
and Ehrenfeucht-Courcelle’s monadic-second order transductions [5] over words. Another
characterization of two-way transducers was provided through a new model called streaming
string transducers [1, 2], that process the input one-way and store the output in write-only
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registers. Finally, first-order transductions are known to be equivalent to aperiodic streaming
transducers [7] and to aperiodic two-way transducers [4].

The question whether a functional two-way word transducer is equivalent to a one-way
transducer has been solved recently in [6]. The algorithm proposed by [6] takes a two-way
transducer S and builds a one-way transducer T that is “maximal” in the following sense: (1)
all accepting runs of T produce correct outputs, and (2) all runs of S that can be performed
one-way are realized by T . As a consequence, the two-way transducer S has an equivalent
one-way transducer if and only if the constructed one-way transducer T has the same domain
as S, which is a decidable problem. The problem is that the upper bound on both the
decision procedure and the size of the constructed one-way transducer is non-elementary.

The main contribution of this paper is an elementary procedure for deciding whether a
functional two-way word transducer is equivalent to a one-way transducer, for the particular
class of sweeping transducers. While two-way transducers can reverse their head direction at
any position of the input, sweeping transducers can only reverse it at the first and last position.
Unsurprisingly, sweeping transducers are strictly less expressive than two-way transducers,
and the following example shows the difference: on input u1 a u2 a . . . a un−1 a un,
where the words ui contain no occurrence of a, the two-way transducer produces as output
un a un−1 a . . . a u2 a u1 (we assume that the alphabet contains at least two letters).

Our decision procedure works in doubly exponential space and, when it succeeds, it
produces an equivalent one-way transducer of doubly exponential size. We show that the
bound on the size of the transducer is tight for any decision algorithm producing an equivalent
one-way transducer from a sweeping transducer. This improves the PSpace lower bound
from [6]. The non-elementary procedure described in [6] relies on Rabin-Scott’s construction
for automata, and works by eliminating basic zigzags in runs. Our procedure is closer to
the textbook approach (due to Shepherdson) and uses crossing sequences. This requires a
decomposition of runs which is incomparable with the zigzag decomposition of [6]. Finally,
we show that the one-way definability problem becomes undecidable for non-functional
transducers.

Overview

Section 2 defines transducers and related concepts. Section 3 defines decomposition of
runs and gives the construction of a one-way transducer based on such decompositions. In
Section 4 we show that all one-way-definable runs admit a decomposition. Section 5 provides
the lower bound and the undecidability result. A long version of the paper can be found on
http://www.labri.fr/perso/anca/Publications/fsttcs15.pdf

2 Preliminaries

Transducers

A two-way transducer is a tuple (Σ,∆, Q, I, F, δ), where Σ (resp., ∆) is a finite input (resp.,
output) alphabet, Q is a finite set of states, I (resp., F ) is a subset of Q representing the
initial (resp., final) states, and δ ⊆ Q× Σ×∆? ×Q× {left, right} is a finite set of transition
rules describing, for each state and input symbol, the possible output string, target state, and
direction of movement. We talk of a one-way transducer whenever δ ⊆ Q×Σ×∆?×Q×{right}.
The size of a transducer is its number of states.

According to standard practice, the states of one-way automata and transducers are
usually located between the letters of the input word u = a1 . . . an. For this it is convenient
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to introduce n + 1 positions 0, 1, . . . , n and think of each position i > 0 (resp., 0) as a
placeholder between the i-th and the i+ 1-th symbols (resp., just before the first symbol a1).
Moreover, since here we deal with two-way devices, a single position can be visited several
times along a run. Thus, to describe a run of a two-way transducer on input u = a1 . . . an,
we will associate states with locations, namely, with pairs (x, y) where x is a position among
0, 1, . . . , n and y is an integer representing the number of reversals performed up to a certain
point – for short, we call this number y the level of the location.

A run is a sequence of locations, labelled by states and connected by edges, called
transitions. The state at location ` = (x, y) of a run ρ is denoted ρ(`). The transitions must
connect pairs of locations that are either at adjacent positions and on the same level, or at
the same position and on adjacent levels. In addition, each transition is labelled with a pair
a/v consisting of an input symbol a and an output v. There are four types of transitions:

(i− 1, 2y + 1) (i, 2y + 1) (i− 1, 2y) (i, 2y)

(i, 2y + 1)
(i, 2y + 2)

(i− 1, 2y)
(i− 1, 2y + 1)

a/va/v

a/va/v

Note that the transitions between locations at even levels are all directed from left to
right, while the transitions at odd levels are directed from right to left. More precisely,
the upper left (resp., upper right) transition may occur in a run ρ on u = a1 . . . an if(
ρ(i, 2y + 1), a, v, ρ(i − 1, 2y + 1), left

)
(resp.,

(
ρ(i − 1, 2y), a, v, ρ(i, 2y), right

)
) is a valid

transition rule of T and a = ai. Similarly, the lower left (resp., lower right) transition may
occur if

(
ρ(i, 2y+ 1), a, v, ρ(i, 2y+ 2), right

)
(resp.,

(
ρ(i− 1, 2y), a, v, ρ(i− 1, 2y+ 1), left

)
) is a

valid transition rule of T and a = ai. For technical reasons (namely, to enable distinguished
transitions at the extremities of the input word), we will introduce the special fresh symbols
� and � and allow the lower left (resp., lower right) transition also when i = 0 and a = �

(resp., when i = |u| and a = �).
Given a sequence x1, . . . , xn, a factor denotes any contiguous subsequence xi, . . . , xj , for

1 ≤ i ≤ j ≤ n. A run on the input u = a1 . . . an is said to be successful if it starts at the lower
left location (0, 0) with an initial state of T and ends at the upper right location (|u|, ymax)
in a final state of T . The output produced by a run is the concatenation of the outputs of
its transitions, and it is denoted by out(ρ). We denote by dom(T ) the language of all words
u that admit a successful run of T . We order the locations along a run ρ by letting `1 < `2
if `2 is reachable from `1 following the transitions in ρ. Given two locations `1 < `2 of a run
ρ, we denote by ρ[`1, `2] the factor of the run that starts in `1 and ends in `2. Note that
ρ[`1, `2] is also a run, hence the notation out

(
ρ[`1, `2]

)
is consistent.

Further assumptions

We will mostly work with two-way transducers that are sweeping. This means that on every
successful run, the head can change direction only at the extremities of the input. In other
words, the lower right (resp., lower left) transition is possible only if a = � (resp., a = �).

A transducer T is functional if, for each input word u, all successful runs on u produce
the same output. In this case T (u) denotes the unique output produced on input u.

Unless otherwise stated, we will assume that all transducers are sweeping and functional.
Note that functionality is a decidable property, as stated below. The proof is similar to the
decidability proof of equivalence of streaming string transducers [1] and reduces the problem
to the reachability of a 1-counter automaton of exponential size.
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I Proposition 1. Functionality of two-way transducers can be decided in polynomial space.
This problem is PSpace-hard even for sweeping transducers.

Without loss of generality, we can also assume that the successful runs of a functional
transducer are normalized, namely, they never visit two locations with the same position,
the same state and both either at an even level or at an odd level. Indeed, if this were not
the case, say if a successful run ρ visits two locations `1 = (x, y1) and `2 = (x, y2) such that
ρ(`1) = ρ(`2) and y1, y2 are both even or both odd, then the output produced by ρ between
`1 and `2 is either empty – in which case we could remove ρ[`1, `2] and obtain an equivalent
successful run – or is non-empty – in which case, by repeating ρ[`1, `2], we could obtain
successful runs that produces different outputs on the same input, thus contradicting the
assumption that the transducer is functional.

Crossing sequences

Consider a run ρ of a transducer on input u = a1 . . . an. For each position x ∈ {0, 1 . . . , n},
we are interested in the sequence of states labelling the locations at position x. Formally,
we define the crossing sequence of ρ at x as the tuple ρ|x =

(
ρ(x, y0), . . . , ρ(x, yh)

)
, where

y0 < . . . < yh are exactly the levels of the locations of ρ of the form (x, y), with y ∈ N (if the
transducer is sweeping, we simply have yi = i). If the considered run ρ is successful, then
the bottom and top locations at position x have even levels, and the outgoing transitions
move rightward. In particular, every crossing sequence of a successful run has odd length.
Moreover, if we assume that the successful run is normalized, then every crossing sequence
has length at most 2|Q|−1. The crossing number of a run is the maximal length of a crossing
sequence of that run. The crossing number of a transducer is the maximal crossing number
of any of its normalized runs – note that this value is bounded by 2|Q| − 1.

Intercepted factors

An interval of positions has the form I = [x1, x2], with x1 < x2. We say that an interval I =
[x1, x2] contains (resp., strongly contains) another interval I ′ = [x′1, x′2] if x1 ≤ x′1 ≤ x′2 ≤ x2
(resp., x1 < x′1 ≤ x′2 < x2). We say that a factor of a run ρ is intercepted by an interval
I = [x1, x2] if it is maximal among the factors of ρ that visit only positions in I and that
never make a reversal (recall that reversals in sweeping transducers can only occur at the
extremities of the input word).

It is easy to see that distinct factors intercepted by the same interval I visit disjoint
sets of locations. This means that a factor intercepted by I can be uniquely identified by
specifying a location ` in it, e.g., the first or the last one. Accordingly, we will denote by
ρ | I/` the factor intercepted by I that visits the location ` (if this factor does not exist, we
simply let ρ | I/` = ε).

A loop of a run ρ is an interval L = [x1, x2] such that the crossing sequences at positions
x1 and x2 are equal, that is, ρ|x1 = ρ|x2. Loops can be used to pump parts of runs, as
explained below.

Pumping

Given a loop L = [x1, x2] of a run ρ on u and a number m ∈ N, we can replicate m times
the factor u[x1, x2] of the input and simultaneously, on the run, we replicate m times the
loop L. Formally, with β0, . . . , βh denoting the factors intercepted by L, we define the run
obtained by replicating L as a sequence of the form
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pumpm
L (ρ) = α0 β

m
0 γ0︸ ︷︷ ︸

forward

γ1 β
m
1 α1︸ ︷︷ ︸

backward

α2 β
m
2 γ2︸ ︷︷ ︸

forward

· · · αymax β
m
h γymax︸ ︷︷ ︸

forward

(1)

where h < 2|Q| − 1 is the maximum level visited by ρ, and αy (resp., βy, γy) is the factor
of ρ at level y that is intercepted by the interval [0, x1] (resp., L = [x1, x2], [x2, |u|]). Note
that each αy βy γy (resp., γy βy αy) is a maximal factor of the run ρ that is forward-oriented
(resp., backward-oriented). We also define

pumpm
L (u) = u[1, x1] ·

(
u[x1 + 1, x2]

)m · u[x2 + 1, |u|]

and we observe that pumpm
L (ρ) is a valid run on pumpm

L (u). We also remark that the above
definition of pumped run works only for sweeping transducers, as for arbitrary two-way
transducers we would need to take into account the possible reversals within a loop L and
combine the intercepted factors in a more complex way.

3 Decompositions of one-way definable runs

The problem we consider in this paper is the one-way definability of functional, sweeping
transducers: given a transducer S, we ask if there exists an equivalent one-way transducer T ,
namely, one such that T (u) = S(u) for all u ∈ Σ?. In the answer is “yes”, then we also want
to compute an equivalent one-way transducer. Of course, there are sweeping transducers
S, like S(u) = u · u, that are not equivalent to any one-way transducer (assuming that the
alphabet Σ is not unary).

Before introducing some technical concepts, let us consider an example that highlights
the main idea of the proof. Fix a regular language R (not containing the empty word) and
consider the transduction that maps a word on the mirror of the rightmost maximal factor
belonging to R. That is, f(u v w) = mirror(v) whenever (1) v ∈ R, (2) there is no v′ ∈ R
such that v′ is prefix of vw, and (3) w has no factor in R. It can be easily seen that f can
be realized by a two-way transducer, but not by a one-way transducer. However, f can
be realized by a one-way transducer for particular regular languages R, like the periodic
language R = (ab)+: we simply guess v and output mirror(v) ∈ (ba)+ from left to right,
then we check w. This example shows that periodicities play an important role in deciding
whether a given transduction can be realized by a one-way transducer.

We introduce in the following some notations and concepts that will help us to state a
sufficient condition for the one-way definability of sweeping transducers. For simplicity, we
fix for the remaining of the paper a functional, sweeping transducer S as input. We first
introduce some constants: hS is the maximum number of levels visited by the normalized
runs of S, cS is the maximum number of symbols produced by a single transition of S, and
eS = cS · |Q|2|Q|, where Q is the state space of S. The constant eS will be used to bound
the lengths or the periods of certain parts of the output produced by S, and is related to the
number of crossing sequences of S (see also Lemma 6 in Section 4).

A word v is said to have period p if v ∈ w∗ w′ for some word w of length p and some
prefix w′ of w. For example, v = abc abc ab has period p = 3. Similarly, we say that v is
almost periodic with bound p if v = w0 w1 w2 for some words w0, w2 of length at most p and
some non-empty word w1 of period at most p.

We will also need to identify sub-sequences of a run ρ of S that are induced by particular
sets of locations. Recall that ρ[`1, `2] denotes the factor of ρ delimited by two locations `1
and `2. Similarly, we denote by ρ | Z the sub-sequence of ρ induced by a set Z of locations –
note that Z does not need to be an interval and, even though ρ | Z might not be a valid run
of S, we can still refer to the number of transitions and the size of the output.
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F1

F2

F3

F4

R1

R2

R3

Figure 1 Decomposition of a run into floors and ramps.

I Definition 2. Let ρ be a run of S on u. We define two types of pairs of locations of ρ:
A floor is a pair of locations (`1, `2) such that `1 ≤ `2 are on the same even level.
A ramp is a pair of locations (`1, `2), with `1 = (x1, y1) and `2 = (x2, y2), such that (i)
x1 ≤ x2, (ii) y1 < y2, (iii) both y1 and y2 are even, (iv) the output produced by ρ[`1, `2]
has length at most (y2 − y1 + 1) · eS or it is almost periodic with bound 2 · eS , and (v)
the output produced by the sub-sequence ρ | Z, where Z = [`1, `2] \ [x1, x2] × [y1, y2],
has length at most 2(y2 − y1) · eS .

Before discussing how the above definitions are used, we give some intuition. The simplest
concept is that of floor, which is essentially a forward-oriented factor of a run. Ramps
connect consecutive floors. An important constraint in the definition of a ramp (`1, `2) is
that the output of ρ[`1, `2] is bounded or almost periodic with small bound. We will see later
how this constraint eases the production of the output of ρ[`1, `2] by a one-way transducer.
The last constraint on a ramp (`1, `2) bounds the length of the output produced by the
sub-sequence ρ | Z, where Z = [`1, `2] \ [x1, x2]× [y1, y2]. As shown by the figure to the right,

`1

`2

this sub-sequence (represented by bold arrows) can be obtained from
the factor ρ[`1, `2] by removing the factors intercepted by [x1, x2]
(represented by the hatched area). The constraint is used for those
parts of the run that are not covered by floors or ramps. In particular,
it guarantees that the size of the output above each floor is bounded
by 2hS · eS .

The general idea for turning S into an equivalent one-way trans-
ducer will be to guess (and check) a decomposition of the run of S
into factors that are floors or ramps.

I Definition 3. A decomposition of a run ρ is a factorization into floors and ramps.

Figure 1 gives an example of a decomposition. Note that, thanks to Definition 2, the
number of symbols produced outside the segments F1, F2, . . . and the rectangles R1, R2, . . . is
small (indeed, bounded by 2hS · eS); so most of the output is produced inside these segments
and rectangles. We can now state our main result:

I Theorem 4. A sweeping functional transducer S is one-way definable if and only if every
input word has some successful run of S that admits a decomposition.
Moreover, we can construct from S a one-way transducer T that maps u to v whenever there
is a successful run of S on u that outputs v and admits a decomposition. The construction
of T takes doubly exponential time in |S|.
In particular, S is one-way definable if and only if dom(T ) = dom(S). The latter condition
can be tested in polynomial space in |S| and |T |, so in doubly exponential space in |S|.
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The first claim of the theorem gives the main characterization, namely, it shows that the
existence of decompositions of successful runs, for all possible inputs in the domain of S, is a
sufficient and necessary condition for the transduction to be one-way definable. The second
claim shows a property that is slightly more general than sufficiency: it allows to compute a
one-way transducer T that is somehow the “best one-way approximation” of S, in the sense
that the transduction computed by T is always contained in the transduction computed by
S and it is equal when S is one-way definable. The last claim deals with the effectiveness of
the characterization, showing that one-way definability is decidable in 2ExpSpace. For the
sake of presentation, we divide the proof of the theorem into two parts. The first part, given
below, deals with the sufficiency and the effectiveness of the characterization (i.e. the second
and third claims of the theorem). The second part, which is the most technical one and is
deferred to Section 4, deals with the necessary part of the characterization.

Proof of Theorem 4 (sufficiency and effectiveness). We build from S a one-way trans-
ducer T that simulates all successful runs of S that admit a decomposition. Consider one
such run ρ. We begin by observing that a decomposition of ρ can be described by a sequence
of locations `0 < `1 < . . . < `t, where `0 = (0, 0), `t = (xmax, ymax), and, for all 0 ≤ i < t,
(`i, `i+1) is a floor or a ramp. In particular, the one-way transducer T will guess the crossing
sequences of ρ, together with a sequence of locations (`i)i≤t, which are intended to represent
a decomposition of ρ. Below, we show how to check that the guessed sequence of locations
represents a valid decomposition, and how to produce the corresponding output.

Traversing the floors of the decomposition does not pose particular problems, as these
are forward-oriented factors of the run ρ, which can be directly simulated by T without
reversing the head. Of course, we need to store the bounded output on the levels above the
floor, and check that the output on the levels below the floor matches some stored output
words. The interesting case happens when T simulates a ramp (`i, `i+1), with `i = (xi, yi)
and `i+1 = (xi+1, yi+1). First of all, it is easy for T to verify the first three conditions of
the definition of ramp, namely, that xi ≤ xi+1, yi < yi+1, and both yi and yi+1 are even.
Checking the remaining conditions is more difficult and requires storing some words for a
total length that does not exceed 8hS ·eS – in particular, this explains the doubly exponential
blowup of the state space of T . More precisely, at the beginning of the computation, T
guesses, for each ramp (`i, `i+1), with `i = (xi, yi) and `i+1 = (xi+1, yi+1):

a word vi that has length at most (yi+1 − yi + 1) · eS or is almost periodic with bound
2 ·eS (in the latter case, in fact, the word is described by a prefix, a suffix, and a repeating
pattern, each one of length at most 2 · eS),
some words �−v y and −�v y, that is, two words for each level y ∈ {yi + 1, . . . , yi+1}, whose
lengths sum up to at most 2hS · eS .

The idea is that each word vi represents the output produced by the factor ρ[`i, `i+1] (this
output is bounded or is almost periodic, thanks to the fourth condition of the definition of
ramp). Note that, by construction, there can be at most hS ramps in the decomposition,
and hence the sum of the lengths of the words used to represent the vi’s does not exceed
6 · hS · eS . Similarly, each word �−v y (resp., −�v y) represents the output produced by the factor
of the run ρ that is at level y and to the left of the position xi (resp., right of xi+1), where i
is the unique index such that yi < y ≤ yi+1 (resp., yi ≤ y < yi+1). The total length of these
words is at most 2hS · eS . Overall, the sum of the lengths of all the words guessed by T
never exceeds 8hS · eS .

Using the words vi, �−v y, −�v y and some additional pointers, the transducer T can verify that
the guessed ramps satisfy the required conditions and that the decomposition is thus valid.
In the same way, the words vi, �−v y, −�v y can be used to produce the output out(ρ[`i, `i+1])
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associated with each ramp (`i, `i+1). For this, it is sufficient to visit the positions of the
ramp (`i, `i+1) and, at the same time, fetch blocks of symbols of appropriate length in the
word vi, so as to eventually match the length of the desired output out(ρ[`i, `i+1]) – note
that this requires taking into account also the words �−v y and −�v y.

We just described informally a one-way transducer T that simulates any run ρ of S that
admits a decomposition. The size of T is doubly exponential in the size of S and this proves
the second claim of the theorem.

Assuming that the existence of decompositions of successful runs is also a necessary
condition for the one-way definability of S (this will be proved in the next section), we can
easily derive from the above constructions a 2ExpSpace decision procedure for testing one-
way definability. More precisely, given a sweeping transducer S, one constructs T as above
in doubly exponential time, and then tests whether dom(S) ⊆ dom(T ). The latter problem
can be seen as a containment problem between a two-way non-deterministic finite-state
automaton A and a one-way non-deterministic finite-state automaton B. Using standard
constructions, one can turn A into an equivalent one-way non-deterministic finite-state
automaton A′ (which is exponential in S), and finally decide the containment A′ ⊆ B in
polynomial space in A′ and B, that is, in doubly exponential space in S. J

4 Characterizing one-way definability

In this section we prove the harder direction of the first claim of Theorem 4: if a sweeping
functional transducer is one-way definable, then every accepted input has a successful run
that can be decomposed into floors and ramps.

We begin by identifying some phenomena that prevent a transducer to be one-way
definable. A first example is the mirror transduction, where a large number of symbols need
to be generated from right to left. Another example is the doubling transduction S(u) = u ·u.
Here, we have an inversion, namely large parts of the input must be generated before other
large parts that are located to their left. We give a formal definition of inversions below.

Fix a successful run ρ of S and consider a loop L = [x1, x2] of ρ. A location `1 of ρ is
called entry point of L if `1 is the first location of the factor intercepted by L at level y, for
some y. Similarly, a location `2 is called an exit point of L if `2 is the last location of the factor
intercepted by L at level k, for some k. Note that `1 belongs to {x1}× (2N) ∪ {x2}× (2N+1),
and `2 belongs to {x2} × (2N) ∪ {x1} × (2N + 1). Finally, we say that an intercepted factor
ρ | I/` is captured by a loop L if I contains L (possibly, I = L) and the subfactor intercepted
by L on the same level as `, has non-empty output.

I Definition 5. An inversion of the run ρ is a pair of locations `1 and `2 for which there
exist two loops L1 = (x1, x

′
1) and L2 = (x2, x

′
2) such that:

`1 is an entry point of L1 and `2 is an exit point of L2,
`1 < `2 and x1 ≥ x2 (namely, `2 strictly follows `1 along the run, but the left endpoint of
L2 precedes the left endpoint of L1),
for both i = 1 and i = 2, the intercepted factor ρ | Li/`i is captured by the loop Li, but
it is not captured by any other loop strongly contained in Li.

We say that the above loops L1 and L2 are witnessing the inversion (`1, `2).

The left-hand side of Figure 2 gives an example of an inversion, where the entry point `1
of L1 and the exit point `2 of are represented by white circles.

The first lemma (proved in the appendix) can be used to bound the lengths of the outputs
produced by the factors ρ | L1/`1 and ρ | L2/`2, where `1, `2, L1, L2 are as in Definition 5:
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L2 L1

`1

`2

X̃
(3,3)
2 X̃

(3,3)
1

v1 v1 v1

v2 v2 v2

Figure 2 To the left: an entry point `1 of L1 and an exit point `2 of L2 forming an inversion. To
the right: the run obtained by pumping the loops L1 and L2.

I Lemma 6. If an intercepted factor ρ | I/` is not captured by any loop L strongly contained
in I, then the length of its output is at most eS .
In particular, for every inversion (`1, `2) witnessed by some loops L1 and L2, we have
1 ≤

∣∣out(ρ | Li/`i)
∣∣ ≤ eS , for both i = 1 and i = 2.

The next proposition gives the crucial property for characterizing one-way definability, as
it shows that the transducer S is one-way definable only if for every inversion (`1, `2), the
output of ρ[`1, `2] is periodic.

I Proposition 7. Suppose that the sweeping transducer S is one-way definable. Then, for
all inversions (`1, `2) of the run ρ witnessed by loops L1, L2 and for both i = 1 and i = 2, the
output of ρ[`1, `2] has period

∣∣out(ρ | Li/`i)
∣∣, hence, in particular, at most eS .

A key ingredient for the proof of the above proposition is Fine and Wilf’s theorem [8].
In short, this theorem says that, whenever two periodic words w1, w2 share a sufficiently
long factor, then they have the same periods. Below, we state a slightly stronger variant
of Fine and Wilf’s theorem, which contains an additional claim that shows how to align a
common factor of the two words w1, w2 so as to form a third word containing a prefix of w1
and a suffix of w2. The additional claim will be exploited in the proof of Proposition 7 and
Lemma 11.

I Lemma 8 (Fine and Wilf). If w1 is a word with period p1, w2 is a word with period p2,
and w1 and w2 have a common factor of length at least p1 + p2 − gcd(p1, p2), then w1 and
w2 have also period gcd(p1, p2). If in addition we have w1 = u1 w v1, w2 = u2 w v2, and
|w| ≥ gcd(p1, p2), then w3 = u1 w v2 has also period gcd(p1, p2).

Proof of Proposition 7. Let L1 = (x1, x
′
1), L2 = (x2, x

′
2) be the loops witnessing the inver-

sion (`1, `2). Note that the two loops L1 and L2 might not be ordered exactly as shown in
Figure 2. In fact, two cases can arise: either x2 < x′2 ≤ x1 < x′1 (that is, L1 and L2 are
disjoint and L1 is to the right of L2) or x2 ≤ x1 < x′2 ≤ x′1 (that is, L1 overlaps to the right
with L2).

We begin by pumping the loops L1 and L2 (see the right-hand side of Figure 2). Formally,
for all positive numbers m1,m2, we define

ρ(m1,m2) = pumpm2
L2

(pumpm1
L1

(ρ)) and u(m1,m2) = pumpm2
L2

(pumpm1
L1

(u)) .

We identify the positions of u(m1,m2) that mark the endpoints of the copies of the loops L1
and L2 in the pumped run ρ(m1,m2). Because L2 precedes L1 with respect to the ordering of
positions, it is easier to define first the set of endpoints of the copies of L2:

X̃
(m1,m2)
2 = {x2 + i∆2 | 0 ≤ i ≤ m2} where ∆2 = x′2 − x2 .
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The set of endpoints of the copies of L1 is defined as

X̃
(m1,m2)
1 = {x1 + i∆1 +m2∆2 | 0 ≤ i ≤ m1} where ∆1 = x′1 − x1 .

We then exploit the hypothesis that S is one-way definable and assume that the one-way
transducer T is equivalent to S. In particular, T produces the same output as S on every
input u(m1,m2). Let σ(m1,m2) be a successful run of T on u(m1,m2). Since T has finitely
many states, we can find a large enough number h > 0 and two positions x̃1 < x̃′1 ∈ X̃

(h,h)
1

such that the crossing sequences of σ(h,h) at x̃1 and x̃′1 are the same. Similarly, we can find
two positions x̃2 < x̃′2 ∈ X̃

(h,h)
2 such that the crossing sequences of σ(h,h) at x̃2 and x̃′2 are

the same. This means that L̃1 = (x̃1, x̃
′
1) and L̃2 = (x̃2, x̃

′
2) can be equally seen as loops of

ρ(h,h) or as loops of σ(h,h). In particular, there are constants k1, k2 > 0, 0 ≤ h1 < k1, and
0 ≤ h2 < k2 such that, for all positive numbers m1,m2:

u(k1·m1+h1,k2·m2+h2) = pumpm2
L̃2

(pumpm1
L̃1

(u(h,h)))

and the above word has a successful run in T of the form pumpm2
L̃2

(pumpm1
L̃1

(σ(h,h))). Consider
the outputs v1 and v2 produced by the intercepted factors ρ | L1/`1 and ρ | L2/`2, respectively.
By Lemma 6, both v1 and v2 are non-empty. Moreover, by definition of pumped run, the
output produced by ρ(k1·m1+h1,k2·m2+h2) contains k1 ·m1 + h1 consecutive occurrences of v1
followed by k2 ·m2 +h2 consecutive occurrences of v2 (see again the right-hand side Figure 2).
Formally, we can write

out(ρ(k1·m1+h1,k2·m2+h2)) = v0(m1,m2)·vk1·m1+h1
1 ·v3(m1,m2)·vk2·m2+h2

2 ·v4(m1,m2) (2)

for some words v0(m1,m2), v3(m1,m2), and v4(m1,m2) that may depend on m1 and m2 (we
highlighted in bold the repeated occurrences of v1 and v2 and we observe that v1 precedes
v2).

In a similar way, because the same output is also produced by the the one-way transducer
T , i.e. by the run pumpm2

L̃2
(pumpm1

L̃1
(σ(h,h))), and because the loop L2 precedes the loop L1

according to the natural ordering of positions, we have

out(ρ(k1·m1+h1,k2·m2+h2)) = w0 ·wm2
2 · w3 ·wm1

1 · w4 (3)

where w1 (resp., w2) is the output produced by the unique factor of σ(h,h) intercepted by
L̃1 (resp., L̃2), and w0, w3, w4 are the remaining parts of the output. Note that, differently
from the previous equation, here the first repetition is produced during the loop L̃2 and the
remaining parts w0, w3, w4 do not depend on m1,m2. We now consider the factor

v(m1,m2) = vk1·m1+h1
1 · v3(m1,m2) · vk2·m2+h2

2

of the output produced by S. The following claim shows that this factor is periodic, with a
small period that only depends on S (in particular, it does not depend on any of the indices
h, k1, k2, h1, h2,m1,m2).

I Claim. For all numbers m1,m2 > 0, the word v(m1,m2) = vk1·m1+h1
1 · v3(m1,m2) ·

vk2·m2+h2
2 is periodic with period gcd(|v1|, |v2|).

The idea for the proof of the above claim, detailed in the appendix, is to let m1 and m2 grow
independently. We exploit Equations (2) and (3) to show that vk1·m1+h1

1 · v3(m1,m2) · v2
has period gcd(|v1|, |w1|), and that v1 · v3(m1,m2) · vk2·m2+h2

2 has period gcd(|v2|, |w2|). A
last application of Fine and Wilf’s theorem (Lemma 8) gives the desired periodicity.
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Recall that we aim at proving the periodicity of the output out(ρ[`1, `2]) of the original
run ρ of S between the locations `1 and `2. The previous arguments, however, concern the
outputs v(m1,m2), which are produced by factors of the pumped runs ρ(k1·m1+h1,k2·m2+h2).
By Equation (1) in Section 2, out(ρ[`1, `2]) can be obtained from any v(m1,m2) by deleting
some occurrences of non-empty words produced by factors intercepted by L1 or L2. More
precisely, the words that need to be deleted in v(m1,m2) to obtain out(ρ[`1, `2]) are non-
empty and of the form out(ρ | Li/`

′
i), for some i ∈ {1, 2} and some location `′i such that

`1 ≤ `′i ≤ `2. Let us denote by v′1, . . . , v′m these words. Note that, as m1 and m2 get larger,
v(m1,m2) contains arbitrarily long repetitions of each word v′i, and hence long factors of
period |v′i|, for i = 1, . . . ,m. Thus, by applying Lemma 8, we get that v(m1,m2) has period
p = gcd(|v1|, |v2|, |v′1|, . . . , |v′m|).

Towards a conclusion, we know that out(ρ[`1, `2]) is obtained from v(m1,m2) by removing
occurrences of the words v′1, . . . , v′m whose lengths are multiple of the period p of v(m1,m2).
This implies that out(ρ[`1, `2]) is also periodic with period p, which divides

∣∣out(ρ | Li/`i)
∣∣

for both i = 1 and i = 2. J

Recall that the proof of the remaining part of Theorem 4 (necessity of the condition
characterizing one-way definability) amounts at constructing a decomposition of the suc-
cessful run ρ under the assumption that S is one-way definable. We begin to construct a
decomposition of ρ by identifying some ramps in it. Intuitively, such ramps are obtained by
considering the classes of a suitable equivalence relation:

I Definition 9. Let be the relation that pairs every two locations `, `′ along the run ρ
whenever there is an inversion (`1, `2) of ρ such that `1 ≤ `, `′ ≤ `2, namely, whenever ` and
`′ occur within the same inversion. Let ? be the reflexive and transitive closure of .

It is easy to see that every equivalence class of ? is a convex subset with respect to
the natural ordering of locations of ρ. The following lemma shows that every non-singleton
equivalence class of ? is a union of a series of inversions that are two-by-two overlapping.

I Lemma 10. If two locations ` ≤ `′ of ρ belong to the same non-singleton equivalence class
of ?, then there is a sequence of locations `1 ≤ `3 ≤ `4 ≤ . . . ≤ `n−3 ≤ `n−2 ≤ `n, for some
even number n ≥ 4, such that

`1 ≤ ` ≤ `4 and `n−3 ≤ `′ ≤ `n,
(`1, `4), (`3, `6), (`5, `8), . . . , (`n−5, `n−2), (`n−3, `n) are inversions.

The next result uses Lemma 6, Proposition 7, and Lemma 10 to show that the output
produced inside a ?-equivalence class is also periodic with small period, provided that S is
one-way definable.

I Lemma 11. If S is one-way definable and ` ≤ `′ are two locations of the run ρ such that
` ? `′, then the output out(ρ[`, `′]) produced between ` and `′ has period at most eS .

Below, we introduce some “bounding boxes” of non-singleton ?-equivalence classes.
Intuitively, these bounding boxes are the smallest possible rectangles that start and end at
some even levels and that cover all the locations forming an inversion inside a non-singleton

?-equivalence class. Subsequently, in Lemma 13 we show that these bounding boxes can
be given the status of ramps in a suitable decomposition of ρ.

I Definition 12. Let K be a non-singleton ?-equivalence class and let H be the subset of
K that contains all the locations `, `′ ∈ K forming an inversion (`, `′).
We define [K] to be the pair of locations `1 = (x1, y1) and `2 = (x2, y2) such that
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x1 (resp., x2) is the position of the leftmost (resp., rightmost) location ` ∈ H,
y1 (resp., y2) is the highest (resp., lowest) even level such that y1 ≤ y (resp., y2 ≥ y) for
all locations ` = (x, y) ∈ H.

I Lemma 13. If K is a non-singleton ?-equivalence class, then [K] is a ramp.

For the sake of brevity, we call ?-ramp any ramp of the form [K], where K is a non-
singleton ?-equivalence class. The results obtained so far imply that every location of the
run ρ covered by an inversion is also covered by a ?-ramp. To complete the decomposition
of ρ, we need to consider the locations that are not strictly covered by ?-ramps, formally,
the set B = {` | @ (`1, `2) ?-ramp s.t. `1 < ` < `2}. We equip B with the natural ordering
of locations induced by ρ. We now consider some maximal convex subset C of B. Note that
the left/right endpoint of C coincides with the first/last location of the run ρ or with the
right/left endpoint of some ?-ramp. Below, we show how to decompose the sub-run ρ | C
into a series of floors and ramps. After this, we will be able to get a full decomposition of
ρ by interleaving the ?-ramps that we defined above with the floors and the ramps that
decompose each sub-run ρ | C.

Let DC be the set of locations ` = (x, y) of C such that there is some loop L = [x, x′],
with x′ ≥ x, whose intercepted factor ρ | L/` lies entirely inside C and produces non-empty
output. We remark that the set DC may be non-empty. To see this, one can imagine the
existence of two consecutive ?-ramps (e.g. R1 and R2 in Figure 1) and a loop between
them that produces non-empty output (e.g. the factor F2). In a more general scenario, one
can find several loops between two consecutive ?-ramps that span across different levels.
We can observe however that all the locations in DC are on even levels. Indeed, if this were
not the case for some ` = (x, y) ∈ DC , then we could select a minimal loop L = [x1, x2] such
that x1 ≤ x ≤ x2 and out(ρ | L/`) 6= ε. Since y is odd, `1 = (x2, y) is an entry point of L and
`2 = (x1, y) is an exit point of L, and hence (`1, `2) is an inversion. Since `1 ≤ ` ≤ `2 and
all inversions are covered by ?-ramps, there is a ?-ramp (`′1, `′2) such that `′1 ≤ ` ≤ `′2.
However, as `′1 and `′2 are at even levels, ` must be different from these two locations, and
this would contradict the definition of DC . Using similar arguments, one can also show that
the locations in DC are arranged along a “rising diagonal”, from lower left to upper right.

The above properties suggest that the locations in DC identify some floors and ramps
that form a decomposition of ρ | C. The following lemma shows that this is indeed the case,
namely, that any two consecutive locations in DC form a floor or a ramp.

I Lemma 14. Let `1 = (x1, y1) and `2 = (x2, y2) be two consecutive locations of DC . Then,
x1 ≤ x2 and y1 ≤ y2 and the pair (`1, `2) is a floor or a ramp, depending on whether y1 = y2
or y1 < y2.

We have just shown how to construct a decomposition of the entire run ρ, assuming that
the sweeping transducer S is one-way definable. This completes the proof of the only-if
direction of the first claim of Theorem 4.

5 Lower bound and undecidability

We show now that the doubly exponential blow-up in size stated by Theorem 4, cannot be
avoided.

I Proposition 15. There is a family (fn)n of functions from {0, 1}∗ to {0, 1}∗ such that:
fn can be computed by a sweeping transducer of size quadratic in n,
fn can be computed by a one-way transducer,
any one-way transducer computing fn has at least 22n−1 states.
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We exhibit such a family of function by defining the domain of fn to be the set of words
of the form

a0 bin0 a1 bin1 a2 . . . a2n−1 bin2n−1 a2n

where ai ∈ {0, 1} for all i ∈ {0, . . . , 2n}. On those words, we define fn as follows:

fn

(
a0 bin0 a1 bin1 a2 . . . a2n−1 bin2n−1 a2n

)
= w · w where w = a0 a1 . . . a2n .

We conclude the section by showing that the one-way definability problem becomes
undecidable for relations computed by sweeping non-functional transducers. Note that
ε-transitions are needed in order to capture the class of one-way definable relations. On the
other hand, for one-way definable functions, ε-transitions can be excluded.

I Proposition 16. The problem of testing whether a sweeping non-functional transducer is
one-way definable is undecidable.

6 Conclusion

In this paper we proposed a new algorithm that decides whether a sweeping transducer is
equivalent to a one-way transducer. Our decision algorithm works in doubly exponential
space and produces one-way transducers of doubly exponential size. The latter bound is
shown to be optimal. An open question is whether the decision problem has lower complexity
if we do not build the one-way transducer.

The main open question is whether our algorithm can be extended to two-way functional
transducers that are not necessarily sweeping. We conjecture that this is the case and that
a similar characterization based on decompositions of runs into floors and ramps can be
obtained. The main difficulty is that (de)pumping loops is more complicated because of
permutations.

One-way definability is also a special case of the following open problem: given an integer
k and a two-way transducer, decide if there is an equivalent k-crossing two-way transducer.
Finally, note that the problem that we considered here becomes much simpler in the origin
semantics of [3]: there, the output of a transducer also includes the origin of each symbol,
i.e., the input position where the symbol was generated. In the origin semantics, the one-
way definability problem is PSpace-complete, and an equivalent one-way transducer has
exponential size.
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Abstract
We study here the algorithmic analysis of systems modeled in terms of availability languages. Our
first main result is a positive answer to the emptiness problem: it is decidable whether a given
availability language contains a word. The key idea is an inductive construction that replaces
availability languages with Parikh-equivalent regular languages. As a second contribution, we
solve the intersection problem modulo bounded languages: given availability languages and a
bounded language, it is decidable whether the intersection of the former contains a word from
the bounded language. We show that the problem is NP-complete. The idea is to reduce
to satisfiability of existential Presburger arithmetic. Since the (general) intersection problem
for availability languages is known to be undecidable, our results characterize the decidability
border for this model. Our last contribution is a study of the containment problem between
regular and availability languages. We show that safety verification, i.e., checking containment of
an availability language in a regular language, is decidable. The containment problem of regular
languages in availability languages is proven undecidable.
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1 Introduction

Availability is an important concept in the dependability analysis of unreliable reactive
systems. In such systems, components may fail for some time and recover later. In other
words, the system may be available for a certain amount of time during the observation
period. The property of interest for us in such systems is (interval) availability which specifies
the proportion of the time in which the system is available for use.

Availability for continuous systems has been extensively studied in the literature [4, 16].
Studying availability over a discrete domain, however, is quite new, but it can be useful. With
appropriate approximations, it should be possible to model the availability characteristics
of a system. With a discrete domain at hand, one may hope for automated analyses. This
paper can be understood as providing evidence for the latter claim.

Regular availability expressions have been introduced in [11] as a model for discrete
availability aspects. Availability expressions extend regular expressions by an additional
operator. This so-called occurrence constraint associates a positive or negative availability
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with the symbols of the alphabet and poses requirements on the accumulated availability of
words. To give an example, the availability expression

((up + down)∗X)#up−#down>0

requires a system uptime of at least 50%. To achieve this, the semantics evaluates the
occurrence constraint #up −#down > 0 every time the execution meets a symbol X.

Algorithmic analysis looks at system models from a language-theoretic point of view.
Here, availability expressions are interesting because their language class is incomparable
with basic classes like context-free languages. Therefore, language-specific properties like
emptiness or intersection are non-trivial for them.

The earlier work [11] proved the undecidability of checking whether the intersection of
two availability languages is empty or not. The emptiness problem itself, however, remained
open. Emptiness may be considered the key problem in algorithmic verification: correctness
requirements are typically stated as L1 ⊆ L2 and then rephrased as L = ∅ with L = L1 ∩L2.
The first contribution of this article is a positive answer to the emptiness problem of regular
availability languages. We provide an algorithm that takes an availability expression rae and
decides whether the associated language L(rae) is empty.

Technically, we show that availability languages have regular approximations that are
exact with respect to emptiness. More precisely, given rae we construct a regular expression
reg with the same Parikh image [14]: Π(L(rae)) = Π(L(reg)). The idea is to proceed by
induction on the structure of availability expressions. In the base case, we directly construct
a one-counter automaton M that captures the language of an expression (reg)cstr . (Here,
cstr is an occurrence constraint as in the above example.) With Parikh’s result, we then
obtain a regular language that is Parikh-equivalent with L(M). In the induction step, we
apply this result to iteratively replace availability expressions by regular expressions. This
leads to an algorithm for solving the emptiness problem with a non-elementary complexity.
This is due to the exponential blow-up encountered, at each induction step, when computing
the Parikh image of a one-counter automaton.

Our second contribution is a refined study of the (undecidable) intersection problem.
Rather than inspecting the full intersection L(rae1) ∩ L(rae2), we restrict the search to
words from a given bounded expression bl = w∗1 . . . w

∗
m. This under-approximate verification

technique is also known as pattern-based verification [6], and generalizes the popular idea of
bounded countext switching [15]. Our finding is that the problem is only NP-complete.

Technically, we give a reduction to satisfiability of existential Presburger arithmetic [17].
We first rewrite L(rae1) ∩ L(rae2) ∩ L(bl) as (L(rae1) ∩ L(bl)) ∩ (L(rae2) ∩ L(bl)), a trick
due to Ginsburg and Spanier [9]. Then we show how to capture the latter intersection by a
formula ∃x̃.ϕ1(x̃) ∧ ϕ2(x̃) with x̃ = x1, . . . , xm. Intuitively, the task of ϕk with k = 1, 2 is to
count the occurrences of w1 to wm in the intersection L(raek) ∩ L(bl).

The actual challenge in the proof is to construct ϕk. We again proceed by induction. To
invoke the hypothesis, we guess the part bl ′ = w∗i . . . w

∗
j of the bounded expression bl that

will be traversed when raek passes through a top-level constraint (rae′)cstr′ . To our surprise,
parts of length one (i = j) were difficult to handle and needed an auxiliary construction.
Such a part may be traversed multiple times. Hence, representing it by a Presburger formula
would lead to non-linearity. We show how to compute a finite automaton that captures the
language L(bl ′)∩L((rae′)cstr′). Here, we need visibility arguments and study the boundedness
behavior of the one-counter automata representing availability languages.

Our last contribution is a study of the containment problem between regular languages
and availability languages. First, we show the decidability of L(rae) ⊆ L(reg). Note that
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this inclusion is a common formulation of safety verification problems. The proof is by a
reduction to the emptiness problem of the language L(rae) ∩ L(reg). As key argument, we
establish closure of the class of availability languages under regular intersection. Second, we
show the undecidability of checking whether a regular language is included in an availability
language. The proof is by a reduction from the halting problem for two-counter automata
(which is known to be undecidable [13]).

Related Work. We already discussed the relation of our results to availability analysis. We
now concentrate on the related work in formal languages and verification. The work [11]
introduced regular availability expressions and proposed a corresponding automaton model
that captures availability languages in an operational rather than a declarative way. Moreover,
it gave a synthesis algorithm that determines a most liberal implementation of an availability
requirement. The final result was the undecidability of intersection emptiness. We focus
here on algorithmic problems of the latter form, and obtain positive results. We show
the decidability of emptiness, NP-completeness of a restricted intersection problem, and
decidability of safety verification. We believe that these positive results, in particular the low
complexity of the intersection problem modulo bounded languages, should motivate further
studies of availability languages. It should also be noted that we generalize the model [11]
towards stronger occurrence constraints.

Availability expressions introduce occurrence constraints to influence the use of symbols.
With this numeric aspect, Parikh images [14] proved to be a valuable tool in the manipulation
of availability languages. There are other language-theoretic models that employ Parikh
images [12, 3, 2, 1, 18]. In all these models (variants of so-called Parikh automata and
Presburger regular expressions), the final acceptance of a word depends on the number
of occurrences of letters. What is different in our model is that we admit intermediary
occurrence checks. These checks can be used as guards to influence the future system behavior,
as opposed to post-mortem acceptance checks. There is no bound on the number of such
intermediary measurements so that there is no immediate reduction to the aforementioned
models.

Concerning bounded languages, Ganty et al. [8] showed how to construct from a context-
free language a context-free bounded language with the same Parikh image. Also in the
context-free setting, Esparza and Ganty proposed the intersection problem modulo bounded
languages [6], a work that inspired our second contribution. Hague and Lin generalized this
result to pushdown automata with reversal-bounded counters [10]. Our underlying model is
regular rather than context free but admits an unbounded number of checks on the counters.

Weighted languages form another line of related work [5]. The idea is to let an automaton
manipulate weights from a semi-ring. Actually, weighted automata admit very general
semi-rings while we focus on the occurrence of letters. In contrast, our occurrence constraints
can influence the system behavior while weighted automata only provide an analysis.

2 Availability Languages

Regular availability expressions extend regular expressions by occurrence constraints on the
letters. The model was introduced in [11] and is presented here in a generalized form. The
idea of occurrence constraints is to require a specified ratio on the occurrence of letters. For
example, the word w = aab has more letters a than b, which means the occurrence constraint
#a−#b > 0 holds. To be more precise, the occurrence constraint is checked at the places
marked by a distinguished symbol X. It does not need to hold throughout the word. With
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this, the availability expression (a∗b∗X)#a−#b>0 denotes the language {anbm | n > m}.
Throughout the paper, we assume an underlying finite alphabet Λ.

An occurrence constraint cstr takes the form

t+
∑
a∈Λ

ka ·#a > 0 with t, ka ∈ Z. (1)

The set of regular availability expressions is defined as follows:

rae ::= a p ε p ∅ p X p rae + rae p rae.rae p rae∗ p (rae)cstr .

Here, a ∈ Λ, X /∈ Λ is the distinguished symbol, and cstr is defined as above. We use reg
to indicate that an availability expression actually is a regular expression, which means it
does not contain X nor cstr . The depth of an availability expression is the nesting depth
of occurrence constraints (rae)cstr . An occurrence constraint (rae)cstr is top-level in rae′
if it is not covered by another (−)cstr′ in the syntax tree of rae′. The syntactic size of an
availability expression rae is denoted by |rae|. The definition is as expected, every piece of
syntax contributes to it.

The semantics of availability expressions is in terms of finite words, L(rae) ⊆ (Λ ∪ {X})∗,
and defined inductively as follows:

L(a) := {a} L(X) := {X} L(ε) := {ε}
L(∅) := ∅ L(rae1 + rae2) := L(rae1) ∪ L(rae2) L(rae∗) := L(rae)∗

L(rae1.rae2) := L(rae1).L(rae2) L(raecstr) := L(rae)cstr .

To define the semantics of occurrence constraints, L(rae)cstr , we need Parikh images and
projections. The Parikh image of a word w over Λ ∪ {X} is a function Π(w) : Λ→ N that
returns for every a ∈ Λ the number of occurrences of a in w, in symbols Π(w)(a) := |w|a.
Let Γ ⊆ Λ ∪ {X} and let w be a word over Λ ∪ {X}. The projection of w to Γ, denoted
by πΓ(w), is the result of removing all symbols outside Γ from w. Using these concepts,
operator Lcstr checks that each prefix ending in X satisfies the occurrence constraint, and
projects the remaining words to Λ:

Lcstr := {πΛ(w) | w ∈ LX
cstr}

LX
cstr := {w ∈ L | t+

∑
a∈Λ

ka ·Π(w1)(a) > 0 for all w1.X.w2 = w} .

Availability languages are incomparable with context-free languages [11]. For example, the
language {anbncn | n ∈ N} can be generated by the regular availability expression

((((a∗b∗c∗X)1+#a−#b>0X)1+#b−#a>0X)1+#c−#a>0X)1+#a−#c>0

but it is not a context-free language. The language of words w.wreverse in turn cannot be
represented by a regular availability expression.

3 Emptiness

The emptiness problem for availability languages consists in checking, for a given regular
availability expression rae, whether L(rae) = ∅. Our first main result is the decidability of
the emptiness problem. The solution is inductive. We first discuss the emptiness problem for
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(reg)cstr . Via one-counter automaton, we show how to obtain a Parikh-equivalent regular
expression. Then we use this result to turn a general availability expression rae into a
Parikh-equivalent regular expression reg: Π(L(rae)) = Π(L(reg)). With this correspondence,
the two languages have the same emptiness status: L(rae) = ∅ iff L(reg) = ∅.

3.1 One-Counter Automata
We use a variant of one-counter automata (1CM) with counters over the integers Z rather
than the natural numbers N. A 1CM is a non-deterministic finite state automaton equipped
with a counter that can be incremented, decremented, and compared to zero. Formally, the
automaton is a 5-tuple M = (Q,Λ,∆, s, F ) where Q is a finite set of states with initial state
s ∈ Q and final states F ⊆ Q. The transitions in ∆ ⊆ Q× (Λ∪{ε})×Op×Q are labelled by
a letter from Λ and equipped with an operation from Op := {> 0,≤ 0} ∪ {add(m) | m ∈ Z}.
For the semantics, we define labelled transitions between configurations from Q× Z. The
automaton accepts a word w ∈ Λ∗ if there is a sequence of configurations that is labelled by
w and ends in a final state. The language L(M) is the set of all words accepted by M .

A 1CM M over the integers can be compiled down to a language-equivalent 1CM MN
over the natural numbers. To adjust the semantics, over the naturals an addition add(−m),
m ∈ N, is enabled only if the resulting counter value stays at least zero. The idea of the
translaton is to duplicate each control state. So state q in M yields q+ and q− in MN. In
q+, the counter value represents a positive value in the original automaton. In q−, the
value represents the corresponding negative value in the original automaton. Clearly, a
transition > 0 from q will be copied to q+ and will be removed from q−. A transition ≤ 0
from q will be copied to q+. In q−, we have the transition without a condition (represented
by add(0)). Consider a decrement (q, a, add(−m), q′), m ∈ N. Besides the corresponding
transitions at q+ and q−, every pair x, y ∈ N so that x+ y = m yields a transition sequence
(q+, a, add(−x), p)(p, ε,≤ 0, p′)(p′, ε, add(y), q′−) where p, p′ are two intermediary states used
only in the simulation of the decrement transition. The construction is similar for increments.

The 1CM MN in turn can be understood as pushdown automata with two stack symbols.
One of them is used to mark the bottom of the stack, the other represents the counter value.
As a consequence of the two constructions, the languages of 1CM over Z are context free.
With Parikh’s theorem, we can construct a regular language with the same Parikh image.
A simple construction which takes a context-free language and returns a Parikh-equivalent
finite automaton has been proposed in [7]. We summarize the argumentation.

I Lemma 3.1. Given a 1CM M , one can construct reg with Π(L(M)) = Π(L(reg)).

1CM (over Z and over N) are effectively closed under regular intersection and projection.

I Lemma 3.2. Given 1CM M and reg, we can construct M ′ with L(M ′) = L(M) ∩ L(reg).
Given Γ ⊆ Λ, we can construct M ′ with L(M ′) = πΓ(L(M)).

3.2 From Availability to Regular Expressions

ε, add(t)
a, add(ka)

X, > 0

To check emptiness of (reg)cstr , we first construct a 1CM
M that accepts words over Λ ∪ {X} only based on the
constraint cstr . With the notation from the previous
section, it accepts all w ∈ (Λ∪ {X})∗ such that {w}Xcstr =
{w}. Assume cstr takes the Form (1). Automaton M ,
depicted to the right, has two states s and f , the former
being initial and the latter being final, respectively. There is an ε-labelled transition from s
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to f with operation add(t). The transition initializes the counter with constant t from the
constraint. For every letter a ∈ Λ, we have a loop at state f that adds coefficient ka ∈ Z.
Moreover, for X we have a loop at f with check > 0.

I Lemma 3.3. Let w ∈ (Λ ∪ {X})∗. Then w ∈ L(M) if and only if {w}Xcstr = {w}.

To take the regular expression reg into account, we use closure under regular intersection.
So given reg and M above, we compute M ′ with L(M ′) = L(M)∩L(reg). To remove symbol
X, we project L(M ′) to Λ. This yields the language of (reg)cstr .

I Lemma 3.4. πΛ(L(M ′)) = L((reg)cstr).

By closure under projection, L((reg)cstr) is again a one-counter language. With
Lemma 3.1, the language can be represented by a regular language, up to Parikh-equivalence.

I Proposition 3.5. One can construct reg′ with Π(L((reg)cstr)) = Π(L(reg′)).

For the general case, consider rae and focus on an occurrence constraint of maximal depth.
By maximality, it has the shape (reg)cstr . We apply Proposition 3.5 to construct a regular
language reg′ with the same Parikh image, Π(L(reg′)) = Π(L((reg)cstr)). We now replace
(reg)cstr by reg′ within rae, resulting in rae′. The languages of rae and rae′ still coincide, up
to Parikh-equivalence:

Π(L(rae′)) = Π(L(rae)).

The reason is that the Parikh image of L((reg)cstr) keeps the number of symbols (but may
not retain their order), and this is what is needed to evaluate further occurrence constraints
in rae. We repeat the procedure inductively on rae′. Eventually, we have eliminated all
occurrence constraints and hence arrived at a regular expression.

I Theorem 3.6. One can construct reg with Π(L(rae)) = Π(L(reg)). Hence, the emptiness
problem for availability languages is decidable.

Observe that the procedure has a non-elementary complexity. This is due to the exponential
blow-up encountered, at each induction step, when computing the Parikh image of a 1CM.

4 Intersection Modulo Bounded Languages

The intersection problem L(rae1) ∩ L(rae2) 6= ∅ is known to be undecidable, already for two
availability expressions [11]. We now show that the problem remains decidable, actually
only NP-complete, if we require the words in the intersection to belong to the language
of a bounded expression of the form bl = w∗1 . . . w

∗
m. To be precise, we study the following

problem that we will refer to as IBL, intersection modulo bounded languages: Given rae1 to
raen and bl, is

⋂n
i=1 L(raei) ∩ L(bl) 6= ∅ ? Our second main result is as follows.

I Theorem 4.1. IBL is NP-complete for availability expressions of fixed depth.

We explain the proof approach and elaborate on the side condition. The approach is inspired
by Ginsburg and Spanier’s [9] and has also been used in [6]. We first rewrite the intersection:

(
n⋂

i=1
L(raei) ) ∩ L(bl) =

n⋂
i=1

( L(raei) ∩ L(bl) ) . (2)
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Let bl = w∗1 . . . w
∗
m. Our technical contribution (Proposition 4.8) is then to compute in

polynomial time an existential Presburger formula ϕi(x1, . . . , xm) that captures the words
in an intersection L(raei) ∩ L(bl) as follows: wk1

1 . . . wkm
m ∈ L(raei) ∩ L(bl) if and only

if (k1, . . . , km) |= ϕi. Intuitively, the Presburger formula counts how often each word in the
bounded expression occurs. With this, the intersection between the languages L(raei)∩L(bl)
on the right-hand side of Equation (2) is represented by the intersection of the solution spaces
of the corresponding formulas ϕi. Indeed, there is a word in the intersection if and only if
there are coefficients k1 to km on which all formulas agree. This is equivalent to satisfiability
of ∃x1 . . . ∃xm :

∧n
i=1 ϕi(x1, . . . , xm). Since the formulas are computable in polynomial time

(Proposition 4.8) and satisfiability of existential Presburger is in NP [17], we obtain an upper
bound for IBL.

For the polynomial-time computability to hold, we have to assume the depth of the
availability expressions given as input to be bounded from above by a constant. The need
for a fixed depth comes with the proof approach. We construct the Presburger formulas
by an induction on the depth of availability expressions. Each step in this induction is
polynomial-time computable. The composition of the polynomials, however, only stays
polynomial if we assume it to be fixed.

For the lower bound, NP-hardness already holds in the case of regular rather than
availability languages, a single letter alphabet, and a fixed pattern, due to [6].

4.1 Bounded Languages and Presburger Arithmetic
In the literature, bounded languages are defined as (potentially non-regular) subsets of
w∗1 . . . w

∗
m. As there is no risk of confusion, we decided to adopt the terminology. For

our proofs, we will have to deal with leading and trailing words. So we will also refer to
bl = w0.w

∗
1 . . . w

∗
m.wm+1 as a bounded expression. The length of bl is the number of starred

words, m ∈ N. A part of bl is a language u.w∗i . . . w∗j .v with 1 ≤ i ≤ j ≤ m, u a suffix of
wi−1 or wi, and v a prefix of wj or wj+1. Alternatively, u.v may form an infix of some wi

and the iterated part is missing.
Presburger arithmetic is the first-order logic of the natural numbers with addition but

without multiplication. Given a formula ϕ(x1, . . . , xn) with free variables x1 to xn, we use
S(ϕ) for the solution space: the set of valuations (k1, . . . , kn) that satisfy the formula. We
are interested in the existential fragment of Presburger, denoted by ∃PA and defined by

t ::= 0 p 1 p x p t1 + t2 ϕ ::= t1 = t2 p t1 > t2 p ϕ1 ∧ ϕ2 p ϕ1 ∨ ϕ2 p ∃x.ϕ .

A result by Verma, Seidl, and Schwentick shows how to capture the Parikh images of
context-free languages by existential Presburger.

I Proposition 4.2 ([19]). Given a context-free grammar G, one can compute in linear time
an ∃PA formula ϕ satisfying S(ϕ) = Π(L(G)).

4.2 NP Upper Bound
Our goal is to construct an ∃PA formula for L((rae)cstr)∩L(bl). Roughly, the approach is to
represent the intersection by a 1CM and then obtain the ∃PA formula with Proposition 4.2.
More precisely, the construction is by induction on the depth of availability expressions, and
the challenge is to handle the top-level occurrence constraints (rae′)cstr′ within (rae)cstr . To
invoke the hypothesis, the idea is to precompute the intersection of (rae′)cstr′ with parts bl ′

of the bounded language bl. This, however, requires care. We will have to treat parts of
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length at most one and parts of length at least two substantially different. As a result, we
will have to invoke different hypotheses. We explain the difficulties.

For parts of length at most one, the intersection L((rae′)cstr′) ∩ L(bl ′) may be entered
several times. Indeed, bl ′ may be u.w∗i .v with u a suffix of wi and v a prefix of wi. If we
only had a Presburger formula to represent the intersection, re-entering the intersection
would lead to a non-linear constraint. Instead, we show (in a separate induction, leading
to Proposition 4.3) how to compute a finite automaton representing the intersection. This
automaton can then be plugged into the overall 1CM construction.

For parts bl ′ = u.w∗i . . . w
∗
j .v of length at least two, we cannot re-enter an intersection

L((rae′)cstr′) ∩ L(bl ′), simply because j > i. This allows us to represent the intersection
by an ∃PA formula, which we obtain by a simple invocation of the induction hypothesis.
We incorporate this formula into the ∃PA formula for the overall construction. Note that
the intersection with a bounded language of length at least two is not necessarily a regular
language. This means the automaton trick for length at most one does not work.

4.2.1 Automata for Length at most One
In the following, we show how to construct, in polynomial time, a finite state automaton
recognizing the intersection of an availability expression and a part of a bounded expression
of length at most one.

I Proposition 4.3. Consider availability expressions of fixed depth. Given such an expression
(rae)cstr and a bounded language bl = w1.w

∗.w2, one can compute in polynomial time an
NFA A with L(A) = L((rae)cstr) ∩ L(bl).

The rest of this section is devoted to the proof of Proposition 4.3 which is done by induction
on the depth of the availability expression.

Base Case. We first prove the base case when the availability expression is actually a
regular expression (see Lemma 4.4).

I Lemma 4.4. Given (reg)cstr and bl = w1.w
∗.w2, one can compute in polynomial time an

NFA A with L(A) = L((reg)cstr) ∩ L(bl).

To prove Lemma 4.4, we first construct a 1CM for the intersection of the languages and in a
second step compile this automaton down to a finite automaton. In Section 3, we have shown
how to turn (reg)cstr into a 1CM with the same language. Since 1CM are closed under regular
intersection, we can also determine M = (Q,Λ,∆, s, F ) with L(M) = L((reg)cstr) ∩ L(bl).
Note that the construction ofM works in polynomial time. To turnM into a finite automaton,
the key observation is that M satisfies the following property referred to as (Bound). There
is a constant b ∈ N so that
(Bound-U) once we exceed b in a configuration, the counter will never drop below zero,
(Bound-L) once we fall below −b, the counter will not increase above zero again.
For the formalization, we focus on (Bound-U), (Bound-L) is similar:

∀(q, c) ∈ Q× Z with (s, 0)→∗ (q, c) and c > b :
∀(q′, c′) ∈ Q× Z with (q, c)→∗ (q′, c′) : c′ > 0.

The following, lemma shows that indeed the 1CM M satisfies the property (Bound) .

I Lemma 4.5. M satisfies (Bound) with b ∈ N of size polynomial in |rae|+|bl|.
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We defer the proof of Lemma 4.5 for a moment and show that property (Bound) implies
Lemma 4.4: the correspondingly bounded 1CM accept regular languages. The reason is that
we only have to track the counter value precisely as long as it stays in the interval [−b, b].
Once this range is left, (Bound-L) and (Bound-U) indicate how to evaluate guards.

I Lemma 4.6. Assume 1CM M satisfies (Bound) with b ∈ N. There is an NFA A of size
polynomial in |M |+b with L(A) = L(M).

To prove Lemma 4.5, recall that L(M) = L(bl) ∩ L((reg)cstr) with bl = w1.w
∗.w2 and cstr

of the Form (1). The main observation is that M is a visibly 1CM in the following sense. A
letter a ∈ Λ always has the effect of adding the coefficient ka ∈ Z to the counter, independent
of the transition. This means no matter which transition sequence the automaton takes
to process the word w in bl = w1.w

∗.w2, the effect on the counter is always constant. We
refer to it as effect(w) ∈ Z. Note that the effect is homomorphic, effect(w.v) = effect(w) +
effect(v). We then do a case distinction according to whether w has a positive or a negative
effect. Assume effect(w) ≥ 0. We define the constant b ∈ N to be |t|+max{|effect(u)| |
u an infix of wa.wb where wa ∈ {w1, w} and wb ∈ {w,w2}}.

For (Bound-L), we show that the counter never drops below −b and hence the property
trivially holds. For (Bound-U), we consider a configuration with counter value c > b and
argue that the value stays above zero in every continuation of the transition sequence.

Induction step. Next, we show the induction step for the proof of Proposition 4.3. The
induction step is established using the following lemma:

I Lemma 4.7. Assume Proposition 4.3 holds for availability expressions of depth at most
n ∈ N. Consider (rae)cstr of depth n+ 1 and bl = w1.w

∗.w2. One can compute in polynomial
time an NFA A with L(A) = L((rae)cstr) ∩ L(bl).

Proof. The idea is to consider every part of the bounded expression w1.w
∗.w2 that may

be traversed when (rae)cstr passes through a top-level occurrence constraint. For example,
L((rae)cstr)∩L(bl) may traverse bl ′ = u.w∗.v while being in (rae′)cstr′ , with u a suffix of w and
v a prefix of w. Each part bl ′ is again a bounded expression of the form assumed by the lemma.
This means for each combination of top-level constraint (rae′)cstr′ and part bl ′, we can apply
the hypothesis and compute a finite automaton A(rae′)cstr′ ,bl′ representing the intersection.
We now modify the given availability expression (rae)cstr to ( ˜rae) ˜cstr by replacing every
top-level constraint (rae′)cstr′ with

⋃
bl′ part of bl A(rae′)cstr′ ,bl′ . This replacement is sound and

complete in the sense that

L((rae)cstr) ∩ L(bl) = L(( ˜rae) ˜cstr) ∩ L(bl) . (3)

Soundness holds by L(A(rae′)cstr′ ,bl′) = L((rae′)cstr′) ∩ L(bl ′) ⊆ L((rae′)cstr′). Completeness
is because we consider every part of bl. The finite automaton of interest is constructed from
the right-hand side of Equation (3) by going through 1CM, as in Lemma 4.4. Note that
( ˜rae) ˜cstr indeed has the form (reg) ˜cstr so that the argument from the base case applies.

To see that the construction is polynomial time, note that the number of parts of bl
is quadratic. We avoid computing regular expressions for the automata A(rae′)cstr′ ,bl′ but
directly incorporate them into the 1CM construction. J

4.2.2 Presburger for the General Case
With the previous automaton construction at hand, we are now prepared to address our
actual goal: computing an ∃PA formula that characterizes the intersection of a regular
availability language with a bounded language. Our main result is the following proposition:
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I Proposition 4.8. Consider availability expressions of fixed depth. Given such an expression
(rae)cstr and a bounded language bl = w0.w

∗
1 . . . w

∗
m.wm+1, one can compute in polynomial

time an ∃PA formula ϕ(x1, . . . , xm) so that for all k1, . . . , km ∈ N:

(k1, . . . , km) |= ϕ if and only if w0.w
k1
1 . . . wkm

m .wm+1 ∈ L((rae)cstr) ∩ L(bl).

The rest of this section is dedicated to the proof of Proposition 4.8. The proof is done by
induction on the depth of the availability expression.

Base Case. We first prove the base case when the availability expression is actually a
regular expression (see Lemma 4.9).

I Lemma 4.9. Given (reg)cstr and bl = w0.w
∗
1 . . . w

∗
m.wm+1, one can compute in polynomial

time an ∃PA formula ϕ(x1, . . . , xm) as required.

We introduce fresh letters to the bounded language: bl ′ := w0.(w1.a1)∗ . . . (wm.am)∗.wm+1.
Now an occurrence of ai signals a full occurrence of wi. We compute the product with the
1CM for (reg)cstr and apply Proposition 4.2. It yields an ∃PA formula which, after existential
quantification of the variables for the original letters, is as required by Lemma 4.9.

Induction Step. Next, we show the induction step for the proof of Proposition 4.8. The
induction step is established using the following lemma.

I Lemma 4.10. Assume Proposition 4.8 holds for availability expressions of depth at most
n ∈ N. Consider (rae)cstr of depth n+ 1 and bl = w0.w

∗
1 . . . w

∗
m.wm+1. One can compute in

polynomial time an ∃PA formula ϕ(x1, . . . , xm) as required.

This is the proof where we need the two hypotheses: that we can compute a finite automaton
representing an intersection with a bounded language of length at most one, and that we
can construct an ∃PA formula characterizing an intersection with a bounded language of
length at least two. We shall assume m ≥ 2, for otherwise we can apply Lemma 4.9 to the
automaton from Proposition 4.3.

Proof. We first define a modification of the given availability expression. It will involve
adding new letters that indicate the occurrence of an intersection with a bounded language
of length at least two. In a following step, we turn the bounded expression into a finite
automaton that takes the fresh letters into account. Then we determine the ∃PA formula of
interest. The proof concludes with an estimation of the complexity.

Modifying the availability expression Consider every top-level constraint (rae′)cstr′ . For
every part bl ′ of the bounded language that has length at most one, we apply Proposition 4.3.
It yields a finite automaton A(rae′)cstr′ ,bl′ with language L((rae′)cstr′) ∩ L(bl ′). Moreover, for
every part bl ′ of length at least two, we introduce a fresh letter ](rae′)cstr′ ,bl′ . We now replace
(rae′)cstr′ by the regular language⋃

bl′ part of bl
of length ≤ 1

A(rae′)cstr′ ,bl′ ∪
⋃

bl′ part of bl
of length > 1

](rae′)cstr′ ,bl′ .

The modified availability expression is the result of all these replacements.
Turning the bounded expression into a finite automaton An occurrence of ](rae′)cstr′ ,bl′

will represent an occurrence of L((rae′)cstr′) ∩ L(bl ′). The task of the automaton associated
with bl is to enforce that such an intersection is not traversed twice. The construction is
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· · · · · · · · ·
w0 w1

a1

ε

a1

u′ u
ai

ai

v v′

aj

ε ε
](rae′)cstr′ ,bl′

aj

Figure 1 Illustration of Abl .

illustrated in Figure 1. First, we introduce fresh letters counting w1 to wm. This gives
w0.(w1.a1)∗ . . . (wm.am)∗.wm+1. When represented as a finite automaton, we have a state
qw for every prefix w of w0.w1.a1 . . . wm+1. Consider the part bl ′ = u.w∗i . . . w

∗
j .v with u a

suffix of wi = u′.u and v a prefix of wj = v.v′. For every top-level availability constraint
(rae′)cstr′ we add a transition labelled by ](rae′)cstr′ ,bl′ from qw0...u′ to qw0...v. Note that such
a transition can be taken only once. The result is Abl .

Computing the ∃PA formula The modification of the given availability expression
(rae)cstr is of the form (reg)cstr . We turn it into a 1CM and add loops to all states to guess
the occurrences of the fresh letters a1 to am. Let the result be M . Since Abl is a finite
automaton and 1CM are closed under regular intersection, we can compute the product
M ×Abl . We turn this product into a context-free grammar and apply Proposition 4.2. This
gives us an ∃PA formula of the form ψ(p̃, ỹ, z̃). The vectors of variables are as follows:
p̃ has one variable pa for every letter a ∈ Λ,
ỹ has one variable yi for every word wi ∈ {w1, . . . , wm},
z̃ has one variable z] for each ] = ](rae′)cstr′ ,bl′ , (rae′)cstr′ top-level, and bl ′ of length ≥ 2.

Let ] refer to a pair of top-level occurrence constraint (rae′)cstr′ and part of length at least
two bl ′ = u.w∗i . . . w

∗
j .v. By the hypothesis, we can compute an ∃PA formula ψ](xi, . . . , xj)

for L((rae′)cstr′) ∩ L(bl ′). We modify the formula to ϕ](z], x
]
1, . . . , x

]
m):

∃xi . . . ∃xj :
(
z] = 0 ∧

m∧
k=1

x]
k = 0

)
∨z] = 1 ∧

∧
k<i∨k>j

x]
k = 0 ∧ x]

i = xi + 1 ∧
∧

i<k≤j

x]
k = xk ∧ ψ](xi, . . . , xj)

 .

If z] is zero, the transition in Abl labelled by ] is not taken. This means the intersection
L((rae′)cstr′) ∩ L(bl ′) does not contribute to the occurrences of w1 to wm. Therefore, we
require the fresh variables x]

k to be zero. If z] is not zero, it has to be one because the
]-labelled transition can be taken at most once. Since bl ′ = u.w∗i . . . w

∗
j .v, the intersection

L((rae′)cstr′) ∩ L(bl ′) still does not contribute to the occurrences of wk with k < i or k > j.
For wi we have xi + 1 occurrences. The additional occurrence is for the suffix u. For wk

with i < k ≤ j, we have precisely xi occurrences of wi. Note that we do not have to count
the half occurrence of v. Automaton Abl will later see an ai signalling the occurrence of the
composed v.v′ = wj .

With this, we can define the overall formula ϕ(x1, . . . , xm):

∃p̃ ∃ỹ ∃z̃ ∃]x̃
] :

n∧
i=1

xi = yi +
∑

]

x]
i ∧

∧
ϕ](z], x

]
1, . . . , x

]
m) ∧ ψ(p̃, ỹ, z̃).

The formula sums up the occurrences of wi in a new free variable xi. These occurrences
are given by yi for the outer constraint and for the top-level occurrence constraints that are
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intersected with a bounded language of length at most one. For the occurrences of wi in
an intersection with a bounded language of length at least two, we sum up the variables x]

i .
Note that they are set to zero in case an intersection ] is not taken. The remainder adds
the formulas ϕ] for the intersections ] of top-level constraints with bounded languages of
length at least two, and also adds the formula ψ for the overall intersection. Existential
quantifiers hide all the auxiliary variables. We note that ϕ] as well as ψ are existential
Presburger formulas that may contain quantifiers. Since they are surrounded by conjunctions
and disjunctions, the scope of these quantifiers can be extruded without harm.

Time complexity of the construction The automata representing the intersections with
bounded languages of length at most one can be computed in polynomial time by Proposi-
tion 4.3. Similarly, the conversion of bl into Abl can be computed in polynomial time. Indeed,
the number of top-level occurrence constraints is bounded by the size of the input. Moreover,
there is at most a quadratic number of pairs w∗i . . . w∗j and again a quadratic number of
prefixes and suffixes. Altogether, there is a polynomial number of symbols that we add. As a
result, also the product of 1CM and Abl can be computed in polynomial time, and similar for
the Presburger formula ψ(p̃, ỹ, z̃). It remains to add ∃PA formulas for a polynomial number
of intersections ]. Each such formula can be determined in polynomial time by the hypothesis
of the lemma. As a result, we have an overall polynomial time construction. J

One can optimize the construction by considering a more general notion of parts
U.w∗i . . . .w

∗
j .V where U is the union of all suffixes of wi and wi−1 and V is the union

of all prefixes of wj and wj+1. This does not change the overall complexity.

5 Containment

We study the problem of whether an availability language is contained in a regular language
and vice versa. For the former problem, we show that availability languages are closed under
regular intersection.

I Theorem 5.1. Given rae and reg, we can construct rae′ with L(rae′) = L(rae) ∩ L(reg).
With Theorem 3.6, L(rae) ⊆ L(reg) is decidable.

For the proof, we represent the regular language by a finite automaton. Then we compute,
for each pair of entry and exit state, the intersection of the corresponding regular language
with the top-level occurrence constraints. This gives an inductive construction.

For the reverse inclusion, we show the undecidability by a reduction from the halting
problem for two-counter automata (2CM) [13]. 2CM are defined like the 1CM in Section 3
but use two counters. We can assume them to only add 1 or −1, and will use inc and dec,
instead. So the overall alphabet is Λ := {inc(i), dec(i), zero(i) | i = 1, 2}.

The idea of the reduction is to understand a 2CM as a finite automaton. The automaton
only reflects the control-flow but does not take into account the semantics of counters. This
means the language is regular, let it be L(reg). We define an availability language L(rae)
that contains all words over Λ violating the semantics of two-counter automata. Together,

L(reg) ⊆ L(rae) iff L(reg) ∩ L(rae) = ∅.

Language L(reg) ∩ L(rae) restricts the regular control-flow language to words respecting the
semantics of counters. This language is empty if and only if the 2CM does not halt.

I Theorem 5.2. L(reg) ⊆ L(rae) is undecidable, even for rae of depth 1.
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Proof. It remains to define rae. The expression is a choice rae := rae1 + rae2 where rae1
reflects the bad behavior on counter 1, and similar for rae2. There are two choices for bad
behavior: we decrement a counter below zero (see rae1,1) or a test for zero fails (see rae1,2):

rae1 := (Λ∗.zero(1) + ε).(rae1,1 + rae1,2).Λ∗

rae1,1 := (( inc(1) + dec(1) + inc(2) + dec(2) + zero(2) )∗.X)#dec(1)>#inc(1)

rae1,2 := (( inc(1) + dec(1) + inc(2) + dec(2) + zero(2) )∗.X.zero(1))#inc(1)>#dec(1).

J

6 Concluding Remarks and Future Work

Availability languages extend regular languages by occurrence constraints on the letters [11].
The extension increases expressiveness and leads to a class of languages incomparable with
the context-free ones. In this paper, we contributed positive results to the algorithmic
analysis of availability languages. Our first result is the decidability of the emptiness problem
that was left open in [11]. Our solution is inductive and combines an explicit one-counter
automata construction with Parikh’s theorem. Our second result is NP-completeness of the
intersection problem modulo bounded languages. The idea is to reduce to satisfiability of
existential Presburger arithmetic. The reduction needs arguments about the boundedness
behavior of the one-counter automata representing availability languages. Finally, we study
regular containment. We obtain a positive result for safety verification L(rae) ⊆ L(reg) and
a negative result for the reverse inclusion L(reg) ⊆ L(rae).

For future work, we see practical as well as theoretical avenues. On the practical side,
we plan to study the use of availability languages in model checking. Although we have
shown safety verification to be decidable, the question remains how to check the inclusion
efficiently in practice. On the theoretical side, it should be beneficial to compare availability
languages with other models. It would be attractive to have a uniform understanding of
Parikh automata, Presburger languages, and availability languages. Extensions of monadic
second-order logic designed to capture availability requirements would also be interesting.
Finally, there is no omega-theory of availability.
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Abstract
We show that there exists a Boolean function F which gives the following separations among
deterministic query complexity (D(F )), randomized zero error query complexity (R0(F )) and
randomized one-sided error query complexity (R1(F )): R1(F ) = Õ(

√
D(F )) and R0(F ) =

Õ(D(F ))3/4. This refutes the conjecture made by Saks and Wigderson that for any Boolean
function f , R0(f) = Ω(D(f))0.753... This also shows widest separation between R1(f) and D(f)
for any Boolean function. The function F was defined by Göös, Pitassi and Watson who studied
it for showing a separation between deterministic decision tree complexity and unambiguous non-
deterministic decision tree complexity. Independently of us, Ambainis et al proved that different
variants of the function F certify optimal (quadratic) separation between D(f) and R0(f), and
polynomial separation between R0(f) and R1(f). Viewed as separation results, our results are
subsumed by those of Ambainis et al. However, while the functions considered in the work of
Ambainis et al are different variants of F , in this work we show that the original function F

itself is sufficient to refute the Saks-Wigderson conjecture and obtain widest possible separation
between the deterministic and one-sided error randomized query complexity.
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1 Introduction

In computational complexity theory, one major goal is to prove limitations of existing
computational models which helps us to understand the computational power that each
model exhibits. Among the vast array of computational models that are studied in the
literature, one of the simplest is query model (or decision tree model) where an algorithm
computing a boolean function is given query access to the input. The algorithm queries
different bits of the input, possibly in adaptive fashion, and computes the function on the
input based on the query responses. The algorithm is charged not for the computation but
for the number of bits it queries. It is easy to see that n is a trivial upper bound on the
number of queries that any algorithm makes to evaluate the function where n is the input
size. The objective is to minimize the number of queries made.
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For a Boolean function f , the deterministic query complexity, D(f), of f is defined to
be the maximum (over inputs) number of queries the best deterministic query algorithm
for f makes. For many well studied boolean functions, such as parity, threshold functions,
the deterministic decision tree complexity is n - such functions are called evasive functions.
As observed by Rivest and Vuillemin [7], most boolean functions are evasive. In this work
we are mainly concerned about the power of the query model when we allow randomness.
We want to ask the following question: how many queries can we save for evaluating f if
we allow the query algorithm to toss coins. A randomized query algorithm can be thought
of as a distribution over deterministic query algorithms. It can also be viewed as a query
algorithm where each node has an additional power of tossing coins . After querying the
variable associated with any internal node of the tree, the algorithm decides which input
bit to query depending on the responses to the queries so far (i.e. the current node in the
tree) and the value of the coin tosses while in that node. It is not hard to see that the
two definitions are equivalent. We look at the following complexity measures that are well
studied. The bounded-error randomized query complexity R(f) of f is defined to be the
number of queries made on the worst input by the best randomized query algorithm for
f that is correct with probability 2/3 on every input. The zero error randomized query
complexity of f , R0(f), is the expected number of queries made on the worst input by the
best randomized algorithm for f that gives correct answer on each input with probability 1.
Finally the one-sided randomized query complexity of f , R1(f), is the number of queries
made on the worst input by the best algorithm that is correct on every input with probability
at least 2/3, and in addition correct on every 0-input with probability 1. The choice of
the constant 2/3 in our definitions is arbitrary, and could be replaced by any constant in
the definition of R1(f), and any constant greater than 1/2 in the definition of R(f), while
changing the number of queries by a constant factor.

Relationships between these query complexity measures have been extensively studied
in the literature. That randomization can save more than a constant factor of queries has
been known for a long time. Snir [10] showed a O(nlog4 3) randomized linear query algorithm
(a more powerful model than what we discussed) for complete binary NAND tree function
for which the deterministic linear query complexity is Ω(n). Later on Saks and Wigderson
[8] gave a Θ(n0.753...) randomized query algorithm for the same function. They also showed
that for uniform rooted ternary majority tree function, the randomized query complexity is
O(n0.893...) and deterministic query complexity is Ω(n) - the authors credited R. Boppana
for this example. All these example showed that randomized query complexity can be
substantially lower than its deterministic counterpart.
In their paper, Saks and Wigderson made the following conjecture.

I Conjecture 1 (Saks and Wigderson [8]). For any boolean function f , R0(f) = Ω(D(f)0.753...).

Saks and Wigderson conjectured that the complete binary NAND tree function exhibits
the widest separation possible between these two measures of complexity. During this work,
the best separation known between deterministic decision tree complexity and zero error,
one-sided error and bounded error randomized query complexities was the one exhibited by
the complete binary NAND tree function. Also, no separation among the different randomized
query complexity measures was known.

For complete binary NAND tree function F , Santha [9] showed that R(F ) = (1−2ε)R0(F )
where ε is the error probability. So, for this function, we have R(F ) = Θ(D(F )0.753...). It
is easy to see that D(f) ≥ R(f), R0(f), R1(f). Blum and Impagliazzo [3], Tardos [11] and
Hartmanis and Hemachandra [5] independently showed that R0(f) ≥

√
D(f). Nisan [6]

showed that for any Boolean function f , R(f) ≥ 3
√
D(f)/27 and R1(f) ≥

√
D(f). The
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biggest gap known so far between D(f) and R(f) for any f is much less than cubic and little
progress has been made in last 20 years to improve the state of the art.

The main results of this work are Theorems 1 and 2. Theorem 1 refutes Conjecture 1 by
Saks and Wigderson.

I Theorem 1. There exists a Boolean function F for which R0(F ) = Õ(D(F )3/4).

It is to be noted that this result does not match the lower bound of R0(f) in terms of
D(f). We also show quadratic separation between deterministic and one-sided randomized
query complexity which is achieved by the same function.

I Theorem 2. There exists a Boolean function F for which R1(F ) = Õ(
√
D(F )).

This separation matches the lower bound, upto logarithmic factors, on R1(f) in terms of
D(f) for any function f . These results give better separation between the corresponding
complexity measures than what is known during this work.

The function F which yields these separation results was first introduced by Göös et
al [4] for showing a gap between deterministic decision tree complexity and unambiguous
non-deterministic decision tree complexity and resolving the famous clique vs independent
set problem. We will define the function in Section 1.1.

Independently of us, Ambainis et al [2] proved various separation results between different
query complexity measures. Among several other results, the authors prove the existence of
a function f for which R0(f) = Õ(

√
D(f)). In view of the lower bound, this is the widest

separation possible between these two measures. This also refutes the conjecture by Saks and
Wigderson. Moreover, since R0(f) = Ω(R1(f)), this also certifies the same separation as that
of Theorem 2. However, the authors use a variant of the function F which was introduced
by Göös et al [4] to show this separation. In our work, we showed that the original function
F itself is sufficient to refute Saks-Wigderson conjecture and to show the widest possible
separation between D(f) and R1(f) for any boolean function f .

1.1 The Göös-Pitassi-Watson Function
We define the function F now. The domain of F is D = {0, 1}n(1+dlogne). An input M ∈ D
to F is viewed as a matrix of dimension

√
n×
√
n. Each cell Mi,j of M consists of two parts:

1. A bit-entry bi,j ∈ {0, 1}.
2. A pointer-entry pi,j ∈ {0, 1}dlogne. pi,j is either a valid pointer to some other cell of M ,

or is interpreted as ⊥ (null). If pi,j is not a valid pointer to some other cell, we write
“pi,j = ⊥”.

Now, we define what we call a valid pointer chain. Assume that t =
√
n. For an input M

to F , a sequence ((i1, j1), . . . , (it, jt)) of indices in [
√
n]× [

√
n] is called a valid pointer chain

if:
1. bi1,j1 = 1;
2. bi2,j2 = . . . = bit,jt

= 0;
3. ∀k < i1, pk,j1 = ⊥;
4. for ` = 1, . . . , t− 1, pi`,j`

= (i`+1, j`+1) and pit,jt = ⊥;
5. {b1, . . . , bt} = btc;

F evaluates to 1 on M iff the following is true:

1. M contains a unique all 1’s column j1, i.e., there exists j1 ∈ [
√
n] such that ∀i ∈ [

√
n],

bi,j1 = 1.
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2. There exists a valid pointer chain ((i1, j1), . . . , (it, jt)). This means that the column j1
has a cell with non-null pointer entry. (i1, j1) is the cell on column j1 with minimum row
index whose pointer-entry is non-null. Starting from pi1,j1 , if we follow the successive
pointers, the following conditions are satisfied: In each step except the last, the cell
reached by following the pointer-entry of the cell in the previous step, contains a 0 as
bit-entry and a non-null pointer as pointer-entry. In the last step, the cell contains a zero
as bit-entry and a null pointer (⊥) as pointer-entry. Also, this pointer chain covers each
column of M exactly once.

By a simple adversarial strategy, Göös et al. [4] showed that D(F ) = Ω̃(n). Our
contribution is to show the following results.

I Lemma 3. For the function F defined above, R0(F ) = Õ(n3/4).

I Lemma 4. For the function F defined above, R1(F ) = Õ(
√
n).

Clearly, Lemmas 3 and 4 imply Theorems 1 and 2 respectively.

2 Randomized One-sided Error Query Algorithm for F

We show that the randomized one-sided error query complexity of F is Õ(
√
n). We first

provide intuition for our one-sided error query algorithm for F before formally describing it.

Broad idea: Our algorithm errs on one side: on 0-inputs it always outputs 0 and on 1-inputs
it outputs 1 with high probability.
The algorithm attempts to find a 1-certificate. If it fails to find a 1-certificate, it outputs 0.
We show that on every 1-input, with high probability, the algorithm succeeds in finding a
1-certificate. The 1-certificate our algorithm looks for consists of:
1. A column j, all of whose bit-entries are 1’s.
2. All null pointers of column j till its first non-null pointer-entry.
3. The pointer chain of length

√
n that starts from the first non-null pointer entry, and in

the next
√
n− 1 hops, visits all the other columns. The bit entries of all the other cells

of the pointer chain than the one in this column are 0.
To find a 1-certificate, the algorithm tries to find columns with 0-cells on them, and adds
those columns to a set of discarded columns that it maintains. To this end, a first natural
attempt is to repeatedly sample a cell randomly from M , and if its bit-entry is 0, try to
follow the pointer originating from that cell. Following the chain, each time we visit a cell
with bit-entry 0, we can discard the column on which the cell lies. We can expect that, with
high probability, after sampling O(

√
n) cells, we land up on some cell in the middle portion

of the correct pointer chain that is contained in the 1-certificate (we call this the principal
chain). Then if we follow that pointer we spend O(

√
n) queries, and eliminate a constant

fraction of the existing columns.
The problem with this approach is possible existence of other long pointer chains, than

the principal chain. It may be the case that we land up on one such chain, of Ω(
√
n) length,

which passes entirely through the columns that we have already discarded. Thus we end up
spending Ω(

√
n) queries, but can discard only one column (the one we began from).

To bypass this problem, we start by observing that the principal chain passes through
every column, and hence in particular through every undiscarded column. Let N be the
number of undiscarded column at some stage of the algorithm. Note that the length of the
principal chain is

√
n. Therefore if we start to follow it from a randomly chosen cell on it,

FSTTCS 2015



210 Separations Between Query Complexity Measures

Algorithm 1
1: procedure MilestoneTrace(M, C, i, j)
2: Read bi,j ;
3: if bi,j = 1 then return ;
4: end if
5: step:=0;
6: discard:=1;
7: current:=(i, j);
8: seen:={j};
9: while step ≤ 100

√
n · discard|C| do

10: read the pointer-entry of current;
11: step ← step+1;
12: current ← pointer-entry of current;
13: if current is ⊥ then goto step21;
14: end if
15: read bit-entry of current;
16: if current is on a column k in C \ seen and bit-entry of current is 0 then
17: seen ← seen ∪{k};
18: discard ← discard+1;
19: end if
20: end while
21: C ← C \ seen;
22: end procedure

we are expected to see an undiscarded column in roughly another
√
n/N hops. In view of

this, we modify our algorithm as follows: while following a pointer chain, we check if on an
average we are seeing one undiscarded column in every O(

√
n/N) hops. If this check fails,

we abandon following the pointer, sample another random cell from M , and continue. Our
procedure MilestoneTrace does this pointer-traversal. We can prove that conditioned on
the event that we land up on the principal chain, the above traversal algorithm enables us to
eliminate a constant fraction of the existing undiscarded columns with high probability. We
also show that spending O(

√
n/N) queries for each column we eliminate is enough for us to

get the desired query complexity bound.
After getting hold of the unique all 1’s column, the final step is to check if all its bit-entries
are indeed 1’s, and if that can be completed into a full 1-certificate. That can clearly be
done in Õ(

√
n) queries. The VerifyColumn procedure does this.

2.1 The Algorithm
In this section we give the formal description and analysis of our one-sided error query
algorithm for F : Algorithm 3. Algorithm 3 uses two procedures: VerifyColumn (see
Algorithm 2) and MilestoneTrace (see Algorithm 1). As outlined in the previous section,
VerifyColumn, given a column, checks if all its bit-entries are 1 and whether it can
be completed into a 1-certificate. MilestoneTrace procedure implements the pointer
traversal algorithm that we described in the preceding paragraph. We next describe the
MilestoneTrace procedure in a little more detail. We recall from the last section that
the algorithm discards columns in course of its execution. We denote the set of undiscarded
columns by C.
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Algorithm 2
1: procedure VerifyColumn(M,k)
2: Check if all the bit-entries of cells in the k-th column of M are 1; If not, output 0;
3:
4: if All the pointer-entries of cells in the the k-th column of M are ⊥ then
5: Output 0;
6: end if
7: if The pointer chain starting from the first non-null pointer in column k is valid then
8: Output 1;
9: else

10: Output 0;
11: end if
12: end procedure

MilestoneTrace procedure: The functions of the variables used are as follows:

1. step: Contains the number of pointer-entries queried so far. A bit query is always
accompanied by a pointer query, unless the bit is 1 in which case the traversal stops. So
upto logarithmic factor, the value in step gives us the number of bits queried.

2. seen: Set of columns that were undiscarded before the current run of MilestoneTrace,
and that have so far been seen and marked for discarding.

3. discard: size of seen
4. current: Contains the indices of the cell currently being considered.
The condition in the while loop checks if the number of queries spent is not too much larger
than

√
n
|C| at any point in time. The if condition in line 13 checks if the current pointer-entry

is null. If it is null, C is updated, and control returns to Algorithm 3. The condition in
line 13 checks if the pointer chain has reached its end.

To analyse Algorithm 3, we need to prove two statements about MilestoneTrace, which
we now informally state. Assume that the algorithm is run on a 1-input.
1. Conditioned on the event that a cell (i, j) randomly chosen from the columns in C is on

the principal chain, a call to MilestoneTrace(M, C, i, j) serves to eliminate a constant
fraction of surviving columns with high probability.

2. For upper bounding the number of queries, it is enough to ensure that the average number
of queries spent for each eliminated column is not too much larger than

√
n
|C| . Note that

|C| is the number of undiscarded columns during the start of the MilestoneTrace
procedure.

In Section 2.2, we prove that Algorithm 3 makes Õ(
√
n) queries on every input. In Section 2.3

we prove that Algorithm 3 succeeds with probability 1 on 0-inputs and with probability at
least 2/3 on 1-inputs.

2.2 Query complexity of Algorithm 3
In this subsection we analyse the query complexity of Algorithm 3. We bound the total
number of bi,j ’s and pi,j ’s read by the algorithm. Upto logarithmic factors, that is the total
number of bits queried. For the rest of this subsection, one query will mean one query to a
bit-entry or a pointer-entry of some cell.
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Algorithm 3
1: C := set of columns in M .
2: for t = 1 to O(

√
n logn) do

3: if |C| < 100 then
4: goto step 10;
5: end if
6: Sample a column j from C uniformly at random;
7: Sample i ∈ [

√
n] uniformly at random;

8: MilestoneTrace(M, C, i, j);
9: end for

10: if |C| > 100 or |C| = 0 then
11: Output 0;
12: else
13: Read all columns in C;
14: if There is a column k with all bit-entries equal to 1 then
15: VerifyColumn(M,k);
16: else
17: Output 0;
18: end if
19: end if

We first analyse the MilestoneTrace procedure. Recall that C denotes the set of undis-
carded columns.

I Lemma 5. Let i, j be such that bi,j = 0. Let Q and D respectively be the number of queries
made and number of columns discarded by a call to MilestoneTrace(M, C, i, j). Then,

Q ≤ D · 200
√
n

|C|
+ 3

Proof. We note that the variable step contains the number of pointer queries made so far,
and the variable discard maintains the number of columns marked so far for discarding.
Every time the while loop is entered, step ≤ 100

√
n · discard|C| . In each iteration of the while

loop, step goes up by 1. So at any point, step ≤ 100
√
n · discard|C| + 1. The lemma follows by

observing that the total number of bit-entries queried is at most one more than total number
of pointer-entries queried. J

We now use Lemma 5 to bound the total number of queries made by Algorithm 3.

I Lemma 6. Algorithm 3 makes Õ(
√
n) queries on each input.

Proof. Whenever bi,j = 1, MilestoneTrace(M, C, i, j) returns after reading bi,j . So the
total number of queries made by all calls to MilestoneTrace(M, C, i, j) on such inputs is
Õ(
√
n).

After leaving the while loop, the total number of queries required to read constantly many
columns in C and to run VerifyColumn is Õ(

√
n).

Since inside the while loop all the queries are made inside the MilestoneTrace procedure,
it is enough to show that the total number of queries made by all calls to MilestoneT-
race(M, C, i, j) on inputs for which bi,j = 0 is Õ(

√
n).

Let t = Õ(
√
n) be the total number of calls to MilestoneTrace on such inputs, made
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in the entire run of Algorithm 3. Let si be the value of |C| when the i-th call to Mile-
stoneTrace is made, and let st+1 be the value of |C| after the execution of the t-th call
to MilestoneTrace completes . Let ∆si and ∆qi respectively be the number of columns
discarded and number of queries made in the i-th call to MilestoneTrace. Since C shrinks
only when bi,j = 0, we have ∆si = si − si+1 for i = 1 . . . t. Since s1 =

√
n, we have that for

i = 2, . . . , t, si =
√
n−

i−1∑
j=1

∆sj .

From Lemma 5 we have ∆qi ≤ ∆si · 200
√
n

si
+ 3 for i = 1, . . . , t. Substituting

√
n−

∑i−1
j=1 ∆sj

for si when i > 1, and adding, we have,

t∑
i=1

∆qi ≤ 200
√
n ·

t∑
i=1

∆si
si

+ 3t

= 200
√
n ·

(
∆s1√
n

+
t∑
i=2

∆si√
n−

∑i−1
j=1 ∆sj

)
+ Õ(

√
n)

≤ 200
√
n ·
((

1√
n

+ 1√
n− 1

+ . . .+ 1√
n−∆s1 + 1

)
+(

1√
n−∆s1

+ 1√
n−∆s1 − 1

+ . . .+ 1√
n−∆s1 −∆s2 + 1

)
+

. . .+
(

1
√
n−

∑t−1
j=1 ∆sj

+ 1
√
n−

∑t−1
j=1 ∆sj − 1

+

. . .+ 1
√
n−

∑t−1
j=1 ∆sj −∆st + 1

))
+ Õ(

√
n)

≤ O(
√
n) ·

√n∑
i=1

1
i

+ Õ(
√
n)

= O(
√
n logn) + Õ(

√
n)

= Õ(
√
n).

Hence proved. J

2.3 Success Probability of Algorithm 3
In this section we prove that Algorithm 3 outputs correct answer with probability 1 on
0-inputs and with probability at least 2/3 on 1-inputs. We start by a proving a probability
statement (Lemma 7) that will help us in the analysis.
Let x1, . . . , x` be non-negative real numbers and

∑`
i=1 xi = N . We say that an index I ∈ [`]

is bad if there exists a non-negative integer 0 ≤ D ≤ N − I such that

I+D∑
i=I

xi > 100(D + 1) · N
`

We say that an index I is good if I is not bad.
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I Lemma 7. Let I be chosen uniformly at random from [`]. Then,

P[I is good] > 99
100

Proof. We show existence of a set K = {J1, · · · , Jt} of disjoint sub-intervals of [1, `] with
integer end-points, having the following properties:
1. Every bad index is in some interval Ji ∈ K.
2. ∀1 ≤ i ≤ t,

∑
j∈Ji

xj > 100|Ji| · N` .
It then follows that the number of bad indices is upper bounded by

∑
i∈[t] |Ji| (by property

1). But N ≥
∑
i∈[t]

∑
j∈Ji

xj > 100 · N`
∑
i∈t |Ji| , which gives us that

∑
i∈t |Ji| <

`
100 . In

the above chain of inequalities, the first inequality follows from the disjointness of Ji’s and
the second inequality follows from property 2.

Now we describe a greedy procedure to obtain such a set K of intervals. Let J be the
smallest bad index. Then there exists a D such that

∑
i∈[J,J+D] xi > 100(D + 1) · N` . We

include the interval [J, J + D] in K. Then let J ′ be the smallest bad index greater than
J + D. Then there exists a D′ for which

∑
i∈[J′,J′+D′] xi > 100(D′ + 1) · N` . We include

[J ′, J ′ +D′] in K. We continue in this way till there is no bad index which is not already
contained in some interval in K. It is easy to verify that the intervals in the set K thus
formed are disjoint, and the set K satisfies properties 1 and 2. J

Let us begin by showing that algorithm 3 is correct with probability 1 on 0-inputs of F .

I Lemma 8. If Procedure VerifyColumn outputs 1 on inputs M and k, then M is a
1-input of F .

Proof. VerifyColumn outputs 1 only if the column k has all its bit-entries equal to 1,
and if the pointer chain starting from the first non-null pointer entry is valid (recall the
definition of a valid pointer chain from Section 1.1). From the definition of F , for such inputs
F evaluates to 1. J

I Corollary 9. Let M be a 0-input of of F . Then algorithm 3 outputs 0 with probability 1.

Proof. The corollary follows by observing that if algorithm 3 returns 1, a call to Verify-
Column also returns 1, and hence from Lemma 8 the input is a 1-input of F . J

Let us now turn to 1-inputs of F . Let M be a 1-input of F , that we fix for the rest of
this subsection. Without explicit mention, for the rest of the subsection we assume that
Algorithm 3 is run on M . Since M is a 1-input, by the definition of F , there is a column
C such that all its bit-entries are 1, and the pointer chain starting from the first non-null
pointer-entry of C is valid. Call this pointer chain the principal chain. Let (C = c1, . . . , c√n)
be the order of columns ofM in which the pointer chain crosses them. Let (C = m1, . . . ,m|C|)
be the order of the columns of C in which the pointer chain crosses them. Note that the
column C always belongs to C, as a column is discarded only if the bit-entry of some cell on
it is 0. Define Xi to be the number of cj ’s between mi and mi+1, including mi, if i < |C|,

and the number of cj ’s after mi, including mi, if i = |C|. Clearly
|C|∑
i=1

Xi =
√
n.

I Lemma 10. Let (i, j) be a randomly chosen cell on the restriction of the principal chain
to the columns in C. Let j = m` ∈ {m1, . . . ,m|C|}. Let |C| = N ≥ 100. Then with probability
at least 97

100 over the choice of (i, j), a run of the procedure MilestoneTrace on inputs
M, C, i, j shrinks the size of C to at most 99N

100 .
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Proof. By applying Lemma 7 on the sequence (Xi)|C|i=1 described in the paragraph preceding
this lemma, except with probability at least 1/100 + 1/100 + 1/|C| ≤ 3/100, ` is a good
index, ` < 99N

100 (i.e. the column j has at least N
100 columns of C ahead of it on the principal

chain), and j 6= C. Since j 6= C, the bit-entry of the cell sampled is 0, and hence procedure
MilestoneTrace does not return control in step 3. In the procedure MilestoneTrace,
if current is on the principal chain, the condition in line 13 cannot be satisfied unless current
is the last cell on the chain. Now, if the condition in the while loop is violated while current
is on the principal chain, it implies that j is a bad index. Thus with probability at least
1− 3/100 = 97/100, the procedure does not terminate as long as all the N

100 columns ahead
of j are not seen. Since all columns in C that are seen are discarded, we have the lemma. J

Now, let us bound the number of iterations of the for loop of algorithm 3 required to
shrink |C| by a factor of 1/100.

I Lemma 11. Assume that at a stage of execution of algorithm 3 where the control is in the
beginning of the for loop, |C| = N . Then except with probability 1/25, after 10

√
n iterations

of the for loop, |C| will become at most 99N/100.

Proof. The probability that a cell on the principal chain is sampled in steps 6 and 7 is
1√
n
. So the probability that in none of the 10

√
n executions of steps 6 and 7, a cell on the

principal chain is picked is (1 − 1√
n

)10
√
n ≤ 1

100 . Conditioned on the event that a cell on
the principal chain is sampled, from lemma 10, except with probability 3/100, |C| reduces
by a factor of 1/100 in the following run of MilestoneTrace. Union bounding we have
that except with probability 1/100 + 3/100 = 1/25, after 10

√
n iterations of the for loop,

|C| ≤ 99N/100. J

Let t be the minimum integer such that
√
n ·
( 99

100
)t
< 100. Thus t = O(logn). For

i = 1, . . . , t, let the random variable Yi be equal to the index of the first iteration of the for
loop of Algorithm 3 after which |C| ≤

√
n.
( 99

100
)i. Let Z1 = Y1 and for i = 2, . . . , t define

Zi = Yi − Yi−1. From Lemma 11, for each i we have E[Zi] ≤ 25 × 10
√
n = O(

√
n). By

linearity of expectation, we have E[
t∑
i=1

Zi] = O(
√
n logn). By Markov’s inequality, with

probability at least 2/3,
t∑
i=1

Zi = O(
√
n logn). Thus, if we choose the constant hidden in

the number of iterations of the for loop of Algorithm 3 large enough, then with probability
at least 2/3, |C| shrinks to less than 100. Then the VerifyColumn procedure reads all the
columns in C and outputs the correct value of F . Thus we have proved the following Lemma.

I Lemma 12. With probability at least 2/3, algorithm 3 outputs 1 on a 1-input.

Lemma 4 follows from Lemma 6, Corollary 9 and Lemma 12.

3 Randomized Zero-error Query Algorithm for F

We first present a randomized query algorithm which satisfies the following conditions: If
the algorithm outputs 0 then the given input is a 0-input (the algorithm actually exhibits
a 0-certificate) and if the given input is a 0-input, then the algorithm outputs 0 with high
probability. This algorithm makes Õ(n3/4) queries in worst case. For the randomized zero-
error algorithm we run Algorithm 3 and this algorithm one after another. If Algorithm 3
outputs 1 then we stop and output 1. Else, if Algorithm 4 says 0, we stop and output
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0. Otherwise, we repeat. By the standard argument of ZPP = RP ∩ coRP we get the
randomized zero-error algorithm. Though the query complexity of Algorithm 3 is Õ(

√
n),

we get the zero-error query complexity of F to be Õ(n3/4) because of the query complexity
of Algorithm 4.

Now we define column covering and column span which we will use next.

I Definition 13. For two columns Ci and Cj (Ci(Cj) denotes the i-th (j-th) column) in
input matrix M , we say Cj is covered by Ci if there is a cell (k, i) in Ci and a sequence
(β1, δ1), . . . , (βt, δt) of pairs from [

√
n]× [

√
n] such that:

1. bk,i = 0,
2. δt = j,
3. for all ` ∈ [t], bβ`,δ`

= 0 and
4. pk,i = (β1, δ1) and for ` = 1, . . . , t− 1, p(β`,δ`) = (β`+1, δ`+1).
5. For 1 ≤ k < ` ≤ t, δk 6= δ` and for 1 ≤ k ≤ t, i 6= δk.

I Definition 14. For a column C, we define SpanC to be the subset of columns in M which
consists of C and any column which is covered by C.

We first give an informal description of the algorithm and then we proceed to formally
analyze the algorithm in Section 3.1. As mentioned before this is also a one-sided algorithm,
i.e., it errs on one side but it errs on the different side than that of Algorithm 3. The
0-certificates it attempts to capture are as follows:

1. If each of the columns has a cell with bit-entry 0, then the function evaluates to 0. Those
bit-entries form a 0-certificate. If there are many 0’s in each column, The algorithms may
capture such a certificate in the first phase (sparsification).

2. Two columns C1 and C2 in M such that C1 /∈ SpanC2 and C2 /∈ SpanC1 . Existence of two
such columns makes the existence of a valid pointer chain impossible. This is captured in
the second phase of the algorithm.

3. Lastly, if there is a column all of whose bit-entries are 1, which does not have a valid pointer
chain, then that is also a 0-certificate. The algorithm may capture such a certificate in
the last phase.

The algorithm proceeds as follows: The main goal of the algorithm is to eliminate any
column where it finds a 0 in any of its cells. First the algorithm filters out the columns
with large number of 0’s with high probability by random sampling. The algorithm probes
Õ(n1/4) locations at random in each column and if it finds any 0 in any column, it eliminates
that column. This step is called sparsification. After sparsification, we are guaranteed that
all the columns have small number of 0’s. Now the remaining columns can have either of
the following two characteristics: First, a large number of the columns in existing column
set have large span. This implies that if we choose a column randomly from the existing
columns, the column will span a large number of columns (i.e., a constant fraction of existing
columns) with high probability and we can eliminate all of them. The algorithm does this
exactly in the procedure A of the second phase. The other case can be where most of the
columns have small spans. We can show that if this is the case, then if we pick two random
columns Ci and Cj from the set of existing columns, Ci will not lie in the span of Cj and
vice-versa with high probability, certifying that F is 0. This case is taken care of in the
procedure B of the second phase of the algorithm.

The algorithm runs procedure A and procedure B one after another for logarithmic
number of steps. If at any point of the iteration, the algorithm finds two columns which
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are not in span of each other, the algorithm outputs 0 and terminates. Otherwise, as the
procedure A decreases the number of existing columns by a constant factor in each iteration,
with logarithmic number of iteration, either we completely exhaust the column set, which
is again a 0-certificate, or we are left with a single column. Then the algorithm checks the
remaining column and the validity of the pointer chain if that column is an all 1’s column
and answers accordingly. This captures the third kind of 0-certificate as mentioned before.

In Algorithm 4, we set τ to be the least number such that
√
n · ( 99

100 )τ ≤ 1. Clearly
τ = O(logn). We also set α to an appropriate constant.

3.1 Analysis of Algorithm 4
Let’s first look at the query complexity of the algorithm.

I Lemma 15. The query complexity of Algorithm 4 is Õ(n3/4) in worst case.

Proof. We count the number of bit-entries and pointer-entries of the input matrix the
algorithm probes. Up to logarithmic factor, that is asymptotically same as the number of
bits queried.
The first for loop runs for

√
n iteration and in each iteration samples T cells from a column.

So the number of probes of the first for loop is O(
√
n× T ) = Õ(n3/4).

In procedure A, the number of probes needed to scan the column and to trace pointer
from the column is Õ(n3/4). In procedure B, the algorithm has to check the span of two
columns, which takes Õ(n3/4) probes. The number of iterations of the for loop of line 9 is at
most τ = O(logn). Hence the total number of probes made inside the for loop is Õ(n3/4).

Lastly, VerifyColumn takes O(
√
n) probes. So the total number of probes is bounded

by Õ(n3/4). Thus the claim follows. J

The first for loop, i.e., line 3 to 8 is called sparsification. We have the following guarantee
after sparsification.

I Lemma 16. After the sparsification, with probability at least 99/100, every column in C
has at most n1/4 cells with bit-entry 0.

Proof. We will bound the probability that all the T probes in a column outputs 1 conditioned
on the fact that the column has more than n1/4 0’s. A single probe in such a column
outputs 0 with probability at least 1/n1/4. Hence all the probes output 1 with probability
(1− 1/n1/4)T ≤ 1

100
√
n
. By union bound, this happens to some column in M with probability

at most 1/100. J

This implies that except with probability 1/100, the if conditions of lines 20 and 32 are
never satisfied.

I Lemma 17. Either of the following is true in each iteration of the for loop of line 9:
1. for a random column C ∈ C, |SpanC | > |C|/100 with probability at least 1/100.
2. For two randomly picked columns Ci and Cj in C, with probability at least 24/25, Cj /∈

SpanCi
and Ci /∈ SpanCj

.

Proof. Suppose (1) does not hold. For two random columns Ci and Cj , Let Li (Lj) be the
event that |SpanCi

| (|SpanCj
|)| > |C|/100. Let Ei,j (Ej,i) be the event that Cj ∈ SpanCi

(Ci ∈ SpanCj
). Thus we have,

P{Ei,j} = P{Li} · P{Ei,j |Li}+ P{Li} · P{Ei,j |Li}
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Algorithm 4
1: C := Set of columns in M ;
2: τ := Least number such that

√
n · ( 99

100 )τ ≤ 1;
3: for each column C in C do
4: Sample T = 10 · n1/4 logn cells uniformly at random;
5: if any bit-entry of any cell is 0 then
6: C ← C \ {C};
7: end if
8: end for
9: for t = 1 to τ do

10: if |C| ≤ 1 then
11: goto step 40
12: end if
13: repeat
14: procedure A
15: Sample a column C from C uniformly at random;
16: Read all entries of all cells of C;
17: if All bit-entries are 1 then
18: VerifyColumn(M,C);
19: end if
20: if Number of 0 bit-entries in C > n1/4 then
21: Output 1 and abort;
22: end if
23: For each cell on C with bit-entry 0, trace pointer and compute SpanC ;
24: C ← C \ SpanC ;
25: end procedure
26: until α log logn times
27: procedure B
28: Pick two columns C1 and C2 uniformly at random from C;
29: if All bit-entries of C1 (C2) are 1 then
30: VerifyColumn(M,C1) (VerifyColumn(M,C2));
31: end if
32: if Number of 0 bit-entries in C1 or C2 > n1/4 then
33: Output 1 and abort;
34: end if
35: if C2 /∈ SpanC1 and C1 /∈ SpanC2 then
36: Output 0 and abort;
37: end if
38: end procedure
39: end for
40: if C = ∅ then
41: Output 0;
42: end if
43: if |C| = 1 then
44: Let C = {C}.
45: VerifyColumn(M,C);
46: end if
47: Output 1.
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≤ P{Li}+ P{Ei,j |Li}

≤ 1
100 + 1

100 = 1
50

Similarly P{Ej,i} ≤ 1
50 . By union bound, (2) is true; J

Now we are ready prove the correctness of the algorithm.

I Lemma 18. Given a 0-input, Algorithm 4 outputs 0 with probability at least 19/20 .

Proof. We first note that after the execution of for loop in line 3, except with probability at
most 1/100 there is no column in C having more than n1/4 cells with bit-entries 0.

If the algorithm finds a column all of whose bit-entries are 1, it gives correct output by a
run of VerifyColumn.

Next, we note that if in any iteration of the for loop (line 9), condition (2) of Claim 17 is
satisfied, then we find a 0-certificate (i.e. a pair of columns, none of which lies in the span of
the other) with probability at least 24/25.

Finally, assume that for each iteration of the for loop, condition (2) is not satisfied. This
implies that for each iteration of the loop, condition (1) is satisfied (From Claim 17). As we
run procedure A α log logn times, with probability at least 1− ( 99

100 )α log logn ≥ 1− 1
100τ

(for appropriate setting of the constant α) we land up on a column whose span is at least
|C|/100 and hence we eliminate 1/100 fraction of columns in C, in one of the iterations of
the inner repeat loop (line 13). By union bound, the probability that there is even one
bad repeat loop where we do not eliminate |C|/100 columns, is at most 1/100. Thus the
probability that after the execution of for loop is over, |C| > 1, is at most 1/100. So, the
total error probability is bounded by 1/100 + max{1/25, 1/100} = 1/20 from which the claim
follows. J

I Lemma 19. Given a 1-input, Algorithm 4 outputs 1 with probability 1.

Proof. The proof of this claim is straight-forward. As mentioned before, Algorithm 4 outputs
0 only if it finds a 0-certificate. As there is no 0-certificate for a 1-input , the algorithm
outputs 1. J

Lemma 3 follows by combining Lemma 4, Lemma 18, Lemma 16 and Lemma 19.
I Remark. It is observed [1] that if we consider a slight variant of the function F , where the
input matrix is a n2/3×n1/3 matrix instead of

√
n×
√
n and modify Algorithm 4 accordingly,

we get a Õ(n2/3) algorithm. It is to be noted that the query complexity of Algorithm 3
(modified accordingly) worsens to Õ(n2/3) for this function. This shows that for a minor
variant of the function F , our algorithm can show a better separation between deterministic
and zero-error randomized query complexity. However, the modified function cannot show
the widest separation between deterministic and bounded error randomized query complexity.
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Abstract
In this paper we propose a quantification of distributions on a set of strings, in terms of how close
to pseudorandom a distribution is. The quantification is an adaptation of the theory of dimension
of sets of infinite sequences introduced by Lutz. Adapting Hitchcock’s work, we also show that
the logarithmic loss incurred by a predictor on a distribution is quantitatively equivalent to the
notion of dimension we define. Roughly, this captures the equivalence between pseudorandomness
defined via indistinguishability and via unpredictability. Later we show some natural properties
of our notion of dimension. We also do a comparative study among our proposed notion of
dimension and two well known notions of computational analogue of entropy, namely HILL-type
pseudo min-entropy and next-bit pseudo Shannon entropy.

Further, we apply our quantification to the following problem. If we know that the dimension
of a distribution on the set of n-length strings is s ∈ (0, 1], can we extract out O(sn) pseudoran-
dom bits out of the distribution? We show that to construct such extractor, one need at least
Ω(logn) bits of pure randomness. However, it is still open to do the same using O(logn) random
bits. We show that deterministic extraction is possible in a special case - analogous to the bit-
fixing sources introduced by Chor et al., which we term nonpseudorandom bit-fixing source. We
adapt the techniques of Gabizon, Raz and Shaltiel to construct a deterministic pseudorandom
extractor for this source.

By the end, we make a little progress towards P vs. BPP problem by showing that existence
of optimal stretching function that stretches O(logn) input bits to produce n output bits such
that output distribution has dimension s ∈ (0, 1], implies P=BPP.
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1 Introduction

Incorporating randomness in any feasible computation is one of the basic primitives in theo-
retical computer science. Fortunately, any efficient (polynomial time) randomized algorithm
does not require pure random bits. What it actually needs is a source that looks random
to it and this is where the notion of pseudorandomness [4, 32] comes into picture. Since
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its introduction, pseudorandomness has been fundamental to the domain of cryptography,
complexity theory and computational learning theory. Pseudorandomness is mainly a compu-
tational approach to study the nature of randomness, and computational indistinguishability
[10] played a pivotal role in this. Informally, a distribution is said to be pseudorandom if no
efficient algorithm can distinguish it from the uniform distribution. Another way of looking
at computational indistinguishability is via the notion of unpredictability of distributions,
due to Yao [32]. Informally, a distribution is unpredictable if there is no efficient algorithm
that, given a prefix of a string coming from that distribution, can guess the next bit with
a significant success probability. This line of research naturally posed the question of con-
structing algorithms that can generate pseudorandom distributions, known as pseudorandom
generators. Till now we know such constructions by assuming the existence of one-way
functions. It is well known that constructibility of an optimal pseudorandom generator
implies complete derandomization (i.e., P=BPP) and exponential hardness assumption on
one-way function enables us to do that. However, Nisan and Wigderson [25] showed that
the existence of an exponential hard function, which is a much weaker assumption, is also
sufficient for this purpose. The assumption was further weakened in [18].

In order to characterize the class of random sources, information theoretic notion of
min-entropy is normally used. A computational analogue of entropy was introduced by Yao
[32] and was based on compression. Håstad, Impagliazzo, Levin and Luby [12] extended
the definition of min-entropy in computational settings while giving the construction of a
pseudorandom generator from any one-way function. This HILL-type pseudoentropy basically
extends the definition of pseudorandomness syntactically. Relations among above two types
of pseudoentropy was further studied in [3]. A more relaxed notion of pseudoentropy, known
as next-bit Shannon pseudoentropy, was later introduced by Haitner, Reingold and Vadhan
[11] in the context of an efficient construction of a pseudorandom generator from any one-way
function. In a follow up work [31], the same notion was alternatively characterized by
KL-hardness. So far it is not clear which of the above notions is the most appropriate
or whether they are at all suitable to characterize distributions in terms of the degree of
pseudorandomness in it.

In this paper, we first propose an alternative measure to quantify the amount of pseudo-
randomness present in a distribution. This measure is motivated by the ideas of dimension
[23] and logarithmic loss unpredictability [15]. Lutz used the betting functions known as gales
to characterize the Hausdroff dimension of sets of infinite sequences over a finite alphabet.
The definition given by Lutz cannot be carried over directly, because here we consider the
distributions over finite length strings instead of sets containing infinite length strings. To
overcome this difficulty, we allow “non-uniform” gales and introduce a new probabilistic
notion of success of a gale over a distribution. We use this to define the dimension of a
distribution. In [15], Hitchcock showed that the definition of dimension given by Lutz is
equivalent to logarithmic loss unpredictability. In this paper, we show that this result can be
adapted to establish a quantitative equivalence between the notion of logarithmic loss unpre-
dictability of a distribution and our proposed notion of dimension. Roughly, this captures
the essence of equivalence between pseudorandomness defined via indistinguishability and
via unpredictability [32]. We show some important properties of the notion of dimension of a
distribution, which eventually makes this characterization much more powerful and flexible.
We also do a comparative study between our notion of dimension and two known notions of
pseudoentropy, namely HILL-type pseudo min-entropy and next-bit pseudo Shannon entropy.
We show that the class of distributions with high dimension is a strict superset of the class
of distributions having high HILL-type pseudo min-entropy. Whereas, there is a much closer
relationship between dimension and next-bit pseudo Shannon entropy.
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Once we have a quantification of pseudorandomness of a distribution, the next natural
question is how to extract the pseudorandom part from a given distribution. The question is
similar to the question of constructing randomness extractors which is an efficient algorithm
that converts a realistic source to an almost ideal source of randomness. The term randomness
extractor was first defined by Nisan and Zuckerman [26]. Unfortunately there is no such
deterministic algorithm and to extract out almost all the randomness, extra Ω(logn) pure
random bits are always required [27, 28]. There is a long line of research on construction of
extractors towards achieving this bound. For a comprehensive treatment on this topic, we
refer the reader to excellent surveys by Nisan and Ta-Shma [24] and Shaltiel [29]. Finally,
the desired bound was achieved up to some constant factor in [20].

Coming back to the computational analogue, it is natural to study the same question
in the domain of pseudorandomness. Given a distribution with dimension s, the problem
is to output O(sn) many bits that are pseudorandom. A simple argument can show that
deterministic pseudorandom extraction is not possible, but it is not at all clear that how
many pure random bits are necessary to serve the purpose. In this paper, we show that
we need to actually involve Ω(logn) random bits to extract out all the pseudorandomness
present in a distribution. However explicit construction of one such extractor with O(logn)
random bits is not known. If it is known that the given distribution has high HILL-type
pseudo min-entropy, then any randomness extractor will work [3]. Instead of HILL-type
pseudoentropy, even if we have Yao-type pseudo min-entropy, then also some special kind of
randomness extractor (namely with a “reconstruction procedure”) could serve our purpose
[3]. Unfortunately both of these notions of pseudoentropy can be very small for a distribution
with very high dimension. Actually the same counterexample will work for both the cases.
So it is interesting to come up with an pseudorandom extractor for a class of distributions
having high dimension.

As a first step towards this goal, we consider a special kind of source which we call the
nonpseudorandom bit-fixing source. It is similar to the well studied notion of bit-fixing random
source introduced by Chor et al. [5], for which we know the construction of a deterministic
randomness extractor due to [19] and [8]. In this paper, we show that the same construction
yields a deterministic pseudorandom extractor for all nonpseudorandom bit-fixing sources
having polynomial-size support.

In the concluding section, we make a little progress towards the question of P vs. BPP
by showing that in order to prove P=BPP, it is sufficient to construct an algorithm that
stretches O(logn) pure random bits to n bits such that the output distribution has a non-zero
dimension (not necessarily pseudorandom). The idea is that using such stretching algorithm,
we easily construct a hard function, which eventually gives us the most desired optimal
pseudorandom generator.

Notations: In this paper, we consider the binary alphabet Σ = {0, 1}. We denote Prx∈RD[E]
as D[E], where E is an event and x is drawn randomly according to the distribution D.
We use Um to denote the uniform distribution on Σm. Given a string x ∈ Σn, x[i] denote
the i-th bit of x and x[1, . . . , i] denotes the first i bits of x. Now suppose x ∈ Σn and
S = {s1, s2, . . . , sk} ⊆ {1, 2, . . . , n}, then by xS , we denote the string x[s1]x[s2] . . . x[sk].

2 Quantification of Pseudorandomness

In this section, we propose a quantification of pseudorandomness present in a distribution.
We adapt the notion introduced by Lutz [23] of an s-gale to define a variant notion of success
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of an s-gale against a distribution D on Σn. Throughout this paper, we will talk about
non-uniform definitions. First, we consider the definition of pseudorandomness.

2.1 Pseudorandomness
We start by defining the notion of indistinguishability which we will use frequently in this
paper.

I Definition 1 (Indistinguishability). A distribution D over Σn is (S, ε)-indistinguishable from
another distribution D′ over Σn (for S ∈ N, ε > 0) if for every circuit C of size at most S,
|D[C(x) = 1]−D′[C(x) = 1]| ≤ ε.

Now we are ready to introduce the notion of pseudorandomness.

I Definition 2 (Pseudorandomness). For a distribution D over Σn and for any S > n,1 ε > 0,
1. (via computational indistinguishability) D is said to be (S, ε)-pseudorandom if D is

(S, ε)-indistinguishable from Un; or equivalently,
2. (via unpredictability [32]) D is said to be (S, ε)-pseudorandom if D[C(x1, · · · , xi−1) =

xi] ≤ 1
2 + ε

n for all circuits C of size at most 2S and for all i ∈ [n].

2.2 Martingales, s-gales and predictors
Martingales are “fair” betting games which are used extensively in probability theory (see
for example, [2]). Lutz introduced a generalized notion, that of an s-gale, to characterize
Hausdorff dimension [22] and Athreya et al. used a similar notion to characterize packing
dimension[1].

I Definition 3 ([22]). Let s ∈ [0,∞). An s-gale is a function d : Σ∗ → [0,∞) such that
d(λ) = 1 and d(w) = 2−s[d(w0) + d(w1)],∀w ∈ Σ∗. A martingale is a 1-gale.

The following proposition establishes a connection between s-gales and martingales.

I Proposition 4 ([22]). A function d : Σ∗ → [0,∞) is an s-gale if and only if the function
d′ : Σ∗ → [0,∞) defined as d′(w) = 2(1−s)|w|d(w) is a martingale.

In order to adapt the notion of an s-gale to the study of pseudorandomness, we first
relate it to the notion of predictors, which have been extensively used in the literature [31].
Given an initial finite segment of a string, a predictor specifies a probability distribution over
Σ for the next symbol in the string.

I Definition 5. A function π : Σ∗ × Σ → [0, 1] is a predictor if for all w ∈ Σ∗, π(w, 0) +
π(w, 1) = 1.

Note that the above definition of a predictor is not much different from the type of
predictor used in Definition 2. If we have a predictor that given a prefix of a string outputs
the next bit, then by invoking that predictor independently polynomially many times we
can get an estimate on the probability of occurrence of 0 or 1 as the next bit and using
Chernoff bound it can easily be shown that the estimation is correct up to some inverse
exponential error. For the detailed equivalence, the reader may refer to [31]. In this paper,

1 Throughout this paper, we consider S > n so that the circuit can at least read the full input; however
reader can feel free to take any S ∈ N.
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we only consider the martingales (or s-gales) and predictors that can be computed using
non-uniform circuits and from now onwards we refer them just by martingales (or s-gales)
and predictors. And by the size of a martingale (or an s-gale or a predictor), we refer the
size of the circuit corresponding to that martingale (or s-gale or predictor).

2.3 Conversion Between s-Gale & Predictor
There is an equivalence between an s-gale and a predictor. An early reference to this is [6].
We follow the construction given in [15].

A predictor π induces an s-gale dπ for each s ∈ [0,∞) and is defined as follows:
dπ(λ) = 1, dπ(wa) = 2sdπ(w)π(w, a) for all w ∈ Σ∗ and a ∈ Σ; equivalently dπ(w) =
2s|w|

∏|w|
i=1 π(w[1 · · · i− 1], w[i]) for all w ∈ Σ∗.

Conversely, an s-gale d with d(λ) = 1 induces a predictor πd defined as: if d(w) 6= 0,
πd(w, a) = 2−s d(wa)

d(w) ; otherwise, πd(w, a) = 1
2 , for all w ∈ Σ∗ and a ∈ Σ.

Hitherto, s-gales have been used to study the dimension of sets of infinite sequences - for
an extensive bibliography, see [13] and [14]. Although in this paper, we consider distributions
on finite length strings, the conversion procedure between s-gale and predictor will be exactly
same as described above.

2.4 Defining Dimension
I Definition 6. An s-gale d : Σ∗ → [0,∞) is said to ε-succeed over a distribution D on Σn if
D[d(w) ≥ 2] > 1

2 + ε.

Note that the above definition of win of an s-gale is not arbitrary and reader may refer to
the last portion of the proof of Theorem 13 to get some intuition behind this definition. The
following lemma states the equivalence between the standard definition of pseudorandomness
and the definition using martingale.

I Lemma 7. There exists a constant c′ > 0 such that for every c > c′ and for any n ∈ N, if
a distribution D over Σn is (S, ε)-pseudorandom then there is no martingale of size at most
(S − c) that ε-succeeds on D. Conversely, if there is no martingale of size at most 3S that
ε
n -succeeds on D, then D is (S, ε)-pseudorandom.

The proof of the above lemma follows from the fact that the martingale that wins on D, can
act as a distinguisher circuit and conversely, if D is not pseudorandom then we have a next
bit predictor which can be used to construct a martingale that will win on D. The next
definition gives a complete quantification of distributions in terms of dimension.

I Definition 8 (Dimension). The (S, ε)-dimension of a distribution D on Σn is defined as

dimS,ε(D) = min{1, inf{s ∈ [0,∞) | ∃s− gale d of size at most S which ε-succeeds on D}}.

Informally, if the dimension of a distribution is s, we say that it is s-nonpseudorandom.

3 Unpredictability and Dimension

It is customary to measure the performance of a predictor utilizing a loss function [16]. The
loss function determines the penalty incurred by a predictor for erring in its prediction. Let
the next bit be b and the probability induced by the predictor on it is pb.

Commonly used loss functions include the absolute loss function, which penalizes the
amount 1 − pb; and the logarithmic loss function, which penalizes − log(pb). The latter,
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which appears complicated at first glance, is intimately related to the concepts of Shannon
Entropy and dimension. In this section, adapting the result of Hitchcock [15], we establish
that there is an equivalence between the notion of dimension that we define in the previous
section, and the logarithmic loss function defined on a predictor.

I Definition 9. The logarithmic loss function on p ∈ [0, 1] is defined to be loss(p) = − log p.

Using this, we define the running loss that a predictor incurs while it predicts successive
bits of a string in Σn, as the sum of the losses that the predictor makes on individual bits.

I Definition 10. Let π : Σ∗ × Σ→ [0, 1] be a predictor.
1. The cumulative loss of π on w ∈ Σn, denoted as Loss(π,w), is defined by Loss(π,w) =∑n

i=1 loss(π(w[1 . . . i− 1]), w[i]).
2. The loss rate of π on w ∈ Σn is LossRate(π,w) = Loss(π,w)

n .

3. The ε-loss rate of π over a distribution D on Σn is LossRateε(π,D) = inf t+ 1
n , where t

is any number in [0, 1] such that D[LossRate(π,w) ≤ t] > 1
2 + ε.

Note that for a fixed n ∈ N, any distribution on Σn has loss rate between 1
n and 1. The

unpredictability of a distribution is defined as the infimum of the loss rate that any predictor
has to incur on the distribution.

I Definition 11. The (S, ε)-unpredictability of a distribution D on Σn is

unpredS,ε(D) = min{1, inf{LossRateε(π,D) | π is a predictor of size at most S}}.

With this, we can prove that dimension can equivalently be defined using unpredictability.

I Theorem 12. For any distribution D on Σn, if dimS,ε(D) ≤ s, then unpredS2,ε(D) ≤ s.
Conversely, if unpredS,ε(D) ≤ s, then dimS2,ε(D) ≤ s.

The proof of the above theorem is motivated from the proof of the equivalence between
logarithmic loss unpredictability and dimension [15].

Till this point, we have given all the definitions parameterized by the circuit size S and
bias term ε. However, we can naturally extend our definitions to asymptotic definitions where
we consider S to be any polynomial in n and ε to be inverse of any polynomial in n. In that
case, we will get exact equivalence between dimension and unpredictability.

4 Properties of Dimension

We now establish a few basic properties of our notion of dimension. We begin by exhibiting
a distribution on Σn with dimension s, for any s ∈ (0, 1].

First, we observe that the dimension of any distribution D is the infimum of a non-empty
subset of [0, 1] and hence the dimension of a distribution is well-defined.

Since it is clear that any distribution on Σn has a dimension, the following theorem estab-
lishes the fact that our definition yields a nontrivial quantification of the set of distributions.

I Theorem 13. Let s ∈ (0, 1]. Then for large enough n and any S > n, ε > 0, there is a
distribution D on Σn with (S, ε)-dimension s.

Proof. Let us take a distribution D := Un, i.e., uniform distribution on Σn. If s = 1, then
by Lemma 7, D is a distribution with the required (S, ε)-dimension, for any S > 0 and ε > 0.

Otherwise, assume that s ∈ (0, 1). To each string x ∈ Σn, we append bns c−n many zeros,
and denote the resulting string as x′. Let D′(x′) = D(x). For strings y ∈ Σbns c which do not
terminate in a sequence of bns c − n many zeros, we set D′(y) = 0.
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Let π : Σ∗ ×Σ→ [0, 1] be the predictor which testifies that the (S2, ε)-unpredictability of
D ≤ 1. Define the new predictor π′ : Σ∗ × Σ→ [0, 1] by

π′(x, b) =


π(x, b) if|x| < n, b = 0, 1
1 if|x| ≥ n, b = 0
0 otherwise.

For every w ∈ Σbns c which is in the support of D′ such that LossRate(π,w[1 . . . n]) ≤
(1 + ε1 − 1

n ), for any ε1 > 0, we have that

LossRate(π′, w) = Loss(π,w[1 . . . n])
bns c

≤
(1 + ε1 − 1

n )n
bns c

≤ (s+ ε′ − 1
bns c

),

for some ε′ > 0. The last inequality holds for small enough s/n and this testifies that the
(S2, ε)-unpredictability (hence the (S4, ε)-dimension) of the distribution D′ is at most s.

Now, assume that (S4, ε)-dimension of D′ is less than s and for some ε1, 0 < ε1 < s, there
exists a s′-gale (s′ = s− ε1) d of size at most S4 which ε-succeeds on D′. We show that this
would imply that D is not uniform. Now consider a string w ∈ Σbns c, which is in the support
of D′. For any k ∈ n+ 1, · · · , bns c, d(w[1 . . . k]) ≤ 2s′

d(w[1 . . . k − 1]) and thus d(w) ≥ 2 will
imply that d(w[1 . . . n]) ≥ 2−s′(bns c−n)+1. Now consider the martingale d′ corresponding to
the s′-gale d. According to [22], we have d′(w′) = 2(1−s′)|w′|d(w′), for any string w′ ∈ Σ∗.
Thus,

D′[d′(w[1 . . . n]) ≥ 2] ≥ D′[d(w[1 . . . n]) ≥ 2−s
′(bns c−n)+1]

≥ D′[d(w) ≥ 2]

>
1
2 + ε.

Note that D′[d′(w[1 . . . n]) ≥ 2] is same as D[d′(x) ≥ 2] or in other words Un[d′(x) ≥ 2],
which contradicts the fact that by Markov Inequality, Un[d′(x) ≥ 2] ≤ 1

2 and this completes
the proof. J

In subsequent sections, we will see how to extract pseudorandom parts from a convex
combination of distributions. We will need a weaker version of the following theorem which
establishes a relationship between the dimension of a convex combination of distributions in
terms of the dimension of its constituent distributions.

I Theorem 14. Let D1 and D2 be the distributions on Σn and δ ∈ [0, 1]. Suppose D is the
convex combination of D1 and D2 defined by D = δD1 + (1 − δ)D2. Then for any S > n

and ε > 0, dimS,ε(D) ≥ min{dimS,ε(D1), dimS,ε(D2)}.

Proof. The claim clearly holds when δ is either 0 or 1, so assume that 0 < δ < 1. Let
dimS,ε(D1) = s1, and dimS,ε(D2) = s2.

For the contrary, let us assume that, dimS,ε(D) < min{s1, s2}. Now consider s =
min{s1, s2} − ε1, for some ε1, 0 < ε1 < min{s1, s2}. Then there exists an s-gale d of size at
most S such that D[d(w) ≥ 2] > 1

2 + ε.

Let the string w for which d(w) ≥ 2 holds be wi, 1 ≤ i ≤ k and the corresponding
probabilities in D be p(wi), 1 ≤ i ≤ k. Let q(wi) and r(wi), 1 ≤ i ≤ k, be the corresponding
probabilities in D1 and D2 respectively. So,

∑k
i=1 p(wi) >

1
2 + ε, where p(wi) = δq(wi) + (1−

δ)r(wi), 1 ≤ i ≤ k. Now, since dimS,ε(D2) = s2, we have that r(w1) + · · ·+ r(wk) ≤ 1
2 + ε.

Thus q(w1) + · · ·+ q(wk) > 1
2 + ε implying dimS,ε(D1) < s1, which is a contradiction. J
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If we just concentrate on pseudorandom distributions, then by replacing s-gales with
martingales in the proof of the above theorem, we will get the following lemma, which will
be used in Section 6.1.

I Lemma 15. Let D1 and D2 be the (S, ε)-pseudorandom distributions on Σn for any
S > n, ε > 0 and δ ∈ [0, 1]. Suppose there exists a distribution D which can be expressed as
D = δD1 + (1− δ)D2, then D is also (S, ε)-pseudorandom.

However, it is easy to see that convex combinations of distributions may have larger dimension
than any of its constituents. For example, let us consider a n ∈ N and take the distribution
Un. Now take two distributions on Σn+1, namely, D1 produced by the 0-dilution (padding
each string with a 0 at the end) of Un and D2 produced by the 1-dilution (padding each
string with a 1 at the end) of Un. Then D = 0.5D1 + 0.5D2 is nothing but Un+1 and has
dimension which exceeds the dimensions of D1 and D2 by 1

n .

I Theorem 16. Let D, D1 and D2 be the distributions on Σn, and consider S > n, ε > 0
and δ ∈ [0, 1]. Suppose further that dimS,ε(D1) = s1. Now if D = (1 − δ)D1 + δD2, then
dimS,(ε+δ)(D) ≥ s1.2

The proof of the above theorem is similar to that of Theorem 14. If we follow the proof of
Theorem 16 with martingale instead of s-gale, we get the following weaker version of the
above theorem, which we will require in the construction of deterministic extractor for a
special kind of sources in Section 6.1.

I Lemma 17. Let D, D1 and D2 be the distributions on Σn, and consider S > n, ε > 0
and δ ∈ [0, 1]. If D1 is (S, ε)-pseudorandom and D = (1− δ)D1 + δD2, then D is (S, ε+ δ)-
pseudorandom as well.

The following theorem shows that in order for a distribution to have dimension less than
1, it is not sufficient to have a few positions where we can successfully predict - it is necessary
that these positions occur often.

I Theorem 18. For large enough n and for any S > n and ε > 0, there is a distribution Dn

on Σn such that dimS,ε(Dn) = 1 , but is not (S, ε)-pseudorandom.

5 Pseudoentropy and Dimension

In this section we study the relation between our notion of dimension and different variants
of computational or pseudo (min/Shannon) entropy.

5.1 High HILL-type pseudo min-entropy implies high dimension
For a distribution D, min-entropy of D is defined as H∞(D) = minw{log(1/D[w])}. We
start with the standard definition of computational min-entropy, as given by [12].

I Definition 19 (HILL-type pseudo min-entropy). A distribution D on Σn has (S, ε)-HILL-type
pseudo min-entropy (or simply (S, ε)-pseudo min-entropy) at least k, denoted as HHILL,S,ε

∞ ≥
k if the there exists a distribution D′ such that
1. H∞(D′) ≥ k, and
2. D′ is (S, ε)-indistinguishable from the distribution D.

2 Note that bias term in the dimension of D1 depends on δ.
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Several other definitions of pseudo min-entropy (metric-type, Yao-type or compression type)
are there in the literature. We refer the reader to [3] for a comprehensive treatment on
different definitions and the connections between them. In the remaining potion of this
subsection, we focus only on HILL-type pseudo min-entropy. Now we state the main result
of this subsection.

I Theorem 20. There exists a constant c′ > 0 such that for any c > c′, for every distribution
D on Σn and for any S > n, ε > 0, if HHILL,(S+c),ε

∞ (D) ≥ sn, then dimS,ε(D) ≥ s

Proof. The theorem is a consequence of the following claim.

I Claim 21. For every distribution X on Σn, if H∞(X) = k then dimS,ε(X) ≥ k/n, for any
values of S and ε > 0.

Now observe that if a distribution D is (S + c, ε)-indistinguishable from another distribution
D′, then dimS,ε(D) = dimS,ε(D′) as otherwise the s-gale which ε-succeeds over exactly one of
them, acts as a distinguishing circuit. This fact along with Claim 21 completes the proof. J

It only remains to establish Claim 21.

Proof of Claim 21. Let us first take s = k/n. Now for the sake of contradiction, let us
assume that there exists an s-gale d that ε-succeeds over X, i.e., X[d(w) ≥ 2] > 1

2 + ε. Now
consider the set S := {w|d(w) ≥ 2}. As H∞(X) = k, |S| > 2sn−1 + 2sn.ε. By taking the
corresponding martingale d′ according to the Proposition 4, we have that for any w ∈ S,
d′(w) ≥ 2(1−s)n+1 and as a consequence, Un[d′(w) ≥ 2(1−s)n+1] > 2sn−n−1 + 2sn−n.ε, which
contradicts the fact that by Markov inequality, Un[d′(w) ≥ 2(1−s)n+1] ≤ 2sn−n−1. J

The converse direction of the statement of Theorem 20 is also true if the distribution under
consideration is pseudorandom. If the converse is true then we can apply any randomness
extractor to get pseudorandom distribution from any distribution having high dimension [3].
However, we should always be careful about the circuit size with respect to which we call the
output distribution pseudorandom. Unfortunately, in general the converse is not true.

Counterexample for the converse: Suppose one-way functions exist, then it is well-known
that we can construct a pseudorandom generator G : Σl → Σm such that m is any polynomial
in l, say m = l3. For the definitions of one-way function, pseudorandom generator and the
construction of pseudorandom generator with polynomial stretch from any one-way function,
interested reader may refer to [9, 12, 31]. Now consider the distribution D := (G(Ul), Ul).
For large enough l, using the argument similar to the proof of Theorem 13, it can easily be
shown that the distribution D has dimension almost 1 as the distribution on the first m bits
are pseudorandom, but pseudo min-entropy is not larger than l.

5.2 Equivalence between dimension and next-bit pseudo Shannon
entropy

We will use standard notions and notations of information theory (e.g., Shannon entropy,
KL divergence) without defining them. Readers may refer to a book by Cover and Thomas
[7] for the definitions.

In the last subsection, we have talked about pseudo min-entropy. In similar fashion, one
can also define pseudo Shannon entropy and a natural generalization of it is conditional
pseudo Shannon entropy [17, 11, 31].
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I Definition 22 (Conditional pseudo Shannon entropy). Suppose Y is a random variable
jointly distributed with X. Y is said to have (S, ε)-conditional pseudo Shannon entropy at
least k given X if there exists a distribution Z jointly distributed with X such that
1. H(Z|X) ≥ k, and
2. (X,Y ) and (X,Z) are (S, ε)-indistinguishable.
The following is the variant of pseudoentropy that we are looking for in this subsection and
was introduced by Haitner et al. [11].

I Definition 23 (Next-bit pseudo Shannon entropy). A random variableX = (X1, X2, · · · , Xn)
taking values in Σn has (S, ε)-next-bit pseudo Shannon entropy at least k, denoted as
Hnext,S,ε(X) ≥ k if there exist random variables (Y1, Y2, · · · , Yn) such that
1.

∑
iH(Yi|X1, · · · , Xi−1) ≥ k, and

2. for all 1 ≤ i ≤ n, (X1, · · · , Xi−1, Xi) and (X1, · · · , Xi−1, Yi) are (S, ε)-indistinguishable.
Later, Vadhan and Zheng [31] provided an alternative characterization of conditional pseudo
Shannon entropy by showing an equivalence between it and KL-hardness (defined below).
We use this alternative characterization extensively for our purpose.

I Definition 24 (KL-hardness). Suppose (X,Y ) is a Σn×Σ-valued random variable and π be
any predictor. Then π is said to be a δ-KL-predictor of Y given X if KL(X,Y ‖X,Cπ) ≤ δ
where Cπ(y|x) = π(x, y) for all x ∈ Σn and y ∈ Σ.

Moreover, Y is said to be (S, δ)-KL-hard given X if there is no predictor π of size at most
S that is a δ-KL-predictor of Y given X.

The following theorem provides the equivalence among KL-hardness and conditional pseudo
Shannon entropy of a distribution.

I Theorem 25 ([31]). For a Σn × Σ-valued random variable (X,Y ) and for any δ > 0,
ε > 0,
1. If Y is (S, δ)-KL-hard given X, then for every ε > 0, Y has (S′, ε)-conditional pseudo

Shannon entropy at least H(Y |X) + δ − ε, where S′ = SΩ(1)/poly(n, 1/ε).
2. Conversely, if Y has (S, ε)-conditional pseudo Shannon entropy at least H(Y |X) + δ, then

for every σ > 0, Y is (S′, δ′)-KL-hard given X, where S′ = min{SΩ(1)/poly log(1/σ),
Ω(σ/ε)} and δ′ = δ − σ.

Now we are ready to state the main theorem of this subsection which conveys the fact that
the distributions with high dimensions also have high next-bit pseudo Shannon entropy.

I Theorem 26. For any ε′ > 0, there exists a n′ ∈ N such that for any n ≥ n′ and S > n,
ε > 0, for every distribution D on Σn, if dimS,ε(D) > 2s

1−2ε + ε′, then Hnext,S′,ε(D) > sn,
where S′ = SΩ(1)/poly(n).

To prove the above theorem, we first break D with dimension greater than 2s
1−2ε + ε′ into

1-bit blocks, i.e., D = (D1, D2, · · · , Dn) and then by applying Item 1 of Theorem 25, we
argue that next-bit pseudoentropy is at most sn implies unpredictability is at most 2s

1−2ε + ε′

and thus get a contradiction.
On the contrary, for the other direction, the following weaker version can easily be proven.

I Theorem 27. For any ε′ > 0, there exists a n′ ∈ N such that for any n ≥ n′ and S > n,
ε > 0, for every distribution D on Σn, if Hnext,S,ε(D) > sn, then dimS′,ε(D) > s− 1

2 − ε
′′,

where S′ = min{SΩ(1)/poly log(1/ε′),Ω(ε′/
√
ε)} and ε′′ = ε′ − ε.

Technique used in the proof of the above theorem has a similar essence as of Theorem 26.
The above two theorems can easily be extended to the asymptotic world in a natural way.
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6 Pseudorandom Extractors & Lower Bound

We now introduce the notion of pseudorandom extractor similar to the notion of randomness
extractor. Intuitively, a randomness extractor is a function that outputs almost random
(statistically close to uniform) bits from weakly random sources, which need not be close
to the uniformly random source. Two distributions X and Y on a set Λ are said to be
ε − close (statistically close) if maxS⊆Λ{|Pr[X ∈ S] − Pr[Y ∈ S]|} ≤ ε or equivalently
1
2

∑
x∈Λ
|Pr[X = x]− Pr[Y = x]| ≤ ε.

I Definition 28 (Deterministic Randomness Extractor). A function E : Σn → Σm is said to
be a deterministic ε-extractor for a class of distributions C if for every distribution X on
n-bit strings in C, the distribution E(X) is ε-close to Um.

Likewise, a seeded ε-extractor is defined and the only difference is that now it takes a
d-bit string chosen according to an uniform distribution, as an extra input. Before going
further, we mention that for ease of presentation, now onwards we will only talk about
asymptotic versions of the definitions and results derived so far related to pseudorandomness
and dimension. We now define the notion of a pseudorandom extractor, the purpose of which
is to extract out pseudorandom distribution from a given distribution.

I Definition 29 (Pseudorandom Extractor). A function E : Σn → Σm is said to be a
deterministic pseudorandom extractor for a class of distributions C if for every distribution
X on n-bit strings in C, E(X) is pseudorandom.

A function E : Σn×Σd → Σm is said to be a seeded pseudorandom extractor for a class of
distributions C if for every distribution X on n-bit strings in C, E(X,Ud) is pseudorandom.

In this section, we will concentrate on the class of distributions having dimension at least
s. It is clear from the results stated in Section 5.1 that this class of distribution is a strict
superset of the class of distributions with HILL-type pseudo min-entropy at least sn, for
which any randomness extractor will act as a pseudorandom extractor [3]. Thus it is natural
to ask the following.

I Question 1. For any s ∈ (0, 1], does there exist a deterministic/seeded pseudorandom
extractor for the class of distributions on Σn having dimension at least s?

Just like the the case of randomness extraction, one can easily argue that deterministic
pseudorandom extraction is not possible3. Now the most common question comes next is
that what the lower bound on the seed length will be. We answer to this question in the
following theorem.

I Theorem 30. Suppose for any s ∈ (0, 1], E : Σn × Σd → Σm be a seeded pseudorandom
extractor for the class of distributions on Σn having dimension at least s and for some δ > 0,
m = (sn)δ. Then d = Ω(logn).

Proof. For the sake of contradiction, let us assume that d = o(logn). Now by doing a walk
according to the output distribution on an odd-length cycle, we achieve the following claim.

I Claim 31. There is a deterministic 1
4√m -extractor E′ : Σm → Σ

logm
4 for all pseudorandom

distributions on Σm.

3 Suppose E : Σn → Σ is a deterministic pseudorandom extractor, then there exists x ∈ Σ such that
|E−1(x)| ≥ 2n−1. Thus E is not a pseudorandom extractor for a source D that is a uniform distribution
on E−1(x) and by Claim 21, dim(D) ≥ (1− 1/n).
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Now construct the following function Ext : Σn × Σd → Σc logn for some constant c > 0
such that Ext(x, y) = E′(E(x, y)) for all x ∈ Σn, y ∈ Σd. The function Ext is a seeded

1
(sn)δ/4 -extractor with d = o(logn), but it is well known due to [28](Theorem 1.9) that any
such randomness extractor must satisfy d = Ω(logn) and hence we get a contradiction. J

However, the question on constructing an explicit or polynomial time computable seeded
pseudorandom extractor with seed length O(logn) is still open and next, we formally pose
this question.

I Question 2. For any s ∈ (0, 1], can one construct a seeded pseudorandom extractor
E : Σn×Σd → Σm in polynomial time, for the class of distributions on Σn having dimension
at least s such that m = (sn)δ for some δ > 0 and d = O(logn)?

In the next part of this section, we will see a special type of nonpseudorandom source and
give an explicit construction of deterministic pseudorandom extractor for that particular
type of source. Before proceeding further, we want to mention that it is also very interesting
to consider nonpseudorandom distributions samplable by poly-size circuits, which is a natural
extension of another special type of source called samplable source studied in [30]. By following
the argument in [30], we can observe that the existence of deterministic pseudorandom
extractor implies separation between deterministic complexity classes and non-uniform circuit
classes which is not known so far. Nevertheless, it is still natural to ask the question of
constructing explicit extractor using O(logn) amount of extra randomness for this special
kind of source. We do not know any such result so far, but in Section 7 we will see that if
some distribution is samplable using very few (O(logn)) random bits, then it is possible to
extract out all the pseudorandom bits using extra O(logn) random bits.

6.1 Deterministic Pseudorandom Extractor for Nonpseudorandom
Bit-fixing Sources

In Section 4 while proving Theorem 13, we have introduced a special type of nonpseudorandom
distribution which looks similar to the (n, k)-bit-fixing source defined as a distribution X
over Σn such that there exists a subset I = {i1, . . . , ik} ⊆ {1, . . . , n} where all the bits at
the indices of I are independent and uniformly chosen and rest of the bits are completely
fixed. This distribution was introduced by Chor et al.[5]. Now we define an analogous notion
for the class of nonpseudorandom distributions, which we term nonpseudorandom bit-fixing
sources.

I Definition 32 (Nonpseudorandom Bit-fixing Source). Let s ∈ (0, 1). For sufficiently large
n and ε > 0, a distribution Dn over Σn with dimension s is an (n, s, ε)-nonpseudorandom
bit-fixing source if there exists a subset I = {i1, . . . , idsne} ⊆ {1, . . . , n} such that all the bits
at the indices of I come from an ε-pseudorandom distribution and rest of the bits are fixed.

We devote the rest of the section to achieve an affirmative answer to the question of
constructing deterministic pseudorandom extractor for the nonpseudorandom bit-fixing
sources. For this purpose, we show that a careful analysis of the technique used in the
construction of the deterministic randomness extractor for bit-fixing random sources by
Gabizon, Raz and Shaltiel [8] will lead us to the desired deterministic pseudorandom extractor.

I Theorem 33. There exists a constant c > 0 such that for any s ∈ (0, 1] and for large enough
n, 0 < ε < 1√

n
, there is an explicit deterministic pseudorandom extractor E : Σn → Σm

for all (n, s, ε)-nonpseudorandom bit-fixing sources having polynomial-size support, where
m = (sn)Ω(1).
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We first extract O(log sn) amount of almost random bits and then use the same as seed in
the seeded extractor. To use the seeded extractor, we modify the source such that it becomes
independent of the random bits extracted.

7 Approaching Towards P=BPP

We now show that if there is an exponential time computable algorithm G : ΣO(logn) → Σn
where the output distribution has dimension s (s > 0), then this will imply P=BPP. We
refer to this algorithm G as optimal nonpseudorandom generator. To prove the main result
of this section, we use the following theorem proved by Impagliazzo and Wigderson.

I Theorem 34 ([18]). Suppose there is a language L in EXP and ∃δ > 0 such that L on
inputs of length n cannot be solved by circuits of size at most 2δn. Then there exists a
language L′ in EXP and ∃δ′ > 0 such that L′ on inputs of length n is (2δ′n, 1/2δ′n)-hard and
as a consequence optimal pseudorandom generator exists.

Now we use the above theorem in the proof of the following result.

I Theorem 35. Consider any s ∈ (0, 1] and c > 0. If there exists an algorithm Gn :
Σc logn → Σn computable in 2O(logn) such that for sufficiently large n, dim(Gn(Uc logn)) ≥ s,
then P=BPP.

Proof. Suppose X := Gn(Uc logn). If dim(X) = s > 0, then there must be a subset of
indices S ⊆ {1, 2, · · · , n} such that |S| = logn and for any i ∈ S, loss incurred by any
polynomial size predictor at i-th bit position is non-zero or in other words, for any poly-size
circuit C, X[C(x1, · · · , xi−1) = xi] < 1. Otherwise according to Theorem 12 and by the
argument used in the proof of Theorem 18, one can show that dim(X) = 0, for large enough
n. Suppose S contains first logn many such indices. Also assume that S = {i1, i2, · · · , ilogn}
and i1 < i2 < · · · < ilogn. Now we define two languages L0 and L1 as follows: for j = 0, 1,
Lj := {y ∈ Σlogn−1|∃x ∈ Σn in the support of Gn and xS = jy}.

First of all, note that as i1 ∈ S, none of L0 and L1 is a constant function. Now clearly
either L0 or L1 is the language that satisfies all the conditions of Theorem 34 [18]. Otherwise,
there exists a predictor circuit of size at most 2δ logn, for some δ > 0, i.e., polynomial in n,
by which we can predict ilogn-th bit position or loss incurred by that predictor at ilognth
bit position will be zero implying ilogn 6∈ S which is a contradiction. Thus either L0 or L1
can be used to construct an optimal pseudorandom generator and which eventually implies
P=BPP. J
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Abstract
We study the Minimum Circuit Size Problem (MCSP): given the truth-table of a Boolean function
f and a number k, does there exist a Boolean circuit of size at most k computing f? This is
a fundamental NP problem that is not known to be NP-complete. Previous work has studied
consequences of the NP-completeness of MCSP. We extend this work and consider whether MCSP
may be complete for NP under more powerful reductions. We also show that NP-completeness
of MCSP allows for amplification of circuit complexity. We show the following results.

If MCSP is NP-complete via many-one reductions, the following circuit complexity amplifi-
cation result holds: If NP ∩ co-NP requires 2nΩ(1) -size circuits, then ENP requires 2Ω(n)-size
circuits.
If MCSP is NP-complete under truth-table reductions, then EXP 6= NP∩SIZE(2nε) for some
ε > 0 and EXP 6= ZPP. This result extends to polylog Turing reductions.
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1 Introduction

Many natural NP problems are known to be NP-complete. Ladner’s theorem [14] tells us
that if P is different from NP, then there are NP-intermediate problems: problems that are
in NP, not in P, but also not NP-complete. The examples arising out of Ladner’s theorem
come from diagonalization and are not natural. A canonical candidate example of a natural
NP-intermediate problem is the Graph Isomorphism (GI) problem. If GI is NP-complete,
then the polynomial-time hierarchy collapses [17, 8]. This gives very strong evidence that GI
is unlikely to be NP-complete.

In this paper, we study another candidate example of NP-intermediate problem—the
Minimum Circuit Size Problem (MCSP): given the truth-table of a Boolean function f and
a number k, does there exist a Boolean circuit of size at most k computing f? We do not
have a good understanding of the complexity of this fundamental problem. Clearly MCSP
is in NP. It is believed that MCSP is not in P, however we do not know whether it is
NP-complete. Unlike the GI problem, we do not currently have complexity-theoretic evidence
that MCSP is not NP-complete. If MCSP is not NP-complete, then it implies that P does
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not equal NP. Previous work has considered whether MCSP (and its variants) is complete
via various notions of reductions [13, 16, 4]. These works establish that if MCSP is complete,
then certain consequences happen for complexity classes – some plausible, some not. These
results indicate that settling whether MCSP is NP-complete is outside the scope of current
techniques.

Kabanets and Cai [13] showed that if MCSP is NP-complete under natural reductions, then
(i) E 6⊆ P/poly and (ii) E requires 2Ω(n)-size circuits or NP can be solved in subexponential
time. On the contrary, they obtained a host of interesting consequences under the assumption
that MCSP is in P. For example, they showed that if MCSP is in P, then Blum integers can
be factored in time 2nε . They also related this assumption to circuit complexity amplification.
They showed that the assumption “MCSP is in P” yields the following: if there exists a
language in E with circuit complexity 2δn (for some δ > 0), then there is a language in
E with essentially maximal circuit complexity (close to 2n/n). Such a circuit complexity
amplification result, even though believable, is surprising.

Recently Murray and Williams [16] showed that MCSP is not complete under local
reductions where each output bit of the reduction can be computed in time n1/2−ε. They
also showed that if MCSP is complete via AC0 reductions then E has languages with circuit
complexity 2δn. For the case of polynomial-time reductions, they showed that if MCSP
is NP-complete via polynomial-time reductions,then EXP 6⊆ P/poly or EXP = NEXP. In
particular, it follows that EXP 6= NP ∩ P/poly and EXP 6= ZPP. Even though we strongly
believe that statements such as EXP differs from ZPP and E has high circuit complexity
hold, we are far away from proving them. These results explain the difficult of proving
a NP-completeness result for MCSP (if it is indeed NP-complete). Allender, Holden, and
Kabanets studied the oracle version of MCSP problem. Given the truth-table of a Boolean
function f and a parameter k, does f admit circuits of size k that have access to an oracle
A? They showed that MCSPQBF is unlikely to be hard for various complexity classes under
reductions that are more restrictive than polynomial-time reductions. For example, they
showed that if MCSPQBF is hard for NP under logspace reductions, then nondeterministic
exponential time (NEXP) collapses to PSPACE.

The known results that concern NP-completeness of MCSP and oracle versions of MCSP
can be summarized as follows: For the case of “restricted” reductions, these problems are
unlikely to complete NP-hard; Establishing NP-hardness under polynomial-time reductions
would resolve a few major open problems in complexity theory.

Our Results. In this paper we obtain additional results regarding NP-completeness of
MCSP under polynomial-time reductions. Our first result relates completeness of MCSP
with circuit complexity amplification. If a complexity class C requires superpolynomial-size
circuits, then can we amplify this hardness to show that a complexity class D requires circuits
of much higher size? Ideally, we want D to be the same as C. However, we do not know
how to prove such results even when the class D is a superclass of C. Buresh-Oppenheim
and Santhanam [10] showed that if the nondeterministic circuit complexity of E is 2δn, then
E/O(n) has languages with maximal circuit complexity. They established a negative result
that shows that known proof techniques can not amplify deterministic circuit complexity. As
our first result, we show that NP-completeness of MCSP implies certain circuit complexity
amplification. Assume that MCSP is NP-complete and suppose further that we have a
moderately exponential-size (2nΩ(1)) circuit-size lower bound for NP ∩ co-NP. We show that
this hardness can be amplified into a strongly exponential (2Ω(n)) circuit-size lower bound for
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ENP. Admittedly, the gap between these classes is large, but we know of no unconditional
method of doing this. This result should be contrasted with the previously mentioned result
of Kabanets and Cai. Interestingly, both the statements “MCSP is in P” and “MCSP is
NP-complete” imply that circuit complexity amplification is possible.

The statement “If NP ∩ co-NP requires circuits of size 2nΩ(1) , then ENP requires circuits
of size 2Ω(n)” can also be viewed as an upward separation result—if a complexity class is
hard, then a higher complexity class is much harder. In general, such upward separation
results are rare. For example, we do not know if NP differs from P, then NEXP differs from
EXP. Thus NP-completeness of MCSP implies an upward separation result.

Next we consider the completeness of MCSP under reductions that are more general
than polynomial-time, many-one reductions. We do not know whether GI polynomial-time,
many-one reduces to MCSP, however Allender and Das [3] showed that GI reduces to
MCSP if we allow probabilistic, Turing reductions. These reductions use randomness and
are allowed to ask multiple (adaptive) queries. This result suggests that allowing more
general reductions to MCSP yields more power. This raises the following question: Is it
possible to establish completeness of MCSP under more general reductions? In our second
result, we show that it would be difficult to establish completeness MCSP under truth-
table/nonadaptive reductions. We show that if MCSP is NP-complete under truth-table
reductions, then EXP 6= NP ∩ SIZE(2nε) for some ε > 0. This is an extension of Murray
and Williams’ result. We first provide an alternate proof of Murray and Williams result
for the case of many-one reductions using different techniques, and extend this proof to
the case of truth-table reductions. Our alternate proof could be of independent interest.
We also note that the proof of Murray and Williams can also be extended to the case of
truth-table reductions. Additionally, our proof extends to polylog-Turing reductions. It is
worth noting that our results for truth-table completeness and polylog-Turing completeness
are not directly comparable.

Techniques. Our approaches are based on ideas from honest reductions. A many-one
reduction f is honest if |f(x)| ≥ |x|ε for some ε > 0. From early work of Berman and
Hartmanis [7], we know that all natural NP-complete problems are complete under honest
reductions. Let f be a many-one reduction from L to MCSP. We say that this reduction
is parametric honest if there is an ε > 0 such that for every x, the output f(x) = 〈y, k〉
satisfies k > nε. Note that L reduces to MCSP via honest reductions does not imply that L
reduces to MCSP via parametric honest reductions. Suppose that MCSP is NP-complete
via parametric honest reductions. Consider such a reduction f from 0∗ to MCSP. Note that
f(1n) = 〈y, k〉 is a negative instance of MCSP, and since k > nε, we have that the circuit
complexity of y (when viewed a truth-table of a boolean function) is at least nε. Thus we
have a polynomial-time algorithm that outputs strings with high circuit complexity which in
turn implies that E has high circuit complexity.

We show that under certain plausible hypotheses, NP-completeness of MCSP implies
that there exist parametric honest reductions to MCSP. We combine this with the above
observation to obtain our results.

In our first result, the hypothesis is that NP ∩ co-NP requires moderately exponential-
size circuits. We show this implies MCSP is complete under parametric honest, SNP
(strong nondeterministic) reductions. Informally, a reduction is an SNP reduction if it is
computable by a NP ∩ co-NP machine. This yields the strong exponential-size circuit
lower bound for ENP.
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In our second result, the hypothesis is that there is a hard tally language T in NP. Using
this hypothesis, we show that if MCSP is truth-table complete, then there is a truth-table
reduction from T to MCSP where at least one query is parametric, honest. This yields
a circuit lower bound for E. We build on this to show that truth-table completeness of
MCSP implies a separation of EXP from ZPP.

Even though we know that all known NP-complete sets are complete via honest reductions,
we do not whether this is true for all NP-complete sets. In recent years there have been a few
results that show that, under some believable hypotheses, every NP-complete set is complete
via honest reductions whose resource bounds are slightly larger than polynomial [2, 12, 11, 9].
We use ideas from these works to show that if MCSP is complete, then it is complete via
parametric honest reductions (under certain hypotheses).

This paper is organized as follows. Section 2 covers preliminaries and previous work.
Our results on truth-table completeness of MCSP are in Section 3. The consequences for
amplification of circuit complexity are in section 4.

2 Preliminaries

For the standard notation and notions in complexity theory we refer the reader to [6]. Our
alphabet is Σ = {0, 1} and we use Σn to denote all binary strings of length n. Given an n
bit string (where n is a power of 2) x, we view x as the truth-table of a function, denoted fx,
from {0, 1}logn to {0, 1}. Given a function f : Σn → {0, 1}, we use CC(f) to denote the size
of the smallest Boolean circuit that computes f . For a string x (whose length is a power
of two), we use CC(x) to denote CC(fx). For a language L, L(x) = 1 if x ∈ L; otherwise
L(x) = 0. Given a language L, we use Ln : Σn → {0, 1} to denote the characteristic function
of L restricted to strings of length n. We say that CC(L) > s(n) if there exist infinitely
many n for which CC(Ln) > s(n). We say that CC(L) > s(n) a.e. if CC(Ln) > s(n) for all
but finitely many n. A complexity class C does not have circuits of size s(n) if there exists
L ∈ C such that CC(L) > s(n).

I Definition 2.1. MCSP is the set of tuples 〈x, k〉 such that CC(fx) is at most k.

An instance 〈x, k〉 of MCSP is called `-large is if k ≥ `. In our proofs we use strong
nondeterministic reductions [1, 15] and approximable sets. We define these notions.

I Definition 2.2. A language A reduces to a language B via strong, nondeterministic,
polynomial-time reductions (SNP reductions), if there exists a polynomial-time bounded,
nondeterministic Turing machine N such that for every x ∈ Σ∗, the following conditions
hold:

Every path of N(x) outputs a string y or outputs a special symbol ⊥.
If x ∈ A, then every output y of N(x) belongs to B; if x /∈ A, every output y of N(x)
does not belong to B.

I Definition 2.3. A language L is t(n)-time 2-approximable [5], if there is exists a function
f computable in time O(t(n)) such that for every pair of strings x and y, f(x, y) 6= L(x)L(y).
A language L is io-lengthwise, t(n)-time, 2-approximable if there exists a O(t(n))-time
computable function f such that for infinitely many n for every pair of strings x and y of
length n, f(x, y) 6= L(x)L(y).

It is known that every polynomial-time, 2-approximable set has polynomial-size circuits [5].
This proof can be extended.
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I Theorem 2.4 ([5]). If a language L is io-length wise, t(n)-time 2-approximable, then for
infinitely many n, CC(Ln) ≤ O(t2(n)).

I Definition 2.5. A language A is polynomial-time, truth-table reduces to a language B if
there exist a pair of polynomial-time computable functions f and g such that for every x,
A(x) = f(x,B(q1), · · · , B(qm)), where g(x) = 〈q1, · · · qm〉.

I Definition 2.6. Let L be a language that polynomial-time, many-one reduces to MCSP.
We say that L reduces to MCSP via parametric, honest reduction if there exists an ε > 0,
and a polynomial-time, many-one reduction f from L to MCSP if f(x) is |x|ε large for every
x ∈ Σ∗.

The above definition can be extended to the case of SNP reductions.

I Definition 2.7. We say that a language L reduces to MCSP via parametric, honest, SNP
reduction, if there exists an ε > 0 and a polynomial-time nondeterministic machine N such
that L SNP reduces to MCSP via N and every output of N(x), that does not equal ⊥, is
|x|ε-large.

The following observations are proved using the standard techniques.

I Observation 2.8. Suppose that there is a P/O(logn) algorithm A and an ε > 0 such that
for all but infinitely many n the output of A(1n) has circuit complexity greater than nε. Then
there is a language L is E such that CC(L) ≥ 2δn for some δ > 0.

I Observation 2.9. Suppose that there is a non-deterministic, polynomial-time algorithm A

and an ε > 0 such that for infinitely many n the following holds: Every output of A(1n) that
does not equal ⊥, has circuit complexity greater than nε. Then there is a language L is ENP

such that CC(L) ≥ 2δn for some δ > 0.

3 Amplification of Circuit Complexity

In this section we show that completeness of MCSP implies that circuit complexity can be
amplified.

I Theorem 3.1. Assume that MCSP is NP-complete via polynomial-time, many-one reduc-
tions. If there exists a language L in NP ∩ co-NP such that for some ε > 0, CC(L) ≥ 2nε

a.e., then there exists δ > 0 such that then ENP does not have circuits of size 2δn.

Before we proceed with proof, we give a brief overview of the proof. Gu, Hitchcock, and
Pavan [11] showed that if NP can not be solved in sub-exponential time (at all lengths),
then every NP-complete set is complete via P/poly, length-increasing reductions. We borrow
ideas from this work. Let L be a hard language in NP ∩ co-NP whose circuit complexity is
high.

Our first step in the proof is that under this hypothesis, completeness of MCSP implies
completeness via parametric, honest reductions. For this we define an intermediate language
I that embeds both SAT and L. This language consists of tuples 〈x, y, z〉 so that Maj(x ∈
L, y ∈ SAT, z ∈ L) is 1. This language is clearly in NP. Consider a reduction f from I to
MCSP. Suppose that f(〈x, y, z〉) = 〈u, k〉. If k is small (less than nδ), then we can solve the
membership of 〈u, k〉 in time roughly 2nδ . If 〈u, k〉 is in MCSP then 〈x, y, z〉 ∈ I. Thus it
must be the case that at least one of x or z are in L. Thus L(x)L(z) cannot be equal to 00.
Thus in time 2nδ time we learned some information about the collective membership of x
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and z in L (even though this information does help us solve individual memberships of x and
z in L). Now suppose that for every pair x and z, we have that f(〈x, y, z〉) is small, then for
every pair of strings x and z we can exclude one possibility for L(x)L(z) in time 2nδ . This
implies that L must be io-2-approximable and thus L has low enough circuit complexity (by
Theorem 2.4). From this we conclude that for at least one pair x and z, f(〈x, y, z〉) is large.
Using this we build a parametric, honest reduction from SAT to I. We now proceed with
details.

Proof. Let L be a language in NP ∩ co-NP that does not have 2nε-size circuits at almost
all lengths. We will first prove that if MCSP is NP-complete, then MCSP is complete via
parametric, honest, SNP reductions.

I Lemma 3.2. Suppose that there exists a language in NP ∩ co-NP that requires 2nε-size
circuits a.e. for some ε > 0. If MCSP is NP-complete, then MCSP is complete via parametric,
honest, SNP reductions.

Proof. Let L be the hard language in NP ∩ co-NP that requires 2nε -size circuits. We define
the following intermediate language I. Let δ = ε/2.

I = {〈x, y, z〉 | Maj{x ∈ L, y ∈ SAT, z ∈ L} = 1, |x| = |z| = |y|1/δ}.

Clearly I is in NP. Let f be a many-one reduction from I to MCSP. Our goal is to exhibit
a large query, SNP reduction from SAT to MCSP. For this we will first show that for every
string y of length nδ, there exist x ∈ L, z /∈ L (of length n) such that f(〈x, y, z〉) is nδ-large.

Let

Tn = {〈x, z〉 ||x| = |z| = n,L(x) 6= L(z),∀y ∈ Σn
δ

, f(〈x, y, z〉) is not nδ-large}.

We will next claim that Tn must be the empty set for all but finitely many n.

I Claim 3.2.1. For all but finitely many n, Tn = ∅.

Proof. We prove by contradiction. Suppose that there exist infinitely many n at which Tn
is not empty. We show that for infinitely many lengths n, CC(Ln) ≤ 2nε , which contradicts
the hardness of L. This contradiction is achieved by showing that L is io-lengthwise,
2-approximable in time 2nε . Consider the following approximator function h:
1. Input: x, z of length n.
2. For every y from Σnδ compute f(〈x, y, z〉).
3. If every f(〈x, y, z〉) is nδ-large, then output 01 and stop.
4. If for some y ∈ Σnδ , f(x, y, z) is not nδ large, compute the membership of f(x, y, z) in

MCSP.
5. If f(x, y, z) ∈ MCSP, then output 00; otherwise output 11.

Let n be a length at which Tn 6= ∅. We show that for every x, z of length n the output
of the above algorithm does not equal L(x)L(z). Since Tn is not empty, there exists a
y ∈ {0, 1}nδ such that f(〈x, y, z〉 is not nδ large. Thus the above algorithm reaches Step 4.
If f(x, y, z) ∈ MCSP, then the algorithm outputs 00. In this case, since f is a many-one
reduction from I to MCSP, 〈x, y, z〉 ∈ I. Thus at least one of x or z must belong to L. Thus
L(x)L(z) 6= 00. Similarly, if f(x, y, z) /∈ MCSP, then 〈x, y, z〉 /∈ I, and this implies that at
least one of x or z does not belong to L. Thus the output of the algorithm 11 does not equal
L(x)L(z).
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We now bound the running time of the above algorithm. Step 2 takes O(2nδ · poly(n))
time. Consider Step 4. This step is performed only when f(x, y, z) = 〈u, k〉 is not nδ-large.
Thus k ≤ nδ. Thus to decide the membership of 〈u, k〉, we have to cycle through all circuits
of size ≤ nδ and check if any of them computes the function fu. This step takes 2O(lognnδ)

time. Thus the total time taken by the above algorithm is bounded by 2O(lognnδ).
If Tn is not empty for infinitely many n, the language L is io-lengthwise, 2-approximable in

time 2O(lognnδ). Thus by Theorem 2.4, CC(Ln) ≤ 2nε for infinitely many n as δ ≤ ε/2.This
is a contradiction. J

We will now return to the proof of Lemma 3.2. Thus Tn 6= ∅ for all but finitely many
lengths n. This suggests the following SNP reduction from SAT to MCSP: On an input
y of length n, guess a string x ∈ L and a string z /∈ L of lengths n1/δ and compute
f(〈x, y, z〉) = 〈u, k〉. If k < n output ⊥, otherwise output 〈u, k〉. By claim 3.2.1, for all but
finitely many n, Tn1/δ is not empty. Thus for all but finitely many n, there exist strings
x and z of length n1/δ such that x ∈ L, z /∈ L and f(〈x, y, z〉) is n-large for every y of
length n. Since L is in NP ∩ co-NP, at least one path of the reduction guesses such x and z
and the output along this path is n-large. Thus MCSP is complete via parametric, honest,
SNP-reductions. J

We now complete the proof of Theorem 3.1. Let T = 0∗, by Lemma 3.2, there is a
SNP reduction f from T to MCSP that is parametric honest. Let xn = 〈yn, k〉 be the
lexicographically smallest output produced by f on input 1n. Since 1n /∈ T , we have that
〈yn, k〉 /∈ MCSP and k ≥ nδ. Thus CC(yn) ≥ nδ. By Observation 2.9, it follows that ENP

has high circuit complexity. J

4 Truth-Table Completeness

Our results in this section are based on the following hypothesis.

Hypothesis H: There exists an ε > 0 and a tally language in NP that cannot be solved
deterministically in time 2nε .

Before moving on to more powerful reductions, we begin by examining the case of
many-one reducibility.

I Theorem 4.1. Assume that Hypothesis H holds. If MCSP is NP-complete via polynomial-
time, many-one reductions, then there exists a δ > 0 such that E 6⊆ SIZE(2δn).

Proof. Assume that MCSP is NP-complete and let T be the hard tally language that is not
in DTIME(2nε). Let f be a many-one reduction from T to MCSP. Fix δ < ε.

I Claim 4.1.1. There exist infinitely many n such that 0n /∈ T and f(0n) is nδ-large.

Proof. Suppose not. For all but finitely many n at which 0n /∈ T we have that f(0n) is not
δ-large. This means that if f(0n) is nδ-large for some n, then 0n ∈ T . This suggests the
following algorithm for T : On input 0n, compute f(0n) = 〈x, k〉. If f(0n) is nδ-large, then
accept 0n. Otherwise, we have that k < nδ. Now cycle through all circuits of size at most k
to determine the membership of 〈x, k〉 in MCSP. This lets us decide the membership of 0n
in T .

The time taken for this procedure is dominated by the time taken to cycle through all
circuits of size at most k. Since there are at most 2O(lognnδ) such circuits, the language T
can be decided in time less than 2nε . This is a contradiction. J
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Now consider the following polynomial-time algorithm that on input 0n computes f(0n) =
〈x, k〉 and outputs x. Note that for infinitely many n, this algorithm outputs the truth-table
of a function whose circuit complexity is at least nδ. This implies that there is a language in
E whose circuit complexity is 2δn. J

The above theorem yields the following corollary, similar to Murray and Williams [16].
The consequence here EXP 6= NP∩SIZE(2nε) is stronger than EXP 6= NP∩P/poly obtained
by Murray and Williams, though we note that their proof may be adapted to obtain this as
well.

I Corollary 4.2. If MCSP is NP-complete, then EXP 6= ZPP and EXP 6= NP ∩ SIZE(2nε)
for some ε > 0.

Proof. Assume that MCSP is NP-complete. We consider two cases.
If Hypothesis H does not hold, then NP 6= EXP as EXP has tally languages that can not
be solved in time 2n. Since ZPP is a subset of NP, EXP 6= ZPP.
If Hypothesis H holds, then by the above theorem, E does not have circuits of size 2δn (at
infinitely many lengths). This implies that ZPP can be derandomized to P at infinitely
many length and which in turn implies that EXP 6= ZPP. Finally note that, if E does
not have circuits of size 2δn, then EXP does not have circuits of size 2nε for some ε > 0.

In both cases, the conclusion of the corollary is true. J

Next we extend the above theorem (and its proof) to the case of truth-table reductions.
We note that the proof of Murray and Williams can also be extended to the case of truth-table
reductions.

I Theorem 4.3. Assume that the hypothesis H holds. If MCSP is truth-table complete for
NP, E does not have circuits of size 2δn for some δ > 0.

Proof. Let T be the hard tally language in NP and let f a truth-table reduction from T to
MCSP. On input 0n, let qn1 , · · · qnm be the queries produced by f . Fix δ < ε. We first claim
that at least one of the queries produced is large and is a negative instance of MCSP.

I Claim 4.3.1. There exist infinitely many n for which there exists i, 1 ≤ i ≤ m, such that
qni is nδ-large and does not belong to MCSP.

Proof. Suppose not. For all but finitely many n, the following holds. For every i, 1 ≤ i ≤ m,
either qni is not nδ-large or qni ∈ MCSP. This suggests the following algorithm to decide T :

On input 0n, run the reduction f and produce queries qn1 , · · · qnm.
If qni is not nδ-large then use a brute-force search algorithm to decide the membership
of qni in MCSP.
If qni is nδ-large, then qni ∈ MCSP.

Use all answers to the queries decide the membership of 0n in T .

Clearly, the algorithm correctly decides T . The most expensive step of the algorithm is
to decide the membership of qni in MCSP using the brute-force algorithm. Note that we
run the brute-force algorithm only when qni is not nδ-large. Thus the time taken for this
step is 2O(lognnδ). Thus the total time taken by the algorithm is O(m2O(lognnδ)). Since m is
polynomial in n and δ < ε, this is bounded by 2nε . This contradicts our hypothesis. J

Using the above claim, we show that there is an efficient algorithm (with a logarithmic
amount of advice) that outputs strings with high circuit complexity.
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I Claim 4.3.2. There is a P/O(logn) algorithm A that on input 0n outputs a string xn and
for infinitely many n, CC(xn) ≥ nδ.

Proof. Let n` bound the run time of the truth-table reduction from T to MCSP. The
algorithm on input 0n gets a tuple 〈b, r〉 as advice where b is a bit and r < n`. The bit b
is set to 1 if at least one of qni is nδ-large and does not belong to MCSP; otherwise b is set
to 0. When b is 1, then the number r indicates the first index i, 1 ≤ i ≤ m, for which qni is
nδ-large and does not belong to MCSP. When b equals 0, r is set to 0. Note that the length
of the advice is O(logn).

The algorithm on input 0n first looks at the advice bit b. If b is 0, then it outputs
0n. Otherwise it runs the reduction from T to MCSP to produce queries qn1 , · · · qnm. Let
qnr = 〈xn, k〉. The algorithm outputs xn.

By Claim 4.3.1, there exist infinitely many n at which at least one of qni is nδ-large and
does not belong to MCSP. At every such length the above algorithm (on correct advice bits)
outputs a string xn for which CC(xn) > nδ. J

By Observation 2.8, there is a language in E that requires circuits of size 2ρn for some
ρ > 0. This completes the proof of the theorem. J

As before we have the following corollary.

I Corollary 4.4. If MCSP is truth-table complete for NP, then EXP 6= ZPP and EXP 6=
NP ∩ SIZE(2nε) for some ε > 0.

Using similar ideas we can prove the following.

I Theorem 4.5. If MCSP is polylog-Turing complete for NP, then EXP 6= ZPP and
EXP 6= NP ∩ SIZE(2nε) for some ε > 0.
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Abstract
We show that counting Euler tours in undirected bounded tree-width graphs is tractable even
in parallel - by proving a #SAC1 ⊆ NC2 ⊆ P upper bound. This is in stark contrast to #P-
completeness of the same problem in general graphs.

Our main technical contribution is to show how (an instance of) dynamic programming on
bounded clique-width graphs can be performed efficiently in parallel. Thus we show that the
sequential result of Espelage, Gurski and Wanke [16] for efficiently computing Hamiltonian paths
in bounded clique-width graphs can be adapted in the parallel setting to count the number of
Hamiltonian paths which in turn is a tool for counting the number of Euler tours in bounded
tree-width graphs. Our technique also yields parallel algorithms for counting longest paths and
bipartite perfect matchings in bounded-clique width graphs.

While establishing that counting Euler tours in bounded tree-width graphs can be computed
by non-uniform monotone arithmetic circuits of polynomial degree (which characterize #SAC1)
is relatively easy, establishing a uniform #SAC1 bound needs a careful use of polynomial inter-
polation.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.3 Complexity Measures
and Classes, G.2.2 Graph Theory

Keywords and phrases Euler Tours, Bounded Treewidth, Bounded clique-width, Hamiltonian
cycles, Parallel algorithms
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1 Introduction

An Euler tour of a graph is a closed walk on the graph that traverses every edge in the graph
exactly once. Given a graph, deciding if there is an Euler tour of the graph is quite simple.
Indeed, the famous Königsberg bridge problem that founded graph theory is a question about
the existence of an Euler tour using each of these bridges exactly once. Euler settled this
question in the negative and in the process gave a necessary and sufficient condition for a
graph to be Eulerian (A connected graph is Eulerian if and only if all the vertices are of
even degree). This gives a simple algorithm to check if a graph is Eulerian.

An equally natural question is to ask for the number of distinct Euler tours in a graph. For
the case of directed graphs, the BEST theorem due to De Bruijn, Ehrenfest, Smith and Tutte
gives an exact formula that gives the number of Euler tours in a directed graph [1, 25] which
yields a polynomial time algorithm via a determinant computation. For undirected graphs,
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no such closed form expression is known and the computational problem is #P-complete [8].
In fact, the problem is #P-complete even when restricted to 4-regular planar graphs [18]. So
exactly computing the number of Euler tours is not in polynomial time unless #P = P.

In this paper, we are concerned with the problem of counting Euler tours on graphs of
bounded treewidth. Many problems which are NP-hard for general graphs, can be solved in
polynomial time on bounded treewidth graphs. Indeed, a result of Courcelle [11] asserts that
any graph property that is expressible in Monadic Second Order logic (with edge quantifiers)
can be solved in linear time on bounded treewidth graphs. Elberfeld et al. [15] adapt the
theorem of Courcelle in the parallel setting and prove a L bound. However, Eulerianity
is provably not MSO -expressible [14] and hence the approaches mentioned above are not
directly applicable in our context.

Our strategy to count Euler tours is as follows: Given a bounded treewidth graph G, we
count the number of Euler tours of G by counting the number of Hamiltonian tours of the
line graph of G, L(G). In general, there is no bijection between these two quantities, but
we show that G can be modified to obtain G′ (tw(G′) ≤ tw(G) + 3) such that G, G′ have
the same number of Eulerian tours, which equals the number of Hamiltonian tours of L(G′).
Henceforth, we will be primarily interested in line graphs of bounded treewidth graphs. It is
known that such graphs are of bounded clique-width [24]

We base our proof on a proof that the decision version of Hamiltonicity is polynomial
time computable in bounded clique-width graphs [16]. We prove that this algorithm can be
parallelised and extended to the counting version. Next, we show that for line graphs of
bounded tree-width graphs which form the family of interest, the clique-width expression
can be inferred from the corresponding tree decomposition. The tree decomposition itself is
obtainable by the L-version of Bodlaender’s theorem [15].

Our main tool in establishing a uniform NC-bound for counting Hamiltonian cycles
on bounded clique-width graphs hinges on polynomial interpolation. While polynomial
interpolation has been used successfully to compute various graph polynomials [23], our
use is somewhat indirect and subtle: it is used by the uniformity machine to populate a
table whose entries do not depend on the input bounded clique-width expression but only
the number of vertices in the corresponding graph and the clique-width. We then build a
monotone arithmetic circuit that uses the clique-width expression of the graph and entries
from this table to count the number of Hamiltonian cycles in the clique-width bounded graph.
We then observe that since the number of distinct Hamiltonian tours of a graph is at most
exponential in the number of vertices of the graph, and the circuit is monotone, the formal
degree of the circuit must be a polynomial in the size of the input graph. This allows us to
use a result from circuit complexity [2] to yield an upper bound of #SAC1 on the complexity
of counting Euler tours on bounded treewidth graphs.

Our techniques also yield a parallel upper bound on the problems of counting longest
paths/cycles and counting bipartite matchings in bounded clique-width graphs. These are
well known problems (and #P-complete in general graphs) but their (counting) complexity
has not been investigated in bounded clique-width graphs. While [13] studies the problem of
counting longest paths and perfect matchings in bounded tree-width DAGs, we improve the
results by resolving the problems for bounded clique-width graphs at the cost of replacing
the L bound by a #SAC1 bound where we know that L ⊆ #SAC1 ⊆ NC2 ⊆ P 1.

1 Note that #SAC1 is a function class and when we say #SAC1 ⊆ NC2, what we actually mean is that
any bit of the #SAC1 function family of interest is computable by a NC2 circuit family
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1.1 Previous Work
Chebolu, Cryan, Martin have given a polynomial time algorithm for counting Euler tours in
undirected series-parallel graphs [9] and they have claimed to extend it to a polynomial time
algorithm [10] for the counting Euler tours in bounded tree-width graphs. We would like to
point out that the only incomplete, unrefereed manuscript available publicly [10] sketches
an algorithm that does dynamic programming directly on the tree-decomposition. Since we
show how to obtain the line graph of the bounded tree-width graph efficiently in parallel and
then work on this bounded clique-width graph - our approach is fundamentally different from
that of [9, 10]. Another difference is that their algorithm is not designed to be parallelisable.

Also notice that in a precursor to this paper [4], using totally different techniques (basically
applications of the Logspace version of Courcelle’s theorem [15]) it was claimed that the
number of Euler tours in bounded tree-width directed and undirected graphs can be counted
in Logspace but the approach had a serious flaw in the undirected version. Later versions [5, 6]
of the paper claim the result only for directed graphs. This work proves a slightly weaker
version of the result - the upper bound being #SAC1 rather than Logspace.

Given that counting Hamiltonian cycles on bounded clique-width graphs will suffice for our
purposes, one result that is directly relevant is that of Flarup and Lyaudet [17]: They study
the expressive power of Perfect Matching and Hamiltonian polynomials of graphs of bounded
clique-width and show that they can simulate arithmetic polynomials, and are themselves
contained in VP. This yields a GapSAC1 bound (implicit) for counting Hamiltonian cycles in
bounded clique-width graphs right away. There are two aspects in which the work of [17]
differs from our work: Firstly, even though their techniques are also inspired from [16] like
ours, they work with a slightly different notion of clique-width namelyW −m−clique-width2.
Secondly, in the case of counting Euler tours, from a straight-forward application of [17]
the best upper bound that can be obtained from the circuit families constructed in [17] is
non-uniform GapSAC1, whereas we get an upper bound of Logspace-uniform3 #SAC1.

There is some similarity that this work bears with that of Makowsky et al. [23], in that
both involve polynomial interpolation to count witnesses for a graph theory problem. The
similarity is somewhat superficial because we use interpolation to obtain numbers independent
of the input graph while they interpolate to compute a graph polynomial that crucially
depends on the graph. The choice of graph theory problems is also quite different. In
particular, [23] does not address the Hamiltonian cycle problem.

1.2 Our Results
This is the main theorem of this work:

I Theorem 1. #Hamiltonian Cycles (or Paths) for bounded clique-width graphs is in #SAC1.
Consequently, #Euler Tours for bounded tree-width graphs is also in #SAC1.

As a bonus we also get the following:

I Theorem 2. The following counts can be obtained in #SAC1 for bounded clique-width
graphs (given a bounded clique-width expression for the graph):

2 These are weighted versions of clique-width and are used to produce weighted graphs. [17] motivate
this variant of clique-width by observing that since Kn has clique-width 2, most graph polynomials are
VNP-complete for bounded clique-width graphs.

3 In an earlier version of this paper, we had erroneously claimed a GapL upper bound for counting Euler
tours. As pointed out to us by Ramprasad Saptharishi, there is a rather serious gap with this approach.
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1. #Hamiltonian Cycles
2. #Longest Paths/Cycles
3. #Cycle Covers
4. #Perfect Matchings (for bipartite graphs)

1.3 Overview of Algorithm
Every Euler tour in a graph yields a Hamiltonian cycle in its line graph. Though this map is
not bijective we show that we can make it so by altering the input graph slightly. It is well
known [20] that the line graphs of bounded tree-width graphs have bounded clique-width. We
show how to obtain a bounded clique-width decomposition for the line graph of a bounded
tree-width graph in Logspace using the Logspace version of Courcelle’s Theorem [15] by
first obtaining a bounded tree-width decomposition via a Logspace version of Bodlaender’s
theorem [15].

Our main algorithm replaces the sequential procedure from [16] to decide if a bounded
clique-width graph has a Hamiltonian path. Instead, it computes the number of Hamiltonian
cycles. The procedure uses elementary counting coupled with polynomial interpolation to
compute some matrices which are independent of the input graph depending only on its size.
The matrices are then combined with vectors maintaining counts, along the structure tree of
the clique-decomposition. A degree bound for the monotone arithmetic circuit then suffices
to prove the #SAC1 bound.

1.4 Organization
The rest of the paper is organized as follows: In Section 2, we introduce some definitions
and results that will be helpful in understanding the rest of the paper. Section 3 shows
how to obtain a clique-width expression for the line graph of a bounded treewidth graph
in Logspace. Section 4 presents a #SAC1 implementation of our algorithm to count the
number of Hamiltonian tours in graphs of bounded clique-width. We conclude with some
unresolved questions related to this work in Section 5.

2 Preliminaries

I Definition 3 (Line Graph). For an undirected graph G = (V,E), the line graph of G
denoted L(G) = (LV , LE) is the graph where LV = E and (ei, ej) ∈ LE if and only if there
exists a vertex v ∈ V such that both ei and ej are incident on v.

I Definition 4 (Treewidth). Given an undirected graph G = (VG, EG) a tree decomposition
of G is a tree T = (VT , ET )(the vertices in VT ⊆ 2VG are called bags), such that
1. Every vertex v ∈ VG is present in at least one bag, i.e., ∪X∈VTX = VG.
2. If v ∈ VG is present in bags Xi, Xj ∈ VT , then v is present in every bag Xk in the unique

path between Xi and Xj in the tree T .
3. For every edge (u, v) ∈ EG, there is a bag Xr ∈ VT such that u, v ∈ Xr.
The width of a tree decomposition is maxX∈VT (|X| − 1). The treewidth of a graph is the
minimum width over all possible tree decomposition of the graph.

I Definition 5 (NLC-width). Let k be a positive integer. The class NLCk of labeled graphs
G = (V,E, labG) where labG : V → [k], is recursively defined as follows:
1. The single vertex graph labeled by a label a, •a for a ∈ [k] is in NLCk.
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2. Let G = (VG, EG, labG) ∈ NLCk and H = (VH , EH , labH) ∈ NLCk be two vertex-disjoint
labeled graphs and S ⊆ [k]2, then G×S H = (V ′, E′, lab′) ∈ NLCk, where V ′ = VG ∪ VH
and

E′ = EG ∪ EH ∪ {(u, v)|u ∈ VG, v ∈ VH , (labG(u), labH(v)) ∈ S}

and for all u ∈ V ′,

lab′(u) =
{
labG(u), if u ∈ VG
labH(u), if u ∈ VH

3. Let G = (VG, EG, lab) ∈ NLCk and R : [k] → [k] be a function, then ◦R(G) :=
(VG, EG, lab′) defined by lab′(u) = R(lab(u)) for all u ∈ VG is in NLCk.

The NLC-width4 of a labeled graph G is the least integer k such that G ∈ NLCk. An
expression Y built with •a,×S , ◦R, for integers a ∈ [k], S ∈ [k]2 and R : [k]→ [k] is called a
NLC-width k expression. The graph defined by expression Y is denoted by val(Y ).

I Definition 6 (Clique Width). Let k be a positive integer. The class CWk of labeled graphs
G = (V,E, labG) where labG : V → [k] is recursively defined as follows:
1. The single vertex graph labeled by a label a, •a for a ∈ [k] is in CWk.
2. Let G = (VG, EG, labG) ∈ CWk and H = (VH , EH , labH) ∈ CWk be two vertex-disjoint

labeled graphs. Then G ⊕ H = (V ′, E′, lab′) ∈ CWk, where V ′ = VG ∪ VH and E′ =
EG ∪ EH and for all u ∈ V ′

lab′(u) =
{
labG(u), if u ∈ VG
labH(u), if u ∈ VH

3. Let a, b be distinct positive integers and G = (VG, EG, lab) ∈ CWk be a labeled graph.
Then,
(a) ρa→b(G) := (VG, EG, lab′) ∈ CWk where for all u ∈ VG

lab′(u) =
{
labG(u), if labG(u) 6= a

b, if labG(u) = a

(b) ηa,b(G) := (VG, E′, labG) ∈ CWk where,

E′ = EG ∪ {(u, v)|u, v ∈ VG, lab(u) = a, lab(v) = b}

The clique-width of a labeled graph G is the least integer k such that G ∈ CWk. An
expression X built with •a,⊕, ρa→b, ηa,b for integers a, b ∈ [k] is called a clique-width k

expression. By val(X), we denote the graph defined by expression X.

I Definition 7 (Chordal graph, Chordal completion). A graph is said to be chordal if every
cycle with at least 4 vertices always contains a chord. A chordal completion of a graph G is
a chordal graph with the same vertex set as G which contains all edges of G.

I Definition 8 (Perfect Elimination Ordering, Elimination Tree [19]). Let G = (V,E) be a
graph and o = (v1, v2, . . . , vn) be an ordering of the vertices of G. Let N−(G, o, i) and

4 NLC stands for Node Label Controlled, has its origins in graph grammars, was defined by Wanke [28].
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N+(G, o, i) for i = 1, . . . , n be the set of neighbors vj of vertex vi with j < i and j > i

respectively.

N−(G, o, i) = {vj |(vi, vj) ∈ E and j < i}
N+(G, o, i) = {vj |(vi, vj) ∈ E and j > i}

The vertex order o is said to be a Perfect Elimination Ordering (PEO) if for all i ∈ [n],
N+(G, o, i) induces a complete subgraph of G. The structure of G can then be characterized
by a tree T (G, o) = (VT , ET ) defined as follows:

VT = V

ET = {(vi, vj) ∈ E|i < j and ∀j′, i < j′ < j, (vi, vj′) /∈ E}

Such a T (G, o) is called the Elimination Tree associated with the graph G.

For more information on Chordal graphs and PEO, we refer the reader to Golumbic’s
book [19].

I Definition 9 (Cycle Cover). A cycle cover C of G = (V,E) is a set of vertex-disjoint cycles
that cover the vertices of G. I.e., C = {C1, C2, . . . , Ck}, where V (Ci) = {ci1 , . . . , cir(i)} ⊆ V
such that (ci1 , ci2), (ci2 , ci3), . . ., (cir(i)−1 , cir(i)), (cir(i) , ci1) ∈ E(Ci) ⊆ E and ]ki=1V (Ci) = V .
The least numbered vertex hi ∈ V (Ci), is called the head of the cycle.

I Definition 10 (#SAC1). #SAC1 is the class of functions from {0, 1}n to nonnegative
integers computed by polynomial-size logarithmic-depth, semi unbounded arithmetic circuits5,
using + (unbounded fan-in) and × gates (fan-in 2) and the constants 0 and 1.

For further background on circuit complexity, we refer the reader to [27].

I Proposition 11 ([2, 26]). Any function f : {0, 1}n → R, where R is a semi-ring, computed
by arithmetic circuits of size s and degree d can be computed by semi-unbounded arithmetic
circuits of size poly(s, d) and depth O(log d). In particular, all functions computed by
polynomial sized circuits of polynomial degree are exactly those in #SAC1.

I Fact 12 (Kronecker substitution [12]). Let P (x1, x2, . . . , xn) be a multivariate polynomial of
degree d. We replace every occurence of variable xi by xd

i . This yields an unique univariate
polynomial Q(x) of degree at most dO(n) such that P can be efficiently recovered from the
knowledge of coefficients of Q. When the number of variables is a constant, the degree of the
multivariate polynomial and the univariate polynomial are polynomially related.

3 From Euler Tours to Hamiltonian cycles

It is possible to construct a graph G such that G has no Eulerian tours, but L(G) has a
Hamiltonian cycle6. Proposition 13 gives necessary and sufficient conditions for when a line
graph of a given graph is Hamiltonian.

I Proposition 13 ([21]). L(G) is Hamiltonian if and only if G has a closed trail that contains
at least one end point of every edge.

5 Note that such circuits have degree that is at most a polynomial in the number of input variables.
6 Indeed, there is a 2-connected graph – K4 with one of the edges removed – which is non-Eulerian but
its line graph is Hamiltonian.
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Given a graph G, we want to construct a graph G′ such that every closed trail in G′ that
contains at least one end point of every edge is exactly an Eulerian tour of G′. The following
Lemma guarantees exactly this:

I Lemma 14. Given an undirected graph G, construct a graph G′ = (V ′, E′) from G as
follows: Replace every edge e = (u, v) of G by path of length three. Then G and G′ have
the same number of Eulerian tours and the Eulerian tours of G′ are in bijection with the
Hamiltonian tours of L(G′).

Notice that G is a minor of G′, and the tree decomposition of G′ can be obtained from
that of G by locally adding to each bag containing an edge e of G, the extra vertices and
edges of the path of length three. Hence, the following is immediate:

I Proposition 15. G has bounded treewidth iff G′ has bounded treewidth.

I Proposition 16 ([20]). If G is of treewidth k, then L(G) has clique-width f(k) = 2k + 2.

I Proposition 17 ([15]). Given a bounded treewidth graph G, a balanced tree decomposition7
of G is obtainable in L.

We first need the Perfect Elimination Ordering(PEO) of the vertices of the graph. It
is known that a graph has a PEO if and only if it is chordal. Since we can do a chordal
completion of a bounded treewidth graph (while preserving treewidth), such an ordering of
the vertices always exists. Recently Arvind et al. gave a Logspace procedure for obtaining a
PEO in k-trees (which are maximal treewidth-k graphs). We adapt this for graphs that are
chordal completions of bounded treewidth graphs:

I Lemma 18 (Adapted from [3]). Given a balanced tree decomposition of a bounded treewidth
graph G, a Perfect Elimination Ordering and the corresponding elimination tree of a chordal
completion of G, which is a balanced binary tree of depth O(logn), can be computed in L.

I Lemma 19 (Adapted from [20]). Given the tree decomposition of a graph G along with a
elimination tree, the clique-width expression X of L(G) is obtainable in L. The parse tree of
this clique-width expression has height at most O(logn)

We show in the subsequent Lemma that the method in [20] is amenable to a Logspace
implementation when provided with a PEO of the vertices of the graph.

I Lemma 20 (Adapted from [20]). The NLC-width of the line graph L(G) of a graph G of
treewidth k is at most k + 2 and such a NLC-width expression is obtainable in L.

Gurski and Wanke [20] observe that it is sufficient to look at G that are k-trees here because
the line graph of every subgraph of G then is an induced subgraph of the line graph of G
and the class NLCk is closed under taking induced subgraphs for every k ≥ 1 (See Theorem
4 in [20]). Our method involves dealing with bounded treewidth graphs that are chordal,
which are a strict superclass of k-trees and we observe that the property mentioned above
still holds in this case.

I Proposition 21. Given a graph G of NLC-width at most k by an NLC-width expression
Y , we can obtain the clique-width expression X of G, where |X| ≤ 2k + 2 in L.

7 A tree decomposition of a graph is said to be balanced if the tree underlying the decomposition is
balanced
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To sum up, these are the main preprocessing steps:

1. Obtain a balanced binary tree decomposition of the input treewidth k graph G in Logspace
via Proposition 17 [15].

2. Obtain the tree decomposition of G′ (as required by Proposition 13 and specified by
Lemma 14) from the tree decomposition of G.

3. Perform a chordal completion of G′ by adding edges to every bag.
4. Obtain a PEO tree of G′ of height O(logn), where every vertex has at most k children

via Lemma 18.
5. Construct a NLC width (k + 2) expression for L(G′) via Lemma 20
6. From the NLC width (k + 2) expression, construct a clique-width (2k + 2) expression for

L(G′) via Proposition 21 (The surplus edges added during the chordal completion are
removed at this step).

The proofs of Lemma 14, 18, 19, 20 and Proposition 21 can be found in the full version
of the paper [7].

4 The #SAC1 upper bound

Let X be the clique-width k expression for a labeled graph G = (V,E, lab) such that G
is val(X) and let |V | = n. Let G be of clique-width k. Hence by Definition 6, G can be
constructed from the graph with n isolated labeled vertices, using at most k labels. Notice
that X can be viewed as a tree (we will refer to this as the parse tree of the clique-width
expression) with the n isolated labeled vertices at the leaves and every internal node is
labeled with one of the operations o = {•i,⊕, ηi,j , ρi→j : i, j ∈ [k] ∧ i 6= j} To each internal
vertex of the tree, we can associate a graph (possibly disconnected) which is a subgraph of
G, and at the root of the tree, we get G itself. The size of the tree is polynomial in n and
k. Our objective in this section will be to count the number of Hamiltonian cycles in G,
when provided with the clique-width expression X. We will count along the parse tree of the
clique-width expression.

To this end, we call a subset of edges E′ ⊆ E path-cycle covers, if in the subgraph G′ =
(V,E′, lab) every vertex in G′ has degree at most 2. To every such G′, we associate a multiset
M consisting of multisets 〈lab(v1), lab(vr)〉 one each for every path/cycle p = v1, . . . , vr,
r ≥ 1, in G′, where v1, vr have degree at most 1 in G′ if they exist (p being a cycle otherwise).
Let F (X) be the set of all multisets M for all such subsets E′ ⊆ E.

Let K be the set of all possible labels of the end points, in the labeled graph produced at
the output of each node in the parse tree. We refer to elements of K as types. Note that
every M consists of at most |K| distinct types and F (X) has at most (n+ 1)|K| distinct
multisets each with at most n multisets of size 2. Here K = K0 ] K1 ] K2 is the set of
distinct types where K2 accounts for types of the form 〈i, j〉 (for i 6= j) corresponds to paths
whose end points are i and j; K0 for the empty type 〈〉 = ∅ corresponds to a cycle; K1 for
types of the form 〈i, i〉 which could be either paths whose end points are both labeled i, or
isolated vertices with the label i. Observe that, |K2| =

(
k
2
)
, K1 = 2k and K0 = 1, where we

distinguish between the cases of single isolated vertex of label i and multiple vertex paths
with end points labeled i for technical reasons, leading to the extra factor of 2. Our notation
is consistent with [16] in all cases except for the empty type, since in [16] cycles are not
permitted.
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Our objective is to count the number of path-cycle covers, #X[M ], corresponding to a
multiset M in the graph val(X). In particular,∑

i,j∈[K]

#X[Mi,j ]

where Mi,j = 〈〈i, j〉〉 is a multiset containing a single type 〈i, j〉, yields the number of
Hamiltonian paths with end points coloured i, j in val(X). We denote by #X the vector
indexed by M and hence has (n+ 1)K entries where #X[M ] (where M ∈ [0, n]K) stores
the count of the number of path/cycle covers of type specified by M in the graph val(X).
Let Co be a (n+ 1)K × (n+ 1)K matrix which for each pair of multisets M,M ′ denotes the
number of ways to form M ′ from M under an operation o ∈ {ηi,j , ρi→j : i, j ∈ [k] ∧ i 6= j}.
Co is defined uniquely for the two kinds of operations η, ρ and is independent of the input
graph val(X).

Then the following is an easy consequence of the definitions:

I Proposition 22. The value of #X is given by:
1. if X = •i then if M = 〈〈i, i〉〉 then #X[M ] = 1; else #X[M ] = 0.
2. else if X = X1 ⊕X2 then

#X[M ] =
∑

M ′∈[0,n]K :M ′⊆M

#X1[M ′]#X2[M \M ′]

3. else if X = ρi→j(X1) then (Cρi→j )T#X1
4. else X = ηi,j(X1) then (Cηi,j )T#X1

Proof. The first item is immediate. For the second, notice that each multiset of types M in
the disjoint union of two graphs is formed by picking multisets M ′,M ′′ from the two graphs
respectively and taking their multi-union. Thus the number of distinct ways to form M is
obtained by considering all possible decompositions of M into sets M ′,M ′′ one from each
graph. Since, this is a decomposition M ′′ = M \M ′, the correctness of the second item
follows.

For the third and the fourth items, notice that we have a matrix C such that C[M,M ′]
is the number of ways to convert a multiset M to a multiset M ′. Thus the number of ways
to form M ′ is to take the product of #X[M ]C[M,M ′] and add up the products over all M .
This is the stated form in matrix notation. J

Proposition 22 enables us to prove the #SAC1 upper bound:

I Lemma 23. For a bounded clique-width expression X, for every multiset of types, M , the
value #X[M ] of the number of path-cycle covers at any node along the parse tree of the
clique-width expression can be computed in #SAC0 where the inputs to the #SAC0 circuit
are entries of the matrix Co for o ∈ {•i,⊕, ηi,j , ρi→j : i, j ∈ [k] ∧ i 6= j}. The number of
path-cycle covers in the input graph can hence be counted in #SAC1.

The proof of Lemma 23 can be found in the full version of the paper [7]. We now turn to
the proof of our main Theorem 1

Proof. (of Theorem 1) To count Euler tours on bounded treewidth graphs, we can count
Hamiltonian cycles in the line graph (via Lemma 14). Here we need to compute the quantity
#X[〈∅〉] (since the empty multiset represents a cycle, the path-cycle cover consisting of a
single cycle must be a Hamiltonian cycle itself). This follows from Lemma 23. J
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Proof. (of Theorem 2) Hamiltonian cycles can be counted in #SAC1 by Lemma 23. Longest
Cycles (Paths) can be counted by considering multisets which consist of a single cycle
(respectively, path) and the minimum number of isolated vertices respectively. To see this
observe that for every cycle (respectively, path) C in the graph there is a multiset consisting
of a single empty type (respectively, non-empty type) and |V (G)| − |V (C)| isolated vertices
respectively.

Counting cycle covers is equally simple. We just need to add up the counts for multisets
consisting only of empty types. This, is of course because an empty type represents a cycle.

Perfect Matchings in bipartite graphs can therefore be counted by counting the cycle
covers in a biadjacency matrix. J

4.1 Computing Cρi→j
and Cηi,j

It is easy to compute Cρi→j by the following,

I Proposition 24. C(ρi→j) is a {0, 1}-matrix such that the entry corresponding to M1,M2
is equal to 1 iff ρi→j(M1) = M2 (it is 0 otherwise).

LetW~α(t′) denote the number of ways to form one path/cycle of type t′ ∈ K, given a multiset
of paths/cycles consisting of ~α(t) paths/cycles for every type t ∈ K.

Next, we show how to compute Cηi,j :

I Lemma 25. There is a Logspace Turing machine that takes input W~α(t′) for every
~α ∈ [0, n]|K|, t′ ∈ K and outputs the entries of the matrix Cηi,j .

Proof. We show that each entry can be computed in DLOGTIME-uniform TC0 which is
contained in L (see e.g. Vollmer [27]). Our main tool in this lemma is an application of
polynomial interpolation.

Notice that the rows/columns of the matrix C are indexed by multisets of types. Here a
type is an element from K. Therefore any such multiset can be described by a vector ~α of
length |K|. Here each entry of the vector represents the number of paths/cycles with that
type inside the multiset.

In the following we will consistently make use of the notation, ~z~a to denote:
∏
i∈I z

ai
i ,

where I is the index set for both ~z,~a.
We have the following:

I Lemma 26. C[M,M ′] is the coefficient of ~x~c′~y~c in the following polynomial p~c′,~c(~x, ~y):

∏
t,t′∈K

∏
~α∈[0,n]|K|

∑
~d~α

(
W~α(t′)xt′yα(t)

t′

)d~α(t′)

To fix the notation we reiterate (items 1, 2, 3, 4 were defined previously and we introduce
some new notation in items 5, 6, 7, 8, 9):
1. K is the set of types, where |K| =

(
k
2
)

+ 2k + 1.
2. t, t′ ∈ K are types in the input, output multiset (respectively M,M ′).
3. A allocation, α(t) ∈ [0, n] is the number of path-cycle covers of type t ∈ K.
4. ~α ∈ [0, n]|K| is a possible allocation vector indexed by K in which each entry is α(t).
5. d~α(t′) ∈ [0, n] is the number of paths of type t′ formed from each allocation of type ~α.
6. ~d~α ∈ [0, n]|K| is a vector indexed by K in which each entry is one of d~α(t′).
7. W~α(t′) is the number of ways to form a single path/cycle of type t′ from an allocation

vector ~α.

FSTTCS 2015



256 Counting Euler Tours in Undirected Bounded Treewidth Graphs

8. ~W~α is the vector indexed by K in which each entry is one of W~α(t′).
9. ~c, ~c′ ∈ [0, n]|K| are vectors indicating number of paths/cycles in M,M ′ respectively.
To see that Lemma 25 follows from Lemma 26 we use Kronecker substitution (see Fact 12) to
convert the multivariate polynomial p~c′,~c(~x, ~y) with 2|K| variables to a univariate polynomial.
Then we use Lagrange interpolation to find the coefficient of an arbitrary term - in particular,
the term corresponding to ~x~c′~y~c in TC0 (see e.g. Corollary 6.5 in [22]). J

Proof. (of Lemma 26) Consider the following expression:∑
~d∈D

∏
t′∈K

∏
~α∈[0,n]|K|

W~α(t′)d~α(t′) (1)

where the sum is taken over D ⊆ [0, n]|K| consisting of all ~d’s satisfying:

∀t′,
∑

~α∈[0,n]|K|
d~α(t′) = c′(t′) (2)

∀t,
∑

~α∈[0,n]|K|

∑
t′∈K

α(t)d~α(t′) = c(t) (3)

I Claim 27. C[M,M ′] equals Expression (1).

Proof. (of Claim) The Condition 2 above asserts that the number of paths/cycles of type
t′ present in M ′ equals the sum over all ~α of the number of paths/cycles of type t′ using
resources described by ~α; the Condition 3 is essentially a conservation of resource equation
for every type t saying that all the resources present in M are used one way or the other in
M ′.

Let P, P ′ be path-cycle covers represented by M,M ′ respectively such that we can obtain
P ′ from P , i.e., P ′ is one possible path-cycle cover that can be obtained by an ηi,j operation
on P . This transformation is described by a unique ~d. Then the pair contributes precisely
one to C[M,M ′]. On the other hand {P, P ′} satisfies (2),(3) so contributes exactly one to the
summand corresponding to the unique ~d in Expression 1. Since the pair P, P ′ corresponds
to a unique ~d and contributes exactly one, the remaining summands would evaluate to zero.
This can be explained by observing that for all ~d′ 6= ~d, the number of paths of type t in ~d′ is
not equal to the corresponding number in ~d for atleast one t. Hence, they would contribute
nothing to pair P, P ′. J

To complete the proof notice that the coefficient of ~x~c′~y~c is precisely expression 1 under
the conditions 2, 3. Now, we explain the reasoning behind expression 1. We have d~α(t′)
paths of type t′, each of which can be formed in W~α(t′) ways. Note that each of these d~α(t′)
paths are formed from different ~α (though the values of each of these d~α(t′) vectors ~α is the
same, they are inherently different as they are composed of mutually exclusive vertex sets)
and we consider each valid set of d~α(t′) vectors ~α, exactly once. Hence, we multiply with
W~α(t′)d~α(t′) to get the final count. J

4.2 Calculation of W~α(t′)
W~α(t′) denotes the number of ways to form exactly one type t′ ∈ K in M ′ given a multiset
of types consisting of ~α(t) types for every type t ∈ K in M . For simplicity of notation,
let t = 〈i, j〉 ∈ K be a type and let β(i) = α(〈i, i〉) + α(=0)(〈i, i〉) be the total number of
multisets of type 〈i, i〉, where α(〈i, i〉) (respectively α(=0)(〈i, i〉)) denote paths (respectively
single nodes) labeled 〈i, i〉 in ~α. Note that this distinction is not necessary for types where
the end points have different labels.
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I Lemma 28. For an operation ηi0,j0 in the clique-width expression and for any type
t′ = 〈i, j〉, W~α(t′) is given by

W~α(〈i, j〉) = [[〈i, j〉]]~αW~α

where,

W~α =
(
α(〈i0, j0〉) + β(i0) + β(j0)

α(〈i0, j0〉)

)
α(〈i0, j0〉)!β(i0)!β(j0)!2α(〈i0,i0〉)+α(〈j0,j0〉)

and, [[〈i, j〉]]~α is given by 8, 9

[[〈a, b〉]]~α = [[β(a) = β(b)]]
[[〈a, a〉(=0)]]~α = [[α(=0)

a,a = 1 ∧ α(〈a, b〉) = 0]]
[[〈a, a〉]]~α = [[β(a) = β(b) + 1]]
[[〈i, a〉]]~α = [[(α(〈i, a〉) = 1 ∧ β(a) = β(b)) ∨ (α(〈i, b〉) = 1 ∧ β(a) = β(b) + 1)]]
[[〈i, j〉]]~α = [[(α(〈i, a〉) = 1 ∧ α(〈a, j〉) = 1 ∧ β(a) = β(b) + 1) ∨ (α(〈i, a〉) = 1 ∧ α(〈b, j〉) =
1 ∧ β(a) = β(b))]]
[[〈i, i〉]]~α = [[(α(〈i, a〉) = 2∧β(a) = β(b) + 1)∨ (α(〈i, a〉) = 1∧α(〈i, b〉) = 1∧β(a) = β(b))]]
[[〈∅〉]]~α = [[β(a) = β(b)]]

where, {a, b} = {i0, j0} in some order.

Proof. (of Lemma 28) Let’s look at W~α(〈a, a〉) in detail. The W~α(t) for all the other types t
are computed similarly. Type 〈a, a〉 can be formed from the alternating sequence of types
〈a, a〉, 〈b, b〉, 〈a, a〉 . . . 〈a, a〉 interleaved with some (possibly zero) 〈a, b〉 types. Thus, the
equality β(a) = β(b)+1 should hold while α(〈a, b〉) can be any arbitrary non-negative integer.
When α(〈a, b〉) = 0, the condition α(〈a, a〉) ≥ 1 ∨ α(〈a, a〉)(=0) > 1 should hold to ensure
that we are not considering the type (〈a, a〉)(=0).

The number of ways of interspersing α(〈a, b〉) types among β(a) + β(b) types is(
α(〈a, b〉) + β(a) + β(b)

α(〈a, b〉)

)
We can do this for all permutations of the 〈a, b〉, 〈a, a〉 and 〈b, b〉 types hence we multiply by:
α(〈a, b〉)!β(a)!β(b)!. Finally, we can flip the orientation of paths of types 〈a, a〉 and 〈b, b〉 as
they are equivalent respectively to their flipped orientations. Note that single nodes cannot
be flipped. The proof is therefore completed by multiplying with: 2α(〈a,a〉)+α(〈b,b〉). Lastly, a
boundary case occurs when α(〈a, b〉) = 0 where every path can be flipped. Here, it is easy
to see that in considering every permutation of types while accounting for flips, we end up
counting each path twice (including its reverse). Hence, in this case we divide by 2. J

5 Conclusion and Open Ends

Can the #SAC1 bound be improved, to say, GapL or Logspace?
How far can the Euler tour result be extended? To bounded clique-width graphs? Chordal
graphs?
Can the determinant of bounded clique-width adjacency matrices be computed in better
than #SAC1? (it is known to be L-hard even for bounded tree-width graphs from [6]).

8 In this section, the notation [[S]] represents the Boolean value of the statement S. [[t]]~α represents a
Boolean valued normalizing factor associated with the type t under the allocation vector ~α.

9 We adopt a convention in which types t′ (other than the type 〈i0, j0〉) not explicitly included in the
expressions have an allocation αt′ equalling zero.
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Abstract
Priced timed games are optimal-cost reachability games played between two players – the con-
troller and the environment – by moving a token along the edges of infinite graphs of configura-
tions of priced timed automata. The goal of the controller is to reach a given set of target locations
as cheaply as possible, while the goal of the environment is the opposite. Priced timed games
are known to be undecidable for timed automata with 3 or more clocks, while they are known to
be decidable for automata with 1 clock. In an attempt to recover decidability for priced timed
games Bouyer, Markey, and Sankur studied robust priced timed games where the environment
has the power to slightly perturb delays proposed by the controller. Unfortunately, however, they
showed that the natural problem of deciding the existence of optimal limit-strategy – optimal
strategy of the controller where the perturbations tend to vanish in the limit – is undecidable
with 10 or more clocks. In this paper we revisit this problem and improve our understanding of
the decidability of these games. We show that the limit-strategy problem is already undecidable
for a subclass of robust priced timed games with 5 or more clocks. On a positive side, we show
the decidability of the existence of almost optimal strategies for the same subclass of one-clock
robust priced timed games by adapting a classical construction by Bouyer at al. for one-clock
priced timed games.
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1 Introduction

Two-player zero-sum games on priced timed automata provide a mathematically elegant
modeling framework for the control-program synthesis problem in real-time systems. In these
games, two players – the controller and the environment – move a token along the edges of the
infinite graph of configurations of a timed automaton to construct an infinite execution of the
automaton in order to optimize a given performance criterion. The optimal strategy of the
controller in such game then corresponds to control-program with the optimal performance.
By priced timed games (PTGs) we refer to such games on priced timed automata with
optimal reachability-cost objective. The problem of deciding the existence of the optimal
controller strategy in PTGs is undecidable [8] with 3 or more clocks, while it is known to
be decidable [5] for automata with 1 clock. Also, the ε-optimal strategies can be computed
for priced timed games under the non-Zeno assumption [1, 4]. Unfortunately, however, the
optimal controller strategies obtained as a result of solving games on timed automata may
not be physically realizable due to unrealistic assumptions made in the modeling using timed
automata, regarding the capability of the controller in enforcing precise delays. This severely
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limits the application of priced timed games in control-program synthesis for real-time
systems.

In order to overcome this limitation, Bouyer, Markey, and Sankur [7] argued the need for
considering the existence of robust optimal strategies and introduced two different robustness
semantics – excess and conservative – in priced timed games. The key assumption in their
modeling is that the controller may not be able to apply an action at the exact time delays
suggested by the optimal strategy. This phenomenon is modeled as a perturbation game where
the time delay suggested by the controller can be perturbed by a bounded quantity. Notice
that such a perturbation may result in the guard of the corresponding action being disabled.
In the conservative semantics, it is the controller’s responsibility to make sure that the guards
are satisfied after the perturbation. On the other hand, in the excess semantics, the controller
is supposed to make sure that the guard is satisfied before the perturbation: an action can
be executed even when its guard is disabled (“excess”) post perturbation and the valuations
post perturbation will be reflected in the next state. The game based characterization
for robustness in timed automata under “excess” semantics was first proposed by Bouyer,
Markey, and Sankur [6] where they study the parameterized robust (qualitative) reachability
problem and show it to be EXPTIME-complete. The “conservative” semantics were studied
for reachability and Büchi objectives in [14] and shown to be PSPACE-complete. For a
detailed survey on robustness in timed setting we refer to an excellent survey by Markey [12].

Bouyer, Markey, and Sankur [7] showed that the problem for deciding the existence of
the optimal strategy is undecidable for priced timed games with 10 or more clocks under
the excess semantics. In this paper we further improve the understanding of the decidability
of these games. However, to keep the presentation simple, we restrict our attention to
turn-based games under excess semantics. To further generalize the setting, we permit both
positive and negative price rates with the restriction that the accumulated cost in any cycle
is non-negative (akin to the standard no-negative-cycle restriction in shortest path game
problems on finite graphs). We improve the undecidability result of [7] by proving that
optimal reachability remains undecidable for robust priced timed automata with 5 clocks.
Our second key result is that, for a fixed δ, the cost optimal reachability problem for one
clock priced timed games with no-negative-cycle restriction is decidable for robust priced
timed games with given bound on perturbations. To the best of our knowledge, this is
the first decidability result known for robust timed games under the excess semantics. A
closely related result is [9], where decidability is shown for robust timed games under the
conservative semantics for a fixed δ.

2 Preliminaries

We write R for the set of reals and Z for the set of integers. Let C be a finite set of real-valued
variables called clocks. A valuation on C is a function ν : C → R. We assume an arbitrary
but fixed ordering on the clocks and write xi for the clock with order i. This allows us to
treat a valuation ν as a point (ν(x1), ν(x2), . . . , ν(xn)) ∈ R|C|. Abusing notations slightly,
we use a valuation on C and a point in R|C| interchangeably. For a subset of clocks X ⊆ C
and valuation ν ∈ R|C|, we write ν[X:=0] for the valuation where ν[X:=0](x) = 0 if x ∈ X,
and ν[X:=0](x) = ν(x) otherwise. The valuation 0 ∈ R|C| is a special valuation such that
0(x) = 0 for all x ∈ C. A clock constraint over C is a subset of R|C|. We say that a constraint
is rectangular if it is a conjunction of a finite set of constraints of the form x ./ k, where
k ∈ Z, x ∈ C, and ./∈ {<,≤,=, >,≥}. For a constraint g ∈ ϕ(C), we write [[g]] for the set of
valuations in R|C| satisfying g. We write ϕ(C) for the set of rectangular constraints over C.
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We use the terms constraints and guards interchangeably.
Following [5] we introduce priced timed games with external cost function on target

locations (see [10]). For this purpose, we define a cost function[5] as a piecewise affine
continuous function f : Rn≥0 → R ∪ {+∞,−∞}. We write F for the set of all cost functions.

I Definition 2.1 (Priced Timed Games). A turn-based two player priced timed game is a
tuple G = (L1, L2, Linit, C, X, η, T, fgoal) where Li is a finite set of locations of Player i,
Linit ⊆ L1 ∪ L2(let L1 ∪ L2 = L) is a set of initial locations, C is an (ordered) set of clocks,
X ⊆ L× ϕ(C)× 2C × (L ∪ T ) is the transition relation, η : L→ Z is the price function, T is
the set of target locations, T ∩ L = ∅; and fgoal : T → F assigns external cost functions to
target locations.

We refer to Player 1 as the controller and Player 2 as the environment. A priced timed game
begins with a token placed on some initial location ` with valuation 0 and cost accumulated
being so far being 0. At each round, the player who controls the current location ` chooses a
delay t (to be elapsed in l) and an outgoing transition e = (`, g, r, `′) ∈ X to be taken after t
delay at `. The clock valuation is then updated according to the delay t, the reset r, the cost
is incremented by η(`) · t and the token is moved to the location `′. The two players continue
moving the token in this fashion, and give rise to a sequence of locations and transitions
called a play of the game. A configuration or state of a PTG is a tuple (`, ν, c) where ` ∈ L
is a location, ν ∈ R|C| is a valuation, and c is the cost accumulated from the start of the play.
We assume, w.l.o.g [2], that the clock valuations are bounded.

I Definition 2.2 (PTG semantics). The semantics of a PTG G is a labelled state-transition
game arena [[G]] = (S = S1 ] S2, Sinit, A,E, π, κ) where

Sj = Lj × R|C| are the Player j states with S = S1 ] S2,
Sinit ⊆ S are initial states s.t. (`, ν) ∈ Sinit if ` ∈ Linit, ν = 0,
A = R≥0 ×X is the set of timed moves,
E : (S × A) → S is the transition function s.t. for s = (`, ν), s′ = (`′, ν′)∈S and
τ = (t, e) ∈ A the function E(s, τ) is defined if e = (`, g, r, `′) is a transition of the
PTG and ν ∈ [[g]]; moreover E(s, τ) = s′ if ν′ = (ν + t)[r:=0] (we write s τ−→ s′ when
E(s, τ) = s′);
π : S ×A→ R is the price function such that π((`, ν), (t, e)) = η(`) · t; and
κ : S → R is an external cost function such that κ(`, ν) is defined when ` ∈ T such that
κ(`, ν) = fgoal(`)(ν).

A play ρ = 〈s0, τ1, s1, τ2, . . . , sn〉 is a finite sequence of states and actions s.t. s0 ∈ Sinit
and si

τi+1−−−→ si+1 for all 0 ≤ i < n. The infinite plays are defined in an analogous manner.
For a finite play ρ we write its last state as last(ρ) = sn. For a (infinite or finite) play ρ
we write stop(ρ) for the index of first target state and if it doesn’t visit a target state then
stop(ρ) =∞. We denote the set of plays as PlaysG . For a play ρ = 〈s0, (t1, a1), s1, (t2, a2), . . .〉
if stop(ρ) = n <∞ then CostG(ρ) = κ(sn) +

∑n
j=1 π(si−1, (ti, ai)) else CostG(ρ) = +∞.

A strategy of player j in G is a function σ : PlaysG → A such that for a play ρ the function
σ(ρ) is defined if last(ρ) ∈ Sj . We say that a strategy σ is memoryless if σ(ρ) = σ(ρ′) when
last(ρ) = last(ρ′), otherwise we call it memoryful. We write Strat1 and Strat2 for the set of
strategies of player 1 and 2, respectively.

A play ρ is said to be compatible to a strategy σ of player j ∈ {1, 2} if for every state si in
ρ that belongs to Player j, si+1 = σ(si). Given a pair of strategies (σ1, σ2) ∈ Strat1 × Strat2,
and a state s, the outcome of (σ1, σ2) from s denoted Outcome(s, σ1, σ2) is the unique play
that starts at s and is compatible with both strategies. Given a player 1 strategy σ1 ∈ Strat1
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we define its cost CostG(s, σ1) as supσ2∈Strat2(Cost(Outcome(s, σ1, σ2))). We now define the
optimal reachability-cost for Player 1 from a state s as

OptCostG(s) = inf
σ1∈Strat1

sup
σ2∈Strat2

(Cost(Outcome(s, σ1, σ2))).

A strategy σ1 ∈ Strat1 is said to be optimal from s if CostG(s, σ1) = OptCostG(s). Since
the optimal strategies may not always exist [5] we define ε optimal strategies. For ε > 0
a strategy σε ∈ Strat1 is called ε-optimal if OptCostG(s) ≤ CostG(s, σε) < OptCostG(s) + ε.
Given a PTG G and a bound K ∈ Z, the cost-optimal reachability problem for PTGs is to
decide whether there exists a strategy for player 1 such that OptCostG(s) ≤ K from some
starting state s.

I Theorem 2.3 ([3]). Cost-optimal reachability problem is undecidable for PTGs with 3
clocks.

I Theorem 2.4 ([5, 11, 13]). The ε-optimal strategy is computable for 1 clock PTGs.

3 Robust Semantics

Under the robust semantics of priced timed games the environment player – also called as
the perturbator – is more privileged as it has the power to perturb any delay chosen by the
controller by an amount in [−δ, δ], where δ > 0 is a pre-defined bounded quantity. However,
in order to ensure time-divergence there is a restriction that the time delay at all locations
of the RPTG must be ≥ δ. There are the following two perturbation semantics as defined
in [7].

Excess semantics. At any controller location, the time delay t chosen by the controller
is altered to some t′ ∈ [t− δ, t+ δ] by the perturbator. However, the constraints on the
outgoing transitions of the controller locations are evaluated with respect to the time
elapse t chosen by the controller. If the constraint is satisfied with respect to t, then the
values of all variables which are not reset on the transition are updated with respect to t′;
the variables which are reset obtain value 0.
Conservative semantics. In this, the constraints on the outgoing transitions are evaluated
with respect to t′.

In both semantics, the delays chosen by perturbator at his locations are not altered, and the
constraints on outgoing transitions are evaluated in the usual way, as in PTG.

A Robust-Priced Timed Automata (RPTA) is an RPTG which has only controller
locations. At all these locations, for any time delay t chosen by controller, perturbator
can implicitely perturb t by a quantity in [−δ, δ]. The excess as well as the conservative
perturbation semantics for RPTA are defined in the same way as in the RPTG. Note that
our RPTA coincides with that of [7] when the cost functions at all target locations are of
the form cf : Rn≥0 → {0}. Our RPTG are turn-based, and have cost funtions at the targets,
while RPTGs studied in [7] are concurrent.

I Definition 3.1 (Excess Perturbation Semantics). Let R = (L1, L2, Linit, C, X, η, T, fgoal) be
a RPTG. Given a δ > 0, the excess perturbation semantics of RPTG R is a LTS [[R]] =
(S, A,E) where S = S1 ∪ S2 ∪ (T ×R≥0), A = A1 ∪A2 and E = E1 ∪E2. We define the set
of states, actions and transitions for each player below.

S1 = L1 × R|C| are the controller states,
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S2 = (L2×R|C|)∪ (S1×R≥0×X) are the perturbator states. The first kind of states are
encountered at perturbator locations. The second kind of states are encountered when
controller chooses a delay t ∈ R≥0 and a transition e ∈ X at a controller location.
A1 = R≥0 ×X are controller actions
A2 = (R≥0×X)∪ [−δ, δ] are perturbator actions. The first kind of actions (R≥0×X) are
chosen at states of the form L2 × R|C| ∈ S2, while the second kind of actions are chosen
at states of the form S1 × R≥0 ×X ∈ S2,
E1 = (S1 × A1 × S2) is the set of controller transitions such that for a controller state
(l, ν) and a controller action (t, e), E1((l, ν), (t, e)) is defined iff there is a transition
e = (l, g, a, r, l′) in R such that ν + t ∈ [[g]].
E2 = S2 ×A2 × (S1 ∪ S2 ∪ (T × R≥0)) is the set of perturbator transitions such that

For a perturbator state of the type (l, ν) and a perturbator action (t, e), we have
(l′, ν′) = E2((l, ν), (t, e)) iff there is a transition e = (l, g, a, r, l′) in R such that
ν + t ∈ [[g]], ν′ = (ν + t)[r := 0],
For a perturbator state of type ((l, ν), t, e) and a perturbator action ε ∈ [−δ, δ], we
have (l′, ν′) = E2(((l, ν), t, e), ε) iff e = (l, g, a, r, l′), and ν′ = (ν + t+ ε)[r := 0].

We now define the cost of the transitions, denoted as Cost(t, e) as follows :

For controller transitions : (l, ν) (t,e)−−−→ ((l, ν), t, e) : the cost accumulated is Cost(t, e) = 0.
For perturbator transitions :

From perturbator states of type (l, ν) : (l, ν) t,e−−→ (l′, ν′), the cost accumulated is
Cost(t, e) = t ∗ η(l).
From perturbator states of type ((l, ν), t, e) : ((l, ν), t, e) ε−→ (l′, ν′), the cost accumulated
is (t+ ε) ∗ η(l). Note that although this transition has no edge choice involved and the
perturbation delay chosen is ε ∈ [−δ, δ], the controller action (t, e) chosen in the state
(l, ν) comes into effect in this transition. Hence for the sake of uniformity, we denote
the cost accumulated in this transition to be Cost(t+ ε, e) = (t+ ε) ∗ η(l).

Note that we check satisfiability of the constraint g before the perturbation; however, the
reset occurs after the perturbation. The notions of a path and a winning play are the same
as in PTG. We shall now adapt the definitions of cost of a play, and a strategy for the
excess perturbation semantics. Let ρ = 〈s1, (t1, e1), s2, (t2, e2), · · · (tn−1, en−1), sn〉 be a path
in the LTS [[R]]. Given a δ > 0, for a finite play ρ ending in target location, we define
CostδR(ρ) =

∑n
i=1 Cost(ti, ei) + fgoal(ln)(νn) as the sum of the costs of all transitions as

defined above along with the value from the cost function of the target location ln. Also,
we re-define the cost of a strategy σ1 from a state s for a given δ > 0 as CostδR(s, σ1) =
supσ2∈Strat2(R) CostδR(Outcome(s, σ1, σ2)). Similarly, OptCostδR is the optimal cost under
excess perturbation semantics for a given δ > 0 defined as

OptCostδR(s) = inf
σ1∈Strat1(R)

sup
σ2∈Strat2(R)

(CostδR(Outcome(s, σ1, σ2))).

Since optimal strategies may not always exist, we define ε−optimal strategies such that for
every ε > 0, OptCostδR(s) ≤ CostδR(s, σ1) < OptCostδR(s) + ε. Given a δ and a RPTG R
with a single clock x, a strategy σ1 is called (ε,N)−acceptable [5] for ε > 0, N ∈ N when
(1)it is memoryless, (2)it is ε−optimal and (3)there exist N consecutive intervals (Ii)1≤i≤N
partitioning [0, 1] such that for every location l, for every 1≤i≤N and every integer α < M

(where M is the maximum bound on the clock value), the function that maps the clock values
ν(x) to the cost of the strategy σ1 at every state (l, ν(x)), (ν(x) 7→ CostδR((l, ν(x)), σ1)) is
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affine for every interval α+ Ii. Also, the strategy σ1 is constant over the values α+ Ii at all
locations, that is, when ν(x) ∈ α+ Ii, the strategy σ1(l, ν(x)) is constant. The number N is
an important attribute of the strategy as it establishes that the strategy does not fluctuate
infinitely often and is implementable.

Now, we shall define limit variations of costs, strategies and values as δ → 0. The
limit-cost of a controller strategy σ1 from state s is defined over all plays ρ starting from s

that are compatible with σ1 as:

LimCostR(s, σ1) = lim
δ→0

sup
σ2∈Strat2(R)

CostδR(Outcome(s, σ1, σ2)).

The limit strategy upper-bound problem [7] for excess perturbation semantics asks, given
a RPTG R, state s = (l,0) with cost 0 and a rational number K, whether there exists a
strategy σ1 such that LimCostR(s, σ1) ≤ K. The following are the main results of [7].

(Non-)Negative Cycles

-1

x < 1

1 -1

x < 1

1 0

x < 1
x := 0

x < 1

x = 1
y := 0 x < 1

y = 0x = 1, y = 0
x := 0

I Theorem 3.2 (Known results [7]).
1. The limit-strategy upper-bound problem is undecidable for RPTA and RPTG under excess

perturbation semantics, for ≥ 10 clocks.
2. For a fixed δ ∈ [0, 1

3 ], and a given RPTA A, a target location l and a rational K, it is
undecidable whether infσ1 supσ2 costσ1,σ2(ρ) < K such that ρ ends in l. costσ1,σ2(ρ) is the
cost of the unique run ρ obtained from the pair of strategies (σ1, σ2).

We consider a semantic subclass of RPTGs in which the accumulated cost of any cycle is
non-negative: that is, any iteration of a cycle will always have a non-negative cost. Consider
the two cycles depicted. The one on top has a non-negative cost, while the one below always
has a negative cost. In the cycle below, the perturbator will not perturb, since that will
lead to a target state. In the rest of the paper, we consider this semantic class of RPTGs
(RPTAs), and prove decidability and undecidability results; however, we will refer to them
as RPTGs(RPTAs). Our key contributions are the following theorems.

I Theorem 3.3. The limit-strategy upper-bound problem is undecidable for RPTA with 5
clocks, location prices in {0, 1}, and cost functions cf : Rn≥0 → {0} at all target locations.

I Theorem 3.4. Given a 1-clock RPTG R and a δ > 0, we can compute OptCostδR(s) for
every state s = (l, ν). For every ε > 0, there exists an N ∈ N such that the controller has an
(ε,N)-acceptable strategy.

The rest of the paper is devoted to the proof sketches of these two theorems, while we give
detailed proofs in [10].

4 Undecidability with 5 clocks

In this section, we improve the result of [7] by showing that the limit strategy upper bound
problem is undecidable for robust priced timed automata with 5 or more clocks. The
undecidability result is obtained using a reduction to the halting problem of two-counter
machines.
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A two-counter machine has counters C1 and C2, and a list of instructions I1, I2, . . . , In,
where In is the halt instruction. For each 1 ≤ i ≤ n−1, Ii is one of the following instructions:
increment cb: cb := cb + 1; goto Ij , for b = 1 or 2, decrement cb with zero test:
if (cb = 0) goto Ij else cb := cb − 1; goto Ij , where c1, c2 represent the counter values. The
initial values of both counters are 0. Given the initial configuration (I1, 0, 0) the halting
problem for two counter machines is to find if the configuration (In, c1, c2) is reachable, with
c1, c2 ≥ 0. This problem is known to be undecidable.

We simulate the two counter machine using a RPTA with 5 clocks x1, z, x2, y1 and y2
under the excess perturbation semantics. The counters are encoded in clocks x1 and z as
x1 = 1

2i + ε1 and z = 1
2j + ε2 where i, j are respectively the values of counters C1, C2, and ε1

and ε2 denote accumulated values due to possible perturbations. Clocks x2, y1 and y2 help
with the rough work. The simulation is achieved as follows: for each instruction, we have
a module simulating it. Upon entering the module, the clocks are in their normal form i.e.
x1 = 1

2i + ε1, z = 1
2j + ε2 and x2 = 0 and y1 = y2 = 0.

4.1 Increment module
The module in Figure 1 simulates the increment of counter C1. The value of counter C2
remains unchanged since the value of clock z remains unchanged at the exit from the module.
Upon entering A the clock values are x1 = 1

2i + ε1, z = 1
2j + ε2, x2 = y1 = y2 = 0. Here

ε1 and ε2 respectively denote the perturbations accumulated so far. We denote by α, the
value of clock x1, i.e. 1

2i + ε1. Thus at A, the delay is 1− α. Note that the dashed edges
are unperturbed (this is a short hand notation. A small gadget that implements this is
described in [10], so x1 = 1 on entering B. No time elapse happens at B, and at C, controller
chooses a delay t. This t must be α

2 to simulate the increment correctly. t can be perturbed
by an amount δ by the perurbator, where δ can be both positive or negative, obtaining
x2 = t+ δ, x1 = 0, y1 = 1− α+ t+ δ on entering D. At D, the delay is α− t− δ. Thus the
total delay from the entry point A in this module to the mChoice module is 1 time unit.
At the entry of the mChoice (mChoice and Restore modules are in [10]) module, the clock
values are x1 = α− t− δ, z = 1 + 1

2j + ε2, x2 = α, y1 = 1, y2 = 0. To correctly simulate the
increment of C1, t should be exactly α

2 .
At the mChoice module, perturbator can either continue the simulation by going through

the Restore module or verify the correctness of controller’s delay (check t = α
2 ). The mChoice

module adds 3 units to the values of x1, x2 and z, and resets y1, y2. Due to the mChoice
module, the clock values are x1 = 3 +α− t− δ, z = 4 + 1

2j + ε2, x2 = 3 +α, y1 = 1, y2 = 0. If
perturbator chooses to continue the simulation, then Restore module brings all the clocks
back to normal form. Hence upon entering F , the clock values are x1 = α − t − δ, z =
1
2j + ε2, x2 = y1 = 1, y2 = 0. This value of x1 is α

2 + ε1, since t = α
2 and ε1 = −δ, the

perturbation effect.
Let us now see how perturbator verifies t = α

2 by entering the Choice module. The
Choice module also adds 3 units to the values of x1, x2 and z, and resets y1, y2. The module
Test IncC1

> is invoked to check if t > α
2 , and the module Test IncC1

< is invoked to check if
t < α

2 . Note that using the mChoice module and the Choice module one after the other,
the clock values upon entering Test IncC1

> or Test IncC1
< are x1 = 6 + α − t − δ, z =

7 + 1
2j + ε2, x2 = 6 + α, y1 = 0, y2 = 0.

Test IncC1
> : The delay at A′ is 1 − α + t + δ, obtaining x2 = 7 + t + δ, and the cost

accumulated is 1−α+ t+ δ. At B′, 1− t− δ time is spent, obtaining x1 = 1− t− δ. Finally,
at C ′, a time t+ δ is spent, and at D′, one time unit, making the total cost accumulated
2− α+ 2t+ 2δ at the target location. The cost function at the target assigns the cost 0 for
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0
A

0
B

0
C

0
D

mChoice 0
E

RestoreC1C2
Inc

RestoreC2C1
Inc

0
F

x2=0
{y2}

x1=1
{x2}

x2=0
{x1}

x1≤1

{x1}

y1=1

{y2}

y1=0

{x2, y2}

y1=0

y1=0

y1=0

y1=0

Choice Test IncC1
<

y1=0

y1=0

Test IncC1
>

1
A′

0
B′

1
C ′

1
D′

0
y1=0x1=7

{x1}

x2=8x1=1
{x1}

x1=1

Figure 1 Increment C1 module : The module keeps the fractional part of the clock z unchanged.
The dashed edges represent unperturbed edges (detailed in [10]).

all valuations, hence the total cost to reach the target is 2 + 2t − α + 2δ which is greater
than 2 + 2δ iff 2t− α > 0, i.e. iff t > α

2 .

I Lemma 4.1. Assume that an increment Cb (b ∈ {0, 1}) module is entered with the clock
valuations in their normal forms. Then controller has a strategy to reach either location lj
corresponding to instruction Ij of the two-counter machine or a target location is reached
with cost at most 2 + |2δ|, where δ is the perturbation added by perturbator.

4.2 Complete Reduction
The entire reduction consists of constructing a module corresponding to each instruction
Ii, 1 ≤ i ≤ n, of the two-counter machine. The first location of the module corresponding
to instruction I1 is the initial location. We simulate the halting instruction In by a target
location with cost function cf : R5

≥0 → {0}. We denote the robust timed automaton
simulating the two counter machine by A, s is the initial state (l,0,0).

I Lemma 4.2. The two counter machine halts if and only if there is a strategy σ of controller
such that limcostA(σ, s) ≤ 2.

The details of the decrement and zero test modules are in [10]. They are similar to the
increment module; if player 2 desires to verify the correctness of player 1’s simulation, a cost
> 2 + |2δ| is accumulated on reaching a target location iff player 1 cheats. In the limit, as
δ → 0, the limcost will be > 2 iff controller cheats. The other possibility to obtain a limcost
> 2 is when the two counter machine does not halt.

5 Decidability of One-clock RPTG

A Dwell-time PTG

-1
[1, 2]

A

1
[0, 3]

Bx < 2
x := 0
x < 1

In order to show the decidability of the optimal reachability
game for 1 clock RPTG R and a fixed δ > 0, we perform a series
of reachability and optimal cost preserving transformations.
The idea is to reduce the RPTG into a simpler priced timed
game, while preserving the optimal costs. The advantages of
this conversion is that the semantics of PTGs are easier to
understand, and one could adapt known algorithms to solve PTGs. On the other hand, the
PTGs that we obtain are 1-clock PTGs with dwell-time requirement (having restrictions on
minimum as well as maximum amount of time spent at certain locations), see for example, a
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dwell-time PTG with two locations A,B. A minimum of 1 and a maximum of two units of
time should be spent at A, while a maximum of 3 time units can be spent at B. If we wish to
model this using standard PTGs, we need one extra clock and we can not use the decidability
results of 1 clock PTG to show the decidability of our model. We show in Section 5.4 how to
solve 1-clock PTGs with dwell-time requirements.

Our transformations are as follows: (i) for a given δ, our first transformation reduces the
RPTG R into a dwell-time PTG G (Section 5.1); (ii) our second transformation restricts
to dwell-time PTGs where the clock is bounded by 1 + δ. To achieve this, we use a notion
of fractional resets, and denote these PTGs as GF (Section 5.2); (iii) our third and last
transformation restricts GF without resets (Section 5.3). The reset-free dwell-time PTG
is denoted GF′. For each transformation, we prove that the optimal cost in each state of
the original game is the same as the optimal cost at some corresponding state of the new
game. We also show that an (ε,N)-strategy of the original game can be computed from
some (ε′, N ′)-strategy in the new game. The details of each transformation and correctness
is established in subequent sections. We then solve GF′ employing a technique inspired by
[5] while ensuring that the robust semantics are satisfied.

5.1 Transformation 1: RPTG R to dwell-time PTG G

R and G

k

A

t

k′
B

e
g, r

k

A

t− δ
0

(A, e)

0
k

(A, e)+

[δ, 2δ]

k

(A, e)−

[0, δ]
k′
B

g′

r

r

Given a one clock RPTG R = (L1, L2, {x} , X, η, T, fgoal)
and a δ > 0, we construct a dwell-time PTG G = (L1, L2 ∪
L′, {x} , X ′, η′, T, fgoal). All the controller, perturbator
locations of R (L1 and L2) are carried over respectively as
player 1, player 2 locations in G. In addition, we have some
new player 2 locations L′ in G. The dwell-time PTG G
constructed has dwell-time restrictions for the new player
2 locations L′. The locations of L′ are either urgent, or
have a a dwell-time of [δ, 2δ] or [0, δ]. All the perturbator
transitions of R are retained as it is in G. Every transition
in R from a controller location A to some location B is
replaced in G by a game graph as shown. Let e = (A, g, r, B) be the transition from a
controller location A to a location B with guard g, and reset r. Depending on the guard g, in
the transformed game graph, we have the new guard g′. If g is x = H, then g′ is x = H − δ,
while if g is H < x < H + 1, then g′ is H − δ < x < H + 1 − δ, for H > 0. When g is
0 < x < K, then g′ is 0 ≤ x < K − δ and x = 0 stays unchanged. It can be seen that doing
this transformation to all the controller edges of a RPTG R gives rise to a dwell-time PTG
G.

Lets consider the transition from A to B in R. Assume that the transition from A to B
(called edge e) had a constraint x = 1, and assume that x = ν on entering A. Then, in R,
controller elapses a time 1− ν, and reaches B; however on reaching B, the value of x is in
the range [1− δ, 1 + δ] depending on the perturbation. Also, the cost accumulated at A is
k ∗ (1− ν + γ), where γ ∈ [−δ, δ]. To take into consideration these semantic restrictions of R,
we transform the RPTG R into a dwell-time PTG G. First of all, we change the constraint
x = 1 into x = 1− δ from A (a player 1 location) and enter a new player 2 location (A, e).
This player 2 location is an urgent location. The correct strategy for player 1 is to spend
a time 1 − ν − δ at A (corresponding to the time 1 − ν he spent at A in R). At (A, e),
player 2 can either proceed to one of the player 2 locations (A, e)− or (A, e)+. The player
2 location (A, e) models perturbator’s choices of positive or negative perturbation in R. If
player 2 goes to (A, e)−, then on reaching B, the value of x is in the interval [1− δ, 1] (this

FSTTCS 2015



270 Revisiting Robustness in Priced Timed Games

corresponds to perturbator’s choice of [−δ, 0] in R) and if he goes to (A, e)+, then the value
of x at B is in the interval [1, 1 + δ] (this corresponds to perturbator’s choice of [0, δ] in R).
The reset happening in the transition from A to B in R is now done on the transition from
(A, e)− to B and from (A, e)+ to B. Thus, note that the possible ranges of x as well as the
accumulated cost in R while reaching B are preserved in the transformed dwell-time PTG.

I Lemma 5.1. Let R be a RPTG and G be the corresponding dwell-time PTG obtained
using the transformation above. Then for every state s in R, OptCostR(s) = OptCostG(s).
An (ε,N)−strategy in R can be computed from a (ε,N)−strategy in G and vice versa.

Proof in [10].

5.2 Transformation 2: Dwell-time PTG G to Dwell-time FRPTG GF

GF

kAb

t− δ

0 (A, e)b

0
k

(A, e)+
b

[δ, 2δ]

k(A, e)0
b+1

0

k

(A, e)−b

[0, δ]
k′

Bb

k′

Bb+1

x=1−δ

r

r

r

x≥1, [x]:=0

x=1
{x}

Recall that the locations of the dwell-time PTG G is L1 ∪
L2 ∪ L′ where L1 ∪ L2 are the set of locations of R, and
L′ are new player 2 locations introduced in G. In this
section, we transform the dwell-time PTG G into a dwell-
time PTG GF having the restriction that the value of x
is in [0,1] at all locations corresponding to L1 ∪ L2, and
is in [0, 1 + δ] at all locations corresponding to L′. While
this transformation is the same as that used in [5], the
main difference is that we introduce special resets called
fractional resets which reset only the integral part of clock
x while its fractional part is retained. For instance, if the
value of x was 1.3, then the operation [x] := 0 makes the
value of x to be 0.3. Given a one clock, dwell-time PTG
G = (L1, L2 ∪L′, {x} , X, η, T, fgoals) with M being the maximum value that can be assumed
by clock x, we define a dwell-time PTG with fractional resets (FRPTG) GF . In GF , we have
M + 1 copies of the locations in L1 ∪ L2 as well as the locations in L′ with dwell time [0, δ],
[0, 0]. These M + 1 copies of L′ have the same dwell-time restrictions in GF . The copies are
indexed by i, 0 ≤ i ≤ M , capturing the integral part of clock x in G. Finally, we have in
G, the locations of L′ with dwell-time restriction [δ, 2δ]. For each such location (A, e)+, we
have in GF , the locations (A, e)+

i and (A, e)0
i+1 for 0 ≤ i ≤M . The dwell-time restriction for

(A, e)+
i is same as (A, e)+, while locations (A, e)0

i+1 are urgent. The prices of locations are
carried over as they are in the various copies.

The transitions in GF consists of the following: (1) li
(g−i)∩0≤x<1−−−−−−−−−→ mi

1 if l g−→ m ∈ X;
(2) li

(g−i)∩0≤x<1;{x}−−−−−−−−−−−−→ m0 if l g;{x}−−−→ m ∈ X; (3) li
x=1,{x}−−−−−→ li+1, for l ∈ L1 ∪ L2, and

(A, e)+
i

x≥1,[x]:=0−−−−−−−→ (A, e)0
i+1 for i < M . Consider for example, the constraint g′ between

A and (A, e) as x = (b + 1) − δ in G. Then the value of x is b + (1 − δ) for b < M when
(A, e)+ is entered in G. The location (A, e)+ with ν(x) = b + (1 − δ) is represented in
GF as (A, e)+

b with ν(x) = 1 − δ. If player 2 spends [δ, 2δ] time at (A, e)+ in G, then
ν(x) ∈ [b+ 1, b+ 1 + δ]. If there are no resets to goto B, then ν(x) ∈ [b+ 1, (b+ 1) + δ] at B.
Correspondingly in GF , ν(x) ∈ [1, 1 + δ] at (A, e)+

b . By construction, Bb is not reachable,
since we check 0 ≤ x < 1 on the transition to Bb. The fractional reset is employed to
obtain x = δ while moving to (A, e)0

b+1. This ensures that x = δ on reaching Bb+1, thereby

1 g − i represents the constraint obtained by shifting the constraint by −i
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preserving the perturbation, and keeping x < 1. A normal reset would have destroyed the
value obtained by perturbation. The mapping f between states of G and GF is as follows:
f(l, x) = (lb, x − b), b < M , and x ∈ [b, b + 1], l ∈ L1 ∪ L2, f((A, e), x) = ((A, e)b, x − b),
b < M , and x ∈ [b, b+ 1], f((A, e)−, x) = ((A, e)−b , x− b), b < M , and x ∈ [b, b+ 1]. Finally,
f((A, e)+

, x) = ((A, e)+
b , x − b), b < M , and x ∈ [b, b+ 1] ∪ [b + 1, b+ 2]. Note that in the

last case, the value of x− b can exceed 1 but is less than or equal to 1 + δ.

I Lemma 5.2. For every state (l, ν) in G, OptCostG(l, ν) in G is the same as
OptCostGF

(f(l, ν)) in GF . For every ε > 0, N ∈ N, an (ε,N)-acceptable strategy in G
can be computed from an (ε,N)-acceptable strategy in GF and vice versa.

5.3 Transformation 3: Dwell-time FRPTG GF to resetfree FRPTG GF
′

We now apply the final transformation to the FRPTG GF and construct a reset-free version
of the FRPTG denoted GF′. Assume that there are a total of n resets (including fractional
resets) in the FRPTG. GF ′ consists of n + 1 copies of the FRPTG : GF 0,GF 1, . . . ,GFn.
Given the locations L of the FRPTG, the locations of GF i are Li, 0 ≤ i ≤ n. GF 0 starts with
l0, where l is the initial location of the FRPTG and continues until a resetting transition
happens. At the first resetting transition, GF 0 makes a transition to GF 1. The nth copy is
directed to a sink target location S with cost function cf : R≥0 → {+∞} on the (n+ 1)th
reset. Note that each GF i is reset-free. One crucial property of each GF i is that on entering
with some value of x in [0, δ], the value of x only increases as the transitions go along in GF i;
moreover, x ≤ 1 + δ in each GF i by construction. The formal details and proof of Lemma
5.3 can be found in [10]. Using the cost function of S and those of the targets, we compute
the optimal cost functions for all the locations of the deepest component GFn. The cost
functions of the locations of GF i are used to compute that of GF i−1, and so on until the cost
function of l0, the starting location of GF 0 is computed. An example can be seen in [10].

I Lemma 5.3. For every state (l, ν) in GF , OptCostGF
(l, ν) = OptCostGF ′(l0, ν), where GF′

is the resetfree FRPTG. For every ε > 0, N ∈ N, given an (ε,N)-acceptable strategy σ′ in
GF′, we can compute a (2ε,N)-acceptable strategy σ in GF and vice versa.

5.4 Solving the Resetfree FRPTG
Before we sketch the details, let us introduce some key notations. Observe that after our
simplifying transformations, the cost functions cf are piecewise-affine continuous functions
that assign a value to every valuation x ∈ [0, 1 + δ] (construction of FRPTG ensures x≤1+δ
always). The interior of two cost functions f1 and f2 is a cost function f3 : [0, 1 + δ]→ R
defined by f3(x) = min(f1(x), f2(x)). Similarly, the exterior of f1 and f2 is a cost function
f4 : [0, 1 + δ]→ R defined as f4(x) = max(f1(x), f2(x)). Clearly, f3 and f4 are also piecewise-
affine continuous. The interior and exterior can be easily computed by superimposing f1 and
f2 as shown graphically in the example by computing lower envelope and upper envelope
respectively.

We now work on the reset-free components GF i, and give an algorithm to compute
OptCostGF i

(l, ν) for every state (l, ν) of GF i, ν(x) ∈ [0, 1 + δ]. We also show the existence
of an N such that for any ε > 0, and every l ∈ Li, ν(x) ∈ [0, 1 + δ], an (ε,N)-acceptable
strategy can be computed. Consider the location of GF i that has the smallest price and call
it lmin. If this is a player 1 location, then intuitively, player 1 would want to spend as much
time as possible here, and if this is a player 2 location, then player 2 would want to spend as
less time as possible here. By our assumption, all the cycles in GF i are non-negative, and
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Example Illustrating SuperImposition, Interior and Exterior
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hence if lmin is part of a cycle, revisiting it will only increase the total cost if at all. Player 1
thus would like to spend all the time he wants to during the first visit itself. We now prove
that this is indeed the case. We consider two cases separately.

5.4.1 lmin is a Player 1 location
We split GF i such that lmin is visited only once. We transform GF i into GF′′ which has
two copies of all locations except lmin such that corresponding to every location l 6= lmin,
we have the copies (l, 0) and (l, 1). A special target location S is added with cost function
assigning +∞ to all clock valuations.

Duplicate L− lmin

A

B

l

lmin

C

D

unroll to

A, 0

B, 0

C, 0

D, 0

l

lmin

A, 1

B, 1

C, 1

D, 1

∞

Given the transitions X of GF i, the FRPTG GF′′ has the following transitions.

if l g−→ l′ ∈ X and l, l′ 6= lmin then (l, 0) g−→ (l′, 0) and (l, 1) g−→ (l′, 1)
if l g−→ l′ ∈ X and l′ = lmin then (l, 0) g−→ lmin and (l, 1) g−→ S,
if lmin

g−→ l, then lmin
g−→ (l, 1)

I Lemma 5.4. For every state (l, ν) if ν∈[0, 1 + δ] and l 6=lmin, we have that
OptCostGF i

(l, ν) = OptCostGF ′′((l, 0), ν) and OptCostGF i
(lmin, ν) = OptCostGF ′′(lmin, ν).

We give an intuition for Lemma 5.4. Locations (l, 0) have all the transitions available to
location l in GF i. Also, any play in GF′′ which is compatible with a winning strategy of
player 1 in GF i contains only one of the locations (l, 0), (l, 1) by construction of GF′′. The
outcomes from (l, 0) are more favourable than (l, 1) for l as a player 1 location. Based
on these intuitions, we conclude that OptCostGF i

(l, ν) is same as that for ((l, 0), ν). This
observation also leads to the ε−optimal strategy being the same as that for (l, 0). Given a
strategy σ′ in GF ′′, we construct σ in GF i as σ(l, ν) = σ′((l, 0), ν). Further, any strategy
that revisits lmin in GF i cannot be winning for player 1, since all cycles are non-negative; we
end up at S with cost ∞ in GF′′. However, all strategies that do not revisit lmin in GF i are
preserved in GF′′, and hence OptCostGF i

(lmin, ν) = OptCostGF ′′(lmin, ν).
We iteratively solve the part of GF′′ with locations indexed 1 (i.e; (l, 1)) in the same

fashion (picking minimal price locations) each time obtaining a smaller PTG. Computing
the cost function of the minimal price location of the last such PTG, and propagating this
backward, we compute the cost function of lmin. We then use the cost function of lmin to
solve the part of GF ′′ with locations indexed 0 (i.e; (l, 0)).
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Algorithm 1: Optimal Cost Algorithm when lmin is a Player 1 location.
Let l1, . . . , ln be the successors of lmin with optcost functions f1, f2 · · · fn.;
STEP 1 : Superimpose : Superimpose all the optcost functions f1, f2 · · · fn.;
STEP 2 : Interior : Take the interior of the superimposition; call it f .;
Let f be composed of line segments g1, g2 · · · gm such that gi ∈ {f1, . . . , fn}, for all i.
∀ k, let the domain of gk be [uk, vk]. Set i = m.;

STEP 3 : Selective Replacement : while i ≥ 1 do
if slope of gi ≤ −η(lmin) then

replace gi with line hi with slope −η(lmin) and passing through (vi, gi(vi));
Let hi intersect gj (largest j < i) at some point x = v′′j , v′′j ∈ [uj , vj ];
Update domain of gj from [uj , vj ] to [uj , v′′j ];
if j < i− 1 then

Remove functions gj+1 to gi−1 from f

Set i = j;
else

i = i− 1;

STEP 4 : Refresh Interior : Take the interior after STEP 3 and call it f ′.;
if l′′ −→ lmin then

update the optcost function of l′′

Computing the Optcost function of lmin: Algorithm 1 computes the optcost function for
a player 1 location lmin, assuming all the constraints on outgoing transitions from lmin are
the same, namely x ∈ [0, 1]. We discuss adapting the algorithm to work for transitions with
different constraints in [10]. A few words on the notation used: if a location l has price η(l),
then slope associated with l is −η(l) (see STEP 3 in Algorithm 1).

Let l1, . . . , ln be the successors of lmin, with cost functions f1, . . . , fn. Each of these cost
functions are piecewise affine continuous over the domain [0, 1]. The first thing to do is
to superimpose f1, . . . , fn, and obtain the cost function f corresponding to the interior of
f1, . . . , fn (lmin is a player 1 location and would like to obtain the minimal cost, hence the
interior). The line segments comprising f come from the various fi. Let dom(f) = [0, 1] be
composed of 0 = ui1 ≤ vi1 = ui2 ≤ . . . uim ≤ vim = 1 : that is, f(x) = fij (x), dom(fij ) =
[uij , vij ], for ij ∈ {1, 2, . . . , n} and 1 ≤ j ≤ m. Let us denote fij by gj , for 1 ≤ j ≤ m. Then,
f is composed of g1, g2, . . . , gm, and dom(f) is composed of dom(g1), . . . , dom(gm) from left
to right. Let dom(gi) = [ui, vi]. Step 2 of the algorithm achieves this.

For a given valuation ν(x), if lmin is an urgent location, then player 1 would go to a
location lk if the interior f is such that f(ν(x)) = gk(ν(x))(the least cost is given by gk,
obtained from the outside cost function of lk). If lmin is not an urgent location, then player
1 would prefer delaying t units at lmin so that ν(x) + t ∈ [ui, vi] rather than goto some
location li if gi(ν(x)) > η(lmin)(vi − ν(x)). Again, gi is a part of the ouside cost function of
li, and player 1 prefers delaying time at lmin rather than goto li since that minimizes the
cost. In this case, the cost function f is refined by replacing the line segment gi over [ui, vi]
by another line segment hi passing through (vi, gi(vi)), and having a slope −η(lmin). Step 3
of the algorithm does this.

Recall that by our transformation 2, the value of clock x in any player 1 location is
≤ 1− δ. The value of x is in [1− δ, 1 + δ] only at a player 2 location ((A, e)b+ in the FRPTG,
section 5.2). Hence, the domain of cost functions for player 1 locations is actually [0, 1− δ],
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and not [0, 1 + δ]. Let the domain of gm be [um, 1]. Then we can split gm into two functions
g1
m, g

2
m with domains [um, 1− δ] and [1− δ, 1]. Now, we ensure that no time is spent in the

player 1 location lmin over dom(g2
m), by not applying step 3 of the algorithm for g2

m. This
way, selective replacement of the cost functions gi occur only in the domain [0, 1− δ], and we
remain faithful to transformation 2, and the semantics of RPTGs.

Computing Almost Optimal Strategies: The strategy corresponding to this computed
optcost is derived as follows. f ′ is the optcost of location lmin computed in Step 4 of the
algorithm. f ′ is composed of two kinds of functions (a) the functions gi computed in step 2 as
a result of the interior of superimposition and (b) functions hi which replaced some functions
gj from f , corresponding to delay at lmin. For functions hj of f ′ with domain [uj , vj ], we
prescribe the strategy to delay at lmin till x = vj when entered with clock x ∈ [uj , vj ]. For
functions gi, that come from f at Step 2, where gi is part of some optcost function fk, (fk
is the optcost function of one of the successors lk of lmin), the strategy dictates moving
immediately to lk when entered with clock x ∈ [ui, vi].

Termination: Finally, we prove the existence of a number N , the number of affine segments
that appear in the cost functions of all locations. Start with the resetfree FRPTG with
m locations having p segments in the outside cost functions. Let α(m, p) denote the total
number of affine segments appearing in cost functions across all locations. The transformation
of resetfree components GF into GF′′ gives rise to two smaller resetfree FRPTGs with m− 1
locations each, after separating out lmin. The resetfree FRPTG (GF , 1) with m− 1 locations
indexed with 1 of the form (l, 1) are solved first, these cost functions are added as outside
cost functions to solve lmin, and finally, the cost function of lmin is added as an outside
cost function to solve the resetfree FRPTG (GF , 0) with m− 1 locations indexed with 0 of
the form (l, 0). Taking into account the new sink target location added, we have ≤ p + 1
segments in outside cost functions in (GF , 1). This gives atmost β = α(m− 1, p+ 1) segments
in solving (GF , 1), and α(1, p+ β) = γ segments to solve lmin, and finally α(m − 1, p+ γ)
segments to solve (GF , 0). Solving this, one can easily check that α(m, p) is atmost triply
exponential in the number of locations m of the resetfree component GF . Obtaining a bound
of the number of affine segments, it is easy to see that Algorithm 1 terminates; the time
taken to compute almost optimal strategies and optcost functions is triply exponential.

We illustrate the computation of Optcost of a Player 1 location in Figure 2. The proof of
Lemma 5.5 is given in [10], while Lemma 5.6 follows from Lemma 5.5 and Step 4 of Algorithm
1.

I Lemma 5.5. In Algorithm 1, if a function gi (in f of Step 2) has domain [ui, vi] and slope
≤ −η(l) then OptCost(l, ν) = (vi − ν) ∗ η(l) + g(vi).

I Lemma 5.6. The function f ′ in Algorithm 1 computes the optcost at any location l. That
is, ∀x ∈ [0, 1], OptCostG(l, x) = f ′(x).

Note that the strategy under construction is a player 1 strategy, and player 1 has no control
over the interval [1, 1 + δ]. x ∈ [1, 1 + δ] after a positive perturbation, and is under player 2’s
control. Thus, at a player 1 location, proving for x ∈ [0, 1] suffices.

5.4.2 lmin is a Player 2 location
If lmin is a player 2 location in the reset-free component GF i, then intuitively, player 2
would want to spend as little time as possible there. Keeping this in mind, we first run



S. Guha, S. N. Krishna, L. Manasa, and A. Trivedi 275

2

l

A

B

0≤x≤1−δ

0≤x≤
1−δ

y

x

OptCost(A)

3

1.1

y

x

OptCost(B)

4

0.5

0.
5

3

0.
75 1.1

y

x

Step 1 : Superimpose

3

1.1

4

2.25

0.
25

1.26

0.
57

y

x

Step 2 : Interior

3

1.1

4

2.25

0.
25

1.26

0.
57

y

x

Step 3 : Selectively Replace

1.
1

−3

−7
10 −3

1.5

0.
9

y

x

Step 4 : Interior

1.
1

1.5

y

x

OptCost(l)

1.
1

0.5

0.
5

1.5
0.91

0.
54

0.
9

σ1(l,x)=



delay at l, 0≤x<0.5
go to B, 0.5≤x<0.54
delay at l, 0.54≤x≤0.9
go to A, x=0.9
go to A, 0.9<x≤1.1

Figure 2 Optcost Computation for a Player 1 location (δ = 0.1): we can keep the guards as
0 ≤ x ≤ 1 and not apply Step 3 for x ∈ [1− δ, 1].

steps 1, 2 of Algorithm 1 by taking the exterior of f1, . . . , fn instead of the interior(player
2 would maximise the cost). There is no time elapse at lmin on running steps 1,2 of the
algorithm. Let f be the computed exterior using steps 1,2. If f comprises of functions gi
having a greater slope than −η(l), then Finally, while doing Step 4, we take the exterior of
the replaced functions hi and old functions gi. Recall that our transformations resulted in 3
kinds of player 2 locations : urgent, those with dwell-time restriction [0, δ] and finally those
with [δ, 2δ]. The 3 cases are discussed in detail in [10].

6 Conclusion and Future Work

In this paper we studied excess robust semantics and provided the first decidability result for
excess semantics and improved the known undecidability result with 10 clocks to 5 clocks. To
the best of our knowledge, the other known decidability result for robust timed games is under
the conservative semantics for a fixed δ, [9]. As a consequence of our decidability result, the
reachability problem for 1 clock PTG with arbitrary prices is shown to be decidable too under
the assumption that the PTG does not have any negative cost cycle. The decidability we show
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is for a fixed perturbation bound δ > 0. We use δ in the constraints of the dwell-time PTG
after the first transformation for ease of understanding the robust semantics. Implementing
this in step 3 of Algorithm 1 and ensuring no time elapse in the interval [1− δ, 1] takes no
extra effort while lmin is a player 1 location. In that sense, we could have avoided explicit use
of δ in the constraints in our simplifying transformations, and taken the appropriate steps
in the algorithm itself. The existence of limit-strategy with δ → 0 seems rather hard. Our
construction would not directly extend to limit-strategy problem as it is heavily dependant
on the fixed δ.
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Abstract
Priced timed games are two-player zero-sum games played on priced timed automata (whose
locations and transitions are labeled by weights modeling the costs of spending time in a state
and executing an action, respectively). The goals of the players are to minimise and maximise
the cost to reach a target location, respectively. We consider priced timed games with one clock
and arbitrary (positive and negative) weights and show that, for an important subclass of theirs
(the so-called simple priced timed games), one can compute, in exponential time, the optimal
values that the players can achieve, with their associated optimal strategies. As side results, we
also show that one-clock priced timed games are determined and that we can use our result on
simple priced timed games to solve the more general class of so-called reset-acyclic priced timed
games (with arbitrary weights and one-clock).
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1 Introduction

The importance of models inspired from the field of game theory is nowadays well-established
in theoretical computer science. They allow to describe and analyse the possible interactions
of antagonistic agents (or players) as in the controller synthesis problem, for instance. This
problem asks, given a model of the environment of a system, and of the possible actions of
a controller, to compute a controller that constraints the environment to respect a given
specification. Clearly, one can not, in general, assume that the two players (the environment
and the controller) will collaborate, hence the need to find a controller strategy that enforces
the specification whatever the environment does. This question thus reduces to computing a
so-called winning strategy for the corresponding player in the game model.

In order to describe precisely the features of complex computer systems, several game
models have been considered in the literature. In this work, we focus on the model of Priced
Timed Games [17] (PTGs for short), which can be regarded as an extension (in several
directions) of classical finite automata. First, like timed automata [2], PTGs have clocks,
which are real-valued variables whose values evolve with time elapsing, and which can be
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Figure 1 A simple priced timed game (left) and the lower value function of location `1 (right).

tested and reset along the transitions. Second, the locations are associated with price-rates
and transitions are labeled by discrete prices, as in priced timed automata [4, 3, 6]. These
prices allow one to associate a cost with each run (or play), which depends on the sequence
of transitions traversed by the run, and on the time spent in each visited location. Finally, a
PTG is played by two players, called Min and Max, and each location of the game is owned
by either of them (we consider a turn-based version of the game). The player who controls
the current location decides how long to wait, and which transition to take.

In this setting, the goal of Min is to reach a given set of target locations, following a
play whose cost is as small as possible. Player Max has an antagonistic objective: he tries
to avoid the target locations, and, if not possible, to maximise the accumulated cost up to
the first visit of a target location. To reflect these objectives, we define the upper value Val
of the game as a mapping of the configurations of the PTG to the least cost that Min can
guarantee while reaching the target, whatever the choices of Max. Similarly, the lower value
Val returns the greatest cost that Max can ensure (letting the cost being +∞ in case the
target locations are not reached).

An example of PTG is given in Figure 1, where the locations of Min (respectively, Max)
are represented by circles (respectively, rectangles), and the integers next to the locations
are their price-rates, i.e., the cost of spending one time unit in the location. Moreover,
there is only one clock x in the game, which is never reset and all guards on transitions
are x ∈ [0, 1] (hence this guard is not displayed and transitions are only labeled by their
respective discrete cost): this is an example of simple priced timed game (we will define them
properly later). It is easy to check that Min can force reaching the target location `f from all
configurations (`, ν) of the game, where ` is a location and ν is a real valuation of the clock
in [0, 1]. Let us comment on the optimal strategies for both players. From a configuration
(`4, ν), with ν ∈ [0, 1], Max better waits until the clock takes value 1, before taking the
transition to `f (he is forced to move, by the rules of the game). Hence, Max’s optimal value
is 3(1− ν)− 7 = −3ν − 4 from all configurations (`4, ν). Symmetrically, it is easy to check
that Min better waits as long as possible in `7, hence his optimal value is −16(1− ν) from all
configurations (`7, ν). However, optimal value functions are not always that simple, see for
instance the lower value function of `1 on the right of Figure 1, which is a piecewise affine
function. To understand why value functions can be piecewise affine, consider the sub-game
enclosed in the dotted rectangle in Figure 1, and consider the value that Min can guarantee
from a configuration of the form (`3, ν) in this sub-game. Clearly, Min must decide how long
he will spend in `3 and whether he will go to `4 or `7. His optimal value from all (`3, ν) is thus
inf06t61−ν min

(
4t+ (−3(ν+ t)−4), 4t+ 6−16(1− (ν+ t))

)
= min(−3ν−4, 16ν−10). Since

16ν − 10 > −3ν − 4 if and only if ν 6 6/19, the best choice of Min is to move instantaneously
to `7 if ν ∈ [0, 6/19] and to move instantaneously to `4 if ν ∈ (6/19, 1], hence the value
function of `3 (in the subgame) is a piecewise affine function with two pieces.
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Related work. PTGs were independently investigated in [8] and [1]. For (non-necessarily
turn-based) PTGs with non-negative prices, semi-algorithms are given to decide the value
problem that is to say, whether the upper value of a location (the best cost that Min can
guarantee in valuation 0), is below a given threshold. They have also shown that, under the
strongly non-Zeno assumption on prices (asking the existence of κ > 0 such that every cycle
in the underlying region graph has a cost at least κ), the proposed semi-algorithms always
terminate. This assumption was justified in [11, 7] by showing that, without it, the existence
problem, that is to decide whether Min has a strategy guaranteeing to reach a target location
with a cost below a given threshold, is indeed undecidable for PTGs with non-negative prices
and three or more clocks. This result was recently extended in [9] to show that the value
problem is also undecidable for PTGs with non-negative prices and four or more clocks. In
[5], the undecidability of the existence problem has also been shown for PTGs with arbitrary
price-rates (without prices on transitions), and two or more clocks. On a positive side, the
value problem was shown decidable by [10] for PTGs with one clock when the prices are
non-negative: a 3-exponential time algorithm was first proposed, further refined in [18, 16]
into an exponential time algorithm. The key point of those algorithms is to reduce the
problem to the computation of optimal values in a restricted family of PTGs called Simple
Priced Timed Games (SPTGs for short), where the underlying automata contain no guard,
no reset, and the play is forced to stop after one time unit. More precisely, the PTG is
decomposed into a sequence of SPTGs whose value functions are computed and re-assembled
to yield the value function of the original PTG. Alternatively, and with radically different
techniques, a pseudo-polynomial time algorithm to solve one-clock PTGs with arbitrary prices
on transitions, and price-rates restricted to two values amongst {−d, 0,+d} (with d ∈ N)
was given in [14].

Contributions. Following the decidability results sketched above, we consider PTGs with
one clock. We extend those results by considering arbitrary (positive and negative) prices.
Indeed, all previous works on PTGs with only one clock (except [14]) have considered non-
negative weights only, and the status of the more general case with arbitrary weights has so
far remained elusive. Yet, arbitrary weights are an important modeling feature. Consider,
for instance, a system which can consume but also produce energy at different rates. In
this case, energy consumption could be modeled as a positive price-rate, and production by
a negative price-rate. We propose an exponential time algorithm to compute the value of
one-clock SPTGs with arbitrary weights. While this result might sound limited due to the
restricted class of simple PTGs we can handle, we recall that the previous works mentioned
above [10, 18, 16] have demonstrated that solving SPTGs is a key result towards solving more
general PTGs. Moreover, this algorithm is, as far as we know, the first to handle the full class
of SPTGs with arbitrary weights, and we note that the solutions (either the algorithms or the
proofs) known so far do not generalise to this case. Finally, as a side result, this algorithm
allows us to solve the more general class of reset-acyclic one-clock PTGs that we introduce.
Thus, although we can not (yet) solve the whole class of PTGs with arbitrary weights, our
result may be seen as a potentially important milestone towards this goal.

Due to lack of space most proofs and technical details may be found in a detailed
version [12].

2 Priced timed games: syntax, semantics, and preliminary results

Notations and definitions. Let x denote a positive real-valued variable called clock. A
guard (or clock constraint) is an interval with endpoints in N ∪ {+∞}. We often abbreviate
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guards, for instance x 6 5 instead of [0, 5]. Let S ⊆ Guard(x) be a finite set of guards. We
let [[S]] =

⋃
I∈S I. Assuming M0 = 0 < M1 < · · · < Mk are all the endpoints of the intervals

in S (to which we add 0), we let RegS = {(Mi,Mi+1) | 0 6 i 6 k − 1} ∪ {{Mi} | 0 6 i 6 k}
be the set of regions of S. Observe that RegS is also a set of guards.

We rely on the notion of cost function to formalise the notion of optimal value function
sketched in the introduction. Formally, for a set of guards S ⊆ Guard(x), a cost function
over S is a function f : [[RegS ]]→ R = R ∪ {+∞,−∞} such that over all regions r ∈ RegS ,
f is either infinite or a continuous piecewise affine function, with a finite set of cutpoints
(points where the first derivative is not defined) {κ1, . . . , κp} ⊆ Q, and with f(κi) ∈ Q for
all 1 6 i 6 p. In particular, if f(r) = {f(ν) | ν ∈ r} contains +∞ (respectively, −∞) for
some region r, then f(r) = {+∞} (f(r) = {−∞}). We denote by CFS the set of all cost
functions over S. In our algorithm to solve SPTGs, we will need to combine cost functions
thanks to the B operator. Let f ∈ CFS and f ′ ∈ CFS′ be two costs functions on set of guards
S, S′ ⊆ Guard(x), such that [[S]] ∩ [[S′]] is a singleton. We let f B f ′ be the cost function
in CFS∪S′ such that (f B f ′)(ν) = f(ν) for all ν ∈ [[RegS ]], and (f B f ′)(ν) = f ′(ν) for all
ν ∈ [[RegS′ ]] \ [[RegS ]].

We consider an extended notion of one-clock priced timed games (PTGs for short) allowing
for the use of urgent locations, where only a zero delay can be spent, and final cost functions
which are associated with each final location and incur an extra cost to be paid when ending
the game in this location. Formally, a PTG G is a tuple (LMin, LMax, Lf , Lu,ϕ,∆, π) where

LMin (respectively, LMax) is a finite set of locations for player Min (respectively, Max),
with LMin ∩ LMax = ∅; Lf is a finite set of final locations, and we let L = LMin ∪ LMax ∪ Lf
be the whole location space; Lu ⊆ L \ Lf indicates urgent locations1;

∆ ⊆ (L \ Lf ) × Guard(x) × {>,⊥} × L is a finite set of transitions; ϕ = (ϕ`)`∈Lf
associates to each ` ∈ Lf its final cost function, that is an affine2 cost function ϕ` over
SG = {I | ∃`, R, `′ : (`, I, R, `′) ∈ ∆}; π : L ∪ ∆ → Z mapping an integer price to each
location – its price-rate – and transition.

Intuitively, a transition (`, I, R, `′) changes the current location from ` to `′ if the clock
has value in I and the clock is reset according to the Boolean R. We assume that, in all PTGs,
the clock x is bounded, i.e., there is M ∈ N such that for all guards I ∈ SG , I ⊆ [0,M ].3
We denote by RegG the set RegSG of regions of G. We further denote4 by Πtr

G , Πloc
G and

Πfin
G respectively the values maxδ∈∆ |π(δ)|, max`∈L |π(`)| and supν∈[0,M ] max`∈L |ϕ`(ν)| =

max`∈L max(|ϕ`(0)|, |ϕ`(M)|). That is, Πtr
G , Πloc

G and Πfin
G are the largest absolute values of

the location prices, transition prices and final cost functions.
Let G = (LMin, LMax, Lf , Lu,ϕ,∆, π) be a PTG. A configuration of G is a pair s = (`, ν) ∈

L×R+. We denote by ConfG the set of configurations of G. Let (`, ν) and (`′, ν′) be two
configurations. Let δ = (`, I, R, `′) ∈ ∆ be a transition of G and t ∈ R+ be a delay. Then,
there is a (t, δ)-transition from (`, ν) to (`′, ν′) with cost c, denoted by (`, ν) t,δ,c−−−→ (`′, ν′), if

1 Here we differ from [10] where Lu ⊆ LMax.
2 The affine restriction on final cost function is to simplify our further arguments, though we do believe

that all of our results could be adapted to cope with general cost functions.
3 Observe that this last restriction is not without loss of generality in the case of PTGs. While all timed

automata A can be turned into an equivalent (with respect to reachability properties) A′ whose clocks
are bounded [4], this technique can not be applied to PTGs, in particular with arbitrary prices.

4 Throughout the paper, we often drop the G in the subscript of several notations when the game is clear
from the context.
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(i) ` ∈ Lu implies t = 0;
(ii) ν + t ∈ I;
(iii) R = > implies ν′ = 0;
(iv) R = ⊥ implies ν′ = ν + t;
(v) c = π(δ) + t× π(`).
Observe that the cost of (t, δ) takes into account the price-rate of `, the delay spent in `, and
the price of δ. We assume that the game has no deadlock: for all s ∈ ConfG , there are (t, δ, c)
and s′ ∈ ConfG such that s t,δ,c−−−→ s′. Finally, we write s c−→ s′ whenever there are t and δ such
that s t,δ,c−−−→ s′. A play of G is a finite or infinite path ρ = (`0, ν0) c0−→ (`1, ν1) c1−→ (`2, ν2) · · · .
For a finite play ρ = (`0, ν0) c0−→ (`1, ν1) c1−→ (`2, ν2) · · · cn−1−−−→ (`n, νn), we let |ρ| = n. For an
infinite play ρ = (`0, ν0) c0−→ (`1, ν1) c1−→ (`2, ν2) · · · , we let |ρ| be the least position i such
that `i ∈ Lf if such a position exists, and |ρ| = +∞ otherwise. Then, we let CostG(ρ) be the
cost of ρ, with CostG(ρ) = +∞ if |ρ| = +∞, and CostG(ρ) =

∑|ρ|−1
i=0 ci + ϕ`|ρ|(ν|ρ|) otherwise.

A strategy for player Min is a function σMin mapping every finite play ending in location
of Min to a pair (t, δ) ∈ R+ × ∆, indicating what Min should play. We also request
that the strategy proposes only valid pairs (t, δ), i.e., that for all runs ρ ending in (`, ν),
σMin(ρ) = (t, (`, I, R, `′)) implies that ν + t ∈ I. Strategies σMax of player Max are defined
accordingly. We let StratMin(G) and StratMax(G) be the sets of strategies of Min and Max,
respectively. A pair of strategies (σMin, σMax) ∈ StratMin(G)× StratMax(G) is called a profile
of strategies. Together with an initial configuration s0 = (`0, ν0), it defines a unique play
Play(s0, σMin, σMax) = s0

c0−→ s1
c1−→ s2 · · · sk

ck−→ · · · where for all j > 0, sj+1 is the unique
configuration such that sj

tj ,δj ,cj−−−−−→ sj+1 with (tj , δj) = σMin(s0
c0−→ s1 · · · sj−1

cj−1−−−→ sj) if
`j ∈ LMin; and (tj , δj) = σMax(s0

c0−→ s1 · · · sj−1
cj−1−−−→ sj) if `j ∈ LMax. We let Play(σMin)

(respectively, Play(s0, σMin)) be the set of plays that conform with σMin (and start in s0).
As sketched in the introduction, we consider optimal reachability-cost games on PTGs,

where the aim of player Min is to reach a location of Lf while minimising the cost. To formalise
this objective, we let the value of a strategy σMin for Min be the function ValσMin

G : ConfG → R
such that for all s ∈ ConfG : ValσMin

G (s) = supσMax∈StratMax
Cost(Play(s, σMin, σMax)). Intuit-

ively, ValσMin
G (s) is the largest value that Max can achieve when playing against strategy

σMin of Min (it is thus a worst case from the point of view of Min). Symmetrically, for
σMax ∈ StratMax, ValσMax

G (s) = infσMin∈StratMin Cost(Play(s, σMin, σMax)), for all s ∈ ConfG .
Then, the upper and lower values of G are respectively the functions ValG : ConfG → R
and ValG : ConfG → R where, for all s ∈ ConfG , ValG(s) = infσMin∈StratMin ValσMin

G (s) and
ValG(s) = supσMax∈StratMax

ValσMax
G (s). We say that a game is determined if the lower and the

upper values match for every configuration s, and in this case, we say that the optimal value
ValG of the game G exists, defined by ValG = ValG = ValG . A strategy σMin of Min is optimal
(respectively, ε-optimal) if ValσMin

G = ValG (ValσMin
G 6 ValG + ε), i.e., σMin ensures that the cost

of the plays will be at most ValG (ValG + ε). Symmetrically, a strategy σMax of Max is optimal
(respectively, ε-optimal) if ValσMax

G = ValG (ValσMax
G > ValG − ε).

Properties of the value. Let us now prove useful preliminary properties of the value
function of PTGs, that – as far as we know – had hitherto never been established. Using
a general determinacy result by Gale and Stewart [15], we can show that PTGs (with one
clock) are determined. Hence, the value function ValG exists for all PTG G. We can further
show that, for all locations `, ValG(`) is a piecewise continuous function that might exhibit
discontinuities only on the borders of the regions of RegG (where ValG(`) is the function such
that ValG(`)(ν) = ValG(`, ν) for all ν ∈ R+).
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I Theorem 1. For all (one-clock) PTGs G:
(i) ValG = ValG, i.e., PTGs are determined; and
(ii) for all r ∈ RegG, for all ` ∈ L, ValG(`) is either infinite or continuous over r.

Simple priced timed games. As sketched in the introduction, our main contribution is to
solve the special case of simple one-clock priced timed games with arbitrary costs. Formally,
an r-SPTG, with r ∈ Q+ ∩ [0, 1], is a PTG G = (LMin, LMax, Lf , Lu,ϕ,∆, π) such that for
all transitions (`, I, R, `′) ∈ ∆, I = [0, r] and R = ⊥. Hence, transitions of r-SPTGs are
henceforth denoted by (`, `′), dropping the guard and the reset. Then, an SPTG is a 1-SPTG.
This paper is devoted mainly to proving the following theorem on SPTGs:

I Theorem 2. Let G be an SPTG. Then, for all locations ` ∈ L, the function ValG(`) is either
infinite, or continuous and piecewise-affine with at most an exponential number of cutpoints.
The value functions for all locations, as well as a pair of optimal strategies (σMin, σMax) (that
always exist if no values are infinite) can be computed in exponential time.

Before sketching the proof of this theorem, we discuss a class of (simple) strategies that
are sufficient to play optimally. Roughly speaking, Max has always a memoryless optimal
strategy, while Min might need (finite) memory to play optimally – it is already the case
in untimed quantitative reachability games with arbitrary weights [13]. Moreover, these
strategies are finitely representable (recall that even a memoryless strategy depends on the
current configuration and that there are infinitely many in our time setting).

Strategies of Max are formalised with the notion of finite positional strategies (FP-
strategies): they are memoryless strategies σ (i.e., for all finite plays ρ1 = ρ′1

c1−→ s and
ρ2 = ρ′2

c2−→ s ending in the same configuration, we have σ(ρ1) = σ(ρ2)), such that for all
locations `, there exists a finite sequence of rationals 0 6 ν`1 < ν`2 < · · · < ν`k = 1 and a finite
sequence of transitions δ1, . . . , δk ∈ ∆ such that
(i) for all 1 6 i 6 k, for all ν ∈ (ν`i−1, ν

`
i ], either σ(`, ν) = (0, δi), or σ(q, ν) = (ν`i − ν, δi)

(assuming ν`0 = min(0, ν`1)); and
(ii) if ν`1 > 0, then σ(`, 0) = (ν`1, δ1).
We let pts(σ) be the set of ν`i for all ` and i, and int(σ) be the set of all successive intervals
generated by pts(σ). Finally, we let |σ| = |int(σ)| be the size of σ. Intuitively, in an interval
(ν`i−1, ν

`
i ], σ always returns the same move: either to take immediately δi or to wait until the

clock reaches the endpoint ν`i and then take δi.
Min, however may require memory to play optimally. Informally, we will compute optimal

switching strategies, as introduced in [13] (in the untimed setting). A switching strategy
is described by a pair (σ1

Min, σ
2
Min) of FP-strategies and a switch threshold K, and consists

in playing σ1
Min until the total accumulated cost of the discrete transitions is below K; and

then to switch to strategy σ2
Min. The role of σ2

Min is to ensure reaching a final location: it
is thus a (classical) attractor strategy. The role of σ1

Min, on the other hand, is to allow
Min to decrease the cost low enough (possibly by forcing negative cycles) to secure a cost
below K, and the computation of σ1

Min is thus the critical point in the computation of
an optimal switching strategy. To characterise σ1

Min, we introduce the notion of negative
cycle strategy (NC-strategy). Formally, an NC-strategy σMin of Min is an FP-strategy such
that for all runs ρ = (`1, ν) c1−→ · · · ck−1−−−→ (`k, ν′) ∈ Play(σMin) with `1 = `k, and ν, ν′ in
the same interval of int(σMin), the sum of prices of discrete transitions is at most −1, i.e.,
π(`1, `2) + · · · + π(`k−1, `k) 6 −1. To characterise the fact that σ1

Min must allow Min to
reach a cost which is small enough, without necessarily reaching a target state, we define
the fake value of an NC-strategy σMin from a configuration s as fakeσMin

G (s) = sup{Cost(ρ) |
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ρ ∈ Play(s, σMin), ρ reaches a target}, i.e., the value obtained when ignoring the σMin-induced
plays that do not reach the target. Thus, clearly, fakeσMin

G (s) 6 ValσMin(s). We say that an
NC-strategy is fake-optimal if its fake value, in every configuration, is equal to the optimal
value of the configuration in the game. This is justified by the following result whose proof
relies on the switching strategies described before:

I Lemma 3. If ValG(`, ν) 6= +∞, for all ` and ν, then for all NC-strategies σMin, there is a
strategy σ′Min such that Valσ

′
Min
G (s) 6 fakeσMin

G (s) for all configurations s. In particular, if σMin
is a fake-optimal NC-strategy, then σ′Min is an optimal (switching) strategy of the SPTG.

Then, an SPTG is called finitely optimal if
(i) Min has a fake-optimal NC-strategy;
(ii) Max has an optimal FP-strategy; and
(iii) ValG(`) is a cost function, for all locations `.
The central point in establishing Theorem 2 will thus be to prove that all SPTGs are
finitely optimal, as this guarantees the existence of well-behaved optimal strategies and
value functions. We will also show that they can be computed in exponential time. The proof
is by induction on the number of urgent locations of the SPTG. In Section 3, we address the
base case of SPTGs with urgent locations only (where no time can elapse). Since these SPTGs
are very close to the untimed min-cost reachability games of [13], we adapt the algorithm
in this work and obtain the solveInstant function (Algorithm 1). This function can also
compute ValG(`, 1) for all ` and all games G (even with non-urgent locations) since time
can not elapse anymore when the clock has valuation 1. Next, using the continuity result
of Theorem 1, we can detect locations ` where ValG(`, ν) ∈ {+∞,−∞}, for all ν ∈ [0, 1],
and remove them from the game. Finally, in Section 4 we handle SPTGs with non-urgent
locations by refining the technique of [10, 18] (that work only on SPTGs with non-negative
costs). Compared to [10, 18], our algorithm is simpler, being iterative, instead of recursive.

3 SPTGs with only urgent locations

Throughout this section, we consider an r-SPTG G = (LMin, LMax, Lf , Lu,ϕ,∆, π) where all
locations are urgent, i.e., Lu = LMin ∪ LMax. We first explain briefly how we can compute
the value function of the game for a fixed clock valuation ν ∈ [0, r] (more precisely, we can
compute the vector (ValG(`, ν))`∈L). Since no time can elapse, we can adapt the techniques
developed in [13] to solve (untimed) min-cost reachability games. The adaptation consists
in taking into account the final cost functions. This yields the function solveInstant
(Algorithm 1), that computes the vector (ValG(`, ν))`∈L for a fixed ν. The results of [13] also
allow us to compute associated optimal strategies: when Val(`, ν) /∈ {−∞,+∞} the optimal
strategy for Max is memoryless, and the optimal strategy for Min is a switching strategy
(σ1

Min, σ
2
Min) with a threshold K (as described in the previous section).

Now let us explain how we can reduce the computation of ValG(`) : ν ∈ [0, r] 7→ Val(`, ν)
(for all `) to a finite number of calls to solveInstant. Let FG be the set of affine functions
over [0, r] such that FG = {k + ϕ` | ` ∈ Lf ∧ k ∈ I}, where I = [−(|L| − 1)Πtr, |L|Πtr] ∩ Z.
Observe that FG has cardinality 2|L|2Πtr, i.e., pseudo-polynomial in the size of G. From
[13], we conclude that the functions in FG are sufficient to characterise ValG , in the following
sense: for all ` ∈ L and ν ∈ [0, r] such that Val(`, ν) /∈ {−∞,+∞}, there is f ∈ FG with
Val(`, ν) = f(ν). Using the continuity of ValG (Theorem 1), we show that all the cutpoints
of ValG are intersections of functions from FG , i.e., belong to the set of possible cutpoints
PossCPG = {ν ∈ [0, r] | ∃f1, f2 ∈ FG f1 6= f2 ∧ f1(ν) = f2(ν)}. Observe that PossCPG



T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege 285

Algorithm 1: solveInstant(G,ν)
Input: r-SPTG G = (LMin, LMax, Lf , Lu,ϕ,∆, π), a valuation ν ∈ [0, r]

1 foreach ` ∈ L do
2 if ` ∈ Lf then X(`) := ϕ`(ν) else X(`) := +∞
3 repeat
4 Xpre := X
5 foreach ` ∈ LMax do X(`) := max(`,`′)∈∆

(
π(`, `′) + Xpre(`′)

)
6 foreach ` ∈ LMin do X(`) := min(`,`′)∈∆

(
π(`, `′) + Xpre(`′)

)
7 foreach ` ∈ L such that X(`) < −(|L| − 1)Πtr −Πfin do X(`) := −∞
8 until X = Xpre
9 return X

contains at most |FG |2 = 4|Lf |4(Πtr)2 points (also a pseudo-polynomial in the size of G) since
all functions in FG are affine, and can thus intersect at most once with every other function.
Moreover, PossCPG ⊆ Q, since all functions of FG take rational values in 0 and r ∈ Q. Thus,
for all `, ValG(`) is a cost function (with cutpoints in PossCPG and pieces from FG). Since
ValG(`) is a piecewise affine function, we can characterise it completely by computing only its
value on its cutpoints. Hence, we can reconstruct ValG(`) by calling solveInstant on each
rational valuation ν ∈ PossCPG . From the optimal strategies computed along solveInstant
[13], we can also reconstruct a fake-optimal NC-strategy for Min and an optimal FP-strategy
for Max, hence:

I Proposition 4. Every r-SPTG G with only urgent locations is finitely optimal. Moreover,
for all locations `, the piecewise affine function ValG(`) has cutpoints in PossCPG of cardinality
4|Lf |4(Πtr)2, pseudo-polynomial in the size of G.

4 Solving general SPTGs

In this section, we consider SPTGs with possibly non-urgent locations. We first prove
that all such SPTGs are finitely optimal. Then, we introduce Algorithm 2 to compute
optimal values and strategies of SPTGs. To the best of our knowledge, this is the first
algorithm to solve SPTGs with arbitrary weights. Throughout the section, we fix an SPTG
G = (LMin, LMax, Lf , Lu,ϕ,∆, π) with possibly non-urgent locations. Before presenting our
core contributions, let us explain how we can detect locations with infinite values. As already
argued, we can compute Val(`, 1) for all ` assuming all locations are urgent, since time can
not elapse anymore when the clock has valuation 1. This can be done with solveInstant.
Then, by continuity, Val(`, 1) = +∞ (respectively, Val(`, 1) = −∞), for some ` if and only if
Val(`, ν) = +∞ (respectively, Val(`, ν) = −∞) for all ν ∈ [0, 1]. We remove from the game
all locations with infinite value without changing the values of other locations (as justified
in [13]). Thus, we henceforth assume that Val(`, ν) ∈ R for all (`, ν).

The GL′,r construction. To prove finite optimality of SPTGs and to establish correctness
of our algorithm, we rely in both cases on a construction that consists in decomposing G
into a sequence of SPTGs with more urgent locations. Intuitively, a game with more urgent
locations is easier to solve since it is closer to an untimed game (in particular, when all
locations are urgent, we can apply the techniques of Section 3). More precisely, given a
set L′ of non-urgent locations, and a valuation r0 ∈ [0, 1], we will define a (possibly infinite)
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sequence of valuations 1 = r0 > r1 > · · · and a sequence GL′,r0 , GL′,r1 , . . . of SPTGs such
that
(i) all locations of G are also present in each GL′,ri , except that the locations of L′ are now

urgent; and
(ii) for all i > 0, the value function of GL′,ri is equal to ValG on the interval [ri+1, ri]. Hence,

we can re-construct ValG by assembling well-chosen parts of the values functions of the
GL′,ri (assuming infi ri = 0).

This basic result will be exploited in two directions. First, we prove by induction on the
number of urgent locations that all SPTGs are finitely optimal, by re-constructing ValG (as
well as optimal strategies) as a B-concatenation of the value functions of a finite sequence
of SPTGs with one more urgent locations. The base case, with only urgent locations, is
solved by Proposition 4. This construction suggests a recursive algorithm in the spirit of
[10, 18] (for non-negative prices). Second, we show that this recursion can be avoided (see
Algorithm 2). Instead of turning locations urgent one at a time, this algorithm makes them
all urgent and computes directly the sequence of SPTGs with only urgent locations. Its proof
of correctness relies on the finite optimality of SPTGs and, again, on our basic result linking
the values functions of G and games GL′,ri .

Let us formalise these constructions. Let G be an SPTG, let r ∈ [0, 1] be an endpoint, and
let x = (x`)`∈L be a vector of rational values. Then, wait(G, r,x) is an r-SPTG in which
both players may now decide, in all non-urgent locations `, to wait until the clock takes value
r, and then to stop the game, adding the cost x` to the current cost of the play. Formally,
wait(G, r,x) = (LMin, LMax, L

′
f , Lu,ϕ

′, T ′, π′) is such that L′f = Lf ] {`f | ` ∈ L \ Lu}; for
all `′ ∈ Lf and ν ∈ [0, r], ϕ′`′(ν) = ϕ`′(ν), for all ` ∈ L \ Lu, ϕ′`f (ν) = (r − ν) · π(`) + x`;
T ′ = T ∪ {(`, [0, r],⊥, `f ) | ` ∈ L \ Lu}; for all δ ∈ T ′, π′(δ) = π(δ) if δ ∈ T , and π′(δ) = 0
otherwise. Then, we let Gr = wait

(
G, r, (ValG(`, r))`∈L

)
, i.e., the game obtained thanks to

wait by letting x be the value of G in r. One can check that this first transformation does
not alter the value of the game, for valuations before r: ValG(`, ν) = ValGr (`, ν) for all ν 6 r.

Next, we make locations urgent. For a set L′ ⊆ L \ Lu of non-urgent locations, we let
GL′,r be the SPTG obtained from Gr by making urgent every location ` of L′. Observe that,
although all locations ` ∈ L′ are now urgent in GL′,r, their clones `f allow the players to wait
until r. When L′ is a singleton {`}, we write G`,r instead of G{`},r. While the construction
of Gr does not change the value of the game, introducing urgent locations does. Yet, we can
characterise an interval [a, r] on which the value functions of H = GL′,r and H+ = GL′∪{`},r
coincide, as stated by the next proposition. The interval [a, r] depends on the slopes of the
pieces of ValH+ as depicted in Figure 2: for each location ` of Min, the slopes of the pieces
of ValH+ contained in [a, r] should be 6 −π(`) (and > −π(`) when ` belongs to Max). It is
proved by lifting optimal strategies of H+ into H, and strongly relies on the determinacy
result of Theorem 1:

I Proposition 5. Let 0 6 a < r 6 1, L′ ⊆ L \ Lu and ` /∈ L′ ∪ Lu a non-urgent location of
Min (respectively, Max). Assume that GL′∪{`},r is finitely optimal, and for all a 6 ν1 < ν2 6 r

ValGL′∪{`},r (`, ν2)− ValGL′∪{`},r (`, ν1)
ν2 − ν1

> −π(`) (respectively, 6 −π(`)) . (1)

Then, for all ν ∈ [a, r] and `′ ∈ L, ValGL′∪{`},r(`
′, ν) = ValGL′,r(`

′, ν). Furthermore, fake-
optimal NC-strategies and optimal FP-strategies in GL′∪{`},r are also fake-optimal and optimal
over [a, r] in GL′,r.
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ValG`,r (`, ν)

νa r

•

•

ν1 ν2

ValG`,r (`, ν1)

ValG`,r (`, ν2)

Figure 2 The condition (1) (in the case L′ =
∅ and ` ∈ LMin): graphically, it means that the
slope between every two points of the plot in
[a, r] (represented with a thick line) is greater
than or equal to−π(`) (represented with dashed
line).

ValG`?,r (`?, ν)

ν

ValG(`?, r)

left(r) r

Figure 3 In this example L′ = {`?} and
`? ∈ LMin. left(r) is the leftmost point such
that all slopes on its right are smaller than or
equal to −π(`?) in the graph of ValG`?,r (`?, ν).
Dashed lines have slope −π(`?).

Given an SPTG G and some finitely optimal GL′,r, we now characterise precisely the
left endpoint of the maximal interval ending in r where the value functions of G and GL′,r
coincide, with the operator leftL′ : (0, 1]→ [0, 1] (or simply left, if L′ is clear) defined as:

leftL′(r) = sup{r′ 6 r | ∀` ∈ L ∀ν ∈ [r′, r] ValGL′,r (`, ν) = ValG(`, ν)} .

By continuity of the value (Theorem 1), this supremum exists and ValG(`, leftL′(r)) =
ValGL′,r (`, leftL′(r)). Moreover, ValG(`) is a cost function on [left(r), r], since GL′,r is finitely
optimal. However, this definition of left(r) is semantical. Yet, building on the ideas of
Proposition 5, we can effectively compute left(r), given ValGL′,r . We claim that leftL′(r) is
the minimal valuation such that for all locations ` ∈ L′ ∩ LMin (respectively, ` ∈ L′ ∩ LMax),
the slopes of the affine sections of the cost function ValGL′,r (`) on [left(r), r] are at least (at
most) −π(`). Hence, left(r) can be obtained (see Figure 3), by inspecting iteratively, for
all ` of Min (respectively, Max), the slopes of ValGL′,r (`), by decreasing valuations, until we
find a piece with a slope > −π(`) (respectively, < −π(`)). This enumeration of the slopes
is effective as ValGL′,r has finitely many pieces, by hypothesis. Moreover, this guarantees
that left(r) < r. Thus, one can reconstruct ValG on [infi ri, r0] from the value functions of
the (potentially infinite) sequence of games GL′,r0 , GL′,r1 , . . . where ri+1 = left(ri) for all i
such that ri > 0, for all possible choices of non-urgent locations L′. Next, we will define two
different ways of choosing L′: the former to prove finite optimality of all SPTGs, the latter
to obtain an algorithm to solve them.

SPTGs are finitely optimal. To prove finite optimality of all SPTGs we reason by induction
on the number of non-urgent locations and instantiate the previous results to the case where
L′ = {`?} where `? is a non-urgent location of minimum price-rate (i.e., for all ` ∈ L,
π(`?) 6 π(`)). Given r0 ∈ [0, 1], we let r0 > r1 > · · · be the decreasing sequence of valuations
such that ri = left`?(ri−1) for all i > 0. As explained before, we will build ValG on [infi ri, r0]
from the value functions of games G`?,ri . Assuming finite optimality of those games, this will
prove that G is finitely optimal under the condition that r0 > r1 > · · · eventually stops, i.e.,
ri = 0 for some i. This property is given by the next lemma, which ensures that, for all i,
the owner of `? has a strictly better strategy in configuration (`?, ri+1) than waiting until ri
in location `?.
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I Lemma 6. If G`?,ri is finitely optimal for all i > 0, then
(i) if `? ∈ LMin (respectively, LMax), ValG(`?, ri+1) < ValG(`?, ri) + (ri − ri+1)π(`?) (re-

spectively, ValG(`?, ri+1) > ValG(`?, ri) + (ri − ri+1)π(`?)), for all i; and
(ii) there is i 6 |FG |2 + 2 such that ri = 0.

By iterating this construction, we make all locations urgent iteratively, and obtain:

I Proposition 7. Every SPTG G is finitely optimal and for all locations `, ValG(`) has at
most O

(
(Πtr|L|2)2|L|+2) cutpoints.

Proof. As announced, we show by induction on n > 0 that every r-SPTG G with n non-
urgent locations is finitely optimal, and that the number of cutpoints of ValG(`) is at most
O
(
(Πtr(|Lf |+ n2))2n+2), which suffices to show the above bound, since |Lf |+ n2 6 |L|2.
The base case n = 0 is given by Proposition 4. Now, assume that G has at least

one non-urgent location, and consider `? one with minimum price. By induction hypo-
thesis, all r′-SPTGs G`?,r′ are finitely optimal for all r′ ∈ [0, r]. Let r0 > r1 > · · ·
be the decreasing sequence defined by r0 = r and ri = left`?(ri−1) for all i > 1. By
Lemma 6, there exists j 6 |FG |2 + 2 such that rj = 0. Moreover, for all 0 < i 6 j,
ValG = ValG`?,ri−1

on [ri, ri−1] by definition of ri = left`?(ri−1), so that ValG(`) is a cost
function on this interval, for all `, and the number of cutpoints on this interval is bounded
by O

(
(Πtr(|Lf |+ (n− 1)2 + n))2(n−1)+2) = O

(
(Πtr(|Lf |+ n2))2(n−1)+2) by induction hy-

pothesis (notice that maximal transition prices are the same in G and G`?,ri−1 , but that we
add n more final locations in G`?,ri−1). Adding the cutpoint 1, summing over i from 0 to
j 6 |FG |2 + 2, and observing that |FG | 6 2Πtr|Lf |, we bound the number of cutpoints of
ValG(`) by O

(
(Πtr(|Lf |+ n2))2n+2). Finally, we can reconstruct fake-optimal and optimal

strategies in G from the from fake-optimal and optimal strategies of G`?,ri . J

Computing the value functions. The finite optimality of SPTGs allows us to compute the
value functions. The proof of Proposition 7 suggests a recursive algorithm to do so: from an
SPTG G with minimal non-urgent location `?, solve recursively G`?,1, G`?,left(1), G`?,left(left(1)),
etc. handling the base case where all locations are urgent with Algorithm 1. While our results
above show that this is correct and terminates, we propose instead to solve – without the
need for recursion – the sequence of games GL\Lu,1, GL\Lu,left(1), . . . i.e., making all locations
urgent at once. Again, the arguments given above prove that this scheme is correct, but
the key argument of Lemma 6 that ensures termination can not be applied in this case.
Instead, we rely on the following lemma, stating, that there will be at least one cutpoint
of ValG in each interval [left(r), r]. Observe that this lemma relies on the fact that G is
finitely optimal, hence the need to first prove this fact independently with the sequence G`?,1,
G`?,left(1), G`?,left(left(1)),. . . Termination then follows from the fact that ValG has finitely many
cutpoints by finite optimality.

I Lemma 8. Let r0 ∈ (0, 1] such that GL′,r0 is finitely optimal. Suppose that r1 = leftL′(r0) >
0, and let r2 = leftL′(r1). There exists r′ ∈ [r2, r1) and ` ∈ L′ such that
(i) ValG(`) is affine on [r′, r1], of slope equal to −π(`), and
(ii) ValG(`, r1) 6= ValG(`, r0) + π(`)(r0 − r1).
As a consequence, ValG(`) has a cutpoint in [r1, r0).

Algorithm 2 implements these ideas. Each iteration of the while loop computes a
new game in the sequence GL\Lu,1, GL\Lu,left(1), . . . described above; solves it thanks to
solveInstant; and thus computes a new portion of ValG on an interval on the left of the
current point r ∈ [0, 1]. More precisely, the vector (ValG(`, 1))`∈L is first computed in line 1.
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Algorithm 2: solve(G)
Input: SPTG G = (LMin, LMax, Lf , Lu,ϕ,∆, π)

1 f = (f`)`∈L := solveInstant(G, 1) /* f` : {1} → R */
2 r := 1
3 while 0 < r do /* Invariant: f` : [r, 1]→ R */
4 G′ := wait(G, r,f(r)) /* r-SPTG G′ = (LMin, LMax, L

′
f , L

′
u,ϕ

′, T ′, π′) */
5 L′u := L′u ∪ L /* every location is made urgent */
6 b := r

7 repeat /* Invariant:f` : [b, 1]→ R */
8 a := max(PossCPG′ ∩ [0, b))
9 x = (x`)`∈L := solveInstant(G′, a) /* x` = ValG′(`, a) */

10 if ∀` ∈ LMin
f`(b)−x`
b−a 6 −π(`) ∧ ∀` ∈ LMax

f`(b)−x`
b−a > −π(`) then

11 foreach ` ∈ L do f` :=
(
ν ∈ [a, b] 7→ f`(b) + (ν − b) f`(b)−x`b−a

)
B f`

12 b := a ; stop := false

13 else stop := true

14 until b = 0 or stop
15 r := b

16 return f

Then, the algorithm enters the while loop, and the game G′ obtained when reaching line 6
is GL\Lu,1. Then, the algorithm enters the repeat loop to analyse this game. Instead of
building the whole value function of G′, Algorithm 2 builds only the parts of ValG′ that
coincide with ValG . It proceeds by enumerating the possible cutpoints a of ValG′ , starting in r,
by decreasing valuations (line 8), and computes the value of ValG′ in each cutpoint thanks
to solveInstant (line 9), which yields a new piece of ValG′ . Then, the if in line 10 checks
whether this new piece coincides with ValG , using the condition given by Proposition 5. If it
is the case, the piece of ValG′ is added to f` (line 11); repeat is stopped otherwise. When
exiting the repeat loop, variable b has value left(1). Hence, at the next iteration of the
while loop, G′ = GL\Lu,left(1) when reaching line 6. By continuing this reasoning inductively,
one concludes that the successive iterations of the while loop compute the sequence GL\Lu,1,
GL\Lu,left(1), . . . as announced, and rebuilds ValG from them. Termination in exponential
time is ensured by Lemma 8: each iteration of the while loop discovers at least one new
cutpoint of ValG , and there are at most exponentially many (note that a tighter bound on
this number of cutpoints would entail a better complexity of our algorithm).

I Example 9. Let us briefly sketch the execution of Algorithm 2 on the SPTG in Figure 1.
During the first iteration of the while loop, the algorithm computes the correct value
functions until the cutpoint 3

4 : in the repeat loop, at first a = 9/10 but the slope in `1 is
smaller than the slope that would be granted by waiting, as depicted in Figure 1. Then,
a = 3/4 where the algorithm gives a slope of value −16 in `2 while the cost of this location
of Max is −14. During the first iteration of the while loop, the inner repeat loop thus ends
with r = 3/4. The next iterations of the while loop end with r = 1

2 (because `1 does not
pass the test in line 10); r = 1

4 (because of `2) and finally with r = 0, giving us the value
functions on the entire interval [0, 1].
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x = 1, x := 0

1

Figure 4 A PTG where the number of resets in optimal plays can not be bounded a priori.

5 Beyond SPTGs

In [10, 18, 16], general PTGs with non-negative prices are solved by reducing them to a finite
sequence of SPTGs, by eliminating guards and resets. It is thus natural to try and adapt
these techniques to our general case, in which case Algorithm 2 would allow us to solve
general PTGs with arbitrary costs. Let us explain why it is not (completely) the case. The
technique used to remove guards from PTGs consists in enhancing the locations with regions
while keeping an equivalent game. This technique can be adapted to arbitrary weights.

The technique to handle resets, however, consists in bounding the number of clock resets
that can occur in each play following an optimal strategy of Min or Max. Then, the PTG can
be unfolded into a reset-acyclic PTG with the same value. By reset-acyclic, we mean that
no cycle in the configuration graph visits a transition with a reset. This reset-acyclic PTG
can be decomposed into a finite number of components that contain no reset and are linked
by transitions with resets. These components can be solved iteratively, from the bottom
to the top, turning them into SPTGs. Thus, if we assume that the PTGs we are given as
input are reset-acyclic, we can solve them in exponential time, and show that their value
functions are cost functions with at most exponentially many cutpoints, using our techniques.
Unfortunately, the arguments to bound the number of resets do not hold for arbitrary costs,
as shown by the PTG in Figure 4. We claim that Val(`0) = 0; that Min has no optimal
strategy, but a family of ε-optimal strategies σεMin each with value ε; and that each σεMin
requires memory whose size depends on ε and might yield a play visiting at least 1/ε times
the reset between `0 and `1 (hence the number of resets can not be bounded). For all ε > 0,
σεMin consists in: waiting 1− ε time units in `0, then going to `1 during the d1/εe first visits
to `0; and to go directly to `f afterwards. Against σεMin, Max has two possible choices:
(i) either wait 0 time unit in `1, wait ε time units in `2, then reach `f ; or
(ii) wait ε time unit in `1 then force the cycle by going back to `0 and wait for Min’s next

move.
Thus, all plays according to σεMin will visit a sequence of locations which is either of the form
`0(`1`0)k`1`2`f , with 0 6 k < d1/εe; or of the form `0(`1`0)d

1
εe`f . In the former case, the

cost of the play will be −kε+ 0 + ε = −(k − 1)ε 6 ε; in the latter, −ε(d1/εe) + 1 6 0. This
shows that Val(`0) = 0, but there is no optimal strategy as none of these strategies allow one
to guarantee a cost of 0 (neither does the strategy that waits 1 time unit in `0).

However, we may apply the result on reset-acyclic PTGs to obtain:

I Theorem 10. The value functions of all one-clock PTGs are cost functions with at most
exponentially many cutpoints.

Proof. Let G be a one-clock PTG. Let us replace all transitions (`, g,>, `′) resetting the
clock by (`, g,⊥, `′′), where `′′ is a new final location with ϕ`′′ = ValG(`, 0) – observe that
ValG(`, 0) exists even if we can not compute it, so this transformation is well-defined. This
yields a reset-acyclic PTG G′ such that ValG′ = ValG . J
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Abstract
We study a generalisation of sabotage games, a model of dynamic network games introduced by
van Benthem [16]. The original definition of the game is inherently finite and therefore does not
allow one to model infinite processes. We propose an extension of the sabotage games in which
the first player (Runner) traverses an arena with dynamic weights determined by the second
player (Saboteur). In our model of quantitative sabotage games, Saboteur is now given a budget
that he can distribute amongst the edges of the graph, whilst Runner attempts to minimise the
quantity of budget witnessed while completing his task. We show that, on the one hand, for most
of the classical cost functions considered in the literature, the problem of determining if Runner
has a strategy to ensure a cost below some threshold is EXPTIME-complete. On the other hand,
if the budget of Saboteur is fixed a priori, then the problem is in PTIME for most cost functions.
Finally, we show that restricting the dynamics of the game also leads to better complexity.
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1 Introduction

Two-player games played on graphs are nowadays a well-established model for systems
where two antagonistic agents interact. In particular, they allow one to perform controller
synthesis [1], when one of the players models the controller, and the second plays the role
of an evil environment. Quantitative generalisations (played on weighted graphs) of these
models have attracted much attention in the last decades [5, 8, 3] as they allow for a finer
analysis of those systems.

In this setting, most results assume that the arena (i.e., the graph) on which the game
is played does not change during the game. There are however many situations where this
restriction is not natural, at least from a modelling point of view. For instance, Grüner et al.
[7] model connectivity problems in dynamic networks (i.e., subject to failure and restoration)
using a variant of sabotage games – a model originally proposed by van Benthem [16] – to
model reachability problems in a network prone to errors. A sabotage game is played on a
directed graph, and starts with a token in an initial vertex. Then, Runner and Saboteur (the
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two players of the game) play in alternation: Runner moves the token along one edge and
Saboteur is allowed to remove one edge. Runner wins the game if he reaches a target set of
vertices. In [12], it is shown that deciding the existence of a winning strategy for Runner is
PSPACE-complete.

In those sabotage games, errors are regarded as unrecoverable failures. In practice, this
hypothesis might be too strong. Instead, one might want to model the fact that certain
uncontrollable events incur additional costs (modelling delays, resource usage. . . ), and look
for strategies that allow one to fulfil the game objective at a minimal cost, whatever the
occurrence of uncontrollable events. For instance, if the graph models a railway network,
the failure of a track will eventually be fixed, and, in the meantime, trains might be slowed
down on the faulty portion or diverted, creating delays in the journeys. It is thus natural to
consider quantitative extensions of sabotage games, where Saboteur controls the price of the
actions in the game. This is the aim of the present paper.

More precisely, we extend sabotage games in two directions. First, we consider games
played on weighted graphs. Saboteur is allotted an integral budget B that he can distribute
(dividing it into integral parts) on the edges of the graph, thereby setting their weights. At
each turn, Saboteur can change this distribution by moving k units of budget from an edge
to another edge (for simplicity, we restrict ourselves to k = 1 but our results hold for any
k). Second, we relax the inherent finiteness of sabotage games (all edges will eventually be
deleted), and consider infinite horizon games (i.e., plays are now infinite). In this setting, the
goal of Runner is to minimise the cost defined by the sequence of weights of edges visited,
with respect to some fixed cost function (Inf, Sup, LimInf, LimSup, average or discounted-
sum), while Saboteur attempts to maximise the same cost. We call these games quantitative
sabotage games (QSG, for short).

Let us briefly sketch one potential application of our model, showing that they are useful
to perform synthesis in a dynamic environment. Our application is borrowed from Suzuki
and Yamashita [17] who have considered the problem of motion planning of multiple mobile
robots that interact in a finite space. In essence, each robot executes a “Look-Compute-Move”
cycle and should realise some specification (that we could specify using LTL, for instance).
For simplicity, assume that at every observation (Look) phase, at most one other robot
has moved. Clearly every motion phase (Move) will require different amounts of time and
energy depending on the location of the other robots. We can model the interaction of each
individual robot against all others using a QSG where Runner is one robot, Saboteur is the
coalition of all other robots, and the budget is equal to the number of robots minus 1. This
model allows one to answer meaningful questions such as ‘what is, in the worst case, the
average delay the robot incurs because of the dynamics of the system?’, or ‘what is the average
amount of additional energy required because of the movements of the other robots?’ using
appropriate cost functions.

As a second motivational example, let us recall the motivation of the original Sabotage
Game: consider a situation in which you need to find your way between two cities within
a railway network where a malevolent demon starts cancelling connections? This is called
the real Travelling Salesman Problem by van Benthem [16]. However, in real life, railway
companies have contracts with infrastructure companies which ensure that failures in the
railway network are repaired withing a given amount of time (e.g. a service-level agreement).
In this case, it is better to consider delays instead of absolute failures in the network. Further,
salesmen do not usually have one single trip in their whole carriers. For modelling purposes,
one can in fact assume they never stop travelling. In this setting, QSGs can be used to answer
the question: ‘what is, in the worst case, the average delay time incurred by the salesman’?
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Table 1 Complexity results for quantitative sabotage games.

QSG static QSG fixed budget QSG

Inf, LimInf ∈ EXPTIME ∈ PTIME ∈ PTIME
Sup, LimSup, Avg EXPTIME-c coNP-c ∈ PTIME
DS EXPTIME-c coNP-c ∈ NP ∩ coNP

Our model can be used to treat the same questions for other networks and not just railway
networks.

Related Works & Contributions. Variations of the original sabotage games have been
considered by students of van Benthem. In [11], the authors have considered changing the
reachability objective of Runner to a safety objective, and proved it is PSPACE-complete as
well. They also consider a co-operative variation of the game which, not surprisingly, leads
to a lower complexity: NL-complete. In [14], an asymmetric imperfect information version
of the game is studied—albeit, under the guise of the well-known parlor game Scotland
Yard—and shown to be PSPACE-complete. We remark that although the latter version of
sabotage games already includes some sort of dynamicity in the form of the Scotland Yard
team moving their pawns on the board, both of these studies still focus on inherently finite
versions of the game.

We establish that QSGs are EXPTIME-complete in general. Our approach is to prove
the result for a very weak problem on QSGs, called the safety problem, that asks whether
Runner can avoid ad vitam æternam edges with non-zero budget on it. We remark that
although the safety problem is related to cops and robbers games [1, 6], we were not able
to find EXPTIME-hard variants that reduce easily into our formalism. The general problem
being EXPTIME-complete, we consider the case where the budget is fixed instead of left as
an input of the problem (see Corollary 2). We also consider restricting the behaviour of
Saboteur and define a variation of our QSGs in which Saboteur is only allowed to choose an
initial distribution of weights but has to commit to it once he has fixed it. We call this the
static version of the game. For both restrictions, we show that tractable algorithms exist for
some of the cost functions we consider. A summary of the complexity results we establish
in this work is shown in Table 1. In Section 6, we comment on several implications of the
complexity bounds proved in this work.

Some proofs and technical details may be found in the long version [2].

2 Quantitative sabotage games

Let us now formally define quantitative sabotage games (QSG). We start with the definition
of the cost functions we will consider, then give the syntax and semantics of QSG.

Cost functions. A cost function f : Qω → R associates a real number to a sequence of
rationals u = (ui)i>0 ∈ Qω. The six classical cost functions that we consider are

Inf(u) = inf{ui | i > 0};
Sup(u) = sup{ui | i > 0};
LimInf(u) = lim infn→∞{ui | i > n};
LimSup(u) = lim supn→∞{ui | i > n};
Avg(u) = lim infn→∞ 1

n

∑n
i=0 ui, which stands for the average cost (also called mean-

payoff in the literature); and
DSλ(u) =

∑∞
i=0 λ

i · ui, (with 0 < λ < 1), stands for discounted-sum.
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In the following, we let DS = {DSλ | 0 < λ < 1}.

Syntax. As sketched in the introduction, quantitative sabotage games are played by Runner
and Saboteur on a directed weighted graph, called the arena. A play alternates between
Runner moving the token along the edges and Saboteur modifying the weights. We consider
that Saboteur has a fixed integer budget B that he can distribute on edges, thereby setting
their weights (which must be integer values). Formally, for a finite set E and a budget B ∈ N,
∆(E,B) denotes the set of all distributions of budget B on E, where a distribution is a
function δ : E → {0, 1, . . . , B} such that

∑
e∈E δ(e) 6 B (the last constraint is an inequality

since the whole budget need not be distributed on E). Then, a quantitative sabotage game
is a tuple G = (V,E,B, vI , δI , f), where (V,E) is a directed graph, B ∈ N is the budget of
the game, vI ∈ V is the initial vertex, δI ∈ ∆(E,B) is the initial distribution of the budget,
and f is a cost function. We assume, without loss of generality, that there are no deadlocks
in (V,E), i.e., for all v ∈ V , there is v′ ∈ V such that (v, v′) ∈ E. In the following, we may
alternatively write ∆(G) for ∆(E,B) when G is a QSG with set of edges E and budget B.

Semantics. To define the semantics of a QSG G, we first formalise the possible redistributions
of the budget by Saboteur. We choose to restrict them, reflecting some physical constraints:
Saboteur can move at most one unit of weight in-between two edges. For δ, δ′ ∈ ∆(G), we
say that δ′ is a valid redistribution from δ, noted δ . δ′, if and only if there are e1, e2 ∈ E
such that δ′(e1) ∈ {δ(e1), δ(e1) − 1}, δ′(e2) ∈ {δ(e2), δ(e2) + 1}, and for all other edges
e 6∈ {e1, e2}, δ′(e) = δ(e). Then, a play in a QSG G = (V,E,B, vI , δI , f) is an infinite
sequence π = v0δ0v1δ1 · · · alternating vertices vi ∈ V and budget distributions δi ∈ ∆(G)
such that
(i) v0 = vI ;
(ii) δ0 = δI ; and
(iii) for all i > 0: (vi, vi+1) ∈ E, and δi . δi+1.
Let Prefs∆(G) denote the set of prefixes of plays ending in a budget distribution, and PrefsV (G)
the set of prefixes of length at least 2 ending in a vertex. We abuse notations and lift cost
functions f to plays letting f(v0δ0v1δ1 · · · ) = f(δ0(v0, v1)δ1(v1, v2) · · · ). A strategy of Runner
is a mapping ρ : Prefs∆(G)→ V such that (vn, ρ(π)) ∈ E for all π = v0δ0 · · · vnδn ∈ Prefs∆(G).
A strategy of Saboteur is a mapping σ : PrefsV (G) → ∆(G) such that δn−1 . σ(π) for all
π = v0δ0 · · · vn−1δn−1vn ∈ PrefsV (G). We denote by ΣRun(G) (respectively, ΣSab(G)) the set
of all strategies of Runner (respectively, Saboteur). A pair of strategies (ρ, σ) of Runner and
Saboteur defines a unique play πρ,σ = v0δ0v1δ1 · · · such that for all i > 0:
(i) vi+1 = ρ(v0δ0 · · · viδi); and
(ii) δi+1 = σ(v0δ0 · · · viδivi+1).

Values and determinacy. We are interested in computing the best value that each player
can guarantee no matter how the other player plays. To reflect this, we define two val-
ues of a QSG G: the superior value (modelling the best value for Runner)as Val(G) :=
supσ∈ΣSab(G) infρ∈ΣRun(G) f(πρ,σ), and the inferior value (modelling the best value for Sabo-
teur) as Val(G) := infρ∈ΣRun(G) supσ∈ΣSab(G) f(πρ,σ). It is folklore to prove that Val(G) 6

Val(G). Indeed, for the previously mentioned cost functions, we can prove that QSGs are
determined, i.e., that Val(G) = Val(G) for all QSGs G. This can be formally proved by en-
coding a QSG G into a quantitative two-player game JGK (whose vertices contain both vertices
of G and budget distributions), and then using classical Martin’s determinacy theorem [13].
Val(G) = Val(G) is henceforth called the value of G, and denoted by Val(G).
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1

2
3

Figure 1 A QSG.

Example. Consider the simple QSG G in Figure 1, where the
budget of Saboteur is B = 4, and the cost function is Avg. We
claim that whatever the initial configuration, Val(G) = 2. Indeed,
consider the strategy of Saboteur that consists in eventually putting
all the budget on the edge ( 1 , 2 ) (i.e., letting δ( 1 , 2 ) = 4
and δ(e) = 0 for all other edges e), and then playing as follows:
whenever Runner reaches 2 , move one unit of budget from ( 1 , 2 )
to ( 2 , 3 ); if Runner moves to 3 , move the unit of budget from ( 2 , 3 ) to ( 3 , 1 ); and
when Runner moves back to 1 , move all the budget back on ( 1 , 2 ), by consuming one
unit either from ( 2 , 3 ) or from ( 3 , 1 ). Let us call this strategy σ. Since we consider the
average cost, only the long-term behaviour of Runner is relevant to compute the cost of a
play. So, as soon as Saboteur has managed to reach a distribution δ such that δ( 1 , 2 ) = 4,
the only choices for Runner each time he visits 1 are either to visit the 1 – 2 – 3 – 1 cycle,
or the 1 – 2 – 1 cycle. In the former case, Runner traverses 3 edges and pays 4 + 1 + 1 = 6,
hence an average cost of 6

3 = 2 for this cycle. In the latter, he pays an average of 4+0
2 = 2 for

the cycle. Hence, whatever the strategy ρ of Runner, we have Avg(πσ,ρ) = 2, which proves
that Val(G) > 2. One can check that the strategy ρ of Runner consisting in always playing
the 1 – 2 – 3 – 1 cycle indeed guarantees cost 2, proving that Val(G) 6 2. This proves that
the value Val(G) of the game is 2.

3 Solving quantitative sabotage games

Given a QSG, our main objective is to determine whether Runner can play in such a way
that he will ensure a cost at most T , no matter how Saboteur plays, and where T is a given
threshold. This amounts to determining whether Val(G) 6 T . Thus, for a cost function
f , the Threshold problem with cost function f consists in determining whether
Val(G) 6 T , given a QSG G with cost function f and a non-negative threshold T . When
f = DS, we assume that the discount factor λ is part of the input. If we want it to be
a parameter of the problem (and not a part of the input), we consider f = DSλ. Our
main contribution is to characterise the complexity of the threshold problem for all the cost
functions introduced before, as summarised in the following theorem:

I Theorem 1. For cost functions Sup, LimSup, Avg, DS and DSλ, the threshold problem
over QSGs is EXPTIME-complete; for Inf and LimInf, it is in EXPTIME.

For all cost functions, the EXPTIME membership is established by using the encoding
of a QSG G into a classical quantitative two-player game JGK which is played on a weighted
graph, whose vertices are the configurations of the sabotage game, i.e., a tuple containing the
current vertex, the last crossed edge and the current weight distribution, and whose weights
are in {0, . . . , B} (describing how much runner pays by moving from one configuration to
another). Notice that ∆(G) has size at most (B+ 1)|E|, since every distribution is a mapping
of E → {0, 1, . . . , B}. Hence, we see that the game JGK has a number of vertices at most
exponential with respect to |V |, and polynomial with respect to B (which, being given in
binary, can be exponential in the size of the input of the problem). Using results from [18, 3, 1],
we know that we can compute in pseudo-polynomial time the value of the quantitative game
JGK for all the cost functions cited in the theorem: here, pseudo-polynomial means polynomial
with respect to the number of vertices and edges of JGK (which is exponential with respect to
|V |), and polynomial with respect to the greatest weight in absolute value, here B (which is
also exponential with respect to |V |). Thus we obtain the exponential time upper bound
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ABF ESPr SPr

ThPrSup(0)

ThPrSup

ThPrDSλ
(0)

ThPrDSλ

ThPrLimSup(0)

ThPrLimSup

ThPrMP(0)

ThPrMP

Lem. 4 Lem. 5

Lem. 6

Lem. 7

Lem. 8

Figure 2 Reductions used in this section. We denote by ThPrf (respectively, ThPrf (0)) the
threshold problem (respectively, the sub-problem of the threshold problem where threshold is 0) for
QSGs with cost function f . Non-trivial reductions are labelled with the corresponding lemma stated
in this section.

announced in the theorem. Note that for DSλ, pseudo-polynomial also means polynomial in
the value of the denominator of λ.1

When the budget B is fixed, i.e., when it is a parameter of the problem and not one of
the inputs, the explanation above can be adapted to prove that the problem is solvable in
polynomial time for all but the DSλ cost functions. Indeed, we can refine our analysis of the
size of ∆(G). A budget distribution can also be encoded as a mapping γ : {1, . . . , B} → E

where we consider the budget as a set of indexed pebbles: such a mapping represents the
distribution δ defined by δ(e) = |γ−1(e)|. This encoding shows that ∆(G) has size at most
|E|B, which is polynomial in |E|. For the discounted sum, the role of λ in the complexity
stays the same, causing an NP ∩ coNP and pseudo-polynomial complexity: this blow-up
disappears if λ is a parameter of the problem. In the overall, we obtain:

I Corollary 2. For cost functions Inf, Sup, LimInf, LimSup, Avg, DSλ, and for fixed budget
B, the threshold problem for QSGs is in PTIME; for DS (where λ is an input), it is in
NP ∩ coNP and can be solved in pseudo-polynomial time.

The rest of this section is devoted to the proof of EXPTIME-hardness in Theorem 1 for
cost functions Sup, LimSup, Avg and DSλ (this implies EXPTIME-hardness for DS too). Our
gold-standard problem for EXPTIME-hardness is the alternating Boolean formula (ABF)
problem, introduced by Stockmeyer and Chandra in [15]. Our proof consists of a sequence
of reductions from this problem, as depicted in Figure 2. First, we show a reduction to the
threshold problem for Sup cost function when the threshold is 0 and the initial distribution
is empty (i.e., no budget on any edge), on QSGs extended with safe edges and final vertices
(in order to make the reduction more readable). Notice that this problem amounts to
determining whether Runner has a strategy to avoid crossing an edge with non-zero budget,
therefore we refer to this problem as the extended safety problem (ESPr). Our next step is
to encode safe edges and final vertices into (non-extended) QSGs with gadgets of polynomial
size, therefore proving that the safety problem (SPr) is itself EXPTIME-hard: SPr is a special
case of the threshold problem ThPrSup(0) with Sup cost function and threshold 0, for empty
initial distributions. Reductions to threshold problems with other cost functions close our
discussion to prove their EXPTIME-hardness.

Alternating Boolean Formula. We first recall the alternating Boolean formula problem
(ABF) introduced as game G6 in [15], which is the EXPTIME-hard problem from which

1 In case of discounted-sum, we design JGK with a discount factor
√
λ (not necessarily rational), but we

ensure that only one turn over two has a non-zero weight, so that we may indeed apply the reasoning of
[18] and their pseudo-polynomial algorithm.
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we perform our reductions. Intuitively, an ABF is an (infinite) game played on a Boolean
formula whose variables are partitioned into two sets. Each player controls the values of
one of the sets of variables. Players take turns changing the value of one of the variables
they control. The objective of the first player (Prover) is to eventually make the formula
true, while the second player (Disprover) tries to avoid this. We note that this game closely
resembles an infinite horizon version of the more classical QBF Problem.

More formally, an ABF instance is given by two finite disjoint sets of Boolean variables,
X and Y , and a CNF formula over X ∪ Y . The game is played by two players called Prover
and Disprover. They take turns changing the value of at most one of the variables they own
(X are the variables of Prover, and Y those of Disprover). Prover wins if and only if the
formula is eventually true. A configuration of this game is thus a pair (val,Player) where
val is the current valuation of the variables and Player indicates which player should play
next. The ABF problem consists in, given an ABF game and an initial configuration,
determining whether Disprover has a winning strategy from the initial configuration. It is
shown EXPTIME-complete in [15].

I Example 3. Consider the formula Φ = Cl1 ∧ Cl2 ∧ Cl3 ∧ Cl4 where Cl1 = A ∨ ¬C,
Cl2 = C ∨ D, Cl3 = C ∨ ¬D and Cl4 = B ∨ ¬B. Let us further consider the partition of
the variables into the sets X = {A,B} of Prover, and Y = {C,D} of Disprover; and the
initial configuration (val,Prover), where val = {B,C,D} (we denote a valuation by the set
of all variables it sets to true). Clearly, in this initial configuration, Φ is false since Cl1 is
false. From that configuration, Prover can either set A to true, or B to false. In the former
case, one obtains the configuration ({A,B,C,D},Disprover), where Prover wins, as Φ now
evaluates to true. In the latter case, one obtains the configuration ({C,D},Disprover). We
claim that, from this configuration, Prover cannot win the game anymore, i.e., Disprover
has a winning strategy that consists in first setting C to false, and in, all subsequent rounds,
always flipping the value of D, whatever Prover does. Playing according to this strategy
ensures Disprover to force visiting only configurations where either Cl2 or Cl3 is false.

Extended QSG. To make the encoding of ABF instances into QSG easier, we introduce
extended quantitative sabotage games (with Sup cost function). Those games are QSG with
Sup cost function, a designated subset F ⊆ V of final vertices and a designated subset S ⊆ E
of safe edges (those special vertices and edges are henceforth depicted with double lines). F
and S influence the semantics of the game: Saboteur can place some budget on final vertices
(which is accounted for in the cost when Runner visits those vertices), but cannot put budget
on safe edges; and the game stops as soon as Runner visits a final vertex. We consider the
extended safety problem (ESPr), which is to determine whether an extended QSG G with
empty initial distribution has value Val(G) 6 0.

Since the cost function is Sup, this amounts to checking that Runner has a strategy to
reach a final vertex, with no budget assigned to it, without crossing any edge with non-null
budget. From now on, we assume B < |E|, as the problem is trivial otherwise. Then:

I Lemma 4. The ABF problem is polynomial-time reducible to ESPr.

Proof Sketch. We consider an instance of the ABF problem given by Boolean variable
sets X and Y (owned by Prover and Disprover, respectively) and a CNF formula Φ over
X ∪ Y . We construct an extended QSG E such that Saboteur wins in E if and only if Prover
wins in the ABF problem. Valuations of the variables in X ∪ Y are encoded by budget
distributions in E . For each variable x ∈ X ∪ Y , E has 4 final vertices associated with x,
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¬x(1) ¬x(2) x(1) x(2)

{¬x(1),¬x(2), x(1)}(1) {¬x(2), x(1), x(2)}(1)

{¬x(1),¬x(2), x(1)}(2) {¬x(2), x(1), x(2)}(2)

{¬x(1),¬x(2), x(2)}(1) {¬x(1), x(1), x(2)}(1)

{¬x(1),¬x(2), x(2)}(2) {¬x(1), x(1), x(2)}(2)

Figure 3 Verifying condition (i).

¬x(1) ¬x(2) x(1) x(2)

{¬x(1), x(1)} {¬x(1), x(2)}

{¬x(2), x(1)} {¬x(2), x(2)}

Figure 4 Verifying condition (ii).

Ver(x) = {¬x(1),¬x(2), x(1), x(2)}. A budget distribution δ encodes a valuation in which
variable x ∈ X ∪ Y is true if and only if δ(x(1)) = δ(x(2)) = 1 and δ(¬x(1)) = δ(¬x(2)) = 0.

Then, E simulates the ABF game as follows. The duty of Saboteur is to move the budget
distribution in such a way that he respects the encoding of the valuations explained above.
To enforce this, we rely on the two gadgets, depicted in Figure 3 and 4. They allow Runner
to check that Saboteur respects the encoding and let him lose if he does not. More precisely,
the gadget in Figure 3 allows one to check that (i) there is a non-zero budget on at least
two vertices from Ver(x); and the one in Figure 4 that (ii) there is a non-zero budget on
exactly {¬x(1),¬x(2)} or {x(1), x(2)}. To allow Runner to check one of these conditions, we
allow him to move to one of the four corner vertices of the corresponding gadget, from where
one can easily check Runner can win if and only if the condition is not respected. In our
reduction, Runner will be allowed to check condition (i), for all variables, from all vertices
but will be able to check (ii) only on some of them, as we will see later.

The remaining of the construction is done in a way to allow Saboteur and Runner to
choose valid re-configurations of Ver(x) for all variables x, and make sure that if a player
cheats, it allows the other player to win the safety game. If at some point, the formula Φ
becomes true, then we allow Saboteur to enter a final gadget which verifies that the current
budget distribution to Ver(X) =

⋃
x∈X∪Y Ver(x) satisfies Φ. This last gadget lets Runner

choose a clause and then allows Saboteur to choose a literal, within this clause, which should
be true. It is easy to see that the choice of clause Cl can be done by way of safe edges. The
choice of literal, done by Saboteur, consists in choosing a suffix of Cl for which the left-most
literal holds. Figure 5 shows the ESPr which results from applying our construction to the
ABF formula from Example 3. J

We now explain how to encode safe edges and final vertices into usual QSGs, therefore
showing the EXPTIME-hardness of the safety problem for QSGs.

I Lemma 5. The extended safety problem ESPr is polynomial-time reducible to a safety
problem SPr with budget 2.

Proof Sketch. Each final vertex v in an extended QSG E is replaced by the gadget in
Figure 6a, where {αi | 1 6 i 6 B+ 1} is a clique of size B+ 1, hence bigger than the budget
of Saboteur. To encode δ(v) = 1 in E , Saboteur now puts one unit of budget on ( A , C1 ).
If Runner reaches the gadget (through A ), Saboteur puts one unit of budget on ( A , C2 ).
Clearly, Runner loses if and only if there was already one unit on ( A , C1 ) (i.e., v was
marked in E). Each safe edge ( A , C ) is replaced by the gadget in Figure 6b. Here, we
make use of final vertices and disjoint paths so that Saboteur cannot block all paths from A
to C without letting Runner win by visiting a final vertex with zero budget. Both gadgets
have polynomial size since we assume that B < |E|. J
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Figure 5 Excerpt of the ESPr constructed from the ABF of Example 3. In addition to these
nodes and edges, the full ESPr contains: an initialisation gadget; a safe edge from a node n to all
four corner nodes of gadget (i) in Figure 3 iff n is labeled by α; and a safe edge from a node n to all
four corner nodes of gadget (ii) in Figure 4 testing variable x ∈ {A,B,C,D} iff n is labeled by x.
These parts have been omitted for the sake of clarity.

As the safety problem is a specific case of the threshold problem for Sup QSGs (where
the initial distribution is empty, and threshold is fixed to 0), it follows that ThPrSup(0) and
ThPrSup are EXPTIME-hard too.

We note that given a QSG G, for all plays π in G, for all 0 < λ < 1, and for all δ ∈ ∆(G),
Sup(π) = 0 if and only if DSλ(π) = 0. This implies the following result, showing that
ThPrDSλ

(0) and ThPrDSλ
are also EXPTIME-hard.

I Lemma 6. For any λ ∈ (0, 1), the threshold problem for DSλ and threshold 0 is equivalent
to the threshold problem for Sup and threshold 0.

Let us now focus on LimSup. To show that ThPrLimSup is EXPTIME-hard, we describe a
reduction from SPr to ThPrLimSup(0) as stated in the following lemma.

I Lemma 7. The safety problem SPr is polynomial-time reducible to the threshold problem
for LimSup and threshold 0.

Proof Sketch. Let I = (V,E,B, vI , δI , Sup) be an instance of SPr (with G(I) its underlying
graph (V,E)). We build a QSG G with cost function LimSup such that Val(G) = 0 if and only
if Runner wins in I. The idea of the construction is that a play of G consists in simulating a
potentially infinite sequence of plays of I, using appropriate gadgets to ‘reset’ the safety game
between two successive simulations. Then, repeatedly playing a winning strategy for I allows
Runner to ensure a LimSup of 0 in G; and one can extract a winning strategy for the safety
game I from any strategy ensuring a LimSup of 0 in G. The QSG G has budget B′ = |E| and
is obtained by extending G(I) with two gadgets. Note that we are giving Saboteur more
budget than he had in I. However, as we will see in the sequel, at the beginning of every
faithful simulation of I (i.e. when Runner moves to G(I)) there will be B′ −B of it in the
second gadget and B in the first and during any faithful simulation of I only budget from
the initial gadget is redistribtued into G(I).

FSTTCS 2015



302 Quantitative Games under Failures

A
C2

C1

α1

...
αB+1

(a) A gadget for final vertices.
A

E1 . . . Ei . . . EB+1

C

F1 . . . Fi . . . FB+1

(b) A gadget for safe edges.

post(vI)

e1 e2 e3 . . . eB eB+1

f1 f2 . . . fB

(c) Initial gadget for Sup to LimSup reduction.

G(I)

xB+1
...
xB′

t1

t2

si1
...

siB′+1

e1
...

eB+1

(d) Exit gadget for Sup to LimSup reduction.
Dashed arrows represent a (safe) path traversing
B′ sets si of vertices.

Figure 6 Dotted arrows represent edges from all sources to all targets.

The first gadget is an initial gadget which is visited every time the safety game is ‘reset’. It
allows Runner to stay safe from any weighted edges (and avoid reaching G(I)) until Saboteur
has placed B units of budget on it (and thus removed them from the G(I). It is depicted in
Figure 6c, where all ei are intuitively copies of vI , and post(vI) corresponds to the set of all
successors of vI in G(I).

The second gadget allows Runner to leave G(I) if Saboteur ever places more than B units
of budget on G(I) (and thus removes this budget from the gadgets), thereby triggering a
‘reset’ of the simulation. This gadget, depicted in Figure 6d, also allows Runner to come back
to the initial gadget visiting only edges with zero budget. The figure shows a sequence of
safe transitions (i.e. several vertices with high out-degree) which leads back to the copies ei
of the initial vertex. Further, this ‘safe path’ takes long enough for Saboteur to redistribute
the budget from G(I) to both gadgets. In order for Saboteur to stop Runner from always
taking this ‘safe exit’ from G(I) he can place B′ −B budget in specific edges of this second
gadget. More specifically, he can place a unit of budget on one outgoing edge from each xj ,
for B + 1 6 j 6 B′, before forcing Runner to enter G(I).

Intuition behind the global construction. Assume that Saboteur has a winning strategy
in I. Then, when Runner is in the initial gadget, Saboteur will play as expected and remove
all weights from G(I). Critically, the weights he removes from G(I) will go to specific edges
in both gadgets described above. Runner is now forced to play into G(I), and Saboteur
can follow his winning strategy to hit Runner at some point without using more than B

weights. If Runner attempts to bail out of G through the alternative exit, and to head back
to the initial gadget, then we make sure he is also hit by Saboteur. Clearly, this ensures
that the LimSup value of the game is strictly greater than 0. Now assume that Runner has a
winning strategy in I. In this case, if Saboteur does not remove all weights from G(I), then
Runner is allowed to stay in the initial gadget forever or jump to G(I) and immediately bail
out using the exit gadget. In both cases he avoids getting hit by Saboteur. Let us assume
Saboteur plays as expected and thus Runner enters G(I) eventually. In this case, Runner
can play his winning strategy, hence avoiding edges with non-zero budget (with Saboteur
using budget B). Either he dodges weighted edges forever, or Saboteur cheats and uses some
of his additional budget. However, in this case he creates an exit for Runner back to the
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initial gadget, and the same analysis as above applies. This implies that the value of the
game is exactly 0. J

Proving the EXPTIME-hardness result for cost function Avg is done by noticing that, for
threshold 0, both problems are equivalent.

I Lemma 8. The threshold problem for LimSup and threshold 0 is polynomial-time reducible
to the threshold problem for Avg and threshold 0.

4 Static quantitative sabotage games

In light of the EXPTIME-completeness of QSGs, we study in this section a restriction of the
problem, that might be sufficient to model some interesting cases. The restriction concerns
the dynamics of the behaviour of Saboteur. In a static QSG, Saboteur chooses at the
beginning a budget distribution (hence, changing the initial budget distribution), and then
commits to this distribution during the whole game. The situation is no longer a reactive
two-player game, but rather we ask whether for every possible initial (and static) budget
distribution, Runner has a nicely behaved strategy.

Formally, for a QSG G = (V,E,B, vI , f) (we remove the initial budget distribution
from the tuple in this section, since it is useless) and a budget distribution δ ∈ ∆(G),
we denote by Gδ the QSG obtained from G by taking δ as initial budget distribution.
Furthermore, we define the identity strategy ι of Saboteur in G, as the strategy mapping
every prefix π ∈ PrefsSab(G) to the last budget distribution appearing in prefix π. We let
Valstat(G) = supδ∈∆(G) infρ∈ΣRun(G) f(πδρ,ι), where πδρ,ι denotes the unique play defined by the
profile (ρ, ι) in QSG Gδ. Notice that this value is equal to infρ∈ΣRun(G) supδ∈∆(G) f(πδρ,ι), since
in G, when Saboteur follows strategy ι, the quantitative game JGK is split into independent
games, one for each initial distribution δ, that Runner knows as soon as it starts playing. The
Static Threshold problem with cost function f consists in, given as input a QSG G
with cost function f and a non-negative threshold T , determining whether the inequality
Valstat(G) 6 T holds. We now state the complexity of this new problem.

I Theorem 9. For cost functions Inf and LimInf, the static threshold problem over QSGs is
in PTIME; for Sup, LimSup, Avg, and DS, it is coNP-complete.

First, we give the intuition behind our polynomial-time algorithm to decide the static
threshold problem for cost functions Inf and LimInf.

I Lemma 10. For cost functions Inf and LimInf, the static threshold problem over QSGs is
in PTIME.

Proof Sketch. For Inf, we claim that Valstat(G) = b|E|/Bc, where E is the set of edges
reachable from vI . Indeed once a distribution δ is chosen, any optimal strategy of Runner
will make him reach an edge of E that has the minimum weight, thus Saboteur must
distribute evenly its budget over E. A similar argument works for LimInf, showing that
Valstat(G) = b|Ẽ|/Bc, where Ẽ is the set of edges reachable from vI and contained in a
strongly connected component. J

Then, let us turn to the coNP-completeness of the problem for cost functions Sup, LimSup,
Avg, and DS. Notice that, because of the two possible definitions of Valstat(G) explained in
the beginning of the section, the complement of the static threshold problem asks whether
there exists a budget distribution δ such that f(πδρ,ι) > T for every strategy ρ ∈ ΣRun(G)
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of Runner. Thus we show the NP-completeness of the complement of the static threshold
problems for the four cost functions.

I Lemma 11. For cost functions Sup, LimSup, Avg, and DS, the complement of the static
threshold problem over QSGs is NP-complete.

Proof Sketch. For the membership in NP, we can first guess a budget distribution δ (that
is of size polynomial), and then compute the value of the one-player (since player Max has
no choices anymore) quantitative game Gδ, to check if it is greater than T : computing the
value of such a game can be done in polynomial time for the four cost functions we consider
(see [1]).

For the NP-hardness with cost functions LimSup and Avg, we give a reduction from
the following problem. The Feedback arc set problem asks, given a directed graph
G = (V,E) and a threshold k 6 |E|, whether there is a set E′ of at most k edges of G such
that (V,E \E′) is acyclic. Karp showed [9] that the feedback arc set problem is NP-complete.
Let us consider an instance of the feedback arc set problem, given by a directed graph
G = (V,E) and a natural integer k 6 |E|. Wlog, we can add to the graph a vertex vI , with
null in-degree, and, for all vertices v 6= vI , an edge (vI , v). Observe that this does not change
the output of the feedback arc set problem as vI is not included in any cycle. We then
construct a QSG G = (V,E, k, vI , f) with f ∈ {LimSup,Avg}. It is not difficult to show that
Valstat(G) > 0 if and only if there exists a set E′ of k edges of G such that (V,E \ E′) is
acyclic. The result for Sup and DS is then obtained by a slight modification of the previous
proof. In particular, we make use of Lemma 6, once more. J

5 Reactive systems under failure

One can see a sabotage game as a system in which a controller tries to evolve while avoiding
as much as possible the failures caused by the environment. The vertices of the graph
represent configurations of the system, edges represent the actions, and the budget of the
Saboteur may represent a finite amount of failures that can simultaneously occur during the
execution. In a quantitative reasoning, a failure may be better represented by a quantity
describing how much some elements of the system are overloaded, and then how much it
would cost, in terms of time or energy, to use them.

Following this main motivation, we propose to look at sabotage games as a particular
semantics of controllable systems. Indeed, while a standard semantics would analyse the
feasibility of a requirement in a fully functional system, a sabotage semantics allows one to
analyse systems subject to errors, and to decide, e.g., whether one can satisfy a Boolean
constraint while minimising the average number of failures encountered during the execution.
In particular, sabotage games, as introduced in this work, would correspond to the sabotage
semantics of a system where the controller must walk in a graph with no particular objective,
other than minimising the failures.

From a modelling point of view, graphs—which can be viewed as one-player games with
trivial winning conditions—are quite limited. In more realistic models, we may be interested
in modelling systems with uncontrollable actions (i.e., two-player games), and where the
controller has a specific Boolean goal to achieve, instead of simply staying in the graph ad
vitam æternam. A more realistic goal is usually expressed via a parity condition or LTL
formulas. When a reactive system is modelled by a two-player parity game, deciding whether
one can ensure the parity condition, while maintaining a cost associated with the sabotage
semantics below a given threshold, can be shown to be not harder than solving sabotage
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games. That is, the problem is EXPTIME-complete. This result is obtained by a reduction to
quantitative parity games [4] (see [2] for a formal proof). When the requirement is expressed
with an LTL formula instead of a parity condition, the problem becomes 2-EXPTIME-complete,
due to an additional exponential blow-up in the size of the input formula. Note, however,
that the LTL-reactive synthesis problem itself (with the standard non-sabotage semantics)
is already 2-EXPTIME-complete. In this case, the sabotage semantics does not add to the
complexity of the problem, which further shows that our present contributions might have
practical applications, albeit the high complexity.

6 Conclusion

We have conducted a study of systems subject to failure, using the model of quantitative
sabotage games. We have shown that under dynamic sabotage, the threshold problem is
EXPTIME-complete for most objective functions, and coNP-complete under static sabotage,
for the same functions (see table 1 for a summary of these results). We have also shown the
applicability of our framework to deal with the more general problem of reactive synthesis
in systems under failures. The QSGs we have introduced open many questions related to
evolving structures. Here we have studied the worst-case scenario, i.e., where the environment
is modelled by an antagonistic adversary, but, as considered in [10] for reachability Boolean
objectives, one could also look at a probabilistic model, where failures, i.e., redistributions of
weights, are random variables. Another natural extension of this work would be to consider
a more realistic setting where the controller (Runner) has partial information regarding the
weights of Saboteur.

Although the synthesis problem has been widely studied in theory, there are not many
tools which implement the known theoretical solutions to decide it. The is is particularly
true for quantitative objectives. Recently, however, competitions have been organised to
encourage the development of such tools and the standardisation of an input format (see,
e.g., SYNTCOMP and SyGuS).2 Motivated by the similarities between the ABF problem
(solving a safety game described by a logical formula) and the synthesis problem as solved in
those competition (solving a safety game described by a logical circuit), one of our future
projects is to show that quantitative extensions of some of the practical tools implemented
for the reactive synthesis problem could be used to solve sabotage games.
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Abstract
We investigate infinite games on finite graphs where the information flow is perturbed by non-
deterministic signalling delays. It is known that such perturbations make synthesis problems
virtually unsolvable, in the general case. On the classical model where signals are attached to
states, tractable cases are rare and difficult to identify.

In this paper, we propose a model where signals are detached from control states, and we
identify a subclass on which equilibrium outcomes can be preserved, even if signals are delivered
with a delay that is finitely bounded. To offset the perturbation, our solution procedure combines
responses from a collection of virtual plays following an equilibrium strategy in the instant-
signalling game to synthesise, in a Dr. Frankenstein manner, an equivalent equilibrium strategy
for the delayed-signalling game.
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1 Introduction

Appropriate behaviour of an interactive system component often depends on events generated
by other components. The ideal situation, in which perfect information is available across
components, occurs rarely in practice – typically a component only receives signals more or
less correlated with the actual events. Apart from imperfect signals generated by the system
components, there are multiple other sources of uncertainty due to actions of the system
environment or to unreliable behaviour of the infrastructure connecting the components: For
instance, communication channels may delay or lose signals, or deliver them in a different
order than they were emitted. Coordinating components with such imperfect information to
guarantee optimal system runs is a significant, but computationally challenging, problem,
in particular when the interaction is of infinite duration. It appears worthwhile to study
the different sources of uncertainty in separation rather than as a global phenomenon, to
understand their computational impact on the synthesis of multi-component systems.

In this paper, we consider interactive systems modelled by concurrent games among
multiple players with imperfect information over finite state-transition systems, or labelled
graphs. Each state is associated to a stage game in which the players choose simultaneously
and independently a joint action, which triggers a transition to a successor state and generates
a local payoff and possibly further private signals to each player. Plays correspond to infinite
paths through the graph and yield to each player a global payoff according to a given
aggregation function, such as mean payoff, limit superior payoff, or parity. As solutions to
such games, we are interested in synthesising Nash equilibria in pure strategies, i.e., profiles
of deterministic strategies that are self-enforcing when prescribed to all players by a central
coordinator.
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The basic setting is standard for the automated verification and synthesis of reactive
modules that maintain ongoing interaction with their environment seeking to satisfy a
common global specification. Generally, imperfect information about the play is modelled as
uncertainty about the current state in the underlying transition system, whereas uncertainty
about the actions of other players is not represented explicitly. This is because the main
question concerns distributed winning strategies, i.e., Nash equilibria in the special case where
the players have a common utility function and should each receive maximal payoff. If every
player wins when all follow the prescribed strategy, unilateral deviations cannot be profitable
and any reaction to them would be ineffective, hence there is no need to monitor actions
of other players. Accordingly, distributed winning strategies can be defined on (potential)
histories of visited states, independently of the history of played actions. Nevertheless, these
games are computationally intractable in general, already with respect to the question of
whether distributed winning strategies exist [12, 11, 1].

However, if no equilibria exist that yield maximal payoffs to all players in a game, and
we consider arbitrary Nash equilibria rather than distributed winning strategies, it becomes
crucial for a player to monitor the actions of other players. To illustrate, one elementary
scheme for constructing equilibria in games of infinite duration relies on grim-trigger strategies:
cooperate on the prescribed equilibrium path until one player deviates, and at that event,
enter a coalition with the remaining players and switch to a joint punishment strategy against
the deviator. Most procedures for constructing Nash equilibria in games for verification and
synthesis are based on this scheme, which relies essentially on the ability of players to detect
jointly the deviation [15, 17, 5, 4].

The grim-trigger scheme works well under perfect, instant monitoring, where all players
have common knowledge about the most recent action performed by any other player. In
contrast, the situation becomes more complicated when players receive only imperfect signals
about the actions of other players, and worse, if the signals are not delivered instantly, but
with uncertain delays that may be different for each player. Imagine a scenario with three
players, where Player 1 deviates from the equilibrium path and this is signalled to Player 2
immediately, but only with a delay to Player 3. If Player 2 triggers a punishment strategy
against Player 1 as soon as she detects the deviation, Player 3 may monitor the action of
Player 2 as a deviation from the equilibrium and trigger, in his turn, a punishment strategy
against her, overthrowing the equilibrium outcome to the profit of Player 1.

Our contribution

We study the effect of imperfect, delayed monitoring on equilibria in concurrent games.
Towards this, we first introduce a refined game model in which observations about actions
are separated from observations about states, and we incorporate a representation for
nondeterministic delays for observing action signals. To avoid the general undecidability
results from the basic setting, we restrict to the case where the players have perfect information
about the current state.

Our main result is that, under the assumption that the delays are uniformly bounded,
every equilibrium payoff in the variant of a game where signals are delivered instantly is
preserved as an equilibrium payoff in the variant where they are delayed. To prove this, we
construct strategies for the delayed-monitoring game by combining responses for the instant-
monitoring variant in such a way that any play with delayed signals corresponds to a shuffle
of several plays with instant signals, which we call threads. Intuitively, delayed-monitoring
strategies are constructed, in a Frankenstein manner, from a collection of instant-monitoring
equilibrium strategies. Under an additional assumption that the payoff structure is insensitive
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to shuffling plays, this procedure allows to transfer equilibrium payoffs from the instant to
the delayed-monitoring game.

Firstly, the transfer result can be regarded as an equilibrium existence theorem for games
with delayed monitoring based on classes of games with instant monitoring that admit
equilibria in pure strategies. Defining existence conditions is a fundamental prerequisite to
using Nash equilibrium as a solution concept. If an application model leads to games that
may not admit equilibria, this is a strong reason to look for another solution concept. As
mixed strategies are conceptually challenging in the context of infinite games, guarantees for
pure equilibrium existence are particularly desirable.

Secondly, our result establishes an outcome equivalence between games with instant
and delayed monitoring, within the given restrictions: As the preservation of equilibrium
values from delayed-monitoring games to the instant-monitoring variant holds trivially (the
players may just buffer the received signals until an admissible delay period passed, and then
respond), we obtain that the set of pure equilibrium payoffs is the same, whether signals are
delayed or not—although, of course, the underlying equilibrium strategies differ between the
two variants. In terms of possible equilibrium payoffs, these games are hence robust under
changing signalling delivery guarantees, as long as the maximal delays are commonly known.
In particular, payoff-related results obtained for the instant-signalling variant apply directly
to the delayed variant.

Thirdly, the transfer procedure has some algorithmic content. When we set out with finite-
state equilibrium strategies for the instant-monitoring game, the procedure will also yield a
profile of finite-state strategies for the delayed-monitoring game. Hence, the construction
is effective, and can be readily applied to cases where synthesis procedures for finite-state
equilibria in games with instant monitoring exist.

Related literature

One motivation for studying infinite games with delays comes from the work of Shmaya [14]
considering sequential games on finitely branching trees (or equivalently, on finite graphs)
where the actions of players are monitored perfectly, but with arbitrary finite delays. In the
setting of two-player zero-sum games with Borel winning conditions, Shmaya shows that
these delayed-monitoring games are determined in mixed strategies. Apart of revealing that
infinite games on finite graphs are robust under monitoring delays, the paper is enlightening
for its proof technique which relies on a reduction of the delayed-monitoring game to a
game with a different structure that features instant monitoring but, in exchange, involves
stochastic moves.

Our analysis is inspired directly from recent work of Fudenberg, Ishii, and Kominers [8]
on infinitely repeated games with bounded-delay monitoring whith stochastically distributed
observation lags. The authors prove a transfer result that is much stronger than ours, which
also covers the relevant case of discounted payoffs (modulo a controlled adjustment of the
discount factor). The key idea for constructing strategies in the delayed-response game is to
modify strategies from the instant-response game by letting them respond with a delay equal
to the maximal monitoring delay so that all players received their signals. This amounts to
combining different threads of the instant-monitoring game, one for every time unit in the
delay period. Thus, the proof again involves a reduction between games of different structure,
with the difference that here one game is reduced to several instances of another one.

Infinitely repeated games correspond to the particular case of concurrent games with only
one state. This allows applying classical methods from strategic games which are no longer
accessible in games with several states [13]. Additionally, the state-transition structure of our
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setting induces a combinatorial effort to adapt the delayed-response strategies from [8]: As
the play may reach a different state until the monitoring delay expires, the instant-monitoring
threads must be scheduled more carefully to make sure that they combine to a valid play of
the delayed-monitoring variant. In particular, the time for returning to a particular game
state may be unbounded, which makes it hard to deliver guarantees under discounted payoff
functions. As a weaker notion of patience, suited for games with state transitions, we consider
payoff aggregation functions that are shift-invariant and submixing, as introduced by Gimbert
and Kelmendi in their work on memoryless strategies in stochastic games [9].

Our model generalises concurrent games of infinite duration over finite graphs. Equilibria
in such models have been investigated for the perfect-information case, and it was shown
that it is decidable with relatively low complexity whether equilibria exist, and if this is
the case, finite-state equilibrium profiles can be synthesised for several cases of interest in
automated verification. Ummels [15] considers turned-based games with parity conditions
and shows that deciding whether there exists a pure Nash equilibrium payoff in a given range
is an NP-complete problem. For the case of concurrent games with mean-payoff conditions,
Ummels and Wojtczak [16], show that the problem for pure strategies is still NP-complete,
whereas it becomes undecidable for mixed strategies. For the case of concurrent games with
Büchi conditions, that is, parity conditions with priorities 1 and 2, Bouyer et al. [3] show that
the complexity of the problem drops to PTime. These results are in the setting of perfect
information about the actual game state and perfect monitoring. However, as pointed out in
the conclusion of [3], the generic complexity increases when actions are not monitored by
any player.

The basic method for constructing equilibria in the settings of perfect monitoring relies
on grim-trigger strategies that react to deviations from the equilibrium path by turning to a
zero-sum coalition strategy opposing the deviating player. Such an approach can hardly work
under imperfect monitoring where deviating actions cannot be observed directly. Alternative
approaches for constructing equilibria without relying on perfect monitoring comprise, on
the one hand distributed winning strategies for games that allow all players of a coalition to
attain the most efficient outcome [10, 7, 2], and at the other extreme, Doomsday equilibria,
proposed by Chatterjee et al. in [6], for games where any deviation leads to the most inefficient
outcome, for all players.

2 Games with delayed signals

There are n players 1, . . . , n and a distinguished agent called Nature. We refer to a list
x = (xi)1≤i≤n that associates one element xi to every player i as a profile. For any such
profile, we write x−i to denote the list (xj)1≤j≤n,j 6=i where the element of Player i is omitted.
Given an element xi and a list x−i, we denote by (xi, x−i) the full profile (xi)1≤i≤n. For
clarity, we always use superscripts to specify to which player an element belongs. If not
quantified explicitly, we refer to Player i to mean any arbitrary player.

2.1 General model

For every player i, we fix a set Ai of actions, and a set Y i of signals; these sets are finite.
The action space A consists of all action profiles, and the signal space Y of all signal profiles.
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2.1.1 Transition structure
The transition structure of a game is described by a game graph G = (V,E) over a finite
set V of states with an edge relation E ⊆ V ×A× Y × V that represents transitions labelled
by action and signal profiles. We assume that for each state v and every action profile a,
there exists at least one transition (v, a, y, v′) ∈ E.

The game is played in stages over infinitely many periods starting from a designated
initial state v0 ∈ V known to all players. In each period t ≥ 1, starting in a state vt−1,
every player i chooses an action ai

t, and Nature chooses a transition (vt−1, at, yt, vt) ∈ E,
which determines a profile yt of emitted signals and a successor state vt. Then, each player i
observes a set of signals depending on the monitoring structure of the game, and the play
proceeds to period t+ 1 with vt as the new state.

Accordingly, a play is an infinite sequence v0, a1, y1, v1, a2, y2, v2 · · · ∈ V (AY V )ω such
that (vt−1, at, yt, vt) ∈ E, for all t ≥ 1. A history is a finite prefix v0, a1, y1, v1, . . . , at, yt, vt ∈
V (AY V )∗ of a play. We refer to the number of stages played up to period t as the length of
the history.

2.1.2 Monitoring structure
We assume that each player i always knows the current state v and the action ai she is
playing. However, she is not informed about the actions or signals of the other players.
Furthermore, she may observe the signal yi

t emitted in a period t only in some later period
or, possibly, never at all.

The signals observed by Player i are described by an observation function

γi : V (AY V )+ → 2Y i

,

which assigns to every nontrivial history π = v0, a1, y1, v1, . . . , at, yt, vt with t ≥ 1, a set of
signals that were actually emitted along π for the player:

γi(π) ⊆ {yi
r ∈ Y i | 1 ≤ r ≤ t}.

For an actual history π ∈ V (AY V )∗, the observed history of Player i is the sequence

βi(π) := v0, a
i
1, z

i
1, v1, . . . , a

i
t, z

i
t, vt

with zi
r = γi(v0, a1, y1, v1, . . . , ar, yr, vr), for all 1 ≤ r ≤ t. Analogously, we define the

observed play of Player i.
A strategy for player i is a mapping si : V (Ai2Y i

V )∗ → Ai that associates to every
observation history π ∈ V (Ai2Y i

V )∗ an action si(π). The strategy space S is the set of all
strategy profiles. We say that a history or a play π follows a strategy si, if ai

t+1 = si(βi(πt)),
for all histories πt of length t ≥ 0 in π. Likewise, a history or play follows a profile s ∈ S, if
it follows the strategy si of each player i. The outcome out(s) of a strategy profile s is the
set of all plays that follow it. Note that the outcome of a strategy profile generally consist of
multiple plays, due to the different choices of Nature.

Strategies may be partial functions. However, we require that for any history π that
follows a strategy si, the observed history βi(π) is also included in the domain of si.

With the above definition of a strategy, we implicitly assume that players have perfect
recall, that is, they may record all the information acquired along a play. Nevertheless, in
certain cases, we can restrict our attention to strategy functions computable by automata
with finite memory. In this case, we speak of finite-state strategies.
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2.1.3 Payoff structure
Every transition taken in a play generates an integer payoff to each player i, described by
a payoff function pi : E → Z. These stage payoffs are combined by a payoff aggregation
function u : Zω → R to determine the utility received by Player i in a play π as ui(π) :=
u( pi(v0, a1, y1, v1), pi(v1, a2, y2, v2), . . . ). Thus, the profile of utility, or global payoff, functions
ui : V (AY V )ω → R is represented by a profile of payoff functions pi and an aggregation
function u, which is common to all players.

We generally consider utilities that depend only on the observed play, that is, ui(π) =
ui(π′), for any plays π, π′ that are indistinguishable to Player i, that is, βi(π) = βi(π′). To
extend payoff functions from plays to strategy profiles, we set

ui(s) := inf{ui(π) | π ∈ out(s)}, for each strategy profile s ∈ S.

Overall, a game G = (G, γ, u) is described by a game graph with a profile of observation
functions and one of payoff functions. We are interested in Nash equilibria, that is, strategy
profiles s ∈ S such that ui(s) ≥ ui(ri, s−i), for every player i and every strategy ri ∈ Si.
The payoff w = ui(s) generated by an equilibrium s ∈ S is called an equilibrium payoff. An
equilibrium payoff w is ergodic if it does not depend on the initial state of the game, that is,
there exists a strategy profile s with u(s) = w, for every choice of an initial state.

2.2 Instant and bounded-delay monitoring
We focus on two particular monitoring structures, one where the players observe their
component of the signal profile instantly, and one where each player i observes his private
signal emitted in period t in some period t + di

t, with a bounded delay di
t ∈ N chosen by

Nature.
Formally, a game with instant monitoring is one where the observation functions γi

return, for every history π = v0, a1, y1, v1, . . . , at, yt, vt of length t ≥ 1, the private signal
emitted for Player i in the current stage, that is, γi(π) = {yi

t}, for all t ≥ 1. As the value is
always a singleton, we may leave out the enclosing set brackets and write γi(π) = yi

t.
To model bounded delays, we consider signals with an additional component that repre-

sents a timestamp. Concretely, we fix a set Bi of basic signals and a finite set Di ⊆ N of
possible delays, for each player i, and consider the product Y i := Bi ×Di as a new set of
signals. Then, a game with delayed monitoring is a game over the signal space Y with obser-
vation functions γi that return, for every history π = v0, a1, (b1, d1), v1, . . . , at, (bt, dt), vt

of length t ≥ 1, the value

γi(π) = {(bi
r, d

i
r) ∈ Bi ×Di | r ≥ 1, r + di

r = t}.

In our model, the role of Nature is limited to choosing the delays for observing the emitted
signals. Concretely, we postulate that the basic signals and the stage payoffs associated
to transitions are determined by the current state and the action profile chosen by the
players, that is, for every global state v and action profile a, there exists a unique profile
b of basic signals and a unique state v′ such that (v, a, (b, d), v′) ∈ E, for some d ∈ D;
moreover, for any other delay profile d′ ∈ D, we require (v, a, (b, d′), v′) ∈ E, and also that
pi(v, a, (b, d), v′) = pi(v, a, (b, d′), v′). Here again, D denotes the delay space composed of the
sets Di. Notice that under this assumption, the plays in the outcome of a strategy profile s
differ only by the value of the delays. In particular, all plays in out(s) yield the same payoff.

To investigate the effect of observation delays, we will relate the delayed and instant-
monitoring variants of a game. Given a game G with delayed monitoring, the corresponding
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instant-monitoring game G′ is obtained by projecting every signal yi = (bi, di) onto its first
component bi and then taking the transition and payoff structure induced by this projection.
As we assume that transitions and payoffs are independent of delays, the operation is well
defined.

Conversely, given a game G with instant monitoring and a delay spaceD, the corresponding
game G′ with delayed monitoring is obtained by extending the set Bi of basic signals in G to
Bi×Di, for each player i, and by lifting the transition and payoff structure accordingly. Thus,
the game G′ has the same states as G with transitions E′ := {(v, a, (b, d), w) | (v, a, b, w) ∈
E, d ∈ D}, whereas the payoff functions are given by p′i(v, a, (b, d), w) := pi(v, a, b, w), for
all d ∈ D.

As the monitoring structure of games with instant or delayed monitoring is fixed, it is
sufficient to describe the game graph together with the profile of payoff functions, and to
indicate the payoff aggregation function. It will be convenient to include the payoff associated
to a transition as an additional edge label and thus represent the game simply as a pair
G = (G, u) consisting of a finite labelled game graph and an aggregation function u : Zω → R.

2.3 Shift-invariant, submixing utilities
Our result applies to a class of games where the payoff-aggregation functions are invariant
under removal of prefix histories and shuffling of plays. Gimbert and Kelmendi [9] identify
these properties as a guarantee for the existence of simple strategies in stochastic zero-sum
games.

A function f : Zω → R is shift-invariant, if its value does not change when adding an
arbitrary finite prefix to the argument, that is, for every sequence α ∈ Zω and each element
a ∈ Z, we have f(aα) = f(α).

An infinite sequence α ∈ Zω is a shuffle of two sequences ϕ, η ∈ Zω, if N can be partitioned
into two infinite sets I = {i0, i1, . . . } and J = {j0, j1, . . . } such that αik

= ϕk and αjk
= ηk,

for all k ∈ N. A function f : Zω → R is called submixing if, for every shuffle α of two
sequences ϕ, η ∈ Zω, we have

min{f(ϕ), f(η)} ≤ f(α) ≤ max{f(ϕ), f(η)}.

In other words, the image of a shuffle product always lies between the images of its factors.
The proof of our theorem relies on payoff aggregation functions u : Zω → R that are

shift-invariant and submixing. Many relevant game models used in economics, game theory,
and computer science satisfy this restriction. Prominent examples are mean payoff or limsup
payoff, which aggregate sequences of stage payoffs p1, p2, · · · ∈ Zω by setting:

mean-payoff(p1, p2, . . . ) := lim sup
t≥1

1
t

t∑
r=1

pr, and

limsup(p1, p2, . . . ) := lim sup
t≥1

pt.

Finally, parity conditions which map non-negative integer payoffs p1, p2, . . . called priori-
ties to parity(p1, p2, . . . ) = 1 if the least priority that occurs infinitely often is even, and 0
otherwise, also satisfy the conditions.

2.4 The transfer theorem
We are now ready to formulate our result stating that, under certain restrictions, equilibrium
profiles from games with instant monitoring can be transferred to games with delayed
monitoring.
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I Theorem 2.1. Let G be a game with instant monitoring and shift-invariant submixing
payoffs, and let D be a finite delay space. Then, for every ergodic equilibrium payoff w in G,
there exists an equilibrium of the D-delayed monitoring game G′ with the same payoff w.

The proof relies on constructing a strategy for the delayed-monitoring game while
maintaining a collection of virtual plays of the instant-monitoring game on which the given
strategy is queried. The responses are then combined according to a specific schedule to
ensure that the actual play arises as a shuffle of the virtual plays.

3 Proof

Consider a game G = (G, u) with instant monitoring where the payoff aggregation function u
is shift-invariant and submixing, and suppose that G admits an equilibrium profile s. For an
arbitrary finite delay space D, let G′ be the delayed-monitoring variant of G. In the following
steps, we will construct a strategy profile s′ for G′, that is in equilibrium and yields the same
payoff u(s′) as s in G.

3.1 Unravelling small cycles
To minimise the combinatorial overhead for scheduling delayed responses, it is convenient to
ensure that, whenever the play returns to a state v, the signals emitted at the previous visit
at v have been received by all players. If every cycle in the given game graph G is at least as
long as any possible delay, this is clearly satisfied. Otherwise, the graph can be expanded
to avoid small cycles, e.g., by taking the product with a cyclic group of order equal to the
maximal delay.

Concretely, let m be the greatest delay among maxDi, for all players i. We define a new
game graph Ĝ as the product of G with the additive group Zm of integers modulo m, over the
state set {vj | v ∈ V, j ∈ Zm} by allowing transitions (vj , a, b, v

′
j+1), for every (v, a, b, v′) ∈ E

and all j ∈ Zm, and by assigning stage payoffs p̂i(vj , a, b, v
′
j+1) := pi(v, a, b, v′), for all

transitions (v, a, b, v′) ∈ E. Obviously, every cycle in this game has length at least m.
Moreover, the games (Ĝ, u) and (G, u) are equivalent: Since the index component j ∈ Zm is
not observable to the players, the two games have the same sets of strategies, and profiles
of corresponding strategies yield the same observable play outcome, and hence the same
payoffs.

In conclusion, we can assume without loss of generality that each cycle in the game
graph G is longer than the maximal delay maxDi, for all players i.

3.2 The Frankenstein procedure
We describe a strategy f i for Player i in the delayed monitoring game G′ by a reactive
procedure that receives observations of states and signals as input and produces actions as
output.

The procedure maintains a collection of virtual plays of the instant-monitoring game. More
precisely, these are observation histories for Player i following the strategy si in G, which we
call threads. The observations collected in a thread π = v0, a

i
1, (bi

1, d
i
1), v1, . . . , a

i
r, (bi

r, d
i
r), vr

are drawn from the play of the main delayed-monitoring game G′. Due to delays, it may
occur that the signal (bi

r, d
i
r) emitted in the last period of a thread has not yet been received.

In this case, the signal entry is replaced by a special symbol #, and we say that the thread
is pending. As soon as the player receives the signal, the placeholder # is overwritten with
the actual value, and the thread becomes active. Active threads π are used to query the
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strategy si; the prescribed action ai = si(π) is played in the main delayed-monitoring game
and it is also used to continue the thread of the virtual instant-monitoring game.

To be continued, a thread must be active and its current state needs to match the actual
state of the play in the delayed-monitoring game. Intuitively, threads advance more slowly
than the actual play, so we need multiple threads to keep pace with it. Here, we use a
collection of |V |+ 1 threads, indexed by an ordered set K = V ∪ {ε}. The main task of the
procedure is to schedule the continuation of threads. To do so, it maintains a data structure
(τ, h) that consists of the threads τ = (τk)k∈K and a scheduling sequence h = h[0], . . . , h[t] of
indices from K, at every period t ≥ 0 of the actual play. For each previous r < t, the entry
h[r] points to the thread according to which the action of period r + 1 in the actual play has
been prescribed; the last entry h[t] points to an active thread that is currently scheduled for
prescribing the action to be played next.

The version of Procedure Frankensteini for Player i, given below, is parametrised by the
game graph G with the designated initial state, the delay space Di, and the given equilibrium
strategy si in the instant-monitoring game. In the initialisation phase, the initial state v0
is stored in the initial thread τε to which the current scheduling entry h[0] points. The
remaining threads are initialised, each with a different position from V . Then, the procedure
enters a non-terminating loop along the periods of the actual play. In every period t, it
outputs the action prescribed by strategy si for the current thread scheduled by h[t] (Line
5). Upon receiving the new state, this current thread is updated by recording the played
action and the successor state; as the signal emitted in the instant-monitoring play is not
available in the delayed-monitoring variant, it is temporarility replaced by #, which marks
the current thread as pending (Line 7). Next, an active thread that matches the new state is
scheduled (Line 9), and the received signals are recorded with the pending threads to which
they belong (Line 11 – 14). As a consequence, these threads become active.

3.3 Correctness
In the following, we argue that the procedure Frankensteini never violates the assertions in
Line 4, 8, and 13 while interacting with Nature in the delayed-monitoring game G′, and thus
implements a valid strategy for Player i.

Specifically, we show that for every history

π = v0, a1, (b1, d1), v1, . . . , at, (bt, dt), vt

in the delayed-monitoring game that follows the prescriptions of the procedure up to period
t > 0, (1) the scheduling function h[t] = k points to an active thread τk that ends at state vt,
and (2) for the state vt+1 reached by playing at+1 := si(τk) at π, there exists an active
thread τk′ that ends at vt+1. We proceed by induction over the period t. In the base case,
both properties hold, due to the way in which the data structure is initialised: the (trivial)
thread τε is active, and for any successor state v1 reached by a1 := si(τε), there is a fresh
thread τv1 that is active. For the induction step in period t+ 1, property (1) follows from
property (2) of period t. To verify that property (2) holds, we distinguish two cases. If vt+1
did not occur previously in π, the initial thread τvt+1 still consists of the trivial history vt+1,
and it is thus active. Else, let r < t be the period in which vt+1 occurred last. Then, for
k′ = h[r], the thread τk′ ends at vt+1. Moreover, by our assumption that the cycles in G are
longer than any possible delay, it follows that the signals emitted in period r < t−m have
been received along π and were recorded (Line 12–14). Hence, τk′ is an active thread ending
at vt+1, as required.
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Procedure: Frankensteini(G, v0, D
i, si)

// initialisation
1 τε := v0; h[0] = ε

2 foreach v ∈ V do τv := v

// play loop
for t = 0 to ω do

3 k := h[t]
4 assert (τk is an active thread)
5 play action ai := si(τk) // ai

t+1
6 receive new state v // vt+1
7 update τk := τk a

i#v

8 assert (there exists an index k′ 6= k such that τk′ ends at state v)
9 set h[t+ 1] to the least such index k′

10 receive observation zi ⊆ Bi ×Di // zi
t+1

11 foreach (bi, di) ∈ zi do
12 k := h[t− di]
13 assert (τk = ρ#v′, for some prefix ρ, state v′)
14 update τk := ρ(bi, di)v′

end
end

To see that the assertion of Line 13 is never violated, we note that every observation
history βi(π) of the actual play π in G′ up to period t corresponds to a finitary shuffle of the
threads τ in the t-th iteration of the play loop, described by the scheduling function h: The
observations (ai

r, (br, dr)i, vr) associated to any period r ≤ t appear at the end of τh[r], if the
signal (br, dr)i was delivered until period t, and with the placeholder #, otherwise.

In summary, it follows that the reactive procedure Frankensteini never halts, and it
returns an action for every observed history βi(π) associated to an actual history π that
follows it. Thus, the procedure defines a strategy f i : V (Ai2Y i

V )∗ → Ai for Player i.

3.4 Equilibrium condition

Finally, we show that the interplay of the strategies f i described by the reactive procedure
Frankensteini, for each player i, constitutes an equilibrium profile for the delayed-monitoring
game G′ yielding the same payoff as s in G.

According to our remark in the previous subsection, every transition taken in a play π
that follows the strategy f i in G′ is also observed in some thread history, which in turn
follows si. Along the non-terminating execution of the reactive Frankensteini procedure,
some threads must be scheduled infinitely often, and thus correspond to observations of plays
in the perfect-monitoring game G. We argue that the observation by Player i of a play that
follows the strategy f i corresponds to a shuffle of such infinite threads (after discarding finite
prefixes).

To make this more precise, let us fix a play π that follows f i in G′, and consider the
infinite scheduling sequence h[0], h[1], . . . generated by the procedure. Since there are finitely
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many thread indices, some must appear infinitely often in this sequence; we denote by Li ⊆ K
the subset of these indices, and look at the least period `i, after which only threads in Li are
scheduled. Then, the suffix of the observation βi(π) from period `i onwards can be written
as a |Li|-partite shuffle of suffixes of the threads τk for k ∈ Li.

By our assumption that the payoff aggregation function u is shift-invariant and submixing,
it follows that the payoff ui(π) lies between min{ui(τk) | k ∈ Li} and max{ui(τk) | k ∈ Li}.
Now, we apply this reasoning to all players to show that f i is an equilibrium profile with
payoff u(s).

To see that the profile f in the delayed-monitoring game G′ yields the same payoff as s in
the instant-monitoring game G, consider the unique play π that follows f , and construct Li, for
all players i, as above. Then, all threads of all players i follow si, which by ergodicity implies,
for each infinite thread τk with k ∈ Li that ui(τk) = ui(s). Hence min{ui(τk) | k ∈ Li} =
max{ui(τk) | k ∈ Li}= ui(π), for each player i, and therefore u(f) = u(s).

To verify that f is indeed an equilibrium profile, consider a strategy gi for the delayed-
monitoring game and look at the unique play π that follows (f−i, gi) in G′. Towards a
contradiction, assume that ui(π) > ui(f). Since ui(π) < max{ui(τk) | k ∈ Li}, there must
exist an infinite thread τk with index k ∈ Li such that ui(τk) > ui(f) = ui(s). But τk

corresponds to the observation βi(ρ) of a play ρ that follows s−i in G, and since s is an
equilibrium strategy we obtain ui(s) ≥ ui(ρ) = ui(τk), a contradiction. This concludes the
proof of our theorem.

3.5 Finite-state strategies
The transfer theorem makes no assumption on the complexity of equilibrium strategies in the
instant-monitoring game at the outset; informally, we may think of these strategies as oracles
that the Frankenstein procedure can query. Moreover, the procedure itself runs for infinite
time along the periods the play, and the data structure it maintains grows unboundedly.

However, if we set out with an equilibrium profile of finite-state strategies, it is straight-
forward to rewrite the Frankenstein procedure as a finite-state automaton: instead of storing
the full histories of threads, it is sufficient to maintain the current state reached by the
strategy automaton for the relevant player after reading this history, over a period that is
sufficiently long to cover all possible delays.

I Corollary 3.1. Let G be a game with instant monitoring and shift-invariant submixing
payoffs, and let D be a finite delay space. Then, for every ergodic payoff w in G generated
by a profile of finite-state strategies, there exists an equilibrium of the D-delayed monitoring
game G′ with the same payoff w that is also generated by a profile of finite-state strategies.

4 Conclusion

We presented a transfer result that implies effective solvability of concurrent games with a
particular kind of imperfect information, due to imperfect monitoring of actions, and delayed
delivery of signals. This is a setting where we cannot rely on grim-trigger strategies, typically
used for constructing Nash equilibria in games of infinite duration for automated verification.
Our method overcomes this obstacle by adapting the idea of delayed-response strategies of [8]
from infinitely repeated games, with one state, to arbitrary finite state-transition structures.

Our transfer result imposes stronger restrictions than the one in [8], in particular, it does
not cover discounted payoff functions. Nevertheless, the class of submixing payoff functions
is general enough to cover most applications relevant in automated verification and synthesis.
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The restriction to ergodic payoffs was made for technical convenience. We believe it is
not critical for using the main result: The state space of every game can be partitioned
into ergodic regions, where all initial states lead to the same equilibrium value. As the
outcome of every equilibrium profile will stay within an ergodic region, we may analyse each
ergodic region in separation, and apply standard zero-sum techniques to combine the results.
A challenging open question is whether the assumption of perfect information about the
current state can be relaxed.
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(LIA Informel) and by the European Union Seventh Framework Programme under Grant
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Abstract
Document retrieval is one of the most fundamental problem in information retrieval. The object-
ive is to retrieve all documents from a document collection that are relevant to an input pattern.
Several variations of this problem such as ranked document retrieval, document listing with two
patterns and forbidden patterns have been studied. We introduce the problem of document
retrieval with forbidden extensions.

Let D = {T1,T2, . . . ,TD} be a collection of D string documents of n characters in total,
and P+ and P− be two query patterns, where P+ is a proper prefix of P−. We call P− as the
forbidden extension of the included pattern P+. A forbidden extension query 〈P+, P−〉 asks
to report all occ documents in D that contains P+ as a substring, but does not contain P− as
one. A top-k forbidden extension query 〈P+, P−, k〉 asks to report those k documents among
the occ documents that are most relevant to P+. We present a linear index (in words) with an
O(|P−|+occ) query time for the document listing problem. For the top-k version of the problem,
we achieve the following results, when the relevance of a document is based on PageRank:

an O(n) space (in words) index with O(|P−| log σ + k) query time, where σ is the size of
the alphabet from which characters in D are chosen. For constant alphabets, this yields an
optimal query time of O(|P−|+ k).
for any constant ε > 0, a |CSA|+ |CSA∗|+D log n

D +O(n) bits index with O(search(P ) + k ·
tSA · log2+ε n) query time, where search(P ) is the time to find the suffix range of a pattern P ,
tSA is the time to find suffix (or inverse suffix) array value, and |CSA∗| denotes the maximum
of the space needed to store the compressed suffix array CSA of the concatenated text of all
documents, or the total space needed to store the individual CSA of each document.
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Keywords and phrases document retrieval, suffix trees, range queries, succinct data structure

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.320

1 Introduction and Related Work

Retrieving useful information from massive textual data is a core problem in information
retrieval. Document listing, a natural formulation of this problem, has exciting applications in
search engines, bioinformatics, data and Web mining. The task is to index a given collection
of strings or documents, such that the relevant documents for an input query can be retrieved
efficiently. More formally, let D be a given collection of D string documents of total size
n characters. Given a query pattern P , document listing is to report all the documents
that contain P as a substring. The problem was introduced by Matias et al. [19]. Later,
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Muthukrishnan [22] proposed a linear space index with optimal query time of O(|P |+ occ),
where occ is the number of documents reported. Following this, several variations were
introduced. Hon et al. [13] proposed the top-k variation i.e., retrieve the k documents that
are most relevant to P for some integer k provided at query time They presented a linear
index with O(|P |+k log k) time. Later this was improved to optimal O(|P |+k) time [14, 23].
Compressed indexes have also been proposed for this variation [14, 17, 21, 25].

Most of the earlier document retrieval problems focus on the case where the query
consists of a single pattern P . Often the queries are not so simplistic. Muthukrishnan [22]
also considered the case of two patterns, say P and Q, and showed that by maintaining
an O(n3/2 logO(1) n) space index, documents containing both P and Q can be reported in
O(|P |+ |Q|+

√
n+ occ) time. Cohen and Porat [4] presented an O(n logn) space (in words)

index with query time O(|P |+ |Q|+
√
n · occ log5/2 n), which was improved by Hon et al. [15]

to an O(n) space index with query time O(|P |+ |Q|+
√
n · occ log3/2 n). Also see [14, 13]

for a succinct solution and [18] for a recent result on the hardness of this problem.
Fischer et al. [5] introduced the document listing with forbidden pattern problem which

consists of two patterns P and Q, and all documents containing P but not Q are to be
reported. They presented an O(n3/2) bit solution with query time O(|P |+ |Q|+

√
n+ occ).

Hon et al. [16] presented an O(n) word index with query time O(|P |+ |Q|+
√
n · occ log5/2 n).

Later, Biswas et al. [1] offered linear space (in words) and O(|P |+ |Q|+
√
nk) query time

solution for the more general top-k version of the problem, which yields a linear space and
O(|P |+ |Q|+

√
n · occ) solution to the listing problem. They also showed that this is optimal

via a reduction from the set intersection/difference problem.
In this paper, we introduce the document listing with forbidden extension problem, which

is a stricter version of the forbidden pattern problem, and asks to report all documents
containing an included pattern P+, but not its forbidden extension P−, where P+ is a proper
prefix of P−. As shown by Biswas et al. [1], the forbidden pattern problem of Fischer et
al. [5] suffers from the drawback that linear space (in words) solutions are unlikely to yield
a solution better than O(

√
n/occ) per document reporting time. Thus, it is of theoretical

interest to see whether this hardness can be alleviated by putting further restrictions on the
forbidden pattern. We show that indeed in case when the forbidden pattern is an extension
of the included pattern, by maintaining a linear space index, the document listing problem
can be answered in optimal O(|P−|+ occ) time. For further theoretical interest, we study
the following more general top-k variant.

I Problem 1 (top-k Document Listing with Forbidden Extension). Let D = T1,T2, . . . ,TD
be D weighted strings (called documents) of n characters in total, where each character is
chosen from an alphabet of size σ. Our task is to index D such that when a pattern P+, its
extension P−, and an integer k come as a query, among all documents containing P+, but
not P−, we can report the k most weighted ones.

Results. Our contributions to Problem 1 are summarized in the following theorems.

I Theorem 1. The top-k forbidden extension queries can be answered by maintaining an
O(n)-words index in O(|P−| log σ + k) time.

I Theorem 2. Let CSA be a compressed suffix array on D of size |CSA| bits using which
we can find the suffix range of a pattern P in search(P ) time, and suffix (or inverse suffix)
array value in tSA time. Also, denote by |CSA∗| the maximum of the space needed to store
the compressed suffix array CSA of the concatenated text of all documents, or the total space
needed to store the individual CSA of each document. By maintaining CSA and additional
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|CSA∗|+D log n
D +O(n) bits structure, we can answer top-k forbidden extension queries in

O(search(P−) + k · tSA · log2+ε n) time

The rest of the paper is organized as follows. In Section 2, we briefly discuss standard
data-structures, and terminologies. In Section 3, we present a linear index and arrive at
Theorem 1. In Section 4, we present a succinct space index and arrive at Theorem 2. Finally,
we conclude the paper in Section 5.

2 Preliminaries

We refer the reader to [11] for standard definitions and terminologies. We assume the
Word-RAM model of computation, where the word size is ω = Θ(logn). Throughout this
paper, D = {T1,T2, . . . ,TD} is a collection of D documents of total size n characters, where
each character is chosen from an alphabet of size σ. Each document in D has a special
terminating character that does not appear anywhere in the document. Furthermore, we
assume that the PageRank of a document Td is d, and Td is more relevant than Td′ iff d < d′.

The generalized suffix tree GST is a compacted trie that stores all (non-empty) suffixes of
every string in D. The GST consists of n leaves and at most n− 1 internal nodes. We use `i
to denote the ith leftmost leaf of GST i.e., the leaf corresponding to the ith lexicographically
smallest suffix of the concatenated text T of every document. Further, doc(i) denotes the
index of the document to which the suffix corresponding to `i belongs. Let GST(u) be the
sub-tree of GST rooted at u, and leaf(u) be the set of leaves in GST(u). We use leaf(u, v) to
denote the leaves in GST(u) but not in GST(v). The number of nodes (resp. concatenation
of edge labels) on the path from root to a node u is denoted by depth(u) (resp. path(u)).
The locus of P , denoted by locus(P ), is the highest node u such that path(u) is prefixed by P .
Then, the suffix range of P is [Lu, Ru], where Lu and Ru are the leftmost and the rightmost
leaves in GST(u). By maintaining GST of D in O(n) words of space, the locus of any pattern
P can be computed in O(|P |) time, where |P | is the length of P . In general, suffix trees
arrays require O(n) words for storage. Compressed Suffix Array reduces this space close to
the size of the text with a slowdown in query time.

Let u and v be any two nodes in GST. Then listk(u, v) is the set of k most relevant
document identifiers in list(u, v) = {doc(i) | `i ∈ leaf(u)} \ {doc(i) | `i ∈ leaf(v)}. Any
superset of listk(u, v) is called a k-candidate set and is denoted by candk(u, v). Given
candk(u, v), we can find listk(u, v) in time O(|candk(u, v)|) using order statistics [1].

Moving forward, we use CSA to denote a compressed suffix array for D that occupies |CSA|
bits. Using CSA, we can find the suffix range of P in search(P ) time, and can compute a suffix
array value (i.e., the text position of the suffix corresponding to a leaf) or inverse suffix array
value (i.e., the lexicographic rank of a suffix) in tSA time. Also, p+ and p− (resp. [sp+, ep+]
and [sp−, ep−]) denotes the loci (resp. suffix ranges) of P+ and P− respectively. Since P−
is an extension of P+, p− ∈ GST(p+), leaf(p−) ⊆ leaf(p+), and sp+ ≤ sp− ≤ ep− ≤ ep+.

3 Linear Space Index

In this section, we present our linear space index. We use some well-known range reporting
data-structures [2, 24, 26] and the chaining framework of Muthukrishnan [14, 22], which has
been extensively used in problems related to document listing.Using these data structures,
we first present a solution to the document listing problem. Then, we present a simple linear
index for the top-k version of the problem, with a O(|P−| logn+ k logn) query time. Using
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p+

p−

d3 d2 d4 d1 d4 d5 d1 d2
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. . .. . . d5 d3

(a) Chaining structure.

p+

p−

d3 d2 d4 d1 d4 d5 d1 d2

root

sp− ep− ep+sp+

d6d6 d3

Type C

Type A

Type B

(b) Types of chains.

Figure 1 Chaining framework. Although leaf(p+) has documents d1, d2, d3, d4, and d5, only d2

and d3 qualify as output, since d1, d4, and d5 are present in leaf(p−).

more complicated techniques, based on the heavy path decomposition of a tree, we improve
this to arrive at Theorem 1.

Orthogonal Range Reporting Data Structure.

I Fact 1 ([24]). A set of n weighted points on an n× n grid can be indexed in O(n) words
of space, such that for any k ≥ 1, h ≤ n and 1 ≤ a ≤ b ≤ n, we can report k most weighted
points in the range [a, b]× [0, h] in decreasing order of their weights in O(h+ k) time.

I Fact 2 ([26]). A set of n 3-dimensional points (x, y, z) can be stored in an O(n)-word data
structure, such that we can answer a three-dimensional dominance query in O(logn+ output)
time, with outputs reported in the sorted order of z-coordinate.

I Fact 3 ([2]). Let A be an array of length n. By maintaining an O(n)-words index, given
two integers i, j, where j ≥ i, and a positive integer k, in O(k) time, we can find the k largest
(or, smallest) elements in the subarray A[i..j] in sorted order.

Chaining Framework. For every leaf `i in GST, we define next(i) as the minimum index
j > i, such that doc(j) = doc(i). We denote i as the source of the chain and next(i) as the
destination of the chain. We denote by (−∞, i) (resp. (i,∞)) the chain that ends (resp.
starts) at the first (resp. last) occurrence `i of a document. Figure 1(a) illustrates chaining.

The integral part of our solution involves categorizing the chains into the following 3
types, and then build separate data structure for each type.
Type A: i < sp+ and ep− < next(i) ≤ ep+

Type B: sp+ ≤ i < sp− and next(i) > ep+

Type C: sp+ ≤ i < sp− and ep− < next(i) ≤ ep+

Figure 1(b) illustrates different types of chains. It is easy to see that any output of forbidden
extension query falls in one of these 3 types. Also observe that the number of chains is
n. For a type A chain (i, next(i)), we refer to the leaves `i and `next(i) as type A leaves;
similar remarks hold for type B and type C chains. Also, LCA of a chain (i, j) refers to the
LCA of the leaves `i and `j . Furthermore, with slight abuse of notation, for any two nodes
u, v ∈ GST, we denote by depth(u, v), the depth of the LCA of the nodes u and v.
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Document Listing Index. Linear space index for the forbidden extension document listing
problem is achieved by using Fact 3. We store two arrays as defined below.
Asrc: Asrc[i]=next(i), for each chain (i, next(i))
Adest: Adest[next(i)]=i, for each chain (i, next(i))
Querying in Asrc within the range [sp+, sp− − 1] will give us the chains in descending order
of their destination, we stop at ep− to obtain all the Type B and Type C chains. We query
in Adest within the range [ep− + 1, ep+] to obtain the chains in ascending order of their
source and stop at sp+ to obtain all the type A chains. Time, in addition to that required
for finding the suffix ranges, can be bounded by O(|P−|+ occ).

3.1 A Simple O(|P−| logn+ k logn) time Index
We start with a simple indexing scheme for answering top-k forbidden extension query. In
this section, we design data structures by processing different types of chains separately and
mapping them into range reporting problem.

Processing Type A and Type B Chains. For type A chains, we construct range reporting
data structure, as described in Fact 1, with each chain (i, j), j = next(i), mapped to a
weighted two dimensional point (j, depth(i, j)) with weight doc(i). Likewise, for type B
chains, we map chain (i, j) to the point (i, depth(i, j)) with weight doc(i). Recall that d is
the PageRank of the document Td. For Type A chains, we issue a range reporting query
for [ep− + 1, ep+]× [0, depth(p+)]. For Type B chains, we issue a range reporting query for
[sp+, sp− − 1]× [0, depth(p+)]. In either case, we can obtain the top-k leaves in sorted order
of their weights in O(|P−|+ k) time, which gives us the following lemma.
I Lemma 3. There exists an O(n) words data structure, such that for a top-k forbidden
extension query, we can report the top-k Type A and Type B leaves in time O(|P−|+ k).

Processing Type C Chains. We maintain the 3-dimensional dominance structure of Fact 2
at each node of GST. For a chain (i, j), j = next(i), we store the point (i, j, doc(i)) in the
dominance structure maintained in the node lca(i, j). For query answering, we traverse
the path from p+ to p−, and query the dominance structure of each node on this path
with x-range [−∞, sp− − 1] and y-range [ep− + 1,∞]. Any chain falling completely outside
of GST(p+) will not be captured by the query, since their LCA lies above p+. There can
be at most depth(p−) − depth(p+) + 1 ≤ |P−| = Θ(n) sorted lists containing k elements
each. The logn factor in the query of Fact 2 is due to locating the first element to be
extracted; each of the remaining (k − 1) elements can be extracted in constant time per
element. Therefore, time required for dominance queries (without extracting the elements) is
bounded by O(|P−| logn). Using a max-heap of size O(n), we obtain the top-k points from
all the lists as follows: insert the top element from each list into the heap, and extract the
maximum element from the heap. Then, the next element from the list corresponding to the
extracted element is inserted into the heap. Clearly, after extracting k elements, the desired
top-k identifiers are obtained. Time required is O(k logn), which gives the following lemma.
I Lemma 4. There exists a O(n) words space data-structure for answering top-k documents
with forbidden extension queries in O(|P−| logn+ k logn) time.

3.2 O(|P−| logσ + k) Index
In this section, we prove Theorem 1. Note that type A and type B chains can be processed
in O(|P−| + k) time by maintaining separate range reporting data structures (refer to
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Section 3.1). Therefore, in what follows, the emphasis is to obtain type C outputs. Recall
that for processing type C chains in Section 3.1, we traversed the path from p+ to p−, and
query the individual data structure at each node. Our idea for more efficient solution is to
group together the data structures of the nodes falling on the same heavy path.

Heavy Path Decomposition. We revisit the heavy path decomposition of a tree T , proposed
by Harel et al. [12]. For any internal node u, the heaviest child of u is the one having the
maximum number of leaves in its subtree (ties broken arbitrarily). The first heavy path of T
is the path starting at T ’s root, and traversing through every heavy node to a leaf. Each
off-path subtree of the first heavy path is further decomposed recursively. Thus, a tree with
m leaves has m heavy paths. With slight abuse of notation, let leaf(hpi) be the leaf where
heavy path hpi ends. Let v be a node on a heavy path and u be a child of v not on that
heavy path. We say that the subtree rooted at u hangs from node v.

I Property 1. For a tree having m nodes, the path from the root to any node v traverses at
most logm heavy paths.

Heavy Path Tree. We construct the heavy path tree TH , in which each node corresponds
to a distinct heavy path in GST. The tree TH has n nodes as there are so many heavy
paths in GST. For a heavy path hpi of GST, the corresponding node in TH is denoted by
hi. All the heavy paths hanging from hpi in GST are the children of hi in TH . Let the first
heavy path in the heavy path decomposition of GST be hpr, and T1, T2, . . . , be the subtrees
hanging from hpr. The heavy path tree TH is recursively defined as the tree whose root is hr,
representing hpr, having children h1, h2, . . . with subtrees in TH resulting from the heavy
path decomposition of T1, T2, . . . respectively. Figure 2 illustrates heavy path decomposition
of GST and the heavy path tree TH . Based on the position of a hanging heavy path w.r.t.
hpi in GST, we divide the children of hi into two groups: left children hli and right children
hri . A child heavy path hj of hi belongs to hli (resp. hri ) if leaf(hpj) falls on the left (resp.
right) of leaf(hpi) in GST. The nodes in hli and hri are stored contiguously in TH . We traverse
the left attached heavy paths of hpi in GST in top-to-bottom order, include them as the
nodes of hli, and place them in left-to-right order as children of hi in TH . The hri nodes are
obtained by traversing the right attached heavy paths of hpi in GST in bottom-to-top order,
and place them after the hli nodes in TH in left-to-right order.

Transformed Heavy Path Tree. We transform the heavy path tree TH into a binary search
tree T tH . For each node hi in TH , we construct a left (resp. right) binary tree BThl

i
(resp.

BThr
i
) for the left children hli (resp. right children hri ). Leaves of BThl

i
(resp. BThr

i
) are the

nodes of hli (resp. hri ) preserving the ordering in TH . The binary tree BThl
i
(resp. BThr

i
) has a

path, named left spine (resp. right spine), denoted by LShi
(resp. RShi

) containing blog |hli|c
(resp. blog |hri |c) nodes, denoted by dl1, dl2, . . . (resp. dr1, dr2, . . . ) in the top-to-bottom
order. The right child of dli is dli+1. Left subtree of dli is a height balanced binary search
tree containing h2i−1 , . . . , hb2i−1c as the leaves and dummy nodes for binarization. Right
spine is constructed in similar way, however left child of dri is dri+1 and left subtree contains
the leaves of hri in a height balanced binary tree. Clearly, the length of LShi

(resp. RShi
) is

bounded by blog |hli|c (resp. blog |hri |c). Subtrees hanging from the nodes of hli and hri are
decomposed recursively. See Figure 2(c) for illustration. We have the following important
property of T tH .
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(a) Heavy path decomposition of GST.
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(c) Transformed heavy path tree T t
H .

Figure 2 Heavy path decomposition, heavy path tree, and transformed heavy path tree.

I Lemma 5. Let u be an ancestor node of v in GST. The path length from u to v is duv.
The node u (resp. v) falls on the heavy path hp1 (resp. hpt) and let h1 (resp. ht) be the
corresponding node in T tH . Then, the h1 to ht path in T tH has O(min(duv log σ, log2 n)) nodes,
where σ is the size of the alphabet from which characters in the documents are chosen.

Proof. We first recall from Property 1 that the height of TH is O(logn). Since each node
in TH can have at most n children, each level of TH can contribute to O(logn) height in
T tH . Thus, the height of T tH is bounded by O(log2 n). Hence, the log2 n bound in the lemma
is immediate. Let p1, p2, . . . , pt be the segments of the path from u to v traversing heavy
paths hp1, hp2, . . . , hpt, where pi ∈ hpi, 1 ≤ i ≤ t. Let h1, h2, . . . , ht be the corresponding
nodes in T tH . We show that the number of nodes traversed to reach from hi to hi+1 in T tH is
O(|pi| log σ). Without loss of generality, assume hi+1 is attached on the left of of hi and falls
in the subtree attached with dlx on spine LShi . We can skip all the subtrees attached to
the nodes above dlx on LShi

. One node on a heavy path can have at most σ heavy paths
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as children. Thus, the number of nodes traversed on the spine is O(|pi| log σ). Within the
subtree of the dlx, we can search the tree to find the desired heavy path node. Since, each
node in the GST can have at most σ heavy paths as children, the height of this subtree is
bounded by O(log σ). For each pi, we may need to traverse the entire tree height to locate
the desired heavy path, and hence the lemma follows. J

Associating the chains. Let hpi (resp. hpj) be the heavy path having i (resp. j) as the
leaf node in GST and hi (resp. hj) as the corresponding heavy path node in T tH . Then, we
associate chain (i, j) with lca(hi, hj) in T tH .

Constructing the Index. Our index consists of two components, maximum chain depth
structure (MDS) and transformed heavy path structure (THS) defined as follows.
MDS component: Let hpt be the heavy path in the original heavy path decomposition

(i.e., not a dummy heavy path), associated with chain (i, j), j = next(i). Let, di =
depth(i, leaf(hpt)) and dj = depth(j, leaf(hpt)). Define maxDepth(i, j) = max(di, dj). Let
mt be the number of chains associated with hpt. Create two arrays At and A′t, each of
length mt. For each chain (i, j) associated with hpt, store doc(i) in the first empty cell of
the array At, and maxDepth(i, j) in the corresponding cell of the array A′t. Sort both the
arrays w.r.t the values in A′t. For each node u lying on hpt, maintain a pointer to the
minimum index x of A such that A′t[x] = depth(u). Discard the array A′t. Finally, build
the 1-dimensional sorted range-reporting structure (Fact 3) over At. Total space for all t
is bounded by O(n) words.

THS component: We construct the transformed heavy path tree T tH from GST. Recall that
every chain in GST is associated with a node in T tH . For each node hi in T tH , we store two
arrays, chain source array CSi and chain destination array CDi. The arrays CSi (resp.
CDi) contains the weights (i.e., the document identifier) of all the chains associated with
hi sorted by the start (resp. end) position of the chain in GST. Finally we build the
RMQ data structure (Fact 4) RMQCSi

and RMQCDi
over CSi and CDi respectively.

Total space can be bounded by O(n) words.
I Fact 4 ([6, 7]). By maintaining a 2n+o(n) bits structure, range maximum query(RMQ)
can be answered in O(1) time (without accessing the array).

Query Answering. Query answering is done by traversing from p+ to p− in GST. We start
with the following observation.

I Observation 1. For every type C chain (i, j), lca(i, j) falls on the p+ to p− path in GST.

This observation is crucial to ensure that we do not miss any type C chain in query answering.
We consider the following two cases for query answering.

3.2.1 p+ and p− falls on the same heavy path
In this case, we resort to component MDS for query answering. Assume that p+ and p−
fall on heavy path hpt. Note that a chain (i, j) qualifies as an output, iff maxDepth(i, j)
falls within the range [depth(p+), depth(p−)− 1]. See Figure 3(a) for illustration. For query
answering, follow the pointers from p+ and p− to the indexes x and y in the array At, and
issue the query 〈x, y − 1, k〉 in the corresponding Fact 3 data structure. Note that Type A
and Type B outputs can arise. We obtain the following lemma.
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(a) Chain (i1, j1) qualifies since
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0

(b) Query range in the 1-dimensional sorted range
reporting structure of hp.

Figure 3 p+ and p− falling on the same heavy path.

I Lemma 6. There exists an O(n) words data structure, such that for a top-k forbidden
extension query, we can report the top-k Type C leaves in O(|P−|+ k) time when p+ and p−
falls on the same heavy path.

3.2.2 p+ and p− falls on different heavy paths
Let p1, p2, . . . , pt be the path segments of the path from p+ to p− traversing heavy paths
hp1, hp2, . . . , hpt, where pi ∈ hpi, 1 ≤ i ≤ t. Let h1, h2, . . . , ht be the corresponding nodes in
T tH . In the following subsection, we show how to obtain answers for h1 through ht−1; we
resolve ht separately. We use the THS component for processing the chains with LCA on
h1, h2, . . . , ht−1. We start with the following lemma.

I Lemma 7. Let (i, j) be a chain associated with a node hk in T tH . If p− falls on the left
(resp. right) subtree of hk, and sp+ ≤ i < sp− (resp. ep− < j ≤ ep+), then (i, j) is qualified
as an output of the forbidden extension query.

Proof. Recall that chain (i, j) is associated with hk = lca(hi, hj) in T tH , where hi and hj are
the heavy path nodes corresponding to i and j respectively. This implies hi (resp. hj) falls
on the left (resp. right) subtree of hk. If p− falls on the left of hpk then j > ep−. The added
constraint sp+ ≤ i < sp− ensures that chain (i, j) is either a Type B or a Type C chain,
both of which are qualified as an output of the forbidden extension query. The case when p−
falls on the right of hk is symmetric. J

Lemma 7 allows us to check only the source or destination of a chain based on the position of
p−, and collect the top weighted chains; this is facilitated using the RMQ data structure. We
traverse the nodes in T tH from p+ to p−. At each node hk, if p− falls on the left of hk, we issue
a range maximum query within the range [sp+, sp− − 1] on RMQCSk

which gives us the top
answer from each node in O(1) time. Note that, [sp+, sp−− 1] range needs to be transformed
for different RMQCS structures. We use fractional cascading for the range transformation
to save predecessor searching time (refer to Appendix A for detailed discussion). Since the
height of the tree is O(log2 n) (refer to Lemma 5) at any instance, there are at most O(log2 n)
candidate points. We use the atomic heap of Fredman and Willard [9] which allows constant
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Figure 4 Marked nodes and Prime nodes with respect to grouping factor g.

time insertion and delete-max operation when the heap size is O(log2 m), where m is the
size of the universe. By maintaining each candidate point in the atomic heap, the highest
weighted point (among all candidate points) can be obtained in constant time. Also, once
the highest weighted point from a heavy path node is obtained, each subsequent candidate
point can be obtained and inserted into the the atomic heap in O(1) time. Hence the query
time is bounded by the number of nodes traversed in T tH . From lemma 5, we obtain that the
number of nodes traversed is bounded by O(min(|P−| log σ, log2 n)).

For hpt, we utilize component MDS. Let rt be the root of heavy path hpt. A chain (i, j)
qualifies as an output, iff maxDepth(i, j) falls within the range [depth(rt), depth(p−)− 1]. For
query answering, follow the pointers from rt and p− to the indexes x and y in the array At,
and issue the query 〈x, y − 1, k〉 in the corresponding Fact 3 data structure. Note that Type
A and Type B outputs can arise.

From the above discussion, we obtain the following lemma.

I Lemma 8. There exists an O(n) words data structure, such that for a top-k forbidden
extension query, we can report the top-k Type C leaves in O(|P−| log σ + k) time when p+

and p− falls on different heavy paths.

Combining Lemmas 3, 6, and 8, we obtain the result stated in Theorem 1.

4 Succinct Index

In this section, we prove Theorem 2. The key idea is to identify some special nodes in
the GST, pre-compute the answers for a special node and its descendant special node, and
maintain these answers in a data structure. By appropriately choosing the special nodes, the
space can be bounded by O(n) bits. Using other additional compressed data structures for
document listing [14], we arrive at our claimed result.

We begin by identifying certain nodes in GST as marked nodes and prime nodes based
on a parameter g called grouping factor [13]. First, starting from the leftmost leaf in GST,
we combine every g leaves together to form a group. In particular, the leaves `1 through `g
forms the first group, `g+1 through `2g forms the second, and so on. We mark the LCA of
the first and last leaves of every group. Moreover, for any two marked nodes, we mark their
LCA (and continue this recursively). Note that the root node is marked, and the number of
marked nodes is at most 2dn/ge. See Figure 4 for an illustration.

Corresponding to each marked node (except the root), we identify a unique node called
the prime node. Specifically, the prime node u′ corresponding to a marked node u∗ is the
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node on the path from root to u∗, which is a child of the lowest marked ancestor of u∗; we
refer to u′ as the lowest prime ancestor of u∗. Since the root node is marked, there is always
such a node. If the parent of u∗ is marked, then u∗ is same as u′. Also, for every prime node,
the corresponding closest marked descendant (and ancestor) is unique. Therefore number of
prime nodes is one less than the number of marked nodes. The following lemma highlights
some important properties of marked and prime nodes.

I Fact 5 ([1, 14]). (i) In constant time we can verify whether any node has a marked
descendant or not. (ii) If a node u has no marked descendant, then |leaf(u)| < 2g. (iii) If u∗
is the highest marked descendant of u, and u is not marked, then |leaf(u, u∗)| ≤ 2g. (iv) If u′
is the lowest prime ancestor of u∗. Then |leaf(u′, u∗)| ≤ 2g.

We now present a framework for proving the following lemma.

I Lemma 9. Assume the following.
(a) The highest marked node u∗ and the sequence of prime nodes (if any) on the path from

p+ to p− can be found in tprime time.
(b) For any leaf `i, we can find the corresponding document in tDA time.
(c) For any document identifier d and a range of leaves [sp, ep], we can check in t∈ time,

whether d belongs in {doc(i) | sp ≤ i ≤ ep}, or not.
For any function f(n), such that f(n) = Ω(1) and f(n) = o(n), by maintaining CSA and
additional O((n/f(n)) log2 n) bits structures, we can answer top-k forbidden extension queries
in O(search(P−) + tprime + k · f(n) · (tDA + t∈)) time.

Creating the Index. First we maintain a full-text index CSA on the document collection D.
Let gκ = dκ ·f(n)e, where κ is a parameter to be defined later. We begin by marking nodes in
the GST as marked and prime nodes, as defined previously, based on gκ. Consider any prime
node u, and let u↑ and u↓ be its nearest marked ancestor and descendant (both of which
are unique) respectively. We compute the arrays listκ(u↑, u) and listκ(u, u↓), each sorted by
increasing importance (i.e., document identifier). The arrays are maintained in the node u
w.r.t grouping factor gκ. Note that explicitly maintaining each array requires O(κ logn) bits.
Space required in bits for all prime nodes w.r.t gκ can be bounded by O((n/gκ)κ logn) i.e.,
by O((n/f(n)) logn) bits. We maintain this data-structure for κ = 1, 2, 4 . . . , D. Total space
is bounded by O((n/f(n)) log2 n) bits.

Querying Answering. For a top-k forbidden extension query 〈P+, P−, k〉, we begin by
locating the suffix ranges [sp+, ep+] and [sp−, ep−] of the patterns P+ and P− respectively;
this can be achieved in time bounded by search(P−) using the CSA. If the suffix ranges
are the same, then clearly every document containing P+ also contains P−, and the top-k
list is empty. So, moving forward, we assume otherwise. Note that it suffices to obtain a
k-candidate set of size O(k · f(n)) in the time of Lemma 9.

Let k′ = min{D, 2dlog ke}. Note that k ≤ k′ < 2k. Moving forwards, we talk of prime and
marked nodes w.r.t grouping factor g′ = dk′f(n)e. We can detect the presence of marked
nodes below p+ and p− in constant time using Fact 5. Let the prime nodes on the path
from p+ to p− be u1, u2, . . . , ut in order of depth. Possibly, t = 0. For each prime node
ut′ , 1 ≤ t′ ≤ t, we denote by u↑t′ and u

↓
t′ , the lowest marked ancestor (resp. highest marked

descendant) of the ut′ . We have the following cases.

I Case 1. We consider the following two scenarios: (i) GST(p+) does not contain any
marked node, and (ii) GST(p+) contains a marked node, but the path from p+ to p− does
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1, u1) and Listk(u1, u

↓
1)

are stored in this node

For k = 1, 2, 4, · · · , D

Figure 5 Illustration of storage scheme and retrieval at every prime node w.r.t grouping factor g.
Left and right fringes in leaf(p+ \ u↑1) and leaf(u↓t \ p−) are bounded above by g′.

not contain any prime node. In either case, |leaf(p+, p−)| ≤ 2g′ (refer to Fact 5). The
documents corresponding to these leaves constitute a k-candidate set, and can be found in
O(g′ · tDA) time i.e., in O(k · f(n) · tDA) time. Now, for each document d, we check whether
d ∈ {doc(i) | i ∈ [sp−, ep−]}, which requires additional O(g′ · t∈) time. Total time can be
bounded by O(g′ · (tDA + t∈)) i.e., by O(k · f(n) · (tDA + t∈)).

I Case 2. If the path from p+ to p− contains a prime node, then let u∗ be the highest
marked node. Possibly, u∗ = p+. Note that u↑1 is same as u∗, and that u↓t is either p− or
a node below it. For any t′, clearly listk′(ut′ , u↓t′) and listk′(u↑t′ , ut′) are mutually disjoint.
Similar remarks hold for the lists stored at two different prime nodes t′ and t′′, 1 ≤ t′, t′′ ≤ t.
Furthermore, let d be an identifier in one of the lists corresponding to ut′ . Clearly there is
no leaf `j ∈ GST(p−), such that doc(j) = d. We select the top-k′ document identifiers from
the stored lists (arrays) in the prime nodes u1 through ut. Time, according to the following
fact, can be bounded by O(t+ k).

I Fact 6 ([2, 8]). Given m sorted integer arrays, we can find the k largest values from all
these arrays in O(m+ k) time.

Now, we consider the fringe leaves leaf(p+, u∗) and leaf(ut, p−), both of which are bounded
above by 2g′ (refer to Fact 5). The ranges of the these leaves are found in constant time
using the following result of Sadakane and Navarro [27].

I Lemma 10 ([27]). An m node tree can be maintained in O(m) bits such that given a node
u, we can find [sp(u), ep(u)] in constant time.

The relevant documents corresponding to these fringe leaves can be retrieved as in Case 1.
Clearly, these fringe documents along with the k documents obtained from the stored lists
constitute our k-candidate set. Time required can be bounded by O(t+ k + g′ · (tDA + t∈)) i.e,
by O(t+ k · f(n) · (tDA + t∈)).

Note that t ≤ depth(p−) ≤ |P−| = O(search(P−)), and Lemma 9 follows. J

We are now equipped to prove Theorem 2. First, the highest marked node and the t prime
nodes from p+ to p− are obtained using Lemma 11 in O(logn+ t) time. Maintain the data-
structure of this lemma for with κ = 1, 2, 4, . . . , D. Space can be bounded by O( n

f(n) logn)
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bits. Computing doc(i) is achieved in tSA time, according to Lemma 12. Checking whether
a document d belongs in a contiguous range of leaves is achieved in O(tSA · log logn) using
Lemma 13. Theorem 2 is now immediate by choosing f(n) = log2 n.

I Lemma 11. By maintaining O((n/gκ) logn) bits in total, we can retrieve the highest
marked node, and all t prime nodes, both w.r.t grouping factor gκ = dκ · f(n)e, that lie on
the path from p+ to p− in time bounded by O(logn+ t).

Proof. We use the following result of Patil et al. [26]: a set of n three-dimensional points
(x, y, z) can be stored in an O(n logn) bits data structure, such that for a three-dimensional
dominance query 〈a, b, c〉, in O(logn+ t) time, we can report all t points (x, y, z) that satisfies
x ≤ a, y ≥ b, and z ≥ c with outputs reported in the sorted order of z coordinate.

For each prime node w, we maintain the point (Lw, Rw, |path(w)|) in the data structure
above, where Lw and Rw are the leftmost and the rightmost leaves in GST(w). Total space
in bits can be bounded by O((n/gκ) logn) bits. The t prime nodes that lie on the path from
p+ to p− are retrieved by querying with 〈sp− − 1, ep− + 1, |P+|〉. Time can be bounded by
O(logn+ t). Likewise, we maintain a structure for marked nodes. Using this, we can obtain
the highest marked node in O(logn) time. J

I Lemma 12. Given a CSA, the document array can be maintained in additional n+ o(n)
bits such that for any leaf `i, we can find doc(i) in tSA time i.e., tDA = tSA.

Proof. We use the following data-structure [10, 20]: a bit-array B[1 . . .m] can be encoded in
m+ o(m) bits, such that rankB(q, i) = |{j ∈ [1..i] | B[j] = q}| can be found in O(1) time.

Consider the concatenated text T of all the documents which has length n. Let B be a
bit array of length n such that B[i] = 1 if a document starts at the position i in the text T.
We maintain a rank structure on this bit-array. Space required is n+ o(n) bits. We find the
text position j of `i in tSA time. Then doc(i) = rankB(1, j), and is retrieved in constant time.
Time required can be bounded by tSA. J

I Lemma 13. Given the suffix range [sp, ep] of a pattern P and a document identifier
d, by maintaining CSA and additional |CSA∗|+D log n

D + O(D) + o(n) bits structures, in
O(tSA log logn) time we can verify whether d ∈ {doc(i) | i ∈ [sp, ep]}, or not.

Proof. Number of occurrences of d in a suffix range [sp, ep] is given by rankDA(d, ep) −
rankDA(d, sp− 1). Space and time complexity is due to the following result of Hon et al. [14]:
the document array DA can be simulated using CSA and additional |CSA∗| + D log n

D +
O(D) + o(n) bits structures to support rankDA operation in O(tSA log logn) time. J

5 Concluding Remarks

In this paper, we introduce the problem of top-k forbidden extension query, and propose
a linear space index for answering such queries. By maintaining a linear space index, the
general forbidden pattern query for an included pattern P , and a forbidden pattern Q, can be
answered in O(|P |+ |Q|+

√
n · occ) time, where occ is the number of documents reported. We

show that by maintaining a linear space index, we can answer forbidden extension queries in
optimal O(|P−|+ occ) time. We also address the more general top-k version of the problem,
where the relevance measure is based on PageRank. We show that by maintaining linear
space index, we obtain a query time of O(|P−| log σ + k), which is optimal for constant
alphabets. Furthermore, we obtain a succinct solution to this problem.
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A Range Transformation using Fractional Cascading

We employ the fractional cascading idea of Chazelle et.al [3] for predecessor searching in CS
array. Successor searching and CD array are handled in a similar way. The idea is to merge
the CS array for siblings and propagate the predecessor information from bottom-to-top.
Two arrays are used for this purpose: merged siblings array MS and merged children array
MC. Let hi be an internal node in T tH having sibling hj and two children leaf nodes hu
and hv. Array MCu (resp. MCv) is same as CSu (resp. CSv) and stored in hu (resp. hv).
The arrays CSu and CSv are merged to form a sorted list MSuv. Note that, CSv values are
strictly greater than CSu; therefore, CSu and CSv form two disjoint partitions in MSlr after
sorting. We denote the left partition as MSluv and the right partition as MSruv. We also
store a pointer from each value in MSluv (MSruv) to its corresponding value in MCu (resp.
MCv). The list MCi is formed by merging CSi with every second item from MSlr. With
each item x in MCi, we store three numbers: the predecessor of x in CSi, the predecessor of
x in MSluv and the predecessor of x in MSruv. Total space required is linear in the number
of chains, and is bounded by O(n) words.

Using this data structure, we show how to find predecessor efficiently. Let hw be an
ancestor node of hz in T tH . We want to traverse hw to hz path and search for the predecessor
of x in CSi, where hi is a node on the hw to hz path. When we traverse from a parent node
hi to a child node hj , at first we obtain the predecessor value in parent node using MCi.
If hj is the left (resp. right) children of hi, we obtain the predecessor value in MSljk (resp.
MSrjk), where hk is the sibling of hj . Following the pointer stored at MSljk or MSrjk, we
can get the predecessor value at MCj , and proceed the search to the next level. This way
we can obtain the transformed range at each level in O(1) time.
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Abstract
In this paper, we study the maximum density, threshold and emptiness queries for intervals in
the streaming model. The input is a stream S of n points in the real line R and a floating closed
interval W of width α. The specific problems we consider in this paper are as follows.

Maximum density: find a placement of W in R containing the maximum number of points
of S.
Threshold query: find a placement of W in R, if it exists, that contains at least ∆ elements
of S.
Emptiness query: find, if possible, a placement of W within the extent of S so that the
interior of W does not contain any element of S.

The stream S, being huge, does not fit into main memory and can be read sequentially at most
a constant number of times, usually once. The problems studied here in the geometric setting
have relations to frequency estimation and heavy hitter identification in a stream of data. We
provide lower bounds and results on trade-off between extra space and quality of solution. We
also discuss generalizations for the higher dimensional variants for a few cases.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Density, threshold, emptiness queries, interval queries, streaming model,
heavy hitter, frequency estimation
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1 Introduction

Motivated by problems related to chip density and thermal analysis in VLSI [4, 19], researchers
in computational geometry have looked at problems involving windowing queries on a point
set [5], such as maximum empty rectangle query [2] and maximum density query [23].
Windowing queries or their one-dimensional counterpart – interval queries – have motivations
in geospatial and sensor network applications [16], where huge amounts of data are generated
continuously in a stream, and communication is very expensive. Thus, it is preferable to
communicate an appropriate summary of the data. Moreover, devices used for this purpose
have limited memory. This calls for solving the problems on streaming data using limited
amount of memory.

We consider density, threshold, and emptiness queries for a fixed-length interval among
points in R in the streaming model [3, 22]. In the pure or one-pass streaming model, the data
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can be read only once and in the multi-pass streaming model, the data can be read more
than once but always in the same order; in both cases the data is read-only. Apart from the
number of passes, the other crucial issues in the streaming model are the amount of working
memory used to process the input and the time taken, per item in the stream, to update this
working memory. Ideally, both these quantities should preferably be significantly sub-linear
in the size of the input.

1.1 The Computational Model and Problems Considered
Our input is a parameter α > 0, representing the width of a closed interval W , plus a
stream (i.e., sequence) S = 〈s1, . . . , sn〉 of n points, where each si ∈ R. We consider certain
interval queries that involve placing W suitably among the points in S so as to satisfy certain
objectives. The combinatorial nature of these queries ensures that it suffices to consider only
those placements where the left end-point of W coincides with a point in S. Therefore, we
define, for each s ∈ S, the set Is(α) := {x′ | x′ ∈ S and s 6 x′ 6 s+ α}.

Our problems of interest are as follows.

The maximum density problem, where the goal is to find maxs∈S |Is(α)| and a choice of
s that achieves the maximum; the problem is denoted as max-dense.
The sorted-order maximum density problem, denoted max-dense-sorted, where the
stream S arrives in a sorted fashion, i.e., s1 6 s2 6 · · · 6 sn and the goal is the same as
above.
The threshold query problem, denoted threshold, where we must report whether there
exists an s with |Is(α)| > ∆; the parameter ∆ is known in advance.
The emptiness query problem, denoted emptiness, where we must report whether there
exists an s ∈ S \ {max S} with |Is(α)| = 1. This amounts to asking whether the open
interval int(W ) can be placed within [minS,max S] so that it avoids all points in S.

Computations take place in a word RAM with word size large enough to hold the
parameters α and ∆, a single point si, and a dlogne-bit counter. This essentially means that
all “real numbers” appearing as inputs are in fact rationals with bounded bit precision. In
our algorithms, the precision of intermediate computations will be within a constant factor
of the word size. The stream length n may not be known a priori, but thanks to standard
techniques we can often nevertheless design algorithms pretending that it is.

1.2 Our Results
We first observe that max-dense is hard: even a randomized algorithm that approximates
OPT := maxs |Is(α)| up to a large constant factor requires Ω(n) bits of space.1 On the
other hand, max-dense-sorted admits a deterministic (1− ε)-factor approximation2 using
O(ε−1 log(εn)) words of working space. Returning to max-dense, we show that given a ∆
such that OPT > ∆, we can compute a (1− ε)-factor approximation with high probability
using O(n logn

ε3∆ ) words. We also suggest a 3-factor approximation algorithm that runs in
O(n logn) time. For the natural generalization of max-dense to R2, we show that a 6-
approximation can be obtained in O(n logM) time using O(M) words of space whereM is the
size of the maximum independent set of the copies of W positioned such that a specific (say

1 As is common in streaming algorithms, lower bounds are expressed in bits and upper bounds in words.
2 A γ-factor approximation algorithm means a placement of W at a point s ∈ S, such that OPT >
|Is(α)| > γ ·OPT .
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top-left) corner is at each point in S. For threshold, we provide approximate deterministic
as well as random sampling based algorithms, achieving space bounds of Oε(n/∆)3. We
prove a randomized Ω(n/∆2) lower bound, showing that this is nearly tight. For emptiness,
we prove a strong lower bound of Ω(n) in the randomized case and an especially strong lower
bound of 1

2n−O(1) in the deterministic case.

1.3 Related Work
The need to process massive data has generated considerable interest in the data streaming
model [15, 22]. The geometric problems we study here have close ties with frequency moment
estimation [3] and heavy hitter identification [11]; see also [25] for a short summary. In the
extensively-studied frequency moments problem, the stream S consists of n integers, each in
M := {1, 2, . . . ,m} for some m = nΘ(1). Let fi = |{j | sj = i}| denote the frequency of i in
S, and define for each k > 0, Fk :=

∑m
i=1 f

k
i . By convention, F0 is the number of distinct

elements and F∞ is maxi∈Mfi. Up to logarithmic (in n and m) factors, the space complexity
for approximating Fk is known to be Θ(1) for 0 6 k 6 2 and Θ(n1−2/k) for k > 2 [3, 17, 7]. In
particular, approximating F∞ to a large constant factor, e.g., 100, requires Θ(m) space [26].

In frequency estimation, apart from the sequence S, we have a threshold κ, 0 < κ < 1
and we have to maintain an estimate f̄i, of fi, such that fi − κn 6 f̄i 6 fi. In heavy hitter
identification, we have two parameters ξ and κ, 0 < ξ < κ < 1, and we need to output all
elements whose frequency is more than κn, and no element whose frequency is less than
(κ − ξ)n should be reported. Starting with the result of Misra and Gries [21], there have
been a host of results [10, 12].

In the context of the present problem, Emek et al. [13] proposed a 2-factor approximation
algorithm for computing the maximum independent set of intervals in streaming setup, that
uses space linear in the size of the output. They also proposed a matching lower bound
claiming that an approximation ratio of 2−ε cannot be obtained by any randomized streaming
algorithm with space significantly smaller than the size of the input (much larger than the
output size). Recently, Cabello and Pérez-Lantero [6] showed that if the end-points of the
intervals are in the set {1, 2, . . . , n}, then an estimate M̂ of the maximum independent set M
can be obtained in space polynomial in ε−1 and logn which satisfies 1

2 (1− ε)M 6 M̂ 6M

with probability at least 2
3 . For equal length intervals, the estimate M̂ of M satisfying

2
3 (1 − ε)M 6 M̂ 6 M can be obtained using same amount of space satisfying the same
probability bound.

In the multipass streaming model, there have been results related to approximate convex
hull [16], approximate minimum enclosing ball [9]. Agarwal et al. [1] proposed a general
technique for approximating various extent measures of a point set P in Rd in the streaming
model. Chan [8] raised the issue of getting O(1) space streaming algorithms for these
problems. Apart from these, Har-Peled and Mazumdar [14] gave a (1 + ε)-approximation of
the k-median and k-mean clustering of a stream of points in Rd.

2 Interval Placement for Maximum Density

We start by observing that max-dense generalizes the problem of frequency moment
estimation. Given a stream S = 〈s1, . . . , sn〉 of integers, we can consider its elements as
points in R. Take α = 0. Then, for all s ∈ S, the cardinality |Is(α)| is simply the frequency

3 Oε(f) denotes ε in the expression of f is treated as a constant.
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of s. Therefore maxs |Is(α)| = F∞(S). For the F∞ problem, we recall an important
result observed (though not formally written as a theorem) in Alon et al. [3]. Based on
communication lower bounds for the multi-party set-disjointness problem, it follows that
distinguishing F∞(S) = 1 from F∞(S) > ∆ requires Ω(n/∆2) space. This holds even for
randomized and multipass streaming algorithms using O(1) passes.

Based on the above, we obtain the following strong lower bound.

I Theorem 2.1. For the max-dense problem, put OPT := maxs |Is(α)|. Any randomized
constant-pass algorithm that distinguishes OPT > ∆ from OPT = 1 with probability > 2/3
uses Ω(n/∆2) bits of space. In particular, approximating OPT to any constant fraction
requires Ω(n) space.

If one wants to avoid degeneracy, a simple perturbation argument allows one to replace
the hard instance for max-dense implicit above with one in which all the points in the
stream are distinct and α > 0.

2.1 Points in Sorted Order: The Problem max-dense-sorted
In light of Theorem 2.1, we consider the easier variant max-dense-sorted, where the input
stream satisfies s1 6 s2 6 · · · 6 sn. For this variant, we start by describing an output
sensitive procedure, followed by a 2-approximation algorithm and finally, we give a very
space-efficient deterministic algorithm achieving a (1 + ε)-approximation.

The optimum solution OPT can be computed using OPT counters using the following
simple output sensitive procedure. We allocate counters to count points in Is1(α), Is2(α), . . .,
until we get a point p ∈ S that lies outside s1 +α. At this point of time, the counter for Is1(α)
is closed, and a new counter for Ip(α) is initiated. At any instant of time, the maximum
of the contents of all closed counters is stored in OPT . At the end of the stream, all the
active counters are closed, and we report the content of OPT . Thus the maximum number of
counters active at any point of time is bounded by OPT . For n points uniformly distributed
in the interval [`, u], this algorithm will be very space efficient when u−`

α > n/polylog(n) –
see Lemma 1.1 of the Appendix.

A simple 2-approximation algorithm is easy to obtain. (We would need this idea when
we discuss threshold.) We initiate a counter for counting points in Is1(α). The counting
continues until we get a point p ∈ S that lies outside [s1, s1 + α]. The same counter now
starts counting for Ip(α). Finally, report the interval with maximum number of points. The
approximation ratio follows from the fact that the optimal α-interval spans on two consecutive
α-intervals Isi(α) and Isi+1(α) for which we have computed the number of points.

Next, we discuss the (1 + ε)-approximation, the main result of this subsection. For our
algorithm, we introduce a subroutine that we call the (k,B)-process (k and B are positive
integers), defined as follows. We maintain up to B active counters for certain sets Is(α), plus
a register nmax to record the maximum value ever seen in a counter. At every kth stream
element s – i.e., for s ∈ 〈s1, s1+k, s1+2k, . . .〉 – first close all active counters for sets Is′(α)
such that s > s′ + α, updating nmax as needed. Reclaim the space allocated to all closed
counters. Then, if there is space, open a new counter to accurately count Is(α); if there is
no room – i.e., we are about to open a (B + 1)th counter – then abort the process instead.
Increment all active counters. At the end of the stream, if we haven’t aborted, output nmax.

We make use of the simple observation that if the (k,B)-process aborts, then OPT > kB;
otherwise, OPT − k 6 nmax 6 OPT .4

4 The initial idea of classifying OPT was conveyed to one of the authors by Sai Praneeth.
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Algorithm 1: active-process (k,B)
Input stream s1, s2 . . .

A set C of B counters. Initialize the first counter for Is1(α). nmax ← 0 ;
1 for s ∈ {s1+k, s1+2k, s1+ik . . .} do
2 Close all active counters for Is′(α) for s > s′ + α and update nmax ;
3 Increment all active counters (for Is′(α) for s 6 s′ + α) ;
4 if |C| < B then
5 initialize a new counter for Is(α)

else
6 abort current process
7 Return (nmax)

Using these processes, we design our algorithm as follows. Let ` be an integer to be
chosen later. Choose k = bεnc1/` and B = dk/εe. For i = 0 to `, in parallel, run the
(ki, B)-process. At the end of the stream, output nmax corresponding to the smallest i such
that the (ki, B)-process did not abort. Let n∗ be this output. There will always exist a
suitable i because, as can be checked easily, the (k`, B)-process cannot abort.

I Claim 2.2. We have (1− ε)OPT 6 n∗ 6 OPT .

Proof. The upper bound on n∗ follows directly from the observation we recorded. For
the lower bound, first suppose that the (1, B)-process did not abort. Then that process
accurately counted Is(α) for every s in the stream, so n∗ = OPT . Next, suppose that
the (ki−1, B)-process aborted, where i > 0. By our observation, OPT > ki−1B. Also,
because the (ki, B)-process did not abort, by the other part of our observation, we have
n∗ > OPT − ki = OPT − (ki−1B)(k/B) > (1− k/B)OPT > (1− ε)OPT . J

The previous algorithm uses at most B counters and one extra register in each of its `+ 1
parallel processes. Therefore, its space usage is O(`B) = O(`ε−1(εn)1/`) words. We optimize
this by setting ` ≈ log(εn).

I Theorem 2.3. For all ε ∈ (0, 1), there is a deterministic (1− ε)-factor approximation for
max-dense-sorted, using O(ε−1 log(εn)) words of space.

2.2 Points in Arbitrary Order: The Problem max-dense
We return to max-dense, with points arriving in an arbitrary (unsorted) order. Here, we
assume that no two points in S have the same x-coordinate. For some appropriate constant
c, we sample independently every element from the stream with probability p = cnk logn/n ,
where nk is the size of a k-sample (for some appropriate k depending on the application).
Let R′ denote this sample. We sort the elements in R′ and then choose a subset R ⊂ R′ by
selecting every c logn-th element from the sorted sequence of R′.

I Claim 2.4. For a given ε (0 < ε < 1), there exists some appropriate c such that for every
pair of consecutive elements ri, ri+1 ∈ R, we have

Pr[k(1− ε) 6 |S ∩ [ri, ri+1]| 6 k(1 + ε)] > 1− 1/n.

Proof. For any consecutive (sorted) sample points ri, ri+1, if the number of unsampled
elements, Ui is less than k(1 − ε) elements, it implies that more than c logn elements
were chosen from Ui. Every element is sampled independently with probability p = c logn

k
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(nk = n/k), so the expected number of samples in Ui is c(1− ε) logn. Let Xi be a random
variable representing the number of samples from Ui. From Chernoff bounds, we have
Pr[Xi > (1 + δ)E[Xi]) 6 exp(−δ2E[Ui]/2) where E[Ui] = c(1− ε) logn and 1 + δ = 1/(1− ε),
i.e., δ ≈ ε. For an appropriately large value of c = Ω( 1

ε2 ), we can bound this probability by
1
n2 . The above calculation holds for a pair of sample points that are consecutive, but we can
easily uncondition it by multiplying with the probability that they are consecutive (which is
less than 1). Therefore, none of the intervals contain less than k(1− ε) points.

A similar calculation yields an upper bound on the number of unsampled elements in an
interval. J

The above proof says that the sample R can be treated as a k-sample of S for getting
an approximate solution for max-dense. If OPT > ∆, then we choose k = bε∆c to have
the size of the k-sample as nk = n/(ε∆). If OPTR is the maximum count of an α-interval
corresponding to an element of R, then with high probability we have (1− ε)2OPT 6
k(OPTR − 1) 6 (1 + ε)2OPT , where the extra 1± ε factor is due to the sampling variance
as per the previous claim. Substituting ε = ε/2, we have an (1− ε) approximation.

I Theorem 2.5. If OPT > ∆, then for any 0 < ε < 1, OPT can be approximated within a
factor (1− ε) with high probability using O

(
(ε∆)−1cn logn

)
space where c = O(ε−2). The

value ∆ is an input to the streaming algorithm.

I Remark. There is a huge gap between the space requirements of max-dense and max-
dense-sorted.

An output sensitive algorithm

With the strong lower bound already shown in Theorem 2.1, our goal is to have an output
sensitive algorithm. Here, the intervals (of unequal length) are created online, and stored
in a height balanced binary tree T . We use the term short, exact and long to denote the
intervals having length less than or equal to or greater than α. With each created interval I,
we store its span δ(I) and count fields count(I). Every interval J having span δ(J) > α has
count(J) = 0. Initially, a single interval (−∞,∞) is present in T . When a point p arrives,
the tree T is searched to identify the interval (say I = [a, b]) containing p. If δ(I) 6 α,
count(I) is incremented. If δ(I) > α, we insert an interval J with one end point at p and of
span δ(J) = α in T . Here the following cases need to be considered:
Case 1: J = [p, q] is contained in an existing interval I = [a, b] with δ(I) > α (see Figure 1(a)).

We delete I from T and insert three intervals I1 = [a, p], I2 = J = [p, q] and I3 = [q, b]
in T with count(I1) = count(I3) = 0 and count(I2) = 1. Here I2 is an exact interval. I1
and I3 may be of any type.

Case 2: If J = [p, q] overlaps with the some other interval I ′ = [c, d] ( 6= I) then I ′ must be
an α-interval. We consider J ′ = [q′, p] of length α, with p as its right end-point (where q′
is not an input point).

Case 2.1: If J ′ does not overlap with any other interval (See Figure 1(b)), then we delete I
and insert three intervals I1 = [a, q], I2 = J ′ = [q, p], I3 = [p, b] in T . Here I2 is exact and
I3 is short. I1 may be of any type.

Case 2.2: If J ′ = [q, p] overlaps with an interval I ′′ = [e, f ] (See Figure 1(c)), then I ′′ is also
of length α, and we have I = [a, b] = [f, c] with α < δ(I) 6 2α. Here I is replaced with
an exact interval I1 = [a, a+α] and a short interval I2 = [a+α, b] in T with count[I1] = 1
and count[I2] = 0.

The intervals created are characterized as follows.
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newly inserted pointinserted intervals

(a) Case 1

deleted interval

a b

p q
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newly inserted point inserted intervals

(b) Case 2.1 deleted interval

p q

c

q′
d

newly inserted point inserted intervals

(c) Case 2.2 deleted interval

p q

c

q′

d
e f

a b

α

Figure 1 Processing of a new point in the stream: Here the dotted line is L, the existing intervals,
and the intervals to be inserted for a new stream element p, are shown.

I Lemma 2.6. (a) At any point of time during the execution, the two adjacent intervals of
any short interval are exact intervals.

(b) The interval with maximum frequency contains at least 1
3OPT , where OPT is the

maximum number of points of S that an α-interval can contain.

Proof. Part (a) follows from the fact that a short interval is created by splitting a long
interval of length less than 2α (see Case 2.2 earlier).

Part (b) follows from the fact that the interval corresponding to the OPT may span at
most 3 intervals of T . J

We now give an estimate of the size of the work-space for maintaining T using the size of
maximum independent set (MIS) of the set of α-intervals anchored at each point of S.

I Lemma 2.7. If χ is the number of exact intervals in T , then 2
3MIS 6 χ 6MIS.

Proof. The right-hand side of the inequality trivially follows. We need to prove the left-hand
side of the inequality. Note that, the long intervals do not contain any point. Also, in the
optimum solution, it is not possible to have more than one interval generated by two points
inside a short or exact interval since its length is less than or equal to α. Again, both the
neighbors of a short interval in T are exact intervals (by Lemma 2.6(a)). Thus, we have the
left hand side of the inequality, since in the worst case, there may exist an instance where
each triplet (exact, short, exact) of intervals is separated by a long interval. J

The output sensitive algorithm is summed up in the next Theorem. Note that MIS in
the worst case can be linear.
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new point, and
new rectangle

Figure 2 Insertion of a point.

I Theorem 2.8. For max-dense, an α-interval Î can be computed in O(n logn) time using
O(MIS) extra work-space, such that the number of points of S that Î covers is at least 1

3OPT ,
where OPT is the maximum number of points of S that can lie inside an α-interval, and
MIS is the size of the independent set among all α-intervals with left end-points anchored
at the points in S.

Proof. The approximation factor follows from Lemma 2.6(b). The time complexity follows
from the fact that we are spending O(1) time for processing each point. The space complexity
follows from the number of intervals stored in T . By Lemma 2.6(a), the number of short
intervals is less than the number of exact intervals. The number of large intervals can be at
most 1 more than the number of exact intervals in the worst case, and Lemma 2.7 says that
the number of exact intervals is less than or equal to MIS. Thus, the number of intervals in
T is O(MIS). J

2.3 Maximum Density with Points in Two Dimensions
Here a stream of points S is arriving online in R2, and a rectangular window W of size α× β
is given. The objective is to report the position of W that contains maximum number of
points of S. We can formulate the problem as follows.

I Definition 2.9. For each point p in the stream S, an exact copy of W is a rectangle of
size α× β with p on its top-left corner.

Thus, our objective is to compute the largest clique in the intersection graph of these exact
copies of W , where the bottom-right corner of W is to be placed to contain the maximum
number of points. In order to handle this streaming version of the problem, we create copies
of W in a slightly different manner, and show that the approximation factor of our proposed
algorithm is 6.

As in max-dense, here also we create a covering of points of S in R2 with disjoint
rectangles of size α′ × β, α′ 6 α, such that each rectangle contains at least one point of
S. As the points in S arrive, we create these rectangles online (see Figure 2), and store
them in a data structure. When a point p ∈ S arrives, if it lies inside an existing rectangle
then the count of that rectangle is increased by one; otherwise, a new rectangle is created
that contains p, and its count is set to 1. When the stream ends, the rectangle having the
maximum count is reported.

We assume that the points in S have positive x and y coordinates. We conceptually split
the floor using horizontal lines y = 0, β, 2β, . . .. On arrival of a point p = (px, py) ∈ S, if it is
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not inside any one of the existing rectangles, we create a new rectangle as follows: we compute
i = py

β . The vertical span of the created rectangle is [iβ− β
2 , iβ+ β

2 ] or [(i+1)β− β
2 , (i+1)β+ β

2 ]
depending on whether py − iβ < β

2 or py − iβ > β
2 . As in max-dense, the horizontal span

of this rectangle is decided such that it must contain p, its horizontal width is at most α,
and it does not overlap on any other existing rectangles in the data structure.

We store the horizontal lines containing at least one rectangle in a height-balanced binary
tree T. The rectangles having vertical span [iβ − β

2 , iβ + β
2 ] are stored in the form of disjoint

intervals on the horizontal line y = iβ in a height-balanced binary tree Ti as in max-dense,
and is attached with the i-th node of T. The following theorem generalizes the result.

I Theorem 2.10. Given a stream S of n points in R2, executing a single pass over the
stream, one can compute a position of placing a rectangular window W of a given size in R2

such that it encloses at least OPT
6 points, where OPT is the maximum number of points in S

that can be enclosed by placing the window W .
The time and work-space required for executing this algorithm is O(n logRopt) and O(Ropt)

respectively, where Ropt is the size of the maximum independent set of the exact copies of W
corresponding to the points in S.

Proof. Let Wopt be the optimum position of the rectangle W , and OPT be the number of
points in Wopt. Our algorithm has reported Wmax that contains maximum number of points
with respect to our definition of rectangles for covering the points in the plane. Observe that
Wopt can overlap on at most 6 different rectangles according to our layout (see Figure 2);
one of these rectangles must contain at least 1

6OPT number of points. Thus if OPT be the
number of points in Wopt, then Wmax contains at least 1

6OPT points.
If M is the number of rectangles present in the data structure T, then, processing each

point takes O(logM) time in the worst case. Thus, the time complexity of the algorithm is
O(n logM) time, and it uses O(M) extra work-space.

Now, we show that M 6 2Ropt. Consider the exact copy of W corresponding to a point
p ∈ S (see Definition 2.9). If i = bpy

β c, then assign p (and hence, W ) to both the lines y = iβ

and y = (i+ 1)β. Now, consider each horizontal line separately, and consider the intersection
graph of the intervals of width α corresponding to the assigned points with this line. If Ii is
the maximum independent set of this interval graph, andMi is the set of intervals stored in Ti,
then |Mi| 6 |Ii| (by Lemma 2.7). Thus,M =

∑k
i=1 |Mi| 6

∑k
i=1 |Ii|, where k is the number of

horizontal splitting lines of the floor. Again, since the exact copy of W corresponding to each
point p ∈ S is assigned to two adjacent splitting lines, the two sets Iodd = ∪i=1,3,...,kIi and
Ieven = ∪i=2,4,...,kIi are independent, and the size of each of them is less than or equal to Ropt.
Thus, we have the desired result M =

∑k
i=1 |Mi| 6

∑k
i=1 |Ii| 6 Iodd + Ieven 6 2Ropt. J

3 Threshold and Emptiness Queries

Now we turn to the other types of interval queries, namely threshold and emptiness queries
respectively.

3.1 Threshold Queries: The Problem threshold
Recall that the goal of threshold is that given prespecified α and ∆, to determine whether
an α-interval can be placed to contain at least ∆ of the points in the input stream S.
As already noted, this is equivalent to finding whether there exists an s ∈ S such that
|Is(α)| > ∆. We first discuss a two-pass deterministic algorithm for threshold, followed by
a one-pass randomized approximation algorithm.
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Algorithm 2: Update(s)
begin

Initialize all d1/εe counters to 0;
if (s belongs to any of the intervals being tracked by counters in C) then

increment the counter for the α-interval in L in which s belongs;
else

if (|C| < d1/εe) then
Open a new counter, that tracks the number of points inside Ii(α), with a
count of 1, where i = ds/αe;

else
Decrement all counters in C by 1 and return to the available pool of
counters all counters that reach 0;

A Deterministic Algorithm

The idea is to use the Misra-Gries summary [21] which is basically a generalization of the
classical majority finding algorithm. Subsequent researchers [12, 18, 25] have used this idea
for frequency estimation and finding heavy hitters. Apart from the sequence S, we have a
threshold ε, 0 < ε < 1, and we can maintain an estimate f̄i, of fi = |Isi

(α)|, which is the
frequency of si ∈ S, such that fi − εn 6 f̄i 6 fi, and f̄i for all α-intervals can be computed
using O(1/ε) counters.

We reduce our problem to Misra-Gries summary giving labels to the points in S. Each
point s ∈ S is labeled as ds/αe – this basically classifies each point s into a set of disjoint
canonical intervals L = {I1(α) = [0, α), I2(α) = [α, 2α), . . . , }. Let us denote the set of
counters as C, |C| 6 d1/εe; the counters in C would maintain the count of points in some of
the d1/εe intervals of L. We set ∆ = ε · n. Note that, at a time at most d1/εe α-intervals are
active. The procedure is described next.

Let fi = |Ii(α)|, denote the number of points inside the i-th canonical interval of L. At
the end of the stream, if f̄i be the value of the counter for the i-th canonical interval of L,
(f̄i = 0 if it is decremented to 0 during the process), then it is guaranteed that f̄i ∈ [fi−∆, fi]
because of the following ideas as described in [25]. The upper bound is trivial. For the
lower bound, let f̄i > fi − γ where γ is the number of times the counter for an α-interval
can be decremented. Recall that |C| counters are decremented together. As all α-intervals
are disjoint and no point is repeated, we have d1/εe · γ 6 n. So, γ 6 nε 6 ∆. Thus we have
fi −∆n 6 f̄i 6 fi. Note that, the converse is not true, i.e. even if f̄i > 0 for some si, fi may
be less than ∆. This necessitates a second pass, where we can verify the actual counts.

The above gives information only about the canonical intervals. Now using the ideas of
the simple 2-approximation algorithm in Section 2.1, we can claim the following about the
original question of threshold– if there exists an s with |Is(α)| > ∆, then there also exists
a canonical interval with frequency greater than ∆/2. So, if f̄i > ∆, then our answer is yes; if
all f̄i 6 ∆/2, then our answer is no. If there exists f̄i such that ∆/2 6 f̄i 6 ∆, then the only
thing we can say about the threshold question is that there exists s with |Is(α)| > ∆/2.

I Theorem 3.1. There exists a two-pass deterministic algorithm for threshold using
O(1/ε) counters that gives a 2-factor approximate answer, where ∆ = ε · n.
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A Randomized Approximation Algorithm

We propose a one pass randomized approximation algorithm for threshold that returns
the correct answer with high probability (1− n−Ω(1)). We draw a random sample of points
from S where each point is chosen with probability p = logn

∆ to generate a random sample R.
But n is unknown to us since it is an one pass algorithm. Assume, for now that we know n;
we would later resolve this problem.

Note that, the expected space needed for storing R is n logn
∆ . As every element in R is

sampled with a probability p, the expected sample size in any α-interval I containing more
than ∆ points is RI = Ω(logn). Using Chernoff bounds, it can be shown that with high
probability RI > c logn. Moreover, if all α-intervals contain fewer than ∆

β points, for some
β > 1, then with high probability, no α-interval contains more than (c− ε) logn points, for
some ε > 0. If the given space exceeds n logn

∆ , then the above scheme works in a straight
forward manner by first choosing the sample and subsequently finding the largest α-interval
of the sample and then verifying if it exceeds c logn. To extend this idea where n is not
known a priori, we can use the idea of Manku and Motwani [20] where the sampling rate is
decreased as the stream progresses, so that space usage remains bounded. We can summarize
as follows.

I Theorem 3.2. There is a one pass O(n logn
ε2·∆ ) space bounded randomized algorithm that

correctly reports an α-interval containing more than ∆ points or asserts that no α-interval
contains more than (1− ε) ·∆ points with high probability.

I Remark. Compared to the two-pass algorithm, it uses logn-factor more space. Compared
to Theorem 2.5, the bound is better by a factor ε since we are only interested in a threshold.

Space Lower Bound for Threshold Queries

We can obtain a lower bound for threshold by using the same technique as for max-dense,
i.e., reducing from the F∞ problem. Suppose a stream of integers S has the property that
either F∞(S) = 1 or else F∞(S) > ∆, for some threshold parameter ∆. Taking α = 0 we see
that the answers to the threshold query in these two cases are “no” and “yes” respectively.
We conclude the following lower bound. As before, the implicit hard instances can be made
non-degenerate by perturbation.

I Theorem 3.3. A randomized constant-pass algorithm that solves the basic decision version
of the threshold problem with parameter ∆ requires Ω(n/∆2) space.

3.2 Emptiness Queries: The Problem emptiness
In the emptiness problem, the objective is to find whether there exists an empty interval of
length α within the extent of the set of points in the data stream. As noted earlier, this is
equivalent to determining whether there exists s ∈ S \ {max S} such that |Is(α)| = 1. We
show that this problem also admits strong lower bounds.

For this, we reduce from disjm, the two-party set-disjointness communication problem
on the universeM = {1, 2, . . . ,m}. In the communication problem, Alice gets a set X ⊆M
and Bob gets a set Y ⊆M. They must decide whether or not X ∩ Y = ∅. This problem has
deterministic communication complexity m+ 1 and randomized communication complexity
Ω(m), see e.g., [24].

The reduction is as follows. Alice converts X into a stream of elements of {0} ∪ (M\X)
and Bob similarly converts Y to (M\ Y ) ∪ {m+ 1}. If X ∩ Y = ∅, then the concatenation



A. Bishnu, A. Chakrabarti, S. C. Nandy, and S. Sen 347

of these streams contains every point in {0, 1, . . . ,m+ 1}, so it is impossible to find an empty
interval of width α = 3

2 . On the other hand, if X and Y contain a common element z, then
the combined stream is missing z, so the open interval (z − 1, z + 1) is empty. It follows
that any algorithm that solves emptiness also solve disjm. The stream created has length
n 6 2m. Therefore, we obtain the following bounds.

I Theorem 3.4. Every randomized constant-pass algorithm that solves emptiness requires
Ω(n) bits of space. Furthermore, every deterministic algorithm that does the same requires
at least 1

2n−O(1) space.

4 Conclusion

We studied some problems related to density of points inside intervals in the streaming
model. We observed that these problems in geometry are generalizations of frequency
moments, frequency estimation and heavy hitters problems. We obtained deterministic as
well as randomized approximations using bounded amount of extra space. We proved nearly
matching lower bounds on space as well. An interesting open problem would be to look
at the higher dimensional variants of the above problems apart from tightening the space
bounds.
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A Maximum number of points in an interval having uniformly
distributed points

Let the stream S be any arbitrary permutation of n points where the points are uniformly
distributed in the range [`, u]. Let u−`

α = g(n) in where g(n) is a function of n. Then we
have the following bound on the maximum number of points in any interval of length α.

I Lemma 1.1. The maximum number of points in any interval I ⊂ [`, u] is bounded by
max{ n

g(n) , c logn/ log logn} with probability at least 1− 1/n for g(n) 6 n1+ε for any ε > 0.
For g(n) > n1+ε, it is O(1) with probability > 1− 1/n.

Proof. Consider a canonical partition of the range [`, u] consisting of intervals [`, `+ α], [`+
α, `+ 2α] . . . [`+ iα, `+ (i+ 1)α]. Let us denote this set of intervals by C - from our previous
assumption, the number of intervals in C is bounded by g(n).
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Suppose the n points are generated as i.i.d. in [`, u], viz., each of the n points is
independently generated with uniform distribution in [`, u]. For a fixed interval I ′ ∈ C, the
probability that point qi, 1 6 i 6 n is in I ′ is p = α

u−` . Let U be random variable that
represents the number of points in I ′ that follows a binomial distribution, so E[U ] = n

g(n) .
Therefore it follows from the following version of Chernoff bounds

Pr[U > (1 + ∆)E[U ] 6
[

e∆

(1 + ∆)1+∆

]E[U ]

(1)

that the number of points in I ′ is bounded by c′ log g(n)/ log log g(n) with probability 1 -
1/g(n)c′ for some appropriate c′ using ∆ = `−u

α , for g(n) > en. Since the total number of
intervals is bounded by g(n), a similar bound follows for all intervals in C using the union
bound and by adjusting the value of c′. For any arbitrary α length interval ( 6∈ C), it intersects
at most two intervals in C and so it cannot exceed 2c log g(n)/ log log g(n) = θ( logn

log logn ).
For g(n) 6 n/ logn), the bound of n/g(n) holds with high probability using similar

calculations.
For g(n) > n1+ε, E[U ] = n−ε and choose ∆ = cnε for some appropriately large constant

c. Substituting in Equation 1 yields the required bound Pr[U > Ω(1)] 6 1/n. J
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1 Introduction

Throughout the sciences, clustering plays a crucial role in data exploration and analysis. In
the typical setting, we are presented with a set of data points that we wish to partition into
some number of groups, called clusters, in such a way that some notion of within-cluster
similarity is large and, optionally, between-cluster similarity is small. The data in question
can then be well-represented by selecting one point from each cluster, typically called cluster
centers. Commonly-used objectives for measuring the goodness of a clustering (and a selection
of cluster centers) include k-means, k-centers and k-medians [3]. Most such objectives give
rise to clustering problems that are known to be NP-hard (see, for example, [30] and citations
therein). These problems have a rich history in computer science and engineering. Clustering
problems date back at least as far as 1857 [35], and a number of clustering algorithms are
well-known outside the theory community, most notably Lloyd’s algorithm [32].

In the last 15 years, as data sets have come to outgrow the available memory on most
machines, the streaming model of computation has emerged as a popular area of algorithmic
research. In this model, computation must be performed using memory of size sublinear
in the input, and (typically) using at a single pass over the data [2, 33]. Several clustering
problems have been addressed in the streaming model, including k-median [25, 13, 27, 24],
k-means [14, 23] and facility location [19].

While the streaming model is a sensible one for many applications, it is less suitable for
some applications in domains such as network monitoring and social media [15, 17, 16, 34],
where observations that have arrived more recently are in some sense more important to
the computation being performed than are older observations. For example, when tracking
topics in social media, a researcher may wish to have topics decay over time. The sliding
window model, a variation on the streaming model, was developed to better capture these
situations [20, 8, 11, 7, 10]. In this model, data arrives in a stream, and the goal is to
maintain a computation only on the most recent elements. The sliding window model has
received renewed attention in recent years [9, 18, 5], but no theoretical results for clustering
in the sliding window model have been published since 2003 [4]. This most recent result gives
a solution to the k-median clustering problem, which has been comparatively well-studied
by streaming algorithm researchers. Recent years have seen impressive results yielding
polylogarithmic space solutions in both the insertion-only streaming model [13, 27] and the
insertion-deletion model [28, 24, 29], but to date the question of whether or not analogous
results hold in the sliding window model remained open. In particular, the following question
by Babcock et al. [4] has remained open for more than a decade:

“Whether it is possible to maintain approximately optimal medians in polylogarithmic
space (as Charikar et al. [13] do in the stream model without sliding windows), rather than
polynomial space, is an open problem.”

1.1 Our Contribution
In the current work, we partially answer the question posed by Babcock, et al. [4] in
the affirmative. Specifically, we give the first polylogarithmic space (α, β)-approximation
algorithm for k-median clustering in the sliding window model under the assumption that
the optimal k-median cost is is at most polynomial in the window size. We note that this
boundedness assumption is also made by Babcock, et al. (see Lemma 5 of [4]). We justify this
assumption by showing that when the optimal k-median cost is exponential in the window
size, no sublinear space approximation is possible. This is in contrast to the insert-only
model, where no such boundedness assumption is necessary [13, 27].
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1.2 Related Work
k-median clustering of points in arbitrary metric spaces is relatively well-studied in the
insertion-only streaming model. Guha, Mishra, Motwani and O’Callaghan [25] were the
first to propose an insertion-only streaming algorithm for the k-median problem. They
gave a 2O(1/ε)-approximation streaming algorithm that uses O(nε) space, where ε < 1.
Later, Charikar, O’Callaghan, and Panigrahy [13] exponentially improved this algorithm
by developing a constant factor approximation (insertion-only) streaming algorithm using
O(k·log2 n) space. Their approach, somewhat similarly to [25], operates in phases, maintaining
a set of O(k logn) candidate centers with the invariant that at any time during the algorithm,
the candidate centers yield a suitably low clustering cost. Once the entire stream has been
observed, an offline k-median clustering of this (weighted) collection of candidate centers is
used as the solution for the whole stream.

The k-median clustering in the geometric setting where points are taken from a d-
dimensional Euclidean space Rd is also well-studied in the insertion-only streaming model.
In particular, Har-Peled and Mazumdar [27] used (strong) coresets to obtain a (1 + ε)-
approximation algorithm for k-median and k-means problems in the insertion-only streaming
model. Roughly speaking, a strong (k, ε)-coreset for k-median is a weighted subset S of P ,
so that for any set of k centers in Rd, the weighted sum of distances from points in S to the
nearest centers is approximately the same as (differs by a factor of (1± ε) from) the sum of
distances from points in P to the nearest centers. Their coreset was of size O(kε−d logn).
In the streaming model of computation they implemented their coreset (using the famous
Merge-and-Reduce approach [6, 1]) using O(kε−d log2d+2 n) space. Later, Har-Peled and
Kushal [26] showed that one can construct (k, ε)-coresets for k-median with size independent
of n, namely of size O(k2ε−d). However, in the streaming model, the implementation of the
new coreset (once again, using the Merge-and-Reduce approach) does not give a significant
improvement in space usage. Very recently, Feldman, Fiat, and Sharir [22] extended this
type of coreset for linear centers or facilities where facilities can be lines or flats.

For high-dimensional spaces, Chen [14] proposed a (k, ε)-coreset of size O(k2dε−2 log2 n).
in the insertion-only streaming model using O(k2dε−2 log8 n) space. Chen’s coreset works
for general metric spaces as well, where he developed a technique that produces a coreset
of size O(kε−2 logn(k logn + log(1/δ))) with probability of success 1 − δ. If we plug the
very recent 2.661-approximation algorithm for the k-median problem due to Byrka, Pensyl,
Rybicki, Srinivasan, and Trinh [12] into Chen’s (k, ε)-coreset construction, we obtain an
O(k2ε−2 log(1/δ) log9 n)-space 5.322-approximation algorithm in the insertion-only streaming
model with probability of success 1− δ for 0 < δ < 1.

To the best of our knowledge, there is no insertion-deletion streaming algorithm for
k-median or k-means clustering when points are from an arbitrary metric space. However, for
geometric k-median and k-means clustering, Frahling and Sohler [24] showed that they can
maintain a (k, ε)-coreset of sizeO(kε−d−2 logn) using a different coreset construction (than [27,
26]) for data streams with insertions and deletions. This model of data streams with insertions
and deletions for geometric problems was introduced by Indyk [28] and is known as dynamic
geometric data streams. Frahling and Sohler’s algorithm uses O(k2ε−2d−4 log7 n) space for the
k-median problem. They further showed that similar coresets exists for the geometric versions
of Max-Cut, maximum weighted matching, maximum travelling salesperson, maximum
spanning tree, and average distance problems, which in turn give O(ε−2d−4 log7 n)-space
streaming algorithms for these problems in data streams with insertions and deletions.

In contrast to the insertion-only streaming model and dynamic geometric streaming
model, little work has been done on the k-median problem in the sliding window model,
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Table 1 Known results for k-median problem in data streams. Note that the current work as
well as the first algorithm of [4] give bicriteria solutions to the k-median problem, while the other
results in this table return precisely k centers.

Reference Metric space Stream model Approx. Centers Space
[25] General Insertion-only 2O(1/τ) k O(nτ )
[13] General Insertion-only O(1) k O(k log2 n)
[14]+[12] General Insertion-only 5.322 k O(k2ε−2 log(1/δ) log9 n)
[27] Euclidean Insertion-only (1 + ε) k O(kε−d log2d+2 n)
[14] Euclidean Insertion-only (1 + ε) k O(k2dε−2 log8 n)
[24] Euclidean Insertion-deletion (1 + ε) k O(k2ε−2d−4 log7 n)
[4] General Sliding Windows 2O(1/τ) 2k O(kτ−4W 2τ log2 W )
[4] General Sliding Windows 2O(1/τ) k O(kτ−4W 2τ log2 W )
This work General Sliding Windows 35 2k O(k2ε−3 log(1/δ) log10 W )

where we wish to produce a solution only on the most recent W elements in the data stream.
The result given in [4] is, to our knowledge, the only previously existing solution in this
model. The algorithm given in [4] finds an O(2O( 1

τ ))-approximation to the k-median problem
in the sliding window model for 0 < τ < 1

2 using 2k-centers and requires memory of size
O( kτ4W

2τ log2 W ). With an additional step, they reduce the number of centers from 2k to k
using the same space and with the same approximation ratio. We leave as an open problem
whether a similar approach can be applied to our algorithm, which produces a bicriteria
solution with between k and 2k centers.

Table 1 summarizes the known results for clustering problems in various streaming models.

Outline

Section 2 establishes notation and background for the remainder of the paper. Section 3
presents our main result. Section 4 proves a lower bound on the space required to find an
approximate k-median solution when the optimal cost is exponential in the window size.

2 Preliminaries

We will begin by introducing some notation and basic definitions. We first define the metric
k-median clustering problems. Later we will define the sliding window model, smooth
functions, and smooth histograms. Finally, we will illustrate with an example that the
k-median clustering is not smooth (and in fact, neither are many other clustering problems),
but fortunately, we show we can compute k-median approximately in the sliding windows
model, if we relax the constraint of returning exactly k centers.

2.1 Metric and Geometric k-Median Problems
Let (X,dist) be a metric space where X is a set of points and dist : X ×X → R is a distance
function defined over the points of X. Let dist(p,Q) = minq∈Q dist(p, q) denote the distance
between a point p ∈ X and a set Q ⊆ X.

Let P ⊆ X be a subset of points. We define ρP = minp,q∈P,p6=q dist(p, q) as the minimum
distance between two distinct points in a set P .
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I Definition 2.1 (Metric k-median). Let P ⊆ X be a set of n points in a metric space (X, d)
and let k ∈ N be a natural number. Suppose C = {c1, . . . , ck} is a set of k centers. The
clustering of point set P using C is the partitioning of P such that a point p ∈ P is in cluster
Ci if ci ∈ C is the nearest center to p in C, that is point p is assigned to its nearest center
ci ∈ C. The cost of k-median clustering by C is COST(P,C) =

∑
p∈P dist(p, C). The metric

k-median problem is to find a set C ⊂ P of k centers that minimizes the cost COST(P,C),
that is

COST(P,C) =
∑
p∈P

dist(p, C) = min
C′⊂P :|C′|=k

COST(P,C ′) = min
C′⊂P :|C′|=k

∑
p∈P

dist(p, C ′),

where dist(p, C) = minc∈C dist(p, c) and dist(p, C ′) = minc∈C′ dist(p, c)

We define OPT(P, k) = minC′⊂P :|C′|=k COST(P,C ′) to be the minimum k-median cost
of P . Since the metric k-median problem is known to be NP-hard [30], we will focus on
approximation algorithms.

I Definition 2.2 ((α, β)-approximation algorithm). We say an algorithm A is an (α, β)-
approximation algorithm for the k-median problem on point set P ⊂ X if A(P, k) returns
a set C ⊂ P of at most β · k centers whose cost is α-approximation of OPT(P, k), that is,
COST(P,C) ≤ α · OPT(P, k).

2.2 Sliding Windows Model
Let (X, d) be a metric space. Let P = {p1, p2, · · · , pn} ⊆ X be a point set of size |P | = n. In
the insertion-only streaming model [2, 27, 13], we think of a (mostly adversarial) permutation
{p′1, p′2, · · · , p′n} of point set P given in a streaming fashion and the goal is to compute a
function f exactly or approximately at the end of the stream using sublinear space in n, i.e,
o(n). Here we say point p′t is revealed at time t.

The sliding windows model [20] is a generalization of the insertion-only streaming model
in which we seek to compute a function f over only the W most recent elements of the
stream. Given a current time t of the stream, we consider a window W of size W consisting
of points that are inserted in the interval [max(t −W, 1), · · · , t]. Here we still assume W
is large enough that we cannot store all of window W in memory, for example W = Ω(n);
otherwise computing function f over window W will be trivial. A point p in the current
window W is called active, and expired, otherwise.

2.3 Smooth Function and Smooth Histogram
Braverman and Ostrovsky [9] introduced smooth histograms as an effective method to compute
smooth functions in the sliding windows model. A smooth function is defined as follows.

I Definition 2.3 ((ε, ε′)-smooth function [9]). Let f be a function, 0 < ε, ε′ < 1, and c

be a constant number. We say f is a (ε, ε′)-smooth function if function f is non-negative
(i.e., f(A) ≥ 0), non-decreasing (i.e., for A ⊆ B, f(A) ≤ f(B)), and polynomially bounded
f(A) ≤ O(|A|c) such that

f(B) ≥ (1− ε) · f(A ∪B) implies f(B ∪ C) ≥ (1− ε′) · f(A ∪B ∪ C) .

Interestingly, many functions are smooth. For instance, sum, count, min, diameter, Lp-norms,
frequency moments and the length of the longest subsequence are all smooth functions.



V. Braverman, H. Lang, K. Levin, and M. Monemizadeh 355

We define [a] = {1, 2, 3, · · · a} and [a, b] = {a, a + 1, a + 2, · · · b} for a ≤ b and a, b ∈ N.
When there is no danger of confusion, we denote the set of points {pa, pa+1, . . . , pb} as simply
[a, b]. For example, we denote f({pa, pa+1, . . . , pb}) by f([a, b]).

To maintain a smooth function f on sliding windows, Braverman and Ostrovsky [9]
proposed a data structure that they called smooth histograms which is defined as follows.

I Definition 2.4 (Smooth histogram [9]). Let 0 < ε, ε′ < 1 and α > 0. Let f be an
(ε, ε′)-smooth function. Suppose there exists an insertion-only streaming algorithm A that
calculates an α-approximation f ′ of f . The smooth histogram is a data structure consisting
of an increasing set of indices XN = [x1, x2, · · · , xt = N ] and t instances A1,A2, · · · ,At of
A such that
1. px1 is expired and px2 is active or x1 = 0.
2. For 1 < i < t− 1 one of the following holds

a. xi+1 = xi + 1 and f ′([xi+1, N ]) ≤ (1− ε′)f ′([xi, N ]),
b. f ′([xi+1, N ]) ≥ (1− ε)f ′([xi, N ]) and if i ∈ [t− 2], f ′([xi+2, N ]) ≤ (1− ε′)f ′([xi, N ]).

3. Ai = A([xi, N ]) maintains f ′([xi, N ]).

Observe that the first two elements of sequence XN always sandwiches the current
window W of size W , that is, x1 ≤ N −W ≤ x2. Braverman and Ostrovsky [9] used this
observation to show that either f ′([x1, N ]) or f ′([x2, N ]) is a reasonably good approximation
of f ′([N−W,N ]). In particular, using smooth histograms, they proved the following theorem.

I Theorem 2.5. [9] Let 0 < ε, ε′ < 1 and α, β > 0. Let f be an (ε, ε′)-smooth function. Sup-
pose there exists an insertion-only streaming algorithm A that calculates an α-approximation
f ′ of f using g(α) space and h(α) update time. Then, there exists a sliding window algorithm
B that maintains (1 ± (α + ε))-approximation f ′′ of f using O(β−1 · logn · (g(α) + logn))
space and O(β−1 · logn · h(α)) update time.

2.4 k-median is not a smooth function
Unfortunately, it is simple to see that many clustering functions are not smooth. Here we
give a simple example showing that the k-median cost is not a smooth function.

I Lemma 2.6. k-median clustering is not a smooth function.

Proof. We give a counterexample showing that k-median clustering is not a smooth function.
Assume that we have points p, q, r ∈ X and k = 2. Then OPT({p, q}, k) = 0 and OPT({q}, k) =
0, but OPT({q, r}, k) = 0 and OPT({p, q, r}, k) = min(dist(p, q), dist(p, r), dist(q, r)) which
can be arbitrarily large. J

However, the following lemma shows that we can compute k-median approximately in
the sliding windows model if we relax the constraint of returning exactly k centers.

I Lemma 2.7. Let A,B,C ⊂ X be three point sets. Let λ > 1 be a parameter. Then,

OPT(B, k) ≥ 1
λ
· OPT(A ∪B, k)

implies

OPT(B ∪ C, k) ≥ 1
(λ+ 1) · OPT(A ∪B ∪ C, 2k) .
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Proof. We bound the optimal 2k-median cost of the set A ∪B ∪ C as follows. First of all,
the optimal 2k-median cost of A ∪B ∪ C is upper-bounded by the optimal k-median cost of
A plus the optimal k-median cost of B ∪ C

OPT(A ∪B ∪ C, 2k) ≤ OPT(A, k) + OPT(B ∪ C, k) ,

as otherwise we can always replace the 2k optimal centers of A ∪ B ∪ C by the k optimal
centers of A and the k optimal centers of B ∪ C contradicting the minimum cost of the 2k
optimal centers A ∪B ∪ C. Now we have,

OPT(A ∪B ∪ C, 2k) ≤ OPT(A, k) + OPT(B ∪ C, k) ≤ OPT(A ∪B, k) + OPT(B ∪ C, k)
≤ λ · OPT(B, k) + OPT(B ∪ C, k)
≤ λ · OPT(B ∪ C, k) + OPT(B ∪ C, k) = (λ+ 1)OPT(B ∪ C, k),

which completes the proof. J

3 (α, β)-approximation for k-median problem on sliding windows

Here we state our main result.

I Theorem 3.1. Let α > 1 be a constant, λ = (1 + ε) and k ∈ N be a parameter. Let W
be the size of the sliding window. Suppose the optimal k-median cost of a point set P ⊂ X
is polynomially bounded, that is OPT(P, k) = |P |O(c) · ρP for sufficiently large constant c,
where ρP is the minimum distance between two distinct points in P . Suppose there exists
an insertion-only streaming algorithm A(P, k) that maintains an α-approximation set of k
centers for P using g(α) space and h(α) update time. Then there is an [α(α(1 + ε) + 1), 2]-
approximation sliding windows algorithm that uses O(g(α) · ε−1 · log(W · ρP )) space and has
O(h(α) · ε−1 · log(W · ρP )) update time.

Overview of Algorithm 1 (k-median)

Suppose our stream is S = [p1, p2, p3, · · · , pN , · · · , pn] and we are interested to maintain a
k-median clustering of a window W of W most recent points in stream S. We maintain an
ordered list xi ∈ X = [x1, x2, · · · , xt] of t = O(ε−1 · log(n · ρP )) indices for xi ∈ {1, · · · , N}.
Denote by A([i, j], k) an instance of algorithm A run on points {pi, pi+1, · · · , pj}. For every
index xi we run two instances of insertion-only streaming algorithm A(P, k). One instance is
A([xi, N ], k) that maintains a set Ci,k of k centers for the point set {pxi , pxi+1,··· ,pN }. The
other instance is A([xi, N ], 2k), which maintains a set Ci,2k of 2k centers for the point set
{pxi , pxi+1,··· ,pN }.

Upon arrival of a new point pN , we feed pN to instances A([xi, N ], k) and A([xi, N ], 2k)
for every xi ∈ X. We also instantiate two instances A([N,N ], k) and A([N,N ], 2k). We then
go through indices 1 ≤ i ≤ t− 2 and find the greatest j > i for which COST([xj , N ], Cj,k) ≥
1
λ · COST([xi, N ], Ci,k), and eliminate all indices xr and their instances A for i < r < j. We
then update the indices in sequence X accordingly. Finally, we find the smallest index i
whose pxi is expired and pxi+1 is active. For all r < i, we delete xr and its instances and
update the indices in sequence X. At the end, we return the center set Ci,2k of 2k centers
maintained by A([x1, N ], 2k) as our solution.
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Algorithm 1 k-median in Sliding Windows.
Input: A stream S = [p1, p2, p3, · · · , pN , · · · , pn] of points from a metric space (X,dist) and
the sliding window size W .
Output: A center set C1,2k of 2k centers that is an [α(α(1 + ε) + 1), 2]-approximation of
OPT(P, k).
Update Process, upon the arrival of new point pN :
1: for xi ∈ X = [x1, x2, · · · , xt] I (where xi ∈ {1, · · · , N}) do
2: Let Ci,k = A([xi, N ], k) be the set of k centers maintained by A([xi, N ], k), where

[xi, N ] = {pxi , pxi+1 , · · · , pN}.
3: Let Ci,2k = A([xi, N ], 2k) be the set of 2k centers maintained by A([xi, N ], 2k).
4: Let t = t+ 1, xt = N .
5: Let Ct,k = A([N,N ], k) and Ct,2k = A([N,N ], 2k), where [N,N ] contains only point pN .

6: for i = 1 to t− 2 do
7: Find the greatest j > i such that COST([xj , N ], Cj,k) ≥ 1

λ · COST([xi, N ], Ci,k).
8: For i < r < j, delete xr and center sets Cr,k and Cr,2k.
9: Update the indices in sequence X accordingly.
10: Let i be the smallest index such that pxi is expired and pxi+1 is active.
11: for r < i do
12: Delete xr and center sets Cr,k and Cr,2k.
13: Update the indices in sequence X.
Output Process:
1: Return C1,2k maintained by A([x1, N ], 2k).

Analysis

Next we prove Theorem 3.1. First we prove the approximation factor that we claim in this
theorem.

I Lemma 3.2. For assumptions of Theorem 3.1, Algorithm 1 maintains an [α(αλ+ 1), 2]-
approximation set of k centers for P in the sliding windows model, i.e.,

COST([x1, N
′], C1,2k) ≤ α(α · λ+ 1) · OPT(W, k) ,

where W is the current window of size W , that is the points in the interval [max(N ′ −
W, 1), N ′].

Proof. Let us fix the arrival of a new point pN from stream S = [p1, p2, p3, · · · , pN , · · · , pn].
From Lines (10) to (13) of Algorithm 1 we always have x1 ≤ N −W ≤ x2 where W is the
window size. Moreover, based on Lines (6) to (9), we have

COST([x2, N ], C2,k) ≥ 1
λ
· COST([x1, N ], C1,k) .

Since Algorithm A(P, k) is an insertion-only streaming algorithm that maintains a set of
k centers with an α-approximation guarantee of OPT(P, k), we have

OPT([x2, N ], k) ≤ COST([x2, N ], C2,k) ≤ α · OPT([x2, N ], k)

and
OPT([x1, N ], k) ≤ COST([x1, N ], C1,k) ≤ α · OPT([x1, N ], k) .
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Therefore,

αOPT([x2, N ], k) ≥ COST([x2, N ], C2,k) ≥ 1
λ
· COST([x1, N ], C1,k) ≥ 1

λ
· OPT([x1, N ], k),

which means
OPT([x2, N ], k) ≥ 1

α · λ
· OPT([x1, N ], k).

Imagine the arrival of a new point pN ′ from the stream

S = [p1, p2, p3, · · · , pN , · · · , pN ′ , · · · , pn]

for which x1 ≤ N ′−W ≤ x2 where N ′ > N . Denote our window by W = {pN ′−W , · · · , pN ′}
and let A = [x1, x2) = {px1 , px1+1, · · · , px2−1}, B = [x2, N ] = {px2 , px2+1, · · · , pN}, and
C = {pN+1, pN+2, · · · , pN ′}. Observe that A ∪B = [x1, N ] = {px1 , px1+1, · · · , pN} and

B ∪ C ⊆ W = {pN ′−W , · · · , pN ′} ⊆ A ∪B ∪ C = {px1 , · · · , pN ′}.

Now we use Lemma 2.7 which says if OPT(B, k) ≥ 1
λ · OPT(A ∪ B, k), we then have

OPT(B ∪ C, k) ≥ 1
(λ+1) · OPT(A ∪B ∪ C, 2k). We replace λ by αλ to obtain

OPT(B, k) = OPT([x2, N ], k) ≥ 1
α · λ

· OPT(A ∪B, k)

= 1
αλ

OPT([x1, N ], k) = 1
αλ

OPT({px1 , px1+1, . . . , pN}, k).

Therefore, we have

OPT(W, k) ≥ OPT(B ∪ C, k) = OPT([x2, N
′], k) = OPT({px2 , px2+1, · · · , pN ′}, k)

≥ 1
(α · λ+ 1) · OPT(A ∪B ∪ C, 2k) = 1

(α · λ+ 1) · OPT([x1, N
′], 2k)

= 1
α(α · λ+ 1) · COST([x1, N

′], C1,2k) ,

since A([x1, N
′], 2k) returns an α-approximation 2k-median center set C1,2k of point set

[x1, N
′], i.e.,

COST([x1, N
′], C1,2k) ≤ α · OPT([x1, N

′], 2k) .

Therefore, we have

COST([x1, N
′], C1,2k) ≤ (α(α · λ+ 1)) · OPT(W, k) ,

which proves the lemma. J

Next, we prove the space usage of Algorithm k-median.

I Lemma 3.3. For assumptions of Theorem 3.1, Algorithm 1 uses O(g(α) · ε−1 · log(W · ρP ))
space and has O(h(α) · ε−1 · log(W · ρP )) update time.

Proof. It is clear that the space is O(g(α) · t) and that time is O(h(α) · t), so it suffices to
prove that t = O(ε−1 log(W · ρP )).

As a loop invariant for Line 1 upon arrival of a new point, we will prove the bound t < t∗.
Since Line 4 is the only place where t is incremented, we will have that t ≤ t∗ throughout
the algorithm.
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In the previous iteration, the following invariant for all i ∈ [1, t− 2] is guaranteed after
execution of the loop beginning on Line 6:

COST([xi+2, N ], Ci+2,k) < 1
λ
· COST([xi, N ], Ci,k)

The previous inequality is guaranteed because if it were not true, then in Line 8, xi+1
would have been deleted.

Note that COST([xt−2, N ], Ct−2,k) > 0, for otherwise we conclude that OPT ([xt−2, N ]) =
OPT ([xt, N ]) = 0 so xt−1 would have been deleted. The value ρP is the minimum distance
between points in the metric space, so COST([xt−2, N ], Ct−2,k) ≥ ρP . By induction, we see
that:

COST([xt−2, N ], Ct−2,k) <
(

1
λ

) t−i
2 −1

· COST([xi, N ], Ci,k)

where i = 2, 3 depends on the parity of t (i.e. such that t - i is an even number). The bound
t−i

2 − 1 ≥ t/2− 3, and therefore:

λ(t/2)−3ρP < COST([xi, N ], Ci,k)

Next, we note by polynomial-boundedness that OPT ([xi, N ]) ≤WO(c) · ρP because Line 10
guarantees that x2 (and thus xi since i ≥ 2) is not expired and thus |[xi, N ]| ≤W . This is
the only place where polynomial-boundedness is used. Next, by the approximation-ratio of
the blackbox α-approximation, we have that COST([xi, N ], Ci,k) ≤ α ·OPT ([xi, N ]). Putting
these together, we have:

λ(t/2)−3ρP < COST([xi, N ], Ci,k) ≤ α ·OPT ([xi, N ]) ≤ α ·WO(c) · ρP

Algebraic manipulation yields that t < 6 + 2 logλ(WO(c) · ρP ). Setting λ = 1 + ε, we get that
t = O(ε−1 log(W · ρP )). J

Now we finish the proof of Theorem 3.1.

Proof. Proof of Theorem 3.1 We set λ = (1 + ε) and let t = O(ε−1 · log(W · ρP )). Using
Lemma 3.2, Algorithm 1 (k-median) maintains an [α(αλ + 1), 2]-approximation set of k
centers for P in the sliding windows model. For λ = (1 + ε), the approximation factor would
be α(α(1 + ε) + 1) which proves the theorem. J

Finally, we use the approximation algorithm of Theorem 3.1 to obtain the following result.

I Corollary 3.4. Let ε < 1/α2 and 0 < δ < 1. Assume for Algorithm A(P, k) in Theorem
3.1, we use the combination of algorithms [12] and [14] that guarantees 5.322-approximation
to the OPT(P, k) with probability 1 − δ and uses space O(k2ε−2 log9(n) · log(1/δ)). Then,
the sliding windows algorithm of Theorem 3.1 is an [35, 2]-approximation algorithm for the
k-median problem with probability 1− δ and uses O(k2ε−3 log10(n) · log(1/δ)) space.

Proof. As we mentioned in Section 1.2, we can plug the very recent 2.661-approximation
algorithm for the k-median problem due to Byrka, Pensyl, Rybicki, Srinivasan, and Trinh [12]
into (k, ε)-coreset construction of Chen [14] to obtain O(k2ε−2 log9(n) · log(1/δ))-space 5.322-
approximation algorithm in the insertion-only streaming model with probability 1− δ for
0 < δ < 1. We use this algorithm as an α-approximation algorithm A in Theorem 3.1 and
set ε < 1/α2 to have the approximation factor of

α(α(1 + ε) + 1) = 5.322(5.322(1 + 1
(5.322)2 ) + 1) ≤ 35 . J
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4 Lower bound for k-Median Clustering on Sliding Windows

In this section, we show that without the assumption of polynomial-boundedness, no ran-
domized algorithm can approximate clustering in sub-linear space.

I Theorem 4.1. Every randomized α-approximation algorithm for 2-median on sliding
windows requires Ω(W )-storage.

This result will be proved by reduction from the COUNT problem, which we now define:

I Definition 4.2 (COUNT Problem). Given a Boolean stream p1p2p3 . . . (i.e for pi ∈ {0, 1})
and a positive integer W , the COUNT problem on sliding windows maintains the number
of elements equal to 1 in the most recent W elements.

The COUNT problem was explored by Datar, Gionis, Indyk, and Motwani [20], who
developed a (1 + ε)-estimator using O(ε−1 log2 n) space. They also gave a matching lower
bound of Ω(ε−1 log2 n) memory bits for any deterministic or randomized algorithm. In
Theorem 4.3, we give a simple Ω(W )-space lower bound for randomized algorithms that
compute COUNT exactly. The proof is included here for the sake of completeness.

I Theorem 4.3. Any randomized algorithm that exactly computes COUNT with probability
2/3 requires Ω(W )-space.

Proof. The INDEX problem in communication complexity [31] is the following problem.
Let Alice and Bob be two players. Alice has a vector A ∈ {0, 1}n with entries {ai}ni=1.
Bob has an index I ∈ [n]. Together they have to identify the value of aI using minimum
communication. It is well known [31] that the INDEX problem has a Ω(n) lower bound in
the one-way communication model, when Bob cannot send messages to Alice.

We provide the following simple reduction of the INDEX problem to the COUNT
problem. Suppose there is a randomized streaming algorithm X that solves the COUNT
problem w.p. 2/3 and uses w bits of memory. Alice computes X on windows of length n on
stream a1, a2, . . . , an and sends the memory of X to Bob. Bob continues the computation
on the stream of n zeros. Thus, the input that Alice and Bob collectively create is the
stream of length 2n with entries pi = ai for i ≤ n and pi = 0 for n < i ≤ 2n. Bob outputs
(cn+I−1 − cn+I) where cj =

∑j
l=j−n+1 pl is the number of ones in the j-th window. Indeed

cn+I−1 − cn+I =
n+I−1∑
l=I

pl −
n+I∑
l=I+1

pl = aI − aI+n = aI .

Thus, the INDEX problem can be solved using w bits, and thus we must have w = Ω(n). J

The reduction from COUNT to 2-median will work by using Algorithm 2 to transform a
stream of Boolean values into a stream of points in one-dimensional Euclidean space. The
transformation will depend on the approximation guarantee α of the 2-median algorithm.
Algorithm 2 will maintain a counter jN . It is clear that jN − jN−W+1 is the exact solution
of COUNT in the N th window. The current counter jN is known, but storing the entire
history back to jN−W+1 would require W bits (since the window slides, we must keep the
past W values). Instead, we use a 2-median approximation as a blackbox. The 2-median
algorithm will output a set of centers, and we will prove that the location of the right-most
center determines jN−W+1. Thus we reduce the COUNT problem to computing 2-median
approximately (to any degree of approximation, possibly dependent on W ).
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Figure 1 Example of Algorithm 2.

Algorithm 2 Streaming Transformation for an α-approximation.
ϕ← 4α
j1 ← 1
for N ∈ {1, . . . , n} do

if pN = 0 then
Write xN = 0
jN+1 ← jN

if pN = 1 then
Write xN = φ−jN

jN+1 ← jN + 1

For each N ≥ W , define iN := jN−W+1. Note that the N th window is completely
described by iN and jN (henceforth denoted i and j). This set is {ϕ−i, . . . , ϕ−j+1, 0, . . . , 0},
and we assume that k ≤ j − i < W . This assumption is valid since in the alternative
cases (i.e., when j − i ∈ {0, . . . , k − 1,W}), both COUNT and 2-median can be solved in
O(k logW )-space by keeping track of the indices of non-zero terms modulo W .

Before proving the desired reduction from COUNT to 2-median in Theorem 4.5, we
begin with a lemma that is essential to the argument.

I Lemma 4.4. The optimal cost for 2-median is strictly less than 2ϕ−i−1.

Proof. Consider the center set {0, ϕ−i}. All points x < ϕ−i/2 will be assigned to the center
c = 0, and all points x > ϕ−i/2 will be assigned to the center c = ϕ−i. Since α ≥ 1, we have
that ϕ = 4α ≥ 4 > 2 and thus all points in the window except x = ϕ−i have the inequality
x ≤ ϕ−(i+1) < ϕ−i/2. This clustering assigns the point x = ϕ−i to the center c = ϕ−i and
assigns all other points to the center c = 0. The cost of this clustering is:

j∑
a=i+1

ϕ−a = ϕ−i − ϕ−j

ϕ− 1 <
ϕ−i

ϕ− 1

ϕ > 2 implies ϕ− 1 > ϕ/2, and thus this cost is strictly less than 2ϕ−i−1. The optimum
cost is bounded above by the cost of this clustering, i.e., OPT (P, 2) < 2ϕ−i−1. J

I Theorem 4.5. On sliding windows, any α-approximation of 2-median can be used to
compute the exact solution of COUNT.

Proof. We will run the α-approximation on the output of Algorithm 2 (with parameter
ϕ = 4α) and obtain a set of 2 centers for each window. We will show that the right-most
center is in the interval ( 1

2ϕ
−i, 3

2ϕ
−i). Because ϕ > 3, these intervals are disjoint for distinct

i, so the right-most center will identify a unique value of i. Since we have the counter j from
Algorithm 2, we may output j − i as the exact solution to COUNT in that window.

FSTTCS 2015



362 Clustering on Sliding Windows in Polylogarithmic Space

All that remains to be shown is that the right-most center is in the desired interval.
By Lemma 4.4, we have that OPT (P, 2) < 2ϕ−i−1. Suppose that the right-most center
c2 is not assigned any points in the clustering. Then the cost (using only the left-most
center c1) is bounded below by the optimal cost of clustering the subset {0, ϕ−i}, so
COST (P, {c1}) ≥ OPT ({0, ϕ−i}, 1) = ϕ−i. The approximation guarantee implies that:

α ≥ COST (P, {c1})
OPT (P, 2) >

ϕ−i

2ϕ−i−1 = ϕ

2 = 2α

By this contradiction, we conclude that both centers are used in the clustering, and in
particular we conclude that the right-most point x = ϕ−i is assigned to the right-most center.

Suppose that the right-most center c2 /∈ ( 1
2ϕ
−i, 3

2ϕ
−i). Then the cost of clustering

the right-most point x = ϕ−i is at least 1
2ϕ
−i. This implies that COST (P, {c1, c2}) ≥

COST ({ϕ−i}, {c2}) ≥ 1
2ϕ
−i which leads to the following contradiction:

α ≥ COST (P, {c1, c2})
OPT (P, 2) >

ϕ−i/2
2ϕ−i−1 = ϕ

4 = α

Therefore the rightmost-center c2 is in the desired interval, and this completes the proof. J

The reduction of Theorem 4.5 together with the lower-bound of Theorem 4.3 implies
the linear-space lower bound for 2-median stated in Theorem 4.1. We now give Theorem
4.6 which generalizes the reduction in two ways: (1) the result will hold for k ≥ 2, and (2)
the result will hold for clustering f(x, c) = d(x, c)p for any p > 0. Theorem 4.5, pertaining
to 2-median, is the special case of k = 2 and p = 1. Notable special cases are k-median
(when p = 1) and k-mean (when p = 2). The proof is a straight-forward generalization of the
reduction for 2-median, which we briefly outline.

I Theorem 4.6. For k ≥ 2, every randomized α-approximation algorithm that clusters
f(x, c) = d(x, c)p for p > 0 on sliding windows requires Ω(W )-storage.

Proof. Run Algorithm 2 with ϕ = 2(2α)1/p. A straightforward modification of Lemma 4.4
when using the center-set {0, ϕ−i−(k−2), . . . , ϕ−i} now reads OPT (P, k) < 2ϕ(−i−k+1)p. Sup-
posing that only k− 1 centers were used in the clustering, the subset {0, ϕ−i−(k−2), . . . , ϕ−i}
shows that the cost is at least 2(ϕ−i−(k−2)/2)p. These establish a contradiction showing that
the right-most point ϕi must be assigned to the right-most center. We conclude by proving
that the right-most center lies in the interval ( 1

2ϕ
−i, 3

2ϕ
−i) since otherwise the cost would be

at least (ϕ−i/2)p, which again leads to the desired contradiction. J

Note that the transformed data was constructed in one-dimensional Euclidean space. This
shows that without polynomially-boundedness, it is impossible to perform sublinear-space
clustering on any Riemannian manifold, as shown in the next theorem.

I Theorem 4.7. Let d be the metric of a Riemannian manifold M . For k ≥ 2, every
randomized α-approximation algorithm that clusters f(x, c) = d(x, c)p for p > 0 on sliding
windows requires Ω(W )-storage.

Proof. For δ > 0, let γ : [0, δ]→M be a geodesic parameterized by arc-length [21]. The entire
construction of Theorem 4.6 lies in the interval [0, ϕ−1] ⊂ [0, 1], so we modify Algorithm 2
to output the points γ(δϕ−j). The proof then carries through without modification, since
d(γ(δϕ−i), γ(δϕ−j)) = δ|ϕ−i − ϕ−j | for all i, j ≥ 1. J
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Abstract
In classical congestion games, players’ strategies are subsets of resources. We introduce and
study multiset congestion games, where players’ strategies are multisets of resources. Thus, in
each strategy a player may need to use each resource a different number of times, and his cost for
using the resource depends on the load that he and the other players generate on the resource.

Beyond the theoretical interest in examining the effect of a repeated use of resources, our study
enables better understanding of non-cooperative systems and environments whose behavior is not
covered by previously studied models. Indeed, congestion games with multiset-strategies arise,
for example, in production planing and network formation with tasks that are more involved than
reachability. We study in detail the application of synthesis from component libraries: different
users synthesize systems by gluing together components from a component library. A component
may be used in several systems and may be used several times in a system. The performance of
a component and hence the system’s quality depends on the load on it.

Our results reveal how the richer setting of multisets congestion games affects the stability and
equilibrium efficiency compared to standard congestion games. In particular, while we present
very simple instances with no pure Nash equilibrium and prove tighter and simpler lower bounds
for equilibrium inefficiency, we are also able to show that some of the positive results known for
affine and weighted congestion games apply to the richer setting of multisets.
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putation, Equilibrium inefficiency
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1 Introduction

Congestion games model non-cooperative resource sharing among selfish players. Resources
may be shared by the players and the cost of using a resource increases with the load on it.
Such a cost paradigm models settings where high congestion corresponds to lower quality of
service or higher delay. Formally, each resource e is associated with an increasing latency
function fe : IN→ IR, where fe(`) is the cost of a single use of e when it has load `.

Previous work on congestion games assumes that players’ strategies are subsets of resources,
as is the case in many applications, most notably routing and network design. For example,
in the setting of networks, players have reachability objectives and strategies are subsets of
edges, each inducing a simple path from the source to the target [29, 3, 19]. We introduce
and study multiset games, where players’ strategies are multisets of resources. Thus, a player
may need a resource multiple times – depending on the specific resource and strategy, and
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his cost for using the resource depends on the load that he and the other players generate on
it. Formally, in multiset congestion games (MCGs, for short), a player that uses j times a
resource e that is used ` times by all players together, pays j · fe(`) for these uses.

Beyond the theoretical interest in examining the effect of multisets on the extensively-
studied classical games, multiset congestion games arise naturally in many applications and
environments. The use of multisets enables the specification of rich settings that cannot be
specified by means of subsets. We give here several examples.

As a first example, consider network formation. In addition to reachability tasks, which
involve simple paths (and hence, subsets of resources), researchers have studied tasks whose
satisfaction may involve paths that are not simple. For example, a user may want to specify
that each traversal of a low-security channel is followed by a visit to a check-sum node. A
well-studied class of tasks that involve paths that need not be simple are these associated with
a specific length, such as patrols in a geographical region. Several communication protocols
are based on the fact that a message must pass a pre-defined length before reaching its
destination, either for security reasons (e.g., in Onion routing, where the message is encrypted
in layers [27]) or for marketing purposes (e.g., advertisement spread in social networks). In
addition, tasks of a pre-defined length are the components of proof-of-work protocols that
are used to deter denial of service attacks and other service abuses such as spam (e.g., [15]),
and of several protocols for sensor networks [7]. The introduction of multiset corresponds to
strategies that are not necessarily simple paths [5].

In production systems or in planning, a system is modeled by a network whose nodes
correspond to configurations and whose edges correspond to actions performed by resources.
Users have tasks, that need to be fulfilled by taking sequences of actions. This setting
corresponds to an MCG in which the strategies of the players are multisets of actions that
fulfill their tasks, which indeed often involve repeated execution of actions [13]; for example
“once the arm is up, do not put it down until the block is placed". Also, multiset games can
model preemptive scheduling, where the processing of a job may split in several feasible ways
among a set of machines.

Our last example, which we are going to study in detail, is synthesis form component
libraries. A central problem in formal methods is synthesis [26], namely the automated
construction of a system from its specification. In real life, hardware and software systems are
rarely constructed from scratch. Rather, a system is typically constructed from a library of
components by gluing components from a library (allowing multiple uses) [23]. For example,
when designing an internet browser, a designer does not implement the TCP protocol but
uses existing implementations as black boxes. The library of components is used by multiple
users simultaneously, and the usages are associated with costs. The usage cost can either
decrease with load (e.g., when the cost of a component represents its construction price,
the users of a component share this price) as was studied in [4], or increase with load (e.g.,
when the components are processors and a higher load means slower performance). The later
scenario induces an instance of an MCG.

Let us demonstrate the intricacy of the multiset setting with the question of the existence
of a pure Nash equilibrium (PNE). That is, whether each instance of the game has a profile
of pure strategies that constitutes a PNE – a profile such that no player can decrease his cost
by unilaterally deviating from his current strategy. By [28], classical congestion games are
potential games and thus always have a PNE. Moreover, by [19], in a symmetric congestion
game, a PNE can be found in polynomial time. As we show in Example 1 below, a PNE
might not exist in an MCG even in a symmetric two-player game over identical resources.
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Table 1 Players costs. Each entry describes the cost of Player 1 followed by the cost of Player 2.

{a, a, b} {b, b, c} {c, c, a}

{a, a, b} 36, 36 19, 17 17, 19
{b, b, c} 17, 19 36, 36 19, 17
{c, c, a} 19, 17 17, 19 36, 36

Example 1: Consider the following symmetric MCG with two players and three resources:
a, b, and c. The players’ strategy space is {a, a, b} or {b, b, c} or {c, c, a}. That is, a player
needs to access some resource twice and the (cyclically) consequent resource once. The
latency function of all three resources is the same, specifically, fa(`) = fb(`) = fc(`) = `2.
The players’ costs in all possible profiles are given in Table 1. We show that no PNE exists
in this game. Assume first that the two players select distinct strategies, w.l.o.g. {a, a, b}
and {b, b, c}. In this profile, a is accessed twice, b is accessed three times, and c is accessed
once. Thus, every access of a, b and c costs 4, 9 and 1 respectively. The cost of Player 1 is
8 + 9 = 17, while the cost of Player 2 is 18 + 1 = 19. By deviating to {c, c, a}, the cost of
Player 2 will reduce to 17 (while the cost of Player 1 will increase to 19). Thus, no PNE in
which the players select different strategies exists. If the player select the the same strategy,
then one resource is accessed 4 times, and one resource is accessed twice, implying that the
cost of both players is 2 · 16 + 1 · 4 = 36, and any deviation is profitable. We conclude that
no PNE exists in the game.

We study and answer the following questions in general and for various classes of multiset
congestion games (for formal definitions, see Section 2): (i) Existence of a PNE. (ii) An
analysis of equilibrium inefficiency. A social optimum (SO) of the game is a profile that
minimizes the total cost of the players; thus, the one obtained when the players obey some
centralized authority. It is well known that decentralized decision-making may lead to
solutions that are sub-optimal from the point of view of society as a whole. We quantify
the inefficiency incurred due to selfish behavior according to the price of anarchy (PoA) [22]
and price of stability (PoS) [3] measures. The PoA is the worst-case inefficiency of a PNE
(that is, the ratio between the cost of a worst PNE and the SO). The PoS is the best-case
inefficiency of a Nash equilibrium (that is, the ratio between the cost of a best PNE and the
SO). (iii) Computational complexity of finding a PNE.

Before we turn to describe our results, let us review related work. Weighted congestion
games (WCGs, for short), introduced in [25], are congestion games in which each player i
has a weight wi ∈ IN, and his contribution to the load of the resources he uses as well as his
payments are multiplied by wi. WCGs can be viewed as a special case of MCGs, where each
resource in a strategy for Player i repeats wi times. A different extension of WCGs in which
players may use a resource more than once is integer splittable WCGs [24, 30]. These games
model the setting in which a player has a number (integer) of tasks he needs to perform and
can split them among the resources. For example, in the network setting, a player might need
to send ` ∈ IN packets from vertex s to t. He can send the packets on different paths, but a
packet cannot be split. MCGs are clearly more general than WCGs and integer splittable
WCGs – the ability to repeat each resource a different number of times lead to a much more
complex setting. Thus, it is interesting to compare our results with these known for these
games.

It is shown in [17, 21] that the existence of a PNE in WCGs depends on the latency
function: when the latency functions are either affine or exponential, WCGs are guaranteed
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to admit a PNE, whereas WCGs with a polynomial latency function need not have a PNE.
In [24], the author shows that PNE always exists when the latency functions are linear using
a potential function argument. This argument fails when the latency functions are convex,
but [30] are still able to show that there is always a PNE in these games. We are able to
show that the exact potential function of [17] applies also to (the much richer) affine MCGs
(that is, MCGs with a affine latency function), and thus they always admit a PNE. As
demonstrated in Example 1, very simple MCGs with quadratic latency functions might have
no PNE.

We turn on to results in the front of equilibrium inefficiency. In congestion games with
affine latency functions, both the PoA and PoS measures are well understood. It was shown
in [12] that PoS ≥ 1 + 1√

3 ≈ 1.577 and is at most 1.6. A tight upper bound was later shown
in [10]. Also, PoA = 5

2 [12]. Going one step towards our setting to the study of affine WCGs,
[6] shows that PoA = 1 + φ, where φ ≈ 1.618 is the golden ratio. The PoS question is far
from being settled. Only recently, [9] shows a first upper bound of 2 for PoS in linear WCGs,
which is a subclass of affine WCGs. As far as we know, the only lower bound that is known
for affine WCGs is the lower bound from the unweighted setting. So there is a relatively
large gap between the upper- and lower-bounds for the PoS in these games.

We bound the potential function in order to show that every affine MCGG has PoS(G) < 2.
This improves and generalizes the result in [9]. Our most technically-challenging result is
the PoS lower-bound proof, which involves the construction of a family G of linear MCGs.
Essentially, the game Gk ∈ G is parameterized by the number of players and defined
recursively. The use of multisets enables us to to define a game in which, although the
sharing of resources dramatically changes between its profiles, the cost a player pays is equal
in all of them. For k = 17 we obtain that PoS(G17) > 1.631. This is the first lower bound in
these models that exceeds the 1.577 lower bound in congestion games. Finally, the PNE in G
is achieved with dominant strategies, so our bound holds for stronger equilibrium concepts.

As for the PoA, we show that MCGs with latency functions that are polynomials of
degree at most d have PoA = Φd+1

d , where Φd is the unique nonnegative real solution to
(x+ 1)d = xd+1. Observe that Φd is a natural generalization of the golden ratio to higher
degrees. Specifically, Φ1 = φ. For the upper bound, we adjust the upper-bound proof of [2]
to our setting. We show a simplified matching lower bound; a simple two-player MCG with
only two resources and latency functions of the form f(`) = `d. For general latency functions
we show that the PoA can be arbitrarily high.

We turn to study the application of synthesis from component libraries by multiple
players. Recall that in this application, different users synthesize systems from components.
A component may be used in several systems and may be used several times in a system.
The quality of a system depends on the load on its components. This gives rise to an MCG,
which we term a component library game (CLG, for short). On the one hand, a CLG is a
special case of MCG, so one could expect positive results about MCGs to apply to CLGs.
On the other hand, while in MCGs the strategies of the players are given explicitly by means
of multisets of resources, in CLGs the strategies of the players are given symbolically by
means of a specification deterministic finite automaton – the one whose language has to be
composed from the library’s components.

We prove that every MCG has a corresponding CLG, implying that negative results
for MCGs apply to CLGs. Moreover, we show that the succinctness of the presentation of
the strategies makes decision problems about MCGs more complex in the setting of CLGs.
We demonstrate this by studying the complexity of the best-response problem – deciding
whether a player can benefit from a unilateral deviation from his strategy, and the problem
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of deciding whether a PNE exists in a given game. For the best-response problem, which is in
P for MCGs, we prove NP-completeness for CLGs. The problem of deciding the existence of
a PNE is known to be strongly NP-complete for weighted symmetric congestion games. For
network congestion games with player specific cost functions, this problem is NP-complete
for arbitrary networks, while a PNE can be found efficiently for constant size networks [1].
We provide a simpler hardness proof for MCGs, which is valid also for a constant number of
resources, and we show that for CLGs the problem is ΣP2 -complete. As good news, we are
able to prove a “small-design property” for CLGs, which bounds the number of strategies
that one needs to consider and enables us to lift to CLGs the positive results for MCGs with
linear latency functions. Thus, such CLGs always have a PNE and their PoS is at most 2.

Due to the lack of space, some examples and proofs are omitted and can be found in the full
version available at: http://www.cs.huji.ac.il/~guya03/papers/FSTTCS15-full.pdf.

2 Preliminaries

A multiset over a set E of elements is a generalization of a subset of E in which each element
may appear more than once. For a multiset A over E and an element e ∈ E, we use A(e) to
denote the number of times e appears in A, and use e ∈ A to indicate that A(e) ≥ 1. When
describing multisets, we use em, for m ∈ IN, to denote m occurrences of e.

A multiset congestion game (MCG) is a tuple G = 〈K,E, {Σi}i∈K , {fe}e∈E〉, where
K = {1, . . . , k} is a set of players, E is a set of resources, for every 1 ≤ i ≤ k, the strategy
space Σi of Player i is a collection of multisets over E, and for every resource e ∈ E, the
latency function fe : IN→ IR is a non-decreasing function. The MCG G is an affine MCG
if for every e ∈ E, the latency function fe is affine, i.e., fe(x) = aex+ be, for non-negative
constants ae and be. Similarly, we say that G is a linear MCG if it is affine and for e ∈ E we
have be = 0. We assume w.l.o.g. that for e ∈ E we have ae ≥ 1. Classical congestion games
are a special case of MCGs where the players’ strategies are sets of resources. Weighted
congestion games can be viewed as a special case of MCGs, where for every 1 ≤ i ≤ k,
multiset si ∈ Σ and e ∈ si, we have si(e) = wi.

A profile of a game G is a tuple P = 〈s1, s2, . . . , sk〉 ∈ (Σ1 × Σ2 × . . .× Σk) of strategies
selected by the players. For a resource e ∈ E, we use Le,i(P ) to denote the number of times
e is used in P by Player i. Note that Le,i(P ) = si(e). We define the load on e in P , denoted
Le(P ), as the number of times it is used by all players, thus Le(P ) =

∑
1≤i≤k Le,i(P ) 1.

In classical congestion games, all players that use a resource e pay fe(`), where ` is
the number of players that use e. As we formalize below, in MCGs, the payment of a
player for using a resource e depends on the number of times he uses it. Given a profile
P , a resource e ∈ E, and 1 ≤ i ≤ k, the cost of e for Player i in P is coste,i(P ) =
Le,i(P ) · fe(Le(P )). That is, for each of the Le,i(P ) uses of e, Player i pays fe(Le(P )). The
cost of Player i in the profile P is then costi(P ) =

∑
e∈E coste,i(P ) and the cost of the profile

P is cost(P ) =
∑

1≤i≤k costi(P ). We also refer to the cost of a resource e in P , namely
coste(P ) =

∑
i∈K coste,i(P ).

Consider a game G. For a profile P , player i ∈ K, and a strategy s′i ∈ Σ for Player i, let
P [i ← s′i] denote the profile obtained from P by replacing the strategy for Player i by s′i.

1 Since our strategies are multisets, we have that si(e), for all i and e, is an integer. Our considerations,
however, are independent of this, thus all our results are valid also for games in which strategies might
include fractional demands for resources. In non-splittable (atomic) games, the players must select a
single strategy, even if fractional demands are allowed.
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A profile P is a pure Nash equilibrium (PNE) if no Player i can benefit from unilaterally
deviating from his strategy in P to another strategy; i.e., for every player i and every strategy
s′i ∈ Σ it holds that costi(P [i← s′i]) ≥ costi(P ).

We denote by OPT the cost of a social-optimal solution; i.e., OPT = minP cost(P ). It is
well known that decentralized decision-making may lead to sub-optimal solutions from the
point of view of society as a whole. We quantify the inefficiency incurred due to self-interested
behavior according to the price of anarchy (PoA) [22] and price of stability (PoS) [3] measures.
The PoA is the worst-case inefficiency of a Nash equilibrium, while the PoS measures the
best-case inefficiency of a Nash equilibrium. Formally,

I Definition 1. Let G be a family of games, and let G be a game in G. Let Υ(G) be the set
of Nash equilibria of the game G. Assume that Υ(G) 6= ∅.

The price of anarchy of G is the ratio between the maximal cost of a PNE and the social
optimum of G. That is, PoA(G) = maxP∈Υ(G) cost(P )/OPT (G). The price of anarchy
of the family of games G is PoA(G) = supG∈GPoA(G).
The price of stability of G is the ratio between the minimal cost of a PNE and the social
optimum of G. That is, PoS(G) = minP∈Υ(G) cost(P )/OPT (G). The price of stability of
the family of games G is PoS(G) = supG∈GPoS(G).

3 Existence of a Pure Nash Equilibrium

As demonstrated in Example 1, MCGs are less stable than weighted congestion games:

I Theorem 2. There exists a symmetric two-player MCG with identical resources and
quadratic latency function that has no PNE.

On the positive side, we show that a PNE exists in all MCGs with affine latency functions.
We do so by showing that an exact potential function exists, which is a generalization of the
one in [9, 18].

I Theorem 3. Affine MCGs are potential games.

Proof. For a profile P and a resource e ∈ E, define

Φe(P ) = ae ·
( k∑
i=1

k∑
j=i

Le,i(P ) · Le,j(P )
)

+
(
be ·

k∑
i=1

Le,i(P )
)
.

Also, Φ(P ) =
∑
e∈E Φe(P ). In the full version, we prove that Φ is an exact potential

function. J

The negative result in Theorem 2 gives rise to the decision problem ∃PNE; given an
MCG, decide whether it has a PNE. Being a generalization of WCGs, the hardness results
known for WCGs imply that ∃PNE is NP-hard [14]. Using the richer definition of MCGs,
we show below a much simpler hardness proof. We also show hardness for games with a
constant number of resources, unlike congestion games with user-specific cost functions [1].

I Theorem 4. Given an instance of an MCG, it is strongly NP-complete to decide whether
the game has a PNE, as well as to find a PNE given that one exists. For games with a
constant number of resources, the problems are NP-Complete.

I Remark 5. In splittable (non-atomic) games, each player can split his task among several
strategies. This can be seen as if each player is replaced by M → ∞ identical players all
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having the same strategy space scaled by 1/M . This model suits several applications, in
particular planning of preemptive production. Splittable games are well-understood in classical
and weighted congestion games [29, 8]. In the full version we define the corresponding MCG
and show that the positive PNE-existence result, known for weighted congestion games, carry
over to games with multisets of resources.

4 Equilibrium Inefficiency in MCGs

4.1 The Price of Stability
The PoS problem in affine congestion games is settled: [12, 10] show that PoS = 1+ 1√

3 ≈ 1.577.
For affine WCGs, the problem was open for a long time, and only recently progress was
made by [9], who showed that PoS ≤ 2 for linear WCGs. As far as we know, there is no
known lower bound for linear WCGs that exceeds the 1.577 bound for unweighted games.
We show that every affine MCG G has PoS(G) < 2. Thus, we both improve the result to
include affine functions, tighten the bound, and generalize it. For the lower bound, we show
a family of linear MCGs G that has PoS(G) > 1.631. We start with the upper bound.

I Theorem 6. Every affine MCG G has PoS(G) < 2.

Proof. Consider an affine MCG G and a profile P . It is not hard to see that for the potential
function Φ that is presented in Theorem 3 we have Φ(P ) ≤ cost(P ). Moreover, for e ∈ E we
have 2Φe(P ) = coste(P ) + ae

∑
1≤i≤k L

2
e,i(P ) + be

∑
1≤i≤k Le,i(P ). Thus, Φ(P ) > 1

2cost(P ).
The theorem follows using standard techniques: cost(O) ≥ Φ(O) ≥ Φ(N) > 1

2cost(N), where
O is the social optimum and N is a PNE that is reached from O by a sequence of best-respond
moves of the players. Then, PoS(G) ≤ cost(N)

cost(O) < 2. The details of the proof can be found in
the full version. J

Note that while the PoS can get arbitrarily close to 2, it is strictly smaller than 2 for
every game instance. The proof in [9], on the other hand, only shows PoS ≤ 2 for the family
of affine MCGs, and our result does not improve this bound.

For the lower bound, we show a family of linear MCG G = {Gk}k≥2 that are parameterized
by the number of players. Using a computerized simulation, we obtain that for the game
with 17 players, we have PoS(G17) > 1.631. We leave open the problem of calculating the
exact value the PoS tends to as the number of players increases. In the full version we show
a graph of the PoS as a function of k, which hints that the answer is only slightly higher
than 1.631.

The PNE in the games in the family is achieved with dominant strategies, and thus it is
resistant to stronger types of equilibria.

I Theorem 7. There is a linear MCG G with PoS(G) > 1.631.

Proof. We define a family of games {Gk}k≥2 as follows. The game Gk is played by k players,
thus Kk = {1, . . . , k}. For Player 1, all strategies Σk

1 = {Ok1} consists of a single multiset.
For ease of presentation we sometimes refer to Ok1 as Nk

1 . For i ≥ 2, the strategy space of
Player i consists of two multisets, Σk

i = {Oki , Nk
i }. We define Gk so that for all k ≥ 2, the

profile Ōk = 〈Ok1 , . . . , Okk〉 is the social optimum and the profile N̄k = 〈Nk
1 , . . . , N

k
k 〉 is the

only PNE.
When describing the games in the family, we partition the resources into types and

describe a multiset as a collection of triples. A triple 〈t, y, l〉 stands for y different resources
of type t, each appearing l times. For example, {〈a, 2, 1〉, 〈b, 1, 3〉, 〈c, 2, 2〉} stands for the
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multiset {a1, a2, b1, b1, b1, c1, c1, c2, c2}. In all games and resources, there are two types of
latency functions; the identity function, or identity plus epsilon, where the second type of
function are linear functions of the form f(x) = (1 + ε) · x, for some ε > 0. The latency
function of resources of the same type is the same, and we use the terms “a has identity
latency" and “b has identity plus ε latency" to indicate that all the resources a′ of type a have
fa′(j) = j and all the resources b′ of type b have fb′(j) = (1 + ε) · j, for all numbers j of uses.

The definition of Gk is complicated and we start by describing the idea in the construction
of G2 and G3. In the full version we also describe G4. We start by describing G2. The game
G2 is defined with respect to two types of resources, a and b, with identity and identity plus ε
latency, respectively. We define Player 1’s strategy space Σ2

1 = {O2
1} and Player 2’s strategy

space Σ2
2 = {O2

2, N
2
2 }, with O2

1 = N2
2 = 〈a, 2, 1〉 and O2

2 = 〈b, 1, 2〉. That is, Σ2
1 = {{a1, a2}}

and Σ2
2 = {{a1, a2}, {b1, b1}}. Clearly, the profile N̄2 = 〈O2

1, N
2
2 〉 is the only PNE in G2.

We continue to describe G3. The game G3 is defined with respect to four types of resources,
a, b, c1 and c2, where b has identity plus ε latency, c1 has identity plus ε′ latency, and the
other resources have identity latency. Let x3 = 3! = 6. We define Σ3

1 = {O3
1}, Σ2

2 = {O3
2, N

3
2 },

and Σ3
3 = {O3

3, N
3
3 }, with O3

1 = N3
2 = 〈a, x3, 1〉, O3

2 = 〈b, x3
2 , 2〉, O

3
3 = {〈c1, x3

3 , 3〉, 〈c
2, x3

2 , 1〉},
and N3

3 = {〈b, x3
2 , 1〉, 〈a, x3, 1〉}. We claim that N̄3 = 〈O3

1, N
3
2 , N

3
3 〉 is the only PNE. Our

goal here is not to show a complete proof, but to demonstrate the idea of the construction. It
is not hard to see that Player 2 deviates to N3

2 from the profile Ō3 = 〈O3
1, O

3
2, O

3
3〉, Player 3

deviates from the resulting profile N̄3 = 〈O3
1, N

3
2 , N

3
3 〉. The crux of the construction is

to keep Player 2 from deviating back from N̄3. Note that since Player 3 uses the b-type
resources once in N̄3, when Player 2 deviates from N3

2 to O3
2, their load increases to 3. Thus,

cost2(N̄3[2← O3
2]) = 3(3 ·2 · (1 + ε)) > 6(3 ·1) = cost2(N̄3) and the deviation is not beneficial.

We define the game Gk, for k ≥ 2, as follows. Let xk = k!. Player 1’s strategy space
consists of a single multiset Ok1 = 〈e1,1, xk, 1〉. For 2 ≤ i ≤ k, assume we have defined
the strategies and resources for players 1, . . . , i − 1. We define Player i’s strategies as
follows. We start with the multiset Nk

i , which does not introduce new resources. We define
Nk
i = ∪1≤j≤i−1{〈t, x, 1〉 : 〈t, x, l〉 ⊆ Oki }. The definition of Oki is more involved, but the idea

is simple. We define Oki so that it satisfies two properties. First, Oki uses new resources.
That is, for every 1 ≤ j ≤ i− 1, both Oki ∩Okj = ∅ and Oki ∩Nk

j = ∅. Consider the profile Pi
in which, for every 1 ≤ j < i, Player j uses Nk

j and, for every i ≤ l ≤ k, Player l uses Okl .
We define Oki so that when all resources have identity latency, costi(Pi) = costi(Pi[i← Nk

i ]).
For every multiset 〈ej,a, xj,a, 1〉 in Nk

i , which we have just defined, we introduce a multiset
〈ei,b, xi,b, li,b〉 in Oki that uses new resources, where b is a unique index that is arbitrarily
chosen, and xib and lib are defined as follows. Let l = |{j : ej,a ∈ Nk

j }|. We define li,b = l + 1
and xi,b = xj,a/li,b. Since Oki uses new resources, showing the first property is easy. In the
full version we show it satisfies a much stronger property.

I Claim 8. Consider k ∈ IN, a profile P in Gk, and 1 < i ≤ k. Assume Player i plays Oik
in P . When the latency functions are identity, we have costi(P ) = costi(P [i← N i

k]).

To complete the construction, we define the latency functions so that for every 2 ≤ i ≤ k,
we have that ei,1-type resources have identity plus εi latency for 0 < ε2 < . . . < εk. By
Claim 8 there are such values that make Nk

i a dominant strategy for Player i. Thus, the only
PNE in Gk, for k ≥ 2, is the profile N̄k = 〈Ok1 , Nk

2 , . . . , N
k
k 〉. Next, we identify the social

optimum.

I Claim 9. The profile Ōk = 〈Ok1 , . . . , Okk〉 is the social optimum.

Once we identify Ōk as the social optimum and N̄k as the only PNE, the calculation of
the PoS boils down to calculating their costs, which we do using a computer. Specifically,
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we have PoS(G17) = 1.6316, and we depict the values of Gk, for 2 ≤ k ≤ 17, in the full
version. J

I Remark 10. We conjecture that the correct value for the PoS is closer to our lower bound
of 1.631 rather than to the upper bound of 2. In the full version we show a more careful
analysis of the potential function than the one in Theorem 6 that shows that for every linear

MCG G we have PoS(G) ≤ 2 −
∑

e∈E

√
coste(NG)

cost(OG) , where NG and OG denote the cheapest
PNE and the social optimum of G, respectively. Also, we show that for every n ≥ 2, for the
MCG Gn that is described in Theorem 7, the inequality in the expression is essentially an
equality.

I Remark 11. We can alter the family in Theorem 7 to have quadratic latency functions
instead of identity functions. Although Claim 8 does not hold in the altered family, a
computerized simulation shows that the N strategies are still dominant strategies. Also, using
a computerized simulation, we show that the PoS for G15 is 2.399, higher than the upper
bound of 2.362 for congestion games, which is shown in [9, 11].

4.2 The Price of Anarchy
In this section we study the PoA for MCGs. We start with MCGs with polynomial latency
functions and show that the upper bound proven in [2] for WCGs can be adjusted to our
setting. Being a special case of MCGs, the matching lower bound for WCGs applies too.
Still, we present a different and much simpler lower-bound example, which uses a two-player
singleton MCG. In a singleton game, each strategy consists of (multiple accesses to) a single
resource. Finally, when the latency functions are not restricted to be polynomials, we show
that the PoA is unbounded, and it is unbounded already in a singleton MCG with only two
players.

We start by showing that the PoA in polynomial MCGs is not higher than in polynomial
WCGs. The proof adjusts the one known for WCGs [2] to our setting. For d ∈ IN, we denote
by Pd the set of polynomials of degree at most d.

I Theorem 12. The PoA in MCGs with latency functions in Pd is at most Φd+1
d , where Φd

is the unique nonnegative real solution to (x+ 1)d = xd+1.

Next, we show a matching lower bound that is stronger and simpler than the one in [2].

I Theorem 13. For d ∈ IN, the PoA in two-player singleton MCG with latency functions in
Pd is at least Φd+1

d .

Proof. Let d ∈ IN. Consider the two-player singleton MCG G with resources E = {e1, e2},
strategy spaces Σ1 = {ex1 , e

y
2} and Σ2 = {ey1, ex2}, and for ` ∈ IR, we define the latency

functions fe1(`) = fe2(`) = `d. We define x = Φd and y = 1. Since x > y the social optimum
is attained in the profile 〈ey1, e

y
2〉 and its cost is 2yd = 2. Recall that in MCGs, the players’

strategies are multisets. In particular, x should be a natural number. To fix this, we consider
a family of MCGs in which the ratio between x and y tends to the ratio above.

We claim that the profile N = 〈ex1 , ex2〉 is a PNE. This would imply that PoA(G) =
2xd+1

2 = Φd+1
d , which would conclude the proof. We continue to prove the claim. The cost of

a player in N is x · xd = xd+1 and by deviating, the cost changes to y · (x+ y)d = (x+ 1)d.
Our definition of x implies that xd+1 = (x + 1)d. Thus, the cost does not change after
deviating. Since the players are symmetric, we conclude that the profile N is a PNE, and we
are done. J
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Finally, by taking variants with factorial latency functions to the game described in
Theorem 13, we are able to increase the PoA in an unbounded manner.

I Theorem 14. The PoA in two-player MCGs is unbounded.

5 Synthesis from Component Libraries

In this section we describe the application of MCGs in synthesis from component libraries.
As briefly explained in Section 1, in this application, different users synthesize systems by
gluing together components from a component library. A component may be used in several
systems and may be used several times in a system. The performance of a component and
hence the system’s quality depends on the load on it. We describe the setting in more detail,
formalize it by means of MCGs, and relate to the results studied in earlier sections.

Today’s rapid development of complex and safety-critical systems requires reliable veri-
fication methods. In formal methods, we reason about systems and their specifications by
solving mathematical questions about their models. A central problem in formal methods
is synthesis, namely the automated construction of a system from its specification. In real
life, systems are rarely constructed from scratch. Rather, a system is typically constructed
from a library of components by gluing components from the library [23]. In this setting, the
input to the synthesis problem is a specification and a library of components, and the goal is
to construct from the components a system that exhibits exactly the behaviors specified in
the specification.

I Remark 15. The above setting corresponds to closed systems, whose behavior is independent
of their environment. It is possible to generalize the definitions to open systems, which interact
with their environment. In [4], we studied both the closed and open settings in the context of
cost-sharing (rather than congestion) games. The technical challenges that have to do with
the system being open are orthogonal to these that arise from the congestion effects, and on
which we focus in this work.

In our setting, we use deterministic finite automata (DFAs, for short) to model the
specification and use box-DFAs to model the components in the library. Formally, a DFA is
A = 〈Σ, Q, δ, q0, F 〉, where Σ is an alphabet, Q is a set of states, δ : Q× Σ→ Q is a partial
transition function, q0 ∈ Q is an initial states, and F ⊆ Q is a set of accepting states. The
run of A on a word w = w1, . . . wn ∈ Σ∗ is the sequence of states r = r0, r1, . . . , rn such that
r0 = q0 and for every 0 ≤ i ≤ n − 1, we have ri+1 = δ(ri, wi+1). Now, a box-DFA B is a
DFA augmented with a set of exit states. When a run of B reaches an exit state, it moves to
another box-DFA, as we formalize below.

The input to the synthesis from component libraries problem is a specification DFA S
over an alphabet Σ and a library of box-DFAs components L = {B1, . . . ,Bn}. The goal is to
produce a design, which is a recipe to compose the components from L to a DFA. A design
is correct if the language of the system it induces coincides with that of the specification.

Intuitively, the design can be thought of as a scheduler; it passes control between the
different components in L. When a component Bi is in control, it reads letters in Σ, visits
the states of Bi, follows its transition function, and if the run terminates, it is accepting iff
it terminates in one of Bi’s accepting states. A component relinquishes control when the
run reaches one of its exit states. It is then the design’s duty to choose the next component,
which gains control through its initial state.

Formally (see an example in Figure 1), a transducer is a DFA that has, in addition to the
input alphabet that labels the transitions, also an output alphabet that labels the states.
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B1 e1
b e2

a B2 e3
c D 1 2 1

e1

e2
e3

e2

e1

AL,D
b

a
c

a

b
B1 e1

b e2
a B2 e3

c D 1 2 1
e1

e2
e3

e2

e1

AL,D
b

a
c

a

b

Figure 1 An example of a library L = {B1, B2}, a design D, and the resulting composition AL,D.

Also, a transducer has no rejecting states. Let [n] = {1, . . . , n}. A design is a transducer D
whose input alphabet is the set E of all exit states of all the components in L and whose
output alphabet is [n]. We can think of D as running beside the components. When a
component reaches an exit state e, then D reads the input letter e, proceeds to its next state,
and outputs the index of the component to gain control next. Note that the components in
the library are black boxes: the design D does not read the alphabet Σ of the components
and has no information about the states that the component visits. It only sees which exit
state have been reached. Given a library L and a design D, their composition is a DFA AL,D
obtained by composing the components in L according to D. We say that a design D is
correct with respect to a specification DFA S iff L(AL,D) = L(S). In the full version we
construct AL,D formally.

For example, consider the library L = {B1,B2} over the alphabet Σ = {a, b, c}, and the
design D that are depicted in Figure 1. We describe the run on the word bc. The component
that gains initial control is B1 as the initial state of D outputs 1. The run in B1 proceeds with
the letter b to the exit state e1 and relinquishes control. Intuitively, control is passed to the
design that advances with the letter e1 to the state that outputs 2. Thus, the component B2
gains control, and it gains it through its initial state. Then, the letter c is read, B2 proceeds
to the exit state e3 and relinquishes control. The design advances with the letter e3 to a
state that outputs 1, and control is assigned to B1. Since the initial state of B1 is rejecting,
the word ab is rejected. As a second example, consider the word ab. Again, B1 gains initial
control. After visiting the exit state e2, control is reassigned to B1. Finally, after visiting
the state e1, control is assigned to B2, where the run ends. Since the initial state of B2 is
accepting, the run is accepting.

The synthesis problem defined above is aimed at synthesizing correct designs. We now add
costs to the setting. A component library game (CLG, for short) is a tuple 〈K,L, {Si}i∈K ,
{fB}B∈L〉, where K = {1, . . . , k} is a set of players, L is a collection of box-DFAs, the
objective of Player i ∈ K is given by means of a specification DFA Si, and, as in MCGs, the
latency function fB for a component B ∈ L maps the load on B to its cost with this load.
For i ∈ K, the set of strategies for Player i is the set of designs that are correct with respect
to Si. A CLG corresponds to an MCG with a slight difference that there might be infinitely
many correct designs. Consider a profile P = 〈D1, . . . ,Dk〉. For a component B ∈ L, we use
LB,i(P ) to denote the number of times Player i uses B in P . Recall that each state in the
transducer Di is labeled by a component in L. We define LB,i(P ) to be the number of states
in Di that are labeled with B. The rest of the definitions are as in MCGs.

We first show that every MCG can be translated to a CLG:

I Theorem 16. Consider a k-player MCG G. There is a CLG G′ between k players with
corresponding profiles. Formally, there is a one-to-one and onto function f from profiles
of G to profiles of G′ such that for every profiles P in G and Player i ∈ [k], we have that
costi(P ) = costi(f(P )).

Proof. Consider an MCG 〈K,E, {Σi}i∈K , {fe}e∈E〉. Recall that Σi is the set of strategies for
Player i that consists of multisets over E. We construct a CLG with alphabet E∪

⋃
i∈K Σi. For
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Figure 2 The components in the library L.

i ∈ K, the specification Si for Player i consists of |Σi| words. Every strategy s = {e1, . . . , en}
(allowing duplicates) in Σi contributes to L(S) the word s · e1 · e2 · . . . · en. We construct a
library L with |E|+

∑
i∈K |Σi| components of two types: a strategy component Bs for each

s ∈ Σi and a resource component Be for each e ∈ E. In addition, L contains the component
Bacc that is depicted in Figure 2. Intuitively, a correct design must choose one strategy
component Bs and then use the component Be the same number of times e appears in s. We
continue to describe the components. For s ∈ Σi, the component Bs relinquishes control only
if the letter s is read. It accepts every word in L(Si) that does not start with s. For e ∈ E,
the resource component Be has an initial state with an e-labeled transition to an exit state.
Finally, the latency function for the resource components coincides with latency functions of
the resources in the MCG, thus for e ∈ E, we have fBe = fe. The other latency functions
are f ≡ 0. In the full version we prove that there is a cost-preserving one-to-one and onto
correspondence between correct designs with respect to Si and strategies in Σi, implying the
existence of the required function between the profiles. J

Theorem 16 implies that the negative results we show for MCGs apply to CLGs:

I Corollary 17. There is a CLG with quadratic latency functions with no PNE; for CLGs with
affine latency functions, we have PoS(CLG) > 1.631; for d ∈ IN, the PoA in a two-player
singleton MCG with latency functions in Pd is at least Φd+1

d .

I Remark 18. We note that the positive results for CLGs with linear latency functions,
namely existence of PNE and PoS(CLG) ≤ 2, do not follow immediately from Theorem 3,
as its proof relies on the fact that an MCG has only finitely many profiles. Since the strategy
space of a player might have infinitely many strategies, a CLG might have infinitely many
profiles. In order to show that CLGs with linear latency functions have a PNE we need
Lemma 19 below, which implies that even in games with infinitely many profiles, there is a
best response dynamics that only traverses profiles with “small” designs. Such a traversal is
guaranteed to reach a PNE as there are only finitely many such profiles. J

Computational complexity. We turn to study two computational problems for CLGs:
finding a best-response and deciding the existence of a PNE. We show that the succinctness
of the representation of the objectives of the players in CLGs makes these problems much
harder than for MCGs. Our upper bounds rely on the following lemma. The lemma is
proven in [4] for cost-sharing games, and the considerations in the proof there applies also
for congestion games.
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I Lemma 19. Consider a library L, a specification S, and a correct design D. There is
a correct design D′ with at most |S| · |L| states, where |L| is the number of states in the
components of L, such that for every component B ∈ L, the number of times D′ uses B is at
most the number of times D uses B.

We start with the best-response problem (BR problem, for short): Given an MCG G
between k players, a profile P , an index i ∈ K, and µ ∈ IR, decide whether Player i has a
strategy S′i such that costi(P [i← S′i]) ≤ µ.

I Theorem 20. The BR problem for MCGs is in P. For CLGs it is NP-complete, and
NP-hardness holds already for games with one player and linear latency functions.

Proof. Showing that the BR problem is in P for MCGs follows easily from the fact the set
of strategies for Player i is given implicitly and calculating the cost for a player in a profile
can be done in polynomial time.

The upper bound for CLGs follows from Lemma 19, which implies an upper bound on
the size of the cheapest correct designs. Since checking whether a design is correct and
calculating its cost can both be done in polynomial time, membership in NP follows.

We continue to the lower bound. We describe the intuition of the reduction and the
formal definition along with the correctness proof can be found in the full version. Given
a 3SAT formula ϕ with clauses C1, . . . , Cm and variables x1, . . . , xn, we construct a library
L and a specification S such that there is a design D that costs at most µ = nm+m iff ϕ
is satisfiable. The library L consists of an initial component B0, variable components Bjxi

and Bj¬xi
for j ∈ [m] and i ∈ [n], clause components BCj ,xjk

for j ∈ [m] and k ∈ {1, 2, 3},
and component Bacc and Brej . The components of the library are depicted in Figure 2. The
latency function of the variable components is the identity function f(x) = x, thus using such
a component once costs 1. The latency functions of the other components is the constant
function f ≡ 0, thus using such components any number of times is free.

Intuitively, a correct design corresponds to an assignment to the variable and must use
nm variable components as follows. For i ∈ [n], either use all the components B1

xi
, . . . ,Bmxi

or all the components B1
¬xi

, . . . ,Bm¬xi
with a single use each. Thus, a correct design implies

an assignment η : {x1, . . . , xn} → {T, F}. Choosing B1
xi
, . . . ,Bmxi

corresponds to η(xi) = F

and choosing B1
¬xi

, . . . ,Bm¬xi
corresponds to η(xi) = T .

Additionally, in order to verify that a correct design corresponds to a satisfying assignment,
it must use m clause components and m more variable components as follows. Consider
a correct design D, and let η : {x1, . . . , xn} → {T, F} be the corresponding assignment as
described above. For every j ∈ [m], D must use a clause component BCj ,xi

, where recall
that the clause Cj includes a literal ` ∈ {xi,¬xi}. Using the component BCj ,xi

requires D to
use a variable component Bt`, for some t ∈ [m]. So, a correct design uses a total of nm+m

components with identity latency. If η(`) = F , then Bt` is already in use and a second use
will cost more than 1, implying that the design costs more than nm+m. J

The next problem we study is deciding the existence of a PNE. As we show in The-
orem 4, the problem is NP-complete for MCGs. As we show below, the succinctness of the
representation makes this problem harder for CLGs.

I Theorem 21. The ∃PNE problem for CLGs is ΣP2 -complete.

Proof. The upper bound is easy and follows from Lemma 19.
For the lower bound we show a reduction from the complement of not all equal ∀∃

3SAT (NAE, for short), which is known to be ΣP
2 -complete [16]. An input to NAE is a
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3CNF formula ϕ over variables x1, . . . , xn, y1, . . . , yn. It is in NAE if for every assignment
η : {x1, . . . , xn} → {T, F} there is an assignment ρ : {y1, . . . , yn} → {T, F} such that every
clause in ϕ has a literal that gets value truth and a literal that gets value false (in η or
ρ, according to whether the variable is an x or a y variable). We say that such a pair of
assignments 〈η, ρ〉 is legal for ϕ.

Given a 3CNF formula ϕ, we construct a CLG G with three players such that ϕ ∈ NAE iff
G does not have a PNE. We describe the intuition of the reduction. The details can be found
in the full version. There is a one-to-one correspondence between Player 3 correct designs
and assignments to the variables {x1, . . . , xn}. For an assignment η : {x1, . . . , xn} → {T, F}
we refer to the corresponding correct design by Dη. Consider a legal pair of assignments
〈η, ρ〉, and assume Player 3 chooses the design Dη. Similarly to the proof of Theorem 20,
the library contains variable components with identity latency function. We construct the
library and the players’ objectives so that there is a correct design Dρ for Player 1 that uses
mn+2m variable components each with load 1 iff 〈η, ρ〉 is a legal pair for ϕ. More technically,
both Dη and Dρ use mn variable components that correspond to the variables x1, . . . , xn
and y1, . . . , yn, respectively. For every j ∈ [m], assuming the j-th clause is `1j ∨ `2j ∨ `3j , the
design Dρ must use two additional variable components Bt1`a

j
and Bt2

`b
j

, for a 6= b ∈ {1, 2, 3}
and t1, t2 ∈ [m], which corresponds to η or ρ assigning value true to `aj and value false to `bj .

Player 1 has an additional correct design DALL in which he does not share any com-
ponents regardless of the other players’ choices. Player 2 has two possible designs DA
and DB. Assume Player 3 chooses a design Dη. We describe the interaction between
Player 1 and Player 2. We define the library and the players’ objectives so that when
Player 1 chooses some design Dρ, Player 2 prefers DB over DA, thus cost2(〈Dρ,DA,Dη〉) >
cost2(〈Dρ,DB ,Dη〉). When Player 2 plays DB , Player 1 prefers DALL over every design Dρ,
thus cost1(〈Dρ,DB ,Dη〉) > cost1(〈DALL,DB ,Dη〉). When Player 1 chooses DALL, Player 2
prefers DA over DB, thus cost2(〈DALL,DB ,Dη〉) > cost2(〈Dη,DA,Dη〉). Finally, when
Player 2 chooses DA, Player 1 prefers the design Dρ iff the pair 〈η, ρ〉 is legal for ϕ, thus
cost1(〈DALL,DA,Dη〉) > cost1(〈Dρ,DA, Dη〉), for a legal pair 〈η, ρ〉.

Thus, if ϕ ∈ NAE, then for every assignment η, there is an assignment ρ such that 〈η, ρ〉
is a legal pair. Then, assuming Player 3 chooses a design Dη, Player 1 prefers either choosing
DALL or Dρ over every other design, where 〈η, ρ〉 is a legal pair. By the above, there is no
PNE in the game. If ϕ /∈ NAE, then there is an assignment η such that for every assignment
ρ, the pair 〈η, ρ〉 is illegal. Then, the profile 〈DALL,DA,Dη〉 is a PNE, and we are done. J
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Abstract
In [2], we introduced sensing as a new complexity measure for the complexity of regular languages.
Intuitively, the sensing cost quantifies the detail in which a random input word has to be read by
a deterministic automaton in order to decide its membership in the language. In this paper, we
consider sensing in two principal applications of deterministic automata. The first is monitoring:
we are given a computation in an on-line manner, and we have to decide whether it satisfies the
specification. The second is synthesis: we are given a sequence of inputs in an on-line manner
and we have to generate a sequence of outputs so that the resulting computation satisfies the
specification. In the first, our goal is to design a monitor that handles all computations and
minimizes the expected average number of sensors used in the monitoring process. In the second,
our goal is to design a transducer that realizes the specification for all input sequences and
minimizes the expected average number of sensors used for reading the inputs.

We argue that the two applications require new and different frameworks for reasoning about
sensing, and develop such frameworks. We focus on safety languages. We show that for monitor-
ing, minimal sensing is attained by a monitor based on the minimal deterministic automaton for
the language. For synthesis, however, the setting is more challenging: minimizing the sensing may
require exponentially bigger transducers, and the problem of synthesizing a minimally-sensing
transducer is EXPTIME-complete even for safety specifications given by deterministic automata.
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Design Aids, F.1.1 Models of Computation

Keywords and phrases Automata, regular languages, ω-regular languages, complexity, sensing,
minimization
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1 Introduction

Studying the complexity of a formal language, there are several complexity measures to
consider. When the language is given by means of a Turing Machine, the traditional measures
are time and space requirements. Theoretical interest as well as practical considerations have
motivated additional measures, such as randomness (the number of random bits required for
the execution) [11] or communication complexity (number and length of messages required)
[10]. For ω-regular languages, given by means of finite-state automata, the classical complexity
measure is the size of a minimal deterministic automaton that recognizes the language.

In [2], we introduced and studied a new complexity measure, namely the sensing cost of
the language. Intuitively, the sensing cost of a language measures the detail with which a
random input word needs to be read in order to decide membership in the language. Sensing
has been studied in several other CS contexts. In theoretical CS, in methodologies such as
PCP and property testing, we are allowed to sample or query only part of the input [8]. In
more practical applications, mathematical tools in signal processing are used to reconstruct
information based on compressed sensing [3], and in the context of data streaming, one

© Shaull Almagor, Denis Kuperberg, and Orna Kupferman;
licensed under Creative Commons License CC-BY

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 380–393

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.380
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


S. Almagor, D. Kuperberg, and O. Kupferman 381

cannot store in memory the entire input, and therefore has to approximate its properties
according to partial “sketches” [12].

Our study in [2] considered regular and ω-regular languages, where sensing is defined as
follows. Consider a deterministic automaton A over an alphabet 2P , for a finite set P of
signals. For a state q of A, we say that a signal p ∈ P is sensed in q if at least one transition
taken from q depends on the truth value of p. The sensing cost of q is the number of signals
it senses, and the sensing cost of a run is the average sensing cost of states visited along the
run. We extend the definition to automata by assuming a given distribution of the inputs.
The sensing cost of a language with respect to this distribution is then the infimum sensing
cost of an automaton for the language. For simplicity, we focus on the uniform distribution,
and we refer to the sensing cost of an automaton without parameterizing it by a distribution.
As detailed in Remark 1, all our results can be extended to a setting with a parameterized
distribution.

In [2], we showed that computing the sensing cost of a language can be done in polynomial
time. We further showed that while in finite words the minimal sensing cost is always attained,
this is not the case for infinite words. For example, recognizing the language L over 2{p}
of all words with infinitely many p’s, one can give up sensing of p for unboundedly-long
intervals, thus the sensing cost of L is 0, yet every deterministic automaton A that recognizes
L must sense p infinitely often, causing the sensing cost of A to be strictly greater than 0.

In the context of formal methods, sensing has two appealing applications. The first
is monitoring: we are given a computation and we have to decide whether it satisfies
a specification. When the computations are over 2P , we want to design a monitor that
minimizes the expected average number of sensors used in the monitoring process. Monitoring
is especially useful when reasoning about safety specifications [7]. There, every computation
that violates the specification has a bad prefix – one all whose extensions are not in L. Hence,
as long as the computation is a prefix of some word in L, the monitor continues to sense and
examine the computation. Once a bad prefix is detected, the monitor declares an error and
no further sensing is required. The second application is synthesis. Here, the set P of signals
is partitioned into sets I and O of input and output signals, respectively. We are given a
specification L over the alphabet 2I∪O, and our goal is to construct an I/O transducer that
realizes L. That is, for every sequence of assignments to the input signals, the transducer
generates a sequence of assignments to the output signals so that the obtained computation
is in L [13]. Our goal is to construct a transducer that minimizes the expected average
number of sensors (of input signals) that are used along the interaction.

The definition of sensing cost in [2] falls short in the above two applications. For the first,
the definition in [2] does not distinguish between words in the language and words not in
the language, whereas in monitoring we care only for words in the language. In particular,
according to the definition in [2], the sensing cost of a safety language is always 0. For
the second, the definition in [2] considers automata and does not partition P into I and O,
whereas synthesis refers to I/O-transducers. Moreover, unlike automata, correct transducers
generate only computations in the language, and they need not generate all words in the
language – only these that ensure receptiveness with respect to all sequences of inputs.

In this work we study sensing in the context of monitoring and synthesis. We suggest
definitions that capture the intuition of “required number of sensors” in these settings and
solve the problems of generating monitors and transducers that minimize sensing. For both
settings, we focus on safety languages.

Consider, for example, a traffic monitor that has access to various sensors on roads and
whose goal is to detect accidents. Once a road accident is detected, an alarm is raised to
the proper authorities and the monitoring is stopped until the accident has been taken care
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of. The monitor can read the speed of cars along the roads, as well as the state of traffic
lights. An accident is detected when some cars do not move even-though no traffic light is
stopping them. Sensing the speed of every car and checking every traffic light requires huge
sensing. Our goal is to find a monitor that minimizes the required sensing and still detects
all accidents. In the synthesis setting, our goal is extended to designing a transducer that
controls the traffic lights according to the speed of the traffic in each direction, and satisfies
some specification (say, give priority to slow traffic), while minimizing the sensing of cars.

We can now describe our model and results. Let us start with monitoring. Recall that
the definition of sensing in [2] assumes a uniform probability on the assignments to the
signals, whereas in monitoring we want to consider instead more intricate probability spaces
– ones that restrict attention to words in the language. As we show, there is more than one
way to define such probability spaces, each leading to a different measure. We study two
such measures. In the first, we sample a word randomly, letter by letter, according to a
given distribution, allowing only letters that do not generate bad prefixes. In the second,
we construct a sample space directly on the words in the language. We show that in both
definitions, we can compute the sensing cost of the language in polynomial time, and that
the minimal sensing cost is attained by a minimal-size automaton. Thus, luckily enough,
even though different ways in which a computation may be given in an online manner calls
for two definitions of sensing cost, the design of a minimally-sensing monitor is the same in
the two definitions.

Next, we proceed to study sensing for synthesis. The main challenge there is that we no
longer need to consider all words in the language. Also, giving up sensing has a flavor of
synthesis with incomplete information [9]: the transducer has to realize the specification
no matter what the incomplete information is. This introduces a new degree of freedom,
which requires different techniques than those used in [2]. In particular, while a minimal-size
transducer for a safety language can be defined on top of the state space of a minimal-size
deterministic automaton for the language, this is not the case when we seek minimally-sensing
transducers. This is different also from the results in [2] and even these in the monitoring
setting, where a minimally-sensing automaton or monitor for a safety language coincides
with the minimal-size automaton for it. In fact, we show that a minimally-sensing transducer
for a safety language might be exponentially bigger than a minimal-size automaton for the
language. Consequently, the problems of computing the minimal sensing cost and finding a
minimally-sensing transducer are EXPTIME-complete even for specifications given by means
of deterministic safety automata. On the positive side, a transducer that attains the minimal
sensing cost always exists for safety specifications. For general ω-regular specifications, even
decidability of computing the optimal sensing cost remains open.

Due to lack of space, some of the proofs are omitted and can be found in the full version,
in the authors’ home pages.

2 Preliminaries

Automata and Transducers
A deterministic automaton on infinite words is A = 〈Σ, Q, q0, δ, α〉, where Q is a finite set
of states, q0 ∈ Q is an initial state, δ : Q × Σ 9 Q is a partial transition function, and α
is an acceptance condition. We sometimes refer to δ as a relation ∆ ⊆ Q × Σ × Q, with
〈q, σ, q′〉 ∈ ∆ iff δ(q, σ) = q′. A run of A on a word w = σ1 · σ2 · · · ∈ Σω is a sequence of
states q0, q1, . . . such that qi+1 = δ(qi, σi+1) for all i ≥ 0. Note that since δ is deterministic
and partial, A has at most one run on a word. A run is accepting if it satisfies the acceptance
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condition. A word w ∈ Σω is accepted by A if A has an accepting run on w. The language
of A, denoted L(A), is the set of words that A accepts. We denote by Aq the automaton A
with the initial state set to q.

In a deterministic looping automaton (DLW), every run is accepting. Thus, a word is
accepted if there is a run of the automaton on it.1 Since every run is accepting, we omit the
acceptance condition and write A = 〈Σ, Q, q0, δ〉.

For finite sets I and O of input and output signals, respectively, an I/O transducer is
T = 〈I,O,Q, q0, δ, ρ〉, where Q is a finite set of states, q0 ∈ Q is an initial state, δ : Q×2I → Q

is a total transition function, and ρ : Q → 2O is a labeling function on the states. The
run of T on a word w = i0 · i1 · · · ∈ (2I)ω is the sequence of states q0, q1, . . . such that
qk+1 = δ(qk, ik) for all k ≥ 0. The output of T on w is then o1, o2, . . . ∈ (2O)ω where
ok = ρ(qk) for all k ≥ 1. Note that the first output assignment is that of q1, and we do not
consider ρ(q0). This reflects the fact that the environment initiates the interaction. The
computation of T on w is then T (w) = i0 ∪ o1, i1 ∪ o2, . . . ∈ (2I∪O)ω.

Note that the structure of each I/O-transducer T induces a DLW AT over the alphabet
2I with a total transition relation. Thus, the language of the DLW is (2I)ω, reflecting the
receptiveness of T .

Safety Languages
Consider a language L ⊆ Σω. A finite word x ∈ Σ∗ is a bad prefix for L if for every y ∈ Σω,
we have that x · y 6∈ L. That is, x is a bad prefix if all its extensions are words not in L. The
language L is then a safety language if every word not in L has a bad prefix. For a language
L, let pref (L) = {x ∈ Σ∗ : there exists y ∈ Σω such that x · y ∈ L} be the set of prefixes of
words in L. Note that each word in Σ∗ is either in pref (L) or is a bad prefix for L. Since the
set pref (L) for a safety language L is fusion closed (that is, a word is in L iff all its prefixes
are in pref (L)), an ω-regular language is safety iff it can be recognized by a DLW [15].

Consider a safety language L over sets I and O of input and output signals. We say
that L is I/O-realizable if there exists an I/O transducer T all whose computations are in
L. Thus, for every w ∈ (2I)ω, we have that T (w) ∈ L. We then say that T I/O-realizes L.
When I and O are clear from the context, we omit them. The synthesis problem gets as
input a safety language L over I ∪O, say by means of a DLW, and returns an I/O-transducer
that realizes L or declares that L is not I/O-realizable.

Sensing
In [2], we defined regular sensing as a measure for the number of sensors that need to be
operated in order to recognize a regular language. We study languages over an alphabet
Σ = 2P , for a finite set P of signals. A letter σ ∈ Σ corresponds to a truth assignment to the
signals, and sensing a signal amounts to knowing its assignment. Describing sets of letters
in Σ, it is convenient to use Boolean assertions over P . For example, when P = {a, b}, the
assertion ¬b stands for the set {∅, {a}} of two letters.

For completeness, we bring here the definitions from [2]. Consider a language L and a
deterministic automaton A = 〈2P , Q, q0, δ, α〉 such that L(A) = L. We assume that δ is total.
For a state q ∈ Q and a signal p ∈ P , we say that p is sensed in q if there exists a set S ⊆ P
such that δ(q, S \ {p}) 6= δ(q, S ∪ {p}). Intuitively, a signal is sensed in q if knowing its value

1 For readers familiar with the Büchi acceptance condition, a looping automaton is a special case of Büchi
with α = Q.
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may affect the destination of at least one transition from q. We use sensed(q) to denote the
set of signals sensed in q. The sensing cost of a state q ∈ Q is scost(q) = |sensed(q)|. 2

For a finite run r = q1, . . . , qm of A, we define the sensing cost of r, denoted scost(r), as
1
m

∑m−1
i=0 scost(qi). That is, scost(r) is the average number of sensors that A uses during r.

Now, for a finite word w, we define the sensing cost of w in A, denoted scostA(w), as the
sensing cost of the run of A on w. Finally, the sensing cost of A is the expected sensing cost
of words of length that tends to infinity, where we assume that the letters in Σ are uniformly
distributed (see Remark 1 below). Thus, scost(A) = limm→∞ |Σ|−m

∑
w∈Σm scostA(w).

Note that the definition applies to automata on both finite and infinite words, and
it corresponds to the closed setting: the automaton gets as input words over 2P and
uses sensors in order to monitor the input words and decide their membership in L. We
define the sensing cost of a language L to be the minimal cost of an automaton for L.
A-priori, the minimal cost might not be attained by a single automaton, thus we define
scost(L) = inf {scost(A) : A is an automaton for L}.

I Remark 1 (On the choice of uniform distribution). The choice of a uniform distribution
on the letters in Σ may be unrealistic in practice. Indeed, in real scenarios, the distribution
on the truth assignments to the underlying signals may be complicated. Generally, such a
distribution can be given by a Markov chain (in monitoring) or by an MDP (in synthesis).
As it turns out, adjusting our setting and algorithms to handle such distributions involves
only a small technical elaboration, orthogonal to the technical challenges that exists already
in a uniform distribution.

Accordingly, throughout the paper we assume a uniform distribution on the truth assign-
ments to the signals. In the full version we describe how our setting and algorithms are
extended to the general case.

The definition of sensing in [2] essentially considers the sensing required in the Ergodic
SCC of a deterministic automaton for the language. Since in safety languages, the Ergodic
SCCs are accepting or rejecting sinks, which require no sensing, we have the following, which
implies that the definition in [2] is not too informative for safety languages.

I Lemma 2. For every safety language L ⊆ Σω, we have scost(L) = 0.

Markov Chains and Decision Processes
A Markov chain M = 〈S, P 〉 consists of a finite state space S and a stochastic transition
matrix P : S × S → [0, 1]. That is, for all s ∈ S, we have

∑
s′∈S P (s, s′) = 1. Given an

initial state s0, consider the vector v0 in which v0(s0) = 1 and v0(s) = 0 for every s 6= s0.
The limiting distribution ofM is limn→∞

1
n

∑n
m=0 v

0Pm. The limiting distribution satisfies
πP = π, and can be computed in polynomial time [5].

A Markov decision process (MDP) isM = 〈S, s0, (As)s∈S ,P, cost〉 where S is a finite set
of states, s0 ∈ S is an initial state, As is a finite set of actions that are available in state s ∈ S.
Let A =

⋃
s∈S As. Then, P : S ×A× S 9 [0, 1] is a partial transition probability function,

defining for every two states s, s′ ∈ S and action a ∈ As, the probability of moving from s to
s′ when action a is taken. Accordingly,

∑
s′∈S P(s, a, s′) = 1. Finally, cost : S ×A9 N is a

2 We note that, alternatively, one could define the sensing level of states, with slevel(q) = scost(q)
|P | . Then,

for all states q, we have that slevel(q) ∈ [0, 1]. All our results hold also for this definition, simply by
dividing the sensing cost by |P |.
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q0q1 q2
¬a a

True a

Figure 1 A DLW for aω + (¬a) · (True)ω.

partial cost function, assigning each state s and action a ∈ As, the cost of taking action a in
state s.

An MDP can be thought of as a game between a player who chooses the actions and
nature, which acts stochastically according to the transition probabilities.

A policy for an MDPM is a function f : S∗ × S → A that outputs an action given the
history of the states, such that for s0, . . . , sn we have f(s0, . . . , sn) ∈ Asn

. Policies correspond
to the strategies of the player. The cost of a policy f is the expected average cost of a
random walk inM in which the player proceeds according to f . Formally, for m ∈ N and
for a sequence of states τ = s0, . . . , sm−1, we define Pf (τ) =

∏m−1
i=1 P(si−1, f(s0 · · · si−1), si).

Then, costm(f, τ) = 1
m

∑m
i=1 cost(si, f(s1 · · · si)) and we define the cost of f as cost(f) =

lim infm→∞ 1
m

∑
τ :|τ |=m costm(f, τ) · Pf (τ).

A policy is memoryless if it depends only on the current state. We can describe a memory-
less policy by f : S → A. A memoryless policy f induces a Markov chainMf = 〈S, Pf 〉 with
Pf (s, s′) = P(s, f(s), s′). Let π be the limiting distribution ofMf . It is not hard to prove
that cost(f) =

∑
s∈S πscost(s, f(s)). Let cost(M) = inf{cost(f) : f is a policy forM}.

That is, cost(M) is the expected cost of a game played onM in which the player uses an
optimal policy.

I Theorem 3. Consider an MDP M. Then, cost(M) can be attained by a memoryless
policy, which can be computed in polynomial time.

3 Monitoring

As described in Section 2, the definition of sensing in [2] takes into an account all words in
(2P )ω, regardless their membership in the language. In monitoring, we restrict attention
to words in the language, as once a violation is detected, no further sensing is required. In
particular, in safety languages, violation amounts to a detection of a bad prefix, and indeed
safety languages are the prominent class of languages for which monitoring is used [7].

As it turns out, however, there are many approaches to define the corresponding probability
space. We suggest here two. Let A be a DLW and let L = L(A).
1. [Letter-based] At each step, we uniformly draw a “safe” letter – one with which we are

still generating a word in pref (L), thereby iteratively generating a random word in L.
2. [Word-based] At the beginning, we uniformly draw a word in L.

We denote the sensing cost of A in the letter- and word-based approaches lcost(A) and
wcost(A), respectively. The two definitions yield two different probability measures on L, as
demonstrated in Example 4 below.

I Example 4. Let P = {a} and consider the safety language L = aω + (¬a) · (True)ω. That
is, if the first letter is {a}, then the suffix should be {a}ω, and if the first letter is ∅, then all
suffixes result in a word in L. Consider the DLW A for L in Figure 1.

In the letter-based definition, we initially draw a letter from 2{a} uniformly, i.e., either a
or ¬a w.p. 1

2 . If we draw ¬a, then we move to q1 and stay there forever. If we draw a, then
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we move to q2 and stay there forever. Since scost(q1) = 0 and scost(q2) = 1, and we reach q1
and q2 w.p 1

2 , we get lcost(A) = 1
2 .

In the word-based definition, we assign a uniform probability to the words in L. In this
case, almost all words are not aω, and thus the probability of aω is 0. This means that we
will get to q1 w.p. 1, and thus wcost(A) = 0.

As a more realistic example, recall our traffic monitor in Section 1. There, the behavior
of the cars is the random input, and the two approaches can be understood as follows. In the
letter-based approach, we assume that the drivers do their best to avoid accidents regardless
of the history of the traffic and the traffic lights so far. Thus, after every safe prefix, we
assume that the next input is also safe. In the word-based approach, we assume that the
city is planned well enough to avoid accidents. Thus, we a-priori set the distribution to safe
traffic behaviors according to their likelihood.

We now define the two approaches formally.

The Letter-Based Approach

Consider a DLW A = 〈Σ, Q, δ, q0〉. For a state q ∈ Q, let avail(q) be the set of letters
available in q, namely letters that do not cause A to get stuck. Formally, avail(q) =
{σ ∈ Σ : δ(q, σ) is defined }. We model the drawing of available letters by the Markov
chain MA = 〈Q,P 〉, where the probability of a transition from state q to state q′ in
MA is P (q, q′) = |{σ∈Σ:δ(q,σ)=q′}|

|avail(q)| . Let π be the limiting distribution of MA. We define
lcost(A) =

∑
q∈Q π(q) · scost(q).

Since computing the limiting distribution can be done in polynomial time, we have the
following.

I Theorem 5. Given a DLW A, the sensing cost lcost(A) can be calculated in polynomial
time.

The Word-Based Approach

Consider a DLW A = 〈2P , Q, q0, δ〉 recognizing a non-empty safety language L. From [2],
we have scost(A) = limn→∞

1
|Σ|n

∑
u∈Σn scostA(u), which coincides with E[scostA(u)] where

E is the expectation with respect to the standard measure on Σω. Our goal here is to
replace this standard measure with one that restricts attention to words in L. Thus, we
define wcost(A) = E[scost(u) | u ∈ L]. For n ≥ 0, let pref (L, n) be the set of prefixes
of L of length n. Formally, pref (L, n) = pref (L) ∩ Σn. As in the case of the standard
measure, the expectation-based definition coincides with one that that is based on a limiting
process: wcost(A) = limn→∞

1
|pref (L,n)|

∑
u∈pref (L,n) scostA(u). Thus, the expressions for

scost and wcost are similar, except that in the expectation-based definition we add conditional
probability, restricting attention to words in L, and in the limiting process we replace Σn by
pref (L, n).

Note that the term 1
|pref (L,n)| is always defined, as L is a non-empty safety language. In

particular, the expectation is well defined even if L has measure 0 in Σω.

I Theorem 6. Given a DLW A, we can compute wcost(A) in polynomial time.

Proof. We will use here formal power series on one variable z, a classical tool for graph and
automata combinatorics. They can be thought of as polynomials of infinite degree.

For states p, q ∈ Q and for n ∈ N, let #paths(p, q, n) denote the number of paths (each one
labeled by a distinct word) of length n from p to q in A. We define the generating functions:
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Cp,q(z) =
∑
n∈N #paths(p, q,n)zn and Fq(z) = Cq0,q(z)

∑
p∈Q Cq,p(z). Let [zn]Fq(z) be the

coefficient of zn in Fq(z). By the definition of Cq0,q, we get

[zn]Fq(z) =
n∑
k=0

#paths(q0 , q, k)
∑
p∈Q

#paths(q, p,n − k).

Therefore, [zn]Fq(z) is the total number of times the state q is used when listing all paths of
length n from q0.

Thus, we have
∑
u∈pref (L,n) scost(u) = 1

n

∑
q∈Q scost(q)[zn]Fq(z). Finally, let S(z) =∑

p∈p Cq0,p(z). Then, wcost(A) = limn→∞
1

n·[zn]S(z)
∑
q∈Q scost(q)[zn]Fq(z). In the full

version we use techniques from [4] and [14] to compute the latter limit in polynomial time,
by asymptotic estimations of the coefficients, thus concluding the proof. J

Sensing cost of languages

For a safety language L, we define lcost(L) = inf{lcost(A) : A is a DLW for L}, and similarly
for wcost(L). Different DLWs for a language L may have different sensing costs. We show
that the minimal sensing cost in both approaches is attained at the minimal-size DLW. We
first need some definitions and notations.

Consider a safety language L ⊆ Σω. For two finite words u1 and u2, we say that u1
and u2 are right L-indistinguishable, denoted u1 ∼L u2, if for every z ∈ Σω, we have that
u1 · z ∈ L iff u2 · z ∈ L. Thus, ∼L is the Myhill-Nerode right congruence used for minimizing
DFAs. For u ∈ Σ∗, let [u] denote the equivalence class of u in ∼L and let 〈L〉 denote the
set of all equivalence classes. Each class [u] ∈ 〈L〉 is associated with the residual language
u−1L = {w : uw ∈ L}. Note that for safety languages, there is at most one class [u], namely
the class of bad prefixes, such that u−1L = ∅. We denote this class [⊥]. When L 6= ∅ is a
regular safety language, the set 〈L〉 is finite, and induces the residual automaton of L, defined
by RL = 〈Σ, 〈L〉 \ {[⊥]}, δL, [ε]〉, with δL([u], a) = [u · a] for all [u] ∈ 〈L〉 \ {[⊥]} and a ∈ Σ
such that [u · a] 6= [⊥]. The automaton RL is well defined and is the unique minimal-size
DLW for L.

Consider a DLW A = 〈Σ, Q, q0, δ〉 such that L(A) = L. For a state s = [u] ∈ 〈L〉 \ {[⊥]},
we associate with s a set states(A, s) = {q ∈ Q : L(Aq) = u−1L}. That is, states(A, s) ⊆ Q
contains exactly all state that A can be in after reading a word that leads RL to [u].

The following claims are simple exercises.

I Proposition 7. Consider a safety language L and a DLW A for it.
1. The set {states(A, s) : s ∈ 〈L〉 \ {[⊥]}} forms a partition of the states of A.
2. For every state s ∈ 〈L〉 \ {[⊥]} of RL, letter σ ∈ Σ, and state q ∈ states(A, s), we have

δ(q, σ) ∈ states(A, δL(s, σ)).

I Lemma 8. Consider a safety language L ⊆ Σω. For every DLW A with L(A) = L, we
have that lcost(A) ≥ lcost(RL) and wcost(A) ≥ wcost(RL)

Proof. We outline the key points in the proof for lcost. The arguments for wcost are similar.
For a detailed proof see the full version.

Recall that the states of RL are 〈L〉 \ {[⊥]}. We start by showing that for every
s ∈ 〈L〉 \ {[⊥]} and for every q ∈ states(A, s) we have that scost(q) ≥ scost(s). Next, we
consider the Markov chainsMA andMRL

. Using Proposition 7 we show that if π and τ
are the limiting distributions ofMA andMRL

respectively, then for every s ∈ 〈L〉 \ {[⊥]}
we have that τ(s) =

∑
q∈states(A,s) π(q). Finally, since Q is partitioned by {states(A, s)}s we

conclude that lcost(A) ≥ lcost(RL). J
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q0 q1

¬a ∨ ¬b

a ∧ b

a

Figure 2 A DLW for (¬a ∨ ¬b)ω + (¬a ∨ ¬b)∗ · (a ∧ b) · aω.

Lemma 8 and Theorems 5 and 6 allow us to conclude with the following.

I Theorem 9. Given a DLW A, we can compute lcost(L(A)) and wcost(L(A)) in polynomial
time.

I Example 10. Consider the DLW A over the alphabet 2{a,b} appearing in Figure 2.
Clearly, A is a minimal automaton for L = (¬a ∨ ¬b)ω + (¬a ∨ ¬b)∗ · (a ∧ b) · aω. By

Lemma 8, we can calculate the sensing cost of A in order to find the sensing cost of L.
Clearly, scost(q0) = 2 and scost(q1) = 1. We start by computing lcost(A). The

corresponding Markov chain MA has only one ergodic component {q1}, so we obtain
lcost(A) = scost(q1) = 1. The computation of wcost(A) is more intricate. In the full
version we show that wcost(A) = 2. We remark that unlike in the other versions of sensing
cost, transient components can play a role in wcost. In particular, If the self-loop on q0 has
been labeled by two rather than three letters, then we would have gotten wcost(A) = 3

2 .

4 Synthesis

In the setting of synthesis, the signals in P are partitioned into sets I and O of input and
output signals. An I/O-transducer T senses only input signals and we define its sensing cost
as the sensing cost of the DLW AT it induces.

We define the I/O-sensing cost of a realizable specification L ∈ (2I∪O)ω as the minimal
cost of an I/O-transducer that realizes L. Thus, scostI/O(A) = inf{scost(T ) : T is an
I/O-transducer that realizes L}. In this section we consider the problem of finding a
minimally-sensing I/O-transducer that realizes L.

The realizability problem for DLW specifications can be solved in polynomial time. Indeed,
given a DLW A, we can view A as a game between a system, which controls the outputs,
and an environment, which controls the inputs. We look for a strategy for the system that
never reaches an undefined transition. This amounts to solving a turn-based safety game,
which can be done in polynomial time.

When sensing is introduced, it is not enough for the system to win this game, as it now
has to win while minimizing the sensing cost. Intuitively, not sensing some inputs introduces
incomplete information to the game: once the system gives up sensing, it may not know the
state in which the game is and knows instead only a set of states in which the game may be.
In particular, unlike usual realizability, a strategy that minimizes the sensing need not use
the state space of the DLW. We start with an example illustrating this.

I Example 11. Consider the DLW A appearing in Figure 3. The DLW is over I = {p, q} and
O = {a}. A realizing transducer over the structure of A (see T1 in Figure 4) senses p and q,
responds with a if p∧ q was sensed and responds with ¬a if ¬p∧¬q was sensed. In case other
inputs are sensed, the response is arbitrary (denoted ∗ in the figure). As T1 demonstrates,
every transducer that is based on the structure of A senses two input signals (both p and
q) every second step, thus its sensing cost is 1. As demonstrated by the transducer T2 in
Figure 5, it is possible to realize A with sensing cost of 1

2 by only sensing p every second
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q0

q3

q1q2

¬p ∧ q
¬q ∧ p

p ∧ q¬p ∧ ¬q

True

a¬a

Figure 3 The DLW A in Example 11.

∗

∗

a¬a

¬p ∧ q
¬q ∧ p

p ∧ q¬p ∧ ¬q

Figure 4 The transducer T1 for A.

∗ a¬a
p¬p

Figure 5 The transducer T2 for A.

step. Indeed, knowing the value of p is enough in order to determine the output. Note that
T2 may output sometimes a and sometimes ¬a after reading assignments that causes A to
reach q3. Such a behavior cannot be exhibited by a transducer with the state-structure of A.

Solving games with incomplete information is typically done by some kind of a subset-
construction, which involves an exponential blow up. Unlike usual games with incomplete
information, here the strategy of the system should not only take care of the realizability but
also decides which input signals should be sensed, where the goal is to obtain a minimally
sensing transducer. In order to address these multiple objectives, we first construct an
MDP in which the possible policies are all winning for the system, and corresponds to
different choices of sensing. An optimal policy in this MDP then induces a minimally-sensing
transducer.

I Theorem 12. Consider a DLW A over 2I∪O. If A is realizable, then there exists an MDP
M in which an optimal strategy corresponds to a minimally-sensing I/O-transducer that
realizes A. The MDPM has size exponential in |A| and can be computed in time exponential
in |A|.

Proof. Consider a DLW A = 〈2I∪O, Q, q0, δ〉. We obtain from A an MDPM = 〈S, start,
A,P, cost〉, where S = (2Q × {0, 1,⊥}I) ∪ {start}, and A = 2I × 2O. Intuitively, whenM
is in state 〈S, `〉, for S ⊆ Q and ` : I → {0, 1,⊥}, then A can be in every state in S, and for
each input signal b ∈ I, we have that either b is true (`(b) = 1), b is false (`(b) = 0), or b is
not sensed (`(b) = ⊥). The action (o, i) means that we now output o and in the next state
we will sense only inputs in i. For ? ∈ {⊥, 0, 1}, we define `? = {b ∈ I : `(b) = ?}.

We define the actions so that an action 〈o, i〉 is available in state 〈S, `〉 if for every q ∈ S
and i′ ⊆ `⊥, we have that δ(q, `1 ∪ i′ ∪ o) is defined. That is, an action is available if its o
component does not cause A to get stuck no matter what the assignment to the signals that
are not sensed is.

The transition probabilities are defined as follows. Consider a state 〈S, `〉, and an available
action 〈o, i〉. Let S′ =

⋃
q∈S

⋃
i′⊆`⊥

{δ(q, `1 ∪ i′ ∪ o)}. Recall that by taking action 〈o, i〉,
we decide that in the next state we will only sense signals in i. For i ⊆ I, we say that an
assignment `′ : I → {0, 1,⊥} senses i if `′1 ∪ `′0 = i. Note that there are 2|i| assignments that
sense i. Accordingly, we have P(〈S, `〉, 〈o, i〉, 〈S′, `′〉) = 2−|i| for every `′ : I → {0, 1,⊥} that
senses i. That is, a transition from 〈S, `〉 with 〈o, i〉 goes to the set of all possible successors of
S under inputs that are consistent with ` and the output assignment o, and the `′ component
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is selected with uniform distribution among all assignments that sense i. The cost function
depends on the number of signals we sense, thus cost(〈S, `〉) = |`1 ∪ `0|.

Finally, in the state start we only choose an initial set of input signals to sense. Thus,
for every ` such that `1 ∪ `0, we have P(start, 〈o, i〉, 〈{q0}, `〉) = 2−|i|. Note that start
is not reachable from any state in M, and thus its cost is irrelevant. We arbitrarily set
cost(start) = 0.

In the full version we prove that cost(M) = scostI,O(A) and that a minimal-cost policy
f inM induces a minimally-sensing I/O-transducer that realizes A. Intuitively, we prove
this by showing a correspondence between transducers and policies, such that the sensing
cost of a transducer T equals the value of the policy it corresponds to inM.

Finally, we observe that the size ofM is single exponential in the size of A, and that we
can constructM in time exponential in the size of A. J

I Theorem 13. A minimally-sensing transducer for a realizable DLW A has size tightly
exponential in |A|.

Proof. The upper bound follows from Theorem 3 applied to the MDP constructed in
Theorem 12.

For the lower bound, we describe a family of realizable DLWs A1,A2, . . . such that for all
k ≥ 1, the DLW Ak has 1 +

∑k
i=1 pi states, yet a minimally-sensing transducer for it requires

at least
∏k
i=1 pi states, where p1, p2, ... are prime numbers. Intuitively, Ak is constructed as

follows. In the initial state qreset, the inputs signals determine a number 1 ≤ i ≤ k, and Ak
moves to component i, which consists of a cycle of length pi. In every state j in component
i, the output signals must acknowledge that Ak is in state 0 ≤ j < pi of component i.
Furthermore, we force a sensing of 1 in every state except for qreset by requiring a signal to
be acknowledged in every step. Finally, we can go back to qreset only with a special output
signal, which can be outputted only in state 0 of an i component.

Thus, a realizing transducer essentially only chooses which signals to read in qreset. We
show that 0 bits can be read, but in that case we need

∏k
i=1 pi states. Indeed, the transducer

needs to keep track of the location in all the i components simultaneously, which means
keeping track of the modulo from each pi. Since every combination of such modulos is possible,
the transducer needs

∏k
i=1 pi states. In the full version we formalize this intuition. J

We now turn to study the complexity of the problem of finding a minimally-sensing
transducer. By the construction in Theorem 12 and the polynomial time algorithm from
Theorem 3, we have the following.

I Theorem 14. Consider a realizable DLW A over 2I∪O. We can calculate costI,O(A) and
return a minimally-sensing I/O-transducer that realizes A in time exponential in |A|.

In order to complete the picture, we consider the corresponding decision problem. Given
a DLW A over 2I∪O and a threshold γ, the sensing problem in the open setting is to decide
whether costI,O(A) < γ.

I Theorem 15. The sensing problem in the open setting is EXPTIME-complete.

Proof. The upper bound follows from Theorem 14. For the lower bound, we show that the
problem is EXPTIME hard even for a fixed γ. Given a DLW specification A over 2I∪O, we
show that it is EXPTIME-hard to decide whether there exists a transducer T that realizes
A with scost(T ) < 1. We show a reduction from the problem of deciding the nonemptiness
of an intersection of finite deterministic tree automata proved to be EXPTIME-hard in [6].
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The idea is similar to that of Theorem 13, where a reset state is used to select an object, and
a transducer can ignore the inputs in this state by using a response which is acceptable in
every possible selected object.

A deterministic automaton on finite trees (DFT) is U = 〈Σ, Q, δ, q0, F 〉, where Σ is a
finite alphabet, Q is a finite set of states, q0 ∈ Q is an initial state, δ : Q× Σ→ Q×Q is a
transition function, and F ⊆ Q is a set of accepting states. We refer to the left and right
components of δ as δ/ and δ.. For example, when δ(q, σ) = 〈ql, qr〉, we write δ/(q, σ) = ql.
An DFT runs on Σ-trees. A (binary) Σ-tree is T = 〈τ, `〉 where τ ⊆ {/, .}∗ is prefix-closed:
for every x · σ ∈ τ it holds that x ∈ τ , and ` : τ → Σ is a labeling function. For simplicity,
we require that for every x ∈ τ , either {x/, x.} ⊆ τ , or {x/, x.} ∩ τ =, in which case x is
a leaf. Given a tree T = 〈τ, `〉, the run of U on T is a Q-tree 〈τ, `′〉 where `′(ε) = q0, and
for every x ∈ τ such that x is not a leaf, we have δ(`′(x), `(x)) = 〈`′(x/), `′(x.)〉. A run is
accepting if every leaf is labeled by an accepting state. A Σ-tree T is accepted by U if the
run of U on T is accepting.

The nonempty-intersection problem gets as input DFTs U1, . . . ,Un, and decides whether
their intersection is nonempty, that is

⋂n
t=1 L(Ut) 6= ∅. Given U1, . . . ,Un, we construct a

specification DLW A such that
⋂n
t=1 L(Ut) 6= ∅ iff scost(A) < 1. We assume w.l.o.g. that

L(Ut) 6= ∅ for all 1 ≤ t ≤ n.
We construct A as follows. Initially, the inputs specify an index 1 ≤ t ≤ n. Then, the

transducer should respond with a tree in L(Ut). This is done by challenging the transducer
with a branch in the tree, until some reset input signal is true, and the process repeats. Now,
if

⋂n
t=1 L(Ut) 6= ∅, the transducer can ignore the input signals that specify the index t and

just repeatedly output a tree in the intersection. On the other hand, if
⋂n
t=1 L(Ut) = ∅, the

transducer must sense some information about the specified index.3
We now formalize this intuition. For 1 ≤ t ≤ n, let Ut = 〈2J , Qt, δt, qt0, F t〉. Note that we

assume w.l.o.g that the alphabet of all the DFTs is 2J . We construct a specification DLW
A = 〈2I∪O, Q, q0, δ〉 as follows. The set of states of A is Q =

⋃n
t=1Q

t ∪ {reset}. Assume
w.l.o.g that n = 2k for some k ∈ N. We define I = {b1, . . . , bk} ∪ {dI} and O = J ∪ {dO, e}.
The input signal dI and the output signal dO denote the direction of branching in the tree.
For clarity, in an input letter i ∈ I we write i(dI) = / (and i(dI) = .) to indicate that dI /∈ i
(and dI ∈ i). We use a similar notation for dO.

We define the transition function as follows. In state reset, we view the inputs b1, . . . , bk
as a binary encoding of a number t ∈ {1, . . . , n}. Then, δ(reset, t) = qt0. Next, consider a
state q ∈ Qt, and consider letters i ⊆ I and o ⊆ O. We define δ as follows:

δ(q, i ∪ o) =


reset q ∈ F ∧ e ∈ o ∧ o(dO) = i(dI)
δt/(q, o ∩ J) e /∈ o ∧ o(dO) = i(dI) = /

δt.(q, o ∩ J) e /∈ o ∧ o(dO) = i(dI) = .

Note that δ(q, i ∪ o) is undefined when o(dO) 6= i(dI) or when q /∈ F and e ∈ o. Intuitively,
in state reset, an index 1 ≤ t ≤ n is chosen. From then on, in a state q ∈ Qt, we simulate
the run of Ut on the left or right branch of the tree, depending on the signal dI. The next
letter is outputted in o, and additionally, we require that dO matches dI.

We claim that scost(A) < 1 iff
⋂n
t=1 L(Ut) 6= ∅. In the first direction, assume that⋂n

t=1 L(Ut) 6= ∅, and let T be a tree such that T ∈
⋂n
t=1 L(Ut) 6= ∅. Consider the following

3 Note that since a tree in the intersection of DFTs may be exponentially bigger than the DFTs, the
lower bound here also suggests an alternative lower bound to the exponential size of a minimally-sensed
transducer, now with a polynomial set of signals (as opposed to the proof of Theorem 13).
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transducer T : in the state reset it does not sense any inputs, and then it outputs a branch
of T according to the signal dI, while always acknowledging the dI bit with the correct dO.
When the end of the branch is reached, it outputs e. Since T is accepted by every DFT U t,
it follows that T realizes A. Moreover, let l be the longest branch in T , then every l steps at
most, T visits a state corresponding to reset, in which it senses nothing. Thus, T senses 1
for at most l steps, and then 0. It follows that scost(T ) ≤ l

l+1 = 1− 1
l+1 < 1.

Conversely, observe that in every state q ∈ Q \ {reset}, a realizing transducer must
sense at least 1 signal, namely dI. Thus, the only way to get sensing cost of less than 1
is to visit reset infinitely often (in fact, with bounded sparsity), and to sense 0 in reset.
However, sensing 0 in reset means that the next state could be the initial state of any of
the n DFTs. Moreover, visiting reset again means that at some point e was outputted in
an accepting state of one of the DFTs. Thus, the transducer outputs a tree that is accepted
in every DFT, so

⋂n
t=1 L(Ut) 6= ∅.

Finally, observe that the reduction is clearly polynomial, and thus we conclude that
deciding whether scost(A) < 1 is EXPTIME-hard. J

5 Discussion and Future Research

Sensing is a basic measure of the complexity of monitoring and synthesis. In monitoring
safety properties, the definition of sensing presented in [2] is not informative, as it gives
sensing cost 0 to properties that are satisfied with probability 0. We argue that in the context
of monitoring, the definition of sensing cost should consider only computations that satisfy
the property, and we study the complexity of computing the sensing cost of a property in the
new definition. We distinguish between two approaches to define a probabilistic measure with
respect to the set of computations that satisfy a property. We show that while computing
the sensing cost according to the new definitions is technically more complicated than in
[2], the minimal sensing is still attained by a minimal-size automaton, and it can still be
computed in polynomial time.

In synthesis, we introduce a new degree of freedom, namely choosing the outputs when
realizing a specification. We study the complexity of finding a minimal-sensing transducer for
safety specifications. We show that the minimal-sensing transducer is not necessarily minimal
in size. Moreover, interestingly, unlike the case of traditional synthesis, a minimal-sensing
transducer need not even correspond to a strategy embodied in the specification deterministic
automaton. On the positive side, we show that a minimal-sensing transducer always exists
(for a realizable safety specification) and that its size is at most exponential in the size of the
minimal-size transducer. We also provide matching lower bounds.

We now turn to discuss some future directions for research.

Non-safety properties. We focus on safety properties. The study in [2] completes the
monitoring picture for all other ω-regular properties. We plan to continue the study of
synthesis of ω-regular properties. An immediate complication in this setting is that a finite
minimal-sensing transducer does not always exists. Indeed, even in the monitoring setting
studied in [2], a minimal-sensing automaton does not always exist. Even the decidability of
computing the optimal cost remains open.

A trade-off between sensing and quality. Reducing the sensing cost of a transducer can
often be achieved by delaying the sensing of some letter, thus sensing it less often. This,
however, means that eventualities may take longer to be fulfilled, resulting in transducers
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of lower quality [1]. We plan to formalize and study the trade-off between the sensing and
quality and relate it to the trade-offs between size and sensing, as well as between size and
quality.
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Abstract
We develop a ∗-continuous Kleene ω-algebra of real-time energy functions. Together with corre-
sponding automata, these can be used to model systems which can consume and regain energy
(or other types of resources) depending on available time. Using recent results on ∗-continuous
Kleene ω-algebras and computability of certain manipulations on real-time energy functions, it
follows that reachability and Büchi acceptance in real-time energy automata can be decided in a
static way which only involves manipulations of real-time energy functions.
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1 Introduction

Energy and resource management problems are important in areas such as embedded systems
or autonomous systems. They are concerned with the following types of questions:

Can the system reach a designated state without running out of energy before?
Can the system reach a designated state within a specified time limit without running out
of energy?
Can the system repeatedly accomplish certain designated tasks without ever running out
of energy?

Instead of energy, these questions can also be asked using other resources, for example money
or fuel.

As an example, imagine a satellite like in Fig. 1 which is being sent up into space. In
its initial state when it has arrived at its orbit, its solar panels are still folded, hence no
(electrical) energy is generated. Now it needs to unfold its solar panels and rotate itself and
its panels into a position orthogonal to the sun’s rays (for maximum energy yield). These
operations require energy which hence must be provided by a battery, and there may be
some operational requirements which state that they have to be completed within a given
time limit. To minimize weight, one will generally be interested to use a battery which is as
little as possible.

Figure 2 shows a simple toy model of such a satellite’s initial operations. We assume that
it opens its solar panels in two steps; after the first step they are half open and afterwards
fully open, and that it can rotate into orthogonal position at any time. The numbers within
the states signify energy gain per time unit, so that for example in the half-open state,
the satellite gains 2 energy units per time unit before rotation and 4 after rotation. The
(negative) numbers at transitions signify the energy cost for taking that transition, hence it
costs 20 energy units to open the solar panels and 10 to rotate.

Now if the satellite battery has sufficient energy, then we can follow any path from the
initial to the final state without spending time in intermediate states. A simple inspection
reveals that a battery level of 50 energy units is required for this. On the other hand, if
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Figure 1 GPS Block II-F satellite (artist’s conception; public domain).
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Figure 2 Toy model of the satellite in Fig. 1.

battery level is strictly below 20, then no path is available to the final state. With initial
energy level between these two values, the device has to regain energy by spending time in
an intermediate state before proceeding to the next one. The optimal path then depends on
the available time and the initial energy. For an initial energy level of at least 40, the fastest
strategy consists in first opening the panels and then spending 2 time units in state (open|5)
to regain enough energy to reach the final state. With the smallest possible battery, storing
20 energy units, 5 time units have to be spent in state (half|2) before passing to (half|4) and
spending another 5 time units there.

In this paper we will be concerned with models for such systems which, as in the example,
allow to spend time in states to regain energy, some of which has to be spent when taking
transitions between states. (Instead of energy, other resource types could be modeled, but
we will from now think of it as energy.) We call these models real-time energy automata.
Their behavior depends, thus, on both the initial energy and the time available; as we have
seen in the example, this interplay between time and energy means that even simple models
can have rather complicated behaviors. As in the example, we will be concerned with the
reachability problem for such models, but also with Büchi acceptance: whether there exists
an infinite run which visits certain designated states infinitely often.

Our methodology is strictly algebraic, using the theory of semiring-weighted automata [8]
and extensions developed in [11, 10]. We view the finite behavior of a real-time energy
automaton as a function f(x0, t) which maps initial energy x0 and available time t to a
final energy level, intuitively corresponding to the highest output energy the system can
achieve when run with these parameters. We define a composition operator on such real-time
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energy functions which corresponds to concatenation of real-time energy automata and show
that with this composition and maximum as operators, the set of real-time energy functions
forms a ∗-continuous Kleene algebra [19]. This implies that reachability in real-time energy
automata can be decided in a static way which only involves manipulations of real-time
energy functions.

To be able to decide Büchi acceptance, we extend the algebraic setting to also encompass
real-time energy functions which model infinite behavior. These take as input an initial
energy x0 and time t, as before, but now the output is Boolean: true if these parameters
permit an infinite run, false if they do not. We show that both types of real-time energy
functions can be organized into a ∗-continuous Kleene ω-algebra as defined in [11, 10]. This
entails that also Büchi acceptance for real-time energy automata can be decided in a static
way which only involves manipulations of real-time energy functions.

The most technically demanding part of the paper is to show that real-time energy
functions form a locally closed semiring [8, 9]; generalizing some arguments in [9, 10], it then
follows that they form a ∗-continuous Kleene ω-algebra. We conjecture that reachability and
Büchi acceptance in real-time energy automata can be decided in exponential time.

Related work. Real-time energy problems have been considered in [20, 5, 4, 6, 15]. These
are generally defined on priced timed automata [1, 2], a formalism which is more general than
ours: it allows for time to be reset and admits several independent time variables (or clocks)
which can be constrained at transitions. All known decidability results apply to priced timed
automata with only one time variable; in [6] it is shown that with four time variables, it is
undecidable whether there exists an infinite run.

The work which is closest to ours is [4]. Their models are priced timed automata with
one time variable and energy updates on transitions, hence a generalization of ours. Using
a sequence of complicated ad-hoc reductions, they show that reachability and existence of
infinite runs is decidable for their models; whether their techniques apply to general Büchi
acceptance is unclear.

Our work is part of a program to make methods from semiring-weighted automata
available for energy problems. Starting with [12], we have developed a general theory of
∗-continuous Kleene ω-algebras [11, 10] and shown that it applies to so-called energy automata,
which are finite (untimed) automata which allow for rather general energy transformations as
transition updates. The contribution of this paper is to show that these algebraic techniques
can be applied to a real-time setting.

Note that the application of Kleene algebra to real-time and hybrid systems is not a new
subject, see for example [17, 7]. However, the work in these papers is based on trajectories and
interval predicates, respectively, whereas our work is on real-time energy automata, i.e., at
a different level. A more thorough comparison of our work to [17, 7] would be interesting
future work.

We acknowledge insightful discussions with Zoltán Ésik on the subject of this paper.

2 Real-Time Energy Automata

Let R≥0 = [0,∞[ denote the set of non-negative real numbers, [0,∞] the set R≥0 extended
with infinity, and R≤0 = ]−∞, 0] the set of non-positive real numbers.

I Definition 1. A real-time energy automaton (RTEA) (S, s0, F, T, r) consists of a finite
set S of states, with initial state s0 ∈ S, a subset F ⊆ S of accepting states, a finite set
T ⊆ S×R≤0×R≥0×S of transitions, and a mapping r : S → R≥0 assigning rates to states.
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A transition (s, p, b, s′) is written s p−−→
b

s′, p is called its price and b its bound. We assume
b ≥ −p for all transitions s p−−→

b
s′.

An RTEA is computable if all its rates, prices and bounds are computable real numbers.
A configuration of an RTEA A = (S, s0, F, T, r) is an element (s, x, t) ∈ C = S ×R≥0 ×

R≥0. Let  ⊆ C × C be the relation given by (s, x, t) (s′, x′, t′) iff t′ ≤ t and there is a
transition s p−−→

b
s′ such that x+ (t− t′)r(s) ≥ b and x′ = x+ (t− t′)r(s) + p. Hence t− t′

time units are spent in state s and afterwards a transition s p−−→
b

s′ is taken.
A run in A is a path in the infinite directed graph (C, ), i.e., a finite or infinite sequence

(s1, x1, t1)  (s2, x2, t2)  · · · . We are ready to state the decision problems for RTEAs
with which we will be concerned. Let A = (S, s0, F, T, r) be a computable RTEA and
x0, t, y ∈ [0,∞] computable numbers.

I Problem 1 (State reachability). Does there exist a finite run (s0, x0, t) · · · (s, x, t′) in
A with s ∈ F?

I Problem 2 (Coverability). Does there exist a finite run (s0, x0, t)  · · ·  (s, x, t′) in A
with s ∈ F and x ≥ y?

I Problem 3 (Büchi acceptance). Does there exist s ∈ F and an infinite run (s0, x0, t)  
(s1, x1, t1) · · · in A in which sn = s for infinitely many n ≥ 0?

Note that the coverability problem only asks for the final energy level x to be above y;
as we are interested in maximizing energy, this is natural. Also, state reachability can be
reduced to coverability by setting y = 0. As the Büchi acceptance problem asks for infinite
runs, there is no notion of output energy for this problem.

Asking the Büchi acceptance question for a finite available time t <∞ amounts to finding
(accepting) Zeno runs in the given RTEA, i.e., runs which make infinitely many transitions in
finite time. Hence one will usually be interested in Büchi acceptance only for an infinite time
horizon. On the other hand, for t =∞, a positive answer to the state reachability problem 1
consists of a finite run (s0, t0,∞) · · · (s, x,∞), and as one can delay indefinitely in the
state s ∈ F , this leads to an infinite run. Per our definition of  , such an infinite run will
not be a positive answer to the Büchi acceptance problem.

3 Weighted Automata over ∗-Continuous Kleene ω-Algebras

We now turn our attention to the algebraic setting of ∗-continuous Kleene algebras and
related structures and review some results on ∗-continuous Kleene algebras and ∗-continuous
Kleene ω-algebras which we will need in the sequel.

3.1 ∗-Continuous Kleene Algebras
An idempotent semiring [16] S = (S,∨, ·,⊥, 1) consists of an idempotent commutative monoid
(S,∨,⊥) and a monoid (S, ·, 1) such that the distributive and zero laws

x(y ∨ z) = xy ∨ xz (y ∨ z)x = yx ∨ zx ⊥x = ⊥ = x⊥

hold for all x, y, z ∈ S. It follows that the product operation distributes over all finite
suprema. Each idempotent semiring S is partially ordered by the relation x ≤ y iff x∨ y = y,
and then sum and product preserve the partial order and ⊥ is the least element.

A Kleene algebra [19] is an idempotent semiring S = (S,∨, ·,⊥, 1) equipped with an
operation ∗ : S → S such that for all x, y ∈ S, yx∗ is the least solution of the fixed point

FSTTCS 2015



398 An ω-Algebra for Real-Time Energy Problems

equation z = zx ∨ y and x∗y is the least solution of the fixed point equation z = xz ∨ y with
respect to the order ≤.

A ∗-continuous Kleene algebra [19] is a Kleene algebra S = (S,∨, ·,∗ ,⊥, 1) in which the
infinite suprema

∨
{xn | n ≥ 0} exist for all x ∈ S, x∗ =

∨
{xn | n ≥ 0} for every x ∈ S, and

product preserves such suprema: for all x, y ∈ S,

y
( ∨

n≥0
xn
)

=
∨

n≥0
yxn and

( ∨
n≥0

xn
)
y =

∨
n≥0

xny .

An idempotent semiring S = (S,∨, ·,⊥, 1) is said to be locally closed [9] if it holds that
for every x ∈ S, there exists N ≥ 0 so that

∨N
n=0 x

n =
∨N+1

n=0 x
n. In any locally closed

idempotent semiring, we may define a ∗-operation by x∗ =
∨

n≥0 x
n.

I Lemma 2. Any locally closed idempotent semiring is a ∗-continuous Kleene algebra.

3.2 ∗-Continuous Kleene ω-Algebras
An idempotent semiring-semimodule pair [14, 3] (S, V ) consists of an idempotent semiring
S = (S,∨, ·,⊥, 1) and a commutative idempotent monoid V = (V,∨,⊥) which is equipped
with a left S-action S × V → V , (s, v) 7→ sv, satisfying

(s ∨ s′)v = sv ∨ s′v s(v ∨ v′) = sv ∨ sv′ ⊥s = ⊥
(ss′)v = s(s′v) s⊥ = ⊥ 1v = v

for all s, s′ ∈ S and v ∈ V . In that case, we also call V a (left) S-semimodule.
A generalized ∗-continuous Kleene algebra [11] is an idempotent semiring-semimodule pair

(S, V ) where S = (S,∨, ·,∗ ,⊥, 1) is a ∗-continuous Kleene algebra such that for all x, y ∈ S
and for all v ∈ V ,

xy∗v =
∨

n≥0
xynv

A ∗-continuous Kleene ω-algebra [11] consists of a generalized ∗-continuous Kleene algebra
(S, V ) together with an infinite product operation Sω → V which maps every infinite sequence
x0, x1, . . . in S to an element

∏
n≥0 xn of V . The infinite product is subject to the following

conditions (see [11] for motivation):
For all x0, x1, . . . ∈ S,

∏
n≥0

xn = x0
∏
n≥0

xn+1. (C1)

Let x0, x1, . . . ∈ S and 0 = n0 ≤ n1 ≤ · · · a sequence which increases without a bound.
Let yk = xnk

· · ·xnk+1−1 for all k ≥ 0. Then
∏
n≥0

xn =
∏
k≥0

yk. (C2)

For all x0, x1, . . . , y, z ∈ S,
∏
n≥0

(xn(y ∨ z)) =
∨

x′0,x′1,...∈{y,z}

∏
n≥0

xnx
′
n. (C3)

For all x, y0, y1, . . . ∈ S,
∏
n≥0

x∗yn =
∨

k0,k1,...≥0

∏
n≥0

xknyn. (C4)

3.3 Matrix Semiring-Semimodule Pairs
For any idempotent semiring S and n ≥ 1, we can form the matrix semiring Sn×n whose
elements are n× n-matrices of elements of S and whose sum and product are given as the
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usual matrix sum and product. It is known [18] that when S is a ∗-continuous Kleene algebra,
then Sn×n is also a ∗-continuous Kleene algebra, with the ∗-operation defined by

M∗i,j =
∨

m≥0

∨{
Mk1,k2Mk2,k3 · · ·Mkm−1,km

∣∣ 1 ≤ k1, . . . , km ≤ n, k1 = i, km = j
}

(1)

for all M ∈ Sn×n and 1 ≤ i, j ≤ n. Also, if n ≥ 2 and M =
(

a b
c d

)
, where a and d are square

matrices of dimension less than n, then

M∗ =
(

(a ∨ bd∗c)∗ (a ∨ bd∗c)∗bd∗
(d ∨ ca∗b)∗ca∗ (d ∨ ca∗b)∗

)
(2)

For any idempotent semiring-semimodule pair (S, V ) and n ≥ 1, we can form the matrix
semiring-semimodule pair (Sn×n, V n) whose elements are n× n-matrices of elements of S
and n-dimensional (column) vectors of elements of V , with the action of Sn×n on V n given
by the usual matrix-vector product.

When (S, V ) is a ∗-continuous Kleene ω-algebra, then (Sn×n, V n) is a generalized ∗-
continuous Kleene algebra [11]. By [11, Lemma 17], there is an ω-operation on Sn×n defined
by

Mω
i =

∨
1≤k1,k2,...≤n

Mi,k1Mk1,k2 · · ·

for all M ∈ Sn×n and 1 ≤ i ≤ n. Also, if n ≥ 2 and M =
(

a b
c d

)
, where a and d are square

matrices of dimension less than n, then

Mω =
(

(a ∨ bd∗c)ω ∨ (a ∨ bd∗c)∗bdω

(d ∨ ca∗b)ω ∨ (d ∨ ca∗b)∗caω

)
(3)

It can be shown [13] that the number of semiring computations required in the computation
of M∗ and Mω in (2) and (3) is O(n3) and O(n4), respectively.

3.4 Weighted automata
Let (S, V ) be a ∗-continuous Kleene ω-algebra and A ⊆ S a subset. We write 〈A〉 for the set
of all finite suprema a1 ∨ · · · ∨ am with ai ∈ A for each i = 1, . . . ,m.

A weighted automaton [8] over A of dimension n ≥ 1 is a tuple (α,M, k), where α ∈ {⊥, 1}n

is the initial vector, M ∈ 〈A〉n×n is the transition matrix, and k is an integer 0 ≤ k ≤ n.
Combinatorially, this may be represented as a transition system whose set of states is
{1, . . . , n}. For any pair of states i, j, the transitions from i to j are determined by the entry
Mi,j of the transition matrix: if Mi,j = a1 ∨ · · · ∨ am, then there are m transitions from
i to j, respectively labeled a1, . . . , an. The states i with αi = 1 are initial, and the states
{1, . . . , k} are accepting.

The finite behavior of a weighted automaton A = (α,M, k) is defined to be

|A| = αM∗κ ,

where κ ∈ {⊥, 1}n is the vector given by κi = 1 for i ≤ k and κi = ⊥ for i > k. (Note that α
has to be used as a row vector for this multiplication to make sense.) It is clear by (1) that
|A| is the supremum of the products of the transition labels along all paths in A from any
initial to any accepting state.
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The Büchi behavior of a weighted automaton A = (α,M, k) is defined to be

‖A‖ = α

(
(a+ bd∗c)ω

d∗c(a+ bd∗c)ω

)
,

where a ∈ 〈A〉k×k, b ∈ 〈A〉k×(n−k), c ∈ 〈A〉(n−k)×n and d ∈ 〈A〉(n−k)×(n−k) are such that
M =

(
a b
c d

)
. Note that M is split in submatrices

(
a b
c d

)
precisely so that a contains transitions

between accepting states and d contains transitions between non-accepting states. By [11,
Thm. 20], ‖A‖ is the supremum of the products of the transition labels along all infinite
paths in A from any initial state which infinitely often visit an accepting state.

4 Real-Time Energy Functions

Let L = [0,∞]⊥ denote the set of non-negative real numbers extended with a bottom element
⊥ and a top element ∞. We use the standard order on L, i.e., the one on R≥0 extended by
declaring ⊥ ≤ x ≤ ∞ for all x ∈ L. L is a complete lattice, whose suprema we will denote
by ∨ for binary and

∨
for general supremum. For convenience we also extend the addition

on R≥0 to L by declaring that ⊥+ x = x+⊥ = ⊥ for all x ∈ L and ∞+ x = x+∞ =∞
for all x ∈ L \ {⊥}. Note that ⊥+∞ =∞+⊥ = ⊥.

Let F denote the set of monotonic functions f : L× [0,∞]→ L (with the product order
on L× [0,∞]) for which f(⊥, t) = ⊥ for all t ∈ L. We will frequently write such functions in
curried form, using the equivalence 〈L× [0,∞]→ L〉 ≈ 〈[0,∞]→ L→ L〉.

4.1 Linear Real-Time Energy Functions
We will be considered with the subset of functions in F consisting of real-time energy functions
(RTEFs). These correspond to functions expressed by RTEAs, and we will construct them
inductively. We start with atomic RTEFs:

I Definition 3. Let r, b, p ∈ R with r ≥ 0, p ≤ 0 and b ≥ −p. An atomic real-time energy
function is an element f of F such that f(⊥, t) = ⊥, f(∞, t) =∞, f(x,∞) =∞, and

f(x, t) =
{
x+ rt+ p if x+ rt ≥ b ,
⊥ otherwise

for all x, t ∈ R≥0. The numbers r, b and p are respectively called the rate, bound and price
of f . We denote by A ⊆ F the set of atomic real-time energy functions.

These functions arise from RTEAs with one transition:

r
p

b

Non-negativity of r ensures that atomic RTEFs are monotonic. In our examples, when
the bound is not explicitly mentioned it corresponds to the lowest possible one: b = −p.

Atomic RTEFs are naturally combined along acyclic paths by means of a composition
operator. Intuitively, a composition of two successive atomic RTEFs determines the optimal
output energy one can get after spending some time in either one or both locations of the
corresponding automaton. This notion of composition is naturally extended to all functions
in F , and formally defined as follows.
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Figure 3 Graphical representation of the linear RTEF from Example 7.

I Definition 4. The composition of f, g ∈ F is the element f . g of F such that

∀t ∈ [0,∞] : f . g(t) =
∨

t1+t2=t

g(t2) ◦ f(t1) (4)

Note that composition is written in diagrammatic order. Uncurrying the equation, we
see that f . g(x, t) =

∨
t1+t2=t g(f(x, t1), t2).

Let 1,⊥ ∈ F be the functions defined by 1(t)(x) = x and ⊥(t)(x) = ⊥ for all x, t.

I Lemma 5. The . operator is associative, with 1 as neutral and ⊥ as absorbing elements.

Compositions of atomic RTEFs along paths are called linear RTEFs:

I Definition 6. A linear real-time energy function is a finite composition f1 . f2 . · · · . fn

of atomic RTEFs.

I Example 7. As an example, and also to show that linear RTEFs can have quite complex
behavior, we show the linear RTEF associated to one of the paths in the satellite example of
the introduction. Consider the following (linear) RTEA:

0 2 5
−20
20

−20
20

−10
10

Its linear RTEF f can be computed as follows:

f(x, t) =


⊥ if x < 20 or (20 ≤ x < 40 and x+ 2t < 44)

or (x ≥ 40 and x+ 5t < 50)
2.5x+ 5t− 110 if 20 ≤ x < 40 and x+ 2t ≥ 44
x+ 5t− 50 if x ≥ 40 and x+ 5t ≥ 50

We show a graphical representation of f on Fig. 3. The left part of the figure shows
the boundary between two regions in the (x, t) plane, corresponding to the minimal value 0
achieved by the function. Below this boundary, no path exists through the corresponding
RTEA. Above, the function is linear in x and t. The coefficient of t corresponds to the
maximal rate in the RTEA; the coefficient of x depends on the relative position of x with
respect to the bounds bi.
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4.2 Normal Form

Next we need to see that all linear RTEFs can be converted to a normal form:

I Definition 8. A sequence f1, . . . , fn of atomic RTEFs, with rates, bounds and prices
r1, . . . , rn, b1, . . . , bn and p1, . . . , pn, respectively, is in normal form if

r1 < · · · < rn,
b1 ≤ · · · ≤ bn, and
p1 = · · · = pn−1 = 0.

I Lemma 9. For any linear RTEF f there exists a sequence f1, . . . , fn of atomic RTEFs in
normal form such that f = f1 . · · · . fn.

Proof sketch. Let f = f1 . · · · . fn, where f1, . . . , fn are atomic RTEFs and assume
f1, . . . , fn is not in normal form. If there is an index k ∈ {1, . . . , n− 1} with rk ≥ rk+1, then
we can use the following transformation to remove the state with rate rk+1:

rk rk+1 rk+2
pk

bk

pk+1

bk+1
7−→

(rk≥rk+1)
rk rk+2

pk + pk+1

max(bk, bk+1 − pk)

Informally, any run through the RTEA for f1 . · · · . fn which maximizes output energy will
spend no time in the state with rate ri+1, as this time may as well be spent in the state with
rate ri without lowering output energy.

To ensure the last two conditions of Definition 8, we use the following transformation:

rk rk+1 rk+2
pk

bk

pk+1

bk+1
7−→ rk rk+1 rk+2

0
bk

pk + pk+1

max(bk, bk+1 − pk)

Any run through the original RTEA can be copied to the other and vice versa, hence also
this transformation does not change the values of f . J

I Definition 10. Let f1, . . . , fn and f ′1, . . . , f ′n′ be normal-form sequences of atomic RTEFs
with rate sequences r1 < · · · < rn and r′1 < · · · < r′n′ , respectively. Then f1, . . . , fn is not
better than f ′1, . . . , f

′
n′ , denoted (f1, . . . , fn) � (f ′1, . . . , f ′n′), if rn ≤ r′n′ .

Note that (f1, . . . , fn) � (f ′1, . . . , f ′n′) does not imply f1 . · · · . fn ≤ f ′1 . · · · . f ′n′ even
for very simple functions. For a counterexample, consider the two following linear RTEFs
f = f1, f ′ = f ′1 . f

′
2 with corresponding RTEAs:

f : 4 0
0

f ′ : 1 50
1

0
2

We have (f1) � (f ′1, f ′2), and for x ≥ 2, f(x, t) = x + 4t and f ′(x, t) = x + 5t, hence
f(x, t) ≤ f ′(x, t). But f(0, 1) = 4, whereas f ′(0, 1) = ⊥.

I Lemma 11. If f = f1 . · · · . fn and f ′ = f ′1 . · · · . f ′n′ are such that (f1, . . . , fn) �
(f ′1, . . . , f ′n′), then f ′ . f ≤ f ′.

Proof. Let r1 < · · · < rn and r′1 < · · · < r′n′ be the corresponding rate sequences, then
rn ≤ r′n′ . The RTEAs for f ′ . f and f ′ are as follows, where we have transformed the former
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to normal form using that for all indices i, ri ≤ rn ≤ r′n′ :

f ′ . f : r′1 · · · r′n′
b′1

0
max(b′n′ , bn − p′)

p+ p′

f ′ : r′1 · · · r′n′
b′1

0
b′n′

p′

As p+p′ ≤ p′ (because p ≤ 0) and max(b′n′ , bn−p′) ≥ b′n′ , it is clear that f ′ . f(x, t) ≤ f ′(x, t)
for all x ∈ L, t ∈ [0,∞]. J

4.3 General Real-Time Energy Functions
We now consider all paths that may arise in a real-time energy automaton. When two
locations of an automaton may be joined by two distinct paths, the optimal output energy is
naturally obtained by taking the maximum over both paths. This gives rise to the following
definition.

I Definition 12. Let f, g ∈ F . The function f ∨ g is defined as the pointwise supremum:

∀t ∈ [0,∞] : (f ∨ g)(t) = f(t) ∨ g(t)

I Lemma 13. With operations ∨ and ., F forms a complete lattice and an idempotent
semiring, with ⊥ as unit for ∨ and 1 as unit for ..

Finally, a cycle in an RTEA results in a ∗-operation:

I Definition 14. Let f ∈ F . The Kleene star of f is the function f∗ ∈ F such that

∀t ∈ [0,∞] : f∗(t) =
∨

n≥0
fn(t)

Note that f∗ is defined for all f ∈ F because F is a complete lattice. We can now define
the set of general real-time energy functions, corresponding to general RTEAs:

I Definition 15. The set E of real-time energy functions is the subsemiring of F generated
by A, i.e., the subset of F inductively defined by
A ⊆ E ,
if f, g ∈ E , then f . g ∈ E and f ∨ g ∈ E .

We will show below that E is locally closed, which entails that for each f ∈ E , also f∗ ∈ E ,
hence E indeed encompasses all RTEFs.

I Lemma 16. For every f ∈ E there exists N ≥ 0 so that f∗ =
∨N

n=0 f
n.

Proof. By distributivity, we can write f as a finite supremum f =
∨m

k=1 fk of linear energy
functions f1, . . . , fm. For each k = 1, . . . ,m, let fk = fk,1 . · · · . fk,nk

be a normal-form
representation. By re-ordering the fk if necessary, we can assume that (fk,1, . . . , fk,nk

) �
(fk+1,1, . . . , fk+1,nk+1) for every k = 1, . . . , n− 1.

We first show that f∗ ≤
∨

0≤n1,...,nm≤1 f
n1
1 . · · · . fnm

m : The expansion of f∗ = (
∨m

k=1 fk)∗
is an infinite supremum of finite compositions fi1 . · · · . fip

. By Lemma 11, any occurrence
of fij

. fij+1 in such compositions with ij ≥ ij+1 can be replaced by fij+1 . The compositions
which are left have ij < ij+1 for every j, so the claim follows.

Now
∨

0≤n1,...,nm≤1 f
n1
1 . · · · . fnm

m ≤
∨m

n=0
(∨m

k=1 fk

)n =
∨m

n=0 f
n ≤ f∗, so with

N = m the proof is complete. J
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Figure 4 Computation of f∗ from Example 18.

I Corollary 17. E is locally closed, hence a ∗-continuous Kleene algebra.

Proof. For every f ∈ E there is N ≥ 0 so that f∗ =
∨N

n=0 f
n (Lemma 16), hence

∨N
n=0 f

n =∨N+1
n=0 f

n. Thus E is locally closed, and by Lemma 2, a ∗-continuous Kleene algebra. J

I Example 18. To illustrate, we compute the Kleene star of the supremum f = f1 ∨ f2 of
two linear RTEFs as below. These are slight modifications of some RTEFs from the satellite
example, modified to make the example more interesting:

f1

f2

0

4

1 5

0
30

−10
30

0
20

0
40

−50
50

These functions are in normal form and f1 � f2. Lemma 16 and its proof allow us to
conclude that f∗ = 1∨ f1 ∨ f2 ∨ f1 . f2. Figure 4 shows the boundaries of definition of these
functions and the regions in the (x, t) plane where each of them dominates.

4.4 Infinite Products
Let B = {ff , tt} denote the Boolean lattice with standard order ff < tt. Let V denote the set
of monotonic functions v : L× [0,∞]→ B for which v(⊥, t) = ⊥ for all t ∈ L. We define an
infinite product operation Fω → V:

I Definition 19. For an infinite sequence of functions f0, f1, . . . ∈ F ,
∏

n≥0 fn ∈ V is the
function defined for x ∈ L, t ∈ [0,∞] by

∏
n≥0 fn(x, t) = tt iff there is an infinite sequence

t0, t1, . . . ∈ [0,∞] such that
∑∞

n=0 tn = t and for all n ≥ 0, fn(tn) ◦ · · · ◦ f0(t0)(x) 6= ⊥.
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Hence
∏

n≥0 fn(x, t) = tt iff in the infinite composition f0 . f1 . · · · (x, t), all finite
prefixes have values 6= ⊥. There is a (left) action of F on V given by (f, v) 7→ f . v, where
the composition f . v is given by the same formula as composition . on F . Let ⊥ ∈ V denote
the function given by ⊥(x, t) = ff .

I Lemma 20. With the F-action ., ∨ as addition, and ⊥ as unit, V is an idempotent left
F-semimodule.

Let U ⊆ V be the F-subsemimodule generated by E ⊆ F . Then U is an idempotent left
E-semimodule.

I Proposition 21. (E ,U) forms a ∗-continuous Kleene ω-algebra.

5 Decidability

We can now apply the results of Section 3.4 to see that our decision problems as stated at
the end of Section 2 are decidable. Let Let A = (S, s0, F, T, r) be an RTEA, with matrix
representation (α,M,K), and x0, t, y ∈ [0,∞].

I Theorem 22. There exists a finite run (s0, x0, t)  · · ·  (s, x, t′) in A with s ∈ F iff
|A|(x0, t) > ⊥.

I Theorem 23. There exists a finite run (s0, x0, t) · · · (s, x, t′) in A with s ∈ F and
x ≥ y iff |A|(x0, t) ≥ y.

I Theorem 24. There exists s ∈ F and an infinite run (s0, x0, t) (s1, x1, t1) · · · in A
in which sn = s for infinitely many n ≥ 0 iff ‖A‖(x0, t) = >.

I Theorem 25. Problems 1, 2 and 3 from Section 2 are decidable.

Proof sketch. We have seen in the examples that RTEFs are piecewise linear, i.e., composed
of a finite number of (affine) linear functions which are defined on polygonal regions in the
(x, t)-plane. Such functions can be represented using the (finitely many) corner points of
these regions together with their values at these corner points. (In case some regions are not
convex or disconnected, they have to be split into convex regions.)

It is clear that computable atomic RTEFs are computable piecewise linear (i.e., all
numbers in their finite representation are computable), and that compositions and suprema
of computable piecewise linear are again computable piecewise linear. Using Lemma 16, we
see that all functions in M∗ are computable piecewise linear. J

6 Conclusion

We have developed an algebraic methodology for deciding reachability and Büchi problems on
a class of weighted real-time models where the weights represent energy or similar quantities.
The semantics of such systems is modeled by real-time energy functions which map initial
energy of the system and available time to the maximal final energy level. We have shown
that these real-time energy functions form a ∗-continuous Kleene ω-algebra, which entails
that reachability and Büchi acceptance can be decided in a static way which only involves
manipulations of energy functions.

We have seen that the necessary manipulations of real-time energy functions are com-
putable, and in fact we conjecture that our method leads to an exponential-time algorithm
for deciding reachability and Büchi acceptance in real-time energy automata. This is due to
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the fact that operations on real-time energy functions can be done in time linear in the size
of their representation, and the representation size of compositions and suprema of real-time
energy functions is a linear function of the representation size of the operands. In future
work, we plan to do a careful complexity analysis which could confirm this result and to
implement our algorithms to see how it fares in practice.

This paper constitutes the first application of methods from Kleene algebra to a timed-
automata like formalism. In future work, we plan to lift some of the restrictions of the
current model and extend it to allow for time constraints and resets à la timed automata. We
also plan to extend this work with action labels, which algebraically means passing from the
semiring of real-time energy functions to the one of formal power series over these functions.
In applications, this means that instead of asking for existence of accepting runs, one is
asking for controllability.
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Abstract
The Secluded Path problem introduced by Chechik et al. in [ESA 2013] models a situation
where a sensitive information has to be transmitted between a pair of nodes along a path in a
network. The measure of the quality of a selected path is its exposure, which is the total weight of
vertices in its closed neighborhood. In order to minimize the risk of intercepting the information,
we are interested in selecting a secluded path, i.e. a path with a small exposure. Similarly, the
Secluded Steiner Tree problem is to find a tree in a graph connecting a given set of terminals
such that the exposure of the tree is minimized. In this work, we obtain the following results
about parameterized complexity of secluded connectivity problems.

We start from an observation that being parameterized by the size of the exposure, the
problem is fixed-parameter tractable (FPT). More precisely, we give an algorithm deciding if a
graph G with a given cost function ω : V (G)→ N contains a secluded path of exposure at most k
with the cost at most C in time O(3k/3 ·(n+m) logW ), whereW is the maximum value of ω on an
input graph G. Similarly, Secluded Steiner Tree is solvable in time O(2kk2 · (n+m) logW ).

The main result of this paper is about “above guarantee" parameterizations for secluded
problems. We show that Secluded Steiner Tree is FPT being parameterized by r+p, where
p is the number of the terminals, ` the size of an optimum Steiner tree, and r = k − `. We
complement this result by showing that the problem is co-W[1]-hard when parameterized by r
only.

We also investigate Secluded Steiner Tree from kernelization perspective and provide
several lower and upper bounds when parameters are the treewidth, the size of a vertex cover,
maximum vertex degree and the solution size. Finally, we refine the algorithmic result of Chechik
et al. by improving the exponential dependence from the treewidth of the input graph.
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find an s, t-path with the minimum exposure, i.e. a path P such that the number of vertices
from P plus the number of vertices of G adjacent to vertices of P is minimized. The name
secluded comes from the setting where one wants to transfer a confident information over a
path in a network which can be intercepted either while passing through a vertex of the path
or from some adjacent vertex. Thus the problem is to select a secluded path minimizing the
risk of interception of the information. When instead of connecting two vertices one needs to
connect a set of terminals, we arrive naturally to the Secluded Steiner Tree.

More precisely, Secluded Steiner Tree is the following problem.
Secluded Steiner Tree
Input: A graph G with a cost function ω : V (G)→ N, a set S = {s1, . . . , sp} ⊆ V (G)
of terminals, and non-negative integers k and C.
Question: Is there a connected subgraph T of G with S ⊆ V (T ) such that |NG[V (T )]| ≤
k and ω(NG[V (T )]) ≤ C?

If ω(v) = 1 for each v ∈ V (G) and C = k, then we have an instance of Secluded Steiner
Tree without costs; respectively, we omit ω and C whenever we consider such instances.

Clearly, it can be assumed that T is a tree, and thus the problem can be seen as a variant
of the classical Steiner Tree problem. For the special case p = 2, we call the problem
Secluded Path.

Previous work. The study of the secluded connectivity was initiated by Chechik et al. [7, 8]
who showed that the decision version of Secluded Path without costs is NP-complete.
Moreover, for the optimization version of the problem, it is hard to approximate within
a factor of O(2log1−ε n), n is the number of vertices in the input graph, for any ε > 0
(under an appropriate complexity assumption) [8]. Chechik et al. [8] also provided several
approximation and parameterized algorithms for Secluded Path and Secluded Steiner
Tree. Interestingly, when there are no costs, Secluded Path is solvable in time ∆∆ ·nO(1),
where ∆ is the maximum vertex degree and and thus is FPT being parameterized by ∆.
Chechik et al. [8] also showed that when the treewidth of the input graph does not exceed
t, then the Secluded Steiner Tree problem is solvable in time 2O(t log t) · nO(1) · logW ,1
where W is the maximum value of ω on an input graph G. Johnson et al. [18] obtained
several approximation results for Secluded Path and showed that the problem with costs
is NP-hard for subcubic graphs improving the previous result of Chechik et al. [8] for graphs
of maximum degree 4.

The problems related to secluded path and connectivity under different names were
considered by several authors. Motivated by secure communications in wireless ad hoc
networks, Gao et al.[15] introduced the very similar notion of the thinnest path. The
motivation of Gilbers [17], who introduced the problem under the name of the minimum
witness path, came from the study of art gallery problems.

Our results. In this paper we initiate the systematic study of both problems from the
Parameterized Complexity perspective and obtain the following results. In Section 3, we
start from observations that Secluded Path and Secluded Steiner Tree are FPT
when parameterized by the size of the solution k by giving algorithms of running time

1 In fact, Chechik et al. [8] give the algorithm that finds a tree with the exposure of minimum cost, but
the algorithm can be easily modified for the more general Secluded Steiner Tree.
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O(3k/3 · (n+m) logW ) and O(2kk2 · (n+m) logW ), where W is the maximum value of ω
on an input graph G, correspondingly.

We consider the “above guarantee" parameterizations of both problems in Section 4.
Recall that if s1, . . . , sp are vertices of a graph G, then a connected subgraph T of G of
minimum size such that s1, . . . , sp ∈ V (T ) is called a Steiner tree for the terminals s1, . . . , sp.
If p = 2, then a Steiner tree is a shortest (s1, s2)-path. Clearly, if ` is the size (the number
of vertices) of a Steiner tree, then for any connected subgraph T of G with S ⊆ V (T ),
|NG[V (T )]| ≥ `. Recall that the Steiner Tree problem is well known to be NP-complete
as it is included in the famous Karp’s list of 21 NP-complete problems [19], but in 1971
Dreyfus and Wagner [12] proved that the problem can be solved in time O∗(3p), i.e., it is
FPT when parameterized by the number of terminals. The currently best FPT-algorithms
for Steiner Tree running in time O∗(2p) are given by Björklund et al. [2] and Nederlof [21]
(the first algorithm demands exponential in p space and the latter uses polynomial space).
In Section 4 we show that Secluded Path and Secluded Steiner Tree are FPT when
the problems are parameterized by r + p, where r = k − `. From the other side, we show
that the problem is co-W[1]-hard when parameterized by r only.

In Section 5, we provide a thorough study of the kernelization of the problem from the
structural paramaterization perspective. We consider parameterizations by the treewidth,
size of the solution, maximum degree and the size of a vertex cover of the input graph. We
show that it is unlikely that Secluded Path (even without costs) parameterized by the
solution size, the treewidth and the maximum degree of the input graph, admits a polynomial
kernel. In particular, this complements the FPT algorithmic findings of Chechik et al. [8] for
graphs of bounded treewidth and of bounded maximum vertex degree. The same holds for
the “above guarantee" parameterization instead the solution size as well. On the other hand,
we show that Secluded Steiner Tree has a polynomial kernel when parameterized by k
and the vertex cover number of the input graph. Interestingly, when we parameterize only
by the vertex cover number, again, we show that most likely the problem does not admit
a polynomial kernel. Finally, we refine the algorithm on graphs of bounded treewidth of
Chechik et al. [8] by showing that Secluded Steiner Tree without costs can be solved by
a randomized algorithm in time that single-exponentially depends on treewidth by applying
the Count & Color technique of Cygan et al. [10] and further observe that for the general
variant of the problem with costs, the same Count & Color technique can be used as well
and also a single-exponential deterministic algorithm can be obtained by making use the
representative set technique developed by Fomin et al. [14].

Due to space restrictions some proofs are omitted in this extended abstract. The full
version of the paper is available in [13].

2 Basic definitions and preliminaries

We consider only finite undirected graphs without loops or multiple edges. The vertex set of
a graph G is denoted by V (G) and the edge set is denoted by E(G). Throughout the paper
we typically use n and m to denote the number of vertices and edges respectively.

For a set of vertices U ⊆ V (G), G[U ] denotes the subgraph of G induced by U . For a
vertex v, we denote by NG(v) its (open) neighborhood, that is, the set of vertices which are
adjacent to v, and for a set U ⊆ V (G), NG(U) = (∪v∈UNG(v)) \U . The closed neighborhood
NG[v] = NG(v) ∪ {v}. Respectively, NG[U ] = NG(U) ∪ U . For a set U ⊆ V (G), G − U
denotes the subgraph of G induced by V (G) \ U . If U = {u}, we write G − u instead of
G − {u}. The degree of a vertex v is denoted by dG(v) = |NG(v)|. We say that a vertex
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v is pendant if dG(v) = 1. A vertex v of a connected graph G with at least 2 vertices is a
cut vertex if G− u is disconnected. A connected graph G is biconnected if it has at least 2
vertices and has no cut vertices. A block of a connected graph G is an inclusion-maximal
biconnected subgraph of G. A block is trivial if it has exactly 2 vertices. We say that vertex
set X is connected if G[X] is connected.

Parameterized complexity is a two dimensional framework for studying the computational
complexity of a problem. One dimension is the input size n and another one is a parameter
k. It is said that a problem is fixed parameter tractable (or FPT), if it can be solved in
time f(k) · nO(1) for some function f . A kernelization for a parameterized problem is a
polynomial algorithm that maps each instance (x, k) with the input x and the parameter k to
an instance (x′, k′) such that i) (x, k) is a yes-instance if and only if (x′, k′) is a yes-instance
of the problem, and ii) the size of x′ is bounded by f(k) for a computable function f . The
output (x′, k′) is called a kernel. The function f is said to be a size of a kernel. Respectively,
a kernel is polynomial if f is polynomial. While a parameterized problem is FPT if and
only if it has a kernel, it is widely believed that not all FPT problems have polynomial
kernels. In particular, Bodlaender et al. [4, 5] introduced techniques that allow to show that
a parameterized problem has no polynomial kernel unless NP ⊆ coNP /poly. We refer to the
recent books of Cygan et al. [9] and Downey and Fellows [11] for detailed introductions to
parameterized complexity.

We use randomized algorithms for our problems. Recall that a Monte Carlo algorithm
is a randomized algorithm whose running time is deterministic, but whose output may be
incorrect with a certain (typically small) probability. A Monte-Carlo algorithm is true-biased
(false-biased respectively) if it always returns a correct answer when it returns a yes-answer
(a no-answer respectively).

3 FPT-algorithms for the problems parameterized by the solution size

In this section we consider Secluded Path and Secluded Steiner Tree problems
parameterized by the size of the solution, i.e., by k. We also show how these parameterized
algorithms can be used to design faster exact exponential algorithms.

We start with Secluded Path.2

I Theorem 1 (∗). Secluded Path is solvable in time O(3k/3 · n logW ), where W is the
maximum value of ω on an input graph G.

For Secluded Steiner Tree we prove the following theorem.

I Theorem 2 (∗). Secluded Steiner Tree can be solved in time O(2kk2 · (n+m) logW ),
where W is the maximum value of ω on an input graph G.

Parameterized algorithms for Secluded Path and Secluded Steiner Tree combined
with a brute-force procedure imply the following exact exponential algorithms for the
problems.

I Theorem 3 (∗). On an n-vertex graph, Secluded Path is solvable in time O(1.3896n ·
logW ) and Secluded Steiner Tree is solvable in time O(1.7088n · logW ), where W is
the maximum value of ω on an input graph G.

2 The proofs of statements marked with (∗) can be found in [13].
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4 FPT-algorithms for the problems parameterized above the
guaranteed value

In this section we show that Secluded Path and Secluded Steiner Tree are FPT when
the problems are parameterized by r + p where r = k − ` and ` is the size of a Steiner tree
for S.

I Theorem 4 (∗). Secluded Path is solvable in time O(2k−` · (n+m) logW ), where ` is
the length of a shortest (u, v)-path for {u, v} = S and W is the maximum value of ω on an
input graph G.

We need some structural properties of solutions of Secluded Steiner Tree. We
start with an auxiliary lemma bounding the number of vertices of degree at least three in
the subgraph of G induced by a solution as well as the number of their neighbors in this
subgraphs.

I Lemma 5. Let G be a connected graph and S ⊆ V (G), p = |S|. Let F be an inclusion
minimal connected induced subgraph of G such that S ⊆ V (F ) and X = {v ∈ V (F )|dF (v) ≥
3} ∪ S. Then (i) |X| ≤ 4p− 6, and (ii) |NF (X)| ≤ 4p− 6.

Proof. Let B be the set of blocks of F . Consider a bipartite graph T with the bipartition
(V (F ),B) of the vertex such that v ∈ V (F ) and b ∈ B are adjacent if and only if v is a vertex
of b. Notice that T is a tree. Recall that the vertex dissolution operation for a vertex v of
degree 2 deletes v together with incident edges and replaces them by the edge joining the
neighbors of v. Denote by T ′ the tree obtained from T by consequent dissolving all vertices of
T of degree 2 that are not in S. Denote by L the set of leaves of T . By the minimality of F ,
L ⊆ S. Let q1 = |L| ≤ p, and let q2 be the number of degree 2 vertices and q3 be the number
of vertices of degree at least 3 in T . Clearly, q1 + 2q2 + 3q3 ≤ 2|E(T )| = 2(q1 + q2 + q3 − 1).
Then q3 ≤ q1 − 2 ≤ p − 2. We have that |{v ∈ V (T )|dT (v) ≥ 3} ∪ S| ≤ q3 + p ≤ 2p − 2
and |V (T ′)| ≤ 2p − 2. Observe that if dF (v) ≥ 3 for v ∈ V (F ) \ S, then v is a cut vertex
of F and either v is included in at least 3 blocks of F , or v is in a block of size at least 3.
In the second case, v is adjacent to a vertex b ∈ B of T with degree at least 3. It implies
that |X| ≤ 2|E(T ′)| = 2(|V (T ′)| − 1) ≤ 4p− 6 and we have (i). To show (ii), observe that
|NF (X)| ≤ 2|E(T ′)| ≤ 4p− 6. J

The following lemma provides a bound on the number of vertices of a tree that have
neighbors outside the tree.

I Lemma 6. Let G be a connected graph and S ⊆ V (G), p = |S|. Let ` be the size of a
Steiner tree for S and r be a positive integer. Suppose that T is an inclusion minimal subgraph
of G such that T is a tree spanning S and |NG[V (T )]| ≤ ` + r. Then for Y = NG(V (T )),
|NG(Y ) ∩ V (T )| ≤ 4p+ 2r − 5.

Proof. Denote by L the set of leaves of T and by D the set of vertices of degree at least 3 in
T . Clearly, L ⊆ S. We select a leaf z of T as the root of T . The selection of a root defines a
parent-child relation on T . We order the vertices of T by the increase of their distances to z in
T ; the vertices on the same distance are ordered arbitrarily. Denote the obtained linear order
by ≺. For each u ∈ Y , denote by x(u) the unique minimum vertex in NG(u) ∩ V (T ) with
respect to ≺. Let U = {x(u)|u ∈ Y }. For a vertex u ∈ Y and v ∈ NG(u) ∩ V (T ) \ {x(u)},
let y(u, v) be the parent of v in T . Let W = {y(u, v)|u ∈ Y, v ∈ NG(u) ∩ V (T ), v 6= x(u)}
and W ′ = W \ (S ∪D ∪ U).

Let F = G[V (T ) ∪ Y ].
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I Claim 7. Set F ′ = F −W ′ is connected.

Proof of the claim. Since all leaves of T including z are in S, we have that z ∈ V (F ′). To
prove the claim, we show that for each vertex v ∈ V (F ′), there is a (v, z)-path in F ′. Every
vertex u ∈ Y has a neighbor x(u) in F ′. Hence, it is sufficient to prove the existence of
(v, z)-paths for v ∈ V (T ) \W ′. The proof is by induction on the number of v with respect
to ≺. The first vertex is z, and if v = z, then we have a trivial (z, v)-path. Assume that
v 6= z. Let w be the parent of v in T . If w ∈ V (F ′), then w ≺ v and, by the inductive
hypothesis, there is a (z, w)-path in F ′ and it implies the existence of a (z, v)-path. Suppose
that w /∈ V (F ′), i.e., w ∈ W ′. Since dT (w) = 2, there is u ∈ Y such that w = y(u, v). We
have that x(u) ≺ v and there is a (z, x(u))-path in F ′ by the inductive hypothesis. It remains
to observe that because x(u)u, uv ∈ E(F ′), F ′ has a (z, v)-path as well. This concludes the
proof to the claim. J

Denote by R the set of the children of the vertices of D ∪ S in T . Observe that
|NG(Y ) ∩ V (T )| ≤ |D ∪ S| + |R| + |U | + |W ′|. Recall that |V (F )| ≤ ` + r. Because F ′ is
connected and S ⊆ V (F ′), |V (F ′)| ≥ `. Hence, |W ′| ≤ r. Let q1 = |L|, q2 = |V (T ) \ (L∪D)|
and q3 = |D|. We have that q1 + 2q2 + 3q3 ≤ 2|E(T )| = 2(q1 + q2 + q3 − 1). Then
q3 ≤ q1 − 2 and |D ∪ S| ≤ 2|S| − 2 = 2p − 2, because L ⊆ S. Let T ′ be the tree obtained
from T by consequent dissolving all the vertices of degree 2 that are not in S. Then
|R| ≤ |E(T ′)| ≤ 2|S| − 3 = 2p − 3. Since |V (T )| ≥ `, |U | ≤ |Y | ≤ r. We obtain that
|NG(Y ) ∩ V (T )| ≤ |D ∪ S|+ |R|+ |U |+ |W ′| ≤ 2p− 2 + 2p− 3 + r + r = 4p+ 2r − 5. J

Now we are ready to prove the main result of the section.

I Theorem 8. Secluded Steiner Tree can be solved in time 2O(p+r) · nm · logW by a
true-biased Monte-Carlo algorithm and in time 2O(p+r) · nm logn · logW by a deterministic
algorithm for graphs with n vertices and m edges, where r = k − ` and ` is the size of a
Steiner tree for S and W is the maximum value of ω on an input graph G.

Proof. We construct an FPT-algorithm for Secluded Steiner Tree parameterized by
p+ r. The algorithm is based on the random separation techniques introduced by Cai, Chan,
and Chan [6] (see also [1]). We first describe a randomized algorithm and then explain how
it can be derandomized.

Let I = (G,ω, S, k, C) be an instance of Secluded Steiner Tree, ` be the size of a
Steiner tree for S = {s1, . . . , sp} and r = k − `. Without loss of generality we assume that
p ≥ 2 and r ≥ 1 as for p = 1 or r = 0, the problem is trivial. We also can assume that G is
connected.

Description of the algorithm. In each iteration of the algorithm we color the vertices of G
independently and uniformly at random by two colors. In other words, we partition V (G)
into two sets R and B. We say that the vertices of R are red, and the vertices of B are blue.
Our algorithm can recolor some blue vertices red, i.e., the sets R and B can be modified.
Our aim is to find a connected subgraph T of G with S ⊆ V (T ) such that |NG[V (T )]| ≤ k,
ω(NG[V (T )]) ≤ C and V (T ) ⊆ R.

Step 1. If G[R] has a component H such that S ⊆ V (H), then find a spanning tree T of
H. If |NG[V (T )]| ≤ k and ω(NG[V (T )]) ≤ C, then return T and stop; otherwise, return that
I is no-instance and stop.
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Step 2. If there is si ∈ S such that si /∈ R or NG(si) ∩ R = ∅, then return that I is
no-instance and stop.

Step 3. Find a component H of G[R] with s1 ∈ V (H). If there is a pendant vertex u /∈ S
of H that is adjacent in G to a unique vertex v ∈ B, then find a component of G[B] that
contains v, recolor its vertices red and then return to Step 1. Otherwise, return that (G,S, k)
is no-instance and stop.

We repeat at most 2O(r+p) iterations. If on some iteration we obtain a yes-answer, then we
return it and the corresponding solution. Otherwise, if on every iteration we get a no-answer,
we return a no-answer.

Correctness of the algorithm. It is straightforward to see that if this algorithm returns a
tree T in G with |NG[V (T )]| ≤ k and ω(NG[V (T )]) ≤ C, then we have a solution for the
considered instance of Secluded Steiner Tree. We show that if I is a yes-instance, then
there is a positive constant α that does not depend on n and r such that the algorithm finds
a tree T in G with |NG[V (T )]| ≤ k and ω(NG[V (T )]) ≤ C with probability at least α after
2O(p+r) executions of this algorithm for random colorings.

Suppose that I is a yes-instance. Then there is a tree T in G such that S ⊆ V (T ),
|NG[V (T )]| ≤ k and ω(NG[V (T )]) ≤ C. Without loss of generality we assume that T is
inclusion minimal. Let F = G[V (T )], X = {v ∈ V (F )|dF (v) ≥ 3} ∪ S, X ′ = NF (X),
Y = NG(V (T )) and Y ′ = NG(Y ) ∩ V (T ). For each v ∈ Y ′ \ S, we arbitrarily select two
distinct neighbors z1(v) and z2(v) in T . Because the leaves of T are in S, we have that v
is not a leaf and thus has at least two neighbors. Let Z = {zi(v)|v ∈ Y ′ \ S, i = 1, 2}. Let
W = X ∪X ′ ∪ Y ∪ Y ′ ∪ Z.

By Lemma 5, |X| ≤ 4p−6 and |X ′| ≤ 4p−6. By Lemma 6, |Y ′| ≤ 4p+2r−5 and, therefore,
|Z| ≤ 8p+ 4r− 10. Because |V (T )| ≥ ` and |NG[V (T )]| ≤ `+ r, we have that |Y | ≤ r. Hence
|W | ≤ |X|+|X ′|+|Y |+|Y ′|+|Z| ≤ 4p−6+4p−6+r+4p+2r−5+8p+4r−10 = 20p+7r−27.
Let N = 20p+ 7r−27. Then with probability at least 2−N , the vertices of Y are colored blue
and the vertices of X ∪X ′ ∪ Y ′ ∪Z are colored red, i.e., W ∩ V (T ) ⊆ R and W \ V (T ) ⊆ B.
The probability that for a random coloring, the vertices of W are colored incorrectly, i.e.,
W ∩ V (T ) ∩ B 6= ∅ or (W \ V (T )) ∩ R 6= ∅, is at most 1− 2−N . Hence, if we consider 2N

random colorings, then the probability that the vertices of W are colored incorrectly for all
the colorings is at most (1− 2−N )2N , and with probability at least 1− (1− 2−N )2N for at
least one coloring we will have W ∩ V (T ) ⊆ R and W \ V (T ) ⊆ B. Since (1− 2−N )2N ≤ 1/e,
we have that 1 − (1 − 2−N )2N ≤ 1 − 1/e. Thus if I is a yes-instance, after 2N random
colorings of G, we have that at least one of the colorings is successful with a constant success
probability α = 1− 1/e.

Assume that for a random red-blue coloring of G, W ∩ V (T ) ⊆ R and W \ V (T ) ⊆ B.
We show that in this case the algorithm finds a tree T ′ with S ⊆ V (T ′) ⊆ V (T ). Clearly,
|NG[V (T ′)]| ≤ |NG[V (T )]| ≤ k and ω(NG[V (T ′)]) ≤ ω(NG[V (T )]) ≤ C in this case.

We claim that for every connected component H of G[R], either V (H) ⊆ V (T ) or
V (H) ∩ V (T ) = ∅. To obtain a contradiction, assume that there are u, v ∈ V (H) such
that u ∈ V (T ) and v /∈ V (T ). Indeed, H is connected, and thus contains an (u, v) path
P . Since P goes from V (T ) to v 6∈ V (T ), path P should contain a vertex w ∈ NG(T ) = Y .
But w is colored blue, which is a contradiction to the assumption that P is in the red
component H. By the same arguments, for any component H of G[B], either V (H) ⊆ V (T )
or V (H) ∩ V (T ) = ∅.

We consider Steps 1–3 of the algorithm and show their correctness.
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Suppose that G[R] has a component H such that S ⊆ V (H). Because S ⊆W ∩V (T ) ⊆ R,
V (H) ∩ V (T ) 6= ∅ and, therefore, V (H) ⊆ V (T ). Then for every spanning tree T ′ of H,
S ⊆ V (T ′) and NG[V (T ′)] ⊆ NG[V (T )]. Therefore, |NG[V (T ′)]| ≤ |NG[V (T )]| ≤ k and
ω(NG[V (T ′)]) ≤ ω(NG[V (T )]) ≤ C. Hence, if a component of G[R] contains S, then we find
a solution. This concludes the proof of the correctness of the first step.

Let us assume that the algorithm does not stop at Step 1. For the right coloring, because
S ⊆ X and NF (S) ⊆ X ′, for every si ∈ S, we have that si ∈ R. Moreover, because p ≥ 2,
at least one neighbor of si in G is in R. Thus the only reason why the algorithm stops at
Step 2 is due to the wrong coloring. Consider the case when the algorithm does not stop
after Step 2.

Suppose that H is a component of G[R] with s1 ∈ V (H). Because the algorithm did
not stop in Step 2, such a component H exists and has at least 2 vertices. Recall that
V (H) ⊆ V (T ). Because we proceed in Step 1, we conclude that S \ V (H) 6= ∅. Then there is
a vertex u ∈ V (H) which has a neighbor v in T such that v ∈ B. If u ∈ S, then v ∈ X ′, but
this contradicts the assumption X ′ ⊆ R. Hence, u /∈ S. Suppose that dH(u) ≥ 2. In this
case dF (u) ≥ 3 and v ∈ X ′; a contradiction. Therefore, u is a pendant vertex of H.

Let u /∈ S be an arbitrary pendant vertex of H. If u has no neighbors in B, then u is
a leaf of T that does not belong to S but this contradicts the inclusion minimality of T .
Assume that u is adjacent to at least two distinct vertices of B. Because T is an inclusion
minimal tree spanning S, vertex u has at least two neighbors in T and u has a neighbor
v ∈ B in T . Let w ∈ (NG(u) ∩B) \ {v}. If w ∈ V (T ), then dF (u) ≥ 3 and, therefore, u ∈ X
and v, w ∈ X ′; a contradiction with X ′ ⊆ R. Hence, w /∈ V (T ). Moreover, v is the unique
neighbor of u in T that belongs to B. Then w ∈ Y and v ∈ {z1(u), z2(u)}; a contradiction
with Z ⊆ R. We obtain that u is adjacent in G to a unique vertex v ∈ B. Let H ′ be the
component of G[B] that contains v. Since T is an inclusion minimal tree that spans S, u has
at least two neighbors in T . It implies that v ∈ V (T ), therefore V (H ′) ⊆ V (T ). We recolor
the vertices of H ′ red in Step 3. For the new coloring the vertices of Y are blue and the
vertices of W \ Y are red. Therefore, we keep the crucial property of the considered coloring
but we increase the size of the component of G[R] containing s1.

To conclude the correctness proof, it remains to observe that in Step 3 we increase the
number of vertices in the component of G[R] that contains s1. Hence, after at most n repeats
of Steps 1-3, we obtain a component in G[R] that includes S and return a solution in Step 1.

It is straightforward to verify that each of Steps 1–3 can be done in time O(m logW ).
Because the number of iterations is at most n, we obtain that the total running time is
2O(p+r) · nm logW .

This algorithm can be derandomized by standard techniques (see [1, 6]). The random
colorings can be replaced by the colorings induced by universal sets. Let n and q be positive
integers, q ≤ n. An (n, q)-universal set is a collection of binary vectors of length n such that
for each index subset of size q, each of the 2q possible combinations of values appears in some
vector of the set. It is known that an (n, q)-universal set can be constructed in FPT-time
with the parameter q. The best construction is due to Naor, Schulman and Srinivasan [20].
They obtained an (n, q)-universal set of size 2q · qO(log q) logn, and proved that the elements
of the sets can be listed in time that is linear in the size of the set. In our case n is the
number of vertices of G and q = 20p+ 7r − 27. J

We complement Theorem 8 by showing that it is unlikely that Secluded Steiner Tree
is FPT if parameterized by r only. To show it, we use the standard reduction from the Set
Cover problem (see, e.g., [19]). Notice that we prove that Secluded Steiner Tree is
co-W[1]-hard, i.e., we show that it is W[1]-hard to decide whether we have a no-answer.
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I Theorem 9 (∗). Secluded Steiner Tree without costs is co-W[1]-hard when paramet-
erized by r, where r = k − ` and ` is the size of a Steiner tree for S.

5 Structural parameterizations of Secluded Steiner Tree

In this section we consider different algorithmic and complexity results concerning different
structural parameterizations of secluded connectivity problems. We consider parameter-
izations by the treewidth, size of the solution, maximum degree and the size of a vertex
cover of the input graph (see [13] for definitions of these parameters.) We show that under
reasonable complexity assumptions Secluded Path without costs has no polynomial kernel
when parameterized by k + t+ ∆, where t is the treewidth and ∆ is the maximum degree of
the input graph. We obtain the same result for the cases when the problem is parameterized
by k − `+ t+ ∆, where ` is the length of the shortest path between terminals.

I Theorem 10 (∗). Secluded Path without costs on graphs of treewidth at most t and
maximum degree at most ∆ admits no polynomial kernel unless NP ⊆ coNP /poly when
parameterized by k + t + ∆ or (k − `) + t + ∆, where ` is the length of the shortest path
between terminals.

Observe that Theorem 10 immediately implies that Secluded Path without costs has
no polynomial kernel unless NP ⊆ coNP /poly when parameterized by k or k − `. The next
natural question is if parameterization by a stronger parameter can lead to a polynomial
kernel. Let us note that the treewidth of a graph is always at most the minimum size of
its vertex cover. The following theorem provides lower bounds for parameterization by the
minimum size of a vertex cover.

I Theorem 11. Secluded Path without costs on graphs with the vertex cover number at
most w has no polynomial kernel unless NP ⊆ coNP /poly when parameterized by w.

Proof. The proof uses the cross-composition technique introduced by Bodlaender, Jansen and
Kratsch [5]. We show that the 3-Satisfiability problem OR-cross composes into Secluded
Path without costs. Recall that 3-Satisfiability asks for given boolean variables x1, . . . , xn

and clauses C1, . . . , Cm with 3 literals each, whether the formula φ = C1 ∧ . . . ∧ Cm can be
satisfied. It is well-known that 3-Satisfiability is NP-complete [16]. We assume that two
instances of 3-Satisfiability are equivalent if they have the same number of variables and
the same number of clauses.

Consider t equivalent instances of 3-Satisfiability with the same boolean variables
x1, . . . , xn and the sets of clauses Ci = {Ci

1, . . . , C
i
m} for i ∈ {1, . . . , t}. Without loss of

generality we assume that t =
(2q

q

)
for a positive integer q; otherwise, we add minimum number

of copies of C1 to get this property. Notice that
(2q

q

)
= Θ(4q/

√
πq) and q = O(log t). Let

I1, . . . , It be pairwise distinct subsets of {1, . . . , 2q} of size q. Notice that each i ∈ {1, . . . , 2q}
is included exactly in d =

(2q−1
q−1

)
sets. Let k = (q + 3d)m+ 3q + 4n+ 2. We construct the

graph G as follows (see Fig. 1).
(i) Construct n+ 1 vertices u0, . . . , un. Let s1 = u0.
(ii) For each i ∈ {1, . . . , n}, construct vertices xi, yi, xi, yi and edges ui−1yi, yiui, yixi, and

ui−1yi, yiui, yixi.
(iii) For each j ∈ {0, . . . ,m}, construct a set of vertices Wj = {wj

1, . . . , w
j
2q}.

(iv) Construct a vertex s2 and edges unw
0
1, . . . , unw

0
2q and wm

1 s2, . . . , w
m
2qs2.

(v) For each j ∈ {1, . . . ,m} and h ∈ {1, . . . , t},
construct 3 vertices c1jh, c

2
jh, c

3
jh;
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s2

W0

ui−1

yi

yi

uis1 = u0 un

v1 vk

Wj−1Wj

c3
jh

c1
jh

xi

xi

Wm

Figure 1 Construction of G.

construct edges c1jhw
j−1
r , c2jhw

j−1
r , c3jhw

j−1
r and c1jhw

j
r, c

2
jhw

j
r, c

3
jhw

j
r for all r ∈ Ih;

consider the clause Ch
j = (z1 ∨ z2 ∨ z3) and for l ∈ {1, 2, 3}, construct an edge cl

jhxi

if zl = xi for some i ∈ {1, . . . , n} and construct an edge cl
jhxi if zl = xi.

(vi) Construct k vertices v1, . . . , vk and edges xivl, xivl for i ∈ {1, . . . , n} and l ∈ {1, . . . , k}.
Observe that the set of vertices

X = (∪n
i=1{xi, yi, xi, yi}) ∪ (∪m

j=0Wj)

is a vertex cover in G of size 4n+ 2q(m+ 1) = O(n+m log t).
We show that G has an (s1, s2)-path P with |NG[V (P )]| ≤ k if and only if there is

h ∈ {1, . . . , t} such that x1, . . . , xn have a truth assignment satisfying all the clauses of Ch.
Suppose that x1, . . . , xn have an assignment that satisfies all the clauses of Ch. First,

we construct the (s1, un)-path P ′ by the concatenation of the following paths: for each
i ∈ {1, . . . , n}, we take the path ui−1yiui if xi = true in the assignment and we take ui−1yiui

if xi = false. Let r ∈ Ih. We construct the (w0
r , w

m
r )-path P ′′ by concatenating wj−1

r c
lj

jhw
j
r for

j ∈ {1, . . . ,m} where lj ∈ {1, 2, 3} is chosen as follows. Each clause Ch
j = z1 ∨ z2 ∨ z3 = true

for the assignment, i.e., zl = true for some l ∈ {1, 2, 3}; we set lj = l. Finally, we set
P = P ′ + unw

0
h + P ′′ + wm

h s2. It is straightforward to verify that |NG[V (P )]| = k.
Suppose now that there is an (s1, s2)-path in G with |NG[V (P )]| ≤ k. We assume that P

is an induced path. Observe that xi, xi /∈ V (P ) for i ∈ {1, . . . , n}, because dG(xi), dG(xi) >
k. Therefore, P has an (s1, un)-subpath P ′ such that u0, . . . , un ∈ V (P ′) and for each
i ∈ {1, . . . , n}, either yi ∈ V (P ′) or yi ∈ V (P ′). We set the variable xi = true if xi ∈ V (P ′)
and xi = false otherwise. We show that this truth assignment satisfies all the clauses of
some Ch.

Observe that |NG[V (P ′)]| = 4n + 2q + 1. Clearly, s2 ∈ V (P ). Notice also that P has
at least one vertex in each Wj for j ∈ {0, . . . ,m}, and for each j ∈ {1, . . . ,m}, at least
one vertex among the vertices cl

jh for h ∈ {1, . . . , t} and l ∈ {1, 2, 3} is in P . For each
j ∈ {1, . . . ,m}, any two verices wj−1

r ∈ Wj−1 and wj
r′ ∈ Wj have at least 3d neighbors

among the vertices cl
jf for f ∈ {1, . . . , t} and l ∈ {1, 2, 3}. Moreover, if r 6= r′, they have at

least 3d+ 6 such neighbors, because there are two subsets I, I ′ ⊆ {1, . . . , 2q} of size q such
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that r ∈ I \ I ′ and r′ ∈ I ′ \ I. For each j ∈ {1, . . . ,m− 1}, any two vertices cl
jh and cl′

j+1 h′

for h, h′ ∈ {1, . . . , t} and l, l′ ∈ {1, 2, 3} have at least q neighbors in Wj . Moreover, if h 6= h′,
they have at least q + 2 such neighbors, because |Ih ∪ Ih′ | ≥ q + 2. Taking into account that
dG(s2) = 2q, we obtain that

k ≥ |NG[V (P )]| ≥ |NG[V (P ′)]|+ 3dm+ q(m− 1) + 2q + 1 = k.

It implies that P has exactly one vertex in each Wj for j ∈ {0, . . . ,m}, and for each
j ∈ {1, . . . ,m}, exactly one vertex among the vertices cl

jh for h ∈ {1, . . . , t} and l ∈ {1, 2, 3}
is in P . Moreover, there is r ∈ {1, . . . , 2q} and h ∈ {1, . . . , t} such that wj

r ∈ V (P ) and
c

lj

jh ∈ V (P ) for j ∈ {0, . . . ,m} and lj ∈ {1, 2, 3}. We claim that all the clauses of Cr are
satisfied. Otherwise, if there is a clause Cr

j = (z1 ∨ z2 ∨ z3) that is not satisfied, then the
neighbors of c1jh, c

2
jh, c

3
jh among the vertices xi, xi for i ∈ {1, . . . , n} are not in NG[V (P ′)].

It immediately implies that |NG[V (P )]| > k; a contradiction. J

However, if we consider even stronger parameterization, by vertex cover number and by
the size of the solution, then we obtain the following theorem.

I Theorem 12 (∗). The Secluded Steiner Tree problem admits a kernel with at most
2w(k + 1) vertices on graphs with the vertex cover number at most w.

Recall that Chechik et al. [8] showed that if the treewidth of the input graph does not
exceed t, then the Secluded Steiner Tree problem is solvable in time 2O(t log t)·nO(1)·logW ,
where W is the maximum value of ω on an input graph G. We observe that the running
time could be improved by applying modern techniques for dynamic programming over tree
decompositions proposed by Cygan et al. [10], Bodlaender et al. [3] and Fomin et al. [14].
Essentially, the algorithms for Secluded Steiner Tree are constructed along the same
lines as the algorithms for Steiner Tree described in [10, 3, 14]. Hence, for simplicity, we
only sketch the randomized algorithm based on the Cut&Count technique introduced by
Cygan et al. [10] for Secluded Steiner Tree without costs in this conference version of
our paper.

I Theorem 13 (∗). There is a true-biased Monte Carlo algorithm solving the Secluded
Steiner Tree without costs in time 4t ·nO(1), given a tree decomposition of width at most t.

The algorithm based on the Cut&Count technique can be generalized for Secluded
Steiner Tree with costs in the same way as the algorithm for Steiner Tree in [10].
This way we can obtain the algorithm that runs in time 4t · (n + W )O(1) where W is
the maximal cost of vertices. One can obtain a deterministic algorithm and improve the
dependence on W using the representative set technique for dynamic programming over
tree decompositions introduced by Fomin et al. [14]. Again by the same approach as for
Steiner Tree, it is possible to solve Secluded Steiner Tree deterministically in time
O((2 + 2ω+1)t · (n+ logW )O(1)) (here ω is the matrix multiplication constant). We postpone
the proof till the full version of the paper.
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Abstract
For fixed integers r, ` ≥ 0, a graph G is called an (r, `)-graph if the vertex set V (G) can be parti-
tioned into r independent sets and ` cliques. This brings us to the following natural parameterized
questions: Vertex (r, `)-Partization and Edge (r, `)-Partization. An input to these prob-
lems consist of a graph G and a positive integer k and the objective is to decide whether there
exists a set S ⊆ V (G) (S ⊆ E(G)) such that the deletion of S from G results in an (r, `)-graph.
These problems generalize well studied problems such as Odd Cycle Transversal, Edge
Odd Cycle Transversal, Split Vertex Deletion and Split Edge Deletion. We do
not hope to get parameterized algorithms for either Vertex (r, `)-Partization or Edge (r, `)-
Partization when either of r or ` is at least 3 as the recognition problem itself is NP-complete.
This leaves the case of r, ` ∈ {1, 2}. We almost complete the parameterized complexity dichotomy
for these problems by obtaining the following results:
1. We show that Vertex (r, `)-Partization is fixed parameter tractable (FPT) for r, ` ∈ {1, 2}.

Then we design an O(
√

log n)-factor approximation algorithms for these problems. These
approximation algorithms are then utilized to design polynomial sized randomized Turing
kernels for these problems.

2. Edge (r, `)-Partization is FPT when (r, `) ∈ {(1, 2), (2, 1)}. However, the parameterized
complexity of Edge (2, 2)-Partization remains open.

For our approximation algorithms and thus for Turing kernels we use an interesting finite forbid-
den induced graph characterization, for a class of graphs known as (r, `)-split graphs, properly
containing the class of (r, `)-graphs. This approach to obtain approximation algorithms could be
of an independent interest.
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1 Introduction

For fixed integers r, ` ≥ 0, a graph G is called an (r, `)-graph if the vertex set V (G) can be
partitioned into r independent sets and ` cliques. Although the problem has an abstract
setting, some special cases are well known graph classes and have been widely studied. For
example, (2, 0)- and (1, 1)-graphs correspond to bipartite graphs and split graphs respectively.
A (3, 0)-graph is a 3-colourable graph. Already, we get a hint of an interesting dichotomy
for this graph class, even with respect to recognition algorithms. Throughout the paper we
will use m and n to denote the number of edges and the number of vertices, respectively,
in the input graph G. It is well known that we can recognize (2, 0)- and (1, 1)-graphs in
O(m + n) time. In fact, one can show that recognizing whether a graph G is an (r, `)-graph,
when r, ` ≤ 2, can be done in polynomial time [2, 9]. On the other hand, when either r ≥ 3
or ` ≥ 3, the recognition problem is as hard as the celebrated 3-colouring problem, which
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is NP-complete [12]. These problems are also studied when the input is restricted to be a
chordal graph, in which case we can get polynomial time recognition algorithms for every r

and ` [10].
The topic of this paper is to design recognition algorithms for almost (r, `)-graphs

in the realm of parameterized algorithms. In particular, we study the following natural
parameterized questions on (r, `)-graphs: Vertex (r, `)-Partization and Edge (r, `)-
Partization.

Vertex (r, `)-Partization Parameter: k

Input: A graph G and a positive integer k

Question: Is there a vertex subset S ⊆ V (G) of size at most k such that G − S is an
(r, `)-graph?

Edge (r, `)-Partization Parameter: k

Input: A graph G and a positive integer k

Question: Is there an edge subset F ⊆ E(G) of size at most k such that G − F is an
(r, `)-graph?
These problems generalize some of the most well studied problems in parameterized

complexity, such as Vertex Cover, Odd Cycle Transversal (OCT), Edge Odd Cycle
Transversal (EOCT), Split Vertex Deletion (SVD) and Split Edge Deletion
(SED). Vertex Cover, in particular, has been extensively studied in the parameterized
complexity, and the current fastest algorithm runs in time 1.2738knO(1) and has a kernel with
2k vertices [4]. The parameterized complexity of OCT was a well known open problem for a
long time. In 2003, in a breakthrough paper, Reed et al. [25] showed that OCT is FPT by
developing an algorithm for the problem running in time O(3kmn). In fact, this was the first
time that the iterative compression technique was used. However, the algorithm for OCT
had seen no further improvements in the last 9 years, though several reinterpretations of the
algorithm have been published [16, 22]. Only recently, Lokshtanov et al. [21] obtained a faster
algorithm for the problem running in time 2.3146knO(1) using a branching algorithm based
on linear programming. Guo et al. [14] designed an algorithm for EOCT running in time
2knO(1). There is another theme of research in parameterized complexity, where the objective
is to minimize the dependence of n at the cost of a slow growing function of k. A well known
open problem, in the area, is whether OCT admits a linear time parameterized algorithms.
Only recently, the first linear time FPT algorithms for OCT on general graphs were obtained,
both of which run in time O(4kkO(1)(m+n)) [24, 17]. Kratsch and Wahlström [19] obtained a
randomized polynomial kernel for OCT and EOCT. Ghosh et al. [13] studied SVD and SED
and designed algorithms with running time 2knO(1) and 2O(

√
k log k)nO(1). They also gave the

best known polynomial kernel for these problems. Later, Cygan and Pilipczuk [7] designed
an algorithm for SVD running in time 1.2738k+o(k)nO(1). Krithika and Narayanaswamy [20]
studied Vertex (r, `)-Partization problems on perfect graphs, and among several results
they obtain (r + 1)knO(1) algorithm for Vertex (r, 0)-Partization on perfect graphs.

Our Results and Methods. The instance of a parameterized problem is a pair containing
the actual problem instance of size n and a positive integer called a parameter, usually
represented as k. The problem is said to be in FPT if there exists an algorithm that solves
the problem in f(k)nO(1) time, where f is a computable function. An algorithm with such a
running time is called an FPT algorithm. Readers are requested to refer [11] for more details.
We do not hope to get FPT algorithms for either Vertex (r, `)-Partization or Edge
(r, `)-Partization when either of r or ` is at least 3 as the recognition problem itself is
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r, ` Problem Name FPT Kernel
(1, 0) Vertex Cover 1.2738k Poly
(0, 1) Vertex Cover on G 1.2738k Poly
(1, 1) SVD 1.2738k+o(k) Poly
(2, 0) OCT 2.3146k Randomized Poly
(0, 2) OCT on G 2.3146k Randomized Poly

(2, 1), (1, 2),
(2, 2)

Vertex (2, 1)-partization
Vertex (1, 2)-partization
Vertex (2, 2)-partization

3.3146k Randomized
Turing Poly

Figure 1 Summary of known and new results for the family of Vertex (r, `)-Partization
problems. New results are highlighted in green (last row).

r, ` Problem Name FPT Kernel
(1, 0) Recognizable in polynomial time.
(0, 1) Recognizable in polynomial time.
(1, 1) SED 2O(

√
k log k) Poly

(2, 0) EOCT 2k Randomized Poly
(0, 2) Recognizable in polynomial time.
(2, 1) Edge (2, 1)-partization 2k+o(k) Open
(1, 2) Edge (1, 2)-partization FPT Open
(2, 2) Edge (2, 2)-partization Open

Figure 2 Summary of known and new results for the family of Edge (r, `)-Partization problems.
New results are highlighted in green.

NP-complete. This leaves the case of r, ` ∈ {0, 1, 2}. We almost complete the parameterized
complexity dichotomy for these problems by either obtaining new results or using the existing
results. We refer to Figures 1 and 2 for a summary of new and old results. Due to paucity of
space, some proofs have had to be omitted from the paper. However, all such results (marked
with a ?) have their complete proofs in the full version.1

For both Vertex (r, `)-Partization and Edge (r, `)-Partization, the only new cases
for which we need to design new parameterized algorithms to complete the dichotomy is
when r, ` ∈ {1, 2}. Apart from the algorithmic results indicated in the Figures 1 and 2, we
also obtain the following results. When r, ` ∈ {1, 2}, we obtain an O(

√
log n)-approximation

for these special cases. Finally, we obtain randomized Turing kernels for Vertex (r, `)-
Partization using this approximation algorithms. In other words, we give a polynomial time
algorithm that produces polynomially many instances, nO(1) of Vertex (r, `)-Partization
of size kO(1) such that with very high probability (G, k) is a YES instance of Vertex
(r, `)-Partization if and only if one of the polynomially many instances of Vertex (r, `)-
Partization of size kO(1) is a YES instance. The question of existence of polynomial
kernels for these special cases as well as for Edge (r, `)-Partization is open. Even the
parameterized complexity of Edge (2, 2)-Partization remains open.

1 We would like to mention that one of our results, namely, 3.3146knO(1) time FPT algorithm for Vertex
(2, 2)-Partization (and hence for Vertex (1, 2)-Partization and Vertex (2, 1)-Partization) were
independently and simultaneously obtained by Baste et al. (http://arxiv.org/abs/1504.05515).

http://arxiv.org/abs/1504.05515
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Our methods. Most of the FPT algorithms are based on the iterative compression technique
and use an algorithm for either OCT or EOCT as a subroutine. One of the algorithms
also uses methods developed in [23]. To arrive at the approximation algorithm, we needed
to take a detour. We start by looking at a slightly larger class of graphs called (r, `)-split
graphs. A graph G is an (r, `)-split graph if its vertex set can be partitioned into V1 and V2
such that the size of a largest clique in G[V1] is bounded by r and the size of the largest
independent set in G[V2] is bounded by `. Such a bipartition for the graph G is called as
(r, `)-split partition. The notion of (r, `)-split graphs was introduced in [15]. For any fixed r

and `, there is a finite forbidden set Fr,` for (r, `)-split graphs [15]. That is, a graph G is a
(r, `)-split graph if and only if G does not contain any graph H ∈ Fr,` as an induced subgraph.
The size of the largest forbidden graph is bounded by f(r, `), f being a function given in
[15]. Since the class (r, `)-graphs is a sub class of (r, `)-split graphs, each graph in Fr,` will
not appear as an induced subgraph in any (r, `)-graph. For our approximation algorithm
we first make the given graph (r, `)-split graph by removing the induced subgraphs that are
isomorphic to some graph in Fr,`. Once we have (r, `)-split graph, we generate a (r, `)-split
partition (V1, V2) of G. Then we observe that for r, ` ∈ {1, 2} the problem reduces to finding
an approximate solution to Odd Cycle Transversal in G[V1] and G[V2]. Finally, we use
the known O(

√
log n)-approximation algorithm for Odd Cycle Transversal [1] to obtain

a O(
√

log n)-approximation algorithm for our problems. The Turing kernel for Vertex
(r, `)-Partization, when r, ` ∈ {1, 2}, uses the approximation algorithm and depends on the
randomized kernelization algorithm for Odd Cycle Transversal [19].

2 Preliminaries

We use standard notations from graph theory([8]) throughout this paper. The vertex set and
edge set of a graph G are denoted as V (G) and E(G) respectively. The complement of the
graph G is denoted by G and has V (G′) = V (G) and

(
V (G)

2
)
− E(G) as its edge set. Here,(

V (G)
2

)
denotes the family of two sized subsets of V (G). The neighbourhood of a vertex v

is represented as NG(v), or, when the context of the graph is clear, simply as N(v). An
induced subgraph of G on the vertex set V ′ ⊆ V is written as G[V ′]. An induced subgraph
of G on the edge set E′ ⊆ E is written as G[E′]. For a vertex subset V ′ ⊆ V , G[V − V ′] is
also denoted as G − V ′. Similarly, for an edge set E′ ⊆ E, G − E′ denotes the subgraph
G′ = (V, E \ E′).

The Ramsey number for a given pair of positive integers (a, b) is the minimum number
such that any graph with the Ramsey number of vertices either has an independent set of
size a or a clique of size b. The Ramsey number for (a, b) is denoted by R(a, b).

We have already seen what (r, `)-graphs are. Below, is a formal definition of the graph
class as well as some related definitions.

I Definition 1. (r, `)-graph A graph G is an (r, `)-graph if its vertex set can be partitioned
into r independent sets and ` cliques. We call such a partition of V (G) an (r, `)-partition.
An IC-partition, of an (r, `)-graph G, is a partition (V1, V2) of V (G) such that G[V1] can be
partitioned into r independent sets and G[V2] can be partitioned into ` cliques.

For fixed r, ` ≥ 0, the class of (r, `)-graphs is closed under induced subgraphs. The following
observation is useful in the understanding of the algorithms presented in the paper

I Observation 2 (?). 2 Let P = (PI , PC) and P ′ = (P ′I , P ′C) be two IC-partitions of an
(r, `)-graph G. Then |PI ∩ P ′C | ≤ r` and |P ′I ∩ PC | ≤ r`.

2 Proofs of results marked with ? can be found in the full version.
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3 Vertex Deletion to (r, `)-graphs

In this section we first show that Vertex (2, 2)-Partization is in FPT, using iterative
compression. Then we explain how to reduce Vertex (2, 1)-Partization and Vertex
(1, 2)-Partization to Vertex (2, 2)-Partization. Our algorithm for Vertex (2, 2)-
Partization combines the iterative compression technique with a polynomial bound on the
number of IC-partitions of a (2, 2)-graph. The following Lemma tells about an algorithm to
recognize whether a graph is a (2, 2)-graph and also about an algorithm to compute all such
IC-partitions. These results were shown in several papers [2, 9].

I Lemma 3. Given a graph G on n vertices and m edges we can recognize whether G is a
(2, 2)-graph in O((n + m)2) time. Also, a (2, 2)-graph can have at most n8 IC-partitions and
all the IC-partitions can be enumerated in O(n8) time.

For a graph G, we say S ⊆ V (G) is a (2, 2)-vertex deletion set, if G− S is a (2, 2)-graph.
Now we describe the iterative compression technique and its application to the Vertex
(2, 2)-Partization problem.

Iterative Compression for Vertex (2, 2)-Partizipation. Let (G, k) be an input instance
of Vertex (2, 2)-Partization and let V (G) = {v1, . . . , vn}. We define, for every 1 ≤
i ≤ |V (G)|, the vertex set Vi = {v1, . . . , vi}. Denote G[Vi] as Gi. We iterate through the
instances (Gi, k) starting from i = k + 5. Given the ith instances and a known (2, 2)-vertex
deletion set S′i of size at most k + 1, our objective is to obtain a (2, 2)-vertex deletion set Si

of size at most k. The formal definition of this compression problem is as follows.

Vertex (2, 2)-Partization Compression Parameter: k

Input: A graph G and a k + 1 sized vertex subset S′ ⊆ V (G) such that G − S′ is a
(2, 2)-graph
Output: A vertex subset S ⊆ V (G) of size at most k such that G− S is a (2, 2)-graph

We reduce the Vertex (2, 2)-Partization problem to n−k−4 instances of the Vertex
(2, 2)-Partization Compression problem in the following manner. When i = k + 5, the set
Vk+1 is a (2, 2)-vertex deletion set of size at most k + 1 for Gk+5. Let Ii = (Gi, S′i, k) be the
ith instance of Vertex (2, 2)-Partization Compression. If Si−1 is a k-sized solution for
Ii, then Si−1 ∪ {vi} is a (k + 1)-sized (2, 2)-vertex deletion set for Gi. Hence, we start the
iteration with the instance Ik+5 = (Gk+5, Vk+1, k) and try to obtain a (2, 2)-vertex deletion
set of size at most k. If such a solution Sk+5 exists, we set S′k+5 = Sk+5 ∪ {vk+6} and ask of
a k-sized solution for the instance Ik+6, and so on. If, during any iteration, the corresponding
instance does not have a (2, 2)-vertex deletion set of size at most k, it implies that the original
instance (G, k) is a NO instance for Vertex (2, 2)-Partization. If the input instance (G, k)
is a YES instance, then Sn is a k-sized (2, 2)-vertex deletion set for G, where n = |V (G)|.
Since there are at most n iterations, the total time taken by the algorithm to solve Vertex
(2, 2)-Partization is at most n times the time taken to solve Vertex (2, 2)-Partization
Compression. The above explained template for doing iterative compression will be used
for approximation algorithms as well as for parameterized algorithms for edge versions of
these problems.

The following Lemma shows that Vertex (2, 2)-Partization Compression is in FPT.
The arguments above imply that Vertex (2, 2)-Partization is also in FPT.

I Lemma 4 (?). Vertex (2, 2)-Partization Compression can be solved deterministically
in time 3.3146k|V (G)|O(1).
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Proof. (Proof sketch) We design an algorithm for Vertex (2, 2)-Partization Compression.
Let (G, S′) be the instance of the problem and let (P ′I , P ′C) be an IC-partition of G − S′.
Let S be a hypothetical solution of size k for the problem, which the algorithm suppose to
compute. Let (PI , PC) be an IC-partition of G− S. The algorithm first guesses a partition
(Y, N) of S′ such that Y = S′ ∩ S and N = S′ − S. After this guess, the objective is
to compute a set Z of size at most k′ = k − |Y | such that G − (Z ∪ Y ) is a (2, 2)-graph.
Also note that since N is not part of the solution S, G[N ] is a (2, 2)-graph. Consider the
two IC-partitions (PI − (S ∪ S′), PC − (S ∪ S′)) and (P ′I − (S ∪ S′), P ′C − (S ∪ S′)) of the
(2, 2)-graph G − (S ∪ S′). By Observation 2 we know that the cardinality of each of the
set (PI ∩ P ′C)− (S ∪ S′) and (PC ∩ P ′I)− (S ∪ S′) are bounded by 4. So now the algorithm
guesses the set VI = (PI ∩ P ′C) − (S ∪ S′) and VC = (PC ∩ P ′I) − (S ∪ S′), each of them
having size at most 4. After the guess of VI and VC , any vertex in P ′C − VI either belongs to
PC or belongs to the hypothetical solution S. Similarly any vertex in P ′I − VC either belongs
to PI or belongs to the hypothetical solution S. By Lemma 3 we know that the number
of IC-partitions of G[N ] is at most O(k8) and these partitions can be enumerate in time
O(k8) . The algorithm now guesses an IC-partition (NI , NC) of G[N ] such that NI ⊆ PI and
NC ⊆ PC . Now consider the partition (A, B) = ((P ′I ∪NI ∪ VI)− VC , (P ′C ∪NC ∪ VC)− VI).
Any vertex v ∈ A either belongs to PI or belongs to the hypothetical solution S and any
any vertex v ∈ B either belongs to PC or belongs to the solution S. So the objective is
to find two sets U ⊆ A and W ⊆ B such that G[A− U ] is a bipartite graph, G[B −W ] is
the complement of a bipartite graph and |U |+ |W | ≤ k′. As a consequence, the algorithm
guesses the sizes k1 of U and k2 of W . Then the problem reduced to finding an odd cycle
transversal(OCT) of size k1 for G[A] and an OCT of size k2 for the complement of the graph
G[B]. Hence, our algorithm runs the current best algorithm for Odd Cycle Transversal,
presented in [21] for finding an OCT U of size k1 in G[A] and for finding an OCT W of size
k2 in the complement of G[B]. This completes the algorithm and it leads to the mentioned
running time in the lemma. The running time analysis can be found in the full version. J

Lemma 4 and the discussions preceding it imply the following theorem.

I Theorem 5. Vertex (2, 2)-Partization can be solved in time 3.3146k|V (G)|O(1).

Vertex (2, 1)-Partization: The Vertex (2, 1)-Partization problem can be reduced to
Vertex (2, 2)-Partization. Suppose we are given a graph G, where |V (G)| = n. We
construct a graph G′ = G ] Ĉ, where Ĉ is a clique on n + 3 new vertices. That is, G′ is the
disjoint union of G and Ĉ. The next lemma relates the graphs G and G′.

I Lemma 6 (?). For any integer t ≤ n, (G, t) is a YES instance of Vertex (2, 1)-
Partization if and only if (G′, t) is a YES instance of Vertex (2, 2)-Partization. Here
G′ = G ] Ĉ such that Ĉ is a clique on n + 3 new vertices that are independent from G.

Now if we are given an instance (G, k) of Vertex (2, 1)-Partization, Lemma 6 tells us
that it is enough to solve Vertex (2, 2)-Partization on (G′, k). Notice that solving the
Vertex (1, 2)-Partization problem on an input instance (G, k) is equivalent to finding a
Vertex (1, 2)-Partization on (G, k), where G is the complement graph of G. Thus, we
get the following as a corollary of Theorem 5.

I Corollary 7. Vertex (1, 2)-Partization and Vertex (2, 1)-Partization have FPT
algorithms that run in 3.3146knO(1) time.
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4 Approximation algorithm for Vertex (r, `)-Partization

In this section we give a polynomial time approximation algorithm for Vertex (2, 2)-
Partization. That is, we design an algorithm for Vertex (2, 2)-Partization, which takes
an instance (G, k), runs in polynomial time and outputs either a solution of size O(k3/2) or
concludes that (G, k) is a NO instance. Since the reduction from Vertex (2, 1)-Partization
to Vertex (2, 2)-Partization, given in Lemma 6, is an approximation preserving reduction,
we can get a similar approximate algorithm for Vertex (2, 1)-Partization. Similarly, since
Vertex (1, 2)-Partization on a graph is equivalent to Vertex (2, 1)-Partization in the
complement graph, we can get an approximation algorithm for Vertex (1, 2)-Partization.
The approximation algorithm we discuss in this section, is useful for obtaining Turing kernels
for Vertex (r, `)-Partization, when 1 ≤ r, ` ≤ 2. Finally, we design a factor O(

√
log n)

approximation algorithms for these problems.
We know that (r, `)-graphs is a subclass of (r, `)-split graphs (See Introduction for

definition). Now we give a polynomial time algorithm which takes a graph G as input and
outputs an (r, `)-split partition if G is an (r, `)-split graph. We design such an algorithm
using iterative compression. Essentially we show that the following problem, (r, `)-split
partition Compression, can be solved in polynomial time.

(r, `)-split partition Compression
Input: A graph G with V (G) = V ∪ {v} and an (r, `)-split partition (A, B) of G[V ]
Output: An (r, `)-split partition of G, if G is an (r, `)-split graph, and NO otherwise

Like in the case of the FPT algorithm for Vertex (2, 2)-Partization given in Section 3,
we can show that by running the algorithm for (r, `)-split partition Compression at
most n− 2 times we can get an algorithm which outputs an (r, `)-split partition of a given
(r, `)-split graph. Our algorithm for (r, `)-split partition Compression uses the following
simple lemma.

I Lemma 8 (?). Let G be an (r, `)-split graph. Let (A, B) and (A′, B′) are two (r, `)-split
partitions of G. Then |A∩B′| ≤ R(` + 1, r + 1)− 1 and |A′ ∩B| ≤ R(` + 1, r + 1)− 1, where
R(r + 1, ` + 1), is the Ramsey number.

Using Lemma 8, we show that (r, `)-split partition Compression can be solved in
polynomial time for any fixed constants r and `.

I Lemma 9 (?). For any fixed constants r and `, (r, `)-split partition Compression can
be solved in polynomial time.

By applying Lemma 9, at most n− 2 times, we can get the following lemma.

I Lemma 10. For any fixed constants r and `, there is an algorithm which takes a graph G

as input, runs in polynomial time, and decides whether G is an (r, `)-split graph. Furthermore,
if G is an (r, `)-split graph then the algorithm outputs an (r, `)-split partition (V1, V2) of G.

We know that any (r, `)-graph is also an (r, `)-split graph. The following lemma gives a
relation between an (r, `)-split partition and an IC-partition of a (r, `)-graph.

I Lemma 11 (?). Let G be an (r, `)-graph. Let (A, B) be an IC-partition of G and (A′, B′)
be an (r, `)-split partition of G. Then |A ∩B′| ≤ r` and |A′ ∩B| ≤ r`.

Before giving an approximation algorithm for Vertex (r, `)-Partization, we need
to mention about a polynomial time approximation algorithm for Odd Cycle Trans-
versal and finite forbidden characterization of (r, `)-graphs. Using the FPT algorithm
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for OCT [19], and an O(
√

log n)-approximation algorithm for OCT [1], one can prove the
following proposition.

I Proposition 12 ([19]). There is a polynomial time algorithm which takes a graph G and
an integer k as input and outputs either an OCT of G of size at most O(k3/2) or concludes
that there is no OCT of size k for G.

For any fixed r and `, there is a finite forbidden set Fr,` for (r, `)-split graphs [15]. That is, a
graph G is an (r, `)-split graph if and only if G does not contain any graph H ∈ Fr,` as an
induced subgraph. The size of the largest forbidden graph is bounded by f(r, `), f being a
function given in [15]. Since f(2, 2) is a constant, it is possible to compute the forbidden
set Fr,` in polynomial time: The forbidden graphs are of size at most f(2, 2). Since the
class (r, `)-graphs is a sub class of (r, `)-split graphs, each graph in Fr,` will not appear as
an induced subgraph in any (r, `)-graph. Now we are ready to design a polynomial time
approximation algorithm for Vertex (2, 2)-Partization.

I Theorem 13. There is an algorithm which takes a graph G and an integer k as input,
runs in polynomial time and outputs either a set S of size O(k3/2) such that G − S is a
(2, 2)-graph or concludes that (G, k) is a NO instance of Vertex (2, 2)-Partization.

Proof. The algorithm first finds a maximal set T of vertex disjoint subgraphs of G such
that each subgraph in T is isomorphic to a graph in F2,2. If |T | > k, then clearly (G, k) is a
NO instance of Vertex (2, 2)-Partization. So the algorithm will output NO if |T | > k.
Now consider the graph G′ = G− V (T ). Here, V (T ) denotes the set of vertices appearing in
graphs in T . Since T is a maximal set of vertex disjoint subgraphs in G which are isomorphic
to a graphs in F2,2 we have that G′ is a (2, 2)-split graph.

Now our algorithm will find a set S ⊆ V (G′) of size bounded by O(k3/2) such that
G′ − S is a (2, 2)-graph. Since G′ is a subgraph of G, if (G, k) is a YES instance of Vertex
(2, 2)-Partization, then (G′, k) is also a YES instance. Let S∗ be an hypothetical solution
of the instance (G′, k) of Vertex (2, 2)-Partization and let (A, B) be an IC-partition
of G′ − S∗. Now our algorithm applies Lemma 10 on graph G′ and computes a (2, 2)-split
partition (A′, B′) of G′ in polynomial time. By Lemma 11, we know that |A ∩B′| ≤ 4 and
|A′ ∩B| ≤ 4. So the algorithm will guess the set U = A ∩B′ and W = A′ ∩B. The number
of possible guesses for U and W is bounded by n8. For the correct guess U and W , we know
that A = (A′ ∪ U) \ (W ∪ S∗) and B = (B′ ∪W ) \ (U ∪ S∗). Now consider the partition
(V1, V2) of V (G′), where V1 = (A′ ∪ U) \W and V2 = (B′ ∪W ) \ U . So for the correct guess
U and W , we know that each vertex in V1 either belongs to A or belongs to S∗ and each
vertex in V2 either belongs to B or belongs to S∗. Now to compute a solution for (G′, k), it is
enough to find an OCT S1 in G[V1] and an OCT S2 in the complement graph of G′[V2] such
that |S1|+ |S2| = k. Our algorithm applies Proposition 12 on G′[V1] and on the complement
graph of G′[V2]. If these algorithms output an OCT S1 and an OCT S2 for graphs G′[V1]
and G′[V2], then S1 ∪ S2 is of size bounded by O(k3/2) and G′ − (S1 ∪ S2) is a (2, 2)-graph.
Since G′ = G−V (T ) and G′− (S1 ∪S2) is a (2, 2)-graph, we have that G− (S1 ∪S2 ∪V (T ))
is a (2, 2)-graph. So our algorithm will output S1 ∪ S2 ∪ V (T ) as the required output. Since
|V (T )| ≤ k · f(2, 2), we have that |S1 ∪ S2 ∪ V (T )| = O(k3/2). If the algorithm mentioned in
Proposition 12 returns NO for all possible guesses of U and W , then our algorithm outputs
NO. It is easy to see that the number of steps in our algorithm is bounded by a polynomial
in |V (G)|. J

Using the arguments of Theorem 13, we can also design an approximation algorithm for
finding a minimum (2, 2)-vertex deletion set of a graph G. Let S be an optimum (2, 2)-vertex
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deletion set and (A, B) be the corresponding IC-partition of G′ = G−S. Let T be a maximal
set of vertex disjoint subgraphs of G, that are each isomorphic to a graph in F2,2. The number
of subgraphs in T is at most |S| and the number of vertices involved in these forbidden
subgraphs is at most f(2, 2)|S|. The remaining graph G′ is a (2, 2)-split graph and using
Lemma 10, we can find a (2, 2)-split partition (A′, B′) of G′. Let (Â, B̂) be the restriction of
(A, B) to G′. As argued above, at most 4 vertices from A′ could be part of B̂. Let this set of
4 vertices be called U . The rest either belong to Â or S. U ∪ (S ∩A′) is an OCT for A′, of
size at most 2|S ∩A′|. The algorithm of [1] returns an O(

√
log n)-approximate Odd Cycle

Transversal solution S1 for G[A′], which has to be of size at most 2|S ∩A′| · O(
√

log n).
There is a similar property on the vertices of B′. Applying the algorithm of [1], on G′[B′],
returns an O(

√
log n)-approximate Odd Cycle Transversal solution S2, which has to be

of size at most 2|S ∩B′| · O(
√

log n). Thus V (T ) ∪ S1 ∪ S2 is a (2, 2)-vertex deletion set of
G, with size at most (f(2, 2) +O(

√
log n)|S|. This together with Lemma 6 and discussion

after that lead to the following theorem.

I Theorem 14. Vertex (2, 1)-Partization, Vertex (1, 2)-Partization, and Vertex
(2, 2)-Partization admit polynomial time approximation algorithms with factor O(

√
log n).

5 Turing Kernels for Vertex Deletion to (r, `)-graphs

In this section, we give a randomized Turing kernel for Vertex (2, 2)-Partization (See
introduction for the definition). The equivalence in Lemma 6 ensures that there is a ran-
domized Turing kernel for Vertex (2, 1)-Partization. Since, Vertex (1, 2)-Partization
on an instance (G, k) is equivalent to Vertex (2, 1)-Partization on (G, k), a randomized
Turing kernel for Vertex (1, 2)-Partization follows.

We have seen in Section 3 that eventually the algorithm for Vertex (2, 2)-Partization
runs two instances of OCT. In this section we explain that we can use the kernelization of
OCT to get a Turing kernel for Vertex (2, 2)-Partization. A randomized polynomial
kernel for OCT was shown by Kratsch and Wahlström [18], using the concept of representative
family. They showed that it is possible to find kO(1) “relevant” vertices from the input graph
which contains the optimum solution. This leads to a randomized kernel for OCT. In fact,
the following lemma follows from the work of Kratsch and Wahlström. We give a proof for
the lemma in the full version.

I Lemma 15 (?). Let G be a graph and X be an OCT of G. There is a randomized
polynomial time algorithm which computes a set Z ⊆ V (G) of size O(|X|3) such that for any
Y ⊆ X, a minimum sized OCT, of G− Y , is fully contained in Z.

Now we are ready to explain our Turing kernel for Vertex (2, 2)-Partization using
Lemma 15. Given an instance (G, k) of Vertex (2, 2)-Partization, first we construct
|V (G)|O(1) many instances of a problem which is in NP and each of them have size bounded
by polynomial in k. Then, by using the Cook-Levin theorem [5], we can reduce each of these
intances to instances of Vertex (2, 2)-Partization and thus arrive at a Turing kernelization
for Vertex (2, 2)-Partization. We first run the polynomial time approximation algorithm
described in Theorem 13. If the approximation algorithm outputs NO, then the algorithm
will output a trivial NO instance of the problem. Otherwise let X be the solution returned by
the approximation algorithm on input (G, k). We know that the cardinality of X is bounded
by O(k3/2). Now we fix an IC-partition (PI , PC) of G−X. Let S be a hypothetical solution
of size at most k and (QI , QC) be an IC-partition of G− S. It follows from Observation 2
that |PI ∩QC | ≤ 4 and |QI ∩ PC | ≤ 4. This observation leads to the following lemma.
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I Lemma 16. (G, k) is a YES instance of Vertex (2, 2)-Partization if and only if there
exist VC ⊆ PI and VI ⊆ PC , each of cardinality at most 4 such that X ′ = X ∪ VC ∪ VI can
be partitioned into X ′I , X ′D, X ′C , with the following properties:
1. There is a set ZI ⊆ (PI \ VC) ∪X ′I such that ZI ∪X ′D ∪X ′C is an OCT for G[PI ∪X ′].

In other words, ZI is an OCT for G[PI ∪X ′I ].
2. There is a set ZC ⊆ (PC \ VI) ∪X ′C such that ZC ∪X ′D ∪X ′I is an OCT for G[PC ∪X ′].

In other words, ZC is an OCT for G[PC ∪X ′C ].
3. |ZI ∪ ZC ∪X ′D| ≤ k.

Proof. Suppose (G, k) is a YES instance of Vertex (2, 2)-Partization. Then there is
a k-sized solution Z such that G− Z is a (2, 2)-graph. Let (QI , QC) be an IC-partition of
G−Z. Let VC = PI ∩QC and VI = PC ∩QI . It follows from Observation 2 that |VI | ≤ 4 and
|VC | ≤ 4. Notice that any vertex in PI \VC either belongs to QI or to Z. Similarly, any vertex
in PC \VI either belongs to QC or to Z. Let X ′ = X ∪VI ∪VC . Now we define X ′I = X ′∩QI ,
X ′C = X ′∩QC and X ′D = X ′∩Z. Let ZI = Z∩PI and ZC = Z∩PC . Note that ZI ∩VC = ∅
and ZC ∩ VI = ∅. From the definition of X ′, VI and VC , it is clear that VI ⊆ X ′I and
VC ⊆ X ′C . Since VC ⊆ X ′I and VC ⊆ X ′C , we have that (PI ∪X ′) \ (ZI ∪X ′D ∪X ′C) = QI .
Also since, G[QI ] is a bipartite graph we have that (ZI ∪X ′D ∪X ′C) is an OCT of G[PI ∪X ′].
By similar arguments we can show that (ZC ∪X ′D ∪X ′I) is an OCT of G[PC ∪X ′]. Since
ZI ∪ ZC ∪X ′D = Z and |Z| = k, the set ZI ∪ ZC ∪X ′D satisfies condition 3 in the lemma.
This completes the proof of the forward direction.

Conversely, suppose there is a VC ⊆ PI and VI ⊆ PC , each of size at most 4 such that the
X ′ = X ∪ VI ∪ VC has a 3-partition (X ′I ∪X ′D ∪X ′C) with the properties mentioned in the
lemma. That is, there is an OCT ZI for the graph G[PI ∪X ′I ] and an OCT ZC for the graph
G[PC ∪X ′C ] such that |ZI ∪ZC ∪X ′D| ≤ k. Then we claim that Z = ZI ∪ZC ∪X ′D is a (2, 2)-
vertex deletion set of G. Consider the sets QI = (PI ∪X ′I)\ZI and QC = (PC ∪X ′C)\ZC . By
our assumption G[QI ] and G[QC ] are bipartite graphs. Also note that QI ∪QC ∪Z = V (G).
Hence Z is a (2, 2)-vertex deletion set of G and (QI , QC) is an IC-partition of G− Z. J

The Lemma 16 allows us to reduce an instance of Vertex (2, 2)-Partization to
polynomially many instances of a problem which is in NP. Consider the following problem.

Twin Odd Cycle Transversal (TOCT) Parameter: k

Input: Two graphs G1 and G2, terminals X ⊆ V (G1), Y ⊆ V (G2), a bijection Φ between
X and Y , and an integer k

Question: Is there a partition of X into three parts (X1, XD, X2) such that there is
an OCT Z1 ⊆ V (G1) \ (XD ∪ X2) for the graph G1 − (XD ∪ X2), an OCT Z2 ⊆
V (G2) \ (Φ(XD)∪Φ(X1)) for the graph G2− (Φ(XD)∪Φ(X1)) and |Z1 ∪XD ∪Z2| ≤ k?
Clearly the problem TOCT is in NP. Because of Lemma 16, for each VC ⊆ P1 and

VI ⊆ PC of cardinality at most 4, we construct an instance of TOCT, of size bounded by
a polynomial in k, using Lemma 15. After this, we fix a VI ⊆ PC and a VC ⊆ PI , each of
cardinality at most 4. Now let X ′ = X ∪ VI ∪ VC . Note that X ′ is a (2, 2)-vertex deletion
set of G and (PI \ VC , PC \ VI) is an IC-partition of G−X ′. The following observation is
derived from the fact that (PI \ VC , PC \ VI) is an IC-partition of G−X ′ and VI ∪ VC ⊆ X ′.

I Observation 17. The set X ′ is an OCT of G[PI ∪X ′] and also an OCT of G[PC ∪X ′].

For a particular choice of VC ⊆ PI and VI ⊆ PC of cardinality at most 4, we construct an
instance of TOCT as follows. Let X ′ = X ∪ VI ∪ CC , where X is the approximate solution
of size bounded by O(k3/2). Let (PI , PC) be an IC-partition of G−X. Let G1 = G[PI ∪X ′]
and G2 = G[PC ∪X ′]. By Observation 17, X ′ is an OCT in graphs G1 and G2. Now we
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apply Lemma 15 and get a set of relevant vertices Z1 ⊆ V (G1) of size bounded by O(k9/2).
Next, we construct a graph G∗1 as follows: delete all the vertices V (G1) \ (X ′ ∪ Z1) from
G1. Add two length (three length) path between two vertices in V (G∗1), if there is an
even length (odd length) path between the corresponding vertices in G1 using only vertices
from V (G) \ (X ′ ∪ Z1). Similarly, we construct a graph G∗2 from G2. Now we output
H = (G1, G2, X ′, X ′, k) as the reduced instance of TOCT, with the bijection between X ′

and X ′ be the natural identity map. Since there are O(n4) choices for selecting VC and VI ,
our algorithm will output instances H1, H2, . . . Ht where t = O(n4) and the size of each Hi

is bounded by O(k9).
Using Lemmata 15 and 16 we can prove that in fact the above Turing reduction is

correct.

I Lemma 18 (?). (G, k) is a YES instance of Vertex (2, 2)-Partization if and only if
there exists i such that Hi is a YES instance of TOCT.

The problem TOCT is in NP and Vertex (2, 1)-Partization is NP-complete. Therefore,
by Cook-Levin theorem each instance Hi of TOCT can be reduced to an an instance of
Vertex (2, 2)-Partization in polynomial time. Also note that size of each instance Hi is
bounded by O(k9). Thus we have the following theorem.

I Theorem 19. There exists a randomized polynomial Turing kernel for Vertex (2, 2)-
Partization.

Since there is parameter preserving reduction from Vertex (2, 1)-Partization and
Vertex (1, 2)-Partization to Vertex (2, 2)-Partization, the following corollary is
derived from Theorem 19.

I Corollary 20. There exists a randomized polynomial Turing kernel for Vertex (2, 1)-
Partization and Vertex (1, 2)-Partization.

6 Edge Deletion to (r, `)-graphs

In this section we show that Edge (2, 1)-Partization and Edge (1, 2)-Partization are in
FPT.

6.1 Edge (2, 1)-Partization
In this subsection we show that Edge (2, 1)-Partization is in FPT, using iterative com-
pression. For Edge (2, 1)-Partization, the corresponding compression problem is defined
as follows.

Edge (2, 1)-Partization Compression Parameter: k

Input: A graph G with V (G) = V ∪ {v}, an integer k and an edge set S′ ⊆ E(G− {v}),
of size at most k, such that G[V ]− S′ is a (2, 1)-graph
Output: A subset S ⊆ E of size at most k such that G− S is a (2, 1)-graph

Similar to Vertex (2, 2)-Partization, we can show that Edge (2, 1)-Partization can
be solved, by running Edge (2, 1)-Partization Compression at most |V (G)| times, for an
input instance (G, k). The following lemma is useful for our purpose.

I Lemma 21 (?). Let G be a graph on n vertices, v ∈ V (G) and |E(G− {v})| ≤ k. Then
the number of cliques in G is bounded by 2O(

√
k)n and these cliques can be enumerated in

time 2O(
√

k)n.
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Next we show that Edge (2, 1)-Partization Compression is in FPT.

I Lemma 22 (?). Edge (2, 1)-Partization Compression is solved in time 2k+o(k)nO(1).

Thus, by using Lemma 22, we prove the following theorem.

I Theorem 23. Edge (2, 1)-Partization can be solved in time 2k+o(k)nO(1).

6.2 Edge (1, 2)-Partization
In this subsection we show that Edge (1, 2)-Partization is in FPT. Again we use the
iterative compression technique to solve the problem. For our algorithm, we need an algorithm
for a version of Odd Cycle Transversal. Let G be an hereditary graph class (hereditary
means that if G ∈ G, then every induced subgraph of G is in G as well) and G is decidable.
Then the problem G-Weighted Bipartition is defined as follows.

G-Weighted Bipartition Parameter: k + W

Input: A graph G, w : V (G)→ N+ and integers k and W

Output: An OCT O of G, of size at most k such that w(O) ≤W and G[O] ∈ G

Marx et al. [23] showed that the unweighted version of the problem, G-Bipartition can
be solved in FPT time. The proof by Marx et al., constructs an “equivalent graph” with
treewidth bounded by a function of k. The problem is then solved in the equivalent graph,
using Courcelle’s theorem [6] by expressing the problem as an MSO predicate. Since we can
express whether the weight of a subset of vertices is at most W using an MSO predicate of
length bounded by a function of W , the following theorem follows from the results of Marx
et al. [23].

I Theorem 24. If G is hereditary and decidable, then G-Weighted Bipartition is in
FPT.

Now we are ready to define compression version of the problem Edge (1, 2)-Partization
and prove that it is in FPT, which in turn will imply that non-compression version of the
problem is in FPT.

Edge (1, 2)-Partization Compression Parameter: k

Input: A Graph G with V (G) = V ∪ {v}, an integer k and an edge set S′ ⊆ E(G− v),
of size at most k, such that G[V ]− S′ is a (1, 2)-graph
Output: A subset S ⊆ E of size at most k such that G− S is a (1, 2)-graph

I Lemma 25 (?). Edge (1, 2)-Partization Compression is in FPT.

Thus by using Lemma 25, we get the following theorem.

I Theorem 26. Edge (1, 2)-Partization is in FPT.

7 Conclusion

In this paper we explored parameterized complexity of a family of partition problems,
namely Vertex (r, `)-Partization and Edge (r, `)-Partization. Whether there exists
a polynomial kernel for these problems remains an interesting open problem. Also, the
parameterized complexity of Edge (2, 2)-Partization remains unresolved.
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Abstract
Problems of the following kind have been the focus of much recent research in the realm of
parameterized complexity: Given an input graph (digraph) on n vertices and a positive integer
parameter k, find if there exist k edges (arcs) whose deletion results in a graph that satisfies some
specified parity constraints. In particular, when the objective is to obtain a connected graph in
which all the vertices have even degrees – where the resulting graph is Eulerian the problem is
called Undirected Eulerian Edge Deletion. The corresponding problem in digraphs where
the resulting graph should be strongly connected and every vertex should have the same in-degree
as its out-degree is called Directed Eulerian Edge Deletion. Cygan et al. [Algorithmica,
2014 ] showed that these problems are fixed parameter tractable (FPT), and gave algorithms
with the running time 2O(k log k)nO(1). They also asked, as an open problem, whether there exist
FPT algorithms which solve these problems in time 2O(k)nO(1). It was also posed as an open
problem at the School on Parameterized Algorithms and Complexity 2014, Bȩdlewo, Poland.
In this paper we answer their question in the affirmative: using the technique of computing
representative families of co-graphic matroids we design algorithms which solve these problems
in time 2O(k)nO(1). The crucial insight we bring to these problems is to view the solution as an
independent set of a co-graphic matroid. We believe that this view-point/approach will be useful
in other problems where one of the constraints that need to be satisfied is that of connectivity.
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satisfy certain parity constraints [4, 9, 2, 8, 5]. In this paper we obtain significantly faster
parameterized algorithms for two such problems, improving the previous best bounds due to
Cygan et al. [4]. We also settle the parameterized complexity of a third problem, disproving a
conjecture of Cai and Yang [2] and solving an open problem posed by Fomin and Golovach [9].
We obtain our results using recently-developed techniques for the efficient computation of
representative sets of matroids.

An undirected graph G is even (respectively, odd) if every vertex of G has even (resp.
odd) degree. A directed graph D is balanced if the in-degree of each vertex of D is equal to
its out-degree. An undirected graph is Eulerian if it is connected and even; and a directed
graph is Eulerian if it is strongly connected and balanced. Cai and Yang [2] initiated the
systematic study of parameterized Eulerian subgraph problems. In this work we take up the
following edge-deletion problems of this kind:

Undirected Eulerian Edge Deletion Parameter: k

Input: A connected undirected graph G and an integer k.
Question: Does there exist a set S of at most k edges in G such that G\S is Eulerian?

Undirected Connected Odd Edge Deletion Parameter: k

Input: A connected undirected graph G and an integer k.
Question: Does there exist a set S of at most k edges in G such that G \ S is odd and
connected?

Directed Eulerian Edge Deletion Parameter: k

Input: A strongly connected directed graph D and an integer k.
Question: Does there exist a set S of at most k arcs in D such that D \S is Eulerian?

Our algorithms for these problems also find such a set S of edges/arcs when it exists; so
we slightly abuse the notation and refer to S as a solution to the problem in each case.

Previous Work. Cai and Yang [2] listed sixteen odd/even undirected subgraph problems
in their pioneering paper, and settled the parameterized complexity of all but four. The
first two problems above are among these four; Cai and Yang conjectured that these are
both W[1]-hard, and so are unlikely to have fixed-parameter tractable (FPT) algorithms:
those with running times of the form f(k) · nO(1) for some computable function f where n is
the number of vertices in the input graph. Cygan et al. [4] disproved this conjecture for the
first problem: they used a novel and non-trivial application of the colour-coding technique
to solve both Undirected Eulerian Edge Deletion and Directed Eulerian Edge
Deletion in time 2O(k log k)nO(1). They also posed as open the question whether there exist
2O(k)nO(1)-time algorithms for these two problems. It was also posed as an open problem at
the School on Parameterized Algorithms and Complexity 2014, Bȩdlewo, Poland [3]. Fomin
and Golovach [9] settled the parameterized complexity of the other two problems – not
defined here – left open by Cai and Yang, but left the status of Undirected Connected
Odd Edge Deletion open.

Our Results and Methods. We devise deterministic algorithms of running time 2O(k)nO(1)

for all the three problems defined above. This answers the question of Cygan et al. [4] in the
affirmative, solves the problem posed by Fomin and Golovach, and disproves the conjecture
of Cai and Yang for Undirected Connected Odd Edge Deletion.

I Theorem 1.1. Undirected Eulerian Edge Deletion, Undirected Connected
Odd Edge Deletion, and Directed Eulerian Edge Deletion can all be solved in
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time O(2(2+ω)k · n2m3k6) +mO(1) where n = |V (G)|, m = |E(G)| and ω is the exponent of
matrix multiplication.

Our main conceptual contribution is to view the solution as an independent set of a co-graphic
matroid, which we believe will be useful in other problems where one of the constraints that
need to be satisfied is that of connectivity.

We now give a high-level overview of our algorithms. Given a subset of vertices T of a
graph G, a T -join of G is a set S ⊆ E(G) of edges such that T is exactly the set of odd
degree vertices in the subgraph H = (V (G), S). Observe that T -joins exist only for even-sized
vertex subsets T . The following problem is long known to be solvable in polynomial time [7].

Min T -Join
Input: An undirected graph G and a set of terminals T ⊆ V (G).
Question: Find a T -join of G of the smallest size.

Consider the two problems we get when we remove the connectivity (resp. strong
connectivity) requirement on the graph G\S from Undirected Eulerian Edge Deletion
and Directed Eulerian Edge Deletion; we call these problems Undirected Even
Edge Deletion and Directed Balanced Edge Deletion, respectively. Cygan et
al. show that Undirected Even Edge Deletion can be reduced to Min T -Join, and
Directed Balanced Edge Deletion to a minimum cost flow problem with unit costs,
both in polynomial time [4]. Thus it is not the local requirement of even degrees which makes
these problems hard, but the simultaneous global requirement of (strong) connectivity.

To handle this situation we turn to a matroid which correctly captures the connectivity
requirement. Let I be the family of all subsets X ⊆ E(G) of the edge set of a graph G such
that the subgraph (V (G), E(G) \X) is connected. Then the pair (E(G), I) forms a linear
matroid called the co-graphic matroid of G (See Section 2 for definitions). Let T be the
set of odd-degree vertices of the input graph G. Observe that for Undirected Eulerian
Edge Deletion, the solution S we are after is both a T -join and an independent set of the
co-graphic matroid of G. We exploit this property of S to design a dynamic programming
algorithm which finds S by computing “representative sub-families” [10, 12, 14, 15] of certain
families of edge subsets in the context of the co-graphic matroid of G. We give simple
characterizations of solutions which allow us to do dynamic programming, where at every
step we only need to keep a representative family of the family of partial solutions where
each partial solution is an independent set of the corresponding co-graphic matroid. To find
the desired representative family of partial solutions we use the algorithm by Lokshtanov et
al. [13]. Our methods also imply that Undirected Connected Odd Edge Deletion
admits an algorithm with running time 2O(k)nO(1).

2 Preliminaries

Throughout the paper we use ω to denote the exponent in the running time of matrix
multiplication, the current best known bound for which is ω < 2.373 [17].

Graphs and Directed Graphs. We use “graph” to denote simple graphs without self-loops,
directions, or labels, and “directed graph” or “digraph” for simple directed graphs without
self-loops or labels. We use standard terminology from the book of Diestel [6] for those
graph-related terms which we do not explicitly define. In general we use G to denote a graph
and D to denote a digraph. We use V (G) and E(G), respectively, to denote the vertex and
edge sets of a graph G, and V (D) and A(D), respectively, to denote the vertex and arc
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sets of a digraph D. For an edge set E′ ⊆ E(G), we use (i) V (E′) to denote the set of end
vertices of the edges in E′, (ii) G \ E′ to denote the subgraph G′ = (V (G), E(G) \ E′) of
G, and (iii) G(E′) to denote the subgraph (V (E′), E′) of G. The terms V (A′), D \A′, and
D(A′) are defined analogously for an arc subset A′ ⊆ A(D).

If P is a path from vertex u to vertex v in graph G (or in digraph D) then we say that
(i) P connects u and v, (ii) u, v are, respectively, the initial vertex and the final vertex of
P , and (iii) u, v are the end vertices of path P . Let P1 = x1x2 . . . xr and P2 = y1y2 . . . ys be
two edge-disjoint paths in graph G. If xr = y1 and V (P1)∩ V (P2) = {xr}, then we use P1P2
to denote the path x1x2 . . . xry2 . . . ys. A path system P in graph G (resp., digraph D) is
an ordered collection of paths in G (resp. in D), and it is edge-disjoint if no two paths in
the system share an edge. We use V (P) and E(P) (A(P) for a path system in digraph) for
the set of vertices and edges, respectively, in a path system P. We say that a path system
P = {P1, . . . , Pr} ends at a vertex u if the path Pr ends at u, and u is called the final vertex
of P. We use V e(P) to denote the set of end vertices of paths in a path system P. For a
path system P in a digraph D, we use V i(P) and V f (P), respectively, to denote the set of
initial vertices and the set of final vertices, respectively, of paths in P. For a path system
P = {P1, . . . , Pr} and an edge/arc (u, v), we define P ◦ (u, v) as follows.

P ◦ (u, v) =
{
{P1, . . . , Prv} if u is the final vertex of Pr and v /∈ V (Pr)
{P1, . . . , Pr, uv} if u is not the final vertex of Pr

A directed graph D is strongly connected if for any two vertices u and v of D, there is
a directed path from u to v and a directed path from v to u in D. A digraph D is weakly
connected if the underlying undirected graph is connected. The in-neighborhood of a vertex v
in D is the set N−D (v) = {u | (u, v) ∈ A(D)}, and the in-degree of v in D is d−D(v) = |N−D (v)|.
The out-neighborhood of v is the set N+

D (v) = {w | (v, w) ∈ A(D)}, and its out-degree is
d+

D(v) = |N+
D (v)|.

Co-Graphic Matroids. The co-graphic matroid of a connected graph G is defined as M =
(E(G), I) where I = {S ⊆ E(G) | (G \ S) is connected}. It is a linear matroid and, given a
graph G, a representation of the co-graphic matroid of G over the finite field F2 can be found
in polynomial time [14, 16]. The rank of the cographic matroid of a connected graph G is
(|E(G)| − |V (G)|+ 1). We use MG to denote the co-graphic matroid of a graph G. For a
directed graph D we use MD to denote the co-graphic matroid of the underlying undirected
graph of D.

Let A be a family of path systems in a graph G. Let e = (u, v) be an edge in G (or an
arc in D), and let M = (E, I) be the co-graphic matroid of graph G (or of digraph D). We
use A • {e} to denote the family of path systems

A • {e} = {P ′ = P ◦ e | P ∈ A, e /∈ E(P), E(P ′) ∈ I } .

Representative Families of Matroids. The notion of representative families of matroids
and their fast computation play key roles in our algorithms.

I Definition 2.1. [10, 14] Given a matroid M = (E, I), a family S of subsets of E, and
a non-negative integer q, we say that a subfamily Ŝ ⊆ S is q-representative for S if the
following holds. For every set Y ⊆ E of size at most q, if there is a set X ∈ S disjoint from Y

with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y with X̂ ∪ Y ∈ I.
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In other words, if some independent set X in S can be extended to a larger independent set
by a set Y of at most q new elements, then there is a set X̂ in Ŝ that can be extended by
the same set Y . If Ŝ ⊆ S is q-representative for S we write Ŝ ⊆q

rep S.
In this paper we are interested in linear matroids and in representative families derived

from them. The following theorem states the key algorithmic result which we use for the
computation of representative families of linear matroids.

I Theorem 2.2 ([13]). Let M = (E, I) be a linear matroid of rank n and let S = {S1, . . . , St}
be a family of independent sets, each of size b. Let A be an n × |E| matrix representing
M over a field F, where F = Fp` or F is Q. Then there is deterministic algorithm which
computes a representative set Ŝ ⊆q

rep S of size at most nb
(

b+q
b

)
, using O

((
b+q

b

)
tb3n2 +

t
(

b+q
b

)ω−1(bn)ω−1
)

+ (n+ |E|)O(1) operations over the field F.

3 Undirected Eulerian Edge Deletion

In this section we describe our 2O(k)nO(1)-time algorithm for Undirected Eulerian Edge
Deletion. Let (G, k) be an instance of the problem. Cygan et al. [4] observed the following
characterization.

I Observation 3.1. A set S ⊆ E(G) ; |S| ≤ k of edges of a graph G is a solution to the
instance (G, k) of Undirected Eulerian Edge Deletion if and only if it satisfies the
following conditions:
(a) G \ S is a connected graph; and,
(b) S is a T -join where T is the set of all odd degree vertices in G.

For a designated set T ⊆ V (G) of terminal vertices of graph G, we call a set S ⊆ E(G)
a co-connected T -join of graph G if (i) G \ S is connected and (ii) S is a T -join. From
Observation 3.1 we get that the Undirected Eulerian Edge Deletion problem is
equivalent to checking whether the given graph G has a co-connected T -join of size at most
k, where T is the set of all odd-degree vertices in G. We present an algorithm which finds
a co-connected T -join for an arbitrary (even-sized) set of terminals T within the claimed
time-bound. That is, we solve the following more general problem:

Co-Connected T -Join Parameter: k

Input: A connected graph G, an even-sized subset T ⊆ V (G) and an integer k.
Question: Does there exist a co-connected T -join of G of size at most k?

We design a dynamic programming algorithm for this problem where the partial solutions
which we store satisfy the first property of co-connected T -join and “almost satisfy” the
second property. To limit the number of partial solutions which we need to store, we
compute and store instead, at each step, a representative family of the partial solutions in
the corresponding co-graphic matroid. We start with the following characterization of the
T -joins of a graph G.

I Proposition 3.2 ([11, Proposition 1.1]). Let T be an even-sized subset of vertices of a
graph G, and let ` = |T |

2 . A subset S of edges of G is a T -join of G if and only if S can be
expressed as a union of the edge sets of (i) ` paths which connect disjoint pairs of vertices in
T , and (ii) zero or more cycles, where the paths and cycles are all pairwise edge-disjoint.

This proposition yields the following useful property of inclusion-minimal co-connected
T -joins (minimal co-connected T -joins for short) of a graph G.
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I Lemma 3.3 (♣). 1 Let T be an even-sized subset of vertices of a graph G, and let ` = |T |
2 .

Let S be a minimal co-connected T -join of G. Then (i) the subgraph G(S) is a forest, and (ii)
the set S is a union of the edge-sets of ` pairwise edge disjoint paths which connect disjoint
pairs of vertices in T .

Note that the set of paths described in Lemma 3.3 are just pairwise edge-disjoint. Vertices
(including terminals) may appear in more than one path as internal vertices. A partial
converse of the above lemma follows directly from Proposition 3.2.

I Lemma 3.4 (♣). Let T be an even-sized subset of vertices of a graph G, and let ` = |T |
2 .

Let a subset S ⊆ E(G) of edges of G be such that (i) G \ S is connected, and (ii) S is a
union of the edge-sets of ` pairwise edge-disjoint paths which connect disjoint pairs of vertices
in T . Then S is a co-connected T -join.

An immediate corollary of Lemma 3.3 is that for any set T ⊆ V (G), any T -join of the
graph G has at least |T |/2 edges. Hence if |T | > 2k then we can directly return No as
the answer for Co-Connected T -Join. So from now on we assume that |T | ≤ 2k. From
Lemmas 3.3 and 3.4 we get that to solve Co-Connected T -Join it is enough to check for
the existence of a pairwise edge-disjoint collection of paths P = {P1, . . . , P |T |

2
} such that

(i) the subgraph (G \ E(P)) is connected, (ii) |E(P)| ≤ k, and (iii) the paths in P connect
disjoint pairs of terminals in T . We use dynamic programming to find such a path system.

We first state some notation which we need to describe the dynamic programming table.
We use Q to denote the set of all path systems in G which satisfy the above conditions.
For 1 ≤ i ≤ k we use Q(i) to denote the set of all potential partial solutions of size i :
Each Q(i) is a collection of path systems Q(i) = {P(i)

1 , . . . ,P(i)
t } where each path system

P(i)
s = {P1, . . . , Pr} ∈ Q(i) has the following properties:
(i) The paths P1, . . . , Pr are pairwise edge-disjoint.
(ii) The end-vertices of the paths P1, . . . , Pr are all terminals and are pairwise disjoint,

with one possible exception. One end-vertex (the final vertex) of the path Pr may be a
non-terminal, or a terminal which appears as an end-vertex of another path as well.

(iii) |E(P(i)
s )| = i, and the subgraph G \ E(P(i)

s ) is connected.
Note that the only ways in which a partial solution P(i)

s may violate one of the conditions in
Lemma 3.4 are: (i) it may contain strictly less than |T |2 paths, and/or (ii) there may be a
path Pr (and only one such), which has one end-vertex vr which is a non-terminal or is a
terminal which is an end-vertex of another path as well. For a path system P = {P1, . . . , Pr}
and u ∈ V (G) ∪ {ε}, we use W (P, u) to denote the following set.

W (P, u) =
{
V e(P) if u = ε

(V e(P \ {Pr})) ∪ {v | v is the initial vertex of Pr} if u 6= ε

Finally, for each 1 ≤ i ≤ k, T ′ ⊆ T , and v ∈ (V (G) ∪ {ε}) we define

Q[i, T ′, v] = {P ∈ Q(i) |W (P, v) = T ′, and if v 6= ε then v is the final vertex of P}

as the set of all potential partial solutions of size i whose set of end vertices is exactly T ′∪{v}.
Observe from this definition that in the case v = ε, the last path Pr in each path system
P = {P1, . . . , Pr} ∈ Q[i, T ′, ε] ends at a “good” vertex; that is, at a terminal vertex which is
different from all the end vertices of the other paths P1, . . . , P(r−1) in P.

1 Proof of results labelled with ♣ will appear in the full version of the paper.
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It is not difficult to see that this definition of Q[i, T ′, v] is a correct notion of a partial
solution for Co-Connected T -Join:

I Lemma 3.5. Let (G,T, k) be a Yes instance of Co-Connected T -Join which has
a minimal solution of size k′ ≤ k, and let ` = |T |

2 . Then for each 1 ≤ i ≤ k′ there
exist T ′ ⊆ T , v ∈ (V (G) ∪ {ε}), and path systems P = {P1, P2, . . . , Pr} ∈ Q[i, T ′, v] and
P ′ = {P ′r, P ′r+1, . . . , P

′
`} in G (where E(P ′r) = ∅ if v = ε) such that (i) E(P)∩E(P ′) = ∅, (ii)

PrP
′
r is a path in G, and (iii) P ∪ P ′ = {P1, P2, . . . , PrP

′
r, P

′
r+1, . . . , P

′
`} is an edge-disjoint

path system whose edge set is a solution to the instance (G,T, k).

Proof. Let P̂ = {P̂1, . . . , P̂`} be a path system in graph G which witnesses – as per Lemma 3.3
– the fact that (G,T, k) has a solution of size k′. If i =

∑r
j=1 |E(P̂j)| for some 1 ≤ r ≤ ` then

the path systems P = {P̂1, P̂2, . . . , P̂r} ∈ Q[i, T ′, v] and P ′ = {∅, P̂r+1, P̂r+2, . . . , P̂`} satisfy
the claim, where T ′ = T ∩ V e(P) and v = ε.

If i takes another value then let 1 ≤ r ≤ ` be such that
∑r−1

j=1 |E(P̂j)| < i <
∑r

j=1 |E(P̂j)|.
“Split” the path P̂r as P̂r = P̂ 1

r P̂
2
r such that

∑r−1
j=1 |E(P̂j)| + |E(P̂ 1

r )| = i. Now the path
systems P = {P̂1, P̂2, . . . , P̂r−1, P̂

1
r } ∈ Q[i, T ′, v] and P ′ = {P̂ 2

r , P̂r+1, P̂r+2, . . . , P̂`} satisfy
the claim, where T ′ = T ∩ V e(P) and v is the final vertex of the path P̂ 1

r . J

Given this notion of a partial solution the natural dynamic programming approach is to
try to compute, in increasing order of 1 ≤ i ≤ k, partial solutions Q[i, T ′, v] for all T ′ ⊆ T ,
v ∈ (V (G) ∪ {ε}) at step i. But this is not feasible in polynomial time because the sets
Q[i, T ′, v] can potentially grow to sizes exponential in |V (G)|. Our way out is to observe
that to reach a final solution to the problem we do not need to store every element of a set
Q[i, T ′, v] at each intermediate step. Instead, we only need to store a representative family
R of partial solutions corresponding to Q[i, T ′, v], where R has the following property: If
there is a way of extending – in the sense of Lemma 3.5—any partial solution P ∈ Q[i, T ′, v]
to a final solution then there exists a P̂ ∈ R which can be extended the same way to a final
solution.

Observe now that our final solution and all partial solutions are independent sets in
the co-graphic matroid MG of the input graph G. We use the algorithm of Lokshtanov
et al. [13]—see Theorem 2.2—to compute these representative families of potential partial
solutions at each intermediate step. In step i of the dynamic programming we store, in place
of the set Q[i, T ′, v], its (k − i)-representative set ̂Q[i, T ′, v] ⊆k−i

rep Q[i, T ′, v] with respect to
the co-graphic matroid MG; for the purpose of this computation we think of each element P
of Q[i, T ′, v] as the edge set E(P). Lemma 3.8 below shows that this is a safe step. Whenever
we talk about representative families in this section, it is always with respect to the co-graphic
matroid MG associated with G; we do not explicitly mention the matroid from now on. We
start with the following definitions.

I Definition 3.6. Let 1 ≤ i ≤ k , T ′ ⊆ T, ` = |T |
2 and v ∈ (V (G) ∪ {ε}), and let Q[i, T ′, v]

be the corresponding set of partial solutions. Let P = {P1, . . . , Pr} be a path system in
the set Q[i, T ′, v]. Let P ′ = {P ′r, P ′r+1, . . . , P

′
`} be a path system in G (where E(P ′r) =

∅ if v = ε) such that (i) |E(P ′)| ≤ (k − i), (ii) PrP
′
r is a path in G, (iii) P ∪ P ′ =

{P1, P2, . . . , PrP
′
r, P

′
r+1, . . . , P

′
`} is an edge-disjoint path system that connects disjoint pairs

of terminals in T , (iv) V e(P ∪P ′) = T and (v) G \ (E(P)∪E(P ′)) is connected. Then P ′ is
said to be an extender for P.

I Definition 3.7. Let 1 ≤ i ≤ k , T ′ ⊆ T and v ∈ (V (G) ∪ {ε}), and let Q[i, T ′, v] be the
corresponding set of partial solutions. We say that J [i, T ′, v] ⊆ Q[i, T ′, v] is a path-system
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equivalent set to Q[i, T ′, v] if the following holds: If P ∈ Q[i, T ′, v] and P ′ be an extender
for P, then there exists P∗ ∈ J [i, T ′, v] such that P ′ is an extender for P∗ as well. We say
that J [i, T ′, v] vk−i

peq Q[i, T ′, v].

The next lemma shows that a representative family is indeed a path-system equivalent
set to Q[i, T ′, v].

I Lemma 3.8. Let (G,T, k) be an instance of Co-Connected T -Join such that the
smallest co-connected T -join of G has size k and let ` = |T |

2 . Let 1 ≤ i ≤ k , T ′ ⊆ T

and v ∈ (V (G) ∪ {ε}), and let Q[i, T ′, v] be the corresponding set of partial solutions. If
̂Q[i, T ′, v] ⊆k−i

rep Q[i, T ′, v], then ̂Q[i, T ′, v] vk−i
peq Q[i, T ′, v]. More generally, if J [i, T ′, v] ⊆

Q[i, T ′, v] and ̂J [i, T ′, v] ⊆k−i
rep J [i, T ′, v] then ̂J [i, T ′, v] vk−i

rep J [i, T ′, v].

Proof. We first prove the first claim. The second claim of the lemma follows by similar
arguments. Let ̂Q[i, T ′, v] ⊆k−i

rep Q[i, T ′, v], let P = {P1, . . . , Pr} be a path system in the
set Q[i, T ′, v], and let P ′ = {P ′r, P ′r+1, . . . , P

′
`} be a path system in G (where E(P ′r) = ∅

if v = ε) which is an extender for P. We have to show that there exists a path system
P∗ ∈ ̂Q[i, T ′, v] such that P ′ is an extender for P∗ as well. Since P ′ is an extender
for P we have, by definition, that (i) |E(P ′)| ≤ (k − i), (ii) PrP

′
r is a path in G, (iii)

P ∪ P ′ = {P1, . . . , PrP
′
r, P

′
r+1, . . . , P

′
`} is an edge-disjoint path system that connects disjoint

pairs of terminals in T , (iv) V e(P ∪ P ′) = T and (v) G \ (E(P) ∪ E(P ′)) is connected.
Since (i) P ∈ Q[i, T ′, v], (ii) E(P) ∩ E(P ′) = ∅, (iii) G \ (E(P) ∪ E(P ′)) is connected,

and (iv) ̂Q[i, T ′, v] ⊆k−i
rep Q[i, T ′, v], there exists a path system P∗ = {P ∗1 , P ∗2 , . . . , P ∗r } in

̂Q[i, T ′, v] such that (i) E(P∗) ∩ E(P ′) = ∅ and (ii) G \ (E(P∗) ∪E(P ′)) is connected. This
follows directly from the definitions of a co-graphic matroid and a representative set.

We now show that P ′ is indeed an extender for P∗. Since P and P∗ both belong to the
set Q[i, T ′, v] we get that |E(P)| = |E(P∗)| = i and that P∗ is an edge-disjoint path system.
And since E(P∗) ∩ E(P ′) = ∅, we have that P∗ ∪ P ′ = {P ∗1 , . . . , P ∗r−1, P

∗
r P
′
r, P

′
r+1, . . . , P

′
`}

is an edge-disjoint path system but for P ∗r P ′r which could be an Eulerian walk (walk where
vertices could repeat but not the edges). Now we prove that the “path system” P∗ ∪ P ′
connects disjoint pairs of terminals in T , but for a pair which is connected by an Eulerian
walk. We now consider two cases for the “vertex” v.

Case 1: v = ε. In this case, since P and P∗ both belong to the set Q[i, T ′, ε] we
have that V e(P) = V e(P∗) = T ′. Also E(P ′r) = ∅, and P ∪ P ′ is the path system
{P1, . . . , Pr, P

′
r+1, P

′
r+2, . . . , P

′
`} with exactly ` = |T |

2 paths which connect disjoint pairs of
terminals in T . Since V e(P ∪ P ′) = T , P = {P1, . . . , Pr} and V e(P) = T ′, we get that
V e(P ′) = T \ T ′. Now since V e(P∗) = T ′ it follows that P∗ ∪ P ′ is a path system which
connects disjoint pairs of terminals in T .

Case 2: v 6= ε. In this case, since P and P∗ both belong to the set Q[i, T ′, v] we have
that V e(P) = V e(P∗) = T ′ ∪ {v}, and that the final vertex of each of these two path
systems is v. Also P ∪P ′ = {P1, . . . , PrP

′
r, P

′
r+1, P

′
r+2, . . . , P

′
`} is a path system with exactly

` = |T |
2 paths which connect disjoint pairs of terminals in T . Since (i) V e(P ∪ P ′) = T , (ii)

P = {P1, . . . , Pr}, (iii) P ′ = {P ′r, P ′r+1, . . . , P
′
`}, (iv) V e(P) = T ′ ∪ {v}, and (v) the final

vertex of the path Pr in P is v, we get that (i) the initial vertex of the path P ′r in P ′ is v
and (ii) V e(P ′) = (T \ T ′) ∪ {v}. Now since V e(P∗) = T ′ ∪ {v} and (ii) the final vertex of
P∗ is v it follows that P∗ ∪ P ′ is a path system which connects disjoint pairs of terminals in
T , where P ∗r P ′r which could be an Eulerian walk.
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Thus, we have shown that P∗ ∪ P ′ connects disjoint pairs of terminals in T with paths,
except for P ∗r P ′r which could be an Eulerian walk. Combining this with Proposition 3.2 and
the fact that G \ (E(P∗)∪E(P ′)) is connected, we get that E(P∗)∪E(P ′) is a co-connected
T -join of G.

Finally, we show that P∗ ∪ P ′ is a path system. Towards this we only need to show that
P ∗r P

′
r is not an Eulerian walk but a path. Observe that |E(P∗)∪E(P ′)| ≤ |E(P∗)|+|E(P ′)| ≤

k. However, E(P∗) ∪ E(P ′) is a co-connected T -join of G and thus by our assumption,
E(P∗) ∪ E(P ′) has size exactly k – thus a minimum sized solution. By Lemma 3.3 this
implies that E(P∗) ∪ E(P ′) is a forest and hence P ∗r Pr is a path in G. This completes the
proof. J

For our proofs we also need the transitivity property of the relation vq
peq.

I Lemma 3.9 (♣). The relation vq
peq is transitive.

Our algorithm is based on dynamic programming and stores a table D[i, T ′, v] for all
i ∈ {0, . . . , k}, T ′ ⊆ T and v ∈ V (G)∪{ε}. The idea is that D[i, T ′, v] will store a path-system
equivalent set to Q[i, T ′, v]. That is, D[i, T ′, v] vk−i

peq Q[i, T ′, v]. The recurrences for dynamic
programming is given by the following.

For i = 0, we have the following cases.

D[0, T ′, v] :=
{
{∅} if T ′ = ∅ and v = ε

∅ otherwise
(1)

For i ≥ 1, we have the following cases based on whether v = ε or not.

D[i, T ′, v] :=
( ⋃

t∈T ′

(t,v)∈E(G)

D[i− 1, T ′ \ {t}, ε] • {(t, v)}
)⋃

( ⋃
(u,v)∈E(G)

D[i− 1, T ′, u] • {(u, v)}
)

(2)

D[i, T ′, ε] :=
( ⋃

t1,t2∈T ′

(t1,t2)∈E(G)

D[i− 1, T ′ \ {t1, t2}, ε] • {(t1, t2)}
)⋃

( ⋃
t∈T ′

(u,t)∈E(G)

D[i− 1, T ′ \ {t}, u] • {(u, t)}
)

(3)

The next lemma will be used in proving the correctness of the algorithm.

I Lemma 3.10. For all i ∈ {0, . . . , k}, T ′ ⊆ T, v ∈ V (G) ∪ {ε}, D[i, T ′, v] vk−i
peq Q[i, T ′, v].

Proof. Let I denote the family of independent sets in MG, the co-graphic matroid associated
with G. We prove the lemma using induction on i. The base case is i = 0. From the
definition of Q[0, T ′, v], we have that Q[0, T ′, v] = {∅} if T ′ = ∅ and v = ε, and Q[0, T ′, v] = ∅
otherwise.

Now we prove that the claim holds for i ≥ 1. Let us also assume that by induction
hypothesis the claim is true for all i′ < i. Fix a T ′ ⊆ T , and v ∈ V (G) ∪ {ε} and let
Q[i, T ′, v] be the corresponding set of partial solutions. Let P = {P1, . . . , Pr} ∈ Q[i, T ′, v]
and P ′ = {P ′r, P ′r+1, . . . , P

′
`} be a path system such that P ′ is an extender for P. We need

to show that there exists a P∗ ∈ D[i, T ′, v] such that P ′ is also an extender for P∗.
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Case 1: v 6= ε. Consider the path system P = {P1, . . . , Pr} ∈ Q[i, T ′, v]. P has i edges
and its set of end-vertices is T ′ ∪ {v}. Also, its final vertex is v. Let (u, v) be the last edge
in path Pr. Let P ′′r be the path obtained by deleting edge (u, v) from Pr. More precisely:
If Pr has at least two edges then P ′′r is the non-empty path obtained by deleting the edge
(u, v) and the vertex v from Pr, and if (u, v) is the only edge in Pr (in which case u ∈ T ′)
then P ′′r = ∅. Note that the initial vertex of P ′r ∈ P ′ is v. Let uP ′r be the path obtained by
concatenating the path uv and P ′r. Let P1 = {P1, . . . , P

′′
r } and P ′1 = {uP ′r, P ′r+1, . . . , P

′
`}.

Then P1 has (i− 1) edges and P ′1 is an extender for P1. Now we consider two cases:

(u, v) is the only edge in Pr: Here P ′′r = ∅ and u ∈ T ′; let t = u. Note that P1 =
{P1, . . . , Pr−1} ∈ Q[i − 1, T ′ \ {t}, ε]. Hence by induction hypothesis there exists P∗1 ∈
D[i− 1, T ′ \ {t}, ε] such that P ′1 is also an extender for P∗1 . Since P ′1 is an extender for P∗1 ,
E(P∗1 ) ∪ E(P ′1) ∈ I (by the definition of extender). This implies that E(P∗1 ) ∪ {(t, v)} ∈ I.
Since P∗1 ∈ D[i − 1, T ′ \ {t}, ε] and (t, v) ∈ E(G), by Equation 2, we get a path system
P∗ ∈ D[i, T ′, v] by adding the new path Pr = tv to P∗1 . Since P ′1 is an extender of P∗1 , P ′ is
an extender of P∗ as well.

(u, v) is not the only edge in Pr: Here P ′′r 6= ∅, and u is the final vertex in P ′r. Hence
P1 = {P1, . . . , P

′′
r } ∈ Q[i− 1, T ′, u]. Since P ′1 is an extender for P1, by induction hypothesis

there exists P∗1 ∈ D[i− 1, T ′, u] such that P ′1 is also an extender for P∗1 . By the definition of
extender, we have that E(P∗1 ) ∪ E(P ′1) ∈ I . This implies that E(P∗1 ) ∪ {(u, v)} ∈ I. Since
P∗1 ∈ D[i− 1, T ′, u] and (u, v) ∈ E(G), by Equation 2, we get a path system P∗ ∈ D[i, T ′, v]
by adding the new edge {(u, v)} to P∗1 . Since P ′1 is an extender of P∗1 , P ′ is an extender of
P∗ as well.

Case 2: v = ε. We have that P = {P1, . . . , Pr} ∈ D[i, T ′, ε]. Then P has i edges, its set of
end-vertices is T ′, and no end-vertex repeats. Let (u, t) be the last edge in path Pr. Then
t ∈ T ′. Let P ′′r be the path obtained by deleting edge (u, t) from Pr. More precisely: If Pr

has at least two edges then P ′′r is the non-empty path obtained by deleting the edge (u, t) and
the vertex t from Pr, and if (u, t) is the only edge in Pr then P ′′r = ∅. Let P1 = {P1, . . . , P

′′
r }

and P ′1 = {ut, P ′r, P ′r+1, . . . , P
′
`}. Then P1 has (i − 1) edges and P ′1 is an extender for P1.

Now we consider two cases:

(u, t) is the only edge in Pr: Here P ′′r = ∅, and {u, t} ⊆ T ′. Let t1 = u, t2 = t.
Then P1 is a path system in Q[i− 1, T ′ \ {t1, t2}, ε]. By induction hypothesis there exists
P∗1 ∈ D[i − 1, T ′ \ {t1, t2}, ε] such that P ′1 is also an extender of P∗1 . By the definition of
extender, we have that E(P∗1 ) ∪ E(P ′1) ∈ I. This implies that E(P∗1 ) ∪ {(t1, t2)} ∈ I. Since
P∗1 ∈ D[i − 1, T ′ \ {t1, t2}, ε] and (t1, t2) ∈ E(G), by Equation 3, we get a path system
P∗ ∈ D[i, T ′, v] by adding the new path t1t2 to P∗1 . Since P ′1 is an extender of P∗1 , P ′ is an
extender of P∗ as well.

(u, t) is not the only edge in Pr: Here P ′′r 6= ∅, u is the final vertex in P ′′r . Then
P1 ∈ Q[i − 1, (T ′ \ t), u]. By induction hypothesis there exists P∗1 ∈ D[i − 1, (T ′ \ t), u]
such that P ′1 is also an extender of P∗1 . By the definition of extender, we have that
E(P∗1 ) ∪ E(P ′1) ∈ I. This implies that E(P∗1 ) ∪ {(u, t)} ∈ I. Since P∗1 ∈ D[i− 1, (T ′ \ t), u]
and (u, t) ∈ E(G), by Equation 3, we get a path system P∗ ∈ D[i, T ′, ε] by adding the new
edge (u, t) to P∗1 . Since P ′1 is an extender of P∗1 , P ′ is an extender of P∗ as well.

In both cases above we showed that D[i, T ′, v] vk−i
peq Q[i, T ′, v]. J
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Algorithm, Correctness and Running Time. We now describe the main steps of the algo-
rithm. It finds a smallest sized co-connected T -join (of size at most k) for G. The algorithm
iteratively tries to find a solution of size |T |2 ≤ k

′ ≤ k and returns a solution corresponding to
the smallest k′ for which it succeeds; else it returns No. By Lemma 3.8 it is enough, in the
dynamic programming (DP) table, to store the representative set ̂Q[i, T ′, v] ⊆k−i

rep Q[i, T ′, v]
instead of the complete set Q[i, T ′, v], for all i ∈ {1, 2, . . . , k}, T ′ ⊆ T and v ∈ (V (G) ∪ {ε}).
In the algorithm we compute and store the set ̂Q[i, T ′, v] in the DP table entry D[i, T ′, v].
We follow Equations 1, 2 and 3 and fill the table D[i, T ′, v]. For i = 0 we use Equation 1
and fill the table. After this we compute the values of D[i, T ′, v] in increasing order of i
from 1 to k. At the ith iteration of the for loop, we compute D[i, T ′, v] from the DP table
entries computed at the previous iteration. Since we need to keep the size of potential
partial solutions in check, we compute the representative family ̂D[i, T ′, v] for each DP table
entry D[i, T ′, v] constructed in the ith iteration and then set D[i, T ′, v] ← ̂D[i, T ′, v]. By
the definition of Q[i, T, ε] and Lemma 3.4, any path system in D[i, T, ε] is a solution to
the instance (G,T, k); we check for such a solution as the last step. This completes the
description of the algorithm.

The correctness of the algorithm follows from the following. By Lemma 3.10 we know
that D[i, T ′, v] vk−i

peq Q[i, T ′, v] and by Lemma 3.8 we have that ̂D[i, T ′, v] vk−i
peq D[i, T ′, v].

Thus, by transitivity of vq
peq (by Lemma 3.9) we have that ̂D[i, T ′, v] vk−i

peq Q[i, T ′, v]. This
completes the proof of correctness. We now compute an upper bound on the running time of
the algorithm.

I Lemma 3.11. The above algorithm runs in time O(2(2+ω)k · n2m3k5) + mO(1) where
n = |V (G)| and m = |E(G)|.

Proof. Let 1 ≤ i ≤ k and T ′ ⊆ T and v ∈ (V (G) ∪ {ε}) be fixed, and let us con-
sider the running time of computing ̂D[i, T ′, v]. That is, the running time to compute
(k − i)-representative family of D[i, T ′, v]. We know that the co-graphic matroid MG

is representable over F2 and that its rank is bounded by m − n + 1. By Theorem 2.2,
the running time of this computation of the (k − i)-representative family is bounded by
O
((

k
i

)
· |D[i, T ′, v]|i3m2 + |D[i, T ′, v]| ·

(
k
i

)ω−1(i ·m)ω−1
)

+mO(1).

The family D[i, T ′, v] is computed using Equation 2 or Equation 3 from the DP table
entries D[i − 1, T ′′, u], computed in the previous iteration and the size of D[i − 1, T ′′, u]
is bounded according to Theorem 2.2. Thus the size of the family D[i, T ′, v] is upper
bounded by, |D[i, T ′, v]| ≤ ((2k)2 + 2kn) ·

(
maxT ′′⊆T ′,u∈V

̂D[i− 1, T ′′, u]
)
. Theorem 2.2

gives bounds on the sizes of these representative families ̂D[i− 1, T ′′, u], from which we get
|D[i, T ′, v]| ≤ 4kn ·mi

(
k

i−1
)
. Observe that since the number choices for (T ′, v) such that

T ′ ⊆ T and v ∈ V (G){ε} is bounded by 4k(n + 1), and we compute DP table entries for
i = 1 to k, the overall running time can be bounded by O

(
4kn

∑k
i=1

((
k
i

)
·
(

k
i−1
)
kni4m3 +(

k
i−1
)
·
(

k
i

)ω−1
kn(im)ω

))
+mO(1). The running time above simplifies to O(2(2+ω)k · n2m3k5)

+mO(1). J

Putting all these together we get

I Theorem 3.12. Co-Connected T -Join can be solved in O(2(2+ω)k · n2m3k6) +mO(1)

time where n = |V (G)| and m = |E(G)|.

Using Theorem 3.1 and Theorem 3.12 we get
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I Theorem 3.13. Undirected Eulerian Edge Deletion can be solved in time O(2(2+ω)k ·
n2m3k6) +mO(1) where n = |V (G)| and m = |E(G)|.

4 Directed Eulerian Edge Deletion

In this section we modify the algorithm described for Undirected Eulerian Edge
Deletion to solve the directed version of the problem. The main ingredient of the proof is
the characterization of “solution” for the directed version of the problem. We begin with
a few definitions. For a digraph D, we call S ⊆ A(D) a balanced arc deletion set, if D \ S
is balanced. We call a set S ⊆ A(D) a co-connected balanced arc deletion set if D \ S is
balanced and weakly connected.

Let (D, k) be an instance to Directed Eulerian Edge Deletion. A solution S ⊆ A(D)
of the problem should satisfy the following two properties, (a) S must be a balanced arc
deletion set of D and, (b) D \ S must be strongly connected. In fact, something stronger is
known in the literature.

I Proposition 4.1 ([1]). A digraph D is Eulerian if and only if D is weakly connected and
balanced.

Due to Proposition 4.1, we can relax the property (b) of the solution S and replace the
requirement of having D \ S as strongly connected with just requiring D \ S to be be weakly
connected. Now observe that solution S of Directed Eulerian Edge Deletion is in
fact a co-connected balanced arc deletion set of the directed graph D. Thus our goal is to
compute a minimal co-connected balanced arc deletion set of D of size at most k.

We start with the following easy property of in-degrees and out-degrees of vertices inD. For
a digraph D, define T − = {v ∈ V (D) | d−D(v) > d+

D(v)}, T = = {v ∈ V (D) | d−D(v) = d+
D(v)}

and T + = {v ∈ V (D) | d−D(v) < d+
D(v)}.

I Proposition 4.2 (♣). In a digraph D,
∑

v∈T +
d+

D(v)− d−D(v) =
∑

v∈T −
d−D(v)− d+

D(v).

The following lemma characterizes the set of arcs which form a minimal solution S of the
given instance (D, k). We then use this characterization to design a dynamic-programming
algorithm for the problem.

I Lemma 4.3 (♣). Let D be a digraph, and ` =
∑

v∈T + d
+
D(v)− d−D(v). Let S ⊆ A(D) be a

minimal co-connected balanced arc deletion set. Then S is a union of ` arc disjoint paths
P = {P1, . . . , P`} such that
1. For i ∈ {1, . . . , `}, Pi starts at a vertex in T + and ends at a vertex in T −.
2. The number of paths in P that starts at v ∈ T + is equal to d+

D(v)−d−D(v) and the number
of paths in P that ends at u ∈ T − is equal to d−D(u)− d+

D(u).

Finally, we prove a kind of “converse” of Lemma 4.3.

I Lemma 4.4 (♣). Let D be a digraph, ` =
∑

v∈T + d
+
D(v) − d−D(v) and let S ⊆ A(D).

Furthermore, S is a union of ` arc disjoint paths P = {P1, . . . , P`} with the following
properties.
1. The digraph D \ S is weakly connected.
2. For i ∈ {1, . . . , `}, Pi starts at a vertex in T + and ends at a vertex in T −.
3. The number of paths in P that starts at v ∈ T + is equal to d+

D(v)−d−D(v) and the number
of paths in P that ends at u ∈ T − is equal to d−D(u)− d+

D(u).
Then S is a co-connected balanced arc deletion set.
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Now we are ready to describe the algorithm for Directed Eulerian Edge Deletion.
Let (D, k) be an instance of the problem. Lemma 4.3 and Lemma 4.4 imply that for a
solution we can seek a path system P with properties mentioned in Lemma 4.4. Let T +

m be
the multiset of vertices in the graph G such that each vertex v ∈ T + appears d+

D(v)− d−D(v)
times in T +

m . Similarly, let T −m be the multiset of vertices in the graph D such that each
vertex v ∈ T − appears d−D(v)− d+

D(v) times in T −m . Due to Proposition 4.2 we know that
|T +

m | = |T −m |. Observe that if |T +
m | > k, then any balanced arc deletion set must contain

more than k arcs and thus the given instance is a No instance. So we assume that |T +
m | ≤ k.

Lemma 4.3 implies that the solution can be thought of as a path system P = {P1, . . . , P`}
connecting vertices from T +

m to the vertices of T −m such that all the vertices of T +
m ∪ T −m

appear as end points exactly once and D \ A(P) is weakly connected. Observe that the
solution is a path system with properties which are similar to those in the undirected case of
the problem. Indeed, the solution S corresponds to an independent set in the co-graphic
matroid of the underlying (undirected) graph of D. After this the algorithm for Directed
Eulerian Edge Deletion is identical to the algorithm for Co-Connected T -Join. Let
T = T +

m ∪ T −m . We can define a notion of partial solutions analogous to Q[i, T ′, v]. The
definition of extender remains the same except for the last item, where we now require that
P ∪P ′ is an arc disjoint path system connecting vertices from T +

m to the vertices of T −m such
that every vertex of T +

m ∪ T −m is an endpoint of exactly one path. Finally, we can define the
recurrences for dynamic programming similar to those defined for D[i, T ′, v] in the case of
Co-Connected T -Join. We then use these recurrences along with an algorithm to compute
representative families to solve the given instance. The correctness of the algorithm follows
via similar arguments as before. And by an analysis similar to the case of Co-Connected
T -Join we can obtain the following bound on the running time of the algorithm.

I Theorem 4.5. Directed Eulerian Edge Deletion can be solved in time O(2(2+ω)k ·
n2m3k6) +mO(1) where where n = |V (D)| and m = |A(D)|.
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Abstract
We study the NP-complete Minimum Shared Edges (MSE) problem. Given an undirected
graph, a source and a sink vertex, and two integers p and k, the question is whether there
are p paths in the graph connecting the source with the sink and sharing at most k edges.
Herein, an edge is shared if it appears in at least two paths. We show that MSE is W[1]-hard
when parameterized by the treewidth of the input graph and the number k of shared edges
combined. We show that MSE is fixed-parameter tractable with respect to p, but does not
admit a polynomial-size kernel (unless NP ⊆ coNP/poly). In the proof of the fixed-parameter
tractability of MSE parameterized by p, we employ the treewidth reduction technique due to
Marx, O’Sullivan, and Razgon [ACM TALG 2013].
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1 Introduction

We consider the parameterized complexity of the following basic routing problem.

Minimum Shared Edges (MSE)
Input: An undirected graph G = (V,E), s, t ∈ V , p ∈ N and k ∈ N0.
Question: Is there a (p, s, t)-routing in G in which at most k edges are shared?

Herein, a (p, s, t)-routing is a cardinality-p set of s-t paths, and an edge is called shared if it
is contained in at least two of the paths in the routing. If s and t are understood from the
context, we simplify notation and speak of p-routings and refer to the paths it contains as
routes. Minimum Shared Edges is polynomial-time solvable with k = 0, while it becomes
NP-hard for general values of k [14].

Minimum Shared Edges has two natural applications. One is to route an important
person which is under threat of attack from s to t in a street network. In order to confound
attackers, p − 1 additional, empty convoys are routed, and guards are placed on streets
that are shared by routes. Minimum Shared Edges then minimizes the costs to place
guards [20]. A second application arises from finding a resilient way of communication
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between two servers s and t in an interconnection network, assuming that p − 1 faulty
connections may be present that block or alter the communicated information. Finding
p edge-disjoint paths ensures at least one piece of information arrives unscathed. When
this is not possible, and if we can ensure that a link is not faulty by expending some fixed
cost per link, then Minimum Shared Edges is the problem of finding a resilient way of
communication that minimizes the overall costs [21].

We study Minimum Shared Edges from a parameterized complexity perspective, that
is, for certain parameters ` of the inputs (of size r), we identify algorithms with running time
f(`) · poly(r) or we prove that such algorithms are unlikely to exist. There are two natural
parameters for Minimum Shared Edges: the number p of routes and the number k of
shared edges. Both of them can be reasonably assumed to be small in applications. As we
will see, there is also a connection between p and the treewidth tw of G.

Related Work. Omran et al. [20] introduced Minimum Shared Edges on directed graphs
and showed NP-hardness by a reduction from Set Cover. The reduction also implies
W[1]-hardness with respect to the number k of shared arcs in this directed case. Undirected
Minimum Shared Edges admits an XP-algorithm with respect to treewidth, more specif-
ically, it can be solved in O((n+m) · (p+ 1)2ω·(ω+1)/2) time [24], where ω upper-bounds the
treewidth of the input graph.

Assadi et al. [2] introduced a generalization of directed Minimum Shared Edges, called
Minimum Vulnerability, which additionally considers arc weights (the cost of sharing an
arc), arc capacities (an upper bound on the number of routes supported by an arc) and a
share-threshold for each arc (the threshold of routes, possibly other than two, after which
the arc becomes shared). Directed Minimum Vulnerability admits an XP-algorithm with
respect to the number p of routes [2]. Undirected Minimum Vulnerability is NP-hard
even on bipartite series-parallel graphs, but admits a pseudo-polynomial-time algorithm on
bounded treewidth graphs [1]. Furthermore, Minimum Vulnerability is fixed-parameter
tractable with respect to p on chordal graphs [1].

There are also several results regarding approximation algorithms and lower bounds [2,
20]; however, our focus is on exact algorithms.

Our Contributions. We present two main results: Minimum Shared Edges is fixed-
parameter tractable (FPT) with respect to the number p of routes and it is W[1]-hard
with respect to the treewidth tw and the number k of shared edges combined. Moreover,
complementing the fixed-parameter tractability result with respect to p, we show that there
is no polynomial-size problem kernel with respect to p (Section 5), unless NP ⊆ coNP/poly.

The FPT result with respect to p is obtained by modifying the input graph so that
the resulting graph has treewidth bounded by some (exponential) function of p using the
treewidth reduction technique [17] (see Section 4). Then we apply a dynamic program which
also is an FPT algorithm with respect to p and tw (Section 3). For this purpose, we design
a new dynamic program rather than using the ones from the literature [1, 2]. In compari-
son, ours yields an improved running time in the FPT algorithm with respect to p, that is,
the dependence is doubly exponential on p rather than triply exponential. Our result com-
plements the known FPT algorithm for undirected Minimum Vulnerability on chordal
graphs, parameterized by p [1]. Treewidth reduction has lately also found applications in
a wide variety of other problems, for example, in graph coloring [5], graph partitioning [3],
and arc routing [15].

As mentioned, our second main result is that Minimum Shared Edges is W[1]-hard
with respect to the treewidth tw and the number k of shared edges combined. This provides a
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corresponding lower bound for the known polynomial-time algorithms on constant-treewidth
graphs for Minimum Shared Edges and for the more general undirected Minimum Vul-
nerability [1, 2]. More precisely, the degree of the polynomial in the running time depend
on tw and our result shows that removing this dependence is impossible unless FPT = W[1].
Interestingly, the known dynamic programs on tree decompositions keep track of the number
of routes over certain separators in their tables. Our hardness result shows that information
of this sort is crucial.

2 Preliminaries

We use basic notation from parameterized complexity [6, 10, 13, 18] and graph theory [8, 23].

Graphs and Tree Decompositions. Unless stated otherwise, all graphs are without parallel
edges or loops. When it is not ambiguous, we use n for the number of vertices of a graph
and m for the number of edges.

Let G = (V,E) be an undirected graph. We write V (G) for the vertex set of graph G
and E(G) for the edge set of graphG. We define the size of graphG as |G| := |V (G)|+|E(G)|.
For a vertex set W ⊆ V (G), we denote by G[W ] the subgraph of G induced by the vertex
set W . For an edge set F ⊆ E(G), we denote by G[F ] the subgraph of G induced by the
edge set F . We write G/F and G\F for the contraction and the deletion of the edges in F ,
respectively (we write G/e and G\e for short if F = {e}).

A tree decomposition of a graph G is a tuple T := (T, (Bα)α∈V (T )) of a tree T and family
(Bα)α∈V (T ) of sets Bα ⊆ V (G), called bags, such that
(i) V (G) =

⋃
α∈V (T ) Bα,

(ii) for every edge e ∈ E(G) there exists an α ∈ V (T ) such that e ⊆ Bα and
(iii) for each v ∈ V (G), the graph induced by the node set {α ∈ V (T ) | v ∈ Bα} is a tree.
The width ω of a tree decomposition T of a graph G is defined as ω(T) := max{|Bα|−1 | α ∈
V (T )}. The treewidth tw(G) of a graph G is the minimum width over all tree decompositions
of G. A tree decomposition T = (T, (Bα)α∈V (T )) is a nice tree decomposition with introduce
edge nodes if the following conditions hold.
(i) The tree T is rooted and binary.
(ii) For each edge in E(G) there is exactly one introduce edge node in T, where an introduce

edge node is a node α in the tree decomposition T of G labeled with an edge {v, w} ∈
E(G) with v, w ∈ Bα that has exactly one child node α′; furthermore Bα = Bα′ .

(iii) Each node α ∈ V (T ) is of one of the following types:
introduce edge node;
leaf node: α is a leaf of T and Bα = ∅;
introduce vertex node: α is an inner node of T with exactly one child node β ∈ V (T );
furthermore Bβ ⊆ Bα and |Bα\Bβ | = 1;
forget node: α is an inner node of T with exactly one child node β ∈ V (T ); further-
more Bα ⊆ Bβ and |Bβ\Bα| = 1;
join node: α is an inner node of T with exactly two child nodes β, γ ∈ V (T );
furthermore Bα = Bβ = Bγ .

A given tree decomposition can be modified in linear time to fulfill the above constraints;
moreover, the number of nodes in such a tree decomposition of width ω is O(ω · n) [16, 7].

Cuts and Paths. Let G be an undirected, connected graph. A cut C ⊆ E is a set of edges
such that the graph G\C is not connected. Let s, t ∈ V (G) be two vertices inG. An s-t cut C
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is a cut such that the vertices s and t are not connected in G\C. A minimum s-t cut is an
s-t cut C such that |C| = min |C ′|, where the minimum is taken over all s-t cuts C ′ in G.
An s-t cut C in G is minimal if for all edges e ∈ C it holds that C\{e} is not an s-t cut
in G.

A path is a connected graph with exactly two vertices of degree one and no vertex of
degree at least three. We call the vertices with degree one the endpoints of the path. The
length of a path is defined as the number of edges in the path. For two distinct vertices
s, t ∈ V (G), we refer to the path with endpoints s and t (as subgraph of G) as s-t path in G.

Parameterized Complexity. A parameterized problem is a set of instances (I, `), where
I ∈ Σ∗ for a finite alphabet Σ, and ` ∈ N is the parameter. A parameterized problem Q

is fixed-parameter tractable, shortly FPT, if there exists an algorithm that on input (I, `)
decides whether (I, `) is a yes-instance of Q in f(`) · |I|O(1) time, where f is a computable
function independent of |I|.

W[t], t ≥ 1, are classes that (amongst others) contain parameterized problems which
presumably do not admit FPT algorithms. Hardness for W[t] can be shown by reducing
from a W[t]-hard problem, using a parameterized reduction, that is, a many-to-one reduction
that runs in FPT time and maps any instance (I, `) to another instance (I ′, `′) such that
`′ ≤ f(`) for some computable function f .

A parameterized problem Q is kernelizable if there exists a polynomial-time self-reduction
that maps an instance (I, `) of Q to another instance (I ′, `′) of Q such that: (1) |I ′| ≤ λ(`)
for some computable function λ, (2) `′ ≤ λ(`), and (3) (I, `) is a yes-instance of Q if and only
if (I ′, `′) is a yes-instance of Q. The instance (I ′, `′) is called the problem kernel of (I, `)
and λ is called its size.

3 An Algorithm for Small Treewidth and Small Number of Paths

In this section we present the following theorem.

I Theorem 1. Let G be a graph with s, t ∈ V (G) given together with a tree decomposition
of width ω. Let p ∈ N be an integer. Then the minimum number of shared edges in a
(p, s, t)-routing can be computed in O(p · (ω + 4)3·p·(ω+3)+4 · n) time.

The proof is based on a dynamic program that computes a table for each node of the
(arbitrarily rooted) tree decomposition in a bottom-up fashion. For our application, it is
convenient to use a nice tree decomposition with introduce edge nodes such that each bag
contains the sink and the source node. For each node α in the tree decomposition T of G, we
define Vα as the set of vertices and Eα as the set of edges that are introduced in the subtree
rooted at node α. In other words, a vertex v ∈ V (G) is in Vα if and only if there exists at
least one introduce vertex node in the subtree rooted at node α that introduced vertex v.
As a special case, since the vertices s and t are contained in every bag, we consider s and t
as introduced by each leaf node. An edge e ∈ E(G) is in Eα if and only if there exists an
introduce edge node in the subtree rooted at node α that introduced edge e. Recall that
there is a unique introduce edge node for every edge of graph G. We define Gα := (Vα, Eα)
as the graph for node α. For every leaf node α in T, we set Vα = {s, t} and Eα = ∅.

Partial Solutions. We define a set of p forests in Gα as a partial solution Lα for node α.
Instead of asking for p s-t routes that share at most k edges, we can ask for p s-t forests that
share at most k edges, where an s-t forest is a forest that contains at least one tree connecting
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vertices s and t. Note that every forest that contains a tree containing both vertices s and t
can be “reduced” to an s-t path. A partial solution Lα has a cost value c(Lα), which is the
number of edges in Gα that appear in at least two of the p forests in Lα.

In order to represent the intersection of the trees in a partial solution with the bag that
we are currently considering, we use the following notation. For each node α in the tree
decomposition T of G, we consider p-tuples of pairs Xα := (Yαq , Zαq )q=1,...,p, where for each
q ∈ [p], Zαq ⊆ Bα together with Yαq ⊆ 2Bα is a partition of Bα, that is,
(i)

⋃
M∈Yαq

M ∪ Zαq = Bα, and
(ii) for all X,Y ∈ Yαq ∪ {Zαq } with X 6= Y it holds that X ∩ Y = ∅.
We say that Xα is a signature for node α. For each q ∈ [p], we call the pair (Yαq , Zαq ) a
segmentation of the vertex set Bα. We write segmentation q instead of segmentation with
index q for short. We call each M ∈ Yαq a segment of the segmentation q and we call Zαq
the zero-segment of the segmentation q.

To connect signatures (and segmentations) with the partial solutions that they represent,
we use the following notation. We say that the signature Xα is a valid signature for node α
if there is a partial solution Lα for node α such that for each q ∈ [p], the zero-segment Zαq
is the set of nodes in Bα that do not appear in the forest with index q and for each set
M ∈ Yαq , there is a tree S in the forest with index q such that M = Bα ∩ V (S). In other
words, the sets in Yαq correspond to connected components in the forest with index q of the
partial solution. We say that Xα is a signature induced by the partial solution Lα if Xα is
a valid signature for node α and the partial solution Lα validates Xα. In this case, for each
q ∈ [p], the pair (Yαq , Zαq ) is an induced segmentation. We remark that given Xα, there can
be exactly one, more than one, or no partial solution with signature Xα. Given a partial
solution Lα for Gα, there is exactly one signature induced by Lα. Let Xα be a signature for
node α such that there is no partial solution for Gα that induces the signature Xα, then we
say that Xα is an invalid signature.

Let T = (TT, (Bα)α∈V (TT)) be a nice tree decomposition of G with introduce edge nodes
and vertices s and t contained in every bag. Let ω := ω(T) be the width of T. We
consider the table T in the following dynamic program that we process bottom-up on the
tree decomposition T, that is, we start to fill the entries of the table T at the leaf nodes of
the tree decomposition T and we traverse the tree of the tree decomposition from the leaves
to the root. For a node α in the tree decomposition T and a signature Xα for node α, the
entry T [α,Xα] is defined as

T [α,Xα] :=
{

min c(Lα), if Xα is a valid signature,
∞, otherwise,

where the minimum is taken over all partial solutions Lα in Gα such that Lα induces the
signature Xα.

For each type of node in T, we define a rule on how to fill each entry in T , and discuss
the running time for applying the rule and the running time for filling all entries in T for
the given type of node. Due to space constraints, we give some details only for introduce
edge nodes, and defer the correctness proof and the remaining nodes to the full version of
the paper.

Introduce Edge Node. Let α be an introduce edge node of T, let β be the child node
of α, and let e = {v, w} be the edge introduced by node α. Two signatures Xα and X β are
compatible if for each q ∈ [p], one of the following conditions holds:
(i) Yαq = Yβq , or
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(ii) Yαq = (Yβq \{M1,M2}) ∪ {M1 ∪M2} with M1,M2 ∈ Yβq , M1 6= M2, and v ∈ M1 and
w ∈M2.

If Xα and X β are compatible, then let Q ⊆ [p] be the set of indices such that for all q ∈ Q
(ii) holds and for all q ∈ [p]\Q (i) holds. We say that Xα and X β are share-compatible
if |Q| ≥ 2. We claim that

T [α,Xα] = min
Xβ compatible with Xα

(
T [β,X β ] +

{
1, if X β and Xα are share-compatible,
0, otherwise.

)

In other words, two signatures Xα for node α and X β for node β are compatible if and
only if for all q ∈ [p], either by (i) it holds that the segmentation q in Xα is equal to the
segmentation q of X β , or by (ii) it holds that the segmentation q of Xα is the result of
merging two segments in the segmentation q of X β , where none of the two segments is the
zero-segment, and vertex v is in the one segment, and vertex w is in the other segment. This
corresponds to connecting two trees by edge e in the forest with index q, where v is in the
one tree and w in the other tree. Note that connecting two vertex-disjoint trees by exactly
one edge yields a tree. The deletion of edge e in every forest of a partial solution for Gα
that includes the edge e yields a partial solution for Gβ . We remark that Gα = Gβ + {e},
that is, Gα differs from Gβ only by the additional edge e.

Running time. For each signature Xα, we check all signatures X β for node β for com-
patibility, that means, we need to check for each q ∈ [p] whether the segmentations are
equal (i) or whether the segmentation q of Xα is derived by merging two segments in the
segmentation q of X β (ii). To check condition (i) as well as to check condition (ii) can be
done in O(p · |Bα|2) time. Therefore, the overall running time for filling all entries in T for
an introduce edge node is in O(p · (ω + 2)2·p·(ω+1)+2).

The bottleneck in computing the tables is in the join nodes; they induce a running
time portion of O(p · (ω + 2)3·p·(ω+1)+3). Hence, filling the tables for each node in the
tree decomposition can be done in the running time claimed by Theorem 1. By the above
arguments about partial solutions, the minimum number of shared edges in a (p, s, t)-routing
can then be read off from the table in the root node of the tree decomposition, where we take
the minimum value over all signatures where for each of the p segmentations there exists a
segment that contains both vertices s and t. Hence, Theorem 1 follows.

We remark that we can modify the dynamic program in such a way that we can solve
the weighted variant of Minimum Shared Edges, that is, with weights w : E(G)→ N on
the edge set of the input graph.

4 Fixed-Parameter Tractability with Respect to the Number of Paths

In this section we outline a proof for the following classification result.

I Theorem 2. Minimum Shared Edges is fixed-parameter tractable with respect to the
number p of routes.

The basic idea for the proof is to use treewidth reduction [17], a way to process a graph G
containing terminals s, t in such a way that each minimal s-t separator of size at most p−1 is
preserved and the treewidth of the resulting graph is bounded by a function of p. The reason
that this approach works is that each (p, s, t)-routing is characterized by its shared edges,
and these are contained in minimal cuts of size at most p−1. However, treewidth reduction
preserves only minimal separators, that is, vertex sets, and not necessarily minimal cuts,
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G H H∗ G∗
Subdivide each

edge in G

Treewidth

Reduction

Contract an incident

edge for each v ∈ V ∗E

Each minimal s-t cut of
size at most p− 1
corresponds to a

minimal s-t separator
of size at most p− 1.

Constructs a graph of
treewidth bounded by

a function in p that preserves
all minimal s-t separators

of size at most p− 1.

Yields 1-to-1
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minimal s-t cuts
of size at most p− 1
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Each minimal s-t cut in G

of size at most p− 1
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minimal s-t separator in H
of size at most p− 1.
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every minimal s-t separator

of size at most p− 1 in H and
contains the neighborhood of
every vertex in VE which is in

a minimal s-t separator
of size at most p− 1 in H.

Has treewidth bounded
by the treewidth of H∗.

An edge set
C ⊆ E(G) ∩ E(G∗)
with |C| < p is a

minimal s-t cut in G∗
if and only if it is a
minimal s-t cut in G.

Figure 1 Overview of the strategy behind the proof of Theorem 2.

that is, edge sets. Hence, we need to further process the input graph and the graph coming
out of the treewidth reduction process.

We now describe the approach in more detail; refer to Figure 1 for an overview of the
following modifications and the graphs obtained in each step. In the following, we modify
step by step graph G to graph G∗. We start with the following lemma which states that if
our instance is a yes-instance, then we can find a solution where each of the shared edges is
part of a minimal s-t cut of size smaller than the number p of routes.

I Lemma 3. If (G, s, t, p, k) is a yes-instance of MSE and G has a minimal s-t cut of size
smaller than p, then there exists a solution F ⊆ E such that each e ∈ F is in a minimal s-t
cut of size smaller than p in G.

Recall that if G does not have a minimal s-t cut of size smaller than p, then we can
find p s-t routes without sharing an edge.

As mentioned before, as part of our approach we use the treewidth reduction tech-
nique [17]. Given a graph G = (V,E) with T = {s, t} ⊆ V (G) and an integer ` ∈ N, first the
treewidth reduction technique computes the set C of vertices containing all vertices in G

which are part of a minimal s-t separator of size at most ` in G. Then, it constructs the so-
called torso of graph G given C and T , that is, the induced subgraph G[C∪T ] with additional
edges between each pair of vertices v, w ∈ C ∪ T with {v, w} 6∈ E(G) if there is a v-w path
in G whose internal vertices are not contained in C ∪ T . Finally, each of these additional
edges is subdivided and ` additional copies of each of that subdivisions are introduced, that
is, if {v, w} is one of these additional edges, then the vertices xvw1 , . . . , xvw`+1 are added and
edge {v, w} is replaced by the edges {{v, xvw1 }, . . . , {v, xvw`+1}, {xvw1 , w}, . . . , {xvw`+1, w}}. In
the following, we denote these paths by copy paths. The resulting graph contains all mini-
mal s-t separators of size at most ` in G and has treewidth upper-bounded by h(`) for some
function h only depending on `.
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I Theorem 4 (Treewidth reduction [17, Theorem 2.15]). Let G be a graph, T ⊆ V (G), and
let ` be an integer. Let C be the set of all vertices of G participating in a minimal s-t
separator of size at most ` for some s, t ∈ T . For every fixed ` and |T |, there is a linear-time
algorithm that computes a graph G∗ having the following properties:
1. C ∪ T ⊆ V (G∗).
2. For every s, t ∈ T , a set L ⊆ V (G∗) with |L| ≤ ` is a minimal s-t separator of G∗ if and

only if L ⊆ C ∪ T and L is a minimal s-t separator of G.
3. The treewidth of G∗ is at most h(`, |T |) for some function h.
4. G∗[C ∪ T ] is isomorphic to G[C ∪ T ].

For finding a p-routing we are interested in minimal s-t cuts of size smaller than p in G.
The treewidth reduction technique guarantees to preserve minimal s-t separators of a specific
size, but does not guarantee to preserve minimal s-t cuts of a specific size. Thus, we need to
modify our graph G in such a way that each minimal s-t cut in G corresponds to a minimal
s-t separator in the modified graph. We modify graph G in the following way.

I Step 1. Subdivide each edge in E(G), that is, for each edge e = {v, w} in E(G) add a
new vertex xe and replace edge e by edge {v, xe} and edge {xe, w}. We say that vertex xe as
well as edges {v, xe} and {xe, w} correspond to edge e. Let VE := {xe | e ∈ E} and E′ be
the edge set replacing the edges in E. Then H := (V ∪ VE , E′) is the resulting graph.

Note that each edge in H is incident with exactly one vertex in VE and one vertex in V .
Thus, no two vertices in VE and no two vertices in V are neighbors. Moreover, note that
each vertex in VE has degree exactly two. It holds that |V ∪VE | = |V |+|E| and |E′| = 2·|E|.

Recall that we are interested in s-t cuts in G. By our modification from Step 1 of G
to H, for each edge in G there is a corresponding vertex in VE in H. One can show that
there is a one-to-one correspondence between s-t cuts in G and those s-t separators in H

that contain only vertices in VE . Moreover, the following lemma holds.

I Lemma 5. Every minimal s-t cut in G corresponds to a minimal s-t separator in H.

Next, we show that every vertex in the neighborhood of each minimal s-t separator
containing only vertices in VE belongs to a minimal s-t separator.

I Lemma 6. Let W ⊆ VE ⊆ V (H) be the set of vertices corresponding to a minimal s-t cut
of size at most ` ∈ N in G. Then, each vertex in NH [W ] is part of a minimal s-t separator
of size at most ` in H.

We obtained graph H from graph G by applying Step 1. By Theorem 5, we know that
each minimal s-t cut in G corresponds to a minimal s-t separator in H. Moreover, by
Theorem 6, if we consider a minimal s-t cut of size smaller than p in G, then, for each
neighbor of the vertex set in H corresponding to the minimal s-t cut in G, there exists a
minimal s-t separator of size smaller than p in H that contains that neighbor. As the next
step (cf. Figure 1) we apply the treewidth reduction technique [17] to graph H.

I Step 2. Apply the treewidth reduction (Theorem 4) to graph H with T = {s, t} and p− 1
as upper bound for the size of the minimal s-t separators. Denote the resulting graph by H∗.

Let V ∗E := {v ∈ V (H∗) | v ∈ VE}. Graph H∗ contains all minimal s-t separators of
size at most p − 1 in H. By Theorem 5, every minimal s-t cut of size at most p − 1 in G
corresponds to a minimal s-t separator of size at most p− 1 in H and thus, by Theorem 4,
to a minimal s-t separator of size at most p− 1 in H∗. By Theorem 6, the neighborhood of
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each vertex in H corresponding to a vertex in V ∗E is contained in the vertex set V (H∗). As
a consequence, we can reconstruct each edge in graph G that appears in a minimal s-t cut
of size at most p− 1 in G as an edge in the graph H∗. As our next step (cf. Figure 1), we
contract for each vertex in V ∗E an incident edge in graph H∗. We remark that if xvw is a
vertex in V ∗E , then the only edges incident with vertex xvw are {v, xvw} and {xvw, w}. In
addition, the vertices v and w are the only neighbors of xvw in graph H and in graph H∗.

I Step 3. Contract for each vertex in V ∗E exactly one incident edge in H∗ to obtain the
graph G∗. In other words, undo the subdivision applied on G to obtain H.

We remark that tw(G∗) ≤ tw(H∗), since edge contraction does not increase the treewidth
of a graph [22].

Let e = {v, w} ∈ E(G) be an edge in G and xe ∈ VE ⊆ V (H) be the corresponding
vertex in H. Then {v, xe} and {xe, w} are the incident edges of xe in H. If xe ∈ V (H∗),
then one of the incident edges {v, xe} and {xe, w} with vertex xe is contracted and yields
edge {v, w} ∈ E(G∗). We say that the edges {v, w} ∈ E(G) and {v, w} ∈ E(G∗) correspond
one-to-one, and, for example, we write {v, w} ∈ E(G) ∩ E(G∗).

Considering the graphs G and G∗, we remark that one can show that, given an s-t path
in the one graph, one can find an s-t path in the other graph using a common set of edges
in E(G) ∩ E(G∗). The next lemma states that each minimal s-t cut of size smaller than p
in one of the graphs G and G∗ is also a minimal s-t cut of size smaller than p in the other
graph.

I Lemma 7. Let C ⊆ E(G)∩E(G∗). Edge set C is a minimal s-t cut in G of size smaller
than p if and only if C is a minimal s-t cut in G∗ of size smaller than p.

Recalling Theorem 3, we know that if an instance of MSE is a yes-instance, then we can
find k edges such that the k edges form a solution for the instance and each of the k edges is
part of a minimal s-t cut of size smaller than p in G. By Theorem 7, the graphs G and G∗
have the same set of minimal s-t cuts of size smaller than p. Combining Theorem 3 and
Theorem 7 leads to the following lemma.

I Lemma 8. (G∗, s, t, p, k) is a yes-instance of MSE if and only if (G, s, t, p, k) is a yes-
instance of MSE.

By Theorem 8, we know that the instances (G∗, s, t, p, k) and (G, s, t, p, k) are equivalent
for MSE. By our construction, we know that the treewidth of G∗ is upper-bounded by a
function only depending on the number p of routes. In addition, we know that Minimum
Shared Edges is fixed-parameter tractable with respect to the number p of routes and an
upper bound on the treewidth of the input graph. Thus, we are ready to prove Theorem 2.

Proof of Theorem 2. First we modify our graph G = (V,E) by applying Steps 1 to 3.
Let H, H∗, and G∗ be the according graphs. By Theorem 4, the treewidth of H∗ is upper-
bounded by h(p) for some function h. Since edge contractions do not increase the treewidth
of a graph [22], it follows that tw(G∗) ≤ tw(H∗). By Theorem 8, the instances (G∗, s, t, p, k)
and (G, s, t, p, k) are equivalent for MSE.

We know from Theorem 1 that MSE(p, ω) is fixed-parameter tractable when parameter-
ized by the number p of routes and by an upper bound ω on the treewidth of the input graph.
Since function h only depends on p and h(p) is upper-bounding the treewidth of graph G∗,
we can solve instance (G∗, s, t, p, k) in f(p) · O(|V (G∗)|) time, where f is a computable
function only depending on parameter p. Since |V (G∗)| ≤ |V (G)| + p · |E(G)| ≤ p · |G|
and the instances (G∗, s, t, p, k) and (G, s, t, p, k) are equivalent for MSE, we can decide
instance (G, s, t, p, k) in f(p) · p ·O(|G|) time, that is, in FPT-time. J
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Using the dynamic program from Section 3 the running time of the above algorithm
amounts to O(p2 · (h(p) + 4)3·p·(h(p)+3)+3 · |G|). Using the bound h(p) ≤ 2O(p2) [17], we
obtain a running time of 2p3·2O(p2) · (n+m).

5 No Polynomial Kernel for the Parameter Number of Routes

In the previous section, we showed that Minimum Shared Edges is fixed-parameter
tractable with respect to the number p of routes. It is well known that a problem is fixed-
parameter tractable if and only if it admits a problem kernel. Of particular interest is
the minimal possible size of a problem kernel. Accordingly, in this section we present the
following lower bound.

I Theorem 9. Minimum Shared Edges does not admit a polynomial-size problem kernel
with respect to the number p of routes, unless NP ⊆ coNP/poly.

We prove Theorem 9 via an OR-cross-composition [4], that is, given ` instances of an
NP-hard problem Q, all contained in one equivalence class of a polynomial-time computable
relation R of our choosing, we compute in polynomial-time an instance (G, s, t, p, k) of MSE
such that
(i) p is bounded by a polynomial function of the size of the largest input instance (bound-

edness), and
(ii) (G, s, t, p, k) is a yes-instance if and only if one of the input instances is a yes-instance

(correctness).
If this is possible, then MSE does not admit a polynomial-size problem kernel with respect
to p unless NP ⊆ coNP/poly [4].

It is tempting to use MSE itself as the problem Q, to assume that each of the instances
asks for the same number of routes and same number of shared edges by virtue of R, and to
OR-cross-compose by simply gluing the graphs in a chain-like fashion on sinks and sources.
This fulfills the boundedness constraint, but not necessarily the correctness constraint, since
the instances can “share” shared edges between them. Hence, we use the following problem
as the problem Q instead.

Almost Minimum Shared Edges (AMSE)
Input: An undirected graph G, two distinct vertices s, t ∈ V (G), and two integers p, k ∈ N

such that G has a (p, s, t)-routing with at most k + 1 shared edges.
Question: Is there a (p, s, t)-routing in G with at most k shared edges?

I Proposition 10. Almost Minimum Shared Edges is NP-hard.

Proposition 10 can be proven via a reduction from MSE to AMSE that introduces an
additional path of length k + 1 connecting s and t.

If we OR-cross-compose from AMSE instead, we know that if the resulting instance
has a p-routing with `(k + 1) − 1 shared edges, then without loss of generality each of the
original instances contributes at most k + 1 shared edges. This means that at least one of
the original instances is a yes-instance, giving the correctness of the OR-cross-composition.

6 W[1]-hardness with Respect to Treewidth

In this section, we present the following result.
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I Theorem 11. Minimum Shared Edges is W[1]-hard when parameterized by treewidth
and the number k of shared edges combined.

To prove Theorem 11, we give a parameterized reduction from the following problem.
Herein, ∪̇ denotes the disjoint union of sets.

Multicolored Clique (MCC)
Input: An undirected, k-partite graph G = (V = V1∪̇ . . . ∪̇Vk, E) with k ∈ N.
Question: Is there a set C ⊆ V of vertices such that G[C] is a k-clique in G?

MCC is W[1]-complete when parameterized by k [11]. In the remainder of the sec-
tion (G, k) is an arbitrary but fixed instance of MCC. We denote |Vi| =: ni and Vi =:
{vi1, . . . , vini} for all i ∈ [k]. We also say that G has the color classes 1, . . . , k, where each color
class i is represented by the vertices in Vi. We write Ei,j := {{v, w} ∈ E | v ∈ Vi, w ∈ Vj}
for the edges connecting vertices in Vi and Vj , i, j ∈ [k].

The reduction is based on the following idea. The routes we are to allocate will be split
evenly into contingents of routes for each color class by a simple gadget. For each of the color
classes, we introduce a selection gadget, that contains vertices (outputs) that correspond to
the vertices in the MCC instance. Each selection gadget will route almost all the routes in
its contingent to exactly one of its outputs. The outputs will then disperse (k − 1)-times a
number of routes corresponding to the ID of the vertex that this output represents. In this
way, the selection gadgets represent a choice of vertices, one for each color class. In order
to verify that the choice represents a clique, we introduce validation gadgets, corresponding
to the pairs of color classes. They will receive the routes from the outputs of the selection
gadgets, that is, the “input” of the validation gadgets is a sum of two IDs. They induce
a small number of shared edges only if the vertices according to the number of routes are
connected. In order to achieve this, we ensure that the sum of two IDs uniquely identifies
the vertices. We achieve this by using Sidon sets.

Vertex IDs based on Sidon sets. A Sidon set is a set S ⊆ N that fulfills that for each
i, j, k, ` ∈ S holds that if i + k = j + ` then {i, k} = {j, `}. That is, the sum of any two
distinct elements in S is unique. A Sidon set S with maxi∈S i ∈ O(|S|3) can be constructed
on O(|S|) time [9, page 42]. As mentioned, we use a Sidon set to distinguish numbers of
routes corresponding to vertices. For this purpose, we fix a Sidon set S with |S| = |V | and
assign to each vertex v ∈ V an ID g(v) ∈ S where g is a bijection. For technical reasons, we
need the following additional properties of g (and S):
(i) g(v) ≥ n3 for all v ∈ V ,
(ii) |g(v)− g(w)| ≥ n3 for all v, w ∈ V , v 6= w, and
(iii) |(g(v) + g(w))− (g(x) + g(y))| ≥ n3 for all v, w, x, y ∈ V , v 6= w, y 6∈ {v, w, x}.
Clearly, by adding one to each integer in the Sidon set S and then multiplying each inte-
ger by n3 we obtain a Sidon set and a mapping g that fulfill all of the above properties
simultaneously.

To enforce that only adjacent vertices are chosen in the selection gadgets, a part in a
validation gadget that represents an edge must have the property that, if many routes are
routed through it, then the number of routes corresponds to precisely the sum of IDs of
the endpoints of the edge that is represented by this part. To do this, we have to enforce
both upper and lower bounds on the sum of IDs. Upper bounds will be enforced by long
parallel paths; for lower bounds, we use the notion of “complement” of an ID. For this,
we define g(v) := M − g(v) for all v ∈ V , where M := n3 + maxv∈V g(v). Note that
g(v) + g(w) < g(x) + g(y) if and only if g(v) + g(w) > g(x) + g(y) for v, w, x, y ∈ V .
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Construction

In the following, we describe the construction of the instance (G′, s, t, p, k′) of MSE, given
instance (G, k) of MCC. Initially, G′ consists only of the two vertices s and t, the source
and the sink vertex, respectively. We describe the gadgets we use and their interconnections,
which will fully describe the construction of G′. As mentioned, our gadgetry consists of two
gadget types, selection gadgets on the one hand and validation gadgets on the other hand.

Before we proceed, we fix the following notation. An m-chain is a Pm+1, i.e., a path of
length m. A set of ` m-chains with common endpoints we call an (`,m)-bundle. A (q, `,m)-
feather is obtained by identifying one endpoint of an (`,m)-bundle with one endpoint of a
q-chain. In the following, by attaching a chain, bundle, or feather H to a vertex v, we mean
to identify v with an endpoint of H.

We set the number of paths p =
(
|E| −

(
k
2
))

+ k · ((k − 1) ·M + 1) + n and the number
of shared edges k′ = k · k10 + k · (k + 2(k − 1)) · k5 +

(
k
2
)
· 3k.

Selection gadgets. For each color class i ∈ [k] in the instance (G, k), we construct a
selection gadget i that selects exactly one vertex of Vi as follows.

We introduce vertex ci corresponding to color class i in (G, k). We connect s with ci
via a ((k − 1) · M + ni + 1, k′ + 1)-bundle. Each of the chains in the bundle will be in
exactly one route later. We introduce the vertices xi1, . . . , xini in G′, corresponding to the
vertices vi1, . . . , vini ∈ Vi, and we connect ci to each of them by a k10-chain. These vertices
serve as hubs for the routes later; only one of them will carry almost all routes in any
solution, representing the choice of a vertex into the clique.

In order to relay this choice to all the validation gadgets, we do the following. First, we
attach a k-chain to each vertex xij , 1 ≤ j ≤ ni. Let xij,1, . . . , xij,k denote the vertices on
the chain attached to xij , indexed by the distance on the chain to vertex xij ; each vertex
except xij,k will make its own connection to the validation gadgets. We connect each xij,`, ` ∈
[k− 1], with the vertex cic`′ in the validation gadget i, `′ (introduced below), where `′ = `

if ` < i and `′ = `+ 1 otherwise. The connection is made by attaching a (k5, g(vij), k′ + 1)-
feather to xij,` and cic`′ . Furthermore, to relay also the complement IDs, we connect each xij,`,
` ∈ [k − 1], with the vertex cic`′ by attaching a (k5, g(vij), k′ + 1)-feather to them. We k5-
subdivide each edge on the k-chain we attached to xij , that is, we replace each edge by
a k5-chain. We apply this to all edges on the path xi1, . . . , x

i
ni . This will ensure that in

each color class, only the “ID relay vertices” xij,` corresponding to one ID will carry more
than one route. Note that the only differences between the ID relay vertices are the second
entries of the feathers, which depend on the corresponding values of the Sidon set. Finally,
we connect vertex xij,k to t via a (2, k′ + 1)-bundle; this vertex ensures that each k5-chain
between two vertices xij,` corresponding to the chosen ID is shared.

Validation gadgets. We need to check that the chosen vertices are adjacent using only
their IDs. For this we encode the sums of IDs corresponding to two adjacent vertices into a
bundle which has to be passed by the routes relayed from the selection gadgets. The budget
will not allow to share any of the paths in this bundle. In this way, any sum of IDs has
to be below a certain threshold. To get a lower bound, we also introduce bundles for sums
of complement IDs of adjacent vertices. Finally, we ensure that an “ID” bundle and its
“complement ID” bundle can be used simultaneously, only if they correspond to the same
pair of vertices.
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We now describe the construction of a validation gadget i, j , i, j ∈ [k], i < j. We
introduce exactly two vertices cicj and cicj (recall that these vertices already appeared in
the description of the selection gadgets). We introduce a vertex for each edge between Vi
and Vj , that is, if {viy, vjz} ∈ Ei,j , then we introduce the vertex xiyx

j
z in G′. We connect

each xiyxjz to cicj by attaching a (k, g(viy) + g(vjz), k′ + 1)-feather, we connect xiyxjz to cicj
by attaching a (k, g(viy) + g(vjz), k′+ 1)-feather, and we connect xiyxjz to the sink vertex t by
attaching a k-chain. Only one of the connections to the sink will carry more than one route;
hence, it will be possible to use only one pair of complementary bundles (corresponding to
a pair of adjacent vertices).

For technical reasons, we need that each pair of bundles carries at least one route; this
is achieved by also connecting s with cicj via an (|Ei,j | − 1, k′ + 1)-bundle.

The correctness proof is deferred to the full version.

Upper-Bound on the Treewidth

To construct a tree decomposition of small width, we start out with a single bag A, where
A := {s} ∪ {t} ∪ {ci | i ∈ [k]} ∪ {cicj | 1 ≤ i < j ≤ k} ∪ {cicj | 1 ≤ i < j ≤ k}. Note that
|A| = 2 + k + 2

(
k
2
)
. Since all gadgets are interconnected via only vertices from the set A, in

order to construct a tree decomposition for G′, we can build a tree decomposition T′ of each
gadget separately, then add A to each of its bags, and then attach T′ to the bag A we started
with. Observe that each chain, bundle, and feather is a series-parallel graph. Since each
gadget allows a tree-like structure where each edge corresponds to a series-parallel graph
and each leaf is contained in A, we can find a tree decomposition of width at most 4 for
each gadget. Hence, the treewidth of the graph G′ as constructed above is upper-bounded
by 2

(
k
2
)

+ k + 2 + 4.

7 Conclusion

Minimum Shared Edges (MSE) is a fundamental NP-hard network routing problem. We
focused on exact solutions for the case of undirected, general graphs and provided several
classification results concerning the parameterized complexity of MSE.

It is fair to say that our fixed-parameter tractability results (based on tree decompositions
and the treewidth reduction technique [17]) are still far from practical relevance. Our studies
indicate, however, that MSE is a natural candidate for performing a wider multivariate
complexity analysis [12, 19] as well as studying restrictions to special graph classes. For
instance, there is a simple search tree algorithm solving MSE in O((p − 1)k · (m + n)2)
time which might be useful in some applications [14]. Moreover, it can be shown that on
unbounded undirected grids (without holes), due to combinatorial arguments, MSE can
be decided in constant time after reading the input [14]. On the contrary, ongoing work
indicates that MSE remains NP-hard when restricted to planar graphs (which might be of
particular relevance when studying street networks). NP-hardness also prevails in case of
graphs with maximum degree five [14].

In the known (pseudo) polynomial-time algorithms for graphs of bounded treewidth the
exponents in the running time depend exponentially on the treewidth [1, 2]. It would be
interesting to know whether a polynomial dependence is achievable.

A further line of future work is to study closely related problems and natural variants
of MSE. For instance, can the positive results be transferred to the more general Minimum
Vulnerability problem [2] (see the introductory section)? There are also some preliminary
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investigations concerning the problem Short Minimum Shared Edges (with an additional
upper bound on the maximum length of a route) [14]. Finally, it is natural to study “time-
sharing” aspects for the shared edges, yielding a further natural variant of MSE.
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We formalize and analyze a new automata-theoretic problem termed control improvisation. Given
an automaton, the problem is to produce an improviser, a probabilistic algorithm that randomly
generates words in its language, subject to two additional constraints: the satisfaction of an
admissibility predicate, and the exhibition of a specified amount of randomness. Control improvi-
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1 Introduction
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These three properties of a generation algorithm are not specific to music. Consider
black-box fuzz testing [20], which produces many inputs to a program hoping to trigger a
bug. Often, constraints are imposed on the generated inputs, e.g. in generative fuzz testing
approaches which enforce an appropriate format so that the input is not rejected immediately
by a parser. Also common are mutational approaches which guide the generation process
with a set of real-world seed inputs, generating only inputs which are variations of those in
the set. And of course, fuzzers use randomness to ensure that a variety of inputs are tried.
Thus we see that the inputs generated in fuzz testing have the same general requirements as
music improvisations: satisfying a set of constraints, being appropriately similar/dissimilar
to a reference, and being sufficiently diverse.

We propose control improvisation as a precisely-defined theoretical problem capturing
these requirements, which are common not just to the two examples above but to many other
generation problems. Potential applications also include home automation mimicking typical
occupant behavior (e.g., randomized lighting control obeying time-of-day constraints and
limits on energy usage [16]) and randomized variants of the supervisory control problem [5],
where a controller keeps the behavior of a system within a safe operating region (the language
of an automaton) while adding diversity to its behavior via randomness. A typical example
of the latter is surveillance: the path of a patrolling robot should satisfy various constraints
(e.g. not running into obstacles) and be similar to a predefined route, but incorporate some
randomness so that its location is not too predictable [15].

Our focus, in this paper, is on the theoretical characterization of control improvisation.
Specifically, we give a precise theoretical definition and a rigorous characterization of the
complexity of the control improvisation problem under various conditions on the inputs to the
problem. While the problem is distinct from any other we have encountered in the literature,
our methods are closely connected to prior work on random sampling from the languages
of automata and grammars [13, 9, 14], and sampling from the satisfying assignments of a
Boolean formula [6]. Probabilistic programming techniques [12] could be used for sampling
under constraints, but the present methods cannot be used to construct improvisers meeting
our definition.

In summary, this paper makes the following novel contributions:
Formal definitions of the notions of control improvisation (CI) and a polynomial-time
improvisation scheme (Sec. 2);
A theoretical characterization of the conditions under which improvisers exist (Sec. 3);
A polynomial-time improvisation scheme for a practical class of CI instances, involving
finite-memory admissibility predicates (Sec. 4);
#P-hardness and undecidability results for more general classes of the problem (Sec. 5);
A symbolic approach based on Boolean satisfiability (SAT) solving that is useful in the
case when the automata are finite-state but too large to represent explicitly (Sec. 6).

We conclude in Sec. 7 with a synopsis of results and directions for future work. For lack of
space, we include only selected proofs and proof sketches in the main body of the paper;
complete details may be found in the Appendix of the full version [11].

2 Background and Problem Definition

In this section, we first provide some background on a previous automata-theoretic method
for music improvisation based on a data structure called the factor oracle. We then provide
a formal definition of the control improvisation problem while explaining the choices made
in this definition.
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Figure 1 Factor oracle constructed from the word wref = bbac.

2.1 Factor Oracles

An effective and practical approach to machine improvisation of music (used for example in
the prominent OMax system [1]) is based on a data structure called the factor oracle [2, 7].
Given a word wref of length N that is a symbolic encoding of a reference melody, a factor
oracle F is an automaton constructed from wref with the following key properties: F has
N + 1 states, all accepting, chained linearly with direct transitions labelled with the letters in
wref, and with potentially additional forward and backward transitions. Figure 1 depicts F
for wref = bbac. A word w accepted by F consists of concatenated “factors” of wref, and its
dissimilarity with wref is correlated with the number of non-direct transitions. By assigning
a small probability α to non-direct transitions, F becomes a generative Markov model with
tunable “divergence” from wref. In order to impose more musical structure on the generated
words, our previous work [10] additionally requires that improvisations satisfy rules encoded
as deterministic finite automata, by taking the product of the generative Markov model and
the DFAs. While this approach is heuristic and lacks any formal guarantees, it has the basic
elements common to machine improvisation schemes: (i) it involves randomly generating
strings from a formal language typically encoded as an automaton, (ii) it enforces diversity
in the generated strings, and (iii) it includes a requirement on which strings are admissible
based on their divergence from a reference string. The definition we propose below captures
these elements in a rigorous theoretical manner, suitable for further analysis. In Sec. 4, we
revisit the factor oracle, sketching how the notion of divergence from wref that it represents
can be encoded in our formalism.

2.2 Problem Definition

We abbreviate deterministic and nondeterministic finite automata as DFAs and NFAs
respectively. We use the standard definition of probabilistic finite automata from [18], where
a string is accepted iff it causes the automaton to reach an accepting state with probability
greater than a specified cut-point p ∈ [0, 1). We call a probabilistic finite automaton, together
with a choice of cut-point so that its language is definite, a PFA. We write Pr[f(X) |X ← D]
for the probability of event f(X) given that the random variable X is drawn from the
distribution D.

I Definition 2.1. An improvisation automaton is a finite automaton (DFA, NFA, or PFA)
I over a finite alphabet Σ. An improvisation is any word w ∈ L(I), and I = L(I) is the set
of all improvisations.

I Definition 2.2. An admissibility predicate is a computable predicate α : Σ∗ → {0, 1}. An
improvisation w ∈ I is admissible if α(w) = 1. We write A for the set of all admissible
improvisations.
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Running Example. Our concepts will be illustrated with a simple example. Our aim is to
produce variations of the binary string s = 001 of length 3, subject to the constraint that
there cannot be two consecutive 1s. So Σ = {0, 1}, and I is a DFA which accepts all length-3
strings that do not have two 1s in a row. To ensure that our variations are similar to s, we
let our admissibility predicate α(w) be 1 if the Hamming distance between w and s is at
most 1, and 0 otherwise. Then the improvisations are the strings 000, 001, 010, 100, and
101, of which 000, 001, and 101 are admissible.

Intuitively, an improviser samples from the set of improvisations according to some
distribution. But what requirements must one impose on this distribution? Since we want
a variety of improvisations, we require that each one is generated with probability at most
some bound ρ. By choosing a small value of ρ we can thus ensure that many different
improvisations can be generated, and that no single one is output too frequently. Other
constraints are possible, e.g. requiring that every improvisation have nonzero probability,
but we view this as too restrictive: if there are a large number of possible improvisations,
it should be acceptable for an improviser to generate many but not all of them. Another
possibility would be to ensure variety by imposing some minimum distance between the
improvisations. This could be reasonable in a setting (such as music) where there is a natural
metric on the space of improvisations, but we choose to keep our setting general and not
assume such a metric. Finally, we require our generated improvisation to be admissible with
probability at least 1 − ε for some specified ε. When the admissibility predicate encodes
a notion of similarity to a reference string, for example, this allows us to require that our
improvisations usually be similar to the reference. Combining these requirements, we obtain
our definitions of an acceptable distribution over improvisations and thus of an improviser:

IDefinition 2.3. Given C = (I, α, ε, ρ) with I and α as in Definitions 2.1 and 2.2, ε ∈ [0, 1]∩Q
an error probability, and ρ ∈ (0, 1] ∩Q a probability bound, a distribution D : Σ∗ → [0, 1]
with support S is an (ε, ρ)-improvising distribution if:

S ⊆ I
∀w ∈ S,D(w) ≤ ρ
Pr[w ∈ A | w ← D] ≥ 1− ε

If there is an (ε, ρ)-improvising distribution, we say that C is (ε, ρ)-feasible (or simply
feasible). An (ε, ρ)-improviser (or simply improviser) for a feasible C is an expected finite-
time probabilistic algorithm generating strings in Σ∗ whose output distribution (on empty
input) is an (ε, ρ)-improvising distribution.

To summarize, if C = (I, α, ε, ρ) is feasible, there exists a distribution satisfying the
requirements in Definition 2.3, and an improviser is a probabilistic algorithm for sampling
from one.

Running Example. For our running example, C = (I, α, 0, 1/4) is not feasible since ε = 0
means we can only generate admissible improvisations, and since there are only 3 of those
we cannot possibly give them all probability at most 1/4. Increasing ρ to 1/3 would make
C feasible. Increasing ε to 1/4 would also work, allowing us to return an inadmissible
improvisation 1/4 of the time: an algorithm uniformly sampling from {000, 001, 101, 100}
would be an improviser for (I, α, 1/4, 1/4).

I Definition 2.4. Given C = (I, α, ε, ρ), the control improvisation (CI) problem is to decide
whether C is feasible, and if so to generate an improviser for C.
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Ideally, we would like an efficient algorithm to solve the CI problem. Furthermore, the
improvisers our algorithm produces should themselves be efficient, in the sense that their
runtimes are polynomial in the size of the original CI instance. This leads to our last
definition:

I Definition 2.5. A polynomial-time improvisation scheme for a class P of CI instances is a
polynomial-time algorithm S with the following properties:

for any C ∈ P, if C is feasible then S(C) is an improviser for C, and otherwise S(C) = ⊥
there is a polynomial p : R→ R such that if G = S(C) 6= ⊥, then G has expected runtime
at most p(|C|).

A polynomial-time improvisation scheme for a class of CI instances is an efficient, uniform
way to solve the control improvisation problem for that class. In Sections 4 and 5 we will
investigate which classes have such improvisation schemes.

3 Existence of Improvisers

It turns out that the feasibility of an improvisation problem is completely determined by the
sizes of I and A:

I Theorem 3.1. For any C = (I, α, ε, ρ), the following are equivalent:
(a) C is feasible.
(b) |I| ≥ 1/ρ and |A| ≥ (1− ε)/ρ.
(c) There is an improviser for C.

Proof. (a)⇒(b): Suppose D is an (ε, ρ)-improvising distribution with support S. Then
ρ|S| =

∑
w∈S ρ ≥

∑
w∈S D(w) = 1, so |I| ≥ |S| ≥ 1/ρ. We also have ρ|S ∩ A| =∑

w∈S∩A ρ ≥
∑
w∈S∩AD(w) = Pr[w ∈ A | w ← D] ≥ 1− ε, so |A| ≥ |S ∩A| ≥ (1− ε)/ρ.

(b)⇒(c): Defining N = d(1− ε)/ρe, we have |A| ≥ N . If N ≥ 1/ρ, then there is a subset
S ⊆ A with |S| = d1/ρe. Since 1/ d1/ρe ≤ ρ, the uniform distribution on S is a
(0, ρ)-improvising distribution. Since this distribution has finite support and rational
probabilities, there is an expected finite-time probabilistic algorithm sampling from it, and
this is a (0, ρ)-improviser. If instead N < 1/ρ, defining M = d1/ρe −N we have M ≥ 1.
Since |I| ≥ d1/ρe = N +M , there are disjoint subsets S ⊆ A and T ⊆ I with |S| = N

and |T | = M . Let D be the distribution on S ∪T where each element of S has probability
ρ and each element of T has probability (1 − ρN)/M = (1 − ρN)/ d(1/ρ)−Ne =
(1 − ρN)/ d(1− ρN)/ρe ≤ ρ. Then Pr[w ∈ A|w ← D] ≥ ρN ≥ 1 − ε, so D is a (ε, ρ)-
improvising distribution. As above there is an expected finite-time probabilistic algorithm
sampling from D, and this is an (ε, ρ)-improviser.

(c)⇒(a): Immediate. J

I Remark. In fact, whenever C is feasible, the construction in the proof of Theorem 3.1 gives
an improviser which works in nearly the most trivial possible way: it has two finite lists S
and T , flips a (biased) coin to decide which list to use, and then returns an element of that
list uniformly at random.

A consequence of this characterization is that when there are infinitely-many admissible
improvisations, there is an improviser with zero error probability:

I Corollary 3.2. If A is infinite, (I, α, 0, ρ) is feasible for any ρ ∈ (0, 1] ∩Q.

In addition to giving conditions for feasibility, Theorem 3.1 yields an algorithm which is
guaranteed to find an improviser for any feasible CI problem.
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I Corollary 3.3. If C is feasible, an improviser for C may be found by an effective procedure.

Proof. The sets I and A are clearly computably enumerable, since α is computable. We
enumerate I and A until enough elements are found to perform the construction in Theorem
3.1. Since C is feasible, the theorem ensures this search will terminate. J

We cannot give an upper bound on the time needed by this algorithm without knowing
something about the admissibility predicate α. Therefore although as noted in the remark
above whenever there are improvisers at all there is one of a nearly-trivial form, actually
finding such an improviser could be difficult. In fact, it could be faster to generate an
improviser which is not of this form, as seen for example in Sec. 4.

I Corollary 3.4. The set of feasible CI instances is computably enumerable but not computable.

Proof. Enumerability follows immediately from the previous Corollary. If checking whether C
is feasible were decidable, then so would be checking if |A| ≥ (1−ε)/ρ, but this is undecidable
since α can be an arbitrary computable predicate. J

4 Finite-Memory Admissibility Predicates

In order to bound the time needed to find an improviser, we must constrain the admissibility
predicate α. Perhaps the simplest type of admissibility predicate is one which can be
computed by a DFA, i.e., one such that there is some DFA D which accepts a word w ∈ Σ∗
iff α(w) = 1. This captures the notion of a finite-memory admissibility predicate, where
admissibility of a word can be determined by scanning the word left-to-right, only being
able to remember a finite number of already-seen symbols. An example of a finite-memory
predicate α is one such that α(w) = 1 iff each subword of w of a fixed constant length satisfies
some condition. By the pumping lemma, such predicates have the property that continually
repeating some section of a word can produce an infinite family of improvisations, which
could be a disadvantage if looking for “creative”, non-repetitive improvisations. However, in
applications such as music we impose a maximum length on improvisations, so this is not an
issue.

I Example 4.1 (Factor Oracles). Recall that one way of measuring the divergence of an
improvisation w generated by the factor oracle F built from a word wref is by counting the
number of non-direct transitions that w causes F to take. Since DFAs cannot count without
bound, we can use a sliding window of some finite size k. Then our admissibility predicate α
can be that at any point as F processes w, the number of the previous k transitions which
were non-direct lies in some interval [`, h] with 0 ≤ ` ≤ h ≤ k. This predicate can be encoded
as a DFA of size O(|F | · 2k) (see the Appendix for details). The size of the automaton grows
exponentially in the size of the window, but for small windows it can be reasonable.

When the admissibility predicate is finite-memory and the automaton I is a DFA, there is
an efficient procedure to test if an improviser exists and synthesize one if so. The construction
is similar to that of Theorem 3.1, but avoids explicit enumeration of all improvisations to
be put in the range of the improviser. To avoid enumeration we use a classic method of
uniformly sampling from the language of a DFA D (see for example [13, 9]). The next few
lemmas summarize the results we need, proofs being given in the Appendix for completeness.
The first step is to determine the size of the language.

I Lemma 4.2. If D is a DFA, |L(D)| can be computed in polynomial time.
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Figure 2 Cases for Theorem 4.5. The dark gray region cannot occur.

Once we know the size of L(D) we can efficiently sample from it, handling infinite
languages by sampling from a finite subset of a desired size.

I Lemma 4.3. There is a polynomial p(x, y) such that for any N ∈ N and DFA D with
infinite language, there is a probabilistic algorithm S which uniformly samples from a subset
of L(D) of size N in expected time at most p(|D|, logN), and which can be constructed in
the same time.

I Lemma 4.4. There is a polynomial q(x) such that for any DFA D with finite language,
there is a probabilistic algorithm S which uniformly samples from L(D) in expected time at
most q(|D|), and which can be constructed in the same time.

Using these sampling techniques, we have the following:

I Theorem 4.5. The class of CI instances C where I is a DFA and α is computable by a
DFA has a polynomial-time improvisation scheme.

Proof. The proof considers five cases. We first define some notation. Let D denote the DFA
giving α. Letting A be the product of I and D, we have A = L(A). This product can be
computed in polynomial time since the automata are both DFAs, and |A| is polynomial in
|C| and |D|. In some of the cases below we will also use a DFA B which is the synchronous
product of I and the complement of A. Clearly L(B) = I \A, and the size of B and the time
needed to construct it are also polynomial in |C| and |D|.

Next we compute |A| = |L(A)| and |I| = |L(I)| in polynomial time using Lemma 4.2.
There are now several cases (illustrated in Figure 2):
(A) |A| =∞: Applying Lemma 4.3 to A with N = d1/ρe, we obtain a probabilistic algorithm

S which uniformly samples from a subset of L(A) = A of size d1/ρe. Since 1/ d1/ρe ≤ ρ,
we have that S is a (0, ρ)-improviser and return it.

(B) 1/ρ ≤ |A| <∞: Applying Lemma 4.4 to A, we obtain a probabilistic algorithm S which
uniformly samples from L(A) = A. Since 1/|A| ≤ ρ, we have that S is a (0, ρ)-improviser
and return it.

(C) (1− ε)/ρ ≤ |A| < 1/ρ and |I| = ∞: Applying Lemma 4.4 to A we obtain S as in the
previous case. Defining M = d1/ρe − |A|, we have ∞ = |L(B)| > M ≥ 1. Applying
Lemma 4.3 to B with N = M yields a probabilistic algorithm S′ which uniformly samples
from a subset of L(B) = I \ A of size M . Let G be a probabilistic algorithm which
with probability ρ|A| executes S, and otherwise executes S′. Then since L(A) = A and
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L(B) = I\A are disjoint, every word generated by G has probability either (ρ|A|)/|A| = ρ

(if it is in A) or (1− ρ|A|)/M = (1− ρ|A|)/ d(1− ρ|A|)/ρe ≤ ρ (if it is in I \A). Also, G
outputs a member of A with probability ρ|A| ≥ 1− ε, so G is an (ε, ρ)-improviser and
we return it.

(D) (1 − ε)/ρ ≤ |A| < 1/ρ ≤ |I| < ∞: As in the previous case, except obtaining S′ by
applying Lemma 4.4 to B. Since |I| ≥ d1/ρe, we have |L(B)| = |I \A| ≥M and so G as
constructed above is an (ε, ρ)-improviser.

(E) |I| < 1/ρ or |A| < (1− ε)/ρ: By Theorem 3.1, C is not feasible, so we return ⊥.
This procedure takes time polynomial in |I|, |D|, and log(1/ρ), so it is polynomial-time.

Also, a fixed polynomial in these quantities bounds the expected runtime of the generated
improviser, so the procedure is a polynomial-time improvisation scheme. J

Running Example. Recall that for our running example C = (I, α, 1/4, 1/4), we have
I = {000, 001, 010, 100, 101} and A = {000, 001, 101}. Since |A| = 3 and |I| = 5, we are
in case (4) of Theorem 4.5. So our scheme uses Lemma 4.4 to obtain S and S′ uniformly
sampling from A and I \A = {010, 100} respectively. It returns a probabilistic algorithm G

that executes S with probability ρ|A| = 3/4 and otherwise executes S′. So G returns 000,
001, and 101 with probability 1/4 each, and 010 and 100 with probability 1/8 each. The
output distribution of G satisfies our conditions, so it is an improviser for C.

5 More Complex Automata

While counting the language of a DFA is easy, in the case of an NFA it is much more difficult,
and so there are unlikely to be polynomial-time improvisation schemes for more complex
automata. Let N1 and N2 be the classes of CI instances where I or α respectively are given
by an NFA, and the other is given by a DFA. Then denoting by N either of these classes, we
have (deferring full proofs from this section to the Appendix):

I Theorem 5.1. Determining whether C ∈ N is feasible is #P-hard.

Proof sketch. The problem of counting the language of an NFA, which is #P-hard [14], is
polynomially reducible to that of checking if C ∈ N is feasible. J

I Remark. Determining feasibility of N -instances is not a counting problem, so it is not
#P-complete, but it is clearly in P#P: we construct the automata I and A as in Theorem
4.5 (now they can be NFAs), count their languages using #P, and apply Theorem 3.1.

I Corollary 5.2. If there is a polynomial-time improvisation scheme for N , then P = P#P.

This result indicates that in general, the control improvisation problem is probably
intractable in the presence of NFAs. Some special cases could still be handled in practice:
for example, if the NFA is very small it could be converted to a DFA. Another tractable case
is where although one of I or A (as in Theorem 4.5) is an NFA, it has infinite language (this
can clearly be detected in polynomial time). If A is an NFA with infinite language we can
use case (1) of the proof of Theorem 4.5, since an NFA can be pumped in the same way as a
DFA. If instead A is a DFA with finite language but I is an NFA with infinite language, one
of the other cases (2), (3), or (5) applies, and in case (3) we can sample I \A by pumping
I enough to ensure we get a string longer than any accepted by A. Table 1 in Section 7
summarizes these cases.

For still more complex automata, the CI problem becomes even harder. In fact, it is
impossible if we allow either I or α to be given by a PFA. Let P1 and P2 be the classes of
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CI instances where each of these respectively are given by a PFA, and the other is given by a
DFA. Then letting P be either of these classes, we have:

I Theorem 5.3. Determining whether C ∈ P is feasible is undecidable.

Proof sketch. Checking the feasibility of C amounts to counting the language of a PFA, but
determining whether the language of a PFA is empty is undecidable [17, 8]. J

6 Symbolic Techniques

Previously we have assumed that the automata defining a control improvisation problem
were given explicitly. However, in practice there may be insufficient memory to store full
transition tables, in which case an implicit representation is required. This prevents us
from using the polynomial-time improvisation scheme of Theorem 4.5, so we must look for
alternate methods. These will depend on the type of implicit representation used. We focus
on representations of DFAs and NFAs by propositional formulae, as used for example in
bounded model checking [4].

I Definition 6.1. A symbolic automaton is a transition system over states S ⊆ {0, 1}n and
inputs Σ ⊆ {0, 1}m represented by:

a formula init(x) which is true iff x ∈ {0, 1}n is an initial state,
a formula acc(x) which is true iff x ∈ {0, 1}n is an accepting state, and
a formula δ(x, a, y) which is true iff there is a transition from x ∈ {0, 1}n to y ∈ {0, 1}n
on input a ∈ {0, 1}m .

A symbolic automaton accepts words in Σ∗ according to the usual definition for NFAs.

Given a symbolic automaton, it is straightforward to generate a formula whose models
correspond, for example, to accepting paths of at most a given length (see [4] for details). A
SAT solver can then be used to find such a path. We refer to the length of the longest simple
accepting path as the diameter of the automaton. This will be an important parameter in the
runtime of our algorithms. In some cases an upper bound on the diameter is known ahead
of time: for example, if we only want improvisations of up to some maximum length, and
have encoded that constraint in I. If the diameter is not known, it can be found iteratively
with SAT queries asserting the existence of a simple accepting path of length n, increasing n
until we find no such path exists. The diameter could be exponentially large compared to
the symbolic representation, but this is a worst-case scenario.

Our approach for solving the control improvisation problem with symbolic automata will
be to adapt the procedure of Theorem 4.5, replacing the counting and sampling techniques
used there with ones that work on symbolic automata. For language size estimation we use
the following:

I Lemma 6.2. If S is a symbolic automaton with diameter D, for any τ, δ > 0 we can
compute an estimate of |L(S)| accurate to within a factor of 1 + τ in time polynomial in |S|,
D, 1/τ , and log(1/δ) relative to an NP oracle.

Sampling from infinite languages can be done by a direct adaptation of the method for
explicit DFAs in Lemma 4.3.

I Lemma 6.3. There is a polynomial p(x, y, z) such that for any N ∈ N and symbolic
automaton Y with infinite language and diameter D, there is a probabilistic oracle algorithm
SNP which uniformly samples from a subset of L(Y) of size N in expected time at most
p(|Y|, D, logN) and which can be constructed in the same time.
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To sample from a finite language, we use techniques for almost-uniform generation of
models of propositional formulae. In theory uniform sampling can be done exactly using
a SAT solver [3], but the only algorithms which work in practice are approximate uniform
generators such as UniGen [6]. This algorithm guarantees that the probability of returning
any given model is within a factor of 1 + τ of the uniform probability, for any given τ > 6.84
(the constant is for technical reasons specific to UniGen). UniGen can also do projection
sampling, i.e., sampling where two models are considered identical if they agree on the set of
variables being projected onto. Henceforth, for simplicity, we will assume we have a generic
almost-uniform generator that can do projection, and will ignore the τ > 6.84 restriction
imposed by UniGen (although we might want to abide by this in practice in order to be
able to use the fastest available algorithm). We assume that the generator runs in time
polynomial in 1/τ and the size of the given formula relative to an NP oracle, and succeeds
with at least some fixed constant probability.

I Lemma 6.4. There is a polynomial q(x, y, z) such that for any τ > 0 and symbolic
automaton Y with finite language and diameter D, there is a probabilistic oracle algorithm
SNP which samples from L(S) uniformly up to a factor of 1 + τ in expected time at most
q(|Y|, D, 1/τ), and which can be constructed in the same time.

Now we can put these methods together to get a version of Theorem 4.5 for symbolic
automata. The major differences are that this scheme requires an NP oracle, has some
probability of failure (which can be specified), and returns an improviser with a slightly
sub-optimal value of ρ. The proof generally follows that of Theorem 4.5, so we only sketch
the differences here (see the Appendix for a full proof).

I Theorem 6.5. There is a procedure that given any CI problem C where I and α are given
by symbolic automata with diameter at most D, and any ε ∈ [0, 1], ρ ∈ (0, 1], and τ, δ > 0,
if C is (ε, ρ/(1 + τ))-feasible returns an (ε, (1 + τ)2(1 + ε)ρ)-improviser with probability at
least 1− δ. Furthermore, the procedure and the improvisers it generates run in expected time
given by some fixed polynomial in |C|, D, 1/τ , and log(1/δ) relative to an NP oracle.

Proof sketch. We first compute estimates EA and EI of |A| and |I| respectively using
Lemma 6.2. Then we break into cases as in Theorem 4.5:
(A) EA =∞: As in case (1) of Theorem 4.5, using Lemma 6.3 in place of Lemma 4.3. We

obtain a (0, ρ)-improviser.
(B) 1/ρ ≤ EA <∞: As in case (2) of Theorem 4.5, using Lemma 6.4 in place of Lemma 4.4.

Since we can do only approximate counting and sampling, we obtain a (0, (1 + τ)2ρ)-
improviser.

(C) (1− ε)/ρ ≤ EA < 1/ρ and EI =∞: As in case (3) of Theorem 4.5, using Lemmas 6.3
and 6.4 in place of Lemmas 4.3 and 4.4. Our use of approximate counting/sampling
means we obtain only an (ε, (1 + τ)2ρ)-improviser.

(D) (1− ε)/ρ ≤ EA < 1/ρ ≤ EI <∞: We cannot use the procedure in case (4) of Theorem
4.5, since it may generate an element of L(B) with too high probability if our estimate
EA is sufficiently small. Instead we sample almost-uniformly from L(A) with probability
ε, and from L(I) with probability 1− ε. This yields an (ε, (1 + τ)2(1 + ε)ρ)-improviser.

(E) EI < 1/ρ or EA < (1− ε)/ρ: We return ⊥.
If C is (ε, ρ/(1 + τ))-feasible, case (5) happens with probability less than δ by Theorem

3.1. Otherwise, we obtain an (ε, (1 + τ)2(1 + ε)ρ)-improviser. J

Therefore, it is possible to approximately solve the control improvisation problem when the
automata are given by a succinct propositional formula representation. This allows working
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Table 1 Complexity of the control improvisation problem when I and α are given by various
different types of automata. The cell marked ‘-’ is impossible since L(A) ⊆ L(I).

α DFA NFA PFA
I L(A) =∞ L(A) <∞

DFA
poly-time

#P-hard
NFA

L(I) =∞

L(I) <∞ #P-hard -

PFA undecidable

with general NFAs, and very large automata that cannot be stored explicitly, but comes at
the cost of using a SAT solver (perhaps not a heavy cost given the dramatic advances in the
capacity of SAT solvers) and possibly having to increase ρ by a small factor.

7 Conclusion

In this paper, we introduced control improvisation, the problem of creating improvisers
that randomly generate variants of words in the languages of automata. We gave precise
conditions for when improvisers exist, and investigated the complexity of finding improvisers
for several major classes of automata. In particular, we showed that the control improvisation
problem for DFAs can be solved in polynomial time, while it is intractable in most cases
for NFAs and undecidable for PFAs. These results are summarized in Table 1. Finally, we
studied the case where the automata are presented symbolically instead of explicitly, and
showed that the control improvisation problem can still be solved approximately using SAT
solvers.

One interesting direction for future work would be to find other tractable cases of the
control improvisation problem deriving from finer structural properties of the automata than
just determinism. Extensions of the theory to other classes of formal languages, for instance
context-free languages represented by pushdown automata or context-free grammars, are
also worthy of study. Finally, we are investigating further applications, particularly in the
areas of testing, security, and privacy.
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Abstract
We consider the problem of inferring the implicit distribution specified by a probabilistic program.
A popular inference technique for probabilistic programs called Markov Chain Monte Carlo or
MCMC sampling involves running the program repeatedly and generating sample values by
perturbing values produced in “previous runs”. This simulates a Markov chain whose stationary
distribution is the distribution specified by the probabilistic program.

However, it is non-trivial to implement MCMC sampling for probabilistic programs since each
variable could be updated at multiple program points. In such cases, it is unclear which values
from the “previous run” should be used to generate samples for the “current run”.

We present an algorithm to solve this problem for the general case and formally prove that the
algorithm is correct. Our algorithm handles variables that are updated multiple times along the
same path, updated along different paths in a conditional statement, or repeatedly updated inside
loops, We have implemented our algorithm in a tool called InferX. We empirically demonstrate
that InferX produces the correct result for various benchmarks, whereas existing tools such as
R2 and Stan produce incorrect results on several of these benchmarks.
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1 Introduction

Recent years have seen a wide variety of languages for writing probabilistic programs, as well
as tools and techniques for performing inference over these programs [7, 16, 24, 21, 8, 14, 22].
One of the main advantages of probabilistic programming is that it allows developers who
are familiar with programming language notation, but unfamiliar with machine learning,
to focus on the specification of the probabilistic model, and not worry about how to
implement inference algorithms over the model. Probabilistic programming tools are able to
automatically generate inference code from specifications written as probabilistic programs,
thus reducing the degree of expertise required to implement a machine learning algorithm.

We focus on sampling-based inference, in particular, Metropolis-Hastings (MH) based
sampling algorithms [3] for probabilistic programming languages. MH based sampling involves
execution of the input program with the characteristic that the sample generated at the
“current run” depends on the sample generated during the “previous run”.
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In a probabilistic program, a variable can be assigned values more than once in a single
path or assigned values along different paths, and it is unclear what “previous value” to use
in generating a “current value” of the variable. For existing probabilistic programming tools
such as R2 [22] and Stan [12], the notion of “previous value” used is incorrect (we give
examples and more details later), and therefore these tools can produce incorrect results.

In this paper, we precisely define a sample drawn from the distribution represented by the
program by specifying a big-step operational semantics for probabilistic programs. We show
that this operational semantics is equivalent to the widely accepted denotational semantics
of probabilistic programs [17].

Based on this notion of a sample, we then propose a simple MH algorithm for probabilistic
programs where a variable can be updated at multiple program points. Our main insight is
to track the ordered list of values that a variable gets assigned during a run, together with
the distributions that were used to generate these values. We present a procedure to make
use of values from such a list generated during a “previous run” to generate samples for the
“current run”, as well as calculate the quantities (such as acceptance ratio) that are needed
for MH sampling. Complications arise because each run of the program can follow different
paths with potentially different number of probabilistic assignments to a variable along each
path resulting in lists of different lengths across different runs. Our algorithm handles all
such cases.

We have implemented our algorithm in a tool called InferX, and compare it with existing
probabilistic programming tools such as R2 and Stan. We prove formally that our algorithm
correctly implements MH for probabilistic programs. We also demonstrate cases where
existing tools produce incorrect results, whereas our algorithm produces correct results in all
cases.

2 Overview

In this section, we first introduce probabilistic programs with an example, and then motivate
our algorithm by describing the complications that arise while performing correct MH
sampling-based inference for probabilistic programs.

Consider the probabilistic program in Figure 1 that is defined over two Boolean variables
x and y. The program tosses two fair coins (modeled by calls to Bernoulli(0.5)) in lines
2 and 3, and assigns the outcomes to the variables x and y respectively. The observe
statement observe(x || y) in line 4 blocks all executions of the program that do not satisfy
the Boolean expression (x || y). The meaning of this program is the distribution over its
return expression (which is the tuple (x, y) conditioned by permitted executions of the
program). This distribution is: Pr(x = false, y = false) = 0, and Pr(x = false, y = true)
= Pr(x = true, y = false) = Pr(x = true, y = true) = 1/3.

1: bool x, y;
2: x ~ Bernoulli(0.5);
3: y ~ Bernoulli(0.5);
4: observe(x || y);
5: return(x, y);

Figure 1 A simple probabilistic
program.

Inference. Probabilistic inference is the task of determin-
ing the distribution implicitly specified by a probabilistic
program. Inference can be performed by executing the
program several times and averaging over the resulting
samples. To do this efficiently, many probabilistic program-
ming tools [8, 12, 22] employ Markov Chain Monte Carlo
(MCMC) sampling algorithms [19] and their variants.

To make this paper self-contained, we give a brief
overview of the most basic form of an MCMC algorithm which is the Metropolis-Hastings
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(MH) algorithm [19]. The MH algorithm takes a target probability distribution T (x̄) as input,
and returns samples that are distributed according to this distribution by performing the
following steps:
1. First, a proposal distribution Q(vold → vnew) is used to pick a new value vnew for the

variable x̄ by appropriately perturbing its old value vold.
2. Next, a parameter β called the acceptance ratio is computed. It is used to decide whether

to accept or reject the new sampled value vnew for x̄, and is defined as follows:

β = min
{

1, T (vnew)×Q(vnew → vold)
T (vold)×Q(vold → vnew)

}
3. The sample is accepted if a random draw from a Bernoulli distribution with mean β (1

occurs with probability β and 0 occurs with probability 1− β) results in a 1, otherwise it
is rejected.

The MH algorithm executes the above steps iteratively to generate samples.
A probabilistic program P denotes a target distribution T implicitly (see Section 3 for a

formal definition of the target distribution denoted by a probabilistic program).
In order to perform MH sampling on a probabilistic program, we need to run the program

P which results in the state being constructed incrementally, as P executes along a path.
Along the path, the program encounters several probabilistic assignments to variables, and
to generate a new value for each variable, we require the corresponding old value of the
variable from the previous run of the program. Such an association between old and new
values is easy if each variable is assigned only once, or if the program is a single path without
branches or loops.

However, associating old values with new values is non-trivial for the general case. If
the program has branches or loops, the previous value corresponding to a probabilistic
assignment may come from an assignment in a different branch than the one currently
being executed. Also, different branches may generate samples for the same variable from
different distributions. Alternatively, a variable may have been assigned multiple times
during execution of the previous run, and it is sometimes unclear which of these values is to
be used to generate values for the current run. So, care must be taken to compute the MH
acceptance ratio correctly. Due to these reasons, implementing the above 3 steps of the MH
algorithm for a probabilistic program is non-trivial.

We illustrate the difficulties with implementing a correct sampling algorithm via the following
examples.

Example 1 (mixtures). Consider the probabilistic program shown in Figure 2(a). The
program is defined over two variables x and y. The variable y is drawn from a mixture of a
Gaussian distribution and a Gamma distribution (specified by the if-then-else statement in
lines 3–6), whereas the variable x is drawn from another Gaussian distribution (line 2), and
determines the mixture proportion.

Suppose we perform MH sampling for this example. Assume that during run n, the
program follows the path 1, 2, 3, 4, 7. That is, x was assigned a value greater than 0, say
0.1, and the “then” branch of the conditional statement was taken, and y was assigned a
value say 9.6 from the distribution Gaussian(10, 2).

Next, we consider how to execute run n+ 1 using MH sampling. During run n+ 1, at
line 2, in order to generate a current value for x, we need to propose a value for x using a
proposal distribution Qx centered around the old value of x, namely 0.1, and calculate the

FSTTCS 2015



478 A Provably Correct Sampler for Probabilistic Programs

1: double x, y;
2: x ~ Gaussian(0, 1);
3: if (x > 0) then
4: y ~ Gaussian(10, 2);
5: else
6: y ~ Gamma(3, 3);
7: return y;

(a) (b)

(c) (d)

Figure 2 A probabilistic program for a mixture model together with inference results.

parameter βx as the ratio described earlier. Now suppose the current value of x so chosen is
−0.05 which is less than 0, then the “else" branch is taken, and we need to produce a current
value for y.

How should we now generate the current value for y? Prior work such as [29] use the
value of y from the most recent run which took the “else” branch, say run n− 3 (assuming
runs n−2 and n−1 took the “then” branch) and use that value to generate the current value
of y. The probabilistic programming tools R2 [22] and Stan [12] follow the same algorithm.

However, if a value from a run other than the previously accepted run is used, then this
would result in the algorithm converging to the incorrect distribution. This is shown in
the plots in Figure 2. Plot 2(b) depicts the distribution inferred by R2 for the program in
Figure 2(a), and plot 2(c) shows the distribution computed by Stan for the same program.
The density function of the correct distribution for this example is shown by the line graph
labelled Actual in each of the plots in Figure 2.

Example 2 (loop). Consider the probabilistic program for a hierarchical model shown in
Figure 3(a). The loop in lines 4–7 constructs a series of Gaussian distributions with the final
answer also being a Gaussian distribution (shown by the line graphs labelled Actual in the
plots of Figure 3). The variable x is assigned 11 times during an execution of the program.

Tools like R2 and Stan use the last value that x was assigned in the previous run
to generate each of the 11 values in the current run. So, these tools produce incorrect
results as shown by the density histogram plots 3(b) and 3(c), respectively. To perform MH
sampling correctly, it is necessary to record each of the 11 values generated for x and use the
corresponding previous value to propose a new value in the current run.

In addition to keeping track of previous values correctly, it is also important to record
the distributions in the corresponding sampling statements whose execution generated those
values. This is necessary so that the density of the previous value may be computed w.r.t.
the correct target distribution while computing the acceptance ratio.
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1: double x;
2: int i = 0;
3: x ~ Gaussian(0, 1);
4: while (i < 10) do {
5: x ~ Gaussian(x, 3);
6: i = i+1;
7: }
8: return x;

(a) (b)

(c) (d)

Figure 3 A probabilistic program for a hierarchical model together with inference results.

Algorithm. Motivated by the above examples, we desire to come up with an algorithm
which correctly chooses the appropriate value from the previous run to be used to propose
values for the current run, and computes the correct acceptance ratio in all possible scenarios.

Our sampling algorithm, called InferX, is based on a sampling-based operational
semantics for probabilistic programs that specifies the meaning of a sample by clearly
setting out all the values generated in an execution that would need to be tracked. The
operational semantics also specifies how to compute the probability density for the sample
generated in an execution so that the MH acceptance ratio may be computed correctly. In
addition, InferX uses samples from only the previously accepted run to propose new values in
the current run. We also prove that by doing this, InferX computes the correct distribution
specified by any input probabilistic program. We informally describe the main ideas behind
the algorithm next. A more complete and formal description is given in Sections 3 and 4.

InferX uses a list for each variable in the program to keep track of the probabilistic
assignments to that variable during a single run of the program (as opposed to the standard
variable to value mapping). Each element of the list is a pair whose first element is the value
generated for the corresponding variable when a sampling statement was encountered during
the execution of the program. The second element of the pair is used to store information
about the distribution used in the sampling statement and its parameters. This information
about distributions is stored in order to compute the MH acceptance ratio correctly.

Specifically, InferX maintains two lists for each sampled variable x in the program:
1. The first list lpre is used to store the samples generated for x together with the distribution

information at the corresponding sampling statement executed in the most recent run
which produced a sample that was accepted. The values in this list are used to propose
new values for x. The distribution information is used to update the MH acceptance
ratio.

2. The second list lcur is used to store the samples produced for x paired with the distribution
information at the corresponding sampling statement executed in the current run of the
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program. When a sample is accepted, lpre is assigned the value of lcur. Otherwise, lcur is
discarded, and constructed again as the program is executed and new values are proposed
for x.

We now informally show how InferX correctly works for the previous examples.

Example 1 (mixtures). For the program in Figure 2(a), the variables x and y are sampled
only once in every run of the program. Therefore, the lpre and lcur lists for both x and y
will each contain one element at the end of every run. The sample value in the lpre and lcur
lists for x is produced by the execution of the probabilistic assignment statement in line 2.
The distribution information for x would note that the distribution at line 2 is a standard
Gaussian distribution.

On the other hand, the sample value and distribution information in the lpre and lcur
lists for y can be generated either by executing line 4 (if the “then” branch is taken) or line 6
(if the “else” branch is taken). This ensures that correct previous values are used to propose
new values of y even when different branches are taken in different runs of the program.

Storing the distribution information also enables the computation of the density of the
previous sample w.r.t. to the correct target distribution which is needed for calculating the
MH acceptance ratio. By doing this, InferX is able to produce the correct answer as shown
by the plot in Figure 2(d).

Example 2 (loop). The program in Figure 3(a) contains one random variable x which is
sampled 11 times during an execution (one at line 3 and ten at line 5). Thus, the lpre and
lcur lists for x will each contain 11 elements at the end of every run.

The first value in lpre is generated by the probabilistic assignment statement in line 3 in
the previous run. This value is used to propose a new value for x when line 3 is executed in
the current run. This new proposed value is added as the first element of the first pair in the
list lcur for x. The corresponding distribution information in both the lists specifies that the
target is the standard Gaussian distribution.

Similarly, the other 10 values in lpre come from the execution of the probabilistic assign-
ment statement in line 5 during the iterations of the while loop in the previous run, and are
used to propose a new value for x when line 5 is executed in the corresponding iteration in
the current run. Each proposed value for x is added to the list lcur as the first element of
the corresponding pair. The distribution information for each of these pairs in both lists
specifies that the target distribution is a Gaussian distribution whose mean is the value of x
before line 5 is executed in that iteration and whose standard deviation is 3.

As noted earlier, the distribution information is used to compute the density of the
previous samples w.r.t. to the correct target distribution to enable the correct computation
of the MH acceptance ratio. InferX computes the correct distribution for this example also
as can be seen in the plot 3(d).

Notice that we only maintain the sequence of values generated for a variable during an
execution. It is not necessary to keep track of the program points which produced these
values. Also, note that different runs of the program may produce lists of different lengths
for a particular variable, since different runs can follow different paths in the program.

If the list lpre for a given variable x has fewer elements than those needed to produce
values for the current run, then, for the extra samples that are produced in the current run,
the algorithm resorts to Metropolis independent sampling [10, 27, 18]. It is a modification to
the MH algorithm in which the proposal distribution is independent of the previous sample
value. The MH acceptance ratio is also updated appropriately.
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x ∈ Vars
uop ::= · · · C unary operators
bop ::= · · · C binary operators
ϕ,ψ ::= · · · logical formula

E ::= expressions
| x variable
| c constant
| E1 bop E2 binary operation
| uop E unary operation

S ::= statements
| skip skip
| x = E deterministic assignment
| x ∼ Dist(θ̄) probabilistic assignment
| observe(ϕ) observe

| S1;S2 sequential composition
| if E then S1 else S2 conditional composition
| while E doS while−do loop

P ::= S return (E1, . . . , En) program

Figure 4 Syntax of Prob.

• Unnormalized Semantics for Statements
JSK ∈ (Σ→ [0, 1])→ Σ→ [0, 1]

JskipK(f)(σ) := f(σ)
Jx = EK(f)(σ) := f(σ[x← σ(E)])

Jx ∼ Dist(θ̄)K(f)(σ) :=
∫
v∈Val Dist(σ(θ̄))(v)× f(σ[x← v]) dv

Jobserve(ϕ)K(f)(σ) :=
{

f(σ) if σ(ϕ) = true
0 otherwise

JS1;S2K(f)(σ) := JS1K(JS2K(f))(σ)

Jif E thenS1 elseS2K(f)(σ) :=
{

JS1K(f)(σ) if σ(E) = true
JS2K(f)(σ) otherwise

Jwhile E doSK(f)(σ) := supn≥0 Jwhile E don SK(f)(σ)
where

while E do0 S = observe(false)
while E don+1 S = if E then (S; while E don S) else (skip)

• Normalized Semantics for Programs
JS return (E1, . . . , En)K ∈ (Rn → [0, 1])→ [0, 1]

JS return (E1, . . . , En)K(f) := JSK(λσ. f(σ(E1), . . . , σ(En)))(⊥)
JSK(λσ. 1)(⊥)

where ⊥ denotes the default initial state.

Figure 5 Denotational Semantics of Prob.

On the other hand, if the list lpre for a given variable x has more elements than those
needed to produce values for the current run, then, the extra values in lpre are used to
produce some adjustments in the MH acceptance ratio β. These details are explained in
Section 4.

3 Probabilistic Programs

We consider a probabilistic programming language called Prob [13] whose syntax is formally
described in Figure 4. A Prob program consists of statements and a return expression.
Variables have base types such as bool, int, float and double, and expressions include
variables, constants, binary and unary operations. Statements include primitive statements
(skip, deterministic assignment, probabilistic assignment, observe) and composite statements
(sequential composition, conditionals and loops). Features such as arrays, pointers, structures
and function calls can be incorporated in the language, but for the sake of brevity, we omit
these features from the core language.

A popular choice of the specification of formal semantics of probabilistic programs is the
denotational semantics introduced by Kozen in [17]. This is summarized in Figure 5. The
denotational semantics specifies the meaning of a probabilistic program by defining the joint
distribution over the output state of the program, where a state σ of a program is a partial
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(skip, σ) ⇓ε (1, σ) (x = E , σ) ⇓ε (1, σ[x← σ(E)])
σ(ϕ) = true

(observe(ϕ), σ) ⇓ε (1, σ)

v ∈ Val p = Dist(σ(θ̄))(v) > 0
(x ∼ Dist(θ̄), σ) ⇓x 7→[v] (p, σ[x← v])

(S1, σ) ⇓s1 (p1, σ1) (S2, σ1) ⇓s2 (p2, σ2)
(S1;S2, σ) ⇓s1·s2 (p1 × p2, σ2)

σ(E) = true (S1, σ) ⇓s1 (p1, σ1)
(if E thenS1 elseS2, σ) ⇓s1 (p1, σ1)

σ(E) = false (S2, σ) ⇓s2 (p2, σ2)
(if E thenS1 elseS2, σ) ⇓s2 (p2, σ2)

σ(E) = false
(while E doS, σ) ⇓ε (1, σ)

σ(E) = true (S; while E doS, σ) ⇓s (p, σ)
(while E doS, σ) ⇓s (p, σ)

where
ε = λu. [ ]

x 7→ [v] = λu. if u = x then [v] else [ ]
s1 · s2 = λu. s1(u) ++ s2(u), and ++ denotes list concatenation

Figure 6 Sampling-based operational semantics of Prob.

valuation of all its variables. The set of all states (possibly infinite) is denoted by Σ.
However, in order to design an MCMC algorithm, we need to have a distribution over

program executions. To this end, we introduce a big-step operational semantics for Prob.
The operational semantics defines the probability density of a sample. It is interesting to
note here that each sample (a sequence of program states) uniquely determines a program
execution. We will also assume that all program executions terminate with probability 1.

The operational semantics thus gives rise to a distribution over these program executions.
From this distribution, the distribution over the output state can be derived by marginalizing
out the intermediate values. We also show that this distribution is the same as that defined
by the denotational semantics.

Sampling-based Operational Semantics. We now inductively define the sampling-based
operational semantics of Prob in Figure 6, which will form the basis of our MH-based
sampling algorithm presented in Section 4.

The relation (S, σ) ⇓s (p, σ′) intuitively means that if we run the program statement S
with initial state σ, it may internally draw a sample s ∈ S from the associated distributions
and terminate with output state σ′, with probability density p. Here the sample space S
is defined as Γ → List(Val) with Γ the set of variables and Val = Z ] R. Notice that, as
explained earlier, a sample consists of a list of values associated with each random variable.

All rules of the sampling-based operational semantics are standard except for probabilistic
assignment, observe, and sequential composition statements. The probabilistic assignment
statement draws a sample v from the given distribution with the associated density p and
sets the variable x to v. The observe statement proceeds only when the given condition ϕ is
met. The sequential composition statement executes the sub-statements in order, and then
multiplies the associated densities and concatenates the generated samples.

4 Algorithm

Given a program P written in Prob, and κ (the number of samples to be generated) as input,
InferX (shown in Algorithm 1) returns a sequence of samples from the distribution specified
by P. Note that the parameter κ controls the accuracy of the algorithm—the greater the
number of samples generated by the algorithm, the better is the approximation to the actual
distribution specified by P. InferX uses standard ideas from MH sampling, which were
reviewed in Section 2. The program P is executed for κ times, and every execution produces
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Algorithm 1 InferX(P, κ)
Input: A Prob program P, and κ, the number of samples to be generated.
Output: Samples from the distribution specified by P.

1: Ω := [ ], Θacc := ε
2: for i = 1 to κ do
3: β := 1.0, Θpre := Θacc, Θ := ε
4: σ := ⊥, ret := ()
5: S return(E1, . . . , En) := P
6: (σ, β,ΘPre,Θ) := Eval(S, σ, β,Θpre,Θ)
7: ret := (σ(E1), . . . , σ(En))
8: for x in Γ do (* Γ is the set of variables in P *)
9: while Θpre(x) 6= [ ] do
10: (vpre,∆pre) := Head(Θpre(x))
11: Θpre(x) := Tail(Θpre(x))
12: β := β × Prop(∆pre)(vpre)

∆pre(vpre)
13: end while
14: end for
15: if ret 6= () ∧ (Ω = [ ] ∨ β ≥ 1 ∨Bernoulli(β)) then
16: Ω := ret :: Ω
17: Θacc := Θ
18: else
19: if Ω 6= [ ] then Ω := Head(Ω) :: Ω endif
20: end if
21: end for
22: return Ω

a sample (as defined by the operational semantics), and a value β which determines whether
the sample will be accepted or rejected.

In line 1 of Algorithm 1, InferX initializes variables Ω and Θacc. The list Ω is initialized
to an empty list, and is used to store the values of the return expression at the end of each
accepted run of the program. The map Θacc is used to store the most recently accepted
sample and is initialized to the empty map. Θacc maps each sampled variable to a list of pairs
generated for that variable in the last accepted execution of the program. The first element
of each pair in the list is the sample value v that is assigned to the variable. The second
element is the probability distribution from which the value v of the variable is drawn and is
used to compute the MH acceptance ratio β. Thus, the samples generated by Algorithm 1
conform to the definition of the sample specified by the operational semantics.

Lines 2–21 generate κ samples—each sample is either accepted or rejected based on the
value of the parameter β (lines 15–20 which encode the standard MH acceptance criterion).
Note that the first sample (represented by the test for empty Ω in line 15) is always accepted.
If a sample is rejected, then the program sample generated from the previous execution
of P is added to Ω (line 19). The maps ΘPre and Θ (initialized in line 3) have the same
type as Θacc. The map ΘPre is initialized to the previously accepted sample and is used
to determine the proposal distribution to use at each sampling statement and to compute
the acceptance ratio β correctly. The map Θ is used to build up the sample for the current
execution of the program.

Note that InferX has the same high level structure as the standard MH procedure.
The recursive procedure Eval (called in line 6) operates over the syntactic structure of the
program P. It defines the transitions of the Markov chain constructed by Algorithm 1.

The procedure Eval is described by the rules in Figure 7. Given a statement S, a
program state σ (which is a partial map from variables to values), a parameter β (which is
used to decide whether the sample generated is to be accepted or rejected), the map Θpre
and the map Θ, the procedure Eval(S, σ, β,Θpre,Θ) computes new values for σ, β, Θpre
and Θ obtained after executing statement S.
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Eval(x = E , σ, β,Θpre,Θ) = (σ[x← σ(E)], β,Θpre,Θ)
Eval(skip, σ, β,Θpre,Θ) = (σ, β,Θpre,Θ)

Eval(S1;S2, σ, β,Θpre,Θ) = let (σ′, β′,Θ′pre,Θ′) = Eval(S1, σ, β,Θpre,Θ) and
let (σ′′, β′′,Θ′′pre,Θ′′) = Eval(S2, σ

′, β′,Θ′pre,Θ′) in
(σ′′, β′′,Θ′′pre,Θ′′)

Eval(if E then S1 else S2, = if σ(E) then Eval(S1, σ, β,Θpre,Θ)
σ, β,Θpre,Θ) else Eval(S2, σ, β,Θpre,Θ)

Eval(x ∼ Dist(θ̄), σ, β,Θpre,Θ) = let ∆ = Dist(σ(θ̄)) and
let (v, β′,Θ′pre) =
if Θpre(x) = [ ] then

let v ∼ Prop(∆) and
let β′ = β × ∆(v)

Prop(∆)(v) in (v, β′,Θpre)
else

let (vpre,∆pre) = Head(Θpre(x)) and
let v ∼ Prop(∆, vpre) and
let β′ = β × ∆(v) × Prop(∆pre,v)(vpre)

∆pre(vpre) × Prop(∆,vpre)(v) in
(v, β′,Tail(Θpre))

in
(σ[x← v], β′,Θ′pre,Θ(x) ++ [(v,∆)])

Eval(observe (ϕ), σ, β,Θpre,Θ) = if σ(ϕ) then (σ, β,Θpre,Θ) else (σ, 0,Θpre,Θ)

Eval(while E do S, σ, β,Θpre,Θ) = let (σ′, β′,Θ′pre,Θ′) = Eval(S, σ, β,Θpre,Θ) in
if σ(¬E) then

(σ, β,Θpre,Θ)
else

Eval(while E do S, σ′, β′,Θ′pre,Θ′)

Figure 7 Given a statement S and parameters σ, β, Θpre, and Θ, Eval computes a tuple of
parameters evaluated over S which are used by Algorithm 1 .

For instance, consider the assignment statement x = E . Upon executing this from a state
σ, we obtain the state σ[x← σ(E)], i.e., the value corresponding to the variable x in σ is set
to the evaluation of E over σ. The values of β, Θpre and Θ remain unchanged. The rules for
the other statements also proceed in a similar manner.

The rule for the probabilistic assignment statement “x ∼ Dist(θ̄)" in Eval specifies how
to generate a sample and update β appropriately. As seen in Figure 7, in this case, first the
variable ∆ is set to the probability distribution function Dist(θ̄) with respect to the current
state σ (i.e., the parameters of the distribution θ̄ are evaluated at the state σ). Next, a value
v is sampled, and an update to β is performed based on the following conditions:

Previous value for x is not available. This condition is represented by the predicate
Θpre(x) = [ ], which says that there are no values associated with the variable x from
the previous execution of P. A new value v for x is drawn from a proposal distribu-
tion Prop(∆) that only depends on the target distribution ∆. In essence, this is the
Metropolized independent sampling algorithm [18] which is a modification to the MH
algorithm in which the proposal distribution is independent of the previous sample value.
There are a number of choices for the proposal distribution, and in our implementation
we set Prop(∆) to be the target distribution ∆.

The updated value β′ of β is the usual update for an MH algorithm. Intuitively, it
is helpful to think of the previous sample value as a special value that is drawn from
a distribution which produces this value with probability 1. If the proposal for this
distribution is taken to be the distribution itself, then the MH acceptance ratio for x
reduces to ∆(v)

Prop(∆)(v) .



C. Hur, A. V. Nori, S. K. Rajamani, and S. Samuel 485

Previous value for x is available. This means that the list associated with the variable x in
the map Θpre is not empty. In particular, the previous value vpre for x and the probability
density function ∆pre from which vpre is drawn are at the head of the list for x in the map
Θpre. Therefore, a new value for x is drawn from a proposal distribution Prop(∆, vpre)
that depends on the previous value vpre for x.

The updated value β′ of β is the usual update for an MH algorithm. As noted
earlier, ∆pre(vpre) is used for updating β and so, it is important to also keep track of the
distribution from which a sample is drawn.

Finally, the state σ is updated to σ[x← v], the entry for x in the map Θ is appended with the
value (v,∆), and the tuple (σ[x← v], β′, Tail(Θpre), Θ(x)++[(v,∆)]) is returned (where
++ denotes list concatenation).

It is also important to note that lines 8–14 in Algorithm 1 update β to take care of cases
where the current value for a variable is undefined and the previous value is defined. This
can be intuitively understood in a similar way as the update of β when a previous value is
not available.

The following theorem states that for a probabilistic program P , InferX(P, κ), computes
answers that are consistent with JPK.

I Theorem 4.1. For a program P, the expectation of its return expression computed with
respect to the samples generated by InferX(P, κ) approaches its denotational semantics JPK,
as κ→∞.

5 Evaluation

First, we show that InferX computes correct answers for a set of micro-benchmark prob-
abilistic programs. For these programs, other sampling based tools such as R2 and Stan
compute answers that deviate significantly from the actual or analytically computed answers.
Next, to demonstrate the practical applicability of InferX, we also show that it is able to
work effectively for three real-world benchmark programs. All experiments were performed
on a PC with a 2.00 GHz Intel 3rd Generation Core i7 processor and 8 GB RAM and running
Microsoft Windows 8.1.

The first two micro-benchmarks that we consider are the programs in Figures 2(a) and 3(a).
As can be seen in the plots 2(d) and 3(d), InferX is able to estimate the correct answers.
As discussed in Section 2, both R2 and Stan produce incorrect answers for these programs.

The other micro-benchmarks that we consider are shown in Figure 8. The benchmark (a)
includes two assignments to the same variable x. The benchmark (b) is interesting because
the variable x can be assigned different number of times across different runs of the program.
If line 2 produces a value greater than 0.5, x is sampled again at line 4. On the other hand,
if a sample value less than or equal to 0.5 is generated at line 2, then line 4 is not executed
and x gets assigned only once. The benchmark (c) is a hierarchical model in which the prior
distribution is estimated by means of a mixture of Gaussian distributions.

As seen from these figures, InferX estimates distributions that coincide with the actual
or analytically computed distributions. On the other hand, R2 and Stan produce incorrect
results for all of the micro-benchmarks due to their lack of properly handling multiple
sampling for the same variable and sampling from different execution paths.

To demonstrate that InferX is a practical algorithm, we also evaluate it on the following
real-world benchmarks that are frequently used to test the robustness and scalability of
Bayesian inference algorithms. As seen from the times reported below, InferX is quite
efficient on these benchmarks and therefore a practical solution.
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1: double x;
2: x ~ Gaussian(10, 20);
3: x ~ Gaussian(20, 30);
4: return x;

(a) Multiple assignments.

1: double x;
2: x ~ Gaussian(0, 1);
3: if (x > 0.5) then
4: x ~ Gaussian(10, 2);
5: return x;

(b) Mixture model 1.

1: double x, y, z;
2: x ~ Gaussian(0, 1);
3: if (x > 0.5) then
4: y ~ Gaussian(10, 2);
5: else
6: y ~ Gamma(3, 3);
7: z ~ Gaussian(y, 3);
8: return z;

(c) Mixture model 2.

Figure 8 Micro-benchmarks.

Linear regression: This is the standard Bayesian formulation of the linear regression
model for fitting 1000 points [28] (time taken by InferX: 12.55 seconds).
HIV: This is a multi-level or hierarchical linear model with varying slope and intercept.
This model is for inferring the immunity levels in HIV-positive patients. The data
comprises of 369 measurements taken over a two-year period on 84 patients [6] (time
taken by InferX: 4.36 seconds).
Halo: This is a skill rating system for a tournament of the Halo video game among 35
teams, with 2 players per team, and 500 games played between the teams [11] (time taken
by InferX: 5809 seconds).

6 Related work

There has been significant progress in the development of probabilistic programming languages
and tools in recent years [7, 21, 24, 8, 12, 22, 1, 9]. There are several approaches to
performing inference for programs written in these languages: (1) by using static analysis
techniques [20, 26, 4] such as abstract interpretation and data flow analysis, (2) by using
dynamic analysis techniques [8, 12, 22, 2] such as MCMC sampling algorithms [19], or (3) by
using Bayesian techniques where the program is compiled to a probabilistic model such as a
Bayesian network [15] and inference is performed using probabilistic inference techniques
such as belief propagation [23] over the probabilistic model [21].

We have observed that for techniques based on dynamic analysis, MH sampling based
approaches in particular, tracking an ordered list of values that a variable gets assigned during
a run of a program together with the distributions that were used to generate these values
results in a correct sampling procedure for probabilistic programs. It might be tempting to
consider a variable renaming scheme such as the static single assignment form (SSA) [5], or
a variable indexing scheme [29] based on line numbers, distribution types, etc. (implemented
in Stochastic Matlab). However, such schemes are inadequate to determine all values in the
previous run that must be kept track of in order to propose a new value in the current run.
This is clearly seen in Example 2 in Section 2.
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For other inference techniques such as those based on static analysis [26] or Bayesian
inference [21], it would be interesting to study analogous techniques for implementing provably
correct inference algorithms.

7 Summary

We have highlighted the difficulties encountered in implementing a correct sampling-based
inference engine for imperative probabilistic programs via several examples. We have designed
an algorithm InferX that overcomes these challenges, and generates samples from the correct
distribution specified by the corresponding input probabilistic program.

Our algorithm is general and works for all probabilistic programs. We have also formally
proved the correctness of our algorithm. We have implemented it in a tool called InferX,
and have shown empirically that it works in all cases by comparing it with existing tools
such as R2 and Stan. We have also shown that InferX is a practical solution by evaluating
it on real-world benchmarks.

Acknowledgements. We are grateful to Johannes Borgström for his valuable feedback on
this paper.
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Abstract
We consider the problem of computing the probability of regular languages of infinite trees
with respect to the natural coin-flipping measure. We propose an algorithm which computes
the probability of languages recognizable by game automata. In particular this algorithm is
applicable to all deterministic automata. We then use the algorithm to prove through examples
three properties of measure: (1) there exist regular sets having irrational probability, (2) there
exist comeager regular sets having probability 0 and (3) the probability of game languages Wi,k,
from automata theory, is 0 if k is odd and is 1 otherwise.
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1 Introduction

Regular languages of trees are sets of infinite binary trees, labeled by letters from a finite
alphabet Σ, definable by a formula of Monadic Second Order (MSO) logic interpreted over
the full binary tree [25] or, equivalently, specified by an alternating tree automaton [19].

In this paper we consider the following problem. Suppose a Σ-labeled tree t is generated
by labeling each vertex by a randomly and uniformly chosen letter a∈Σ. For a given regular
language L, what is the probability that t belongs to L? By probability we mean the standard
coin–flipping probability measure µ (see Section 2 for definitions) on the space of Σ-labeled
trees. Hence a precise formulation of our problem is as follows.

Probability Problem: Does there exist an algorithm which for a given regular language of
trees L computes the probability µ(L)?

A qualitative variant of the problem only asks for a decision procedure for the question
“is µ(L) = 1?”. The problem is well posed since it was recently shown in [12, Theorem 1]
that regular sets of trees are measurable with respect to any Borel measure and thus, in
particular, with respect to the coin-flipping measure. An extended version of this paper is
availiable at [15].
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1.1 Main Results
We give a positive solution to the Probability Problem for a subclass of regular languages.

I Theorem 1. Let L be a regular set of infinite trees recognizable by a game automaton.
Then the probability of L is computable and is an algebraic number.

Game automata (see [10, 11, 21]) are special types of alternating parity tree automata.
The class of languages recognizable by game automata includes, beside all deterministic
languages, other important examples of regular sets. The most notable examples are the game
languages Wi,k which play a fundamental role in the study of tree languages with topological
methods [3, 12]. Game automata definable languages are, at the present moment, the largest
known subclass of regular languages for which the long-standing Mostowski–Rabin index
problem1 is known to be decidable (see [10, 11]). Theorem 1 confirms the good algorithmic
properties of game automata. At the same time, however, we suspect that generalizing the
result of Theorem 1 to arbitrary regular languages might be hard. Some ideas for further
research in this direction are discussed in Section 6.

From Theorem 1 we derive the following propositions (for proofs see Section 5).

I Proposition 2. There exists a regular language of trees L definable by a deterministic
automaton such that L has an irrational probability.

I Proposition 3. There exists a regular language of trees L definable by a deterministic
automaton such that L is comeager and L has probability 0.

These two propositions should be contrasted with known properties of regular languages
of infinite words. First, a result of Staiger in [22] states that a regular language L of infinite
words has coin-flipping measure 0 if and only if it is of Baire first category (or meager). 3
shows that this correspondence fails in the context of infinite trees. Second, the coin-flipping
measure of a regular language of infinite words is always rational (see, e.g., Theorem 2 of
[7]). Hence, the probabilistic properties of regular languages of trees seem to be significantly
more refined than in the case of languages of ω-words.

Lastly, we calculate the probability of all game languages Wi,k (see [3, 12] and Subsection
5.4), a result that might eventually be useful given the importance of game languages in the
topological study of regular sets of trees.

I Proposition 4. For 0≤ i<k, the game language Wi,k has probability 0 if k is odd and 1 if
k is even.

1.2 The Algorithm
In Section 4 we propose Algorithm 2 which computes the probability of regular languages
recognized by game automata. Algorithm 2 is based on a reduction to Markov Branching
plays (MBP’s): to each game automaton A we associate a MBPM. The value ofM can
be computed and corresponds to the probability of the language recognized by A. This
reduction to MBP’s is described in Sections 3 and 4.

The notion of MBP, as a special kind of two-player stochastic meta-parity game has
been introduced by the second author in [16, 17] in order to interpret a probabilistic version

1 The Mostowski–Rabin Problem: for a given regular language L, compute the minimal number of
priorities required to define L using an alternating parity tree automaton.
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of the modal µ-calculus. For a given MBP M having n states, the vector val ∈ [0, 1]n of
values ofM can be expressed as the solution of a system S of (nested) least and greatest
fixed-point equations over the space [0, 1]n. From S one can then construct a first order
formula φS(val) in the language of real-closed fields having the property that val is the
unique tuple of real numbers satisfying φS . The tuple val can be computed by Tarski’s
quantifier elimination algorithm [24] and consists of algebraic numbers. See Algorithm 1 in
Section 3 for a description of the procedure for computing the value of MBP’s.

One can find interesting the connections between the machinery of MBP’s (and thus, as
mentioned, the probabilistic µ-calculus), the class of languages definable by game automata,
the algorithmic problem of computing the probability of regular languages of trees and the
usage of Tarski’s quantifier elimination procedure.

1.3 Related Work
In [23] L. Staiger presented an algorithm for computing the Hausdorff measure of regular
sets of ω-words. The method, based on the decomposition of the input language into simpler
components, can be adapted to compute the coin–flipping measure of regular sets of ω-words.
Our research on the coin-flipping measure of regular languages of trees can be seen as a
continuation of Staiger’s work.

Natural variants of the qualitative version of the Probability Problem, obtained by
replacing “has probability 1” by other notions of largeness, are known to have positive
solutions: in [20] D. Niwiński described an algorithm which takes as input a regular language
of trees L (presented as a Rabin tree automaton) and decides if L is uncountable and,
similarly, an algorithm for establishing if a regular language of trees L is comeager can be
extracted from the result of [14].

Addendum. After the submission of this article we have been informed that the Probability
Problem has already been implicitly considered in [8], although differently phrased as the
verification problem for a class of stochastic branching processes. Following our terminology,
in [8] the authors provide an algorithm for computing the probability of regular languages
definable by deterministic tree automata. Hence our results can be seen as extending the
work of [8] from deterministic to game-automata definable languages.

2 Background in Topology and Automata Theory

2.1 Topology and measure
In this section we present elementary topological and measure–theoretical notions required
in this work. We refer to [13] as a standard reference on the subject.

The set of natural numbers is denoted by ω. A topological space X is Polish if it
is separable and completely metrizable. An important example of a Polish space is the
Cantor space {0, 1}ω of infinite sequences of bits endowed with the product topology. In
this paper we are interested in the probability Lebesgue measure µ on the product space
ΣI for I, a countable set of indices. The measure µ is uniquely defined by the assignment
µ({t ∈ ΣI | t(i1) = a1, . . . , t(ik) = ak}) = ( 1

|Σ| )
k for i1, . . . , ik ∈ I, a1, . . . , ak ∈ Σ (ij 6= ij′

whenever j 6= j′, see [13, Chapter 17] for additional details). In particular, for the alphabet
Σ = {0, 1} and I = ω this is known as the coin–flipping probability measure on the Cantor
space.

The countable set V ={L,R}∗ of finite words over the alphabet {L,R} is called the full
binary tree and each v∈{L,R}∗ is referred to as a vertex. The product space ΣV is denoted
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by TΣ and an element t ∈ TΣ is called a Σ-labeled tree, or just a Σ-tree. Intuitively, the
stochastic processes associated with the coin–flipping measure µ on TΣ generates an infinite
Σ-tree by labeling each vertex with a randomly (uniformly) chosen label in Σ.

Given a topological space X, a set A⊆ X is nowhere dense if the interior of its closure is
the empty set, that is int(cl(A))=∅. A set A⊆X is of (Baire) first category (or meager)
if A can be expressed as a countable union of nowhere dense sets. The complement of a
meager set is called comeager.

2.2 Alternating Parity Tree Automata and Game Automata
We include a brief exposition of alternating automata which follows the presentation in [19,
Appendix C]. In this paper we are mostly interested in a subclass of alternating parity tree
automata called game automata, which is introduced later in the Section.

I Definition 5 (Alternating Parity Tree Automaton). Given a finite set X, we denote with
DL(X) the set of expressions e generated by the grammar e ::= x∈X | e ∧ e | e ∨ e. An
alternating parity tree automaton over a finite alphabet Σ is a tuple A=〈Σ, Q, q0, δ, π) where
Q is a finite set of states, q0 ∈Q is the initial state, δ : Q × Σ → DL({L,R} × Q) is the
alternating transition function, and π :Q→ ω is the parity condition.

An alternating parity tree automaton A over the alphabet Σ defines, or “accepts”, a set
of Σ-trees. The acceptance of a tree t∈TΣ is defined via a two-player (∃ and ∀) game of
infinite duration denoted by A(t). Game states of A(t) are of the form 〈 #»x , q〉 or 〈 #»x , e〉 with
#»x ∈{L,R}∗, q∈Q and e∈DL({L,R} ×Q).

The game A(t) starts at state 〈ε, q0〉. Game states of the form 〈 #»x , q〉, including the
initial state, have only one successor state, to which the game progresses automatically.
The successor state is 〈 #»x , e〉 with e= δ(q, a), where a= t( #»x ) is the labeling of the vertex
#»x given by t. The dynamics of the game at states 〈 #»x , e〉 depends on the possible shapes
of e. If e = e1 ∨ e2, then Player ∃ moves either to 〈 #»x , e1〉 or 〈 #»x , e2〉. If e = e1 ∧ e2,
then Player ∀ moves either to 〈 #»x , e1〉 or 〈 #»x , e2〉. If e = (L, q) then the game progresses
automatically to the state 〈 #»x .L, q〉. Lastly, if e=(R, q) the game progresses automatically
to the state 〈 #»x .R, q〉. Thus a play in the game A(t) is a sequence Π of game–states, that
looks like: Π = (〈ε, q0〉, . . . , 〈L, q1〉, . . . , 〈LR, q2〉, . . . , 〈LRL, q3〉, . . . , 〈LRLL, q4〉, . . . ), where
the dots represent part of the play in game–states of the form 〈 #»x , e〉. Let ∞(Π) be the set of
automata states q∈Q occurring infinitely often in configurations 〈 #»x , q〉 of Π. We then say
that the play Π of A(t) is winning for ∃, if max{π(q) | q∈∞(Π)} is an even number. The
play Π is winning for ∀ otherwise. The set (or “language”) of Σ-trees defined by A is the
collection {t∈TΣ | ∃ has a winning strategy in the game A(t)}.

q

qRqL

a ∈ Σ

q

qRqL

a ∈ Σ

We reserve the symbols > and ⊥ for two special sink states
having even and odd priority, respectively. The transition
function is defined, for all a∈Σ, as δ(>, a) = (L,>) ∧ (R,>)
and δ(⊥, a)=(L,⊥) ∧ (R,⊥). Clearly every tree is accepted at
the state > and rejected at ⊥. Game automata are a subfamily
of alternating parity tree automata satisfying the constraint
that, for each q ∈Q and a∈Σ, the transition δ(q, a) = e has
either the form e=(L, qL)∨ (R, qR) or e=(L, qL)∧ (R, qR) (see [10, 11] for more information
about this class of automata). Transitions of a game automaton A can be schematically
depicted as in the figure above with the left–hand and right–hand diagrams representing the
transitions (q, a)→ (L, qL)∧(R, qR) and (q, a)→ (L, qL)∨(R, qR), respectively. Deterministic
automata are a subfamily of game automata satisfying the stronger constraint that, for each
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q∈Q and a∈Σ, the transition δ(q, a)=e has the form e=(L, qL) ∧ (R, qR). Note that the
sink states > and ⊥ defined above have transitions satisfying this requirement.

3 Introduction to meta-parity games

In this Section we describe a class of stochastic processes called Markov branching plays
(MBP’s) [16, 17] which, as we will observe, is closely related to game automata and will provide
a method for calculating the probability of regular languages defined by such automata. For
a quick overview, a procedure for computing the value associated with a MBP is presented
as Algorithm 1, at the end of this section. The procedure for computing the probability of
regular languages defined by game automata in presented as Algorithm 2 in the next section.

We assume familiarity with the standard concepts of Markov chain and two-player
stochastic (2 1

2 -player) parity game (see, e.g., [6]). Ordinary 2 1
2 -player parity games are

played on directed graphs whose set of states is partitioned into Player 1, Player 2 and
probabilistic states. A 2 1

2 -player parity game with neither Player 1 nor Player 2 states can
be identified with a Markov chain.

Two-player stochastic meta-parity games [16, 17] generalize 2 1
2 -player parity games by

allowing the directed graph to have two additional kinds of states called ∃–branching states
and ∀–branching states. In this paper we will only consider 2 1

2 -player meta-parity games with
neither Player 1 nor Player 2 states. Such structures, which thus constitute a generalization
of Markov chains, are called Markov branching plays (MBP’s). In what follows we provide a
quick description of MBP and refer to [16] for a detailed account.

I Definition 6 (Markov Branching Play). A Markov branching play (MBP) is a structure
M=〈(S,E), (SP , B∃, B∀), p, Par〉 where:

(S,E) is a directed graph with finite set of vertices S and transition relation E. We say
that s′ is a successor of s if (s, s′) ∈E. We assume that each vertex has at least one
successor state in the graph (S,E).
The triple (SP , B∃, B∀) is a partition of S into probabilistic, ∃-branching and ∀-branching
states.
The function p : SP → (S → [0, 1]) associates to each probabilistic state s a discrete
probability distribution p(s) : S → [0, 1] supported over the (nonempty) set of successors
of s in the graph (S,E).
Lastly, the function Par :S → ω is the parity (or priority) assignment.

Recall that a Markov chain represents the stochastic process associated with a random
infinite walk on its set of states. A MBP represents the more involved stochastic process,
described below, of generation of a random unranked and unordered tree T whose vertices
are labeled by states of the MDP.

MBP’s as Stochastic Processes: given a MBP M = 〈(S,E), (SP , B∃, B∀), p, Par〉 and an
initial vertex s0∈S, the stochastic process of construction of T is described as follows.

The construction starts from the root of T which is labeled by s0.
A leaf x in the so far constructed tree T is extended, independently from all other leaves,
depending on the type of its labeling state s, as follows:

If s∈SP then x is extended with a unique child which is labeled by a successor state
s′ of s randomly chosen in accordance with p(s).
If s∈B∃ or s∈B∀ and {s1, . . . , sn} are the successors of s inM, then x is extended
with n children y1, . . . yn and yi is labeled by si, for 1≤ i≤n.
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Figure 2 The stochastic process associated with the MBP in Figure 1.
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Figure 1 An example of a
MBP.

We give in Figure 1 an example of a MBP. Probabilistic
states, ∃-branching and ∀-branching states are marked as circles,
diamond and boxes, respectively. The first six initial steps
of the stochastic process associated with M at state q1 are
depicted in Figure 2. In the first step, the construction of T
starts by labeling the root by q1. Since q1 is a probabilistic
state, the tree is extended (second step) with only one child
labeled by either q2 (with probability 1

3 ) or q3 (prob. 2
3 ). The

picture shows the case when q2 is chosen. Since the new leaf
is labeled by q2, and this is a ∃-branching state, the tree is
extended by adding one new vertex for each successor of q2
inM, i.e., for both q1 and q4. The construction continues as
described above. For example, the probability that the generated infinite tree will have the
prefix as at the bottom right of Figure 2 is 1

3 ·
2
3 ·

1
2 = 2

18 .
The kind of infinite trees produced by the stochastic process just described are called

branching plays. Branching plays are characterized by the property that each vertex labeled
with a probabilistic state has only one child, and each vertex labeled with a (∃ or ∀) branching
state s has as many children as there are successors of s in the MBP.

The collection of branching plays in a MBP M starting from a state s is denoted
by BP(M, s). The set BP(M, s) naturally carries a Polish topology making BP(M, s)
homeomorphic to the Cantor space (see, e.g., Definition 4.4 in [17]). The stochastic process
associated to a MBPM, specified on the previous page, can be naturally formalized by a
probability measure µM over the space BP(M, s) of branching plays. See also Definition 4.7
in [17] for a formal definition.

Each branching play T can itself be viewed as an ordinary (infinite) two-player parity
game G(T ), played on the tree structure of T , by interpreting the vertices of T labeled by
∃-branching and ∀-branching states as under the control of Player ∃ and Player ∀, respectively.
All other states (i.e., those labeled by a probabilistic state) have a unique successor in T to
which the game G(T ) progresses automatically. Lastly, the parity condition associated to
each vertex corresponds to the parity assigned inM to the state labeling it. We denote with
Ws the set of branching plays starting at s and winning for Player ∃, i.e., the set defined as:
Ws =

{
T ∈ BP(M, s) | Player ∃ has a winning strategy in G(T )

}
.
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I Definition 7 (Value of a MBP). The value of a MBPM at a state s, denoted by val(M, s),
is the probability of generating a branching play winning for ∃ starting the stochastic process
from the state s. Formally, val(M, s) = µM(Ws).

We remark that the above definition is valid because the set Ws is µ-measurable for every
Borel measure µ on the space BP(M, s) ([12]) and thus also for µM.

3.1 How to compute the value of a MBP
In this subsection we show how the values val(M, s) can be computed. The algorithm is
based on a result of [16, 17], formulated as Theorem 10 below, characterizing such values as
the solution of an appropriate system of (least and greatest) fixed-point equations. We first
formulate Proposition 8 exposing a fixed-point property of the value of MBP’s. Let us fix
a MBPM= 〈(S,E), (SP , B∃, B∀), p, Par〉 with S= {s1 . . . sn}. To improve readability we
just write vali for val(M, si) and we denote with val the vector val=(vali)1≤i≤n of length
n. The symbols

∑
and

∏
denote the usual operations of sum and product on reals. We also

use a “coproduct” operation defined as
∐
i∈I xi=1−

∏
i∈I 1− xi.

I Proposition 8. The equality val=f(val) holds, where f : [0, 1]n→ [0, 1]n is:

(
f

x1
...
xn

)i =



∑
{j | (si,sj)∈E}

p(si)(sj) · xj if si∈SP

∏
{j | (si,sj)∈E}

xj if si∈B∀

∐
{j | (si,sj)∈E}

xj if si∈B∃

Proof. Here we sketch the main idea of the argument, for a formal proof, see Theorem 4.22
of [17]. If si is a probabilistic state, then vali is the weighted average of the value of its
successors, since the stochastic process associated with the MBP chooses a unique successor
sj of si with probability p(si)(sj). If si is a ∀-branching state, then vali is the probability
that all independently generated subtrees are winning for Player ∃ and this is captured by
the

∏
expression. Similarly, if si is a ∃-branching state then vali is the probability that

at least one generated subtree is winning for Player ∃, as formalized by the
∐

expression.
Hence the vector val is one of the fixed-points of the function f : [0, 1]n→ [0, 1]n. J

Theorem 10 below refines Proposition 8 by identifying val as the unique vector satisfying a
system of nested (least and greatest) fixed-point equations. Its formulation closely follows the
notation adopted in the textbook [1, §4.3] for presenting a similar result valid for ordinary
parity games. To adhere to such notation, we will define a function g, a variant of the
function f presented above. Let k=max{Par(s) | s∈S} and l=min{Par(s) | s∈S} be the
maximal and minimal priorities used in the MBP, respectively, and let c=k − l + 1.

I Definition 9. The function g : ([0, 1]n)c → [0, 1]n is defined as follows:

(
g

x
l
1
...
xln

 , . . . ,

x
k
1
...
xkn

)i =



∑
{j | (si,sj)∈E}

p(si)(sj) · x
Par(sj)
j if si∈SP∏

{j | (si,sj)∈E}

x
Par(sj)
j if si∈B∀

∐
{j | (si,sj)∈E}

x
Par(sj)
j if si∈B∃
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The function g depends, like the function f , only on n variables {xPar(s1)
1 , . . . , x

Par(sn)
n }

appearing in the body of its definition. The input of g can indeed be regarded as the input
of f divided in c baskets, where each variable xi is put in the basket corresponding to the
priority of si, for 1≤ i≤n.

The set [0, 1]n, equipped with the pointwise order defined as (x1, . . . , xn)≤(y1, . . . , yn)⇔
∀i.(xi ≤ yi), is a complete lattice and the function g is monotone with respect to this order
in each of its arguments. Hence the Knaster–Tarski theorem ensures the existence of least
and greatest points. We are now ready to state the main result regarding the values of a
given MBP. We adopt standard µ-calculus notation (see, e.g., [1] and [16, 17]) to express
systems of least and greatest fixed-points equations.

I Theorem 10 ([16, Theorem 6.4.2]). The following equality holds:2val1...
valn

 = θk

x
k
1
...
xkn

 . · · · .θl

x
l
1
...
xln

 .g(

x
l
1
...
xln

 , . . . ,

x
k
1
...
xkn

)

where θi, for l ≤ i ≤ k is a least-fixed point operator (µ) if i is an odd number and a
greatest-fixed point operator if (ν) if i is even.

Proof. The proof goes by induction on the number of priorities in the MBP M and by
transfinite induction on a rank-function defined on the space of branching plays. See [16] for
a detailed proof. J

The next theorem states that the value of a MBP is computable and is always a vector of
algebraic numbers. The examples discussed in Section 5 will illustrate the applicability of
this result.

I Theorem 11. LetM be a MBP. Then for each state si ofM the value vali is computable
and is an algebraic number.

Proof. (sketch) Using known ideas (see, e.g., Lemma 9 in [9] and Proposition 4.1 in [18]) the
unique vector val=(val1, . . . , valn) satisfying the system of fixed-point expressions S given by
Theorem 10 can be computed by a reduction to the first-order theory of real closed fields. A
first order formula F (x1, . . . , xn), inductively defined from S, is constructed with the property
that (val1, . . . , valn)∈Rn is the unique vector of reals satisfying the formula F (x1, . . . , xn).
By Tarski’s quantifier elimination procedure [24], the formula F (x1, . . . , xn) can be effectively
reduced to an equivalent formula G(x1, . . . , xn) without quantifiers, that is, to a Boolean
combination of equations and inequalities between polynomials over (x1, . . . , xn). It then
follows that the (val1, . . . , valn), which can be extracted from G with standard methods, is
a vector of algebraic numbers. In Section 5 we apply the above procedure to a number of
examples. J

2 Theorem 6.4.2 of [16] actually proves a stronger result valid for arbitrary 2 1
2 -player meta-parity games

whereas, as mentioned in the beginning of this section, Markov branching plays are 2 1
2 -player meta-parity

games without Player 1 and Player 2 states. Also, Theorem 6.4.2 of [16] is stated assuming the validity
of the set-theoretic axiom MAℵ1 , but as shown in [12] such assumption is not necessary and can thus
be dropped.
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Figure 3 Transitions of the game automaton A and corresponding MBPM.

1: input : a Markov Branching PlayM .
output : algebraic numbers r1, . . . , rn ∈ R equal to (val1, . . . , valn) .

3: beg in
S ← Generate system of fixed–point equations associated toM

5: F (x1, . . . , xn)← Rewrite S to the corresponding first-order formula over FO(R, <, 0, 1,+,×)
G(x1, . . . , xn)← Apply quantifier elimination procedure to F (x1, . . . , xn)

7: return the unique vector (r1, . . . , rn) satisfying G(x1, . . . , xn)

Algorithm 1: computing the vector of values of a MBP.

4 From Game Automata to Markov Branching Plays

In this section we present a reduction of the problem of computing the probability of regular
languages definable by game automata to the problem of computing the value of a given
MBP, which is algorithmically solvable using Algorithm 1.

We now describe how to construct from a game automaton A= (Q, q0, δ, π) over the
alphabet Σ a corresponding MBPM=〈(S,E), (SP , B∃, B∀), p, Par〉. The set S of states of
M contains a probabilistic state sq, for each q∈Q, a ∃–branching state sq,a for each pair
(q, a), with q∈Q and a∈Σ, such that δ(q, a)=(L, qL) ∨ (R, qr), and a ∀–branching state sq,a
for each pair (q, a) such that δ(q, a)=(L, qL) ∧ (R, qr). The transition relation E is defined
as follows:

a probabilistic state sq has as successors the states {sq,a | a∈Σ},
a ∃-branching (resp. ∀-branching) state sq,a have two successors sq1 and sq2 where
δ(q, a)=(L, q1) ∨ (R, q2) (resp. δ(q, a)=(L, q1) ∧ (R, q2)).

Note that each state sq, for q ∈Q has exactly |Σ| successors and that each state sq,a has
exactly3 two successors. The assignment p :SP → (S → [0, 1]) is defined as assigning to each
probabilistic state (i.e., state of the form sq) a uniform distribution over its successors, that
is, p(sq)(sq,a)= 1

|Σ| . Lastly, the parity assignment Par :S→ω of the MBPM is defined as in
the parity condition π of the game automaton A by the mapping Par(sq)=Par(sq,a)=π(q).

As an illustrative example of this translation, consider the deterministic automaton
A = 〈{q1, q2}, q1, δ, π〉 over the alphabet Σ = {a, b, c}, with parity assignment π(q2) = 2,
π(q1) = 1 and transition δ defined by δ(q1, a) = δ(q2, a) = (L, q2) ∧ (R, q2) and δ(q1, l) =
δ(q2, l)=(L, q1) ∧ (R, q1), for l∈{a, b}.

3 We are implicitly assuming, for the sake of simplicity, that each transition (L, q1)∧ (R, q2) and
(L, q1)∨(R, q2) of δ in A is such that q1 6=q2, and thus that sq,a has exactly two successors. If necessary,
the game-automaton A can be made satisfy this assumption by introducing additional copies of the
states.
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The corresponding MBPM is schematically4 depicted in Figure 3 (right), by representing
probabilistic states with circles, ∀-branching states with boxes and the probabilistic assignment
p by the probabilities labeling the outgoing edges of probabilistic states. The soundness of
our reduction is stated as follows.

I Theorem 12 (Correctness of Reduction). Let L be a regular language recognized by a game
automaton A and letM be the MBP corresponding to A. Then µ(L)=V al(M, sq0), where
q0 is the initial state of A.

Proof. (sketch) Since each probabilistic state has exactly one successor for every letter
a ∈ Σ and each branching state have precisely two successors, there exists a one-to-one
correspondence between Σ-trees t∈TΣ and branching plays T ∈BP(M, sq0). Furthermore, it
follows directly from the definition of acceptance by A (see Section 2.2) and the definition
of the set Ws (see Section 3) that t is accepted by A if and only if the corresponding
branching play T is in Ws. Lastly, due to the uniform assignment p of probabilities in
M, the coin-flipping measure µ on TΣ and the probability measure µM on BP(M, sq1) are
identical. J

The result of Theorem 1 in the Introduction then follows as a corollary of Theorem 12
above and the fact that the vector of values of a MBP can be computed using Algorithm 1.
The final algorithm for computing the probability of regular languages definable by game
automata is then as follows.

1: input : a game automaton A=(Q, q0, δ, π) r e c ogn i z i ng a language L .
output : a real number corresponding to µ(L) .

3: beg in
M← Construct the MBPM corresponding to A

5: (val1, . . . , valn)← Apply Algorithm 1 to compute the vector of values of the states ofM
return the value vali where i is the index of the probabilistic state sq0 ofM

Algorithm 2: computing the probability of regular languages L recognized by game automata.

5 Examples

In this section we will apply Algorithm 2 to analyze examples which will prove Propositions
2, 3 and 4 stated in the Introduction. In some instances, in order to perform the quantifier
elimination procedure required by Algorithm 1, we use the tool qepcad [5].

We fix the alphabet Σ = {a, b, c} and, for each n ∈ ω, we define the regular language
Ln ⊆ TΣ as Ln = {t ∈ TΣ | a appears ≥ n times on every branch of t} and the language
L∞ as L∞=

⋂
n∈ω Ln, i.e., as the set of Σ-trees having, on every branch, infinitely many

occurrences of the letter a.

5.1 An introductory example
The language L1 is recognized by the deterministic automaton in Figure 4 (left) defined as
A1 = 〈{q1,>}, q1, δ1, π〉 where > is an accepting sink state (see Section 2.2 for automata–
related definitions), the priority assignment is π(q1) = 1 and the transition function δ1 is
defined on q1 as δ1(q1, a)=(L,>) ∧ (R,>) and δ1(q1, l)=(L, q1) ∧ (R, q1) for l∈{b, c}.

4 Due to the chosen succinct definition, the automaton A does not satisfy the assumption of Footnote 3.
Rather than formally introducing copies q1 and q2 in A, we have simply depicted all ∀-branching states
ofM as having two successors.
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q1

q1q1

>

a b, c

sq1

sq1,a sq1,c

sq1,b

1
3

1
3

1
3

g(


x1
x2
x3
x4

) =


1
3x2 + 1

3x3 + 1
3x4

1
x1 · x1
x1 · x1


Figure 4 Automaton A1, MBPM1 and corresponding system of equations.

q2

q2q2q1q1

a b, c

sq1

M1

sq2sq2,a

sq2,c

sq2,b

1
3

1
3

1
3

g(


x1
x2
x3
x4

) =


1
3x2 + 1

3x3 + 1
3x4

1
2 ·

1
2

x1 · x1
x1 · x1


Figure 5 Automaton A2, MBPM2 and corresponding system of equations.

We will compute the probability µ(L1) using the procedure of Algorithm 2. As a first
step we construct the MBP M1 corresponding to A1, as specified in Section 4. In order
to improve readability, we have represented in Figure 4 (center) a simplified version ofM1
where the states s>, s>,a, s>,b and s>,c have been identified with the single state sq1,a.
This is convenient since, clearly, all of these states have value 1. Accordingly, the MBP
M1 has four states, all of priority 1. Following the procedure of Algorithm 2 we need to
compute the values of the states ofM1 using Algorithm 1. In accordance with Theorem 10,
the fixed-point equation characterizing the vector val=(valsq1

, valsq1 ,a
, valsq1 ,b

, valsq1 ,c
) of

values of the states ofM1 is val=µ~x.g(~x), where g is defined as in Figure 4 (right). Then
valsq1

is the least solution in [0, 1] of the equation x= 1
3 + 2

3x
2. As it is simple to verify, even

without running the solver based on Tarski’s quantifier elimination procedure, the solution is
valsq1

= 1
2 , and this is the output returned by Algorithm 2. Hence the probability of L1 is

µ(L1)= 1
2 .

5.2 Examples of regular languages having irrational probabilities

This subsection constitutes a proof of Proposition 2. The automaton A2 recognizing the
language L2 is defined as A2 =〈({q1, q2,>}, q2, δ2, π) where q2 is the initial state, the priority
function is defined as π(q1)=π(q2)=1 and the transition function δ2 is defined on q1 as the
function δ1 of the previous example, and on the state q2 as δ2(q2, a)=(L, q1) ∧ (R, q1) and
δ2(q2, l)=(L, q2) ∧ (R, q2), for l∈{b, c}. The transition δ2 is shown in Figure 5 (left).

The MBPM2 corresponding to A2 extends the MBPM1 of the previous example with
the probabilistic state sq2 and the three ∀-branching states sq2,a, sq2,b and sq2,c. The new
part of the automaton A2 is depicted in Figure 5 (center). Noting the four new states are
not reachable by the other states already present inM1, we already know that valsq1

= 1
2 .

Hence we can consider the simplified system of fixed-point equations µ~x.g(~x) for calculating
the values val=(valq2 , valq2,a, valq2,b, valq2,c) where g is defined in Figure 5 (right). Hence
the value valq2 is the least solution in [0, 1] of the equation x = 1

12 + 2
3x

2 and this is
valq2 = 1

4 (3−
√

7) which is irrational and approximately equal to 0.088.
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One can verify5 that the probability of L3 is µ(L3)= 1
4 (3−

√
1 + 3

√
7) and thus not of

the form a+b
√
c

d for integers a, b, c, d. This means that µ(L3) is not a quadratic irrational.
By a characterization proved by Euler and Lagrange this in turn means that the continued
fraction representation of µ(L3) is not eventually periodic.

5.3 Example of a comeager language of probability 0
This subsection constitutes a proof of Proposition 3. The regular language L∞ is recognized
by the (deterministic) game automaton already defined in Section 4 and depicted in Figure 3
(left), where the states q1 and q2 have priority 1 and 2, respectively. The MBP associated
with this automaton, depicted in Figure 3 (right), has eight states. The vector of values val
is equal to ν~y 2.µ~y 1.g(~y 1, ~y 2) where

val =



valsq1

valsq1,a

valsq1,b

valsq1,c

valsq2

valsq2,a

valsq2,b

valsq2,c


and g(



y1
y2
y3
y4
_
_
_
_


,



_
_
_
_
y5
y6
y7
y8


) =



1
3y2 + 1

3y2 + 1
3y4

y5 · y5
y1 · y1
y1 · y1

1
3y5 + 1

3y1 + 1
3y1

y5 · y5
y1 · y1
y1 · y1


By straightforward simplifications we obtain the system of fixed-point equations{

x1
µ= 1

3x
2
2 + 2

3x
2
1

x2
ν= 1

3x
2
2 + 2

3x
2
1

in the two variables x1 and x2 (corresponding to the variables y1, representing sq1 , and y5,
representing sq2). The execution6 of Algorithm 1 reveals that the solution of the system
of equations is (0, 0). Hence valsq2

= 0 and this shows that the probability µ(L∞) of the
language L∞ is 0.

5.4 Computing the measure of Wi,k

qj

qkqkqkqk

. . .

qiqiqiqi

∃, i ∀, i ∃, k ∀, k

Figure 6 Transition of Ai,k recognizing Wi,k.

The family of regular languages Wi,k, in-
dexed by pairs i< k of natural numbers, con-
stitutes a tool for investigating properties of
regular languages using topological methods
([2, p. 329], see also [3, 4, 12]). The stand-
ard game automaton Ai,k over the language
Σi,k={∀,∃}×{i, i+1, . . . , k−1, k} accepting
Wi,k⊆TΣi,k

is defined as Ai,k = 〈Q, qi, δ, π〉
where Q={qi, qi+1, . . . , qk}, the initial state
is qi and, for each i≤j≤k, the state qj has
priority π(qj)=j and the transition function
δ is defined on qj as in Figure 6. Our proof
of Proposition 4, stated in the Introduction, goes by analyzing the system of fixed-point

5 See Section 5 of [15].
6 Details are presented in Section 5 of [15] along with a proof that the set L∞⊆Ta,b,c is comeager.

http://duch.mimuw.edu.pl/~henrykm/vv/vv.pdf#page.11
http://duch.mimuw.edu.pl/~henrykm/vv/vv.pdf#page.11
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equations associated with the game automaton Ai,k. Importantly, such a system consists of
linear equations and not, as in the general case, of higher order polynomials. This system
can be solved using standard techniques of linear algebra. A detailed proof of Proposition 4
can be found in Subsection 5.6 of [15].

6 Conclusion

In this work we presented an algorithm for computing the probability of regular languages
defined by game automata. The Probability Problem in its full generality remains open. A
possible direction for future research is to investigate approximations of regular languages by
simpler regular languages. For example, given a regular language L of trees, is it possible to
find a regular language G defined by a game automaton such that L4G = (L \G) ∪ (G \ L)
is of probability 0, i. e. L differs from G by a set of probability 0? An effective answer to
this question, that is an algorithm constructing a language G from L, combined with the
algorithm described in this paper would lead to a full solution to the Probability Problem.
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Abstract
We introduce probabilistic regular tree expressions and give a Kleene-like theorem for probabil-
istic tree automata (PTA). Furthermore, we define probabilistic MSO logic. This logic is more
expressive than PTA. We define bottom-up PTA, which are strictly more expressive than PTA.
Using bottom-up PTA, we prove a Büchi-like theorem for probabilistic MSO logic. We obtain a
Nivat-style theorem as an additional result.
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1 Introduction

Probabilistic tree automata (PTA) were introduced by Magidor [13] and Ellis [11] in the
1970s. These automata enjoy plentiful applications in the field of natural language processing,
including parsing, deep language models, and machine translation. We consider the behaviour
of a PTA as a function mapping a tree to a probability value. Recent research has already
transferred the Kleene- and Büchi theorems on words to the probabilistic setting [4, 14, 17, 18]
as well as to the weighted setting [7, 9]. The classical Nivat theorem [16] characterises regular
tree transductions by decompositions in a regular tree language and homomorphisms. Nivat
characterisations have attracted recent interest [1, 8]. In this work, we present probabilistic
variants of these classical results for finite trees.

We introduce probabilistic regular tree expressions (PRTE). Compared to the existing
regular tree expressions we use a different iteration operator S∞z, which we call infinity
iteration. The usual Kleene-iteration involves a choice after every iteration step either to stop
or to continue the iteration. Our iteration removes this ambiguity and forces the iteration to
continue until there are no more variables to substitute.

In order to obtain a probabilistic extension of MSO logic, we add a second order expected
value operator EpX.ϕ to MSO logic. In the scope of this operator, formulas x ∈ X are
considered to be true with probability p. The semantics of the expected value operator is
then defined as the expected value over all sets. It turns out that standard (top-down) PTA
are not expressive enough to capture the semantics of this probabilistic MSO logic. Therefore,
we introduce bottom-up PTA. These automata assign a probability to a state given all
the states at the child nodes. Thus, bottom-up PTA are a generalisation of deterministic
bottom-up tree automata, and are strictly more expressive than (top-down) PTA.

The main results of this paper are the following:
1. We prove that PRTE and top-down PTA are expressively equivalent.
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2. We prove a Nivat-theorem, which states that the behaviours of PTA are exactly the
functions which can be constructed from regular tree languages using operations like
relabellings, intersections, and probability measures.

3. Using this Nivat-theorem, we show the expressive equivalence of probabilistic MSO logic
and bottom-up PTA.

For the first result, we employ so-called substitution summable PTA, where variables can
only be accepted in sink states. The use of our Nivat-theorem for the third result allows us
to reuse the classical Büchi-theorem.

2 Preliminaries

Let N be the set {1, 2, 3, . . .} and N0 be N ∪ {0}. Any finite, non-empty set Σ is called an
alphabet. By Σ∗ we denote all words over Σ and by Σ+ all words over Σ excluding the empty
word ε.

A rank alphabet is a finite, non-empty set Σ with a function ar : Σ→ N0 which assigns to
every symbol f ∈ Σ its arity. For convenience we let Σn = {f ∈ Σ | ar(f) = n} for every
n ∈ N0. We write Σ for (Σ, ar) if ar is understood.

A tree over Σ is a function t : D → Σ where D ⊆ N∗ is a non-empty, finite, prefix-closed
set such that {i ∈ N | xi ∈ D} = {1, . . . , ar(t(x))} for every x ∈ D. We write dom(t) for D
and domA(t) for all x ∈ dom(t) with t(x) ∈ A. We denote by leaf(t) the set of all maximal
positions with respect to the prefix order, and by inner(t) the set dom(t) \ leaf(t). The set
of all trees over Σ is written TΣ.

Let t ∈ TΣ and x ∈ dom(t). We write t|x for the subtree of t rooted at x given by
dom(t|x) = {y | xy ∈ dom(t)} and t|x(y) = t(xy). For f ∈ Σn and t1, . . . , tn ∈ TΣ let
f(t1, . . . , tn) be the tree t given by dom(t) = {ε} ∪

⋃n
i=1 idom(ti), t(ε) = f and t(ix) = ti(x)

for i ∈ {1, . . . , n} and x ∈ dom(ti). For an introduction into tree automata, regular tree
expressions, and logic on finite trees, see [6].

By 1Y : X → {0, 1} we denote the characteristic function of Y ⊆ X. For a countable, non-
empty set X let ∆(X) denote the set of all distributions on X, i.e. all functions d : X → [0, 1]
such that

∑
x∈X d(x) = 1. Let ∆0(X) = ∆(X) ∪ {0X}, where 0X is the functions which

assigns 0 to every x ∈ X. We call any function S : TΣ → [0, 1] a probabilistic tree series or
just a tree series.

I Definition 1. Let Σ be a rank alphabet. A (top-down) probabilistic tree automaton (PTA)
is a quadruple A = (Q, δ, µ, F ) where
1. Q is a finite, non-empty set – the set of states,
2. δ =

⋃
n≥1 δn where δn : Q× Σn → ∆0(Qn) – the transition probability function

3. µ ∈ ∆(Q) – the initial distribution,
4. F ⊆ Q× Σ0 – the acceptance condition.
The behaviour of A is a function ‖A‖ : TΣ → [0, 1] defined by

‖A‖(t) =
∑

ρ : dom(t)→Q
(ρ(x),t(x))∈F for all x∈leaf(t)

µ(ρ(ε))
∏

x∈inner(t)

δ(ρ(x), t(x))
(
ρ(x1), . . . , ρ(x ar(t(x)) )

)
.

A state q ∈ Q is called a sink if δ(q, f) = 0 for all f ∈ Σ.
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3 Probabilistic Regular Tree Expressions

Like with classical regular tree expressions, we introduce an additional set of variables which
will be used to mark the positions where tree substitution can occur. Formally for a finite
set V let TΣ(V ) = TΣ′ where Σ′n = Σn for n ≥ 1 and Σ′0 = Σ0 ∪ V . The special notation for
trees containing variables is used to emphasize the special role of variables.

3.1 Operations on Tree Series
Before we define the syntax and semantics of probabilistic regular tree expressions, we
introduce the operations used in these expressions.

For two trees s, t ∈ TΣ(V ) and a set of variables W ⊆ V , we define s EW t to hold if and
only if t can be obtained by substituting all variables from W in s, i.e, dom(s) ⊆ dom(t)
and s(x) = t(x) for all x ∈ dom(Σ∪V )\W (s). Then, EW is a quasi-order, which we call the
substitution order. For |W | = 1 we even have that EW is a partial order, i.e, it is also
anti-symmetric.

I Definition 2. Let S, T : TΣ(V )→ [0, 1] and z ∈ V . We define the concatenation S ·z T of
S and T by(

S ·z T
)
(t) =

∑
sEzt

S(s) ·
∏

x∈domz(s)

T (t|x) for all t ∈ TΣ(V ).

Note that this definition is the same as for weighted tree series as given in [7]. They also
showed that this product is associative for a fixed variable z, i.e., (R ·z S) ·z T = R ·z (S ·z T ).
This does not hold if two different variables are used.

It is easy to see, that S ·z T can assume values outside of [0, 1] if we allow arbitrary tree
series S and T . Hence, we make the assumption that for any given tree t the tree series S is
a distribution on the trees s which can be extended using tree substitution to obtain t. More
formally:

I Definition 3. A tree series S : TΣ(V )→ [0, 1] is called substitution summable if∑
sEV t

S(s) ≤ 1

holds for all t ∈ TΣ(V ).

Restricting S to be substitution summable in Definition 2 assures that S ·z T is bounded
by 1. In addition, substitution summability is preserved by ·z.

I Lemma 4. Let S, T : TΣ(V ) → [0, 1] and z ∈ V . If S is substitution summable, then
(S ·z T )(t) ≤ 1 for all t ∈ TΣ(V ). Moreover, if T is also substitution summable, so is S ·z T .

Proof. The first claim is easy to see as the set of all s with s EV t contains all trees s with
s Ez t. For the second statement let t ∈ TΣ(V ). We compute∑

sEV t

∑
rEzs

S(r)
∏

x∈domz(r)

T (s|x) =
∑
rEV t

S(r)
∏

x∈domz(r)

∑
sxEV t|x

T (sx) ≤ 1.

Here, we applied the index transformation (s, r) 7→ (r, (s|x)x∈domz(r)), which is bijective
map from {(s, r) | r Ez s EV t} to {(r, (sx)x∈domz(r)) | r EV t and sx EV t|x for all x ∈
domz(r)}. J
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Next, we give a probabilistic iteration operation. The usual Kleene-iteration adds a choice
after every step to either stop the iteration process or substitute the variable again. This
non-deterministic choice cannot be easily modelled probabilistically. Therefore, we propose a
slightly different notion of iteration, where this choice is not present.

I Definition 5. Let S : TΣ(V )→ [0, 1] and z ∈ V . We define the infinity iteration S∞z by

S∞z(t) = lim
n→∞

S·zn(t)

for all t ∈ TΣ, where S·z0 = 1{z} and S·zn+1 = S ·z S·zn for all n ≥ 0.

I Lemma 6. Let S : TΣ(V ) → [0, 1] substitution summable and z ∈ V . Then S∞z(t) is
well-defined for all t ∈ TΣ(V ), i.e., the limit always converges and attains values in [0, 1],
and is again substitution summable.

Proof. First consider the case that z /∈ t(dom(t)). We then have S·z(n+1)(t) ≥ S·zn(t) by the
definition of tree series concatenation. Thus, the sequence S·zn(t) is monotonically increasing
and bounded by Lemma 4. Hence, the sequence converges.

Now let z ∈ t(dom(t)). We may assume that S(z) < 1 as otherwise S would be equal to
1{z}. Note that for any trees s′, s with s′ Ez s it holds that whenever z ∈ s(dom(s)) also
z ∈ s′(dom(s′)). Hence, we obtain

S·zn(t) =
∑

t0Ez···Eztn=t
S(t0)

n∏
i=1

∏
x∈domz(ti−1)

S(ti|x) ≤
n∑
k=0

∑
t0Ez···Eztn=t
|{i|ti−1 6=ti}|=k

S(z)n−k.

Let N be the finite number of trees s with s Ez t. Thus, we can bound k in the above
equation by N . Any chain t0 Ez · · · Ez tn = t can be uniquely identified by the choice of k
positions where inequality occurs and the trees occurring at these positions. Hence, there
are at most

∑N
k=0

(
n
k

)
Nk chains of length n. Therefore, S·zn(t) ≤ P (n)S(z)n−N for some

polynomial P of degree independent of n. Thus, S·zn(t)→ 0 as n→∞ and so S∞z(t) = 0.
By Lemma 4 we know that S·zn is substitution summable for any n ≥ 1. Let t ∈ TΣ(V ).

We obtain∑
sEV t

S∞z(s) =
∑
sEV t

lim
n→∞

S·zn(s) = lim
n→∞

∑
sEV t

S·zn(s) ≤ 1. J

I Remark. In [7] an alternative iteration for tree series was proposed: Suppose that
S : TΣ(V ) → K is a weighted tree series, where K is a semiring, with S(z) = 0K. They
define S0,F

z = 0, Sn+1,F
z = S ·z (Sn,Fz + 1{z}), and S∗,Fz (t) = S

height(t)+1,F
z (t). As can be

seen from the definition of Sn+1,F
z , there is a choice for every leaf labelled by z to either

continue the iteration or to just stop and attach the weight one to this position. There is
no such choice with S∞z – the iteration always has to continue. Nevertheless, when no leaf
is labelled z, the iteration in S∗,Fz cannot stop at a z labelled leaf and thus equals to S∞z,
i.e., S∞z(t) = S∗,Fz (t) for all t ∈ TΣ(V ) with z /∈ t(dom(t)) if S(z) = 0 and S substitution
summable.

The usual Kleene-iteration L∗,z of a tree language L with z /∈ L can be characterised as the
unique solution of the equation X = L ·z X ∪ {z}. An analogous fixed-point characterisation
can also be given for S∞z:

I Corollary 7. Let z ∈ V and S be a substitution summable probabilistic tree series with
S(z) < 1. Then, S∞z is the unique solution of the equation X = S ·z X.
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Proof. By Lemma 6, S∞z = limn→∞ S·zn is well-defined. Thus, S∞z is a solution of
X = S ·z X. Consider a tree series T with T = S ·z T , i.e., T = S·zn ·z T for all n ≥ 0. We
obtain

T (t) = lim
n→∞

(
S·zn ·z T

)
(t) = lim

n→∞

∑
sEzt

S·zn(s)
∏

x∈domz(s)

T (t|x)

=
∑
sEzt

(
lim
n→∞

S·zn(s)
) ∏
x∈domz(s)

T (t|x) = (S∞z ·z T )(t) = S∞z(t),

where the last equality holds as S∞z ·z T = S∞z. This is due to the proof of Lemma 6, where
we established that S∞z(t) = 0 if t contains the symbol z at any leaf. J

3.2 Syntax and Semantics of Regular Expressions
The syntax of regular tree expressions is based on weighted regular tree expressions with
two differences: First, we use infinity-iteration instead of Kleene-iteration, and second, we
do not allow arbitrary summation of terms. Instead, we use two restricted rules for sums,
which either decide based on the root symbol or model probabilistic branching. Furthermore,
we do not allow (direct) summation of variables. Unfortunately, these restrictions remove
the closure of the set of expressions under associativity, commutativity and distributivity.
Hence, we explicitly add these rules to the syntax. Though these rules are not needed to add
expressiveness, we include the rules nevertheless to make it possible to write more natural
expressions. This is formalised below.

I Definition 8. The set pRTE of probabilistic regular tree expressions is the smallest set E
that is closed under the following grammar rules (where p ∈ [0, 1], Σ′ ⊆ Σ and z ∈ V )

E ::= 0 | z |
∑
f∈Σ′

f(E, . . . , E) | pE + (1− p)E | E ·z E | E∞z,

and is also closed under the following identities. Each identity states that an expression
containing the left side of an identity as a subexpression is in E if and only if the same
expression, but with this subexpression replaced by the right side of the identity, is in E .
The following identities model associativity of ·, + and ·z, commutativity of +:

(E + F ) +G = E + (F +G), E + F = F + E,

(E ·z F ) ·z G = E ·z (F ·z G), (p1p2)E = p1(p2E).

Next, we give the following distributivity identities:

(E + F ) ·z G = E ·z G+ F ·z G, p(E + F ) = pE + pF,

f( · · · , E + F, · · · ) = f( · · · , E, · · · ) + f( · · · , F, · · · ), (p1 + p2)E = p1E + p2E.

Moreover, we add the following identities involving 0:

f( · · · ,0, · · · ) = 0, 0 ·z E = 0.

The semantics of pRTE is defined inductively on the structure of the expression: Let
t ∈ TΣ(V ) we let ‖0‖(t) = 0, ‖z‖(t) = 1{z}(t) for z ∈ Σ0 ∪ V , and

‖f(E1, . . . , En)‖(t) =
{∏n

i=1‖Ei‖(ti) if t = f(t1, . . . , tn) for f ∈ Σ ∪ V
0 otherwise

‖E + F‖(t) = ‖E‖(t) + ‖F‖(t) ‖pE‖(t) = p‖E‖(t)
‖E ·z f‖(t) = (‖E‖ ·z ‖F‖)(t) ‖E∞z‖(t) = ‖E‖∞z(t).
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Remark, that the syntax of pRTE is decidable. First check whether the input string
is well-formed, then maximally expand it using the expanding distributivity rules (e.g.
(E+F ) ·zG→ E ·zG+F ·zG). Finally, check the resulting string using the context-sensitive
grammar arising from all rules except the expanding ones.

I Example 9. Let Σ = Σ2 ∪Σ0 with Σ2 = {f} and Σ0 = {a, b}. Furthermore, let y and z be
variables. Consider the expression

E =
(

1/2 f(y, z) + 1/2 f(z, y) + a
)∞y ·z

(
f(z, z) + a + b

)∞z
.

Let the first factor be denoted by E1 and the second factor by E2. Then E1 stochastically
chooses a branch whose leaf nodes are labelled by a and z, as every variable y must be
eventually substituted by a for the iteration to stop. Thus, E1 assigns the probability (1/2)n
to trees of the form f1(f2(· · · fn(a) · · · )), where fi(t) = f(t, z) or fi(t) = f(z, t), and 0 to every
tree not of this form. The expression E2 assigns probability 1 to every tree. Thus, we obtain
‖E‖(t) =

∑
x∈doma(t)(1/2)|x|.

3.3 Expressive equivalence to automata
The first part of this section will give an inductive construction to translate probabilistic
regular tree expressions to top-down probabilistic tree automata. Afterwards, we show the
converse direction. As a first step, we transfer the concept of substitution summability to
automata.

I Definition 10. A probabilistic tree automaton A = (Q, δ, µ, F ) is called substitution
summable if the |V |+ 1 sets FΣ0 , (F{z})z∈V are pairwise disjoint and every state in FV is a
sink state, where FW = {q ∈ Q | (q, a) ∈ F for some a ∈W } for W ⊆ Σ0 ∪ V .

I Lemma 11. Let A be a PTA. If A is substitution summable, so is ‖A‖.

The class of substitution summable tree series is closed under the operations ·z and ∞z.
The same statement holds for the class of substitution summable PTA.

I Lemma 12. Let A1, A2 be PTA and A1 be substitution summable. Then ‖A1‖ ·z ‖A2‖ can
be recognized by a probabilistic tree automaton B. If A2 is substitution summable, so is B.

Proof. The construction is based on the weighted case, for details see [7]. The automaton
B is the disjoint union of A1, but with the states in (F1)z removed, and A2. The initial
distribution of A1 is used. Every transition into a state in (F1)z is redirected to A2 according
to the initial distribution of A2. Thus, the automaton B simulates runs of A1 followed
by runs of A2. As A1 is substitution summable, whenever a simulated run of A1 could
enter a state in Fz the only possible choice is to continue the run in A2. The substitution
summability of A2 directly carries over to B. J

I Lemma 13. Let A be a substitution summable PTA. Then ‖A‖∞z is recognizable by a
substitution summable PTA.

Proof. Let A = (Q, δ, µ, F ) and Fz = {q ∈ Q | (q, z) ∈ F }. We may assume µ(Fz) < 1. Let
η = 1

1−µ(Fz) . We define the automaton A′ = (Q′, δ′, µ′, F ′) by Q′ = Q \ Fz, µ′(q) = ηµ(q),
F ′ = F \ Fz, and

δ′(q, f)(q1, . . . , qn) =
∑

r1,...,rn∈Q
δ(q, f)(r1, . . . , rn)

n∏
i=1

κ(ri, qi),
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where κ(r, q) = 1{q}(r) + 1Fz (r)ηµ(q). The automaton A′ simulates A until it can enter a
state in Fz. As A is substitution summable the only possibility for A in such a state is to
accept a leaf labelled with z. Instead, A′ resets the simulated run of A using the initial
distribution, thus starting a new iteration. The additional factor η is inserted to model
arbitrary many substitutions of z by itself, each of them having the probability of µ(Fz). J

I Lemma 14. Let E be a probabilistic regular tree expression. There is a substitution
summable probabilistic tree automaton A such that ‖E‖ = ‖A‖.

Proof. We show that the set of expressions whose semantics is recognizable by an automaton
satisfies all closure properties of pRTE and hence contains all expressions.

Clearly 0 and 1{z}, for z ∈ V , are recognizable. Next, we consider the expression
E =

∑
f∈Σ′ f(Ef1 , . . . , E

f
ar(f)) for some Σ′ ⊆ Σ and expressions Efi with f ∈ Σ′ and

1 ≤ i ≤ ar(f). Assume there are automata Afi with ‖Afi ‖ = ‖Efi ‖ for each f and i. An
automaton A recognizing E is constructed by taking the disjoint union of the automata
Aif together with a new initial state q0. If A reads a symbol g ∈ Σ′ with ar(g) > 0 in q0,
it simulates each automaton Agi at node i for i = 1, . . . , ar(g). Furthermore, every symbol
a ∈ Σ′ ∩ Σ0 is accepted in q0.

For E = pE1 + (1 − p)E2 consider automata A1 and A2 recognizing ‖E1‖ and ‖E2‖,
respectively. The automaton A is the disjoint union of A1 and A2, but with the initial
distribution pµ1 + (1− p)µ2.

By Lemmas 12 and 13 we have the closure under tree concatenation and infinity iteration.
Finally, note that the associativity, commutativity, and distributivity rules do not change
the semantics of the expression and hence no automata construction is necessary. J

I Example 15. We consider the expression E from Example 9. Using the constructions
described above we obtain a PTA recognizing ‖E‖. The steps are shown in Figure 1:
(a) Probabilistic automata recognizing the constant series equal to 1
(b) The automata obtained for the expression 1/2 (f(y, z) + a) + 1/2 (f(z, y) + a) using the

constructions from Lemma 14.
(c) Lemma 13 is applied to the automaton from (b).
(d) Lemma 12 is applied to the automata from (c) and (a). This automaton recognizes ‖E‖.

I Lemma 16. Let A be a tree automaton. There is an expression E with ‖E‖ = ‖A‖.

Proof. Let A = (Q, δ, µ, F ) and assume Q = {1, . . . , n}. Let t ∈ TΣ(Q) and i, k ∈ Q. Define
the set Rki (t) to contain all runs ρ : dom(t)→ Q such that the following conditions hold:
1. ρ(ε) = i

2. ρ(x) ≤ k for all x ∈ domΣ(t) \ {ε}
3. ρ(x) = t(x) for all x ∈ domQ(t)
4. (ρ(x), t(x)) ∈ F for all x ∈ domΣ0(t).

For a run ρ let prob(ρ) =
∏
x∈inner(t) δ(ρ(x), t(x))(ρ(x1), . . . , ρ(xnx)). We inductively

construct expressions Eki over TΣ(Q) such that

‖Eki ‖(t) =
{

0 if t(ε) ∈ Q or t(x) ≤ k for a x ∈ domQ(t)∑
ρ∈Rk

i
(t) prob(ρ) otherwise.

(1)

Intuitively, the index k is the largest state number that has already been handled in the
construction. Trees must not contain handled states.
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(b) 1/2 f(y, z) + 1/2 f(z, y) + a
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(c) (1/2 f(y, z) + 1/2 f(z, y) + a)∞y

q1 p1

r1

1/2f
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1/2f

1/2f
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1
2

1
2

a, b

a a

(d) (1/2 f(y, z) + 1/2 f(z, y) + a)∞y ·z (f(z, z) + a + b)∞z

A transition η = δ(q, f)(q1, q2) is drawn as two arrows connected by an arc near the
source state q. The arc is labelled by the probability η the letter f . The solid arrow
leads to the first state q1 and the dashed arrow to the second state q2.

Figure 1 Inductive construction of a tree automaton.

For E0
i only trees of height at most 1 can have non-zero values. Thus, E0

i can be given
directly for every i ∈ Q:

E0
i =

∑
c : Σ>0→Q∗
|c(f)|=ar(f)

( ∏
f∈Σ>0

δ(i, f)(c(f))
)( ∑

f∈Σ>0

f(c(f)) +
∑
a∈Σ0

(i,a)∈F

a

)

=
∑
a∈Σ0

(i,a)∈F

a+
∑

f∈Σ>0

∑
q1,...,qar(f)∈Q

δ(i, f)(q1, . . . , qar(f)) f(q1, . . . , qar(f)),

where the first line can be directly constructed using the syntax from Definition 8 and the
second line is obtained using distributivity and commutativity.

Now, assume the expressions Eki have already been constructed. Explicit calculation
shows that the expression Ek+1

i defined by Ek+1
i = Eki ·k+1

(
Ekk+1

)∞(k+1) actually satisfies
(1). We obtain the desired expression E =

∑
q∈Q µ(q)Enq . J

Altogether, we have proven the following theorem:

I Theorem 17. Let S : TΣ → [0, 1] be a probabilistic tree series. The following statements
are equivalent:
1. S = ‖A‖ for some probabilistic tree automaton A,
2. S = ‖E‖ for some probabilistic regular tree expression E.
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4 Probabilistic MSO Logic on Trees

In the first part of this section we give the formal definition of probabilistic MSO logic, basic
properties, and an example. To prove the equivalence to probabilistic automata in the third
part, we beforehand introduce bottom-up probabilistic tree automata in the second part and
prove a Nivat-style theorem.

4.1 Syntax and Semantics of Probabilistic MSO logic
For the rest of this section fix a countable set of first order variables V1 and a countable set
of second order variables V2. Let V = V1 ∪̇ V2. Let t ∈ TΣ be a tree. A t-assignment is a
mapping σ : V → dom(t)∪2dom(t) such that σ(V1) ⊆ dom(t) and σ(V2) ⊆ 2dom(t). We denote
by σ[x 7→ a] the updated assignment which maps x to a and agrees with σ everywhere else.

I Definition 18. The set of all probabilistic MSO formulas ϕ is given in BNF by

ψ ::= labelf (x) | edgei(x, y) | x ∈ X | ¬ψ | ψ ∧ ψ | ∀x.ψ | ∀X.ψ
ϕ ::= ψ | ϕ ∧ ϕ | ¬ϕ | EpX.ϕ ,

where f ∈ Σ, i ∈ N, x ∈ V1, X ∈ V2, and p ∈ [0, 1]. The formulas generated by ψ are called
Boolean formulas. The set free(ϕ) is defined as usual for Boolean MSO, conjunction, and
negation. Additionally, we define free(EpX.ϕ) := free(ϕ) \ {X}.

The semantics of a formula ϕ is a function JϕK which maps a pair (t, σ), where t is a tree
and σ is a t-assignment, to a probability value. The inductive definition is as follows:

JψK(t, σ) =
{

1 if (t, σ) |= ψ

0 otherwise
Jϕ1 ∧ ϕ2K(t, σ) = Jϕ1K(t, σ) · Jϕ2K(t, σ)

J¬ϕK(t, σ) = 1− JϕK(t, σ)

JEpX.ϕK(t, σ) =
∑

M⊆dom(t)

JϕK(t, σ[X 7→M ]) · p|M |(1− p)|dom(t)\M |,

where (t, σ) |= ψ is the usual satisfaction relation for classical MSO logic.

The semantics of the conjunction and negation are motivated from probability theory
by the probabilities of the intersection of independent events and the complementary event,
respectively. The semantics of EpX.ϕ is as follows: We choose a set M ⊆ dom(t) using a
sequence of independent Bernoulli experiments, i.e, for every tree position an unfair coin is
tossed to decide whether to include this position in the set or not. For every such set the
probability whether ϕ holds is computed. Finally, the expected value of these probabilities is
calculated.

Disjunction can be defined as usual: ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2). The semantics is then
given by Jϕ1 ∨ ϕ2K = Jϕ1K + Jϕ2K− Jϕ1KJϕ2K. This resembles the well-known identity for the
probability of the union of independent events.

We write ϕ1 ≡ ϕ2 if Jϕ1K = Jϕ2K. The following identities are valid:

ψ ∧ (ϕ1 ∨ ϕ2) ≡ (ψ ∧ ϕ1) ∨ (ψ ∧ ϕ2) EpX.¬ϕ ≡ ¬EpX.ϕ
EpX.EqY.ϕ ≡ EqX.EpY.ϕ EpX.ϕ ≡ ϕ if X /∈ free(ϕ),

EpX.(ϕ1 ∧ ϕ2) ≡ (EpX.ϕ1) ∧ ϕ2 if X /∈ free(ϕ2)

where ϕ, ϕ1, ϕ2 are arbitrary probabilistic MSO formulas and ψ is Boolean.
Using these identities, the following statement can be shown:
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I Lemma 19. Let ϕ be a probabilistic MSO formula. There is a Boolean MSO for-
mula ψ, second order variables X1, . . . , Xn, and probability values p1, . . . , pn such that
ϕ ≡ Ep1X1 · · ·Epn

Xn.ψ.

I Example 20. Let Σ = Σ2 ∪Σ0 with Σ2 = {g} and Σ0 = {a, b}. We consider a search for a
leaf labelled by a. This search works by iterating the leafs of the tree left to right. At every
visited leaf the search stops with probability p. It is successful if the label of the node, where
the search stopped, is a. This process can be modelled by the following formula:

ϕ = EpX.∃x.x ∈ X ∧ labela(x) ∧ leaf (x) ∧
(
∀y.(y ∈ X ∧ leaf (y)) =⇒ x vDF y

)
,

where vDF is the depth-first traversal order and leaf the predicate whether a node is a leaf,
both are MSO definable. The Boolean part of ϕ expresses that the minimal leaf position in
X is labelled by a. For the semantics we obtain

JϕK(t) =
∑

x∈leafa(t)

p · (1− p)nx where nx = |{y ∈ leaf(t) | y vDF x, y 6= x}|.

The tree series JϕK from Example 20 is not recognizable by a top-down probabilistic
tree automaton. Intuitively, when a top-down automaton reaches a leaf node, there is no
information available whether there are a-labelled leafs to the left of this node. Therefore,
we will define a more expressive probabilistic automata model in the next section.

I Remark. The syntax of probabilistic MSO was chosen to be minimal. In fact, some
constructs known from weighted MSO logics can be expressed in probabilistic MSO as
syntactic macros, i.e., they can be transformed to the syntax of Definition 18.

Multiplication by constants: Consider two PMSO formulas ϕ and ψ and a probability
value p. The formula EpX.(∃x.root(x) ∧ (x ∈ X =⇒ ϕ) ∧ (x /∈ X =⇒ ψ), where x and
X are new variable symbols and root(x) is a MSO formula, which checks if x is the root
position, has as semantics pJϕK + (1− p)JψK.

Generalised universal first-order quantification: Weighted logics allows universal first order
quantification to be applied to arbitrary formulas. We can also introduce such an operator
to probabilistic logic. Let ϕ be a probabilistic MSO formula. The semantics of ∀x.ϕ is
given by J∀x.ϕK(t, σ) =

∏
a∈dom(t)JϕK(t, σ[x 7→ a]). As in the weighted case, ∀x. does not

preserve recognizability when arbitrary formulas ϕ are allowed. Thus, ϕ is restricted to
so-called step formulas. A step formula is build from Boolean MSO formulas and probability
constants using only the Boolean operations. Thus, every step formula ϕ can be written as
ϕ ≡

∧n
i=1(ψi =⇒ pi). We introduce new second order variables X1, . . . , Xn and define a

formula ϕ′ by

ϕ′ := Ep1X1. · · ·EpnXn.∀x.
n∧
i=1

(ψi =⇒ x ∈ Xi).

It can be shown that Jϕ′K = J∀x.ϕK holds.

4.2 A Nivat Theorem
We introduce bottom-up deterministic tree automata, which are a generalisation of bottom-up
deterministic tree automata to the probabilistic setting.
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I Definition 21. A bottom-up probabilistic tree-automaton is a triple A = (Q, δ, F ) where
1. Q is a finite, non-empty set – the set of states,
2. δ =

⋃
n≥0 δn where δn : Σ×Qn → ∆(Q) – the transition probability function,

3. F ⊆ Q – the set of final states.
The semantics is given by ‖A‖(t) =

∑
q∈F δq(t), where

δq
(
f(t1, . . . , tn)

)
=

∑
q1,...,qn∈Q

δ(f, q1, . . . , qn)(q)
n∏
i=1

δqi
(ti).

Although bottom-up PTA are a natural generalisation of deterministic bottom-up tree
automata to the probabilistic setting, we only found one other reference to this model [12].

Before we state our Nivat theorem, we introduce some notation: Let Γ be another rank
alphabet. A mapping h : Γ → Σ is called a relabelling if arΓ(g) = arΣ(h(g)) for all g ∈ Γ.
A relabelling extends uniquely to a function h : TΓ → TΣ by dom(h(t)) = dom(t) and
h(t)(x) = h(t(x)) for all x ∈ dom(t). Given a finite set M , we can interpret M × N0 as an
(infinite) rank alphabet by defining ar((m, k)) = k. For a tree domain D, a finite set M and
a distribution d on M , we define a probability measure PrDd on {t ∈ TM×N0 | dom(t) = D}
by PrDd ({t}) =

∏
x∈D d(π1(t(x))), where π1 is the projection on the first component. Given

a relabelling g : Σ → M × N0 we let (PrDd ◦ g)(X) = PrDd (g(X)) for all X ⊆ {t ∈ TΣ |
dom(t) = D}. We write Prd instead of PrDd if D is understood.

I Theorem 22. Let S : TΣ → [0, 1] be a probabilistic tree series.
1. S is the behaviour of a bottom-up probabilistic tree automaton if and only if there are

(a) a finite rank alphabet Γ and a finite set M ,
(b) a distribution d on M ,
(c) relabellings h : Γ→ Σ and g : Γ→M × N0,
(d) a regular tree language L ⊆ TΓ,
such that for all t ∈ TΣ

‖A‖(t) = (Prd ◦ g)
(
h−1({t}) ∩ L

)
. (2)

2. S is the behaviour of a top-down probabilistic tree automaton if and only if conditions
a – d hold and additionally
(e) L is top-down deterministic recognizable,
(f) the mapping Γ→ Σ×M defined by f 7→ (h(f), g(f)) is injective,
and (2) holds.

Proof. We only prove the bottom-up case, the top-down case in analogous. Additional care
has to be taken, as Prd contains a probability distribution for every tree node, whereas a
top-down PTA only contains one for the inner nodes.

Let A = (Q, δ, F ) be a bottom-up PTA. Define the set M by M =
∏
n≥0Mn where

Mn = QΣn×Qn , i.e., M contains functions mapping tuples (f, q1, . . . , qar(f)) to states. The
probability distribution d is given by

d(m) =
∏
f∈Σ

∏
q1,...,qar(f)∈Q

δ(f, q1, . . . , qar(f))(m(f, q1, . . . , qar(f))).

Let Γ = Σ×M with ar(f,m) = ar(f), we set h(f,m) = f , and g(f,m) = (m, ar(f)). Let
the tree language L contain all trees t ∈ TΓ for which there is a run ρ : dom(t)→ Q with
ρ(x) = π2(t(x))(π1(t(x)), ρ(x 1), . . . , ρ(x ar(t(x)))) for all x ∈ dom(t), and ρ(ε) ∈ F . Then,
L is regular. One can check that (2) holds using these definitions.
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Conversely, consider the rank alphabet Γ′ = Σ × M and the relabelling κ : Γ →
Γ′ with κ(a) = (h(a), π1(g(a))). Let A′ = (Q′, δ′, F ′) be a deterministic bottom-up
tree automaton with L(A′) = κ(L). We define A = (Q′, δ, F ′) with δ(f, q1, . . . , qn) =∑
{d(m) | δ′((f,m), q1, . . . , qn) = q}. Again, we obtain (2). J

Using Theorem 22 we immediately conclude the following corollary.

I Corollary 23. Let A be a top-down probabilistic tree automaton. There is a bottom-up
probabilistic tree automaton B with ‖B‖ = ‖A‖.

4.3 Equivalence to Tree Automata
I Theorem 24. Let S : TΣ → [0, 1]. The following statements are equivalent:
1. S = ‖A‖ for a probabilistic bottom-up tree automaton A,
2. S = JϕK for a probabilistic MSO sentence ϕ.

Proof. Given a bottom-up PTA A, we apply Theorem 22 to obtain Γ, M , L, d, h and g
as in the statement of the theorem such that (2) holds. We may assume M = {1, . . . ,m}
and Γ = {1, . . . , `}. Choose probability values p1, . . . , pm such that d(k) = pk

∏k−1
i=1 (1− pi).

Using the classical Büchi theorem one constructs a Boolean MSO sentence ψ such that
L(ψ) = L. Let X1, . . . , Xm, Y1, . . . , Y` be new set variable symbols. Replace every occurrence
of labelf (x) in ψ by x ∈ Yf resulting in a new formula ψ′. Let part(Y1, . . . , Yk) be a MSO
formula expressing that Y1, . . . , Yk is a partition of the domain. We define ϕ as

ϕ = Ep1X1 · · ·EpmXm∃Y1 · · · ∃Y`.part(Y1, . . . , Y`) ∧ ψ′

∧ ∀x.
∧
f∈Γ

x ∈ Yf =⇒
(

labelh(f)(x) ∧ x ∈ Xg(f) ∧
g(f)−1∧
k=1

x /∈ Xk

)
.

Consider a tree t ∈ TΣ. The Yi’s encode a tree t̄ ∈ TΓ with t̄ |= ψ, i.e., t̄ ∈ L. The second
line of the formula states that t = h(t̄) and chooses the Xi’s such that the minimal k with
x ∈ Xk is g(t̄(x)) for every x ∈ dom(t). Hence, fixing t̄, the probabilities at every position x
sum up to pg(t̄(x))

∏g(t̄(x))−1
i=1 (1− pi) = d(g(t̄(x))). Thus, we obtain Prd({g(t̄)}) for the whole

tree. Considering arbitrary t̄, we conclude that JϕK equals the right side of (2).
Conversely, let ϕ be a probabilistic MSO sentence. By Lemma 19, there is an equivalent

sentence of the form Ep1X1 · · ·Epm
Xm.ψ where ψ is Boolean. Let M = {0, 1}m, Γ = Σ×M ,

and h : Γ → Σ and g : Γ → M be the natural projections. Define d ∈ ∆(M) by d(m) =
(
∏
i,m(i)=1 pi)(

∏
i,m(i)=0(1 − pi)). Again, by the classical Büchi theorem L = L(ψ) ⊆ TΓ,

where the additional components of Σ×{0, 1}m = Γ encode the values of the Xi’s, is regular.
One shows that (2) holds in this situation. Thus, by Theorem 22, there is a bottom-up PTA
recognizing JϕK. J

5 Conclusion and Future Research

We have introduced a probabilistic variant of regular tree expressions and proved that these
expressions are expressively equivalent to top-down probabilistic tree automata. Next, we
gave an extension of MSO logic to the probabilistic setting. It turned out that top-down
PTA are too weak to recognize the semantics of all probabilistic MSO sentences. Thus, we
introduced bottom-up probabilistic tree automata. We could show that the class of these
automata is expressively equivalent to probabilistic MSO. In order to prove this result we
also obtained a Nivat-style theorem for bottom-up PTA.



T. Weidner 515

Future research might look into an extension of these results to unranked trees. There
already exists MSO logic on unranked trees for the unweighted [15] as well as for the weighted
case [10]. For regular tree expressions there already exist forest expressions [2] and one
could extend unweighted ranked regular tree expressions to the unranked case. None of
these concepts directly fit into the probabilistic setting. A different, interesting structure
is infinite ranked trees. Probabilistic tree automata for infinite trees have been given in
[5]. The extension of probabilistic regular tree expressions to infinite trees looks promising.
For probabilistic MSO logic there does not seem to be a proper automata model, but one
could still get the equivalence to the tree series defined by the Nivat decomposition from
Theorem 22. A different notion of probabilistic regular expressions on trees has been given
in [14]. These expressions use pebbles and are tree-walking. It has been shown [3] that in
the unweighted case pebble tree-walking automata are strictly less expressive than regular
tree languages. It remains to be seen if this inclusion also holds in the probabilistic case.
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Abstract
We study the problem of computing a minimum time schedule to spread rumors in a given graph
under several models: In the radio model, all neighbors of a transmitting node listen to the
messages and are able to record it only when no other neighbor is transmitting; In the wireless
model (also called the edge-star model), each transmitter is at a different frequency to which any
neighbor can tune to, but only one neighboring transmission can be accessed in this way; In the
telephone model, the set of transmitter-receiver pairs form a matching in the graph. The rumor
spreading problems assume a message at one or several nodes of the graph that must reach a
target node or set of nodes. The transmission proceeds in synchronous rounds under the rules
of the corresponding model. The goal is to compute a schedule that completes in the minimum
number of rounds.

We present a comprehensive study of approximation algorithms for these problems, and show
several reductions from the harder to the easier models for special demands. We show a new
hardness of approximation of Ω(n 1

2−ε) for the minimum radio gossip time by a connection to
maximum induced matchings. We give the first sublinear approximation algorithms for the most
general case of the problem under the wireless model; we also consider various special cases
such as instances with symmetric demands and give better approximation algorithms. Our work
exposes the relationships across the models and opens up several new avenues for further study.
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1 Introduction

Problems modeling rumor spread are central to the design of coordination networks that
seek to keep demand pairs of vertices in contact over time. The prototypical example is the
broadcast problem where a message in a root node must be sent to all the other nodes via
connections represented by an undirected graph. We assume that communication proceeds in
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synchronized rounds. When more than one message is being disseminated, we assume that in
each round each node can transmit an unlimited number of messages in one communication.
A subset generalization of broadcast is called the Multicast problem: a subset of nodes is
specified as terminals and the goal is to spread the rumor from the root only to this subset,
using other non-terminal nodes if needed in the process. An all-to-all generalization of the
broadcast problem is termed gossip: every node has its own piece of information that must be
communicated to all nodes, and the goal is to have all the information spread to all the nodes
in the minimum number of rounds. Gossip and broadcast are special cases of a more general
demand model that we may call multicommodity multicast: in this most general version, we
are given a set of source-sink pairs so that each source has a rumor that must be sent to
the corresponding sink. Recall that messages from many sources can all be aggregated and
exchanged in one round between any pair that can communicate, and the goal is to minimize
the number of rounds. In this paper, we will study a specialization of the multicommodity
demand model called the symmetric multicommodity where for every source-sink pair, we
also have the symmetric requirment that the sink wants to send its rumor to the source; thus,
the demand pairs are unordered in this case. The more general version will be called the
asymmetric multicommodity demand model to distinguish it from the symmetric demands
case.

1.1 Models: Telephone, Radio, and Edge-Star, a New Model from
Wireless

Different communication models result in different constraints on the set of edges on which
messages can be transmitted in a single round. The two most widely studied models are the
telephone and radio models: In the telephone model, in each round, a node can communicate
with at most one other node, thus the edges on which communication occurs is a matching;
In the radio model, a set of transmitters broadcast the message out but only their neighbors
who are adjacent to exactly only one transmitter can successfully receive the message (while
interference prevents other neighbors from receiving the message): the set of edges through
which the messages are sent in any round in this model is a set of stars centered at the
transmitters, where each leaf of each star has that star’s center as its unique neighbor among
all the star centers.

In this paper, we expand the study of rumor spreading problems by introducing a new
model based on wireless communications between nodes, which we call the edge-star model.
We assume that during each round of wireless communication, each transmitter can choose its
own channel or frequency distinct from that of all other transmitters. The input undirected
graph represents pairs of nodes that are within wireless range of each other. Receiving nodes
that are in the vicinity of many different transmitting nodes can choose to tune into the
frequency of one of them. In this way, the set of edges in which communication happens in
every round is a set of stars which are defined by a subset of edges of the input graph. Note
that unlike the radio model, there is no requirement that a receiver be adjacent to exactly
one transmitter. This model more closely models wireless networks, where a machine may be
able to see many wireless networks, but only interacts with one of these networks at a time.

1.2 Previous Work
The radio broadcast and gossip problems have been extensively studied (see the work reviewed
in the survey [11]). The best-known scheme for radio broadcast is by Kowalski and Pelc [12]
which completes in time O(D+log2 n), where n is the number of nodes, and D is the diameter
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of the graph and is a lower bound to get the message across the graph from any root. The
O(log2 n) term is also unavoidable as demonstrated by Alon et al. [1] in an example with
constant diameter that takes Ω(log2 n) rounds for an optimal broadcast scheme to complete.
Elkin and Korsartz [5] also show that this additive log-squared term is best possible unless
NP ⊆ DTIME(nlog logn).

The best bound for radio gossip known so far, however, is O(D + ∆ logn) steps in an
n-node graph with diameter D and maximum degree ∆ [10]. The maximum degree is not
a lower bound on the gossip time, and indeed no previous results are known about the
approximability for radio gossip, which is mentioned as an open problem in [11].

In the telephone model, the first poly-logarithmic approximation for minimum broadcast
time was achieved by Ravi [14] and the current best known approximation ratio is O( logn

log logn )
due to Elkin and Korsartz [6]. The best known lower bound on the approximation ratio for
telephone broadcast is 3− ε [4].

In his study of the telephone broadcast time problem, Ravi [14] introduced the idea of
finding low poise spanning trees to accomplish broadcast: the poise of a spanning tree of
an undirected graph is the sum of its diameter and its maximum degree. In the course of
deriving a poly-logarithmic approximation, Ravi also showed how a tree of poise P in an
n-node graph can be used to complete broadcast starting from any node in O(P · logn

log logn )
steps - we will use this observation later.

Nikzad and Ravi [13] studied the telephone multicommodity multicast problem, and
gave the first sub-linear approximation algorithm with performance ratio 2O(log log k

√
log k)

for instances with k source-sink pairs.
Gandhi et al. [9] recently studied the Radio Aggregation Scheduling problem which is

a gathering version of the rumor spreading problem in the radio model. The set of edges
in which communication occurs in every round is a matching with the additional property
that if the edges within receivers and within senders are ignored, the communicating edges
form an induced matching. In this model they prove a tight Θ(n1−ε)-approximation for their
radio aggregation scheduling. Our results were derived independently of their methods.

1.3 Our contributions
We give the first results on the approximability of gossip and multicommodity multicast
problems in the radio model. We introduce the edge-star model based on wireless channels
and give the first approximation results for minimum time rumor spreading by relating them
to their analogs in the telephone model.

1. We show that it is NP-hard to approximate gossip in the radio model within a factor of
O(n1/2−ε) in an n-node graph. This result is derived by isolating a gathering version of
the broadcast problem in the radio model and relating it in a simple bipartite graph to
induced matchings (Section 2).

2. We obtain an O( logn
log logn ) approximation algorithm for gossip in the edge-star model by

reducing the problem to the broadcast problem in the telephone model (Section 3.1).
3. We consider the special case where the underlying graph is a tree, and show that the

multicommodity multicast in the edge-star model reduces to the broadcast problem in
the telephone model, thus proving an O( logn

log logn ) approximation (Section 3.2).
4. We show that the case of edge-star symmetric multicommodity multicast problem has the

same optimal solution (up to poly-log factors) as telephone multicommodity multicast,
yielding a 2O(log logn

√
logn) approximation (Section 3.3).

FSTTCS 2015
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Table 1 A summary of upper and lower bounds achieved in the different problems. We prove
the results marked * in the table.

Broadcast Gossip Multicommodity
Radio D + O(log2 n) [12] O(D + ∆ log n) [10] Unknown

Ω(n1/2−ε) hard* Ω(n1/2−ε) hard*
Edge-star OPT= D OPT·O( logn

log logn )* OPT·Õ(2
√

logn)*(symmetric)
OPT·O(n 2

3 )* (asymmetric)
Telephone OPT·O( logn

log logn ) [7] OPT·O( logn
log logn ) [7] OPT·Õ(2

√
logn) [13]

5. We give an O(n 2
3 )-approximation for the general (asymmetric) multicommodity multicast

problem in the edge-star model (Section 3.4).

Table 1 contains a summary of our results in context.

2 Lower bound for gossip in the radio model

In this section, we show it is NP-hard to approximate gossip in the radio model within a
factor of O(n1/2−ε). This also implies the same hardness result for multicommodity multicast
under the radio model, because gossip is a special case of multicommodity multicast. In
order to show these hardness results, we first consider the smallest set of induced matchings
which cover the vertices of a bipartite graph.

I Definition 2.1. An induced matching is a matching of some vertices U in a graph G, such
that G[U ] is a matching. (We use G[U ] to mean the graph G induced on the vertex set U .)
In other words, in the graph G only the matching edges are present between the nodes in U .

A covering set of induced matchings (CSIM) is a set of induced matchings which cover all
the vertices in the graph. The size of a covering set of induced matchings is defined to be
the number of induced matchings.

First, we will show the hardness of finding a minimum CSIM by a reduction from coloring.
Then we will use the hardness of minimum sized CSIM to prove the hardness results for
radio gossip.

I Theorem 2.2. It is NP-hard to approximate CSIM to within a n1/2−ε factor for any
constant ε > 0.

Proof. Given a coloring instance G = (V,E), we first turn this into a bipartite graph, where
we want to find a CSIM. For each v ∈ V we make n+1 copies of v in each side of the partition;
vL1 , v

L
2 , . . . v

L
n+1 for L and vR1 , vR2 , . . . vRn+1 for R. We use the edges Ev = {(vLi , vRi )|v ∈ V, i ∈

[n+ 1]}, called the straight edges and Ee = {(uLi , vRj )|uv ∈ E, i, j ∈ [n+ 1]}, called the cross
edges. Now G′ = (L,R,Ev ∪ Ee) is the bipartite graph for which we want to find a CSIM.
Figure 1 shows an example construction.

Let χ be the number of colors in an optimal coloring in G. Let λ be the number of sets
in a minimal CSIM in G′.

We now show that λ ≤ χ ≤ n. Let Ci be a set of vertices of color i in the coloring on G. If
we take the edges {(vLj , vRj )|v ∈ Ci, j ∈ [n+ 1]}, they are an induced matching. Each vertex
has one straight edge in G′, and if a vertex is used in the matching, then its straight edge is
used. So, we only need to show that no cross edges go between vertices in this matching. If



J. Iglesias, R. Rajaraman, R. Ravi, and R. Sundaram 521

G G’

L R

k=3

Straight edgesCross edges

Figure 1 Here is an example of the construction of G′ from G. The thick edges represent complete
bipartite subgraphs.

a cross edge (uLj , vRk ) did exist, then (u, v) ∈ E but then u, v couldn’t be the same color. So,
for each color we have defined an induced matching. These induced matchings cover all the
nodes since every node receives some color in the coloring on G.

Now we will show that χ ≤ λ or n+ 1 ≤ λ. Let S1, S2, . . . Sλ be the induced matchings
covering G′. Assume that there is some v ∈ V that has all of its corresponding vertices in
G′ matched via cross edges. Then we can only have at most one cross edge per induced
matching adjacent to the vLi ’s. If an induced matching has (vLi , uR` ) and (vLj , wR`′ ) then this
is not an induced matching since (vLj , uR` ) is an edge. Therefore in this case to match all the
vLi in some induced matching, we will need at least n+ 1 induced matchings. Now consider
each v ∈ G has one of its straight edges used in some induced matching. Let Sj be the first
induced matching containing a straight edge adjacent to some vLi . In Sj , because some vLi
is matched via its straight edge, then no vL` is matched via a cross edge. Now in G color v
with the jth color. This is a valid coloring. If some (vLi , vRi ) and (uL` , uR` ) were both in the
same induced matching, then there can’t be the edge (u, v) in the original graph G.

Combining the above two parts we get that χ = λ.
We begin with a graph G such that it is NP-hard to distinguish if there is a coloring

of size |V (G)|ε from if the coloring requires at least |V (G)|1−ε colors [8]. Therefore, in the
graph G′ we created, it is NP-hard to distinguish if there is a set of induced matchings that
cover the vertices of size nε or n. We have O(n2) vertices in G′ though. So, in a graph with
n vertices it is NP-hard to approximate the number of induced matchings needed to cover
the vertices within a factor of O(n1/2−ε). J

Now that we have developed the hardness result for CSIM, we will use the graph we
created for CSIM, to create instances of radio gossip.

I Corollary 2.3. It is NP-hard to approximate radio gossip to within a n1/2−ε factor for any
constant ε > 0.

Proof. We convert the induced matching instance to a gossip problem in a similar fashion

FSTTCS 2015
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to above. We can consider that we have the bipartite graph G′ and we build a complete
binary tree with its leaves being the nodes vLi . The terminal nodes in the gossip problem
are set to be all the nodes. To communicate the message to all other nodes, each node vRi
must at some point be the only node trying to talk to some node on the other side of the
bipartition. In other words, we need to have induced matchings at each point in order for the
vRi to propagate their messages to some other node without interference. Therefore, we need
at least as many induced matchings as it takes to cover the graph to complete the gossip.
Call this number C; we can now achieve gossip in time 2C + 3 logn as follows. We do this by
using the induced matchings so that each vertex vRi communicates its message to someone
on the other side of the partition. Next we propagate the message up the binary tree to the
root node. This takes time at most 2 logn since at each node of the path in the binary tree,
a message can be delayed only for two steps, and the path length is logarithmic. Then we
broadcast the message down the tree. This takes time logn since we can use the edge-star
model to just broadcast all the gathered messages from the root along the down-stars in
one time step per level. Lastly, we need to communicate the message back to the vRi , which
takes time C. We know that radio gossip takes time at least C and can be done in time
2C + 3 logn on this graph.

Therefore, it is NP-hard to approximate radio gossip better than a factor of O(n1/2−ε)
otherwise, we could approximate the CSIM within the same factor. J

3 The Edge-Star Model

In this section, we consider the edge-star model which generalizes the telephone model. We
focus on three specific classes of problems; gossip, symmetric multicommodity multicast, and
asymmetric multicommodity. In the symmetric multicommodity problem, we are given a set
of demand pairs, and if (si, ti) is a demand, then (ti, si) is also a demand. In the asymmetric
multicommodity case, there are no restrictions on which demand pairs are present.

In Section 3.1, we first obtain an O( logn
log logn ) approximation algorithm for gossip in the

edge-star model by reducing the problem to the broadcast problem in the telephone model.
Next, in Section 3.2, we consider the special case where the underlying graph is a tree. In this
special case, then we show that the multicommodity multicast in the edge-star model reduces
to the broadcast problem in the telephone model, yielding an O( logn

log logn ) approximation. In
Section 3.3, we show that the case of edge-star symmetric multicommodity multicast problem
has the same optimal solution (up to poly-log factors) as telephone multicommodity multicast,
yielding an Õ(2

√
logn) approximation. Lastly, in Section 3.4, we give an O(n 2

3 )-approximation
for the general (asymmetric) multicommodity multicast problem in the edge-star model.

3.1 Gossip

Here we show an O( logn
log logn ) approximation for edge-star gossip. First, we show that a

solution to the gossip problem in the edge-star model gives a solution to the broadcast
problem in the telephone model of the same length. Next, we show that using a solution for
the broadcast problem in telephone we can get a solution of twice the length to the gossip
problem in the edge-star model. This show that their optimal solutions differ in cost by a
factor of at most two.

I Lemma 3.1. The optimal broadcast time in the telephone model is no more than the
optimal gossip time in the edge-star model.
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Proof. Let S denote an optimal schedule for gossip in the edge-star model that completes in
T rounds. Let r denote the root node for the broadcast problem in the telephone model. Fix
a node v. Let Pv denote a path taken by the message from v to arrive at r in the schedule S.
Let Et denote the set of all directed edges in ∪vPv that are activated in round t in S. By
definition of the edge-star model, if (u1, v1) and (u2, v2) are in Et, then v1 6= v2. Furthermore,
by our choice of the paths, we obtain that (i) for any distinct (u1, v1) and (u2, v2) in Et,
u1 6= u2; and (ii) the edges of Pv appear in order of increasing time in the collection of Ets.

We now argue that a reverse schedule in which the activated sets are given by E′t =
rev(ET−t) forms a broadcast schedule from the root, where rev(X) equals {(v, u) : (u, v) ∈
X} for any set X of directed edges. In any round t, for any distinct (u1, v1) and (u2, v2) in
Et, we have u1 6= u2 and v1 6= v2; therefore, rev(Et) is a matching. Since the edges of Pv
appear in order of increasing time in the collection of Ets, the edges of the rev(Pt) appear
in order of increasing time in the collection of E′ts. Consequently, the message from the root
is delivered to each node in T rounds. J

I Lemma 3.2. The optimal gossip time in the edge-star model is no more than twice the
optimal broadcast time in the telephone model.

Proof. The proof mirrors the proof of Lemma 3.1. Let S denote an optimal schedule for
broadcast from root r in the telephone model that completes in T rounds. Fix a node v. Let
Pv denote a path taken by the message from r to arrive at v in the schedule S. Let Et denote
the set of all directed edges in ∪vPv that are activated in round t in S. By definition of the
telephone model, for distinct (u1, v1) and (u2, v2) in Et, u1 6= u2 and v1 6= v2. Furthermore,
by our choice of the paths, we obtain that the edges of Pv appear in order of increasing time
in the collection of Ets.

We now argue that a reverse schedule in which the activated sets are given by E′t =
rev(ET−t) forms a schedule for gathering in the edge-star model. In any round t, for any
distinct (u1, v1) and (u2, v2) in Et, we have u1 6= u2 and v1 6= v2; therefore, rev(Et) is a
matching, and is a valid set of edges to activate in the edge-star model in round T − t. Since
the edges of Pv appear in order of increasing time in the collection of Ets, the edges of
the rev(Pt) appear in order of increasing time in the collection of E′ts. Consequently, the
message from any node v is delivered to the root in T rounds.

Once the root has all the messages, we can complete the gossip by running the broadcast
schedule. Since any schedule in the telephone model is valid in the edge-star model, it follows
that this broadcast completes in T rounds. We thus have a gossip schedule that completes in
the edge-star model in 2T rounds. J

There exists an O( logn
log logn ) approximation for telephone broadcast [7]. Therefore this

same approximation holds for the edge-star gossip problem.

3.2 Multicommodity multicast on a tree
In this part, we consider the multicommodity multicast problem in the edge-star model in the
special case where our host graph is a tree. Here we give a reduction to telephone broadcast.
When the host graph is a tree, the path taken by any message is known, so we simply need
to coordinate the communications.

I Lemma 3.3. There is an O( logn
log logn ) approximation for the edge-star multicommodity

multicast problem in a tree.

FSTTCS 2015
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Proof. We will start by choosing some vertex r to be the root of the tree. Let the optimal
solution take time D (we can try all 2n possible values for D only losing a polynomial factor
in runtime). Now for each demand pair, (si, ti) the message will have to go from si to
lca(si, ti), and then from the lca(si, ti) down to ti. Bringing all the messages down the tree
from lca(si, ti) to ti can be done in time D+1; we spend D+1 time steps alternating between
the odd layers broadcasting their messages down and the even layers broadcasting their
message down. Since each layer is a collection of edge-disjoint stars, this can be implemented
in one round in the edge-star model.

The hard part is bringing the messages up from si to t′i = lca(si, ti). So, we will consider
that we simply have the constraints of the form (si, t′i). First we will break the tree up into
sets of 2D consecutive layers starting every D layers. This guarantees that every constraint
(si, ti) is in some set of 2D layers.

Now consider some 2D layers in the tree. Look at the union of all the (si, t′i) paths in
these layers. These form a forest, where each tree has depth at most 2D and each node has a
max degree of D; so each tree has poise 5D (recall that the poise is the sum of the maximum
degree and the diameter). Therefore each of these trees can gather all their messages to their
uppermost nodes in time O(D logn

log logn ).
We can run all the gathers to satisfy (si, t′i) in two groups; we can run every other set of

2D layers in the tree simultaneously, as they are disjoint. Hence, in time O(D logn
log logn ), we

can satisfy the demands (si, t′i). After this, in D + 1 more steps, we can satisfy the demands
(t′i, ti). Therefore in time O(D logn

log logn ) we satisfy all the (si, ti) demands. J

3.3 Symmetric Multicommmodity Multicast
Note that the symmetric multicommodity multicast problem in the telephone model is
equivalent (within constant factors) to the general multicommodity multicast problem [14, 3]
for which an Õ(2

√
log k) approximation algorithm is known, where k is the number of

terminals [13]. We show a reduction from the symmetric multicommodity multicast problem
in the edge-star model to the symmetric multicommodity multicast problem in the telephone
model, losing an additional O( log3 n

log logn ) factor in the approximation ratio in an n-node graph.

I Theorem 3.4. Given a ρ-approximation for the symmetric multicommodity multicast
problem on k terminal pairs in an n-node undirected graph under the telephone model, we can
design an O(ρ · log2 k · logn

log logn ) approximation for the same problem in the edge-star model.

Proof. Given an optimal solution to symmetric multicommodity multicast in the edge-star
model, we demonstrate a solution to the symmetric multicommodity multicast problem in
the telephone model with a poly-log multiplicative loss in performance. Consider an input
instance with demand pairs {si, ti} for i = 1 · · · k on an undirected graph G. Consider an
optimal schedule for the edge-star symmetric multicommodity multicast problem on this
instance. This defines for each pair s, t, a pair of paths from one node to the other where the
edges of the paths are labeled in increasing time order denoting the periods in which these
edges participated in an information transmission. Suppose the optimal time for multicasting
is L; then these paths are of length at most L. Also, given the in-degree one bound for the
edge-star model (each receiver can listen to at most one transmitter in this wireless model),
the indegree of the sugraph representing the union of these optimal transmissions is also
at most L. Our goal is to use these paths to aggregate the messages from a set of these
pairs into a subset of carefully selected terminals using a reverse broadcast scheme, and then
transmit the aggregated messages back to the corresponding mates of these sources. Both
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Figure 2 Here is an example of the optimal paths between some (si, ti) pairs. Here we see that
the (sj , tj) pair intersects (si, ti) and (sk, tk), but (si, ti) and (sk, tk) do not intersect.

these steps of gathering and sending will be accomplished using multicommodity multicast
instances in the telephone model.

To define the aggregation pattern, define an auxiliary graph H with one node per demand
pair si, ti. This graph is only for the sake of argument so we will use optimal paths in the
edge-star multicommodity multicast scheme in defining it. Note that the optimal transmission
paths for a pair represent two paths: one from si to ti and the second from ti to si, where
these two paths may share edges. Concatenated together they define what we will call an
“optimal cycle” for this pair. Define an edge between two pairs if their optimal cycles intersect
at a node. In Figure 2, we can see an example of when optimal cycles intersect. Thus H
defines the conflict or interference between the demand pairs in the optimal multicommodity
multicast schedule in the edge-star model.

We now use a network decomposition procedure [2] on H to decompose the k demand
pairs into log2 k disjoint layers with the following property: the set of nodes in each layer
can be decomposed into node-disjoint shallow trees, i.e., each tree in one of the layers has
diameter at most 2 log2 k. This decomposition is done as follows: pick any vertex v in H
and build a BFS tree from v. Now let i be the smallest depth such that the number of nodes
at depth i or less is more than the number of nodes at depth i+ 1. Put v and everything
within distance i of v into the current layer. Now remove v and it’s BFS tree up to depth
i+ 1 from H. Repeat this process to form each layer. Once H is empty, let U be the vertices
not yet assigned to a layer. Then start forming a new layer from the graph H[U ].

This process assigns at least half of the remaining nodes to the current layer, hence we
build at most log2 k layers. The diameter of each component in a layer is at most 2 log2 k,
because as we move down the BFS tree the number of nodes contained in it double at each
step.

Now we can use these layers to define our gathering problems. Consider one layer i and
one tree Ti,j in this layer in the decomposition. This represents a shallow subgraph in H,
so let us root this at a demand pair denoted Pij . By following the paths in this subgraph
from every other node to Pij , we can replace their intersections with paths in the optimal
multicast originating at each terminal s in any of the pairs to one of the two terminals, say
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tij in the pair Pij . This defines one of the gathering trees gathering to the terminal tij . By
construction, the in-degree of any node in the gathering tree is at most L and the distance
from any node to the root tij is at most O(L log k). Note that by the disjointness of the
subgraphs in one layer i, all the gather trees are node disjoint. For each gather tree Tij , we
now set up a gathering multicast problem with all the terminals in the tree going to the root
tij . Note that since each tree has total degree + diameter at most O(L log k), the poise of
each tree is bounded by O(L log k) and thus each of these trees has a gathering schedule in
the telephone model taking at most O(Poise · logn

log logn ) steps in an n-node graph [14]. This
gives a feasible solution to the set of all gathering problems in one layer i running in time
O(L · log k · logn

log logn ). Repeating this over the layers finally gives a set of gathering problems
in the telephone model that complete in total time O(L · log2 k · logn

log logn ).
Note that the same schedules can be reversed to send all the gathered information in each

tree to all the terminals in a tree finishing the requirements. Employing a ρ-approximation
for this multicommodity multicast problem in the telephone model proves the theorem. J

3.4 Asymmetric Multicommodity Multicast
For the edge-star asymmetric multicommodity multicast problem, we will use the network
decomposition used in the previous proof, along with telephone broadcast in trees with small
poise.

I Theorem 3.5. There is an Õ(n 2
3 )-approximation for the asymmetric multicommodity

multicast problem in the edge-star model.

Proof. We develop the algorithm in two phases. First, we design an Õ(√p)-approximation
algorithm for the case with p demand pairs (note that p can be up to O(n2) in an n-node
graph). Then we combine this with an algorithm that satisfies all the demands in the
in-neighborhood of a node in the demand graph with high indegree to get the final result.

A Greedy Algorithm. To design the Õ(√p)-approximation algorithm, we use a greedy
method: assume that the value of the optimal multicast time is L (we can try all the 2n
possible guesses in parallel to dispense this assumption with a polynomial running-time
overhead). For every unsatisfied demand pair (si, ti) (note that demand pairs are ordered in
the asymmetric case), we look for a path of length at most L from si to ti. If we find one, we
add it to the greedy collection and delete all the nodes in this path. Suppose we are able to
collect g paths for the pairs denoted G in the greedy phase until we can find no more paths
of small length for the remaining demands.

Now it must be the case that all optimal paths for the remaining demands in P \G must
intersect the greedy paths. This implies that for every demand pair (s, t) in P \G, we can
follow its optimal path to its intersection with one of the greedy paths, say for the pair
(si, ti), and then continue in the greedy path to ti. In this way, every demand source in P \G
can be routed and assigned to one of the sinks in the greedy pairs G in a collection of paths:
each such path has length at most 2L (coming from at most L steps to the intersection
with the greedy collection and another L from the intersection to the sink at the end of
this greedy path); also the indegree of the collection of these paths is at most L+ 1 since
they arise from the optimal collection plus the greedy subgraph which adds at most one to
each node’s indegree. We now set up a dummy broadcast problem (following Nikzad and
Ravi [13]) by hooking up the set of sinks at the end of the greedy paths, say T (G), as leaves
in a complete binary tree with new dummy nodes and a dummy root t. We solve for the
broadcast problem in this graph from the dummy root t to all the sources si in all the pairs.
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By the above construction, there exists a tree of poise O(L + logn) that connects all the
sources to this root. From the result of Ravi [14], this implies a broadcast scheme completing
in O(L logn

log logn ). Using an α-approximation algorithm for broadcast in the telephone model,
we get a tree that assign the sources in P to the sinks in T (G) in O(α · L logn

log logn ) steps. Let
us denote the set of sinks in T (G) by t′1, ·, t′g and the set of sources assigned to a sink t′i by
Si.

The remaining task is to send back the messages gathered from Si at t′i to the sinks
corresponding to the sources in Si - let us denote this sink set by Ti. Note that by construction,
all the sinks in Ti are at a distance at most O(α · L logn

log logn ) from t′i by following the paths
to the corresponding source s and then concatenating the undirected path to its mate t.
However, these local broadcasts must obey the edge-subgraph condition of having indegree
at most one which is tricky to enforce.

If the number of greedy pairs g = |G| is at least √p, we simply satisfy these pairs and
move to the next iteration: the number of such iterations is at most √p and each iteration
can be implemented in O(L) steps (running the disjoint greedy path schedules in parallel).
If the number of pair is less than √p, we can carry out the broadcast from each greedy
sink t′i to its sink set Ti in time O(α · L logn

log logn ) by reversing the gathering in the earlier
broadcast tree and extending it to the corresponding sinks. Processing these trees one after
another, we use a total of O(√p · α · L logn

log logn ). Since α is sublogarithmic [6], we finally get
an Õ(√p)-approximation as claimed.

A Local Algorithm. For the second ingredient we observe that if the in-degree of any node v
in the demand graph is δ, then we can satisfy all the demand requirements of the predecessors
of v in the demand graph In(v) in time Õ(L). Note that since all the terminals in In(v)
send their message to v, the union of the directed paths that transmit these messages in the
optimal solution have distance at most L from the terminals to v and induce an in-degree of
at most L. This defines a tree of poise O(L) and hence enables us to find a broadcast scheme
that gathers all the messages from In(v) at v in time Õ(L). By reversing this broadcast tree
and then following the optimal paths from each terminal in In(v) to its other sinks, we can
find a tree of depth (not poise) at most Õ(L) rooted at v where these messages are gathered.
Since v is the only node sending out the gathered messages, we can send all these messages
to their intended sinks in a breadth-first tree in time Õ(L) in the edge-star model. Note that
we have taken care of all the demands originating in |In(v)| nodes.

Combining the two algorithms. We can now combine the two algorithms as follows: As
long as p, the number of demand pairs in the n-node graph, is at least Ω(n 4

3 ), we use the
local algorithm. By averaging over the indegrees that partition the demand pairs, there exists
a node of indegree at least Ω(n 1

3 ) in the demand graph. The local algorithm thus satisfies the
demands originating in at least this many nodes in one iteration. The number of iterations is
thus at most n 2

3 each taking Õ(L) multicast steps. On the other hand, when p drops below
O(n 4

3 ), we use the greedy algorithm to get an approximation ratio of Õ(√p) = Õ(n 2
3 ) giving

the result. J

4 Conclusion

We have obtained new results in the approximability of rumor spreading problems in the
well-studied radio model as well as a new model motivated by wireless communications,
which we call the edge-star model. For the radio model, we present an Ω(n1/2−ε) hardness of
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approximation bound for radio gossip, making progress on an open problem mentioned in [11].
For the edge-star model, we present an O( logn

log logn ) approximation algorithm for gossip, an

Õ(2
√

logn) approximation algorithm for symmetric multicommodity multicast, and an Õ(n2/3)
approximation algorithm for asymmetric multicommodity multicast. Our approximation
algorithms expose relationships between the edge-star model and the well-studied telephone
model.

Our work leaves several interesting open problems. Among the nine cells listed in the
matrix of Table 1 of Section 1, only radio broadcast and edge-star broadcast are resolved.
Significant gaps between the best known upper and lower bounds on approximability remain
for telephone broadcast, the gossip problem under all three models, and the multicommodity
multicast problem under all three models. In the edge-star model, the symmetric and
asymmetric versions of the multicommodity multicast problem are distinct, and both are
open, in terms of the best approximation factor achievable in polynomial-time.
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Abstract
We consider the problem of scheduling wireless links in the physical model, where we seek an
assignment of power levels and a partition of the given set of links into the minimum number of
subsets satisfying the signal-to-interference-and-noise-ratio (SINR) constraints. Specifically, we
are interested in the efficiency of local power assignment schemes, or oblivious power schemes,
in approximating wireless scheduling. Oblivious power schemes are motivated by networking
scenarios when power levels must be decided in advance, and not as part of the scheduling
computation.

We present the first O(log log ∆)-approximation algorithm, which is known to be best possible
(in terms of ∆) for oblivious power schemes, where ∆ is the longest to shortest link length ratio.
We achieve this by representing interference by a conflict graph, which allows the application of
graph-theoretic results for a variety of related problems, including the weighted capacity problem.
We explore further the contours of approximability and find the choice of power assignment
matters; that not all metric spaces are equal; and that the presence of weak links makes the
problem harder. Combined, our results resolve the price of local power for wireless scheduling,
or the value of allowing unfettered power control.
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1 Introduction

We treat the fundamental scheduling problem of partitioning a given set of transmission
requests (links) in a wireless network into the fewest possible feasible subsets. Scheduling
problems arise from the MAC layer of wireless networks, and solving them requires effective
spatial reuse while dealing with wireless interference. We use the SINR model for modeling
interference, where signal decays as it travels and a transmission is successful if its strength
at the receiver exceeds the accumulated signal strength of interfering transmissions by a
sufficient factor. Although the standard analytic assumption that signal decays polynomially
with the distance traveled is far from realistic [36, 31], it has been shown that results obtained
with that assumption can be translated to the setting of arbitrary measured signal decay
[2, 13]. A number of studies dedicated to elucidating algorithmic properties of the SINR
model has appeared in recent years (e.g., [32, 11, 1, 6, 29, 27, 21, 5, 25]).

Abstracting wireless interference by conflict graphs is much more common in wireless
research. Arbitrary graphs are too general to be useful (in the worst case) for scheduling
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problems. Instead, the standard modus operandi is to assume geometric intersection graphs,
where nodes are represented by disks, such as unit disk graphs or the protocol model [14].
Unfortunately, disk graphs provably lack fidelity to the reality of wireless signals, being
simultaneously too conservative and too loose [34, 33]. Yet, the graph abstraction is cleaner
and connects better to the literature, which leads us to search for alternative classes.

Problem Formulations. Given as input is a set Γ of n communication links; each link is
a pair of a sender and receiver, which are nodes in a metric space. The senders can adjust
their power as needed; in each of the problems we consider, finding the appropriate power
assignment is a part of the problem. A subset S ⊆ Γ of links is feasible if there exists a power
assignment for which the transmission on each link satisfies the SINR formula (see Section 2)
when the links in S transmit simultaneously. We treat the following two problems:

Scheduling: Partition Γ into fewest number of feasible sets.
WCapacity: Find the maximum weight feasible subset of Γ, when the links have positive

weights. When WCapacity is restricted to unit weights, we get the related unweighted Capacity
problem. The WCapacity problem is of fundamental importance to dynamic scheduling where
requests arrive over time, as it is demonstrated in a celebrated paper [37].

Optimal solutions to our problems may require global power management: the power
assigned to a link may depend on all the other links. However, it is desirable in various
restricted settings to let the power chosen for a link depend only on the link itself, specifically
on the link length. Such local power regimes are called oblivious. The use of oblivious
power assignments may be forced in cases when having a separate power control phase is not
affordable. Oblivious powers may also be preferable due to scalability concerns: when a new
link is added, the power assignments of other links are left intact (as opposed to globally
managing power).

The main goal of this paper is to solve the Scheduling and WCapacity problems using
only oblivious power assignments, while still comparing the quality of the solution to the
optimal solution that can use arbitrary power assignment. It was shown in [8] that every
oblivious power assignment can be worst possible factor n from optimal. In terms of the
parameter ∆, the bound becomes Ω(log log ∆) [8, 15], i.e. the factor n may appear only when
the network contains exponentially long links. Indeed, there is an algorithm using oblivious
power that achieves O(log log ∆ logn)-approximation (compared with best achievable with
arbitrary power) [15]. For Capacity, this was improved to O(log log ∆)-factor [18], which
holds for every metric space and for a wide range of oblivious power assignments.

Finding constant-factor approximations for Scheduling is still an open problem. However,
there are several approaches giving logarithmic approximation. The (unweighted) Capacity
problem has an efficient constant-factor approximation, due to Kesselheim [27] that holds for
general metrics [28], as well as for versions with various fixed power assignments [19]. This
immediately yields O(logn)-approximation for Scheduling. A different approach is to divide
the links into groups of nearly equal length and schedule each group separately. Following
this approach, numerous O(log ∆)-approximation results have been argued [12, 10, 15], where
∆ is the ratio between the longest and shortest link length. In a recent work, we propose a
novel conflict-graph based approach that yields O(log∗∆) approximation for Scheduling and
WCapacity using non-oblivious power assignment [22].

Results. Our main result is O(log log ∆)-approximation algorithms for Scheduling and
WCapacity using oblivious power assignments. This is an exponential improvement over
existing approximations using oblivious powers and matches the known lower bounds [8, 15].



M.M. Halldórsson and T. Tonoyan 531

This is also the first improvement over logarithmic approximations for fixed power scheduling,
where we compare to the optimum schedule with respect to given power assignment. Even
though O(log log ∆) is weaker than the approximation of O(log∗∆) obtained in [22], it still
demonstrates the remarkable closeness of oblivious powers to the optimum power assignments.
After all, log log ∆ ≤ 5 in all practical applications.

Unlike the state of affairs for the Capacity problem, our results are surprisingly sensitive
to the metric and the exact power assignment. They hold for doubling metrics, but provably
fail in general (or even tree) metrics, and they hold for a range of power assignments, while
for others they provably fail (including the most common assignments – uniform and linear).

Our main result is obtained by using the conflict graph framework of [22], which essentially
reduces the notoriously hard SINR optimization to graph problems, for which a large body
of theory can be brought to bear.

Further Related Work. Gupta and Kumar [14] proposed the geometric version of SINR and
initiated average-case analysis of capacity known as scaling laws. Moscibroda and Wattenhofer
[32] initiated worst-case analysis in the SINR model. Early work on the Scheduling problem
includes [4, 7, 3]. NP-completeness has been shown for Scheduling with different forms of
power control: none [12], limited [26], and unbounded [30]. Distributed algorithms attaining
O(logn)-approximation are also known [29, 16]. Scheduling and WCapacity have also been
considered for fixed oblivious power assignments [23, 8, 15, 20, 9]. The only known constant-
factor approximation algorithms for these problems are obtained in the case of the linear
power scheme [20, 39].

2 Model and Definitions

Communication Links. Consider a set Γ of n links, numbered from 1 to n. Each link i
represents a unit-demand communication request from a sender si to a receiver ri - point-size
wireless transmitter/receivers located in a metric space with distance function d. We denote
dij = d(si, rj) the distance from the sender of link i to the receiver of link j, li = d(si, ri)
the length of link i and d(i, j) = d(j, i) the minimum distance between a node of link i and a
node of link j. We let ∆(Γ) denote the ratio between the longest and shortest link lengths in
Γ, and drop Γ when clear from context. A set of links S is equilength if ∆(S) ≤ 2.

Power Schemes. A power assignment for Γ is a function P : Γ→ R+. For each link i, P (i)
defines the power level used by the sender node si. We will be particularly interested in
power schemes Pτ of the form Pτ (i) = C · lταi , where C is constant for the given network
instance. These are called oblivious power assignments because the power level of each link
depends only on a local information - the link length. Examples of such power schemes are
uniform power scheme (P0), linear power scheme (P1) and mean power scheme (P1/2) [8].

SINR Feasibility. In the physical model (or SINR model) of communication [35], a trans-
mission of a link i is successful if and only if

Si ≥ β ·

 ∑
j∈S\{i}

Iji +N

 , (1)

where Si denotes the received signal power of link i, Iji denotes the interference power on link
i caused by link j, N ≥ 0 is a constant denoting the ambient noise, β > 0 is the minimum
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SINR (Signal to Interference and Noise Ratio) required for a message to be successfully
received and S is the set of links transmitting concurrently with link i. If P is the power
assignment used, then Si = P (i)

lα
i

and Iji = P (j)
dα
ji

, where α ∈ (2, 6) is the path-loss exponent.
A set L of links is called P -feasible if the condition (1) holds for each link i ∈ L when

using power assignment P . We say L is feasible if there exists a power assignment P for
which L is P -feasible. Similarly, a collection of sets is P -feasible/feasible if each set in the
collection is.

Capacity and Scheduling Problems. Scheduling denotes the problem of partitioning a given
set Γ into the minimum number of feasible subsets (or slots). WCapacity denotes the problem
where we are also given a weight function ω : Γ→ R+ on the links and we seek a maximum
weight feasible subset S of Γ.

Affectance. Following [23], we define the affectance aP (i, j) of link i by link j under power
assignment P by

aP (j, i) = ci
Iji
Si

= ci
P (j)lαi
P (i)dαji

,

where ci = 1/(1 − βNlαi /P (i)) is a factor depending on the properties of link i1. We let
aP (j, j) = 0 and extend aP additively over sets: aP (S, i) =

∑
j∈S aP (j, i) and aP (i, S) =∑

j∈S aP (i, j). It is readily verified that a set of links S is feasible if and only if aP (S, i) ≤ 1/β
for all i ∈ S. We call a set of links p-P -feasible for a parameter p > 0 if aP (S, i) ≤ 1/p.

The following is an important tool showing that modifying the threshold value β by a
constant factor affects the solutions only by a constant factor.

I Theorem 1 ([17]). Any p-P -feasible set can be partitioned into d2p′/pe subsets, each of
which is p′-P -feasible.

We make the standard assumption that for all links i in the instance, received signal
power is a little higher than necessary to overcome the noise term N alone in the absence of
any other transmission: P (i) ≥ cβNlαi for some constant c > 1. This can be achieved by
scaling the power levels of links. This assumption helps to avoid the terms ci in the affectance
formula. Indeed, it implies that ci ≤ c/(c− 1) for all i. Then given e.g. a Scheduling instance
Γ, we can solve it with ci = 1 for all i and β′ = (c − 1)β/c, getting a feasible solution
for the original problem. Moreover, by Thm. 1, the number of slots obtained will be at
most a constant factor away from the optimum of the original problem. Thus, we assume
henceforth that ci = 1 for all links i, i.e. aP (i, j) = P (j)lαi

P (i)dα
ji
. We have in particular that

aPτ (i, j) = l
(1−τ)α
i · lταj /dαij .

Remark. In practice, there is an upper limit Pmax on the available power level of links
and for some links, even setting P (i) = Pmax can be insufficient for having P (i) ≥ cβNlαi .
Such links are called weak links. Our assumption thus amounts to excluding weak links.
Weak links are further discussed in Sec. 5.

1 If the denominator of ci is 0, i.e. P (i) = βNlαi , then link i must always be scheduled separately from all
other links. We assume that there are no such links.
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Fading Metrics. The doubling dimension of a metric space is the infimum of all numbers
δ > 0 such that every ball of radius r > 0 has at most Cε−δ points of mutual distance at
least εr where C ≥ 1 is an absolute constant, δ > 0 and 0 < ε ≤ 1. Metrics with finite
doubling dimension are called doubling. For instance, the m-dimensional Euclidean space is
doubling with doubling dimension m [24]. We will assume for the rest of the paper that the
links are located in a metric space with doubling dimension m < α. Such metrics are called
fading metrics.

3 Conflict Graphs and Oblivious Power Scheduling

Conflict graphs are graphs defined over the set of links. Let us call a conflict graph A(L)
an upper bound graph for a set L, if there is a power scheme Pτ such that each independent
set in A(L) is Pτ -feasible. Similarly, we call a graph B(L) a lower bound graph for L if
there is a power scheme Pτ ′ such that each Pτ ′-feasible set induces an independent set in
B(L). Note that the chromatic numbers of A(L) and B(L) give upper and lower bounds
for Scheduling with oblivious power schemes. Moreover, if the vertex coloring problem for
A(L) can be efficiently approximated, then the upper bound is constructive. Now, our aim
is to construct upper and lower bound graphs with τ = τ ′ such that the gap between their
chromatic numbers is bounded. The less the gap, the better colorings of A(L) approximate
Scheduling with oblivious power Pτ .

The outline of this section is as follows. First, we present a family of conflict graphs
introduced in [22] and point out a sub-family Gγ that are lower bound graphs. Next, we
present a family of upper bound graphs Gδγ and show that the gap between the chromatic
numbers is O(log log ∆). This section is concluded with the main theorem which, based on
the method outlined above, presents O(log log ∆)-approximation algorithms for Scheduling
and WCapacity with oblivious power schemes.

Conflict Graphs, Lower Bound Graphs. Let f : R+ → R+ be a positive monotonically
non-decreasing function. Two links i, j are f -independent if

d(i, j)
lmin

> f

(
lmax
lmin

)
,

where lmin = min{li, lj}, lmax = max{li, lj}, and otherwise they are f-conflicting. A set of
links is f -independent if they are pairwise f -independent.

Given a set L of links, Gf (L) denotes the graph with vertex set L where two vertices
i, j ∈ L are adjacent if and only if they are f -adjacent.

We will be particularly interested in conflict graphs Gf with f(x) ≡ γ and f(x) = γ · xδ
for constants γ > 0 and δ ∈ (0, 1). We will use the notation Gγ in the former case and the
notation Gδγ in the latter case. We will refer to independence (conflict) in Gγ as γ-independence
(γ-conflict, resp.) and to independence (conflict) in Gδγ as (γ, δ)-independence ((γ, δ)-conflict,
resp.). Note that Gγ is equivalent to G0

γ .
It will be useful to note that two links i, j are γ-independent iff d(i, j) > γlj and are

(γ, δ)-independent iff d(i, j) > γlδi l
1−δ
j , where li is the longer link, i.e. lj ≤ li.

We will need the following properties of conflict graphs Gδγ that are obtained by applying
the results of [22] to our conflict graphs (i.e. Gf with f(x) = γxδ). These properties hold for
any set L of links in a metric space of fixed doubling dimension. We let χ(G) denote the
chromatic number of a graph G.
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I Theorem 2. Let δ ∈ (0, 1) be constant. It holds that
1. for any constant γ > 0, χ(Gδγ(L)) = χ(Gγ(L)) ·O(log log ∆),
2. if β > 1, there is a constant γ > 0 s.t. Gγ(L) is a lower bound graph,
3. vertex coloring and maximum weighted independent set problems are constant factor

approximable in graphs Gδγ(L).

The first property ([22, Thm. 1]) bounds the gap between graphs Gδγ(L) and Gγ(L).
The second property ([22, Thm. 4]) shows that for an appropriate constant γ, the graph
Gγ is a lower bound graph, i.e. each feasible set is independent in Gγ (this includes also
Pτ -feasible sets for any τ). The last property ([22, Prop. 1]) shows that the graphs Gδγ are
algorithmically accessible.

Upper Bound Graphs. Here we show that for appropriate values of δ and γ, graphs Gδγ(L)
are upper bound graphs, i.e. each independent set in Gδγ(L) is feasible with the appropriate
oblivious power assignment. This complements the conflict graph framework described in
the beginning of the section.

In order to bound the affectance of a given link i by an independent set S of links, we
first split S into length classes (i.e. equilength subsets) and bound the affectance of i by each
length class separately (lemmas 6 and 7). Then we combine the obtained bounds in a series
that converges under the assumption that the links are in a fading metric (Cor. 8). The
affectance of link i by each length class is bounded by using the common “concentric annuli”
argument where the rough idea is to partition the metric space into concentric annuli centered
at an endpoint of i, bound the number of links in each annulus using link independence and
the doubling property of the space, use these bounds to bound the affectance by links from
different annuli and combine them into a converging series. This scheme has also been used
in [22]. The main difficulty here is that we have to deal with the affectance of a given link
by both longer and shorter links, as opposed to [22] where we had to consider only shorter
links. The parameter δ of Gδγ has to be chosen very carefully in order to guarantee bounded
affectance by both longer and shorter links.

We will obtain a slightly stronger result than feasibility. Our results hold in terms of the
function fτ (i, j) with a parameter τ ∈ [0, 1], where

fτ (i, j) =
lταi · l

(1−τ)α
j

d(i, j)α .

Note that for any pair of links i, j, aPτ (i, j) ≤ fτ (i, j). The function fτ (i, j) is extended
additively to sets of links, similar to the function aP (i, j).

In the following core lemma we show that the affectance of a fixed link i by an independent
equilength set S of links (i.e. ∆(S) ≤ 2) can be bounded by the ratio of the length li and
the minimum length in S if S and i are not too close to each other. The idea of the proof is
the “concentric annuli” argument described above. We will use the following two facts.

I Fact 3. Let α ≥ 1 and r ≥ 0 be real numbers. Then 1
rα −

1
(r+1)α ≤

α
(r+1)α+1 .

I Fact 4. Let g(x) = 1
(q + x)γ , where γ > 1 and q > 0. Then

∑∞
r=0 g(r) ∈ O

(
1

qγ−1 + 1
qγ

)
.

I Lemma 5. Let δ, τ ∈ (0, 1) and γ ≥ 1, let S be an equilength set of 1-independent links,
and let i be a link s.t. i, j are (γ, δ)-independent for all j ∈ S and either li ≥ lj for all j ∈ S
or li ≤ lj for all j ∈ S. Then,

fτ (S, i) ∈ O
(
γm−α

(
li
`

)(1−τ)α−δ′(α−m)
·min

{
1, li
`

}−δ′)
,

where ` denotes the shortest link length in S and δ′ = δ if li ≥ ` and δ′ = 1− δ otherwise.
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Proof. First, let us split S into two subsets S′ and S′′ such that S′ contains the links
of S that are closer to ri than to si, i.e. S′ = {j ∈ S : min{d(sj , ri), d(rj , ri)} ≤
min{d(sj , si), d(rj , si)}} and S′′ = S \ S′. Let us consider the set S′ first.

For each link j ∈ S′, let pj denote the endpoint of j that is closest to node ri. Denote
q = γlδ

′

i `
−δ′ . Consider the subsets S1, S2, . . . of S′, where Sr = {j ∈ S′ : d(j, i) = d(pj , ri) ≤

q` + (r − 1)`}. Note that S1 is empty: d(j, i) > γlδ
′

i `
1−δ′ = q` for all j ∈ S′ because i, j

are (γ, δ)-independent, and so S′ = ∪∞r=2Sr. Let us fix an r > 1. Consider any two links
j, k ∈ Sr s.t. lj ≥ lk. We have that d(pj , pk) ≥ d(j, k) > ` (1-independence) and that
d(pj , ri) ≤ γq` + (r − 1)` for each j ∈ Sr (by the definition of Sr), so using the doubling
property of the metric space, we get the following bound:

|Sr| = |{pj}j∈Sr | ≤ C ·
(
q`+ (r − 1)`

`

)m
= C (q + r − 1)m . (2)

Note also that lj ≤ 2` and d(i, j) ≥ q`+ (r− 2)` for any link j ∈ Sr \Sr−1 with r > 1; hence,

fτ (j, i) =
lταj l

(1−τ)α
i

d(i, j)α ≤ `(τ−1)αl
(1−τ)α
i

(
2`

q`+ (r − 2)`

)α
= 2α`(τ−1)αl

(1−τ)α
i

(q + r − 2)α
. (3)

Recall that Sr−1 ⊆ Sr for all r > 1, S1 = ∅ and S′ = ∪∞r=2Sr. Using (3), we have:

fτ (S′, i) =
∑
r≥2

∑
j∈Sr\Sr−1

fτ (j, i)

≤
∑
r≥2

(|Sr| − |Sr−1|)
2α`(τ−1)αl

(1−τ)α
i

(q + r − 2)α

= 2α
(
li
`

)(1−τ)α∑
r≥2
|Sr|

(
1

(q + r − 2)α
− 1

(q + r − 1)α
)
, (4)

where the last equality is just a rearrangement of the sum. The sum can be bounded as
follows:∑

r≥2
|Sr|

(
1

(q + r − 2)α
− 1

(q + r − 1)α
)
≤
∑
r≥2
|Sr|

α

(q + r − 1)α+1

≤
∑
r≥2

Cα(q + r − 1)m

(q + r − 1)α+1

= O

∑
r≥2

1
(q + r − 1)α−m+1


= O

(
1

qα−m
+ 1
qα−m+1

)
= O

(
1

(γlδ′i `−δ
′)α−m

+ 1
(γlδ′i `−δ

′)α−m+1

)
= O

(
γm−α

(
`

li

)δ′(α−m)
(

1 +
(
`

li

)δ′))
,

where the first line follows from Fact 3, the second one follows from (2) and the fourth one
follows from Fact 4. Combined with (4), this completes the proof for the set S′.
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The proof holds symmetrically for the set S′′. Recall that S′′ consists of the links of
S which are closer to the sender si than to the receiver ri. Now, we can re-define pj to
denote the endpoint of link j that is closer to si, for each j ∈ S′′. The rest of the proof will
be identical, by replacing ri with si in the formulas. This is justified by the symmetry of
(γ, δ)-independence. J

In the following two lemmas we bound the affectance of a fixed link i by a set L of
independent links that is sufficiently separated from i. The two cases when L consists of
links longer than i and shorter than i are treated separately because they impose different
conditions on parameters δ and τ . The idea of the proof is to split L into length classes,
bound the affectance by each length class using Lemma 5 then combine the obtained bounds
in a geometric series.

I Lemma 6. Let L be a 1-independent set of links and i be a link s.t. li ≥ lj and i, j are
(γ, δ)-independent for all j ∈ L. Then for each τ > 1− δ(1−m/α), fτ (L, i) = O (γm−α) .

Proof. Let us split L into length classes L1, L2, . . . with Lt = {j ∈ L : 2t−1` ≤ lj < 2t`}
where ` is the shortest link length in L. Let `t be the shortest link length in Lt. Note that
each Lt is an equilength 1-independent set of links that are (γ, δ)-independent from link
i. Thus, the conditions of Lemma 5 hold for each Lt (with δ′ = δ since all links in Lt are
shorter than link i):

fτ (Lt, i) = O

(
γm−α

(
`t
li

)δ(α−m)−(1−τ)α
)
.

Recall that Lt are equilength sets and `t ≥ 2t−1`. That allows us to combine the bounds
above into a geometric series:

fτ (L, i) =
∞∑
1
fτ (Lt, i) ≤

C · γm−α

l
(1−τ)α−δ(α−m)
i

dlog li/`e∑
t=0

(2t`)(1−τ)α−δ(α−m),

where C is a constant. The upper limit of the last sum is obtained by the fact that
link i is not shorter than the longest link in L. Recall that τ > 1 − δ(1 − m/α); hence,
δ(α−m)− (1− τ)α > 0. Thus, the last sum is the sum of a growing geometric progression
and is O(l(1−τ)α−δ(α−m)

i ), implying the lemma. J

I Lemma 7. Let L be a 1-independent set of links and i be a link s. t. li ≤ lj and
i, j are (γ, δ)-independent for all j ∈ L. Then for each τ < 1 − (1 − δ)(α − m + 1)/α,
fτ (L, i) = O (γm−α) .

Proof. Let us split L into length classes L1, L2, . . . , where Lt = {j ∈ L : 2t−1li ≤ lj < 2tli}.
Note that each Lt is a equilength 1-independent set of links that are (γ, δ)-independent from
link i. Let `t denote the shortest link length in Lt. Recall that `t ≥ 2t−1li. Thus, Lemma 5
implies (note that δ′ = 1− δ in this case):

fτ (Lt, i) = O

(
γm−α

(
li
`t

)η)
= O

(
γm−α

(
1

2t−1

)η)
,

where η = (1− τ)α− (1− δ)(α−m+ 1). Recall that τ < 1− (1− δ)(α−m+ 1)/α, implying
η > 0. Thus, we have:

fτ (L, i) =
∞∑
1
fτ (Lt, i) ≤ γm−α

dlog li/`e∑
t=0

1
2ηt = O

(
γm−α

)
,

where C is a constant. J



M.M. Halldórsson and T. Tonoyan 537

By combining Lemmas 6 and 7 we find a family of upper bound graphs.

I Corollary 8. If δ ∈ (δ0, 1) and the constant γ > 1 is large enough, the graphs Gδγ(L) are
upper bound graphs for any set L, where δ0 = α−m+1

2(α−m)+1 . Namely, there exists τ ∈ (0, 1)
s.t. any (γ, δ)-independent set is Pτ -feasible. Moreover, we can choose τ = δ whenever
δ > α/(2α−m) and m > 1.

Proof. We need to show that Lemmas 6 and 7 hold simultaneously for the given δ and
certain τ ∈ (0, 1). Then we can adjust γ in order to make L feasible. The constraints of the
mentioned lemmas on δ and τ are as follows:

τ > 1− δα−m
α

and τ < 1− (1− δ)α−m+ 1
α

. (5)

So it is enough to show that any δ ∈ (δ0, 1) is a solution for the following system of inequalities:

0 < 1− δα−m
α

< 1− (1− δ)α−m+ 1
α

< 1. (6)

The first and third inequalities hold whenever δ < 1 and α > m. The second inequality is
equivalent to δ > δ0. The conditions for choosing τ = δ follow by setting τ = δ in (5). J

Putting the Pieces Together. All the components of the conflict graph framework are
ready now: a lower bound graph Gγ , efficiently colorable upper bound graphs Gδγ and a bound
on the gap between the chromatic numbers of those graphs (by Thm. 2). Hence, we can
apply the technique described at the beginning of this section to prove the main result – a
O(log log ∆)-approximation algorithm for Scheduling and WCapacity, using oblivious power
schemes.

I Theorem 9. There are O(log log ∆)-approximation algorithms for Scheduling and WCapa-
city using oblivious power schemes. The approximation is obtained by approximating vertex
coloring or maximum weighted independent set problems in Gδγ(L) with appropriate constants
γ and δ.

4 Limitations of Oblivious Power Schemes

Euclidean Metrics. We proved that it is possible to approximate Scheduling and WCapacity
within a factor of O(log log ∆) using oblivious power schemes. As shown in the theorem
below, this bound is essentially best possible when using oblivious power assignments. The
following was shown in greater generality in [15].

I Theorem 10. [15] For every power scheme Pτ , there is an infinite family of feasible sets
S arranged in a straight line such that any schedule of S using Pτ requires Ω(log log ∆) slots.

Recall that we obtained our approximations only for oblivious power schemes Pτ with
τ falling in a specific sub-interval of (0, 1). What happens with the other oblivious power
schemes? Interestingly, as we show below, oblivious power schemes Pτ with τ outside the
range stipulated by Lemmas 6 and 7 yield only O(log ∆)-approximation for Scheduling and
WCapacity.

We consider a family of sets L of (1, 1)-independent links that are located in the Euclidean
plane (hence, m = 2). With separation δ = 1, the range of oblivious power schemes Pτ making
L (almost) feasible according to Lemmas 6 and 7 is: 2/α < τ < 1. In the following theorem
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Figure 1 (1, 1)-independent instance St. Each rectangle represents a sub-instance that is a
translated copy of St−1.

we show that no scheduling algorithm can achieve better than O(log ∆)-approximation of
Scheduling for the set L using a scheme Pτ with τ < 2

α . An equivalent lower bound applies
to WCapacity.

I Theorem 11. Any algorithm for Scheduling that uses power assignment Pτ , τ < 2/α, is
no better than Ω(logn) (Ω(log ∆))-approximate in terms of n (in terms of ∆, resp.). The
same holds for WCapacity.

Proof. We will prove that for infinitely many n, there is a set of n pairwise (1, 1)-independent
links in the plane that requires Ω(logn) slots when using Pτ , τ < 2/α. In terms of ∆, the
number of slots required is Ω(log ∆).

We assume that β = 1. We inductively construct a weighted set of links St = St(q) in the
plane, given a parameter q. We shall denote by S(x,y)

t a copy of the instance St translated
by the vector (x, y).

The instance S0 consists of the single link 0 of length l0 = 1, with s0 at the origin and r0
at (l0, 0) = (1, 0). For t ≥ 1, the instance St consists of the link t of length 3qlt−1 and of
weight ω(t) = q2t with st at the origin and rt at (lt, 0), along with q2 sub-instances S(xi,yj)

t−1
with i, j = 0, 1, . . . q − 1, xi = 2ilt−1 and yj = lt + j(lt−1 + ht−1), where ht is the height of
St−1. This completes the construction. See Figure 1.

It is easily verified that links in St are (1, 1)-independent; hence, St can be scheduled in
constant number of slots using an oblivious power scheme, by Lemmas 6, 7 and Thm. 1. It
remains to show that it requires Ω(logn) slots when using Pτ , with τ < 2/α.

Note that the number nt of links in St is nt = 1 + q2nt−1 =
∑t−1
i=0 q

2i = (q2t− 1)/(q2− 1).
Thus, lognt = θ(t log q). Let us call t the main link of St. Let us fix an index t > 0. Let
Lk denote the set of main links of the copies of Sk in St, where k < t. We call Lk the k-th
level of St. All the links in Lk have equal length and weight q2k. It is easy to check that
Wt = ω(Lk) = q2t, and the total weight of all links is tWt = θ(Wt logn).

I Lemma 12. Suppose q ≥ (2 · 3τα)1/(2−τα). Let T be a subset of links in St(q) that is
feasible under Pτ with τ < 2/α. Then, ω(T ) ≤ 2 · 3αWt.

Proof. First, an observation.

I Claim 13. Let Tk be a subset of level k links in St s.t. Tk ∪ {t} is Pτ -feasible. Then,
ω(Tk) ≤ 3α2−(t−k)Wt.
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Proof. Let us first estimate the distance d(i, t) for each link i ∈ St \{t}. Note that lt = (3q)t,
ht = lt + q(lt−1 + ht−1) and h0 = 0 (because S0 consists of one horizontal link), so we can
see that ht ≤ 2lt. It follows that for each i ∈ St \ {t}, d(i, t) ≤ 3lt, implying, for each i ∈ Tk,

aPτ (i, t) = Pτ (i)lαt
Pτ (t)dαi,t

=
(
li
lt

)τα(
lt
dit

)α
≥ 1

3α (3q)−(t−i)τα.

Since aPτ (Lk, t) ≤ 1, Tk contains at most 3α(3q)(t−i)τα links, each of weight q2k, for a total
weight of

ω(Tk) ≤ 3α(3q)(t−k)τα · q2k = 3αWt
(3q)(t−k)τα

q2(t−k) = 3αWt

(
(3q)τα

q2

)t−k
.

The bound on q ensures that q2−τα ≥ 2 ·3τα or q2 ≥ 2 · (3q)τα. Thus, ω(Tk) ≤ 3αWt(1/2)t−k,
as claimed. J

We now prove the lemma by induction on t. For t = 0, St consists of only one link of
weight 1 = q0 = W0. For the inductive step, we consider two cases. Suppose first that T
contains the link t. Then, it follows from the claim that

ω(T ) ≤ ω(t) +
t−1∑
k=0

ω(T ∩ Lk) ≤Wt + 3αWt

t−1∑
k=0

2−(t−k) < 2 · 3αWt.

If, on the other hand, T does not contain t, it follows from the inductive hypothesis that the
total weight of links from T in each of the q2 sub-instances Sx,yt−1 is at most 2 · 3αWt−1, for a
grand total of ω(T ) ≤ q2 · 2 · 3αWt−1 = 2 · 3αWt. J

Observe that the maximum length ∆(St) = ∆t of a link in St is the length lt = (3q)t
of link t, which implies that log ∆t = θ(t log q) = θ(logn). Thus, Ω(log ∆) is also a lower
bound. J

As for the power schemes Pτ with τ ≥ 1, it is known that there is no algorithm using
these power schemes that achieves better than O(log ∆)-approximation in terms of ∆. This
is shown in [32] for τ = 1 and easily follows from [38] for τ > 1.

General Metrics. Recall that for Capacity, the O(log log ∆)-approximation results hold in
arbitrary metrics [18]. This begs the question whether this might also hold for Scheduling
and WCapacity. A negative answer was given for Scheduling in [19, Thm. 5.1]: no bound
of the form f(∆), for any function f of ∆ alone. Namely, a feasible instance of n equal
length links (i.e. ∆ = 1) in a tree metric was given in [19], for which Pτ (which is necessarily
uniform power (P0) on equal length links) requires Ω(logn) slots. Thus, there is a separation
between possible bounds for Capacity and Scheduling. We simplify below this construction
and show that it also gives the same lower bound for WCapacity.

I Theorem 14. The use of oblivious power assignments cannot obtain approximations of
Scheduling or WCapacity within o(logn) factor in arbitrary general metrics.

Proof. We give a construction of a set of weighted equal length links that is feasible with a
certain power assignment, but for which any subset that is feasible using oblivious power,
contains at most Ω(logn) fraction of the total weight. Since the links have equal lengths, the
only possible oblivious assignment is the uniform one. This yields a Ω(logn) lower bound on
the price of oblivious power for the weighted capacity problem.
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The set L of links consists of K subsets, L1, L2, . . . , LK for K > 0. Each set Lk contains
4k−1 links, each of weight 1/|Lk|, for a total weight of 1. Lk also has an associated number
tk = (γ|Lk|)

1
α , for a constant parameter γ to be determined. The distance between a link in

Lk and another link in Lk′ is simply tk + tk′ . We assume that β = 1. This completes the
construction. The total number of links n = |L| =

∑
k=1...K |Lk| = (4K − 1)/3, and the total

weight is K.
It was shown in [19] that L is feasible using some power assignment. We give below a

simplified proof. We first show that any feasible set using uniform power has weight O(1), or
O(1/ logn)-fraction of the whole.

I Claim 15. Let S ⊆ L be a subset of links of weight ω(S) ≥ 1 + γ2α. Then, S is infeasible
under uniform power.

Proof. Let k̃ be the minimum value for which an element of Lk̃ exists in S. Consider an
arbitrary link lj ∈ Lk̃∩S. Note that for i ∈ Lk where k > k̃, dij = tk+tk̃ ≤ 2tk = 2(γ|Lk|)1/α.
The affectance a(i, j) = aP0(i, j) under uniform power is then a(i, j) = 1

dα
ij
≥ 1

γ2α ·
1
|Lk| . Now,∑

i∈S
a(i, j) ≥

∑
k>k̃

a(Lk ∩ S, j) ≥
1
γ2α

∑
k>k̃

|Lk ∩ S|
|Lk|

= ω(S \ Lk̃)
γ2α ≥ ω(S)− 1

γ2α > 1 . J

I Claim 16. L is feasible, assuming γ ≥ 6.

Proof. We will use the power assignment P defined by P (i) = 1
2k , for i ∈ Lk. Consider

j ∈ Lk̃ and i ∈ Lk, for some k̃, k. Then, dαij > tmax(k,k̃) = γ22(max(k,k̃)−1). Thus,

aP (Lk, j) = |Lk|
2k̃−k

dαij
≤ 22(k−1) · 2k̃−k

γ · 22(max(k,k̃)−1)
= 1
γ

2min(k,k̃)−max(k,k̃)+1 .

It follows that

aP (L, j) =
∑
k>k̃

aP (Lk, j) +
∑
k≤k̃

aP (Lk, j) <
1
γ

∑
k>k̃

2k̃−k+1 +
∑
k≤k̃

2k−k̃+1


<

1
γ

( ∞∑
x=0

1
2x +

∞∑
x=0

2
2x

)
= 6
γ
.

Thus, for γ ≥ 6, L is feasible. J

Thm. 14 now follows. J

5 Weak Links

Recall that in order to obtain our approximations, we assumed that for each link i, P (i) ≥
cβNlαi for a constant c > 1. However, this is not always achievable when nodes have
limited power. Suppose that each sender node has maximum power Pmax. For concreteness,
we assume that c = 2. A link i is called a weak link if Pmax ≤ 2βNlαi . Note that a
link is weak because it is too long for its maximum power, i.e. if li ≥ lmax/21/α, where
lmax = (Pmax/βN)1/α is the maximum length a link can have to be able to overcome
the noise when using maximum power. Scheduling weak links may be considered as a
separate problem. Let τ -WScheduling denote the problem of scheduling weak links with
power scheme Pτ . For a weak link i, let us call ei = c

1/α
i li the effective length of link i and

let ∆e(S) = maxi,j∈S ei/ej . One approach to WScheduling is to split the set of weak links
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into effective length classes S′ with ∆e(S′) ≤ 2. Note that in each class, ci is almost same
for all links. Then we can find constant factor approximate scheduling for each of the classes
using known algorithms for non-weak scheduling. This leads to a O(log ∆e) approximation.
Unfortunately, there is no known algorithm with approximation factor better than O(log ∆e)
or O(logn). The following theorem shows that constant factor approximation of WScheduling
is at least as hard as constant factor approximation of Scheduling with fixed uniform power
scheme (denoted UScheduling). The proof is omitted due to space limitations.

I Theorem 17. There is a polynomial-time reduction from UScheduling to τ -WScheduling
for any τ ∈ [0, 1), transforming an arbitrary set L of links to a set W of weak links so that
the scheduling number of L with P0 is within a constant factor of the scheduling number of
W using Pτ .
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Abstract
We present a simple and natural non-pricing mechanism for allocating divisible goods among
strategic agents having lexicographic preferences. Our mechanism has favorable properties of
strategy-proofness (incentive compatibility). In addition (and even when extended to the case of
Leontief bundles) it enjoys Pareto efficiency, envy-freeness, and time efficiency.
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1 Introduction

The study of principled ways of allocating divisible goods among agents has long been a
central topic in mathematical economics. The method of choice that emerged from this
study, the Arrow-Debreu market model [1], provides a powerful approach based on pricing
and leads to the fundamental welfare theorems. However, these market-based methods have
limitations when agents are assumed to be strategic, e.g., these methods are not incentive
compatible. Issues of the latter kind have been studied within the area of mechanism design
for the last four decades, and have played a large role in the last decade in algorithmic game
theory [20].

In this paper our primary focus is on deriving a non-pricing mechanism for allocating
divisible goods, that satisfies incentive-compatibility, Pareto optimality and envy-freeness. A
natural approach to achieving Pareto optimality and envy-freeness is to start in a greedy
fashion by assigning agents their most favored goods, and gradually moving on to their less
favored choices. It is easy to come up with several ways of making this approach precise—two
are described in Section 6—and achieve Pareto optimality and envy-freeness. However,
it is not a priori clear that it is possible to also achieve incentive compatibility, without
which a mechanism is of doubtful merit in an environment of strategic agents. In the main
contribution of our paper we show that a third version of this approach, the Synchronized
Greedy (SG) mechanism, achieves all three properties.

The SG mechanism can be seen as generalizing a mechanism introduced by Crès and
Moulin [7], called Probabilistic Serial (PS), in the context of a job scheduling problem, and
studied further by Bogomolnaia and Moulin [5] for the allocation of indivisible goods1. The

1 These mechanisms for allocation of indivisible goods are randomized. Our focus on divisible goods is
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preference model assumed by [5] was first order stochastic dominance, which we will shorten
to sd-preference. They showed that in this model, PS is efficient, envy-proof and weakly
incentive compatible. Furthermore, they showed that in this model, no mechanism satisfies
all three properties, i.e., efficiency, envy-proofness and incentive compatibility. In view of the
second result, we need to relax the model in order to obtain a mechanism satisfying all three
properties; we do so by resorting to the lexicographic preference relation and assuming that
the goods are divisible.

Lexicographic preferences date back to the work of Hausner [11] and are of interest to
economists for the following reasons. They yield a total order on the set of all allocations
(unlike sd-preferences, say, which only form a partial order) and they can be seen as a
strong-preferences limit of von Neumann-Morgenstern utilities. A preference relation that is
complete, transitive and satisfies the continuity condition that preferences between allocations
are preserved under limits is known to be representable by a utility function [18]. Of these,
lexicographic preferences forgo continuity. What favorable properties can be achieved in
the area of goods allocation using only non-pricing mechanisms is a difficult question. The
present paper can be regarded as carving out a certain special case, namely the limit in
which agents have very strong preferences among the goods, and providing strong positive
guarantees in this case. In this limit there is an additional motivation to use non-pricing
mechanisms, because very strong preferences might cause a pricing mechanism to do little
more than ensure that the wealthiest agents get what they want. By focusing on non-pricing
mechanisms, we can study what game-theoretic properties an allocation mechanism can
achieve, without depending on what resources the agents possess or care to invest in the
game.

There are many every-day examples where something like our model comes up—naturally,
not in market economy transactions, but in other societal mechanisms for allocation. An
important class is allocation of public resources, e.g., placement lotteries in public schools,
see Kojima [16] for further examples and references. (Note also that this kind of example
employs a standard reduction of the indivisible goods case to the divisible goods case by
randomization.)

The recent paper of Saban and Sethuraman [22] builds on our work and solves several
open problems stated in an earlier version of this paper [24]; these results are described
at the end of Section 1.2. The broader challenge of the utility-functions version of the
allocation problem remains largely open. The simplicity of the SG mechanism is perhaps
encouraging toward the existence of allocation mechanisms maintaining favorable (maybe
weaker) game-theoretic properties in this setting. Finally, we note that independent of
our work, Cho [6] has also studied the use of lexicographic preferences in the context of
probabilistically assigning indivisible objects to agents.

Parameters of the problem

In the allocation problem there are m distinct divisible goods which need to be allocated
among n agents. Good j (1 ≤ j ≤ m) is available in the amount qj > 0, and agent i
(1 ≤ i ≤ n) is to receive a specified ri > 0 combined quantity of all goods; the parameters
satisfy

∑
j qj ≥

∑
i ri, i.e., the total supply is at least as large as the total demand. If this

inequality fails, our mechanism may still be run after rescaling expectations so that each

just as general, since an allocation of divisible goods can be used without further modification as a
randomized allocation of indivisible goods in the same quantities.
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agent i is to receive the quantity r′i = ri(
∑
qj)/(

∑
r`). So in the sequel we may assume∑

j qj ≥
∑
i ri.

Preferences: the non-Leontief case
The non-Leontief case of our problem is this. An allocation of goods is a list of numbers
aij ≥ 0, with

∑
j aij = ri and

∑
i aij ≤ qj , indicating that agent i receives quantity aij of good

j. The vector ai∗ = (ai1, . . . , aim) is referred to as agent i’s (share of the) allocation. Each
agent i has a preference list, which is a permutation πi of the goods; (aiπi(1), . . . , aiπi(m)) is
agent i’s sorted allocation. Agent i’s preference among allocations is induced by lexicographic
order. That is to say, agent i lexicographic-prefers ai∗ to bi∗, written ai∗ >i bi∗, if the leftmost
nonzero coordinate of (aiπi(1), . . . , aiπi(m)) − (biπi(1), . . . , biπi(m)) is positive. Furthermore,
we will say that agent i prefers ai∗ to bi∗ in the stochastic domination order [5], or sd-prefers
ai∗ to bi∗, written ai∗ >sd

i bi∗, if

for all k = 1, . . . ,m :
k∑
`=1

aiπi(`) ≥
k∑
`=1

biπi(`),

with at least one of the inequalities being strict. The symbols ≥i and 6≥i will have the obvious
interpretations.

Since an agent’s preferences depend only on his own share of the allocation, we speak
interchangeably of an agent’s preference for an allocation or an allocation share. In particular,
ai∗ >i bi∗ may be written more simply as a >i b, and ai∗ >sd

i bi∗ may be written as a >sd
i b.

Preferences: Leontief Bundles
Some of our results hold in the more general setting of lexicographic preferences among
Leontief bundles, and some fail in that setting; details below. A Leontief bundle is specified
by a non-negative vector λ = (λ1, . . . , λm) ∈ Rm+ (where R+ = non-negative reals). The set
of goods j for which λj is positive is called the support of this bundle. (If the set is of size one,
we refer to this as a singleton bundle; in Economics this is sometimes also called the linear
case.) If q ∈ Rm+ then the bundle λ may be allocated from q in any quantity α ∈ R+ such that
αλj ≤ qj for all j. In an instance of our problem, a list of M Leontief bundles λ1, . . . , λM

is specified, including among them the m singleton bundles (hence always M ≥ m). It is
convenient, and in our context sacrifices no generality, to impose the convention that for
every bundle λk,

∑m
1 λkj = 1.

The case m = M , in which all bundles are singletons, is of course a special case of
the Leontief framework, but to distinguish it from the general situation we call it the
“non-Leontief” case.

The framework we are concerned with is that each agent i has a preference list specified
by a permutation πi of the bundles. A Leontief allocation is an n×M matrix ` in which `ik
represents the quantity of bundle k allocated to agent i. A Leontief allocation l imposes the
goods allocation A(l), an n×m matrix, by A(l)ij =

∑M
k=1 likλ

k
j . We further require that a

Leontief allocation satisfy the conditions
∑
j A(l)ij = ri (thanks to the convention above this

is equivalent to
∑
k lik = ri) and

∑
iA(l)ij ≤ qj . We speak of A(l)i∗ and li∗ as agent i’s share

of, respectively, the goods and the Leontief bundles. The vector (liπi(1), . . . , liπi(M)) is agent
i’s sorted Leontief share. Agent i’s preference among allocations is induced by lexicographic
order on his share of the allocation. That is to say, agent i lexicographic-prefers l to l′,
written l >i l′, if the leftmost nonzero coordinate of (liπi(1), . . . , liπi(M))− (l′iπi(1), . . . , l

′
iπi(M))

is positive. Thus, for any goods allocation a, there is a favored Leontief allocation, denoted
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Lπ(a), defined by providing each agent with the best Leontief share that can be assembled
from his share of the goods—to be explicit, this is obtained by starting with ai∗ as the
available goods vector, and then, for k from 1 to M , setting Lπ(a)iπi(k) to be the largest α
such that ((available goods vector)−αλk) ∈ RM+ , then subtracting αλk from the available
goods vector and iterating.

We say that agent i sd-prefers allocation a to b, written a >sd
i b, if

for all K = 1, . . . ,M :
K∑
k=1

Lπ(a)iπi(k) ≥
K∑
k=1

Lπ(b)iπi(k),

with at least one of the inequalities being strict.

The two orders
Observe that “lexicographic-prefers” is a complete preference relation without indifference
contours (since it is antisymmetric for distinct allocation shares), and that “sd-prefers” is an
incomplete preference relation; moreover the lexicographic order is a refinement of the sd
order, i.e., sd-prefers implies lexicographic-prefers. The phrase “agent i weakly X-prefers”
will be used to include the possibility that agent i’s share is identical in the two allocations.

1.1 Our results
The SG mechanism is deterministic, treats all agents symmetrically, and has the following
properties.

Properties w.r.t. sd preference
If all ri’s are equal, the allocation produced by the SG mechanism in response to truthful
bids is envy-free in the following sense: each agent weakly sd-prefers his allocation to
that of any other agent. This holds also in the Leontief case.

Properties w.r.t. lexicographic preference
(Since most of our paper deals with the relation “lexicographic-prefers”, we subsequently
abbreviate it to “prefers”.)

The allocation produced by the SG mechanism in response to truthful bids is Pareto
efficient. This holds also in the Leontief case.
Incentive compatibility for a single agent: In the non-Leontief case, the SG mechanism is
strategy-proof if minj qj ≥ maxi ri.
We give counterexamples (a) in the absence of this inequality, (b) for the Leontief case.
Generalizing the previous item, we have: Incentive compatibility for a coalition: The SG
mechanism is group strategy-proof against coalitions of ` agents if

min
j
qj ≥ max

S:|S|=`

∑
i∈S

ri

.
The running time to implement the SG mechanism is Õ(mn) in the non-Leontief case,
and Õ(n(m2 +M)) in the Leontief case.
Any Pareto efficient allocation can be produced using a suitable “variable speeds” extension
of the SG mechanism. This holds also in the Leontief case. (However, the variable speeds
extension does not possess the rest of the properties listed above.)

The incentive compatibility properties are the main results of this paper.
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1.2 Literature
There has been considerable work on the strategy-proof allocation of divisible goods in Arrow-
Debreu economies, starting with the seminal work of Hurwicz [12], e.g., see [8, 14, 23, 25, 26,
28]. Most of these results are negative, among the recent ones being Zhou’s result showing
that in a 2-agent, n-good pure exchange economy, there can be no allocation mechanism
that is efficient, non-dictatorial (i.e., both agents must receive non-zero allocations) and
strategy-proof [28].

The paper that is most closely related to our work is that of Bogomolnaia and Moulin [5].
In their setting there are n agents and n indivisible goods, each agent having a total
preference ordering over the goods; the desired outcome is a matching of goods with agents.
A straightforward mechanism for allocating one good to each agent is random priority (RP):
pick a uniformly random permutation of the agents and ask each agent in turn to select a
good among those left. It is easy to see that this mechanism is ex post efficient, i.e., the
allocation it produces can be represented as a probability distribution over Pareto efficient
deterministic allocations, and it is strategy-proof. However, it is not ex ante efficient. A
random allocation is said to ex ante efficient if for any profile of von Neumann-Morgenstern
utilities that are consistent with the preferences of agents, the expected utility vector is
Pareto efficient. It is easy to see that ex ante efficiency implies ex post efficiency.

Solving a conjecture of Gale [9], Zhou [27] showed that no strategy-proof mechanism
that elicits von Neumann-Morgenstern utilities and achieves Pareto efficiency can find a
“fair” solution even in the weak sense of equal treatment of equals. He further showed
that the solution found by RP may not be efficient if agents are endowed with utilities
that are consistent with their preferences. Hence, ex ante efficiency had to be sacrificed, if
strategy-proofness and fairness were desired.

In the face of these choices, the work of Bogomolnaia and Moulin gave the notion of
ordinal efficiency that is intermediate between ex post and ex ante efficiency; an allocation
a is ordinally efficient if there is no other allocation b such that every agent sd-prefers b to
a. They went on to show that the mechanism called probabilistic serial (PS), introduced in
Crès and Moulin [7], yields an ordinally efficient allocation. Further they show that PS is
envy-free and weakly strategy-proof, defined appropriately for the partial order “sd-prefers”.
Finally, Bogomolnaia and Moulin define an extension of PS by introducing different “eating
rates” and show that this set of mechanisms characterizes the set of all ordinally efficient
allocations.

Katta and Sethuraman [15] generalize the setting of Bogomolnaia and Moulin to the “full
domain”, i.e., agents may be indifferent between pairs of goods. Thus, each agent partitions
the goods by equality and defines a total order on the equivalence classes of her partition (the
agent is equally happy with any good received from an equivalence class). For this setting,
they give a randomized mechanism that is a generalization (different from ours) of PS and
achieves the same game-theoretic properties as PS.

A mechanism that probabilistically allocates indivisible goods can also be viewed as
one that fractionally allocates divisible goods. Under the latter interpretation, the SG
mechanism is equivalent to PS for the case that m = n and the quantity of each good and
the requirement of each agent is one unit. An important difference is that Bogomolnaia and
Moulin analyze PS under an incomplete preference relation (stochastic dominance) in which
“most” allocation shares are incomparable; whereas we analyze SG under a complete preference
relation (lexicographic) that is a refinement of stochastic dominance. The statement that
a mechanism’s allocation is Pareto efficient w.r.t. lexicographic preferences is considerably
stronger than the same statement w.r.t. stochastic dominance preferences, because each
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agent’s share is dominated by more alternative shares in the lexicographic order, than it is
in the sd order; so, fewer allocations are Pareto efficient in the lexicographic than in the
sd order. Our results should be viewed therefore as demonstrating that the PS mechanism
and its natural generalization, SG, have far stronger game-theoretic properties than even
envisioned in [5].

For somewhat related questions primarily regarding exchange economies, see Barberà and
Jackson [4], Nicolo [19], Ghodsi et al. [10], and Li and Xue [17]. Finally, we remark only that
the problem of allocating a single divisible good among multiple agents with known privileges
is considerably different; the principal issue studied in that problem is how to make the
division in a manner that is fair w.r.t. the given privileges. This is known as the bankruptcy
problem and has a long history, e.g., see [21, 2]. Despite an interesting resemblance between
the PS mechanism and some of the mechanisms used in the solutions of that problem [13],
the issues at stake in the bankruptcy literature are distinct from those in our paper and its
predecessors.

Saban and Sethuraman [22] solve some of the open problems stated in an earlier version
of this paper. They consider the special case that all ri = 1. First they show that our
condition minj qj ≥ maxi ri is tight in the sense that for any q1 < 1 there exists an n, a
finite list q2, . . . , qn, and agent preferences such that no mechanism is efficient, envy-free and
strategyproof. They also show that if q1 < 1, and list q2, . . . , qn and the agent preferences are
given, then SG achieves all three properties if and only if any mechanism achieves all three
properties. Finally for the generalized setting of Katta and Sethuraman, where agents can
be indifferent between objects, they show that no mechanism can satisfy all three properties.

Since the PS rule is not strategyproof, recent work has studied the situation where agents
are strategic. A Nash equilibrium for the PS rule is a preference profile for which no agent has
an incentive to report a different profile. [3] show that a pure Nash equilibrium is guaranteed
to exist; however determining whether a given preference profile is a Nash equilibrium is
coNP-complete.

2 The Synchronized Greedy Mechanism

The mechanism is simple. Each agent i submits a preference list σi. The submitted list may
or may not, of course, agree with his true preference list πi.

(A simple case to consider is that of M = m = n and all qj = ri = 1. Because of
the restriction that each preference list must include all m singleton bundles, each agent’s
preference list in this case is a permutation of the m goods. Despite being quite special, this
case, or the slightly more general case in which M = m ≤ n and all ri are equal, is already
interesting to analyze and is well motivated by the examples, mentioned earlier, involving
sharing of tasks or of scarce public resources.)

The mechanism simulates the following physical process. Consider each good j as a
“liquid”, and each agent as a receptacle of capacity ri. The mechanism starts out at time
0 by (for all i in parallel) pouring bundle λσi(1) into receptacle i at rate ri units of liquid
per unit time. Each good j is therefore being drained at rate

∑
i riλ

σi(1)
j . (Note that since∑

j λj = 1, the total liquid being added to receptacle i per unit time is ri, as desired.)
This continues until one of the goods, say j, is exhausted. For all agents who were

currently being allocated bundles with j in their support, their favorite Leontief bundle has
now been exhausted. (We say that a Leontief bundle has been exhausted at a given time if any
of the goods in its support has been exhausted, and otherwise that the bundle is available.)
All such agents, i, are immediately allocated the next available bundle on their preference list,
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and the pouring of bundles continues. The algorithm continues in this way, allocating to an
agent from the next available bundle whenever the current bundle has been exhausted. Since
the singleton bundles are included in all preference lists, all agents continuously receive goods
at rate ri until time 1, at which time they simultaneously complete their full allocation.

Observe that the Leontief allocation l constructed by SG satisfies l = Lπ(A(l)) because
the bundles are provided to each agent greedily based on the availability of goods.

This continuous process can easily be converted into a discrete algorithm with the run
time cited earlier: maintain a priority queue of goods, keyed by termination times. Each time
a good is exhausted, each agent is assigned its next unexhausted bundle, and an updated
termination time for each good is computed using the coefficients of the active bundles.

Observe that if an agent prefers bundle λ to bundle λ′, and support(λ) ⊆ support(λ′),
then λ′ may be removed from the agent’s preference list. It cannot be allocated to the agent
by SG nor can it be part of any Pareto efficient allocation to the agent.

3 Properties of the Synchronized Greedy Mechanism

3.1 Pareto Efficiency
Let lσ be the allocation created by the SG mechanism in response to bids σ declared by the
agents. As before π denotes the truthful bids.

I Theorem 1. The allocation produced by the SG mechanism in response to truthful bids is
Pareto efficient w.r.t. lexicographic preference. That is to say, for all l 6= lπ, ∃i l <i lπ.

Proof. For agent i and for K ≥ 1 let tiK = 1
ri

∑K
k=1 l

π
iπi(k). If agent i receives a positive

quantity of his K’th-most-favored bundle, then tiK is the time when that bundle is exhausted
in SG. If the agent receives nothing from the bundle then the bundle is exhausted in SG no
later than tiK .

Suppose for contradiction the existence of l s.t. ∀i l ≥i lπ, and for some i, l >i lπ. Let
t be minimum s.t. ∃i,K s.t. t = tiK < 1

ri

∑K
k=1 liπi(k). Note, if ti′K′ < t then ti′K′ =

1
ri′

∑K′

k=1 li′π′i(k).
For every one of the bundles b ∈ {πi(1), . . . , πi(K)} there is a good j(b) that appears

positively in b and which is exhausted by time t. Since tiK < 1
ri

∑K
k=1 liπi(k) while tiK′ =

1
ri

∑K′

k=1 liπi(k) for all K ′ < K, some agent i′ 6= i receives strictly less of good j(πi(K)) in l
than in lπ. Since j(πi(K)) is exhausted in SG by time t, this means that there is some K ′′

such that 1
ri′

∑K′′

k=1 li′πi′ (k) <
1
ri′

∑K′′

k=1 l
π
i′πi′ (k) ≤ t. This contradicts the minimality of t. J

3.2 Strategy-Proofness
A mechanism is said to be strategy-proof if for every agent and for every list of bids by the
remaining agents, the agent cannot obtain a strictly improved allocation by lying.

I Theorem 2. In the non-Leontief case, the SG mechanism is strategy-proof if min qj ≥
max ri.

Proof. Without loss of generality focus on agent 1. For the remainder of this proof π2, . . . , πn
are arbitrary bids by the agents 2, . . . , n, but π1 is agent 1’s truthful bid. We need to show
that for any bid σ1 (and write σ = (σ1, π2, . . . , πn)), aσ1∗ ≤1 a

π
1∗. The theorem is trivial if

aσ = aπ.
The theorem is also trivial if agent 1, bidding truthfully, receives only his top choice. So

we may suppose that agent 1 does not receive the entire allocation of any one good.
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Figure 1 The mechanism with truthful vs. lying bids of Agent 1.

We may also suppose that if aσ1j = 0 and aσ1j′ > 0, then σ−1
1 (j) > σ−1

1 (j′). (Define σ−1
1 (j)

to be the s such that σ1(s) = j. Define π−1
1 (j) analogously.) In other words, all the requests

in σ1 that come up empty may as well be deferred to the end.
Let G(j) = {j′ : π−1

1 (j′) ≤ π−1
1 (j) and aπ1j′ > 0}. These are the goods that agent 1

weakly prefers to good j and receives a positive quantity of in the allocation aπ.
Say that agent 1 sacrifices good j in σ if:

1. aπ1j > 0,
2. σ−1

1 (j) > |G(j)|, and
3. π−1

1 (j) < π−1
1 (j′) if j′ also satisfies (1),(2).

That is to say, j is the most-preferred good which agent 1 receives a positive quantity of in
π, but requests later in σ than in π.

For a collection of bids ρ let T ρj be the time at which good j is exhausted if the mechanism
is run with bids ρ.

Agent 1 must sacrifice some good, call it B, since otherwise the allocation will not change.
See Figure 1. We will show that agent 1 receives strictly less of B in σ than in π, and that
this is not compensated for by getting more of more-preferred goods.

I Lemma 3. If D is a good and TπD < TπB, then TσD ≤ TπD.

Proof. Supposing the contrary, let D be a counterexample minimizing TπD. Since TπD < TπB ,
D 6= B. Now let i be any agent (who may or may not be agent 1) for whom aπiD > 0. Due to
the minimality of D, each of the goods j which i prefers in π to D, has Tσj ≤ Tπj . Therefore
i requests D at a time in σ that is at least as soon as the time i requests it in π.

Since this holds for all i who received a positive allocation ofD in π, the lemma follows. J

Let NB be the set of agents i 6= 1 for whom aπiB > 0. The condition on ri’s and qj ’s ensures
that this set is nonempty.

Due to the lemma, for each agent in NB , the request time for B in σ is weakly earlier than
it is in π. Now let C be the good such that π−1

1 (C) is maximal subject to π−1
1 (C) < π−1

1 (B)
and aπ1C > 0. Due to the lemma, all goods j′ such that π−1

1 (j′) ≤ π−1
1 (C) have Tσj′ ≤ Tπj′ .

Next we show:

I Proposition 4. If π−1
1 (j′) ≤ π−1

1 (C), then aσ1j′ = aπ1j′ .
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Figure 2 Failure of strategy-proofness without the hypothesis of Theorem 2.

Proof. Supposing the contrary, let π−1
1 (j′) be minimal such that π−1

1 (j′) ≤ π−1
1 (C) and

aσ1j′ 6= aπ1j′ . There are two possibilities to consider.
(a) aσ1j′ < aπ1j′ . This is not possible because then aσ1∗ <1 a

π
1∗.

(b) aσ1j′ > aπ1j′ . Note:

I Lemma 5. Let j1, j2 be such that π−1
1 (j1) ≤ π−1

1 (B), π−1
1 (j2) ≤ π−1

1 (B), aπ1j1
> 0, and

π−1
1 (j1) < π−1

1 (j2). Then σ−1
1 (j1) < σ−1

1 (j2).

Proof. Consider the least j1 that is part of a pair j1, j2 violating the lemma. Then j1 satisfies
conditions (1),(2) above, contradicting that B is the good sacrificed by agent 1. J

It follows that Tσj′ ≥
∑
j′′:π−1

1 (j′′)≤π−1
1 (j′) a

σ
1j′′ . Due to the minimality of j′, this means

that if aσ1j′ > aπ1j′ , then Tσj′ > Tπj′ , contradicting our earlier conclusion. This completes
demonstration of the Proposition. J

A consequence of the Proposition is that TσC = TπC .
Since agent 1 sacrifices B, his request time for B in σ is strictly greater than his request

time for B in π.
Recall that NB is nonempty. At time TπB, the agents of NB have received as least as

much of B in σ as they have in π, and the latter is positive. On the other hand, at the same
time TπB , agent 1 has received strictly less of B in σ than he has in π. In order for agent 1 to
receive at least as much of B in σ as in π, he would have to receive all of B that is allocated
after time TπB ; however, that is not possible, because the set of agents receiving B after TπB
includes NB . Thus aσ1∗ <1 a

π
1∗. J

3.3 Necessity of a Hypothesis on {ri}, {qj}s
We next provide an example in which strategy-proofness fails in the absence of the condition
max ri ≤ min qj . For convenience now let r1 ≥ . . . ≥ rn and q1 ≤ . . . ≤ qm.

I Example 6. Let n = 2 and m = 3. Let r1 = r2 = 3/2; label the goods A,B,C, let
qA = qB = qC = 1, and let the preference lists be π1 = (A,B,C), π2 = (B,C,A). If agent 1
bids truthfully he receives the sorted allocation (1, 0, 1/2). If instead he bids (B,A,C) (while
agent 2 bids truthfully), he receives the improved sorted allocation (1, 1/2, 0). See Figure 2.

This example does not limit the theorem sharply, because it uses r1 = (3/2)q1 rather
than r1 arbitrarily close to q1. Jeremy Hurwitz has pointed out that one may construct
similar examples whenever r1 ≥ q1/(1− q2/

∑
qj); this would appear to be a tight bound.
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Figure 3 Failure of strategy-proofness in the Leontief case.

3.4 Failure of strategy-proofness for the Leontief case

Theorem 2 has no equivalent for general Leontief bundles. Consider the following four-agent
system with r1 = r2 = r3 = r4 = 1 and three goods in supply qA = qB = 1, qC = 2.
Agent 1’s desired Leontief bundles are in the preference order (A,B,C) (this agent is
interested only in singleton bundles); agent 2 and 3’s desired Leontief bundles are in the
order ( 1

2A+ 1
2B,C,A,B); agent 4’s Leontief bundles are in the order (B,C,A).

Under truthful bidding agent 1 receives the sorted goods allocation (1/2, 0, 1/2). By
bidding instead (B,A,C), agent 1 receives the improved sorted goods allocation (2/3, 1/3, 0).
See Figure 3.

3.5 Group Strategy-Proofness

A mechanism is group strategy-proof against a family F of subsets of agents if for every
“coalition” S ∈ F and for any list of bids by the agents outside of S, the agents of S cannot
obtain an improved allocation by lying, where by “improved allocation” we mean that no
agent of S obtains a worse allocation and at least one obtains a strictly better allocation.

We now provide the following generalization of Theorem 2:

I Theorem 7. In the non-Leontief case, the SG mechanism is group strategy-proof against
the family of subsets S for which minj qj ≥

∑
i∈S ri.

I Corollary 8. In the non-Leontief case, the SG mechanism is group strategy-proof against
coalitions of ` agents if minj qj ≥ maxS:|S|=`

∑
i∈S ri.
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The proof of Theorem 7 follows a structure similar to that of Theorem 2 but the argument
is complicated by the fact that different agents in S can sacrifice different goods, and some
of the agents may actually be better off due to their untruthful bids (as they may benefit
from the interactions among the several lies). The proof needs to effectively “chase through”
an unbounded iteration of good transfers relative to aπ, and show that some agent in the
coalition is worse off than in π. Fortunately, this can be done without explicitly pursuing the
iteration.

Proof. Let S be a minimal counterexample. That is,
(a) minj qj ≥

∑
i∈S ri;

(b) With πi representing in this proof the truthful preferences for i ∈ S and arbitrary
preferences for i /∈ S, there are bids σi for i ∈ S such that every i ∈ S “is a willing
participant in the coalition S”, namely (with σ` = π` for ` /∈ S) aσi∗ ≥i aπi∗;

(c) For some i ∈ S, aσi∗ >i aπi∗;
(d) No strict subset of S satisfies (a),(b),(c).

Note by minimality that in σ, every agent i ∈ S bids untruthfully (differently from π)
and this has an effect, namely, if i reverts to bidding according to π then the allocation is
different than in σ.

If aπiπi(1) = ri for all i ∈ S, that is, with truthful bids these agents receive only their top
choices, then none of them can be strictly rewarded by submitting a different bid.

Otherwise (i.e., if aπiπi(1) < ri for some i ∈ S), then thanks to the hypothesis, under the
truthful bids π, every good has a positive allocation outside S.

We may simplify the argument slightly by supposing that for each agent i ∈ S, if aσij = 0
and aσij′ > 0, then σ−1

i (j) > σ−1
i (j′). In other words, all the requests that come up empty

may as well be deferred to the end.
Let G(i, j) = {j′ : π−1

i (j′) ≤ π−1
i (j) and aπij′ > 0}.

Say that agent i sacrifices good j in σ if:
1. aπij > 0,
2. σ−1

i (j) > |G(i, j)|, and
3. π−1

i (j) < π−1
i (j′) if j′ also satisfies (1),(2).

Some good must be sacrificed by some agent, since otherwise the allocation will not change.
(However, while every agent in S is untruthful, not every i ∈ S necessarily sacrifices a good;
setting σi(j) > πi(j) might have an effect even if aπij = 0 because of increased availability of
j due to bidding changes of other agents.)

Of all the sacrificed goods let B be one for which TπB is minimal.

I Lemma 9. If D is a good and TπD < TπB, then TσD ≤ TπD.

Proof. Supposing the contrary, let D be a counterexample minimizing TπD. By the minimality
of B, D cannot be a sacrificed good.

Now let i be any agent (inside or outside of S) for whom aπiD > 0. Due to the minimality
of D, each of the goods j which i truthfully prefers to D, has Tσj ≤ Tπj . Therefore i requests
D at a time in σ that is at least as soon as the time i requests it in π.

Since this holds for all i who received a positive allocation ofD in π, the lemma follows. J

Let OB ⊆ S be the set of agents who sacrifice B, and let NB be the set of agents i for
whom aπiB > 0 but who do not sacrifice B. Due to the lemma, for each agent in NB, the
request time for B in σ is weakly earlier than it is in π. Now consider an agent i ∈ OB . Let
C be the good such that π−1

i (C) is maximal subject to π−1
i (C) < π−1

i (B) and aπiC > 0. Due
to the lemma, all goods j′ such that π−1

i (j′) ≤ π−1
i (C) have Tσj′ ≤ Tπj′ . Next we show:
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I Proposition 10. If π−1
i (j′) ≤ π−1

i (C), then aσij′ = aπij′ .

Proof. Supposing the contrary, let π−1
i (j′) be minimal such that π−1

i (j′) ≤ π−1
i (C) and

aσij′ 6= aπij′ . There are two possibilities to consider.
(a) aσij′ < aπij′ . This is not possible because i is a willing participant in the coalition.
(b) aσij′ > aπij′ . Note:

I Lemma 11. Let j1, j2 be such that π−1
i (j1) ≤ π−1

i (B), π−1
i (j2) ≤ π−1

i (B), aπij1
> 0, and

π−1
i (j1) < π−1

i (j2). Then σ−1
i (j1) < σ−1

i (j2).

Proof. Identical to the proof of Lemma 5 with agent i in place of agent 1. J

It follows that Tσj′ ≥
∑
j′′:π−1

i
(j′′)≤π−1

i
(j′) a

σ
ij′′ . Due to the minimality of j′, this means that if

aσij′ > aπij′ , then Tσj′ > Tπj′ , contradicting our earlier conclusion. This completes demonstration
of the Proposition. J

A consequence of the Proposition is that TσC = TπC .
Since agent i sacrifices B, his request time for B in σ is strictly greater than his request

time for B in π.
Since we are in the case that every good has a positive allocation outside S, NB is

nonempty. At time TπB, the agents of NB have received as least as much of B in σ as they
have in π, and the latter is positive. On the other hand, at the same time TπB , the agents of
OB have received strictly less of B in σ than they have in π. In order for the agents of OB
to receive collectively at least as much of B in σ as in π, they would have to receive all of
B that is allocated after time TπB; however, that is not possible, because the set of agents
receiving B after TπB includes NB . Therefore there is some i ∈ OB for whom aσiB < aπiB . This
contradicts the requirement that i be a willing participant in the coalition S. J

I Example 12. Example 6, in which strategy-proofness failed absent the hypothesis of
Theorem 2, can be extended in a straightforward manner to one in which the group strategy-
proof property fails to hold absent the hypothesis of Corollary 8. Again use m = 3, but
instead of two agents, use n = 2` agents, the first half having the same preference order
(A,B,C) as agent 1 in the earlier example, and the second half having the same preference
order (B,C,A) as agent 2 in the earlier example. If all agents bid truthfully, then the first `
agents each receive the sorted allocation (1, 0, 1/2); however if they lie and bid (B,A,C),
while the remainder bid truthfully, then each lying agent receives the improved sorted
allocation (1, 1/2, 0).

4 Characterizing All Pareto Efficient Allocations

Bogomolnaia and Moulin [5] extended their mechanism by allowing players to receive goods
at time-varying rates. Specifically, for each agent i there is a speed function ηi mapping the
time interval [0, 1] into the nonnegative reals, such that for all i,

∫ 1
0 ηi(t) dt = ri. Subject to

these speeds, goods flow to agents in order of the preference lists they bid, just as before.
They showed that this extension characterizes all ordinally efficient allocations.

In this section, we obtain an analogous characterization of all Pareto efficient allocations
by a similar extension of our mechanism. Specifically, we prove that for any Pareto efficient
allocation of bundles, there exist speeds such that the extended SG mechanism produces
that allocation. We prove this after first noting that the extended SG mechanism always
results in Pareto efficient allocations.
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In this section when ηi (1 ≤ i ≤ n) are fixed, we let aπ (with the η’s implicit) be the
goods allocation produced by the extended SG mechanism with these speeds and truthful
bids. We let lπ = Lπ(aπ) be the corresponding allocation of bundles.

4.1 Pareto Efficiency
I Theorem 13. Let ηi, 1 ≤ i ≤ n, be any speed functions. Then the allocation lπ is Pareto
efficient.

Proof. The argument is the same as for Theorem 1 with the proviso that the definition
tiK = 1

ri

∑K
k=1 l

π
iπi(k) is replaced by tiK = inf{y :

∫ y
0 ηi(t) dt ≥

∑K
k=1 l

π
iπi(k)}. J

4.2 Characterizing All Pareto Efficient Allocations
If the last result mirrored the First Welfare Theorem, the next mirrors the Second Welfare
Theorem:

I Theorem 14. Let π be the collection of agent preference lists over bundles, and let l be a
Pareto efficient allocation. There exist speed functions ηi, 1 ≤ i ≤ n, such that l = lπ.

Proof. As before the bundles are (λk)Mk=1, where for each k,
∑m
j=1 λ

k
j = 1, and λkj ≥ 0 for

all j.
Construction of the speeds ηi is simple. Let a “partial bundle allocation” be a list l̂ik,

each l̂ik ≥ 0, such that for every i,
∑
k,j l̂ikλ

k
j ≤ ri, and for every j,

∑
i,k l̂ikλ

k
j ≤ qj .

Initialize t = 0 and initialize each agent i with the empty partial allocation l̂ik = 0 for all
i, k.

Initialize cj to be the quantity of good j that is allocated in l. (Necessarily cj ≤ qj and∑
cj =

∑
ri. If

∑
qj >

∑
ri then for some j, cj < qj .)

Then repeat the following until t = 1.
Find an agent i for whom there is an ` such that l̂iπi(`) < liπi(`), and such that for all

`′ < `, the bundle πi(`′) has been exhausted (that is to say, there is a good j such that
λ
πi(`′)
j > 0 and cj = 0.) To see that there is such an i, suppose the contrary, and consider all

the agents for whom
∑
k,j l̂ikλ

k
j < ri. For each of them there is a favorite bundle which has

not yet been exhausted. Evidently none of these agents is to be allocated in l any additional
quantity of this favorite bundle. However since these favorite bundles have not yet been
exhausted, we can allocate to every player a slight additional positive amount of his favorite
unexhausted bundle, without exhausting any additional goods. Any extension of this new
partial bundle allocation to a full bundle allocation, strictly Pareto dominates l, contrary to
assumption.

Now set δ = (liπi(`) − l̂iπi(`))/
∑
ri. For t < t′ < t+ δ, make the settings ηi(t′) =

∑
ri

and, for i′ 6= i, ηi′(t′) = 0. Then increment l̂iπi(`) by δ
∑
ri, and decrement each cj by the

corresponding amount, namely, decrement cj by λπi(`)
j δ

∑
ri. Finally, increment t by δ.

This process terminates in finitely many iterations because in each iteration some agent
completes its allocation of some bundle. J

Examination of the above proof reveals:

I Corollary 15. There is a polynomial time algorithm for checking whether a given allocation
is Pareto efficient.
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4.3 No Incentive Compatibility for the Variable Speeds Variant
We note that the synchrony imposed among agents by the SG mechanism is key to its
incentive compatibility and envy-freeness properties (indeed, the properties hold even if
the basic mechanism is extended with the same speed function for all agents). If different
agents have different speed functions under the extended SG mechanism, Theorems 2 and 7,
showing incentive compatibility, fail to hold. The argument breaks down as soon as it uses
termination times, in Lemma 3. Below is a counter-example for strategy-proofness; a similar
idea gives counter-examples for group strategy-proofness and envy-freeness.

I Example 16. Assume m = n = 4 and that all ri = qj = 1. Let the speed function for
agent 1 be 1 over the interval [0, 1]. The speeds of agents 2, 3, and 4 equal 1 over the interval
[0, 1/2], 0 over the interval (1/2, 5/6], and 3 over the interval (5/6, 1]. The preference orders
of agents 1 and 2 are (1, 2, 3, 4), and the preference orders of agents 3 and 4 are (2, 4, 3, 1). If
all agents bid truthfully, agent 1 receives the sorted allocation (1/2, 0, 1/2, 0). On the other
hand, if agent 1 bids (2, 1, 3, 4) while the rest bid truthfully, then agent 1 receives the better
sorted allocation (1/2, 1/3, 1/6, 0).

5 Envy-Freeness w.r.t. stochastic dominance preference

(This section is the only part of the paper where we use sd preference.)
Given a bundle allocation l, let l̄ denote the relative allocation, where l̄ij = lij/ri.

I Theorem 17. Under truthful bidding, every agent i weakly sd-prefers his relative allocation
l̄πi∗ to the relative allocation l̄πi′∗ of any other agent i′.

Proof. Fix any 1 ≤ k ≤M . We are to show that

1
ri

k∑
`=1

lπiπi(`) ≥
1
ri′

k∑
`=1

lπi′πi(`).

Let t be the time at which the last of the bundles πi(1), . . . , πi(k) is exhausted. So
tri =

∑k
`=1 l

π
iπi(`). No other agent can receive any of these bundles after time t, so

tri′ ≥
∑k
`=1 l

π
i′πi(`). J

6 Other Greedy Mechanisms

As stated in the Introduction, obtaining an efficient and envy-free non-pricing mechanism for
allocating divisible goods is easy, but additionally satisfying incentive compatibility is harder.
In this section we present two greedy mechanisms which satisfy the first two properties but
not the third. To simplify description of the mechanisms, assume that m = n and that all
ri = qj = 1; it is straightforward to generalize the mechanisms beyond this restriction, and
our counterexamples are possible even with it.

Mechanism 1: The mechanism proceeds iteratively. In round i, it considers the ith-favorite
goods of all agents who still have not been allocated a full unit of goods. Among such agents,
if the ith-favorite good of a set S of agents is good j, the remaining quantity of good j is
allocated equally among the agents in S, subject to no agent getting more than a total of
one unit of goods. (Some of good j may remain after the round.)
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Mechanism 2: The mechanism has a notion of time, similar to SG. Goods allocation starts
at time 0 and is completed at time 1. During this interval each agent receives goods at rate
1. The interval is punctuated by finitely many critical instants at which some of the agents
switch which good they are receiving. The first critical instant is 0 and the others are the
times at which some nonempty set of agents T finishes receiving their promised allocation
of a good. At such an instant, the mechanism identifies, for each of the agents in T , the
next-favorite good on their list that has not yet been fully promised to other agents. The
mechanism promises each agent in T some of that good, in the following fashion: let Tj be
the subset of T requesting good j and let u be the amount of good j that has not been
previously promised. Then each agent in Tj is promised an equal share of u subject to no
agent exceeding a total of one unit of goods. (The next critical instant affecting these agents
is of course easily computed.) The mechanism then proceeds to the next critical instant.

The proofs given above, for showing that the SG mechanism is efficient and envy-free,
extend easily to showing that Mechanisms 1 and 2 are also efficient and envy-free. Here,
however, are counterexamples to incentive compatibility:

I Example 18 (Mechanism 1). Let m = n = 4; name the goods A, . . . ,D. Agent 1’s
preference list is A,B,C,D; agents 2 and 3 have preferences A,C,B,D; and agent 4’s
favorite good is B. If the agents bid truthfully then in round 1, agent 4 is allocated all of
good B, while the first three agents are each allocated a third of good A. In the second
round agent 1 is left out while agents 2 and 3 are allocated half of good C. In round 3
no allocations are made, and in round 4 good D is allocated among the first three agents.
The allocation to agent 1 is therefore (A : 1/3, D : 2/3). If instead agent 1 submits the
preference list A,C,B,D then she is treated the same as agents 2 and 3, and her allocation
is (A : 1/3, C : 1/3, D : 1/3), which she prefers.

The counterexample for the second mechanism is more involved.

I Example 19 (Mechanism 2). Let m = n = 8; name the goods A, . . . ,H. We specify
only the essential components of the preference orders. The preference order of agent
1 is alphabetical, (A, . . . ,H). Agents 2, 3, 4 have the preference order (A,G,H, F, . . .).
Agents 5, 6, 7 have the preference order (B,C,E, F, . . .). Agent 8 has the preference order
(B,D, . . .). If all agents report their preferences truthfully, agent 1 gets the allocation
(A : 1/4, C : 1/4, D : 1/4, F : 1/4); if agent 1 lies and reports the order (A,C,E,D, . . .) she
gets the allocation (A : 1/4, C : 1/4, D : 1/4, E : 1/4), which she prefers.

7 Discussion

Our main open problem is the one mentioned in the Introduction, i.e., achieving approximate
versions of the properties of the SG mechanism but when agents’ preferences are representable
by utility functions.

Another natural open question concerns the existence of mechanisms to produce lex-
icographically most equitable allocations, having favorable algorithmic and game-theoretic
properties (esp., incentive compatibility). The SG mechanism is not very equitable: see the
full paper [24].
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Abstract
This paper explores expressiveness of asynchronous multiparty sessions. We model the behaviours
of endpoint implementations in several ways: (i) by the existence of different buffers and queues
used to store messages exchanged asynchronously, (ii) by the ability for an endpoint to lightly
reconfigure his behaviour at runtime (flexibility), (iii) by the presence of explicit parallelism
or interruptions (exceptional actions) in endpoint behaviour. For a given protocol we define
several denotations, based on traces of events, corresponding to the different implementations
and compare them.
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1 Introduction

Asynchronous Multiparty Sessions. In large-scale distributed infrastructures, most inter-
actions are based upon the production of interleaving flows of messages between independent
participants. Verification of such distributed protocols is challenging: participants are ex-
ecuting applications written in different languages and the way messages are treated between
production and consumption may vary. The presence of intermediate layers where on-transit
messages are stored and transferred via, e.g. buffers or queues, makes the analyses diffi-
cult, even with the guarantee that the order of messages is preserved for each intermediate
structure.

The approach of multiparty session types [11, 7] (extended from the binary [10]) introduced
a flexible formal method for verification of message-passing protocols without central control:
the desired interactions at the scale of the network itself are specified into a session (called
global type). These formal objects describe interactions between all participants through
simple syntax including send and receive operations, choice and recursion. Global types are
then projected onto several local types (one for each participant), which describe the protocol
from a local point of view. These local types are used to validate an application through
type-checking or monitoring. Theory of session types guarantees that local conformance
of all participants induces global conformance of the network to the initial global type.
Sessions type theory is well-studied and gave birth to languages such as Scribble [22], directly
inspired by formal session types, letting developers specify and verify (through automatically
generated monitors) distributed protocols and applications, e.g. for large cyberinfrastructures
[8] and business protocols [15].
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Initial

p : q?m1.r?m2.end

q : r?m.p!m1.end

r : q!m.p.m2.end

p J ε

q J ε

r J ε

Ongoing

p : q?m1.r?m2.end

q : r?m.p!m1end

r : end

p J 〈m2〉

q J 〈m〉

r J ε

Deadlock

p : q?m1.r?m2.end

q : end

r : end

p J 〈m2〉 〈m1〉

q J ε

r J ε

Figure 1 Configurations with single input queues for G.

Although various extensions of multiparty sessions [11] are studied, several fundamental
open problems remain, such as expressiveness questions: whether permutations of types
(used to compensate the order of arrival of messages from different sources) [16, 6, 17] and
interruptible sessions [8] are more expressive than standard sessions or not. We require a
canonical methodology to compare these extensions systematically.

Session type expressiveness. This paper explores and compares expressiveness of different
semantics for asynchronous multiparty sessions in the literature, based on message traces.

We first study the effect of buffers – order-preserving stores for in-transit messages – on
the expressiveness. For instance, adding buffers on the sender side (messages are stored
in a queue after being produced and before being transferred to the receiver) is innocuous,
whereas receiver-side buffers can produce deadlocks. As an example, consider global type
G = r→ q : m, q→ p : m1, r→ p : m2.end which consists of a sequence of three messages
exchanged between three participants. It is projected to local types p : q?m1.r?m2.end,
q : r?m.p!m1.end and r : q!m.p!m2.end, in which each participant (p, q, r) is expected to
perform two consecutive actions. q!m is the output of message m to q and r?m is the
input of message m from r. end denotes termination. If each participant uses one buffer
on the receiver-side (called input queue), message m2 can be arrived and be enqueued in
the structure of p before m1, leading to a deadlock (as p expects to consume m1 first), as
described in Figure 1. There exist several ways to allow usage of buffers on the receiving
side without risking deadlocks. First, one can separate the input queue into several input
queues (as in [7]), one for each possible sender, a program being allowed to consume messages
from any queues. In our example, m2 (coming from r) and m1 (coming from q) would be
stored in different input queues at p, allowing m1 not to be blocked by an early arrival of
m2. This situation is described in Figure 2. Alternatively, one can introduce flexibility in
the program running at p to make it able to accept m2 before m1. Formally, it boils down
to a permutation of p : q?m1.r?m2.end to p : r?m2.q?m1.end, adapting it to the order of
arrival of m1 and m2.

Configurations and traces. The common framework we use to describe session networks
is configurations (drawn from [2]), which are collections of local types – the remaining
expected actions for all participants – and queues – the order-preserving structures storing
in-transit messages. For instance, the deadlocked situation explained above is described by
configuration p : q?m1.r?m2.end, q : end, r : end, (p J: 〈q, p,m1〉.〈r, p,m2〉) where q and r
are finished, p expects to first receive m1 then m2 and the (only) input queue at p is ready
to deliver m2 then m1.
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Initial

p : q?m1.r?m2.end

q : r?m.p!m1.end

r : q!m.p.m2.end

p J r ε p J q ε

q J r ε q J p ε

r J q ε r J p ε

Ongoing

p : q?m1.r?m2.end

q : r?m.p!m1end

r : end

p J r 〈m2〉 p J q ε

q J r 〈m〉 q J p ε

r J q ε r J p ε

No Deadlock

p : q?m1.r?m2.end

q : end

r : end

p J r 〈m2〉 p J q 〈m1〉

q J r ε q J p ε

r J q ε r J p ε

Figure 2 Configurations with multiple input queues for G.

From these configurations, we extract traces to compare semantics. They are mappings
from participants to sequences of actions, send or receive events, ordered locally: two events
at the same location are ordered, but two events performed by different participants are not.
As an example, a trace σ leading to the configuration above from the initial configuration
is s.t. σ(p) = ε, σ(q) = r?m.p!m1, σ(r) = q!m.p!m2, describing the fact that m1 and m2
have been sent by r and q, but not yet received by p. The traces contains no information on
whether m1 was sent before of after m2.

A protocol can then be given a denotation, w.r.t. a given semantics, as a set of completed
local traces, that is, traces of configurations which cannot progress further. Different semantics
yield different denotations for the same type; for instance, the denotation of G under a
semantics with simple input queues contains traces stopped at deadlocked configurations
(such as σ), whereas the denotation of G under a semantics with multiple input queues (as
described above) will only contain completed traces (traces reaching a configurations where
all local types are end).

Parallel and interruptible sessions. Next we study the impact on expressiveness of two dif-
ferent constructs: the parallel composition, explicitly notifying that two actions can appear in
any order and interruptions. Interruptible sessions have been studied in [12, 8] through the use
of scopes describing sessions in which a participant can, at any time, raise a interruption to stop
the current block of interactions. Suppose {|p→ q : m1.q→ r : m2.end|}c〈i by p〉; p→ r : m3.
In {|G|}, m2 is supposed to be sent by q after receiving m1. Participant p can interrupt the
session at any time, as specified in 〈i by p〉, for instance after sending m1, by broadcasting
the message i. If i reaches q after m1 is received and before m2 is sent, q will not send m2
and the session continues with message m3 from p to r.

Contributions. This paper systematically compares the expressiveness of different semantics
of multiparty session types based on: (i) the presence and the nature of different data
structures used to store messages on either side of communications, (ii) the flexibility of
the local types – defined as a subtyping relation, and (iii) the presence of parallel and
interruptions.

For the first time, we use sets of languages of local traces to compare expressiveness.
We prove, for (i) that the introduction of universal input queues (buffer storing incoming
messages regardless of their provenance) leads to deadlock but that in absence of such
structure, the denotation of any session G stays the same, regardless of the structures used.
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We then introduce flexible subtyping (ii) which permutes the order of local actions in a limited
way. We explain how the combination of flexibility and queues can lead to deadlocks and
prove that using flexibility yields greater expressive power. Finally (iii), we claim that session
parallelism and interruption have greater expressiveness using our local trace formalism.

2 Multiparty Session Types

Sessions, seen as protocol specifications, are described by global types G [11, 7], the main
objects being compared in this work. A global type specifies the interactions expected to
happen in a session, between several participants (denoted by p, q, r), seen from an omniscient
point of view. Syntax of the global and local types is given by:

G ::= end | µt.G | t | r1 → r2{mi.Gi}i∈I
T ::= end | µt.T | t | p?{mi.Ti}i∈I | p!{mi.Ti}i∈I

We call the different (mi)i∈I sets of messages. Type end is a termination of session, which
we sometimes omit. µt.G and t are the recursion operators. We manipulate equirecursive
types, not distinguishing between µt.G and G[µt.G/t]. We assume recursion variables t are
guarded, i.e. they appear only under some prefix. r1 → r2{mi.Gi}i∈I is the basic interaction
inside global types: participant r1 is expected to send message mj to participant r2 – we
assume r1 6= r2; according to the j chosen by the sender, the protocol will continue as global
type Gj . We write p → q : m1.G1 when |I| = 1. We sometimes write q? or r! when the
message is not relevant.

Local types describe these protocols from the point of view of a participant and are
considered as local guidelines distributed processes must follow. Interactions are decomposed
into two sides: input p?{mi.Ti}i∈I and output p!{mi.Ti}i∈I . Local types are effectively
(potentially infinite) trees of input and output actions. We often write p!m.T or p?m.T for a
singleton and p! if the message is not important.

Projections. Local types are obtained from global types through projection G�(r) (the
projection of a global type G onto a participant r). Projection is given by the following rules:

end�(r) = end t�(r) = t
µt.G�(r) = µt.G�(r) (if G�(r) 6= t) µt.G�(r) = end (otherw.)

r1 → r2{mi.Gi}i∈I�(r) = r!{mi.Gi�(r)}i∈I (if r = r1)
r1 → r2{mi.Gi}i∈I�(r) = r?{mi.Gi�(r)}i∈I (if r = r2)
r1 → r2{mi.Gi}i∈I�(r) = G1�(r) (otherw., and ∀i, j ∈ I.Gi�(r) = Gj�(r))

Recursive global types are projected into recursive local types except when projection name
r does not appear in a recursion block, i.e. r is not involved in the recursion, thus projection
is end. When projecting an communication, if the projection name is the sender (resp. the
receiver), the result will be a send (resp. receive) action. If the name is not involved in the
communication, the first branch is chosen to continue projection. In the last rule, a choice
made during a communication is unobservable to other participants, hence projections in all
branches are the same (see [11]). We call projectable global types well-formed and assume
all types are well-formed in the following.

I Example 1 (Projection). Consider G = p→ q : m.q→ p : m1.r→ p : m2.end, described
above. This global type describes a session composed of three interactions: r sends a message
m to q which then sends a message m1 to p and finally r sends a message m2 to p. Projection
of G onto its three participants gives: {r : q!m.p!m2, q : r?m.p!m1, p : q?m1.r?m2}.
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(Com) p : q!{mi.Ti}i∈I , q : p?{mi.Ti}i∈I
pq:mj−−−−→ p : Tj , q : Tj j ∈ I

(InIn) q : p?{mi.Ti}i∈I , (q / p : 〈p, q,mj〉.h) p?q:mj−−−−→ p : Tj , (q / p : h) j ∈ I

(OutIn) p : q!{mj .Ti}i∈I , (q / p : h) p!q:mj−−−−→ p : Tj , (q / p : h.〈p, q,mj〉) j ∈ I

(InOut) q : p?{mi.Ti}i∈I , (p . q : h.〈p, q,mj〉)
p?q:mj−−−−→ p : Tj , (p . q : h) j ∈ I

(OutOut) p : q!{mi.Ti}i∈I , (p . q : h) p!q:mj−−−−→ p : Tj , (p . q : 〈p, q,mj〉.h) j ∈ I
(Transit) (p . q : h.〈p, q,m〉), (q / p : h) τ−→ (p . q : h), (q / p : 〈p, q,m〉.h)

(Par) ∆1
`−→ ∆′1 =⇒ ∆1,∆2

`−→ ∆′1,∆2

(p / q : h) (resp. (p . q : h)) stands for either (p J q : h) (resp. (p I q : h)) or (p J: h) (resp.
(p I: h))

Figure 3 Operational semantics of session cofigurations.

As seen above, local types do not represent a direct causality between sending m1 and
m2 as the actions are done by different participants. There is however causality between the
reception of m1 and m2 from the point-of-view of p – should the semantics be synchronous,
this causality would be propagated to send operations.

3 Expressiveness of Multiparty Session Configurations

This section first defines the operational semantics of multiparty session types as session
configurations. Then we define our notion of expressiveness, introducing the denotational
semantics. Finally we show that (without asynchronous subtyping), expressive powers of all
semantics are equivalent.

Semantics for sessions are transitions between configurations ∆: models of the state of
a system through (i) a set of local types describing remaining actions to be performed by
the participants and (ii) queues describing messages currently travelling in the networks.
Semantics presented below are parametric w.r.t. the existence (and usage) of such queues.

3.1 Configuration semantics
The syntax of configurations (∆) and queues (Q) is given below:

∆ ::= ∅ | p : T,∆ | Q,∆ h ::= ε | 〈p, q,m〉.h
Q ::= (p J q : h) | (p I q : h) | (p J: h) | (p I: h)

Queues can be output queues (p I q : h), (p I: h) and store messages after they are
produced by a participant – before they travel through the network – or input queues
(p J q : h), (p J: h) and store messages before they are consumed by a participant – after
they arrived from the network.

Queues can be linked to a single endpoint, the endpoint consuming messages for input
queues, and the endpoint producing messages for output queues. They are written (p J: h)
and (p I: h) and are called single queues. Queues can also be labelled by two endpoints
(source and destination of the message) and are in this case called multiple queues and written
(p J q : h) and (p I q : h).

The transition rules are given in Figure 3. In the following, the system will either (i) have
no input (resp. output) queues, or (ii) one single input (resp. output) queue per participant
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Rule (OutOut)

p : q!m.Tp

q : p?m.Tq

p J r . . .

p I . . .

p J q . . .

q J r . . .

q I . . .

q J p . . .

Rule (Transit)

p : Tp

q : p?m.Tq

p J r . . .

p I 〈m〉 . . .

p J q . . .

q J r . . .

q I . . .

q J p . . .

Rule (InIn)

p : Tp

q : p?m.Tq

p J r . . .

p I . . .

p J q . . .

q J r . . .

q I . . .

q J p 〈m〉 . . .

Figure 4 Illustration of several rules in the semantics (M, 1).

Table 1 Rules used by the different semantics φ.

(0, 0) (0, 1) (0,M) (1, 0) (1, 1) (1,M) (M, 0) (M, 1) (M,M)
(Com) √

(InIn) √ √ √ √ √ √

(OutIn) √ √

(InOut) √ √

(OutOut) √ √ √ √ √ √

(Transit) √ √ √ √

and no multiple input (resp. output) queues, or (iii) one multiple input (resp. output)
queues per pair of participants and no multiple input (resp. output) queues. A system with n
participants with single input (resp. output) queues will have n input (resp. output) queues.
A system with n participants with multiple input (resp. output) will have n2 input (resp.
output) queues. In the last rule, ` denotes a label which is either input (p?q : mj), output
(p!q : mj), internal action (τ) or synchronisation (pq : m).

A semantics φ is defined by a pair (I,O) representing the nature of the input and output
queues of the system. I (resp. O) can be 0 (no input (resp. output) queues), 1 (single input
(resp. output) queues), or M (multiple input (resp. output) queues). This effectively defines
9 different semantics using different sets of rules. They are summarised in Table 1.

Figure 4 illustrates the three rules used by semantics (M, 1), i.e. a semantics with
single output queues and multiple input queues. Rule (OutOut) consumes the action q!m of
participant p to produce message 〈p, q,m〉 (noted as only 〈m〉 in the picture) in the output
queue (p I). When the message reaches the end of the queue, it is dispatched to the input
queue (p J q) through rule (Transit). Eventually, the message will be ready to be consumed
by the action p?m of participant q by rule (InIn).

The (0, 0) semantics is the synchronous semantics. The three semantics (1,_) are called
the single-input semantics or unsafe semantics and the six other ones are called safe semantics.
These names come from Proposition 11. We say that ∆1

`−→ ∆2 through semantics φ when
∆1

`−→ ∆2 is derived with rules belonging to φ (according to Table 1).
In the following, we consider that two systems are different if the possible sequences of

actions for one participant differ. We only consider the order of actions happening locally.
We will compare configuration traces, which are collections of local traces.

An event e is either a send event p!m or a receive event p?m. For a participant, sending
corresponds either to a communication (synchronous semantics), or putting a message in its
own output queue ((_, 1) and (_,M)), or putting a message in the target input queue (_, 0).
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I Definition 2 (Configuration traces). A configuration trace σ is a mapping from participants
to finite sequences of events: σ(r) = (e)n≤N for N ∈ N. We use ε for the empty sequence.
A participant r is in the domain of σ if σ(r) 6= ε. The length of a trace σ is the sum of
the length of the sequences σ(r) for all r in its domain. We say σ ≤ σ′ when ∀r, σ(r) is a
sequence prefix of σ′(r).

The relation between traces and configuration is given by the relation ∆ σ
φ ∆′ meaning

∆ executes trace σ0 to ∆ for semantics φ defined with:
1. For any configuration ∆ and semantics φ, ∆ σ0

φ ∆ where σ0 is defined by: for all roles
r, σ0(r) = ε.

2. For any configurations ∆, ∆1, ∆2, any trace σ, any label `, and any semantics φ, if
∆ σ

φ ∆1 and if ∆1
`−→ ∆2 through φ, then we define ∆ σ′

φ ∆2 as follows:
a. if ` = p!q : mj , then σ′ is defined by: σ′(p) = σ(p).q!mj and σ′(r) = σ(r) for r 6= p.
b. if ` = p?q : mj , then σ′ is defined by: σ′(q) = σ(q).p?mj and σ′(r) = σ(r) for r 6= p.
c. if ` = pq : mj , then σ′ is defined by: σ′(p) = σ(p).q!mj , σ′(q) = σ(q).p?mj and
σ′(r) = σ(r) for r /∈ {p, q}.

d. if ` = τ , then σ′ = σ.

A trace σ is in the trace set of a configuration ∆ for a semantic φ, written σ ∈ Tφ(∆),
(we sometimes write ∆ has trace σ for semantics φ) whenever there exist ∆′ s.t. ∆ σ

φ ∆′.
The trace set of a global type G for the semantics φ is the trace set for semantics φ of
configuration δ(G) defined by δ(G) = r1 : T1 . . . , rn : Tn, Q1, . . . , Qn where r1, . . . , rn are the
roles involved in G, Ti = G�(ri), and Qi are all empty ε and correspond to φ. A terminated
trace of a global type G for the semantics φ is a trace σ s.t. δ(G)  σ

φ ∆ where ∆ 6→. A
completed trace of a global type G for the semantics φ is a trace σ s.t. δ(G)  σ

φ 0 where
0 = r1 : end, . . . , rn : end, Q1, . . . , Qn where Qi are all ε. A completed trace is terminated.

I Example 3 (Configuration). Let ∆e = {p : q!m1.r!m3, q : p?m1.r!m2, r : q?m2.p?m3}
(cf. Example 1). The initial configuration from Ge for (0, 0) is ∆e, the one for (M, 1)
is ∆e, (p I: ε), (q I: ε), (r I: ε), (p J q : ε), (p J r : ε), (q J p : ε), (q J r : ε), (r J
p : ε), (r J q : ε). Both configurations can evolve along the terminated trace σe : p 7→
q!m1.r!m3, q 7→ p?m1.r!m2, r 7→ q?m2.p!m3 even if non-terminated traces are different; for
instance σt : p 7→ q!m1, q 7→ ∅, r 7→ ∅ is a valid trace from Ge by (M, 1) and not by (0, 0).

3.2 Expressiveness via denotational semantics
We can extract from Definition 2 a denotation of a global type G, w.r.t a particular semantics,
as the set of terminated traces of G. We can compare, for a given type G, the terminated
traces of G for two different semantics. As sessions ensure the local interaction follows an
expected behaviour, local traces are strongly constrained by the semantics. This observation
is still useful for two reasons: (i) it establishes a distinction between safe semantics which
prevents deadlocks from arising and unsafe semantics, and (ii) further operations (§ 4, 5.1
and 5.2) on types will remove this constraint. Secondly, we can associate, to a type G
containing n participants, the languages {Li}i≤n corresponding to the local traces in the set
of terminated traces for G. We can then consider the expressive power of φ as the set of all
languages obtainable for all possible G with φ. We define φ1 has greater expressive power
than φ2 if all languages in the expressive power of φ2 are in the expressive power of φ1.

I Definition 4 (Denotation of a type under a semantics). We define the denotation of global
type G under semantics φ, noted D(G,φ), as the set of all terminated traces from G w.r.t. φ.
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I Definition 5 (Progress). We say that φ ensures progress if for all G, D(G,φ) contains only
completed traces.

If role r appears in G, D(G,φ, r) is the set of all local traces for r obtained from terminated
traces of D(G,φ) , that is D(G,φ, r) = {σ(r)|σ ∈ D(G,φ)}.

I Definition 6 (Expressive power of a semantics). We define the expressive power of semantics
φ as follows: {D(G,φ, r) | r ∈ G and G well-formed}, that is, the collection of all languages
of local traces corresponding to terminated traces from well-formed global types.

3.3 Expressiveness results (without subtyping)
The first theorem (Theorem 10) states that all safe semantics give the same denotations:
adding non-single-input queues has no influence on denotations. We first prove confluence
of semantics by stating that we can always complete a trace of any semantics by using
synchronous semantics.

I Lemma 7 (Confluence of trace semantics). Let φ1 be a safe semantics and G a well-formed
global type. If δ(G) σ

φ1
∆, there exists ∆′, σ′ s.t. δ(G) σ.σ′

φ1
∆′ and δ(G) σ.σ′

(0,0) ∆′

I Definition 8 (Prefix). Let T be a type, σ a trace and r a participant. The prefix
relation σ(r) <p T is defined as: (1) ε <p T ; (2) p!mj .σ <p q!{Ti}i∈I and σ <p Tj ; and (3)
p?mj .σ <p q?{Ti}i∈I and σ <p Tj .

I Lemma 9 (Session fidelity). Let φ be a safe semantics and G a well-formed global type. If
δ(G) σ

φ ∆, r ∈ G, then σ(φ) <p G�(r).

I Theorem 10 (Expressiveness of safe semantics). For any G, the sets D(G,φ) for all safe φ
are the same.

Proof. Done by proving that all safe semantics are equivalent to the synchronous one: local
traces stay the same, as they are constrained by the initial global types. Suppose σ1 is
a completed trace for φ1. By using Lemma 7 there exists σ′1 s.t. σ1.σ

′
1 is a trace for φ1

and (0, 0). By Lemma 9, σ′1 is ε. It follows that σ1 is a completed trace for (0, 0), thus a
completed trace for φ2. J

However, unsafe semantics are not comparable with the others, as they lead to deadlocks.

I Proposition 11 (Single input deadlock). Unsafe semantics do not ensure progress.

Proof. Consider a global type Ge = p → q : m1.q → r : m2.p → r : m3 with the (1, 0)
semantics (same reasoning applies to (1, 0) and (1,M)). After the sequence p!q : m1.p!r :
m3.p?q : m1.q!r : m2, r type is q?m2.p?m3.end and its queue is (r J • : 〈p, r,m3〉〈q, r,m2〉)
meaning the system can no longer proceed: r expects m2 then m3 but the queue offers m3
then m2. J

I Proposition 12 (Regularity). The languages in expressive power of safe semantics are
regular.

Proof. Suppose G is a session type containing participant p. We prove that the traces
accepted by local T = G�(r) by induction on T . We present only interesting cases.

If T = q?{mi.Ti}i∈I , then the possible completed traces q?lj .t all start with one q?lj and
follows by an accepted trace tj of Tj . By induction, the language Lj of all tj is regular.
Thus the accepted language is the sum, for all j of the traces q?lj .Lj , and is regular.
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If T = µt.T ′(t) we check the number of occurrences of end in T ′(t). If end does not
appear, the accepted language of T is ∅. Otherwise, by masking about the recursion
token t, we can see the accepted traces of T ′ as a sum of language ΣLk, each language Lk
corresponding of one branch of T ′. There is at most one branch ending with t, suppose it
is the branch corresponding to L1, it means the accepted traces of T are (L1) ∗ .(Σk 6=1Lk),
which is regular. J

I Remark (Asymmetry of expressiveness). Progress requires input queues to be multiple (or
no input queues at all), but is independent from output queues. Output queues do not
affect expressiveness as they cannot block endpoints: if there is an input queue, the former
can always unload its content in the latter, if there is none, as the order of messages in
the output queue matches the order of the session, session type soundness ensures progress.
Without input queues, session fidelity [11] is required, for instance consider the configuration
r : p!m1.q!m2.end, p : q!m3.r?m1.end, q : r?m2.p?m1.end. Terminated traces are different
for (0, 0) and (0, 1) (in this case, the system is blocked as it would require m2 to be sent
before m1) and for (0,M) (the system can proceed to a completed state); however, the initial
configuration does not correspond to a global type.

4 Expressiveness of subtyping

As described in the previous section, the mechanisms of session maintain an order over local
components traces: actions performed by the participants happen in the exact order expected
by types. As a consequence, if transport structures change the order of arrival of messages
from different sources – a realistic assumption, this condition can lead to deadlocks.

Implementations of session types [22, 18] sometimes enforce flexibility for the endpoint
application: for instance, by allowing two outputs expected to be sent sequentially to be
performed in any order. This flexibility is represented formally by the use of subtyping, as
in [16, 6, 17], describing transformations on types by switching pairs of consecutive actions.
We study input-input and output-output flexibility which make it possible to exchange two
consecutive actions of the same nature. Input-output (resp. output-input) flexibility allows
one output (resp. input) to be performed before previously expected inputs and outputs.

4.1 Subtyping rules
As explained above, input-input flexibility offers the possibility for the second input in a
sequence of two consecutive inputs to be executed first. For instance, input flexibility allows
type p?m1.q?m2.p!m3.end to be converted into q?m2.p?m1.p!m3.end. Consider the following
types:

T = p?
{
m11.q?m2.p!m3.end
m12.q?m2.p!m4.end

T ′ = q?m2.p?
{
m11.p!m3.end
m12.p!m4.end

In T , the first input is branching and models a program reacting to two different messages
from p, either m11 or m12. In both branches, a message m2 from q is expected. One would
expect an input-input flexible program to be able to accept message m2 if it arrives first,
which would mean converting T to T ′, which means T ′ is a subtyping of T .

For a subtyping definition, we introduce the input and output contexts. They are
parametered with the name of the participant of the action being permuted, as we do not
exchange two actions with the same participant. An input (resp. output) context is a term
formed only of branched input (resp. output) actions, seen as tree where each branch finishes
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with a hole. Input-output and output-input contexts contain both type of actions, they only
differ in the name verification. Flexibility is defined by the subtyping rules, which realise the
possible exchanges in branched types.

IDefinition 13 (Input/Output contexts and Subtyping). Input and input/output type contexts
are defined by:

Cq
I ::= [ ] | p?{mi.Cq

I }i∈I (p 6= q) Cq
IO ::= [ ] | p?{mi.Cq

IO}i∈I | r!{mi.Cq
IO}i∈I (r 6= q)

Cq
O ::= [ ] | q!{mi.Cq

O}i∈I (p 6= q) Cq
OI ::= [ ] | p!{mi.Cq

OI}i∈I (p 6= q) | r?{mi.Cq
OI}i∈I

Subtyping ≤ is coinductively defined by the following rules:

(II) ∀(i, k), Ti ≤ q?mk.Cp
I [T ′

i ] q 6= p
p?{mi.Ti}i∈I ≤ q?{mk.Cq

I [p?{T ′
i}i∈I ]}k∈K

(OO) ∀(i, k), Ti ≤ q!mk.Cp
O[T ′

i ] q 6= p
p!{mi.Ti}i∈I ≤ q!{mk.Cq

O[p!{T ′
i}i∈I ]}k∈K

(IO) ∀(i, k), Ti ≤ q!mk.Cp
IO[T ′

i ] q 6= p
p!{mi.Ti}i∈I ≤ q?{mk.Cq

IO[p!{T ′
i}i∈I ]}k∈K

(OI) ∀(i, k), Ti ≤ q!mk.Cp
OI[T

′
i ] q 6= p

p?{mi.Ti}i∈I ≤ q!{mk.Cq
IO[p?{T ′

i}i∈I ]}k∈K

Subtyping is extended on configurations. To describe semantics with subtyping, we define
a subtyping policy P as a subset of {OO, II,OI, IO} abiding to OO ∈ P ⇒ OI ∈ P and
OI ∈ P ⇒ OO ∈ P. We use the notation T1 ≤P T2 to state that T1 ≤ T2 is derivable using
only rules in P. We consider semantics φ associated to a subtyping policy P, which are
obtained by adding the following rule:

(Sub : P) ∆1
l−→ ∆2 ∆′1 ≤P ∆1 =⇒ ∆′1

l−→ ∆2

Subtyping makes it possible to first perform an action that is present in the branches of all
possible behaviours. (II) performs inputs from different senders in any order; (OO) performs
an output before other outputs to different receivers, (IO) allows an output to be performed
before other actions with different participants, and (OI) allows an input to be performed
before other actions with different participants.

4.2 Progress and expressiveness of flexibility
Flexibility introduces deadlock under the synchronous semantics. For instance, consider the
global type r→ q : m.q→ p : m1.r→ p : m2.end. In one application of (IO) on the initial
configuration, we reach configuration (r : q!m.p!m2, q : p!m1.r?m2, p : q?m1.r!m2) which is
locked for synchronous semantics, and we have no means to retrieve initial configuration.
Proposition 15 and Table 2 describe which association of a semantics φ and a set of subtyping
rules P avoid deadlocks. A subtyping policy P is safe w.r.t. a semantics φ if the system P
ensure progress under φ.

I Lemma 14. ∅, {OO} and {II} and {OI, IO} are safe w.r.t. all safe semantics.
{IO} is safe w.r.t. all non-synchronous semantics.
{OI} is unsafe w.r.t. all semantics.

I Proposition 15 (Safe subtyping). Safety for subtyping policy and semantics is given by
Table 2: “√” represents a safe semantics, and “×” an unsafe one.

For a given semantics, one can use subtyping to complete traces that are not possible
without it. As a simple example consider p→ q : m1.p→ r : m2, trace r!m2.q!m1 is accepted
with OO-subtyping but cannot be accepted otherwise. We use D(G,P, φ) to represent the
denotation of type G under semantics φ and subtyping rules P. Below Proposition 16
confirms that subtyping actually changes the denotations of types. Theorem 17 states that
subtyping accept traces beyond the regular languages.
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Table 2 Safe subtyping with respect to semantics.

(0, 0) (0, 1) (0, D) (1, 0) (1, 1) (1, D) (D, 0) (D, 1) (D,D)
∅ √ √ √ × × × √ √ √

II √ √ √ √ √ √ √ √ √

OO √ √ √ × × × √ √ √

IO × √ √ √ √ √ √ √ √

OI × × × × × × × × ×
IO,OI √ √ √ √ √ √ √ √ √

I Proposition 16 (Denotations in presence of subtyping). If φ is safe and P1 ( P2,
1. for all projectable global type G, D(G,P1, φ) ⊆ D(G,P1, φ)
2. there exists a projectable global type G, D(G,P1, φ) ( D(G,P1, φ)

I Theorem 17 (Expressive power of subtyping). The expressive power of subtyped sessions is
strictly greater than the expressive power of standard sessions.

Proof. We prove that the expressive power of subptyped sessions contained non-regular
languages. Consider the type G = µt.p→ q.p→ r.t. Its projection on p is T = µt.(q!.r!.t +
q.end). Although it is of no importance for the following, we can establish the possible
completed traces from T by the safe semantics (∅, ∅) is (q!.r!)∗.q!. (1) With the semantics
(∅, {OO}), it is easy to see the language L of possible completed traces are all the words
obtain by shuffling q!n+1 and r!n: all completed traces that contains n !q contains exactly
(n− 1) r! and type permutations allow us to move any r! leftwards in any trace and stay
inside the completed trace set – thanks to the OO rule. (2) The shuffling of q!n+1 and r!n
is not regular. It follows from Proposition 12 that there does not exist a type G s.t. the
language of possible traces for p in G�(p) is L. J

5 Expressiveness of parallel and interruptible sessions

5.1 Influence of parallel composition
In the previous section, the reduction rules are updated with subtyping, giving flexibility to
the local endpoint. Similar behaviour can also be reached by adding in the syntax a parallel
operator explicitly stating that two actions can be performed in any order. We consider in
the following, parallel sessions which are sessions with the additional constructs for parallel
composition G1 | G2 and T1 | T2. Related projection and semantics rules are standard
and can be found in [11].

As expected, adding parallel composition of actions, leads to irregularity of the safe
semantics. Both subtyping rule and parallel syntax can be used to get rid of potential
deadlocks. Parallel composition allows one session designer to precisely describe which
actions are unordered whereas subtyping is a global policy for permutation. As a result,
parallel sessions are more expressive than subtyping sessions, giving a finer control over which
actions can be exchanged.

I Proposition 18 (Parallel).
1. Expressive power of parallel sessions contains irregular languages.
2. Parallel sessions have a strictly greater expressive power than subtyping sessions.

Proof. 1. The language of completed traces accepted at p for the type µt.(p→ q.t + p→
q.end | p→ r.end) is not regular – and is a particular shuffling of q!n and r!n.
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2. For every G without parallel and every safe combination of φ and P , we can find G′ which
has exactly the same trace set. G′ is obtained from G by putting in parallel consecutive
events from G w.r.t. P. Moreover, some types containing both parallel and sequences such
as (p→ q1.p→ q2 | p→ r1.p→ r2) cannot be expressed with subtyping only. J

5.2 Expressiveness of Interruptible Session Types
Interruptible sessions introduce a mechanism for participants to exceptionally exit blocks of
interactions; we study here the resulting gain in expressiveness. Interruptible session types
are presented in [8, 12]: in the global type syntax, particular ranges of actions (called scopes)
can be interrupted at any time by a participant; a special message is broadcasted to all
participants of the scope. As soon as one of them is notified of the interruption, it gives
up any action related to this scope. Interruptions have been included in protocol language
Scribble [22] because it was needed to represent usecases in [1], see [12]. We prove here
that this inclusion is necessary, and that such protocols cannot be described with standard
sessions.

As a simple example of the interrupt, consider:
G = {|r→ p : m.(µt.p→ q : m1.q→ p : m2.t)|}c〈i by r〉; q→ r : a.end

G is a type consisting of one interruptible scope c. It starts with message m from r to p,
which initiates a loop of messages m1 and m2 between p and q. At any time during this
loop, r can decide to stop it by raising an interruption: message i is sent to both p and
q which are expected to stop interacting with each other as soon as they receive it. After
interruption, the session then resumes by a message a from q to r.

Interruptible session types are standard session types with the addition of scope construc-
tions. {|G|}c〈l by r〉;G′ is the global type composed of one scope name c encompassing the
type G. At any time, progress inside G can be interrupted by participant r with a special
interrupt message carrying label l and Eend stands for a exceptionally ended scope. After G
is finished - either normally or exceptionally, the protocol continues as G′. Each scope c is
associated to a set of participants involved through the mapping Γ. Such information allows
the semantics to notify each participant when an exceptional behaviour arises. Additional
projection rules needed for interruptible scopes, projection remembers whether it projects
on the name which can interrupt the scope or not, resulting in two different constructs for
interruptible local types:

{|G|}c〈l by r〉;G′�(r) = {|G�(r)|}c . 〈r?l〉;G′�(r)
{|G|}c〈l by r′〉;G′�(r) = {|G�(r)|}c / 〈r′!l〉;G′�(r) when r ∈ G otherw. G′�(r)

Excerpt of configuration semantics for interruptible sessions (details are in [8, 12]) is given
below through the use of evaluation contexts Cc which has a hole in {|_|} and after the
sequential composition (formally defined in [8, 12]).

(EOut) r : Cc0 [{|T |}c . 〈r?l〉;T ′], r1 : h, . . . , rn : h
→ r : Cc0 [{|Eend|}c . 〈r?l〉;T ′], r1 : 〈cI, r, r1, l〉.h, . . . , rn : 〈cI, r, rn, l〉.h

(EIn) r : Cc0 [{|T |}c . 〈q?l〉;T ′]; r : h.〈cI, q, r, l〉.h→ r : Cc0 [{|Eend|}c . 〈q?l〉;T ′]; r : h
(Disc) r : Cc0 [{|Eend|}c . 〈q?l〉;T ′]; r : 〈c1, q, r, l〉.h→ r : Cc0 [{|Eend|}c . 〈q?l〉;T ′]; r : h
(EDisc) r : Cc0 [{|Eend|}c . 〈q?l〉;T ′]; r : 〈cI

1, q, r, l〉.h→ r : Cc0 [{|Eend|}c . 〈q?l〉;T ′]; r : h

In this framework, in-transit messages contains scope information c, it allows interrupt
messages to exit the right scope. In (EOut), participant r decides to raise an interruption of
scope c and continues as T ′ but remembers that scope c was exited exceptionally; interruption
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messages are broadcasted to all participants present in scope c. In (EIn) a participant r
executing actions in scope c receives an interrupt messages from Q, and immediately exits
c. Rule (Disc) (resp. rule (EDisc)) is used to discard incoming standard (resp. interruption)
messages to already-exited scopes.

Theorem 20 claims that session languages with interruptions have greater expressiveness.
Denotations resulting from interruptible session types cannot be obtained by use of parallel,
choice and flexibility subtyping.

I Lemma 19. Expressive powers of standard, parallel and subtyped sessions do not contain
languages of the form an.bk with k ≤ n.

I Theorem 20 (Expressiveness of interruptible sessions).
1. Interruptible sessions have a strictly greater expressive power than sessions.
2. Interruptible sessions have a different expressive power than parallel sessions.
3. Interruptible sessions have a different expressive power than subptyped sessions.

Proof. Standard session behaviours are included into interruptible sessions. Separation
proofs are based on, stating that only interruptible sessions allows trace languages of the form
an.bk with k ≤ n. Lemma 19 is proved by stating that without interruptions, a denotation
containing traces where actions a all appear before actions b is such that the number of a
and b are independent (coming from the unfoldings of two different recursions). Interruptible
type µt.{|p→ q : m1.t|}c〈i by q〉; q→ p : m2.end, is a loop of nested scopes. Messages m1
are continuously received by q (unfolding the recursion once at each reception) until an
interruption is raised, using rule (EOut). Afterwards, q discards further incoming m1 messages
with rule (Disc) and the only possible actions is sending of m2 messages. The number of m2
messages to be sent corresponds to the number of unfoldings done while receiving m1, and
thus is lower than the number of messages m1 received. As a consequence, the expressive
power of interruptible sessions contains the languages an.bk with k ≤ n, which does not
appear in the expressive power of standard, parallel and subtyped sessions. Interruptible
sessions are not strictly more expressive than parallel and subtyped sessions. The languages
corresponding to types µt.(p → q.t + p → q.end | p → r.end) from Proposition 18 and
µt.p→ q.p→ r.t from Theorem 17 are not in the expressive power of interruptible sessions,
which does not contain shufflings. J

6 Related Works

There is a vast literature on expressiveness studies for process calculi; we refer to [20] for
a survey (see also [21, § 2.3]). Our work is original (i) we study expressiveness of types,
based on the language theory; (ii) we compare the design choices of the network (queue)
topology (§ 3); the local permutations (§ 4); and the type constructs (parallel in § 5.1 and
and interrupt in § 5.2); and (iii) our notion of expressiveness is based on denotational and
operational semantics: we compare completed traces of local actions induced by a global
type. As far as we have known, this is the first work to define and investigate expressiveness
based on denotations and languages made by traces of concurrecy types.

Our concurrent model stems from a previous work [2] in which networks are modeled as
configurations, i.e. collections of types and queues. The model used in [2] is multisession and
uses routing information updated at runtime to maintain network topology. This feature has
been removed for the sake of clarity, as it has little impact on expressiveness.

The first part of our work, focusing on expressiveness on different queue configurations,
is inspired by [14] where they studied the typed bisimulation theories of binary sessions with
located queues.
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Existing works about expressiveness in process algebra is based on encodings; for example,
the early work [19] compares expressiveness of synchronous and asynchronous CCS through
the impossibility of an encoding. Our work focus on the semantics of types based on the
language acceptance of local traces induced by types without encodings. Another paper [9]
compares the expressiveness of several process algebras (asynchronous π, distributed π,
ambients) through the use of encodings in order to state possibility and impossibility results.
Our approach is different, as we use both operation expressiveness and language comparisons.

The syntax and semantics for interruptible sessions have been defined in [12] and are
driven by implementation. The gap in expressiveness created by the addition of operator
for exceptional behaviours has been studied in [3]. However, the setting is different and the
comparisons are based on Turing-(in)completeness of the different calculi defined, whereas,
in § 5.2 we use a comparison based on language inclusion. Our interrupt [12, 8] differs
from exceptions in sessions studied in [5, 13, 4] as we provide distributed mechanisms for
exceptional behaviours. None of [12, 5, 13, 4, 8] studies the expressiveness.
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Abstract
It is a common practice to design a protocol (say Q) assuming some secure channels. Then the
secure channels are implemented using any standard protocol, e.g. TLS. In this paper, we study
when such a practice is indeed secure.

We provide a characterization of both confidential and authenticated channels. As an applic-
ation, we study several protocols of the literature including TLS and BAC protocols. Thanks
to our result, we can consider a larger number of sessions when analyzing complex protocols
resulting from explicit implementation of the secure channels of some more abstract protocol Q.
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1 Introduction

When designing a protocol, it is common to assume a secure, confidential, or authentic
channel. Authentic channels may be read but not written in. Symmetrically, confidential
channels may be written in but not read. Secure channels are both authentic and confidential.
For example, payment protocols like 3D-secure are supposed to be run over a secure channel
such as TLS. Similarly, many services such as public key registration assume an authenticated
channel. How to implement these secure channels is left unspecified and, intuitively, the
security of a payment protocol should not depend on the particular choice of implementation
of its secure channels. A typical example of a generic realization of a secure channel is TLS.
For authentication, one usually relies on a password-based authentication or on previously
established keys (used e.g. for signature or MACs). Is it safe to use these protocols in any
context? What is a secure or authenticated channel? This paper aims at characterizing
channels that have security properties. For example, assume Q is a secure protocol (e.g. a
payment protocol) that requires a secure channel. Which properties should a protocol P
achieve in order to securely realize the secure channels of Q? These properties should of
course be independent of Q since P and Q are typically designed in totally independent
contexts. In the remaining of this introduction, Q will refer to the “main” protocol while P
will refer to a protocol realizing secure channels (for several notions of security).

Our contributions. Our first contribution is a characterization of both secure, confidential,
and authenticated channels. We actually characterize what it means for a channel to be
readable or not, and writable or not. Then the realization of a secure channel typically
proceeds in two phases. First, some values are established by the protocol P , for example
short-term symmetric keys or MAC keys. Quite unsurprisingly, we show that these values
need to be secret and appropriately shared. Then the messages of Q are transported or
encapsulated using the values established by P . For example, the messages of Q may be
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encrypted with a key established by P . We provide a characterization of secure encapsulations
both for secure, confidential, and authentic channels. A key feature of our characterization
is that it is independent of P and Q, which allows for a modular analysis. We show that
standard encapsulations (e.g. typical use of encryption, signatures, or MACs) enjoy the
requested properties.

Our second and main contribution is to show how to securely compose protocols. In-
tuitively, our main result guarantees that whenever P is a secure key exchange protocol
and E is a secure encapsulation then P ·E Q is as secure as Q where P ·E Q denotes the
protocol obtained from Q by implementing its secure channels using P and E . The interest
of our result is twofolds. First, it provides foundational grounds to a common practice where
protocols are typically designed and studied independently and then combined. We show
that such a practice is actually secure under reasonably light assumptions: primitives shared
between P , E , and Q should be tagged as proposed in [4]. Tagging is a standard practice
that avoids message confusion. Second, our result provides a technique for analyzing a
complex protocol: it is sufficient to analyse its components to deduce security of the whole
protocol. To express and prove our result, we have developed a framework, an extension of
the applied-pi calculus [2], that allows to easily talk about protocols roles and sessions, a
missing aspect in the applied-pi calculus. To illustrate our approach, we show that TLS is a
secure implementation of secure channels. Similarly we show that the BAC protocol [1] is
also a secure implementation of a secure channel and may be safely used with the Passive
Authentication (PA) protocol as prescribed for the biometric passport [1]. Using the CL-Atse
tool [18], we analyse several combined protocols. Thanks to our combination result, it is
possible to analyse protocols in isolation which allows to consider a larger number of sessions.

Related work. One seminal work on composition is the one of Guttman and Thayer [13].
They show that two protocols can be composed without one damaging the security of
the other as soon as they are “independent”. However, this independence notion needs
to be checked for any protocol execution and cannot be statically checked at the protocol
specification level. Later, Guttman [11] provides a criterion on the specification of P and Q
such that P can be safely composed with Q. Intuitively, Q should not break some invariant
satisfied by P and conversely. While the work of [11] focuses on authentication and secrecy
properties, [12] more generally devises a framework for defining protocol goals and designing,
step by step, protocols that fulfill them. In [10], the strand space model is used in a modular
way, to analyse protocols components by components. The disjunction criteria cannot be
checked statically. All these approaches provide a framework that allows to reason modularly
when analysing the combination of two protocols P and Q, typically expressing invariants
satisfied by P that are shown sufficient to prove security of Q. This simplifies the proof of P
combined with Q but requires the knowledge of both protocols. Compared to our work, we
propose a criteria for a protocol P to securely implement a secure channel, independently of
the protocol Q that will use it (provided primitives are tagged).

Under tagging assumptions similar to ours, it was already shown that P and Q can be
safely run in parallel even if they share long-term keys [7]. In passing, we generalize this result
to the case where long-term keys may be used as payload. [6] explains when two protocols
may be used sequentially, with Q using data established by P . The main difference with our
work is that messages may not be transformed when composing protocols. Therefore, [7, 6]
cannot be used to (securely) implement abstract channels. Note also that [6] may not consider
compromised sessions, that is sessions between honest and dishonest agents. The problem we
address here is referred to as sequential composition in [16], where the messages of Q are used
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as payloads in the composed protocol P ·E Q. [16] provides a nice exposition of the generic
problem of a protocol Q using a protocol P as subprotocol and lists sufficient (semantical)
conditions for combining two protocols. These conditions require again the knowledge of
both P and Q. Datta et al. (e.g. [8]) have also studied secure protocol composition in a
broader sense: protocols can be composed in parallel, sequentially or protocols may use
other protocols as components. However, they do not provide any syntactic conditions for a
protocol P to be safely executed in parallel with other protocols. For any protocol P’ that
might be executed in parallel, they have to prove that the two protocols P and P’ satisfy
each other invariants. Their approach is thus rather designed for component based design of
protocols.

2 Model

Our model is inspired from the applied-pi calculus [2], extended to an explicit notion of roles
and agents.

2.1 Messages
Messages are modeled using a typed term algebra. We assume an infinite set of names
N = ND ]NH of base type and a set Ch of names of channel type. The set NH (resp. ND)
represents the names accessible by honest (resp. dishonest) agents. We also a consider
an infinite set of variables X and a finite signature F of function symbols operating and
returning terms of base type. More precisely, we consider F = Fc ] Fcst ] Fkey where Fcst
contains only constants, all functions in Fkey are unary, and Fc = {〈 〉/2, f1/n1, . . . , fk/nk}
contains the binary function symbol 〈 〉 used to denote concatenation and other function
symbols fi of arity ni. Terms are defined as names, variables and function symbols applied
to other terms. The set of terms built from N ⊆ N ∪ Ch, X ⊆ X and by applying the
function symbols in F ⊆ F is denoted by T (F,N ∪ X). We denote by st(t) the set of
subterms of t. We denote by vars(t) (resp. names(t)) the set of variables (resp. names) in t.
When vars(t) = ∅, we say that t is ground. To represent events that may occur during a
protocol execution, we assume an infinite signature Ev distinct from F . We say that a term
e(t1, . . . , tn) with e ∈ Ev and t1, . . . , tn ∈ T (F ,N ∪ X ) is an event.

I Example 1. A standard signature to represent encryption and signature is Fstd, the signa-
ture built from a finite set of constants, functions Fcstd = {senc/2, aenc/2, sign/2, h/1, 〈〉/2}
and Fkstd = {pk/1, vk/1}. The function symbol senc (resp. aenc) represents the symmetric
(resp. asymmetric) encryption. We denote by pk(s) the public key associated s. The function
symbol sign represents the digital signature where vk(s) is the verification associated to s.
We write 〈u, v〉 as syntactic sugar for 〈〉(u, v).

We model the algebraic properties of the cryptographic primitives by a set of inference
rules I composed of composition and decomposition rule described as follows:

x1 ... xk f-comp
f(x1, ..., xk)

〈x1, x2〉
x1

〈x1, x2〉
x2

f(x, u1, . . . , un) v1 ... vm f-decompx

where for all j ∈ {1, . . . , n}, for all k ∈ {1, . . . ,m}, uj , vk ∈ T (Fkey,X ) and vars(v1, . . . , vk)
⊆ {u1, . . . , un, x}. For each f ∈ F , the set I contains a unique f-comp rule and there is
no f-decomp rule when f ∈ Fkey. Given a set or sequence of terms S and a term t, the
deducibility relation is inductively defined as follows. The term t is deducible from S, denoted

FSTTCS 2015



578 Secure Refinements of Communication Channels

S ` t, when t ∈ S ∪Fcst ∪ND or there exists a substitution σ and an inference rule in I with
premisses u1, . . . , un and conclusion u such that t = uσ and for all i ∈ {1, . . . , n}, S ` uiσ.

I Example 2. Continuing Example 1, we define the set Istd of decomposition rules as follows.

senc(x, y) y
x

aenc(x, pk(y)) y
x

sign(x, y) vk(y)
x

〈x, y〉
x

〈x, y〉
y

We have that senc(〈a, c〉, k), k ` a but aenc(〈a, c〉, pk(k)), pk(k) 6` a.

2.2 Agents
In standard process algebra (e.g. [2]), the notion of agents is usually implicit. Typically, a
process that models the behavior of the different honest agents is a single process where
all agents are implicitly represented. However, to model protocol composition, we need to
explain how to compose each role and thus we need to talk about each agent separately.
Therefore, we explicit the presence of agents in our model. Interestingly, our model may also
be used to specify semi-honest agents which may directly communicate with the attacker
during the protocol execution, still hiding some secrets from him. We consider an infinite set
of agents Agt = {A,B, . . .} = AgtH ] AgtD where AgtH and AgtD represent respectively
honest and dishonest agents. Each agent possesses private data such as keys. Thus, we
consider NAgt a subset of N as an infinite partition NAgt =

⊎
A∈AgtNA where NA intuitively

are the names accessible by the agent A. By convention, k[A] denotes a name in NA.

2.3 Protocols
In the spirit of [2], we model protocols through a process algebra. We represent explicitly
confidential, secure, and authenticated channels. Formally, we partition the set of channels
into three infinite sets Ch = Cha ] Chc ] Chs ] Chp where Cha, Chc, Chs, Chp respectively
represent the sets of authenticated, confidential, secure and public channels. The syntax of
our calculus is as follows:

Roles of agent A
RA, R

′
A := 0 | outA(c, u).RA | inA(c, v).RA | new k.RA | eventA(ev).RA

Channel and agent declarations
C,C ′ := RA | newta c.C | C | C ′

Processes
P,Q := C | P | Q | !P | ag(A,A,Kpub,Kprv).P

where c ∈ Ch, A ∈ Agt, ta is the tuple of agents in C such that c occurs in their role, k
is name, u and v are terms, ev is an event, Kpub and Kprv are sets of ground terms with
names(Kpub) ⊆ NA, names(Kprv) ⊆ NAgt and A ⊆ Agt.

The behavior of an agent A is described in a role RA that consists of a sequence of inputs,
outputs, creations of names and emissions of events. The role outA(c, u).RA outputs the
term u on the channel c and then behaves like RA. The role inA(c, v).RA inputs a message
from channel c and expects it to be an instance of v. The role new k.RA generates a fresh
name k. Processes express how the roles of different agents are combined. The process
newta c allocates an abstract channel to the agents in ta. The process P | Q expresses
the parallel execution of P and Q. The process !P represents the replication of P . The
process ag(A,A,Kpub,Kprv).P selects a new agent A amongst A. The set Kpub typically
indicates the public keys of A while Kprv contains the (secret) long term keys known by A.
The variables in a role are uniquely bound by the first input in which they appear. The
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(P | outA(c, u).RA,Φ, µ, θ)→ (P | RA,Φ′, µ′, θ) Out
with Φ′ = Φ if c ∈ Chc ∪ Chs else Φ′ = Φ · [u] and µ′ = rect(c, u, µ) if c 6∈ Chp else µ′ = µ

(P | inA(c, v).RA,Φ, µ, θ)→ (P | RAσ,Φ, µ, θ) In
if ∃σ s.t. dom(σ) = vars(v) and either vσ ∈ cµ or else c ∈ Chp ∪ Chc and Φ ` vσ

(P | new k.RA,Φ, µ, θ)→ (P | RA{k
′
/k},Φ, µ, θ) New-k

with k′ fresh in NH if A ∈ AgtH else k′ ∈ ND
(P | newta c.C[RA1 , . . . , RAn

],Φ, µ, θ)→ (P | [R′A1
, . . . , R′An

],Φ, µ, θ′) New-c
∀i, R′Ai

= RAi if c 6∈ ch(RAi) else R′Ai
= RAi{cAi/c} with cAi

∈ Chp if ta ∩ AgtD 6= ∅ else
cAi
∈ S ∪

⋃
B∈ta θ(c,B, ta) r θ(c, Ai, ta) and S ⊆ Cha fresh (resp. Chc, Chs) if c ∈ Cha

(resp. Chc, Chs). Moreover, θ = θ′ if ta ∩ AgtD 6= ∅ else θ′ = recc({(cA, A)}A∈ta, ta, c, θ).

(P | !Q,Φ, µ, θ)→ (P | !Q | Qρ,Φ, µ, θ) Repl
with ρ a fresh renaming of vars(Q)

(P | eventA(ev).R,Φ, µ, θ) ev−→ (P | R,Φ, µ, θ) Event

(P | ag(A,A,Kpub,Kprv).Q,Φ, µ, θ)→ (P | Qσ,Φ · S, µ, θ) Agent
with σ = {A′

/A}, A′ 6∈ fa(Q), S = Kpubσ if A′ ∈ A ∩AgtH else S = Kpubσ · Kprvσ

Figure 1 Semantics of configuration.

channels are bound by the operators new . The agents in a process are also bound by agent
creation. In a protocol, we assume that a name or variable is syntactically bound only once.
A variable (resp. agent, channel) that is not bound in P is free. We denote by fa(P ), ba(P ),
fv(P ), bv(P ), fn(P ) and bn(P ) the sets of free and bound agents, variables and names in P
respectively. We say that P is closed when fv(P ) = ∅. Given a process P and an agent A,
we denote by chA(P ) the sets of channels that occur in the roles of A in P .

A role is executable if it only outputs terms that may be deduced from its inputs, the
generated values (nonces and keys), and the long-term keys used in the role.

I Definition 3. Let RA = r1. . . . .rn be a role of an agent A. We say that RA is executable
when for all i ∈ {1, . . . , n}, if ri = outA(c, u) then names(r1, . . . , ri) ∪ S ` u where S = {v |
j < i ∧ (rj = inA(d, v) ∨ rj = new v)}. A process P is executable when all the roles in P are
executable.

The state of a protocol during its execution is represented by a configuration (P,Φ, µ, θ)
where P is a closed process, Φ is a sequence of ground terms representing the knowledge of
the attacker, µ is a mapping from channels to sets of terms representing the messages sent
over non-public channels and θ is a mapping from triplets of channel, agent, tuple of agents
to sets of channels. The semantics is given in Figure 1. The rule Out indicates that the
attacker obtains messages on public or authenticated channels. In this rule, rect(c, t, µ) is
the mapping µ′ where t was recorded as being sent over c. Formally, µ′(c′) = µ(c′) for any
c′ 6= c and µ′(c) = µ(c) ∪ {t}. With rule In the attacker can inject on c any message that he
can deduce from his knowledge when c is a public or confidential channel. He can also relay
any message that was previously sent on c. The rule New-k generates a fresh name of NH
or ND depending on whether the agent A is honest or not. The rule New-c allocates to
the role of an agent a channel possibly fresh or that has already been used by other roles
in different sessions. In this rule, recc(S, ta, c, θ) is the mapping θ in which we record the
channels allocated to the agents. Formally, θ′(c′, A′, ta′) = θ(c′, A′, ta′) for any A′ 6∈ ta′ or

FSTTCS 2015



580 Secure Refinements of Communication Channels

(c′, ta′) 6= (c, ta), and θ′(c, A, ta) = θ(c, A, ta) ∪ {d} for any (d,A) ∈ S. The rule Agent
selects an agent from A and adds Kpub to the knowledge of the attacker. Additionally, if the
agent is dishonest, the rules adds Kprv. When (P,Φ, µ, θ) e1−→ . . .

en−→ (P ′,Φ′, µ′, θ′), we write
(P,Φ, µ, θ) e1·...·en=====⇒ (P ′,Φ′, µ′, θ′).

I Example 4. An electronic passport is a paper passport containing a RFID chip that stores
the information printed on the passport. The protocols used to access these private data are
specified in the International Civil Aviation Organization standard [1]. Before exchanging
any private data, an electronic passport and a reader must establish session keys through a
key-exchange protocol, called Basic Access Control (BAC), that prevents eavesdropping on
further communication. The BAC protocol relies on two keys ke and km that are printed on
the passport and thus can be obtained by the reader through optical scanning. We described
below the BAC protocol, between a passport (P) and a reader (R). We assume encrypted
messages to be tagged with a. The use of tagging will be explained later on.

R→ P : challenge
P→ R : nP
R→ P : 〈senc(〈a, nR, nP, kR〉, ke),mac(〈a, senc(〈a, nR, nP, kR〉, ke)〉, km)〉
P→ R : 〈senc(〈a, nP, nR, kP〉, ke),mac(〈a, senc(〈a, nP, nR, kP〉, ke)〉, km)〉

After receiving a challenge command from the reader, the passport generates a fresh name
nP that will be used to verify the authenticity of the messages he will receive later on. Upon
receiving nP, the reader generates two nonces nR, kR and sends back to the passport all three
nonces encrypted with the key ke and a mac with the key km. The nonce nR has also an
authenticity purpose whereas kR will be the reader’s contribution to the session keys. The
passport then checks the mac using km and the cipher by decrypting it using ke and verifying
the presence of nP in the plain text. If all verifications succeed, the passport generates a
nonce kP, the passport’s contribution to the session keys, and sends it to the reader. At the
end of the protocol, both reader and passport know kR and kP that they use to generate two
session keys f1(kR, kP) and f2(kR, kP). In our syntax, the roles of the reader (RR) and of the
passport (RP) can be expressed as follows.

RP = inP(c, challenge).new nP.outP(c, nP).inP(c, 〈M,mac(〈a,M〉, km[P])〉).
new kP.outP(c, 〈N,mac(〈a, N〉, km[P])〉).0

RR = outR(c, challenge).inR(c, z).new kR.new nR.outR(c, 〈U,mac(〈a, U〉, km[P])).
inR(c, 〈V,mac(〈a, V 〉, km[P])〉).0

with c ∈ Chp, M = senc(〈a, x, nP, y〉, ke[P]), N = senc(〈a, nP, x, kP〉, ke[P]), U = senc(〈a, nR,

z, kR〉, ke[P]) and V = senc(〈a, z, nR, w〉, ke[P]). An honest reader communicating with
unbounded number of passports, possibly dishonest, can be modeled as the process:

BAC = ag(R, {R}, ∅, ∅).!ag(P,P, ∅, {ke[P], km[P]}).(RP | RR)
where P is an infinite set of agents containing honest and dishonest agents and R 6∈ P. The
following trace would correspond to the execution of a session with a dishonest passport I
and a session of an honest one A both in P.

(BAC, ∅, ∅, ∅) →∗ (BAC | ag(P,P, ∅, {ke[P], km[P]}).(RP | RR), ∅, ∅, ∅)
→ (BAC | RPσA | RRσA, ∅, ∅, ∅)
→∗ (BAC | RPσA | RRσA | RPσI | RRσI , [ke[I], km[I]], ∅, ∅)
→ (BAC | RPσA | RRσA | RPσI | Q, [ke[I], km[I], challenge], ∅, ∅)
→∗ . . .

where PσA = A, PσI = I, RRσI = outI(c, challenge).Q and σA, σI are fresh renaming of
bound variables. By convention, µ = ∅ (resp. θ = ∅) denotes the mapping that maps any
argument to the emptyset: µ(c) = ∅ (resp. θ(c, A, ta) = ∅) for any c, A, ta.
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3 Composition

In the previous section, we have defined an abstract notion of confidential, secure, and
authenticated channels. In practice, such channels are realized through cryptographic means.
Agents first execute some key establishment protocol in order to generate secret session keys.
Then they encapsulate the messages supposedly sent over a channel using these session keys.
A standard case for secure channels consists in using session keys to encrypt subsequent
messages. How to encrypt the message is defined by the encapsulation. In Section 3.1, we
provide a generic definition of encapsulations and identify properties needed for encapsulations
to allow for authentication, confidential, and secure channels. We continue in Section 3.2 by
characterizing the composition of a key establishment protocol with a process using abstract
channels.

3.1 Encapsulation

For our composition result, we tag encapsulations and processes. These tags are used to
distinguish the parts of a message that correspond to encapsulations from the ones coming
from processes. Formally, a tag is a constant from Fcst, hence known to the attacker. Given
a set Tag ⊆ Fcst, we say that a term t is a Tag-term when for all t′ ∈ st(t), if t′ = f(t1, . . . , tn)
for some f ∈ Fc\{〈 〉} and some terms t1, . . . , tn then t1 = 〈a, u〉 for some term u and a ∈ Tag.

I Definition 5. A Tag-encapsulation is a pair (E ,F) where E is a Tag-term of T (F ,X )
and F ⊆ T (Fkey,X ) such that vars(E) = {x, x1, . . . , xn}, {E , x1, . . . , xn} ` x and for all
t ∈ st(E),

if t = f(v) with f ∈ Fkey then v ∈ {x1, . . . , xn} ∪ Fcst
if t = f(w, t1, . . . , tn) and there exists a f-decomposition rule with f(x, u1, . . . , un), v1, . . . ,

vm as premises then for all j ∈ {1, . . . ,m}, for all i ∈ {1, . . . , n}, vj = g(y) and y ∈
vars(ui) implies ti ∈ {x1, . . . , xn} ∪ Fcst. Intuitively, if a f-decomposition rule may be
applied to a subterm of an encapsulation using a non atomic key g(ti) then ti must be a
variable or a constant.

We denote x by tE and (x1, . . . , xn) by XE . Given two encapsulations (E ,F) and (E ′,F′), we
write E ∼ E ′ when there exists a renaming ρ such that Eρ = E ′, Fρ = F′, tEρ = tE′ and
XEρ = XE′ . We denote by E(t, t1, . . . , tn) the term obtained from E by substituting x by t
and xi by ti.

In an encapsulation (E ,F), the variable tE will be instantiated by the message sent on the
channel implemented by the encapsulation whereas the variables in XE will be instantiated
by the session keys. Note that {E , x1, . . . , xn} ` x indicates that an encapsulated messages
may always be retrieved using the session keys. The terms in F represent the public keys
that can be used to deduce the term encapsulated or to generate an encapsulation with a
new message without revealing the session keys.

I Example 6. In Example 4, we described how the session keys f1(kR, kP) and f2(kR, kP)
are established in the BAC protocol. The ICAO standard states that in any other protocol
executed after BAC, the messages exchanged should be of the form 〈u,mac(〈b, u〉, f1(kR, kP))〉
with u = senc(〈b,M〉, f2(kR, kP)) for some data M and tag b. This represents in fact the
encapsulation of M with the session keys f1(kR, kP) and f2(kR, kP). In our formalism, the
encapsulation is defined as (EBAC, ∅) where EBAC = 〈t,mac(〈b, t〉, x2)〉 with t = senc(〈b, x〉, x1),
tEBAC = x and XEBAC = (x1, x2).
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We use tags to distinguish the encapsulations from the messages actually sent over
the network. However, a process can implement different types of channels using different
encapsulations with the same tags. We need to ensure that the security of an encapsulation
is not compromised when used with other encapsulations. Therefore, to state the different
properties that encapsulations must satisfy, we consider a set of encapsulations and not only
a unique one. These conditions are easily met by standard encapsulations.

I Definition 7. Let Se = Sa ] Sc ] Ss be a set of Tag-encapsulations. We say that Se
allows authentic, confidential and secure channels if the following properties are satisfied:
Let (E1,F1), . . . , (En,Fn) ∈ Se. Assume that the variables in E1, . . . , En are disjoint. Let σ
be a ground substitution such that dom(σ) = vars(E1, . . . , En) and let Φ be a ground frame
such that Tag ∩ st(σ,Φ) = ∅. Let I be the set of i ∈ {1, . . . , n} such that Φ · [Ekσ]nk=1 ` tEiσ.
1. For all i ∈ {1, . . . , n}, ∀u ∈ T (Fkey,XEiσ), if Φ · [Ekσ]nk=1 ` u then Φ · [tEk

σ]k∈I ` u.
2. For all i, i′ ∈ {1, . . . , n}, ∀u ∈ st(Ei) r X , ∀v ∈ st(Ei′) r X , if u and v are unifiable and

root(u) 6= {〈 〉} then img(mgu(u, v)) ⊂ X .

Moreover, an encapulation is authentic, that is (Ei,Fi) ∈ Sa if it satisfies the properties
[Can read] and [Cannot write]. An encapulation is confidential, that is (Ei,Fi) ∈ Sc if it
satisfies the properties [Cannot read] and [Can write]. Finally, an encapulation is secure,
that is (Ei,Fi) ∈ Sc if it satisfies the properties [Cannot read] and [Cannot write].

For all ground substitution σ′ such that Tag ∩ st(σ′) = ∅, if we denote J = I − i then
3. [Can read] [Ei] · Fi ` tEi

4. [Cannot read] Φ·[Ekσ]nk=1 ` tEiσ implies Φ·[tEk
σ]k∈J ` tEiσ∨∃x ∈ XEi .Φ·[tEk

σ]k∈J ` xσ
5. [Can write] Φ · [Ekσ]nk=1 ` Eiσ′ ⇔ ϕ ∨

(
Φ · [tEk

σ]k∈I ` tEiσ
′ ∧ Φ · [tEk

σ]k∈I ` Fiσ′
)

6. [Cannot write] Φ · [Ekσ]nk=1 ` Eiσ′ implies either ϕ or the following property:
∃x ∈ XEi .Φ′ ` xσ′ ∧

(
(∃j ∈ N.tEiσ

′ = tEjσ ∧ XEiσ
′ ∩ XEjσ 6= ∅) ∨ Φ′ ` tEiσ

′)
)

where ϕ = ∃j ∈ N.(Ei ∼ Ej ∧ Eiσ′ = Ejσ), N = {1, . . . , n} and Φ′ = Φ · [tEk
σ]k∈I .

The set Sa (resp. Sc, Ss) represents the sets of encapsulations that can be used to
implement authentic (resp. confidential, secure) channels. Property 1 indicates that the
session keys or their associated public keys cannot be retrieved directly from an encapsula-
tion. Different encapsulations may use for instance the same encryption scheme. However,
Property 2 prevents a part of an encapsulation to be mistaken as session key for another
encapsulation. Properties 3 to 6 model the access control of an encapsulation. In particular,
the term tE of an encapsulation allowing reading access can be derived from the encapsulation
E and its public keys F (Property 3). On the other hand, the term tE of an encapsulation not
allowing reading access should not be derived from the encapsulation without knowing the
session keys XE (Property 4). Property 5 indicates that an encapsulation allowing writing
access can be deduced only if it was already sent on the network (expressed by formula ϕ) or
by generating it from its public keys F and the term tE encapsulated. Lastly, Property 6
models that an encapsulation not allowing writing access cannot be generated by an attacker
unless already given or some session keys in XE are known. In the latter, Property 6 also
states that when the term tE is not known to the attacker then he must have extracted it from
encapsulations previously received. Most common encapsulations satisfy these properties.

I Theorem 8. The following encapsulations are:
authentic: Esign = sign(〈aEsign, x〉, x1) and Emac = 〈x, h(〈aEmac, x, x1〉)〉;
confidential: Eaenc = aenc(〈aEaenc, x〉, pk(x1));
secure: ETLS = senc(〈aETLS, x〉, x1), EBAC = 〈t,mac(〈aEBAC, t〉, x2)〉 with t = senc(〈aEBAC, x〉,

x1), and Esigncrypt = sign(〈aEsigncrypt, aenc(〈aEsigncrypt, x〉, pk(x1))〉, x2).
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where aEsign, aEmac, aEaenc, aETLS, aEBAC, aEsigncrypt are constants.
Furthermore, the set of encapsulations {(Esign, {vk(x1)}), (Emac, ∅), (EBAC, ∅), (ETLS, ∅),

(Esigncrypt, ∅), (Eaenc, {pk(x1)})} allows for authentic, confidential and secure channels.

In the rest of this paper, we assume the existence of a set of encapsulations Se allowing
authentic, secure and confidential channels.

3.2 Composition of protocols
Encapsulations use session keys, which are established by a key exchange protocol. To express
the requested property of this protocol, we need to annotate it with events that specify which
keys are established for which channels and agents.

Considering a context of channel and agent declarations C and a set of channels S, we
denote by C|S the context C where all newta c with c ∈ S are removed. We denote by TAgt
the set of tuples of agents. We consider special events Ev = {ev1, ev2, . . . ∈ Ev}.

I Definition 9. Let P = C[R1, . . . , Rn] be a process with C an agent and channel declaration
context such that R1, . . . , Rn are roles of agents A1, . . . , An respectively. Let S be a set of
channels such that channels(C) ∩ S = ∅. Let ρ be a mapping from S to TAgt × Se. We
say that a process P̃ is an annotation of P under ρ if P̃ = C[R′1, . . . , R′n] where for all
i ∈ {1, . . . , n},

R′i = Ri.eventAi(evi(c1, ta1, ts1, tp1)). . . . .eventAi(evi(cm, tam, tsm, tpm))
where {c1, . . . , cm} = {c ∈ dom(ρ) | cρ = (ta, (E ,F)) ∧ Ai ∈ st(ta)} and ∀j ∈ {1, . . . ,m},
cjρ = (taj , (E ,F)), tsj = (u1, . . . , u|XE |), tp = F(u1, . . . , u|XE |) for some (E ,F) and terms
u1, . . . , u|XE | such that if c ∈ Cha (resp. Chc, Chs) then (E ,F) allows authentic (resp.
confidential, secure) channels.

At the end of each role Ri, we add the events evi for the channels c1, . . . , cm that the agent
is supposed to establish. Events evi(c, ta, ts, tp) are composed of four elements: a channel c
that the agent wants to instantiate, a tuple of agents ta indicating who is sharing the channel
c, a tuple of session keys ts that will be used in the encapsulation (E ,F) to implement c, and
lastly a tuple tp of public keys associated to the session keys and F. Typically, we will require
that the session keys in ts remain secret for honest agents while their associated public keys
in F are made public.

I Example 10. Continuing Example 4 and thanks to Theorem 8, the encapsulation (EBAC, ∅)
provides the passport and reader with a secure channel, denoted cs ∈ Chs, once BAC has
been executed. The fact that BAC is supposed to establish a secure channel for P and R
is expressed by the mapping ρ = {cs → ((P,R), (E , ∅))}. The corresponding annotation of
BAC under ρ is as follows:

˜BAC = CBAC [RP.eventP(ev1(cs, (P,R), (f1(y, kP), f2(y, kP))))
| RR.eventR(ev2(cs, (P,R), (f1(kR, w), f2(kR, w))))]

where CBAC [_] = ag(R, {R}, ∅, ∅).!ag(P,P, ∅, {ke[P], km[P], data[P]})._ . Note that the
session keys are different and reflect the respective views on the session keys of the passport
and the reader.

I Definition 11. Let C and C ′ be two channel and agent declaration contexts. We say
that C and C ′ are composable if there exist contexts C1, C2, C

′
1, C

′
2 such that C1 and C ′1

are sequences of agent declarations with ba(C1) ∩ ba(C ′1) = ∅, C = C1[C2], C ′ = C ′1[C ′2] and
C2, C

′
2 only differ from the content of Kpub, Kprv in the instances of ag(A,A,Kpub,Kprv).
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We define their composition, denoted CC,C′ , as the context C1[C ′1[C3]] with C3 being
the context C2 where all instances of ag(A,A,Kpub,Kprv) are replaced by ag(A,A,Kpub ∪
Kpub

′,Kprv ∪ Kprv
′) and ag(A,A,Kpub

′,Kprv
′) is in C ′2.

The composability of the channel and agent declaration contexts ensures that the roles of
the process Q can be sequentially composed with the roles of the process P . For instance, they
should have similar replications, agent declarations or even channel declarations. However,
we do not require that an agent in P and Q to have the same private (Kprv) or public (Kpub)
data. We also allow an agent to be declared in one context but not in the other one if
declared upfront.

I Example 12. One of the protocols that are executed after BAC is the Passive Authentication
protocol which provides an authentication mechanism proving that the content of the RFID
chip is authentic. In fact the ICAO standard also indicates that the chip must contain
a signature by the Document Signer authority (D) of a hash of the private data data[P],
sod

def= sign(〈a, h(〈a, data[P]〉)〉, sk[D]). During the Passive Authentication protocol, after
receiving on the secure channel a challenge from the reader, the passport sends back this
signature that is checked by the reader.

R→sec P : read
P→sec R : 〈data, sign(〈a, h(〈a, data〉)〉, sk)

where sk is the signing key of the Document Signer authority. In our calculus, the roles of
the reader (QR) and of the passport (QP) can be described as follows:

QP = inP(cs, read).outP(cs, 〈data[P], sod〉)
QR = outR(cs, read).inR(cs, 〈x′, sign(〈a, h(〈a, x′〉)〉, sk[D])〉)

The complete representation of the system is given by PA = CPA[new(R,P ) cs.(QP | QR)]
where CPA is the following context:

CPA = ag(D, {D}, {vk(sk[D])}, {sk[D]}).ag(R, {R}, ∅, ∅).!ag(P,P, ∅, {data[P]})._
Continuing Example 10, CPA and CBAC are composable and CCP A,CBAC is the context:

ag(D, {D}, {vk(sk[D])}, {sk[D]}).ag(R, {R}, ∅, ∅).!ag(P,P, ∅, {ke[P], km[P], data[P]})._

Let S be a set of channels. Let ρ be a mapping from S to TAgt × Se. We say that two
processes P and Q are composable under ρ if P = C[R1, . . . , Rn], Q = C ′[R′1, . . . , R′n] where
Ri, R

′
i are roles of the same agent Ai for i = 1 . . . n, C and C ′|S are composable and for

all c ∈ dom(ρ), if cρ = (ta, (E ,F)) then for all i ∈ {1, . . . , n}, c ∈ chAi
(Q) is equivalent to

Ai ∈ ta. This reflects the fact that agents using channel c should be explicitly listed as
authorized agents for c.

The composability between P and Q ensures that the agents in Q sharing abstract
authentic, confidential and secure channels are correctly represented in ρ.

I Definition 13. Let S be a set of channels. Let ρ be a mapping from S to TAgt × Se. Let
P = C[R1, . . . , Rn] and Q = C ′[R′1, . . . , R′n] two closed composable processes under ρ.

For all P̃ = C[R̃1, . . . , R̃n] annotations of P under ρ, the implementation of Q by P̃

through ρ, denoted P̃ ·ρ Q, is the process C0[R1.R
′′
1 , . . . , Rn.R

′′
n] where C0 = CC,C

′|
S and

for all i ∈ {1, . . . , n}, R′′i is defined as R′i where all instances of outA(c, u) (resp. inA(c, u))
are replaced by outA(cpub, Eσ) (resp. inA(cpub, Eσ)) when cρ = (ta, (E ,F)), tEσ = u and
eventA(evi(c, ta,XEσ,Fσ)) is in R̃i for some substitution σ.

I Example 14. Continuing Example 12, the implementation of PA by ˜BAC through ρ is
thus the process ˜BAC ·ρ PA = CCP A,CBAC [RP .Q′P | RR.Q′R] where Q′P and Q′R are defined
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as follows:

Q′P = inP(cpub, EBAC(read,K1,K2)).outP(cpub, EBAC(〈data[P], sod〉,K1,K2))
Q′R = outR(cpub, EBAC(read,K ′1,K ′2)).inR(cpub, EBAC(〈x, sign(〈a, h(〈a, x〉)〉, sk[D])〉,K ′1,K ′2))

with K1 = f1(y, kP), K2 = f2(y, kP), K ′1 = f1(kR, w), K ′2 = f2(kP, w). Note that the ICAO
standard describes in fact the Passive Authentication protocol as the process C[Q′P | Q′R]
(without tags). With our result, we may study the simpler process C[new(P,R) cs.(QP | QR)].

4 Security property

It is easy to state secrecy in our formalism, using a special event Sec ∈ Ev: any term occurring
in a Sec event should remain secret unless the corresponding session involves a dishonest
agent.

I Definition 15. Let Q be closed process containing contains some events of the form
Sec(t, (A1, . . . , An)) where t is a term and A1, . . . , An are some agents. Let Φ be a closed
frame. We say that Q preserves secrecy if for all (Q, ∅, ∅, ∅) ev1·...·evm======⇒ (Q′,Φ′, µ′, θ′), for all
i ∈ {1, . . . , n}, if evi = Sec(t′, (A′1, . . . , A′n)) for some t′ and some honest agents A′1, . . . , A′n
then Φ′ 6` t′.

We may also specify the properties requested from a key exchange protocol P : P should
preserve the secrecy of the session keys occurring in its events and should ensure that the
associated public keys are public. Moreover, P also needs to ensure that a session key cannot
be used to implement two different channels and that honest agents sharing a channel will
share the same session keys for this channel. In such a case, we say that P is a secure channel
establishment protocol.

I Definition 16. Let P = C[R1, . . . , Rn] be a closed process. Let P̃ be an annota-
tion of P under some mapping ρ. We say that P̃ is a secure channel establishment
protocol when for all (P̃ , ∅, ∅, ∅) e1·...·em=====⇒ (P ′,Φ′, µ′, θ′), for all i ∈ {1, . . . ,m}, if ei =
ev(c, ta, (s1, . . . , s`), (u1, . . . , uq)) such that ev ∈ Ev, all agents in ta are honest then for all
k ∈ {1, . . . , `}, Φ′ 6` sk and for all k ∈ {1, . . . , q}, Φ′ ` uk. Moreover, for all j ∈ {1, . . . ,m},
if evj = ev′(c′, ta′, (s′1, . . . , s′`′), (u′1, . . . , u′q′)) for some ev′ ∈ Ev, some channel c′, some tuple
ta′ of agents and some tuples (s′1, . . . , s′`′) and (u′1, . . . , u′q′) of terms then

either ta 6= ta′ or c 6= c′ or ev = ev′ implies ∀k ∈ {1, . . . , `},∀k′ ∈ {1, . . . , `′}, sk 6= s′k′

or one of the two following properties is satisfied :
(s1, . . . , s`) = (s′1, . . . , s′`′) and (u1, . . . , uq) = (u′1, . . . , u′q′).
∀k ∈ {1, . . . , `},∀k′ ∈ {1, . . . , `′}, sk 6= s′k′ .

The first item indicates that the session keys used for a channel between some honest
agents are necessarily different from session keys used for a different channel between any
kind of agents, whether they are honest, dishonest or a mix of both. The second item requires
that for matching channels and sets of agents, either the session keys perfectly match or they
are all different.

We are now ready to state our main result: if P is a secure channel establishment protocol
and if Q preserves secrecy using some secure, confidential, or authentic channels, then Q may
safely use P to implement its channels. The proof of Theorem 17 is available in a companion
report [5].

FSTTCS 2015



586 Secure Refinements of Communication Channels

I Theorem 17. Let tagA and tagB be two disjoint sets of tags. Let Se be a set of tagA-
encapsulation allowing authentic, confidential, and secure channels. Let ρ be a mapping from
channels to TAgt×Se. Let P and Q be two closed executable composable tagB-processes under
ρ such that P and Q do not share names and fa(P ) = fa(Q) = ∅. Let P̃ be an annotation
of P under ρ. If P̃ is secure and Q preserves secrecy then P̃ ·ρ Q preserves secrecy as well.

For simplicity, we prove secure composition w.r.t. secrecy properties but we believe that
our result could be easily extended to trace properties.

Sketch of proof. The proof first relies on that fact that the reachability properties are
preserved by disjoint parallel composition. In particular, the process P̃ | Q is a secure channel
establishment protocol and preserves secrecy. The rest of the proof consists in showing that
any trace of P̃ ·ρ Q is also a trace of P̃ | Q with a frame that induces a similar attacker
knowledge. More specifically, properties from Definition 7 ensure that tagB-terms generated
by the attacker or obtained from the encapsulations in P̃ ·ρ Q do not give any relevant
knowledge to the attacker and can be replaced by fresh names. This allows us to obtain
a trace without tagB-terms and so without encapsulations. Lastly, since P̃ | Q is a secure
channel establishment protocol, we can always match two encapsulations having same session
keys with the corresponding abstract channel in P̃ | Q. J

I Example 18. Continuing Example 14, the annotation under ρ of the Basic Access Control
˜BAC is secure and the Passive Authentication CPA[new cs.(QP .eventP(Sec(data[P], (P,R))) |

QR)] preserves secrecy (of the private data). Hence, thanks to Theorems 8 and 17, the
implementation of PA by ˜BAC through ρ, CCP A,CBAC [RP .Q′P .eventP(Sec(data[P], (P,R))) |
RR.Q

′
R], preserves secrecy.

5 Case studies

We show that our approach can be applied to deployed protocols such as the biometric
passport or TLS applied to 3D-secure. As an application, we show that the automatic
analysis through the CL-Atse tool can be significantly speed up when the number of sessions
goes higher.

5.1 Biometric passport
Our running example is the combination of the Basic Access Control (BAC) protocol with
the Passive Authentication (PA) protocol from the electronic passports. Actually, PA is not
the only protocol executed after BAC. Another authentication mechanism is used to prevent
cloning of the passport chip. This protocol, called Active Authentication protocol (AA), also
uses the same session keys and encapsulations than PA. Using the CL-Atse tool [18], we show
for different scenarios that BAC is a secure channel establishment protocol and that PA and
AA both preserve secrecy. Thanks to our main result, this yields security of the combined
protocol, where BAC implements the secure channel of PA and AA. For comparaison purpose,
we also analyze directly the combined protocol with CL-Atse. These analysis are reported in
Section 5.3

5.2 TLS and 3D-secure
Our results also apply to other complex systems. We study the Visa 3D-secure protocol [17]
used by several websites for internet banking and that relies on secure channels implemented
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by the well known TLS protocol. The Visa 3D secure protocol is an authenticated payment
method between a card holder and a merchant during an electronic payment. This protocol
aims to ensure authentication of the card holder as well as confirmation that the card holder
is authorized by his bank to make the payment. Lastly, the protocol also aims to ensure the
secrecy of the card holder’s banking information, the payment amount and other data.

The protocol involves four types of participants: a card holder (C), a merchant (M),
a centralized structure called Visa Directory Servers (DS) and the card issuer’s servers
called Access Control Servers (ACS). The main role of the Visa Directory Servers is to
transfer card holder’s information between the Access Control Servers and the merchant.In
itself, the 3D secure protocol is already a complex protocol with multiple exchanges of
messages. But the protocol also requires most messages to be exchanged trough a TLS
channel. More specifically, messages of the 3D secure protocol shall be encrypted with a
symmetric session key previously established with TLS. In our model, this means that the
messages are encapsulated by (ETLS, ∅), as defined in Theorem 8.

The well known TLS protocol [15, 9] aims at establishing a secure channel between a
client and a server. Using the CL-Atse tool, we show that TLS (Basic TLS handshake, in
the RSA mode) is indeed a secure channel establishment protocol.

Note that for one session of the Visa 3D secure protocol yields four sessions of the TLS
protocol: one channel between C and M, between C and ACS, between ACS and DS and
finally between M and DS. This renders the verification of even one session of 3D secure
protocol with the channels implemented by TLS a complex task (more than thirty five
messages exchanged per session).

5.3 Analysis with CL-Atse
We applied the automatic verification tool CL-Atse [18] on a Dell T1700 computer (16 Go
RAM, 3.40 GHz CPU). The corresponding time of analysis are displayed below.

Computation time (in seconds, timeout set to 24 hours)
protocols TLS & 3D secure BAC & PA BAC & AA BAC & PA & AA

complete system (C)
or separated analysis

(S)
S C S C S C S C

number of 1 0.2 0.1 0.7 0.1 0.7 0.1 0.7 0.2
sessions 2 1350 time out 6.2 1.6 6.2 1.6 6.5 43156

considered 3 time out time out 9133 time out 9133 time out 9185 time out

Amongst the tools able to verify security protocols for a bounded number of sessions,
CL-Atse is well known and considered to be one of the fastest. However, in the case of the
3D-secure protocol, the tool already fails to verify one session with all channels implemented
as we reached a time out set to 24 hours of computation. Thus, to obtain meaningful results
with the 3D-secure protocol, we considered the case where only the channel between the card
holder and the merchant is implemented. Already in this case, we can see a clear benefit
from analyzing separately 3D-secure and TLS when considering two sessions. Indeed, the
verification can be performed under 25 minutes when analysing the protocols separately
whereas the tool was reaching a time out when considering the complete system. We obtain
similar results with the Basic Access Control protocol, the Active Authentication protocol
and the Passive Authentication protocol. Note that for verification tools handling unbounded
number of sessions (e.g. ProVerif [3], Tamarin [14]), the gain in time would probably be less
significant since these tools do not systematically explore all interleavings.
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6 Conclusion

We have shown how to securely compose a protocol with the implementation of its channels.
We have provided a characterization for the three most common types of channels: secure,
confidential, and authentic channels. We plan to consider other types of communication
channels like anonymous channels. This will certainly require to extend our approach to
equivalence properties.

Our composition result holds for a class of primitives that encompasses all standard
cryptographic primitives. We plan to extend it to a larger class of primitives, including in
particular exclusive or or homomorphic encryption.

Our result assumes a light tagging of the primitives, to ensure that an encapsulation
cannot be confused with a message coming from the protocols. While tagging is reasonable,
it is not often done in practice. On the other hand standard protocols typically enjoy some
non unifiability properties that prevent such confusion. We believe that our result could
be extended to a general notion of non unifiability of the terms, without having to require
explicit tagging.
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Abstract
Prior runtime-verification approaches for distributed systems are limited as they do not account
for network failures and they assume that system messages are received in the order they are sent.
To overcome these limitations, we present an online algorithm for verifying observed system be-
havior at runtime with respect to specifications written in the real-time logic MTL that efficiently
handles out-of-order message deliveries and operates in the presence of failures. Our algorithm
uses a three-valued semantics for MTL, where the third truth value models knowledge gaps, and
it resolves knowledge gaps as it propagates Boolean values through the formula structure. We
establish the algorithm’s soundness and provide completeness guarantees. We also show that it
supports distributed system monitoring, where multiple monitors cooperate and exchange their
observations and conclusions.
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1 Introduction

Distributed systems are omnipresent and complex, and they can malfunction for many
reasons, including software bugs and hardware or network failures. Runtime monitoring is an
attractive option for verifying at runtime whether a system behavior is correct with respect
to a given specification. But distribution opens new challenges. The monitor itself becomes
a component of the (extended) system and like any other system component it may exhibit
delays, finite or even infinite, when communicating with other components. Moreover, the
question arises whether monitoring itself can be distributed, thereby increasing its efficiency
and eliminating single points of failure. Distribution also offers the possibility of moving the
monitors close to or integrating them in system components, where they can more efficiently
observe local system behavior.

Various runtime-verification approaches exist for different kinds of distributed systems
and specification languages [19, 3, 8, 15]. These approaches are of limited use for monitoring
distributed systems where components might crash or network failures can occur, for example,
when a component is temporarily unreachable and a monitor therefore cannot learn the
component’s behavior during this time period. Even in the absence of failures, monitors can
receive messages about the system behavior in any order due to network delays. A naive
solution for coping with out-of-order message delivery is to have the monitor buffer messages
and reorder them before processing them. However, this can delay reporting a violation when
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the violation is already detectable on some of the buffered messages. Another limitation
concerns the expressivity of the specification languages used by these monitoring approaches.
It is not possible to express real-time constraints, which are common requirements for
distributed systems. Such constraints specify, for example, deadlines to be met.

In this paper, we present a monitoring algorithm for the real-time logic MTL [11, 1] that
overcomes these limitations. Our algorithm accounts for out-of-order message deliveries and
soundly operates in the presence of failures that, for example, cause components to crash. In
the absence of failures, we also provide completeness guarantees, meaning that a monitor
eventually reports the violation or the satisfaction of the given specification. Furthermore,
our algorithm allows one to distributively monitor a system. To achieve this, the system is
extended with monitoring components that receive observations from system components
about the system behavior and the monitors cooperate and exchange their conclusions.

Our monitoring algorithm builds upon a timed model for distributed systems [7]. The
system components use their local clocks to timestamp observations, which they send to the
monitors. The monitors use these timestamps to determine the elapsed time between obser-
vations, e.g., to check whether real-time constraints are met. Furthermore, the timestamps
totally order the observations. This is in contrast to a time-free model [9], where the events
of a distributed system can only be partially ordered, e.g., by using Lamport timestamps [12].
However, since the accuracy of existing clocks is limited, the monitors’ conclusions might
only be valid for the provided timestamps. See Section 5 where we elaborate on this point.

We base our monitoring algorithm on a three-valued semantics for the real-time logic MTL,
where the interpretation of the third truth value, denoted by ⊥, follows Kleene logic [10].
For example, a monitor might not know the Boolean value of a proposition at a time point
because a message from a system component about the proposition’s truth value is delayed,
or never sent or received. In this case, the monitor assigns the proposition the truth value ⊥,
indicating that the monitor has a knowledge gap about the system behavior. The truth
value ⊥ is also used by monitors to avoid issuing incorrect verdicts about the system behavior:
a monitor only reports the satisfaction of the specification or its negation, and this verdict
remains valid no matter how the monitor’s knowledge gaps are later resolved when receiving
more information about the system behavior. No verdict is output if under the current
knowledge the specification evaluates to ⊥.

To efficiently resolve knowledge gaps and to compute verdicts, each monitor maintains a
data structure that stores the parts of the specification—a subformula and an associated
time point—that have not yet been assigned a Boolean value. Intuitively speaking, the truth
value of the subformula at the given time is ⊥ under the monitor’s current knowledge. These
parts are nodes of an AND-OR-graph, where the edges express constraints for assigning a
Boolean value to a node. When a monitor receives additional information about the system
behavior, it updates its graph structure by adding and deleting nodes and edges, based on
the message received. To compute verdicts, the monitors also propagate Boolean values
between nodes when possible.

Our main contribution is a novel monitoring algorithm for MTL specifications. It is the
first algorithm that efficiently handles observations that can arrive at the monitor in any
order. This feature is essential for our approach to monitoring distributed systems, which is
our second contribution. Our approach overcomes the limitations of prior runtime-verification
approaches for distributed systems. Namely, it handles message delays, it allows one to
distribute the monitoring process across multiple system components, and it soundly accounts
for failures such as crashes of system components.

We proceed as follows. In Section 2, we introduce the real-time logic MTL with a three-
valued semantics. In Section 3, we describe the system assumptions and the requirements.
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Table 1 Truth tables for three-valued logical operators (strong Kleene logic [10]).

¬
t f
f t
⊥ ⊥

∨ t f ⊥
t t t t
f t f ⊥
⊥ t ⊥ ⊥

∧ t f ⊥
t t f ⊥
f f f f
⊥ ⊥ f ⊥

→ t f ⊥
t t f ⊥
f t t t
⊥ t ⊥ ⊥

In Section 4, we present our monitoring algorithm. In Section 5, we consider the impact of
the accuracy of timestamps for ordering observations. In Section 6, we discuss related work.
Finally, in Section 7, we draw conclusions. Details, omitted due to space restrictions, can be
found in the full version of this paper, which is available from the authors or their webpages.

2 Three-Valued Metric Temporal Logic

For Σ an alphabet, we work with words that are finite or infinite sequences of tuples in
Σ×Q+, where Q+ is the set of positive rational numbers. We write |w| ∈ N∪{∞} to denote
the length of w and (σi, τi) for the tuple at position i. A timed word w is a word where:

(i) τi−1 < τi, for all i ∈ N with 0 < i < |w|, and
(ii) If |w| =∞ then for every t ∈ Q+, there is some i ∈ N such that τi > t.

Observe that (1) requires that the sequence of the τis is strictly increasing rather than
requiring only that the τis increase monotonically, as, e.g., in [1]. This means that there are
no fictitious clocks that order tuples with equal τis. Instead, it is assumed that everything at
time τi happens simultaneously and the τis already totally order the tuples that occur in w.

We denote the set of infinite timed words over the alphabet Σ by TW ω(Σ). We often
write a timed word w ∈ TW ω(Σ) as (σ0, τ0)(σ1, τ1) . . . . We call the τis timestamps and the
indices of the elements in the sequence time points. For τ ∈ Q+, let tp(w, τ) be w’s time
point i with τi = τ if it exists. Otherwise, tp(w, τ) is undefined.

Let 3 be the set {t, f,⊥}, where t (true) and f (false) denote the Boolean values, and
⊥ denotes the truth value “unknown.” Table 1 shows the truth tables of some standard
operators over 3. Observe that these operators coincide with the Boolean ones when restricted
to the set 2 := {t, f} of Boolean values.

We partially order the elements in 3 by their knowledge: ⊥ ≺ t and ⊥ ≺ f, and t and f
are incomparable as they carry the same amount of knowledge. Note that (3,≺) is a lower
semilattice, where f denotes the meet.

Throughout the paper, let P be a set of atomic propositions. We extend the partial
order ≺ over 3 to timed words over the alphabet Σ := 3P , where XY is the set of functions
with domain Y and range X. Let v, v′ ∈ TW ω(Σ), where (σi, τi) and (σ′i, τ ′i) are the tuples at
position i in v and v′, respectively. We define v � v′ if |v| = |v′|, τi = τ ′i , and σi(p) � σ′i(p),
for every i with 0 ≤ i < |v| and every p ∈ P . Intuitively, some of the knowledge gaps about
the propositions’ truth values in v are resolved in v′.

The syntax of the real-time logic MTL is given by the grammar: ϕ ::= t | p | ¬ϕ | ϕ ∨ ϕ |
ϕ SI ϕ | ϕ UI ϕ, where p ranges over P ’s elements and I ranges over intervals over Q+. For
brevity, we omit the temporal connectives for “previous” and “next.” MTL’s three-valued
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semantics is defined as follows. Let i ∈ N and w ∈ TW ω(Σ) with w = (σ0, τ0)(σ1, τ1) . . . .

Jw, i |= tK := t
Jw, i |= pK := σi(p)

Jw, i |= ¬ϕK := ¬Jw, i |= ϕK
Jw, i |= ϕ ∨ ψK := Jw, i |= ϕK ∨ Jw, i |= ψK

Jw, i |= ϕ SI ψK :=
∨
j∈{`∈N | τi−τ`∈I}

(
Jw, j |= ψK ∧

∧
j<k≤iJw, k |= ϕK

)
Jw, i |= ϕ UI ψK :=

∨
j∈{`∈N | τ`−τi∈I}

(
Jw, j |= ψK ∧

∧
i≤k<jJw, k |= ϕK

)
Furthermore, for τ ∈ Q+, let Jw |= ϕKτ := Jw, tp(w, τ) |= ϕK if tp(w, τ) is defined, and
Jw |= ϕKτ := ⊥, otherwise. Note that we abuse notation here and unify MTL’s constant t
with the Boolean value t ∈ 3, and MTL’s connectives ¬ and ∨ with the corresponding
three-valued operators in Table 1. Also note that when propositions are only assigned to
Boolean values, i.e., w ∈ TW ω(Γ) with Γ := 2P then the above definition coincides with
MTL’s standard two-valued semantics.

We use standard syntactic sugar, e.g., ϕ→ ψ abbreviates (¬ϕ)∨ψ, and �I ϕ (“eventually”)
and �I ϕ (“always”) abbreviate tUI ϕ and ¬ �I ¬ϕ, respectively. The past-time counterparts
�I ϕ (“once”) and �I ϕ (“historically”) are defined as expected. The nonmetric variants
of the temporal connectives are also easily defined, e.g., �ϕ := �[0,∞) ϕ. Finally, we use
standard conventions concerning the connectives’ binding strength to omit parentheses.

I Example 1. The formula � req → �[0,100) ack expresses a simple deadline property of
a request-response protocol between two system components. Namely, requests must be
acknowledged within 100 milliseconds, assuming that the unit of time is milliseconds.

3 Monitoring Architecture

The target system we monitor consists of one or more system components. The objective of
monitoring is to determine at runtime whether the system’s behavior, as observed and reported
by the system components, satisfies a given MTL specification ϕ at some or all time points.
To this end, we extend the system with additional components called monitors. The system
components communicate with the monitors and the monitors communicate with each other.
Communication takes place over channels. In the following, we explain the system assump-
tions, sketch the design of our monitoring extension, and state the monitors’ requirements.

System Assumptions. We make the following assumptions on our system model.
A 1. The system is static.

This means that no system components are created or removed at runtime. Furthermore,
each monitor is aware of the existence of all the system components. Note that this
assumption can easily be eliminated by building into our algorithm a mechanism to
register components before they become active and unsubscribing them when they
become inactive. To register components we can, e.g., use a simple protocol where
a component sends a registration request and waits until it receives a message that
confirms the registration.

A 2. Communication between components is asynchronous and unreliable. However, messages
are neither tampered with nor delivered to wrong components.
Asynchronous, unreliable communication means that messages may be received in an
order different from which they were sent, and some messages may be lost and therefore
never received. Note that message loss covers the case where a system component
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crashes without recovery. A component that stops executing is indistinguishable to
other processes from one that stops sending messages or none of its messages are
received. We explain in Remark 7 in Section 4 that it is also straightforward to handle
the case where crashed processes can recover. The assumption ruling out tampering and
improper delivery can be discharged in practice by adding information to each message,
such as a recipient identifier and a cryptographic hash value, which are checked when
receiving the message.

A 3. System components, including the monitors, are trustworthy.
This means, in particular, that the components correctly report their observations and
do not send bogus messages.

A 4. Observations about a proposition’s truth value are consistent.
This means that no components observe that a proposition p ∈ P is both true and false
at a time τ ∈ Q+.

A 5. The system components make infinitely many observations in the limit.
This guarantees that the observable system behavior is an infinite timed word. Note
that MTL formulas specify properties about infinite timed words. We would need to
use another language if we want to express properties about finite system behavior.
However, note that a monitor is always aware of only a finite part of the observed
system behavior. Furthermore, since channels are unreliable and messages can be lost,
a monitor might even, in the limit, be aware only of a finite part of the infinite system
behavior.

System Design. The monitors are organized in a directed acyclic graph structure, where
each monitor is responsible for some subformula of the given MTL specification ϕ. The
decomposition of ϕ into the subformulas used for monitoring is system and application specific.
However, we require that it respects the subformula ordering in that if the monitor M ′ is in
the subgraph of the monitorM , then the formula thatM ′ monitors is a subformula of the one
monitored by M . Moreover, the monitor at the root is responsible for ϕ. It outputs verdicts
of the form (b, τ) ∈ 2×Q+, with the meaning that ϕ has the truth value b at time τ . We
also add a unidirectional communication channel from each monitor to its parent monitors
and unidirectional communication channels from the system components to the monitors.
The system components are instrumented to send their observations to the monitors. This
instrumentation is also system and application specific, and irrelevant for the functioning of
the monitors; hence we do not discuss it further.

Three types of messages are exchanged during monitoring: report, notify, and alive.
A system component sends the message report(p, b, τ) when it observes at time τ ∈ Q+
that the Boolean value b ∈ 2 is assigned to the proposition p ∈ P . This message is only
sent to the monitors that are responsible for a subformula ψ of ϕ in which p occurs in
one of ψ’s subformulas for which no other monitor is responsible. Analogously, a monitor
responsible for ψ sends messages of the form report(ψ, b, τ) to inform its parent monitors
about verdicts (b, τ) for the subformula ψ of ϕ.
A system component C sends the message notify(C, τ, s) to all monitors to inform them
about some observation at time τ ∈ Q+. The need to send such messages originates from
MTL’s point-based semantics. Their purpose is that all monitors are aware of all the
time points and their timestamps of the timed word representing the observed system
behavior. This message includes a sequence number s ∈ N, which is the number of notify
messages that C has sent so far, including the current one. A monitor uses s to determine
whether it knows all time points up to time τ .
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A system component C can also send the message alive(C, τ, s) when it has not made
any observations for a while. The sequence number s is the number of messages of the
form notify(C, τ ′, s′) with τ ′ < τ that have been sent by C. The alive messages help a
monitor to determine whether it has received all notify messages over some time period.
In particular, alive messages are handy when components have not made any observations
for a while.

I Remark 2. In what follows, we assume that there is only a single monitor. By this
assumption, there are no messages of the form report(ψ, b, τ), which are sent by a monitor
responsible for the subformula ψ of ϕ. This assumption is without loss of generality since we
can replace ψ in ϕ by a fresh proposition pψ and consider the submonitor as yet another
system component. Note that this component need not send notify messages about the
existence of time points since they are already sent by the other system components.

Monitor Requirements. Let O be the set of messages corresponding to the observations
made by the system components and therefore, by A3, sent to (but not necessarily received
by) the monitors. We use the timed word w(O) to model the observable system behavior. It
satisfies the following conditions.
(i) For every notify(C, τ, s) ∈ O, there is a letter (σ, τ) in w(O).
(ii) For every report(p, b, τ) ∈ O, there is a letter (σ, τ) in w(O) with σ(p) = b.
(iii) For every letter (σ, τ) in w(O), there is some notify(C, τ, s) ∈ O and for all p ∈ P , if

σ(p) 6= ⊥ then report(p, σ(p), τ) ∈ O.
Note that w(O) is uniquely determined by the notify and report messages in O. First, for
each τ ∈ Q+, there is at most one letter with the timestamp τ in a timed word. Hence,
all notify and report messages that include the timestamp τ determine the letter in w(O)
with this timestamp. The letter’s position in w(O) is also determined by τ . Second, because
of A4, report(p, b, τ) ∈ O implies report(p,¬b, τ) 6∈ O. Finally, by A5, w(O) is infinite.

We state the requirements of our monitoring approach concerning its correctness with
respect to w(O). The messages are processed iteratively by a monitor M for the formula ϕ
and it keeps state between iterations. M ’s input in an iteration is a message and its output
is a set V ⊆ 2 × Q+ of verdicts. We denote M ’s output after processing a message m by
M(m). Let m̄ = m0,m1, . . . be a sequence of messages from O of length N ∈ N ∪ {∞}.

A monitor M is sound for ϕ on m̄ if for all τ ∈ Q+ and b ∈ 2, if (b, τ) ∈M(mi) for some
i < N , then Jw(O) |= ϕKτ = b.
A monitor M is complete for ϕ on m̄ if for all τ ∈ Q+, and b ∈ 2, if Jw(O) |= ϕKτ = b

then (b, τ) ∈M(mi), for some i < N .

I Remark 3. Completeness together with soundness is not achievable in general. One reason
is failures, cf. A2. For instance, if all messages are lost, it is only possible in trivial cases for
a monitor to soundly output verdicts for every violation. We therefore require completeness
of a monitor only under the assumption that every message in O is eventually received by
the monitor and the monitor never crashes. Another reason is that not all formulas are
“monitorable” [17]. For example, the formula � � p, which states that p is true infinitely
often, can only be checked on w(O). However, a monitor only knows finite parts of w(O)
at any time, which is insufficient to determine whether the formula is fulfilled or violated.
To simplify matters, we focus in the forthcoming sections on bounded formulas, i.e., the
metric constraint of any temporal future-time connective is a finite interval. Note that if the
formula ψ is bounded then �ψ describes a safety property. Many deadline requirements have
this form. Since we consider verdicts for all τ ∈ Q+ with Jw(O) |= ψKτ ∈ 2, the outermost
temporal connective � is implicitly handled by a monitor.
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I Example 4. Consider a system with a single component C. Let O be an infinite set
of messages containing the messages notify(C, 0.5, 1), report(p, f, 0.5), notify(C, 2.0, 2), and
report(p, f, 2.0), and no other message with a timestamp less than or equal to 2.0. Note that
the sequence number of the first notify message that C sends is 1 since C’s sequence-number
counter is incremented before C sends the message. Furthermore, assume that the message
report(p, f, 0.5) is lost, while all other messages are received by the monitor. A sound monitor
for the formula �[0,1] p can at most output the verdicts (f, 0.5) and (f, 2.0) for the time
points 0 and 1, respectively. However, since a monitor does not know p’s truth value at
time 0.5, it cannot deduce the verdict (f, 0.5), and is therefore incomplete. Note that a
monitor can deduce the verdict (f, 2.0) because, from the sequence numbers of the notify
messages, it can infer that there is no other time point originating from the component C in
w(O) with a timestamp between 1.0 and 2.0.

4 Verdict Computation

In this section, we explain how a monitor processes a sequence of messages from the set O of
messages sent by the system components and how it computes verdicts.

Main Loop. The monitor’s main procedure Monitor, given in Figure 1, is invoked for each
message received. It takes as input ϕ, the formula to be monitored, and a message. It
updates the monitor’s state, thereby computing verdicts, which it returns. The verdicts
computed in an iteration of the monitor are stored in the global variable verdicts, which is
set to the empty set at the start of processing the received message.

Intuitively speaking, with each received mes-
procedure Monitor(ϕ, msg)

verdicts ← ∅
case msg = notify(_, τ,_)

NewTimePoint(ϕ, τ)
case msg = report(p, b, τ)

NewTimePoint(ϕ, τ)
SetTruthValue((p, {τ}), b)

foreach J in NewCompleteIntervals(msg) do
NoTimePoint(ϕ, J)

return verdicts

Figure 1 The monitor’s main loop.

sage the monitor gains knowledge about the in-
finite timed word w(O). The monitor’s partial
knowledge about w(O) is reflected in the moni-
tor’s state. The monitor’s state is maintained by
the procedures NewTimePoint, SetTruthValue, and
NoTimePoint. When a notify(C, τ, s) message is re-
ceived, Monitor calls the NewTimePoint procedure,
which makes the monitor aware of the existence
of the time point with the timestamp τ in w(O). When a report(p, τ, b) message is received,
Monitor calls the SetTruthValue procedure, which sets the proposition p’s truth value at the
time point with timestamp τ to the Boolean value b. It also deduces, whenever possible,
the truth values of ϕ’s subformulas at the known time points in w(O). This deduction can
result in new verdicts. Note that, prior to SetTruthValue, Monitor calls the NewTimePoint
procedure, which ensures that the monitor is aware of the existence of the time point with
timestamp τ in w(O). Finally, Monitor accounts for the intervals that became complete by
the received message. We say that an interval J ⊆ Q+ is complete if the monitor has received
all notify messages with a timestamp in J from all system components. In particular, if J is
incomplete, then the monitor does not yet know all the timestamps in J from letters in w(O).
The procedure NewCompleteIntervals returns new complete intervals, based on the sequence
number of the received message and the monitor’s state. Note that only notify and alive
messages contain a sequence number; for a report message, NewCompleteIntervals does not
return any intervals. For each of the returned intervals, the NoTimePoint procedure updates
the monitor’s state accordingly.
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In the following, we provide some details about the monitor’s state and how it is updated.
We start by explaining the main data structure stored in the monitor’s state.

Data Structure. The main data structure is a graph structure. Its nodes are pairs of
the form (ψ, J), where ψ is a subformula of the monitored formula ϕ and J ⊆ Q+ is an
interval. The interval J is either a singleton {τ}, where τ is the timestamp occurring in a
received notify or report message (thus τ occurs in a letter in w(O)), or it is an incomplete
interval. Initially, there is a node (ψ, [0,∞)) for each subformula ψ of ϕ. The interval [0,∞)
corresponds to the fact that no time points have been created yet. Each node is associated
with a truth value, initially ⊥. Furthermore, each node contains a set of guards and a set of
outgoing pointers to guards, called triggers. We call the source node of an incoming pointer to
a guard a precondition. Intuitively, a guard with no preconditions (i.e., no incoming pointers)
is satisfied and we assign the Boolean value t to the guard’s node; if a node has no guards,
we assign the Boolean value f to the node; otherwise, if a node has guards with incoming
pointers, the node is assigned the truth value ⊥. Overall, the graph structure can be viewed
as an AND-OR-graph, where intuitively a node’s truth value is given by the disjunction over
the node’s guards of conjunctions of the truth values of each guard’s preconditions.

Updates. The first time the monitor receives a notify or a report message with some
timestamp τ , a new time point in w(O) is identified and the data structure is updated.
Note that the timestamp τ is necessarily in some incomplete interval J . Each node (ψ, J)
in the graph is replaced by the nodes (ψ, {τ}), (ψ, J ∩ [0, τ)), and (ψ, J ∩ (τ,∞)). The
links of the new nodes to and from the other nodes are created based on the links of the
node (ψ, J). Links are used to propagate Boolean values from one node to another when, for
example, receiving a report message. These two tasks, creating nodes and propagating truth
values, are carried out by the procedures NewTimePoint and SetTruthValue, respectively.
NewTimePoint also deletes a node (ψ, J) after creating the new nodes for the split interval J ,
and SetTruthValue deletes nodes when they are no longer needed for propagating truth values.
A call to SetTruthValue((ϕ, {τ}), b), for some timestamp τ and Boolean value b, also adds
the verdict (b, τ) to the set verdicts.

When the monitor infers that a nonsingular interval J is complete, it calls the proce-
dure NoTimePoint, which deletes the nodes of the form (ψ, J) and updates triggers if necessary.
Moreover, it calls the procedure SetTruthValue when a Boolean value can be assigned to a
node. The monitor uses the sequence numbers in notify and alive messages to determine
whether there are no time points with timestamps in J . For such a J , the monitor must
have received from each component C messages of one of the forms: (1) notify(C, τ, s) with
τ ≤ inf J and either notify(C, τ ′, s+ 1) or alive(C, τ ′, s) with τ ′ ≥ sup J , or (2) alive(C, τ, s)
with τ ≤ inf J and either notify(C, τ ′, s+ 1) or alive(C, τ ′, s) with τ ′ ≥ sup J . In the latter
case, we assume without loss of generality that the monitor has received at the beginning
the message alive(C,−1.0, 0) from each component C.

In the following, we explain how nodes are created and Boolean values are propagated.
For a newly created node (ψ, J), its guards and their preconditions depend on ψ’s main
connective. We first focus on the simpler cases where the main connective is nontemporal.

A node for the formula ψ = α ∨ β has two guards, each with a precondition for ψ’s direct
subformulas. Analogously, when considering ∧ as a primitive, the node for ψ = α ∧ β has
one guard with two preconditions for the two direct subformulas. A node for the formula
ψ = ¬α has one guard with the node for the formula α as the precondition associated to
the same time point or an incomplete interval. The first two cases are illustrated on the
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α ∧ β

β

α

J

7−→7−→7−→

(a) node creation for a new time point

J ∩ [0, τ) {τ} J ∩ (τ,∞)

α ∨ β

β

α

{τ}

7−→7−→7−→

(b) propagation

{τ}

Figure 2 Adjusting guards in case of (a) the creation of a new time point at τ ∈ J for the
formula α∧β, and (b) propagation, namely when the node (α, {τ}) is set to f, for the formula α∨β.

�[0,1] p

p

[0,∞)

(a)

m1
7−→7−→7−→

[0, 2.0) {2.0} (2.0,∞)

(b)

m2
7−→7−→7−→

[0, 2.0) {2.0} (2.0,∞)

(c)

m3
7−→7−→7−→

{0.5} (2.0,∞)

(d)

Figure 3 The data structure (a) before receiving any message, and after receiving the messages
(b) m1 = notify(C, 2.0, 2), (c) m2 = report(p, f, 2.0), and (d) m3 = notify(C, 0.5, 1).

left-hand side of the arrow 7→ of Figure 2(a) and (b), respectively. A box corresponds to a
node, where the node’s formula is given by the row and the interval by the column of the box.
Dots correspond to guards and arrows to triggers. Figure 2(a) also illustrates how the data
structure is updated when a new time point is added; in the case of Boolean connectives,
this is done by simply duplicating the nodes and their guards and triggers. The creation of
the guards of a node for a formula with the main connective SI or UI is more complex as
the preconditions are nodes that can be associated to time points or incomplete intervals
different from the node’s interval J . We first sketch how Boolean values are propagated
before explaining these more complex cases.

When receiving a report(p, b, τ) message, we set the truth value of the node (p, {τ}) to the
Boolean value b, provided that the node exists. This value is then propagated through the
node’s triggers to its successor nodes. However, for negation, the Boolean value propagated
from a node (α, J) to the node (¬α, J) is the complement of the Boolean value associated
to the node (α, J). The propagation of the Boolean value t corresponds to deleting just
the triggers, whereas the propagation of f corresponds to also deleting the guards that the
triggers point to. If a guard of a successor node has no more preconditions, then we set the
successor’s nodes value to t; in contrast, if the set of guards of a successor node becomes
empty, then we set its value to f. Figure 2(b) illustrates the propagation of a truth value
through the data structure for the simple case where the formula is of the form α ∨ β.

Temporal Connectives. Before describing the general case of handling formulas ψ of the
forms α SI β and αUI β, we consider a simpler example where ψ = �I p. In this case, a node
( �I ψ, J) has a guard for every node (ψ,K) for which there are a τ ∈ J and κ ∈ K such that
τ − κ ∈ I. Each guard has exactly one precondition, namely the corresponding node (ψ,K).

I Example 5. We reconsider the formula ϕ = �[0,1] p from Example 4, and a set O that con-
tains the messages m1 := notify(C, 2.0, 2), m2 := report(p, f, 2.0), and m3 := notify(C, 0.5, 1).
We assume that the monitor receives m1, m2, and m3 in this order. Figure 3 illustrates how
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the data structure is updated after receiving each of these messages. The updates performed
after the first two messages are clear from the previous explanations, whereas the update
performed for the message m3 comprises the following update steps. First, the interval [0, 2.0)
is split at timestamp 0.5, thus deleting the nodes (p, [0, 2.0)) and (ϕ, [0, 2.0)), and creating
six new nodes, together with their guards and triggers. Namely, a node is created for each
of the formulas p and ϕ, and for each of the intervals [0, 0.5), {0.5}, and (0.5, 2.0). The
preconditions of the other nodes are also updated accordingly to the intervals of the newly
created nodes. Second, the four nodes corresponding to the intervals [0, 0.5) and (0.5, 2.0),
together with their triggers, are deleted. This is because these intervals are complete, that
is, no time point of w(O) has a timestamp in these intervals. By deleting these four nodes,
the node (ϕ, {2.0}) remains with no guards. Indeed, after the split, the node remains with
only one guard, which has the precondition (p, (0.5, 2.0)). The other nodes (p, J) are not
preconditions because no timestamp in those intervals J satisfies the temporal constraint.
This single guard is deleted when its precondition (p, (0.5, 2.0)) is deleted. Finally, as the
node (ϕ, {2.0}) is without guards, it is assigned the Boolean value f. These steps lead to the
structure in Figure 3(d).

We now consider the general case where the formula ψ is α SI β; the case for α UI β is
dual. The node (ψ, J) has a guard for each node (β,K) with the truth value t or ⊥, and
with (J 	K) ∩ I 6= ∅, where J 	K := {τ − κ | τ ∈ J and κ ∈ K}. Moreover, for each such
node (β,K) and all nodes (α,H), with H between K and J , we have that (α,H) is not
assigned to the truth value f. We call the node (β,K) an anchor node for the node (ψ, J),
and a node (α,H) a continuation node for the anchor (β,K). The node (α,H) must be
strictly after (β,K) if K is a singleton, but we can have H = K otherwise. Note too that a
node can be a continuation node for multiple anchor nodes. A guard has a trigger from its
anchor node if the truth value assigned to the anchor node is ⊥. Furthermore, the guard
has a trigger from the first continuation node after the anchor node that is assigned to the
truth value ⊥. If this continuation node is assigned to the Boolean value t at a later time, we
move the trigger to the second such continuation node, and delete it if such a node does not
exist. Alternatively, we could unroll ψ into a disjunction of conjunctions and use the guard
constructions presented previously for ∧ and ∨. However, each guard would have multiple
continuation nodes as preconditions, which would result in an unnecessary overhead.

When splitting the interval J at time τ , we create the new nodes (ψ, J ′), with J ′ ∈
{J ∩ [0, τ), {τ}, J ∩ (τ,∞)}, together with the nodes’ guards. For this, we use the guards of
the node (ψ, J). After creating the new nodes, we delete the node (ψ, J). The split preserves
the invariant, stated in the previous paragraph, about the nodes’ guards. This invariant is
key in the algorithm’s soundness proof. We illustrate the construction for the specific case
depicted on the left-hand side of Figure 4. There are two guards of (α SI β, J), each with two
preconditions. The first guard has the anchor node (β,K) and the continuation node (α,H).
The second guard has the anchor node (β, J) and the continuation node (α, J). The triggers
of the first guard are drawn with solid lines in Figure 4 and the triggers of the second guard
are drawn with dashed lines. We assume that J , K, and H are pairwise disjoint. We also
assume that 0 ∈ I and that the metric constraint is satisfied for the new nodes and their
anchors. The right-hand side of Figure 4 shows the guards for the new nodes along with
their triggers.

Initialization. The monitor’s state is initialized by the procedure Initialize, which takes ϕ as
argument. We assume that it is called before processing the received messages by the Monitor
procedure. Initially, the nodes of the graph structure are (ψ, [0,∞)), where ψ is a subformula
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α SI β

β

α

K H J

7−→7−→7−→

K H J ∩ [0, τ) {τ} J ∩ (τ,∞)

Figure 4 Adjusting guards when creating a new time point at τ ∈ J for the formula α SI β.

of ϕ, with the corresponding guards and triggers. The truth value of a node (ψ, [0,∞)) is ⊥,
except for the node (t, [0,∞)), which has the truth value t. Note that the node (t, [0,∞)) only
exists if the constant t occurs in ϕ. For this node, we invoke the procedure SetTruthValue to
propagate its Boolean value.

Correctness Guarantees. The correctness guarantees of the monitoring algorithm are given
in the following theorem.

I Theorem 6. Let m̄ = m0,m1, . . . be the sequence of messages in O received by the
monitor.
(i) The monitor is sound for ϕ on m̄.
(ii) The monitor is complete for ϕ on m̄, if (a) all temporal future connectives in ϕ are

bounded (i.e., their metric constraints are finite intervals), and (b) for every m ∈ O,
there is some i ∈ N with mi = m.

I Remark 7. When a process crashes, its state is lost. To recover a process we must bring
it into a state that is safe for the system. To safely restart a system component, we must
restore its sequence number. We can use any persistent storage available to store this number.
In case the component crashes while storing this number, we can increment the restored
number by one. This might results in knowledge gaps for some monitors, since some intervals
will never be identified as complete. However, the computed verdicts are still sound.

For the recovery of a crashed monitor, we just need to initialize it. In particular, the
nodes of its graph structure are of the form (ψ, [0,∞)), where ψ is a subformula of ϕ. A
recovered monitor corresponds to a monitor that has not yet received any messages. This
is safe in the sense that the recovered monitor will only output sound verdicts. When the
monitor also logs received messages in a persistent storage, it can replay them to close some
of its knowledge gaps. Note that the order in which these messages are replayed is irrelevant
and they can even be replayed whenever the recovered monitor is idle.

5 Accuracy of Timestamps

The monitors’ verdicts are computed with respect to the observations that the monitors
receive from the system components. These observations might not match with the actual
system behavior. In particular, the timestamp in a message report(p, b, τ) may be inaccurate
because τ comes from the clock of a system component that has drifted from the actual time.
Nevertheless, we use these timestamps to determine the time between observations. Hence,
one may wonder in what sense are the verdicts meaningful.
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Consider first the guarantees we have under the additional system assumption that
timestamps are precise and from the domain Q+. Under this assumption, w(O) � w, where
w(O) ∈ TW ω(Σ) is the observed system behavior and w ∈ TW ω(Γ) represents the real
system behavior. Note that in w, all propositions at all time points are assigned Boolean
values, which might not be the case in w(O) since no system component observes whether
a proposition is true or false at a time point. It follows from Lemma 8 that the verdicts
computed from the observed system behavior w(O) are also valid for the system behavior w.

I Lemma 8. Let ϕ be an MTL formula, v, v′ ∈ TW ω(Σ), and τ ∈ Q+. If v � v′ then
Jv |= ϕKτ � Jv′ |= ϕKτ .

Assuming precise timestamps is however a strong assumption, which does not hold in
practice since real clocks are imprecise. Moreover, each system component uses its local
clock to timestamp observations and these clocks might differ due to clock drifts. In fact,
assuming synchronized clocks boils down to having a synchronized system at hand.

Nevertheless, we argue that for many kinds of policies and systems, relying on timestamps
from existing clocks in monitoring is good enough in practice. First, under stable conditions
(like temperature), state-of-the-art hardware clocks already achieve a high accuracy and their
drifts are, even over a longer time period, rather small [7]. Moreover, there are protocols
like the Network Time Protocol (NTP) [16] for synchronizing clocks in distributed systems
that work well in practice. For local area networks, NTP can maintain synchronization of
clocks within one millisecond [14]. Overall, with state-of-the-art techniques, we can obtain
timestamps that are “accurate enough” for many monitoring applications, for instance,
for checking whether deadlines are met when the deadlines are in the order of seconds
or even milliseconds. Furthermore, if the monitored system guarantees an upper bound
on the imprecision of timestamps, we can often account for this imprecision in the policy
formalization. For example, if the policy stipulates that requests must be acknowledged within
100 milliseconds and the imprecision between two clocks is always less than a millisecond,
then we can use the MTL formula � req → �[0,1) �[0,101) ack to avoid false alarms.

6 Related Work

Multi-valued semantics for temporal logics are widely used in monitoring, see e.g., [5, 4, 3,
18, 15]. Their semantics extend the classical LTL semantics by also assigning non-Boolean
truth values to finite prefixes of infinite words. The additional truth values differentiate
whether some or all extensions of a finite word satisfy a formula. However, in contrast to the
three-valued semantics of MTL used in this paper, the Boolean and temporal connectives are
not extended over the additional truth values. Furthermore, the partial order ≺ on the truth
values, which orders them in knowledge, is not considered. Note that having the third truth
value ⊥ at the logic’s object level and the partial order ≺ is at the core of our monitoring
approach, namely it is used account for a monitor’s knowledge gaps. Multi-valued semantics
for temporal logics have also been considered in other areas of system verification. For
example, Chechik et al. [6] describe a model-checking approach for a multi-valued extension
for the branching-time temporal logic CTL. Their CTL extension is similar to our extension
of MTL in the sense that it allows one to reason about uncertainty at the logic’s object level.
However, the considered tasks are different. Namely, in model checking, the system model is
given—usually finite-state—and correctness is checked offline with respect to the model’s
described executions; in contrast, in runtime verification, one checks online the correctness of
the observed system behavior.
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Several monitoring algorithms have been developed for verifying distributed systems at
runtime [19, 18, 3, 8, 15]. They make different assumptions on the system model and thus
target different kinds of distributed systems. Furthermore, they handle different specification
languages. None of them account for network failures or handle specifications with real-time
constraints. Sen et al. [19] use an LTL variant with epistemic operators to express distributed
knowledge. The verdicts output by the monitors are correct with respect to the local
knowledge the monitors obtained about the systems’ behavior. Since their LTL variant only
comprises temporal connectives that refer to the past, only safety properties are expressible.
Scheffel and Schmitz [18] extend this work to also handle some liveness properties by working
with a richer fragment of LTL that includes temporal connectives that also refer to the
future. The algorithm by Bauer and Falcone [3] assumes a lock-step semantics and thus only
applies to synchronous systems. Falcone et al. [8] weaken this assumption. However, each
component must still output its observations at each time point, which is determined by
a global clock. The observations are then received by the monitors at possibly later time
points. The algorithm by Mostafa and Bonakdarbour [15] assumes lossless FIFO channels
for asynchronous communication. Logical clocks are used to partially order messages.

Various monitoring algorithms have been developed, analyzed, and used to verify real-time
constraints at runtime, see e.g., [20, 5, 13, 2]. All of them, however, fall short for monitoring dis-
tributed systems. For instance, they do not account for out-of-order message deliveries and the
monitor’s resulting knowledge gaps about the observed system behavior. It is this shortcoming
of prior work that motivated us to develop the monitoring algorithm presented in this paper.

7 Conclusion

We have presented a monitoring algorithm for verifying the behavior of a distributed system
at runtime, where properties are specified in the real-time logic MTL. Our algorithm accounts
for failures and out-of-order message deliveries. The monitors’ verdicts are sound with respect
to the observed system behavior. In particular, timestamps originating from local clocks
determine the time between the observations made by the system components and sent to the
monitors. Note that the ground truth for system behavior is not accessible to the monitors
because the monitors themselves are system components.

There are several directions for extending our work. First, we have considered a monitor’s
completeness from a global perspective, i.e., the observable system behavior. An alternative
would be with respect to the knowledge a monitor can infer from the messages it receives.
We intend to investigate when a monitor is complete under this perspective. Second, we
have opted for a point-based semantics for MTL. An alternative is to use an interval-based
semantics, which can be more natural but it also makes monitoring more complex, see [2].
Future work is to adapt the presented monitoring algorithm to an interval-based semantics.
Finally, we plan to evaluate our monitoring algorithm on a substantial case study.

Acknowledgments. We thank Srdjan Marinovic for his input and for many helpful discus-
sions in the early phase of this work.
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