
19th International Conference
On Principles Of Distributed
Systems

OPODIS’15, December 14–17th, 2015, Rennes, France

Edited by

Emmanuelle Anceaume
Christian Cachin
Maria Potop-Butucaru

LIPIcs – Vo l . 46 – OPODIS’15 www.dagstuh l .de/ l ip i c s

Editors
Emmanuelle Anceaume Christian Cachin
CNRS – IRISA UMR 6074 IBM Research
Rennes Zürich
Emmanuelle.Anceaume@irisa.fr Christian.Cachin@zurich.ibm.com

Maria Potop-Butucaru
University Paris 6
Paris
Maria.Potop-Butucaru@lip6.fr

ACM Classification 1998
C.2.4 Distributed Systems

ISBN 978-3-939897-98-9

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-98-9.

Publication date
September, 2016

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.OPODIS.2015.0

ISBN 978-3-939897-98-9 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-939897-98-9
http://www.dagstuhl.de/dagpub/978-3-939897-98-9
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.0
http://www.dagstuhl.de/dagpub/978-3-939897-98-9
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Catuscia Palamidessi (INRIA)
Wolfgang Thomas (Chair, RWTH Aachen)
Pascal Weil (CNRS and University Bordeaux)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

OPODIS 2015

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Preface
Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Butucaru 0:ix–0:x

Tutorials

Signature-Free Communication and Agreement in the Presence of Byzantine
Processes

Michel Raynal . 1:1–1:10

Dynamic Reconfiguration: A Tutorial
Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi . 2:1–2:14

Keynotes

Time to Change: On Distributed Computing in Dynamic Networks
Nicola Santoro . 3:1–3:14

Space Bounds for Reliable Storage: Fundamental Limits of Coding
Alexander Spiegelman, Yuval Cassuto, Gregory Chockler, and Idit Keidar 4:1–4:3

Blockchain-Based Consensus
Juan A. Garay . 5:1–5:1

Regular Papers

Approximation of Distances and Shortest Paths in the Broadcast Congest Clique
Stephan Holzer and Nathan Pinsker . 6:1–6:16

The Cost of Global Broadcast in Dynamic Radio Networks
Mohamad Ahmadi, Abdolhamid Ghodselahi, Fabian Kuhn,
and Anisur Rahaman Molla . 7:1–7:17

Bounds for Blind Rate Adaptation
Seth Gilbert, Calvin Newport, and Tonghe Wang . 8:1–8:17

Overcoming Obstacles with Ants
Tobias Langner, Barbara Keller, Jara Uitto, and Roger Wattenhofer 9:1–9:17

Distributed Sparse Cut Approximation
Fabian Kuhn and Anisur Rahaman Molla . 10:1–10:14

Distributed Approximation of k-Service Assignment
Magnús M. Halldórsson, Sven Köhler, and Dror Rawitz . 11:1–11:16

On the Uncontended Complexity of Anonymous Consensus
Claire Capdevielle, Colette Johnen, Petr Kuznetsov, and Alessia Milani 12:1–12:16

The Relative Power of Composite Loop Agreement Tasks
Vikram Saraph and Maurice Herlihy . 13:1–13:16

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:vi Contents

Loosely-Stabilizing Leader Election on Arbitrary Graphs in Population Protocols
Without Identifiers nor Random Numbers

Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Masuzawa . 14:1–14:16

A Heap-Based Concurrent Priority Queue with Mutable Priorities for Faster
Parallel Algorithms

Orr Tamir, Adam Morrison, and Noam Rinetzky . 15:1–15:16

Maximum Matching for Anonymous Trees with Constant Space per Process
Ajoy K. Datta, Lawrence L. Larmore, and Toshimitsu Masuzawa 16:1–16:16

Atomic Snapshots from Small Registers
Leqi Zhu and Faith Ellen . 17:1–17:16

Anonymous Obstruction-free (n, k)-Set Agreement with n − k + 1 Atomic
Read/Write Registers

Zohir Bouzid, Michel Raynal, and Pierre Sutra . 18:1–18:17

Making “Fast” Atomic Operations Computationally Tractable
Antonio Fernández Anta, Nicolas Nicolaou, and Alexandru Popa 19:1–19:16

Robust Shared Objects for Non-Volatile Main Memory
Ryan Berryhill, Wojciech Golab, and Mahesh Tripunitara . 20:1–20:17

The Benefits of Entropy in Population Protocols
Joffroy Beauquier, Peva Blanchard, Janna Burman, and Rachid Guerraoui 21:1–21:15

Byzantine Agreement with Median Validity
David Stolz and Roger Wattenhofer . 22:1–22:14

Ensuring Average Recovery with Adversarial Scheduler
Jingshu Chen, Mohammad Roohitavaf, and Sandeep S. Kulkarni 23:1–23:18

Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures
Christian Scheideler, Alexander Setzer, and Thim Strothmann 24:1–24:17

QuickLex: A Fast Algorithm for Consistent Global States Enumeration of
Distributed Computations

Yen-Jung Chang and Vijay K. Garg . 25:1–25:17

The Synchronization Power of Atomic Bitwise Operations
Damien Imbs . 26:1–26:17

Wait-Free Concurrent Graph Objects with Dynamic Traversals
Nikolaos D. Kallimanis and Eleni Kanellou . 27:1–27:17

A Faster Counting Protocol for Anonymous Dynamic Networks
Alessia Milani and Miguel A. Mosteiro . 28:1–28:13

ActiveMonitor: Asynchronous Monitor Framework for Scalability and Multi-Object
Synchronization

Wei-Lun Hung, Himanshu Chauhan, and Vijay K. Garg . 29:1–29:17

Communicating with Beeps
Artur Czumaj and Peter Davies . 30:1–30:16

Contents 0:vii

Nontrivial and Universal Helping for Wait-Free Queues and Stacks
Hagit Attiya, Armando Castañeda, and Danny Hendler . 31:1–31:16

Generic Proofs of Consensus Numbers for Abstract Data Types
Edward Talmage and Jennifer Welch . 32:1–32:16

Non Trivial Computations in Anonymous Dynamic Networks
Giuseppe Di Luna and Roberto Baldoni . 33:1–33:16

Analysis of Bounds on Hybrid Vector Clocks
Sorrachai Yingchareonthawornchai, Sandeep Kulkarni, and Murat Demirbas 34:1–34:17

Non-Blocking Doubly-Linked Lists with Good Amortized Complexity
Niloufar Shafiei . 35:1–35:17

Poly-Logarithmic Adaptive Algorithms Require Unconditional Primitives
Hagit Attiya and Arie Fouren . 36:1–36:16

OPODIS 2015

Preface

The papers in this volume were presented at the 19th International Conference on Principles
of Distributed Systems (OPODIS 2015), held from December 14th to December 17th 2015
in Rennes, France. It was organized by CNRS and IRISA and took place in the modern
auditorium of Inria on the campus universitaire de Beaulieu.

OPODIS is an open forum for the exchange of knowledge on distributed computing and
distributed computer systems. All aspects of distributed systems are within the scope of
OPODIS, including theory, specification, design, performance, and system building. With
strong roots in the theory of distributed systems, OPODIS covers nowadays the whole range
between the theoretical aspects and practical implementations of distributed systems, as
well as experimentation and quantitative assessments. This year the topics of interest of
OPODIS were:

Algorithms for distributed systems (static or dynamic) and their complexity;
Cluster, cloud, grid and high-performance computing;
Distributed operating systems, middleware, and database systems;
Communication networks (protocols, architectures, services, applications);
Cryptographic protocols and security mechanisms;
Fault tolerance, reliability, availability;
Internet applications, social systems, peer-to-peer and overlay networks;
Self-* solutions for distributed systems;
Mobile and wireless computing and sensor networks;
Mobile agents and autonomous robots.

We received 91 submissions and each submission was reviewed by at least three members
of the Program Committee with the help of external reviewers. This year, the papers of the
Program Committee members have been reviewed by at least four members of the Program
Committee. Out of the 91 submissions, 31 papers have been accepted as regular papers. The
submission and review process was handled using Shai Halevi’s web-review software, hosted
by the International Association for Cryptographic Research (IACR).

This edition of OPODIS marks the first time where the proceedings appear in the Leibniz
International Proceedings in Informatics (LIPIcs) series. LIPIcs proceedings are available
online and free of charge to readers, and the production costs are paid in part from the
conference budget. This form of publication ensures the widest possible dissemination and
reduces the cost of accessing the technical contributions for readers.

The Best Paper Award was given to Niloufar Shafiei for the paper “Non-Blocking Doubly-
Linked Lists with Good Amortized Complexity”.

This year OPODIS had three distinguished invited keynote speakers: Idit Keidar (Tech-
nion, Israel), Nicola Santoro (Carleton University, Canada) and Juan Garay (Yahoo Labs,
USA). Additionally, the first morning of the conference has been dedicated to the excellent
tutorials given by Michel Raynal (Institut Universitaire de France, Université de Rennes
1, France) and Alexander Spiegelman and Idit Keidar (Electrical Engineering Department,
Technion, Haifa, Israel).

We would like to thank all authors for submitting their work to OPODIS. We also would
like to thank the members of the Program Committee and the external reviewers for their
19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:x Preface

tremendous work and for their availability during the physical Program Committee meeting
held at IBM Research – Zürich on November 2–3, 2015.

Organizing this event would not have been possible without the time and the effort of the
Organizing Committee, consisting of: Yann Busnel (ENSAI), Romaric Ludinard (ENSAI)
as publicity chair and responsible for the website, Elisabeth Lebret (INRIA), and Lydie
Mabil (INRIA). On behalf of all participants we thank them for their work that made the
conference a truly enjoyable event beyond the scientific and technical aspects.

Finally, we would like to thank the Steering Committee members for their valuable advice.

January 2016

Emmanuelle Anceaume, CNRS / IRISA
Christian Cachin, IBM Research – Zürich

Maria Potop-Butucaru, UPMC Sorbonne Universités

Committees

General Chair

Emmanuelle Anceaume, CNRS 6074 – IRISA, France

Program Chairs

Christian Cachin, IBM Research – Zürich
Maria Potop-Butucaru, LIP6

Program Committee

Silvia Bonomi, La Sapienza, Italy
Christian Cachin (program committee co-chair) IBM Research – Zürich, Switzerland
Keren Censor-Hillel, Technion, Israel
Xavier Defago, JAIST, Japan
Shlomi Dolev, Ben-Gurion University of the Negev, Israel
Panagiota Fatourou, FORTH ICS & University of Crete, Greece
Antonio Fernandez Anta, Institute IMDEA Networks, Spain
Christof Fetzer, TU Dresden, Germany
Emmanuel Godard, Université Aix-Marseille, France
Wojciech Golab, University of Waterloo, Canada
Krishna P. Gummadi, MPI SWS Saarbrücken, Germany
Taisuke Izumi, Nagoya Institute of Technology, Japan
Flavio Junqueira, ReScale Limited, United Kingdom
Rüdiger Kapitza, TU Braunschweig, Germany
Aggelos Kiayias, University of Athens, Greece
Fabian Kuhn, University of Freiburg, Germany
Petr Kuznetsov, Telecom ParisTech, France
Dahlia Malkhi, VMware Research, United States
Rui Oliveira, Universidade do Minho, Portugal
Marina Papatriantafilou, Chalmers, Sweden
Fernando Pedone, University of Lugano, Switzerland
Andrzej Pelc, University of Quebec, Canada
Erez Petrank, Technion, Israel
Peter Pietzuch, Imperial College, United Kingdom
Florin Pop, University Politehnica of Bucharest, Romania
Maria Potop-Butucaru (program committee co-chair), Université Paris 6/LIP6, France
Michel Raynal, IUF & IRISA-INRIA Rennes, France
Etienne Rivière, University of Neuchâtel, Switzerland
Luís Rodrigues, INESC-ID, Universidade de Lisboa, Portugal
Matthieu Roy, LAAS-CNRS, France
Alex Schwarzmann, University of Connecticut, United States
Roman Vitenberg, University of Oslo, Norway
Philipp Woelfel, University of Calgary, Canada
Haifeng Yu, National University of Singapore, Singapore
19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:xii Committees

Steering Committee

Marcos K. Aguilera, VMWare, United States
Roberto Baldoni, Sapienza University of Rome, Italy
Giuseppe Prencipe, University of Pisa, Italy
Nicola Santoro, Carleton University, Ottawa, Canada
Marc Shapiro, INRIA, France
Sébastien Tixeuil (steering committee chair), IUF & LIP6-CNRS 7606, France
Maarten van Steen, VU University Amsterdam, Netherlands

Organization Committee

Emmanuelle Anceaume, CNRS / IRISA, France
Yann Busnel (organization chair), ENSAI / CREST / INRIA, France
Elisabeth Lebret, INRIA, France
Romaric Ludinard (publicity chair), ENSAI / CREST, France
Lydie Mabil, INRIA, France
Heverson B. Ribeiro (volunteer), University of Neuchâtel, Switzerland
Nicoló Rivetti Di Val Cerco (volunteer), ENSAI / CREST, France

List of Authors

Mohamad Ahmadi
Department of Computer Science, University
of Freiburg, Germany
mahmadi@cs.uni-freiburg.de

Hagit Attiya
Technion, Israel
hagitcs.technion.ac.il

Joffroy Beauquier
LRI, Paris-South University, France
joffroy.beauquier@lri.fr

Ryan Berryhill
University of Toronto, Canada
ryan@eecg.utoronto.ca

Peva Blanchard
LPD, EPFL, Switzerland
peva.blanchard@epfl.ch

Zohir Bouzid
IRISA, Université de Rennes, France
zohir.bouzid@irisa.fr

Janna Burman
LRI, Paris-South University, France
janna.burman@lri.fr

Claire Capdevielle
Université de Bordeaux, LaBRI, France
claire.capdevielle@labri.fr

Yuval Cassuto
Department of Electrical Engineering,
Technion, Israel
ycassuto@ee.technion.ac.il

Armando Castañeda
Instituto de Mathemáticas, UNAM, Mexico
armando.castaneda@im.unam.mx

Yen-Jung Chang
Department of Electrical and Computer
Engineering
University of Texas at Austin, USA
cyenjung@ece.utexas.edu

Himanshu Chauhan
University of Texas at Austin, USA
himanshu@utexas.edu

Jingshu Chen
Michigan State University, USA
chenji15@cse.msu.edu

Gregory Chockler
CS Department, Royal Holloway, University
of London, UK
gregory.chockler@rhul.ac.uk

Artur Czumaj
Department of Computer Science, Centre for
Discrete Mathematics and its Applications
(DIMAP), University of Warwick, UK
A.Czumaj@warwick.ac.uk

Ajoy K. Datta
University of Nevada Las Vegas, USA
ajoy.datta@unlv.edu

Peter Davies
Department of Computer Science, Centre for
Discrete Mathematics and its Applications
(DIMAP), University of Warwick, UK
P.W.Davies@warwick.ac.uk

Faith Ellen
University of Toronto, Canada
faith@cs.toronto.edu

Antonio Fernández Anta
IMDEA Networks Institute, Spain
antonio.fernandez@imdea.org

Juan Garay
Yahoo Labs, USA
garay@yahoo-inc.com

Vijay K. Garg
Department of Electrical and Computer
Engineering
University of Texas at Austin, USA
garg@ece.utexas.edu

Seth Gilbert
Department of Computer Science, National
University of Singapore, Singapore
seth.gilbert@comp.nus.edu.sg

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:xiv Authors

Abdolhamid Ghodselahi
Department of Computer Science, University
of Freiburg, Germany
hghods@cs.uni-freiburg.de

Wojciech Golab
University of Waterloo, Canada
wgolab@uwaterloo.ca

Rachid Guerraoui
LPD, EPFL, Switzerland
rachid.guerraoui@epfl.ch

Magnús M. Halldórsson
Reykjavik University, Iceland
mmh@ru.is

Colette Johnen
Université de Bordeaux, LaBRI, France
johnen@labri.fr

Danny Hendler
Ben-Gurion University, Israel
hendlerd@cs.bgu.ac.il

Maurice Herlihy
Department of Computer Science, Brown
University, USA
mph@cs.brown.edu

Stephan Holzer
Massachusetts Institute of Technology
(MIT), USA,
holzer@mit.edu

Wei-Lun Hung
University of Texas at Austin, USA
wlhung@utexas.edu

Damien Imbs
Department of Mathematics, University of
Bremen, Germany
imbs@math.uni-bremen.de

Hirotsugu Kakugawa
Graduate School of Information Science and
Technology, Osaka University, Japan
kakugawa@ist.osaka-u.ac.jp

Nikolaos D. Kallimanis
Foundation for Research and Technology –
Hellas (FORTH) & Institute of Computer
Science (ICS), Greece
nkallima@ics.forth.gr

Eleni Kanellou
Foundation for Research and Technology –
Hellas (FORTH) & Institute of Computer
Science (ICS) & Université de Rennes 1,
France
kanellou@ics.forth.gr

Idit Keidar
Department of Electrical Engineering,
Technion, Israel
idish@ee.technion.ac.il

Barbara Keller
ETH Zürich, Switzerland
barbara.keller@tik.ee.ethz.ch

Sven Köhler
Bar-Ilan University, Israel
sven.kohler@biu.ac.il

Fabian Kuhn
Department of Computer Science, University
of Freiburg, Germany
kuhn@cs.uni-freiburg.de

Sandeep S. Kulkarni
Michigan State University, USA
sandeep@cse.msu.edu

Petr Kuznetsov
Télécom ParisTech, France
petr.kuznetsov@telecom-paristech.fr

Tobias Langner
ETH Zürich, Switzerland
tobias.langner@tik.ee.ethz.ch

Lawrence L. Larmore
University of Nevada Las Vegas, USA
lawrence.larmore@unlv.edu

Dahlia Malkhi
VMware, Palo Alto, USA
dahliamalkhi@gmail.com

Toshimitsu Masuzawa
Graduate School of Information Science and
Technology, Osaka University, Japan
masuzawa@ist.osaka-u.ac.jp

Alessia Milani
Université de Bordeaux, LaBRI, France
milani@labri.fr

Authors 0:xv

Adam Morrison
Computer Science Department,
Technion—Israel Institute of Technology
mad@cs.technion.ac.il

Miguel A. Mosteiro
Department of Computer Science, Kean
University, USA
mmosteir@kean.edu

Calvin Newport
Department of Computer Science,
Georgetown University, USA
cnewport@cs.georgetown.edu

Nicolas Nicolaou
IMDEA Networks Institute, Spain
nicolas.nicolaou@imdea.org

Fukuhito Ooshita
Graduate School of Information Science,
Nara Institute of Science and Technology,
Japan
f-oosita@is.naist.jp

Nathan Pinsker
Massachusetts Institute of Technology
(MIT), USA,
npinsker@mit.edu

Alexandru Popa
Department of Computer Science,
Nazarbayev University, Kazakhstan
alexandru.popa@nu.edu.kz

Anisur Rahaman Molla
Department of Computer Science, University
of Freiburg, Germany
armolla@cs.uni-freiburg.de

Dror Rawitz
Bar-Ilan University, Israel
dror.rawitz@biu.ac.il

Michel Raynal
IRISA, Université de Rennes & Institut
Universitaire de France, France
michel.raynal@irisa.fr

Noam Rinetzky
Blavatnik School of Computer Science, Tel
Aviv University
maon@cs.tau.ac.il

Mohammad Roohitavaf
Michigan State University, USA
roohitav@cse.msu.edu

Nicola Santoro
School of Computer Science, Carleton
University, Canada
santoro@scs.carleton.ca

Vikram Saraph
Department of Computer Science, Brown
University, USA
vsaraph@cs.brown.edu

Christian Scheideler
Paderborn University, Germany
scheideler@uni-paderborn.de

Alexander Setzer
Paderborn University, Germany
asetzer@mail.upb.de

Alexander Spiegelman
Department of Electrical Engineering,
Technion, Israel
sashas@tx.technion.ac.il

David Stolz
ETH Zürich, Switzerland
stolzda@ethz.ch

Thim Strothmann
Paderborn University, Germany
thim@mail.upb.de

Yuichi Sudo
NTT Secure Platform Laboratories &
Graduate School of Information Science and
Technology, Osaka University, Japan
sudo.yuichi@lab.ntt.co.jp

Pierre Sutra
University of Neuchâtel, Switzerland &
Télécom SudParis, CNRS, Université
Paris-Saclay, France
pierre.sutra@telecom-sudparis.eu

Edward Talmage
Parasol Laboratory, Texas A&M University,
College Station, USA
etalmage@tamu.ed

OPODIS 2015

0:xvi Authors

Orr Tamir
Blavatnik School of Computer Science, Tel
Aviv University
ortamir@post.tau.ac.il

Mahesh Tripunitara
University of Waterloo, Canada,
tripunit@uwaterloo.ca

Jara Uitto
ETH Zürich, Germany
jara.uitto@tik.ee.ethz.ch

Tonghe Wang
Department of Computer Science,
Georgetown University, USA
tw473@georgetown.edu

Roger Wattenhofer
ETH Zürich, Switzerland
wattenhofer@ethz.ch

Jennifer Welch
Parasol Laboratory, Texas A&M University,
College Station, USA
welch@cse.tamu.edu

Leqi Zhu
University of Toronto, Canada
lezhu@cs.toronto.edu

Signature-Free Communication and Agreement in
the Presence of Byzantine Processes
Michel Raynal∗

Institut Universitaire de France, Paris, France; and
IRISA, Université de Rennes, Rennes, France

Abstract
Communication and agreement are fundamental abstractions in any distributed system. (If the
computing entities do not need to communicate or agree in one way or another, the system is
not a distributed system!) This tutorial was devoted to the design of such abstractions built on
top of signature-free asynchronous distributed systems prone to Byzantine process failures. It is
made up of three parts, each devoted to an abstraction and algorithms that implement it.

1998 ACM Subject Classification C.2.4 [Computer-Communication Network] Distributed Sys-
tems – distributed applications, network operating systems, D.4.5 [Operating Systems] Reliability
– fault-tolerance, F.1.1 [Computation by Abstract Devices] Models of Computation, Computab-
ility theory

Keywords and phrases Asynchronous system, Atomic read/write register, Byzantine process,
Consensus, Distributed algorithm, Distributed computability, Fault-tolerance, No-duplicity broad-
cast, Process crash, Reliable broadcast

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.1

Category Tutorial

1 Introduction

1.1 Aim of the tutorial
This tutorial was motivated by the following observations:

The world is distributed and more and more applications are distributed.
Asynchronous message-passing systems are more and more pervasive.
In one way or another, computing entities have to communicate and agree.
The assumption “no computing entity has a bad behavior” is no longer reasonable.

Its aim was consequently to present basic communication and agreement abstractions which
can cope with bad (intentional or not) behavior of a subset of the computing entities.

On the content of this article. This companion text presents the definition of the abstrac-
tions addressed in the tutorial. The page limitation does not allow to present the algorithms
that implement them. The reader can find them in the corresponding articles or technical
reports.

∗ This work has been partially supported by the French ANR project DISPLEXITY devoted to comput-
ability and complexity in distributed computing, the Franco-German ANR project DISCMAT devoted
to connections between mathematics and distributed computing.

© Michel Raynal;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 1; pp. 1:1–1:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Communication and Agreement Despite Byzantine Processes

1.2 Underlying computation model
Processes. The computing model is composed of n processes (computing entities), denoted
p1, . . . , pn, which are sequential and asynchronous (each process progresses at its own speed
which is arbitrary and never known by the other processes).

Communication medium. Any pair of processes is connected by a bidirectional communic-
ation channel which allows them to send and receive messages. The underlying network is
consequently fully connected, allowing a receiver to know which process sent the message
it receives. It is assumed to be reliable: there is neither loss, creation, duplication, nor
alteration of messages.

Process failure model. A process that executes correctly its local algorithm is said to be
correct. A process that does not execute correctly its local algorithm is said to be faulty. We
consider here the severe failure model, where a faulty process can behave arbitrarily, which
is called Byzantine behavior [21, 30].

A Byzantine process can crash (premature halt), execute arbitrary code, omit to send or
receive messages, send erroneous messages, decide not to send a message when it is assumed
to do it, send different values to different processes when it is assumed to send them the
same value, etc. Byzantine processes can also collude to foil the correct processes.

Let us observe that a correct process can never know if another process is correct or
Byzantine. Moreover, a Byzantine process can behave as if it was correct during arbitrary
long periods separated by faulty behavior.

On signatures. Digital signatures (based on public key cryptosystems) can be be used to
restrain the bad behavior of Byzantine processes. As an example, a Byzantine process which
must forward a message signed by a correct process can only forward it or not forward it. It
cannot corrupt its content.

Signatures have a computation cost, and require the adversary (here the set of Byz-
antine processes) to be computationally limited. Moreover, when data are not confidential,
signatures are not always necessary to cope with malicious behavior [29, 33]. Hence, the
tutorial considered signature-free systems. This allows the adversary to have an unbounded
computational power.

Constraint and notation. Let t be the upper bound on the number of Byzantine processes.
It is assumed in the following that t < n/3. This requirement is necessary to solve the
problems in which we are interested here. The corresponding computing system is denoted
BZ_ASn,t[t < n/3].

2 Reliable Broadcast Abstractions

The aim of a broadcast abstraction is to allow a correct process to send a value to all correct
processes, with some provable delivery guarantees. The tutorial considered two of them.

2.1 No-duplicity broadcast
The no-duplicity broadcast (ND-broadcast) was introduced by S. Toueg in [34]. It provides
the processes with the operations ND_broadcast() and ND_deliver(), which allows any correct

M. Raynal 1:3

process to broadcast a message (we say “ND-broadcast”) and to deliver messages (we say
“ND-deliver”) while guaranteeing the following properties:

ND-Validity: If a correct process ND-delivers a message from a correct pi, then pi invoked
ND_broadcast().
ND-no-duplicity: No two correct processes ND-deliver distinct messages from the same
(correct of Byzantine) process pi.
ND-Termination-1: If the sender is correct, all the correct processes eventually ND-deliver
its message.

This specification can easily be extended to the case where a process needs to ND-
broadcast several messages. In this case a tag must be associated with each message (e.g., a
pair 〈 sender id, sequence number〉 and a correct process can ND-deliver only once a message
with a given tag (e.g., [7]).

The ND-broadcast abstraction ensures that no two correct processes ND-deliver different
messages from the same ND-broadcaster. A message ND-broadcast by any correct process is
ND-delivered by each correct process, and no fake message is ND-delivered from a correct
process.

Considering an ND-broadcast instance whose sender is a Byzantine process pk, If a correct
process pi ND-delivers a message m1 while another correct process pj ND-delivers a message
m2, we necessarily have m1 = m2. According to the previous specification, it is nevertheless
possible that pi ND-delivers m1 while pj does not deliver a message from pk. As shown in
the tutorial this communication abstraction can be implemented in BZ_ASn,t[t < n/3].

Let us notice that, when process ND-broadcast several (tagged) messages, ND-broadcast
does not prevent two correct processes from ND-delivering different sets of messages. These
sets may differ in the messages from Byzantine processes: a message can appear in one set
and not in another set.

2.2 Reliable broadcast
The reliable broadcast abstraction was introduced in several articles. We consider here a defin-
ition close to the given by Bracha [6]. Its associated operations are denoted RB_broadcast()
and RB_deliver().

This communication abstraction can be seen as ND-broadcast enriched with an additional
termination property, stating that all correct processes RB-deliver the same set of messages,
this set including at least all the messages RB-broadcast by the correct processes. More
formally, RB-broadcast is defined by the following properties:

RB-Validity: If a correct process RB-delivers a message from a correct process pi, then
pi invoked RB_broadcast().
RB-no-duplicity: No two correct processes RB-deliver distinct messages from the same
(correct of Byzantine) process pi.
RB-Termination-1: If the sender is correct, all correct processes eventually RB-deliver its
message.
RB-Termination-2: If a correct process RB-delivers a message m from pi (possibly
Byzantine), all the correct processes eventually RB-deliver m from pi

1.

1 A similar modular presentation with a separation of Termination-1 and Termination-2, which clarifies
the relation between ND- and RB-broadcasts appeared in [8], where the communication abstractions
are called consistent broadcast and reliable broadcast, respectively.

OPODIS 2015

1:4 Communication and Agreement Despite Byzantine Processes

This broadcast abstraction can be built in BZ_ASn,t[t < n/3], on top of the ND-
broadcast abstraction. The algorithm described in [6] generates O(n2) implementation
messages, and, assuming each message takes one time unit, the RB-delivery of a message
requires three time units. Moreover, three types of causally-related implementation messages
are used in Bracha’s algorithm [6]. Recently, a new RB-broadcast algorithm has been
proposed [18]. This implementation requires O(n2) implementation messages (as [6]), but
has a smaller time complexity, namely 2 instead of 3.

3 Read/write Register Abstraction

3.1 Read/Write Register
A read/write register is the most basic object encountered in computing science. It provides
the processes two operations, denoted read() and write(), which allow the invoking process to
obtain the value of the register and assign a new value to the register, respectively.

On the different types of registers. In the presence of concurrency, several processes may
concurrently access a register. In such a context, according to the requirement on the values
returned by the read invocations, several types of registers can be defined [19, 20], namely
safe, regular, and atomic. From a computability point of view, they have the same power in
the presence of process crashes (see the textbooks [2, 23, 32]). There is nevertheless a cost
to go from safe registers to regular registers, and from regular registers to atomic registers.

Atomic register. We consider here atomic registers. A register is atomic [19] (or lineariz-
able [16]) if its read and write operations satisfy the following properties:

The execution of each operation appears as if it has been executed at a single point of
the time line between its start event and its end event,
No two operations appear at the same point of the time line, and
Each read returns the last value written before it in the sequence.

3.2 An Implementation in the process crash failure model
A simple and elegant algorithm implementing an atomic register in the asynchronous message-
passing model where up to t < n/2 may commit crash failure was introduced in [1]. This
paper shows also that t < n/2 is a necessary requirement for such an implementation. This
algorithm is based on the following principles and mechanisms:

An increasing sequence number is associated with each written value,
Each process manages a local copy of the register,
Using request and acknowledgment messages, each write operation updates a majority of
local copies,
Similarly, using request and acknowledgment messages, each read operation obtains
〈value, seq. number〉 pairs from a majority of processes, and returns the value whose
sequence number sn id the greatest. Moreover, to ensure atomicity, before returning, the
read operation must ensure that a majority of local copies have a value whose sequence
number is ≥ sn.

3.3 Atomic registers in the Byzantine failure model
Parts of this section are from [26].

M. Raynal 1:5

Single-writer multi-reader register. As it is not possible to constrain the behavior of a
Byzantine process, such a process can corrupt any register it can access. Hence, implementing
atomic registers in the presence of Byzantine processes is meaningful only if we consider
single-writer multi-reader (SWMR) registers, i.e., registers that can be written by a single
process, but read by any process. In this way a Byzantine process can only corrupt the
registers for which it is the only writer.

Hence, we consider here the construction of an array of SWMR registers REG[1..n], such
that REG[i] can be written only by pi.

Read and write by a Byzantine process. As a Byzantine process can behave arbitrarily,
there is no requirement on the value it returns from a read invocation.

As far as the write operation is concerned, the situation is more complicated. A Byzantine
process pk can invoke REG[k].write() as if it was correct. It can also try to modify (by
generating appropriate implementation messages) the content of REG[k] without invoking
REG[k].write(). If it succeeds, the corresponding modification of REG[k] is considered as if
it was produced by an invocation of REG[k].write(). This is because, these two cases cannot
be distinguished by the correct processes. Let us also notice that it is not possible to prevent
a value written by a Byzantine process from being a value that has nothing to do with the
problem to be solved (fake value).

Preliminary definitions. The specification of an array REG[1..n] of atomic SWMR registers
in a Byzantine failure context is based on the following definitions:

An abstract sequence Hi is associated with each register (intuitively, Hi represents the
sequence of values written by pi in its register REG[i]).
If pi is correct, let read[i, j, x] denote the execution by pi of REG[j].read() returning the
value of Hj [x].
Let write[i, x] denote the xth modification of REG[i] (necessarily by pi):

If pi is correct, write[i, x] is the xth execution of REG[i].write() by pi.
If pi is Byzantine, write[i, x] is the xth modification of REG[i] by pi (not necessarily
due to an invocation of REG[i].write()).

Specification. Each register of the array REG[1..n] is defined by the following set of
properties:

Termination. If pi is a correct process, all its invocations of REG[i].write() terminate,
and for any j, all its invocations of REG[j].read() terminate.
Atomicity. Let pi and pj be two correct processes, and pk a correct or Byzantine process.

Read followed by write: (read[i, k, x] terminates before write[k, y] starts) ⇒ (x < y).
Write followed by read: (write[j, x] terminates before read[i, j, y] starts) ⇒ (x ≤ y).
No read inversion: (read[i, k, x] terminates before read[j, k, y] starts) ⇒ (x ≤ y).

The first rule states that a process cannot read from the future. The second rule states that
a read cannot obtain an overwritten value. The last rule states that, given any register
REG[k], sequential read operations concurrent with one or several write operations must
respect the sequential order on these writes.

It is easy to show that, from these rules, each register behaves atomically [19]2, i.e., as
defined in Section 3.1.

2 Or is linearizable according to the terminology of [16].

OPODIS 2015

1:6 Communication and Agreement Despite Byzantine Processes

From message-passing to read/write registers. Algorithms implementing atomic registers
in BZ_ASn,t[t < n/3] are described in [17, 26]. As shown in [17], t < n/3 is a necessary
requirement for such an implementation.

Such constructions allow us to execute algorithms designed to run on an SWMR shared
memory where at most t < n/3 processes may be Byzantine, on top of an asynchronous
message-passing system. This is important because designing a Byzantine-tolerant algorithm
for a given problem is usually easier in the shared memory context than in the message-passing
context. Examples of such algorithms are described in [17].

4 Agreement Abstraction (Consensus)

4.1 The consensus problem

Definition. Consensus is one of the most (maybe the most) important agreement problem
of fault-tolerant distributed computing. Its informal statement is extraordinary simple: it
requires that all correct processes agree of the same value.

More precisely, assuming that each process proposes a value, the consensus abstraction
in a Byzantine failure context, is defined by the following properties:

C-Termination: Every correct process eventually decides a value.
C-One-shot: A correct process decides at most once.
C-Agreement: No two correct processes decide different values.
C-Validity: If all correct processes propose the same value v, then v is decided.

If only two values can be proposed, consensus is binary. Otherwise it is multivalued. In
the following we consider binary consensus. This is not a problem, as there exist algorithms,
for asynchronous systems, which solve multivalued consensus on top of binary consensus
(e.g., [8, 28, 32] to cite a few).

Impossibility in asynchronous systems. Despite its very simple statement, there is no
deterministic algorithm that solves the consensus problem in the presence of asynchrony and
failures:

as soon as n ≥ 2,
whatever the communication medium (read/write shared memory or message-passing),
even if only a single process may fail,
even if the process failure model is the less severe, namely process crash,
even if the processes have to agree on a single bit.

This impossibility is a foundation result of fault-tolerant distributed computing. It
states a limit of what can be computed in the presence of asynchrony and failures, in the
context of read/write communication, or message-passing communication. It has first been
established in the context of asynchronous message-passing systems by Fischer, Lynch and
Paterson, hence its name “FLP impossibility” result in 1985 [13]. It has then been extended
to read/write shared memory systems in 1987 [22].

The intuition that underlies this impossibility lies in the fact that, due to asynchrony, a
process is unable to know if another process has crashed or is only very slow (or its incident
channels are very slow).

M. Raynal 1:7

How to circumvent the consensus impossibility. Several approaches have been proposed
to circumvent the previous impossibility. We cite here three of them.

Enrich the system with information on failures. This is the failure detector approach
introduced in [11]. This approach allowed to discover the weakest information on failures
needed to solve some problems (otherwise impossible to solve). The weakest failure
detector to solve consensus in the crash failure model is called Ω [12]. It states that all
correct processes must eventually agree on the same leader, which must be one of them.
Restrict the set of input vectors, where an input vector is an n-size vector, each of its
entries containing the value proposed by the corresponding process [27]. The problem
consists then in defining the greatest sets of input vectors (each such set is called a
condition), such that, given a condition, consensus can be solved if and only if the input
vector belongs to the condition.
Interestingly, a strong connection relating conditions (hence, the consensus problem) with
error-correcting codes has been established in [14].
Enrich the system with randomization. In this case, a process can draw random numbers
to face the uncertainty created by the net effect of asynchrony and failures. In this
case, the algorithms are no longer deterministic. This approach was introduced to solve
consensus in 1983 by M. Rabin [31] and M. Ben-Or [3].
As far as consensus is concerned, the C-Termination property becomes “Each correct pro-
cess decides with probability 1”. In round-based algorithms (as are consensus algorithms),
this property translates as follows

lim
r→+∞

Proba[pi decides by round r] = 1.

This is the approach we consider in the following.

4.2 Related works
This section borrows parts (including the table) from [25]. Some of the first randomized
consensus algorithms (e.g. [3, 5]) use local coins (the values returned to a process by a
local coin is not related to the values returned by the local coins of the other processes).
As a consequence, they have an expected number of rounds which is exponential (unless
t = O(

√
n)). As randomized algorithms based on a common coin can have an expected

number of rounds which is constant, this paper focuses only on such algorithms.

Common coin. As defined in [9], a common coin is a global entity that delivers the same
sequence of random bits to each process, each value with probability 1/2.

To obtain a random bit, a process invokes the operation random(), whose rth invocation
by any process returns it the bit br. Hence, all correct processes obtain the same sequence of
random bits b1, b2, ..., br, etc.

Moreover, it is not possible for Byzantine process to obtain bits in advance, namely, a
Byzantine process can obtain the value of br only when at least one correct process has
started accessing br. It follows that a common coin is a strongly synchronized coin (see [9]
for the implementation of a common coin).

Randomized asynchronous Byzantine algorithms using a common coin are listed in Table 1
(at the last line, ` denotes the length of an RSA signature). All these algorithms, which
address binary consensus, are based on asynchronous rounds, and, in each of them, every
message carries the number of the round in which it is sent. Hence, when comparing their
message size, we do not consider round numbers. We have the following.

OPODIS 2015

1:8 Communication and Agreement Despite Byzantine Processes

Table 1 Cost and constraint of different Byzantine binary consensus algorithms.

Protocol n > sign. msgs/round bits/msg steps/rd

Rabin [31] 10t yes O(n2) O(1) 2
Berman Garay [4] 5t no O(n2) O(1) 2

Friedman Mostéfaoui Raynal [15] 5t no O(n2) O(1) 1

Bracha [6] 3t no O(n3) O(log(n)) 9
Srikanth Toueg [33] 3t no O(n3) O(log(n)) 5

Toueg [34] 3t yes O(n3) O(n) 3

Canetti Rabin [10] 3t no O(n2) poly(n) 9
Cachin Kursawe Shoup [9] 3t yes O(n2) O(`) 2

The first algorithm is such that n < 10t, has an O(n2) message complexity, and requires
signatures.
The algorithms of the two next lines are such that t < n/5, and their message complexity
is O(n2). These algorithms are simple, signature-free, and use one or two communication
steps per round, but none of them is optimal with respect to t-resilience.
The algorithms of the next three lines are optimal with respect to t, but have an O(n3)
message complexity. Moreover, [34] uses signed messages (to prevent message falsification
by Byzantine processes), while [6] does not use a common coin, and may consequently
execute an exponential number of rounds. Due to their message complexity, these
algorithms are costly.
As far as the last two lines of the table are concerned, we have the following. Both are
optimal with respect to the resilience parameter t, and the number of message per round
O(n2), and use signed messages. The algorithm proposed in [10], although polynomial,
has a huge bit complexity. The algorithm presented in [9] has two communication steps
per round.

4.3 An optimal algorithm
Contrarily to what could be “falsely deduced” from a quick reading at the randomized
consensus algorithms cited in Table 1, the formula

[quadratic message complexity]⇒ [(use of signatures)] ∨ (t < n/5)]

is false.
There is an algorithm (first introduced in [24], and then improved and generalized in [25]

to allow the use of a weak common coin) that has the following set of properties:
The algorithm requires t < n/3 and is consequently optimal with respect to t.
It uses a constant number of communication steps per round.
The expected number of rounds to decide is constant.
The message complexity is O(n2) messages per round.
Each message carries its type, a round number plus a constant number of bits.
Byzantine processes may re-order messages sent to correct processes.
The algorithm uses a weak coin. Weak means here that there is a constant probability
that, at every round, the coin returns different values to distinct processes.
Finally, the algorithm does not assume a computationally-limited adversary (and con-
sequently it does not rely on signed messages).

M. Raynal 1:9

5 Conclusion

The aim of this paper was to provide the reader with the main ideas, and concepts presented
in the tutorial given at OPODIS 2015 (which additionally includes corresponding algorithms).
The interested reader can obtain a deeper knowledge of the topic by reading papers listed in
the bibliography.

Acknowledgments. I want to thank Achour Mostéfaoui with whom I worked a lot on
Byzantine failures, and Christian Cachin for a careful reading of this paper and constructive
comments, which helped improve its presentation.

References

1 Attiya H., Bar-Noy A. and Dolev D., Sharing memory robustly in message passing systems.
Journal of the ACM, 42(1):121–132 (1995)

2 Attiya H. and Welch J., Distributed computing: fundamentals, simulations and advanced
topics, Wiley-Interscience, 414 pages (2004)

3 Ben-Or M., Another advantage of free choice: completely asynchronous agreement pro-
tocols. Proc. 2nd ACM Symposium on Principles of Distributed Computing(PODC’83),
ACM Press, pp. 27–30 (1983)

4 Berman P. and Garay J.A., Randomized distributed agreement revisited. Proc. 33rd Annual
Int’l Symposium on Fault-Tolerant Computing (FTCS’93), IEEE Computer Press, pp. 412–
419 (1993)

5 Bracha G., An asynchronous (n−1)/3-resilient consensus protocol. Proc. 3rd Annual ACM
Symposium on Principles of Distributed Computing (PODC’84), ACM Press, pp. 154–162
(1984)

6 Bracha G., Asynchronous Byzantine agreement protocols. Information & Computation,
75(2):130–143 (1987)

7 Cachin Ch., State machine replication with Byzantine failures. In Replication: Theory and
Practice, Springer LNCS 5959, pp. 169–174 (2010)

8 Cachin Ch., Kursawe K., Peztold F., and Shoup V., Secure and efficient asynchronous
broadcast protocols. Proc. 21st Annual International Cryptology Conference (CRYPTO’01),
Springer LNCS 2139, pp. 524–543 (2001)

9 Cachin Ch., Kursawe K., and Shoup V., Random oracles in Constantinople: practical
asynchronous Byzantine agreement using cryptography. Journal of Cryptology,18(3):219–
246 (2005, first version: PODC 2000)

10 Canetti R., and Rabin T., Fast asynchronous Byzantine agreement with optimal resilience,
Proc. 25th Annual ACM Symposium on Theory of Computing (STOC’93), ACM Press,
pp. 42–51 (1993)

11 Chandra T. and Toueg S., Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225–267 (1996)

12 Chandra T., Hadzilacos V., and Toueg S., The weakest failure detector for solving consensus.
Journal of the ACM, 43(4):685–722 (1996)

13 Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374–382 (1985)

14 Friedman R., Mostéfaoui A., Rajsbaum S., and and Raynal M., Distributed agreement prob-
lems and their connection with error-correcting codes. IEEE Transactions on Computers,
56(7):865–875 (2007)

OPODIS 2015

1:10 Communication and Agreement Despite Byzantine Processes

15 Friedman R., Mostéfaoui A., and Raynal M., Simple and efficient oracle-based consensus
protocols for asynchronous Byzantine systems. IEEE Transactions on Dependable and Se-
cure Computing, 2(1):46–56 (2005)

16 Herlihy M.P. and Wing J.M, Linearizability: a correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems, 12(3):463–492 (1990)

17 Imbs D., Rajsbaum S., Raynal M., and Stainer J., Reliable shared memory abstractions on
top of asynchronous Byzantine message-passing systems. Proc. 21th Int’l Colloquium on
Structural Information and Communication Complexity (SIROCCO’14), Springer LNCS
8576, pp. 37–53 (2014)

18 Imbs D. and Raynal M., Simple and efficient reliable broadcast in the presence of Byzantine
processes. http://arxiv.org/abs/1510.06882 (2015), submitted to publication.

19 Lamport L., On interprocess communication, Part I: basic formalism. Distributed Comput-
ing, 1(2):77–85 (1986)

20 Lamport. L., On Interprocess Communication, Part II: Algorithms. Distributed Computing,
1(2):86–101 (1986)

21 Lamport L., Shostack R., and Pease M., The Byzantine generals problem. ACM Transac-
tions on Programming Languages and Systems, 4(3):382–401 (1982)

22 Loui M.C., and Abu-Amara H.H., Memory Requirements for Agreement Among Unreliable
Asynchronous Processes. Par. and Distributed Computing: vol. 4 of Advances in Comp.
Research, JAI Press, 4:163–183 (1987)

23 Lynch N.A., Distributed algorithms. Morgan Kaufmann Pub., San Francisco (CA), 872
pages (1996)

24 Mostéfaoui A., Moumen H., and Raynal M., Signature-free asynchronous Byzantine con-
sensus with t < n/3 and O(n2) messages. Proc. 33th ACM Symposium on Principles of
Distributed Computing (PODC’14), ACM Press, pp. 2–9 (2014)

25 Mostéfaoui A., Moumen H., and Raynal M., Signature-free asynchronous binary Byzantine
consensus with t < n/3, O(n2) messages, and O(1) expected time. Journal of ACM, 62(4),
Article 31, 21 pages (2015)

26 Mostéfaoui A., Petrolia M., Raynal M., and Jard Cl., Atomic read/write memory in
Signature-free Byzantine asynchronous message-passing systems. Tech Report 2028, IR-
ISA, University of Rennes, France (2015), https://hal.inria.fr/hal-01238765.

27 Mostéfaoui A., Rajsbaum S., and Raynal M., Conditions on input vectors for consensus
solvability in asynchronous distributed systems. Journal of the ACM, 50(6):922–954 (2003)

28 Mostéfaoui A. and Raynal M., Signature-free asynchronous Byzantine systems: from mul-
tivalued to binary consensus with t < n/3, O(n2) messages, and constant time. Proc.
22nd Int’l Colloquium on Structural Information and Communication Complexity (SI-
ROCCO’15), Springer LNCS 9439, pp. 194–208 (2015)

29 Mostéfaoui A. and Raynal M., Communication and agreement abstractions in the pres-
ence of Byzantine processes. To appear in IEEE Transactions on Parallel and Distributed
Systems (2016)

30 Pease M., R. Shostak R., and Lamport L., Reaching agreement in the presence of faults.
Journal of the ACM, 27:228–234 (1980)

31 Rabin M., Randomized Byzantine generals. Proc. 24th IEEE Symposium on Foundations
of Computer Science (FOCS’83), IEEE Press, pp. 116–124 (1983)

32 Raynal M., Concurrent programming: algorithms, principles, and foundations. Springer,
530 pages (2013) (ISBN 978-3-642-32026-2)

33 Srikanth T.K. and Toueg S., Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Distributed Computing, 2:80–94 (1987)

34 Toueg S., Randomized Byzantine agreement. Proc. 3rd Annual ACM Symposium on Prin-
ciples of Distributed Computing (PODC’84), pp. 163–178 (1984)

http://arxiv.org/abs/1510.06882
https://hal.inria.fr/hal-01238765

Dynamic Reconfiguration: A Tutorial∗

Alexander Spiegelman†1, Idit Keidar2, and Dahlia Malkhi3

1 Andrew and Erna Viterbi Dept. of Electrical Engineering, Technion, Haifa,
32000, Israel
sashas@tx.technion.ac.il

2 Andrew and Erna Viterbi Dept. of Electrical Engineering, Technion, Haifa,
32000, Israel
idish@ee.technion.ac.il

3 VMware, Palo Alto, USA
dahliamalkhi@gmail.com

Abstract
A key challenge for distributed systems is the problem of reconfiguration. Clearly, any production
storage system that provides data reliability and availability for long periods must be able to
reconfigure in order to remove failed or old servers and add healthy or new ones. This is far from
trivial since we do not want the reconfiguration management to be centralized or cause a system
shutdown.

In this tutorial we look into existing reconfigurable storage algorithms [7, 8, 1, 9, 6, 10]. We
propose a common model and failure condition capturing their guarantees. We define a recon-
figuration problem around which dynamic object solutions may be designed. To demonstrate
its strength, we use it to implement dynamic atomic storage. We present a generic framework
for solving the reconfiguration problem, show how to recast existing algorithms in terms of this
framework, and compare among them.

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases reconfigurable storage algorithms, dynamic object, dynamic atomic stor-
age

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.2

Category Tutorial

1 Introduction

A key challenge for distributed systems is the problem of reconfiguration, i.e., changing
the active set of servers. Clearly, any production system that provides data reliability and
availability for long periods must be able to reconfigure in order to remove failed or old servers
and add healthy or new ones. The foundations of reconfigurable distributed algorithms are
key to understanding and designing dynamic distributed systems.

The study of reconfigurable replication has been active since at least the early 1980s, with
the development of group communication and virtual synchrony (see survey in [3]). In recent
years, there were several works on reconfigurable (dynamic) storage [7, 8, 1, 9, 6, 10], some
of which use consensus for reconfigurations [7, 8] while others assume fully asynchronous

∗ This work is partially suported by the Israeli Science Foundation.
† Alexander Spiegelman is grateful to the Azrieli Foundation for the award of an Azrieli Fellowship.

© Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 2; pp. 2:1–2:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 Dynamic Reconfiguration: A Tutorial

systems [1, 9, 6, 10]. We feel that the time has come to provide a clear, unifying failure
model and a framework for studying the relationship among different solutions.

In this tutorial we define a clear model, and a generic reconfiguration abstraction that can
be used as a black-box in dynamic object emulations. In our model, a configuration is defined
by sets of changes (such as adding and removing servers). The sequential specification of
our reconfiguration problem says that there is a global sequence of configurations, totally
ordered in a way that will be defined below. Importantly, it does not require that clients
learn every configuration in the sequence, hence it does not necessitate (or imply) consensus.
Despite this weak guarantee, we demonstrate the usefulness of our reconfiguration abstraction
by implementing a dynamic register on top of it. We also define a failure condition that
generalizes the correct majority (of servers) condition from static systems to dynamic ones.
On the one hand, our condition is strong enough to be useful, in that we allow servers to
fail (or to be switched off) immediately when an operation that removes them from the
current configuration returns. And on the other hand, it is sufficiently weak as to allow
implementations that preserve the objects’ states when the system is reconfigured.

We present a solution for the reconfiguration problem, which is based on the core
mechanism in DynaStore [1]. In order to make it generic and simple, we define a Speculating
Snapshot (SpSn) abstraction, based on [6], which is the core task clients have to solve in
order to coordinate. We then show how to recast existing dynamic storage algorithms [7,
8, 1, 9, 6, 10] in terms of this framework. Specifically, we show that the SpSn abstraction
can be implemented by extracting the core coordination mechanism from each of these
algorithms, (e.g., consensus from RAMBO [7, 8] and weak snapshot from DynaStore [1, 10]).
We use this unified presentation to compare their properties and the resulting complexity of
reconfiguration.

The remainder of this tutorial is organized as follows: In Section 2 we define the model
and failure condition. In Section 3 we define the reconfiguration problem. Then, in Section 4,
we introduce the SpSn abstraction, present our generic reconfiguration algorithm, and
compare among different SpSn implementations. In Section 5 we demonstrate how to use
the reconfiguration algorithm in order to implement a dynamic atomic register. Finally, we
conclude in Section 6.

2 Model

A dynamic shared storage system consists of an infinite set Φ of object servers supporting
atomic read-modify-write (RMW) remote calls by an infinite set Π of clients. Calls may take
arbitrarily long to arrive and complete, hence the system is asynchronous. Any number of
clients may fail by crashing. The servers may also fail by crashing, but their failures are
restricted by the failure model, which we define later. A server or client is correct in a run r
if it does not fail in r, and otherwise, it is faulty.

We study algorithms that emulate reliable shared objects for the clients via dynamic
subsets of the servers.

2.1 Configurations
Our definition of configurations is based on [1]; here we extend it to client-server systems.
Intuitively, a configuration is a set of included or excluded servers. Fomally, we define Changes
to be the set {+,−} × Φ. For simplicity we refer to 〈+, s〉 as +s (and accordingly to 〈−, s〉
as −s). For example, +s3 is a change that denotes the inclusion of server s3. A configuration
is a finite subset of Changes, e.g., {+s1,+s2 − s2, and +s3〉} is a configuration representing

A. Spiegelman, I. Keidar, and D. Malkhi 2:3

Figure 1 A configuration and its membership.

the inclusion of servers s1, s2, and s3, and the exclusion of s2. For every configuration C,
the membership of C, denoted C.membership, is the set of servers that are included but not
excluded from it: {s|+ s ∈ C ∧−s 6∈ C}. An excluded server cannot be included again later;
in practice, it might join with a different identity. Illustrations of a configuration and its
membership appear in Figure 1. Tracking excluded servers in addition to the configuration’s
membership is important in order to reconcile configurations suggested by different clients.
An initial configuration C0 is known to all clients.

Configuration life-cycle. At different times, configurations can be speculated, activated, and
expired. A client can speculate a configuration C by issuing an explicit speculate(C) event,
while configurations are activated and expired implicitly, as we later discuss. A configuration
begins its life cycle with its speculation, which occurs after the inclusions and exclusions
comprising it have been requested by clients. Then, if it “succeeds”, it becomes activated
when the system in some sense chooses to make it the new configuration, as we explain in
Section 3 below. The newly activated configuration must contain all previously activated ones.
(A server is removed by keeping its inclusion and adding its exclusion to the configuration.)
A configuration is expired, whether or not it was activated, when a “newer” configuration
is activated. Here, we refer to any configuration D as “newer” than C when C does not
contain D. The activation of D prevents the future activation of C. Formally:

I Definition 1 (life-cycle). The lifecycle of a configuration C is defined by the following
events:
speculate(C): An event that is invoked explicitly by clients.
activate(C): An event that is triggered automatically by certain client operations, as defined

below.
expire(C): An event that occurs automatically and immediately when some configuration

C ′ 6⊆ C is activated.

We later use these notions in order to define the failure model as well as the reconfiguration
problem.

Shared register emulation. For every configuration C, as long as a majority of C.membership
is alive, clients can use ABD [2] to simulate a collection of atomic read/writer registers on
top of the servers in C.membership. Thus, we define:

I Definition 2 (availability). A configuration C is available if majority of the servers in
C.membership are correct.

OPODIS 2015

2:4 Dynamic Reconfiguration: A Tutorial

Figure 2 Example of activation and expiration. First client ca speculates configuration C1 in C0,
while client cb speculates configuration C2 in C0, client ca misses C2 and activates C1. Note that
C0, C2 6⊇ C1, and thus, according to our definition, both C0, C2 are expired and are allowed to be
unavailable. Therefore, the excluded servers in C1 (s1, s2, and s3) are no longer needed for liveness
and can be safely switched off.

For simplicity, we henceforth use this abstraction, and have clients invoke atomic
read/write operations on shared registers in a given configuration. Note that if a con-
figuration is unavailable, pending reads and writes to and from the configuration’s registers
might never return. We next define a failure condition that specifies which configurations
must be available.

Failure condition. There are infinity many servers in the system, and they cannot all be
“alive” from the beginning. A speculate event indicates when we expect a configuration to
become available. And now, the question is when a configuration can become unavailable. In
our failure model we require reconfigurablity, which means that once we succeed to activate
a new configuration C, every server s that is excluded in C (i.e., −s ∈ C) can fail or be
switched off. To this end, we define the following failure condition, which is sufficiently weak
so as to allow reconfigurablity.

I Definition 3 (failure condition). If configuration C is speculated and not expired, then C
is available.

Recall that when a configuration C is activated then every configuration D 6⊇ C is expired.
Intuitively, we can think of the activated configuration as chosen, of activated ones that are
expired as replaced, and of speculated and not activated ones that are expired as abandoned.
Figure 2 shows how our failure condition satisfies reconfigurablity.

2.2 Discovering available configurations
Since configurations can be expired and become unavailable, we cannot guarantee termination
of operations on emulated registers in expired configurations. Moreover, clients trying to
access the shared object would need to access newer configurations in order to complete their
operations. For example, a client that arrives after C0 is expired and does not know of any
newer configuration may hang forever because C0 can already be unavailable. It is easy to

A. Spiegelman, I. Keidar, and D. Malkhi 2:5

see that this limitation is inherent in every model that separates clients from servers and
requires reconfigurability (or any other failure model that allows failures of servers in an old
configuration).

Therefore, clients have to somehow be notified about new activated configurations. Note
that a speculated configuration C can become unavailable only when some configuration
C ′ 6⊆ C is activated. Thus, when a client tries to access an unavailable configuration C, we
want to help the client find an activated configuration.

To this end, we envision that the system would use some directory service, or oracle, that
stores information about configurations and ensures only a relaxed consistency notion1. A
client which activates a configuration C informs the directory that C is activated. A client
which tries to access a configuration D simultaneously posts queries to the directory about D.
If the directory service sees that a configuration C has been activated such that D does not
contain C, it reports back to the client that D has been expired by an activated configuration
C. It is important to note that two clients that post queries to the directory about D can
get different responses about activated configurations, and we do not require any eventual
consistency properties on these reports. Hence, this service is weak and does not provide
consensus.

Such a directory service can be easily implemented in a distributed manner with multiple
directory servers. A client informs its local directory server about new activated configurations,
and the server broadcasts it to all the other directory servers. When a client posts a request
about an expired configuration D to its local directory server, then eventually the server will
learn about some configuration that could have expired D and return it to the client.

In order to keep the model simple, we avoid using an explicit directory. Instead, we take
an abstraction from [6]:

I Definition 4 (oracle). When a client accesses an unavailable configuration C it gets an
error message referencing some activated configuration C ′ 6⊆ C.

3 Reconfiguration Problem

We want to allow clients that access a shared object to change the subset of servers over
which it is emulated. To this end, we define a reconfiguration abstraction, which has
one operation, reconfig. A reconfig operation gets as parameters a configuration C and a
proposal P ⊂ Changes. Intuitively, reconfig(C,P) is a request to reconfigure the system
from configuration C to a new configuration reflecting the changes in P . It returns two values.
The first is a configuration C ′ which is either C∪P or a superset of it, i.e., C ′ ⊇ C∪P , where
C ′ may contain additional, concurrently proposed changes. It also returns a set S consisting
of all the configurations that were speculated during the operation, and in particular, C ′ ∈ S.
We assume that C is a configuration that was previously returned by some reconfig operation
(note that this is an assumption on usage). By convention, we say that reconfig(C0, C0)
returns 〈C0, {C0}〉 at time 0.

Next we need to determine when configurations are activated. Since one of the purposes
of reconfiguration is to allow administrators to switch off removed servers, we want to make
sure that reconfig leads to the activation of a new configuration, which in turn expires
old ones. However, since at the moment when a configuration is activated all preceding

1 In today’s practical settings, it is reasonable to presume that some global directory is available, e.g.,
DNS.

OPODIS 2015

2:6 Dynamic Reconfiguration: A Tutorial

configurations may become unavailable, we want to allow clients to transfer object state
residing in the old configuration to the new one. Clearly every distributed service maintains
some state on behalf of clients. Thus, when reconfiguring, we need to be careful to not lose
this state. We want to define a generic way, without any specific knowledge of the higher
level service, to make clients aware of a reconfiguration that is about to happen so they will
be able to transfer state to it. Therefore, in our model, a configuration C is not necessarily
immediately activated when reconfig returns it. Instead, when reconfig returns C, our model
allows clients to transfer state from previous configurations to C. Only when a client calls
reconfig(C,P) (for some P), and returns C (indicating no further changes) does C become
activated. Formally:

I Definition 5 (activation). A configuration C is activated when reconfig(C,P) returns 〈C, S〉
for some S and P for the first time.

Note that by the convention, the initial configuration C0 is activated at time 0.

Sequential specification. The reconfiguration abstraction is linearizable with respect to
the sequential specification consisting of the three properties we now define. Briefly, the idea
is that we require that reconfig return to all clients configurations that are totally ordered
by containment. Importantly, we do not require reconfig to return to every client the entire
totally-ordered sequence. Rather, we allow clients to “skip” configurations.

First, we require that every change in a speculated configuration was previously proposed:
Validity: A reconfig operation rec returns 〈C, S〉 s.t. for every C ′ ∈ S for every e ∈ C ′,
∃reconfig(C ′′, P ′) that is either rec or precedes it s.t. e ∈ P ′.

Second, we require that new configurations contain all previous ones:
Monotonicity: If 〈C, S〉 is returned before 〈C ′, S′〉, then C ⊆ C ′.

Note that it is possible for one client to activate C ′ after C, while another client reconfigures
C to another configuration C ′′. The third property uses speculation to ensure that the second
client is aware of configuration activated by the first:

Speculation: If a configuration C ′ ⊃ C is activated before reconfig(C,P) returns 〈C ′′, S〉,
then C ′ ∈ S.

Liveness. In addition, if the number of invoked reconfig operations is bounded, we require:
Termination: Every reconfig operation invoked by a correct client eventually returns.

It is easy to see that in this model (servers and clients are separated), if there is an
unbounded number of reconfigurations’ invocations, then a correct client may forever chase
after an available configuration and never be able to communicate with the servers, and thus,
never complete its operation2.

4 Reconfiguration Solution

In this section we give a generic algorithm for the reconfiguration problem. In Section 4.1
we define the Speculating Snapshot (SpSn) abstraction, which is the core task behind

2 In [11], we show that even in a model where clients are not distinct from servers, and only clients that
are part of the last activated configuration’s membership are allowed to invoke operations, we cannot
guarantee progress in case of infinite number of reconfiguration even if we can solve consensus in every
configuration.

A. Spiegelman, I. Keidar, and D. Malkhi 2:7

Table 1 Possible SpSn outputs.

Client Input Output
c1 {+s1} { {{+s1}}, {{+s1}, {+s2}, {+s3}} }
c2 {+s2} { {{+s1}}, {{+s1}, {+s3}} }
c3 {+s3} { {{+s1}}, {{+s1}, {+s2}}, {{+s1}, {+s2}, {+s3}} }
c4 {} {}

the algorithm. In Section 4.2 we use the SpSn abstraction in order to present a generic
reconfiguration algorithm. In Section 4.3 we show different ways to implement SpSn by
recasting existing algorithms of atomic dynamic storage in terms of SpSn.

4.1 SpSn abstraction
SpSn (based on [6]) is the core task clients solve in configurations in order to coordinate
configuration changes. It is a multi-input, multi-output task: each client inputs its proposal
P by calling SpSn(P), and the output is a set of sets of proposals proposed by different
clients. We will use SpSn for reconfig by proposing changes, and each of the sets returned by
SpSn will be speculated. SpSn is emulated in a given configuration C, and its invocation in
C with proposal P is denoted C.SpSn(P). Like other emulated objects, C.SpSn can return
an error message with some newer activated configuration if C is unavailable. Within an
available configuration C, the SpSn task is defined as follows:

Non-triviality: If P 6⊆ C, then SpSn(P) returns a non-empty set.
Intersection: There exists a non-empty set of proposals that appears in all non-empty
outputs.

An example of possible SpSn outputs appears in Table 1.

4.2 Generic algorithm for reconfiguration
In this section we show a simple generic algorithm for the reconfiguration problem, which
is based on the dynamic storage algorithm presented in DynaStore [1]. We use one SpSn
task in every configuration. When clients call C.SpSn with different proposals, they may
receive different configurations in return, which in turn leads them to speculate different
configurations.

The pseudocode of the algorithm appears in Algorithm 1. The idea is to track the
configurations that clients speculate, and try to merge them into one configuration that will
reflect them all. In addition, we want to make sure that later reconfig operations will be aware
of this configuration in order to guarantee monotonicity. We call this process traverse [1]
because it is a traversal of a configuration DAG (see Figure 2 above) whose nodes are the
speculated configurations and there is an edge from a configuration C to a configuration C ′

if some client receives C ′ in the output of C.SpSn.
Initially, the set ToTrack contains only the input configuration C in which the operation

started, proposal is the union of C and the input proposal P , and the set speculation is empty.
During the reconfig operation, a client repeatedly takes the smallest configuration in ToTrack,
speculates it, adds it to the speculation set, and proposes proposal in its SpSn. Then, if the
configuration is available, it adds the output from SpSn (set of configurations) to ToTrack (in
order to track them later), and adds the union of all the changes in configurations returned
from SpSn to proposal. Note that each client traverses a different sub-graph of the DAG of

OPODIS 2015

2:8 Dynamic Reconfiguration: A Tutorial

Algorithm 1 Generic algorithm for reconfiguration
1: operation reconfig(C,P)
2: ToTrack← {C}
3: proposal← P ∪ C
4: speculation← {} . set of speculated configurations
5: while ToTrack 6= {} do
6: C ′ ← argmin

C′′∈T oT rack

(|C ′′|) . smallest configuration (in number of changes)

7: speculate(C ′)
8: speculation← speculation ∪ {C ′}
9: ret← C ′.SpSn(proposal)

10: if ret = 〈“error”, Ca〉 then . C ′ is expired - restart from Ca

11: speculation← {}
12: ToTrack← {Ca}
13: else
14: ToTrack← (ToTrack ∪ {

⋃
e∈E e | E ∈ ret}) \ {C ′}

15: proposal←
⋃

e∈ToTrack e ∪ proposal
16: return 〈proposal, speculation〉
17: end

configurations during its reconfig operation. However, since SpSn guarantees intersection,
the DAGs of different clients that start in the same configuration intersect (see example in
Figure 3). A reconfig operation completes when ToTrack is empty. The last configuration in
ToTrack is the configuration where the DAGs merge.

While traversing a DAG, if some configuration is unavailable, a client receives an error
message with a newer activated configuration Ca, and starts over from Ca. Note that
since we assume a bounded number of reconfigurations, clients with pending operations
will (1) eventually reach an available (forever) configuration, and (2) propose the same
configuration. Therefore, all the operations eventually complete.

4.3 Recasting existing algorithms in terms of SpSn
In this section we look into existing algorithms and extract their core mechanism for
implementing SpSn. As noted above, we assume a shared memory abstraction in every
configuration, and as long as the configuration is available, clients can access its read/write
registers. Therefore, we implement SpSn in shared memory, and when a configuration C
becomes unavailable, pending SpSn invocations in C return an error message with some
active configuration.

We make use of a collect operation, which returns a set of values of an array of registers.
This operation can be implemented by reading the registers one by one, or by opening
the ABD abstraction and collecting an entire array of registers in a constant number of
communication rounds. In our complexity analysis, we count a collect as one operation.

The SpSn implementations differ in their complexity (number of operations) and in the
number of configurations clients traverse in the generic reconfiguration algorithm (i.e., their
DAG size). Denote by m the total number of reconfig operations, where n of them propose
unique changes. As we will see in Section 5, when emulating a dynamic atomic register, read
and write operations invoke reconfig without proposing changes (they call reconfig in order
to ensure they execute in the up-to-date configuration), while reconfigurations of the register

A. Spiegelman, I. Keidar, and D. Malkhi 2:9

Figure 3 Clients ca, cb, and cc start reconfig in configuration C0. Client ca traverses the solid
blue arrows, cb traverses green dashed arrows, and cc traverses purple dotted arrows. For example,
ca first invokes C0.SpSn(C1) and receives {C1}. Next it invokes C1.SpSn(C1) and receives {C4, C5}.
Then, it invokes C4.SpSn(C6) and C5.SpSn(C6) and receives {C6} from both them. Finally, it
invokes C6.SpSn(C6), receives {C6}, and returns (no more configurations to track) C6 together with
a set consisting of the configurations in its DAG. Each of the clients traverses a different sub-graph
but since SpSn guarantees intersection, their traversals intersect and eventually merge. The circled
configurations are those where the sub-graphs intersect.

Table 2 Comparison among SpSn implementations extracted from existing dynamic storage
algorithms

Algorithm SpSn Cost DAG size reconfigurable rely on consensus
RAMBO [7, 8] O(1) n yes yes
DynaStore [1] O(1) min(mn, 2n) yes no
SmartMerge [9] O(1) n no no

Parsimonious SpSn [6] O(n) n yes no

propose changes. Table 2 compares the different SpSn implementations described in detail
below.

4.3.1 RAMBO
RAMBO [8, 7] was the first to implement a dynamic atomic register with asynchronous
read/write operations. The main idea is to use consensus to agree on the reconfigurations,
while read/write operations asynchronously read from all available configurations and write
to the “last” one. We now show how to use consensus in order to implement SpSn. The
pseudocode appears in Algorithm 2. It uses a shared array arr where client ci writes to
arr[i]. We assume that arr is dynamic: only cells that are written to are allocated.

Consider a client ci that proposes P in SpSn of configuration C. If P 6⊆ C (meaning that
the client has new changes to propose), it proposes P in C’s consensus object, and writes the
decision value to its place in arr. Otherwise, it does not invoke consensus and writes nothing
to arr. In both cases, it returns the set of sets of values collected from arr. (Only written
cells are collected). Note that this set is either empty, in case no changes were proposed, or
contains exactly one set of one configuration (the one agreed in the consensus). Therefore,
the SpSn non-triviality and intersection properties are preserved.

Note also that clients invoke consensus only if they propose new configurations. Thus, if
we use this SpSn in the register emulation of Section 5.2, we preserve the RAMBO property
of asynchronous read/write operations.

OPODIS 2015

2:10 Dynamic Reconfiguration: A Tutorial

Algorithm 2 Consensus-based SpSn; protocol of client ci in configuration C
1: operation SpSn(P)
2: if P 6⊆ C then
3: arr[i]← C.consensus(P)
4: ret← collect(arr)
5: return {{C ′} | C ′ ∈ ret}
6: end

Algorithm 3 Weak snapshot-based SpSn; protocol of client ci in configuration C
1: operation SpSn(P)
2: if P 6⊆ C then
3: arr[i]← P

4: ret← collect(arr)
5: if ret = {} then
6: return ret
7: else
8: ret← collect(arr)
9: return {{C ′} | C ′ ∈ ret}

10: end

4.3.2 DynaStore

DynaStore [1] was the first algorithm to solve dynamic storage reconfiguration in completely
asynchronous systems (without consensus). It observes that clients do not have to agree on
the next configuration: different clients can return different configurations, as long as we make
sure that if one client writes in some configuration, others will traverse this configuration,
read its value, and transfer it to the new configuration they return.

The core mechanism behind the coordination of the algorithm is the weak snapshot
abstraction. We now show how to use it in order to implement SpSn. The pseudocode of
client ci implementing SpSn(P) in configuration C appears in Algorithm 3. Again, we use
an array arr. If ci proposes a new configuration (P 6⊆ C), then it writes P into its register
in arr. Otherwise, it writes nothing. Then it collects the registers in arr. If the collect is
empty, it returns {}, otherwise it collects again and returns the obtained set.

Note that both properties of SpSn are preserved. First, non-triviality is satisfied since
if P 6⊆ C then the client writes to its register and so the collects cannot return an empty
set. Second, intersection is satisfied since all the clients that return non-empty sets get a
non-empty set in the first collect, and thus collect again. Therefore, in the second collect
they all get the first value that is written (this value appears in all outputs).

Note that while the DAG size obtained in the generic algorithm by using consensus for
SpSn is exactly n, with a weak snapshot-based SpSn, the DAG can be much bigger. Without
consensus, clients can write (propose) different configurations in SpSn’s array (arr), and learn
different subsets of proposals (from the collect), which in turn leads to different proposals
being written in the next tracked configuration’s SpSn.

With n is unique proposals, there are 2n possible configurations that can be speculated
and traversed. But since clients propose in each SpSn during the traverse the union of
all the configurations and proposals they previously traversed, every client proposes at
most n different configurations during its traverse. Therefore, the worst-case DAG size is
min(nm, 2n).

A. Spiegelman, I. Keidar, and D. Malkhi 2:11

4.3.3 SmartMerge
SmartMerge [9] is very similar to DynaStore, but it uses a pre-computation in order to reduce
the DAG size to n. Before starting the generic algorithm, clients participate in an external
lattice agreement service [4], in which they input their proposals and each receives a set of
proposals s.t. all the outputs are related by containment. Then, they take the output of the
lattice agreement and use it as their proposal in the generic reconfig algorithm (Algorithm 1).

Notice that by ordering the proposals by containment, SmartMerge reduces the total
number of configurations that can be speculated and traversed (i.e., the DAG size) to n.
However, this solution assumes that the lattice agreement service is available forever, and
since it is not a dynamic service, the servers emulating it cannot fail or be switched off.
Therefore, SmartMerge is not reconfigurable.

4.3.4 Parsimonious SpSn
Parsimonious SpSn [6] uses multiple rounds of a mechanism similar to commit-adopt [5].
Similarly to SmartMerge, it relies on containment in order to reduce the DAG size, but
does not use an external service for it, and thus the solution is reconfigurable. Instead, all
the configurations in the sets returned from the commit-adopt-based SpSn are related by
containment.

In order to achieve the containment property, parsimonious SpSn pays in the SpSn’s
complexity. Instead of O(1) as in other implementations, the SpSn complexity here is O(n).
More details can be found in [6].

5 Dynamic Atomic Register

The reconfiguration problem can be used as an abstraction in order to implement many
dynamic atomic objects on top of it. Here we demonstrate it by presenting a protocol for
dynamic atomic register. In Section 5.1 we define the dynamic atomic register object, and in
Section 5.2 we present an algorithm that implements it in our model.

5.1 Definition
We consider a dynamic atomic multi-writer, multi-reader (MWMR) register object emulated
by a subset of the servers in φ, from which any client can read or write values from a domain
V. The sequential specification of the register requires that a read operation return the value
written by the latest preceding write operation, or ⊥ if there is no such write. In addition,
the object exposes an interface for invoking reconfiguration operations that allow clients to
change the set of servers emulating the register.

A reconfiguration gets as a parameter a set of changes Proposal ⊂ Changes and returns
a configuration C s.t. (1) C is activated, (2) C ⊇ Proposal, and (3) C is subset of changes
proposed by clients before the operation returns.

We assume that there is a bounded number of reconfiguration operations, and require
that every operation by a correct client eventually returns.

5.2 Solution
We present an algorithm for a dynamic atomic register, which uses the reconfiguration
problem abstraction (reconfig). The pseudocode appears in Algorithm 4.

OPODIS 2015

2:12 Dynamic Reconfiguration: A Tutorial

Algorithm 4 Dynamic Atomic register emulation
1: Local variable:
2: version, tmp ∈ N× V with selectors ts and v, initially 〈0, v0〉
3: Ccur ⊂ Changes, initially C0

4: operation reconfiguration(Proposal)
5: check-config(Proposal,⊥,REC)
6: return Ccur

7: end

8: operation read()
9: check-config(⊥,⊥,READ)
10: return version.v
11: end

12: operation write(v)
13: check-config(⊥, v,WRITE)
14: return ok
15: end

16: procedure check-config(P, v, op)
17: 〈C, S〉 ← reconfig(Ccur, P)
18: repeat
19: for each configuration C ′ ∈ S do . read in all speculated configurations
20: tmp← C ′.readV ersion()
21: if tmp 6= error(∗) ∧ tmp.ts > version.ts then . newer version found
22: version← tmp

23: if op = WRITE then
24: version← 〈version.ts+ 1, v〉
25: C.writeVersion(version)
26: Ctmp ← C

27: 〈C, S〉 ← reconfig(Ctmp, {}) . activate C or find newer configuration
28: until C = Ctmp

29: Ccur ← C . C is activated

The main procedure used by all operations, (read, write, and reconfiguration), is check-
config(P, v, op), where P is the reconfiguration proposal (⊥ in case of read or write), v ∈ V
is the value to write (⊥ in case of read or reconfig), and op is the operation type (READ,
WRITE, or REC). The procedure manipulates two local variables: Ccur, which stores the last
activated configuration returned from a reconfig operation, and version, a tuple consisting
of a value v and its timestamp ts. All operations first call check-config(P, v, op), and then
return according to the operation type: A write returns ok, a read returns version.v, and a
reconfiguration returns Ccur.

In order to emulate the dynamic register we use an idea that was first introduced in
RAMBO [7], and later adopted by DynaStore [1]. The idea is to read a version from each
configuration that other clients may have written to, and then write the most up-to-date
version (associated with the highest timestamp) to the configuration we want to activate and

A. Spiegelman, I. Keidar, and D. Malkhi 2:13

return. To this end, we start check-config by calling reconfig(Ccur,Proposal), which returns
〈C, S〉. Next, we read the version from every configuration returned in S, and write the
latest/newer version into C. In case of a write operation we write a version consisting of v
and a new timestamp (higher than all those we read). Otherwise, we write back the version
with the highest timestamp we read.

Note that before we can return, we need to validate that future operations will not
miss our version. Therefore, after we write the version, we check if there are new activated
configurations. To this end, we call reconfig(C, {}) (line 27). If the operation returns 〈C ′, S′〉
where C ′ = C, it is guaranteed that no one “moved forward” before we wrote our version
to C, and every later operation will not miss our version. Note that in this case, by our
definition, C is activated and older configurations can become unavailable. This does not pose
a problem, since the state of the object (the up-to-date version) has already been transferred
to the new configuration. Otherwise, if the operation returns 〈C ′, S′〉 where C ′ 6= C, we
repeat the above process for C ′ and S′. Notice that since we assume a bounded number of
reconfiguration operations, it is guaranteed that every check-config, and thus every operation
performed by a correct client eventually returns.

In order to read and write versions from configurations we assume that every configuration
emulates a version object that has two functions: readVersion() and writeVersion(version). A
readVersion invoked in configuration C simply returns C’s version. A writeVersion(version)
overwrites C’s version if it has a higher timestamp, and returns ok. Again, if C is unavailable,
the operations return error messages. Note that readVersion() can be implemented by the
first phase of ABD [2], and writeVersion by the second.

6 Conclusion

Reconfiguration is a key challenge in implementing distributed dynamic shared objects, and
in particular, in distributed dynamic storage. Clearly, any long-lived shared object emulated
on top of fault-prone servers must be able to reconfigure in order to remove failed or old
servers and add healthy or new ones.

In this tutorial we first defined a clear model for studying reconfiguration. We defined a
failure condition that provides reconfigurability, that is, allows a server to fail or be switched
off immediately when it is no longer part of the current active configuration’s membership.
Then, we encapsulated a reconfiguration problem that is on the one hand implementable in
asynchronous systems satisfying our failure condition, and on the other hand can be used as
an abstraction for implementing many dynamic shared objects. Next, we presented a (simple)
general framework for solving the reconfiguration problem, and showed how existing dynamic
storage algorithms [7, 8, 1, 9, 6, 10] can be recast in terms of this framework. In order to
do so, we defined, (based on [6]), a core task called SpSn, which clients solve in order to
coordinate. We demonstrated how to extract different algorithms’ coordination mechanisms
in order to implement this task. This allowed us to compare the different algorithms.

Finally, we demonstrated the power of the reconfiguration abstraction by presenting a
simple algorithm for dynamic atomic storage on top of it.

Acknowledgements. We thank Eli Gafni for his contribution to the SpSn abstraction
definition, and Christian Cachin and Yoram Moses for insightful comments.

OPODIS 2015

2:14 Dynamic Reconfiguration: A Tutorial

References
1 Marcos K. Aguilera, Idit Keidar, Dahlia Malkhi, and Alexander Shraer. Dynamic atomic

storage without consensus. J. ACM, 58(2):7:1–7:32, April 2011. doi:10.1145/1944345.
1944348.

2 Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-
passing systems. Journal of the ACM (JACM), 42(1):124–142, 1995.

3 Gregory Chockler, Idit Keidar, and Roman Vitenberg. Group communication specifications:
A comprehensive study. ACM Computing Surveys (CSUR), 33(4):1–43, December 2001.

4 Jose M Faleiro, Sriram Rajamani, Kaushik Rajan, G Ramalingam, and Kapil Vaswani.
Generalized lattice agreement. In Proceedings of the 2012 ACM symposium on Principles
of distributed computing, pages 125–134. ACM, 2012.

5 Eli Gafni. Round-by-round fault detectors (extended abstract): unifying synchrony and
asynchrony. In Proceedings of the seventeenth annual ACM symposium on Principles of
distributed computing, pages 143–152. ACM, 1998.

6 Eli Gafni and Dahlia Malkhi. Elastic configuration maintenance via a parsimonious specu-
lating snapshot solution. In Proceedings of the 29th International Symposium on Distributed
Computing, pages 140–153. Springer, 2015.

7 Seth Gilbert, Nancy Lynch, and Alex Shvartsman. Rambo ii: Rapidly reconfigurable
atomic memory for dynamic networks. In 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 259–259. IEEE Computer
Society, 2003.

8 Seth Gilbert, Nancy A Lynch, and Alexander A Shvartsman. Rambo: A robust, reconfigur-
able atomic memory service for dynamic networks. Distributed Computing, 23(4):225–272,
2010.

9 Leander Jehl, Roman Vitenberg, and Hein Meling. Smartmerge: A new approach to
reconfiguration for atomic storage. In Proceedings of the 29th International Symposium
on Distributed Computing, pages 154–169. Springer, 2015.

10 Alexander Shraer, Jean-Philippe Martin, Dahlia Malkhi, and Idit Keidar. Data-centric
reconfiguration with network-attached disks. In Proceedings of the 4th International Work-
shop on Large Scale Distributed Systems and Middleware, LADIS’10, pages 22–26, New
York, NY, USA, 2010. ACM. doi:10.1145/1859184.1859191.

11 Alexander Spiegelman and Idit Keidar. On liveness of dynamic storage. CoRR,
abs/1507.07086, 2015. URL: http://arxiv.org/abs/1507.07086.

http://dx.doi.org/10.1145/1944345.1944348
http://dx.doi.org/10.1145/1944345.1944348
http://dx.doi.org/10.1145/1859184.1859191
http://arxiv.org/abs/1507.07086

Time to Change: On Distributed Computing in
Dynamic Networks∗

Nicola Santoro

School of Computer Science, Carleton University, Ottawa, Canada
santoro@scs.carleton.ca

Abstract
In highly dynamic networks, topological changes are not anomalies but rather integral part of
their nature. Such networks are becoming quite ubiquitous. They include systems where the
entities are mobile and communicate without infrastructure (e.g. vehicles, satellites, robots, or
pedestrian smartphones): the topology changes as the entities move. They also include systems,
such as peer-to-peer networks, where the changes are caused by entities entering and leaving
the system, They even include systems where there is no physical mobility at all, such as social
networks. A vast literature on these dynamic networks has been produced in many different
fields, including distributed computing. The several efforts to survey the status of the research
and attempts to clarify and classify models and assumptions, have so far brought more valuable
bibliographic data than order and clarity. Goal of this note is to ask questions that might bring
author and readers to start to clarify some important research aspects and put some order in a
sometimes confusing field. The focus here is entirely on distributed computing, specifically on
its deterministic aspects.

1998 ACM Subject Classification C.2.4 Distributed Systems, F.1.1 Models of Computation,
F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph Theory

Keywords and phrases distributed computing, dynamic networks, time-varying graphs, mobile
agents

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.3

Category Keynote

1 Introduction

Computing in networked environments has been one of the core research areas and concerns
of distributed computing. The structure of such environments is modeled as a simple
graph, where the nodes correspond to the computational entities and the edges to existing
communication links between pairs of entities.

While assuming the network structure to be static, the research soon focused on the study
of topological changes in order to model faults and failures occuring in real distributed systems.
Examined in the context of fault-tolerance, the changes were however considered a small scale
phenomenon, limited and localized. The possibility of extensive changes recurring in the
lifetime of the system has been object of study within the field of self-stabilization: incorrect
computations are allowed to take place in a period of instability; it is however assumed that
the instability stops, at least long enough, so that the computation can eventually produce
correct results. None of these studies can deal with systems where the topology is subject to

∗ This work was supported by NSERC (Canada) under the Discovery Grants program.

© Nicola Santoro;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 3; pp. 3:1–3:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 Time to Change: On Distributed Computing in Dynamic Networks

extensive changes that can occur everywhere and possibly never stop, systems where changes
are not anomalies but rather integral part of their nature.

Such systems do indeed exist and are becoming quite ubiquitous. Such are for example
systems where the entities are truly mobile and can communicate without infrastructure
(e.g. vehicles, satellites, robots, or pedestrian smartphones): an edge exists between two
entities if they are within communication range; the topology changes (possibly dramatically)
as the entities move. In these systems end-to-end connectivity does not necessarily hold,
the network might be always disconnected, still communication may be available over time
and space making broadcast, routing, computations feasible. These networks have been
extensively studied from engineers uder the names of delay-tolerant or challanged networks.
In addition to these ad-hoc wireless mobile networks, the same level of dynamic changes
occur in systems where there is no explicit communication, such as swarms of autonomous
mobile robots: each robot sees the positions of the robots within its visibility range, and
based on these positions, it computes a destination and moves there; the topology of the
visibility graph changes during the execution of protocol. It can also occur in systems where
the changes are caused by entities entering and leaving the system, such as peer-to-peer
networks. It can even occur in systems where there is no physical mobility at all, such as
social networks.

Due to the abundance of different contexts where these highly dynamic networks arise
and their importance, a vast literature in many different fields has been produced, including
by distributed computing researchers, focusing on one or another aspect of these systems.
Significant efforts have been made to model and formally describe the aspects under exam-
ination; not surprising, the "lexicon" is rather confusing, with the same object being given
different names (e.g., “temporal distance” introduced in [23], has been subsequently called
“reachability time” in [55], “information latency” in [64], and “temporal proximity” in [65])
and sometimes the same name being used to define different classes of objects (e.g., “temporal
graphs" defined in [65] vs the later use in [74]).

There have been several efforts to survey the status of the research, attempting to clarify
and classify models and assumptions and research results (e.g. the recent [19, 57, 67, 74]), in
particular the monumental effort by Holme [56]. From the distributed computing viewpoint,
these efforts have so far brought more valuable bibliographic data and interesting information
than order and clarity. Goal of this note is to ask questions that might bring author and
readers to start to clarify some important research aspects and put some order in a sometimes
confusing field.

2 What and How to Represent?

There are many popular ways to represent dynamic networks: temporal networks, evolving
graphs, multiplex networks; as discussed below, they are actually all equivalent and equally
limited by the restrictive assumptions they make.

A less constrained general mathematical formalism that describes many different types of
dynamic networks is the one offered by TVG (for time-varying graph) introduced in [28] and
described next.

2.1 TVG

TVG is a simple model that includes the other commonly used representations as instances,
plus it allows to express other (possibly more complex) computational dynamic systems.

N. Santoro 3:3

In this model, the dynamic system is described as a time-varying graph G = (V,E, T , ψ,
ρ, ζ), where V is the set vertices or nodes, representing the system entities (e.g., vehicles,
robots) and E ⊆ V × V (×L) is the set of (directed or undirected) edges representing
connections (e.g. communication, contact, relation, link,...) between pairs of entities; edge
can be labeled, the labels in L are domain-specific (e.g., intensity of relation, type of
carrier, ...) and possibly multi-valued (e.g. <satellite link; bandwidth of 4MHz; encryption
available;...>).

The system exists for a contiguous interval of time T ⊆ R called lifetime. The system is
said to be limited if T is closed, unlimited otherwise; in both cases, it is generally assumed
that the system has a beginning, which occurs at time t = 0.

The dynamics of the system is specified by the node presence function, ψ : V ×T → {0, 1},
and the edge presence function, ρ : E × T → {0, 1}, where ψ(x, t) = 1 (resp., ρ(e, t) = 1)
⇐⇒ node x ∈ V (resp., edge e ∈ E) is present at time t ∈ T .

Finally, the function ζ : E × T → R ∪ {⊥}, is the latency (or duration, delay, ...) of the
connection. So, for example, ζ((x, y), t) = d may indicate that a message from x to y, if sent
at time t, will arrive at time t+ d; or that the traversal by a mobile agent of edge (x, y), if
started at time t, is completed at time t+ d. On the other hand, ζ((x, y), t) = ⊥ indicates
that, if starting at t, there is not enough time to use the connection (eg, send a message,
perform a traversal, ...).

An important concept is that of a snapshot of the system at time t ∈ T , denoted by
G(t) = (N(t), E(t)), where N(t) = {x ∈ N : ψ(x, t) = 1} and E(t) = {e ∈ E : ρ(x, t) = 1}
are the nodes and edges present at time t. The footprint of the system is just the aggregate
graph of all footprints: G = (V,E). It is assumed that the footprint is connected; otherwise,
the system is considered composed of separate non-interacting dynamic systems, each with a
connected footprint. Observe that connectivity of the footprint G has no implication on the
connectivity of any of the snapshots G(t).

The TVG model can be naturally extended by adding any number of (possibly temporal)
functions on the nodes (e.g., fi : V × T → Fi) and/or on the edges (e.g., hj : E × T → Hj)
to appropriate domains, to describe specific system features (e.g., cost, weight, energy, ...).

2.2 Synchronous Systems
The model can be also restricted by imposing assumptions. The most common restriction is
by assuming a discrete synchronous system: the changes in the system occur at discrete
time steps (i.e., T ⊆ N), and its dynamics is fully described as a sequence of synchronous
rounds.

For discrete synchronous systems, a TVG (or aspects of it) can be equivalenty and
conveniently expressed in other ways.

For example, a compact representation is by listing for each edge e the set I(e) of all
the contiguous intervals of time when e was present. Indeed the couple I = (N, I), where
I =

⋃
e∈E I(e), is a common definition of the class of discrete synchronous systems, and it

is known in the literature as temporal networks [57]. Note that temporal neworks do not
consider node presence and more importantly they have no latency; in other words they
describe discrete synchronous systems with instantaneous contacts.

Another popular representation for discrete synchronous systems is by considering the
sequence S(G) = < G(0), G(1), G(2), . . . , G(t), . . . > of all1 the snapshots of G. Indeed any

1 A more succint representation is to consider only the snapshots where a topological change occurs.

OPODIS 2015

3:4 Time to Change: On Distributed Computing in Dynamic Networks

[0,1)	 [2,4)	

[2,4)	 [0,3)	 [0,2)	

[0,1)	

[1,3)	

1	 2	 3	 0	

0	

1	

2	

3	

(a)	

(b)	

(c)	

Figure 1 A discrete synchronous limited TVG represented as (a) a temporal network, (b) an
evolving graph, (c) a multiplex network.

sequence of static graphs S = < G0, G1, G2, . . . , Gt, . . . >, called evolving graph [44], can
be seen as the sequence of snapshots of a unique TVG G (once the latency function has
been defined). The idea of representing a dynamic graph as a sequence of static graphs
was first suggested in [52]; the proposal of using a sequence of graphs to model discrete
synchronous systems was made by [89] in the context of social networks, and by [44] in the
context of ad-hoc mobile networks. The evolving graph representation is perhaps the most
commonly used for discrete synchronous systems (often without references and under new
names). As mentioned, the latency has to be specified and added to this representation to
make it equivalent to that of a (discrete synchronous) TVG.

Given the sequence of snapshots S(G) = < G(0), G(1), G(2), . . . , G(t), . . . >, consider
the multy-layer graphM(S) obtained connecting G(t) to G(t+ 1) by adding an edge from
each node in G(t) to the same node in G(t+ 1) (if present in both snapshots). Clearly this
multi-layer graph captures the same information as the evolving graph S(G); thus, if enanced
with the specification of the latency, it becomes computationally equivalent to the TVG G.
Such a multy-layer graphM, called multiplex network, is a commonly used represention of a
discrete synchronous systems (for recent survey see [67]).

2.3 Journeys and Distances

A crucial concept in dynamic networks is that of journey, the dynamic equivalent of “walk”
in static graphs. More precisely a journey is a sequence J =< (e1, t1), (e2, t2), . . . , (ek, tk) >,
where < e1, e2, ..., ek > is a walk in G, ρ(ei, ti) = 1 and ti + ζ(ei, ti) ≤ ti+1. That is, the walk
edges are present in the graph at the appropriate times with the latency long enough so each
edge can be traversed in time. Time t1 is the start time of the journey J , and tk + ζ(ek, tk)
is the time it ends, denoted by start(J) and end(J) respectively. Journeys could actually
be infinite, in which case they have no end.

Depending on whether or not there are time gaps in the walk, we can distinguish between
two types of jurneys: a journey J =< (e1, t1), (e2, t2), . . . , (ek, tk) > is direct if, for all
1 ≤ i < k, ti + ζ(ei, ti) = ti+1, i.e., there is no waiting before traversing any edge; otherwise
is indirect. This distinction is sometimes relevant because there are dynamic networks where
buffering is not supported (and thus only direct journeys are allowed). Some interesting

N. Santoro 3:5

9:00$

9:30$
12:10$

18:00$

19:15$

22:00$

22:10$
22:15$

9:00$ 20:30A B$

C$ D$

E$ F$

G$

H$

I$

Nicola$Santoro$=$OPODIS$2015$smallest$duraEon$

shortest''''''''$$A,I,B$$$$$$$$$$$

foremost'''''A,C,D,E,F$

fastest'''''''''''A,G,H,B$$$$$$$$$

min$#$hops$

earliest$arrival$

$$(2$hops)$
$
$$(19:15)$

$$(15$minutes)$
$

Figure 2 Three types of minimal journeys; in this example latency is 0.

differences between allowing and not allowing waiting have been recently established [25, 58].
In the following, we assume that waiting is allowed, and thus make no distinction between
direct and undirect journeys.

A finite journey is a walk over time from a source to a destination and therefore has not
only a topological length |J |, defined as the number of edges in the walk, but also a temporal
length ||J || = end(J)− start(J) defined as the time elapsed to perform the walk.

This gives rise to distinct definitions of distance in a time-varying graph G:
shortest distance: d(u, v, t) = Min{|J | : J ∈ J(u,v) ∧ start(J) ≥ t} (i.e., min hop);
fastest distance: δ(u, v, t) = Min{||J || : J ∈ J(u,v) ∧ start(J) ≥ t} (i.e., min
duration);
foremost distance: ∂(u, v, t) = Min{end(J) : J ∈ J(u,v) ∧ start(J) ≥ t} (i.e., ends
first);

where J(u,v) denotes the set of all journeys from u to v.
Indeed, for all all the classical measures of static graphs and networks (diameter, degree,

eccentricity, centrality, etc.) there exist (one or more) temporal counterparts (temporal
diameter, temporal degree, temporal eccentricity, temporal centrality, etc.).

3 What to Investigate?

3.1 Dead or Live, Centralized or Distributed?
Most of the existing algorithmic investigations and results assume global a-priori knowledge
of the system; that is, the entire graph G is given as an input to the computation. In other
words, they consider dynamic networks that are (not only discrete synchronous but also)
limited; the investigation is post-mortem, i.e. after the system has ended its limited life-time
(and no more data is being produced); and the computation is off-line, totally centralized.
That is, they are centralized investigations of dead systems. This is for example the case of
[16, 23, 44, 48, 53, 59, 64, 78, 73], and in particular of all the investigations on data previously
collected from real dynamic networks (e.g., [62, 63, 66, 82, 84, 85, 92]).

The interest of this note is however on distributed computations in dynamic networks.
This means that the computation is distributively performed inside the time-varying graph.
In other words, the system is live; its lifetime T is unlimited (as far as the computation is
concerned); and the computation is decentralized and localized.

The lifetime T of G is divided in three parts: the instantaneous present, t̂; the limited
past, past(t̂) = {t ∈ T : 0 < t < t̂}; and the unlimited future, future(t̂) = {t ∈ T : t > t̂}.

OPODIS 2015

3:6 Time to Change: On Distributed Computing in Dynamic Networks

Each computational entity (node, web site, vehicle, ...) operates in the present, and is aware
only of the local events, i.e., topological changes in which it is involved; it might remember
its past (if it has enough memory); however, it does not know the future.

3.2 Who is in Control?

To understand how to deal with the future, it is important to understand the relationship
between the changes occuring in the system and the computation performed by the entities.
To ask what is causing the system changes is important but it does not necessarily clarify
the nature of the relationship. For example, in ad-hoc wireless mobile networks, it is the
movement of the entities that causes the topological changes; similarly, in robotic swarms
or in mobile sensor networks, the changes are generated by the movement of the entities.
Apparently, in all these systems, the cause of changes is the same: the entities’ movements;
there is however a fundamental difference between the former and the latter systems.

In the latter, the movement of an entity is influenced by the computation: where an entity
goes next (and thus what new edges are being formed) is determined by the protocol; in
other words, the computation generates the graph. This means that we (algorithm designers)
could program the entities so to construct graphs with specific properties. This indeed is
what happens when we design protocols that allow autonomous mobile robots with limited
visibility to arrange themselves in space so to form a specific geometric pattern, or mobile
sensors to spread over a territory so to homogenously cover it. We shall call these types of
situations as of controlled generation of the graph.

Totally different is the first type of systems: the movements are independent of the
computation (e.g., broadcast, routing, etc) performed by the entities. More precisely, the
computation has no control over the topological changes of the system. We call this type of
situation as of an uncontrolled generation of the graph; in this situation, we actually envision
the changes as caused by an adversary operating against the computation.

It is on this type of systems that we focus in the rest of this note.

3.3 What Problems?

In the live systems we consider, the computational entities operate in a decentralized and
localized matter in an ever changing scenario, without control over the changes. The research
investigations on these systems have been both intensive and extensive, carried out mainly
within the engineering community.

The distributed computing focus has been on a variety of classical problems, such as
information propagation: routing, multicast, broadcast, gossip, etc. (e.g. [4, 5, 13, 14,
26, 27, 31, 32, 33, 35, 42, 54, 83, 93]); coordination: aggregation, naming, counting, etc.
[3, 20, 34, 40, 76, 79]; computability (e.g., [7, 8, 21, 24, 28, 36, 39, 69, 75]); control: election,
consensus, synchronization, etc. (e.g., [6, 10, 11, 15, 17, 18, 30, 36, 49, 50, 61, 68, 70, 88].

A separate area of research has been on computations by entities opportunistically moving
from node to node by traversing edges when they appear. This is the classical environment of
mobile agents (or robots) moving in a network, extended to dynamic networks. Also this case
is one of uncontrolled generation, as the mobile agents have no control over the changes in
the network; the changes are often seen as generated by the movement of carriers. The main
research focus has been on search and exploration (e.g., [1, 2, 12, 22, 37, 41, 43, 45, 46, 58]).

N. Santoro 3:7

4 Without Control What to Assume?

The fact that the future is unknown and under the control of an adversary means that, in
order to be able to perform some meaningful computation, some assumptions have to be
made. Usually called a priori knowledge and sometimes oracles, these assumptions restrict
the universe under observation, limiting the power of the adversary.

As mentioned before, the most common assumption is that the system is discrete syn-
chronous. Another common (usually hidden) assumption is that the footprint G = (V,N)
is finite, i.e., both N and E are finite. Let us make these assumptions. Still, they are not
enough, and additional assumptions are necessary.

For example, in the non-deterministic realm, additional assumptions are made on the
probability of the appearance of every edge (e.g, it obeys a Poisson process) or on the
relationship beween successive snapshots G(t) and G(t+ 1) (e.g., edge-Markovian process);
e.g., see [14, 29, 31, 33]. The focus of this note is however on the deterministic side.

4.1 Frequency Assumptions
A type of deterministic additional assumptions are about the frequency of the changes. Let
an edge e ∈ E be called transient if it appears in a finite number of snapshots G(t), recurrent
otherwise. Notice that if there are both transient and recurrent edges, there exists a time t̃
after which all appearing edges are recurrent.

We say that the system G is recurrent if all edges are recurrent: ∀e ∈ E, t ∈,∃t′ > t : e ∈
E(t′); this restriction is sometimes called local fairness. Example of recurrent systems are
population protocols with a fair scheduler. Investigations include e.g., [1, 2, 6, 7, 8, 26, 27, 75].

A more restricted class is that of B-bounded recurrent systems, B ∈ N, defined by the
assumption e ∈ E(t)⇒ e ∈ E(t′) where t < t′ ≤ t+B (e.g., [1, 2, 26, 27]).

Even more restricted is the class of P-periodic systems, P ∈ N, defined by the assumption
e ∈ E(t) ⇒ e ∈ E(t + P). Examples of periodic systems are public transports with fixed
timetable, low-earth orbiting satellite (LEO) systems. Study of computing in periodic systems
include [1, 2, 26, 27, 45, 46, 58, 60, 71, 72]. Notice that to determine whether or not a system
is periodic is undecidable. Similiarly undecidable is to verify if a periodic system has period
P . In other words, periodicity without knowledge of the period is not a useful assumption.

Note that all these frequency assumptions are restictions on the functions ψ and ρ.
Another type of requirement sometimes imposed on those functions is that they should
somehow reflect the behaviour of “real life" systems. With this motivation, the engineering
community has developed and has been using several mobility patterns, i.e. restrictions on
the functions ψ and ρ to mimic experimentally observed changes due to mobility of vehicles,
humans, etc. (e.g., [38, 81, 87]).

4.2 Connectivity Assumptions
Of all the common assumptions we considered so far, none has any impact on the connectivity
of the network. Indeed simultaneous end-to-end connectivity might not be guaranteed, and it
is also possible that all snapshots G(t) might be disconnected in spite of those assumptions.
Not surprising, especially for discrete synchronous systems, a popular class of additional
assumptions are those relating to connectivity.

The weakest such assumption is temporal connectivity, that is ∀x, y ∈ V, t ∈ T there exixts
a journey J ∈ J(u,v) such that start(J) ≥ t. This assumption is typical in the engineering
investigations; it is also the one used in the pioneering work of Awerbuch and Even [13].

OPODIS 2015

3:8 Time to Change: On Distributed Computing in Dynamic Networks

Temporal))Recurrent)Periodic)

13interval)

T3interval)

Figure 3 Connectivity assumptions.

Stronger assumptions require simultaneous end-to-end connectivity to hold at some
point in time. In increasing order of requirement’s strenght, we have recurrent connectivity:
∀t ∈ T ,∃ t′ ≥ t : G(t′) is connected (e.g., [10, 61]); B-bounded connectivity : ∀t ∈ T ,∃ t′ ≤
t+B : G(t′) is connected; and P-periodic connectivity : ∀t ∈ T ,∃ t′ ≥ t : ∀j ∈ G(t′ + jP) is
connected.

Finally, permanent connectivity: ∀t ∈ T , G(t) is connected; this assumption is also known
as 1-interval connectivity. An even more stringent assumption is permanent connectivity with
persistent backbone which requires that the same connected spanning subgraph persists for
T > 1 consecutive snapshots: ∀t ∈ T , GT (t) =

⋂
0≤j<T G(t+j) is connected; this assumption

is also known as T-interval connectivity. Both permanent and T-interval connectivity are
often assumed in distributed computations (e.g., [3, 41, 43, 54, 59, 68, 69, 70, 83, 88]).

4.3 Power of Assumptions
Notice that to each set of assumptions corresponds the class of systems satisfying those
assumptions. Important questions are about the computational power of these classes of
systems. For example, is one class more powerful than another ? What is the weakest class
where a given problem is solvable ? (i.e., what are the weakest assumptions which allow to
solve a given problem ?)

For example, with respect to the frequency of changes, we have identified the classes
G[Recurrent], G[Bounded], and G[Periodic]. Let P[Recurrent], P[Bounded], and P[Periodic]
be the set of problems solvable in those classes. Clearly, P[Recurrent] ⊆ P[Bounded]
⊆ P[Periodic]. Consider the problem of minimal broadcast with termination detection:
optimally diffusing some information and the source knowing (within finite time) of the
completion of the process. As we discussed previously, with respect to “minimality”, there
are three types of journeys and thus of broadcasts: foremost broadcast FoB, in which the
date of delivery is minimized at every node; shortest broadcast ShB, where the number of
hops used by the broadcast is minimized relative to every node; and fastest broadcast FaB,
where the overall duration of the broadcast is minimized (however late the departure be).
Interestingly : FoB ∈ P [Recurrent] but ShB /∈ P [Recurrent]; furthermore ShB ∈ P [Bounded]
but FaB /∈ P[Bounded]; on the other hand, FaB ∈ P[Periodic]. This implies first of all a
strict order on the difficulty of the three problems:

FoB < ShB < FaB .

It also shows that the inclusion among the set of problems is strict:

P[Recurrent] (P[Bounded] (P[Periodic]

N. Santoro 3:9

C1	

C2	

C3	
C4	
C5	

C6	

C7	
C8	

C9	
 C11	
C10	

C13	

C12	

bounded11

periodic1

recurrent1

permanent1connec9vity1

T=interval1connec9vity1

temporal1connec9vity1

recurrent1connec9vity1

Figure 4 Hierarchy of system classes, from [28].

and thus the strict hierarchy of computational power of those graph classes:

G[Recurrent] ≺ G[Bounded] ≺ G[Periodic] .

Note that these results, established in [26, 27], hold even without the discrete synchronous
assumption.

It is clear that any result established under a set of assumptions gives some information
about the computational impact of those assumptions. This information gives raise to a
hierarchy of classes of systems, as pointed out in [28].

5 Conclusions

At the end of this note, it should be clear that researching “distributed computing in dynamic
networks” means to consider a system that is (still) alive and evolving, and to understand
that the computation is by necessity decentralized and localized. More precisely, the point of
view is that of the computational entity, operating in an ever changing system; always in the
present, the entity is only aware of the changes in which it is involved, possibly remembering
the past, and in general without knowledge of the future.

The first distinction is on whether or not the computational entity has control over the
topological changes in which it is involved; that is, on whether the generation is controlled or
uncontrolled by the computation. In the case of controlled generation, an entity has a degree
of control over the future. In the case of uncontrolled generation (a condition that occurs also
in the case of mobile agents), assumptions have to be made to render computation possible.
The next distinction is on what assumptions are made.

Among the open research goals the obvious ones are to establish new results and to
explore new problems. An important goal is to remove assumptions. Indeed, when facing a
problem the guiding question should be: what is the weakest assumption that makes the
problem solvable?

The strongest assumption commonly made is that the system is discrete synchronous.
Actually almost all the algorithmic investigations making this assumption further assume
that the scheduling of the entities is fully sysnchronous: at each time steps, all the entities
are active and participate in the distributed computation. A weaker assumption is that of a
semi-synchronous setting: at each time step a (non-empty) subset of the entities are active,
the activation choice made by a fair but adversarial scheduler. This model, quite common in

OPODIS 2015

3:10 Time to Change: On Distributed Computing in Dynamic Networks

the context of robotic swarms [47], has just started to be examined in the other dynamic
networks contexts [41].

A larger open research direction is to remove the discrete synchronous assumption
completely, and look at the more general case possible, asynchronous and continuous. As
mentioned, some investigations have been carried out and results established in the general
case (e.g., [26, 27, 29]). Interestingly, in some investigations that assume discrete synchronous
systems, the analysis is however carried out in the continuous setting (e.g., [65]).

References
1 E. Aaron, D. Krizanc, and E. Meyerson. DMVP: Foremost waypoint coverage of time-

varying graphs. In Proc. 40th Int. Work. Graph Th. Conc. Comp. Sci. (WG), 29–41, 2014.
2 E. Aaron, D. Krizanc, and E. Meyerson. Multi-robot foremost coverage of time-varying

graphs In Proc. 10th ALGOSENSORS, 22–38, 2015.
3 S. Abshoff and F. Meyer auf der Heide. Continuous aggregation in dynamic ad-hoc networks.

In Proc. 21st Int. Coll. on Structural Inf. and Comm. Compl. (SIROCCO), 194–209, 2014.
4 S. Abshoff, M. Benter, M. Malatyali, and F. Meyer auf der Heide. On two-party commu-

nication through dynamic networks In Proc. 17th International Conference on Principles
of Distr. Syst. (OPODIS), 11–22, 2013.

5 M. Ahmadi, A. Ghodselahi, F. Kuhn, and A.R. Molla. The cost of global broadcast in
dynamic radio networks. In these Proceedings (OPODIS), 2015.

6 D. Alistarh and R. Gelashvili. Polylogarithmic-time leader election in population protocols.
In Proc. 42nd Int. Coll. Automata, Languages, Program. (ICALP), 479–491, 2015.

7 D. Angluin, J. Aspnes, Z. Diamadi, M. Fischer, and R. Peralta. Computation in networks
of passively mobile finite-state sensors. Distributed Computing, 18(4):235–253, 2006.

8 D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. The computational power of popu-
lation protocols. Distributed Computing, 20(4):279–304, 2007.

9 M. Antony and A. Gupta. Finding a small set of high degree nodes in time-varying graphs.
In Proc. 15th IEEE Int. Symp. Wireless, Mob. Multimedia Netw. (WoWMoM), 1–6, 2014.

10 L. Arantes, F. Greve, P. Sens, and V. Simon. Eventual leader election in evolving mobile
networks. In Proc. of 17th Int. Conf. Principles of Distr. Syst. (OPODIS), 23–37, 2013.

11 J. Augustine, G. Pandurangan, and P. Robinson. Fast Byzantine agreement in dynamic
networks. In Proc. of 32nd Symp. Principles of Dist. Comp. (PODC), 74–83, 2013.

12 C. Avin, M. Koucky, and Z. Lotker. How to explore a fast-changing world. In Proc. of the
35th Int. Coll. on Automata, Languages and Programming (ICALP), 121–132, 2008.

13 B. Awerbuch and S. Even. Efficient and reliable broadcast is achievable in an eventually
connected network. In Proc. of 3rd Symp. Princip. Dist. Comp.(PODC), 278–281, 1984.

14 H. Baumann, P. Crescenzi, and P. Fraigniaud. Parsimonious flooding in dynamic graphs.
In Proc. of the 28th ACM Symp. on Principles of Distr. Comp. (PODC), 260–269, 2009.

15 A. Benchi, P. Launay, and F. Guidec. Solving consensus in opportunistic networks. In
Proc. 16th Int. Conf. on Distributed Computing and Networking (ICDCN), 1:1–1:10, 2015.

16 S. Bhadra and A. Ferreira. Complexity of connected components in evolving graphs and
the computation of multicast trees in dynamic networks. In Proc. 2nd Intl. Conf. on Ad
Hoc Networks and Wireless (ADHOC-NOW), 259–270, 2003.

17 M. Biely, P. Robinson, and U. Schmid. Agreement in directed dynamic networks. In Proc.
of the 19th Int. Coll. on Structural Inf. and Comm. Complexity (SIROCCO), 73–84, 2012.

18 M. Biely, P. Robinson, U. Schmid, M. Schwarz, and K. Winkler. Gracefully degrading con-
sensus and k-set agreement in directed dynamic networks. In Proc. of the 2nd International
Conference on Networked Systems, 2015.

N. Santoro 3:11

19 B. Blonder, T.W. Wey, A. Dornhaus, R. James, and A. Sih. Temporal dynamics and
network analysis. Methods in Ecology and Evolution (3):958–972, 2012.

20 Q. Bramas and S. Tixeuil. The complexity of data aggregation in static and dynamic
wireless sensor networks. In Proc. 17th Int. Symp. Stab. Safety Secur. (SSS), 36–50, 2015.

21 P. Brandes and F. Meyer auf der Heide. Distributed computing in fault-prone dynamic
networks. In Proc. of 4th Int. Work. Theor. Aspects Dynamic Distr. Syst., 9–14, 2012.

22 B. Brejova, S. Dobrev, R. Kralovic, and T. Vinar. Efficient routing in carrier-based mobile
networks. Theoretical Computer Science, 509:113–121, 2013.

23 B. Bui-Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and foremost journeys
in dynamic networks. Int. J. of Foundations of Computer Science, 14(2):267–285, 2003.

24 A. Casteigts, S. Chaumette, and A. Ferreira. Characterizing topological assumptions of
distributed algorithms in dynamic networks. In Proc. of 16th Int. Coll. on Structural
Information and Communication Complexity (SIROCCO), 126–140, 2009.

25 A. Casteigts, P. Flocchini, E. Godard, N. Santoro, M. Yamashita On the expressivity of
time-varying graphs. Theoretical Computer Science, 590:27–37, 2015

26 A. Casteigts, P. Flocchini, B. Mans, and N. Santoro. Measuring temporal lags in delay-
tolerant networks. IEEE Trans. Comp. 63(2): 397–410, 2014.

27 A. Casteigts, P. Flocchini, B. Mans, and N. Santoro. Shortest, fastest, and foremost broad-
cast in dynamic networks. Int. J. of Foundations of Comput. Sci., 26(4):499–522, 2015.

28 A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs and
dynamic networks. Int. J. Parallel, Emergent and Distributed Syst., 27(5):387–408, 2012.

29 A. Chaintreau, A. Mtibaa, L. Massoulie, and C. Diot. The diameter of opportunistic mobile
networks. Communications Surveys & Tutorials, 10(3):74–88, 2008.

30 B. Charron-Bost, M. Fugger, and T. Nowak. Approximate consensus in highly dynamic
networks: The role of averaging algorithms. In Proc. 42nd International Colloquium on
Automata, Languages, and Programming (ICALP), 528–539, 2015.

31 A.E.F. Clementi, C. Macci, A. Monti, F. Pasquale, and R. Silvestri. Flooding time of edge-
Markovian evolving graphs. SIAM J. on Discrete Mathematics, 24(4):1694–1712, 2010.

32 A.E.F. Clementi, A. Monti, F. Pasquale, and R. Silvestri. Information spreading in station-
ary Markovian evolving graphs. IEEE Trans. Par. Distr. Syst., 22(9):1425–1432, 2011.

33 A.E.F. Clementi, R. Silvestri, and L. Trevisan. Information spreading in dynamic graphs.
Distributed Computing 28(1):55–73, 2015.

34 A. Cornejo, S. Gilbert, and C. Newport. Aggregation in dynamic networks. In Proc. Symp.
Principles of Distributed Computing (PODC), 195–204, 2012.

35 A. Cornejo, C. Newport, S. Gollakota, J. Rao, and T.J. Giuli. Prioritized gossip in vehicular
networks. Ad Hoc Networks, 11(1):397–409, 2013.

36 E. Coulouma and E. Godard. A characterization of dynamic networks where consensus is
solvable. In Proc. 20th Int. Coll. Structural Inf. Comm. Comp. (SIROCCO), 24–35, 2013.

37 O. Denysyuk and L. Rodrigues. Random walks on evolving graphs with recurring topologies.
In Proc. 28th Int. Symp. on Distributed Computing (DISC), 333–345, 2014.

38 A. Diab and A. Mitschele-Thiel. Human Mobility Patterns. IGI 2014.
39 G.A. Di Luna and R. Baldoni Non trivial computations in anonymous dynamic networks.

In these Proceedings (OPODIS), 2015.
40 G.A. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Conscious and unconscious

counting on anonymous dynamic networks. In Proc. 15th Int. Conf. on Dist. Comp. and
Networking (ICDCN), 257–271, 2014.

41 G.A. Di Luna, S. Dobrev, P. Flocchini, and N. Santoro. Live exploration of dynamic rings
arXiv: 1512.05306, 2015.

OPODIS 2015

3:12 Time to Change: On Distributed Computing in Dynamic Networks

42 C.Dutta, G.Pandurangan, R.Rajaraman, Z.Sun, and E.Viola. On the complexity of inform-
ation spreading in dynamic networks. In Proc. Symp. on Disc. Alg. (SODA) 717–736,
2013.

43 T. Erlebach, M. Hoffmann, and F. Kammer. On temporal graph exploration In Proc. of
42nd Int. Coll. on Automata, Languages, and Programming (ICALP), 444–455, 2015.

44 A. Ferreira. Building a reference combinatorial model for MANETs. IEEE Network,
18(5):24–29, 2004.

45 P. Flocchini, M. Kellett, P. Mason, and N. Santoro. Searching for black holes in subways.
Theory of Computing Systems, 50(1):158–184, 2012.

46 P. Flocchini, B. Mans, and N. Santoro. On the exploration of time-varying networks.
Theoretical Computer Science, 469:53–68, 2013.

47 P. Flocchini, G. Prencipe, and N. Santoro. Distributed Computing by Oblivious Mobile
Robots. Morgan & Claypool, 2012.

48 E. Godard and D. Mazauric. Computing the dynamic diameter of non-deterministic dy-
namic networks is hard. In Proc. 10th ALGSENSORS, 88-102, 2014.

49 C. Gomez-Calzado, A. Lafuente, M. Larrea, and M. Raynal. Fault-tolerant leader election
in mobile dynamic distributed systems. In Proc. 19th Pacific Rim Int. Symp. on Depend.
Comput. (PRDC), 78–87, 2013.

50 F. Greve, P. Sens, L. Arantes, and V. Simon. Eventually strong failure detector with
unknown membership. The Computer Journal, 55(12):1507–1524, 2012.

51 B. Haeupler and F. Kuhn. Lower bounds on information dissemination in dynamic networks.
In Proc. of 26th Int. Symp. on Distributed Computing (DISC), 166–180, 2012.

52 F. Harary and G. Gupta. Dynamic graph models. Math. Comp. Model., 25(7):79–88, 1997.
53 D. Ilcinkas, R. Klasing, and A.M. Wade. Exploration of constantly connected dynamic

graphs based on cactuses. In Proc. 21st SIROCCO, 250–262, 2014.
54 B. Haeupler, F. Kuhn. Lower bounds on information dissemination in dynamic networks.

In Proc. 26th Int. Symp.on Distributed Computing (DISC), 166–180, 2012.
55 P. Holme. Network reachability of real-world contact sequences. Physical Review E,

71(4):46119, 2005.
56 P. Holme. Modern temporal network theory: A colloquium. Eur. Phys. J. B, 88: 234,

2015.
57 P. Holme and J. Saramaki. Temporal networks. Physics Reports, 519:97–125, 2012.
58 D. Ilcinkas and A.M. Wade. On the power of waiting when exploring public transportation

systems. Proc. 15th Int. Conf. on Principles of Dist. Syst. (OPODIS), 451–464, 2011.
59 D. Ilcinkas and A.M. Wade. Exploration of the T-Interval-connected dynamic graphs: the

case of the ring. In Proceedings 20th SIROCCO, 13–23, 2013.
60 R. Jathar, V. Yadav, and A. Gupta. Using periodic contacts for efficient routing in delay

tolerant networks. Ad Hoc & Sensor Wireless Networks, 22(1,2):283–308, 2014.
61 D. Jeanneau, T. Rieutord, L. Arantes, and P. Sens A failure detector for k-set agreement

in asynchronous dynamic systems. INRIA Research Report 8727, 2015.
62 H. Kim, R. Anderson. Temporal node centrality in complex networks. Phys. Rev. E, 85:1–8,

2012
63 M. Konschake, H.H.K. Lentz, F.J. Conraths, P. Hovel, and T. Selhorst. On the robustness

of in-and out-components in a temporal network. PloS One, 8(2):e55223, 2013.
64 G. Kossinets, J. Kleinberg, and D. Watts. The structure of information pathways in a

social communication network. In Proceedings of the 14th Int. Conference on Knowledge
Discovery and Data Mining (KDD), 435–443, 2008.

65 V. Kostakos. Temporal graphs. Physica A, 388(6): 1007–1023, 2009.
66 L. Kovanen, M. Karsai, K. Kaski, J. Kertesz, J. Saramaki. Temporal motifs in time-

dependent networks. J. Stat. Mech. Theor. Exp., 2011(11): 11005, 2011.

N. Santoro 3:13

67 M. Krivela, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter. Mul-
tilayer networks. J. Complex Networks, 2(3): 203–271, 2014.

68 F. Kuhn, T. Locher, and R. Oshman. Gradient clock synchronization in dynamic networks
Theory of Computing Systems, 49(4):781–816, 2011.

69 F. Kuhn, N. Lynch, and R. Oshman. Distributed computation in dynamic networks. In
Proc. of the 42nd ACM Symp. on Theory of Computing (STOC), 513–522, 2010.

70 F. Kuhn, Y. Moses, and R. Oshman. Coordinated consensus in dynamic networks. In Proc.
30th Symp. on Principles of Distributed Computing (PODC), 1–10, 2011.

71 C. Liu and J. Wu. Scalable routing in cyclic mobile networks. IEEE Transactions on
Parallel and Distributed Systems, 20(9): 1325–1338, 2009.

72 C. Mergenci and I. Korpeoglu. Routing in delay tolerant networks with periodic connections.
EURASIP J. Wireless Communications and Networking, 202, 2015.

73 G. B. Mertzios, O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Temporal network
optimization subject to connectivity constraints. In Proc. 40th International Colloquium
on Automata, Languages, and Programming (ICALP), 657–668, 2013.

74 O. Michail. An introduction to temporal graphs: An algorithmic perspective. In Algorithms,
Probability, Networks, and Games, Springer, 308-343, 2015.

75 O. Michail, I. Chatzigiannakis, and P.G.. Spirakis. Mediated population protocols. Theor.
Comput. Sci., 412(22):2434–2450, 2011.

76 O.Michail, I.Chatzigiannakis, and P.G.Spirakis. Naming and counting in anonymous un-
known dynamic networks In Proc. 15th Int. Symp. Stab., Safety, Sec. (SSS), 281–295,
2013.

77 O. Michail, I. Chatzigiannakis, and P.G. Spirakis. Causality, influence, and computation in
possibly disconnected synchronous dynamic networks. Journal of Parallel and Distributed
Computing, 74(1):2016–2026, 2014.

78 O. Michail and P.G. Spirakis. Traveling salesman problems in temporal graphs. In Proc.
39th Int. Symp. on Mathematical Foundations of Computer Science (MFCS), 553-564, 2014.

79 A. Milani and M.A. Mosteiro. A faster counting algorithm for anonymous dynamic networks.
In these Proceedings (OPODIS), 2015.

80 A. Mtibaa, A. Chaintreau, L. Massoulie, and C.Diot. The diameter of opportunistic mobile
networks. In Proc 3rd Int. Conf. Emerging Networking Exp. Technol. (CoNEXT), 12, 2007

81 M. Musolesi and C. Mascolo. A community based mobility model for ad hoc network
research. In Proc 2nd Int. Work. Multi-Hop Ad Hoc Networks, 31–38, 2006.

82 V. Nicosia, J. Tang, M. Musolesi, G. Russo, C. Mascolo, V. Latora. Components in time-
varying graphs. Chaos, 22(2):023101, 2012.

83 R. O’Dell and R. Wattenhofer. Information dissemination in highly dynamic graphs. In
Proc. of the Joint Workshop on Foundations of Mobile Computing, 104–110, 2005.

84 Y. Pan and X. Li. Structural controllability and controlling centrality of temporal networks.
PLOS ONE, 9(4): e94998, 2014.

85 U. Redmond, M. Harrigan, and P. Cunningham. Identifying time-respecting subgraphs in
temporal networks. In Proceedings Europ. Conf. on Machine Learning. 2012

86 F.J. Ros and P.M. Ruiz. Minimum broadcasting structure for optimal data dissemination
in vehicular networks. IEEE Transactions on Vehicular Technology, 62(8):3964–3973, 2013.

87 A.K. Saha and D. Johnson. Modeling mobility for vehicular ad-hoc networks. In Proceedings
1st ACM Int. Workshop on Vehicular Ad Hoc Networks (VANET), 2004

88 G. Sharma and C. Bush. Distributed queueing in dynamic networks. Parallel Processing
Letters, 25(2), 2015.

89 T.A.B. Snijders. The statistical evaluation of social network dynamics. In Sociological
Methodology (M.E. Sobel and M.P. Becker Eds), Blackwell, 361–395, 2001.

OPODIS 2015

3:14 Time to Change: On Distributed Computing in Dynamic Networks

90 J. Tang, S. Scellato, M. Musolesi, C. Mascolo, and V. Latora. Small-world behavior in
time-varying graphs. Physical Review E, 81(5):055101, 2010.

91 J. Whitbeck, M. Dias de Amorim, V. Conan, and J.-L. Guillaume. Temporal reachability
graphs. In Proceedings 8th International Conference on Mobile Computing and Networking
(MOBICOM), 377–388, 2012.

92 M. Wildemann, M. Rudolf, and M. Paradies. The time has come: Traversal and reachability
in time-varying graphs. In Proc. VLDB Workshop on Big-Graphs Online Querying, 2015.

93 Z. Yang, S. Yat-sen, W. Wu, Y. Chen, and J. Zhang. Efficient information dissemination
in dynamic networks. In Proc. 42nd Int. Conf. on Parallel Proces. (ICPP), 603–610, 2013.

94 Z. Zhang. Routing in intermittently connected mobile ad hoc networks and delay tolerant
networks: Overview and challenges. IEEE Communications Surveys & Tutorials, 8(1):24–
37, 2006.

Space Bounds for Reliable Storage: Fundamental
Limits of Coding
Alexander Spiegelman1, Yuval Cassuto2, Gregory Chockler3, and
Idit Keidar4

1 Dept. of Electrical Engineering, Technion, Haifa, Israel
sashas@tx.technion.ac.il

2 Dept. of Electrical Engineering, Technion, Haifa, Israel
ycassuto@ee.technion.ac.il

3 CS Department, Royal Holloway, London, UK
gregory.chockler@rhul.ac.uk

4 Dept. of Electrical Engineering, Technion, Haifa, Israel
idish@ee.technion.ac.il

Abstract
We present here a synopsis of a keynote presentation given by Idit Keidar at OPODIS 2015,
the International Conference on Principles of Distributed Systems, which took place in Rennes,
France, on December 14-17 2015. More details may be found in [9].

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases distributed storage, impossibility

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.4

Category Keynote

1 Introduction

In recent years we see an exponential increase in storage capacity demands, creating a need
for big data storage solutions. Additionally, today’s economy emphasizes consolidation, giving
rise to massive data centers and clouds. In this era, distributed storage plays a key role.
Data is typically stored on a collection of storage nodes and is accessed by clients over the
network. Due to the geographical spread of such systems, communication is usually modeled
as asynchronous.

Given the inherent failure-prone nature of storage and network components, a reliable
distributed storage algorithm must store redundant information in order to allow data to
remain available when storage nodes fail or go offline. The most common approach to
achieve this is via replication [2], i.e., storing copies of each data block on multiple nodes. In
asynchronous settings, 2f + 1 replicas are needed in order to tolerate f failures [2]. Given
the immense size of data, the storage cost of replication is significant. Some previous works
have attempted to mitigate this cost via the use of erasure codes [1, 3, 6, 4, 10, 5].

Indeed, code-based solutions can reduce the storage cost as long as data is not accessed
concurrently by multiple clients. For example, if the data size is D bits and a single failure
needs to be tolerated, erasure-coded storage ideally requires (k + 2)D/k bits for some
parameter k > 1 instead of the 3D bits needed for replication. But as concurrency grows, the
cost of erasure-coded storage grows with it: when c clients access the storage concurrently,
existing code-based algorithms store O(cD) bits. Intuitively, this occurs because coded data

© Alexander Spiegelman, Yuval Cassuto, Gregory Chockler, and Idit Keidar;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 4; pp. 4:1–4:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 Space Bounds for Reliable Storage: Fundamental Limits of Coding

cannot be reconstructed from a single storage node. Therefore, writing coded data requires
coordination – old data cannot be deleted before ensuring that sufficiently many blocks
of the new data are in place. This is in contrast with replication, where data can always
be read coherently from a single copy, and so old data may be safely overwritten without
coordination.

In this work we prove that this extra cost is inherent, by showing a bound on the
storage complexity of asynchronous reliable distributed storage algorithms. Our bound
takes into account three problem parameters: f, c, and D, where f is the number of storage
node failures tolerated (client failures are unrestricted), c is the concurrency allowed by
the algorithm, and D is the data size. For these parameters, we prove that the storage
complexity is Θ(D ·min(f, c)). Asymptotically, this means either a storage cost as high as
that of replication, or as high as keeping as many versions of the data as the concurrency
level.

2 Lower bound

Our formal results are proven for emulations of a lock-free multi-reader multi-writer regular
register [7, 8].

For our lower bound, we consider algorithms that use (arbitrary) black-box encoding
schemes, which produce coded blocks of a given stored value independently of other values.
We assume that the storage consists of such coded blocks, in addition to possibly unbounded
data-independent meta-data, which we neglect. Given our storage model, every data bit
in the storage can be associated with a unique written value. Therefore, we measure the
storage cost of every value as the total number of bits in the storage that are associated with
this value; the total storage cost as the sum of the costs of all values.

We define a parameter 0 ≤ ` ≤ D, and observe that if a value v is associated with fewer
than D − ` bits in the storage, then more than ` bits (associated with v) still needed to be
written to the storage before v can be read.

Note that we use here a fundamental information-theoretic “pigeonhole” argument that
any representation, either coded or un-coded, cannot guarantee to recover a value v ∈ V
precisely from fewer than D = log2 |V| bits. This argument excludes common storage-
reduction techniques like compression and de-duplication, which only work in probabilistic
setups and with assumptions on the written data.

Given the above observation, we define a particular adversary behavior and prove that it
drives the storage to a state where either (1) f + 1 storage nodes hold at least ` + 1 bits
each, or (2) the storage holds at least D − ` bits of c different values. Now, picking ` = D/2
implies our lower bound on storage cost:

I Theorem 1. The storage cost of any algorithm that simulates a regular lock-free register
with up to f storage node failures, c concurrent writes, and a value domain of 2D bits is
Ω(D ·min(f, c)) bits.

3 Algorithm

Finally, we present an adaptive reliable storage algorithm whose storage cost is O(D·min(f, c)).
We achieve this by combining the advantages of replication and erasure coding. Our algorithm
does not assume any a priori bound on concurrency; rather, it uses erasure codes when
concurrency is low and switches to replication when it is high.

A. Spiegelman, Y. Cassuto, G. Chockler, and I. Keidar 4:3

References
1 Marcos Kawazoe Aguilera, Ramaprabhu Janakiraman, and Lihao Xu. Using erasure codes

efficiently for storage in a distributed system. In Dependable Systems and Networks, 2005.
DSN 2005. Proceedings. International Conference on, pages 336–345. IEEE, 2005.

2 Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-
passing systems. Journal of the ACM (JACM), 42(1):124–142, 1995.

3 Christian Cachin and Stefano Tessaro. Optimal resilience for erasure-coded byzantine dis-
tributed storage. In Dependable Systems and Networks, 2006. DSN 2006. International
Conference on, pages 115–124. IEEE, 2006.

4 Viveck R Cadambe, Nancy Lynch, Muriel Medard, and Peter Musial. A coded shared
atomic memory algorithm for message passing architectures. In Network Computing and
Applications (NCA), 2014 IEEE 13th International Symposium on, pages 253–260. IEEE,
2014.

5 Partha Dutta, Rachid Guerraoui, and Ron R. Levy. Optimistic erasure-coded distrib-
uted storage. In Proceedings of the 22nd International Symposium on Distributed Com-
puting, DISC’08, pages 182–196, Berlin, Heidelberg, 2008. Springer-Verlag. doi:10.1007/
978-3-540-87779-0_13.

6 Garth R Goodson, Jay J Wylie, Gregory R Ganger, and Michael K Reiter. Efficient
byzantine-tolerant erasure-coded storage. In Dependable Systems and Networks, 2004 In-
ternational Conference on, pages 135–144. IEEE, 2004.

7 Leslie Lamport. On interprocess communication. Distributed computing, 1(2):86–101, 1986.
8 Cheng Shao, Jennifer L Welch, Evelyn Pierce, and Hyunyoung Lee. Multiwriter consistency

conditions for shared memory registers. SIAM Journal on Computing, 40(1):28–62, 2011.
9 Alexander Spiegelman, Yuval Cassuto, Gregory Chockler, and Idit Keidar. Space bounds

for reliable storage: Fundamental limits of coding. arXiv preprint arXiv:1507.05169, 2015.
10 Zhiying Wang and Viveck Cadambe. Multi-version coding in distributed storage. In In-

formation Theory (ISIT), 2014 IEEE International Symposium on, pages 871–875. IEEE,
2014.

OPODIS 2015

http://dx.doi.org/10.1007/978-3-540-87779-0_13
http://dx.doi.org/10.1007/978-3-540-87779-0_13

Blockchain-Based Consensus∗

Juan A. Garay

Yahoo Labs, Sunnyvale, USA
garay@yahoo-inc.com

Abstract
Distributed consensus (aka Byzantine agreement [Pease, Shostak & Lamport, 1980]) is one of
the fundamental problems in fault-tolerant distributed computing and cryptographic protocols.
It requires correct participants (parties) to reach agreement on initially held values despite the
arbitrary behavior of some of them, with the additional requirement (known as Validity) that if all
the correct participants start off with the same value, then that must be the decision value. The
problem has been studied extensively in both the unconditional setting (where no assumptions
are made about the computational power of the adversary) and the cryptographic setting, and
efficient (i.e., polynomial-time) solutions exist tolerating the optimal number of misbehaving
parties and running in the optimal number of rounds, on networks with pairwise authenticated
channels.

In many interesting scenarios, however, such as “peer-to-peer” networks, where parties come
and go as they please and there are no prior relations among them, such infrastructure (pair-
wise authenticated channels, public-key infrastructure) is unavailable, thus raising the question
whether anything “interesting” can be achieved. In this talk we answer this question in the affirm-
ative, presenting two new probabilistic consensus protocols based on “proofs of work” (POWs,
aka “moderately hard functions,” “cryptographic puzzles” [Dwork & Naor, 1992]), the technology
underlying Bitcoin, the first and most popular decentralized cryptocurrency to date. (In Bitcoin,
POWs are implemented using the SHA-256 cryptographic hash function, by finding preimages
that produce values in a given smaller domain.)

In more detail, we first extract and analyze the core of the Bitcoin protocol, which we term the
Bitcoin backbone, and prove two fundamental properties of its “blockchain” approach which we
call “common prefix” and “chain quality.” The consensus protocols can then be built as applica-
tions on top of the backbone protocol, with the Agreement and Validity properties following from
common prefix and chain quality, respectively. The first protocol works assuming the adversary’s
hashing power is bounded by 1

3 of the network’s total hashing power. The second consensus
protocol is more elaborate, relies on the notion of robust transaction ledgers, which capture the
essence of Bitcoin’s operation as a cryptocurrency, and works assuming the adversary’s hashing
power is strictly less than 1

2 .

1998 ACM Subject Classification C.2.4 Distributed Systems, D.4.6 Security and Protection

Keywords and phrases Distributed consensus; cryptocurrencies; cryptographic protocols

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.5

Category Keynote

∗ This invited talk is based on “The Bitcoin Backbone Protocol: Analysis and Applications,” appearing
in Proc. Eurocrypt 2015, joint work with Aggelos Kiayias and Nikos Leonardos.

© Juan A. Garay;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 5; pp. 5:1–5:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Approximation of Distances and Shortest Paths in
the Broadcast Congest Clique∗

Stephan Holzer1 and Nathan Pinsker2

1 Massachusetts Institute of Technology (MIT), Cambridge, USA
holzer@mit.edu

1 Massachusetts Institute of Technology (MIT), Cambridge, USA
npinsker@mit.edu

Abstract
We study the broadcast version of the CONGEST-CLIQUE model of distributed computing.
This model operates in synchronized rounds; in each round, any node in a network of size n
can send the same message (i.e. broadcast a message) of limited size to every other node in
the network. Nanongkai presented in [STOC’14 [25]] a randomized (2 + o(1))-approximation
algorithm to compute all pairs shortest paths (APSP) in time1 Õ(

√
n) on weighted graphs.

We complement this result by proving that any randomized (2 − o(1))-approximation of APSP
and (2 − o(1))-approximation of the diameter of a graph takes Ω̃(n) time in the worst case.
This demonstrates that getting a negligible improvement in the approximation factor requires
significantly more time. Furthermore this bound implies that already computing a (2 − o(1))-
approximation of all pairs shortest paths is among the hardest graph-problems in the broadcast-
version of the CONGEST-CLIQUE model, as any graph-problem where each node receives a
linear amount of input can be solved trivially in linear time in this model. This contrasts a
recent (1 + o(1))-approximation for APSP that runs in time O(n0.15715) and an exact algorithm
for APSP that runs in time Õ(n1/3) in the unicast version of the CONGEST-CLIQUE model,
a more powerful variant of the broadcast version.

This lower bound in the broadcast CONGEST-CLIQUE model is derived by first estab-
lishing a new lower bound for (2 − o(1))-approximating the diameter in weighted graphs in the
CONGEST model, which is of independent interest. This lower bound is then transferred to
the CONGEST-CLIQUE model.

On the positive side we provide a deterministic version of Nanongkai’s (2+o(1))-approximation
algorithm for APSP [25]. To do so we present a fast deterministic construction of small hitting
sets. We also show how to replace another randomized part within Nanongkai’s algorithm with
a deterministic source-detection algorithm designed for the CONGEST model in [21].

1998 ACM Subject Classification C.2.1 Distributed networks

Keywords and phrases distributed computing, distributed algorithms, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.6

1 Introduction

In a distributed message passing model a network is classically represented as a graph. In
this graph any node can send (pass) one message to its neighbors in every round. There are
two major research directions concerning message passing models.

∗ Work supported by the following grants: AFOSR Contract Number FA9550-13-1-0042, NSF Award
0939370-CCF, NSF Award CCF-1217506, NSF Award number CCF-AF-0937274.

1 We use the convention that Ω̃(f(n)) is essentially Ω(f(n)/polylogf(n)) and Õ(f(n)) is essentially
O(f(n)polylogf(n)).

© Stephan Holzer and Nathan Pinsker;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 6; pp. 6:1–6:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Approximation of Distances and Shortest Paths in the Broadcast Congest Clique

The first research direction deals with determining the locality and congestion of problems.
Using the LOCAL model [29], where message-size is unbounded, one tries to characterize
the locality of problems, which is the ability of a node to make decisions regarding a problem
purely based on information on its local neighborhood in a graph. Using the CONGEST
model [29], one tries to characterize the delays caused by congestion. We assume for this
model that message sizes are bounded to O(logn) bits per round, and weights are encodable
in O(logn) bits. Congestion arises due to bottlenecks in the network that do not provide
enough bandwidth during the computation. Both, the LOCAL model and the CONGEST
model are classic models that have received a great deal of attention in the past decades.
Recently it was pointed out in [28] that the CONGEST model does not avoid interference
from locality issues, while the LOCAL model avoids interference from congestion. To be
more precise, congestion is completely avoided in the LOCAL model due to unlimited
bandwidth. On the other hand the complexity of algorithms in the CONGEST model may
still depend on the local structure of a graph (e.g. lower bounds transfer from the LOCAL
model). To truly separate the study of congestion from locality, one needs to consider
networks that avoid locality issues. These are e.g. networks in which each node is directly
connected to any other node in the network (represented by a clique), which is a network in
which any graph problem can be solved within one round in case unlimited bandwidth is
available. Such a model was introduced earlier by Lotker et al. [23] with the intention to
study overlay networks that have this property and was coined the CONGEST-CLIQUE
model. Examples of parallel systems design that recently provided additional motivation to
this original motivation to study the CONGEST-CLIQUE as an overlay network [23] are
included in Section 2. Note that in the broadcast setting, a simple algorithm can solve the
vast majority of problems in linear time: each node v can simply broadcast the IDs of all of
v’s neighbors and weights of incident edges in time O(n). Then each node in the network has
full information on the graph and can perform any computation (including e.g. NP-complete
problems) internally, which does not contribute to the runtime.

The second research direction focuses on determining the power of broadcast compared
to (multi-)unicast. Broadcast denotes the setting in which a node can only send the same
message to all its neighbors at the same time, while in a (multi-)unicast setting each node
can send different messages to different neighbors at the same time.

Results of this paper push both research directions. To be more precise, we present a
linear lower bound and new improved bounds for a broadcast model (the BCC model, see
definition below) that purely studies congestion.

I Definition 1. When applied to the CONGEST-CLIQUE model, we denote by UCC
model the (multiple-)unicast version of the CONGEST-CLIQUE model, and by BCC
model the broadcast version of the CONGEST-CLIQUE model [9, 23].

1.1 Contribution

In this context, this paper extends the work of [9, 15, 25]. Drucker, Kuhn and Oshman [9]
started to study the difference in computational power between the UCC and the BCC
models. Like [9] we present a linear lower bound in the BCC model. The lower bounds
of [9] were the first deterministic (and conditional randomized) linear lower bounds in this
model. Their lower bounds consider subgraph detection. Ours are the first unconditional
randomized linear lower bounds, while we consider (2− o(1))-approximations of APSP and
diameter. Three main conclusions from this result are:

S. Holtzer and N. Pinsker 6:3

Table 1 Summary of new and previous results for problems we study on positively weighted
graphs in the BCC model. Recent results of [4] in the UCC model are summarized in Section 2.

approx. factor APSP Diameter SSSP

1 O(n)# O(n)#
∼
O(
√

n)∗

2− o(1)
∼
O(n)#,

∼
Ω(n)†

∼
O(n)#,

∼
Ω(n)† —

2 —
∼
O(
√

n)∗ —

2 + o(1)
∼
O(
√

n)‡
∼
O(
√

n)‡ —

#) Trivial bound: collect the whole topology in a single node, perform computation inter-
nally.

∗) Nanongkai’s SSSP algorithm [25]. See Remark 14 for the diameter approximation.
†) Our randomized lower bound, see Theorem 12.
‡) Our deterministic version of the randomized algorithm of [25], see Theorem 19.

There is a (at least quadratic) difference in the complexity between computing a (2+o(1))-
approximation [25] and a (2− o(1))-approximation of APSP in this model.
Computing a (2− o(1))-approximation of APSP is among the hardest graph-problems in
the BCC model, as any graph-problem (with O(logn)-encodable weights) can be solved
in linear time.
There is a clear separation between the UCC and BCC model with respect to APSP
computation. Our lower bounds contrast the results of [4], who showed that e.g. even exact
APSP can be solved in the UCC model within Õ(n1/3) time and (1 + o(1))-approximated
in time O(n0.15715).

Note that this lower bound strengthens the Ω̃(
√
n) lower bound for exact computation of

APSP in the BCC model by [4] in terms of runtime and extends it to approximations.

Technical Overview: To obtain our lower bounds, we first use techniques of Frischknecht
et al. [10] to derive an Ω̃(n)-round lower bound to (2− o(1))-approximate the diameter of
weighted graphs in the CONGEST model. This implies an Ω̃(n)-round lower bound to
(2 − o(1))-approximate APSP. To prove our lower bounds, we modify a construction for
unweighted graphs that was claimed in [14] and can also be found in [32] to the weighted
setting. We then use this construction to transfer lower bounds for set disjointness from
two-party communication complexity (first studied by Kushilevitz [20]). Next we transfer
this lower bound from the CONGEST model to the BCC model.

Apart from these lower bounds, we derive positive results on computing APSP by
extending the line of work of [15, 25]. We start by replacing the randomized parts of a recent
result by Nanongkai [25], who presented an algorithm for a (2 + o(1))-approximation of the
all-pairs shortest paths problem in the BCC model in Õ(

√
n) rounds, with deterministic

ones. We then show that the resulting algorithm can be transferred to the UCC model with
an improvement in runtime.

1.2 Structure of the Paper
We review related work in Section 2 and define the computation models and terminology
that we work with in Section 3. Our lower bounds are presented in Section 4, where present
a review of two-party communication complexity, state the lower bounds for the CONGEST
model and transfer them to the BCC model. A key-ingredient for our upper bounds is a

OPODIS 2015

6:4 Approximation of Distances and Shortest Paths in the Broadcast Congest Clique

deterministic hitting set construction, which we present in Section 5. Finally, in Section 6,
we present our deterministic version of Nanongkai’s all-pairs shortest paths approximation
algorithm in the BCC model. We conclude by briefly mentioning some open problems and
directions for future work in Section 7.

2 Related Work

Algorithms in the BCC and UCC models: The first to study the CONGEST-CLIQUE
model were Lotker et al. [23], where they presented an O(log logn)-round algorithm for
constructing a minimum spanning tree in the UCC model. This was improved by Pemmaraju
and Sardeshmukh to O(log log logn) in [30]. Lenzen obtained in [22] an O(1)-round algorithm
in the UCC model for simultaneously routing n messages per vertex to their assigned
destination nodes, as well as an O(1) algorithm for sorting O(n2) numbers, given that
each vertex begins the algorithm knowing O(n) numbers. Independently Patt-Shamir and
Teplitsky [28] showed a similar, but slightly weaker result on sorting in the UCC model.
Later Hegeman et al. [13] provided constant and near-constant (expected) time algorithms
for problems such as computing a 3-ruling set, a constant-approximation to metric facility
location, and (under some assumptions) a constant-factor approximations to the minimum
spanning tree in the UCC model. Holzer [14] provided a deterministic O(

√
n)-algorithm

for exact unweighted SSSP (equivalent to computing a breadth first search tree) in the
BCC model. Independently Nanongkai [25] provided randomized (w.h.p.) algorithms in
the BCC model that take Õ(n1/2) rounds to compute (exact) SSSP, and Õ(n1/2) rounds
to (2 + o(1))-approximate APSP on weighted graphs. Much of our work for deterministic
APSP builds off [25], primarily on his idea of "shortcut edges", which do not change the
weighted shortest path length between any two nodes but decrease the diameter of the
graph. This is combined with a deterministic h-hop multi-source shortest paths scheduling
technique implied by the source-detection algorithm of Lenzen and Peleg [21], which works
in the broadcast version of the CONGEST model. Note that other versions that could have
been used, such as the one presented in [7, 14], only work in the (multi-)unicast version.
Recently Censor-Hillel, Kaski, et al. [4] transferred fast matrix multiplication algorithms into
the UCC model using results from [22] and derived a runtime of O(n1/3) in semirings and
O(n0.15715) in rings. Using this they obtain an O(n0.15715) algorithm for triangle detection
and undirected unweighted APSP. Both papers also solve APSP on directed weighted graphs
in time Õ(n1/3). In addition [4] presents an (1 + o(1))-approximation for exact directed
weighted APSP in time O(n0.15715), while [4] derives results for fast diameter and girth
computation as well as for 4-cycle detection.

Lower bounds in the BCC and UCC models: Drucker et al. [9] were the first to provide
lower bounds in the BCC model. They derived these bounds by transferring lower bounds
for set disjointness in the 3-party NOF model to the congested clique. In addition [9] showed
that ”a slightly super-constant lower bound on the number of rounds required to compute
some explicit function in the unicast CONGEST-CLIQUE model (when message size is
1) would imply a new lower bound on ACC (constant depth circuits), and an Ω(log logn)
lower bound for the unicast CONGEST-CLIQUE model would imply new a lower bound
for threshold circuits (the class TC). While explicit lower bounds in the UCC model remain
open and might have a major impact to other fields of (Theoretical) Computer Science as
mentioned above, they argue nonconstructively that most problems have a linear lower bound
in the UCC model with a counting argument. Independent and simultaneously to us, the

S. Holtzer and N. Pinsker 6:5

authors of [4] presented an Ω̃(
√
n) lower bound for APSP in the BCC model, which they

derive from matrix multiplication lower bounds that they state.

Lower bounds in the CONGEST model (all – including ours – in the unicast version):
Frischknecht et al. [10] (which is based on [5]) showed an Ω̃(n) lower bound for exact
computation of the diameter of an unweighted graph. In this paper we draw on these ideas
to obtain lower bounds for (2-o(1))-approximating the diameter of weighted graphs in the
BCC model. Note that also Nanongkai [25] presents an Ω̃(n)-time lower bound for any
poly(n)-approximation algorithm for APSP on weighted graphs in the CONGEST model
and shows that any α(n)-approximation of APSP on unweighted graphs requires Ω̃(n/α(n))
time. However, his proof relies on an information-theoretic argument and uses a star-shaped
graph such that it cannot be extended to the BCC model, as in this model every node could
simply broadcast its distance from the center to all other nodes. Assuming a girth conjecture,
Izumi and Wattenhofer show in [17] that constructing distance oracles with stretch 2t in
unweighted (weighted) graphs takes Ω(n1/(t+1)) rounds (Ω(n 1

2 + 5
t) rounds). When o(nε) label

size is required, assuming the girth-conjecture can be dropped. In contrast to this, our lower
bound does not assume relabeling. Our construction and the construction of [17] build on
top of [10] and appeared at the same time: [17] and the technical report [16].

Connections to systems and other models: Finally we want to provide examples of parallel
systems that might benefit from theoretical results in the CONGEST-CLIQUE model.
These include systems that provide all-to-all communication between 10, 000 nodes at full
bandwidth [27]. In addition [12] showed a close connection between the UCC model and
popular parallel systems such as MapReduce [6] and analyzed which kind of algorithms
for the UCC model can be simulated directly in MapReduce. Pregel [24] is a system that
simulates algorithms designed for message-passing models such as the CONGEST model
(the input graph is split among several machines). Klauk et al. [19] study large-scale graph
processing systems such as Pregel [24] in a theoretic way (k-machine model), which also
includes the CONGEST-CLIQUE model. Finally, the authors of [9] pointed out that the
BCC model is used in streaming [1], cryptology [11] and mechanism design [8]. They also
establish connections between the UCC and ACC as well as TC0 circuits.

3 Model and Definitions

We first introduce the CONGEST model and then derive the CONGEST-CLIQUE model,
which is at the center of this paper.

The CONGEST Model: Our network is represented by an undirected graph G = (V,E),
where nodes V model processors or computers and edges E model links between the processors.
Edges can have associated weights w : E → {a/p | a ∈ {1, . . . , p2} ⊂ N} for some p ∈ poly(n).
This ensures that each weight is a positive multiple of 1/p and can be encoded in O(logn)
bits. Two nodes can communicate directly with each other if and only if they are connected
by some edge from set E. We also assume that the nodes have unique IDs in the range of
{1, . . . , poly(n)} and infinite computational power.2 At the beginning, each node knows only
the IDs of its neighbors and the weights of its incident edges.

2 This assumption is made by the model because it is used to study communication complexity. Note
that we do not make use of this, as our algorithms perform efficient computations.

OPODIS 2015

6:6 Approximation of Distances and Shortest Paths in the Broadcast Congest Clique

We consider a model where nodes can send messages to their neighbors over synchronous
rounds of communication. During a round, each node u can send a message of B bits
through each edge connecting u to some other vertex v. We assume B = O(logn) during
our algorithms, which is the standard choice [29] and state our lower bounds depending
on arbitrary B. The message will arrive at node v at the end of the round. We analyze
the performance of an algorithm in this model by measuring the worst-case number of
communication rounds required for the algorithm to complete.

Let A be the set of distributed deterministic algorithms that evaluate a function g on an
underlying graph G ∈ Gn over n nodes, where Gn is the set of connected graphs over these
nodes. We define the distrubuted round complexity of an integer-valued function g as follows:

I Definition 2 (Distributed Round Complexity). The distributed round complexity Rdc (g)
is defined to be minA∈AmaxG∈Gn Rdc (A (G)). In other words, Rdc (A (G)) represents the
number of rounds that an algorithm A ∈ A needs in order to compute g (G).

We denote by Rdc−pubε (g) the (public coin3) randomized round complexity of g when the
algorithms have access to public coin randomness and compute the desired output with an
error probability smaller than ε.

The CONGEST-CLIQUE Model: In this model every vertex in a network G can directly
communicate with every other vertex in G. Note that although the communication graph
is a clique, we are interested in solving a problem on a subgraph G of the clique. Working
under the broadcast and (multi-)unicast versions of the CONGEST model while making
this assumption gives us the BCC model and the UCC model, respectively.

Problems and Definitions: For any nodes u and v ∈ V , a (u,v)-path P is a path (u =
x0, x1, . . . , xl = v) where (xi, xi+1) ∈ E for all i. We define the weight of a path P to
be w(P) :=

∑l−1
i=0 w(xi, xi+1). Let PG(u, v) denote the set of all (u,v)-paths in G. We

define dw(u, v) = minP∈PG(u,v) w(P); in other words, dw(u, v) is the weight of the shortest
(weighted) path from u to v in G. The (weighted) diameter Dw of (G,w) is defined as
maxu,v∈V dw(u, v). For unweighted graphs G (i.e. w(e) = 1 for all e ∈ E), we omit w from
our notations. In particular, d(u, v) is the (hop-)distance between u and v in G, and D is
the diameter of the unweighted network G.

I Definition 3 (Single Source Shortest Paths and All-Pairs Shortest Paths). In the (weighted)
single source shortest paths problem (SSSP), we are given a weighted network (G,w) and
a source node s. We want each node v to know the distance dw(s, v) between itself and s.
In the (weighted) all pairs shortest paths problem (APSP), each node v ∈ V needs to know
dw(u, v) for all u ∈ V .

For any α, we say an algorithm A is an α-approximation algorithm for SSSP if each node
v obtains a value d̃w(s, v) from A, such that dw(s, v) ≤ d̃w(s, v) ≤ α · dw(s, v). Similarly, we
say A is an α-approximation algorithm for APSP if each node v obtains values d̃(u, v) such
that dw(u, v) ≤ d̃w(u, v) ≤ αdw(u, v) for all u. Note that this is one-sided error; an algorithm
A is not an α-approximation algorithm if it ever outputs a value d̃w(s, v) < dw(s, v).

3 This is mainly of interest for our lower bounds. Our algorithms also work with private randomness.

S. Holtzer and N. Pinsker 6:7

4 Lower Bounds for Weighted and Unweighted Diameter
Computation and Approximation

Frischknecht et al. proved in [10] that any algorithm that computes the exact diameter of an
unweighted graph requires at least Ω(nB) rounds of communication in the unicast CONGEST
model. Note that they consider an arbitrary message-size B; the CONGEST model typically
considers only B = O(logn). We consider arbitrary B here as well. Their lower bound
is achieved by constructing a reduction from the two-party communication problem of set
disjointness to the problem of calculating the diameter of a particular unweighted graph G. We
extend their construction that considers exact computation of the diameter of an unweighted
graphs to the case of (2− 1/poly(n))-approximating the diameter in a (positively) weighted
graph. This is done by assigning weights to the edges in their (unweighted) construction
in a convenient way and deriving the approximation-factor. We start by reviewing basic
tools from two-party communication complexity and then present the modification of the
construction of [10] for the CONGEST model in Section 4.3. Subsequently we transfer this
bound to the BCC model.

4.1 A Review of Basic Two-Party Communication Complexity
It is necessary to review the basics of two-party communication complexity in order to present
our results in a self-contained way. In the remaining part of this subsection we restate the
presentation given in [15] only for completeness and convenience of the reader.

Two computationally unbounded parties Alice and Bob each receive a k-bit string
a ∈ {0, 1}k and b ∈ {0, 1}k respectively. Alice and Bob can communicate with each other one
bit at a time and want to evaluate a function h : {0, 1}k × {0, 1}k → {0, 1} on their input.
We assume that Alice and Bob have access to public randomness for their computation and
we are interested in the number of bits that Alice and Bob need to exchange in order to
compute h.

I Definition 4 (Communication complexity). Let Aδ be the set of two-party algorithms that
use public randomness (denoted by pub), which when used by Alice and Bob, compute h on
any input a (to Alice) and b (to Bob) with an error probability smaller than δ. Let A ∈ Aδ
be an algorithm that computes h. Denote by Rcc−pubδ (A(a, b)) the communication complexity
(denoted by cc) representing the number of 1-bit messages exchanged by Alice and Bob while
executing algorithm A on a and b. We define

Rcc−pubδ (h) = min
A∈Aδ

max
a,b∈{0,1}k

Rcc−pubδ (A(a, b))

to be the smallest amount of bits any algorithm would need to send in order to compute h.

A well-studied problem in communication complexity is that of set disjointness, where we
are given two subsets of {0, . . . , k − 1} and need to decide whether they are disjoint. Here,
the strings a and b indicate membership of elements to each of these sets.

I Definition 5 (Disjointness problem). The set disjointness function disjk : {0, 1}k×{0, 1}k →
{0, 1} is defined as follows.

disjk(a, b) =
{

0 : if there is an i ∈ {0, . . . , k − 1} such that a(i) = b(i) = 1
1 : otherwise

where a(i) and b(i) are the i-th bit of a and b respectively (indicating whether an element is
a member of the corresponding set.)

OPODIS 2015

6:8 Approximation of Distances and Shortest Paths in the Broadcast Congest Clique

We use the following basic theorem that was proven in Example 3.22 in [20] and in [2, 3, 18, 31].

I Theorem 6. For any sufficiently small δ > 0 we can bound Rcc−pubδ (disjk) by Ω(k).

4.2 Lower Bounds for Weighted Diameter Computation in the Unicast
CONGEST Model

I Theorem 7. For any n ≥ 10 and B ≥ 1 and sufficiently small ε any distributed randomized
ε-error algorithm A that computes a (2 − 1/poly(n))-approximation of the diameter of a
positively weighted graph requires at least Ω(nB) time for some n-node graph.

We follow the strategy of [10] and reduce the function disjk(n)2 to finding the diameter
of a graph G. Note that the graph in [10] is unweighted, while ours is weighted. We set a
parameter k(n) to be k(n) = b n10c and construct a graph Ga,b. We do so by defining a graph
Ga = (Va, Ea) that depends on inputs a and a graph Gb = (Vb, Eb) that depends on b. Based
on these graphs Ga and Gb, we derive the graph Ga,b containing both Ga and Gb. We start by
constructing sets of nodes L = {lv|v ∈ {1, . . . , 2k(n)− 1}} and R = {rv|v ∈ {1, . . . , 2k(n)−
1}}. Let L1 = {lv|v ∈ {1, . . . , k(n) − 1}} and L2 = {lv|v ∈ {k(n), . . . , 2k(n) − 1}}, and
define R1 = {rv|v ∈ {1, . . . , k(n)− 1}} and R2 = {rv|v ∈ {k(n), . . . , 2k(n)− 1}}. We add a
node cL to Va and a node cR to Vb, then add edges from cL to all nodes in L and from cR
to all nodes in R. We also add edges between each pair of nodes in L1, R1, L2, and R2,
and from li to ri for i ∈ {1, . . . , 2k(n) − 1}. Finally, we add an edge from cL to cR. Note
that these sets of (right/left) nodes only depend on the lengths of the inputs. In the proof
we define edges Ea that connect nodes in Va depending on a. We also define edges Eb that
connect nodes in Vb depending on b.

As in [10], we can represent the k(n)2 − 1 bits of input a by the k(n)2 possible edges
between the k(n) nodes L1 and k(n) nodes L2. More specifically, we choose the mapping from
integers in {1, . . . , k(n)2− 1} to pairs of integers in {1, . . . , k(n)− 1}× {k(n), . . . , 2k(n)− 1},
such that i is mapped to (lui , lvi) =

(
i mod k(n), k(n) +

⌊
i

k(n)

⌋)
. We add edge (lui , lvi) to

Ga if and only if a(i) = 0, and likewise represent the bits of b by adding edge (rui , rvi) to Gb
if and only if b(i) = 0.

We call the graph defined by these edges Ga = (Va, Ea), and construct a similar graph Gb
for input b. We define the cut-set Ck(n)2 = {(lv, rv) : v ∈ {0, . . . , 2k(n)− 1}} to be the 2k(n)
edges connecting each lv to the corresponding rv. We will refer to the sets of vertices L1∪R1 =
{lv|v ∈ {1, . . . , k(n)− 1}}∪{rv|v ∈ {1, . . . , k(n)− 1}} as UP (upper part of the graph) and
L2 ∪R2 = {lv|v ∈ {k(n), . . . , 2k(n)− 1}} ∪ {rv|v ∈ {k(n), . . . , 2k(n)− 1}} as LP (lower part
of the graph).

Figure 1 visualize this and we note that the former set is in the upper portion of the
graph, and the latter is in the lower portion. Finally, we set Ga,b = Ga ∪Gb ∪ Ck.

Now we assign weights to the edges in this construction. We set the weight of every
edge in Ga and in Gb to be 1, and the weight of each edge in Ck(n)2 to be 1/p, the smallest
possible weight (see definition of the weights in Section 3).

I Lemma 8. The weighted diameter of Ga,b is at most 2 + 1/p.

Proof. We show case by case that for any nodes u and v in Ga,b the distance dw(u, v) is at
most 2 + 1/p. The cases are as follows:
1. Nodes u and v are both in Ga: Every node in Ga other than CL is connected to CL

by an edge of length 1, and thus each node in Ga can reach any other node in Ga using
at most two edges of length 1. Thus, dw(u, v) ≤ dw(u, cL) + dw(cL, v) ≤ 2.

S. Holtzer and N. Pinsker 6:9

1

1/p

1

1

1

1

1

1

1

cL cR

l0

l1

l2

l3

r0

r1

r2

r3

1/p

1/p

1/p

1/p

1

1

1

1

Ga GbCk(n)2

UP

LP

Figure 1 Base graph of (weighted) diameter 2 + 1/p.

2. Nodes u and v are both in Gb: This case is identical to the previous case, so dw(u, v) ≤ 2.
3. Node u is in Ga and node v is in Gb (or vice verse): From u it is at most one hop to CL

of length 1, and from v it is at most one hop to CR of length 1. Since the edge between cL
and cR has weight 1/p, we conclude that dw(u, v) ≤ dw(u, cL) + dw(cL, cR) + dw(cR, v) =
2 + 1/p.

J

Following the ideas of [10], we reduce the problem of deciding disjointness between sets a
and b to computing the diameter of a graph.

I Lemma 9. The diameter of Ga,b is 1 + 2/p if the sets a and b are disjoint, else it is
2 + 1/p.

Proof. If inputs a and b are not disjoint, then there exists an i ∈ {1, . . . , k(n)2} such that
a(i) = b(i) = 1. Let us fix such an i for now and let ν := i mod k(n) and µ := k(n) +

⌊
i

k(n)

⌋
.

We show that the two nodes lν and rµ have distance of at least 2 + 1/p. The path must
contain an edge of length 1/p from the cut-set Ck(n)2 , since these are the only edges that
connect Ga to Gb. To obtain a path of length 1 + 1/p we are only allowed to add one
more edge from either Ga or Gb. When looking at the construction, the only two paths
of length 1 + 1/p that we could hope for are (lν , lµ, rµ) and (lν , rν , rµ). However, due to
a(i) = b(i) = 1 and the implied choice of ν and µ, we know that the construction of Ga,b does
not include edge (lν , lµ) nor edge (rν , rµ). Thus none of these paths exists and we conclude
that dw(lν , rµ) ≥ 2 + 1/p. Conversely if a and b are disjoint, the diameter of Ga,b is at
most 1 + 2/p. We prove this by showing that for any nodes u and v in Ga,b the distance
dw(u, v) is at most 1 + 2/p. To do this we distinguish three cases:
1. Node u is in Ga and node v is in Gb (or vice versa): When considering the nodes cL

and cR, we notice that from each of these nodes every other node in the graph can be
reached within 2 hops, one of which has weight 1/p. Now we can assume without loss of
generality that u = lν ∈ Ga and v = rµ ∈ Gb for some µ, ν ∈ {1, . . . , 2k(n)− 1}. Since we
assumed that a and b are disjoint there must be either at least one of the edges (lν , lµ) or
(rν , rµ) in case that one of the nodes is in UP and the other node is in LP. Thus there is at
least one of the paths (lν , lµ, rµ) or (lν , rν , rµ) with dw(lν , rµ) ≤ 1 + 1/p. In the remaining
case u, v are both in UP or both in LP, and we make use of the clique-edges (among

OPODIS 2015

6:10 Approximation of Distances and Shortest Paths in the Broadcast Congest Clique

nodes in the Ga (or Gb) part of UP (or LP), there are 4 cliques in total) and conclude
that u and v are connected by path (lν , rν , rµ) of length dw(lν , rν) + dw(rν , rµ) = 1 + 1/p.

2. Nodes u and v are both in Ga: Let u = ai and v = aj . If an edge between u and v
does not directly exist, then we know an edge between bi and bj must exist. Thus we can
get from u to v by using the edges (u, bi), (bi, bj) and (bj , v), for a path of total length
1 + 2/p.

3. Nodes u and v are both in Gb: we use identical logic to case 2, where both u and v are
in Ga; the distance between these nodes is at most 1 + 2/p.

Finally note, that these two cases combined with the upper bound from Lemma 8 imply that
dw(lν , rµ) = 2 + 1/p if and only if a and b are not disjoint. J

I Lemma 10. Computing a (2− o(1))-approximation of the diameter in positively weighted
graphs requires the exchange of Ω(n2) bits of information.

Proof. This follows immediately from Theorem 6; computing disjk(n)2 requires the exchange
of Ω(k(n)2) = Ω(n2) bits of information through the edges in Ck(n) in order to decide if a
and b are disjoint. J

Proof of Theorem 7. We use the graph Ga,b constructed above to show that any algorithm
A that computes a (2− 1/p′)-approximation of the diameter requires Θ(nB) time, for a p′
that we define later in terms of p.

First note that in case the diameter is (1 + 2/p) any A must output a value of at most
(1 + 2/p)(2− 3/p) = 2 + 1/p− 6/p2. As this value is strictly smaller than the other possible
diameter of Ga,b, which is (2 + 1/p), any (2 − 3/p)-approximation algorithm can decide
whether the Dw(Ga,b) is (1 + 1/p) or (2 + 1/p). We set p = 3 · p′ to get our desired (2− 1/p′)-
approximation algorithm. Based on this one can decide if inputs a and b, that were used to
construct the graph Ga,b, are disjoint.

We know due to Theorem 6 that any algorithm must exchange Ω(k(n)2) bits of information
through the edges in Ck(n) in order to decide if a and b are disjoint. As the bandwidth of Ck(n)
isO(|Ck(n)|·B) = O(k(n)·B), we conclude that Ω(k(n)/B) rounds are necessary to do so. Due
to the choice of k(n) we conclude that Ω(nB) rounds are necessary to (2− 1/p)-approximate
the diameter of a graph. J

4.3 Lower Bounds for Weighted Diameter Computation in the BCC
Model

Given a two-party communication problem f ′ with inputs a, b, we define the f ′-derived graph
Ga,b to be a graph constructed from f ′ as described previously, with Ga encoding the input
a to one party and Gb encoding the input b to two parties.

I Theorem 11. Given a two-party communication problem f ′ with inputs a, b, if Rcc−pubε (f ′)
is a lower bound on the number of bits that must be communicated in f ′, then solving the
problem on the f ′-derived graph Ga,b with a randomized algorithm A must take at least
Rcc−pubε (f ′)

nB rounds in the BCC model.

Before presenting the proof, we want to stress that the output our algorithm A depends
only on the edges of Ga,b. Other edges of the clique not mentioned in the construction of Ga,b
are still present in the CONGEST-CLIQUE model (not in the CONGEST model studied
in Theorem 7) but can be used only for communication. These (additional) communication
edges are not part of the lower bound construction and do not affect the diameter of the
graph Ga,b.

S. Holtzer and N. Pinsker 6:11

Proof. In each round, any algorithm can send at most |Ga| ·B bits of information from Ga
to Gb, as each vertex in Ga must broadcast the same B bits to all other vertices in Gb in
the BCC model. Similarly, any algorithm can send at most |Gb| · B bits from Gb to Ga.
There are no further nodes outside of Ga,b that could increase the bandwidth. Thus, any
algorithm can exchange at most (|Ga| + |Gb|) · B = nB bits between Ga and Gb in each
round. Therefore Rcc−pubε (f ′)

nB is a lower bound on the number of rounds that algorithm A

must take. J

I Theorem 12. Computing a (2− o(1))-approximation of the diameter in positively weighted
graphs in the BCC model takes Ω(n/B) rounds.

Proof. Computing a (2− o(1))-approximation of the diameter in positively weighted graphs
is shown to require the exchange of Ω(k(n)2) bits of information at the end of the proof of
Theorem 10 above. Due to the choice of k(n), these are Ω(n2) bits. The statement then
follows directly from an application of Theorem 11. J

I Theorem 13. Computing the diameter exactly in unweighted graphs takes Ω(n/B) in the
BCC model.

Proof. Computing the exact diameter of unweighted version of the graph Ga,b is shown to
require Ω(n2/B) bits of information to be exchanged in [10]. Thus, the result follows by
Theorem 11 using similar arguments as in the proof of Theorem 12. J

I Remark 14. Note that a 2-approximation of the diameter of positively weighted graphs is
achievable by computing SSSP starting in an arbitrary node, and returning twice the length
of the largest distance computed. To compute (exact) SSSP we can use the SSSP-algorithm
presented in [25], that runs in Õ(

√
n) time.

5 Deterministic Hitting Set Computation in the BCC Model

I Definition 15. Given a node u ∈ V , the set Sk(u) of a node u ∈ G contains the k nodes
closest to u in a weighted graph G, with ties broken by node ID. In other words, Sk(u) ⊂ V
has the following properties:
1. |Sk(u)| = k, and
2. for all s ∈ Sk(u) and t /∈ Sk(u), either (i) dw(u, s) < dw(u, t), or (ii) dw(u, s) = dw(u, t)

and the ID of s is smaller than the ID of t.

I Definition 16. A k-hitting set S of a graph G = (V,E) is a set of nodes such that, for
every node v ∈ V , there is at least one node of S in Sk(v).

Our algorithm (see Appendix A.3 of the full version [16] for pseudocode) takes as input
a graph G and an integer k, and returns a k-hitting set S ⊆ V . The algorithm works as
follows: each node starts by broadcasting its k incident edges of smallest weight to all other
nodes. If the node does have less than k neighbors, it just broadcasts the weight of all its
incident edges. This enables every node u to locally compute a set Sk(u), consisting of the k
closest nodes to u in G ([25], Observation 3.12). By closest we refer to the weighted distance
of nodes to u; note that Sk(u) always has k nodes for any k ≤ n, as the graph is connected.
We initialize S := ∅; S is updated over time until it is our desired k-hitting set. Let at
any time R be composed of the sets Sk(v) such that Sk(v) ∩ S = ∅ (initially R contains
all Sk(v)). We repeatedly find the vertex vmax that is contained in the largest number of
elements in R (breaking ties by minimum node ID). We then add this vmax to S and update

OPODIS 2015

6:12 Approximation of Distances and Shortest Paths in the Broadcast Congest Clique

R accordingly. In Lemma 17 we show that this method of greedily constructing a hitting set
achieves a O(logn)-approximation of the smallest possible hitting set.

I Lemma 17. Given a graph G, if the smallest possible hitting set uses N vertices, then S
contains at most O(N logn) vertices.

Proof. This proof can be found in Appendix A.3 of the full version of this paper [16]. J

I Lemma 18. Procedure HittingSet described in Appendix A.3 of the full version of this
paper [16] computes a k-hitting set of size Õ(n/k) in O(k) rounds.4

Proof. See Appendix A.3 of [16]. J

6 Deterministic (2 + o(1))-Approximation of APSP in Time Õ(n1/2)
in the BCC Model

Nanongkai provides a randomized distributed algorithm ([25], Algorithm 5.2) to (2 + o(1))-
approximate APSP in the BCC model that runs in Õ(n1/2) time. At a high level, this
algorithm works by
1. choosing a random

√
n-hitting set R ⊆ V of size Õ(

√
n) such that for all nodes in V ,

there is some node in R within
√
n hops,

2. (1 + o(1))-approximate (using random delays to avoid congestion) shortest paths from
each node in the hitting set R to every node in V ,

3. using these shortest paths to approximate shortest paths between all pairs of nodes.

We have previously presented a method to deterministically compute a
√
n-hitting set

R ⊆ V in Section 5. Nanongkai uses a randomized procedure to compute shortest paths
from this hitting set to all other nodes, which we will replace by a deterministic one in this
paper. This results in a deterministic Õ(n1/2) round algorithm:

I Theorem 19. The deterministic Algorithm 2 (stated fully in [16]) returns a (2 + o(1))-
approximation of APSP in time Õ(n1/2).

The remainder of this section is devoted to explaining and analyzing this algorithm in order
to prove this theorem (see pseudocode in Appendix A.2 of the full version [16]). While
doing so, we also review the majority of Algorithm 5.2 of [26]. We do this to be able to
point out our modifications exactly and to argue that each step can indeed be done in the
BCC model, while the original implementation of Algorithm 5.2 of [26] is just stated for the
CONGEST-CLIQUE model (without distinguishing between BCC and UCC models). As
shown in Theorem 5.3 of [26], Algorithm 5.2 of [26] computes a (2 + o(1))-approximation of
APSP on weighted graphs. Note that we only change the implementation of the algorithm
to be deterministic, meaning we can immediately derive the same approximation ratio (with
probability 1 instead of w.h.p.).

Given a graph G, we start by computing a k-shortcut graph Gk of G for k =
√
n, defined

below.

I Definition 20 (k-shortcut graph). The shortcut graph Gk = (V,Ek) is obtained by adding
an edge (u, v) of weight dw(u, v) to Ek for every u ∈ V and v ∈ Sk(u).

4 By using the O-notation we implicitly assume that k ≤ n1−polylogn, which will always be the case in
this paper.

S. Holtzer and N. Pinsker 6:13

To construct this graph, each node begins by broadcasting the k lightest edges adjacent to
it. If there are less than k edges adjacent to a node, that node just broadcasts all of them
and their weights. Based on this information each node u ∈ V can compute Sk(u), since
running e.g. k rounds of Dijkstra’s algorithm will only need the k-lightest edges incident to
each node (as argued in [26]). During the next O(k) time steps, each node u simultaneously
broadcasts its Sk(u) and creates a simulated shortcut edge from every node u ∈ G to every
node v ∈ Sk(u). New edge weights w′(u, v) := min{w(u, v),minz∈Sk(u) dw(u, z) + dw(z, v)}
are assigned to this graph. Then, node u locally computes a k-hitting set R of G, as described
in Section 5.

To further describe our algorithm we need the following definitions.

I Definition 21 (h-hop SSSP ([25], Definition 3.1)). Consider a network (G,w) and a given
integer h. For any nodes u and v, let Ph(u, v) be the set of all (u, v)-paths containing at
most h edges. Define the h-hop distance between u and v as

dhw(u, v) =
{
minP∈Ph(u,v)w(P) : Ph(u, v) 6= ∅
∞ : otherwise.

Let h-hop SSSP be the problem where, for a given weighted network (G,w), source node s
(node s knows that it is the source), and integer h (known to every node), we want every
node u to know disthG,w(s, u).

I Definition 22 (MSSP, h-hop MSSP [26]). Given a set S ⊆ V , the multi-source shortest
paths problem (MSSP) is to compute the SSSP tree from each node in S. This problem is
also referred to as the S-shortest paths problem (S-SP). In the h-hop MSSP problem (a.k.a.
h-hop S-SP [7, 14]) one is interested in the h-hop versions of SSSP w.r.t source nodes S.

Nanongkai states an MSSP algorithm that works in the CONGEST model, and computes
(1 + o(1))-approximate distances on weighted graphs. The main idea of this algorithm is
based on the following theorem.

I Theorem 23 ([25], Theorem 3.3). Consider any n-node weighted graph (G,w) and integer
h. Let ε = 1/ logn, and let W be the maximum-weight edge in G. For any i and edge (x, y),
let D′i = 2i and w′i(x, y) =

⌈
2hw(x,y)
εD′

i

⌉
. For any nodes u and v, if we let

d̃hw(u, v) = min

{
εD′i
2h × dw

′
i
(u, v) | i : dw′

i
(u, v) ≤ (1 + 2/ε)h

}
,

then dhw(u, v) ≤ d̃hw(u, v) ≤ (1 + ε) · dhw(u, v).

This theorem states that we can compute an (1 + ε)-approximation of h-hop-bounded SSSP
when we run O(logn) many h-hop-bounded SSSP computations rooted in node u, each
with modified weights w′1,w′logn. To obtain an (1 + ε)-approximation for h-hop-bounded
MSSP for sources S, Nanongkai performs O(logn) many h-hop-bounded MSSP computations
rooted in S, each with modified weights w′1,w′logn. In each execution of a h-hop MSSP,
Nanongkai starts all h-hop SSSP computations in all nodes of S simultaneously and delays
each step of any h-hop SSSP algorithm by a random amount. This is shown to guarantee
that with high probability the |S| copies of h-hop SSSP do not conflict with each other.

We can adapt Nanongkai’s h-hop MSSP algorithm to a deterministic setting using the
source detection algorithm of [21].

OPODIS 2015

6:14 Approximation of Distances and Shortest Paths in the Broadcast Congest Clique

I Definition 24 ((S,H,K)-source detection [21]). Given an unweighted graph G and H,K ∈
N0, the (S,H,K)-source detection problem is to output for each node u ∈ V the set Lu(H,K)
of all (up to) K closest sources in S to u, which are at most H hops away.

I Lemma 25 (Theorem 4.4, [21]). The (S,H,K)-source detection problem can be solved in
the CONGEST model in min(H,D) + min(K, |S|) rounds.

In Algorithm 1 of [21] (which corresponds to Lemma 25), each node always broadcasts the
same message within each time step to all neighbors. Therefore it runs in the broadcast
version of the CONGEST model. The algorithm is stated for unweighted graphs; we adapt
it to weighted graphs by replacing every edge e of weight w(e) by a path of w(e) edges,
each of weight 1. The simulation of these new nodes and edges is handled by the two nodes
adjacent to e, and is equivalent to delaying any transmission through e by w(e) rounds as it
is done in [25]. This transforms a weighted graph into an unweighted one.

We now use the above deterministic procedure instead of Nanongkai’s randomized one
to approximate weighted h-hop MSSP on the hitting set by choosing S := R. In each
execution of the unweighted h-hop MSSP on R, during iteration i, we set the weight w′i(x, y)
to be

⌈
2hw′(x,y)

ε2i

⌉
, then we execute Lenzen and Peleg’s (S,H,K)-source detection algorithm

(Lemma 25) on graph Gk using weight w′i with R := S and H := h. Furthermore, we set
K := |R| to guarantee that all sources within h hops are detected. We use the fact that, in
our model, nodes at any distance in the graph G can directly communicate with each other,
so |D| = 1 and min(H,D) = h.

After all O(logn) executions of the source-detection algorithm have completed, each node
u ∈ V knows its distance to every node in R under every set of weights wi. By Theorem 23,
this allows us to compute a (1 + o(1))-approximation of dhw(s, u) on Gk when choosing
ε = 1/ logn, which according to [26] is equal to dw(s, u) for each s ∈ R and u ∈ V . This
is proven in [26] via the choice of h and k, which we do not change. Finally we broadcast
these weights and compute like in [26] the value d′′(u, v), which is shown in [26] to be a
(2 + o(1))-approximation.

Proof of Theorem 19. Runtime: Broadcasting the k lowest-weight edges, one by one in
each round, takes k rounds in the BCC model. Computing Sk(u) and w′ takes no additional
communication. By Lemma 17 we can compute the k-hitting set R is computed in time O(k)
in the BCC model. Computing weights w′i in takes O(logW) rounds. Each execution of
(R, h, |R|)-source detection takes h+ |R| time steps on the (simulated) undirected graph, and
there are O(logW) iterations, see Lemma 25. Since h = O(n1/2) and |R| = Õ(n/k) = Õ(

√
n)

(see Lemma 17) and logW = O(logn), as W ∈ poly n. The remaining parts of the algorithm
only perform broadcasts, which take |R| = Õ(

√
n) rounds. Therefore the total runtime is

Õ(
√
n).

Approximation ratio: The (2 + o(1))-approximation ratio for our algorithm is immediately
derived from [25], as we do not change Nanongkai’s algorithm besides modifying it to execute
deterministically. J

7 Open Problems

It is natural to ask whether our method of proving lower bounds for the diameter in the
BCC model can be extended to other problems. Of particular interest are those discussed in
[10], since these problems use similar graph constructions for proving lower bounds. It would

S. Holtzer and N. Pinsker 6:15

also be of interest to further reduce the runtime of approximating APSP in the BCC and
UCC model, maybe also at the cost of larger approximation factors.

References
1 N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency

moments. J. Comput. and Syst. Sciences, 58(1):137-147, 1999. Journal of Computer and
System Sciences, 58(1):137–147, 1999.

2 László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication com-
plexity theory (preliminary version). In Proceedings of the 27th annual IEEE Symposium on
Foundations of Computer Science, FOCS 1986, Toronto, Ontario, Canada, 27-29 October
1986, pages 337–347, 1986.

3 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. Journal of Computer and System
Science, 68(4):702–732, 2004. doi:10.1016/j.jcss.2003.11.006.

4 Keren Censor-Hillel, Petteri Kaski, Janne Korhonen, Christoph Lenzen, Ami Paz, and
Jukka Suomela. Algebraic methods in the congested clique. arXiv preprint 1503.04963,
2015.

5 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness
of distributed approximation. SIAM Journal on Computing, 41(5):1235–1265, 2012.

6 Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clus-
ters. Communications of the ACM (CACM), 51(1):107–113, 2008.

7 Benjamin Dissler. Efficient multi-aggregation with applications to centrality computation.
Semester thesis, ETH Zürich, Department of Information Technology and Electrical Engi-
neering, Zürich, Switzerland, 2013.

8 Shahar Dobzinski, Noam Nisan, and Sigal Oren. Economic efficiency requires interaction.
In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 – June
03, 2014, pages 233–242, 2014.

9 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In Proc. of the 33rd annual ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, PODC 2014, Paris, France, July 15-18, 2014, pages 367–376, 2014.

10 S. Frischknecht, S. Holzer, and R. Wattenhofer. Networks cannot compute their diameter
in sublinear time. In Yuval Rabani, editor, Proc. of the 23rd Annual ACM-SIAM Symp.
on Discrete Algorithms, SODA 2012, pages 1150–1162, 2012.

11 O. Goldreich and A. Warning. Secure multi-party computation, 1998. Unpublished
manuscript.

12 James W. Hegeman and Sriram V. Pemmaraju. Lessons from the congested clique applied
to mapreduce. In Magnús M. Halldórsson, editor, Structural Information and Communi-
cation Complexity – 21st International Colloquium, SIROCCO 2014, Takayama, Japan,
July 23-25, 2014. Proceedings, volume 8576 of Lecture Notes in Computer Science, pages
149–164. Springer, 2014.

13 James W. Hegeman, Sriram V. Pemmaraju, and Vivek Sardeshmukh. Near-constant-time
distributed algorithms on a congested clique. In DISC, pages 514–530, 2014. doi:10.1007/
978-3-662-45174-8_35.

14 S. Holzer and R. Wattenhofer. Optimal distributed all pairs shortest paths and applica-
tions. In Darek Kowalski and Alessandro Panconesi, editors, Proceedings of the 31st annual
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC 2012,
Funchal, Madeira, Portugal, July 16-18, 2012, pages 355–364, 2012.

15 Stephan Holzer. Distance Computation, Information Dissemination, and Wireless Capacity
in Networks, Diss. ETH No. 21444. Phd thesis, ETH Zurich, Zurich, Switzerland, 2013.

OPODIS 2015

http://dx.doi.org/10.1016/j.jcss.2003.11.006
http://dx.doi.org/10.1007/978-3-662-45174-8_35
http://dx.doi.org/10.1007/978-3-662-45174-8_35

6:16 Approximation of Distances and Shortest Paths in the Broadcast Congest Clique

16 Stephan Holzer and Nathan Pinsker. Approximation of distances and shortest paths in
the broadcast congest clique. CoRR, abs/1412.3445, 2014. URL: http://arxiv.org/abs/
1412.3445.

17 Taisuke Izumi and Roger Wattenhofer. Time lower bounds for distributed distance oracles.
In Principles of Distributed Systems, pages 60–75. Springer, 2014.

18 Bala Kalyanasundaram and Georg Schnitger. The Probabilistic Communication Com-
plexity of Set Intersection. SIAM Journal of Discrete Mathematics, 5(4):545–557, 1992.
doi:10.1137/0405044.

19 Hartmut Klauck, Danupon Nanongkai, Gopal Pandurangan, and Peter Robinson. The
distributed complexity of large-scale graph processing. arXiv preprint arXiv:1311.6209 (to
appear at SODA’15), 2013.

20 E. Kushilevitz and N. Nisan. Communication complexity. Cambridge University Press,
Cambridge, UK, 1997.

21 C. Lenzen and D. Peleg. Efficient distributed source detection with limited bandwidth. In
Panagiota Fatourou and Gadi Taubenfeld, editors, Proceedings of the 32nd annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC 2013, Mon-
treal, Quebec, Canada, July 22-24, 2013, pages 375–382, 2013.

22 Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique. In
Panagiota Fatourou and Gadi Taubenfeld, editors, Proceedings of the 32nd annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC 2013, Mon-
treal, Quebec, Canada, July 22-24, 2013, pages 42–50, 2013.

23 Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, and David Peleg. MST construction in O(log
log n) communication rounds. In Proceedings of the 15th annual ACM Symposium on
Parallel Algorithms and Architectures, SPAA 2003, San Diego, California, USA, June 7-
9,2003, pages 94–100, 2003.

24 Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn, Naty
Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing. In
Ahmed K. Elmagarmid and Divyakant Agrawal, editors, Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana,
USA, June 6-10, 2010, pages 135–146. ACM, 2010.

25 Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths.
In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC’14,
pages 565–573, 2014.

26 Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths.
CoRR, abs/1403.5171, 2014. URL: http://arxiv.org/abs/1403.5171.

27 Edmund B Nightingale, Jeremy Elson, Jinliang Fan, Owen S Hofmann, Jon Howell, and
Yutaka Suzue. Flat datacenter storage. In OSDI, pages 1–15, 2012.

28 Boaz Patt-Shamir and Marat Teplitsky. The round complexity of distributed sorting: Ex-
tended abstract. In Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, PODC’11, pages 249–256, New York, NY, USA,
2011. ACM.

29 David Peleg. Distributed computing: a locality-sensitive approach. Society for Industrial
and Applied Mathematics, Philadelphia, Pennsylvania, USA, 2000.

30 Sriram V. Pemmaraju and Vivek B. Sardeshmukh. Algebrisation in distributed graph
algorithms: Fast matrix multiplication in the congested clique. arXiv preprint 1412.2109,
2014.

31 Alexander A. Razborov. On the Distributional Complexity of Disjointness. Theoretical
Computer Science, 106(2):385–390, 1992.

32 Roger Wattenhofer. Principles of Distributed Computing, Lecture 11, ETH Zurich, Zurich,
Switzerland, http://dcg.ethz.ch/lectures/podc_allstars/lecture/chapter11.pdf, 2011.

http://arxiv.org/abs/1412.3445
http://arxiv.org/abs/1412.3445
http://dx.doi.org/10.1137/0405044
http://arxiv.org/abs/1403.5171

The Cost of Global Broadcast in Dynamic Radio
Networks∗

Mohamad Ahmadi1, Abdolhamid Ghodselahi2, Fabian Kuhn3, and
Anisur Rahaman Molla4

1 Department of Computer Science, University of Freiburg, Freiburg, Germany
mahmadi@cs.uni-freiburg.de

2 Department of Computer Science, University of Freiburg, Freiburg, Germany
hghods@cs.uni-freiburg.de

3 Department of Computer Science, University of Freiburg, Freiburg, Germany
kuhn@cs.uni-freiburg.de

4 Department of Computer Science, University of Freiburg, Freiburg, Germany
armolla@cs.uni-freiburg.de

Abstract
We study the single-message broadcast problem in dynamic radio networks. We show that the
time complexity of the problem depends on the amount of stability and connectivity of the
dynamic network topology and on the adaptiveness of the adversary providing the dynamic
topology. More formally, we model communication using the standard graph-based radio network
model. To model the dynamic network, we use a variant of the synchronous dynamic graph model
introduced in [Kuhn et al., STOC 2010]. For integer parameters T ≥ 1 and k ≥ 1, we call a
dynamic graph T -interval k-connected if for every interval of T consecutive rounds, there exists
a k-vertex-connected stable subgraph. Further, for an integer parameter τ ≥ 0, we say that the
adversary providing the dynamic network is τ -oblivious if for constructing the graph of some
round t, the adversary has access to all the randomness (and states) of the algorithm up to round
t− τ .

As our main result, we show that for any T ≥ 1, any k ≥ 1, and any τ ≥ 1, for a
τ -oblivious adversary, there is a distributed algorithm to broadcast a single message in time
O
((

1 + n
k·min{τ,T}

)
· n log3 n

)
. We further show that even for large interval k-connectivity, effi-

cient broadcast is not possible for the usual adaptive adversaries. For a 1-oblivious adversary,
we show that even for any T ≤ (n/k)1−ε (for any constant ε > 0) and for any k ≥ 1, global
broadcast in T -interval k-connected networks requires at least Ω(n2/k2 logn) time. Further, for
a 0-oblivious adversary, broadcast cannot be solved in T -interval k-connected networks as long
as T < n− k.

1998 ACM Subject Classification F.2.2 Analysis of Algorithms and Problem Complexity – Non-
numerical Algorithms and Problems, G.2.2 Discrete Mathematics – Graph Theory

Keywords and phrases radio network, dynamic network, global broadcast, interval connectivity,
hitting game

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.7

1 Introduction

By now, a rich theory on algorithms for large-scale wireless networks exists and we have a
rather precise understanding of the complexity of many basic computation and communication

∗ Research supported by ERC Grant No. 336495 (ACDC).

© Mohamad Ahmadi, Abdolhamid Ghodselahi, Fabian Kuhn, and Anisur Rahaman Molla;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 7; pp. 7:1–7:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 The Cost of Global Broadcast in Dynamic Radio Networks

tasks for a variety of wireless network models. While many wireless communication models and
modeling assumptions have been studied, to a large part, the considered models all share one
basic property. Most of the existing work is based on static networks and on communication
models where wireless signal reception is modeled in a completely deterministic way. For
example, in the classic radio network model, a wireless network is modeled as a graph and a
node in the graph can receive a message transmitted by some neighbor if and only if no other
neighbor transmits at the same time, e.g., [5, 21]. In the SINR (or physical) model, nodes
have fixed coordinates in some geometric space and a transmitted signal can be successfully
received if and only if the signal-to-noise-and-interference ratio at the receiver is above a
certain fixed threshold, e.g., [14, 22].

The situation in actual networks however is quite different and wireless signal reception
might behave in a rather unpredictable way. There can be multiple sources for interference
which cannot be controlled by a distributed algorithm and signal propagation depends on
various properties of the environment. As a result, we often obtain wireless communication
links with unreliable behavior [16, 24, 26, 27, 28]. In addition, wireless devices might be
mobile leading to a potentially completely dynamic network topology.

As a consequence, in recent years, researchers in the wireless algorithms community have
also started to consider radio network models which exhibit nondeterministic behavior and
sometimes general dynamic topologies, e.g., [9, 11, 12, 2, 17, 13]. In the present paper, we
continue this line of research and study the global broadcast problem in dynamic radio
networks for a range of modeling assumptions. Note that in ordinary, static radio networks,
albeit appearingly simple, global broadcast is one of the best studied problems in the area,
(see, e.g., [4, 5, 10, 15, 23] and many others). We model a dynamic network by applying
the dynamic network model introduced in [18]. Time is divided into synchronous rounds
and a wireless network is modeled as a dynamic graph with a fixed set of n nodes and a set
of edges which can change from round to round. For two parameters T ≥ 1 and k ≥ 1, a
dynamic graph is called T -interval k-connected if for any interval of T consecutive rounds,
the set of edges which are present throughout these T rounds induces a graph with vertex
connectivity at least k (in [18], the model was only introduced for k = 1). We refer to [19]
for a more thorough discussion of the model of [18] and of several earlier related dynamic
network models (e.g., [3, 6, 11, 25]).

Communication is modeled by using the standard radio network model. In each round,
each node can either transmit a message or listen. A listening node successfully receives a
message transmitted by a neighbor in the current graph if and only if no other neighbor
transmits in the same round. We assume that nodes cannot detect collisions, i.e., whether 0
or more than 1 neighbors transmit is indistinguishable for a listening node. Note that the
described dynamic network model does not only allow to model topology changes due to
arbitrary node mobility. It also allows to model unreliable links where the presence/availability
can change for various reasons.

We assume that the dynamic graph is provided by a worst-case adversary. As we study
randomized distributed protocols, we need to specify to what extent the adversary can adapt
to the random decisions of the nodes when determining the sequence of network topologies.
For the adaptiveness of the adversary, we use a more fine-grained classification than what is
usually done. For an integer parameter τ ≥ 0, we say that the adversary is τ -oblivious if for
determining the graph in round r, the adversary knows the randomness of all nodes of all
the rounds up to round r − τ . Typically, only the extreme cases are studied. An adversary
which does not have access to the random decisions of the algorithm (i.e., τ =∞) is called
an oblivious adversary, whereas an adversary which has access to the randomness of the

M. Ahmadi, A. Ghodselahi, F. Kuhn, and A. R. Molla 7:3

algorithm is called an adaptive adversary. If the adversary even has access to the randomness
of the current round (τ = 0), it is called strongly adaptive, otherwise (τ = 1), it is called
weakly adaptive. For more precise formal definitions of the modeling assumptions, we refer to
Section 2.

In our paper, we consider the problem of broadcasting a single message from a source
node to all the nodes of a dynamic network. The most relevant previous work in the context
of the present work appeared in [11, 13, 17]. In [11], it is shown that in 1-interval 1-connected
networks (i.e., the graph is connected in every round)1, the complexity of global broadcast
for a 1-oblivious adversary is Θ(n2/ logn). In [17] and [13], ∞-interval 1-connected graphs
are considered (i.e., there is a stable connected subgraph which is present throughout the
whole execution). In [17], it is shown that even for a 0-oblivious adversary, it is possible to
solve broadcast in O(n log2 n) rounds and it is shown that Ω(n) rounds are necessary even if
the stable connected subgraph has diameter 2. In [13], it is shown that when only assuming
an ∞-oblivious adversary, the running time can be improved to O((D + logn) logn), where
D is the diameter of the stable connected subgraph. Note that in this case, the algorithm in
[13] achieves essentially the same time complexity as is possible in static graphs of diameter
D [5, 20, 23]. In [13], it is also shown that for a 1-oblivious adversary, Ω(n/ logn) rounds
are necessary even for D = 2.

1.1 Contributions
In the following, we state the results of the paper. For formal details regarding problem
statement and modeling not specified in the introduction, we refer to Section 2. Our main
result is a randomized broadcast algorithm for the described dynamic radio network model.
The algorithm (and also partly its analysis) is based on a combination of the techniques used
in [11] and [17]. We prove the following main theorem.

I Theorem 1. Let T ≥ 1, τ ≥ 1, and k ≥ 1 be positive integer parameters. Assume that the
adversary is τ -oblivious. Then, in a dynamic T -interval k-connected n-node radio network,
with high probability, single message broadcast can be solved in time

O

((
1 + n

k ·min {τ, T}

)
· n log3 n

)
.

I Remark. Note that for small and for large values of min {τ, T}, one can do slightly better.
It is straightforward to generalize the broadcast algorithm of [11] to complete single message
broadcast in time O

(
n2/k logn

)
in 1-interval k-connected radio networks against a 1-oblivious

adversary. Using the result from [17], we also know that for a sufficiently large constant c
and T ≥ cn log2 n, single-message broadcast can be solved in O(n log2 n) rounds even for
τ = 0. Our upper bound therefore beats previous results for min {τ, T} = ω(log4 n) and
T = O(n log2 n).

In addition to the upper bound of Theorem 1, we also prove a lower bound which
essentially shows that even for very large values of T , some relaxation on the standard
adaptive adversaries is necessary in order to get an upper bound which improves with T . For
τ = 1, we show that at least for small k, the generalized upper bound of [11] is essentially
optimal. The lower bound can be seen as a generalization of the simple Ω(n2/ logn) lower
bound for k = 1 and T = 1 proven in [11].

1 In [11], the connectivity condition on the dynamic network is phrased differently and slightly more
general.

OPODIS 2015

7:4 The Cost of Global Broadcast in Dynamic Radio Networks

Table 1 An overview over the existing bounds on global broadcast in the dynamic radio network
model. The results marked in bold are the results of the present paper. For the T =∞ results, D
refers to the diameter of the stable subgraph.

interval conn. vertex conn. adversary complexity

T = 1 k = 1 τ = 1 Θ
(
n2/ logn

)
[11]

T =∞ k = 1 τ = 0 O
(
n log2 n

)
/ Ω(n), D=2[17]

T =∞ k = 1 τ =∞ O ((D + logn) · logn)[13]
T =∞ k = 1 τ = 1 Ω(n/ logn), D=2 [13]

T ≥ 1 k ≥ 1 τ ≥ 1 O
((

1 + n
k·min{τ,T}

)
· n log3 n

)
T ≤ (n/k)1−ε k ≥ 1 τ = 1 Ω (n2/(k2 logn))
T < n− k k ≥ 1 τ = 0 impossible

I Theorem 2. For every constant ε > 0 and every T ≤ (n/k)1−ε, the expected time to
solve single-message broadcast in T -interval k-connected radio networks against a 1-oblivious
adversary is at least

Ω
(

n2

k2 logn

)
.

In addition, we show that unless the interval connectivity is very large, single-message
broadcast cannot be solved in the presence of a strongly adaptive (0-oblivious) adversary.

I Theorem 3. For any k ≥ 1 and any T < n− k, it is not possible to solve single-message
broadcast in T -interval k-connected radio networks against a 0-oblivious adversary.

The discussion of the above result appears in Section 5. We note that the above theorem
is tight in the following sense. As soon as T ≥ n− k, global broadcast can be solved (with
potentially exponential time complexity) and as soon as T = cn log2 n for a sufficiently large
constant c, we know from [17] that it can even be solved in time O(n log2 n). All results, as
well as a comparison with previous work are summarized in Table 1.
I Remark. In [18], interval connectivity was introduced to (in particular) study the problem
of broadcasting multiple messages in a dynamic network in a standard message passing
model. It is shown that interval connectivity T allows to essentially speed up multi-message
broadcast by a factor of T . We find it interesting that when considering a radio network
model, interval connectivity seems to provide a similar speed-up, even for broadcasting a
single message. Something similar also holds for graphs with large vertex connectivity. In
[7, 8], it is shown that even on static graphs, vertex connectivity k allows to speed up multi
message broadcast by essentially a factor k. Here, we show that a similar speed up can be
obtained in radio networks even for broadcasting a single message.

2 Model and Problem Definition

Dynamic Network. As described in Section 1, we adapt the synchronous dynamic network
model of [18] to model dynamic networks.2 Time is divided into rounds such that for all
r ≥ 1, round r starts at time r − 1 and ends at time r. A dynamic network is given by a

2 Similar dynamic network models have also been used before [18], for example in [3, 11, 25]. For additional
references and a thorough discussion, we refer to [19].

M. Ahmadi, A. Ghodselahi, F. Kuhn, and A. R. Molla 7:5

sequence of undirected graphs 〈G1, G2, . . . 〉, where Gr = (V,Er) is a static graph representing
the network topology in round r. The node set V is a set of n nodes corresponding to
the wireless devices in the network and the edge set Er is the set of active communication
links in round r. A dynamic graph 〈G1, G2, . . . 〉 is called T -interval k-connected for integer
parameters T ≥ 1 and k ≥ 1 if and only if for all r ≥ 1, the graph

Ḡr,T = (V, Ēr,T), Ēr,T :=
r+T−1⋂
r′=r

Er′

is a graph with vertex connectivity at least k.

Communication Model. An n-node distributed algorithm A is defined by n randomized
processes which are assigned to the nodes of the dynamic graph by an adversary. For
simplicity we use the term node u to also refer to the process which is assigned to node u.
In each round, each node decides either to transmit a message or to listen to the wireless
channel. The behavior of the wireless channel is modeled by using the standard radio network
model first used in [5, 10]. When node u decides to transmit in round r, its message reaches
all of its neighbours in Gr. A node v which listens in round r receives a message transmitted
by a neighbor u if and only if u is the only neighbor of v in Gr which is transmitting in
round r. If no message reaches v (no neighbor is transmitting), v receives silence, indicated
by ⊥. If two or more messages reach v, v also receives ⊥, i.e., v cannot distinguish 2 or more
transmitting neighbors from silence.

Adversary. We assume that the network changes under the control of an adversary. For any
round r the adversary has to determine Gr based on the knowledge it has. For an integer
τ ≥ 0, we call an adversary τ -oblivious if for any r ≥ 1, the adversary constructs Gr based
on the knowledge of: (1) the algorithm description, (2) the network topologies of rounds
1, . . . , r − 1, and (3) the nodes’ random choices of the first r − τ rounds.

Global Broadcast. A distributed algorithm solving the global broadcast problem needs to
disseminate a single message M from a distinguished source node to all the processes in
the network. We assume that in a distributed broadcast algorithm, non-source nodes are
activated (and can start to actively transmit) when they first receive the broadcast message
M. Nodes that do not yet knowM remain silent.

Mathematical Notation. For two integers a ≤ b, [a, b] denotes the set of all integers between
a and b (including a and b). Further, for an integer a ≥ 1, we use [a] as a short form to
denote [a] := [1, a]. We say that a probability event happens with high probability (w.h.p.)
if it happens with probability at least 1− 1/nc, where n is the number of nodes and c > 0 is
a constant which can be chosen arbitrarily large by adjusting other constants.

3 Upper Bound

3.1 Randomized Broadcasting Algorithm
We now describe our randomized algorithm which solves broadcast in a T -interval k-connected
radio network against a τ -oblivious adversary. As stated in Section 1.1, the algorithm
has a time complexity of O

(
(1 + n/(kψ)) · n log3 n

)
with high probability where ψ :=

min {τ, T, n/2k}. In light of the comment following Theorem 1 in Section 1.1, throughout

OPODIS 2015

7:6 The Cost of Global Broadcast in Dynamic Radio Networks

Section 3, we assume that ψ = Ω(log3 n) as otherwise, one can achieve a stronger upper
bound by just using an adapted version of [11].

In the first round, the source node transmits the message to its neighbors. Because we
assume that each graph is k-vertex connected, after one round, at least k+ 1 nodes know the
message. From there on, our randomized algorithm works in phases. To simplify notation, in
the following, we ignore the first round and assume that at time 0, the algorithm starts with
at least k + 1 nodes which know the broadcast messageM. The phases of the algorithm are
defined as follows.

I Definition 4 (Phase). The jth time interval of ψ consecutive rounds is called phase j,
where j is a positive integer. Hence, phase j starts at time (j − 1)ψ and ends at time jψ and
it consists of rounds (j − 1)ψ + 1, . . . , jψ.

Let tv denote the round in which M is received by node v for the first time. In each
round t the set V is partitioned into following three subsets. The previously informed nodes
I(t) are the nodes that have received M in some phase before the current phase. Note
that in the first phase, I(t) consists of at least k + 1 informed nodes. The nodes that have
receivedM for the first time in the current phase in some round before time t are called
newly informed nodes, and they are denoted by N(t). Finally, the set of uninformed nodes at
time t is denoted by U(t) := V \ {I(t) ∪N(t)}.

The algorithm can be seen as a combination of two existing protocols which appeared in
[11] and [17]. The protocol of [11] is a very basic one where all informed nodes always try to
transmit the message independently with the same uniform probability. In the harmonic
broadcast protocol of [17], informed nodes use harmonically decaying probabilities to forward
the message. In each phase of our algorithm, in the first dψ/2e rounds, a variant of the
protocol of [11] is applied and in the second bψ/2c rounds, the idea of the protocol of [17] is
applied. In the following, the algorithm is described in detail.

First half of a phase. In the first dψ/2e rounds of a phase, all informed nodes, i.e., all
v ∈ {I(t) ∪N(t)}, transmit the message with probability 1/n.

Second half of a phase. The nodes in U(t) ∪ I(t) remain silent throughout the second
half of a phase. However, in each round t, any node v ∈ N(t) transmits the message with
probability pv(t), given by

∀t >
⌊
t

ψ

⌋
· ψ +

⌈
ψ

2

⌉
: ∀v ∈ N(t) : pv(t) := 1

1 +
⌊
t−t̂v−1
T

⌋ , (1)

where

t̂v :=

⌊
t
ψ

⌋
· ψ +

⌈
ψ
2

⌉
, if bt/ψc · ψ < tv < bt/ψc · ψ + dψ/2e

tv, otherwise

and T will be fixed in Lemma 5.
Thus, in the second half of a phase, only nodes participate which for the first time receive

M in the current phase. Each node v which gets newly informed in the phase executes the
following protocol. As soon as v knowsM and as soon as the second half of the phase has
started, v starts transmittingM to its neighbors. For the first T rounds, v transmits the
M with probability 1, for the next T rounds v transmitsM with probability 1/2, and the
probability for the next time intervals of T rounds becomes 1/3,1/4, etc.

M. Ahmadi, A. Ghodselahi, F. Kuhn, and A. R. Molla 7:7

θ0 θ1 θ2 θ3 θm· · ·

jψ −
⌊
ψ
2

⌋
jψ time

Figure 1 Time intervals [θi−1, θi] with equal number of free and busy rounds where i > 1.

3.2 Analysis
Recall that by the definitiuon of ψ, we have kψ ≤ n/2, ψ ≤ T , and ψ ≤ τ . The T -interval
k-connectivity of the dynamic network guarantees the existence of a stable spanning subgraph
with vertex connectivity of at least k throughout the whole duration of every phase. We call
this reliable spanning subgraph the backbone of the phase. Note that we may have different
backbones in different phases. Let P (t) denote the sum of transmitting probabilities of all
the nodes in round t, i.e., P (t) :=

∑
v∈V pv(t). For the analysis of our algorithm, we say that

round t is busy if P (t) ≥ 1 and otherwise we say that round t is free. If the node v is the
only node transmitting in a round, we say that node v gets isolated in that round.

For any phase j, let θ0 := jψ − bψ/2c, i.e., θ0 is the time when the second half of the
phase starts. For i > 0, we define θi > θi−1 to be the first time such that in the time interval
[θi−1, θi] (i.e., in rounds θi−1 + 1, . . . , θi) the number of busy rounds equals the number of
free rounds (see Figure 1).

We further define m ≥ 0 such that θm is the last such time defined for a given phase.
The case m = 0 implies that throughout the second half of the phase, the number of busy
rounds is always larger than the number of free rounds.

We use the following lemma adapted from Lemma 13 of [17].

I Lemma 5 ([17]). Consider a node v. Let t > t̂v be such that at least half of the rounds
t̂v + 1, . . . , t are free. If T ≥ d12 ln(n/ε)e for some ε > 0, then with probability larger than
1− ε/n there exists a round t′ ∈

{
t̂v + 1, . . . , t

}
such that v is isolated in round t′.

I Lemma 6. For all phases, in each time interval [θi−1, θi], where i ∈ [m], if round
θi−1 + 1 is busy then any node v with t̂v ∈ {θi−1,θi − 1} gets isolated in some round
t′ ∈

{
t̂v + 1, . . . , θi

}
with high probability.

Proof. Let t̄ denote the first round that the number of free rounds equals the number of
busy rounds starting from round t̂v + 1. For the sake of contradiction, assume that t̄ > θi,
that is, the number of free rounds is less than the number of busy rounds in

{
t̂v + 1, . . . , θi

}
and we also know that the number of busy rounds is greater than the number of free rounds
in
{
θi−1 + 1, . . . , t̂v

}
(because of minimality of θi and the fact that round θi−1 + 1 is busy).

It follows that the number of busy rounds is greater than the number of free rounds in
{θi−1 + 1, . . . , θi} contradicting our assumption on the equality of free and busy rounds in
{θi−1 + 1, . . . , θi}. Therefore, t̄ ≤ θi and according to Lemma 5 the claim holds. J

As one can see in Figure 2, at the beginning of each phase, the uninformed nodes in the
backbone form one or several connected subgraphs which we call the uninformed connected
components. For each uninformed connected component there must exist some edge in the
backbone (within a phase) connecting an informed node to a node in that component. Note
that because the adversary is τ -oblivious and thus also oblivious to the last ψ ≤ τ rounds, the
adversary has to determine the dynamic graph throughout a phase before the phase starts.
The backbone graph of a phase can therefore not change depending on the randomness of
the algorithm during the phase.

OPODIS 2015

7:8 The Cost of Global Broadcast in Dynamic Radio Networks

u
informed nodes

v

Figure 2 Backbone of a phase. Available components are identified by thick circles.

I Definition 7 (Available Components and Available Nodes). At the end of the first dψ/2e
rounds of each phase, any uninformed connected component that includes at least one newly
informed node is called an available component. All the nodes in an available component are
called available nodes.

I Lemma 8. Consider an arbitrary phase and an arbitrary i ≥ 1. If at the beginning of
round θi of the phase there exists at least one uninformed available node, then w.h.p. at least
one available node gets informed in round θi.

Proof. We will show that for every i ≥ 1, w.h.p., if there is some node available u with
t̂u = θi−1 and at the beginning of round θi, there is at least one uninformed available node,
then at least one available node v gets informed in round θi. The claim of the lemma then
follows by induction on i. If there are no available nodes, there is nothing to prove. If there
are available nodes, there is at least one node u which gets newly informed in the first half of
the phase and we therefore have t̂u = θ0. Using the above claim, it then w.h.p. follows that
if there still is an uninformed available node at time θ1 − 1, some uninformed available node
u′ gets informed in round θ1 and thus t̂u′ = θ1. For i > 1, the induction step now follows in
the same way. It therefore remains to show that w.h.p., if there is some node available u
with t̂u = θi−1 and at the beginning of round θi, there is at least one uninformed available
node, then at least one available node v gets informed in round θi.

By Lemma 6 we know that w.h.p., all the nodes u with t̂u ∈ {θi−1, . . . , θi − 1} get isolated
in some round t′ ∈ {θi−1 + 1, . . . , θi}. Hence, by induction on j, w.h.p., for all j ≤ i−1 there
is some node u′ with t̂u′ = θj and therefore all nodes u with t̂u ∈ {θ0, . . . , θi − 1} get isolated
in some round t′ ∈ {θ0 + 1, . . . , θi}. Consequently, w.h.p., all newly informed nodes N(θi−1)
at time θi − 1 get isolated in some round t′ ∈ {θ0 + 1, . . . , θi}. Let v be an uninformed
available node before round θi (i.e., at time θi − 1). Because v is available, at time θi − 1,
there is a informed available neighbor u in the backbone graph of the current phase. We
clearly have u ∈ N(θi−1) and thus w.h.p., u gets isolated in some round t′ ∈ {θ0 + 1, . . . , θi}.
As soon as u gets isolated, v gets informed and we can therefore conclude that u gets isolated
in round θi and thus v gets informed in round θi. J

The proof of the following lemma appears in the full version of this paper [1].

I Lemma 9. Consider an arbitrary phase and assume that at the beginning of the second
bψ/2c rounds of the phase there are z available nodes. Then, w.h.p., for some constant c > 0,
at the end of the phase we have at least min

{
z, cψ/ ln2 n

}
newly informed nodes.

Using the established technical lemmas, we can now proof our upper bound theorem.

M. Ahmadi, A. Ghodselahi, F. Kuhn, and A. R. Molla 7:9

I Theorem 1 (restated). Let T ≥ 1, τ ≥ 1, and k ≥ 1 be positive integer parameters.
Assume that the adversary is τ -oblivious. Then, in a dynamic T -interval k-connected n-node
radio network, with high probability, single message broadcast can be solved in time

O

((
1 + n

k ·min {τ, T}

)
· n log3 n

)
.

Proof. Consider some phase j and let Bj be the backbone of phase j, i.e., Bj is the stable
k-connected subgraph of phase j. Consider the subgraph Bj [Uj] of Bj induced by the
uninformed nodes Uj . This induced subgraph might consist of several connected components.
However, each of the components is connected to at least k nodes in Ij as it is shown in
Figure 2 (recall that we can assume that |I(t)| ≥ k + 1). Note that if one of these at least k
nodes gets isolated in the first half of the phase, all nodes in the component become available
for the second half of the phase.

In the first half of phase j, in any round t, each node in I(t) transmits the message with
probability 1/n. Therefore, for every node u ∈ I(t), the probability that u gets isolated in
round t+ 1 (in the first half of a phase) is at least

Pr(u gets isolated in round t+ 1) ≥ 1
n

(
1− 1

n

)n−1
>

1
en
. (2)

In following, we analyze the progress in the first half of some phase j. Consider an
uninformed node v ∈ Uj (at the beginning of phase j). Let Av be the event that v becomes
available in the first half of phase j. Event Av definitely occurs if one of the at least k
initially informed neighbors of v’s component in Bj [Uj] gets isolated in one of the at least
ψ/2 rounds of the first half of the phase. The probability for this is

Pr(Av) ≥ 1−
(

1− k

en

)ψ/2
> 1− e−kψ/2en ≥ kψ

4en.

The last inequality follows from the fact that for all 0 ≤ x ≤ 1, e−x ≤ 1 − x/2. Let X
be the number of nodes in Uj that get available in phase j. For convenience, we define
λ := |Uj |/n ≤ 1. We then have

E[X] =
∑
v∈Uj

Pr(Av) ≥ |Uj | ·
kψ

4en = λkψ

4e . (3)

We define F := min
{
ψ

16e ,
cψ

ln2 n

}
, where c > 0 is the constant that is used in Lemma 9. Note

that by Lemma 9, in phase j, w.h.p., at least min{X,F} uninformed nodes become informed.
We define a phase to be successful if X ≥ λF . Let S be the event that phase j is successful

and let S̄ be the complementary event. We can upper bound the expected value of X as
follows:

E[X] < Pr(S̄) · λF +
(
1− Pr(S̄)

)
· λn.

Combining with the upper bound in (3), we obtain (recall that we assume that kψ ≤ n/2).

Pr(S̄) <
n− kψ

4e
n− F

≤
n− kψ

4e

n− ψ
16e
≤
(

1− kψ

4en

)(
1 + ψ

8en

)
(k≥1)
≤

(
1− kψ

8en

)
. (4)

By Lemma 9, in a successful phase, w.h.p., at least λF new nodes get informed. Hence, in
a successful phase, w.h.p., we get rid of at least an (F/n)-fraction of the remaining uninformed
nodes. In order to inform all nodes, w.h.p., we therefore need at most O(n log(n)/F) =
O(n log3(n)/ψ) successful phases. Using (4) and a standard Chernoff argument, we can thus
w.h.p. upper bound the total number of phases by O

(
n2 log3(n)/(kψ2)

)
. As each phase

takes ψ round, this concludes the proof. J

OPODIS 2015

7:10 The Cost of Global Broadcast in Dynamic Radio Networks

4 Lower Bound

In this section we prove a lower bound for global broadcast in T -interval k-connected radio
networks against a 1-oblivious adversary. Furthermore, we show impossibility of solving the
same problem against a strongly adaptive adversary (0-oblivious adversary).

Our lower bound is based on a general technique for proving lower bounds for communic-
ation problems in radio networks, introduced by Newport in [23]. Using this technique, one
first defines a combinatorial game for which a lower bound can be proved directly. It is then
shown how to reduce the game to the problem in order to leverage the game’s lower bound
to obtain the desired lower bound for the problem.

To prove Theorem 2 using this technique, we first introduce an abstract hitting game,
called the (β, `, ϕ)-periodic hitting game and directly prove a lower bound for winning this
game. We note that this game is more involved than the games used in previous work,e.g.,
[13, 23]. Based on a lower bound for the hitting game, for a given instance of the game
we instantiate an n-node target network. By instantiation of an n-node network, we mean
assigning n processes with unique IDs to the nodes of the network. For the instantiation, one
needs to also have information which is not available to the player in the game. However,
we show that by playing the game, the player can still simulate the execution of a given
broadcast algorithm on the corresponding target network to the given instance of the game.
We show that this simulation of a broadcast algorithm allows to win the hitting game and
the lower bound on the hitting game and the simulation together imply a lower bound for
solving global broadcast.

(β, `, ϕ)-periodic hitting game. The game is defined for three integers β, `, ϕ > 0 and
proceeds in rounds. Time is divided into phases of ϕ rounds, where the jth phase of the
game is called phase πj . That is, phase π1 consists of rounds 1 to ϕ, phase π2 consists of
rounds ϕ+ 1 to 2ϕ, etc. The first round of any phase πj is called tj . The player of the game
is represented by a probabilistic automaton P and plays the game against a referee. Two
sets are defined for this game, a selection set S := [β] which is fixed during the game, and a
target set which might change from round to round. The target set of round t is denoted by
X(t). In each round t, P chooses one element from S and outputs it as the guess γ(t) for
round t. Round t is called a successful round, if and only if γ(t) ∈ X(t).

At the beginning of each phase πj (j ≥ 1), the referee determines a set Yj consisting of
` elements chosen uniformly at random from S. We define the target set as follows. For
convenience, assume that Y0, Y−1 and X(0) are empty sets.

∀j,∀t ∈ [tj , tj + ϕ− 1] : X(t) :=
{
Yj ∪

[
X(t− 1) \ ({γ(t− 1)} ∪ (Yj−2 \ Yj−1))

]
if t = tj ,

X(t− 1) \ {γ(t− 1)} if t 6= tj .

That is, at the beginning of each phase πj , the referee chooses ` elements Yj from S uniformly
at random and adds them to the target set. Two phases (2ϕ rounds) later, each of these `
elements which still remains in the target set (and which is not in Yj+1) is removed from
the target set by the referee. Moreover, after each successful round, the referee removes
the correct guess from the target set. Player P wins the game in r rounds if and only
if either round r is the βth successful round for P, or before round r + 1 (in phase j),
X(r + 1) ∩ Yj−1 = ∅ or X(r + 1) ∩ Yj = ∅. The second condition will be used to ensure
sufficiently large interval connectivity of the target network as long as the game is not won.
The only information that the player receives at the end of each round is whether the round
was successful or not. The player is also notified if it wins the game.

M. Ahmadi, A. Ghodselahi, F. Kuhn, and A. R. Molla 7:11

u1 v1

u` v`

I

` A

` B

` C

U

(a) The core structure of the dynamic lower
bound network. The edges labeled A, B, and C
are added in different phases.

T T T T

A

B

C
(b) At least one edge exists between I and U for
any T consecutive rounds.

Figure 3 A snapshot of the dynamic network used in the hitting game simulation.

Intuitively, as long as the target set changes sufficiently often, it should always appear
essentially random to the player. Therefore, the best strategy for hitting the target set is to
always choose an almost uniformly random guess, leading to roughly β/` rounds to get a
single successful round. The following lemma states this intuition formally. The proof of the
lemma appears in the full version of this paper [1].

I Lemma 10. For any ϕ ≤ β/3 and for ` ≥ `0 for a sufficiently large constant `0 > 0, the
expected number of rounds for a player to win the (β, `, ϕ)-periodic hitting game is at least
Ω(β2/`).

I Lemma 11. If algorithm A solves the global broadcast problem in any T -interval 1-
connected dynamic n-nodes network against a 1-oblivious adversary in f(n) = nO(1) rounds
in expectation for a sufficiently large value of T , then we can construct a player P to win
the (bn/2c − `, `, cT lnn)-periodic hitting game in expected O(f(n) logn) rounds, for some
positive constants c and `.

Proof. We construct a player P to simulate the execution of A on a particular T -interval
1-connected dynamic n-node network (the target network). Then the player uses the
transmitting behavior of the nodes in the simulation to generate guesses for playing the game.
We start by defining the target network for a given instance of the (bn/2c − `, `, cT lnn)-
periodic hitting game.

The Target Network. For the following discussion, we set β := bn/2c− ` and ϕ := cT logn
to denote the size of the selection set and the length of a phase of the hitting game. We
assume that we are given an instance of the (β, `, ϕ)-periodic hitting game. Based on how
the hitting game develops, we define an n-node dynamic target network. We first describe
the core (backbone) part of the network. The nodes of the dynamic network are defined as
V := {0, . . . , n− 1}. We assume that node 0 is the source and we identify the next β nodes
(i.e., the set [β]) with the selection set S of the hitting game. Throughout the execution,
node 0 is connected to all nodes in [β] and it is not connected to any other node. Throughout
the simulation of the broadcast algorithm, we use I and U to denote the set of informed and
uninformed nodes, respectively (a node is informed iff it knows the broadcast messageM).
Clearly, as soon as the source node broadcastsM, the set of informed nodes is I = {0, . . . , β}
and we thus have U = {β + 1, . . . , n− 1}. To simplify notation, we assume that already at

OPODIS 2015

7:12 The Cost of Global Broadcast in Dynamic Radio Networks

the start of the simulation, all nodes in {0, . . . , β} knowM and thus, we start round 1 with
I = {0, . . . , β} and U = {β + 1, . . . , n− 1}. We will assume that the number of uninformed
nodes is always at least 2`. As soon as it drops below, we stop carrying out the simulation.

Throughout the simulation, we always assume that all nodes in I form a clique and all
nodes in U form a clique. Apart from this, the topology of the core network is determined by
the target set of the hitting game that we are trying to win by simulating A. Assume that
in some round r of the hitting game, the target set is X(r) ⊂ [β]. During the simulation,
in the backbone network we then use the nodes in X(r) as bridge nodes to connect the
informed nodes to the uninformed nodes. Each node x ∈ X(r) is connected to exactly one
node n(x) ∈ U such that each node in U is connected to at most one node in X(r). We
assume that whenever a new node is added to X(r), its neighbor in U is chosen uniformly at
random among all nodes in U which are not already connected to a bridge node in X(r).
Note that the size of X(r) is always at most 2` and because we assumed that |U | ≥ 2`, we
can always do such an assignment of bridge nodes. Whenever the player makes a successful
guess x ∈ X(r), we move x to the set of informed nodes I and we connect x with all nodes
in I and disconnect it with all nodes in the remaining set U of uninformed nodes. Note that
in the hitting game, after a successful guess x ∈ X(r), x is also removed from the target
set. The target network at any time is either the described core network (backbone) or the
complete graph Kn, for which the choice will be explained later.

The Simulation. The simulation of the broadcast algorithm A is done in a round-by-round
manner. As the dynamic topology used in the simulation depends on the target set of the
hitting game, the player P of the hitting game does not know the dynamic topology. We
need to show that P can still correctly simulate the behavior of the broadcast algorithm.

As discussed above, we assume that at the beginning of the simulation, the set of informed
nodes is I = {0, . . . , β}. Each round of A is simulated by P by making at most c lnn guesses
in the hitting game. More specifically, a given round r of A is simulated as follows.

First, note that because we assume that the adversary is 1-oblivious, P can base the graph
of round r on the states of all nodes at the beginning of the round. Hence, in particular, the
graph of round r can depend on the probability pv(r) with which each node v ∈ I transmits
in the given round. We define a round r of A to be busy if

∑
v∈I pv(r) > c

2 lnn, otherwise a
round r is called free. In a busy round, the network graph is assumed to be the complete
graph Kn and in a free round, the network graph is assumed to be exactly the backbone
graph as described above. We assume that P always knows the set of informed nodes and
because only informed nodes are allowed to transmit, P can determine all messages which
are transmitted in a round by simulating the random decisions of the nodes in I. We say
that the simulated execution of A is bad if either there is a free round in which more than
c lnn nodes in I decide to transmit a message or if there is a busy round in which exactly
one node in I decides to transmit. Otherwise, the simulated execution is called good. If an
execution turns out to be bad, P stops the simulation of A and simply continues making
random guesses until it wins the hitting game. Note that the expected time to win the
hitting game in this way is at most O(β2/`) as unless there have been at least Ω(`) successes
during the last φ = O(β) rounds of the hitting game, the probability for a successful guess
is always Ω(`/β). As long as the number of simulated rounds f(n) of A is polynomial in n
(and thus also in β), for an arbitrary given constant d > 0 and sufficiently large constant c,
the probability to obtain a good execution is at least 1− 1/nd. For sufficiently large constant
c, the expected time to win the hitting game is therefore dominated by the expected time to
win the game conditioned on the event that the simulation of A creates a good execution.

M. Ahmadi, A. Ghodselahi, F. Kuhn, and A. R. Molla 7:13

In the following, we therefore assume that the generated broadcast execution is good. In
the following, we also assume that in the current phase (of length ϕ) of the hitting game,
there are still at least c lnn guesses that can be made. If this is not the case, player P first
makes a sequence of unsuccessful guesses to finish the phase (P can for example repeat the
last guess it has made before to make sure it is not successful). As we assumed that T is
sufficiently large, we can assume that ϕ� c lnn and therefore we only waste a small fraction
of all guesses by doing this.

Let us first assume that a simulated round r of A is busy. As in this case, the communic-
ation network is a complete graph and since we assume that in a good execution, no node
gets isolated (transmits alone), every node receives silence and we therefore do not need to
simulate any receive behavior. In this case, we also do not make any guesses in the hitting
game. If round r is free, the number of nodes that transmit is between 0 and c lnn. First
recall that the nodes in I are fully connected and P can therefore clearly simulate their
receive behavior. Further, let Z(r) ⊆ [β] be the set of nodes in β which are transmitting
in round r. For each z ∈ Z(r), player P uses z as a guess in the hitting game. Note that
because there are at most c lnn guesses to be made and because we assumed that there
are still at least c lnn guesses in the current phase of the hitting game, during making the
guesses for all z ∈ Z(r), we do not change the phase (and thus the target set) in the hitting
game. The node z therefore is a bridge node connecting I to a node n(z) ∈ U in round
r of the broadcast algorithm if and only if z is a successful guess. In that case, n(z) is a
uniformly random node in U . Hence, if z is a successful guess, P chooses n(z) uniformly at
random in U and it moves n(z) from U to I. Note that z is also removed from the target set,
and all connections of n(z) to nodes in the remaining set U are removed. Note also that by
choosing n(z) uniformly at random in U , player P does not only simulate the randomness
of the broadcast algorithm, but it also simulates the randomness of the adversary. As long
as the execution is good, in the given dynamic network, the broadcast algorithm informs
a new node if and only if one of the bridge nodes v transmits in a free round. For any
bridge node v which transmits in a free round, the corresponding uninformed bridge node
n(v) gets informed. The described simulation therefore correctly simulates the broadcast
algorithm and it informs a new node if and only if it makes a correct guess. As we only
stop the simulation once the number of uninformed nodes drops below 2`, we need at least
n− (β + 1)− 2`+ 1 = dn/2e − ` ≥ β successful guesses and thus win the game to stop the
simulation.

It remains to show that the dynamic network used in the simulation is T -interval connected.
Every ϕ guesses and thus after at least ϕ/(c lnn) rounds of the simulation, we add ` new
edges connecting some v ∈ I and n(v) ∈ U . As long as v is not used as a guess, such an
edge remains for 2ϕ guesses. As long as it is always guaranteed that one of these edges
survives the next 2ϕ guesses (and thus at least 2ϕ/(c lnn) rounds), the network is at least
T = ϕ/(c lnn)-interval connected. Hence, the network is not guaranteed to be T -interval
connected if there is a phase j in the hitting game such that all the elements of the set Yj
added to the target set at the beginning of phase j are successfully guessed by the end of
phase j + 1. Recall that in this case, the player also wins the game and therefore the claim
of the lemma follows. J

For k = 1, the statement of our main lower bound theorem (Theorem 2) now directly follows
by combining Lemmas 10 and 11.

I Lemma 12. For every constant ε > 0 and every T ≤ n1−ε, the expected time to solve
single-message broadcast in T -interval 1-connected radio networks against a 1-oblivious
adversary is at least Ω

(
n2

logn
)
.

OPODIS 2015

7:14 The Cost of Global Broadcast in Dynamic Radio Networks

Proof. For the sake of contradiction let us assume that A can solve broadcast for any
T -interval 1-connected network in f(n) = o(n2/` logn) rounds, then based on Lemma 11
a player can solve any instance of the (n/2, `, cT logn)-periodic hitting game in o(n2/`)
rounds which contradicts Lemma 10 and this proves the necessity of Ω(n2/` logn) rounds to
solve broadcast in any T -interval 1-connected network. Based on Lemma 10, by choosing
sufficiently large constant value for ` the claimed lower bound follows. J

In order to obtain Theorem 2, we need to generalize the above result from T -interval
1-connected networks to T -interval k-connected networks for arbitrary k ≥ 1. As shown
below, this can be achieved by using a simple generic reduction.

I Theorem 2 (restated). For every constant ε > 0 and every T ≤ (n/k)1−ε, the expected
time to solve single-message broadcast in T -interval k-connected radio networks against a
1-oblivious adversary is at least Ω

(
n2

k2 logn
)
.

Proof. Given an n-node graph G, let Hk(G) be the graph which is obtained by replacing
each node of G by a clique of size k and by replacing each edge {u, v} of G by a complete
bipartite subgraph Kk,k between the two k-cliques representing u and v. If G is connected,
in order to disconnect Hk(G) by deleting some nodes, we need to completely remove at least
one of the k-cliques representing the nodes of G. Hence, if G is connected, Hk(G) is k-vertex
connected. It follows in the same way that if we have a dynamic graph G1, . . . , Gt which is
T -interval 1-connected, the dynamic graph Hk(G1), . . . ,Hk(Gt) is T -interval k-connected.
Even if all nodes of such a graph Hk(Gi) know to which of the cliques representing the nodes
of Gi they belong, solving broadcast in the dynamic graph Hk(G1), . . . ,Hk(Gt) cannot be
easier than solving broadcast in G1, . . . , Gt. If each graph Hk(Gi) has N nodes, the graphs
Gi have N/k nodes and the claimed lower bound directly follows by applying Lemma 12. J

5 Impossibility of Broadcast Against a 0-Oblivious Adversary

In this section, we prove the impossibility result that we stated in Section 1.1. We show that
unless T is almost equal to n, the global broadcast problem cannot be solved in the presence
of a 0-oblivious adversary, even for very large vertex connectivity k.

I Theorem 3 (restated). For any k ≥ 1 and any T < n − k, it is not possible to solve
single-message broadcast in T -interval k-connected radio networks against a 0-oblivious
adversary.

Proof. We show that a strongly adaptive adversary (i.e., a 0-oblivious adversary) can apply
a simple strategy to prevent any algorithm from solving the global broadcast problem in a
T -interval k-connected network, where T < n− k. Consider the following adversary strategy
to determine the sequence of network topologies.

The adversary partitions the n nodes into two distinct sets A and B, such that A includes
the source node and is of size T + k, and B is of size n− (T + k). Since T < n− k, there
exists at least one node in B. Note that at the beginning, no node in B knows the broadcast
messageM (or anything aboutM). Because the adversary is 0-oblivious, in each round r, it
can determine the graph after all nodes have made their random decisions. It can therefore
determine the graph based on which nodes transmit.

If in a round r, either 0 nodes transmit or at least 2 nodes transmit, the network graph
is chosen to be the complete graph. Note that in such a round, there is either silence or all
nodes experience a collision. In both cases, all listening nodes receive ⊥ and therefore no
node in B can learn something aboutM.

M. Ahmadi, A. Ghodselahi, F. Kuhn, and A. R. Molla 7:15

If in a round, exactly one node v in A transmits, the network graph consists of all edges
except the edges connecting v to nodes in B. Like this, also in this case all nodes in B receive
⊥ and they therefore cannot learn something aboutM.

It remains to show that the given dynamic graph is T -interval k-connected. During the
whole execution, A is a clique consisting of T +k nodes. Hence, A is a T -interval k-connected
network. To show that whole n-node network is also a T -interval k-connected network, it
is sufficient to show that for any node v ∈ B, in any T consecutive rounds, there exist at
least k fixed edges from v to the nodes in A. To do so, fix some arbitrary time interval of T
consecutive rounds. During the time interval, there are at most T rounds in which exactly
one node transmits. Therefore, because |A| = T + k, there are at least k nodes in A which do
not transmit alone during the given time interval. The edges from these k nodes to all nodes
in B are therefore available throughout the T rounds. Therefore throughout any interval of
T rounds, each node in B is connected to a set of at least k nodes in A. Consequently, the
constructed dynamic network is T -interval k-connected. J

Notice that at least for store-and-forward algorithms even collision detection does not
help to overcome the impossibility result. The 0-oblivious adaptive adversary knows the
random choices of the algorithm in the current round and it can thus prevent any progress.

We also note that the above result turns out to be tight in the following sense. If T ≥ n−k,
global broadcast can be solved. If in each round, every node independently tries to broadcast
with some probability (say 1/n), if T + k ≥ n there is a non-zero probability (it may be very
small) that T different nodes are isolated in T consecutive rounds. Consider an interval of
T rounds and let I and U be the sets of informed and uninformed nodes at the beginning
of this interval. From T -interval k-connectivity, we get that there are at least k nodes in
I which are stably connected to nodes in I throughout the T rounds. Before broadcast is
solved, we have |I| ≤ n− 1 and if in the T rounds, T different nodes in I are isolated, at least
one of the k nodes stably connected to U gets isolated and we can therefore make progress.
Note that for T = n− k, the probability for making progress might be exponentially small,
resulting in an exponential running time for the broadcast problem. Note however also that
once T ≥ cn logn for a sufficiently large constant c, it is not hard to show that broadcast
can be solved in polynomial time against a 0-oblivious adversary and if T is larger than
cn log2 n for a sufficiently large constant c, it is shown in [17], that it can be solved in time
O
(
n log2 n

)
.

References
1 Mohamad Ahmadi, Abdolhamid Ghodselahi, Fabian Kuhn, and Anisur R. Molla. The cost

of global broadcast in dynamic radio networks. CoRR, abs/1601.01912, 2016.
2 Antonio F. Anta, Alessia Milani, Miguel A. Mosteiro, and Shmuel Zaks. Opportunistic

information dissemination in mobile ad-hoc networks: the profit of global synchrony. Dis-
tributed Computing, 25(4):279–296, 2012.

3 Chen Avin, Michal Koucký, and Zvi Lotker. How to explore a fast-changing world (cover
time of a simple random walk on evolving graphs). In Proc. 5th Coll. on Automata, Lan-
guages and Programming (ICALP), pages 121–132, 2008.

4 Reuven Bar-Yehuda, Oded Goldreich, and Alon Itai. Efficient emulation of single-hop radio
network with collision detection on multi-hop radio network with no collision detection.
Distributed Computing, 5:67–71, 1991.

5 Reuven Bar-Yehuda, Oded Goldreich, and Alon Itai. On the time-complexity of broadcast
in multi-hop radio networks: An exponential gap between determinism and randomization.
Journal of Computer and System Sciences, 45(1):104–126, 1992.

OPODIS 2015

7:16 The Cost of Global Broadcast in Dynamic Radio Networks

6 Hervé Baumann, Pierluigi Crescenzi, and Pierre Fraigniaud. Parsimonious flooding in
dynamic graphs. In Proc. of 28th ACM Symp. on Principles of Distributed Computing
(PODC), pages 260–269, 2009.

7 Keren Censor-Hillel, Mohsen Ghaffari, and Fabian Kuhn. Distributed connectivity decom-
position. In Proc. 33rd Symp. on Principles of Distributed Computing (PODC), 2014.

8 Keren Censor-Hillel, Mohsen Ghaffari, and Fabian Kuhn. A new perspective on vertex
connectivity. In Proc. 25th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages
546–561, 2014.

9 Keren Censor-Hillel, Seth Gilbert, Fabian Kuhn, Nancy Lynch, and Calvin Newport. Struc-
turing unreliable radio networks. Distributed Computing, 27(1):1–19, 2014.

10 Imrich Chlamtac and Shay Kutten. On broadcasting in radio networks–problem analysis
and protocol design. IEEE Transactions on Communications, 33(12):1240–1246, 1985.

11 Andrea Clementi, Angelo Monti, Francesco Pasquale, and Riccardo Silvestri. Broadcasting
in dynamic radio networks. J. Comput. Syst. Sci., 75(4):213–230, 2009.

12 Andrea Clementi, Angelo Monti, Francesco Pasquale, and Riccardo Silvestri. Optimal gos-
siping in geometric radio networks in the presence of dynamical faults. Networks, 59(3):289–
298, 2012.

13 Mohsen Ghaffari, Nancy Lynch, and Calvin Newport. The cost of radio network broadcast
for different models of unreliable links. In Proc. 32nd Symp. on Principles of Distributed
Computing (PODC), pages 345–354, 2013.

14 Piyush Gupta and Panganmala R. Kumar. The Capacity of Wireless Networks. IEEE
Transactions on Information Theory, 46(2):388–404, 2000.

15 Tomasz Jurdzinski, Dariusz R. Kowalski, Michal Rozanski, and Grzegorz Stachowiak. On
the impact of geometry on ad hoc communication in wireless networks. In Proc. 33rd Symp.
on Principles of Distributed Computing (PODC), pages 357–366, 2014.

16 Kyu-Han Kim and Kang G. Shin. On accurate measurement of link quality in multi-hop
wireless mesh networks. In Proc. Conf. on Mobile Computing and Networking (MOBICOM),
pages 38–49, 2006.

17 Fabian Kuhn, Nancy Lynch, Calvin Newport, Rotem Oshman, and Andréa W. Richa.
Broadcasting in unreliable radio networks. In Proc. 29th Symp. on Principles of Distributed
Computing (PODC), pages 336–345, 2010.

18 Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed computation in dynamic
networks. In Proc. 42nd Symp. on Theory of Computing (STOC), pages 513–522, 2010.

19 Fabian Kuhn and Rotem Oshman. Dynamic Networks: Models and Algorithms. ACM
SIGACT News, 42(1):82–96, 2011.

20 Eyal Kushilevitz and Yishay Mansour. An ω(d\log(n/d)) lower bound for broadcast in
radio networks. SIAM journal on Computing, 27(3):702–712, 1998.

21 Thomas Moscibroda and Roger Wattenhofer. Maximal independent sets in radio networks.
In Proc. 24th Symp. on Principles of Distributed Computing (PODC), pages 148–157, 2005.

22 Thomas Moscibroda and Roger Wattenhofer. The complexity of connectivity in wireless
networks. In Proc. 25th Conf. on Computer Communications (INFOCOM), pages 1–13,
2006.

23 Calvin Newport. Radio network lower bounds made easy. In Distributed Computing, pages
258–272. 2014.

24 Calvin Newport, David Kotz, Yougu Yuan, Robert S. Gray, Jason Liu, and Chip Elliott.
Experimental evaluation of wireless simulation assumptions. Simulation, 83(9):643–661,
2007.

25 Regina O’Dell and Roger Wattenhofer. Information dissemination in highly dynamic graphs.
In Proc. of Workshop on Foundations of Mobile Computing (DIALM-POMC), pages 104–
110, 2005.

M. Ahmadi, A. Ghodselahi, F. Kuhn, and A. R. Molla 7:17

26 Krishna Ramachandran, Irfan Sheriff, Elizabeth Belding, and Kevin Almeroth. Routing
stability in static wireless mesh networks. In Proc. Conf. on Passive and Active Network
Measurment, pages 73–82, 2007.

27 Kannan Srinivasan, Maria A. Kazandjieva, Saatvik Agarwal, and Philip Levis. The β-
factor: Measuring wireless link burstiness. In Proc. 6th Conf. on Embedded Networked
Sensor System, pages 29–42, 2008.

28 Mark D. Yarvis, Steven W. Conner, Lakshman Krishnamurthy, Jasmeet Chhabra, Brent
Elliott, and Alan Mainwaring. Real-world experiences with an interactive ad hoc sensor
network. In Proc. Conf. of Parallel Processing, pages 143–151, 2002.

OPODIS 2015

Bounds for Blind Rate Adaptation∗†

Seth Gilbert1, Calvin Newport2, and Tonghe Wang3

1 Department of Computer Science, National University of Singapore, Singapore
seth.gilbert@comp.nus.edu.sg

2 Department of Computer Science, Georgetown University, Washington, USA
cnewport@cs.georgetown.edu

3 Department of Computer Science, Georgetown University, Washington, USA
tw473@georgetown.edu

Abstract
A core challenge in wireless communication is choosing appropriate transmission rates for packets.
This rate selection problem is well understood in the context of unicast communication from a
sender to a known receiver that can reply with acknowledgments. The problem is more difficult,
however, in the multicast scenario where a sender must communicate with a potentially large
and changing group of receivers with varied link qualities. In such settings, it is inefficient
to gather feedback, and achieving good performance for every receiver is complicated by the
potential diversity of their link conditions. This paper tackles this problem from an algorithmic
perspective: identifying near optimal strategies for selecting rates that guarantee every receiver
achieves throughput within reasonable factors of the optimal capacity of its link to the sender.
Our algorithms have the added benefit that they are blind: they assume the sender has no
information about the network and receives no feedback on its transmissions. We then prove
new lower bounds on the fundamental difficulty of achieving good performance in the presence
of fast fading (rapid and frequent changes to link quality), and conclude by studying strategies
for achieving good throughput over multiple hops. We argue that the implementation of our
algorithms should be easy because of the feature of being blind (it is independent to the network
structure and the quality of links, so it’s robust to changes). Our theoretical framework yields
many new open problems within this important general topic of distributed transmission rate
selection.

1998 ACM Subject Classification C.2.1 Network Architecture and Design, F.2.2 Nonnumerical
Algorithms and Problems

Keywords and phrases bitrate, multicast, packet transmission, latency, competitive ratio, lower
bound, fading

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.8

1 Introduction

Consider the following scenario: a base station must wirelessly deliver a large file or stream
a video to an unknown group of receivers in a conference center. It could send the data
individually to each receiver using unicast communication, but this approach does not scale
and requires knowledge of the group members. The standard alternative is for the sender

∗ Due to the matter of space, we defer details of the proof for some theorems or lemmas to the full version
of this paper [8].

† The research in this paper has been supported by Singapore NUS FRC T1-251RES1404 and NSF grant
number CCF-1320279.

© Seth Gilbert, Calvin Newport, and Tonghe Wang;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 8; pp. 8:1–8:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Bounds for Blind Rate Adaptation

to multicast messages to receivers, i.e., use one-to-many communication where the sender
transmits packets addressed to the whole group.

A challenge faced by wireless multicast is that different receivers might have different
quality links with the sender. Some receivers, for example, might have high quality links with
the sender that can support high transmission rates, while others might have low quality links
that can support only slow rates. What rate(s) should the sender use? The current answer –
i.e., the solution implemented into 802.11 multicast [17] – is to transmit the multicast packets
at the slowest rate. This solution is simple and reliable, but from a performance perspective
it might be unacceptable for receivers capable of supporting much faster communication.
Not surprisingly, practitioners consider the identification of better multicast rate selection
strategies as an important open problem [10, 4, 16, 23, 3, 19, 6, 5, 22, 24].

In this paper, we tackle this open problem from an algorithmic perspective. We first
formalize this rate selection problem in an abstract model of multi-rate wireless transmission.
We then describe and analyze new rate selection strategies that guarantee every receiver in
our above scenario achieves throughput within a reasonable factor of the optimal capacity of
its sender link. We establish lower bounds indicating that these algorithms are near optimal.
To the best of our knowledge, these are the first known rate selection strategies to offer
competitive performance for every receiver in a wireless multicast scenario (see the related
work below for more details). An added and perhaps surprising benefit of our algorithms is
that they are also blind: the sender requires no knowledge of the network and receives no
feedback on the fate of its transmission. This should make the implementation based on the
algorithms robust to change.

1.1 Results
To formalize this multicast problem, assume a sender s and multiple receivers. For each
packet to send, the sender must specify a transmission rate from a set of available rates.
We normalize the transmission times associated with these rates such that the fastest rate
delivers a packet in 1 time step, while the slowest delivers a packet in L time steps, for some
system parameter L > 1. Notice, the range of possible rates with which a packet can be sent
are fixed and provided by the radio hardware in most systems. Each receiver u is connected
to s by a link labeled with a fastest acceptable rate. The sender succeeds in delivering a
packet p to u iff it sends the packet at a rate no faster than the fastest acceptable rate for
this link. Because we model a wireless network, the sender’s packets are transmitted by
broadcast. Therefore, each packet p, sent with some rate r, is received by every receiver
with a link labeled by a fastest acceptable rate at least r. We measure the performance of
the sender’s rate selection strategy at receiver u by comparing the average latency between
packets successfully delivered to u to the latency achieved if the sender had deployed the
optimal strategy (for u) of transmitting every packet at the fastest acceptable rate for u’s
link. The sender’s task is complicated by the fact that it must remain competitive for every
receiver concurrently, even though their link qualities might vary widely and it receives no
information on these qualities.

We begin by describing and analyzing a pair of blind rate selection algorithms (one
randomized and one deterministic) that both guarantee that for each receiver v in the
network, the throughput at v is within a O(logL)-factor of optimal. Notice that the simple
strategy of transmitting at the slowest available rate can be exponentially worse (i.e., achieve
only an L factor of optimal). The core idea leveraged by both algorithms is to have the
sender copy each packet into multiple queues, each associated with a different representative
rate. The sender then dequeues and transmits messages from these queues at a frequency

S. Gilbert, C. Newport, and T. Wang 8:3

proportional to the corresponding rates (e.g., the fast rate queues are sampled more frequently
than the slow rate queues). This means that each packet might end up being sent multiple
times, but we show our proportional sampling prevents this from degrading throughput too
much over time. We then establish this O(logL) competitive ratio near optimal by proving
that no (randomized) blind rate selection algorithm can guarantee throughput better than a
Ω
(logL

log logL
)
-factor of optimal (with constant probability).

We next turn our attention to the setting where the fastest acceptable rates on the links
change rapidly and unpredictably, as might be described in a fast fading scenario. We prove
that for every deterministic blind rate selection algorithm there exists a sequence of fades
(i.e., link quality changes) that reduce its average latency guarantee to a trivial Ω(L)-factor
of optimal (which can always be matched within a constant factor by simply sending packets
at the slowest rate). We then describe a type of fade for which no randomized algorithm can
perform guarantee better than a Ω(

√
L)-factor of optimal (still exponentially worse than our

results for the static setting). Interestingly, this latter bound holds even for non-blind unicast
communication (i.e., where there is a single receiver and the sender learns the fate of each
transmission), proving the difficulties caused by fading are not unique to blind algorithms.

To conclude, we consider multihop networks. We describe and analyze a generalization
of the deterministic protocol that guarantees every receiver achieves throughput within a
O(logL)-factor of the optimal achievable through the best single multihop route (i.e., path)
from the source. Notice, however, in a multihop network, the optimal throughput possible
using multiple paths in the network might be better than the optimal throughput on a single
path (e.g., perhaps multiple packets are routed concurrently on disjoint routes). We prove
that no blind algorithm can guarantee a non-trivial approximation of this notion of optimal
while also maintaining a fixed bound on its packet ordering.

1.2 Related Work
The multicast problem is well-studied in the wired network setting; c.f., [10]. In the wireless
setting, the technology is still evolving. As mentioned, the default strategy implemented
in 802.11 is to simply broadcast multicast packets at a slow but reliable bitrate. The
research literature contains many proposals for adding more advanced functionality to
wireless multicast, with a focus on detecting multicast packet loss. These strategies, however,
depend on the sender interacting with at least some members of the multicast group (i.e.,
use feedback). Chandra et al. [4], for example, send the multicast data in unicast packets
to a single member of the multicast group (leveraging link layer acknowledgments to detect
packet loss), while the other members listen for these packets in promiscuous mode. Miroll
et al. [16] refine this approach to select the group member with the worst channel as the
unicast receiver to ensure more losses are detected. Sun et al. [23] organize nodes into clusters,
and has the sender poll the leaders of each cluster to determine the fate of packets. (These
are just a few examples among many: see [3] for a detailed survey.) The main goal of the
above examples is to detect packet loss so the sender can schedule retransmissions. Most of
these strategies, however, also implement some basic link adaptation. For example, when
transmitting unicast packets to a leader, some of these strategies allow the default unicast
rate adaptation strategy to adjust the rate used (e.g., [19, 6, 5, 22, 24]). Other wireless
multicast strategies propose measuring loss rates for all receivers and using this information
to choose the best single rate to use (as mentioned, a strategy that does not scale). This
paper, by contrast, focuses on the problem of transmitting packets at multiple rates so as
to ensure every receiver achieves a throughput close to its individual notion of optimal. It
achieves this goal without the overhead and scaling issues of requiring feedback from group
members.

OPODIS 2015

8:4 Bounds for Blind Rate Adaptation

It is also important to note that because we achieve competitive rates for every receiver,
loss detection is less important with our scheme. For example, if we define the fastest
acceptable bitrate for each receiver to be the fastest rate at which the forward error correcting
coding parameters used for the packets are effective, then our blind rate selection algorithms
will guarantee that every receiver has a sufficiently low loss rate to enable sufficient packet
recovery.

Finally, wireless rate adaptation is well-studied in the context of unicast communication
from a sender to a single known receiver capable of sending acknowledgments. Some strategies
adapt the rate using frame loss information [12, 14, 11, 21, 15] and others attempt to directly
measure the channel quality [18, 13, 25, 2]. Another approach is the use of rateless modulation
schemes like Spinal codes [20] or Strider codes [9], in which the data transmitted in a fixed
manner but the receiver is able to decode it at a rate close to the Shannon capacity for its
channel. All these unicast adaptation strategies, however, depend on feedback from the single
receiver to the sender. They cannot therefore be directly applied to the multicast scenario
where such feedback is no longer efficient. Our blind protocols, by contrast, can be deployed
in the unicast scenario. This might be desirable in low power scenarios where their simplicity
provides an advantage, or scenarios such as satellite broadcast where feedback is prohibitively
expensive (i.e., due to the much higher cost of uplink versus downlink transmission).

2 Model

We model a collection of wireless devices broadcasting in a synchronous radio network with
variable link quality and transmission rates (typically called bitrates in the wireless literature
as well as in the remainder of this paper). The network topology is represented as a connected
directed graph D = (V,E), where the nodes in V correspond to wireless devices and the
edges in E represent links between nodes (e.g., an edge (x, y) ∈ E means that x has a link to
y with a quality above some minimum threshold). We use directed graphs for generality and
to capture the well-known observation that link quality is not necessarily symmetric. The
main topology we consider is a star with the node in the center playing the role of the sender
with directed edges pointing toward the receivers. We call this configuration a single hop
network. Later in the paper, we also examine the performance in general multihop networks
of varying topologies connected with respect to the source (i.e., there is a path from the
source to all nodes).

To capture link quality we assume that in each round, each link (i.e., edge in D) is
assigned a minimum latency (i.e., fastest acceptable bitrate), which is specified by the weight
function C(r, e) (which we sometimes call a channel) for round r and edge e. We say that
links are static if the weight of links does not change (i.e., C(r, e) = C(r′, e), for all r, r′ and
e); otherwise, we say that the links are fading. These weights capture the fastest transmission
speed that can be supported by the current link quality. In this paper, we typically specify
these weights in terms of the latency (i.e., rounds per packet), rather than in terms of the
bitrate (which describes the inverse). Therefore, smaller weights represent higher quality
links. We assume that all latencies are integers in [L] (where we define [k] = {1, 2, ..., k}),
with 1 and L rounds being the fastest and slowest transmission latencies, respectively. We
also assume that L is a power of 2. To simplify our strategies, we will restrict the possible
latencies considered for packet transmission to the set L∗ = {2, 4, 8, . . . , L}. (Notice, there is
a latency in L∗ within a factor of 2 of each available latency.)

Nodes communicate with their neighbors in D using local broadcast. When a node s in
D decides to broadcast a message in round r, it selects a latency ` ∈ L∗ (this is equivalent to

S. Gilbert, C. Newport, and T. Wang 8:5

selecting bitrate `−1). This transmission requires ` rounds to complete, and the transmitter
must wait until the transmission completes before it can begin another transmission. Each
neighbor w of s receives the message if the attempted broadcast latency remains as least
as large as the minimal acceptable latency for the link throughout the full transmission.
Formally, the transmission succeeds at w if and only if: ∀i ∈ [0 . . . `−1] : C(r+ i, (s, w)) ≤ `.
If this condition does not hold, then node w does not receive the message. We assume no
feedback mechanism (e.g., link layer ACKs) for the sender to learn the fate of its transmission,
and assume nodes have no information about the network size or link weights.

A subtlety of our model motivation is that our abstract notion of “receiving” a message
does not correspond to the concrete notion of a packet being successfully delivered. For u
to “receive” a message from s in our model simply means that s sent this packet at a rate
that was acceptable for its current link to u. What it means for a rate to be acceptable are
details we abstract away: we aim only for every packet to be sent at acceptable rates for
each receiver, for whatever definition of acceptable is relevant to a given a scenario.1

3 Problem

In this paper, we study the problem of a single distinguished source node s attempting to
transmit an infinite stream of packets to the other nodes (called receivers) in the network.
We measure the performance of an algorithm in a given execution by comparing the average
packet receive latency at each receiver u with an offline optimal algorithm that services
only u. We consider a restricted type of solution called a blind rate selection algorithm.
An algorithm of this type running on the source node in the network is provided access
to a packet queue called the source queue. To simplify definitions we assume the queue is
infinite and the packets unique. The source node can only dequeue and transmit packets
from the source queue (i.e., it cannot send arbitrary packets). In the multihop setting, where
non-source nodes can forward packets, we assume each arriving packet is queued in a FIFO
queue (ignoring duplicates), and then restrict nodes to dequeueing and transmitting packets
from their local queue. In the single hop setting, receivers are passive (i.e., they cannot send
packets.)

Recall, as described in the previous section, to “receive” a message in our abstract model
simply means it was sent at an acceptable rate for the relevant link. How this translates to
low level packet loss behavior is abstracted away. In this paper, we study the performance
of correct blind rate selection algorithms defined with respect to the average time between
packet arrivals at a given destination. We call this metric average latency (which is a mild
abuse of terminology as “latency” often refers to end-to-end delivery, not inter-packet delay
at a receiver). More precisely: Fix an execution of a blind rate selection algorithm in a
network D = (V,E) with weight function C. Fix some receiver v ∈ V (i.e., non-source node)
and integer duration T ≥ 1. Let NT

v be the number of unique packets received by v in the
first T rounds of the execution. We define the average latency of v through the first T rounds
of this execution to be T/NT

v . By contrast, let OPTTv be the optimal average latency v
could have achieved in these T rounds given an offline optimal schedule for transmissions
and rate selections (when clear, we will use simply OPT). We now pull together these pieces
to obtain the main performance definition:

1 For example, an acceptable rate for a link in a given scenario might be defined as a rate for which the
packet loss rate is sufficiently low. To send a packet at an acceptable rate in this example, therefore,
does not guarantee that it was delivered, but merely that it was given a reasonable chance of delivery.

OPODIS 2015

8:6 Bounds for Blind Rate Adaptation

I Definition 1. Fix some function f : N∗ → R. We say a deterministic (randomized) blind
rate selection algorithm A is f(L)-competitive with respect to a family D of networks and
static/fading channels, if the algorithm is correct and there exists some integer duration
T0 ≥ 1 such that for every D ∈ D and static/fading link weight function C, for every receiver
v in D, and for every duration T ≥ T0: the (expected) average latency of v through T rounds
in an execution of A in D with C, is no more than f(L) ·OPTTv .

4 Static Links

In this section, we study blind rate selection algorithms in the context of single hop networks
with static links (i.e., the link qualities do not change). We begin by describing a simple
randomized blind rate adaption algorithm that is O(logL)-competitive in single hop networks.
We then describe a more complex deterministic algorithm that matches this same O(logL)-
competitive ratio. There are two motivations for deterministic solutions. The first is that
rate selection algorithms are often implemented at low layers of the network stack where
efficient access to randomness is difficult. Second, the multihop algorithm studied later in
the paper uses the deterministic algorithm as a key building block (analyzing the randomize
strategy over multiple hops is difficult). We conclude this section by proving our algorithms
near optimal with an Ω (logL/log logL) lower bound on competitive ratio for blind rate
adaption algorithms.

4.1 The RandSelect Algorithm
We model the infinite packet queue at the source s with the notation Q0 = p1p2p3 Recall,
as defined in Section 2, L∗ = {2, 4, . . . , L}.

A simple random strategy for s would be to dequeue packets from Q0 one by one, sending
each at a latency chosen uniformly from L∗. An issue with this approach is reliability:
if s chooses some latency ` for a given packet pi, and there is some receiver u such that
C(s, u) > `, then u will fail to receive pi. Another issue with this strategy is that the slowest
latency, L, will be chosen approximately once every logL rounds – requiring L full rounds for
a single transmission every time it is chosen. This will yield non-competitive performance for
receivers connected to the source with low latency links. Our proposed algorithm improves
this simple scheme with two modifications to circumvent these two issues. First, the source
maintains logL copies of its source queue, associating one copy with each latency in L∗. We
logically organize these queue copies into a packet table with one row for each latency. In
more detail, each row j ∈ [logL] is associated with latency 2j , and contains its own copy
of the source queue, denoted Qj , as well as a nextpacketj field which indicates the packet
currently at the head Qj . The second modification is to replace the uniform distribution over
rates in L∗ with the following distribution π(x) over the latency indices {1, 2, ..., logL}2:

π(x) : Pr{j = x}
{

2−x x ∈ [1, logL− 1]
2/L x = logL .

Combining these modifications, our algorithm, which we call RandSelect, works as
follows: At the beginning of the execution, the sender initializes its packet table by setting
Qj to Q0 for each j ∈ [logL]. It then proceeds by repeating the following steps: draw a
latency index x from π, transmit nextpacketx at latency 2x, and then update nextpacketx

2 Notice, it is easy to show that distribution π is normalized, i.e.
∑log L

x=1 Pr{j = x} = 1.

S. Gilbert, C. Newport, and T. Wang 8:7

RandSelect (for sender s)
Initialization:

for j ← 1 to logL
Qj ← Q0

nextpacketj ← p1

Transmission:
do
Select j according to distribution π
Send nextpacketj with latency `← 2j

pop(Qj)
nextpacketj ← peek(Qj)

while TRUE

Figure 1 The RandSelect Algorithm.

by dequeueing the packet at the head of Qx. (See Figure 1 for the algorithm pseudocode.)
Notice that this strategy overcomes both the issues described above for the simple random
strategy: no packet is ever lost, as every packet is eventually sent at the slowest latency,
and the algorithm now samples the slow latencies less frequently than the fast latencies,
preventing them from dominating the link bandwidths.

The following theorem establishes that the actual competitive ratio guaranteed by this
strategy is bounded by O(logL). We defer the proof of this theorem to the full version [8].

I Theorem 2. The RandSelect blind rate selection algorithm is O(logL)-competitive with
respect to single hop networks and static links.

A straightforward practical optimization would be to remove a packet from fast latency
queues in the case that it is sent first by a slower latency. This optimization does not effect
the asymptotic analysis.

4.2 The BCSSelect Algorithm
We now describe a deterministic blind rate selection algorithm we call BCSSelect (see
Figure 2), which we will prove to have the same competitive ratio as RandSelect in single
hop networks. The only difference between these two algorithm is how indices are selected.
Our main strategy for derandomizing RandSelect is to leverage a useful object from
number theory called the binary carry seqeuence (BCS) [1]. This BCS is defined such that
its kth term is the lowest position of a 1 bit in the binary representation of k. To use this
sequence for our algorithms, we use the deterministic schedule function defined as follows: for
k ∈ N∗ : schedule(k) = max{α ∈ N : 2α−1|k}. The output of schedule, for example, produces
the sequence: 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1. . . Before proceeding to
our algorithm description (which uses the schedule output to sample queues), we first state
some useful facts about schedule (first identified in [7] and reworded here):

I Lemma 3. Each value j ∈ N is selected every 2j iterations.

I Lemma 4. If s = schedule(k), then:
(i) ∀t < s, ∃r ∈ [k − 2s−2, k) such that t = schedule(r);
(ii) ∀t < s, ∃r ∈ (k, k + 2s−2] such that t = schedule(r).

OPODIS 2015

8:8 Bounds for Blind Rate Adaptation

BCSSelect (for source s)
Initialization:
k ← 1
for j ← 1 to logL
Qj ← Q0

nextpacketj ← p1

Transmission:
do
j ← schedule(k)
Send (nextpacketj , k) with latency ` = 2j

pop(Qj)
nextpacketj ← peek(Qj)
k ← Update(k)

while TRUE

Update(k)
if k = L/2 then

return 1
else

return k + 1

Figure 2 The BCSSelect Algorithm.

The BCSSelect algorithm (described in Figure 2), applies the schedule function as a
subroutine to sample latencies from a (bounded) binary carry sequence – which ensures, as
with the random distribution from before, that all latencies are sampled, but small latencies
are sampled more often than their slower counterparts. In more detail, the algorithm uses
schedule to sample the BCS until the first time latency L is sampled, at which point it
restarts the sequence. As a result, the sequence of latencies sampled by schedule can be seen
as repeating the same bounded BCS block with L/2 terms.3 Here the source sends current
BCS index k along with the packet, as this will prove useful in the later multihop version of
the algorithm we study later.

We now argue that BCSSelect is O(logL)-competitive, the same competitive ratio as
RandSelect.

I Theorem 5. The BCSSelect blind rate selection algorithm is O(logL)-competitive with
respect to single hop networks and static links.

Proof. Fix receiver v with C(s, v) = c, where log c ∈ J = [1, logL]. Fix T0 = L logL as
well and suppose all the execution runs for T ≥ T0 rounds. By the same token, we have
OPT = c because the optimal solution runs with the sender v knowing C(s, v) = c a priori
and applying latency c throughout the execution.

Now the task is to find the average latency of BCSSelect. Consider the number of
rounds required by the update of nextpacketlog c, upper bounding the average latency we
are looking for. One BCS block has L/2 terms because the greatest BCS index j = logL is

3 Notice that the probability of selecting latency ` given by distribution π from RandSelect is equal to
the proportion of latency ` in one such bounded BCS block.

S. Gilbert, C. Newport, and T. Wang 8:9

selected for the first time when k = L/2. According to Lemma 3 and 4, the total time cost
to generate one block is exactly the time needed to get another j = logL after the previous
j = logL, given by:

∑logL−1
j=1 (L/2) · (1/2j) · 2j + 2logL = L(logL+ 1)/2. Lemma 3 tells us

that latency c (BCS index log c) appears every 2log c = c iterations of schedule. So log c
appears L/2c times in one block, and the average time needed for nextpacketlog c to update
will be O

(
L(logL+1)/2

L/2c

)
= O(c logL).

In conclusion, the competitive ratio of BCSSelect during one block is O(logL). Because
of the fact that the infinite latency sequence is actually the repeating of the same block, the
competitive ratio during the whole execution process is still O(logL). J

4.3 Lower Bound
We now prove our algorithms near optimal by showing that every blind rate selection
algorithm is at best Ω (logL/log logL)-competitive. Our argument is combinatorial in nature
– it demonstrates that no sequence of rate selections can be sufficiently competitive for every
receiver in a particular lower bound network – and therefore it applies to randomized solutions
as well as deterministic.

I Theorem 6. For a randomized blind rate selection algorithm A, if A is f(L)-competitive
with respect to any single hop network and static links, then f(L) ∈ Ω (logL/log logL).

Assume for contradiction that we have some algorithm A that is o (logL/log logL)-
competitive for all networks and weight functions. For our lower bound, we define the
following single hop lower bound network: let D be a directed graph that consists of
n = logL/ log logL receivers4 denoted r1, r2, ..., rn. Next, we define the weight function
C such that for each i ∈ [n], C(s, ri) = logi L. That is, the weights in this network are:
W = {logL, log2 L, log3 L, ..., loglogL/log logL L = L}. We proceed with a series of proof step
that build toward the conclusion that executing A in the lower bound network cannot yield
the assumed small latency at every receiver. Our first step is to transform the algorithm
A into an algorithm B that uses only the latencies in W . The following lemma states that
there exists transformation of this type that do not affect performance. The proof is deferred
to the full version of this paper [8].

I Lemma 7. Let A be a rate adaptation algorithm that is f(L)-competitive in the lower
bound network. There exists an algorithm B that only selects latency in W but is still
f(L)-competitive in the lower bound network D.

Fix some blind rate selection algorithm B that only uses latencies in W . We now prove
that a constant fraction of the packets received by a given receiver must be at a “good” rate
(i.e., the link weight) for that receiver.

I Lemma 8. Let B be a rate adaptation algorithm that only selects latencies in W and is
f(L)-competitive in the lower bound network D. Fix some duration T0 = L. Let ki be the
number of messages received by receiver ri in a T round execution of B, where T ≥ T0. It
follows that at least dki/2e of these messages are sent at latency `i = logi L.

Proof. Assume for contradiction that half or more of these ki message were sent at a latency
greater than `i. The minimum latency for a packet sent to receiver ri is `i. Therefore, if we

4 For notational simplicity we assume logL and logL/ log logL are positive, integral values.

OPODIS 2015

8:10 Bounds for Blind Rate Adaptation

assume that at least half the messages arriving at ri are sent at a latency longer than `i, the
next best case average latency for ri would be at least: ((k/2)`i+1 + (k/2)`i)/k.

In the above, we assume the minimum number of packets (in this case, k/2) were sent at
a slower latency, and we made this the next slowest latency after `i (i.e., `i+1 = logi+1 L).
The rate above also assumes the source was only servicing ri and sent packets continuously
with no gaps throughout the T rounds. It is, in other words, a quite optimistic bound. We
now simplify:

(k/2)`i+1 + (k/2)`i
k

= (k/2)`i logL+ (k/2)`i
k

= (1/2) · k · `i(logL+ 1)
k

>
1
2 · `i · logL .

The optimal average latency for ri is clearly `i. Therefore, B is at best (logL/2)-competitive.
We assumed earlier, however, that B is f(L)-competitive for a function that is no larger
than c · logL/ log logL < logL/2 (for sufficiently small constant c > 0). This contradicts our
assumption that at least half of ri’s packets were sent slowly. J

We have just established that to achieve a reasonable competitive ratio for a given receiver
in our network, at least half of the packets sent to the the receiver must use a rate well-suited
to the receiver’s link. We next establish formally another important observation for our
overall lower bound: to achieve a good rate in an execution of length T , the source must
successfully deliver many packets.

I Lemma 9. Let B be an algorithm that is f(L)-competitive in the lower bound network D.
Fix some receiver ri and duration T ≥ T0 = L. It follows that ri receives at least T/(`i · f(L))
packets during these T slots, where `i = logi L.

Proof. Fix some f(L)-competitive algorithm B, as well as some ri and T ≥ T0 = L. Consider
a T -round execution of B in the lower bound network. Let `∗1, `∗2, ..., `∗j be the latency for
each receive event at ri in our T -round interval. Let α be the average latency at ri in this
interval. Notice, by definition: α = (1/j) ·

∑j
h=1 `

∗
h. Also note, however, that by definition:∑j

h=1 `
∗
h = T . It follows that α = T/j, and therefore j = T/α. By assumption, B is

f(L)-competitive. This means that when considering ri in particular, its average latency is
no greater than `i · f(L) and j ≥ T/(`i · f(L)), as required. J

Proof (of Theorem 6). Let A be the rate adaptation algorithm that we assumed to be f(L)-
competitive for some f(L) < c · logL/log logL. Let B be the constrained rate adaptation
algorithm provided by Lemma 7. By the guarantees of this lemma, B is f(L)-competitive in
the lower bound network D. We will now show that this leads to a contradiction.

In particular, we will show that for any sufficiently large duration T ≥ T0 = L, B is
at best Ω(logL) competitive which is ω(f(L)) which contradicts our assumption that it is
f(L)-competitive.

To get this result, let ki be number of packets that the source sends at latency `i ∈W
in a T -round execution of B in the lower bound network D. By Lemma 9, we know that
receiver ri receives at least T/(`i · f(L)) packets. By Lemma 8, we know at least half these
packets are sent at latency `i. It follows that ki ≥ T/(2 · `i · f(L)). We can now evaluate
how many rounds are required for the source to send the needed number of packets at each
rate, and derive the following answer:

n∑
i=1

ki · `i =
logL/ log logL∑

i=1

T

2 · `if(L) · `i = logL
log logL ·

T

2f(L) .

S. Gilbert, C. Newport, and T. Wang 8:11

By assumption, however, f(L) < c · logL/log logL. If we set c to be sufficiently small (e.g.,
c < 1/2), it simplifies to something strictly larger than T . There are only T rounds available,
however, to complete all broadcasts. This yields a contradiction to our assumption about
the bound on f(L), and therefore f(L) is in Ω(logL/ log logL) J

5 Fast Fading Links

In this section, we consider the setting where link weights can change from round to round.
It is straightforward to identify a weight function C that causes our static BCSSelect
algorithm to perform poorly in the face of some dynamism (i.e., achieve only an O(L)
competitive ratio with respect to optimal).

Here we generalize this observation by proving this weakness is true of all deterministic
blind rate selection algorithms. We prove that there is a link weight definition for which
no randomized algorithm can guarantee better than a

√
L-competitive ratio (which is still

exponentially worse than the logL ratio we achieve for static links). Perhaps surprisingly,
this latter bound even holds for the powerful model of unicast communication with a single
receiver and packet feedback. These bounds indicate that it is quixotic to seek an algorithm
that can always adapt competitively to fast fades.

Lower Bound for Deterministic Algorithms. A deterministic blind rate selection algorithm
can be described as a fixed sequence of latency choices. Here we prove that for any such
sequence we can define a link weight function for a two-node network (the simplest possible
network for rate selection) that guarantees a poor competitive ratio.

I Theorem 10. For a deterministic blind rate selection algorithm A, if A is f(L)-competitive
with respect to two-node networks and fading links, then it follows that f(L) ∈ Ω(L).

The proof of this theorem is deferred to the full version [8]. At a high-level, this argument
defines a weight function that keeps the link weight large when the algorithm attempts fast
transmissions, and reduces the weight to something small when the algorithm attempts slow
transmissions.

A Lower Bound for Randomized Algorithms. Here we show that randomization cannot
guarantee much advantage over determinism given fading links. The following theorem holds
even for non-blind rate selection algorithms in which the sender learns the fate of each packet.

I Theorem 11. For a randomized blind rate selection algorithm A, if A is f(L)-competitive
with respect to two-node networks and fading links, then it follows that f(L) ∈ Ω(

√
L). This

bound holds even with packet delivery acknowledgements.

The proof of Theorem 11 depends on the following lemma.

I Lemma 12. For a blind rate selection algorithm A, if A is f(L)-competitive with respect to
two-node networks and fading links, then for every function g : N∗ → R such that g(L) < L/2,

f(L) ∈ Ω (min {(L/g(L)) , g(L)}) .

This bound holds even with packet delivery acknowledgements.

To come close to the optimal solution, a randomized algorithm must effectively guess
correctly the beginning of the fast interval in each block. Receiving feedback after the fact

OPODIS 2015

8:12 Bounds for Blind Rate Adaptation

regarding whether it guessed correctly does not help its future guesses. We formalize this
argument in the full version of this paper [8]. Armed with this lemma, we can prove our
theorem.

Proof (of Theorem 11). According to Lemma 12, for any appropriately chosen g(L), the
lower bound for any randomized blind rate adaption algorithm A is Ω (min {(L/g(L)) , g(L)}).
In particular, the strongest lower bound Ω(

√
L) is achieved when g(L) =

√
L, and the duration

T ≥ T0 = 2g(L) = 2
√
L. J

6 Multihop Networks

In this section, we turn our attention to routing information through multihop networks.
In particular, consider a multihop network in which the source s may not have a direct
link to some designated receiver t. In this setting, s will have to forward messages through
intermediate nodes to get to t, with each such node needing to make its own rate selection
decisions.

We consider two natural methods to measure optimality with respect to t. The first
method is to consider any single path from s to t in the network, and compare t’s throughput
when the algorithm is run on this path to the throughput obtained by the optimal algorithm
for the path. We call this single path optimality. We describe a deterministic algorithm
called MultiBCSSelect that generalizes the single-hop BCSSelect algorithm to obtain
throughput within a O(logL)-factor of the single path optimal solution. The second method
is to compare the throughput at t when the algorithm is executed in the entire network as
compared to the optimal algorithm executed in the entire network. Notice, once you make
use of the entire network, it might be possible to obtain more performance (e.g, by routing
multiple packets to the destination concurrently over disjoint paths). Our MultiBCSSelect
algorithm cannot guarantee this multiple path optimality. We prove, however, that in some
sense no blind algorithm can. In more detail, we prove that it is impossible for a blind rate
selection algorithm to guarantee a non-trivial approximation of the multiple path optimal
solution and to be δ-order preserving (i.e., sequence numbers of received packets do not
get more than δ values out of order), for any fixed δ. We note that this latter property is
necessary for many network applications, and our MultiBCSSelect algorithm is 0-order
preserving.

6.1 The MultiBCSSelect Algorithm
Here we describe a blind rate adaptation algorithm for multihop packet transmission based on
BCSSelect. In particular, we have the source node s run BCSSelect, as in the single hop
setting. The non-source nodes, by contrast, run the MultiBCSSelect algorithm described
in Figure 3. This algorithm initializes each Qj at an intermediate node as an empty queue.
As an intermediate node receives a packet for the first time, it pushes it onto the back of
each of its queues. This algorithm has nodes sample queues as in the single hop algorithm.
In the case that it samples an empty queue, the node will simply transmit an “empty packet”
(technically, we can interpret this as not sending any packet). We synchronize the indexes
nodes use to sample the BCS by propagating the current index in the transmitted packets.

It is straightforward to show that MultiBCSSelect is correct in a multihop setting.
More interesting is analyzing its performance. Because we consider single path optimality, we
restrict our attention to a subgraph P consisting of a path from s to some fixed destination t,
i.e., VP = {v0 = s, v1, v2, . . . , vn, vn+1 = t}, EP = {(vi, vi+1) : i = 0, 1, . . . , n}. We show that

S. Gilbert, C. Newport, and T. Wang 8:13

MultiBCSSelect(for intermediate nodes)
Initialization:

for j ← 1 to logL
Qj is initialized by an empty packet queue

On receiving (p0, k0):
k ← Update(k0)
for j ← 1 to logL
Qj ← push(Qj , p0)
nextpacketj ← peek(Qj)

Transmission:
do
j ← schedule(k)
Send (nextpacketj , k) with latency ` = 2j

pop(Qj)
nextpacketj ← peek(Qj)
k ← Update(k)

while TRUE

Figure 3 Algorithm of MultiBCSSelect.

the performance of MultiBCSSelect is competitive with that achieved by the best path
P , i.e., the best multihop route to t. (The best multihop route is the path which gives the
highest throughput.)

I Theorem 13. The MultiBCSSelect blind rate selection algorithm is O(logL)-competitive
with respect to the single path optimal solution.

Before completing the proof of Theorem 13, we will bound the performance of the optimal
algorithm on P (the proof of this lemma is in [8]):

I Lemma 14. Fix a multihop route consisting of the path P with n+ 2 nodes v0, . . . , vn+1,
where s = v0 and t = vn+1. Suppose c∗ = max0≤i≤n{C(vi, vi+1)}. For all multihop routes
with n intermediate nodes, if the links are static, the optimal average latency OPTt = Ω(c∗).

Proof (of Theorem 13). Now we need to capture the average latency of MultiBCSSelect.
Consider some link (vβ , vβ+1) with β being the greatest index such that C(vβ , vβ+1) =
max0≤α≤n{C(vα, vα+1)} = c∗. In other words, (vβ , vβ+1) is the last bottleneck, or the last
slowest link. Since MultiBCSSelect applies synchronous binary carry sequence, a packet
will be in transmission successfully before any packet arrives, indicating that vβ is the last
place where packets get queued.

When running algorithm MultiBCSSelect, according to the analysis from Theorem 5,
the link with weight c sends a new packet within c logL rounds during one block of binary
carry sequence. We will see that the worst case for transmission through path P derives
from the case where C(vi, vi+1) = c∗ for all i > β. Then the average time for vn to update
nextpacketlog c∗ is no more than O(c∗ logL), and the corresponding competitive ratio on this
path is therefore O(logL).

Since this is true for all paths P , including the best such path, we have proved our
claim. J

OPODIS 2015

8:14 Bounds for Blind Rate Adaptation

6.2 Lower Bound for Multiple Path Optimality
Here we show it is impossible to be multiple path optimal and still maintain a natural packet
ordering property. This latter property is captured by the following two definitions.

I Definition 15. We define the sequence number of a packet p, denoted by seq(p), to be the
order of packet p in the source’s packet queue at the beginning of the execution (where the
packet at the head of the queue occupies position 1, and so on). Fix some non-source node t.
Similarly, we define the transmission number of p with respect to t, denoted by tn(t, p), to
be the order in which t first received p, ignoring duplicate receives of packets.

I Definition 16. Fix some integer δ ≥ 0. A rate adaptation algorithm is δ-order preserving
if for every packet p in the source queue, and every non-source node t, we have |seq(p) −
tn(t, p)| ≤ δ.

This notion of δ-order preserving is important for many applications in which received
packets need to be reordered for processing. If I need, for example, k out of an original group
of t packets to recover some coded information, and some of these packets can get arbitrarily
out of order, I might have to wait an arbitrarily long time to complete the decoding.

We continue by noting that our multihop algorithm is perfectly order preserving:

I Theorem 17. MultiBCSSelect is 0-order preserving.

Proof. The source node copies its source queue into logL transmission queues, each one
associated with a different latency. Packets are removed and transmitted from each queue in
FIFO order. A straightforward consequence is that for any two packets p and p′, such that
seq(p) < seq(p′), the source cannot send p′ for the first time before it sends p (consider the
queue from which the source samples p′ for the first time: in order to reach p′ in that queue,
the source must have previously sampled and transmitted p).

It then follows that all neighbors of the source will receive messages for the first time
in the same order as they appear in the source queue. They will subsequently add them to
their transmission queues the same way. We can, therefore, apply the same argument as
before to show this order is preserved to their neighbors, and so on, until we have considered
every node in the network. It follows that for any non-source node t and any two packets p
and p, if seq(p) < seq(p′), then tn(t, p) < tn(t, p′). J

With these definitions established, we can now state our main theorem, which claims
that a blind algorithm cannot be both non-trivially competitive with respect to the multiple
path optimal results, and be order preserving for some fixed δ.

I Theorem 18. There exists a constant c′ > 1, such that for every integer δ ≥ 0 and
competitive factor c < L/c′, there does not exist a blind rate adaptation algorithm that is
c-competitive with respect to the multiple path optimal path solution and δ-order preserving.

To prove this lower bound, we will make use of a graph Dr = (V,E), where V consists
of a source, s, a destination, t, and L relay nodes, r1, r2, . . . , rL. Let E = {(s, ri) : 1 ≤ i ≤
L} ∪ {(ri, t) : 1 ≤ i ≤ L}. Fix C(s, ri) = 1 and C(ri, t) = L for all i = 1, 2, . . . , L.

Fix some rate adaptation algorithm A that is c-competitive for some constant c > 0. To
prove Theorem 18, we will show that there exists a network such that for all x ≥ 1, there
exists a packet p such that |seq(p)− tn(t, p)| = Ω(x · L). For any fixed δ, therefore, we can
find a sufficiently large x for which the algorithm is not δ-order preserving.

Let us study the constant competitive algorithm A. Since all links coming out of the source
have the same capacity, relay nodes will receive the same packet in the same transmission

S. Gilbert, C. Newport, and T. Wang 8:15

round. In order to achieve good competitiveness, relay node may not send packets in FIFO
order. Otherwise, there will be a great amount of repetition of packets at the destination t,
since relay nodes receives the same packet in each round. Actually we can claim without
proof that the constant competitive solution for one single transmission round is to have L
different relay nodes send Θ(L) different packets in the queue.

We will prove that after x transmission rounds (xL communication rounds), the maximum
sequence number of the packets that have already been sent will be Ω(x) ·Θ(L) = Ω(xL) for
all x ≥ 1. We will forget about the first L+ 1 communication rounds and regard the start of
the (L+ 2)th rounds as the start of x = 1.

I Lemma 19. When executing A on graph Dr, there exists some relay node r, such that for
every integer x ≥ 1, there exists an integer x′ ≥ x, such that seq(p(r)

x′) ≥ (1/c)x′L, where p(r)
x′

is the x′th unique packet that r sends.

We will put the proof of this lemma in the full version [8]. A simple counting argument yields
the next lemma:

I Lemma 20. When executing A in any network, for every node u, after u transmits x
unique packets, the smallest sequence number among packets u has not yet sent is no more
than x+ 1.

We can now pull together the pieces to prove our main theorem.

Proof (of Theorem 18). The key observation used by this proof is that a relay node ri
cannot distinguish an execution in Dr from an execution in the graph D(i)

r which consists
only of: the source s, with a directed edge to ri, with a directed edge to t. Now consider an
execution of A in L copies of D(i)

r , one for each ri. At the same time, run this algorithm
with the same random bits in Dr. We will look at the behavior of A in Dr to point to an i
for which D(i)

r behaves poorly.
In more detail, we apply Lemma 19, which identifies some ri in Dr for which the

lemma statement holds. Let x be the value identified by the statement for ri. Let x′ =
max{x, (δ + 1)/(Lc − 1)}, where δ is the order-preserving bound from the theorem statement.
Consider p(i)

x′ , the x′th packet sent by ri. By the statement, seq(p) ≥ (1/c)x′L. By Lemma 20,
however, there is some sequence number q ≤ x′ + 1, such that ri has not yet sent the packet
with that number.

Now consider ri in D(i)
r . It too will send a packet with sequence number at least (1/c)x′L

before it sends a packet with number x′ + 1. Because ri must eventually send every packet
in this graph (as it is the only relay node), when it does eventually get to the packet with
sequence number x′ + 1, it will be out of order. In particular, the gap between this packet’s
number and the x′th packet’s number is at least: x′(L/c)−q ≥ x′(L/c)−(x′+1) > δ. (Notice,
it is here that we require that c is sufficiently small compared to L.) We have just identified,
however, an execution of A in a graph that is non-order preserving. A contradiction. J

7 Conclusion

In this paper, we study blind multicast rate selection algorithms which do not require feedback
from receivers, and yet allows each receiver to achieve throughput within a reasonable constant
factor of its link’s optimal capacity. We prove these algorithms near optimal and then explore
the fundamental impossibilities of coping with fast fading, even for non-blind algorithms. We
conclude by showing how our deterministic strategy can be effectively adapted to multihop
scenarios.

OPODIS 2015

8:16 Bounds for Blind Rate Adaptation

We argue that our algorithms are easy to implement in practice, because they are blind,
or they does not require any information on the network structure or the quality of links.
Our formal model of multi-rate transmission, however, is a standalone contribution as it
helps bring together the practical concerns of rate selection with the theoretical toolkit of
algorithmic analysis. This framework yields many interesting open questions. For example,
this paper only scratches the surface of understanding optimal rate selection in general
network topologies. Even identifying an efficient centralized solution for approximating
an optimal selection sequence is an open problem. Another natural approach would be
to consider unicast rate selection where the sender receives feedback on each transmitted
packet’s fate. The existing solutions for this problem rely on heuristics. It would be useful to
study this problem from an algorithmic perspective, seeking formal bounds.

References
1 K. Atanassov. On the 37th and the 38th Smarandache problems. Notes on Number Theory

and Discrete Mathematics, pages 83–85, 1999.
2 Saâd Biaz and Shaoen Wu. Loss differentiated rate adaptation in wireless networks. In

IEEE WCNC 2008, 2008.
3 Saâd Biaz and Shaoen Wu. Rate adaptation algorithms for IEEE 802.11 networks: A survey

and comparison. In Proceedings of IEEE Symposium on Computers and Communications,
2008.

4 R. Chandra, S. Karanth, T. Moscibroda, V. Navda, J. Padhye, R. Ramjee, and
L. Ravindranath. Dircast: A practical and efficient Wi-Fi multicast system. In Proceedings
of the 17th IEEE International Conference on Network Protocols, 2009.

5 N. Choi, Y. Seok, T. Kwon, and Y. Choi. Leader-based multicast service in IEEE 802.11v
networks. In Proceedings of the 7th IEEE Consumer Communications and Networking
Conference, 2010.

6 S. Choi, N. Choi, Y. Seok, and T. Kwon. Leader-based rate adaptive multicasting for
wireless LANs. In Proceedings of IEEE Global Telecommunications Conference, 2007.

7 Alejandro Cornejo and Calvin Newport. Prioritized gossip in vehicular networks. In
DIALM-POMC’10, 2010.

8 Seth Gilbert, Calvin Newport, and Tonghe Wang. Bounds for blind rate adaptation. Avail-
able at: http://people.cs.georgetown.edu/~cnewport/publications.html.

9 Aditya Gudipati and Sachin Katti. Stanford networked systems group. http://snsg.
stanford.edu/projects/strider/.

10 Lawrence Harte. Introduction to Data Multicasting. Althos Publishing, 2008.
11 G. Holland, N. Vaidya, and P. Bahl. A rate-adaptive MAC protocol for multi-hop wireless

networks. In ACM MOBICOM’01, 2001.
12 A. Kamerman and L. Monteban. WaveLAN II: A high-performance wireless LAN for the

unlicensed band. Bell Labs Technical Journal, 1997.
13 J. Kim, S. Kim, S. Choi, and D. Qiao. CARA: Collision-aware rate adaptation for IEEE

802.11 WLANs. In IEEE INFOCOM’06, 2006.
14 M. Lacage, M. Manshaei, and T. Turletti. IEEE 802.11 rate adaptation: A practical

approach. In MSWiM04, 2004.
15 Z. Li, A. Das, A. K. Gupta, and S. Nandi. Full ato rate MAC protocol for wireless ad hoc

networks. In IEEE Proceedings on Communication, 2005.
16 J. Miroll and Z. Li. Aggregate block-ACK definition. Tech. Rep. IEEE, 2010.
17 Sai Shankar N., Debashis Dash, Hassan El Madi, and Guru Gopalakrishnan. WiGig and

IEEE 802.11ad for Multi-Gigabyte-Per-Second WPAN and WLAN. arXiv:1211.7356, 2012.

 http://people.cs.georgetown.edu/~cnewport/publications.html
http://snsg.stanford.edu/projects/strider/
http://snsg.stanford.edu/projects/strider/

S. Gilbert, C. Newport, and T. Wang 8:17

18 Qixiang Pang, Victor Leung, and Soung C. Liew. A rate adaptation algorithm for IEEE
802.11 WLANs based on MAC-layer loss differentiation. In Proceedings of IEEE Broadband
Wireless networking symposium, 2005.

19 Y. Park, Y. Seok, N. Choi, Y. Choi, and J.-M. Bonnin. Rate-adaptive multimedia mul-
ticasting over IEEE 802.11 wireless LANs. In Proceedings of the 3rd IEEE Consumer
Communications and Networking Conference, 2006.

20 Janathan Perry, Hari Baladrishnan, and Devavrat Shah. Rateless spinal codes. In Proceed-
ings of the 10th ACM Workshop on Hot Topics in Networks, 2011.

21 B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly. Opportunistic media access for
multirate ad hoc networks. In MOBICOM02, 2002.

22 Y. Seok and T. Turletti. Practical rate-adaptive multicast schemes for multimedia over
IEEE 802.11 WLANs, 2006. https://hal.inria.fr/inria-00104699.

23 M.-T. Sun, L. Huang, A. Arora, and T.-H. Lai. Reliable MAC layer multicast in IEEE
802.11 wireless networks. In Proceedings of International Conference on Parallel Processing,
2002.

24 J. Villalón, P. Cuenca, L. Orozoco-Barbosa, Y. Seok, and T. Turletti. Cross-layer archi-
tecture for adaptive video multicast streaming over multirate wireless LANs. IEEE J. Sel.
Areas Commun., 25(4):699–711, 2007.

25 S. Wong, H. Yang, S. Lu, and B. Bharghavan. Robust rate adaption for 802.11 wireless
networks. In MOBICOM’06, 2006.

OPODIS 2015

Overcoming Obstacles with Ants
Tobias Langner1, Barbara Keller2, Jara Uitto3, and
Roger Wattenhofer4

1 ETH Zürich, Zürich, Switzerland
tobias.langner@tik.ee.ethz.ch

2 ETH Zürich, Zürich, Switzerland
barbara.keller@tik.ee.ethz.ch

3 ETH Zürich, Zürich, Switzerland
jara.uitto@tik.ee.ethz.ch

4 ETH Zürich, Zürich, Switzerland
roger.wattenhofer@tik.ee.ethz.ch

Abstract
Consider a group of mobile finite automata, referred to as agents, located in the origin of an
infinite grid. The grid is occupied by obstacles, i.e., sets of cells that can not be entered by
the agents. In every step, an agent can sense the states of the co-located agents and is allowed
to move to any neighboring cell of the grid not blocked by an obstacle. We assume that the
circumference of each obstacle is finite but allow the number of obstacles to be unbounded. The
task of the agents is to cooperatively find a treasure, hidden in the grid by an adversary.

In this work, we show how the agents can utilize their simple means of communication and
their constant memory to systematically explore the grid and to locate the treasure in finite time.
As integral part of the agents’ behavior, we present a method that allows a group of six agents
to follow a straight line, even if the line is partially obstructed by obstacles, and to discover all
free cells along this line. In total, our search protocol requires nine agents.

1998 ACM Subject Classification F.1.1 Computation by Abstract Devices: Models of Compu-
tation

Keywords and phrases Mobile agents, algorithms, treasure search

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.9

1 Introduction

How do ants find that crumb of chocolate dropped on the kitchen floor? And how do they
navigate through that huge Lego castle built by the children to get to the crumb? General
knowledge is that such an amazing achievement can be explained by so-called pheromones, a
chemical factor used by ants to mark the terrain. However, as it turns out, many ant species
do not use pheromones at all, and instead communicate with their antennae when bumping
into each other [21]. So how do they do it – are ants pretty intelligent after all?

In this paper, we model a single ant with a mobile version of a finite state machine and
will later in the paper refer to an ant as an agent. If two ants meet, they can influence their
states, no other form of communication is allowed. We show that a small group of nine of our
ants will collaboratively be able to find a treasure in an arbitrarily obstructed environment.
Our ants use only a constant amount of memory, independent of the distance from the nest
to the treasure, and the number and size of the obstacles.

Our result is intended as proof of concept showing that it is indeed possible to search a
grid with obstacles with mobile finite state machines. To do so, however, our protocol might

© Tobias Langner, Barbara Keller, Jara Uitto, and Roger Wattenhofer;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 9; pp. 9:1–9:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Overcoming Obstacles with Ants

require the ants to walk around obstacles of arbitrary size, which forbids a runtime-bound
independent of the obstacle size. It is an interesting open problem whether this dependency
can be avoided or not. Our efforts suggest that it might not be possible.

2 Related Work

Recently, scientists in biology and computing have been flirting with each other. Distributed
computing in particular seems to be a valuable tool towards understanding biological
phenomena, as both often deal with networks of simple nodes, collaborating by means of
minimal communication. Please see the recent survey from Navlahka and Bar-Joseph for
more details [19].

Ants in particular have been a focus of interest in the Computer Science community.
As an example, Feinerman et al. modeled the foraging behavior of ants as an exploration
problem, where n agents are collaboratively searching the plane and the goal is to find an
adversarially hidden treasure [13, 14]. In a similar setting, Lenzen et al. studied the effects
on bounding the memory and the range of available probabilities for the agents [18]. Our
model is a variant of their model, where the agents are controlled by finite state machines
instead of Turing machines. Without obstacles, but allowing communication, it was shown
that asymptotically there is no penalty when ants are restricted to finite state machines [12].
In the case of an infinite grid without obstacles, it was discovered by Emek et al. that two
deterministic finite state machines cannot discover every cell [11]. In the same work, it was
also shown that a randomized finite state machine requires infinite time in expectation and
that four (deterministic) finite state machines are always enough to discover the treasure.
Since the unobstructed infinite grid is a special case of our setting, the same lower bounds
hold for our problem. However, it seems that introducing obstacles fundamentally changes
the picture. In this paper we show that it is still possible to discover the treasure in this
more challenging setting and we derive an upper bound for the number of ants required for
it.

Our work also has connections to graph exploration, as the problem we are studying is
a variant of it. In the general graph exploration setting, the goal is to visit all the nodes
or all the edges of a graph starting from any node. In our work the unobstructed cells can
be interpreted as nodes and their connections to their neighbors as edges. The task of the
agents is to discover all unobstructed cells. Graph exploration has been extensively studied
in the literature and the studies can be divided into two settings. One of the settings is to
assume that the graphs are directed, i.e., an edge can only be traversed in one direction,
not vice versa [1, 3, 7]. In the other, the edges can be traversed to both directions [2, 8, 10].
Our work belongs to the second setting, as the agents can move back and forth between
neighboring cells.

Furthermore, there are two main types of performance measures regarding graph ex-
ploration. The first measure is the time complexity, i.e., how long does it take for the
agent(s) to finish the exploration task [20]. The other one is to measure the bit complexity,
i.e., how many bits of memory does the agent(s) require to solve the exploration task [15].
Furthermore, the aforementioned graph exploration tasks can be considered with return,
stop, or perpetual properties, i.e., whether the agent is required to return to the starting cell,
stop the search after finishing, or if the agent is not required to terminate [8, 16]. Note that
even though in [16] a finite automaton explores a graph, this automaton is equipped with
a memory linear in size of the diameter of the graph. In our work we show that our finite
automata only need constant memory to solve the task.

T. Langner, B. Keller, J. Uitto, and R. Wattenhofer 9:3

Since we are restricting our underlying graph to Z2 and the obstacles in our domain
essentially block the agents from entering specific cells, our graphs correspond to a concept
widely studied in literature called labyrinths [4, 9]. Exploration of a labyrinth corresponds to
the task of getting as far from the starting point as possible, for any starting point. It was
shown by Budach that a single automaton cannot explore every finite labyrinth, where a
finite labyrinth has only a finite amount of blocked cells [6]. On the positive side, it is known
that every finite labyrinth can be explored by a finite automaton using four pebbles and that
all co-finite (number of non-blocked cells is finite) labyrinths can be explored with a finite
state machine using two pebbles [5]. A pebble can be seen as a marker, which can be put
down/picked up and moved by the automaton. Finally, Hoffman showed that the problem
cannot be solved in neither finite nor co-finite labyrinths by using only one pebble [17].
Note that our goal differs from the one of labyrinth exploration, i.e., our goal is to visit all
non-blocked cells.

3 Model

We consider the asynchronous version of the ANTS problem variant described in [12], where
a set of mobile agents search the infinite grid for an adversarially hidden treasure. The agents
are controlled by asynchronous finite state machines with a common sense of direction and
communicate only with agents sharing the same grid cell.

More formally, we consider a set A of mobile agents that explore Z2. In the beginning of
the execution, all agents are positioned in a designated grid cell referred to as the origin; the
cell with coordinates (0, 0) ∈ Z2. We denote the cells with either x- or y-coordinate being 0
as north/east/south/west-axis, depending on their location. The distance between two grid
cells (x, y), (x′, y′) ∈ Z2 is defined with respect to the `1 norm (a.k.a. Manhattan distance),
that is, |x− x′|+ |y − y′|. Two cells are called neighbors if their distance is 1.

The set of cells B ⊂ Z2 represents the blocked cells, which cannot be entered by an agent.
All other cells are called free. For simplicity, we assume that B neither contains the origin nor
any of the cells within distance at most 3 from the origin. We note that assuming the origin
free is necessary and that our protocols can easily be modified to work without assuming
that the nearby cells around the origin are free. This assumption merely allows for a cleaner
and more reader friendly initialization of our protocol.

To make the exploration of the grid feasible, we require that the cells in B do not fully
enclose any free cell, i.e., any free cell is reachable from any other free cell by a path of
free cells. The set B induces a set O of obstacles. An obstacle O ∈ O is a maximal set of
connected cells, where two cells are connected if both their x- and y-coordinates each differ
by at most one (diagonally adjacent cells are connected!). We require each obstacle to be of
finite size.

All agents are controlled by the same asynchronous finite automaton (FA). This means that
the individual agent has a constant memory and thus, in general, can not store coordinates in
Z2. Since we design a protocol for a constant number of agents, we allow each agent to run a
different individual protocol. This is modeled by assigning to each agent an individual initial
state in the shared automaton. An agent a positioned in cell z ∈ Z2 can communicate with
all other agents positioned in cell z at the same time. This communication is quite limited
though: agent a merely senses for each state q of the finite state machine, whether there
exists at least one agent a′ 6= a in cell z whose current state is q. In each step of the execution,
agent a positioned in cell (x, y) ∈ Z2 can either move to one of the four neighboring cells
(x, y + 1), (x, y − 1), (x+ 1, y), (x− 1, y), or stay put in cell (x, y). The former four position

OPODIS 2015

9:4 Overcoming Obstacles with Ants

transitions are denoted by the corresponding cardinal directions N,E,S,W, whereas the
latter (stationary) position transition is denoted by P. For convenience, we also identify the
four directions N,E, S,W with the unit vectors in the corresponding directions to be able to
write, e.g., z = (x, y) + N = (x, y + 1). We point out that the agents have a common sense
of orientation, i.e., the cardinal directions are aligned with the corresponding grid axes for
every agent in every cell.

The agents operate in an asynchronous environment. Each agent’s execution progresses
in discrete (asynchronous) steps indexed by the non-negative integers and we denote the
time at which agent a completed step i > 0 by ta(i) > 0. Following the common practice,
we assume that the time stamps ta(i) are determined by the policy ψ of an adversary that
knows the protocol whereas the agents do not have any sense of time.

Formally, the agents’ protocol is captured by the 3-tuple Π = 〈Q, sa
0 , δ〉, where Q is the

finite set of states; sa
0 ∈ Q is the initial state of agent a; and

δ : Q× 2Q × {>,⊥}4 → 2Q×{N,E,S,W,P}

is the transition function. At time 0, all agents are positioned in the origin and their
FAs are in the respective initial states. Suppose that at time ta(i), agent a is in state
q ∈ Q and positioned in cell z ∈ Z2. Then, the state q′ ∈ Q of a at time ta(i + 1) and
its corresponding position transition τ ∈ {N,E, S,W,P} are determined by the transition
function δ(q,Qa, b) = (q′, τ), where Qa ⊆ Q contains state p ∈ Q if and only if there exists
some (at least one) agent a′ 6= a such that a′ is in state p and positioned in cell z at time
ta(i), and b is a 4-tuple indicating which of the neighboring cells N/E/S/W are blocked (>)
or free (⊥). If the transition function dictates that an agent enters a blocked cell, the agent
stays put instead. For simplicity, we assume that while the state subset Qa (input to δ) is
determined based on the status of cell z at time ta(i), the actual application of the transition
function δ occurs instantaneously at the end of the step, i.e., agent a is considered to be in
state q and positioned in cell z throughout the time interval [ta(i), ta(i+ 1)).

The goal is to locate an adversarially hidden treasure, i.e., to bring at least one agent to
the free cell in which the treasure is positioned. The distance to the treasure from the origin
is denoted by D.

4 Basic Idea

In order to find the treasure, the agents have to visit every free cell. The high level idea is
that the agents walk in growing squares counter-clockwise around the origin. To this end,
each agent is given a specific task. An explorer explores the plane by walking along squares
of increasing sizes, whereas four other agents, called guides, mark the four corners of the
square that the explorer should walk along. We identify the four guides by the cardinal
direction of their respective corner NE,NW, SW, SE. Upon entering a cell with a guide, the
explorer accompanies the guide to the correct position for the next square before continuing
the search. Please refer to Figure 1 for an illustration. After updating the position of the
last guide, the explorer starts a new search along the next bigger square. We define square(d)
as the square given by the four corner cells (d, d), (d,−d), (−d,−d), (−d, d).

In the presence of obstacles, the subroutines get more involved. Obstacles can obstruct
the path of the explorer or hinder a guide to mark the cell it is supposed to. To solve the
former of the aforementioned problems we provide a subroutine that essentially allows the
explorer to walk “through” the obstacle. For the second problem we change the conditions for
the guides. Instead of marking the corner of the square, a guide has to either mark the correct

T. Langner, B. Keller, J. Uitto, and R. Wattenhofer 9:5

(0,0)

NE

NW

SESW

Figure 1 The filled black dots represent the corner agents (NW,SW,SE,NE), marking the next
spot, where the explorer should turn counter-clockwise in order to walk a square. The hollow dots
represent where the corner agents were in earlier stages. The arrows present the way the explorer
was taking so far.

y-coordinate or the correct x-coordinate, depending on the guide. The NE- and SW-guides
mark the y-coordinates of the corners of the square whereas the NW- and SE-guides mark
the x-coordinates of said corners (see Figure 2).

Let us describe the new condition for the NE-guide. Consider the NE-guide that is
supposed to mark the cell z = (d, d) for some value of d and assume further that z is blocked.
Then, the surrogate cell for the cell z is given by z′ = (x′, d) where

x′ = min{x | x ≥ d ∧ (x, d) 6∈ B} .

Informally, z′ is the first free cell with the same y-coordinate as z further away from the
origin. As the obstacles are of finite size we can guarantee that such a cell always exists.
With this condition, we make sure that the guide is either on the corner (if it is free) or
outside of the square on which the explorer is walking.

The condition for the other three guides is analogous. Consider square(d) and a guide
responsible for the cornerM ∈ {NE,NW, SW, SE} of said square. Then, we denote by ZM (d)
the cell where this guide will be positioned during the exploration of the square.

ZNE(d) = (x′, d); x′ = min{x′′ | x′′ ≥ d ∧ (x′′, d) 6∈ B},
ZNW(d) = (−d, y′); y′ = min{y′′ | y′′ ≥ d ∧ (−d, y′′) 6∈ B},
ZSW(d) = (x′,−d); x′ = max{x′′ | x′′ ≤ −d ∧ (x′′,−d) 6∈ B},
ZSE(d) = (d, y′); y′ = max{y′′ | y′′ ≤ −d ∧ (d, y′′) 6∈ B}

5 Basic Capabilities

Our protocol requires the agents and in particular the explorer to be able to perform various
advanced maneuvers. They have to be able to walk along the boundary of an obstacle,
memorize their offsets from other cells, be able to find back to a cell they previously occupied,
update the position of a guide to the next square, and, most importantly, to virtually walk
through an obstacle. In this section we present the basic routines which are then combined
in Section 6 to obtain the more complex ones.

OPODIS 2015

9:6 Overcoming Obstacles with Ants

ZNE(d)

ZNW(d)

ZSE(d) = (d,−d)ZSW(d) = (−d,−d)

(d, d)

(−d, d)

origin

O1

O2

Figure 2 The grey area describes the obstacles O1, O2 and the red dots indicate where the NE-
and NW-guide would be if there was no obstacle. The black dots indicate the cells, that the guides
actually mark. The dashed lines indicate the side of the square that the respective guide is marking
and altogether mark the square that the explorer is supposed to walk along.

5.1 Walking Around an Obstacle
Consider an agent a that currently walks into direction h where h can be N/E/S/W and is
called the heading of a. We say that a turns right or left as shorthand for a changing its
heading to an adjacent cardinal direction. Now suppose that agent a is in cell z = (x, y)
and the cell z + h is blocked by the obstacle O that a intends to walk around. In the very
first step, a turns right so that the obstacle is on its left side – an invariant that will be
maintained during the process of walking around the obstacle. Then, in every following step,
a first checks if the cell on the left side with respect to the current heading is blocked. If
this is the case, a walks once towards its heading, if possible. In case the cell towards the
heading is also blocked, a turns right. In the case that the cell on the left is free, a turns
left and walks once towards the new heading. We can verify that this case only occurs if
in the previous step, a moved towards its current heading and therefore, the cell on the
left was blocked. Therefore, the obstacle will again be on the left side of a in the next
step. The details of the method StepCounterClockwise for a single step are given in
Procedure 1. The method assumes that agent a is positioned in a cell along the border of
the obstacle O and the cell left of a (with respect to h) is blocked by the obstacle O. As
the procedure ensures the aforementioned invariant, agent a can execute it repeatedly to
traverse the complete boundary of the obstacle.

5.2 Bounded Offset Counter
In this section we explain how the agents can simulate a bounded counter. As the agents
have only a constant number of states, they can not remember arbitrarily large numbers,
such as how many steps north they went along an obstacle. In order to circumvent this lack
of memory, the ants collaboratively implement one or more offset counters. The counter

T. Langner, B. Keller, J. Uitto, and R. Wattenhofer 9:7

is suitable to memorize offsets to cells while moving along the boundary of an obstacle.
The counter provides the basic operations On, Off, IsNull, IsPositive, IsNegative,
Increment, and Decrement, which activate/deactivate the counter, allow the agent
to determine whether the offset is zero/positive/negative, or to increment/decrement it,
respectively. It is important to note that our implementation of the offset counter is only
available while the agent is adjacent to an obstacle and while this obstacle stays the same.
As soon as the agent moves to a cell that is not adjacent to the obstacle anymore, the value
of the counter becomes invalid. Hence, our protocols ensure that the counter is always turned
off before leaving an obstacle. Moreover, the value of the counter only works correctly as
long as its value is bounded by the circumference of the obstacle. This does not pose a
problem, however, as all offsets that the agents need to store in our protocol are bounded
appropriately.

Procedure 1: StepCounterClockwise()
Agent a is located in (x, y) and has heading h
if cell on left is free then

turn left
else if (x, y) + h is blocked then

while (x, y) + h is blocked do
turn right

move once towards h
return h

We first give an informal description of our implementation and then specify how the
basic operations can be implemented. Consider an agent a located in a cell (x, y) adjacent
to an obstacle O. Agent a is equipped with the counter c represented by the auxiliary agents
ac, ab, and am called count agent, base agent, and messenger agent, respectively. When the
counter is turned off, the auxiliary agents are in the follow mode, which implies that they
simply follow agent a and do not perform any specific task. When the counter is turned
on, the auxiliary agents enter the counter mode and perform special tasks. The job of ab

is to mark the cell where the counter has been turned on the last time. Agent ac’s task is
to store an offset value v by residing in the cell that is reached when starting in the cell
containing ab and walking |v| cells clockwise along the boundary of the obstacle O. In order
to distinguish positive and negative offsets, ac encodes the sign of v in its states. Agent am

generally resides in the same cell as agent a and moves to ac and ab when the counter is to
be changed or read. Either of the basic operations can only be executed when the previous
operation has been completed, which is the case when am is in the same cell as a.

For the purpose of argumentation, we denote the value represented by counter c as val(c).
We remark, however, that this value is not directly accessible to any of the agents.

Operation On(c). When a activates the counter, it signals this to the auxiliary agents
using a special state, upon which they enter their respective counter mode states.

Operation Off(c). Agent am moves clockwise around the obstacle, when it meets ac and
ab it instructs them to move along the obstacle to the cell containing a, and finally does the
same. The auxiliary agents then enter the follow mode.

OPODIS 2015

9:8 Overcoming Obstacles with Ants

Operation IsNull(c). Agent am walks clockwise until it locates the cell containing agent ab.
It checks whether agent ac occupies the same cell and reports this information to agent a.

Operation IsPositive/IsNegative(c). Agent am walks clockwise until it locates the cell
containing the agent ac. If the cell also contains agent ab – the value of the counter is zero –
agent am reports false to a . Otherwise, am senses the sign of c through the state of ac

and reports the result to a accordingly.

Operation Increment/Decrement(c). Agent am walks clockwise until it locates the cell
containing agent ac. It then instructs ac to increment/decrement and returns to agent a.
Depending on whether the state of ac corresponds to a positive or negative sign, ac moves
one cell clockwise or counter-clockwise along the obstacle. If ac resides in the same cell as ab,
it also needs to change its sign state accordingly.

These operations complete the specification of the counter functionality. Please note that all
these operations make only use of a constant number of states.

5.3 Combining Offset Counters
The agents in our protocol sometimes employ a constant number of offset counters c1 to
ck on the same obstacle, where the respective counters are activated in the same cell. This
functionality can be provided by having one base agent ab and one messenger agent am and
k count agents for the different counters. To ensure that the messenger interacts with the
correct count agent, they encode an index in their states such that the messenger agent can
distinguish them. Correspondingly, the messenger agent encodes the index of the counter
that it is operating on in its state. As only a constant number of offsets are used, this
is possible with a constant finite automaton. We distinguish the count agents of different
counters by their index as superscript, i.e., ai

c is the count agent of the counter ci.
When an agent uses several counters, it has access to two additional operations. Operation

LessThan(ci, cj) compares the value of two counters and returns a boolean indicating whether
val(ci) < val(cj). The operation Set(ci, cj) sets the value of counter ci to val(cj).

Operation LessThan(ci, cj). Agent am moves clockwise around the obstacle until it locates
the cell containing ab. Then, am walks further clockwise around the obstacle until having
located both ai

c and aj
c. Based on the signs encoded in the states of ai

c and aj
c and the order

in which these agents were located, am infers the result of the comparison, then returns to a
and signals it.

Operation Set(ci, cj). Agent am walks along the obstacle to the cell containing ai
c and

instructs ai
c to walk to the cell containing aj

c, while am accompanies ai
c on its way. When ai

c

enters the cell containing aj
c, agent ai

c updates its sign to the sign of aj
c and agent am returns

to a to finish the operation.

6 Advanced Procedures

In this section, we combine the basic functionalities described in the previous section into
the complex procedures, that eventually constitute our search protocol. The most important
functionality is the ability to virtually walk through an obstacle following a horizontal or
vertical straight line. The agents do this by locating the closest cell that lies on the straight

T. Langner, B. Keller, J. Uitto, and R. Wattenhofer 9:9

a

d

z1z2z3

O

z

Figure 3 Agent a wants to walk west but the direct path (dashed arrow) is obstructed by an
obstacle O. Thus, a walks counter-clockwise around the boundary of O (continuous arrow) and uses
offset counters to detect the potential target cells z1, z2, and z3.

line through the obstacle and then continue the walk from there. This functionality is realized
by the procedures Shift and Probe that will be described next.

6.1 Shifting the Position Along an Obstacle
The procedure Shift(cx, cy) allows an agent a positioned in cell z = (x, y) next to the
obstacle O and equipped with two counters cx and cy to move to the cell z′ = (x+val(cx), y+
val(cy)), where z′ must be also next to O. During the process, agent a continuously updates
the counters to reflect the new offsets, so that when a has reached cell z′, the values of both
counters cx and cy are zero. Consequently, both counters are then turned off. Procedure 2
gives a pseudo-code description.

Procedure 2: Shift(cx, cy)
while ¬IsNull(cx) ∨ ¬IsNull(cy) do

h← StepCounterClockwise()
Increment(cx) / Decrement(cx) according to h
Increment(cy) / Decrement(cy) according to h

Off(cx); Off(cy)

6.2 Probing Target Cells
While the procedure StepCounterClockwise allows the agent a to walk around an
obstacle O, it still needs to figure out which of the cells visited along the walk is the next
free cell t along the straight path through O. There are two main difficulties that we face
when trying to identify t. First, the circumference of O can be arbitrarily large and therefore,
a single agent cannot keep track of its relative location with respect to its starting cell
z = (xb, yb). Second, there might be many possible cells along the edges of O that are hit by
the straight line through O. We refer to all these cells along the border of O as potential
target cells (cf. Figure 3).

The procedure Probe allows an agent a in cell z to locate the closest potential target
cell z∗ in direction of its heading h and returns a counter representing the distance of z∗
relative to z. The exact formulation of Probe depends on the heading h of a. Procedure 3
gives a pseudo-code description for the case of h = W . The other cases are analogous.

OPODIS 2015

9:10 Overcoming Obstacles with Ants

The idea is that agent a employs three counters cx, cy and cmin while walking along the
boundary of O. The counters cx and cy track the offset of a from the initial cell (xb, yb).
Whenever cy is zero, a has located a cell with the same y-coordinate and the value of cx is
stored in cmin if it is smaller than the previous cmin. This process is iterated until the agent
returns to the starting position (it meets agent ab again). Then it turns off counters cx and
cy and returns cmin.

Procedure 3: ProbeW ()
On(cx); On(cy); On(cmin);
repeat

h← StepCounterClockwise()
Increment(cx) / Decrement(cx) according to h
Increment(cy) / Decrement(cy) according to h
if IsNull(cy) ∧ (IsNull(cmin) ∨ LessThan(cx, cmin)) then

Set(cmin, cx)
until a meets ab;
Off(cx); Off(cy);
return cmin

6.3 Procedure Scan
A detail that we have to be careful with is, when traveling from one guide to another, that
each cell along the current square gets discovered and that we eventually reach the guide.
To this end, the explorer visits each cell on the boundary of an obstacle that it meets using
the procedure Scan.

Upon executing Scan, agent a first activates two counters cx and cy. Then, it walks
once around the obstacle by repeatedly invoking StepCounterClockwise and updating
cx and cy according to its movements. If a meets the next guide along the way, it does not
update the counters anymore. When a returns to the cell containing the base agent ab of its
counter, the walk is finished. If both cx and cy equal 0, no guide was not found during Scan.
Otherwise, the values of the counters represent the offset to the guide and the procedure
“returns” the two counters cx and cy. Since a might meet different guides, it stores the index
of the next guide that it is supposed to meet according to the protocol in its state, thereby
allowing it to ignore all other guides.

6.4 Procedure Update
In this section, we establish the procedure Update that allows the explorer to find the cell
ZM (d+ 1) starting from the cell ZM (d) of some guide M for any d > 0. Our goal is to prove
the following lemma.

I Lemma 1. The procedure Update(M) enables the the explorer to move from cell ZM (d)
to cell ZM (d+ 1) and back to cell ZM (d), for any d ≥ 1.

Consider Update in the case of the NW-guide currently occupying cell ZNW(d) = (−d, y∗).
We assume that the explorer has access to a counter cy, denoting the y-offset to the line
y = d. To initialize the update, the explorer leaves another agent to mark ZNW(d) and
instructs the NW-guide to follow the explorer. A lengthy pseudo-code representation of the
Update for the NW-guide can be found in Procedure 4, where UpdateNW(c) stands for

T. Langner, B. Keller, J. Uitto, and R. Wattenhofer 9:11

the special case of the NW-guide. To locate the cell ZNW(d + 1), our first task is to find
a cell z ∈ L, where L is the set of cells whose x-coordinate equals to −(d + 1) and whose
y-coordinate is at least as large as d+ 1, i.e.,

L = {(i, j) ∈ Z2 | (i = −(d+ 1)) ∧ (j ≥ d+ 1))} .

We divide our description of Update into several cases. First, we consider the case that
the cell zw = (−(d + 1), y∗) west to ZNW(d) is blocked by obstacle O. This induces that
ZNW(d) and ZNW(d+ 1) are on the border of the same obstacle O. Refer to Figure 4b for
an illustration. The explorer turns on the cx counter. Then, it increments its value by 1 to
correspond to the offset from ZNW(d+ 1). Also the cy counter is decremented by 1, to mark
the next desired y-coordinate.

To reach a cell z ∈ L, the explorer now simply turns its heading to north to initialize
a walk counter-clockwise around O. Now since O is finite, it has to be the case that
there is at least one cell from L on the boundary of O. The explorer successively executes
StepCounterClockwise, updates counters cx and cy accordingly, and always checks if
cx = 0 and if cy is positive. If the check returns true, the explorer has reached a cell z ∈ L.

To now find the cell ZNW(d+ 1), the explorer first turns its heading towards south and
then successively executes Shift(0, Probe()), and updates cy accordingly during every
Shift, until Probe returns a value greater than the current cy. If the next cell found by
Probe is further away than cy we know that we are in the cell ZNW(d+ 1) at the moment.
As the last step of this case, the explorer instructs the NW-guide to remain in this cell, and
walks counter-clockwise around O until it finds the agent denoting cell ZNW(d).

Then, consider the case that cell zw is not blocked. We further split into two cases and
we first consider the case that cy > 0, which can be asserted by the explorer by checking
if IsPositive(cy) returns true. Then, it has to be the case that all cells (−d, y∗ − i), for
i ≤ y∗−d, are blocked by some obstacle O due to the invariant that ZNW(d) has the smallest
y-coordinate among free cells (−d, y ≥ d). See Figure 4a for an illustration. Thus, the
explorer can move to zw without invalidating the counter cy. Furthermore, cell ZNW(d+ 1)
has to be on the boundary of O.

Next, the explorer decrements cy by 1. If cy = 0, then we have reached cell ZNW(d+ 1).
Otherwise, similarly to the previous case, the explorer now turns its heading towards south
and executes Shift(0,Probe()) until Probe returns a value greater than cy. When Probe
returns a value greater than cy, the explorer has reached cell ZNW(d+ 1). Similarly to the
previous case, the explorer instructs the NW-guide to mark this cell and travels back to
ZNW(d) by walking around obstacle O.

Consider now the case where zw is not blocked and cy ≤ 0. Note that due to the invariant
that ZNW(d) has the smallest y-coordinate among free cells (−d, y ≥ d), we get that cy = 0.
Therefore, the explorer can turn off both counters cx and cy without losing any information.
Then, the explorer along with the other agents, moves to cell zw. After reaching zw, the
explorer turns its heading towards north and if (−(d + 1), d + 1) is not blocked, it moves
once north reaching the cell ZNW(d+ 1). After instructing NW to mark ZNW(d+ 1), the
explorer can find back to ZNW(d) simply by reversing its movements.

If (−(d+ 1), d+ 1) is blocked, then the explorer executes Shift(0,Probe()) once, so that
it reaches the free cell with the smallest y-coordinate at least d+ 1, i.e., the cell ZNW(d+ 1).
Refer to Figure 4c in the appendix for an illustration. The explorer again instructs the
NW-guide to remain in ZNW(d+ 1) and travels back to ZNW(d) by turning its heading south,
executing Shift(0,Probe()) once, and moving once east.

In all of the above cases, the guide was left in a cell ZNW(d+ 1) yielding the correctness
of the update procedure for the NW-guide and the explorer found its way back to the cell

OPODIS 2015

9:12 Overcoming Obstacles with Ants

Procedure 4: UpdateNW(cy)
Agent a is located in ZNW(d) = (−d, y∗), zw = (−(d+ 1), y∗), zn = (−(d+ 1), d+ 1)
Mark ZNW(d) with an agent amark

if zw ∈ O then
. zw ∈ O ⇒ ZNW(d) and ZNW(d+1) are next to the same obstacle
. Figure 4b represents this case

h← N; On(cx); Increment(cx); Decrement(cy);
. store offsets to the coordinate (-(d+1),d+1) instead to (-d,d)

repeat
h← StepCounterClockwise;
Increment(cx) / Decrement(cx) according to h;
Increment(cy) / Decrement(cy) according to h:

until IsNull(cx) ∧ IsPositive(cy);
. We found the cell z, cell ZNW(d+1) is south to us

h← S; Off(cx); On(c0);
repeat

cy′ ← Probe();
Shift(c0, cy′) while updating cy;

until LessThan(cy, cy′);
turn off all counters; leave the NW-guide in this cell; follow the obstacle back to
cmark;

else
h←W; move once towards h; . zw is free, walk one step west
if IsPositive(cy) then

. (-d/d) is blocked and ZNW(d) is further north

. ZNW(d) and ZNW(d+1) are next to the same obstacle
Decrementcy;
if ¬IsNull(cy) then

. We are further north than needed for ZNW(d+ 1)

. Figure 4a represents this case
h← S; Off(cx); On(c0), cy′ ← Probe()
while LessThan(cy, cy′) do

cy′ ← Probe()
Shift(c0, cy′) while updating cy

turn off all counters; leave the NW-guide in this cell, follow the obstacle back to
cmark

else
Off(cx); Off(cy); On(cy); Decrement(cy);
h← N
if zn ∈ O then

. (−d, d) is free, zn is blocked, see Figure 4c
On(c0); cy′ ← Probe()
Shift(c0, cy′)
turn off all counters; leave the NW-guide in this cell; reverse the movements
to go back to cmark

else
. (−d, d) and (−(d+ 1), d+ 1) are both free

move once towards h, leave the NW-guide in this cell
turn off all the counters; move once south and once east to go back to cmark

T. Langner, B. Keller, J. Uitto, and R. Wattenhofer 9:13

ZNW(d+ 1)

ZNW(d)

y = d

x = d

zw

(a) The explorer is located in cell ZNW(d) and ex-
ecutes Update(NW). Initially, val(cy) = 4 > 0
and since zw is free, the explorer moves directly
to zw and decrements cy so that val(cy) = 3.
Then it performs Probe() (h = S) that returns
a counter with value 2. Thus, the explorer per-
forms Shift(0, 2) and updates cy accordingly
so that val(cy) = 1 once the explorer reaches
ZNW(d + 1). The following Probe() returns a
counter with value 2 > 1 = val(cy) and therefore,
the explorer knows that it currently occupies cell
ZNW(d + 1).

ZNW(d)

ZNW(d+ 1)

︸
︷︷

︸

y = d

cy = 3

︸
︷︷

︸

cy = 6

z ∈ L

︸
︷︷

︸

cy = 4
zw

x = d

(b) Initially, there is an offset of 3 from the north
side of the square(d) (stored in the cy counter),
then cy is decremented to 2. As a next step, the
explorer locates cell z and then executes Probe
and Shift until ZNW(d + 1) is located. When
ZNW(d + 1) is reached, the value of cy is 0 and
therefore smaller than the value of the counter
returned by Probe.

ZNW(d+ 1)

ZNW(d)
y = d

x = d

zn

zw

(c) The first cell to the west from ZNW(d) is
free, cy equals 0, and ZNW(d + 1) is located by
moving once west and then executing Probe
and Shift with heading N.

Figure 4 Special cases of Update.

OPODIS 2015

9:14 Overcoming Obstacles with Ants

ZNW(d). This concludes the description of Update for the NW-guide. The procedure
Update works analogously for other guides. Note that when updating the NE-guide, the
explorer does not return back to cell ZNE(d) and therefore does not leave an agent in that
cell. Thus, Lemma 1 follows.

7 Searching the Plane

In the search protocol SquareWalk, the agents begin the search by four agents moving into
the cells (1, 1), (−1, 1), (−1,−1), and (1,−1), corresponding to ZNE(1), ZNW(1), ZSW(1), and
ZSE(1). Recall that these agents, the guides, essentially mark the corners of the square that
the explorer will explore next and that we identify each guide with the cardinal direction of
its corner (NE, NW, SW, SE). The explorer e, equipped with a set of counters in follow mode,
moves to the NE-guide in the cell ZNE(1). It then starts to explore square(1) by moving
west until it meets the NW-guide in cell ZNW(1) and, together with the NW-guide, moves to
cell ZNW(2). Then the explorer returns to ZNW(1) and moves south towards the SW-guide.
It proceeds analogously with the other guides and eventually returns to the NE-guide. After
moving the NE-guide to cell ZNE(2), the explorer does not return to ZNE(1) but instead
starts to explore square(2). Starting from the next iterations, things get more involved as
obstacles might obstruct the explorer or the guides. Consider the situation that the next
square to be searched by the explorer is square(d), every guide M is in the corresponding cell
ZM (d), and the explorer is in cell ZNE(d). We explain how e can walk from the NE-guide
to the NW-guide while exploring the north side of square(d); the three other sides of the
square are analogous. Procedure 5 gives a pseudo-code description in which ze = (xe, ye)
denotes the current cell of the explorer while an explanation follows below.

Procedure 5: ExploreNorthSide
h←W . set heading
repeat

if (ze + h) /∈ B then
move(h) . next cell is free

else
cprobe ← Probe()
(cx, cy)← Scan()
if (IsNull(cx) ∧ IsNull(cy)) ∨ LessThan(cprobe, cx) then

Off(cy); On(cy); Off(cx) . reset cy to zero and turn off cx

Shift(cprobe, cy) . move to next free cell

else
Off(cprobe); On(cupdate) . re-use agents from the cprobe counter
Set(cupdate, cy)
Shift(cx, cy) . move to NW-guide

until e meets NW ;
Update(NW, cupdate)

The explorer e sets its heading towards west and, as long as the cell in front is free, moves
forward. If e senses an obstacle in front in cell z, e executes Probe to find the next free cell
z′ in the direction of its heading, resulting in the counter cprobe representing the distance
between ze and z′. Then e scans the obstacle using Scan yielding the counters cx and cy. If

T. Langner, B. Keller, J. Uitto, and R. Wattenhofer 9:15

Scan was not successful, i.e., the NW-guide was not located along the obstacle, the counters
cx and cy are both zero. Now, e moves to z′ using Shift(cprobe, 0) (cy is reset and used as
second parameter) if
(i) Scan was not successful, i.e., the NW-guide was not located along the obstacle (corre-

sponding to the case that (IsNull(cx) ∧ IsNull(cy) = true) or
(ii) Scan found the next guide but it is further west than the next target cell (corresponding

to the case that LessThan(cprobe, cx) = true)
and repeats the above. If val(cprobe) ≥ val(cx), corresponding to LessThan(cprobe, cx) =
false, the explorer executes Shift(cx, cy) to move to ZNW to meet the NW-guide.

Finally, e uses Update to update the position of the NW-guide from ZNW(d) to ZNW(d+1)
and returns to ZNW(d). Then, it sets its heading to south, turns off all counters and starts the
analogous procedure ExploreWestSide, this time walking south towards the SW-guide.

The above procedure is repeated for all four sides of the square until the explorer arrives
back at the NE-guide and updates its position to ZNE(d + 1). Now e does not return to
ZNE(d) but instead starts a search of square(d+ 1) using ExploreNorthSide.

7.1 Correctness

In this section, we establish the correctness of the protocol SquareWalk, i.e., that it
guarantees that the explorer eventually visits all free cells of the grid. We define the concept
of a configuration C : A 7→ Z2 as an assignment of a cell to each agent. A configuration is a
snapshot of the positions of the agents at a given time. The start configuration for distance
d, denoted by Z(d), is the configuration where each guide M is in its corresponding cell
ZM (d) and the explorer and the auxiliary agents are in cell ZNE(d) with the NE-guide. We
furthermore define

Fi = {(x, y) /∈ B | (|x| = i ∧ |y| ≤ i) ∨ (|y| = i ∧ |x| ≤ i)}

as the set free cells of square(i) for some i ≥ 1. We are now ready to prove the following
theorem which establishes the correctness of SquareWalk. Due to the space constraints,
we defer the proof to the full version of the paper.

I Theorem 2. The protocol SquareWalk guarantees that every free cell z ∈ Z2 is visited
by the explorer within finite time.

8 Conclusion

We presented the protocol SquareWalk that allows a group of finite state machines
(with a constant number of states) to locate an adversarially hidden treasure in a plane
obstructed by arbitrary obstacles of finite circumference. Our search protocol employs the
weak communication capabilities of the agents to simulate a sufficient amount of memory to
ensure progress in the search.

Our search protocol requires ten agents in total, where one of the agents acts as an
explorer, who performs the searching. The protocol uses three offset counters, requiring five
agents. The other four agents mark the sides of a square around the origin that bounds the
area discovered so far. We note that we can reduce the agent count to nine by using the
triangle approach from [11]. But as this makes the specification of our protocol considerably
more involved, we presented the simpler version employing the square approach.

OPODIS 2015

9:16 Overcoming Obstacles with Ants

References
1 Susanne Albers and Monika Henzinger. Exploring Unknown Environments. SIAM Journal

on Computing, 29:1164–1188, 2000.
2 Baruch Awerbuch and Margrit Betke. Piecemeal Graph Exploration by a Mobile Robot.

Information and Computation, 1999.
3 Michael Bender, Antonio Fernandez, Dana Ron, Amit Sahai, and Salil Vadhan. The Power

of a Pebble: Exploring and Mapping Directed Graphs. In Proceedings of the 30th annual
ACM Symposium on Theory of Computing (STOC), 1998.

4 Manuel Blum and Dexter Kozen. On the Power of the Compass (or, Why Mazes Are Easier
to Search Than Graphs). In Proceedings of the 19th Annual Symposium on Foundations of
Computer Science (FOCS), pages 132–142, 1978.

5 Manuel Blum and William J. Sakoda. On the Capability of Finite Automata in 2 and
3 Dimensional Space. In Proceedings of the 18th Annual Symposium on Foundations of
Computer Science (FOCS), pages 147–161, 1977.

6 Lothar Budach. Automata and Labyrinths. Mathematische Nachrichten, pages 195–282,
1978.

7 Xiaotie Deng and Christos Papadimitriou. Exploring an Unknown Graph. Journal of Graph
Theory, 32:265–297, 1999.

8 Krzysztof Diks, Pierre Fraigniaud, Evangelos Kranakis, and Andrzej Pelc. Tree Exploration
with Little Memory. Journal of Algorithms, 51:38–63, 2004.

9 Klemens Döpp. Automaten in Labyrinthen. Elektronische Informationsverarbeitung und
Kybernetik, 7(2):79–94, 1971.

10 Christian A. Duncan, Stephen G. Kobourov, and V. S. Anil Kumar. Optimal Constrained
Graph Exploration. ACM Transactions on Algorithms (TALG), 2(3):380–402, 2006. doi:
10.1145/1159892.1159897.

11 Yuval Emek, Tobias Langner, David Stolz, Jara Uitto, and Roger Wattenhofer. How Many
Ants Does it Take to Find the Food? In 21th International Colloquium on Structural
Information and Communication Complexity (SIROCCO), pages 263–278, 2014.

12 Yuval Emek, Tobias Langner, Jara Uitto, and Roger Wattenhofer. Solving the ANTS
Problem with Asynchronous Finite State Machines. In Proceedings of the 41st International
Colloquium on Automata, Languages, and Programming (ICALP), pages 471–482, 2014.

13 Ofer Feinerman and Amos Korman. Memory Lower Bounds for Randomized Collaborative
Search and Implications for Biology. In Proceedings of the 26th International Conference
on Distributed Computing (DISC), pages 61–75, Berlin, Heidelberg, 2012. Springer-Verlag.
doi:10.1007/978-3-642-33651-5_5.

14 Ofer Feinerman, Amos Korman, Zvi Lotker, and Jean-Sebastien Sereni. Collaborative
Search on the Plane Without Communication. In Proceedings of the 31st ACM Symposium
on Principles of Distributed Computing (PODC), pages 77–86, 2012.

15 Pierre Fraigniaud and David Ilcinkas. Digraphs Exploration with Little Memory. In 21st
Symposium on Theoretical Aspects of Computer Science (STACS), pages 246–257, 2004.

16 Pierre Fraigniaud, David Ilcinkas, Guy Peer, Andrzej Pelc, and David Peleg. Graph Explo-
ration by a Finite Automaton. Theoretical Computer Science, 345(2-3):331–344, 2005.

17 Frank Hoffmann. One Pebble Does Not Suffice to Search Plane Labyrinths. In Fundamentals
of Computation Theory, pages 433–444. Springer Berlin Heidelberg, 1981.

18 Christoph Lenzen, Nancy Lynch, Calvin Newport, and Tsvetomira Radeva. Trade-offs
between Selection Complexity and Performance when Searching the Plane without Com-
munication. In Proceedings of the 33rd Symposium on Principles of Distributed Computing
(PODC), pages 252–261, 2014.

19 Saket Navlakha and Ziv Bar-Joseph. Distributed Information Processing in Biological and
Computational Systems. Communications of the ACM, 58(1):94–102, 2014.

http://dx.doi.org/10.1145/1159892.1159897
http://dx.doi.org/10.1145/1159892.1159897
http://dx.doi.org/10.1007/978-3-642-33651-5_5

T. Langner, B. Keller, J. Uitto, and R. Wattenhofer 9:17

20 Petrişor Panaite and Andrzej Pelc. Exploring Unknown Undirected Graphs. In Proceedings
of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 316–322,
1998.

21 Noa Pinter-Wollman, Ashwin Bala, Andrew Merrell, Jovel Queirolo, Martin C Stumpe,
Susan Holmes, and Deborah M Gordon. Harvester Ants Use Interactions to Regulate
Forager Activation and Availability. Animal behaviour, 86(1):197–207, 2013.

OPODIS 2015

Distributed Sparse Cut Approximation∗

Fabian Kuhn1 and Anisur Rahaman Molla2

1 Department of Computer Science, University of Freiburg, Freiburg, Germany
kuhn@cs.uni-freiburg.de

2 Department of Computer Science, University of Freiburg, Freiburg, Germany
armolla@cs.uni-freiburg.de

Abstract
We study the problem of computing a sparse cut in an undirected network graph G = (V,E).
We measure the sparsity of a cut (S, V \ S) by its conductance φ(S), i.e., by the ratio of the
number of edges crossing the cut and the sum of the degrees on the smaller of the two sides.
We present an efficient distributed algorithm to compute a cut of low conductance. Specifically,
given two parameters b and φ, if there exists a cut of balance at least b and conductance at most
φ, our algorithm outputs a cut of balance at least b/2 and conductance at most Õ(

√
φ), where

Õ(·) hides polylogarithmic factors in the number of nodes n. Our distributed algorithm works
in the CONGEST model, i.e., it only requires to send messages of size at most O(log(n)) bits.
The time complexity of the algorithm is Õ(D + 1/bφ), where D is the diameter of G. This is
a significant improvement over a result by Das Sarma et al. [ICDCN 2015], where it is shown
that a cut of the same quality can be computed in time Õ(n + 1/bφ). The improved running
time is in particular achieved by devising and applying an efficient distributed algorithm for the
all-prefix-sums problem in a distributed search tree. This algorithm, which is based on the classic
parallel all-prefix-sums algorithm, might be of independent interest.

1998 ACM Subject Classification F.2.2 [Analysis of Algorithms and Problem Complexity] Non-
numerical Algorithms and Problems, G.2.2 [Discrete Mathematics] Graph Theory

Keywords and phrases sparsest cut, conductance, random walks, all-prefix-sums

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.10

1 Introduction and Related Work

The problem of finding sparse cuts in a graph is one of the basic problems in network
optimization. In the context of the present paper, the sparsity of a cut is measured by its
conductance, where the conductance of a cut is defined as the ratio between the number
of edges crossing the cut and the sum of the degrees on the smaller side of the cut. In
this context, the sum of the degrees of a set of nodes S is also known as the volume of S.
The conductance of a graph is defined as the smallest conductance of any of its cuts. The
conductance determines how well connected a graph is and in particular how well information
can be spread within the graph. It is well-known that the conductance of a graph is closely
connected to the mixing time of a random walk on the graph and consequently also to the
spectral gap of the graph [14, 20]. Network with high conductance, a large spectral gap
and thus a small random walk mixing time for example allows to do fast (almost) uniform
random sampling of nodes (see [11] for fast distributed algorithms and applications) or to do
low-congestion routing [7, 13]. It is also known that the performance of the random push-pull
gossip protocol is very closely related to the conductance of the network [12].

∗ Research supported by ERC Grant No. 336495 (ACDC).

© Fabian Kuhn and Anisur Rahaman Molla;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 10; pp. 10:1–10:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 Distributed Sparse Cut Approximation

As the conductance of a graph is tightly connected to the performance of many important
random processes and computations in networks, finding cuts of low conductance potentially
helps to find lower bounds on the performances of these processes and computations. As it is
the sparse cuts which are limiting the speed of many such processes, finding low conductance
cuts can help in identifying critical, important edges and bottlenecks in a given network. In
a standard centralized setting, the problem of finding sparse cuts and also more generally
related graph partitioning problems are well studied with a large body of literature, see e.g.,
[1, 2, 3, 4, 5, 15, 18, 19, 21, 24]. The first approximation algorithm the conductance of a
graph was presented by Leighton and Rao in [18], where an O(logn)-approximation is given.
Using semidefinite programming techniques, this was improved to the currently best known
approximation ratio of O(

√
logn) Arora, Rao, and Vazirani [4] (see also [3]).

In a large-scale network, it might not be possible or reasonable to collect the entire
structure of the network at a single node and to perform computations in a centralized way.
In the present paper, we thus study the problem of finding cuts of low conductance in a
distributed manner. Our distributed algorithm is based on random walk techniques that
were first developed by Lovász and Simonovits in [19, 20] and later extended by Spielman
and Teng in [24, 25]. More directly, our distributed algorithm is based on an algorithm for
the same problem in the streaming model [9] and on a simple distributed version of this
algorithm which appeared in [10].

The core idea of the algorithm is to test different cuts obtained by the probability
distributions of random walks in the graph. More specifically, consider a random walk of
some length ` starting at a node s in a graph G and order all nodes of G according to a
normalized probability of finishing the random walk at the node. Consider all n− 1 cuts that
are defined by all the n− 1 prefixes of this ordering. Assume that there is a set of nodes S
of volume at most half the total volume of G such that the (S, S̄) of G has conductance at
least φ. It was shown in [19, 20, 24, 25] that when doing a random walk of length chosen
randomly between 1 and O(1/φ) starting at a random node s ∈ S, with constant probability
one of the induced n− 1 cuts has conductance at most Õ(

√
φ). In [9], it is observed that the

technique still works if the random walk probabilities are only approximately computed and
the technique is applied to find low conductance cuts in the streaming model. Based on the
streaming algorithm of [9], a simple distributed algorithm to solve the same problem in the
CONGEST model (i.e., in a message passing model with messages of logarithmic size [23])
has been presented in [10].

The algorithm of [10] is a straightforward implementation of the ideas of [19, 20, 24, 25]
in that for each of the random walks it computes, the complete information to compute
the sizes of all n − 1 induced cuts is sent to a global leader (for each node, one needs to
know the number of edges to predecessors/successors in the order given by the random walk
probabilities). As a result, for each random walk, the algorithm of [10] requires O(n) rounds
to compute the sizes of all cuts induced by the computation of one random walk in G. This
results in an overall running time of Õ

(1
b

(1
φ +n

))
to find a cut of conductance at most Õ(

√
φ)

and balance at least Ω(b), where the balance b ≤ 1/2 of a cut is defined as the ratio of the
volume of the smaller side and the total volume of the graph. In this paper we improve on this
in the following way. Because it is sufficient to have approximate random walk probabilities,
we can round the computed probabilities so that we can partition them Õ(1/φ) classes of
equal normalized probabilities. Within each class, the nodes can then be ordered arbitrarily.
Using a given spanning tree of the network to define the order within each class, we then
show that the sizes of all cuts can be computed by doing two appropriate all-prefix-sums
computations for each class. We show that this can be done efficiently by developing a

F. Kuhn and A. R. Molla 10:3

distributed variant of the classic parallel all-prefix-sums algorithm [16, 17, 22, 26]. As a
result, we obtain an improved running time of Õ(D + 1/bφ) for computing a cut of balance
Ω(b) and conductance Õ(

√
φ), where D is the diameter of G.

The remainder of the paper is organized as follows. In Section 2, we formally define the
communication model and the problem statement. We then formally state the contributions
of the paper in Section 3. Sections 4 and 5 are devoted to our technical results, where in
Section 4, we first describe the distributed all-prefix-sums algorithm which will then be
applied in Section 5, where our main result, an algorithm to compute low conductance cuts
will be presented.

2 Model and Definitions

Distributed Computing Model. The network is modeled as an undirected n-node graph
G = (V,E). For simplicity, we assume that the graph G is unweighted. We however note that
it is not hard to generalize the presented sparse cut approximation algorithm to weighted
graphs.1 We model communication by using the standard CONGEST model: Communication
happens in synchronized rounds; in every round, every node is allowed to send a (possibly
different) message of at most O(log(n)) bits to each of its neighbors [23]. The time complexity
of an algorithm is defined as the total number of rounds needed until all nodes terminate.
Note that we use the common assumption that local computations at the nodes are for
free. We however point out that our algorithms only require very simple, efficient local
computations. We further assume that each node is equipped with a unique identifier (ID).
Initially, each node knows its own ID as well as the IDs of all its neighbors. Wherever
convenient, we slightly abuse notation and identify a node v with its ID.

Random Walks. Let G = (V,E) be a graph with |V | = n and |E| = m. We use p`(s, t)
to denote the probability that a uniform lazy random walk of length ` starting at node
s ∈ V ends at node t ∈ V .2 Hence, {p`(s, t) : t ∈ V } is the probability distribution on nodes
induced by a random walk of length ` starting from the source node s. For convenience,
we abbreviate p`(s, t) by p(t) when source node and length are clear from the text. Let
d(v) denote the degree of a node v ∈ V . Given a probability distribution p(·) on the nodes
and a node v ∈ V , we further define ρp(v) := p(v)/d(v) as the normalized probability of
v. Note that the stationary π(·) distribution of the uniform lazy random walk is given by
π(v) = d(v)/m for all v ∈ V .

Cuts and Conductance. Let S be a subset of the nodes V and let S̄ := V \ S. The
bipartition (S, S̄) of the nodes is called the cut induced by S (or also by S̄). We use E(S, S̄)
to denote the set of edges across the cut (S, S̄) and e(S, S̄) := |E(S, S̄)| for the size of the
cut. We measure the sparsity of a cut by its conductance, where the conductance is defined
as follows.

1 In a weighted graph, we need to substitute the random walk transition matrix with the weighted
transition matrix. Also volume and conductance we have to be defined in the natural way for weighted
graphs.

2 In a uniform lazy random walk, in each step, the walk stays at the current node with probability 1/2
and otherwise it moves to a uniformly random neighbor.

OPODIS 2015

10:4 Distributed Sparse Cut Approximation

I Definition 1 (Conductance). Given a graph G = (V,E), the conductance φ(S) of the cut
(S, S̄) induced by a set S ⊆ V is defined as

φ(S) := e(S, S̄)
min

{
vol(S),vol(S̄)

} ,
where vol(S) :=

∑
v∈S d(v) is the volume of the node set S. Note that clearly φ(S̄) = φ(S).

The conductance of the graph G is defined as

φ(G) := min
S⊆V

φ(S).

A sparsest cut of G is a cut (S, S̄) with conductance φ(S) = φ(G). The performance of
our algorithm also depends on the balance of the cut it computes.

I Definition 2 (Balance). The balance of a cut (S, S̄) is denoted by b(S) = b(S̄) and it is
defined as

b(S) :=
min

{
vol(S),vol(S̄)

}
vol(V) =

min
{

vol(S),vol(S̄)
}

2m .

3 Contributions

We develop approximation algorithm for computing sparse cuts in distributed networks.
Given two constants b and φ, our algorithm outputs a cut of balance at least b/2 and
conductance at most Õ(

√
φ), provided that there is a set C ⊆ V such that φ(C) ≤ φ and

b(C) ≥ b. Formally, we prove the following main theorem.

I Theorem 3. Given a network graph G = (V,E) and two parameters b ≤ 1/2 and φ < 1
such that there exits a set C ⊆ V with b · 2|E| ≤ vol(C) ≤ |E| and φ(C) ≤ φ. Then
there is a distributed algorithm that finds a cut (S, S̄) which satisfies b|E| ≤ vol(S) ≤ |E|
and φ(S) = O

(√
φ logn

)
with high probability and finishes in O

(
D + log2 n

bφ

)
rounds in the

CONGEST model, where D is the diameter of G.

Often, we are most interested in computing an approximation of the sparsest cut of the
graph G. Assume that there is a sparsest cut (i.e., a cut with conductance φ(G)) with
balance b. If φ(G) and b are known, the above theorem then guarantees to find a cut with
conductance O

(√
φ(G) log(n)

)
and balance at least b/2 in time O

(
log2(n)/(bφ(G))

)
(note

that we always have D = O
(

log(n)/φ(G)
)
). Note that the diameter D clearly is a lower

bound on computing any approximation of the sparsest cut. Further, there are graphs with
diameter D = Θ(log(n)/φ(G)) [8]. Hence, if the sparsest cut has constant balance, this above
result is optimal up to a factor O(log(n)) in some graphs. We further mention that the lower
bound Ω̃(

√
n+D) for computing sparsest cut shown in [10], only works for weighted graphs.

Moreover, the graph they considered to claim the lower bound has very small conductance.
Our algorithm can also be extended to compute the sparsest cut without knowing the

conductance value φ(G). The running time then increases to Õ
(
τ
b

)
, where τ is the mixing

time of the lazy random walk on G. This follows because one can easily estimate τ of G in
time Õ(τ) and thanks to the relation Θ

(1
φ(G)

)
≤ τ ≤ Θ

(log(n)
φ(G)2

)
[14].

In order to obtain the time complexity proven in Theorem 3, we develop a result on the
distributed computation of all-prefix-sums which might be of independent interest. Essentially,
we show that if the ordering of the nodes can be chosen based on the topology of the network
an all-prefix-sums instance where each node has some input can be computed in time O(D).
Further, we also show that K independent such all-prefix-sums instances can be evaluated in
time O(D+K). For a formal problem statement and the formal results, we refer to Section 4.

F. Kuhn and A. R. Molla 10:5

20

8 10

9

1 2 3

4

5 6

7

11 12 13 14

15 16

17

18

19

root

Figure 1 A rooted search tree where the position (in the total order) of each node is greater than
the positions of all children and thus the positions of all nodes in its subtrees. The sub-trees are
drawn such that they are ordered from left to right.

4 Distributed Prefix Sums Computation

The all-prefix-sums problem takes an ordered tuple of n elements or values (a1, a2, . . . , an)
and outputs the sums of all prefixes (a1, a1⊕ a2, . . . , a1⊕ a2⊕ . . .⊕ an) with respect to some
binary associative (addition) operation ⊕. While computing all prefix sums in (optimal)
linear time is a trivial task for ordinary sequential algorithms, the problem is more interesting
in a parallel or distributed setting. It is a well-known result that the problem can be solved
using logarithmic depth and linear work parallel algorithm in all standard parallel computing
models, e.g., on an EREW PRAM [16, 17, 22, 26]. As a result the all-prefix-sums computation
is used as a basic building block for many classic parallel algorithms [6].

In the present paper, we adapt the classic parallel all-prefix-sums algorithm to a distributed
algorithm in the CONGEST model. As the communication network, we assume that we
are given an arbitrary N -node rooted search tree T = (VT , ET) with root node vr ∈ VT
and radius R (w.r.t. vr). The search order is defined as follows. At each node v ∈ VT with
children u1, . . . , uc, we are locally given a total order ≺v on the nodes {v, u1, . . . , uc}. The
overall total order ≺ on VT is then given by combining the local orders ≺v and by extending
the resulting partial order as follows. Given a node u and its parent p, if u ≺p p (and thus
u ≺ p), we have w ≺ p for all nodes w in the subtree of u. Similarly, if p ≺p u (and thus
p ≺ u), we have p ≺ w for all nodes w in the subtree of u. For the remainder of the section,
for convenience, we name the nodes in VT by v1, . . . , vN such that v1 ≺ v2 ≺ · · · ≺ vN . We
assume that each node v ∈ VT initially knows its parent, all its children, as well as the local
order ≺v. For an example of a search tree, see Figure 1.

Each node v ∈ VT is given an input value av, where av is from the domain on which the
prefix-sums operation ⊕ is defined. We assume that each of the values av and also each sum
(w.r.t. operation ⊕) of a subset of the N input values can be represented using O(logN) bits.
For every k ∈ {1, . . . , N} and thus for every vk ∈ VT , the corresponding kth prefix sum svk
is defined by sv1 := av1 and svk := svk−1 ⊕ avk for k > 1. In a distributed all-prefix-sums
algorithm, each node vi ∈ VT needs to compute the corresponding prefix sum svi .

We next present a distributed algorithm to solve the all-prefix-sums problem in T in time
O(R) (where R is the radius or depth of T) in the CONGEST model. Note that this time
complexity is clearly asymptotically optimal since for every pair of nodes u, v ∈ VT with
u ≺ v, the prefix sum of v depends on the value of u and thus the diameter of T is a trivial
lower bound on the time complexity to compute all prefix sums.

OPODIS 2015

10:6 Distributed Sparse Cut Approximation

𝑣

𝑇𝑢1

…𝑢1 𝑢2 𝑢𝑐𝑣

𝑇𝑢2
𝑇𝑢𝑐𝑣

𝑡𝑢𝑐𝑣
𝑡𝑢1

𝑡𝑣 = 𝑎𝑣 ⊕

𝑡𝑢2

.𝑢∈𝐶𝑣 𝑡𝑢⊕
𝑣

𝑇𝑢1

…𝑢1 𝑢2 𝑢𝑐𝑣

𝑇𝑢2
𝑇𝑢𝑐𝑣

𝑟𝑢𝑐𝑣 = 𝑟𝑣 ⊕

𝑟𝑣

𝑠𝑣 = 𝑟𝑣 ⊕𝑎𝑣 ⊕

𝑟𝑢2 = 𝑟𝑣 ⊕ 𝑡𝑢1

𝑟𝑣

𝑟𝑢1 = 𝑟𝑣

Assume: 𝑢1 ≺ 𝑢2 ≺ ⋯ ≺ 𝑢𝑐𝑣

𝑟𝑣 ⊕ 𝑡𝑢1

𝑟𝑣 ⊕

⊕.𝑢∈𝐶𝑣 𝑡𝑢

⊕.𝑖=1
𝑐𝑣−1 𝑡𝑢𝑖

.𝑖=1
𝑐𝑣−1 𝑡𝑢𝑖⊕

Figure 2 Bottom-up computation by each
node v.

Figure 3 Top-down computation by each
node v.

The distributed all-prefix-sums algorithm is an adaptation of the classic parallel algorithm
[16, 17, 22, 26] to arbitrary search trees (the classic algorithm builds up a binary search
tree). The algorithm consists of two phases. First, there is a bottom-up (convergecast) phase
starting from the leaves to compute the sum of the values in each subtree of T . The second
phase is a top-down phase in which the prefix sums at all nodes are computed level by level.

Bottom-up Phase (Figure 2). For a node v ∈ T , let Tv be the subtree of T rooted at node
v and let V (Tv) be the set of nodes of Tv (including v). Further, for a node v, let Cv be the
set of its children and let cv := |Cv| be the number of its children. We define tv :=

⊕
u∈Tv au

to be the sum of all the values in Tv. In the bottom-up phase, each node v recursively
computes the value tv in the obvious way using a convergecast from the leaves to the root,
i.e., tv = av ⊕

⊕
u∈Cv tu.

Top-down Phase (Figure 3). Once the root node vr has computed tvr , it initiates the
top-down phase. In the top-down phase, each node v computes a value rv which is defined
as follows

rv :=
⊕

u∈VT \V (Tv):u≺v

au,

i.e., rv is the sum of all input values smaller than v which are not in the subtree of v. After
the bottom-up phase, each node v ∈ VT knows the value tv, as well as the values tu for all
children u of v. First note that once a node v also knows rv, it is straightforward to compute
sv as

sv = rv ⊕ av ⊕
⊕

u∈Cv:u≺v
tu

We can therefore concentrate on the computation of rv at each node v. For the root node
vr, we clearly have rvr = 0 (here, 0 is assumed to be the neutral element of the operation
⊕). For all other nodes v ∈ VT , let pv be the parent node of v. As shown by the following
lemma, the value of rv can be computed from rpv , apv , and the values tu of the children of
pv and of v.

F. Kuhn and A. R. Molla 10:7

I Lemma 4. Let v be a non-root node of T and let pv be the parent node of v. It holds that

rv =
{
rpv ⊕

⊕
u∈Cpv :u≺v tu if v ≺ pv,

rpv ⊕ apv ⊕
⊕

u∈Cpv :u≺v tu if pv ≺ v.
(1)

Proof. First consider three nodes u, v, w ∈ VT such that v is in the subtree of u, but w is not
in the subtree of u. Observe that because T is a search tree, it holds that v ≺ w if and only
if u ≺ w. For all nodes w which are not in the subtree of pv it therefore holds the w ≺ pv if
and only if w ≺ v (and certainly w is also not in the subtree of v). All input values aw which
contribute to rpv therefore also contribute to rv and these are the only input values which
contribute to rv and which are not in the subtree of pv. The value of rv can therefore be
computed by summing rpv with all values ax for which x ≺ v and where x is in the subtree
of pv but not in the subtree of v. These are exactly the values of all nodes in the subtrees
of children u of pv for which u ≺ v and it also includes the value apv of pv if pv ≺ v. This
proves the lemma. J

The following theorem puts everything together and it also shows that it is possible to
efficiently solve several concurrent instances of the all-prefix-sums problem.

I Theorem 5. Assume that we are given an N -node search tree T and K ≥ 1 instances of
the all-prefix-sums problem on T . That is, each node v has K inputs av,1, . . . , av,K and it
needs to compute k output values sv,1, . . . , sv,k such that for all v ∈ VT and all i ∈ {1, . . . ,K},
sv,i = av,i ⊕

⊕
u∈VT :u≺v au,i. In the CONGEST model, the K concurrent all-prefix-sums

instances can be computed in time O(R+K), where R is the radius of T .

Proof. For K = 1, the claimed time complexity follows in a straightforward way from the
above algorithm description. Both the bottom-up and the top-down phase can clearly be
implemented in R rounds. In the bottom-up convergecast, each node v only needs to report
tv to its parent once it knows tu of all children u. In the top-down phase, as soon as a node
u knows ru, it sends au and

⊕
w∈Cu:w≺v tw to each of its children v ∈ Cu. Note that by the

assumptions we made, all the messages have a size of at most O(logN) bits.
For an integer i ≥ 0, let Li be the set of nodes at distance exactly i from the root node

vr in T . We call the nodes in Li the level-i nodes. Note that both the bottom-up and the
top-down phase can be implemented such that in each communication round, only the nodes
on one level Li are active. The K concurrent all-prefix-sums instances can therefore be solved
in time O(R+K) by using pipelining. J

To conclude the section, we adapt the above result to somewhat more general case that
we will use for our sparse cut algorithm. As above, assume that as a network, we are
given an N -node rooted search tree T = (V,E). However, we will now assume that for the
all-prefix-sums problem, the nodes are only partially ordered according to the global order
≺ induced by T . Consider a second global order @ which is defined as follows. We assume
that the nodes V are partitioned into K classes C1, . . . , CK . The order @ is then defined
as the lexicographic order define by the class number and the search order ≺ of T . That
is, for any i, j ∈ {1, . . . ,K} and any u ∈ Ci and v ∈ Cj , we have u @ v if and only if either
i < j or i = j and u ≺ v. Assume that each node v ∈ V has an input value bv from the
domain for which the associative operator ⊕ is defined. We define the prefix sum of node v as
σv := bv ⊕

⊕
u∈V :u@v bu. The following theorem shows that as long as the number of classes

Ci is not too large, the corresponding all-prefix-sums problem can be computed efficiently in
the CONGEST model.

OPODIS 2015

10:8 Distributed Sparse Cut Approximation

I Theorem 6. Let T = (V,E) be a rooted search tree and let @ be a global order on V

defined by a partition C1, . . . , CK as defined above. Further, assume that every node v ∈ V
has an input value bv. Then, the prefix sums σv = bv ⊕

⊕
u@v bu for all nodes v ∈ V can be

computed in time O(R+K) in the CONGEST model, where R is the radius of T .

Proof. For each of the node classes Ci, we first define Si :=
⊕

v∈Ci bv to be the sum of all
inputs of nodes in Ci. By doing a standard convergecast on T , for each i, Si can be computed
in R rounds. Also, by using pipelining, all K values S1, . . . , SK can be computed in time
R + K. Using another R + K rounds, we can also make sure that all nodes know all the
values S1, . . . , SK .

Let us now concentrate on a single node class Ci. For each node v ∈ Ci, we define the
local prefix sum σ̄v as σ̄v := bv ⊕

⊕
u∈Ci:u@v bu. Note that within a single node class, the

two global orders @ and ≺ are identical. Hence, by defining the input to be 0 for all nodes
outside Ci, the local prefix sums σ̄v for all nodes v ∈ Ci can be computed in time O(R) by
using Theorem 5. Also note that computing the local prefix sums for the K different node
classes corresponds to K independent all-prefix-sums computations on T and by Theorem 5,
it can therefore be done in time O(R+K). Once every node know all values S1, . . . , SK , as
well as its local prefix sum σ̄v, it can locally compute its prefix sum σv as follows:

∀i ∈ {1, . . . ,K} : ∀v ∈ Ci : σv = σ̄v ⊕
⊕
j<i

Sj .

This concludes the proof. J

5 Algorithm for Sparse Cut

In this section, we present our main result, a distributed algorithm to compute a cut of
low conductance. More specifically, we are given an undirected network graph G, a target
conductance φ, and a balance b as inputs. If there exists a cut (S, S̄) with balance at least b
and conductance at most φ, our distributed algorithm finds a cut (S′, S̄′) with conductance
at most Õ

(√
φ
)
and balance at least b/2. At the end of the algorithm, every node in G

knows whether it is in S′ or in S̄′. Note that throughout the section, we assume that the
number of nodes n is sufficiently large. We can do this w.l.o.g., as if n is a constant, we
can always collect the whole graph and compute all cuts in constant time. Throughout the
section, we also assume that we have a BFS rooted tree T of the network graph G available.
Note that such a tree has depth at most D (where D is the diameter of G) and it can be
computed in O(D) rounds in the CONGEST model. We further assume that vr is the root
node of T .

Our algorithm is based on computing probabilities of random walks of multiple lengths
` and for multiple sources s. The probabilities of each such random walk define a global
order on the nodes V . For the following discussion, we specify a global order on V by a
bijection π : V → N between V and {1, . . . , n}. That is, a node u appears before v according
to the global order π if and only if π(u) < π(v). Given a global order π on V and an integer
i ∈ {1, . . . , n− 1} we define the node set Sπ(i) := {v ∈ V : π(v) ≤ i}. Further, as defined
in Section 2, let p`(s, v) be the probability to reach v ∈ V after exactly ` steps of a lazy
random walk started at node s ∈ V . Further, recall that for a probability distribution p(v)
on the nodes v ∈ V , we use ρp(v) := p(v)/d(v) to denote the normalized probability of
node v. Our distributed low conductance cut algorithm uses conductance approximation
techniques developed by Lovász and Simonovits [19, 20] and by Spielman and Teng [24, 25].
Formally, we apply the following lemma which is a relatively simple application of the results
of [19, 20, 24, 25] and which was formally proven in [9].

F. Kuhn and A. R. Molla 10:9

I Lemma 7 ([9]). Let G = (V,E) be a graph and let (S, S̄) be a cut of G of conductance
at most φ such that vol(S) ≤ vol(V)/2. Further, let s ∈ S be a node sampled randomly
from the degree distribution in S and let ` be an integer chosen uniformly at random from
{1, . . . , 1/8φ}. We define p(v) := p`(s, v) and we assume that for all v ∈ V , p̃(v) is an
estimate for the probability p(v) such that |p̃(v)− p(v)| ≤ ε

2 (p(v) + 1/n), where ε < φ. Let
π : V → N be any global order on V such that π(u) < π(v) whenever ρp̃(u) > ρp̃(v). Then with
constant probability for some set Sπ(i) for i ∈ {1, . . . , n− 1}, we have φ(Sπ(i)) ≤ 8

√
φ log(n)

and b(Sπ(i)) ≥ b(S)/2.

Based on Lemma 7, the strategy for computing a cut of low conductance is as follows.
Assume that we are given a network graph G = (V,E) and two parameters 2/n2 ≤ φ < 1
and b ≤ 1/2. For a sufficiently large constant3 c > 0, we define a parameter Q = c·lnn

b . We
randomly (independently) select Q nodes s1, . . . , sQ and Q lengths `1, . . . , `Q, where each
node si is chosen according to the degree distribution of G and each length `i is chosen
uniformly from the range {1, . . . , 1/8φ}. For each i ∈ {1, . . . , Q}, the approximate random
walk probabilities p̃(v) for a walk of length `i starting at si are computed. It then follows
directly from Lemma 7 that if c is chosen sufficiently large and if the graph G has a cut
(S, S̄) with φ(S) ≤ φ and b(S) ≥ b, with high probability, for at least one of the Q random
walks, one of the computed n− 1 cuts has the desired balance and conductance.

The core of our distributed sparse cut algorithm therefore is to compute approximate
random walk probabilities for a given starting node s and a given length ` and to compute
the conductances and balances of the n − 1 cuts induced by these approximate random
walk probabilities. Theorem 3 will then follow by repeating this O(log(n)/b) times. In the
following, we therefore assume that we have a fixed start node s ∈ V and a fixed random walk
length ` ≤ 1/8φ. We will first show how to compute approximate probabilities p̃(v) ≈ p`(s, v).
As a second step, we will show that the properties of these probabilities p̃(v) allow to use the
all-prefix-sums result of Section 4 to quickly compute the balances and conductances of the
induced cuts.

5.1 Computing the Random Walk Probabilities
We estimate the probability distribution of a random walk starting from a starting node
s ∈ V . Recall that we perform a lazy random walk, i.e., in each step, the walk stays at the
current node with probability 1/2. The probability of pt(s, v) of being at node v after t
steps of the random walk can be stated recursively as follows. For t = 0, p0(s, s) = 1 and
p0(s, v) = 0 for any v 6= s. For t > 0, we have

pt(s, v) = 1
2 · pt−1(s, v) +

∑
u∈N(v)

pt−1(s, u)
2d(u) . (2)

Hence, given pt−1(s, v) for all nodes v, in principle, it is possible to exactly compute pt(s, v) for
all nodes v in a single communication round. Note however that the probabilities pt(s, v) are
real values and since in the CONGEST model we are restricted to using at most O(log(n)) bits
per message, we need to be a little bit more careful. In the following, assume that for each time
t, each node v maintains an approximation βt(v) of pt(s, v) and let βt be the n-vector of all
these approximations. We define δt(v) := βt(v)− pt(s, v) to be the error of v’s approximation

3 The constant only helps to measure the high probability bound of the result; larger the constant value
means higher the probability guarantee.

OPODIS 2015

10:10 Distributed Sparse Cut Approximation

of pt(s, v) and we use δt to denote the vector of all errors after step t of the random walk.
We assume that the approximations βt(v) are computed as follows. Node v collects βt−1(u)
from all neighbors u, it evaluates β′t(v) := βt−1(v)/2 +

∑
u∈N(v) βt−1(u)/2d(u), and it then

computes βt(v) as β′t(v) rounded to the closest integer multiple of n8. Note that because
βt(v) is always between 0 and 1, there are at most n8 + 1 different values for βt(v) and
therefore all messages can clearly be encoded using O(log(n)) bits. The following lemma
shows that also after ` steps, the absolute error |δ`(v)| of all nodes v is still small.

I Lemma 8. For all v ∈ V and t ≥ 0, we have |δt(v)| = |βt(v)− pt(s, v)| ≤ t · n−8.

Proof. We prove the lemma by induction on t. As β0(v) = p0(s, v), the lemma is true for
t = 0. Let us therefore consider the induction step. Let T be the transition matrix of the
considered lazy random walk on G. The recursion 2 can then be expressed as pt = T · pt−1,
where pt is the n-vector defined by the probabilities pt(s, v) for each node v. Similarly, the
vector β′t is computed as

β′t = T · βt−1 = T · (pt−1 + δt−1) = pt + T · δt−1.

Note that because T is a stochastic matrix, T · δt−1 is a convex combination of the values
δt−1(u) for u ∈ {v} ∪N(v). The absolute value of T · δt−1 can therefore be upper bounded
by the largest absolute value of δt−1(u) for any u ∈ V . By induction, we therefore have
|β′t(v)− pt(s, v)| ≤ (t− 1)n−8. The lemma now follows because |βt(v)− β′t(v)| ≤ n−8. J

We next define how the estimates p̃(v) ≈ p`(s, v) are computed. For sufficiently large
constant c, the estimates β`(v) are accurate enough to be used in Lemma 7. However, in order
to efficiently compute the conductances and balances of all cuts induced by the global order
given by the probabilities p̃(v), we will apply the Theorem 6 (on computing all-prefix-sums).
In Theorem 6, we would like the number of node classes to be as small as possible. We
therefore define δ := φ/10 and p̃(v) as follows:

∀v ∈ V : p̃(v) :=

0 if β`(v) ≤ n−6,

d(v) · (1 + δ)

⌊
log1+δ

(
β`(v)
d(v)

)⌋
otherwise.

(3)

That is, p̃(v) is either 0 or we round down β`(v)/d(v) to the next smaller power of 1 + δ and
we multiply the resulting value by d(v). This guarantees that the value of ρp̃(v) = p̃(v)/d(v)
is equal to β`(v)/d(v) rounded to the next smaller power of 1 + δ.

I Lemma 9. For all v ∈ V , it holds that |p̃(v)− p`(s, v)| ≤ δ
(
n−3 + p`(s, v)

)
. Further, the

value ρp̃(v) = p̃(v)/d(v) can only have O(log(n)/φ) different values.

Proof. The second claim follows because ρp̃(v) is always a value between 0 and 1 and because
it either is 0 or it is of size at least Ω(n−5) and it is an integer power of 1 + δ = 1 + φ/10.

For the first claim, first observe that because φ ≥ 2/n2, we always have ` ≤ n2/16.
Lemma 8 therefore implies that |p`(s, v)− β`(v)| ≤ n−6/16.

Let us first consider the case p̃(v) = 0. In this case, from Equation (3) and Lemma 8,
we then get that p`(s, v) < 2n−6 and for sufficiently large n, the lemma follows because
δ = φ/10 ≥ 5/n2.

Let us therefore assume that p̃(v) > 0. By the definition of p̃(v), we then have 1 ≤
β`(v)/p̃(v) ≤ 1 + δ. We again use that |β`(v) − p`(s, v)| ≤ n−6/16. Using p̃(v) ≤ β`(v),
we get that p̃(v) ≤ p`(s, v) + n−6/16. Further, by using that β`(v) ≤ (1 + δ)p̃(v) ≤
p̃(v) + δβ`(v), we have (1 − δ)(p`(s, v) − n−6/16) ≤ (1 − δ)β`(v) ≤ p̃(v) and therefore
p̃(v) ≤ p`(s, v) + δ(p`(s, v) + n−6/16). J

F. Kuhn and A. R. Molla 10:11

I Lemma 10. Assume that we compute the probability estimates p̃(v) for Q different random
walks where each random walk is started at a random node s chosen according to the degree
distribution of G and the length of each random walk is chosen uniformly at random from
{1, . . . , 1/8φ}. The probability estimates p̃(v) for all Q random walks can be computed in
O (D +Q/φ) rounds in the CONGEST model, where D is the diameter of the G.

Proof. Let us first consider the computation of a single random walk. As a first step, we
need to randomly choose the starting node s and the length ` of the random walk. We can
use the BFS tree T to do this. The length ` of the random walk can be determined by the
root node vr of T and it can be sent to all nodes in at most D rounds. Assume that each
node in T knows the sum of the degrees of all nodes in its subtree. This information can
be computed by a simple convergecast in D rounds. Further, based on this knowledge, we
can now choose the starting node of the random walk by randomly walking down the tree
starting at vr (at each node we stop or go to a subtree with probability proportional to the
corresponding degree sum). The node on which the random walk stops will be the sampled
node according to the degree distribution of G. Also note that by using pipelining, the
starting nodes and lengths of all the Q random walks can be computed in time O(D +Q).

To compute the probability estimates p̃(v) of a single random walk, it directly follows
from the above discussion that β`(v) can be computed in ` rounds. Given β`(v), node v
can compute p̃(v) locally without any further communication. The lemma therefore follows
because ` = O(1/φ). J

5.2 Evaluating the Induced Cuts
Consider the probability estimates p̃(v) for some random walk of length ` with starting node
s ∈ V . We assume that the estimate p̃(v) are computed as described above. By Lemma 9, the
estimates are accurate enough to be used in Lemma 7. In order to evaluate the conductances
and balances of the cuts induced by the probability estimates p̃(v), we intend to use the
all-prefix-sums techniques developed in Section 4. In order to apply these techniques, we
need a distributed search tree. For this purpose, we can again use the computed BFS tree
T of G. In order to get a search tree from T , every node just needs to arbitrarily order its
children. Note that the radius of T is upper bounded by the diameter D of G. Let ≺ be the
search order (on V) defined by the search tree T .

Given the probability estimates p̃(v), we define ρp̃ := p̃(v)/d(v) as before. In order to
apply Lemma 7, we need to define a global order π : V → N on V such that π(u) < π(v)
whenever ρp̃(u) > ρp̃(v). We define this global order π such that π(u) < π(v) if and only
if either ρp̃(u) > ρp̃(v) or ρp̃(u) = ρp̃(v) and u ≺ v. We first show that an all-prefix-sums
problem w.r.t. this global order can be computed efficiently in the CONGEST model.

I Lemma 11. Assume that each node v ∈ V has an integer value bv (of size at most polyno-
mial in n). Further assume that each node v ∈ V needs to compute sv :=

∑
u∈V :π(u)≤π(v) bu.

The values sv for all v ∈ V can be computed in O(D + log(n)/φ) rounds in the CONGEST
model. Further, the results of K independent such all-prefix-sums problems (possibly for
different random walk probabilities) can be computed in time O (D +K log(n)/φ) in the
CONGEST model.

Proof. We first prove the lemma for a single instance of the described all-prefix-sums instance.
Note that the global order defined by π has the structure of the order @ used in Theorem 6.
All nodes v with equal value ρp̃(v) form a single node class. Two nodes u and v of different
classes are then order by the values of ρp̃(u) and ρp̃(v). Two nodes u and v in the same

OPODIS 2015

10:12 Distributed Sparse Cut Approximation

class are order by the search tree order ≺. We can therefore directly apply Theorem 6 to
compute the values sv for all nodes v. The time complexity of doing this is O(n+ k), where
k is the number of different node classes. It follows from the second claim of Lemma 9 that
the number of classes is at most O(log(n)/φ) and thus the lemma follows for K = 1.

For K > 1, note that we can use pipelining as described in Theorem 5. For each instance
of the all-prefix-sums problem, we run O(log(n)/φ) independent all-prefix-sums instances
w.r.t. the search tree order ≺. In total, we therefore run O(K log(n)/φ) independent simple
all-prefix-sums instances and the claim of the lemma thus follows. J

It remains to show that the problem of evaluating the cuts for a given total order
π : V → N on V can be reduced to computing a few all-prefix-sums computations. Let us
therefore consider a global order π on V . We need to compute the conductances and balances
of all the cuts defined by the sets Sπ(i) for i ∈ {1, . . . , n− 1}. For a node v ∈ V , we define
d+(v) := | {u ∈ N(v) : π(u) > π(v)} | and let d−(v) := | {u ∈ N(v) : π(u) < π(v)} |. Note
that d+(v) + d−(v) = d(v). Note also that every node v ∈ V can compute d+(v) and d−(v)
using a single communication round (based on the relative ordering w.r.t. its neighbors). For
a node set S ⊂ V , we further let e(S) be the number of edges crossing the cut (S, S̄). Recall
that φ(S) = e(S)/(2mb(S)) and b(S) = min

{
vol(S),vol(S̄)

}
/2m. The following lemma

shows that the conductances and balances of all cuts (Sπ(i), S̄π(i)) can be reduced to two
all-prefix-sums computations w.r.t. the order π.

I Lemma 12. We have e(Sπ(1)) = vol(Sπ(1)) = d(v1). For i > 1, it further holds that

e(Sπ(i)) = e(Sπ(i− 1)) + d+(vi)− d−(vi),
vol(Sπ(i)) = vol(Sπ(i− 1)) + d(vi).

Proof. We first consider the first recursion specifying e(Sπ(i)) The set of edges connecting
nodes in Sπ(i) with nodes in V \ Sπ(i) consists of all edges connecting nodes in Sπ(i − 1)
with nodes in V \ Sπ(i) and of all edges connecting vi with nodes in V \ Sπ(i). The number
of edges connecting nodes in Sπ(i− 1) with nodes in V \ Sπ(i) is e(Sπ(i− 1))− d−(vi) and
the number of edges connecting vi with nodes in V \ Sπ(i) is d+(vi). The first recursion
therefore follows. The second recursion follows immediately by the definition of the volume
vol(S) of a node set S. J

We now have everything we need to prove the main theorem.

I Theorem 3 (restated). Given a network graph G = (V,E) and two parameters b ≤ 1/2
and φ < 1 such that there exits a set C ⊆ V with b·2|E| ≤ vol(C) ≤ |E| and φ(C) ≤ φ. Then
there is a distributed algorithm that finds a cut (S, S̄) which satisfies b|E| ≤ vol(S) ≤ |E|
and φ(S) = O

(√
φ logn

)
with high probability and finishes in O

(
D + log2 n

bφ

)
rounds in the

CONGEST model, where D is the diameter of G.

Proof. We have already seen that Lemma 7 implies the quality of the returned cut with high
probability if we consider all the cuts induced by O(log(n)/b) random walks (where starting
node and length of each random walk are chosen randomly as specified by Lemma 7 and the
computed probability estimates satisfy the accuracy demanded by Lemma 7). By Lemma
10, the probability estimates p̃(v) for O(log(n)/b) such random walks can be computed in
O(D + log(n)/(bφ)) rounds. Further by Lemma 9, the accuracy of the probability estimates
p̃(v) is good enough to be used in Lemma 7.

In order to prove the theorem, it therefore remains to show that for the O(log(n)/b)
random walks, the conductances and balances of all induced cuts can be computed in

F. Kuhn and A. R. Molla 10:13

O
(
D + log2 n

bφ

)
rounds. By Lemma 12, for a given global order π on the nodes V , the

conductances and balances of all cuts Sπ(i) for i ∈ {1, . . . , n− 1} can be computed by using
2 all-prefix-sums computations (one for e(Sπ(i)) and one for vol(Sπ(i))). The conductances
and balances of the cuts of all O(log(n)/b) random walks can therefore be computed by
carrying out O(log(n)/b) independent all-prefix-sums computations. By Lemma 11, we can
therefore compute the conductances and balances of all cuts induced by all random walks in
time O

(
D + log2(n)/bφ

)
. Note that when doing this, for each cut, possibly only one node

in G knows the results. However, we can do a convergecast on the BFS tree T to find the
best of all the computed cuts in D additional rounds. This completes the proof of the main
theorem. J

References
1 Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. Using pagerank to locally partition

a graph. Internet Mathematics, 4(1):35–64, 2007.
2 Reid Andersen and Yuval Peres. Finding sparse cuts locally using evolving sets. In Proc.

of 41st Annual ACM Symposium on Theory of Computing (STOC), pages 235–244, 2009.
3 Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidefinite

programs. In Proc. of 39th Annual ACM Symposium on Theory of Computing (STOC),
pages 227–236, 2007.

4 Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric embeddings
and graph partitioning. J. ACM, 56(2), 2009.

5 Sandeep N. Bhatt and Frank T. Leighton. A framework for solving VLSI graph layout
problems. J. Comput. Syst. Sci., 28(2):300–343, 1984.

6 Guy E. Blelloch. Prefix sums and their applications. Technical Report CMU-CS-90-190,
School of Computer Science, Carnegie Mellon University, 1990.

7 Keren Censor-Hillel and Hadas Shachnai. Fast information spreading in graphs with large
weak conductance. SIAM J. Comput., 41(6):1451–1465, 2012.

8 Flavio Chierichetti, Silvio Lattanzi, and Alessandro Panconesi. Almost tight bounds for
rumour spreading with conductance. In Proc. of the 42nd ACM Symposium on Theory of
Computing (STOC), pages 399–408, 2010.

9 Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy. Sparse cut projections in graph
streams. In Proc. of 17th Annual European Symposium (ESA), pages 480–491, 2009.

10 Atish Das Sarma, Anisur R. Molla, and Gopal Pandurangan. Distributed computation of
sparse cuts via random walks. In Proc. of 16th International Conference on Distributed
Computing and Networking (ICDCN), pages 6:1–6:10, 2015.

11 Atish Das Sarma, Danupon Nanongkai, Gopal Pandurangan, and Prasad Tetali. Dis-
tributed random walks. J. ACM, 60(1):2, 2013.

12 George Giakkoupis. Tight bounds for rumor spreading in graphs of a given conductance.
In Proc. Int. Symp. on Theoretical Aspects of Computer Science (STACS), pages 57–68,
2011.

13 Christos Gkantsidis, Milena Mihail, and Amin Saberi. Conductance and congestion in
power-law graphs. In Proc. of International Conference on Measurements and Modeling of
Computer Systems (SIGMETRICS), pages 148–159, 2003.

14 Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM J. Comput.,
18(6):1149–1178, 1989.

15 David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76, 2000.
16 Peter M. Kogge and Harold S. Stone. A parallel algorithm for the efficient solution of a

general class of recurrence equations. IEEE Transactions on Computers, C-22(8):786–793,
1973.

OPODIS 2015

10:14 Distributed Sparse Cut Approximation

17 Richard E. Ladner and Michael J. Fischer. Parallel prefix computation. J. ACM, 27(4):831–
838, 1980.

18 Frank T. Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their
use in designing approximation algorithms. J. ACM, 46(6):787–832, 1999.

19 László Lovász and Miklós Simonovits. The mixing rate of markov chains, an isoperimetric
inequality, and computing the volume. In Proc. of 31st Annual Symposium on Foundations
of Computer Science (FOCS), pages 346–354, 1990.

20 László Lovász and Miklós Simonovits. Random walks in a convex body and an improved
volume algorithm. Random Struct. Algorithms, 4(4):359–412, 1993.

21 David W. Matula and Farhad Shahrokhi. Sparsest cuts and bottlenecks in graphs. Discrete
Applied Mathematics, 27(1-2):113–123, 1990.

22 Yu Ofman. On the algorithmic complexity of discrete functions. Soviet Physics Doklady,
7(7):589–591, 1963.

23 David Peleg. Distributed computing: a locality-sensitive approach. SIAM, Philadelphia, PA,
USA, 2000.

24 Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph parti-
tioning, graph sparsification, and solving linear systems. In Proc. of 36th Annual ACM
Symposium on Theory of Computing (STOC), pages 81–90, 2004.

25 Daniel A. Spielman and Shang-Hua Teng. A local clustering algorithm for massive graphs
and its application to nearly-linear time graph partitioning. CoRR, arXiv: abs/0809.3232v1,
2008.

26 Harold S. Stone. Parallel tridiagonal equation solvers. ACM Transactions on Mathe- matical
Software, 1(4):289–307, 1975.

Distributed Approximation of k-Service
Assignment
Magnús M. Halldórsson∗1, Sven Köhler†2, and Dror Rawitz2

1 Reykjavik University, Reykjavik, Iceland
mmh@ru.is

2 Bar-Ilan University, Ramat-Gan, Israel
sven.kohler@biu.ac.il

3 Bar-Ilan University, Ramat-Gan, Israel
dror.rawitz@biu.ac.il

Abstract
We consider the k-Service Assignment problem (k-SA), defined as follows. The input consists
of a network that contains servers and clients, and an integer k. Each server has a finite capacity,
and each client is associated with a demand and a profit. A feasible solution is an assignment of
clients to neighboring servers such that (i) the total demand assigned to a server is at most its
capacity, and (ii) a client is assigned either to k servers or to none. The profit of an assignment
is the total profit of clients that are assigned to k servers, and the goal is to find a maximum
profit assignment. In the r-restricted version of k-SA, no client requires more than an r-fraction
of the capacity of any adjacent server. The k-SA problem is motivated by backup placement in
networks and by resource allocation in 4G cellular networks. It can also be viewed as machine
scheduling on related machines with assignment restrictions.

We present a centralized polynomial time greedy k+1−r
1−r -approximation algorithm for r-re-

stricted k-SA. We then show that a variant of this algorithm achieves an approximation ratio
of k + 1 using a resource augmentation factor of 1 + r. We use the latter to present a (k + 1)2-
approximation algorithm for k-SA. In the distributed setting, we present: (i) a (1 + ε)k+1−r

1−r -
approximation algorithm for r-restricted k-SA, (ii) a (1+ε)(k+1)-approximation algorithm that
uses a resource augmentation factor of 1 + r for r-restricted k-SA, both for any constant ε > 0,
and (iii) an O(k2)-approximation algorithm for k-SA (in expectation). The three distributed
algorithms compute a solution with high probability and terminate in O(k2 · log3 n) rounds.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases approximation algorithms, distributed algorithms, related machines

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.11

1 Introduction

We consider the k-Service Assignment problem (abbreviated k-SA). A k-SA instance
consists of a set of servers and a set of clients. Each server has a finite capacity, and each
client has a demand and a profit. (The demand of a client does not depend on the identity
of the server.) A feasible solution is a k-service assignment of clients to servers such that:

A client is only assigned to neighboring servers.
The total demand of clients that are assigned to a server does not exceed its capacity.
Each client is assigned either to k servers or to none.

∗ Supported in part by Icelandic Research Fund (grants No. 120032011 and 152679-051).
† Supported in part by a grant from the Israeli Ministry of Science, Technology, and Space and by the

Israel Science Foundation (grant No. 497/14).
© Magnús M. Halldórsson and Sven Köhler, and Dror Rawitz;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 11; pp. 11:1–11:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Distributed Approximation of k-Service Assignment

A client that is assigned to k servers is said to be satisfied, and the profit of a service
assignment is the total profit of satisfied clients. The goal in k-SA is to find a service
assignment with maximum profit.

Given a constant r ∈ (0, 1], an instance of k-SA is said to be r-restricted if no client requires
more than an r-fraction of the capacity of any neighboring server. k-SA on r-restricted
instances is referred to as r-restricted k-SA.

k-SA is NP-hard, since the special case with exactly k servers is equivalent to the
Knapsack problem. Since Knapsack remains NP-hard even if the size of each item is at
most an r-fraction of the knapsack size, this hardness result applies to r-restricted k-SA,
for any r ∈ (0, 1]. (This was explicitly shown for 1-SA in [1].) This also means that the
approximation ratio of the natural greedy algorithm is Ω(1

1−r), even for r-restricted 1-SA.
The k-SA problem naturally arises in network applications where clients need service from

(multiple) servers. Amzallag et al. [1] used 1-SA to model the problem of assigning clients
to base stations in 4G cellular networks where services offered by providers (such as video
streaming and web browsing) require high bit-rates, and client diversity is an issue. By using
1-SA they took into account both base stations diversity (using non-uniform capacities), as
well as clients diversity (using different demands, profits, and potential set of base stations).
Amzallag et al. [1] also considered the variant of 1-SA where a client c may be serviced by
multiple servers as long as the total service it receives is d(c). Such an assignment is called
a cover by many, while a solution that assigns a single server to a client is called a cover
by one. They presented a 2−r

1−r -approximation algorithm that computes covers by one and
a 1

1−r -approximation algorithm that computes covers by many. In fact the former ratio is
in comparison to an optimal cover by many. Both algorithms are based on the local ratio
technique [5, 3, 4].

Patt-Shamir et al. [18] presented a distributed implementation of the first algorithm
from [1] while paying a (1 + ε) factor in the approximation ratio. That is, they presented
a distributed (1 + ε) 2−r

1−r -approximation algorithm, for any ε > 0, for r-restricted 1-SA, for
any r ∈ (0, 1). The algorithm requires a polylogarithmic number of rounds in the Congest
model. The above result is based on two assumptions: (i) the cost-effectiveness of clients is
polynomially bounded, and (ii) each server knows the demands and profits of adjacent clients.
(The definition of cost-effectiveness and a more detailed description of these assumptions are
given in the next section.)

Recently, Halldórsson at al. [13] considered the Backup Location problem in which
each client has a file whose backup should be stored in k neighbors to increase fault tolerance.
They mainly focused on the dual problem, where an instance is similar to a k-SA instance and
the goal is to satisfy all clients while minimizing the maximum load. They also observed that
k-SA is APX-hard, for k ≥ 3, and showed a lower bound of Ω(k

log k) for the approximation
ratio based on a reduction from k-Dimensional Matching [14].

Our Results. We generalize the 2−r
1−r -approximation algorithm from [1] by presenting a

k+1−r
1−r -approximation algorithm for r-restricted k-SA, for any r ∈ (0, 1). We provide a

simplified analysis that does not rely on the local ratio technique. We show that a variant
of the above algorithm achieves an approximation ratio of k + 1 for r-restricted k-SA, for
any r ∈ (0, 1], using a resource augmentation factor of 1 + r. Then, by showing that the
clients that receive service in the resource augmented solution can be (k + 1)-colored, such
that each color induces a feasible solution, we obtain a (k + 1)2-approximation algorithm for
k-SA. The algorithm outperforms the k+1−r

1−r -approximation algorithm, when r > k+1
k+2 .

Based on the approach taken in [18], we design a distributed version of the former
algorithm that, for any constant ε > 0, computes (1 + ε)k+1−r

1−r -approximate solutions for

M.M. Halldórsson, S. Köhler, and D. Rawitz 11:3

r-restricted k-SA with high probability and whose running time is O(k2 · log3 n) rounds in the
Congest model. While the algorithm for 1-SA from [18] is based on computing a maximal
matching, our algorithm is based on computing a maximal packing of stars, where each
star consists of a client and k adjacent servers. As in the centralized setting we provide an
algorithm that achieves a factor of (1 + ε)(k + 1) using a resource augmentation factor 1 + r.
We use distributed random selection instead of coloring to design a distributed algorithm for
k-SA that computes solutions whose expected profit is a Ω(k−2)-fraction of the optimum,
using O(k2 · log3 n) rounds. When k = O(1), this amounts to an O(1)-approximation
algorithm that terminates in O(log3 n) rounds.

The results of this paper can be extended to a natural variant of k-SA in which each
client c ∈ C requires service from k(c) ∈ N servers. Then kmax , maxc∈C k(c) replaces k
in the approximation ratios and time complexities. We will address this variant in the full
version of the paper.

Related Work. 1-SA is equivalent to Multiple Knapsack with Assignment Restric-
tions (MKAR), where the input consists of a set of bins and a set of items. Each bin has a
capacity, and each item j has a size, a profit, and a subset of bins in which it can be placed.
A feasible solution is an assignment of items to bins such that each item is assigned to one of
the bins in its subset and the total size of items assigned to each bin is at most its capacity.
The goal is to find a solution of maximum profit. A special case of MKAR, where the size
and profit of an item are the same, was considered by Dawande et al. [8]. They presented an
LP-rounding 2-approximation algorithm, a (2 + ε)-approximation algorithm that uses an
FPTAS for solving a single knapsack problem, and a greedy 3-approximation algorithm.

Fleischer et al. [11] studied the Separable Assignment Problem (SAP). In this
problem the input consists of a set of bins and a set of items, and a profit fij for assigning
item j to bin i. There is also a separate packing constraint for each bin, i.e., a collection
Ii of subsets of items that fit in bin i. The goal is to maximize the total profit. Given
an α-approximation algorithm for the single machine version of SAP, they presented an
LP-rounding based αe

e−1 -approximation algorithm and a local search (α+1
α + ε)-approximation

algorithm, for any ε > 0. If the single machine version admits a PTAS (FPTAS), then the
ratios are e

e−1 + ε (e
e−1) and 2 + ε.

In the Generalized Assignment Problem (GAP) the input consists of a set of bins
and a set of items. Each bin has a capacity, and each item j has a size and a profit for
each bin i. A feasible solution is an assignment of items to bins such that the total size
of items that are assigned to a bin is at most its capacity. GAP is a special case of SAP
where the simple knapsack version admits an FPTAS, and thus it has a e

e−1 -approximation
algorithm. MKAR (and hence 1-SA) is a special case of GAP. Chekuri and Khanna [7] gave
a PTAS for Multiple Knapsack (without assignment restrictions) and showed that GAP
is APX-hard. In addition they observed that an LP-rounding 2-approximation algorithm
for the minimization version of GAP by Shmoys and Tardos [22] implies a 2-approximation
algorithm for GAP. This result applies to 1-SA.

Amzallag et al. [1] showed that the version of 1-SA that allows cover by many cannot be
approximated to within a factor which is better than |J |1−ε, for any ε > 0, unless NP=ZPP.

k-SA is a special case of the Packing Integer Programs problem (PIP). In this
problem we are given a set of items and a collection of knapsack constraints over these
items. The goal is to maximize the profit of packed items. In k-SA each item appears
in k constraints with the same coefficient. The single constraint (or server) case is the
Knapsack problem which has an FPTAS [21, 15], and the constant number of constraints

OPODIS 2015

11:4 Distributed Approximation of k-Service Assignment

case is the Multi-dimensional Knapsack problem that has a PTAS [12], while obtaining
an FPTAS is NP-hard [17]. Raghavan and Thompson [20] used randomized LP-rounding to
obtain an approximation ratio of O(mr) for PIP, where m is the number of constraints, k is
the maximum number of constraints per item, and r is the maximum item coefficient per
constraint RHS. Srinivasan [23] improved this ratio to O(mr/(r+1)). In k-SA this translates
to an O(|S|r/(r+1)) ratio, where S is the set of servers. Chekuri and Khanna [6] proved that
the above ratio is almost tight by showing that, for every fixed integer α and fixed ε > 0,
the special case of PIP where all constraints are composed of binary coefficients and RHS α
cannot be approximated within a factor of m1/(α+1)−ε, unless NP=ZPP. They also showed
that PIP with uniform RHS α cannot be approximated within a factor of m1/(α+1)−ε, unless
NP=ZPP, even with a resource augmentation factor α. Note that this does not contradict
our results, since we assume that each item appears in at most k constraints.

Paper Organization. We formally define the problem and the execution model in Section 2.
This section also contains definitions and notation that is used in the paper. The centralized
algorithms are given and Section 3 and the distributed algorithms are presented in Section 4.

2 Preliminaries

This section contains a formal problem statement, several definitions and notation that we
use throughout the paper, and the execution model.

Problem. We consider the k-Service Assignment (k-SA) problem. A k-SA instance
consists of a bipartite graph G = (C, S,E), where C is a set of clients and S is a set of servers.
Each server s ∈ S has a positive capacity cap(s), and each client c ∈ C has a demand d(c)
and a profit p(c). We define n , |C|+ |S|. A feasible solution is a k-service assignment (or
simply a service assignment) of clients to servers, i.e., it is a function x : C × S → {0, 1}
such that:

A client is only assigned to neighboring servers, namely x(c, s) = 1 implies (c, s) ∈ E.
The total demand of clients assigned to a server is not larger than its capacity, i.e.,∑
c∈C x(c, s) · d(c) ≤ cap(s), for every server s ∈ S.

Each client is assigned either to k servers or to none. That is,
∑
s∈S x(c, s) ∈ {0, k}, for

every client c ∈ C.
Given a k-service assignment x, a client is satisfied if

∑
s∈S x(c, s) = k. The set of satisfied

clients is denoted by Cx, that is Cx ,
{
c ∈ C :

∑
s∈S x(c, s) = k

}
. The profit of a service

assignment x is the total profit of satisfied clients, or p(Cx) ,
∑
c∈Cx

p(c), and the goal in
k-SA is to find a service assignment with maximum profit.

Given a constant r ∈ (0, 1], a k-SA instance is said to be r-restricted if no client requires
more than an r-fraction of the capacity of any neighboring server, namely if d(c) ≤ r · cap(s),
for every (c, s) ∈ E. k-SA on r-restricted instances is referred to as r-restricted k-SA.

Definitions, Notation, and Assumptions. We use standard graph theoretic notation. The
neighborhood of a vertex v is denoted by N(v), and the degree of v is denoted by deg(v).

If a function is applied to a finite set, then this yields the sum of function values for all
elements of the set, e.g., d(C) ,

∑
c∈C d(c). Also, given a function f with a finite domain,

let fmin and fmax denote the minimum and maximum value of f in its domain. For example,
pmax , maxc∈C p(c).

M.M. Halldórsson, S. Köhler, and D. Rawitz 11:5

Given a k-SA instance and a k-service assignment x, the set of clients assigned to a
server s is denoted by Cx(s) = {c ∈ C : x(c, s) = 1}, and note that Cx = ∪s∈SCx(s). We
call d(Cx(s)) =

∑
c∈C x(c, s)d(c) the load of server s. In this paper we sometimes consider

non-feasible k-service assignments that violate the server capacity constraints, in which case
it is possible that d(Cx(s)) > cap(s), for a server s ∈ S. Such a server is called overloaded.
Given α ∈ [0, 1], a server s is called α-saturated if d(Cx(s)) ≥ α · cap(s). A service assignment
x is called α-maximal, if no unsatisfied client is adjacent to k non-α-saturated servers.

Given a k-SA instance, the cost effectiveness of a client c ∈ C is denoted by ρ(c) , p(c)
d(c) .

Cost-effectiveness is assumed to be polynomially bounded, i.e., ρ(c) ≥ ρmin ∈ n−O(1) as well
as ρ(c) ≤ ρmax ∈ nO(1). The bounds ρmin and ρmax are assumed to be known to each node.

Following [18] we assume that each server s is aware of the demands and profits of
adjacent clients, namely each server knows d(c) and p(c), for every c ∈ N(s). Observe that
even if the numbers are large, it may be the case that their encoding is somewhat small (i.e.,
of size O(logn)). An actual implementation may use a floating-point encoding, so it may be
possible to efficiently send the demands and profits of clients to the adjacent servers. We also
consider an alternative assumption that all nodes know the maximum profit pmax. Notice
that while the latter assumption requires global knowledge, the former requires only local
knowledge.

Execution Model. We use the classic Congest model [19], which is a network model with
small messages. Briefly, in this model nodes are processors with unique IDs, connected by links
that can carry O(logn)-bit messages in a time unit, or round. Processors are not restricted
computationally (all computations required by our algorithms are polynomial, though). As
usual, for our upper bounds, we implicitly assume that the α-synchronizer [2] is employed
in the system, so that the algorithms operate in a synchronous manner in the following
sense. Execution proceeds in global rounds, where in each round each processor: (i) eceives
messages sent by its neighbors in the previous round, (ii) performs a local computation, and
(iii) sends (possibly distinct) messages to its neighbors.

3 Centralized Greedy Algorithm

In this section we present an algorithm that computes α-maximal k-service assignments. This
algorithm is used to obtain three results: (i) a k+1−r

1−r -approximation algorithm for r-restricted
k-SA, for any r ∈ (0, 1), (ii) a (k + 1)-approximation algorithm for r-restricted k-SA, for any
r ∈ (0, 1], using a resource augmentation factor of 1 + r, and (iii) a (k + 1)2-approximation
algorithm for k-SA. The first algorithm extends the 2−r

1−r -approximation algorithm for 1-SA
from [18]. However, we provide a simplified analysis that does not use the local ratio technique.
Also, note that while the k+1−r

1−r -approximation algorithm requires knowledge of r, the other
two algorithms do not.

Algorithm α-Greedy (Algorithm 1) sorts the clients in a non-increasing order by cost
effectiveness and then tries to service the clients in order. It assigns each client to some k
adjacent servers that are not yet α-saturated, if possible; otherwise, the client is dismissed.
We note that if α > 1− r, the computed solution x may be non-feasible.

I Observation 1. Algorithm α-Greedy computes α-maximal service assignments.

Proof. Assume that the computed solution x is not α-maximal. Then, there exists a client
ci ∈ C that is adjacent to k non-α-saturated servers. It follows that when ci is considered by
α-Greedy these k servers are non-α-saturated, which means that ci would have received
service. A contradiction. J

OPODIS 2015

11:6 Distributed Approximation of k-Service Assignment

Algorithm 1 : α-Greedy(C, S,E, d, p)
1: Let 〈c1, c2, c3, . . .〉 be a sequence of all clients sorted in non-increasing order of ρ
2: x← 0
3: for i = 1, 2, 3, . . . do
4: if there exist k non-α-saturated servers in N(ci) then
5: Let s1, . . . , sk ∈ N(ci) be k non-α-saturated servers
6: x(ci, sj)← 1, for every j
7: end if
8: end for

Cx∗ \ Cx

C \ (Cx∗ \ Cx)

F

S \ F

Figure 1 The arrows represent the mapping f .

We will in later sections be using rounding and therefore state our analysis of α-Greedy
more generally than will be used in this section.

Let π, δ ≥ 1. Given a k-SA instance, let p′ be a profit vector such that p′(c) ∈ [p(c), π ·p(c)]
and let d′ be a demand vector such that d′(c) ∈ [d(c), δ · d(c)]. Define ρ′(c) , p′(c)

d′(c) .

I Lemma 2. Given a k-SA instance, let x be the solution computed by α-Greedy using
p′ and d′, and let x∗ be an optimal solution with respect p and d. Then, we have that
p(Cx) ≥ α

δπk+αp(Cx∗).

Proof. Let F be the set of servers that are α-saturated with respect to the α-Greedy
solution x. Consider a client ci ∈ Cx∗ \ Cx satisfied by the optimal solution x∗ but not
by α-Greedy. Since α-Greedy does not satisfy ci and due to Observation 1, ci must be
connected to fewer than k non-α-saturated servers (in S \ F). Therefore, there exists an
α-saturated server s ∈ F that is assigned to ci by the optimal solution, that is such that
x∗(ci, s) = 1. Let f be a mapping which maps each client ci ∈ Cx∗ \ Cx to a server s ∈ F
such that x∗(ci, s) = 1. This is depicted in Figure 1.

Observe that the load of an α-saturated server s is by definition at least

d′(Cx(s)) =
∑
c

x(c, s)d′(c) ≥ α · cap(s) .

Let f−1(s) = {c ∈ Cx∗ \ Cx : f(c) = s} be the set of clients that are mapped to a α-saturated
server s ∈ F . Since each such client is assigned to s in the optimal solution x∗,

d(f−1(s)) ≤
∑
c

x∗(c, s)d(c) ≤ cap(s) ≤ d′(Cx(s))
α

. (1)

Consider a client ci ∈ f−1(s) and a client cj ∈ Cx(s). Since x does not satisfy ci, the server
s must have been α-saturated when α-Greedy tried to assign ci. Thus, cj must have been
considered by α-Greedy prior to ci, and the cost-effectiveness of cj is then at least as high
as that of ci, i.e., ρ′(cj) ≥ ρ′(ci). It follows that ρ′(c) ≤ ρ′(c′), for every c ∈ f−1(s) and
c′ ∈ Cx(s). This implies that ρ′(c) ≤ p′(Cx(s))

d′(Cx(s)) , for every c ∈ f
−1(s).

M.M. Halldórsson, S. Köhler, and D. Rawitz 11:7

For the total profit of all clients that f maps to s we then have that

p(f−1(s)) ≤ p′(f−1(s)) =
∑

c∈f−1(s)

d′(c) · ρ′(c)

≤
∑

c∈f−1(s)

d′(c) · p
′(Cx(s))
d′(Cx(s))

= d′(f−1(s)) · p
′(Cx(s))
d′(Cx(s))

≤ δ · d(f−1(s)) · p
′(Cx(s))
d′(Cx(s)) ≤

δ

α
p′(Cx(s)) ≤ πδ

α
p(Cx(s)) ,

where the third inequality is due to (1).
It remains to bound the approximation ratio:

p(Cx∗) =
∑

c∈Cx∗∩Cx

p(c) +
∑

c∈Cx∗\Cx

p(c)

≤
∑
c∈Cx

p(c) +
∑
s∈F

p(f−1(s))

≤ p(Cx) +
∑
s∈F

πδ

α
p(Cx(s)) ≤ p(Cx) + k · πδ

α
p(Cx) = α+ πδk

α
· p(Cx) ,

where the last inequality holds because each client is assigned to k servers. J

We note that a similar proof can be given with comparison to an optimal fractional
solution as was done in [1] for the case of k = 1.

Furthermore, we show that the analysis of α-Greedy is almost tight. Consider the
following k-SA instance for the case where 1− α = 1

q , for q ∈ N. Let C = {c1, c2, . . .} be a
set of q(k + 1)− 1 clients and S = {s1, s2, . . .} be a set of 2k − 1 servers. For i ≤ q − 1, let
d(ci) = q, p(ci) = qt + 1, and N(ci) = {s1, . . . , sk}, while for i ≥ q, let d(ci) = q, p(ci) = qt,
and N(ci) = S. As for server capacities, cap(si) = q2, for i ≤ k, and cap(si) = kq2, for i > k.
If we run α-Greedy (assuming δ = π = 1), it will consider clients c1, . . . , cq−1 first and
assigns all of them. This renders servers s1, . . . , sk α-saturated, so that no other clients will
receive service. Thus, α-Greedy obtains a profit of (q−1)(qt+ 1), while an optimal solution
services clients cq, . . . , cq(k+1)−1 for a profit of kq · qt = kqt+1. Hence, the approximation
ratio of α-Greedy is at least kqt+1

(q−1)(qt+1) , which goes to k
α as t goes to infinity.

We get our first result by assigning α = 1− r and δ = π = 1.

I Corollary 3. If δ = π = 1, the approximation ratio of (1− r)-Greedy is at most k+1−r
1−r .

Our next result is obtained by assigning α = 1 and δ = π = 1. Notice that in this case
the server capacity constraints may be violated, but not by much.

I Lemma 4. Given an r-restricted k-SA instance, let x be a k-service assignment computed
by 1-Greedy with δ = π = 1. Then, the load on any server s is less than (1 + r) · cap(s).
Moreover, if we remove the last client assigned to each overloaded server we obtain a feasible
k-service assignment.

Proof. By the algorithm design, an overloaded server s was non-1-saturated when the last
client was assigned to it. The load of a non-1-saturated server is less than its capacity, while
the last client assigned to s has a demand of at most r · cap(s). J

OPODIS 2015

11:8 Distributed Approximation of k-Service Assignment

From Lemma 4 we get that 1-Greedy obtains an approximation ratio of k + 1 with a
resource augmentation factor (1 + r).

I Corollary 5. If δ = π = 1, then 1-Greedy is a (k + 1)-approximation algorithm for
r-restricted k-SA that uses (1 + r) times the capacity of each server.

In the next lemma we show that the non-feasible solution that is computed by 1-Greedy
can be partitioned into k + 1 feasible solutions.

I Lemma 6. Given a k-SA instance, let x be a k-service assignment computed by 1-Greedy
with δ = π = 1. Then, x can be partitioned into k + 1 feasible k-service assignments.

Proof. Consider the directed conflict graph G′ = (Cx, E′), where E′ contains an arc (c, c′) if
and only if 1-Greedy assigned both c and c′ to a server s and c was the last client assigned
to s. The maximum in-degree of G′ is at most k for the simple reason that x assigns at
most k servers to each client. Furthermore, the graph G′ is a DAG, since an edge (c, c′)
always points from a client c to a client c′ that was considered by 1-Greedy prior to c. It
follows that the underlying graph of G′ is k-degenerate (or k-inductive), and therefore can be
(k + 1)-colored [10]. For completeness, we provide the following simple recursive algorithm
that (k + 1)-colors G′:

If the graph is empty, return an empty coloring.
Find a node v with out-degree zero. Such a node always exists as the graph is a DAG.
Remove v from the graph and color the remaining graph recursively.
Color node v with the smallest available color. Since only k neighbors of v have already
received a color – only the in-neighbors – at least one of the first k + 1 colors is free.
Return the coloring.

The coloring of G′ is a partition of Cx into k + 1 independent sets. We show that an
independent set induces a feasible solution. Let I be an independent set and let xI be the
solution restricted to I, that is xI(c, s) = x(c, s), if c ∈ I, and xI(c, s) = 0, otherwise. If
I contains the last client assigned to a server s, then I does not contain any other clients
assigned to s. It follows that xI is feasible. J

This leads to the last result of the section.

I Corollary 7. There exists a (k + 1)2-approximation algorithm for k-SA.

Proof. First, 1-Greedy, with δ = π = 1, computes a possibly non-feasible (k + 1)-
approximate service assignment due to Corollary 5. Lemma 6 implies that x can be partitioned
into k + 1 feasible solutions x1, . . . , xk+1. Since p(Cx) =

∑k+1
i=1 p(Cxi), there exists i such

that p(Cxi) ≥ 1
k+1p(Cx). J

4 Distributed Greedy Algorithm

In this section, we present distributed approximation algorithms for k-SA by providing a
distributed implementation of Algorithm α-Greedy. More specifically, we present (i) a
k+1−r

1−r (1+γ)-approximation algorithm for r-restricted k-SA, (ii) a (k+1)(1+γ)-approximation
algorithm that uses a resource augmentation factor 1 + r for r-restricted k-SA, and (iii) a
O(k2)-approximation algorithm for k-SA, all for any constant γ > 0. The three algorithms
terminate in O(k2γ−2 polylog(n)) rounds.

We first give a distributed algorithm that relies on the assumption that all nodes know
pmax. We then give a modification that does not need this assumption, but relies on the
assumption that each server s knows the demands and profits of the clients in N(s). We
start the section by classifying the clients.

M.M. Halldórsson, S. Köhler, and D. Rawitz 11:9

4.1 Client Classification
The basic idea of our distributed algorithm is to mimic the sequential α-Greedy. The
challenge is to parallelize the computation of the assignment as dealing with clients one-by-one
would yield linear running time. The key is to efficiently compute the assignment of multiple
clients with equal profit and equal demand. To enlarge the number of clients with equal
profit and demand, we apply an implication of Lemma 2: we may round profits and demands
up to the closest power of 1 + ε, for some ε > 0, increasing the approximation ratio by at
most a factor of (1 + ε)2.

We first classify all clients by demand and profit. Define

Ci` ,
{
c ∈ C : d(c) ∈ ((1 + ε)i−1, (1 + ε)i] ∧ p(c) ∈ ((1 + ε)i+`−1, (1 + ε)i+`]

}
,

and C` ,
⋃
i C

i
`. Also, define the rounded demand and profit for all clients c ∈ Ci` as

d′(c) , (1 + ε)i

p′(c) , (1 + ε)i+` .

Note that all clients in C` have equal cost-effectiveness with respect to the rounded profits
and demands, namely ρ′(c) = p′(c)

d′(c) = (1 + ε)`. That means that the clients in C` can be
considered by Algorithm α-Greedy in any order. Also note that

d′(c) ∈ [d(c), (1 + ε)d(c))
p′(c) ∈ [p(c), (1 + ε)p(c))
ρ′(c) ∈ ((1 + ε)−1ρ(c), (1 + ε)ρ(c)) .

For the remainder of the section, we mostly consider rounded profits and demands.

4.2 Distributed Implementation of α-Greedy
We are ready to describe a distributed implementation of Algorithm α-Greedy that relies
on the assumption that all nodes know pmax. The algorithm is described in a top-down
manner.

By assumption, the cost-effectiveness is polynomially bounded in n. Given the values ρmin
and ρmax, we can find an interval [W,W ′] such that C` 6= ∅ only if ` ∈ [W,W ′]. This is the
case for W =

⌊
log1+ε(ρmin)

⌋
and W ′ =

⌈
log1+ε(ρmax)

⌉
. Note that W ′ −W ∈ O(log1+ε n) ⊆

O(ε−1 logn).
Define C≥z ,

⋃
`≥z C` and assume that there is an algorithm called Augment that

augments a k-service assignment for C≥`+1 into a k-service assignment for C≥`. Algo-
rithm Dist-α-Greedy (Algorithm 2) uses Augment iteratively to construct a k-service
assignment. ClearlyDist-α-Greedy runs for O(TAε−1 logn) rounds, where TA is the running
time of Augment.

Algorithm 2 : Dist-α-Greedy(C, S,E, d, p, cap)
1: x← 0
2: for ` = W ′ downto W do
3: x← Augment(C, S,E, cap, `, x)
4: end for

As shown in the sequel, Algorithm Augment considers the subclasses of C` one by one
and augments the given k-service assignment with a k-service assignment for each Ci`. In

OPODIS 2015

11:10 Distributed Approximation of k-Service Assignment

order to keep the running time of our algorithm poly-logarithmic, we use the next result
showing that only considering O(log1+ε n) subclasses per class C` does not increase the
approximation ratio by much.

A client c ∈ C is called heavy if p′(c) > p′max
n3 . Otherwise, it is called light. Recall that

p′max = maxc∈C p′(c). Define Cheavy , {c ∈ C : p′(c) > p′max
n3 }. The next lemma explains why

we can simply ignore light clients.

I Lemma 8. Let x be an optimal k-service assignment and let y be an optimal k-service
assignment for the same instance but restricted to a set C̃, where C̃ ⊇ Cheavy. Then
p(Cx) ≤ (1 + 1

n2)p(Cy).

Proof. Observe that each client c 6∈ C̃ satisfies p(c) ≤ pmax
n3 . Clearly, p(Cx) ≥ p(Cy) ≥ pmax,

and thus we have that

p(Cx) = p(Cx ∩ C̃) + p(Cx \ C̃) ≤ p(Cy) + n · pmax

n3 = p(Cy) + pmax

n2 ≤
(

1 + 1
n2

)
p(Cy)

which concludes the proof. J

Following the above result, Algorithm Augment (Algorithm 3) considers only the
subclasses Ci` which contain heavy clients. The heavy clients are contained in at most⌈
3 log1+ε n

⌉
subclasses of C`. For each subclass, Augment uses Algorithm Uniform-

Augment which augments the current k-service assignment with an assignment for the
specified subclass Ci`. Recall that all clients in Ci` have the same profit and demand (with
respect to p′ and d′).

Algorithm 3 : Augment(C, S,E, cap, `, x)
1: imax

` ← log1+ε p
′
max − `

2: for i = imax
` downto imax

` −
⌈
3 log1+ε n

⌉
+ 1 do

3: x← Uniform-Augment(C, S,E, cap, i, `, x)
4: end for
5: return x

Clearly, if AlgorithmUniform-Augment requires TU rounds, thenAugment terminates
after O(TU log1+ε n) ⊆ O(TUε−1 logn) rounds. It follows that Algorithm Dist-α-Greedy
requires O(TUε−2 log2 n) rounds.

As mentioned before, Algorithm Uniform-Augment is used to compute a k-service
assignment for all clients in a given subclass Ci` that augments a given k-service assignment
x. Recall that clients have uniform demands, i.e., d′(c) = (1 + ε)i for each c ∈ Ci`. Hence,
given a solution x and a server s, an upper bound mi

`(x, s) on the number of clients from Ci`
that can be assigned to s while it is not α-saturated can be computed as follows:

mi
`(x, s) = min

{
max

{
0,
⌈
α · cap(s)− d′(Cx(s))

(1 + ε)i

⌉}
, deg(s)

}
.

A star centered at a client c ∈ C is a subgraph of G that contains c and k servers
adjacent to c. We call the servers the leaves of the star. Per server s ∈ S we introduce
mi
`(x, s) copies denoted s1, s2, and so forth. An incarnation of a star replaces each leaf s

with a copy sq, where 1 ≤ q ≤ mi
`(x, s). Note that incarnations never have two leaves which

are copies of the same server. Also note that some stars have no incarnations, namely if
mi
`(x, s) = 0 for some leaf s. We define the graph H(i, `, x). The vertex set of H(i, `, x)

M.M. Halldórsson, S. Köhler, and D. Rawitz 11:11

contains all possible incarnations of stars centered at a client c ∈ Ci`. There is an edge
between two nodes of H(i, `, x), namely between two incarnations, if and only if the two
are either centered at the same client or share a common leaf (copy of a server). Given i, `,
and x, Algorithm Uniform-Augment (Algorithm 4) constructs H(i, `, x) and computes a
maximal independent set (MIS) in H(i, `, x).

Algorithm 4 : Uniform-Augment(C, S,E, cap, i, `, x)
1: MIS ← Maximal Independent Set of H(i, `, x)
2: Augment x with k-service assignment corresponding to MIS
3: return x

The computation of the MIS is based on Luby’s algorithm [16]. In fact we rely on
the analysis of Wattenhofer [24] that shows that the MIS algorithm terminates with high
probability after O(logN) rounds, where N is the number of nodes in the graph. The next
lemma shows how to implement the algorithm such that the number of rounds is O(k2 logn).

I Lemma 9. Algorithm Uniform-Augment computes an α-maximal service assignment
w.h.p. in O(k2 logn) rounds.

Proof. Consider the graph H(i, `, x) = (V (i, `, x), E(i, `, x)). For a client c ∈ C, there are(deg(c)
k

)
stars centered at c. For each star there are at most nk different incarnations, as there

are at most deg(s) ≤ n copies of each server s. It follows that, per client c of G, the vertex
set V (i, `, x) contains at most

(deg(c)
k

)
nk ≤ n2k vertices. So in total, V (i, `, x) contains

n(i, `, x) , |V (i, `, x)| ≤ n2k+1

vertices (incarnations of stars of G).
We would like to execute Luby’s algorithm [16] to compute a maximal independent set

in H(i, `, x). Let M = ∅ and M = V (i, `, x). Luby’s algorithm repeatedly executes the
following procedure:

Each incarnation in M is assigned a random priority with O(k logn) bits.
Let U be the set of incarnations with a priority higher than any adjacent incarnation.
All incarnations in U are added to M and removed from M . Also, all incarnations
adjacent to incarnations in U are removed from M .

With high probability, M is a maximal independent set after the above procedure has been
executed O(k logn) times [24].

We now describe how the above procedure can be simulated on the graph G:
1. A client c ∈ Ci` draws a random priority for each incarnation in M centered at c. Per

client, only the incarnation with the highest priority is relevant to Luby’s algorithm.
Thus for each leaf sq of such an incarnation, clients send the priority and the index q to
s. Note that each client sends at most one message to each adjacent server.

2. Per copy, each server determines the highest priority received. The server sends an ACK
message to the clients that sent the winning (highest) priorities and a NACK message to
clients that sent the losing priorities.

3. If a client c receives k ACK messages, then the incarnation with the highest priority
centered at c joins the independent set and all other incarnations centered at c are
removed from M . Per leaf sq of an incarnation joining the MIS, the clients inform server
s that the copy with index q has been taken.

4. Servers keep track which copies have been taken and inform the clients which copies are
no longer available. Clients remove all incarnations with unavailable leaves from M .

OPODIS 2015

11:12 Distributed Approximation of k-Service Assignment

We examine the messages exchanged during this procedure and their sizes in bits. In
the first step each client sends a priority and server copy index to k servers, therefore the
message size is O(k logn+ logn) ⊆ O(k logn). In the second step each server sends a single
ACK/NACK message to clients whose size is O(1). Winning clients send a single server copy
index to k servers. The message size is O(logn). Finally, servers need to update clients on
which copy cannot be used anymore. The naive solution is a message that may require Ω(n)
bits (a bit vector with one bit per server copy).

Recall that for each star there are O(nk) different incarnations. Since these incarnations
are interchangeable, server copies may be relabeled after each iteration such that the available
copies have the smallest possible indexes. It follows that the number of available copies per
server, and not the actual server copy indexes, is important. In conclusion, it suffices to
inform the clients only about the number of available copies per server. This can be done
using a message of size O(logn) bits.

The above procedure takes O(1) rounds when assuming messages of size O(k logn) or
O(k) rounds using messages of size O(logn) bits. As the procedure needs to be executed
O(k logn) times, we have that the total number of rounds is O(k2 logn).

Finally, the computed solution is α-maximal, since otherwise the independent set in
H(i, `, x) is not maximal. J

We note that a client c need not draw one random priority for each incarnation in M
centered at c. As c is aware of the number of available copies per adjacent server, it is easy to
count the number of incarnations in M centered at c. Let z be this number. It then suffices
to choose one of the z incarnations uniformly at random and to draw its priority from the
distribution of the maximum over z random priorities (see, e.g., [9]).

We bound the running time of Algorithm Dist-α-Greedy.

I Lemma 10. Algorithm Dist-α-Greedy terminates w.h.p. in O(k2ε−2 · log3 n) rounds.

Proof. Algorithm Dist-α-Greedy consists of O(ε−1 logn) invocations of Augment, which
in turn consists of O(ε−1 logn) invocations of Uniform-Augment. The lemma follows
since Uniform-Augment requires O(k2 logn) rounds according to Lemma 9. J

Next, we analyze the computed solution. In preparation for Section 4.3, the next result
is slightly more general than necessary.

I Lemma 11. Given a k-SA instance, Algorithm Dist-α-Greedy mimics α-Greedy on a
set C̃ ⊇ Cheavy using the rounded profits p′ and the rounded demands d′.

Proof. Notice that Algorithm Dist-α-Greedy considers CW ′ , . . . , CW in decreasing order of
`. Since all clients in C` have the same cost-effectiveness, (1+ε)`, it follows that the algorithm
augments x according to a non-increasing order of client cost-effectiveness with respect to p′
and d′. For each `, Algorithm Augment considers subclasses Ci` in a decreasing order of i,
that is in a decreasing order of both profit and demand. For each i, Uniform-Augment
computes an α-maximal solution, as shown in Lemma 9, by adding clients with the same
profit, demand, and cost-effectiveness in an order that is induced by the random choices
of the maximal independent set computation. Hence, Algorithm Augment can be seen as
trying to service clients with the same cost-effectiveness in an arbitrary order. It follows that
Dist-α-Greedy is a specific implementation of α-Greedy.

It remains to show that Augment considers all heavy clients in each class C`. Let c ∈ C`
be a client not considered by Augment. Then c ∈ Ci` with i ≤ imax

` −
⌈
3 log1+ε n

⌉
and we

M.M. Halldórsson, S. Köhler, and D. Rawitz 11:13

have that

p′(c) = (1 + ε)i+` ≤ (1 + ε)i
max
` +`−d3 log1+ε ne = (1 + ε)log1+ε p

′
max−d3 log1+ε ne ≤ p′max

n3 ,

and thus c is a light client. J

The previous lemma allows us to find a lower bound on the profit of the solution that is
computed by Dist-α-Greedy.

I Lemma 12. Given a k-SA instance, let x be the solution computed by Dist-α-Greedy
using p′ and d′, and let x∗ be an optimal solution with respect p and d. Then, we have that
p(Cx) ≥ 1

1+1/n2 · 1
(1+ε)2 · α

k+αp(Cx∗).

Proof. Let y∗ be an optimal solution with respect to p, d, and C̃ ⊇ Cheavy. We have that
p(Cx∗) ≤ (1 + 1

n2)p(Cy∗) by Lemma 8. Furthermore, p(Cx) ≥ 1
(1+ε)2 · α

k+αp(Cy∗) due to
Lemmas 2 and 11 and the definition of p′ and d′. The claim follows. J

I Lemma 13. Let γ > 0 be a constant. There exists distributed ((1 + γ)k+α
α)-approximation

algorithm for k-SA that terminates w.h.p. in O(k2γ−2 · log3 n) rounds.

Proof. If γ < 4
n2 , then n ≤ 2/√γ which means that n = O(1). In this case, an optimal

solution can be computed in O(1) rounds as follows: each node sends its input to the node
with highest id, which computes an optimal solution and broadcasts it to all nodes.

If γ ≥ 4
n2 , then set ε = γ/4 and run Dist-α-Greedy. In this case we have that

(1 + 1
n2) · (1 + ε)2 ≤

(
1 + γ

4

)3
=
(

1 + 3γ
4 + 3γ2

16 + γ3

64

)
< 1 + γ .

The rest follows from Lemmas 10 and 12. J

By setting α = 1− r, Lemma 13 leads to the following result:

I Corollary 14. There exists a distributed ((1 + γ)k+1−r
1−r)-approximation algorithm for

r-restricted k-SA that terminates w.h.p. in O(k2γ−2 · log3 n) rounds, for every γ > 0.

We can obtain a better ratio using resource augmentation, i.e., by setting α = 1.

I Corollary 15. There exists a distributed (1 + γ)(k + 1)-approximation algorithm for r-
restricted k-SA that uses at most (1 + r) times the capacity of each server and terminates
w.h.p. in O(k2γ−2 · log3 n) rounds, for every γ > 0.

As in the centralized case (Lemma 6) we use the resource augmentation algorithm in
order to obtain a feasible service assignment. However, in the distributed setting we use
random selection instead of using coloring.

I Theorem 16. There exists a distributed algorithm for k-SA that terminates w.h.p. in
O(k2γ−2 · log3 n) rounds and computes solutions whose expected profit is at least p(Cx∗)/((1 +
γ) · 4k(k + 1)), for any γ > 0, where x∗ is an optimal solution.

Proof. We present a distributed randomized algorithm that computes a service assignment
whose expected profit is at least the optimum divided by (1 + γ) · 4k(k+ 1), for any constant
γ > 0.

The first phase of the algorithm is to compute a (1 + γ)(k + 1)-approximate solution x
for k-SA that uses at most (1 + r) times the capacity of each server. By Corollary 15 this

OPODIS 2015

11:14 Distributed Approximation of k-Service Assignment

c1

1
c2

1
c3

1
c4

2
c5

3
c6

4

s1

1
s2

1
s3

2
s4

3
s5

4

Figure 2 Each client is labeled with the index of its class, each server is labeled with imax
` (s).

takes O(k2γ−2 · log3 n) rounds. The solution is either already feasible or was computed by
Dist-1-Greedy (see Lemma 13). In the latter case, consider the set of clients that were last
assigned to s by an invocation of Uniform-Augment and choose as c(s) the client with
the largest identifier.

Recall the definition of the conflict graph G′ = (Cx, E′) from Lemma 6. The set E′
contains an edge between two clients (c, c′) if c and c′ are both assigned to a server s and
c = c(s). The second phase is to compute an independent set I of G′. As shown in the proof
of Lemma 6, restricting x to the clients in I yields a feasible solution.

We exploit that G′ is a DAG with in-degree at most k. Let β > 1 and U = ∅. Add each
client c ∈ Cx to U independently with probability 1

βk . Then let I ⊆ U be the set of clients
with no in-neighbor in U . Clearly I is an independent set of G′. By the Union Bound, a
node has an in-neighbor in U with probability at most k · 1

βk = 1
β . Thus, a node of Cx is in

I with probability at least 1
βk (1− 1

β) = β−1
β2k . We choose β = 2 to maximize β−1

β2 , so a node
of Cx is in I with probability 1

4k . Thus E[p(I)] ≥ 1
4kp(Cx).

The set I can be easily constructed by the following distributed algorithm. Every client
in c ∈ Cx informs each server s with x(c, s) = 1 whether c ∈ U . A server s responds to a
client c ∈ U with a NACK message if c 6= c(s) and c(s) ∈ U , and with an ACK message
otherwise. If a client c ∈ U receives no NACK message, then c ∈ I. Otherwise, c informs its
servers that c 6∈ I. J

4.3 Modification
In the remainder of this section, we describe a modified version of Augment, called
Modified-Augment, that does not assume knowledge of pmax. Instead, we assume that
each server s knows the demand d(c) and the profit p(c) of each adjacent client c ∈ N(s), as
explained in Section 2.

Without knowledge of pmax, intuitively, we would like to start with the non-empty subclass
Ci` with maximum index i. A naive approach, such as determining the maximum index i
and making it known to all nodes, would require time proportional to the network diameter.
Our algorithm avoids this issue by using the index

imax
` (s) = max{i : Ci` ∩N(s) 6= ∅} ,

for each server s ∈ S. See Figure 2 for an example. As the demands and profits are known,
a server s can easily determine imax

` (s).
Algorithm Modified-Augment works as follows. In each iteration of a loop starting at

i = imax
` (s) and counting downwards, each server s sends a START message to each adjacent

client in class Ci`. It then runs Algorithm Uniform-Augment for index i. The execution
of Uniform-Augment for index i is restricted to the graph G(i, `) = (Ci`, S, E ∩ (Ci` × S)).
Thus, a client c ∈ Ci` may only receive messages due to an execution of Uniform-Augment
for index i.

M.M. Halldórsson, S. Köhler, and D. Rawitz 11:15

A client c ∈ Ci` doesn’t run Algorithm Uniform-Augment for index i straightaway.
Instead, it waits until all adjacent servers have sent a START message. While delaying the
execution of Uniform-Augment, incoming messages for Uniform-Augment are saved by
c and delivered later when its execution starts.

As messages are delayed and since Uniform-Augment was written for the synchronous
model, we use an α-synchronizer to execute Uniform-Augment. Also, we assume that the
synchronizer counts how many synchronous rounds Uniform-Augment has been executed
for. This serves as a means of termination detection. Let TU be the worst-case running time
of Uniform-Augment in synchronous rounds. After starting an execution of Uniform-
Augment for a particular index, servers and clients wait until the synchronizer has completed
TU synchronous rounds of Uniform-Augment. Once this has happened, clients update the
k-service assignment and servers continue with the next iteration of the loop over i.

Consider the graph shown in Figure 2. In the first round, servers s1 and s2 send a START
message to c1, c2, and c3. So servers s1 and s2 as well as clients c1 and c2 start executing
Uniform-Augment for class C1

` . However, client c3 will locally delay the execution of
Uniform-Augment for class C1

` until it received a START message from server s3. This
will only happen after s3 and c4 have finished executing Uniform-Augment for class C2

` .
This in turn will be delayed until s4 and c5 have finished executing Uniform-Augment
for class C3

` . We observe that the execution of Uniform-Augment for some class Ci` is
delayed for at most (i` − i) ·O(TU) rounds, where i` = maxs∈S imax

` (s).
As we do not need to consider all subclasses of C` but mainly subclasses with heavy

clients, we simply stop the execution of Modified-Augment after O(TUε−1 logn) rounds
and take the k-service assignment computed by then. Abruptly stopping the execution
may render the local view of the computed k-service assignment by clients and servers
inconsistent. This can be fixed within one round by letting each client c send the value x(c, s)
to each adjacent server s. As the following result shows, the given time bound suffices to let
Modified-Augment consider all heavy clients.

I Lemma 17. With high probability, AlgorithmModified-Augment requires O(k2ε−1 log2 n)
rounds to run Uniform-Augment for all subclasses of C` that contain heavy clients.

Due to space constraints, the listing of Algorithm Modified-Augment and the proof of
Lemma 17 have been omitted. Algorithm Modified-Augment is a drop-in replacement for
Algorithm Augment in the sense that it preserves all significant properties of Augment:
(i) All subclasses of C` with heavy clients are considered, (ii) Modified-Augment has the
same asymptotic runtime as Algorithm Augment, and (iii) the subclasses Ci` are (locally)
considered in decreasing order of index i. We conclude that in particular Lemmas 10 and 11
remain true if Augment is replaced with Modified-Augment (details are omitted). As
all subsequent results in Section 4.2 are mainly derived from these two lemmas, they also
remain true.

Acknowledgements. We thank Boaz Patt-Shamir for helpful discussions.

References

1 David Amzallag, Reuven Bar-Yehuda, Danny Raz, and Gabriel Scalosub. Cell selection in
4G cellular networks. IEEE Trans. Mobile Comput., 12(7):1443–1455, 2013.

2 Baruch Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804–823, 1985.

OPODIS 2015

11:16 Distributed Approximation of k-Service Assignment

3 Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph Naor, and Baurch Schieber.
A unified approach to approximating resource allocation and schedualing. J. ACM,
48(5):1069–1090, 2001.

4 Reuven Bar-Yehuda, Keren Bendel, Ari Freund, and Dror Rawitz. Local ratio: A unified
framework for approximation algorithms. ACM Comput. Surv., 36(4):422–463, 2004.

5 Reuven Bar-Yehuda and Shimon Even. A local-ratio theorem for approximating the
weighted vertex cover problem. Annals of Discrete Mathematics, 25:27–46, 1985.

6 Chandra Chekuri and Sanjeev Khanna. On multidimensional packing problems. SIAM J.
Comput., 33(4):837–851, 2004.

7 Chandra Chekuri and Sanjeev Khanna. A polynomial time approximation scheme for the
multiple knapsack problem. SIAM J. Comput., 35(3):713–728, 2005.

8 Milind Dawande, Jayant Kalagnanam, Pinar Keskinocak, F. Sibel Salman, and R. Ravi.
Approximation algorithms for the multiple knapsack problem with assignment restrictions.
Journal of Combinatorial Optimization, 4(2):171–186, 2000.

9 Yuval Emek, Magnús M. Halldórsson, Yishay Mansour, Boaz Patt-Shamir, Jaikumar Rad-
hakrishnan, and Dror Rawitz. Online set packing. SIAM J. Comput., 41(4):728–746, 2012.

10 Paul Erdös and András Hajnal. On chromatic number of graphs and set-systems. Acta
Mathematica Hungarica, 17(1–2):61–99, 1966.

11 Lisa Fleischer, Michel X. Goemans, Vahab S. Mirrokni, and Maxim Sviridenko. Tight
approximation algorithms for maximum general assignment problems. In 17th SODA, pages
611–620, 2006.

12 A. M. Frieze and M. R. B. Clarke. Approximation algorithms for the m-dimensional 0− 1
knapsack problem: worst-case and probabilistic analyses. European Journal of Operational
Research, 15:100–109, 1984.

13 Magnús M. Halldórsson, Sven Köhler, Boaz Patt-Shamir, and Dror Rawitz. Distributed
backup placement in networks. In 27th ACM SPAA, pages 274–283, 2015.

14 Elad Hazan, Shmuel Safra, and Oded Schwartz. On the complexity of approximating k-set
packing. Computational Complexity, 15(1):20–39, 2006.

15 Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the knapsack and
sum of subset problems. J. ACM, 22(4):463–468, 1975.

16 Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
J. Comput., 15(4):1036–1053, 1986.

17 Michael J. Magazine and Maw-Sheng Chern. A note on approximation schemes for multi-
dimensional knapsack problems. Mathematics of Operations Research, 9(2):244–247, 1984.

18 Boaz Patt-Shamir, Dror Rawitz, and Gabriel Scalosub. Distributed approximation of cel-
lular coverage. J. Parallel Distrib. Comput., 72(3):402–408, 2012.

19 David Peleg. Distributed Computing: A Locality-sensitive Approach. SIAM, 2000.
20 Prabhakar Raghavan and Clark D. Thompson. Randomized rounding: a technique for

provably good algorithms and algorithmic proofs. Combinatorica, 7(4):365–374, 1987.
21 Sartaj Sahni. Approximate algorithms for the 0/1 knapsack problem. J. ACM, 22(1):115–

124, 1975.
22 David B. Shmoys and Éva Tardos. An approximation algorithm for the generalized assign-

ment problem. Mathematical Programming, 62:461–474, 1993.
23 Aravind Srinivasan. Improved approximation guarantees for packing and covering integer

programs. SIAM J. Comput., 29(2):648–670, 1999.
24 Roger Wattenhofer. Principles of distributed computing: Maximal independent set.

http://www.dcg.ethz.ch/lectures/fs15/podc/lecture/chapter7.pdf. Accessed 2015-
08-27.

http://www.dcg.ethz.ch/lectures/fs15/podc/lecture/chapter7.pdf

On the Uncontended Complexity of Anonymous
Consensus∗

Claire Capdevielle1, Colette Johnen2, Petr Kuznetsov3, and
Alessia Milani4

1 Univ. Bordeaux, LaBRI, UMR 5800, Talence, France
claire.capdevielle@labri.fr

2 Univ. Bordeaux, LaBRI, UMR 5800, Talence, France
johnen@labri.fr

3 Télécom ParisTech, Paris, France
petr.kuznetsov@telecom-paristech.fr

4 Univ. Bordeaux, LaBRI, UMR 5800, Talence, France
milani@labri.fr

Abstract
Consensus is one of the central distributed abstractions. By enabling a collection of processes
to agree on one of the values they propose, consensus can be used to implement any generic
replicated service in a consistent and fault-tolerant way.

In this paper, we study uncontended complexity of anonymous consensus algorithms, counting
the number of memory locations used and the number of memory updates performed in operations
that encounter no contention. We assume that contention-free operations on a consensus object
perform “fast” reads and writes, and resort to more expensive synchronization primitives, such
as CAS, only when contention is detected. We call such concurrent implementations interval-
solo-fast and derive one of the first nontrivial tight bounds on space complexity of anonymous
interval-solo-fast consensus.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases space and time complexity, lower bounds, consensus, interval contention,
solo-fast

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.12

1 Introduction

Consensus is one of the central distributed abstractions. By enabling a collection of processes
to agree on one of the values they propose, consensus can be used to implement any generic
replicated service in a consistent and fault-tolerant way. Therefore, complexity of consensus
implementations has become one of the most important topics in the theory of distributed
computing.

It is known that consensus cannot be solved in an asynchronous read-write shared memory
system in a deterministic and fault-tolerant way [7, 16]. The difficulty stems from handling
contended executions. One way to circumvent this impossibility is to only guarantee progress

∗ Partially supported by the ANR project DISPLEXITY (ANR-11-BS02-014). This study has been
carried out in the frame of the Investments for the future Programme IdEx Bordeaux-CPU (ANR-10-
IDEX-03-02). The third author was supported by the ANR project DISCMAT, under grant agreement
N ANR-14-CE35-0010-01.

© Claire Capdevielle, Colette Johnen, Petr Kuznetsov, and Alessia Milani;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 12; pp. 12:1–12:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 On the Uncontended Complexity of Anonymous Consensus

(using reads and writes) in executions meeting certain conditions, e.g., in the absence of
contention. Alternatively, a process is guaranteed to decide in the wait-free manner, but
stronger (and more expensive) synchronization primitives, such as compare-and-swap, can be
applied in the presence of contention.

We are interested in consensus algorithms in which a propose operation is allowed to apply
primitives other than reads and writes on the base objects only in the presence of interval
contention, i.e., when another propose operation is concurrently active. These algorithms are
called interval-solo-fast.

Ideally, interval-solo-fast algorithms should have an optimized behavior in uncontended
executions. It appears therefore natural to explore the uncontended complexity of consensus
algorithms: how many memory operations (reads and writes) need to be performed and how
many distinct memory locations need to be accessed in the absence of interval contention?

In general, interval-solo-fast consensus can be solved with only constant uncontended
complexity [17]. We therefore restrict our study to anonymous consensus algorithms, i.e.,
algorithms not using process identifiers and, thus, programming all processes identically.
Besides intellectual curiosity, practical reasons to study anonymous algorithms in the shared
memory model are discussed in [10].

Our results. On the lower-bound side, we show that any anonymous interval-solo-fast
consensus algorithm exhibits non-trivial uncontended complexity that depends on n, the
number of processes, and m, where m is the size of the set V of input values that can be
proposed. More precisely, we show that, in the worst case, a propose operation running solo,
i.e., without any other process invoking propose, must write to Ω(min(

√
n, logm/ log logm))

distinct memory locations. This metrics, which we call solo-write complexity, is upper-
bounded by the step complexity of the algorithm, i.e., the worst-case number of all base-object
primitives applied by an individual operation. In the special case of input-oblivious algorithms,
where the sequence of memory locations written in a solo execution does not depend on the
input value, we derive a stronger lower bound of Ω(

√
n) on solo-write complexity. Our proof

only requires the algorithm to ensure that operations terminate in solo executions, so the lower
bounds also hold for abortable [2, 11] and obstruction-free [13] consensus implementations.

On the positive side, we show that our lower bound is tight. Our matching consensus
algorithm is based on our novel value-splitter abstraction, extending the classical splitter
mechanism [15, 18, 4], interesting in its own right. Informally, a value-splitter exports a
single operation split that takes a value in a value set V as a parameter and returns a boolean
response so that (1) if split(v) completes before any other split operation starts, then it
returns true, and (2) all processes that obtain true proposed the same value.

We describe a simple transformation of a value-splitter into anonymous and interval-solo-
fast consensus, using the classical splitter-based algorithm and incurring constant overhead
with respect to the value-splitter complexity [17]. Then, we present two value-splitter read-
write implementations that combined with the consensus algorithm provide the matching
upper bound O(min(

√
n, logm/ log logm)).

The first one is a novel anonymous and input-oblivious implementation of a value-splitter
that exhibits O(

√
n) space and solo-write complexity.

The second one is not input-oblivious, and is a slight modification of the weak conflict
detector proposed in [1], exhibiting O(logm/ log logm) space and step complexity.

Our results are summarized in Table 1. It is interesting to notice that the step
complexities are O(n) for the first algorithm and O(logm/ log logm) for the second one.
Aspnes and Ellen [1] showed that any anonymous consensus protocol has to execute

C. Capdevielle, C. Johnen, P. Kuznetsov, and A. Milani 12:3

Table 1 Space and solo-write complexity for anonymous interval-solo-fast consensus.

Input-oblivious Not input-oblivious

Ω(
√
n) Ω(min(

√
n, log m

log log m
))

O(
√
n) if

√
n ≤ log m

log log m
, O(
√
n) if

√
n ≥ log m

log log m
, O(log m

log log m
) [17, 1]

Ω(min(n, logm/ log logm)) steps in solo executions. Thus, our consensus algorithms have
also asympotically optimal step complexity.

Overall, our results imply one the first nontrivial tight lower bound on the space complexity
for consensus known so far, along with a concurrent result on the space complexity of solo-
terminating anonymous consensus [8].1 Our results also show that there is an inherent gap
between anonymous and non-anonymous consensus algorithms: non-anonymous consensus
has constant uncontended complexity [17].

Related work. The idea of optimizing concurrent algorithms for uncontended executions
was suggested by Lamport in his “fast” mutual exclusion algorithm [15].

Fich et al. [6] have shown that any solo-terminating (and, as a result, obstruction-
free) read-write (non-anonymous) consensus protocol must use Ω(

√
n) memory locations.

Gelashvili [8] proved a stronger Ω(n) lower bound for the anonymous case. Attiya et al. [2]
showed that any step-solo-fast (where operations only apply reads and writes in the absence
of interleaving steps) either use O(

√
n) space or incur O(

√
n) memory stalls per operation.

No obstruction-free or step-solo-fast algorithm matching these lower bounds is known so far:
existing algorithms typically expose O(n) space complexity. These lower bounds focus on
step contention and do not extend to uncontended executions, where no interval contention
is encountered.

Our value-splitter abstraction is inspired by the splitter mechanism in [18, 4], originally
suggested by Lamport [15]. Differently from the original splitter object, more than one process
can return true but all these processes have the same input value. The novel input-oblivious
value-splitter implementation we present is inspired by the obstruction-free leader election
algorithm recently proposed by Giakkoupis et al. [9].

Bouzid et al. [3] presented an anonymous consensus algorithm with asymptotically
optimal solo write and step complexity. But it relies on a failure detector (can be transformed
into obstruction-free though) and requires unbounded space.

A preliminary version of this paper has been presented as a brief announcement [5].

Roadmap. The rest of the paper is organized as follows. We give preliminary definitions in
Section 2. We present our lower bound in Section 3 and our upper bound in Section 4. We
conclude the paper in Section 5.

1 Informally, a solo-terminating algorithm ensures that every process running solo from any configuration
eventually terminates.

OPODIS 2015

12:4 On the Uncontended Complexity of Anonymous Consensus

2 Preliminaries

The model of computation

We consider a standard asynchronous shared-memory model in which n > 1 processes
communicate by applying atomic (or linearizable [14]) primitive operations on shared variables,
called base objects. We assume every base object maintains a state and exports a subset of
the Read, Write and Compare-And-Swap (CAS) primitives. The primitive Read(R) returns
the value of R, and Write(R, v) sets the state of R to v. The primitive CAS(R, e, v) checks
if the state of R is e and, if so, sets the state of R to v and returns true; otherwise, the state
remains unchanged and false is returned. A register is a base object that exports only the
Read and Write primitives.

Algorithms and executions

To implement a (high-level) object from a set of base objects, processes follow an algorithm A,
associating each process p with an deterministic automaton Ap. To avoid confusion between
the base objects and the implemented one, we reserve the term operation for the object being
implemented and we call primitives the operations on base objects. We say that an operation
is performed on a high-level object and that a primitive is applied to a base object.

Each process has a local state that consists of the values stored in its local variables
and a programme counter. A computation of the system proceeds in steps of an algorithm
performed by the processes. Each step is one of the following: (1) an invocation of a high-level
operation, (2) a primitive operation on a base object that returns a response and results in a
change of a process’s state, or (3) a response of a (high-level) operation. A configuration
specifies the state of each base object and the local state of each process at one moment. In
an initial configuration, all base objects have the initial values specified by the algorithm and
all processes are in their initial states.

A process is active if an operation has been invoked by the process but the operation has
not yet produced a matching response; otherwise the process is called idle. We assume that
an operation can only be invoked on an idle process and only active processes take steps. A
configuration is quiescent if every process is idle in it.

An execution fragment of an algorithm is a (possibly infinite) sequence C1, φ1, . . . , Ci, φi, . . .

of configurations alternating with steps, where each step is the application of a primitive
φi to configuration Ci resulting in configuration Ci+1. For any finite execution fragment α
ending with configuration C and any execution fragment α′ starting at C, the execution αα′
is the concatenation of α and α′; in this case α′ is called an extension of α. An execution is
an execution fragment starting from the initial configuration C0.

In an infinite execution, a process is correct if it takes an infinite number of steps or is
idle from some point on. Otherwise, the process is called crashed.

In a solo execution, only one process takes steps. An operation invoked by a process
in a given execution is completed if its invocation is followed by a matching response. An
operation invoked a process p in an execution E is uncontended if no process other than p is
active between its invocation and response steps. We also say that p executes its operation
in absence of interval contention.

Finally, we say that an operation executes in the absence of step contention if all the
steps of the operation are contiguous in the execution.

C. Capdevielle, C. Johnen, P. Kuznetsov, and A. Milani 12:5

Consensus

The consensus object exports one operation propose(v), where v is an input taken from some
domain V (|V | ≥ 2). The output values must satisfy the following properties:

Agreement: all output values are the same
Validity: Every output value is one of the input values.

Properties of algorithms

An algorithm is wait-free if in every execution, each correct process completes each of its
operation in a finite number of its own steps [12].

A wait-free algorithm is interval-solo-fast if, in absence of interval contention, a process
only applies Read and Write primitives. A wait-free algorithm is step-solo-fast [2] if a process
is allowed to apply only Reads and Writes in the absence of step contention, i.e.. when its
steps are not interleaved with the steps of another process.

An algorithm is input-oblivious if a process accesses the same sequence of base objects in
any solo execution of the algorithm, regardless of its input.

An algorithm A is anonymous if Ap does not depend on p, i.e., the algorithm programs
the processes identically, regardless of their identifiers.

In this paper we are concerned with two complexity metrics: space complexity, i.e., the
number of base objects an algorithm uses, and solo-write complexity, i.e., the maximal
number of writes performed in a solo execution of a single operation of an algorithm, taken
over all possible input values. Note that solo-write complexity is upper-bounded by the step
complexity of the algorithm, i.e., the number of base-object accesses a single operation may
perform.

3 Lower bounds for interval-solo-fast consensus

Consider any n-process anonymous implementation of interval-solo-fast consensus with a set
V of input values, |V | = m. In this section, we show that the implementation must have an ex-
ecution in which some propose operation, running solo, performs Ω(min(

√
n, logm/ log logm))

writes on distinct objects. Obviously, the implementation must use Ω(min(
√
n, logm/ log logm))

base objects.
We also show that in the special case when the algorithm is, additionally, input-oblivious

the lower bounds become Ω(
√
n).

Overview of the proof

By the way of contradiction, assume that there exists an interval-solo-fast anonymous
consensus algorithm A such that at most k distinct base objects are written in any solo
execution of A and k < min(

√
n,Γ−1(m)). Here Γ−1 is the inverse of the factorial function

Γ(m) = m!. Recall that Γ−1(m) = Θ(logm/ log logm).
We are going to establish a contradiction by showing that the algorithm has an execution

in which two different values are returned. In executions we are going to iteratively construct,
no process encounters interval contention and, thus, no process applies primitives other than
Reads and Writes.

Let C0 be the initial configuration of A. For each v ∈ V , let αv denote the execution
of A in which a process, starting from C0, invokes propose(u) and runs solo and until the
operation completes. Since the algorithm is anonymous, αv does not depend on the process
identifier.

OPODIS 2015

12:6 On the Uncontended Complexity of Anonymous Consensus

For a given v ∈ V , consider the sequence of base objects written in αv, ordered by
the times they are first written in αv. There are m possible values v (and, thus, possible
executions αv), and at most k! possible orders in which base objects can be written for the
first time in executions αv, v ∈ V .

Since k < Γ−1(m), we have k! < m and, thus, there must be two values v and w such
that the sequences of base objects written in αv and αw, in the order of the times they are
first written, are identical. (In an input-oblivious protocol, v and w can be any two distinct
values, regardless of the relation between m and k.) Let us denote this sequence of base
objects by r1, . . . , rk and fix it for the rest of the proof.

To construct the desired execution with different returned values and establish a contra-
diction, we assume that half of the processes propose v and the other half propose w. In
each iteration of the construction, we “wake up” a subset of the processes in each of the two
halves and let them run as clones, i.e., run them lock-step so that they ignore the presence
of each other, until they are about to write to a base object for the first time. On the way,
we carefully maintain the invariant that each previously written base object is covered by
“enough” processes in each of the two halves: a process p covers a base object r in a given
configuration C if p is about to write to r in C. Intuitively, these “covering” write operations,
once applied, ensure that one half of the processes will not be able to “notice” the presence
of the other half in an extended execution. As a result, in the subsequent iteration, we can
extend the execution in a way that “enough” processes in each of the two halves cannot
distinguish it from a solo run.

Using the assumption k <
√
n, we ensure that at the end of the kth iteration, we have

at least one process pi proposing v and at least one process pj proposing w, and both pi

and pj believe that they run solo. Moreover, in the resulting configuration Ck, each of the
k base objects r1, . . . , rk is covered by at least one process proposing v with the value last
written to it by pi and at least one process proposing w with the value last written to it by
pj . Therefore, we can extend Ck with a block write of the processes proposing v and then
let pi run until completion, without being able to distinguish the resulting execution from
αv. Thus, pi must eventually return v. But then we can extend the resulting execution with
a block write of the processes proposing wand let pj run until completion, without being
able to distinguish the current execution from αw. Thus, pj will have to return w, which
establishes the contradiction.

Notations and definitions

We now introduce some instrumental notions and definition.
Recall that αu denotes the complete solo execution of propose(u) from the initial con-

figuration C0. For u = v, w, 1 ≤ i ≤ k, let αi,u denote the longest prefix of αu which only
contains writes on base objects in {r1, . . . , ri}. Let α0,u denote the longest prefix of αu in
which no writes takes place. By the definition, αk,u = αu, and for all 0 ≤ i ≤ k − 1, the next
event of αu immediately after αi,u is a write on ri+1.

For j = 1, . . . , k, let xj,i,u denote the value of rj in the configuration right after αi,u.
Recall that for j = i + 1, . . . , k, no write on rj takes place in αi,u and, thus, xj,i,u is the
initial value of rj .

For i, j = 1, . . . , k and u = v, w, let Ij,i,u be a binary indicator that rj is written in αi,u

after the last event of αi−1,u. Note that Ii,i,u = 1 for all i = 1, . . . , k, and Ij,i,u = 0 for all
1 ≤ i < j ≤ k.

For example, consider the solo execution of a propose(u) operation depicted in Figure 1.
Here, I1,2,u is the binary indicator that r1 is written in α2,u after the last event of α1,u,

C. Capdevielle, C. Johnen, P. Kuznetsov, and A. Milani 12:7

C0

αu

First write to r1 First write to r2 First write to r3 First write to rk
…

α0,u

α1,u

α2,u

αk-1,u

δ

…

Figure 1 Solo execution of propose(u) by a process p, denoted αu.

C0

First write to ri+1 First write to ri+2 …

αi,u
αi+1,u

αl-1,u

First write to rl First write to rl+1

αl,u

β : no writes on rj

γ : some write on rj

Figure 2 Definition of sj,i,u: β contains `− i consecutive fragments in which rj is not written.

i.e., in the execution fragment δ. If there is a write on r1 in δ then I1,2,u = 1. Otherwise,
I1,2,u = 0.

For 1 ≤ i, j < k, we define sj,i,u as 1 plus the maximal number of consecutive prefixes
αt,u such that i < t < k and rj is not written in αt,u after the last event of αt−1,u, i.e.,
sj,i,u = min{` > i|` = k ∨ Ij,`,u = 1} − i.

Figure 2 depicts a fragment of the execution αu and graphically explains the notation
sj,i,u. In particular, for a given base object rj and a given prefix αi,u, we consider the
longest sequence of consecutive distinct fragments between the first write to rt up to (but not
including) the first write to rt+1, which contain no writes on rj , starting from t = i+ 1. This
sequence of fragments is denoted by β here. Then sj,i,u is simply the number of consecutive
fragments in β plus one, i.e., `− i in this case, as the fragment γ between the first write to
r` up to the first write to r`+1 contains a write to rj .

Clearly, sj,i,u ≥ 1 and sj,k−1,u = 1, for all i, j = 1, . . . , k− 1. Also, it is easy to check that∑k−1
i=1 Ij,i,usj,i,u = k − j for all j = 1, . . . , k − 1. Thus,

∑k−1
`=1

∑k−1
j=1 Ij,`,usj,`,u = (k2 − k)/2.

Cloning configurations.

We now introduce the central notion of our lower-bound proof:

I Definition 1. A configuration Ci is called i-cloning, 1 ≤ i ≤ k, if it satisfies the following
conditions:

For each u = v, w, j = 1, . . . , i− 1, rj is covered by sj,i−1,u processes writing xj,i−1,u.

OPODIS 2015

12:8 On the Uncontended Complexity of Anonymous Consensus

For each u = v, w, there are at least (k2 − k + 2)/2 −
∑i−1

`=1
∑i−1

j=1 Ij,`,usj,`,u processes
that do not distinguish the execution from αi−1,u and, thus, cover base object ri with
value xi,i,u.
Each base object in {ri, . . . , rk} stores the initial value.

I Lemma 2. Let A be any n-process m-valued interval-solo-fast anonymous consensus
algorithm. If at most k distinct base objects are written in any solo execution of A, where
k < min(

√
n,Γ−1(m)), then A has a k-cloning configuration.

Proof. By induction on k, we construct a k-cloning configuration starting from the initial
configuration C0 of A.

We divide the processes in two groups of size at most (k2 − k + 2)/2 where every process
in one group proposes value v and every process in the other group proposes value w. This
is possible, since k <

√
n.

Base case. Let γ be the concatenation of executions of A in which, starting at C0, a process
runs in isolation until it is about to write to base object r1 for the first time. Recall that r1
is the first base object written in both αv and αw, so no process can distinguish γ from its
solo execution and, thus, gamma is indeed an execution of A.

It is easy to see that, since no process writes in γ, C1 = C0γ is a 1-cloning configuration.
Indeed, half of the processes cannot distinguish C0γ from α0,v and the other half from α0,w,
and all base objects are in their initial states.

As an induction hypothesis, consider an i-cloning configuration Ci, for some 1 ≤ i < k.
For each u ∈ {v, w} we then perform the following procedure.
First for each j = 1, . . . , i − 1, we let one of the processes covering rj with xj,i−1,u

complete its write. By the induction hypothesis, there are at least sj,i−1,u ≥ 1 such processes.
Then we wake up (k2−k+2)/2−

∑i−1
j=1

∑i−1
`=1 Ij,`,usj,`,u processes that cannot distinguish

the execution from αi−1,u and run them lock-step (without noticing each other) until they
are about to perform their write on ri+1. No such process can distinguish the execution from
αi,u, and thus, we indeed obtain an execution of A. If αi,u contains a write on some rm,
m = 1, . . . , i, after the last event of αi−1,u, then sm,i,u of these processes are stopped just
before they perform the last write on rm in αi+1,u. This can be done because Im,i,u = 1 for
every such m and

∑i
`=1

∑i−1
j=1 Ij,`,usj,`,u ≤

∑k−1
`=1

∑i−1
j=1 Ij,`,usj,`,u = (k2 − k)/2 < n/2.

Let γ be the resulting extension of Ci and Ci+1 = Ciγ be the resulting configuration.
Notice that all base objects in {ri+1, . . . , rk} still store the initial value in Ci+1.

Now consider any j = 1, . . . , i and u = v, w. If rj is not written in αi+1,u, then, by the
induction hypothesis and the construction of γ, rj is covered by sj,i,u = sj,i−1,u− 1 processes
writing xj,i,u = xj,i−1,u. Otherwise, by construction, rj is covered by sj,i,u processes writing
xj,i,u.

Finally, for each u ∈ {v, w}, since
∑i

j=1 Ij,i,usj,i,u additional processes are used to cover
base objects r1, . . . , ri, at least (k2 − k + 2)/2−

∑i
`=1

∑i
j=1 Ij,`,usj,`,u remaining processes

cannot distinguish Ciγ from C0αi and, thus, these processes must cover ri+1.
Hence, Ci+1 is (i+ 1)-cloning, and, by induction, A has a k-cloning configuration. J

I Theorem 3. Any n-process m-valued interval-solo-fast anonymous consensus algorithm
must have space complexity Ω(min(

√
n, logm/ log logm)) and solo-write complexity

Ω(min(
√
n, logm/ log logm)). Moreover, if the algorithm is input-oblivious, then the bounds

become Ω(
√
n).

C. Capdevielle, C. Johnen, P. Kuznetsov, and A. Milani 12:9

Proof. Suppose, by contradiction, that an n-process m-valued interval-solo-fast anonymous
consensus algorithm uses k base objects such that n = k2 − k + 2 and k < Γ−1(m).

By Lemma 2, there exists a k-cloning configuration Ck for some input values v and w.
Note that in Ck, for each u ∈ {v, w}, every base object rj , j = 1, . . . , k, is covered by exactly
sj,k−1,u = 1 process writing value xj,k−1,u. Also, exactly n/2 −

∑k−1
`=1

∑k−1
j=1 Ij,`,usj,`,u =∑k−1

j=1 (k − j) = k(k − 1)/2 + 1 − k(k − 1)/2 = 1 process cannot distinguish the execution
from αk−1,u and, thus, this process must cover rk with xk,k,u.

Now we take u ∈ {v, w}, and let the single process covering rj , j = 1, . . . , k − 1 with
value xj,k−1,u perform its write. Then we let the single process proposing u and covering rk

run solo. Notice that the process cannot distinguish the execution from αk,u and, thus, it
should eventually terminate by outputting value u.

In the resulting execution two different input values v and w are decided, implying a
contradiction.

Thus, since Γ−1(m) = Θ(logm/ log logm), the algorithm has a solo execution in which
Ω(min(

√
n, logm/ log logm)) distinct base objects are written. Moreover, if the algorithm is

input-oblivious, then a k-cloning configuration exists for any two values u and w, and the
lower bounds become

√
n. J

I Remark 4. Lemma 2 shows that having at least k2−k+2 processes is sufficient to construct
a k-cloning configuration and, thus, establish a contradiction. The lower bound can be
refined to (k2 − k)/2 + 2 if we alternate the executions of processes proposing v with the
executions of processes proposing w in each iteration of the inductive construction of Ck.
Indeed, if processes proposing w were the last to execute in the construction of Ci, then
every base object rj , j = 1, . . . , i − 1 stores xj,i−1,w, so in the next iteration, we may run
processes proposing w first without the need to use the processes covering rj with xj,i−1,w.
This allows us to spare half of the covering processes, implying (k2 − k)/2 + 2 processes in
total, which makes k closer to the upper bound

√
2n we present in the next section. For the

sake of simplicity, we chose to show the rougher (but asymptotically equivalent) lower bound.

4 Optimal interval-solo-fast consensus

In this section we present an algorithm that implements an interval-solo-fast consensus. This
algorithm is similar to the splitter-based consensus algorithm in [17], except that we replace
the splitter object with the value-splitter object that we introduce in this paper.

Value-splitters

A splitter provides processes with a single operation split() that returns a boolean response,
so that (i) if a process runs solo, it must obtain true and (ii) true is returned to at most one
process. A value-splitter exports a single operation split(v) (v ∈ V , for some input domain
V) and relaxes property (ii) of splitters by allowing multiple processes to obtain true as long
as they have the same input value. More precisely:

I Definition 5. A value-splitter supports a single operation, split() taking a parameter in V
and returning a boolean response, and ensures that, for all v, v′ ∈ V , and in every execution:
1. VS-Agreement. If invocations split(v) and split(v′) return true, then v = v′.
2. VS-Solo execution. If a split(v) operation completes before any other split(v′) operation

is invoked, then it returns true.

OPODIS 2015

12:10 On the Uncontended Complexity of Anonymous Consensus

We use a value-splitter object to construct an anonymous consensus algorithm. The
algorithm incurs only a constant overhead with respect to the implementation of the value-
splitter it uses and is interval-solo-fast assuming that the underlying value-splitter is interval-
solo-fast.

Then we describe two anonymous interval-solo-fast implementations of a value-splitter.
The first one is input-oblivious and exhibits O(

√
n) solo-write and space complexity, regardless

of the number m of possible inputs. The second one exhibits complexities O(logm/ log logm),
regardless of the number of processes n. The two algorithms provide a matching upper bound
to our Ω(min(

√
n, logm/ log logm)) lower bound.

4.1 Consensus using value-splitter
The pseudocode of our consensus algorithm is given in Algorithm 1. The value decided by
the consensus is written in a variable D, initially ⊥ /∈ V . The first steps by a process p are to
check if D stores a non-⊥ value and if yes, return this value. Otherwise, the process accesses
the value-splitter object V S.

If it obtains true from its invocation of V S.split(v), p writes its input value v in a register
F . Then, it reads a register Z to check if some other process has detected contention and if
the value of Z is false (no contention) p decides its own value. Before returning the decided
value, process p writes it in D. The write primitives on F and D, with a read of Z in between
are intended to ensure that either process p detects that some other process is around and
resorts to applying a CAS primitive on D, or the contending process adopts the input value
of p.

If p obtains false from the value-splitter, it sets Z to true (contention is detected). Recall
that this may happen if more than one process accessed the value-splitter, regardless of their
input values. Then, p reads register F and, if F stores a non-⊥ value, adopts the value as its
current proposal. Finally, it applies the CAS primitive on D with its proposal and decides
the value read in D.

Notice that, assuming that the value-splitter is interval-solo-fast, a process running in
the absence of interval contention reaches a decision applying only reads and writes.

In the following we prove that Algorithm 1 indeed implements interval-solo-fast consensus,
assuming that V S is an interval-solo-fast implementation of a value-splitter. We show that
such implementations exist in the next subsection.

Proofs of Algorithm 1

I Lemma 6 (Agreement). No two processes return different values.

Proof. Given that only values written to D can be returned, it is sufficient to show that at
most one value can be written in D.

By the algorithm D is updated in lines 14 and 6. Note that, since a CAS succeeds in
updating the value of D in line 14 only if D stores ⊥ and, since D is updated with a non-⊥
value in V , at most one process may succeed. D is updated at line 6 only if the corresponding
process obtains true from the value-splitter. By the VS-Agreement property of value-splitters,
at most one distinct value can be written in D in line 6.

Thus, the only possibility for two different values to be written in D is when one process
, say p, applies a CAS in line 14 and updates D with a value v and another process writes
v′ 6= v in D in line 6.

Note that p must have obtained false from the value-splitter, otherwise it would try to
update D with value v. Thus, before applying CAS on D, p has read F in line 11. We

C. Capdevielle, C. Johnen, P. Kuznetsov, and A. Milani 12:11

Shared variables:
D, F , initially ⊥
Z, initially false
value-splitter V S

Procedure: propose(v)
1 if (t := Read(D)) 6= ⊥ then return t

2 ;
3 if VS.split(v) then
4 Write(F, v);
5 if ¬(Read(Z)) then
6 Write(D, v);
7 return v

8 end
9 else

10 Write(Z, true);
11 if (t := Read(F)) 6= ⊥ then v := t;
12 ;
13 end
14 CAS(D,⊥, v);
15 res := Read(D);
16 return res

Algorithm 1: Interval-solo-fast consensus

establish the contradiction by showing that p must have necessarily read v′ in F and adopt
it as its preferred value (line 11).

By the VS-Agreement property of value-splitters, at most one non-⊥ value can be found
in F . Thus, since q has written v′ to F in line 4, the only possible case is that p reads F
before any other process writes to it. But then p has previously set the “contention flag” Z
to true in line 10. Therefore, after q writes v′ in F it must find Z set to true (“contention is
detected”) and resort to CAS instead of writing in D in line 6—a contradiction. J

I Lemma 7 (Interval-solo-fast). Any operation that runs in the absence of interval contention
applies only reads and writes.

Proof. If a process p invokes its propose operation and finds a non-⊥ value in D, then p

returns after having applied a single read on D, so the claim follows.
Otherwise, suppose that p initially finds D = ⊥ and applies the CAS primitive (line 14).

We show that there is an operation that overlaps with the propose of p.
By inspecting the pseudo-code, it is easy to see that p applies the CAS primitive only if

(1) it has read Z = true (line 5) or (2) it has obtained false from V S. In both cases, by the
VS-Solo Execution property, there must be another process q that has invoked V S.split(v)
before p has completed its Propose operation.

By the algorithm, before completing its operation, q writes its decided (non-⊥) value
in D. Given that p has initially found ⊥ in D, we deduce that the operation of q has not
completed before the operation of p has started.

Thus, the two operations overlap. The assumption that the value-splitter is interval-
solo-fast and the fact the algorithm contains no loops or waiting statements, implies the
claim. J

Finally, we use Lemmata 6 and 7 to prove:

OPODIS 2015

12:12 On the Uncontended Complexity of Anonymous Consensus

I Theorem 8. If V S is an interval-solo-fast implementation of a value-splitter, then Al-
gorithm 1 implements interval-solo-fast consensus with space complexity O(k) and solo-write
complexity O(s), where k is the space complexity and s is the solo-write complexity of V S.

The complexity claims follow directly from the pseudo-code.

4.2 Interval-solo-fast value-splitter implementations
Input-oblivious value-splitter

Algoritm 2 describes our anonymous and input-oblivious implementation of a value-splitter.
The algorithm only uses an array R of k registers where k2 − 3k + 6 > 2n and is, trivially,
interval-solo-fast. Thus, by Theorem 3, the space complexity of the algorithm is asymptotically
optimal.

In the algorithm, a process p performing operation split(v) tries to write its input value
to registers R[0], . . . , R[k − 1]. Each time, before writing to R[i], p reads i+ 1 registers to
verify that R[0], . . . , R[i− 1] store v and R[i] stores the initial value ⊥. If this is not the case,
contention is detected and the operation returns false. After the last write to R[k − 1], the
operation returns true. Note that several processes proposing the same value and executing
lock-step may return true.

Shared variables:
Array of registers R[0 . . . k − 1] with k2 − 3k + 6 > 2n. Initially ⊥
Procedure: split(v)

1 Lastwritten := −1;
2 while (Lastwritten ≤ k − 1) do
3 i := 0;
4 while (i ≤ Lastwritten) do
5 if Read(R[i]) 6= v then return false

6 ;
7 i+ +;
8 end
9 if Read(R[Lastwritten + 1]) 6= ⊥ then return false;

10 ;
11 Lastwritten + +;
12 Write(R[Lastwritten], v);
13 end
14 return true;
15 B

Algorithm 2: Anonymous and input-oblivious value-splitter

Note also that the solo-write complexity of Algorithm 2 is k = O(
√
n). Since, for i = 1

to k, in the ith iteration, a process reads i registers, the algorithm also has optimal step
complexity of O(n) [1].

The following lemma will be instrumental in showing that Algorithm 2 satisfies the
VS-Agreement property.

I Lemma 9. If an execution E, two processes p and q write in R[i] and R[i+ 1] for some
0 < i < k − 1, two different values v and w, then there is a set Pi of at least i processes
(different from p and q) and the following conditions are satisfied: (1) at the configuration
that immediately succeeds the last write operation executed by processes in Pi, R[i+ 1] = ⊥;
(2) E passes through a configuration C such that R[i] 6= ⊥ in C and each process in Pi

executes exactly one write operation after C.

C. Capdevielle, C. Johnen, P. Kuznetsov, and A. Milani 12:13

time line

q reads w from R[j]p reads v from R[j]p writes v into R[i]

p
j
 writes w into R[j]

C'

Between the two read operations p
j
 has written

C' is the first configuration that follows the read R[i+1]=? by p and q : R[i+1]=?

p writes in R[i] before reads in R[j] : R[i]≠?

Figure 3 Execution for Lemma 9, assuming that p reads R[j] before q.

Proof. Fix an i such that 0 < i < k − 1 and let p and q be two processes that write,
respectively, values v and w in both R[i] and R[i+ 1], where v 6= w.

By the pseudocode of Algorithm 2, before writing in R[i+1], a process reads R[0], R[1], . . . ,
R[i+ 1], and the value it reads from R[j] is its input value for 0 ≤ j ≤ i and the initial value
for j = i+ 1.

Consider the sequences of read operations executed by p and q, respectively, after their
write in R[i] and before writing in R[i+ 1]. Let C ′ be the configuration immediately after
both p and q perform their reads of R[i+ 1] that return ⊥ in E. By the algorithm, writes in
R[i+ 1] by both p and q follow C ′ in E.

Also, since for each j = 0, . . . , i − 1 p reads v in R[j] and q reads w in R[j], there is a
process pj that has written in R[j] between these two read operations. We show that this
is the last write of pj . Indeed, before performing the next write (on R[j + 1]), pj reads
all registers and in particular it will read R[i], where i > j. Since the write by pj follows
the read on R[j] either by process p or by process q, it follows the write into R[i] by the
corresponding process. Thus, in the configuration immediately before the write into R[j] by
pj we have R[i] 6= ⊥. The check in line 9 implies that pj cannot write to any register after
R[j]. Note that pj must be different from p and q: otherwise, we contradict the fact that
both p and q write in R[i], i > j.

Finally, since the last write operation of pj preceeds configuration C ′, at the configuration
immediately after this write R[i+ 1] stores the initial value. This is illustrated in Figure 3
for the case when p reads R[j] before q. Moreover, for each j, ` ∈ {0, 1, . . . i− 1} with j 6= `,
pj 6= pl. Thus, the set Pi of i processes pj , j = 1, . . . , i− 1, satisfies the two conditions of the
lemma. J

I Lemma 10 (VS-Agreement). If invocations split(v) and split(v′) return true, then v = v′.

Proof. Suppose, by contradiction, that split(v) invoked by process p and split(w) invoked by
process q both return true with v 6= w. Recall that a process has to write its input value in
all the registers to return true. Then for each 0 ≤ i ≤ k − 1, p and q have written in register
R[i] the value v and w respectively. For each i = 1, . . . k − 2, let Pi be the i processes, as
defined in Lemma 9.

Consider any two set Pi, Pj , 0 < i < j < k − 1. We show that Pi ∩ Pj = ∅. Indeed, by
the definition of Pi, in the configuration when the processes in Pi have completed all their
writes, R[i + 1] stores ⊥ and, by the algorithm, since j > i, R[j] also stores ⊥. But, by
the definition of Pj , each process in Pj has executed a write operation after a configuration
where R[j] 6= ⊥. Thus, Pi and Pj are disjoint.

OPODIS 2015

12:14 On the Uncontended Complexity of Anonymous Consensus

Recall p and q write to R[k − 1] and, thus, do not belong to ∪k−2
i=1 Pi. Hence, we have at

least 2 +
∑k−2

i=1 i = 2 + k2−3k+2
2 processes in total, which contradicts the hypothesis that

k2 − 3k + 6 > 2n. J

I Theorem 11. Algorithm 2 is an interval-solo-fast anonymous input-oblivious implementa-
tion of a value-splitter with solo-write and space complexities in O(

√
n).

Proof. Since only read-write registers are used, the algorithm is trivially interval-solo-fast.
By Lemma 10, the algorithm satisfies the VS-Agreement property. We prove in the

following that the VS-Solo execution property is also satisfied. Consider any solo execution E
in which a split(v) by a process p completes and suppose, by contradiction, that the operation
returns false. By inspecting the pseudocode, it is easy to see that the value of Lastwritten
is equal to the index of the last register p wrote or to −1 if no such writes exists. To return
false p has either read a value different from its input (line 5) or a value different from ⊥
in a register p has not yet written (line 9). But this contradicts the fact that E is a solo
execution. Thus, the algorithm satisfies the Solo-Execution property of value-splitters. J

Non-input-oblivious value-splitter

For completeness, we briefly describe an anonymous value-splitter algorithm based on earlier
work [1] that exhibits O(logm/ log logm) complexity.

A trivial adaptation of the weak conflict-detector proposed in [1] implements an
interval-solo-fast value-splitter. A weak conflict-detector exports a single operation check(v)
with an input v and return true (conflict is detected) or false (no conflict is detected). If no
two operations are invoked with different inputs, then no operation returns true, otherwise,
at least one operation returns false.

Our value-splitter implementation presented in Algorithm 3 is obtained by the weak
conflict-detector algorithm in [1], where the output is determined as the negation of the
outcome of the weak conflict-detector.

Shared variables:
Registers R[1..k], initially ⊥
Procedure: split(v)

1 for i := 1..k do
2 t := Read(R[πv(i)]);
3 if t = ⊥ then Write(R[πv(i)], v);
4 ;
5 if t 6= v then return false;
6 ;
7 end
8 return true;

Algorithm 3: Non-input-oblivious value-splitter

The algorithm uses an array R of k registers, where k! = m. Each input value v of a split
operation determines a unique permutation πv of the registers in R that is used as the order
in which the processes access the registers. Therefore, the algorithm is not input-oblivious.
In its i-th access, a process executing split(v) first reads register R[πv(i)]; if ⊥ is read, the
process writes v to it; If a value v′ 6= v is read, it returns false (contention is detected). If the
process succeeds in writing v in all registers prescribed by πv, it returns true. The algorithm
is also trivially anonymous and interval-solo-fast.

C. Capdevielle, C. Johnen, P. Kuznetsov, and A. Milani 12:15

I Theorem 12. Algorithm 3 implements anonymous interval-solo-fast m-valued value-splitter
with solo-write and space complexity in O(logm/ log logm).

Proof. If an operation split(v) runs solo, then no value other than v can be found in any
R[πv(i)] (line 2). Thus the VS-Solo Execution property is ensured.

Suppose, by contradiction, that two operations, split(v), performed by pv, and split(v′),
performed by pv′ , return true. Let j, ` be two indexes in {1, . . . , k} such that j appears
before ` in πv but ` appears before j in πv′ . By the algorithm, before returning true, pv and
pv′ have read, respectively, v and v′ in both R[j] and R[`].

Without loss of generality, let v be written to R[j] before v′ is written to R[`]. By the
algorithm, before any process performing split(v′) reads R[j] in line 2 (and, thus, writes v′
to R[j] in line 4), v′ has been written to R[`], and, by the assumption, v has been written to
R[j]. Hence, the process will not find ⊥ in R[j] and will not write to R[`]—a contradiction.
Therefore, the algorithm satisfies the VS-Agreement property.

Since every operation performs k writes and k reads, where k! = m, the step and space
complexities of the algorithm are O(logm/ log logm). J

5 Concluding remarks

In this paper, we present matching lower and upper bounds Θ(min(
√
n, logm/ log logm))

on the space and solo-write complexity of anonymous interval-solo-fast consensus, which
appears to be one of the first non-trivial tight bound for consensus, along with a concurrent
result on the space complexity of solo-terminating anonymous consensus [8]. Given that
non-anonymous interval-solo-fast algorithms can be achieved with only constant space and
step complexities [17], our results exhibits a complexity gap between anonymous and non-
anonymous consensus. The proof of our lower bound is based on constructing executions in
which no process is aware of interval contention and, thus, the lower bounds also apply to
abortable [2, 11] consensus algorithms, where operations are allowed to return a specific abort
response when interval contention is detected, and be-reinvoked later. An interesting open
question is whether a matching abortable consensus algorithm can be found.

References
1 James Aspnes and Faith Ellen. Tight bounds for adopt-commit objects. Theory of Com-

puting Systems, 55(3):451–474, 2014. doi:10.1007/s00224-013-9448-1.
2 Hagit Attiya, Rachid Guerraoui, Danny Hendler, and Petr Kuznetsov. The complexity of

obstruction-free implementations. J. ACM, 56(4), 2009.
3 Zohir Bouzid, Pierre Sutra, and Corentin Travers. Anonymous agreement: The janus

algorithm. In Principles of Distributed Systems – 15th International Conference, OPODIS
2011, Toulouse, France, December 13-16, 2011. Proceedings, pages 175–190, 2011. doi:
10.1007/978-3-642-25873-2_13.

4 Harry Buhrman, Juan A. Garay, Jaap-Henki Hoepman, and Mark Moir. Long-lived renam-
ing made fast. In Proceedings of the Fourteenth Annual ACM Symposium on Principles of
Distributed Computing, PODC’95, pages 194–203, 1995.

5 Claire Capdevielle, Colette Johnen, Petr Kuznetsov, and Alessia Milani. Brief Announce-
ment: On the Uncontended Complexity of Anonymous Consensus. In DISC, October 2015.

6 Faith Fich, Maurice Herlihy, and Nir Shavit. On the space complexity of randomized
synchronization. J. ACM, 45(5):843–862, September 1998.

7 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, April 1985.

OPODIS 2015

http://dx.doi.org/10.1007/s00224-013-9448-1
http://dx.doi.org/10.1007/978-3-642-25873-2_13
http://dx.doi.org/10.1007/978-3-642-25873-2_13

12:16 On the Uncontended Complexity of Anonymous Consensus

8 Rati Gelashvili. On the Optimal Space Complexity of Consensus for Anonymous Processes.
In DISC, October 2015.

9 George Giakkoupis, Maryam Helmi, Lisa Higham, and Philipp Woelfel. An o(sqrt n) space
bound for obstruction-free leader election. In Distributed Computing – 27th International
Symposium, DISC 2013, Jerusalem, Israel, October 14-18, 2013. Proceedings, pages 46–60,
2013. doi:10.1007/978-3-642-41527-2_4.

10 Rachid Guerraoui and Eric Ruppert. Anonymous and fault-tolerant shared-memory com-
puting. Distributed Computing, 20(3):165–177, 2007. doi:10.1007/s00446-007-0042-0.

11 Vassos Hadzilacos and Sam Toueg. On deterministic abortable objects. In Proceedings of
the 2013 ACM Symposium on Principles of Distributed Computing, PODC’13, pages 4–12,
New York, NY, USA, 2013. ACM. doi:10.1145/2484239.2484241.

12 Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13(1):123–149, January 1991.

13 Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchronization:
Double-ended queues as an example. In ICDCS, pages 522–529, 2003.

14 Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

15 Leslie Lamport. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst., 5(1):1–11,
January 1987.

16 M.C. Loui and H.H. Abu-Amara. Memory requirements for agreement among unreliable
asynchronous processes. Advances in Computing Research, 4:163–183, 1987.

17 Victor Luchangco, Mark Moir, and Nir Shavit. On the uncontended complexity of con-
sensus. In FaithEllen Fich, editor, Distributed Computing, volume 2848 of Lecture Notes
in Computer Science, pages 45–59. Springer Berlin Heidelberg, 2003. doi:10.1007/
978-3-540-39989-6_4.

18 Mark Moir and James H. Anderson. Wait-free algorithms for fast, long-lived renaming. Sci.
Comput. Program., 25(1):1–39, October 1995. doi:10.1016/0167-6423(95)00009-H.

http://dx.doi.org/10.1007/978-3-642-41527-2_4
http://dx.doi.org/10.1007/s00446-007-0042-0
http://dx.doi.org/10.1145/2484239.2484241
http://dx.doi.org/10.1007/978-3-540-39989-6_4
http://dx.doi.org/10.1007/978-3-540-39989-6_4
http://dx.doi.org/10.1016/0167-6423(95)00009-H

The Relative Power of Composite Loop
Agreement Tasks∗

Vikram Saraph1 and Maurice Herlihy2

1 Department of Computer Science, Brown University, Providence, USA
vsaraph@cs.brown.edu

2 Department of Computer Science, Brown University, Providence, USA
mph@cs.brown.edu

Abstract
Loop agreement is a family of distributed tasks that includes set agreement and simplex agree-
ment, and was used to prove the undecidability of wait-free solvability of distributed tasks by
read/write memory. Herlihy and Rajsbaum defined the algebraic signature of a loop agreement
task, which consists of a group and a distinguished element. They used the algebraic signature
to characterize the relative power of loop agreement tasks. In particular, they showed that one
task implements another exactly when there is a homomorphism between their respective signa-
tures sending one loop to the other. In this paper, we extend the previous result by defining
the composition of multiple loop agreement tasks to create a new one with the same combined
power. We generalize the original algebraic characterization for relative power to compositions
of tasks. In this way, we can think of loop agreement tasks in terms of their basic building blocks.
We also investigate a category-theoretic perspective of loop agreement by defining a category of
loops, showing that the algebraic signature is a functor, and proving that our definition of task
composition is the “correct” one, in a categorical sense.

1998 ACM Subject Classification F.1.2 [Modes of Computation] Parallelism and Concurrency

Keywords and phrases Distributed computing, loop agreement, task composition, topology

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.13

1 Introduction

Characterizing the relative power of synchronization primitives is one of the fundamental
questions in distributed computing. It lies at the heart of processor instruction set architec-
tures (is it better to provide compare-and-swap or test-and-set?), middleware frameworks
(message-passing or atomic broadcast?), and similar design problems. Given two synchron-
ization primitives, we can ask whether one is more powerful than the other, or whether
their composition is more powerful then either individually. Such questions often arise for
subconsensus tasks [12], synchronization primitives that have no wait-free implementations
using read-write memory, but that are not strong enough to solve consensus. Although some
partial results are known, for example, that renaming is strictly weaker than set agreement [5],
no general technique is known for evaluating the computational power of compositions of
subconsensus primitives.

In this paper, we report some progress in understanding the power of composition for an
important family of subconsensus tasks: the loop agreement tasks [8]. We define a natural

∗ Supported by NSF grant 1301924.

© Vikram Saraph and Maurice Herlihy;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 13; pp. 13:1–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 The Relative Power of Composite Loop Agreement Tasks

Inputs

Outputs

Inputs

Outputs

Inputs

Outputs

Figure 1 Loop Agreement.

notion of composition for these tasks, characterize the composition’s computational power
in terms of algebraic structures, and show that there is a non-obvious but natural sense in
which loop agreement tasks can be considered to be closed under composition.

A task is a distributed problem in which each process begins with an input, communicates
with others, and returns an output according to the task’s specification. Common examples
of tasks include consensus [3], set agreement [2], and renaming [1]. Protocols are distributed
programs that solve tasks. A protocol is wait-free if every non-faulty process running
the protocol eventually finishes execution, regardless of other process failures. One task
implements another if a protocol for the first task can be modified in a simple way to solve
the second task. In this paper, we will assume we are given “black box” implementations of
certain tasks which we will use to construct protocols for other tasks.

Loop agreement [8] is a family of tasks that requires processes to rendezvous along a loop
in a given space. As illustrated in Fig. 1, we are given a topological space, a loop in that
space, and three distinguished points on the loop. Very informally, each participating process
starts on one of these distinguished points. If all processes start on the same point, they all
halt on that point (Fig. 1a). If they all start on two distinct distinguished points„ then they
converge to “nearby” points along the path linking their starting points (Fig. 1b). Finally, if
they start on all three distinguished points, then they converge to “nearby” points anywhere
in the space (Fig. 1c).

Each loop agreement task has an algebraic signature [9] given by a group G and an
element g ∈ G. If tasks T1 and T2 have signatures (G1, g1) and (G2, g2), respectively, then
T1 implements T2 exactly when there is a group homomorphism φ : G1 → G2 mapping g1 to
g2, so the operational problem of loop agreement tasks implementing one another is reduced
to an algebraic characterization.

In this paper, we define a notion of composition for loop agreement tasks and characterize
how such compositions can implement other loop agreement tasks. Roughly speaking, the
composition of n loop agreement tasks is a task in which each process solves each of the n
tasks in parallel. We show that tasks {Ti} with signatures {(Gi, gi)} solve T with signature
(G, g) if and only if there is a homomorphism φ : G1×· · ·×Gn → G mapping (g1, . . . , gn) to g.
We also provide a means of replacing the loop agreement tasks {Ti} with an equivalent task∏
Ti, called the composition of the {Ti}. This composition of tasks is also a loop agreement

task, and has relative power equivalent to that of all the {Ti}. That is, we can construct a
protocol for

∏
Ti given “black box” implementations of each of the Ti, and vice-versa: we

can construct a protocol for any of the Ti from
∏
Ti.

Finally, we can use elementary category theory to provide evidence that we have the
“correct” notion of task composition. We define a category of loop agreement tasks, Loop,
and show that the map assigning tasks to algebraic signatures is a functor into the category
of pointed groups, pGrp. We also show that composition of loop agreement tasks is the
categorical product in Loop, which strongly suggests that composition of tasks as defined in
this paper is a natural way to capture the operational notion of parallel composition.

V. Saraph and M. Herlihy 13:3

2 Related Work

Herlihy and Shavit [10, 11] introduced the use of algebraic and combinatorial topology to
prove impossibility results. Gafni and Koutsoupias [4] were the first to use the fundamental
group to show the undecidability of wait-free solvability of certain tasks. Herlihy and
Rajsbaum [8, 9] extended the undecidability results to other models, introducing the family
of loop agreement tasks and their algebraic signatures.

Loop agreement has been generalized to higher dimensions. Liu, Xu, and Pan [16]
define n-rendezvous tasks, where processes begin on distinguished vertices of an embedded
(n − 1)-sphere of an n-dimensional complex, and converge on a simplex of the embedded
sphere. They generalize the algebraic signature characterization to a subclass of rendezvous
tasks called nice rendezvous tasks, which are tasks whose output complexes have trivial
homology groups below and above dimension n, and a free Abelian n-th homology group.
The authors apply their main result to show there are countably infinitely many inequivalent
nice rendezvous tasks.

Liu, Pu, and Pan [15] explore a lower-dimensional variant of loop agreement called
degenerate loop agreement, which unlike loop agreement includes binary consensus. Processes
begin on a 1-dimensional complex, or a graph, and must converge to one of two possible
starting locations in the graph. The authors prove that there are only two inequivalent tasks
degenerate tasks: the trivial task and binary consensus.

3 Background

In the first subsection, we describe the mathematical model used for distributed tasks, of
which more details can be found in Herlihy, Kozlov, and Rajsbaum [7]. In the second
subsection, we summarize important definitions and results from algebraic topology.

3.1 Distributed Computing
Formally, a (colorless) task is a triple (I,O,Γ), where objects I and O, called the input and
output complexes of the task, are mathematical structures known as simplicial complexes.
A simplicial complex on a set V is a collection of subsets C of V such that C is downward
closed under the subset relation. Complexes can be thought of as higher-dimensional graphs
where “edges” may “connect” more than two vertices. In the context of tasks, vertices of
I represent process input values, while simplexes of I represent valid input combinations.
Likewise, vertices of O represent process output (or decision) values, and simplexes represent
valid output combinations. Relating I and O is the map Γ : I → 2O, which is called the
task’s specification map, and carries simplexes of I to subcomplexes of O in a monotonic
way1. The map Γ associates each input combination with a set of legal output combinations.

Protocols are objects that solve tasks, and are also modeled by triples (I,P,Ξ). As with
tasks, I is the protocol’s input complex. The object P is also a simplicial complex, which
is called the protocol complex, and is similar to a task’s output complex, but has a slightly
different meaning. Rather than a final decision value, a vertex in P represents a process’s
uninterpreted state (or view) after running the protocol. The map Ξ : I → 2P , called the
execution map, is monotonic, and represents the possible states in which processes may result
after running the protocol.

1 In general, if A and B are simplicial complexes, then a function Φ : A → 2B is called a carrier map if
for each σ ⊆ τ ∈ A, Φ(σ) is a simplicial complex, and Φ(σ) ⊆ Φ(τ) (or Φ is monotonic).

OPODIS 2015

13:4 The Relative Power of Composite Loop Agreement Tasks

A simplicial map δ : I → O between two complexes is a vertex map that sends simplexes
to simplexes; that is, δ(σ) ∈ O for each σ ∈ I. A protocol (I,P,Ξ) solves (I,O,Γ) if there
exists a simplicial map δ : O → P , called a decision map, that respects the task specification
Γ. Formally, δ respects Γ if for each simplex σ ∈ I, we have (δ ◦ Ξ)(σ) ⊆ Γ(σ).

Some tasks are inherently harder than others, and sometimes we can transform a protocol
for one task into a protocol for another. We say task T1 implements T2 if we can use
the output complex of T1 (or a subdivision of it) as a protocol complex for solving T2.
Mathematically speaking, if T1 = (I,O1,Γ1) and T2 = (I,O2,Γ2), then T1 implements T2
if there exists a natural number N and a simplicial map φ : BaryN (O1) → O2 such that
(φ ◦ BaryN ◦ Γ1)(σ) ⊆ Γ2(σ) for each σ ∈ I. The barycentric subdivision operator Bary is a
topological operator (see the next section) that models read/write memory. Two tasks are
equivalent if they implement each other.

3.2 Algebraic Topology
Before we can define loop agreement, we must briefly introduce the relevant machinery from
algebraic topology. We assume a basic understanding of point-set topology. The algebraic
topology used is at the undergraduate level, of which a formal treatment can be found in
Hatcher [6]. We begin with the formal definition of a simplicial complex.

3.2.1 Simplicial Complexes
I Definition 1. Let V be any set, whose elements are called vertices. A simplicial complex
(over V) is a set of subsets C of V such that for each set τ ∈ C, if σ ⊆ τ , then σ ∈ C. That is,
C is downward closed under taking subsets. Elements of C are called simplexes.

We can think of simplicial complexes as a generalization of graphs, where simplexes may
be incident to more than two vertices. Graphs are then precisely the simplicial complexes
whose simplexes contain at most two vertices. Nontrivial graphs have dimension 1, and in
general, the dimension of a complex C is n − 1, where n is the size of the largest simplex
in C. The dimension of a simplex σ is simply |σ| − 1. The standard n-simplex, ∆n, is the
simplicial complex on n+ 1 vertices containing all possible simplexes. By convention, we will
use {0, . . . , n} for the vertex set of ∆n.

A subcomplex of C is a subset B ⊆ C that is also a simplicial complex. For each non-
negative integer k, the k-skeleton of C, denoted skelk(C), is the subcomplex of C containing
all simplexes of dimension at most k.

So far, simplicial complexes are purely combinatorial, but they can also be realized as
topological spaces. Notationally, if C is a complex, then its geometric realization is denoted
by |C|. As previously mentioned, the barycentric subdivision is an operator that models
read/write memory, and is better understood geometrically than combinatorially. Given
a geometric simplicial complex |C|, we can create another geometric simplicial complex by
adding new vertices to the barycenter of each simplex, and adding new simplexes accordingly.
This gives rise to an abstract simplicial complex, denoted Bary(C). Notice that the barycentric
subdivision does not change the geometry of the original complex; that is, |Bary(C)| = |C|.

The barycentric subdivision is an important tool in approximating continuous functions
with simplicial maps. If f : |A| → |B| is a continuous function between complexes, then a
simplicial map φ : A → B is called a simplicial approximation of f if for every p ∈ |A|, |φ|(p)
is contained in the smallest simplex containing f(p). Using the barycentric subdivision, we
can construct a simplicial approximation of any continuous function, as stated below.

V. Saraph and M. Herlihy 13:5

I Fact 2 (Simplicial Approximation). Let f : |A| → |B| be a continuous function between
simplicial complexes. Then there exists an N ∈ N and a simplicial map φ : BaryN (A)→ B
that is a simplicial approximation of f .

We can take products of simplicial complexes. The product of two complexes is another
complex that combines the structures of the original two.

I Definition 3. Let C1 and C2 be simplicial complexes, and let V (C1) and V (C2) be their
vertex sets, respectively. Then the (categorical) product of simplicial complexes is a complex
C1 × C2 with vertex set V (C1)× V (C2). A subset σ of V (C1)× V (C2) is a simplex in C1 × C2
if and only if ρ1(σ) and ρ2(σ) are simplexes in C1 and C2, where ρ1 and ρ2 are projections
onto the first and second coordinates, respectively.

Intuitively, the product of complexes is a way of combining two complexes in the “best
possible way,” and operationally, the product captures all possible combinations of process
views if two tasks are solved in parallel. It is an important technical point that the product
of complexes and product of topological spaces are not the same; it is not true that |A| × |B|
and |A × B| are homeomorphic2. They are, however, “homotopy equivalent,” which is a type
of equivalence described in the next section.

To each topological space we can assign an invariant called the fundamental group, a
basic construct taken from algebraic topology. The fundamental group is used to define the
algebraic signature of a loop agreement task.

3.2.2 Homotopy and the Fundamental Group
Given a topological space X and a base point x0 ∈ X, a loop in X based at x0 is a continuous
function λ : [0, 1] → X such that λ(0) = λ(1) = x0. Two loops λ1 and λ2 based at x0 are
(loop) homotopic if one loop can be continuously deformed to the other. More precisely,
λ1 and λ2 are homotopic if there is a continuous function H : [0, 1]× [0, 1]→ X such that
H(0,−) = λ1, H(1,−) = λ2, and H(−, 0) = H(−, 1) = x0. Homotopy is an equivalence
relation. We write [λ] to denote the equivalence class of all loops homotopic to λ.

Let α : [0, 1]→ X and β : [0, 1]→ X be two loops based at x0. Then we can concatenate
α and β to get another loop, α · β, defined by traversing α, returning to x0, and then
traversing β. The loop α · β : [0, 1]→ X, also based at x0, is defined as

(α · β)(t) =
{
α(2t) for 0 ≤ t ≤ 1

2
β(2t− 1) for 1

2 ≤ t ≤ 1

Concatenation behaves well with homotopy. If α and β are homotopic to α′ and β′,
respectively, then [α · β] = [α′ · β′]. From this it follows that concatenation is associative
on classes of loops based at x0. In fact, concatenation is a group operation on classes of
loops based at x0, with the inverse computed by traversing a loop in the opposite direction,
and the identity element being the class of all loops homotopic to the constant loop at x0.
Formally, the inverse of [α] is the class of the loop α−1(t) = α(1 − t), and the class [e] of
loop e(t) = x0 serves as the identity.

I Definition 4. Let X be a topological space, and let x0 ∈ X be a base point. Then the
fundamental group of X at x0, denoted π1(X,x0), is the set of all loop homotopy classes with

2 For example, |∆1|× |∆1| is homeomorphic to a square, but |∆1×∆1| is homeomorphic to a tetrahedron.

OPODIS 2015

13:6 The Relative Power of Composite Loop Agreement Tasks

concatenation as its group operation. If X is path-connected, then π1(X,x0) is independent
of x0, and we simply write π1(X).

If f : (X,x0) → (Y, y0) is a base point-preserving continuous function, then π1 also
induces a group homomorphism f∗ : π1(X,x0)→ π1(Y, y0) called the induced homomorphism,
defined by f∗([λ]) = [f ◦ λ].

Henceforth, we assume all topological spaces and simplicial complexes under consideration
are path-connected. For brevity, if C is a complex, we write π1(C) instead of π1(|C|). An
important property of the fundamental group is how it behaves with the product of topological
spaces.

I Fact 5. Let X and Y be topological spaces. Then π1(X × Y) ∼= π1(X)× π1(Y).

Homotopy is defined for loops, but it is more generally defined for continuous functions.
Two continuous functions f, g : X → Y are homotopic if there is a continuous H : X× [0, 1]→
Y such that H(−, 0) = f and H(−, 1) = g. We write f ' g if this is the case. If in addition
X ⊆ Y and H fixes X, then H is called a deformation retraction and we say Y deformation
retracts onto X. If δ is a simplicial approximation of a continuous function h, then it is
known that |δ| ' h.

Using homotopy, we can define a weak equivalence between topological spaces called
homotopy equivalence.

I Definition 6. Let X and Y be topological spaces. Then X and Y are homotopy equivalent,
or X ' Y , if there are continuous functions f : X → Y and g : Y → X such that g ◦ f ' idX
and f ◦ g ' idY . The maps f and g are called homotopy equivalences and are homotopy
inverses of one another.

Homeomorphic spaces are clearly homotopy equivalent. Homotopy equivalent spaces have
the same fundamental group.

I Fact 7. Let X and Y be topological spaces. If X ' Y , then π1(X) ∼= π1(Y).

The next few facts are specifically about simplicial complexes. Recall that given two
simplicial complexes A and B, |A| × |B| and |A×B| are not topologically equivalent, though
they are homotopy equivalent. See Kozlov’s book on combinatorial algebraic topology for a
detailed proof of this result [13].

I Fact 8. Let A and B be simplicial complexes. Then |A| × |B| ' |A × B|.

It follows that |A| × |B| and |A × B| have the same fundamental group. This will allow
us to pass between the categorical product of A and B and the topological product of |A|
and |B|.

I Fact 9. Let C be a complex. Then the inclusion ι : skel2(C)→ C induces an isomorphism
on fundamental groups.

This fact can be derived from the following, more general result, which can be found
in Hatcher [6]. We call a continuous function g : |A| → |B| cellular if g maps skeletons to
skeletons, or more precisely, if g(|skeln(A)|) ⊆ |skeln(B)| for every n. Then every continuous
f : |A| → |B| is homotopic to such a map g, as seen below.

I Fact 10 (Cellular Approximation). Let f : |A| → |B| be a continuous function between
simplicial complexes A and B. Then f is homotopic to a cellular function g : |A| → |B|.
Furthermore, if C ⊆ A is a subcomplex such that f is already cellular on |C|, then we may
require the homotopy between f and g to fix |C|.

V. Saraph and M. Herlihy 13:7

Now suppose we have a homotopy on a subcomplex and we want to extend it to the
entire simplicial complex. The next fact, also found in Hatcher [6], allows us to do this.

I Fact 11 (Homotopy Extension). Let C ⊆ A and B be simplicial complexes, and let F :
|A| → |B| be a continuous function. Suppose we have a homotopy H : |C| × [0, 1]→ |B| such
that H(−, 0) = F ||C|. Then there is a homotopy extending H to all of |A|, respecting F . That
is, we can find homotopy H ′ : |A| × [0, 1]→ |B| such that H ′||C|×[0,1] = H and H ′(−, 0) = F .

3.3 Loop Agreement
We need a few more definitions before introducing loop agreement tasks.

I Definition 12. Let C be a simplicial complex. An edge path in C is an alternating sequence
of vertices and edges, v1, e1, v2, e2, . . . , vk−1, ek−1, vk, where ei = {vi, vi+1}. An edge loop is
an edge path with v0 = vk.

I Definition 13. Let C be a simplicial complex. Then a triangle loop in C is a six-tuple
λ = (v0, v1, v2, p01, p12, p20) such that each vi is a vertex in C and pij is an edge path between
vi and vj .

Triangle loops are indeed loops in the topological sense, but they can also be viewed as
subcomplexes with designated vertices and edge paths.

I Definition 14. A loop agreement task is a task (I,O,Γ) for which I is the standard
2-simplex, O is a (path-connected) 2-dimensional simplicial complex with triangle loop
λ = (v0, v1, v2, p01, p12, p20), and Γ is defined as:

Γ(σ) =

{vi} : σ = {i}
pij : σ = {i, j}
O : σ = {0, 1, 2}

Notationally, we write Loop(O, λ). Input vertices are carried to the designated vertices
of λ, the input edges are carried to paths between designated vertices, and the input triangle
is carried to the whole output complex. The algebraic signature of Loop(O, λ) is (π1(O), λ),
and is used in the main theorem by Herlihy and Rajsbaum [9]:

I Theorem 15 (Herlihy and Rajsbaum). Task Loop(K1, λ1) implements Loop(K2, λ2) if and
only if there exists a group homomorphism h : π1(K1)→ π1(K2) such that h([λ1]) = [λ2].

4 Composite Loop Agreement

We now present the main contribution of this paper: parallel composition of loop agreement
tasks and the characterization of their relative power.

4.1 Implementation by Multiple Tasks
Informally, to implement one task by several others, we run protocols for each implementing
task and use the combined output as a protocol complex. Given two loop agreement tasks, the
composite task’s output complex is the 2-skeleton of the product of their output complexes,
and the composite task’s loop is the “diagonal” of the product of the two original loops.

OPODIS 2015

13:8 The Relative Power of Composite Loop Agreement Tasks

I Definition 16. Let λ1 = (v0, v1, v2, p01, p12, p20) and λ2 = (w0, w1, w2, q01, q12, q20) be
triangle loops in complexes A and B, respectively. Then the diagonal product of λ1 and λ2,
denoted λ1 ? λ2, is the triangle loop (u0, u1, u2, r01, r12, r20) in A × B, where ui = (vi, wi).
The path rij is defined by traversing pij while wi is fixed, followed by traversing qij while vj
is fixed. Note that we will use pij ? qij to denote the path defined by rij as above, though
strictly speaking, the ? operator denotes two different operations in λ1 ? λ2 and pij ? qij .

I Definition 17. Let T1 = Loop(K1, λ1), T2 = Loop(K2, λ2), and T = Loop(K, λ) be loop
agreement tasks. Let Γ1, Γ2, and Γ be their respective specification maps. We say T1 and
T2 implement T if there is an N ∈ N and a simplicial map φ : BaryN (skel2(K1 ×K2))→ K
such that (φ ◦ BaryN)(skel2(Γ1(σ)× Γ2(σ))) ⊆ Γ(σ).

Operationally, the participating processes first execute protocols for T1 and T2, ending
up on a simplex of K1 ×K2. More precisely, because there are at most three participants,
they end up on a simplex of skel2(K1 × K2). They then exchange results via N rounds
of reading and writing to “scratchpad” read-write memory, ending up on a simplex of
BaryN (skel2(K1 ×K2)). Finally, each process calls a decision map φ to choose a vertex in K.

4.2 Relative Power
In this section we use the following notation for a continuous function mapping one triangle
loop to another: if K1 and K2 are complexes with triangle loops λ1 = (v0, v1, v2, p01, p12, p20)
and λ2 = (w0, w1, w2, q01, q12, q20), respectively, then we write f : (K1, λ1) → (K2, λ2) to
denote a continuous function f : |K1| → |K2| such that f(vi) = wi and f(|pij |) ⊆ |qij |.

We now state the main theorem of the paper.

I Theorem 18. Let T1 = Loop(K1, λ1), T2 = Loop(K2, λ2), and T = Loop(K, λ). Then T1
and T2 implement T if and only if there exists a group homomorphism h : π1(K1)×π1(K2)→
π1(K) such that h([λ1], [λ2]) = [λ].

Theorem 18 describes only two loop agreement tasks implementing a third, but by finite
induction, one can easily generalize this to n tasks. Its proof is broken down into two other
theorems, which jointly prove Theorem 18. The first theorem is a topological characterization
of two tasks implementing a third, while the second theorem is on the correspondence between
continuous functions and group homomorphisms.

I Theorem 19. Tasks T1 and T2 implement T if and only if there exists a continuous
function f : (skel2(K1 ×K2), λ1 ? λ2)→ (K, λ).

We prove Theorem 19 by proving each direction individually via the following lemmas.

I Lemma 20. If there is a continuous function f : (skel2(K1 ×K2), λ1 ? λ2)→ (K, λ), then
T1 and T2 implement T .

Proof. Suppose such a function f exists, and let Γ1, Γ2, and Γ be the specification maps
for T1, T2, and T , respectively. To prove T1 and T2 implement T , we require an N ∈ N
and a simplicial map φ : BaryN (skel2(K1 × K2)) → K such that for each σ ∈ I, we have
(φ ◦ BaryN)(skel2(Γ1(σ)× Γ2(σ))) ⊆ Γ(σ). We will construct such a φ by taking a simplicial
approximation of a suitably defined continuous function.

Let p01, p12, and p20, and q01, q12, and q20 be the designated edge paths of λ1 and λ2,
respectively. ConsiderX = |(p01×q01)|∪|(p12×q12)|∪|(p20×q20)| ⊆ |K1×K2| as a topological
subspace. Clearly, each |pij × qij | deformation retracts to the corresponding path |pij ? qij | in

V. Saraph and M. Herlihy 13:9

|λ1 ? λ2|. In other words, we have a continuous function H : X × [0, 1]→ |K1×K2| such that
H(x, 0) = x, H(X, 1) = |λ1 ? λ2|, and H(a, t) = a for each a ∈ |λ1 ? λ2|, x ∈ X, and t ∈ [0, 1].
Now using Fact 11, we can extendH to a continuous functionH ′ : |K1×K2|×[0, 1]→ |K1×K2|.
In particular, define r : |K1×K2| → |K1×K2| as r(x) = H(x, 1). This is a continuous function
from |K1 ×K2| to itself that fixes |λ1 ? λ2| while collapsing X to |λ1 ? λ2|. We restrict r to
|skel2(K1×K2)| and invoke Fact 10 to get a function g : |skel2(K1×K2)| → |skel2(K1×K2)|
that fixes |λ1 ? λ2| while collapsing skel2(X) to |λ1 ? λ2|. Now let F = f ◦ g. This is a
continuous function F : |skel2(K1 ×K2)| → |K| which maps λ1 ? λ2 to λ.

To show F is carried by Γ, first consider the case where |σ| = 1. Then the point
|Γ1(σ) × Γ2(σ)| is contained in |λ1 ? λ2|, so is fixed under g, and hence mapped to the
appropriate point in λ by the given function f . The case |σ| = 2 is similar. We have
|Γ1(σ) × Γ2(σ)| ⊆ X, which collapses to |λ1 ? λ2| under g. The function f maps this
to λ, as desired. The final case is when |σ| = 3, which does not require any part of
the proof above, since Γ(σ) = K. In all cases, we see that F is carried by Γ. Letting
φ : BaryN (skel2(K1 ×K2))→ K be a simplicial approximation of F , φ is also carried by Γ,
so we have the required decision map. J

I Lemma 21. If tasks T1 and T2 implement T , then there is a continuous function f :
(skel2(K1 ×K2), λ1 ? λ2)→ (K, λ).

Proof. Assuming T1 and T2 implement T , we have a simplicial map φ : BaryN (skel2(K1 ×
K2)) → K that is carried by Γ. In particular, φ maps λ1 ? λ2 to λ. Let f : (skel2(K1 ×
K2), λ1 ? λ2)→ (K, λ), defined by f(x) = |φ|(x). Then f maps |λ1 ? λ2| to |λ| since φ does
this as well. J

Lemmas 20 and 21 together prove Theorem 19. Next, we prove the correspondence
between continuous functions and group homomorphisms. In order to do this, we refer to
the following result shown in Herlihy and Rajsbaum [9].

I Lemma 22. Let K and L be finite, connected, 2-dimensional simplicial complexes, and let
h : π1(K) → π1(L) be a homomorphism with h([σ]) = [τ]. Then there exists a continuous
f : |K| → |L| such that f∗ = h and f ◦ σ = τ .

I Theorem 23. There exists a continuous function f : (skel2(K1 × K2), λ1 ? λ2) → (K, λ)
if and only if there exists a group homomorphism h : π1(K1) × π1(K2) → π1(K) such that
h([λ1], [λ2]) = [λ].

Proof. First suppose we have a continuous function f : (skel2(|K1 ×K2|), λ1 ? λ2)→ (K, λ).
We begin by constructing a homomorphism h′ : π1(|K1×K2|)→ π1(K) with h′([λ1?λ2]) = [λ].
Let ι : skel2(|K1 ×K2|)→ |K1 ×K2| be the inclusion map, whose induced homomorphism
is actually an isomorphism, by Fact 9. Then we let h′ = f∗ ◦ ι−1

∗ . In order to show
h′([λ1 ? λ2]) = [λ], it suffices to show that ι−1

∗ ([λ1 ? λ2]) = [λ1 ? λ2]. However, notice that
[λ1 ?λ2] = ι∗([λ1 ?λ2]) since λ1 ?λ2 is already in skel2(|K1×K2|), so ι−1

∗ ([λ1 ?λ2]) = [λ1 ?λ2]
as required.

Now, we define the desired homomorphism h : π1(K1)× π1(K2)→ π1(K) using h′. Let
α1 and α2 be loops in K1 and K2 respectively. By Fact 10, α1 and α2 are homotopic to
edge loops β1 and β2. Now define h as h([α1], [α2]) = h′([β1 ? β2]). Then it follows that
h([λ1], [λ2]) = [λ]. To show h′ is well-defined, we need to show that |β1 ? β2| ' |β′1 ? β′2| for
other edge-loop representatives β′1 and β′2 of α1 and α2. We can find edge homotopies H1
and H2 taking β1 and β2 to β′1 and β′2, respectively, so H1 ? H2 is an edge homotopy from

OPODIS 2015

13:10 The Relative Power of Composite Loop Agreement Tasks

|β1 ? β2| ' |β′1 ? β′2|, proving that h is well-defined. We have thus found the required h, which
proves the forward direction of the theorem.

Now suppose we start with a homomorphism h as described above. We reverse the above
argument. We begin by constructing a homomorphism h′ : π1(|K1 ×K2|)→ π1(K). Let α
be a loop in |K1 × K2|. As before, α is homotopic to some edge loop β of K1 × K2. We
define h′([α]) = h([ρ1 ◦β], [ρ2 ◦β]), where the ρi are the projection maps. This map is clearly
well-defined and a homomorphism since it is the composition of h and the induced maps of
the ρi.

Now we define a homomorphism h′′ : π1(skel2(|K1×K2|))→ π1(K) with h′′([λ1?λ2]) = [λ],
using h′. Let ι be the inclusion map, as before. Then we define h′′ = h′ ◦ ι∗. Since
ι∗([λ1 ? λ2]) = [λ1 ? λ2], we see that h′′([λ1 ? λ2]) = [λ]. Finally, we invoke Lemma 22 on h′′
to obtain the required f . This proves the backward direction of the theorem, and completes
the proof. J

Theorems 19 and 23 together prove Theorem 18.

4.3 Composite Loop Agreement
In defining multiple implementation, we said that tasks T1 and T2 implement T if we can use
the combined output complex skel2(K1×K2) of T1 and T2 to solve T . We can think of parallel
execution of protocols for T1 and T2 as solving a task with input complex ∆2, output complex
skel2(K1 ×K2), and specification Γ1 × Γ2. We get a task T ′ = (∆2, skel2(K1 ×K2),Γ1 × Γ2),
and from the definitions it is clear that T1 and T2 implement T if and only if T ′ implements
T . Unfortunately, T ′ is not a loop agreement task, since processes starting on an edge in
∆2 can land on any edge in λ1 × λ2 and still obey the task specification. However, the
subcomplex λ1× λ2 is not a loop. We address this by defining a loop agreement task T1× T2
with output complex skel2(K1 ×K2) with triangle loop λ1 ? λ2. We then show that T ′ and
T1 × T2 implement one another, so are equivalent.

I Definition 24. Let T1 = Loop(K1, λ1) and T2 = Loop(K2, λ2) be loop agreement
tasks. Then the composition of T1 and T2, denoted T1 × T2, is the loop agreement task
Loop(skel2(K1 ×K2), λ1 ? λ2).

I Proposition 25. Tasks T1 and T2 implement T1 × T2.

Proof. This is an immediate consequence of Lemma 20. J

I Proposition 26. Task T1 × T2 implements T1 (respectively T2).

Proof. Lemma 6.2 from Herlihy and Rajsbuam [9] that it suffices to show there is a continuous
function f : skel2(K1×K2)→ K1 mapping λ1 ? λ2 to λ1. It is easy to see that the projection
map ρ1 : skel2(K1 ×K2)→ K1 satisfies this condition. The proof that T1 × T2 implements
T2 is identical. J

5 Category Theory of Loop Agreement

In this section, we describe a more formal connection between the class of loop agreement
tasks and the class of groups, using the language of category theory. We formalize the
correspondence between loop agreement tasks and algebraic signatures, and also state one
direction of the main theorem using category-theoretic formalism. Intuitively, loop agreement
tasks form an organized collection of objects called a “category”, with decision maps, or

V. Saraph and M. Herlihy 13:11

“morphisms”, connecting two tasks if one implements the other. The algebraic signature
assignment, an example of a “functor” between categories, transforms the loop agreement
category into a category of groups. The composition of loop agreement tasks as defined in
this paper is actually their “categorical” product.

We begin with some necessary background in category theory; see Mac Lane [14] for a
rigorous approach.

5.1 Categories

A category C consists of a collection of objects, denoted Ob(C), and a collection of morphisms
between those objects, denoted Hom(C). Each morphism has a domain and codomain, which
are both objects in Ob(C). If f is a morphism with domain X and codomain Y , we write
f : X → Y . This notation is suggestive of set functions, which indeed form a category.

As with set functions, morphisms can be composed. Formally, Hom(C) is equipped with
a binary operation called composition. If f and g are morphisms, then their composition is
denoted f ◦ g. Note that function composition is only defined when the codomain of the first
morphism is equal to the domain of the second. Composition is required to be associative;
that is, given f : W → X, g : X → Y , and h : Y → Z, we must have h ◦ (g ◦ f) = (h ◦ g) ◦ f .
Composition also requires an identity morphism for each object X, denoted idX , such that
for each f : X → Y , we have f ◦ idX = f = idY ◦ f .

Sets and set functions comprise the category of sets, denoted Set. The category of
topological spaces, denoted Top, has spaces as its objects and continuous functions as its
morphisms. There is also the category of groups, Grp, consisting of groups and groups
homomorphisms. Algebraic signatures belong to a similar category called the category of
pointed groups, pGrp, whose objects are groups with distinguished elements and whose
morphisms are group homomorphisms that preserve distinguished elements.

We can transform objects and morphisms of one category to objects and morphisms
of another. Given categories C and D, a functor F : C → D assigns to each object
X ∈ Ob(C) an object F (X) ∈ Ob(D), and to each morphism f : X → Y a morphism
F (f) : F (X) → F (Y). Functors must respect composition; that is, given two compatible
morphisms f, g ∈ Hom(C), we must have F (f ◦ g) = F (f) ◦F (g). Functors must also respect
identity morphisms: F (idX) = idF (X). A common example of a functor is the fundamental
group functor π1 : pTop→ Grp, which maps pointed topological spaces to their respective
fundamental groups, and maps continuous functions to their induced homomorphisms. The
geometric realization |·| : SimC→ Top is a functor from the category of simplicial complexes
with simplicial maps to Top, which maps complexes and simplicial maps to their respective
geometric realizations.

We can also combine two objects from a category to produce a new one, which is an
operation called the categorical product. The categorical product of two objects is the most
general object that maps onto the original two.

I Definition 27. Let C be a category, and let X1 and X2 be objects in this category. The
categorical product of X1 and X2 is the unique object X1×X2 satisfying the following: there
exist morphisms (called projections) ρ1 : X1 ×X2 → X1 and ρ2 : X1 ×X2 → X2 such that
for any object X with morphisms f1 : X → X1 and f2 : X → X2, there exists a unique
morphism f : X → X1 ×X2 such that f1 = ρ1 ◦ f and f2 = ρ2 ◦ f . That is, f1 and f2 factor
through X1 ×X2 in a unique way, via f . The morphism f is called the product morphism of
f1 and f2.

OPODIS 2015

13:12 The Relative Power of Composite Loop Agreement Tasks

5.2 The Category of Loop Agreement Tasks
We define Loop, the category of loop agreement tasks. We let Ob(Loop) be the collection of
all loop agreement tasks Loop(K, λ), where K ranges over all finite connected 2-dimensional
complexes and λ ranges over all edge loops. Morphisms in Loop are valid decision maps
between tasks. That is, given tasks T1 = Loop(K1, λ1) and T2 = Loop(K2, λ2), a morphism
f : T1 → T2 is a pair (δ,N) where N ∈ N and δ : BaryN (K1)→ K2 is a decision map such
that T1 solves T2 via δ. Composition of morphisms is defined as follows. Given objects
T1 = Loop(K1, λ1), T2 = Loop(K2, λ2), T3 = Loop(K3, λ3), and morphisms f1 : T1 → T2,
f2 : T2 → T3 where f1 = (δ1, N1) and f2 = (δ2, N2), the composition f2 ◦ f1 is defined3 as
(δ2 ◦BaryN2(δ1), N1 +N2). Two morphisms are considered equivalent if their simplicial maps
are homotopic4. We must now prove that Loop is a category.

I Theorem 28. Loop is a category.

Proof. Let Ti and fi be defined as above, and let Γi be the tasks’ respective specifica-
tion maps. To show Loop is a category, we need to show that Hom(Loop) is closed
under composition, composition is associative, and identity morphisms exist. Showing
that Hom(Loop) is closed under composition amounts to showing that T1 solves T3 via
δ2 ◦ BaryN2(δ1) : BaryN1+N2(K1)→ K3. For brevity we define δ = δ2 ◦ BaryN2(δ1).

From the definition of task implementation, we know that δ1 ◦ BaryN1 ◦ Γ1 ⊆ Γ2 and
δ2 ◦ BaryN2 ◦ Γ2 ⊆ Γ3, and we want to show δ ◦ BaryN1+N2 ◦ Γ1 ⊆ Γ3. So δ2 ◦ BaryN2 ◦ δ1 ◦
BaryN1 ◦ Γ1 ⊆ δ2 ◦ BaryN2 ◦ Γ2 ⊆ Γ3. We know that BaryN2 ◦ δ1 = BaryN2(δ1) ◦ BaryN2 , so
δ2◦BaryN2◦δ1◦BaryN1◦Γ1 = δ2◦BaryN2(δ1)◦BaryN2◦BaryN1◦Γ1 = δ◦BaryN1+N2◦Γ1 ⊆ Γ3.
Therefore T1 solves T3 via δ, so Hom(Loop) is closed under our definition of composition.

Verifying associativity follows a similar argument. Again, let Ti and fi be defined as
above, and in addition let T4 = Loop(K4, λ4) and let f3 : T3 → T4 with f3 = (δ3, N3). We
must show that (f3 ◦ f2) ◦ f1 = f3 ◦ (f2 ◦ f1). But (f3 ◦ f2) ◦ f1 = (δ3 ◦ BaryN3(δ2), N2 +
N3) ◦ (δ1, N1) = (δ3 ◦ BaryN3(δ2) ◦ BaryN2+N3(δ1), N1 + N2 + N3), and f3 ◦ (f2 ◦ f1) =
(δ3, N3) ◦ (δ2 ◦ BaryN2(δ1), N1 + N2) = (δ3 ◦ BaryN3(δ2 ◦ BaryN2(δ1)), N1 + N2 + N3) =
(δ3 ◦BaryN3(δ2) ◦BaryN2+N3(δ1), N1 +N2 +N3), so (f3 ◦ f2) ◦ f1 = f3 ◦ (f2 ◦ f1). Therefore
composition is associative.

The last requirement, existence of identity morphisms, is trivial to show. Task T1 solves
itself via the decision map (idK1 , 0). This finishes the proof that Loop is a category. J

Next, we show that the algebraic signature of Herlihy and Rajsbaum can be formulated
as a functor between Loop and pGrp.

I Definition 29. Let T1, T2 ∈ Ob(Loop) with T1 = Loop(K1, λ1) and T2 = Loop(K2, λ2),
and let f1 : T1 → T2 with f1 = (δ1, N1) be a morphism between the two. Then the
algebraic signature functor is a functor S : Loop→ pGrp defined as follows. Object T1 is
mapped to (π1(K1), [λ1]), while morphism f1 : T1 → T2 is mapped to |δ1|∗ : (π1(K1), [λ1])→
(π2(K2), [λ2]).

I Theorem 30. S : Loop→ pGrp is a functor.

3 If φ : A → B is a simplicial map, then we can define the map Bary(φ) : Bary(A)→ Bary(B) as one that
maps barycenters to barycenters. It is easy to verify that Bary(φ) is simplicial.

4 By identifying morphisms (in this case homotopic ones), we are constructing a quotient category of
the original one. In order to construct a quotient category, the equivalence must be compatible with
composition. However, we know that homotopy is compatible with compositions of continuous functions.

V. Saraph and M. Herlihy 13:13

Proof. We use the fact that π1 and | · | are both functors. We need to show that S preserves
identity morphisms and respects composition of morphisms. Let T1, T2, and f be defined
as above, and let T3 = Loop(K3, λ3) and let f2 : T2 → T3 with f2 = (δ2, N2). Then, using
the functoriality of π1 and | · |, we have S(f2 ◦ f1) = S((δ2 ◦ BaryN1(δ1), N1 + N2)) =
|δ2 ◦ BaryN1(δ1)|∗ = (|δ2| ◦ |BaryN1(δ1)|)∗ = |δ2|∗ ◦ |δ1|∗ = S(f2) ◦ S(f1), so S respects
composition. Now let idT1 be the identity morphism of T1. Then S(idT1) = S((idK1 , 0)) =
|idK1 |∗ = idπ1(K1), so S also preserves identity morphisms. S is well-defined since π1 cannot
distinguish between homotopic functions. We conclude that S is a functor. J

I Lemma 31. If K1 and K2 are objects in SimC2, then skel2(K1 ×K2) is their categorical
product in SimC2.

Proof. We first define projection maps ρ1 : skel2(K1×K2)→ K1 and ρ2 : skel2(K1×K2)→ K2
as ρ1(v1, v2) = v1 and ρ2(v1, v2) = v2. That is, the ρi are the restrictions to the 2-skeleton of
the projection maps found in Definition 3, so they are clearly simplicial.

Now suppose we have a 2-dimensional complex K with simplicial maps δ1 : K → K1
and δ2 : K → K2. Then we define δ : K → skel2(K1 × K2) as δ(v) = (δ1(v), δ2(v)). This is
the only possible set function δ that makes the diagram commute; that is, δ is the only set
function such that δ1 = ρ1 ◦ δ and δ2 = ρ2 ◦ δ. This proves uniqueness, but we must also
show that δ is simplicial.

Let σ be a simplex in skel2(K1 ×K2). Then δ1(σ) and δ2(σ) are simplexes in K1 and K2,
respectively. But as we have shown, δ1(σ) = ρ1(δ(σ)) and δ2(σ) = ρ2(δ(σ)), so in particular,
we see that ρ1(δ(σ)) and ρ2(δ(σ)) are simplexes. Hence by Definition 3, δ(σ) is a simplex in
K1 × K2, and furthermore it is a simplex in skel2(K1 × K2) since the dimension of σ is at
most 2. So δ is a simplicial map, which proves that skel2(K1 ×K2) is the categorical product
of K1 and K2 in SimC2. J

Note that Lemma 31 easily generalizes to SimCn and the n-skeleton.

I Theorem 32. Composition of loop agreement tasks is the categorical product in Loop.

Proof. Let T1 = Loop(K1, λ1) and T2 = Loop(K2, λ2) be tasks as defined before, and
let Γ1 and Γ2 be their specification maps, respectively. Let Γ× be the specification map
of T1 × T2. We must first define decision maps from T1 × T2 to T1 and T2 that make
T1 × T2 the categorical product. We know that skel2(K1 × K2) is the categorical product
of K1 and K2 in the category SimC2, and that the product comes with projection maps
ρ1 : skel2(K1 × K2) → K1 and ρ2 : skel2(K1 × K2) → K2. Using these, we define maps
g1 : T1×T2 → T1 and g2 : T1×T2 → T2 with g1 = (ρ1, 0) and g2 = (ρ2, 0), and we show that
these maps make T1 × T2 the categorical product of T1 and T2.

We showed in Proposition 26 that g1 and g2 solve T1 and T2, respectively. To prove
that g1 and g2 are the projection maps satisfying Definition 27, we consider a task T that
implements both T1 and T2, say via maps f1 = (δ1, N1) and f2 = (δ2, N2), respectively. Let
T = Loop(K, λ) and let Γ be its specification map. We must find a decision map that solves
T1×T2 from T . Without loss of generality, assume N1 ≥ N2, so let δ′2 : BaryN1(K)→ K2 be a
simplicial approximation of δ2. Then δ = (δ1, δ

′
2) is a map from BaryN1(K) to skel2(K1×K2),

though it does not necessarily carry λ to λ1 ? λ2. Instead, g = (δ,N1) is a morphism from
Loop(K, λ) to Loop(skel2(K1×K2), δ(λ)). However, it is easy to see that δ(λ) is homotopic to
λ1?λ2. Using Fact 11, we can extend this to a homotopy on all of skel2(K1×K2), so we obtain a
continuous function h : |skel2(K1×K2)| → |skel2(K1×K2)|. Let γ : BaryM (skel2(K1×K2))→
skel2(K1×K2) be a simplicial approximation of h. Then notice that g′ = (γ,M) is a morphism
from Loop(skel2(K1×K2), δ(λ)) to Loop(skel2(K1×K2), λ1 ?λ2). So f = g′ ◦g is a morphism

OPODIS 2015

13:14 The Relative Power of Composite Loop Agreement Tasks

f : T → T1 × T2. We must also show that f = (γ ◦ BaryM (δ), N1 +M) makes the diagram
commute. Let δ′ = γ ◦ BaryM (δ). We know that ρi ◦ δ ' δi by construction of δ, and it is
also clear that δ′ ' δ, by construction of δ′ and γ. It follows that ρi ◦ δ′ ' δi, proving that f
makes the diagram commute. Thus we have the required product morphism.

Finally, it remains to show that f is unique. Let f ′ be any such morphism making
the diagram commute, and let δ′ be its simplicial map. Then, as set maps, we know that
δ′ = (ρ1 ◦ δ′, ρ2 ◦ δ′). However, we are assuming that |ρ1 ◦ δ′| ' |δ1| and |ρ2 ◦ δ′| ' |δ2|, so this
allows us to conclude that |δ′| = (|ρ1 ◦ δ′|, |ρ2 ◦ δ′|) ' (|δ1|, |δ2|). Therefore |δ′| ' (|δ1|, |δ2|),
which is homotopic to the map constructed in the existence proof above. So δ is unique up to
homotopy, meaning that f is unique. This proves that g1 and g2 are satisfactory projection
maps, proving that T1 × T2 is in fact the categorical product of T1 and T2. J

The category pGrp also has products. We define this product below, and state without
proof that it is indeed the categorical product. This follows immediately from the fact that
the direct product of groups is the categorical product in Grp [14].

I Fact 33. Let (G1, g1) and (G2, g2) be objects in pGrp. Then (G1 ×G2, (g1, g2)) is their
categorical product.

With this in mind, the following corollary is a simple consequence of Theorem 18.

I Corollary 34. The functor S : Loop→ pGrp preserves products.

Proof. Let T1 = Loop(K1, λ1) and T2 = Loop(K2, λ2) be objects in Loop. Then S(T1) =
(π1(K1), [λ1]) and S(T2) = (π1(K1), [λ2]), so S(T1)× S(T2) = (π1(K1)× π2(K2), ([λ1], [λ2])).
However, from the proof of Theorem 23, we see that (π1(K1) × π2(K2), ([λ1], [λ2])) ∼=
(π1(skel2(K1×K2)), [λ1 ?λ2]) = S(T1×T2), so in fact S(T1×T2) ∼= S(T1)×S(T2). Therefore
S preserves products. J

6 Applications

In this section we present some simple applications of the correspondence between composi-
tions of loop agreement tasks and the products of their algebraic signatures.

I Proposition 35. Let T be (3, 2)-set agreement, and let T ′ be any other loop agreement
task. Then T × T ′ and T are equivalent.

Proof. Recall that (3, 2)-set agreement is the task Loop(skel1(∆2), ζ)), where ζ is the
triangle loop (0, 1, 2, ((0, 1)), ((1, 2)), ((2, 0))). This triangle loop generates π1(skel1(∆2)), so
S(T) = (π1(skel1(∆2)), [ζ]) ∼= (Z, 1). Let S(T ′) = (G, g). Then by Corollary 34, S(T × T ′) =
S(T)× S(T ′) = (Z×G, (1, g)). The homomorphism φ : Z×G → Z defined by projection
onto the first coordinate sends (1, g) to 1, and the homomorphism ψ : Z→ Z×G defined
by ψ(n) = (n, g) sends 1 to (1, g). So T × T ′ and T implement one another, so they are
equivalent. J

Since (3, 2)-set agreement was shown to be universal for loop agreement by Herlihy and
Rajsbaum [9], it is operationally intuitive that composing it with any other loop agreement
task should not change its relative power.

I Proposition 36. Let T be any simplex agreement task, and let T ′ be any other loop
agreement task. Then T × T ′ and T ′ are equivalent.

V. Saraph and M. Herlihy 13:15

Proof. Since the output complex if T is a subdivided simplex, it has trivial fundamental
group, so S(T) = (1, e). As before, let S(T ′) = (G, g). By Corollary 34, S(T × T ′) =
S(T) × S(T ′) = (1 × G, (g, e)), which is clearly isomorphic to (G, g). So T × T ′ and T

implement one another, so are equivalent. J

Herlihy and Rajsbaum also showed that simplex agreement is implemented from any
loop agreement task [9], so it is also intuitively clear that composing a task with simplex
agreement should not change the relative power of the original task.

I Proposition 37. Let T be any loop agreement task. Then T × T and T are equivalent.

Proof. Let S(T) = (G, g). Then by Corollary 34, S(T ×T) = S(T)×S(T) = (G×G, (g, g)).
Letting φ : G→ G×G be the diagonal map φ(x) = (x, x), φ maps g to (g, g), and letting
ψ : G × G → G be projection onto a coordinate, ψ maps (g, g) to g. So T × T and T are
equivalent. J

The above result states that composing a loop agreement task with copies of itself will
not change its relative power.

7 Conclusions

It is a common technique to study a class of objects by mapping these objects into a class
of simpler ones in such a way that preserves enough information about the original class
of objects. This was the idea behind the fundamental group from algebraic topology, and
was also the idea of the algebraic signature of Herlihy and Rajsbaum in their work on
loop agreement. In this work we formalized and further extended the algebraic signature
characterization by defining the composition of tasks and relating compositions of tasks
to products of groups, and in doing so we partially answered the questions raised in the
original paper. How much further can this characterization be extended; what more can we
learn from the algebraic signature functor between loop agreement tasks and groups with
distinguished elements? Does this functor have an adjunction?

The categorical techniques in this paper can be applied to general tasks. For example,
tasks with decision maps form a category Task, with loop agreement as a subcategory. In the
case of loop agreement, we are able to extract valuable information about tasks by mapping
them into groups. What kind of functors may we apply to general tasks? Also in the case
of loop agreement, we were able to identify parallel composition with the category product.
Can parallel composition be defined for more general tasks, for instance via skeln(O1 ×O2),
and what is its precise operational meaning of parallel composition for general tasks?

References
1 H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk. Renaming in an asynchronous

environment. J. ACM, 37(3):524–548, 1990.
2 S. Chaudhuri. More choices allow more faults: Set consensus problems in totally asynchron-

ous systems. Information and Computation, 105(1):132–158, 1993.
3 M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus

with one faulty process. J. ACM, 32(2):374–382, 1985.
4 E. Gafni and E. Koutsoupias. Three-processor tasks are undecidable. SIAM J. Comput.,

28(3):970–983, 1999.

OPODIS 2015

13:16 The Relative Power of Composite Loop Agreement Tasks

5 Eli Gafni, Sergio Rajsbaum, and Maurice Herlihy. Subconsensus tasks: Renaming is weaker
than set agreement. In Distributed Computing, 20th International Symposium, DISC 2006,
Stockholm, Sweden, September 18-20, 2006, Proceedings, pages 329–338, 2006.

6 A. Hatcher. Algebraic Topology. Cambridge University Press, 2002.
7 M. P. Herlihy, D. N. Kozlov, and S. Rajsbaum. Distributed Computing Through Combinat-

orial Topology. Morgan Kaufmann, 2013.
8 M. P. Herlihy and S. Rajsbaum. The decidability of distributed decision tasks. In Proceed-

ings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, STOC ’97,
pages 589–598, 1997.

9 M. P. Herlihy and S. Rajsbaum. A classification of wait-free loop agreement tasks. Theor.
Comput. Sci., 291(1):55–77, 2003.

10 M. P. Herlihy and N. Shavit. The asynchronous computability theorem for t-resilient tasks.
In Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing,
STOC ’93, pages 111–120, 1993.

11 M. P. Herlihy and N. Shavit. A simple constructive computability theorem for wait-free
computation. In Proceedings of the Twenty-sixth Annual ACM Symposium on Theory of
Computing, STOC ’94, pages 243–252, 1994.

12 Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–
149, 1991.

13 D. N. Kozlov. Combinatorial Algebraic Topology, volume 21 of Algorithms and computation
in mathematics. Springer, 2008.

14 S. Mac Lane. Categories for the Working Mathematician. Springer Verlag, 1998.
15 X. Liu, J. Pu, and J. Pan. A classification of degenerate loop agreement. In Fifth IFIP

International Conference On Theoretical Computer Science, volume 273 of IFIP, pages
203–213. Springer, 2008.

16 X. Liu, Z. Xu, and J. Pan. Classifying rendezvous tasks of arbitrary dimension. Theor.
Comput. Sci., 410(21-23):2162–2173, 2009.

Loosely-Stabilizing Leader Election on Arbitrary
Graphs in Population Protocols Without
Identifiers nor Random Numbers∗

Yuichi Sudo1, Fukuhito Ooshita2, Hirotsugu Kakugawa3, and
Toshimitsu Masuzawa4

1 NTT Secure Platform Laboratories, Tokyo, Japan; and
Graduate School of Information Science and Technology, Osaka University,
Osaka, Japan
sudo.yuichi@lab.ntt.co.jp

2 Graduate School of Information Science, Nara Institute of Science and
Technology, Nara, Japan
f-oosita@is.naist.jp

3 Graduate School of Information Science and Technology, Osaka University,
Osaka, Japan
kakugawa@ist.osaka-u.ac.jp

4 Graduate School of Information Science and Technology, Osaka University,
Osaka, Japan
masuzawa@ist.osaka-u.ac.jp

Abstract
In the population protocol model Angluin et al. proposed in 2004, there exists no self-stabilizing
leader election protocol for complete graphs, arbitrary graphs, trees, lines, degree-bounded graphs
and so on unless the protocol knows the exact number of nodes. To circumvent the impossibility,
we introduced the concept of loose-stabilization in 2009, which relaxes the closure requirement of
self-stabilization. A loosely-stabilizing protocol guarantees that starting from any initial configu-
ration a system reaches a safe configuration, and after that, the system keeps its specification (e.g.
the unique leader) not forever, but for a sufficiently long time (e.g. exponentially large time with
respect to the number of nodes). Our previous works presented two loosely-stabilizing leader
election protocols for arbitrary graphs; One uses agent identifiers and the other uses random
numbers to elect a unique leader. In this paper, we present a loosely-stabilizing protocol that
solves leader election on arbitrary graphs without agent identifiers nor random numbers. By the
combination of virus-propagation and token-circulation, the proposed protocol achieves polyno-
mial convergence time and exponential holding time without such external entities. Specifically,
given upper bounds N and ∆ of the number of nodes n and the maximum degree of nodes δ
respectively, it reaches a safe configuration within O(mn3d+mN∆2 logN) expected steps, and
keeps the unique leader for Ω(NeN) expected steps where m is the number of edges and d is the
diameter of the graph. To measure the time complexity of the protocol, we assume the uniformly
random scheduler which is widely used in the field of the population protocols.

1998 ACM Subject Classification G.2.2. Graph Theory

Keywords and phrases Loose-stabilization, Population protocols, and Leader election

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.14

∗ This work was supported by JSPS KAKENHI Grant Numbers 24500039, 26280022, 26330084, and
15H00816.

© Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Masuzawa;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 14; pp. 14:1–14:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Loosely-Stabilizing Leader Election Without Identifiers nor Random Numbers

1 Introduction

This paper focuses on self-stabilizing leader election in the population protocol model. The
population protocol (PP) model, which was presented by Angluin et al. [1], represents wireless
sensor networks of mobile sensing devices that cannot control their movement. Two devices
(say agents) communicate with each other and change their states only when they come
sufficiently close to each other (we call this event an interaction). Self-stabilizing leader
election (SS-LE) requires that starting from any configuration, a system (say population)
reaches a safe-configuration in which a unique leader is elected, and after that, the population
has the unique leader forever. Self-stabilizing leader election is important in the PP model
because (i) many population protocols in the literature work on the assumption of the unique
leader [1, 2, 3], and (ii) self-stabilization tolerates any finite number of transient faults and
this property suits systems consisting of numerous cheap and unreliable nodes. (Such systems
are the original motivation of the PP model.) However, there exists strict impossibility of
SS-LE in the PP model: no protocol solves SS-LE for complete graphs, arbitrary graphs,
trees, lines, degree-bounded graphs and so on unless the number of agents n is available to
agents in advance [3].

Therefore, many studies of SS-LE took either one of the following two approaches. One
approach is to accept the assumption that the exact n is available and focus on the space
complexity of the protocol. Cai et al. [6] proved that n states of each agent is necessary and
sufficient to solve SS-LE for a complete graph of n agents. Mizoguchi et al. [12] and Xu et al.
[15] improved the space-complexity by adopting the mediated population protocol model [10]
and the PPk model [5] respectively. The other approach is to use oracles, a kind of failure
detectors. Fischer and Jiang [8] took this approach for the first time. They introduced oracle
Ω? that informs all agents whether a leader exists or not and proposed two protocols that
solve SS-LE for rings and complete graphs by using Ω?. Beauquier et al. [4] presented an
SS-LE protocol for arbitrary graphs that uses two copies of Ω?. Canepa et al. [7] proposed
two SS-LE protocols that use Ω? and consume only 1 bit of each agent: one is a deterministic
protocol for trees and the other is a probabilistic protocol for arbitrary graphs although the
position of the leader is not static and moves among the agents.

Our previous works [13, 14] took another approach to solve SS-LE. We introduced the
concept of loose-stabilization, which relaxes the closure requirement of self-stabilization.
Specifically, starting from any initial configuration, the population must reach a safe con-
figuration within a relatively short time; after that, the specification of the problem (the
unique leader) must be kept for a sufficiently long time, though not forever. We proposed
three loosely-stabilizing protocols PLE, PID, and PRD. Protocol PLE solves leader election
for complete graphs whose size is no more than given upper bound N of n. Protocol PID and
PRD solve leader election for arbitrary graphs using agent identifiers and random numbers
respectively, given N and upper bound ∆ of the maximum degree of nodes δ. All the three
protocols are practically equivalent to a SS-LE protocol since they keep the specification for
an exponentially long time after reaching a safe configuration (and reaches a safe configuration
within polynomial time).

Some works on population protocols assume the probabilistic distribution regarding
the interactions of agents: any interaction occurs uniformly at random [1, 2, 9, 13, 14].
This assumption have been used mainly for evaluating the time complexity of protocols.
We also adopt this assumption because the measure of time is crucial in the concept of
loose-stabilization. The impossibility result for SS-LE [1] still holds even with this assumption.

Y. Sudo, F. Ooshita, H. Kakugawa, and T. Masuzawa 14:3

Table 1 Loosely-stabilizing leader election for arbitrary graphs.

Protocol Convergence Time Holding Time Agent Memory Requisite
PID [14] O(mN∆ logN) Ω(NeN) O(logN) agent identifiers
PRD [14] O(mN3∆2 logN) Ω(NeN) O(logN) random numbers

PAR (proposed) O(mn3d+mN∆2 logN) Ω(NeN) O(logN) –

Our Contribution

This paper proposes a loosely-stabilizing protocol PAR for leader election in arbitrary graphs
without agent identifiers nor random numbers (or a model with a weaker assumption than
PID or PRD). Thus, we succeed to remove the assumptions of unique identifiers and random
number generators for a loosely-stabilizing leader election on arbitrary graphs in the PP
model, which may be difficult to realize in weak computation models, like the PP model,
consisting of huge number of tiny devices with restricted capability.

The expected convergence time and the expected holding time of PID, PRD, and PAR
are shown in Table 1 where d is the diameter of the graph. All the protocols including
PAR keep the unique leader for an exponentially long time (Ω(NeN) interactions) after a
safe configuration. Protocol PAR consumes O(logN) bits of each agent’s memory while
any self-stabilizing protocol (which uses knowledge of exact n) consumes Ω(logn) memory
[6]. Furthermore, Izumi [9] proves that loosely-stabilizing leader election with polynomial
convergence time and exponentially long holding time needs Ω(logn) agent memory. Thus,
PAR is asymptotically space-optimal when N is polynomial in n. One may think that the
model of anonymous agents and O(logN) agent memory is not well-motivated because
O(logn) memory is sufficient to store an identifier. However, we believe that anonymity is
still an important assumption: assigning distinct identifiers to a huge number of agents is
not an easy task, and memory corruption may cause conflicts of identifiers of different agents.
Actually, many works assume anonymity and agent memory space of O(logn) or more (e.g.
[3, 6, 12, 13, 14, 15]). In this paper, we analyze time complexities for undirected graphs for
simplicity, however, it works on any directed graphs without modifications.

While protocol PAR is based on the virus war mechanism developed for PRD [14], the key
idea of PAR is quite novel and has a considerable contribution: The token with a count-down
timer circulates in the graph, and a leader creates and spreads a black or white virus when
encountering the token with zero timer value. The idea of circulating tokens and the colors
of viruses are newly introduced to remove the assumption of random number generators.
This technique may be useful also for other problems and/or other models.

The formal analysis of the convergence time and the holding time is another main
contribution of this paper, since analyzing such complexities of loosely-stabilizing protocols is
a challenging task. In particular, we analyze in the expected time until two tokens performing
random walks meet in the PP model. The analysis can be applied with slight modification
to estimate the expected time until a token performing random walks visits all nodes. We
believe that the analysis techniques are of significant importance because existing analysis for
usual random walks cannot be applied to the population protocol model: the token always
moves through an edge at each step in usual random walks while, in the population protocol
model, the token moves at each step with a probability depending on the degree of the node
the token currently exists on. Thus, the techniques we developed open up a new path to
analysis of loosely-stabilizing protocols in the PP model.

Angluin et al. [1] proves that for any population protocol P working on complete graphs,
there exists a protocol that simulates P on any arbitrary graph. One may think that this

OPODIS 2015

14:4 Loosely-Stabilizing Leader Election Without Identifiers nor Random Numbers

simulator can translate our previous loosely-stabilizing algorithm for complete graphs [13]
to a loosely-stabilizing algorithm that works for arbitrary graphs. However, it cannot work
since, in this simulation, two agents swap their states when they have interactions. This
swap is needed to simulate interactions between distant agents in an arbitrary graph, but it
results in the execution where an elected leader moves among the population, which does
not satisfy the specification of the leader election.

2 Preliminaries

This section defines the model we consider for this paper.
A population is a simple and weakly-connected directed graph G(V,E) where V (|V | ≥ 2)

is a set of agents and E ⊆ V × V is a set of directed edges. Each edge represents a possible
interactions (or communication between two agents): If (u, v) ∈ E, agents u and v can
interact with each other where u serves as an initiator and v serves as a responder. We say
that G is undirected if it satisfies (u, v) ∈ E ⇔ (v, u) ∈ E. We define n = |V | and m = |E|.

A protocol P (Q,Y, T,O) consists of a finite set Q of states, a finite set Y of output
symbols, transition function T : Q×Q→ Q×Q, and output function O : Q→ Y . When an
interaction between two agents occurs, T determines the next states of the two agents based
on their current states. The output of an agent is determined by O: the output of agent v
with state q ∈ Q is O(q).

A configuration is a mapping C : V → Q that specifies the states of all the agents. We
denote the set of all configurations of protocol P by Call(P). We say that configuration C
changes to C ′ by interaction e = (u, v), denoted by C e→ C ′, if we have (C ′(u), C ′(v)) =
T (C(u), C(v)) and C ′(w) = C(w) for all w ∈ V \ {u, v}. A scheduler determines which
interaction occurs at each time. In this paper, we consider a uniformly random scheduler
Γ = Γ0,Γ1, . . . : each Γt ∈ E is a random variable such that Pr(Γt = (u, v)) = 1/m for
any t ≥ 0 and any (u, v) ∈ E. Given an initial configuration C0 and Γ, the execution of
protocol P is defined as ΞP (C0,Γ) = C0, C1, . . . such that Ct

Γt→ Ct+1 for all t ≥ 0. We
denote ΞP (C0,Γ) simply by ΞP (C0) when no confusion occurs.

The leader election problem requires that every agent should output L or F which
means “leader” or “follower” respectively. We say that a finite or infinite sequence of
configurations ξ = C0, C1, . . . preserves a unique leader, denoted by ξ ∈ LE , if there exists
v ∈ V such that O(Ct(v)) = L and O(Ct(u)) = F for any t ≥ 0 and u ∈ V \ {v}. For
ξ = C0, C1, . . . , the holding time of the leader HT(ξ,LE) is defined as the maximum t ∈ N
that satisfies (C0, C1, . . . , Ct−1) ∈ LE . We define HT(ξ,LE) = 0 if C0 /∈ LE . We denote
E[HT(ΞP (C),LE)] by EHTP (C,LE). Intuitively, EHTP (C,LE) is the expected number
of interactions for which the population keeps the unique leader after protocol P starts
from configuration C. For configuration sequence ξ = C0, C1, . . . and a set of configurations
C, we define convergence time CT(ξ, C) as the minimum t ∈ N that satisfies Ct ∈ C. We
define CT(ξ, C) = |ξ| if Ct /∈ C for any t ≥ 0, where |ξ| is the length of ξ (i.e. the number
of configurations). We denote E[CT(ΞP (C), C)] by ECTP (C, C). Intuitively, ECTP (C, C) is
the expected number of interactions by which the population reaches a configuration in C
when starting from C.

I Definition 1 (Loose-stabilizing leader election [13]). Protocol P (Q,Y, T,O) is an (α, β)-
loosely-stabilizing leader election protocol if there exists set S of configurations satisfying
maxC∈Call(P) ECTP (C,S) ≤ α and minC∈S EHTP (C,LE) ≥ β.

Y. Sudo, F. Ooshita, H. Kakugawa, and T. Masuzawa 14:5

Chernoff Bounds

Two variants of Chernoff bounds [11] used in several proofs of this paper are quoted below.

I Lemma 2 (Eq. (4.2) in [11]). The following inequality holds for any binomial random
variable X and any κ, 0 < κ ≤ 1:

Pr(X ≥ (1 + κ)E[X]) ≤ e−κ
2E[X]/3.

I Lemma 3 (Eq. (4.5) in [11]). The following inequality holds for any binomial random
variable X and κ, 0 < κ ≤ 1:

Pr(X ≤ (1− κ)E[X]) ≤ e−κ
2E[X]/2.

3 Loosely-stabilizing Leader Election Protocol

This section presents loosely-stabilizing leader election protocol PAR for arbitrary undirected
anonymous graphs without identifiers or random numbers. Symmetry breaking is not a key
issue to elect a leader in the population protocol model since random scheduler breaks the
symmetry of the population. (Global-fairness breaks the symmetry in the case of deterministic
scheduler.) The challenging issue is to reduce the number of leaders to one while avoiding to
remove all leaders from the population. Protocol PAR solves this issue without identifiers
or random numbers by virus-propagation and token-circulation. A leader tries to kill other
leaders by creating and propagating a virus while a circulating token controls the frequency
of creating a virus so that eventually exactly one agent remains a leader (i.e. survives a
virus war).

Protocol PAR is described in Protocol 1. A state of an agent is described by a collection
of variables, and a transition function is described by a pseudo code that updates variables
of initiator x and responder y. We denote the value of variable var of agent v ∈ V by v.var.
We also denote the value of var in state q ∈ Q by q.var. In PAR, each agent has three
binary variables leader ∈ {>,⊥}, token ∈ {>,⊥} and color ∈ {BLACK,WHITE}, and
four timers timerL, timerT, timerV and timerE. The output function defines leaders based
on variable leader : agent v is a leader if v.leader = >, and a follower otherwise. We say
that agent v has a token if v.token = > and v has a virus if v.timerV > 0. We also say that
v is black if v.color = BLACK, and v is white otherwise.

Protocol PAR consists of five parts: leader-creation (Lines 1–7), token-creation (Lines
8–14), token-circulation (Lines 15–20), virus-creation (Lines 29–37), and virus-propagation
(Lines 21–28). Our goal is to elect a unique leader in the population from an arbitrary
initial configuration. The leader-creation part creates a leader when no leader exists in the
population. The other four parts work together to reduce the number of leaders to one when
two ore more leaders exist.

The leader-creation part aims to create a leader when no leader exists in the population.
Each agent uses timerL as the barometer for suspecting that there exists no leader. Specifically,
when initiator x and responder y interact, they take the larger value of x.timerL and y.timerL,
decrease it by one, and substitute the decreased value into x.timerL and y.timerL (Line 1).
We call this event larger value propagation. If x or y is a leader, both timers are reset to tmax
(Lines 2–3). We call this event timer reset. When a timer becomes zero (i.e. timeout), agents
x and y suspect that there exists no leader in the population. Then, x becomes a new leader
with the full timer value tmax (Lines 5–6). When no leader exists, the population never
experiences timer reset, thus, their timers keep on decreasing. Hence, the timeout eventually

OPODIS 2015

14:6 Loosely-Stabilizing Leader Election Without Identifiers nor Random Numbers

Algorithm 1 Leader Election PAR
Variables of each agent:

leader ∈ {>,⊥}, token ∈ {>,⊥}, color ∈ {BLACK,WHITE}
timerL ∈ [0, tmax], timerT ∈ [0, tmax], timerV ∈ [0, tvirus], timerE ∈ [0, tepi]

Output function O:
if v.leader = > holds, then the output of agent v is L, otherwise F .

Interaction between initiator x and responder y:
1: x.timerL ← y.timerL ← max(x.timerL − 1, y.timerL − 1, 0)
2: if x.leader = > or y.leader = > then
3: x.timerL ← y.timerL ← tmax // a leader resets leader timer
4: else if x.timerL = 0 then
5: x.leader← > // a new leader is created at timeout
6: x.timerL ← y.timerL ← tmax
7: end if

8: x.timerT ← y.timerT ← max(x.timerT − 1, y.timerT − 1, 0)
9: if x.token = > or y.token = > then
10: x.timerT ← y.timerT ← tmax // a token resets token timer
11: else if x.timerT = 0 then
12: x.token← > // a new token is created at timeout
13: x.timerT ← y.timerT ← tmax
14: end if

15: x.token↔ y.token // a token moves between agents
16: x.timerE ← max(0, y.timerE − 1)
17: y.timerE ← max(0, x.timerE − 1) // decrement and swap epidemic timers
18: if x.token = > and y.token = > then
19: y.token← ⊥
20: end if

21: if x.timerV > 0 and y.timerV = 0 and x.color 6= y.color then
22: y.leader← ⊥
23: y.color← x.color
24: else if x.timerV = 0 and y.timerV > 0 and x.color 6= y.color then
25: x.leader← ⊥
26: x.color← y.color
27: end if
28: x.timerV ← y.timerV ← max(x.timerV − 1, y.timerV − 1, 0)

29: if x.leader = > and x.token = > and x.timerE = 0 then
30: if x.color = BLACK then x.color←WHITE else x.color← BLACK endif
31: x.timerV ← tvirus
32: x.timerE ← tepi
33: else if y.leader = > and y.token = > and y.timerE = 0 then
34: if y.color = BLACK then y.color←WHITE else y.color← BLACK endif
35: y.timerV ← tvirus
36: y.timerE ← tepi
37: end if

Y. Sudo, F. Ooshita, H. Kakugawa, and T. Masuzawa 14:7

occurs and a leader is created. When a leader exists, the timeout rarely happens since all
agents keep high timer values thanks to the timer reset and the larger value propagation.
Therefore, this mechanism rarely ruins stability of the unique leader.

Protocol PAR reduces the number of leaders to one as follows. The token-creation part
creates a token when no token exists in the population; The token-circulation part reduces the
number of tokens to one, circulates the unique token among the population, and decrements
the epidemic timer (timerE) of the unique token every time it moves; The virus-creation
part creates a new virus when a leader meets a token with epidemic timer of value zero; The
virus-propagation part propagates the virus to the whole population, which changes leader
agents to follower agents.

The token-creation part (Lines 8–14) creates a token in the same way as the leader-
creation part when no token exists in the population. There is no difference between the two
parts except that the former uses variable timerT while the latter uses timerL.

The token-circulation part (Lines 15–20) aims to reduce the number of tokens to one,
and circulates the unique token. A token moves between agents by interaction (Line 15).
We can say that a token makes a random walk among the population since the scheduler
randomly chooses two agents to interact at each time. Hence, two tokens eventually meet if
two or more tokens exist in the population. When two agents interact and both agents have
tokens, then either one of the two loses its token (Lines 18–20). Hence, the number of tokens
eventually becomes one. Each token has an epidemic timer (timerE). The epidemic timer is
decremented by one every time the token moves, and thus, it becomes zero eventually (Line
16–17). Note that the number of tokens never becomes zero once a token exists since the
number of tokens decreases only when two tokens meet at an interaction.

A virus-creation part (Lines 29–37) creates a new virus when a leader meets a token with
an epidemic timer of value zero. We call this event virus creation. Specifically, if a token
with timerE = 0 moves to a leader agent, the leader changes its color from black to white or
from white to black (Lines 30 and 34) and creates a new virus with full value TTL (Time To
Live), i.e. timerV = tvirus (Lines 31 and 35). The leader also resets the epidemic timer of the
token (Lines 32 and 36), which enables periodical occurrence of epidemics.

A virus-propagation part (Lines 21–28) propagates a virus from agent to agent and
reduces the number of leaders. When an agent has a virus (i.e. v.timerV > 0), we regard that
v.timerV is the TTL of the virus. A virus vanishes from the agent when its TTL becomes
zero. In the same way as timerL and timerT, a virus propagates at interaction in the larger
value propagation fashion (Line 28). Moreover, a virus has the power to change the colors
of agents and kill leaders. Specifically, if an agent with a virus interacts an agent without
a virus, the virus changes the color of the newly infected agent (Lines 23 and 26). At this
time, if the newly infected agent is a leader, the virus kills the leader (i.e. changes the newly
infected agent from a leader to a follower). Once a new virus is created at the virus-creation
part, the virus propagates to the whole population within a short time. However, the value
of timerV is reset only when a new virus is created. Hence, viruses eventually vanish from
the population if the frequency of epidemics, controlled by the value tepi, is sufficiently low.
The concept of colors helps to avoid the suicide of leaders, i.e. a leader is rarely killed by a
virus that it creates. Consider that a white leader creates a virus. After that, the leader and
any infected agent with the virus are black, thus the leader is never killed by the virus until
another virus is created and the leader becomes white.

Protocol PAR correctly works if tmax and tvirus is sufficiently large and tepi is sufficiently
greater than tvirus. When there exists no leader, the leader-creation part eventually creates a
leader by timeout. In the following, let us consider the case that multiple leaders exist in the

OPODIS 2015

14:8 Loosely-Stabilizing Leader Election Without Identifiers nor Random Numbers

population, and see how PAR reduces these leaders to one. The token-creation and the token
circulation parts eventually create the unique token and circulate it in the population. Since
tepi is sufficiently greater than tvirus, the population eventually reaches a configuration where
no agent has virus. After that, the epidemic timer of the token keeps on decreasing and
eventually becomes zero, and the token eventually moves to a leader in the population, which
creates a new virus. This virus soon propagates among the whole population and turn all
the agents to the ones with the same color (black or white). Let the color be black without
loss of generality. Again, the virus vanishes, the epidemic timer of the token becomes zero,
and the token moves to a leader in the same way. Then, the black leader becomes white and
creates a new virus. It soon propagates to the whole population and changes all agents from
black to white, which kills all other leaders. Then, we have the exactly one leader in the
population.

Even after we have exactly one leader and one token, the population sometimes enters
the wrong configuration where no leader exists, multiple leaders exist, or multiple tokens
exist. These deviations are caused by the following events: (i) leader timeout happens, (ii)
token timeout happens, or (iii) a new virus is created when viruses remain in the population.
Cases (i) and (ii) rarely happens thanks to the timer reset, the larger value propagation, and
the sufficiently large tmax, which is the reset value of leader timers and token timers. Case
(iii) also rarely happens because tepi, the reset value of the epidemic timer, is sufficiently
larger than the reset value of a virus timer tvirus. As we shall see later, the expected time
from a safe configuration to such a wrong configuration is exponential.

4 Complexity Analysis

This section analyzes the expected holding time and the expected convergence time of PAR.
Due to the lack of space, we present only proof sketches for the analyses of the expected
convergence time. Complete proofs are left to the full paper. Notations and assumptions
used in this paper are summarized in Table 2.

We have three parameters in PAR: the reset values of timers tmax, tvirus, and tepi.
We mentioned that PAR correctly works if tmax and tvirus is sufficiently large and tepi is
sufficiently greater than tvirus. Specifically, we assume tmax ≥ 8δmax(d, d2 logmn3de),
tvirus = tmax/2, and tepi ≥ 4δtmaxdlogne where δ is the maximum degree of the agents and d
is the diameter of population G. (Note that δ is an even number because G is undirected, i.e.
(u, v) ∈ E ⇔ (v, u) ∈ E.) We also assume that tepi is not extremely large: tepi ≤ τeτ/(9n)
where τ = btmax/(8δ)c. Otherwise, even if a leader exists, the leader timeout happens with
non-negligible probability within an exponentially long epidemic interval. This means that
the protocol may not reduce the number of leaders to one at the convergence step. We also
assume n ≥ 3 because PAR is obviously a self-stabilizing leader election protocol when n = 2.
In the rest of this section, we prove the following equations under these assumptions:

maxC∈Call ECTPAR(C,SAR) = O(mn3d+mtepi), (1)
minC∈SAR EHTPAR(C,LE) = Ω(τeτ), (2)

where SAR is the set of configurations we define later. When upper bounds N and ∆ of n
and δ are available and we assign tmax = 8∆ max(N, d12 logNe), tepi = 4∆tmaxdlogNe, then
PAR is an (O(mn3d + mN∆2 logN),Ω(NeN))-loosely-stabilizing leader election protocol.
(Note that this assignment satisfies the above assumptions.)

Y. Sudo, F. Ooshita, H. Kakugawa, and T. Masuzawa 14:9

Table 2 Notations and Assumptions for PAR.

Notations
τ : btmax/(8δ)c

#L(C): the number of leaders in configuration C
#T (C): the number of tokens in configuration C
Lone : {C ∈ Call(PAR) | #L(C) = 1}
Tone : {C ∈ Call(PAR) | #T (C) = 1}
Lexist : {C ∈ Call(PAR) | #L(C) ≥ 1}
Texist : {C ∈ Call(PAR) | #T (C) ≥ 1}
Lhalf : {C ∈ Call(PAR) | ∀v ∈ V, C(v).timerL > tmax/2}
Thalf : {C ∈ Call(PAR) | ∀v ∈ V, C(v).timerT > tmax/2}
Vsame : {C ∈ Call(PAR) | ∃u, ∀v ∈ V, C(u).leader = >

∧ (C(v).timerV > 0⇒ C(u).color = C(v).color)}
Vzero : {C ∈ Call(PAR) | ∀v ∈ V, C(v).timerV = 0}
Ehalf : {C ∈ Call(PAR) | ∀v ∈ V, C(v).token = > ⇒ C(v).timerE > tepi/2}
SAR : Lone ∩ Tone ∩ Lhalf ∩ Thalf ∩ Vsame ∩ (Ehalf ∪ Vzero)

PROPL(i) : C2mτ(i+1) ∈ Lhalf ∨ C2mτi /∈ Lexist

PROPT (i) : C2mτ(i+1) ∈ Thalf ∨ C2mτi /∈ Texist
HALF(i) : HALF(i) = 1 if every agent joins only less than tmax/2 interactions

among Γ2mτi, . . . ,Γ2mτ(i+1)−1, otherwise HALF(i) = 0.
#TI (v, t1, t2) : the number of interactions among Γt1 , . . . ,Γt2 involving the token that agent v has

in configuration Ct1 (The definition is given just after Lemma 6.)

Assumptions
n ≥ 3
tmax ≥ 8δmax(d, d2 logmn3de)
tvirus = tmax/2
4δtmaxdlogne ≤ tepi ≤ τeτ/(9n)

Before proving equations (1) and (2), we define ten sets of configurations:

Lone = {C ∈ Call(PAR) | #L(C) = 1},
Tone = {C ∈ Call(PAR) | #T (C) = 1},
Lexist = {C ∈ Call(PAR) | #L(C) ≥ 1},
Texist = {C ∈ Call(PAR) | #T (C) ≥ 1},
Lhalf = {C ∈ Call(PAR) | ∀v ∈ V, C(v).timerL > tmax/2},
Thalf = {C ∈ Call(PAR) | ∀v ∈ V, C(v).timerT > tmax/2},
Vsame = {C ∈ Call(PAR) | ∃u,∀v ∈ V, C(u).leader = >

∧ (C(v).timerV > 0⇒ C(u).color = C(v).color)},
Vzero = {C ∈ Call(PAR) | ∀v ∈ V, C(v).timerV = 0},
Ehalf = {C ∈ Call(PAR) | ∀v ∈ V, C(v).token = > ⇒ C(v).timerE > tepi/2},
SAR = Lone ∩ Tone ∩ Lhalf ∩ Thalf ∩ Vsame ∩ (Ehalf ∪ Vzero)

where #L(C) and #T (C) denote the number of leaders and tokens in configuration C,
respectively. Note that Vsame is the set of configurations where there exists a leader agent
such that every agent with a virus has the same color as the leader, and Ehalf is the set of
configurations where every token has the epidemic timer whose value is greater than tepi/2.

OPODIS 2015

14:10 Loosely-Stabilizing Leader Election Without Identifiers nor Random Numbers

First, we analyze the expected holding time. Let C0 ∈ SAR and ΞPAR(C0) = C0, C1,
To prove (2), it is sufficient to show that both (i) C0, . . . , C8mδτdlogne ∈ LE and (ii) C8mδτdlogne
∈ SAR hold with probability no less than psuc = 1 − O(nδ logn · e−τ). Then, letting
A = minC0∈SAR EHTPAR(C0,LE), we have A ≥ 8mδτdlognepsuc/(1− psuc) = Ω(τeτ), since
A ≥ psuc(8mδτdlogne+A). We give five conditions such that satisfying all the conditions
leads to above conditions (i) and (ii) (Lemma 10). After that, we analyze the probability that
all the five conditions hold and prove that the probability is no less than 1−O(nδ logn · e−τ).

We define three predicates PROPL(i), PROPT (i) and HALF(i) for any i ≥ 0: PROPL(i) =
1 if C2mτ(i+1) ∈ Lhalf or C2mτi /∈ Lexist, otherwise PROPL(i) = 0; PROPT (i) = 1 if
C2mτ(i+1) ∈ Thalf or C2mτi /∈ Texist, otherwise PROPT (i) = 0; HALF(i) = 1 if every agent
joins less than tmax/2 interactions among Γ2mτi, . . . ,Γ2mτ(i+1)−1, otherwise HALF(i) = 0.
Intuitively, PROPL(i) = 1 (PROPT (i) = 1) means that high value of timerL (timerT) prop-
agates from a leader (a token, respectively) to all the agents during 2mτ interactions, and
HALF(i) = 1 means every agent does not interact so much during 2mτ interactions. Note that
PROPL(i) = 1 (PROPT (i) = 1) unconditionally holds when there exists no leader (token,
respectively) in C2mτi. In addition, we define binary random variable TOL(C0, t1, t2) and
TOT (C0, t1, t2) for integers t1 and t2, (0 ≤ t1 ≤ t2) as follows: TOL(C0, t1, t2) = 1 if there
exists integer i (t1 ≤ i < t2) satisfying #L(Ci) < #L(Ci+1), otherwise TOL(C0, t1, t2) = 0;
TOT (C0, t1, t2) = 1 if there exists integer i (t1 ≤ i < t2) satisfying #T (Ci) < #T (Ci+1),
otherwise TOT (C0, t1, t2) = 0. Intuitively, variable TOL(C0, t1, t2) (variable TOT (C0, t1, t2))
represents whether an interaction among Γt1 , . . . ,Γt2−1 trigger the leader timeout (the token
timeout, respectively) or not.

I Lemma 4. Let C0 ∈ Lhalf ∩ Lexist and ΞPAR(C0) = C0, C1, We have C2mτ ∈ Lhalf
and TOL(C0, 0, 2mτ) = 0 if PROPL(0) = HALF(0) = 1.

Proof. Since there exists a leader in C0, PROPL(0) = 1 assures C2mτ ∈ Lhalf . Assump-
tions C0 ∈ Lhalf and HALF(0) = 1 assures that the leader timeout does not happen by
Γ0, . . . ,Γ2mτ−1. J

I Corollary 5. Let C0 ∈ Lhalf and ΞPAR(C0) = C0, C1, Let k ≥ 1 be any integer.
We have C2mτk ∈ Lhalf and TOL(C0, 0, 2mτk) = 0 if PROPL(i) = HALF(i) = 1 and
C2mτi ∈ Lexist hold for all i = 0, 1, . . . , k − 1.

Once a token exist in the population, the number of tokens never become zero after that.
Hence, we have a simpler lemma as for the token timeout.

I Lemma 6. Let C0 ∈ Thalf ∩ Texist and ΞPAR(C0) = C0, C1, Let k ≥ 1 be any integer.
We have C2mτk ∈ Thalf ∩ Texist and TOT (C0, 0, 2mτk) = 0 if PROPT (i) = HALF(i) = 1
holds for all i = 0, 1, . . . , k − 1.

For agent v ∈ V and integers t1 and t2, (0 ≤ t1 < t2), we define #TI (v, t1, t2) = |{t ∈
[t1 + 1, t2] | vt 6= vt−1}| where vt1 = v, and

vt =

u if Γt−1 = (u, vt−1)
w if Γt−1 = (vt−1, w)
vt−1. otherwise

for t > t1. Random variable #TI (v, t1, t2) has a intuitive meaning if v has a token when
interaction Γt occurs: Intuitively, #TI (v, t1, t2) represents the number of interactions that
the token involves during Γt1 , . . . ,Γt2−1 (or the number of times the token moves during the
period).

Y. Sudo, F. Ooshita, H. Kakugawa, and T. Masuzawa 14:11

I Lemma 7. Let C0 ∈ SAR and ΞPAR(C0) = C0, C1, Let vT be the agent that has
the unique token in configuration C0, and t ≥ 0 be a non-negative integer. Then, we have
Ci ∈ Vsame for all i = 0, 1, . . . , t if we have #TI (vT , 0, t) < tepi/2 and Ci ∈ Tone for all
i = 0, 1, . . . , t.

Proof. Let vL be the unique leader in configuration C0, and we assume that the color of
vL and all agents with viruses are black without loss of generality (Note that C0 ∈ Vsame).
Since C0 ∈ Ehalf ∪ Vzero, we prove the lemma for two cases C0 ∈ Ehalf and C0 ∈ Vzero. In
case C0 ∈ Ehalf , the epidemic timer of the unique token never becomes zero in C0, . . . , Ct
because #TI (vT , 0, t) < tepi/2. Therefore, a new virus is not created during C0, . . . , Ct,
which assures that vl and all agents with viruses are still black in C0, . . . , Ct. Thus, we have
Ci ∈ Vsame for all i = 1, 2, . . . , t. In case C0 ∈ Vzero, the virus creation happens at most once
during C0, . . . , Ct because #TI (vT , 0, t), < tepi/2 and Ci ∈ Tone for all i = 0, 1, . . . , t. If the
virus creation does not happen, Ci ∈ Vzero ∩ Lexist ⊆ Vsame holds for all i = 0, 1, . . . , t. If a
leader meets a token with an epidemic timer of value zero and creates a new virus, the virus
propagates from agent to agent. However, the virus makes all infected agents the same color
as the leader that creates the virus, which assures Ci ∈ Vsame for all i = 0, 1, . . . , t. J

The following lemma is directly obtained from Corollary 5 and Lemma 7.

I Lemma 8. Let C0 ∈ SAR and ΞPAR(C0) = C0, C1, Let vT be the agent that has
the unique token in configuration C0, and k ≥ 0 be any integer. Then, we have C2mτk ∈
Lhalf ∩ Vsame and Ci ∈ Lone for all i = 0, 1, . . . , 2mτk if we have PROPL(j) = HALF(j) = 1
for all j = 0, 1, . . . , k−1, #TI (vT , 0, 2mτk) < tepi/2, and Ci ∈ Tone for all i = 0, 1, . . . , 2mτk .

We define the first round time RTΓ(1) as the minimum t satisfying ∀e ∈ E, 0 ≤ ∃t′ ≤
t, Γt′ = e. For any i ≥ 2, we define the i-th round time RTΓ(i) as the minimum t satisfying
∀e ∈ E, RTΓ(i− 1) < ∃t′ ≤ t, Γt′ = e.

I Lemma 9. Let C0 ∈ SAR and ΞPAR(C0) = C0, C1, Let t ≥ 0 be any integer. We have
Ct ∈ Ehalf ∪ Vzero if we have RTΓ(tvirus) < t, #TI (vT , 0, t) < tepi/2, and #T (Ci) = 1 for all
i = 0, 1, . . . , t.

Proof. If a new virus is not created among Γ0, . . . ,Γt, then all viruses in the initial configu-
ration vanish during the period since each round decreases the maximum value of timerV

by at least one. Thus, Ct ∈ Vzero holds. If some agent v creates a new virus at Γt′ , then
the epidemic timer of the unique token are reset at the same time. (Note that the unique
token always exist in the population by the assumption of the lemma.) Thus, we have
Ct′(v).timerE = tepi. Since #TI (v, t′, t) ≤ #TI (vT , 0, t) < tepi/2, the epidemic timer of the
unique token is no less than tepi − tepi/2 = tepi/2, which means Ct ∈ Ehalf . J

I Lemma 10. Let C0 ∈ SAR and ΞPAR(C0) = C0, C1, Let vT be the agent that has
the unique token in configuration C0. Then, we have both C0, . . . , C8mδτdlogne ∈ LE and
C8mδτdlogne ∈ SAR if the following conditions hold:
(A) #TI (vT , 0, 8mδτdlogne) < tepi/2,
(B) PROPL(i) = 1 for all i = 0, 1, . . . , 4δdlogne − 1,
(C) PROPT (i) = 1 for all i = 0, 1, . . . , 4δdlogne − 1,
(D) HALF(i) = 1 for all i = 0, 1, . . . , 4δdlogne − 1, and
(E) RTΓ(tvirus) < 8mδτdlogne.

Proof. Assigning k = 4δdlogne, we obtain C8mδτdlogne ∈ Thalf and Cj ∈ Tone for all j =
0, 1, . . . , 8mδτdlogne by Lemma 6 and Conditions (C) ad (D). From Lemma 8 and Conditions

OPODIS 2015

14:12 Loosely-Stabilizing Leader Election Without Identifiers nor Random Numbers

(A), (B), and (D), the unique token assures that C8mδτdlogne ∈ Lhalf ∩ Vsame and Cj ∈
Lone holds for j = 0, 1, . . . , 8mδτdlogne. Note that Cj ∈ Lone (j = 0, 1, . . . , 8mδτdlogne)
guarantees not only that the number of leaders is one, but also that the unique leader is stable
(i.e. ∃v ∈ V,∀i ∈ [0, 8mδτdlogne], Ci(v).leader = >) because PAR does not move the leader
role from agent to agent at any one interaction. Hence, we have C0, . . . , C8mδτdlogne ∈ LE .
We have C8mδτdlogne ∈ Ehalf ∪ Vzero from Lemma 9, Condition (A), Condition (E), and
Cj ∈ Tone for all j = 0, 1, . . . , 8mδτdlogne. Thus, we have shown that C8mδτdlogne ∈
Lone ∩ Tone ∩ Lhalf ∩ Thalf ∩ Vsame ∩ (Ehalf ∪ Vzero) ⊆ SAR J

I Lemma 11. Let C0 ∈ Tone and ΞPAR(C0) = C0, C1, Let vT be the agent that has the
unique token in configuration C0. Then, we have Pr(#TI (vT , 0, 8mδτdlogne) < tepi/2) ≥
1− e−δτ .

Proof. For every i ≥ 0, the token joins interaction Γi with probability at most δ/m re-
gardless of the location of the token in Ci because any agent has at most δ edges. Thus,
#TI (vT , 0, 8mδτdlogne) is bounded by binomial random variable X ∼ B(8mδτdlogne, δ/m).
We have

Pr(X ≥ tepi/2) ≤ Pr(X ≥ 16δ2τdlogne) ∵ tepi ≥ 32δ2τdlogne
= Pr(X ≥ 2E[X])

≤ e−E[X]/3 (By Chernoff Bound of Lemma 2 with κ = 1)

= e−8δ2τdlogne/3

≤ e−δτ ,

which gives the lemma. J

I Lemma 12. Pr(PROPL(i) = 1) ≥ 1− 2ne−τ for any i ≥ 0.

Proof. We assume i = 0 without loss of generality, and prove Pr(PROPL(0) = 1) ≥ 1−2ne−τ .
We have PROPL(0) = 1 by the definition of PROPL if no leader exists in C0. Thus, it
suffices to show Pr(C2mτ (v).timerL > tmax/2) ≥ 1 − 2e−τ for any agent v ∈ V in case
C0 ∈ Lexist. Let vL be a leader agent in C0. We denote the shortest path from vL to v by
(v0, v1, . . . , vs) where v0 = vL, vs = v, 0 ≤ s ≤ d and (vj−1, vj) ∈ E for all j = 1, 2, . . . , s.
For any t = 0, 1, . . . , 2mτ , we define vhead(t) as vh with maximum h ∈ [1, s] such that there
exist t1, t2, . . . , th satisfying 0 ≤ t1 < t2 < · · · < th < t and Γtj ∈ {(vj−1, vj), (vj , vj−1)} for
j = 1, 2, . . . , h. We define vhead(t) = v0 if such h does not exist. Intuitively, vhead(t) is the
head of the agents in path (v0, v1, . . . , vl) to which a large value of timerL is propagated
from vL to v. (Remind that vL resets timerL to tmax.) We define J(t) as the number of
integers j ∈ [0, . . . , 2mτ − 1] such that vhead(j) joins interaction Γj . Intuitively, J(t) is the
number of interactions that the head agent joins among Γ0, . . . ,Γ2mτ−1. Obviously, we have
Ct(vhead(t)).timer ≥ tmax − J(t) for any t = 0, 1, . . . , 2mτ .

In what follows, we prove Pr(vhead(2mτ) = v) ≥ 1 − e−τ and Pr(J(2mτ) < tmax/2) ≥
1 − e−τ , which give Pr(C2mτ (v).timer > tmax/2) ≥ 1 − 2e−τ . For any j = 1, . . . , s, a pair
vj−1 and vj interacts with probability 2/m at each interaction. Hence, we can say each
interaction makes vhead forward with probability 2/m. Therefore, by letting Z be a binomial

Y. Sudo, F. Ooshita, H. Kakugawa, and T. Masuzawa 14:13

random variable such that Z ∼ B(2mτ, 2/m), we have

Pr(vhead(2mτ) = v) = 1− Pr(Z < s)
≥ 1− Pr(Z < d)

≥ 1− Pr
(
Z <

1
4 ·E[Z]

)
∵ d ≤ τ = 1

4 ·E[Z]

≥ 1− e−9E[Z]/32 (By Chernoff bound of Lemma 3 with κ = 3
4)

> 1− e−τ .

The probability that vhead(t) joins interaction Γt is at most δ/m regardless of t. Hence, by
letting Z ′ be a binomial random variable such that Z ′ ∼ B(2mτ, δ/m), we have

Pr(J(2mτ) < tmax/2) > 1− Pr(Z ′ ≥ tmax/2)
> 1− Pr(Z ′ ≥ 2E[Z ′])

> 1− e−E[Z′]/3 (By Chernoff bound of Lemma 2 with κ = 1)

= 1− e−2δτ/3

> 1− e−τ . ∵ δ ≥ 2

Thus, we have shown Pr(C2mτ (v).timerL > tmax/2) ≥ 1− 2e−τ . J

I Lemma 13. Pr(PROPT (i) = 1) ≥ 1− 2ne−τ for any i ≥ 0.

Proof. The same argument as the proof of Lemma 12 gives the lemma. J

I Lemma 14 (in [14]). The probability that every v ∈ V interacts only less than tmax/2
times during 2mτ interactions is at least 1− ne−τ .

Proof. For any v ∈ V and i ≥ 0, v joins interaction Γi with probability at most δ/m. Thus,
the number of interactions v joins during the 2mτ interactions is bounded by binomial
random variable X ∼ B(2mτ, δ/m). Applying Chernoff bound of Lemma 2 with κ = 1, we
have

Pr(X ≥ tmax/2) ≤ Pr(X ≥ 2E[X]) ∵ tmax ≥ 8δτ

≤ e−E[X]/3

= e−2δτ/3 (By Chernoff Bound of Lemma 2 with κ = 1)
≤ e−τ . ∵ δ ≥ 2

Summing up the probabilities for all v ∈ V gives the lemma. J

I Lemma 15 (in [14]). Pr(HALF(i) = 1) ≥ 1− ne−τ for any i ≥ 0.

Proof. Each interaction is independent. Thus, Lemma 14 gives the lemma. J

I Lemma 16 (in [14]). Pr(RTΓ(i) < im(1 + dlogne)) ≥ 1− ne−i/4 holds for any i ≥ 1.

Proof. The proof in [14] can be used with slight modification. J

I Lemma 17. Pr(RTΓ(tvirus) < 8mδτdlogne) ≥ 1− ne−δ(τ+1) holds.

OPODIS 2015

14:14 Loosely-Stabilizing Leader Election Without Identifiers nor Random Numbers

Proof. By Lemma 16, we have

Pr(RTΓ(tvirus) < 8mδτdlogne) ≥ Pr(RTΓ(4δ(1 + τ)) < 8mδτdlogne)
≥ Pr(RTΓ(4δ(1 + τ)) < 4mδ(1 + τ)(1 + dlogne))

≥ 1− ne−δ(τ+1)

where we use tvirus ≤ 4δ(1+τ) for the first inequality, and use (1+τ)(1+dlogne) ≤ 2τdlogne
when τ ≥ 3 and n ≥ 3 for the second inequality. (Note that τ ≥ d2 logmn3de ≥ 10.) J

I Lemma 18. minC∈SAR EHTPAR(C,LE) = Ω(τeτ).

Proof. Probability psuc, discussed in the beginning of this section, is at least 1 − e−δτ −
4δdlogne(2ne−τ + 2ne−τ + ne−τ)− ne−δ(τ+1) ≥ 1− 22nδdlognee−τ by Lemmas 10, 11, 12,
13, 15, and 17, which leads to the lemma. J

Next, we analyze the expected convergence time.

I Lemma 19. maxC∈Call ECTPAR(C,SAR) = O(mtepi +mn3d).

Proof Sketch. In an execution of PAR , the population converges to SAR starting from any
configuration through the following convergence steps: (i) a token is created even when no
token exists, (ii) the number of tokens become one, i.e. the unique token is elected, (iii) all
viruses vanish from the population, (iv) the epidemic timer of the unique token becomes zero,
(v) the unique token meets a leader and a new virus is created, (vi) a newly created virus
propagates to the whole population and changes all agents to the ones with the same color
(Let the color be black without loss of generality), (vii) the epidemic timer of the unique
token becomes zero, (viii) the unique token meets a leader and a new virus is created, (ix) a
newly created virus propagates to the whole population and makes all agents white, which
kills all leaders other than the leader that creates the virus, and the population enters SAR.
Steps (ii), (iv) and (vii) require the dominant number of interactions. We will prove that
the expected number of interactions until two tokens meet is O(mn2d) in Lemma 20. The
number of tokens is at most n, and the token timeout, which is the only event that increases
the number of tokens, rarely happens once a token exists. Hence, the expected number of
interactions Step (ii) requires is O(mn3d). The expected number of interactions Step (iv) and
(vii) require is O(mtepi) because the epidemic timer decreases by one as the token joins an
interaction, and the unique token joins each interaction Γt with probability at least 2/m. J

I Lemma 20. Let C0 be a configuration where two or more tokens exist. In execution
ΞPAR(C0), the expected number of interactions until two tokens meet is at most mn2d/2.

Proof. Let u, v ∈ V be the distinct two agents both of which have tokens in C0. We analyze
the expected number of interactions until the two tokens meet. (One of the two tokens
may vanish by meeting another token, however, this just reduces the expected number of
interactions until any two tokens meet.) Consider the pair of random walks by the two tokens
on population G, i.e. a Markov chain (ut, vt) in which the states of the chain are pairs of the
agents in G. We denote (a, b)→ (c, d) for agents a, b, c, d ∈ V if (a, c) ∈ E ∧ b = d, or (b, d) ∈
E ∧a = c, or (a, b) ∈ E ∧a = d∧ b = c. For any two states x and y, the transition probability
Px,y of the chain is given by Px,y = 2/m if x → y, Px,y = 1− (2/m)|{z | x → z}| if x = y,
otherwise Px,y = 0. The symmetry structure of the chain (Px,y = Py,x) gives

∑
x Px,y = 1

for all state y. Thus, π = (π(x1), π(x2), . . . , π(xn(n−1))) = {n(n − 1)}−1(1, 1, . . . , 1) is the
stationary distribution of the chain (πP = π) where x1, x2, . . . , xn(n−1) are all the states of

Y. Sudo, F. Ooshita, H. Kakugawa, and T. Masuzawa 14:15

the chain (i.e. all pairs of token locations). We denote the expected number of transition steps
from state x to state y by hx,y. We have hy,y = 1/π(y) = n(n− 1) for any state y. We also
have hy,y = 1+

∑
y→z(2/m) ·hz,y. Hence, we obtain

∑
y→z hz,y = n(n−1)m/2−m/2. Thus,

we have hx,y ≤ mn2/2 for any states x and y satisfying x → y. Let w0, w1, . . . , wl (w0 =
u,wl = v, l ≤ d) be the shortest path from u to v. The expected time until the two token
meet is bounded by

(∑l−2
i=0 h(wi,wl),(wi+1,wl)

)
h(wl−1,wl),(wl,wl−1) ≤ mn2d/2. J

Lemmas 18 and 19 gives the following theorem.

I Theorem 21. Protocol PAR is an (O(mtepi + mn3d),Ω(τeτ))- loosely-stabilizing leader
election protocol for arbitrary graphs G when tmax ≥ 8δmax(d, d2 logmn3de), tvirus = tmax/2,
and 4δtmaxdlogne ≤ tepi ≤ τeτ/(9n).

Therefore, given an upper bounds N of n and upper bound ∆ of δ, we have a (O(mn3d+
mN∆2 logN),Ω(NeN)) loosely-stabilizing leader election protocol for arbitrary graphs if we
assign tmax = 8∆ max(N, d12 logNe), tvirus = tmax/2, tepi = 4∆tmaxdlogNe.

5 Conclusion

We have presented a loosely-stabilizing leader election protocol for arbitrary undirected graphs
in the population protocol model. It does not use agent identifiers nor random numbers
unlike our previous protocols. Given upper bounds N of n and ∆ of δ, the population reaches
a safe configuration within O(mn3d+mN∆2 logN) expected interactions, and after that,
keeps a unique leader for Ω(NeN) expected interactions. The restriction to undirected graph
is only for simplicity of complexity analysis, and PAR works on arbitrary directed graphs
without modifications.

References
1 D. Angluin, J Aspnes, Z. Diamadi, M.J. Fischer, and R. Peralta. Computation in networks

of passively mobile finite-state sensors. Distributed Computing, 18(4):235–253, 2006. doi:
10.1007/s00446-005-0138-3.

2 D. Angluin, J. Aspnes, and D. Eisenstat. Fast computation by population protocols with
a leader. In DISC, pages 61–75, 2006.

3 D. Angluin, J. Aspnes, M. J Fischer, and H. Jiang. Self-stabilizing population protocols.
ACM Transactions on Autonomous and Adaptive Systems, 3(4):13, 2008.

4 J. Beauquier, P. Blanchard, and J. Burman. Self-stabilizing leader election in population
protocols over arbitrary communication graphs. In OPODIS, pages 38–52, 2013.

5 J. Beauquier, J. Burman, L. Rosaz, and B. Rozoy. Non-deterministic population protocols.
In OPODIS, pages 61–75, 2012.

6 S. Cai, T. Izumi, and K. Wada. How to prove impossibility under global fairness: On space
complexity of self-stabilizing leader election on a population protocol model. Theory of
Computing Systems, 50(3):433–445, 2012.

7 D. Canepa and M. G. Potop-Butucaru. Stabilizing leader election in population protocols,
2007. URL: http://hal.inria.fr/inria-00166632.

8 M. J. Fischer and H. Jiang. Self-stabilizing leader election in networks of finite-state anony-
mous agents. In OPODIS, pages 395–409, 2006. doi:10.1007/11945529_28.

9 T. Izumi. On space and time complexity of loosely-stabilizing leader election. In SIROCCO,
2015.

10 O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Mediated population protocols. Theo-
retical Computer Science, 412(22):2434–2450, 2011.

OPODIS 2015

http://dx.doi.org/10.1007/s00446-005-0138-3
http://dx.doi.org/10.1007/s00446-005-0138-3
http://hal.inria.fr/inria-00166632
http://dx.doi.org/10.1007/11945529_28

14:16 Loosely-Stabilizing Leader Election Without Identifiers nor Random Numbers

11 M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005.

12 R. Mizoguchi, H. Ono, S. Kijima, and M. Yamashita. On space complexity of self-stabilizing
leader election in mediated population protocol. Distributed Computing, 25(6):451–460,
2012.

13 Y. Sudo, J. Nakamura, Y. Yamauchi, F. Ooshita, H. Kakugawa, and T. Masuzawa. Loosely-
stabilizing leader election in a population protocol model. Theoretical Computer Science,
444:100–112, 2012.

14 Y. Sudo, F. Ooshita, H. Kakugawa, and T. Masuzawa. Loosely-stabilizing leader election
on arbitrary graphs in population protocols. In OPODIS, pages 339–354. Springer, 2014.

15 X. Xu, Y. Yamauchi, S. Kijima, and M. Yamashita. Space complexity of self-stabilizing
leader election in population protocol based on k-interaction. In SSS, pages 86–97, 2013.

A Heap-Based Concurrent Priority Queue with
Mutable Priorities for Faster Parallel Algorithms∗

Orr Tamir1, Adam Morrison2, and Noam Rinetzky3

1 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
ortamir@post.tau.ac.il

2 Computer Science Department, Technion – Israel Institute of Technology,
Haifa, Israel
mad@cs.technion.ac.il

3 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
maon@cs.tau.ac.il

Abstract
Existing concurrent priority queues do not allow to update the priority of an element after its
insertion. As a result, algorithms that need this functionality, such as Dijkstra’s single source
shortest path algorithm, resort to cumbersome and inefficient workarounds. We report on a
heap-based concurrent priority queue which allows to change the priority of an element after
its insertion. We show that the enriched interface allows to express Dijkstra’s algorithm in a
more natural way, and that its implementation, using our concurrent priority queue, outperform
existing algorithms.

1998 ACM Subject Classification D.1.3 [Programming Techniques]:Concurrent Programming

Keywords and phrases priority queues, concurrent data structures, changeKey(), Dijkstra’s
single-source shortest path algorithm

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.15

1 Introduction

A priority queue data structure maintains a collection (multiset) of items which are ordered
according to a priority associated with each item. Priority queues are amongst the most
useful data structures in practice, and can be found in a variety of applications ranging from
graph algorithms [21, 5] to discrete event simulation [8] and modern SAT solvers [4]. The
importance of priority queues has motivated many concurrent implementations [1, 2, 11,
15, 16, 17, 23, 24, 25, 26]. These works all focus on the performance of two basic priority
queue operations, which consequently are the only operations provided by concurrent priority
queues: insert(d, p), which adds a data item d with priority p, and extractMin(), which
removes and returns the highest-priority data item.1

It turns out, however, that important applications of priority queues, such as Dijkstra’s
single-source shortest path (SSSP) algorithm [5, 3], need to update the priority of an item
after its insertion, i.e., mutable priorities. Parallelizing these algorithms requires working
around the lack of mutable priorities in today’s concurrent priority queues by inserting new

∗ This work was funded by EU FP7 project ADVENT (308830), ERC grant agreement no. [321174-VSSC],
by Broadcom Foundation and Tel Aviv University Authentication Initiative, by Israel Science Foundation
(grants 652/11, 1227/10 and 1749/14), and by Yad HaNadiv foundation.

1 In this paper, we consider lower p values to mean higher priorities.

© Orr Tamir, Adam Morrison, and Noam Rinetzky;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 15; pp. 15:1–15:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 A Heap-Based Concurrent Priority Queue with Mutable Priorities

items instead of updating existing ones, and then identifying and ignoring extracted items
with outdated priorities [1] – all of which impose overhead. Sequential heap-based priority
queues support mutable priorities [3], but concurrent heaps have been abandoned in favor of
skiplist-based designs [17] whose extractMin() and insert() are more efficient and scalable.
Thus, the pursuit of performance for the basic priority queue operations can, ironically, end
up leading to worse overall performance for the parallel client application.

The principle driving this work is that we should design concurrent data structures with
the overall performance of the client as the goal, even if this entails compromising on the
performance of the individual data structure operations. We apply this principle to priority
queues by implementing Champ, a Concurrent Heap with Mutable Priorities, which provides
a changeKey() operation to update priorities of existing items. We use Champ to implement
a parallel version of Dijkstra’s SSSP algorithm, and our experimental evaluation shows that,
as parallelism increases, Champ’s efficient changeKey() operation improves the client overall
performance by saving it from doing wasted work – the overhead that arises when working
around the lack of changeKey() support in prior designs. This occurs despite the fact that
Champ’s extractMin() and insert() operations do not scale as well as in prior designs.

Contributions. To summarize, we make the following technical contributions:
1. We present Champ, a linearizable lock-based concurrent priority queue that supports

mutable priorities. Champ is an adaptation of the concurrent heap-based priority queue
of [11] to support the changeKey() operation.

2. We convert an existing parallel SSSP algorithm to utilize the changeKey() operation.
3. We implement and evaluate our algorithms.

Arguably, the more important contribution of this paper is the conceptual one: A call to
pay more attention in the design of data structures and interfaces to the overall performance
and programmatic needs of the client applications than to the standalone scalability of the
supported operations, as at the end, the client is always right.

2 Priority Queues with Mutable Priorities

A priority queue with mutable priorities (PQMP) is a data structure for maintaining a multiset
A of elements, where each element is a pair comprised of a data item d and a value k called
priority.2 A PQMP supports the following operations:

extractMin(): Removes and returns the element which has the highest priority in
the queue.1 In case multiple elements have the highest priority, one of them is chosen
arbitrarily. If the queue is empty, a special value is returned.
peek(): Acts similarly to extractMin(), except that the chosen element is not removed.
insert(d, k): Inserts into the queue an element comprised of a given data item d and
priority k, and returns a unique tag e identifying the element. If the queue has reached
its full capacity, the element is not inserted, and a special value is returned.
changeKey(e, k): Sets the priority of element e to k. If e is not in the queue, the operation
has no effect. (The latter behavior was chosen for the sake of simplicity. An alternative,
could have been, e.g., to return a special value or to raise an exception.)

The use of tags to identify elements in the queue, instead of their data items, as done,
e.g., in [3, Ch. 6.5], allows to store in queue multiple elements with the same data item.

2 The term key is sometimes used instead of priority.

O. Tamir, A. Morrison, and N. Rinetzky 15:3

Element [0.. Length] A
int Last

Lock [0.. Length] L
class Element

Priority key
Data data
int pos

bool up

Figure 1 The data representation of the heap.

swap(i,j)
temp = A[i]
A[i] = A[j]
A[j] = temp
A[i]. pos = i
A[j]. pos = j

leftChild (i)
return 2*i

rightChild (i)
return 2*i+1

parent (i)
return b i/2 c

Figure 2 Auxiliary procedures.

3 A Sequential Heap with Mutable Priorities

PQMPs can be implemented with a binary heap data structure. A binary heap is an almost
complete binary tree that satisfies the heap property: for any node, the key of the node is less
than or equal to the keys of its children, if they exist [3]. Binary heaps are often represented
as arrays: the root is located at position 1, and the left and right children of the node at
location i are located at positions 2i and 2i + 1, respectively. Position 0 is not used. Heaps
support extractMin(), peek(), insert(), and changeKey() operations that map naturally
to respective priority queue operations, if we use elements’ priorities as keys.

In the following, we describe a sequential implementation of an array-based heap. The
sequential implementation is fairly standard. Thus, our description mainly focuses on certain
design choices that we made in the concurrent algorithm which can be explained in the
simpler sequential settings.

Fig. 1 defines the type Element, and shows the data representation of a heap using two
global variables: An array A and an integer Last. (Array L and the up field in elements are
used only by the concurrent algorithm.) A heap with maximal capacity Length is comprised
of an array A of pointers to Elements with Length+1 entries and a counter Last which
records the number of elements in the heap. We say that an element is in the heap if some
entry in A points to it. We refer to the element pointed to by A[1] as the root element.

An element is comprised of three fields: key keeps the element’s priority, data stores
an application-specific data item, and pos records the position of the element in the heap:
Given an element e, the position of an element e is the index of an entry in A which points
to e, or −1 if e is not in the heap, i.e., if e.pos 6= −1 then A[e.pos] = e.

Figure 3 shows the pseudocode of a sequential heap. The operations use the auxiliary
functions defined in Fig. 2. Each heap operation consists of two parts. First, it inspects,
adds, removes, or changes an element. Then, because this change may violate the heap
property, it heapifies the heap in order to restore the heap property. In the following, we
describe how heap operations are implemented and then how heapifying is done. We use the
·seq subscript to distinguish between the sequential operations and the concurrent ones.

peekseq(): Returns the root element or null if the heap is empty.
insertseq(d, k): Returns null if the heap is full. Otherwise, it allocates and inserts a new
element into the heap.3 The element is placed at the Last + 1 entry of A, which is at
the lowest level of the heap, right after the last occupied position in the array. After the

3 In this paper, we sidestep the difficult problem of concurrent safe memory reclamation [19, 18, 9], and
assume that memory is recycled either by the client or by an underlying garbage collector [12].

OPODIS 2015

15:4 A Heap-Based Concurrent Priority Queue with Mutable Priorities

peekseq ()
return A[1]

extractMin seq ()
min = A[1]
ls = Last
if (ls = 0)

return null
min.pos = -1
if (ls = 1)

A[1] = null
else

A[1] = A[ls]
A[1]. pos = 1
A[ls] = null
if (ls = 2)

Last = 1
else

Last = ls - 1
bubbleDown seq (A[1])

return min

insert seq (key , data)
if (Last = Length)

return null
e = new Element (

key , data , Last +1)
if(Last = 0)

A[1] = e
Last = 1
unlock (L[1])

else
lock(L[Last + 1])
e.up = true
A[Last + 1] = elm
Last = Last + 1
unlock (L[1])
bubbleUp (e)

return e

changeKey seq (e, k)
if (e.key 6∈{1.. Last })

return false
if (k < e.key)

e.key = k
bubbleDown seq (e)

else if (k > e.key)
e.key = k
bubbleUp seq (e)

return true

bubbleDown seq (e)
min = e.pos
do

i = min
l = leftChild (i)
r = rightChild (i)
if (l ≤ Last)

if (A[l]. key < A[i]. key)
min = l

if (A[r] 6= null and
A[r]. key < A[min]. key)

min = r
if (i 6= min)

swap(i, min)
while (i 6= min)

bubbleUp seq (e)
i = e.pos
do

par = parent (i)
if(A[i]. key < A[par]. key)

swap(i, par)
i = par

while (i = par)

Figure 3 Pseudo code of a sequential heap with mutable priorities. Length-1 is the capacity of
the heap. We assume that changeKeyseq(e, k) is invoked with e6=null.

operation completes its second phase (heapify), it returns a pointer to the new element
as its tag.
extractMinseq(): Returns null if the heap is empty. Otherwise, it replaces the root
element with the rightmost element in the tree, which is the last occupied position in the
array. After the second part (heapify), the operation returns the previous root element.
changeKeyseq(): Changes the key of the specified element e to k, if e is in the heap. Note
that position field of an element is used to locate the entry in A pointing to it.

The second part of the operation restores the heap property by heapifying: In
extractMinseq(), we use bubbleDownseq(), which shifts the root element whose key might
become larger than its children down in the heap until the heap property is restored. In
insertseq(), we use bubbleUpseq(), which carries an element up in the heap until its key is
larger than that of its parent. Finally, changeKeyseq() uses bubbleDownseq() or bubbleUpseq()
as appropriate. Note that when an element is being swapped, its position field is updated
too and that when an element is removed from the heap, its position is set to −1.

4 Champ: A Concurrent Heap with Mutable Priorities

In this section, we present a concurrent PQMP data structure based on Champ, a concurrent
heap with mutable priorities. At its core, Champ is an array-based binary heap, very much
like the sequential algorithm described in the previous section. Synchronization is achieved
using a fine-grained locking protocol, derived from the one used in [11] (see Sec. 4.3.)

Champ is implemented using the global variables shown in Fig. 1. Variables A and Last
play the same role as in the sequential setting (see Sec. 3.) Variable L is an array of locks
which contains one lock for every entry in A. Intuitively, lock L[i] is used to synchronize

O. Tamir, A. Morrison, and N. Rinetzky 15:5

extractMin ()
Lock(A[1])
min = A[1]
ls = Last
if (ls = 0)

unlock (L[1])
return null

A[1]. pos = -1
if (ls = 1)

Last = 0
A[1] = null
unlock (L[1])

else
lock(L[ls])
A[1] = A[ls]
A[1]. pos = 1
A[ls] = null
Last = ls - 1
unlock (L[ls])
if (ls = 2)

unlock (L[1])
else

bubbleDown (A[1])
return min

insert (key , data)
lock(L[1])
if (Last = Length)

unlock (L[1])
return null

e = new Element (
key , data , Last +1)

if(Last = 0)
e.up = false
A[1] = e
Last = 1
unlock (L[1])

else
lock(L[Last + 1])
e.up = true
A[Last + 1] = e
Last = Last + 1
unlock (L[1])
bubbleUp (e)

return e

changeKey (e, k)
while (lockElement (e))

if (e.up)
unlock (L[e.pos])

else
if (k < e.key)

e.up = true
e.key = k
bubbleUp (e)

else if (k > e.key)
e.key = k
bubbleDown (e)

else
unlock (L[e.pos])

return

peek ()
lock(L[1])
ret = A[1]
unlock (L[1])
return ret

Figure 4 The pseudo code of Champ, a concurrent priority queue with updatable key based on
a binary heap. The concurrent heapifying procedures are presented in Fig. 5. Auxiliary procedures,
e.g., swap(), are defined in Fig. 2.

accesses to the i-th entry of A and to the element A[i] points to. Lock L[1], which we refer
to as the root lock, is also used to protect the Last variable. A thread is allowed to modify a
shared memory location only under the protection of the appropriate lock. Read accesses to
the entries of array A and to variable Last should also be protected by a lock. In contrast,
fields of elements can be read without a lock.3

Figures 4 and 5 show the pseudocode of our concurrent heap. Champ implements the
interface of a PQMP. As expected, the concurrent operations provide the same functionality
as the corresponding sequential counterparts, and, like them, also consist of two stages: First,
every operation grabs the locks it requires and inspects, adds, removes, or changes the shared
state. Then, it invokes bubbleUp(e) or bubbleDown(e) to locally restore the heap property.

The more interesting aspects of the first part of the operations are summarized below:
peek(): Although peek() only reads a single memory location, it starts by taking the
root lock. This is required because another thread might perform an insert() operation
concurrently, which could lead to a state where the key of the root is not lower than that
of its children. Returning such a root element would violate linearizability (see Sec. 4.1).
insert(), extractMin(), and changeKey(): The first part of these operations is the same
as that of their sequential counterparts, but with two exceptions:
Element locking. The operations begin by taking locks. changeKey(e, k) takes the lock

of the array entry pointing to e. (We explain the reason for using a loop later on.) All
other operations grab the root lock. Also, the operations avoid calling the heapifying
procedures in cases where the global heap property is guaranteed to hold after the
change, e.g., when an element is inserted into an empty heap or when the last element
in the heap is extracted.

Signaling upward propagation. insert(e) and changeKey(e) set the up flag of e before
invoking bubbleUp(e). This indicates that e is being propagated up the heap, which
help synchronize concurrent bubbleUp() operations, as we shortly explain.

OPODIS 2015

15:6 A Heap-Based Concurrent Priority Queue with Mutable Priorities

bubbleDown (\ elm)
min = e.pos
do

i = min
l = LeftChild (i)
r = RightChild (i)
if (l ≤ Last)

lock(L[l])
lock(L[r])
if (A[l] 6= null)

if (A[l]. key < A[i]. key)
min = l

if (A[r] != null and
A[r]. key < A[min]. key)

min = r
if (i 6= min)

if(i == l)
unlock (L[r])

else
unlock (L[l])

swap(i, min)
unlock (L(i))

while (i 6= min)
unlock (L[i])

lockElement (\ elm)
while (true)

i = e.pos
if (i == -1)

return false
if (trylock (L[i]))

if (i == e.pos)
return true

unlock (L[i])

bubbleUp (\ elm)
i = e.pos
iLocked = true
parLocked = false
while (1 < i)

par = Parent (i)
parLocked = tryLock (L[par])
if (parLocked)

if (!A[par]. up)
if(A[i]. key < A[par]. key)

swap(i, par)
else

A[i]. up = false
unlock (L[i])
unlock (L[par])
return

else
unlock (L[par])
parLocked = false

unlock (L[i])
iLocked = false
if (parLocked)

i = par
iLocked = true

else
iLocked = lockElement (e)
i = e.pos

e.up = false
if (iLocked)

unlock (L[e.pos])

Figure 5 Concurrent heapifying procedures.

The second part of every operation locally restores the heap property using bubbleUp()
and bubbleDown(). The two shift elements up, respectively, down the heap until the heap
property is locally restored: bubbleUp(e) stops when the key of e is bigger than that of its
parent. bubbleDown(e) stops when the key of e is smaller than the keys of its children. Both
operations stop if they detect that e was extracted from the heap.

Both bubbleDown() and bubbleUp() employ the hand-over-hand locking protocol [13]
(also known as the tree-locking protocols), but they acquire the locks in different orders:
bubbleDown() takes the lock of the children of a node e only after it holds the lock of e while
bubbleUp() takes the lock of the parent of e only when it has e’s lock. The hand-over-hand
protocol ensures deadlock freedom when all the operations take their locks in the same
order. However, if different orders are used, deadlock might occur. To prevent deadlocks,
bubbleDown() takes locks using tryLock() instead of lock(), and in case the needed lock is
not available it releases all its locks and then tries to grab them again.

An interesting case may happen when bubbleUp(e) attempts to get a hold of e’s lock
after its release: It is possible that the up-going element e have been pulled upwards by
a concurrent down-going bubbleDown() operation. In fact, the element might have been
removed from the heap all together. The auxiliary procedure lockElement(e) is thus used
to locate a possibly relocated element. It repeatedly finds e’s position in A using its position
field and tries to lock the corresponding entry. lockElement(e) loops until it either obtained
the lock protecting e’s position, or until it finds that e has been extracted from the heap,
indicated by having value −1 in its position field.

There is a tricky synchronization scenario that might occur when a bubbleUp(e) operation
t1 manages to lock an entry i pointing to an up-going element e′. (This might occur if the

O. Tamir, A. Morrison, and N. Rinetzky 15:7

operation t2 bubbling-up e′ has not managed to bring e′ to a position where its value is
bigger than that of its parent, but had to release its locks to prevent a possible deadlock.) If
e’s key is bigger than that of e′, t1 might come to the wrong conclusion that it has managed
to restore the heap-property and terminate. However, the property was restored with respect
to an element, e, which is not in its “right” place. To ensure that such a scenario does not
happen, bubbleUp(e) releases its lock when it detects that the parent of the element it is
propagating is also being bubbled-up, indicated by its up flag.

I Note. Our algorithm supports concurrent priority changes of a given element e. These
operations synchronize using the loop at the entry to changeKey(): A thread can enter the
loop only if it manages to lock the position of element e. In case it detects an ongoing
bubbleUp(e) operation, it releases the lock and retries. (Note that the lock cannot be
obtained if there is an ongoing bubbleDown(e) operation). This ensures that there is only one
thread that changes the key of an element. We note that in certain clients, e.g., Dijkstra’s
SSSP algorithm, the client threads prevent concurrent priority changes of a given element.
In this cases, e.up is always false when we enter the loop.

4.1 Linearizability
Champ is a linearizable [10] priority queue with mutable keys. Intuitively, linearizability
means that every operation seems to take effect instantaneously at some point between its
invocation and response. In our case, these linearization points are as follows:
1. peek(), extractMin(), and insert() when invoked on a heap containing two or less

elements: The point in time when the operation obtained the root lock.
2. insert() and changeKey(e) which decreased the priority of e: The linearization point

happens during the call to bubbleUp(e). It is placed at the last configuration in which
an entry in A pointed to e before its up field was set to false.

3. changeKey(e) which did not not find e in the heap, increased its priority or did not
change it: The point in time in which the call to lockElement(e) returned.

Technically, the proof of linearization rests upon the following invariants:
(i) No element is stored in position 0.
(ii) The entries A[1]..A[Last] contain non-null values.
(iii) The value of every entry A[Last+1]· · · A[Length] is null, except perhaps during the

first part of insert() when A[Last + 1] might have the same non-null value as A[1].
(iv) The position field pos of an element agrees with its position in the heap, i.e., if

e.pos = i ∧ 0 < i then A[e].pos = i, except perhaps during a swap() involving A[i].
(v) If the i-th entry in the heap and its parent j = bi/2c are not locked and, in addition,

A[i].up = false and A[j].up = false then A[j].key ≤ A[i].
Most of the invariants are quite simple and rather easy to verify, in particular, when

we recall that the global variables and the elements can be modified only when the thread
holds the lock which protects both the entry and the element it points to. Note that if an
element is pointed to by two entries then the same operation holds the two locks protecting
these entries. The only time a thread may modify a field of an object without holding the
respective lock is when it sets off the up field of an element which was removed from the
heap. The key invariant is (v). It provides a local analogue of the heap property. Intuitively,
it says that if an element violates the heap property then there exists an ongoing operation
which is “responsible” for rectifying the violation. Furthermore, any apparent inconsistency
that might occur due to the violation can be mitigated by the placement of the linearization
point of the responsible operation in the global linearization order. For example, we can

OPODIS 2015

15:8 A Heap-Based Concurrent Priority Queue with Mutable Priorities

justify an extractMin() operation which returns an element e although the heap contains a
non-root element e′ which has a lower key than e by placing its linearization point before
that of the operation responsible for inserting e′ or reducing its key. Invariant (v) ensures
that such an operation is still active when extractMin() takes possession of the root lock.

4.2 DeadLock-Freedom
Champ is deadlock-free. All the operations except bubbleUp() capture their locks according
to a predetermined order, thus preventing deadlock by construction. bubbleUp() uses
tryLock(), and releases its locks if the latter fails, thus avoiding deadlocks all together.

4.3 Comparison with Hunt’s Algorithm [11]
Our priority queue is based on concurrent heap of Hunt et al. [11], as both use fine-
grained locking to synchronize bottom-up insert()s and top-down extractMin()s. The
main difference is the addition of the changeKey() operation. There are also some subtle
differences in certain key aspects of the implementation.

We use a different technique to prevent deadlocks between concurrent up-going bubbleUp()s
and down-going bubbleDown()s: In [11], insert()s and extractMin()s takes locks in the
same order. Specifically, they lock the parent before its child. Deadlock is prevented by
having insert()s release their locks before they climb up the heap. In our algorithm,
insert() and changeKey() take their locks in reverse order, thus possibly saving some
redundant unlock() and relock() operations. Deadlock is prevented using tryLock()s
operations as explained in Sec. 4.2.
In both techniques, an element e bubbled up the heap might change its position due
to a down-going operation. In [11], the up-going operation propagating e finds it by
climbing up the heap. In our case, we embed a position index inside the node which
allows to locate it in a more direct fashion. The position index is particularly beneficial
for changeKey(e) as it allows to efficiently check whether e is in the heap.
Hunt reduces contention between insert() operations using a bit-reversal scheme to
determine the index into which a new element is added. We use the standard scheme for
insertions which maintains all the elements in a single contiguous part. We note that we
can easily import their method into our algorithm.
Finally, Hunt’s priority queue is not linearizable, while ours is. The culprit is the
extractMin() procedure which first removes the Last element from the heap and only
then places it at the root. This allows for certain non-linearizable behaviors to occur.
It is important to note, however, that there is no claim of linearizability in [11], and
once the reason for the non-linearizable behavior is known, changing the algorithm to be
linearizable is rather easy.

5 Case Study: Parallelizing Dijkstra’s SSSP Algorithm

Important applications of priority queues, such as Dijkstra’s single-source shortest path
(SSSP) algorithm [5, 3] and Prim’s minimal spanning tree (MST) algorithm [21, 3] need to
update the priority of an item after its insertion. i.e., mutable priorities. In this work, we
close the interface gap between sequential and concurrent priority queues by importing the
changeKey() operation from the sequential setting to the concurrent one. To evaluate the
benefits clients may gain by using the extended interface, we adapted a parallel version of
Dijkstra’s SSSP algorithm to use changeKey().

O. Tamir, A. Morrison, and N. Rinetzky 15:9

The SSSP problem is to find, given a (possibly weighted) directed graph and a designated
source node s, the weight of the shortest path from s to every other node in the graph. For
every node v, we refer to the weight of a shortest s u path as v’s distance from s. The
asymptotically fastest known sequential SSSP algorithm for arbitrary directed graphs with
unbounded non-negative weights is Dijsktra’s algorithm [5, 7].

Dijkstra’s algorithm partitions the graph into explored nodes, whose distance from s is
known, and unexplored nodes, whose distance may be unknown. Each node v is associated
with its distance, dist(v), which is represented as a field in the node. The algorithm
computes the distances by iteratively exploring the edges in the frontier between explored
and unexplored nodes. The initial distances are dist(s) = 0 and dist(v) = ∞ for every
v 6= s. In each iteration, the algorithm picks the unexplored node v with the smallest
associated distance, marks it as explored, and then relaxes every edge (v, u) by checking
whether d = dist(v) + w(v, u) < dist(u), and if so, updating dist(u) to d. Notice that once
dist(v) 6= ∞, it always holds the length of some path from s to u, and hence dist(v) is an
upper bound on the weight of the shortest s v path.

Dijkstra’s algorithm can be implemented efficiently using a priority queue with a
changeKey() operation [7]. The idea is to maintain a queue of offers, where an offer
〈v, d〉 indicates that there is an s v path of weight d. An offer 〈v, d〉 is enqueued by
inserting an element into the queue with key d and data v. In every iteration, the algorithm
extracts a minimal offer 〈v, d〉 from the queue using extractMin(), and for each edge (v, u)
it either insert()s a new offer (if dist(u) =∞) or uses changeKey() to decrease the key of
the existing offer 〈u, d′〉 if dist(v) + w(v, u) < dist(u) = d′.

Using changeKey() to parallelize Dijkstra’s algorithm. Dijkstra’s algorithm can be paral-
lelized by using a concurrent priority queue from which multiple threads dequeue offers and
process them in parallel. However, the existing parallel algorithm must work around the
lack of changeKey() support in prior concurrent priority queues, with adverse performance
consequences. Sec. 5.1 details this problem and describes the way existing parallel SSSP
algorithms work. Sec. 5.2 describes the way our adaptation of the parallel algorithm addresses
this problem by using changeKey().

Concurrent dist updates. Both parallel algorithms described next must guarantee that
when relaxing an edge (v, u), reading dist(v) and the subsequent decreasing of dist(v) happen
atomically. Otherwise, an update to d might get interleaved between another thread’s read of
dist(v) and subsequent update to d′ > d, and thus be lost. This atomicity is typically realized
by performing the update with a compare-and-swap operation [1, 14]. Our implementations,
however, use per-node locking: if a thread decides to update dist(v), it acquires v’s lock,
verifies that dist(v) should still be updated, and then performs the update. This approach
allows us to atomically update an additional P (v) field, which holds the predecessor node on
the shortest path to v [7], and thus computes the shortest paths in addition to the distances.
We omit the details of this, which are standard.

5.1 ParDijk: A Parallel version of Dijkstra’s SSSP Algorithm based on
a Concurrent Priority Queue

A natural idea for parallelizing Dijkstra’s algorithm is to use a concurrent priority queue and
thereby allow multiple threads to dequeue and process offers in parallel. Because existing
concurrent priority queues do not support changeKey(), doing this requires adapting the
algorithm to use inserts instead of changeKey() when relaxing edges [1, 14].

OPODIS 2015

15:10 A Heap-Based Concurrent Priority Queue with Mutable Priorities

Graph (E,V,w)
done [1.. TNum] = [false ,.. , false]
D [1..| V|] = [∞,..,∞]
Element [1..| V|] Offer =

[null ,.. , null]
Lock [1.. |V|] DLock
Lock [1.. |V|] OfferLock

relax (v,vd)
lock(OfferLock [v])

if (vd < D[v])
vo = Offer [v]
if (vo = null)

Offer [v] = insert (v,vd)
else

if (vd < vo.key)
publishOfferMP (v,vd ,vo)

unlock (OfferLock [v])

publishOfferMP (v,vd ,vo)
updated = changeKey (vo , vd)
if (! updated and vd < D[v])

Offer [v] = insert (v,vd)

publishOfferNoMP (v,vd)
Offer [v] = insert (v,vd)

parallelDijkstra ()
while (! done[tid])

o = extractMin ()
if (o 6= null)

u = o.data
d = o.key
lock(DLock [u])
if(dist < D[u])

D[u] = d
explore = true

else
explore = false

unlock (DLock [u])
if (explore)

foreach ((u,v) ∈ E)
vd = d + w(u,v)
relax (v,vd)

else
done[tid] = true
i = 0
while (done[i] and i<TNum)

i = i + 1
if(i == TNUM)

return
done[tid] = false

Figure 6 Parallel versions of Dijkstra’s SSSP algorithm: parallelDijkstra() is a pseudocode
implementation of ParDijk-MP. The pseudocode of ParDijk can be obtained by replacing the
call to publishOfferMP() in relax() with a call to publishOfferNoMP().

Specifically, the changeKey() operation, which is required to update an existing offer
〈u, d〉 to have distance d′ < d, is replaced by an insert() of a new offer 〈u, d′〉. As a result,
in contrast to the original algorithm, multiple offers for the same node can exist in the queue.
Consequently, the parallel algorithm might perform two types of wasted work: (1) Empty
work occurs when a thread dequeues an offer 〈v, d〉 but then finds that dist(v) < d, i.e., that
a better offer has already been processed. (2) Bad work occurs when a thread updates dist(v)
to d, but dist(v) is later updated to some d′ < d.

In both cases of wasted work, a thread performs an extractMin() that would not need
to be performed had changeKey() been used to update offers in-place, as in the original
algorithm. This is particularly detrimental to performance because extractMin() operations
typically contend for the head of the queue, and the wasted work increases this contention
and makes every extractMin() – wasted or not – more expensive.

Procedure parallelDijkstra() shown in Fig. 6 provides the pseudo code of the two paral-
lel versions of Dijkstra’s SSSP algorithm that we discuss. The ParDijk algorithm is obtained
by replacing the call to publishOfferMP() in relax() with a call to publishOfferNoMP().

The algorithm records its state in several global variables: A boolean array done maintains
for every thread t a flag done[i] which records whether the thread found work in the priority
queue; an array D which records the current estimation of the distance to every node; and an
array Offer of pointers to offers (elements). Intuitively, Offer[u] points to the best offer
ever made to estimate the distance to node u. The two lock arrays DLock and OfferLock are
use to protect write accesses to arrays D and Offers, respectively. The locks in OfferLock
are also used to prevent multiple threads from concurrently changing the priority (distance
estimation) to the same node.

When a thread removes an offer o = (u, d) from the queue, it first determines whether it
can use it to improve the current distance to u. If this is the case, it updates D and turns

O. Tamir, A. Morrison, and N. Rinetzky 15:11

to exploring u’s neighbors, hoping to improve the estimation of their distances too. If the
distance to u cannot be shorten, the thread goes back to the queue trying to get more work to
do. If the thread managed to improve the distance to u, it explores each of its neighbors v by
invoking relax(v,vd). The latter locks v’s entry in the Offer array, and check whether the
new estimation vd, is better than the current estimation D[v] and from the one suggested
the best offer so far Offer[v]. If this is the case, it adds a new offer to the queue. Note that
this might lead to node v having multiple offers in the queue.

If the thread does not find work in the queue, i.e., o turns out to be null, the thread
checks if all the other threads have not found work, and if so, terminates.

5.2 ParDijk-MP: A Parallel version of Dijkstra’s SSSP Algorithm based
on a Concurrent Priority Queue with Mutable Priorities

Having a concurrent priority queue which supports a changeKey() operation enables updating
an existing offer’s distance in place, and thus allows parallelizing Dijkstra’s algorithm without
suffering from wasted work. The change is rather minor: The ParDijk-MP algorithm is
obtained from procedure parallelDijkstra() by keeping the call to publishOfferMP() in
relax(). Note that publishOfferMP() checks whether it can update an existing offer in
the queue before it tries to insert a new one. This ensures that the queue never contains
more than one offer for every node, although a new offer to the same node might be added
after the previous offer has been removed.

6 Experimental Evaluation

Our evaluation of Champ focuses on the overall performance of the client application rather
than on the performance of individual core operations. To this end, we used the parallel
Dijkstra’s algorithms (Section 5) as benchmarks: (1) ParDijk, the existing parallel algorithm
that may create redundant offers, and (2) ParDijk-MP, the version that exploits mutable
priorities to update offers in-place. Of these algorithms, only ParDijk can be run with prior
priority queues without mutable priorities. We compare Champ to skiplist, a linearizable
concurrent priority queue based on a nonblocking skip list, as in the algorithm of Sundell
and Tsigas [25].4 As a performance yardstick, we additionally compare to the parallel SSSP
implementation of the Galois [20] graph analytics system. Galois relaxes Dijkstra’s algorithm
by allowing for both empty work and bad work (see Sec. 5.1). It compensates for the incurred
overheads by using a highly-tuned non-linearizable priority queue, which sacrifices exact
priority order in exchange for reduced synchronization overhead. We thus use Galois as a
representative of the family of relaxed non-linearizable priority queues, such as Lotan and
Shavit’s quiescently consistent algorithm [17] or the SprayList [1].

Experimental setup. We use a Fujitsu PRIMERGY RX600 S6 server with four Intel Xeon
E7-4870 (Westmere EX) processors. Each processor has 10 2.40 GHz cores, each of which
multiplexes 2 hardware threads, for a total of 80 hardware threads. Each core has private
write-back L1 and L2 caches; the L3 cache is inclusive and shared by all cores on a processor.
The parallel Dijkstra algorithms and priority queues are implemented in Java and run with

4 Following the methodology of Lindén and Jonsson [15], we implement a singly-linked instead of doubly-
linked skip list.

OPODIS 2015

15:12 A Heap-Based Concurrent Priority Queue with Mutable Priorities

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 4 9 10 11 19 20 21 39 40 41 79 80

ti
m

e
 (

se
c)

threads

Running time on random graph (p=1%)

ParDijkMP/Champ

ParDijk/Skiplist

ParDijk/Champ

Galois

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 4 9 10 11 19 20 21 39 40 41 79 80

ti
m

e
 (

se
c)

threads

Running time on random graph (p=5%)

ParDijkMP/Champ

ParDijk/Skiplist

ParDijk/Champ

Galois

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 4 9 10 11 19 20 21 39 40 41 79 80

ti
m

e
 (

se
c)

threads

Running time on random graph (p=10%)

ParDijkMP/Champ

ParDijk/Skiplist

ParDijk/Champ

Galois

(c)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 4 9 10 11 19 20 21 39 40 41 79 80

ti
m

e
 (

se
c)

threads

Running time on random graph (p=20%)

ParDijkMP/Champ

ParDijk/Skiplist

ParDijk/Champ

Galois

(d)

0

1

2

3

4

5

6

7

1 2 4 9 10 11 19 20 21 39 40 41 79 80

ti
m

e
 (

se
c)

threads

Running time on random graph (p=80%)

ParDijkMP/Champ

ParDijk/Skiplist

ParDijk/Champ

Galois

(e)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1
%

5
%

1
0
%

2
0
%

3
0
%

5
0
%

8
0
%

1
%

5
%

1
0
%

2
0
%

3
0
%

5
0
%

8
0
%

1
%

5
%

1
0
%

2
0
%

3
0
%

5
0
%

8
0
%

1
%

5
%

1
0
%

2
0
%

3
0
%

5
0
%

8
0
%

ParDijk/Skiplist ParDijkMP/Champ ParDijk/Champ Galois

co
u

n
t

Work distribution with 10 threads

emptyWork goodWork changeKey

(f)

Figure 7 SSSP algorithms with different priority queues: Run time (lower is better) and work
distribution.

the HotSpot Server JVM, version 1.8.0-25. Galois is implemented in C++; we use the latest
version, 2.2.1. All results are averages of 10 runs on an idle machine.

SSSP run time. We measure the running time of each tested algorithm on several input
graphs, as we increase the number of threads. Each input is a random graph over 8000
vertices, in which each edge occurs independently with some probability p and a random
weight between 1 and 100.5 Figures 7a–7e depict the results. We observe an overall trend in
which all algorithms obtain speedups up to at most 20 threads, but their run time plateaus
or increases with more than 20 threads. This is consistent with prior SSSP experiments on
identical hardware [1]. We therefore focus our attention on the concurrency levels in which
speedups are obtained.

We find that while ParDijk-MP, which leverages Champ’s changeKey() operation, per-
forms worse than ParDijk/skiplist with few threads, its run time improves as the number

5 We use the same random weight assignment as Alistarh et al. [1, 14].

O. Tamir, A. Morrison, and N. Rinetzky 15:13

0

10000000

20000000

30000000

40000000

50000000

60000000

1 2 4 9 10 11 19 20 21 39 40 41 79 80

th
ro

u
g

h
p

u
t

(o
p

s/
se

c)

threads

insert() throughput

Champ SkipList

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

1 2 4 9 10 11 19 20 21 39 40 41 79 80

th
ro

u
g

h
p

u
t

(o
p

s/
se

c)

threads

extractMin() throughput

Champ SkipList

Figure 8 Basic priority queue operations performance: throughput (higher is better) of insert()
and extractMin().

of threads increases and it eventually outperforms ParDijk/skiplist. On the p = 1% and
p = 5% graphs, the best run time of ParDijk/skiplist is at 10 threads, and ParDijk-MPis
20% faster than it. Furthermore, the run time of ParDijk-MP plateaus up to 20 threads,
whereas ParDijk/skiplist starts deteriorating after 10 threads, making ParDijk-MP ≈ 2×
faster than ParDijk/skiplist at 20 threads. On the p = 10% and p = 20% graphs, the
best run time is at 20 threads, and ParDijk-MPis 60%–80% better than ParDijk/skiplist.
On the p = 80% graph ParDijk-MPoutperforms ParDijk/skiplist only after 20 threads,
obtaining a 20% better run time. Similarly, ParDijk-MP outperforms Galois given sufficient
parallelism: On the p = 1% graph ParDijk-MP is consistently about 2× faster, while on the
other graphs it is 1.25×–2× slower up to 4 threads, but as more threads are added, its run
time becomes 2× better than Galois.

Figure 7f demonstrates the reason for these results, using the 10-thread runs as an
example. For each algorithm and input, we classify the work done in each iteration – i.e., for
each extractMin() – into good work and useless empty work, in which a thread dequeues an
outdated offer whose distance is greater than the current distance. (Bad work, in which a
thread updated a distance not to its final value, is negligible in all experiments and therefore
omitted.) For ParDijk-MP we additionally show the number of changeKey() operations
performed. As Figure 7f shows, 75%–90% of the work in ParDijk and 90% of the work in
Galois is useless. For ParDijk, this corresponds exactly to extraction of outdated offers that
in ParDijk-MP are updated in-place using changeKey(). In eliminating this useless work,
ParDijk-MP with Champ significantly reduces the amount of extractMin() operations,
which – as we shortly discuss – are the least scalable operations. Note, however, that the
gains ParDijk-MP obtains from eliminating the useless work are offset somewhat by Champ’s
inefficient core operations. We note that we got a similar work distribution when we ran the
algorithm with a single thread. This indicates that the wasted work is due to the superfluous
insertions and is not an artifact of concurrency.

Turning to ParDijk itself, we find that skiplist outperforms Champ. This occurs because
skiplist’s insert() and extractMin() are, respectively, more scalable and more efficient
than Champ’s. (We discuss this in detail next.) The performance gap between skiplist and
Champ shrinks as p increases and the graphs become denser. (For example, at 10 threads,
ParDijk’s skiplist run time is 3× better than with Champ for p = 1%, 2.16× better for
p = 20% and 1.5× better for p = 80%.) The reason is that as the inputs become denser,
threads perform more work – i.e., iterate over more edges – for each offer. Consequently, the
priority queue’s performance becomes a less significant factor in overall performance: it is
accessed less frequently, and thus becomes less contended.

OPODIS 2015

15:14 A Heap-Based Concurrent Priority Queue with Mutable Priorities

Core operations performance. We study the performance of the core queue operations
with microbenchmarks. For insert(), we measure the time it takes N threads to concurrently
insert() 106 items (106/N each) into the priority queue. For extractMin(), we measure the
time it takes N threads repeatedly calling extractMin() to empty a priority queue of size 106.
Figure 8 shows the results, reported in terms of the throughput obtained (operations/second).
We see that skiplist insert() scale well, because insertions to different positions in a
skiplist do not need to synchronize with each other. In contrast, every Champ insert()
acquires the heap root lock, to increase the heap size and initiate a bubbleDown. As a result,
Champ insertions suffer from a sequential bottleneck and do not scale. For extractMin(),
both algorithms do not scale, since both have sequential bottlenecks in extractions. For
Champ, it is the heap root lock again. For skiplist, it is the atomic (via CAS) update of
the pointer to the head of the skiplist.6 The characteristics of the core operations explain
the performance of ParDijk-MP vs. ParDijk: when updating an offer, ParDijk-MP performs
a changeKey() where ParDijk performs an insert(). Both of these are scalable operations,
although Champ’s changeKey() may be heavier than a skiplist insertion, as it performs
hand-over-hand locking. However, for an offer updated U times, ParDijk performs U − 1
extraneous extractMin()s that ParDijk-MP/Champ avoids. Because extractMin() is the
most expensive and non-scalable operation, overall ParDijk-MPcomes out ahead.

Sparse vs. dense graphs. In our experiments we used relatively dense graphs. When using
sparse graphs like road networks, e.g., Rome99, USA-FLA, USA-NY, and USA-W [6], whose
average degree is less than three, we noticed that Champ suffers from a slowdown of 2x-15x.
We believe that the reason for this behavior is that in these scenarios there is much less
wasted work (less than 11% in our experiments). Because there is so little wasted work,
the competing algorithms outperform Champ due to their faster synchronization, which no
longer gets outweighed by the execution on extraneous wasted work.

7 Related Work

Existing concurrent priority queues [1, 2, 11, 15, 16, 17, 23, 24, 25, 26] support insert()
and extractMin() but not changeKey, and most of this prior work has focused on designing
priority queues with ever more insert()/extractMin() throughput on synthetic microbench-
marks of random priority queue operations. Researchers have only recently [1, 15, 26] started
evaluating new designs on priority queue client applications, such as Dijkstra’s algorithm.
We are, to the best of our knowledge, the first to step back and approach the question from
the client application side, by considering how the insert()/extractMin() interface restricts
the clients, and how to address this problem by extending the priority queue interface.

Our priority queue is based on concurrent heap of Hunt et al. [11], which we extend to
support the changeKey() operation. We have also changed some of the design choices in [11],
to better suit our applications. (See Sec. 4.3). Mound [16] also uses a heap-based structure.
It minimizes swapping of heap nodes by employing randomization and storing multiple items
in each heap node. It is thus not obvious how to implement changeKey() in Mound.

Several concurrent priority queues are based on skiplists [22]. Lotan and Shavit [17]
initially proposed such a lock-based priority queue, and Sundell et al. [25] designed a

6 Note that skiplist’s extractMin() removes the head (minimum) skip list by first marking it logically
deleted and then physically removing it from the list, and any thread that encounters a logically
deleted node tries to complete its physical removal before proceeding. This causes further extractMin()
serialization, on top of the memory contention causes by issuing CASes to the shared head pointer.

O. Tamir, A. Morrison, and N. Rinetzky 15:15

nonblocking skiplist-based priority queue. In both algorithms, contention on the head of the
skiplist limits the scalability of extractMin(). There are two approaches for addressing this
bottleneck: One is to improve extractMin() synchronization, for example by batching node
removals [15] or using combining [2]. Currently this approach does not lead to algorithms
that scale beyond 20 threads [2, 15]. A second approach relaxes the priority queue correctness
guarantees by allowing extractMin() to not remove the minimum priority item [1, 23, 26].
Using such algorithms requires reasoning about – and possibly modifying – the application,
to make sure it can handle this relaxed behaviors. Note that all these algorithms – relaxed or
not – still provide the client with only the limited set of insert()/extractMin() operations.

8 Conclusions and Future Work

We present and evaluate Champ, the first concurrent algorithm for a priority queue with
mutable keys. Champ is implemented using an array-based binary heap, and consequently its
core priority queue operations, insert() and extractMin(), do not scale as well as in prior
designs. Despite this, we show that Champ’s extended interface improves the performance
of parallel versions of Dijkstra’s SSSP algorithm, because it saves the client algorithm from
wasting work when working around the lack of changeKey() support in other priority queues.
This raises an interesting question for future work: can we efficiently implement mutable
priorities in the more scalable skip list-based priority queues without compromising on the
scalability of the core operations?

References
1 Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit. The SprayList: A Scalable Relaxed

Priority Queue. In PPoPP, 2015.
2 Irina Calciu, Hammurabi Mendes, and Maurice Herlihy. The Adaptive Priority Queue with

Elimination and Combining. In DISC, 2014.
3 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction

to Algorithms. MIT Press, 3rd edition, 2009.
4 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In TACAS, 2008.
5 E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische Mathe-

matik, 1(1):269–271, December 1959.
6 9th DIMACS implementation challenge. URL: http://www.dis.uniroma1.it/

challenge9/download.shtml.
7 Michael L. Fredman and Robert Endre Tarjan. Fibonacci Heaps and Their Uses in Improved

Network Optimization Algorithms. JACM, 34(3):596–615, July 1987.
8 Richard M. Fujimoto. Parallel discrete event simulation. CACM, 33(10):30–53, 1990. doi:

10.1145/84537.84545.
9 Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kauf-

mann Publishers Inc., 2008.
10 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for

concurrent objects. TOPLAS, 12:463–492, July 1990.
11 Galen C. Hunt, Maged M. Michael, Srinivasan Parthasarathy, and Michael L. Scott. An

Efficient Algorithm for Concurrent Priority Queue Heaps. IPL, 60(3):151–157, 1996.
12 Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collection Handbook: The

Art of Automatic Memory Management. Chapman & Hall/CRC, 1st edition, 2011.
13 Zvi M. Kedem and Abraham Silberschatz. A characterization of database graphs admitting

a simple locking protocol. Acta Informatica, 16, 1981.

OPODIS 2015

http://www.dis.uniroma1.it/challenge9/download.shtml
http://www.dis.uniroma1.it/challenge9/download.shtml
http://dx.doi.org/10.1145/84537.84545
http://dx.doi.org/10.1145/84537.84545

15:16 A Heap-Based Concurrent Priority Queue with Mutable Priorities

14 Justin Kopinsky. SprayList SSSP benchmark. https://github.com/jkopinsky/
SprayList/blob/master/sssp.c, 2015.

15 Jonatan Lindén and Bengt Jonsson. A Skiplist-Based Concurrent Priority Queue with
Minimal Memory Contention. In OPODIS, 2013.

16 Yujie Liu and Michael Spear. Mounds: Array-Based Concurrent Priority Queues. In ICPP,
2012.

17 Itay Lotan and Nir Shavit. Skiplist-Based Concurrent Priority Queues. In IPDPS, 2000.
18 Paul E. McKenney and John D. Slingwine. Read-copy update: using execution history to

solve concurrency problems. In PDCS, 1998.
19 Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE

Trans. Parallel Distrib. Syst., 2004.
20 Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A Lightweight Infrastructure for

Graph Analytics. In SOSP, 2013.
21 R. C. Prim. Shortest connection networks and some generalizations. Bell System Technical

Journal, 36(6):1389–1401, 1957. doi:10.1002/j.1538-7305.1957.tb01515.x.
22 William Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees. CACM, 33(6):668–

676, June 1990.
23 Hamza Rihani, Peter Sanders, and Roman Dementiev. Brief Announcement: MultiQueues:

Simple Relaxed Concurrent Priority Queues. In SPAA, 2015.
24 Nir Shavit and Asaph Zemach. Scalable Concurrent Priority Queue Algorithms. In PODC,

1999.
25 Håkan Sundell and Philippas Tsigas. Fast and lock-free concurrent priority queues for

multi-thread systems. JPDC, 65(5):609–627, 2005.
26 Martin Wimmer, Jakob Gruber, Jesper Larsson Träff, and Philippas Tsigas. The Lock-free

k-LSM Relaxed Priority Queue. In PPoPP, 2015.

https://github.com/jkopinsky/SprayList/blob/master/sssp.c
https://github.com/jkopinsky/SprayList/blob/master/sssp.c
http://dx.doi.org/10.1002/j.1538-7305.1957.tb01515.x

Maximum Matching for Anonymous Trees with
Constant Space per Process∗

Ajoy K. Datta1, Lawrence L. Larmore2, and Toshimitsu Masuzawa3

1 University of Nevada, Las Vegas, USA
ajoy.datta@unlv.edu

2 University of Nevada, Las Vegas, USA
lawrence.larmore@unlv.edu

3 Graduate School of Information Science and Technology, Osaka University,
Osaka, Japan
masuzawa@ist.osaka-u.ac.jp

Abstract
We give a silent self-stabilizing protocol for computing a maximum matching in an anonymous
network with a tree topology. The round complexity of our protocol is Opdiamq, where diam is
the diameter of the network, and the step complexity is Opn diamq, where n is the number of
processes in the network. The working space complexity is Op1q per process, although the output
necessarily takes Oplog δq space per process, where δ is the degree of that process. To implement
parent pointers in constant space, regardless of degree, we use the cyclic Abelian group Z7.

1998 ACM Subject Classification C.2.4 [Computer-Communication Networks] Distributed Sys-
tems, F.2.2 [Analysis of Algorithms and Problem Complexity] Nonnumerical Algorithms and
Problems, G.2.2 [Discrete Mathematics] Graph Algorithms

Keywords and phrases anonymous tree,maximum matching,self-stabilization, unfair daemon

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.16

1 Introduction

Self-stabilization [5] is a paradigm for enhancing autonomous adaptability of distributed
systems to network dynamics, such as transient faults and topology changes. A self-stabilizing
system is guaranteed to regain its intended (or legal) behavior when the system is arbitrarily
disturbed. Several fundamental problems have been solved by self-stabilizing algorithms,
including leader election, spanning tree construction, mutual exclusion, node/edge coloring,
and so forth. Maximum or maximal matching is one of the most investigated of these
problems et al. [8].

1.1 Related Work
The first self-stabilizing algorithm for maximal matching was given by Hsu et al. [10]. The
algorithm works for arbitrary anonymous networks under the central daemon, where no two
processes can act simultaneously. Efficiency under the central daemon is usually measured by
the number of steps required for convergence to a legitimate configuration. Their algorithm
takes Opn3q steps, where n is the number of processes in the system. This result was improved
in [9, 12, 15]. Hedetniemi et al. give an algorithm which takes Opmq steps where m is the

∗ This work was supported in part by JSPS KAKENHI, Grant Number (B)26280022.

© Ajoy K. Datta, Lawrence L. Larmore, and Toshimitsu Masuzawa;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 16; pp. 16:1–16:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 Maximum Matching for Anonymous Trees with Constant Space per Process

number of edges in the system [9]. A synchronous version of the algorithm with round
complexity Opnq is given by Goddard et al. [6].

A self-stabilizing algorithm for maximal matching in arbitrary networks under the
read/write daemon, where only a single read or write is permitted during an atomic step,
was given by Chattopadhyay et al. [3]. The algorithm converges in Opnq (asynchronous)
rounds, provided all processes have identifiers, and no two processes within distance two
have the same identifier. The same paper also gives a randomized self-stabilizing algorithm
for assigning the locally distinct identifiers in Op1q expected rounds. With the assumption
of distinct identifiers within distance two, a self-stabilizing maximal matching algorithm
for arbitrary networks under the distributed daemon, where any number of processes can
act simultaneously, which converges in Opnq rounds and Opmq steps, was given by Manne
et al. [13].

A number of self-stabilizing maximum matching algorithms have been given. Karaata
and Saleh give a self-stabilizing algorithm for anonymous tree networks, under the central
daemon, which converges in Opn4q steps [11]. A self-stabilizing algorithm for tree networks
under the read/write daemon, which converges in Opn2q steps, is given by Blair and Manne
[2]. For anonymous bipartite networks, a self-stabilizing algorithms converging in Opn2q

rounds under the central daemon is given by Chattopadhyay et al. [3].
A maximal matching is defined to be 1-maximal if the size of matching cannot be increased

by replacing one edge in the matching with two other edges. Any 1-maximal matching is a
2
3 -approximation of the maximum matching, while an arbitrary maximal matching is only a
1
2 -approximation to maximum.

A self-stabilizing 1-maximal matching algorithm, under the central daemon, for anonymous
trees, and for rings with length not divisible by three, which converges in Opn4q rounds, is
given by Goddard et al. [7]. The same paper also shows that there is no self-stabilizing
1-maximal matching algorithm for anonymous rings of length a multiple of three. These
results are generalized by Asada and Inoue, who give a self-stabilizing 1-maximal matching
algorithm for any anonymous network under the central daemon, provided that network has
no cycle of length divisible by three, which converges in Opmq steps [1].

For non-anonymous arbitrary networks, a self-stabilizing 1-maximal matching algorithm
under the distributed daemon is given by Manne et al. [14]. Their algorithm converges in
Opn2q rounds, but requires exponentially many steps in the worst case.

1.2 Contribution

We use of virtual pointers, in which we indicate a parental relation between neighboring
processes by assigning each process a label of finite size, that is, written with finitely many
bits, where the parental relation is a function of the labels of the two processes. In this
paper, each label, which we call level, is a member of the cyclic Abelian group Z7, and x is
a parent of y if the difference of the two values of level is in a certain range. We are able
to maintain constant space per process by eliminating the standard parent pointers, which
require Oplog δq space per process, where δ is its degree.

Match builds a spanning tree, or a spanning structure consisting of two trees, in the
network. Match then uses a bottom-up dynamic program to choose a maximum matching
for the network. The working space complexity of Match is Op1q per process, regardless of
degree, the round complexity is Opdiamq, where diam is the diameter of the network, and the
step complexity is Opn diamq. Our use of Z7 is similar to the use of Z5 for virtual pointers
in [4]. The output must use Oplog δq space per process, where δ is the degree of that process.

A.K. Datta, L. L. Larmore, and T. Masuzawa 16:3

1.3 Outline
In Section 2, we give some basic definitions, and describe our model of computation. In
Section 4, we formally define Match. In Section 5, we prove that Match is correct. In
Section 6 we prove that Match takes Opdiamq rounds, while in Section 7, we prove that
Match takes Opn diamq steps. Section 8 concludes the paper.

2 Preliminaries

We say that a network is undirected if the edges have no specified orientation, i.e., that
the edge tx, yu is the same as the edge ty, xu. We say that a network is anonymous if the
processes have no identifiers. We say that a network is a tree if it is connected and has no
cycles. The algorithm we give in this paper assumes an undirected anonymous tree.

2.1 Model of Computation
We use the shared memory model of computation [5], meaning that each process can read its
own registers and those of its neighbors, and can change only its own registers. A distributed
algorithm consists of a program for each process, and that program consists of a finite set
of actions. Each action for a process x has a guard, which is a predicate (i.e.,, Boolean
function) on the registers of x and its neighbors, together with a statement, which is simply
the assignment, or reassignment, of one or more registers of x. If the guard of an action of
x is true, then we say that action is enabled, and we say x is enabled if at least one of its
actions is enabled.

We assume the unfair distributed daemon. If at least one process is enabled, the daemon
selects at least one of these enabled processes. Each selected process executes one of its
enabled actions, and that concludes one step. We describe the daemon as unfair because an
enabled process need never be selected, unless it becomes the only enabled process.

We will assume that there is a set F of configurations which we call the legitimate
configurations. (We call the remaining configurations illegitimate.) F satisfies two conditions:
Closure: No action can change a legitimate configuration to an illegitimate configuration.
Correctness: Each legitimate configuration satisfies the output conditions of the problem.

A configuration is final if no process is enabled at that configuration. An algorithm is silent
if every computation ends at a final configuration.

3 Overview of Match

We are given an anonymous unoriented network G with a tree topology. The first phase of
Match is to build a rooted spanning tree for G, or possibly two rooted trees joined at the
roots which together span G. During the second phase (which actually begins before the
first phase is finished) we use the tree, or trees, to define a maximum matching.

At any given configuration of Match, every neighbor of a process x is either a child of x,
a parent of x, or a peer of x. From a possibly chaotic initial configuration, Match organizes
G into one or two trees; if there are two trees, the roots are peers of each other.

The maximum matching itself is then constructed by a bottom-up wave of the tree (or
trees). Each process is assigned the Boolean label 0 or 1, which we call flag, as follows.
Leaves are assigned 0. A process is assigned 1 if it has a child labeled 0, otherwise 0. At the
end, every process labeled 1 is matched with one of its children labeled 0, while two roots
are matched with each other if both are labeled 0.

OPODIS 2015

16:4 Maximum Matching for Anonymous Trees with Constant Space per Process

Virtual Pointers. It is typical to define rooted trees by using parent pointers. But we need
to maintain Op1q space complexity at each process, regardless of degree. For that reason, we
express parent/child relations using virtual pointers. These virtual pointers are defined by
storing a single variable, x.level at each process. The value of x.level will be an element of
Z7, the cyclic Abelian group of order 7, and such requires only three bits to store.

More formally, if i, j P Z7 “ t0, 1, 2, 3, 4, 5, 6u, we say that i ă j, and j ą i, if j ´ i P

t1, 2, 3u, where addition and subtraction are in the Abelian group, e.g., 2 ă 3, 2 ă 4, 2 ă 5,
and 6 ă 2. This relation are not transitive, since 1 ă 3 ă 5, but 5 ă 1. If y is a neighbor of
x in the network we say that y is a child of x if y.level ą x.level. Similarly, y is a parent of x
if x is a child of y, i.e., y.level ă x.level, while y is a peer of x if y.level “ x.level. Thus, to
change the parent/child/peer relationships, we simply change the values of level.

How Virtual Pointers are Used. An algorithm which uses local addresses for pointers never
has to change its parent pointer unless it changes its parent. That simple rule does not hold for
Z7-virtual pointers. We say that parent pxq “ y if y.level ă x.level. A problem then arises if it
is necessary to change the level of either x or y. If x.level “ 2`y.level, the “ideal” parent/child
relation, either x.level or y.level may be either incremented or decremented without changing
the parent/child relationship. However, if x.level “ 1 ` y.level, decrementation of x.level
would cause x and y to become peers; similarly, if x.level “ 3` y.level, incrementation of
x.level would cause the parent/child relation to be reversed: x would become the parent of y.
For this reason, whenever parent pxq “ y and x.level ‰ 2` y.level, x tries to either increment
or decrement its level to restore the ideal. Until that ideal is restored, y is not enabled to
execute an action which changes its level.

Think of the link between parent and child as a spring which has an ideal length (namely
2) but whose length can be stretched to 3 or compressed to 1. After that distortion, the
spring tries to restore its length to the ideal 2.

We use the group Z7 because there is no smaller group which allows the same flexibility
in both directions, namely both compression and stretching of the parent/child link.

3.1 Approach
In order to describe how Match creates a tree, or trees, we need to introduce an abstract
function Level pxq. Level is an integer function, and has the following properties:
1. The standard projection ZÑ Z7 maps Level pxq to x.level. For example, if Level pxq “ 11

then x.level “ 4. i.e.,
2. If y P Npxq, then |Level pyq ´ Level pxq| ď 3.
3. Level pxq increments (decrements) at each step at which x.level increments (decrements).

We also introduce the abstract function Min_Level “ min tLevel pxq : x P Gu. Level can
be initialized arbitrarily; however in Lemma 6 below, we prove that Min_Level is constant,
and thus we can assume, without loss of generality, that Min_Level “ 0, which implies that,
during the computation, all values of Level are non-negative. Eventually, Level pxq “ 2 dpxq
for each process, where dpxq is the distance, through G, from x to the root of the tree, or
the nearer root if there are two trees.

4 Formal Definition of Match

Variables and functions of Match. We use the dot notation, such as x.var , for a variable of
x, while we use the normal functional notation such as Func pxq, for a function of x.

A.K. Datta, L. L. Larmore, and T. Masuzawa 16:5

1. x.level P Z7. This is the variable that allows us to define virtual parent pointers using
constant space per process: x is the parent of y if x.level ă y.level.

2. Chldrn pxq “ ty P Npxq : y.level ą x.levelu, the children of x, where Npxq is the set of
neighbors of x.

3. Peers pxq “ ty P Npxq : y.level “ x.levelu, the peers of x, those neighbors at the same
level as x in the spanning tree.

4. Prnts pxq “ ty P Npxq : y.level ă x.levelu, the parents of x, those neighbors above x in
the spanning tree.

5. Children_Ok pxq ” @y P Chldrn pxqpy.level “ 2` x.levelq, Boolean. This means that all
children of x are in the “optimum" position, meaning two levels below x.

6. Class pxq P tI, II, III, IV,Vu, which we define below. At a final configuration, if there is
one root, it has Class I, while if there are two roots, they each have Class II; while in
both cases, all other processes have Class III.

7. x.flag, Boolean. This variable is used in the bottom-up protocol which determines the
matched pairs. Except for the possibility of two roots being matched, all matched pairs
consist of processes with opposite values of flag.
The values of flag are computed using a bottom-up dynamic program, and those values
define a maximum matching, once the structure of the rooted spanning tree, or trees, is
finalized.

8. x.partner P Npxq Y tKu, the partner that x is matched to. If x.partner “ K, then x

is unmatched. This variable, which is the output of the protocol, takes Oplog δq space,
where δ is the degree of x.

Classes of Processes. At each configuration, each process belongs to one of five Classes;
its Class is defined by its number of parents and peers, as given by the table below. The
Class of a process is arguably its most important property.

parents # peers Class
0 0 I
0 1 II
1 0 III
0 ě 2 IV
1 ě 1 V
ě 2 arbitrary V

We write peerpxq for the sole peer of a process in Class II, and we write parent pxq for
the sole parent of a process in Class III.

For any process x, let Tx be the subtree rooted at x, namely the set consisting of x,
its children, its children’s children, etc.. We define a process x to be regular if Class pxq P
tI, II, IIIu and all descendants of x have Class III. At a final configuration, all processes are
regular.

We now define additional variables and functions computable by a process.
9. x.rglr , Boolean. This variable means that x currently “believes” that it is regular.

We define a process to be strongly regular if it is regular and y.rglr for all y P Tx.
10. Rglr pxq ” pClass pxq P tI, II, IIIuq ^ p@y P Chldrn pxqy.rglrq, Boolean. This predicate is

used to update x.rglr .

11. Flagpxq “
"

true if pClass pxq P tI, II, IIIuq ^ pDy P Chldrn pxq y.flag “ falseq
false otherwise

This predicate is used to update x.flag.

OPODIS 2015

16:6 Maximum Matching for Anonymous Trees with Constant Space per Process

12. Partnerpxq P Npxq Y tKu, the process that x should be matched with. If x.flag “ true,
then Partnerpxq is some child of x whose flag is false, if any, while if Class pxq “ II,
x.flag “ false, and peerpxq.flag “ false, then Partnerpxq “ peerpxq. If Class pxq “ III,
x.flag “ false, and parent pxq.partner “ x, then Partnerpxq “ parent pxq. In all other
cases, Partnerpxq “ K.

The variable x.partner , and the corresponding function Partnerpxq, use Oplog δq space
per process, but are used only for output. All intermediate computations use Op1q space per
process, hence we say that Match uses constant working space per process.

Regular, Rglr , and rglr . We have used the word “regular,” or contractions thereof, in three
different ways. Regularity is an abstract property, not computable by any process during the
execution of Match; x.rglr is a working estimate of the regularity of x.

Code of Match

We now present the protocol Match for an arbitrary process x, in program form. We define
a process x to be enabled if execution of the protocol by x results in the change of at least
one variable of x. At each step, the daemon selects an arbitrary non-empty set of enabled
processes; if there are no enabled processes, the configuration is final.

1: if x.rglr ‰ Rglr pxq then
2: x.rglr Ð Rglr pxq
3: else if Children_Ok pxq then
4: if pClass pxq “ IIq ^ x.rglr ^ peerpxq.rglr then
5: x.level Ð x.level ` 1
6: else if pClass pxq “ IIIq ^ x.rglr ^ px.level “ parent pxq.level ` 1q then
7: x.level Ð x.level ` 1
8: else if pClass pxq “ IIIq ^ x.rglr ^ px.level “ parent pxq.level ` 3q then
9: x.level Ð x.level ´ 1

10: else if pClass pxq “ Vq ^ x.rglr ^ py P Peers pxq Y Prnts pxq ùñ y.rglrq then
11: x.level Ð x.level ´ 1
12: end if
13: end if
14: if x.rglr ^ px.flag ‰ Flagpxqq then
15: x.flag Ð Flagpxq
16: else if x.rglr ^ x.partner ‰ Partnerpxq then
17: x.partner Ð Partnerpxq
18: end if

Notation. In our discussion, we will say that a process executes an action if it executes
one of the lines of the code which changes one of its variables, i.e., Line 2, 5, 7, 9, 11, 15, or
17. Note that a process is enabled to execute at most one of those actions per step.

We say that a process executes a level action if it executes a line that changes its level,
namely Line 5, 7, 9, or 11.

Intuitive Explanation of the Actions

Line 5 increases the level of a regular process, and changes its Class from II to III, provided
its peer is not regular; its peer then becomes its parent. In Figure 1, b executes the action at

A.K. Datta, L. L. Larmore, and T. Masuzawa 16:7

Level

0

1

2

3

4

5

6

Level

0

1

2

3

4

5

6

Level

0

1

2

3

4

5

6

7

Level

0

1

2

3

4

5

6

7

Level

0

1

2

3

4

5

6

7

Level

0

1

2

3

4

5

6

7

Level

0

1

2

3

4

5

6

7

Level

0

1

2

3

4

5

6

7

Level

0

1

2

3

4

5

6

7

Level

0

1

2

3

4

5

6

7

Level

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

8

9

10

Level

0

1

2

3

4

5

6

7

8

9

10

Level

Level

0

1

2

3

4

5

6

a b c d e f g h i j k l

(c)

0
0

0 0

0 1

1

1

0
1

1

0

a b c d e f g h i j k l

(a)

a b c d e f g h i j k l

(d)

a b c d e f g h i j k l

(e)

a b c d e f g h i j k l

(f)

a b c d e f g h i j k l

(g) (h)

a b c d e f g h i j k l a b c d e f g h i j k l

(i)

a b c d e f g h i j k l

(j)

a b c d e f g h i j k l

(k)

a b c d e f g h i j k l

(l)

a b c d e f g h i j k l

(n)

a b c d e f g h i j k l

(m)

0

0 0

0 1

1

1

0
1

1

0

0

(b)

a b c d e f g h i j k l

1

0
1

10

0

1

0
0

1

1

1

0
1

0

1

0

0

0
0

0
0

1
1

0

0

0

10

0

1

1

1 1
11

0

0

0
1 1

1

0
1 1

1

0

0

0

1

1

1

0

0

0

00
1

0

1

0

0

00
1

0

1

1

1

0
0

0 0 00

1

1

1

0
0

0

1
0

0

00

1

0

0

1
0

0
1

1

0

0
0

1

0
1

1

0

0

1

0

0

0

0 0

0
1

0

0

0
1

1 1

0

0

1

0

1

1 1

0 0

1

0

1

0

1

01

1 1

0

0

1

0

0 0

0

11

Figure 1 Example computation of Match, where G consists of twelve processes, named
a, b, . . . k, l. Values of flag are indicated under the processes. Process x is shown by an open
dot if x.rglr , otherwise a solid dot. Configuration (a) is “arbitrary.” Processes d and e are computed
to be roots, though neither has level zero in the initial configuration. We assume the synchronous
daemon, i.e., at each step every enabled process executes. Several steps are skipped between (m)
and the final configuration (n). To avoid clutter, matching actions, i.e., executions of Line 17, are
not shown except in the last figure. The matched pairs are ta, bu, tc, du, te, fu, tg, iu, th, ju, and
tk, lu.

(f), h executes the action at (g), c executes the action at (i), and f executes the action at (j).
Lines 7 and 9 adjust the levels of regular processes of Class III without changing their

virtual pointers; in those cases, a process x adjusts the difference between its level and that
of its parent from 1 or 3 to 2; execution of those lines has no effect on the parent/child/peer
structure of the network. There are many examples of those actions illustrated in Figure 1,
such as k at (c). In fact, at each step from (b) to (m), at least two processes of Class III
execute a level action.

Of the actions shown in Figure 1, Line 15 has the lowest priority, meaning that the value
of x.flag cannot change if x executes Line 2 or any level action. All x.flag have reached their
final values, as shown in (m), before the level actions are finished. The level actions are the
last to be completed in the example, and the final configuration is shown in (n).

Execution of Line 11 of the code decreases the level of process of Class V. We do not allow
a process x to execute that action unless y.rglr “ false for all y P Peers pxq Y Prnts pxq.

OPODIS 2015

16:8 Maximum Matching for Anonymous Trees with Constant Space per Process

Level

0

1

2

3

4

a b c d e f

0 0

1 0

0 1

Figure 2 An example final configuration of Match, where G is a tree consisting of six processes,
named a, b, . . . f . Values of flag are indicated under the processes. The matched pairs are tb, cu

and te, fu, while a and d remain unmatched.

There are a number of examples of this action in Figure 1, such as processes d and e at (b),
d and f at (c), c and e at (d).

The Kernel. Let K be the set of all processes of Classes I, II, IV, and V, together with all
irregular processes of Class III. We call K the kernel. The purpose of Line 11 is to squeeze K
into the 0th level. Once that has happened, as shown in Figure 1(g), all irregular processes
have Class IV, and K is a tree subnetwork (actually merely a chain in Figure 1) of G whose
leaves all have Class II. In the remaining steps, that subnetwork will be decremented as its
leaves change Class from II to III.

4.1 Top Level Summary of Match
At the top level, Match executes the following level actions.
1. All processes in the K move to the 0th level, executing Line 11. K will be a tree.
2. The leaves of that tree will all have Class II. Each Class II process will increase its level

by executing Line 5, deleting itself from the kernel, and leaving the 0th level.
3. Eventually, the kernel will consist of either one or two processes at the 0th level. If one

process, it will be the root. If two, and rglr “ true for both, they will be co-roots.
4. As all these level actions are proceeding, regular processes will continually execute Lines 7

and 9, continually adjusting differences between the levels of parents and children to
make the links ideal, so that the other level actions will be enabled.

5. The Flag and Matching actions, Lines 15 and 17, implement a simple dynamic program
that assigns a flag value for each process, and then chooses a maximum matching in a
rooted tree. A process of flag 1 always has at least one child of flag 0, and matches with
it. A process of flag 0 cannot match with any of its children. In the example shown in
Figure 1, there are no unmatched processes. However, if a process has more than one
child of flag 0, one of those children will remain unmatched, as indicated in Figure 2
below; in that figure b has flag 1 and its children both have flag 0; thus, one of those
children must remain unmatched.

6. At the very end of the dynamic program, if there are two roots, they match with each
other if they both have flag 0. A root with flag 1 matches with one of its children, as per
the above rule. Thus, if one root has flag 1 and the other 0, the root with flag 0 remains
unmatched, as shown in Figure 2 below.

4.2 Legitimate Configurations of Match
A legitimate configuration consists of one or two trees, whose root, or roots, are at level zero.
All parental links are ideal, meaning that the difference in levels between parent and child

A.K. Datta, L. L. Larmore, and T. Masuzawa 16:9

is two in every case. Furthermore, in a legitimate configuration, x.rglr “ true for all x. It
follows that there is either one process of Class I or two neighboring processes of Class II,
and all other processes are of Class III. In addition, and x.flag “ Flagpxq for all x, and all
processes have matched with their final partners, or remain unmatched.

Every final configuration is legitimate, as we prove in Lemma 1. However, a legitimate
configuration may not be final. For example, Figure 1(m) shows a legitimate but non-final
configuration. The legitimate configuration is not unique. There is no general polynomial
bound on the number of distinct maximum matchings of a tree graph.

5 Correctness

Correctness of Match follows from the following two statements:
1. Every final configuration of Match is legitimate, as we prove in Lemma 1 below,
2. There is no infinite computation of Match, as we prove in Lemma 12 below.

I Lemma 1. Any final configuration of Match is legitimate.

Proof. Suppose that the current configuration of Match is final, i.e., no process is enabled
to execute any action of the code.
I Claim 2. x.rglr “ true for any process x.

Proof of Claim 2. Suppose not. Let L “ max tLevel pxq : x.rglru, and let x be a process
of level L such that x.rglr “ false. Thus y.rglr “ true for all y P Chldrn pxq. Hence, if the
Class of x is I, II, or III, Rglr pxq “ true, contradiction.
I Claim 3. If Class pxq “ V then x is enabled.

Proof of Claim 3. If y P Prnts pxq and y.rglr , then y is enabled to execute Line 2, contradic-
tion. If y P Peers pxq, then Class pyq “ IV, hence y.rglr “ false, because otherwise y would
be enabled. Thus, x is enabled. J

The only remaining possibility is that Class pxq “ IV. Since each process at level L has
Class IV, and each has at least two peers also at level L, the subgraph of processes at level
L must contain a cycle, contradiction. This completes the proof of Claim 2. J

By Claim 2 and since x.rglr “ Rglr pxq for all x, there are no processes of Class IV or V.
Since any process of Class III has a parent, any process at Level zero must have Class I or II.
I Claim 4. If Level pxq “ 0 and Class pxq “ I, then all processes other than x have Class III
and are descendants of x.

Proof of Claim 4. Suppose y ‰ x is a process, and y is not a descendant of x. Let σ be the
unique path through G from x to y, and let z be the process of maximum level in σ which is
closest to x. If z ‰ y, then z has Class V, contradiction. Thus, z “ y, and y is a descendant
of x. Since all processes are descendants of x, all other processes must have Class III. J

I Claim 5. If there is no process of Class I at level zero, then there are two processes of Class
II at level zero which are peers of each other, and every other process has Class III.

Proof of Claim 5. There must be a process x of Class II at level zero. Let y “ peerpxq. Let
z be any other process, and let σ be the unique path through G from z to x. By an argument
similar to that in the proof of Claim 4, z is a descendant of y if σ passes through y, and
otherwise is a descendant of x. In either case Class pzq “ III. J

The lemma follows from Claims 4 and 5. J

OPODIS 2015

16:10 Maximum Matching for Anonymous Trees with Constant Space per Process

I Lemma 6. Min_Level does not change during any computation of Match.

Proof. By contradiction. Suppose Min_Level decreases during a step. Then there is some
process x such that Level pxq “ Min_Level and Level pxq decreases at the next step. Since no
process has a level less than Level pxq, we know that Class pxq is neither III nor V. However,
the guards of the actions do not permit x.level to decrease if x belongs to any other Class.
Thus, Min_Level does not decrease.

Now, suppose Min_Level increases during the step. For any process x such that
Level pxq “ M “ Min_Level before the step, Level pxq must increase, hence Class pxq must
be either II or III. But x has no parent, hence Class pxq “ II, which implies that x has a
peer. Since peerpxq.rglr “ false, Level ppeerpxqq cannot decrease, and thus there is still a
process whose level is M after the step, contradiction. J

I Remark 7. If a process x is regular at some step, then x is regular at all subsequent steps.

No Computational Cycle. In this paragraph, we assume that Ξ is a non-trivial computa-
tional cycle of Match. Our goal is to prove that Ξ cannot exist.

I Lemma 8. No process changes its regularity during Ξ.

Proof. By Remark 7, a process does not change from regular to irregular. Since every step
of Ξ must be reversible, no process can change from irregular to regular during Ξ. J

I Lemma 9. If x.rglr “ true at any step of Ξ, then x is regular.

Proof. By contradiction. Suppose the lemma is false. Let S be the set of ordered triples
px, t, Lq such that the process x is irregular at the tth step of Ξ, and that x.rglr “ true
and Level pxq “ L at that step. Pick such a triple px, t, Lq such that L is maximum over all
members of S. Without loss of generality, x executes an action at step t.

By Lemma 8, x is irregular at step t´1. If Class pxq “ V at step t´1, then x.rglr “ false
at step t, contradiction. Otherwise, there is some y P Chldrn t´1

pxq such that y is irregular at
step t´1. Let L1 “ Level pyq at step t´1. If y.rglr “ false at step t´1, then x.rglr “ false
at step t, contradiction. Thus y.rglr “ true at step t ´ 1, hence py, t ´ 1, L1q P S, and
L1 ą L, which contradicts the maximality of L. J

I Lemma 10. During Ξ, no irregular process changes level.

Proof. By contradiction. Suppose x is irregular and changes its level during Ξ. Since Ξ is a
cycle, x.level must both increase and decrease during Ξ. By Lemma 9, x.rglr “ false during
Ξ, and thus by the definitions of the actions x.level can only decrease, contradiction. J

I Lemma 11. During Ξ, no regular process changes level.

Proof. We first observe that no process of Class III can change to any other Class. Suppose
x is a regular process. If Class pxq “ I, it cannot change its level. If Class pxq “ II, then
x cannot change its level, because its Class would change to III, and that step would be
irreversible. Thus Class pxq “ III.

The statement of the lemma is proven by induction on level. If Level pxq “ 0, then
Class pxq ‰ III. If Level pxq ą 0, let y “ parent pxq. By either Lemma 10 or the inductive
hypothesis, depending on whether y is irregular or regular, y does not change level during Ξ.
Thus, x can change level at most once during Ξ, and that change is irreversible. Since Ξ is a
cycle, x does not change level at all. J

A.K. Datta, L. L. Larmore, and T. Masuzawa 16:11

I Lemma 12. The computation of Match is acyclic.

Proof. Suppose Ξ is a cycle of computation of Match. By Lemmas 8, 10, and 11, no process
executes Line 2 nor any level action during Ξ. Given that regularity and levels are fixed, a
process can execute neither Line 15 nor Line 17 infinitely often, and thus Ξ cannot exist.
Hence Match is acyclic. J

I Theorem 13. Match is correct.

Proof. Correctness follows immediately from Lemmas 1 and 12. J

6 Round Complexity

Monus Notation. The operator monus, written “´ ” on non-negative integers is a variant
of subtraction, but never yields a negative. Formally, x´ y “ max tx´ y, 0u. For example,
5 ´ 3 “ 2, while 3 ´ 5 “ 0. Monus is left-associative and has the same precedence as addition
and subtraction. Note that i´ j´ k “ i´ pj ` kq.

We define a sequence of potentials. Let SR be the set of strongly regular processes.

1. πpxq “

"

´1 if pClass pxq “ IIIq ^ px P SRq ^ px.level “ 2` parent pxq.levelq
1 otherwise

2. θpxq “ max t0, πpxq `max tθpyq : y P Chldrn pxquu

3. µpxq “

"

0 if Chldrn pxq “ H
max tθpyq : y P Chldrn pxqu otherwise

4. dpxq “ the distance through G from x to r where r is the root that will eventually be
computed by Match. If two roots are computed, take r to be the one closer to x.

5. ψpxq “ dpxq ` 2Level pxq
6. Ψ “ max tψpxq : x P K Y Iu where I “ tx : x.rglru.

7. αpxq “

$

’

’

’

’

&

’

’

’

’

%

1 if pClass pxq “ Iq ^ px P Iq
1 if pClass pxq “ IIq ^ px P I _ peerpxq R Iq
2 if pClass pxq “ Vq ^ px R Iq
1 if pClass pxq “ Vq ^ px P Iq ^ pPeers pxq Y Prnts pxq Ę Iq

0 otherwise
8. φpxq “ 4ψpxq ` µpxq ` αpxq.
9. Φ “ max tφpxq : x P K Y Iu.

The Potential Φ Decreases. In a sequence of lemmas, we prove that Φ decreases. Hence-
forth, let X “ tx P K Y I : φpxq “ Φu.
I Remark 14. (a) For any x P K Y I, φpxq does not increase. (b) Φ does not increase.

I Lemma 15. If x P X and µpxq “ 0, then either φpxq decreases or x R K Y I during the
next round.

Proof. All descendants of x are strongly regular, since otherwise φpxq would not be maximal.
Case 1. Class pxq “ I. If x P I, then x is enabled to execute Line 2, and will do so within
one round, decreasing αpxq, hence decreasing φpxq. If x is the sole process at level 0, then
x “ r, hence Φ “ 0, contradiction. Otherwise, there is a path σ from x to some process at
level 0. This path must contain a process y of Class V whose level is greater than that of x,
implying that φpyq ą φpxq, contradiction.
Case 2. Class pxq “ II. If αpxq “ 0, then x will execute Line 5 within one round, becoming
completely regular, and hence leaving X. If αpxq “ 1, either x will execute Line 2 or peerpxq
will execute Line 2, or both. After that execution αpxq “ 0.

OPODIS 2015

16:12 Maximum Matching for Anonymous Trees with Constant Space per Process

Case 3. Class pxq “ III. Then x P I, and x will execute Line 2 within one round, after
which x R K Y I.
Case 4. Class pxq “ IV. There must be some y P Peers pxq such that dpyq ą dpxq. Thus
φpyq ą φpxq, contradiction.
Case 5. Class pxq “ V. If αpxq “ 2, then x will execute Line line: regular within one
round, after which αpxq ď 1. If αpxq “ 1, then every member of Peers pxq Y Prnts pxq will
execute Line 2, after which αpxq “ 0. If αpxq “ 0, x will execute Line 11 within one round,
decreasing the value of φpxq. J

Level Actions of Class III Processes. If x is a Class III process, we say that x has type 0
if x.level “ 2` parent pxq.level. Otherwise, we say that x has type 1.
I Remark 16. If x is regular, then x is enabled to execute a level action if and only if x has
type 1 and all children of x have type 0.

I Lemma 17. No two neighboring Class III processes are simultaneously enabled to execute
a level action.

Proof. If two Class III processes are neighbors, one must be the parent of the other. The
result then follows immediately from Remark 16. J

I Lemma 18. If x is a strongly regular process which is enabled to execute a level action,
then x will execute that action within the next round.

Proof. All we need to show is that x cannot be neutralized before it acts. Since x has type
1, parent pxq cannot change its level, and since all children of x have type 0, they also cannot
change level. J

Chains not Trees. We analyze the evolution of the function θ only for the case that every
subtree of regular processes is a chain. Our logic is that the evolution of θpxq is determined
by the worst case behavior of any chain of Tx. (Henceforth, when we say “chain" of processes
we shall always mean a chain that ends at a leaf.)

Bit String Representation of Chains. We replace a chain σ of regular processes by a bit
string wpσq, obtained by replacing each process by its type. We index the symbols of a string
starting from the right; for example, if w “ 01, then w1 “ 1 and w2 “ 0. The ith suffix of w,
Sipwq, is defined to be the suffix of w starting at wi, i.e., Sipwq “ wiwi´1 ¨ ¨ ¨w1. We define θ
recursively for both a string, and a symbol within a string, as follows.
1. θpεq “ 0, where ε is the empty string.
2. θp0wq “ θpwq´ 1
3. θp1wq “ θpwq ` 1.
4. θpw, iq “ θpSipwqq.

I Lemma 19 (Monotonicity of θ). Let w be a bit string.
(a) If any 1 in w is replaced by 0, θpwq does not increase.
(b) If any collection of substrings 10 in w are each replaced by 01, θpwq does not increase.

Proof. Let w and w1 be strings such that θpwq ě θpw1q. Then
I Claim 20. θp0wq ě θp0w1q.
I Claim 21. θp1wq ě θp1w1q.
I Claim 22. θp1wq ą θp0wq.
I Claim 23. θp10wq ě θp01w1q.

A.K. Datta, L. L. Larmore, and T. Masuzawa 16:13

Claims 20, 21, and 22 follow trivially from the definition of θ. By Claims 20 and 21, we have
θp10wq “ θpwq´ 1` 1 ě θpwq “ θp01wq ě θp01w1q, proving IV. We have (a) by recursion on
|w|, using Claims 20, 21, and 22, and (b) by recursion on |w|, using 20, 21, and 23. J

I Lemma 24. If w is a bit string, θpwq ą 0, and w1 is obtained from w by replacing each
substring 10 by 01, and w11 Ð 0, then θpw1q ă θpwq.

Proof. The proof is by induction. The inductive step consists of a number of cases, each
characterized by the values of wi, wi´1, and w1i´1. There are special cases for i “ 1. We leave
the details of this proof for the full paper. J

I Lemma 25. If Φ ą 0, then Φ decreases during the next round.

If it were not for the requirement that a process x can only change its level if Children_Ok pxq
is true, we would be able to prove that Φ decreases every round. What is true is that, at
every configuration where I ‰ H, every process whose value of φ is maximum is enabled,
provided that the (annoying) condition Children_Ok holds.

The term µpxq provides the needed correction. It measures the number of rounds needed
before Children_Ok pxq becomes true. The coefficient of 4 is needed because of the time
needed to ensure µ is again zero on some process of maximum φ.

Proof. Let Φ ą 0. Let X “ tx P K Y I : φpxq “ Φu.
Let x P X. We need to show that φpxq decreases within one round. If µpxq “ 0, then
4ψpxq ` αpxq decreases, by Lemma 15.

I Claim 26. If µpxq “ 0 and x executes a level action, then within one round, µpxq does not
increase by more than 2.

Sketch of Proof of Claim 26. If x is enabled to execute a level action, and σ is a maximal
chain of regular processes ending with a child of x, then θpσq “ 0, which implies that the top
member of σ, a child of x, is of type 0, meaning that the bit string w “ wpσq starts with
0. When x executes the level action, that 0 is replaced by either 1 or 11, depending on the
action. In the worst case, θpwq is increased by 3, by Lemmas 19 and 24. J

We omit the remaining details of the proof of the lemma. J

The Strongly Regular Case. We now consider the case that all processes are strongly
regular.

I Lemma 27. If all processes are strongly regular, then within Opdiamq rounds, all processes
are of type 0.

Proof. We use Lemma 24 and monotonicity of θ, namely Lemma 19. Again simplifying
to the case of a chain of length h, the worst case of a strongly regular chain is where each
process is of type 1, and a chain is represented by the bit string 111 . . . 111 of length h, where
h ď diam. Within h rounds the bit string will consist of alternating zeros and ones, and
within another h rounds, it will be all zeros. By monotonicity, any other string will become
all zeros in the same number of rounds, or fewer. J

I Theorem 28. The round complexity of Match is Opdiamq.

OPODIS 2015

16:14 Maximum Matching for Anonymous Trees with Constant Space per Process

Proof Sketch: Each of the terms that makes up the potential Φ is Opdiamq, and thus by
Lemma 25, Φ decreases until I “ H and K consists only of the one process of Class I or the
two processes of Class II, within Opdiamq rounds.

The configuration now satisfies the conditions of the strongly regular case, and within
Opdiamq additional rounds, every process is at its final level.

Within Opdiamq additional rounds, the flag values converge and processes are matched.
The total round complexity of Match is thus Opdiamq. J

7 Step Complexity

In this section, we sketch the proof that Match has step complexity Opn diamq. We
can assume, without loss of generality, that only one process executes at any given step.
Henceforth in this section, we assume that each step consists of the execution of one process.

“Star” Notation. We use a star superscript on a variable or function to indicate the value
of that variable or function at the end of the current computation. For example, we write
parent ˚pxq for the value of parent pxq at the final configuration of the computation, and T˚x
for the subtree rooted at x in the final configuration.

We say that a configuration of Match is aligned if parent pxq “ y implies parent ˚pxq “ y;
otherwise we say the configuration is chaotic.

We will give the complete proof of the step complexity of Match in the full paper. In
this extended abstract, we outline the proof in the aligned case. By Lemma 29, alignment is
a closed property.

I Lemma 29. . Alignment is a closed property.

Proof. We only sketch the proof. The configuration is chaotic if and only if there is an
inverted pair , which we define to be neighboring processes x, y such that parent pxq “ y and
parent ˚pyq “ x. The only action that can create an inverted pair is Line 11, but careful
inspection of this action shows that it can only create an inverted pair if there is already an
inverted pair. Thus, an aligned configuration can never become chaotic. J

7.1 Regularity Actions
In this subsection, we prove that the total number of executions of Line 2 during a computation
of Match which starts at an aligned configuration is Opn diamq.

Let Chldrn ˚pxq “ ty P Npxq : parent ˚pyq “ xu, the eventual children of x.

I Lemma 30. During a computation of Match starting from an aligned configuration, the
total number of executions of Line 2 is Opn diamq.

Proof. We first introduce some potentials.
1. %pxq ” px.rglr ‰ Rglr pxqq, Boolean, meaning that x is enabled to execute Line 2. We

write 0 or 1 for the values of %.

2. τpxq “

"

1 if x.rglr ^ pClass pxq “ IIq
0

3. ωpxq “ %pxq `
ř

ωpyq : y P Chldrn ˚pxq
4. Ω “

ř

tωpxq ` τpxq : x P Gu

I Claim 31. ωpxq ď |T˚x |.

A.K. Datta, L. L. Larmore, and T. Masuzawa 16:15

Proof of Claim 31. By induction on heightpT˚x q. If heightpT˚x q “ 0, meaning x is a leaf of
the final tree, then ωpxq “ %pxq ď 1. Suppose heightpT˚x q ą 0. By the inductive hypothesis,
ωpxq “ %pxq `

ř

ωpyq : y P Chldrn ˚pxq
(

ď 1`
ř

ˇ

ˇT˚y
ˇ

ˇ : y P Chldrn ˚pxq
(

“ |T˚x |. J

Recall that dpxq is the distance, through G, from x to the nearest root r. Clearly,
dpxq ď diam. For any d, Let Ωd “

ř

tωpxq : dpxq “ du.
I Claim 32. Ωd ď n for all d.

Proof of Claim 32. T˚x and T˚y are disjoint if dpxq “ dpyq. Thus Ωd “
ř

t|Tx| : dpxq “ du ď

n. J

I Claim 33. Ω “ Opn diamq.

Proof of Claim 33. By Claim 32 Ω “
řdiam

d“0 Ωd `
ř

tτpxq : x P Gu ď n pdiam ` 2q J

I Claim 34. Ω does not increase, and Ω decreases at each step where some process executes
Line 2.

Proof of Claim 34. Consider the execution of one action by a process x. The only actions
that have an effect on the potentials %, τ , ω, and Ω are those listed in the table below. In
each case that x executes Line 2, Ω decreases, while in the one other case listed, an action of
Line 5, the value of Ω does not increase. The table below summarizes the effect of each of
those actions on the potentials, where ∆ indicates the increase of a quantity at the step.

∆%pxq ∆ωpxq ∆%pyq ∆ωpyq ∆τpxq ∆Ω

Class pxq “ I; x executes Line 2. ´1 ´1 0 ´1

Class pxq “ II; x executes Line 2;
y “ peerpxq. ´1 ´1 0 ´1 1 ´1

Class pxq “ II; x executes Line 5;
y “ peerpxq. 0 0 ď 1 ď 1 ´1 ď 0

Class pxq “ III; x executes Line 2;
y “ parent pxq. ´1 ´1 ď 1 ď 0 0 ď ´1

The other actions have no effect on any of the potentials listed above. J

The lemma follows from Claims 33 and 34. J

I Lemma 35. During a computation of Match starting from an aligned configuration, the
number of steps at which some process executes Line 15 is Opn diamq.

We skip the proof of Lemma 35, which is almost identical to the proof of Lemma30. We
can show that the step complexity of a computation starting from an aligned computation
consists of Opn diamq steps, using Lemmas 30 and 35, as well as additional lemmas which we
postpone to the full paper. In the full paper, we will prove the step complexity of Match.

8 Conclusion

We have given a self-stabilizing algorithm, under the unfair distributed daemon, for finding a
maximum matching of the processes of an anonymous network with a tree topology. Our
algorithm runs in Opdiamq rounds and Opn diamq steps, and needs only Op1q working space
per process, that is, space required for intermediate computations.

OPODIS 2015

16:16 Maximum Matching for Anonymous Trees with Constant Space per Process

References
1 Y. Asada and M. Inoue. A silent self-stabilizing algorithm for 1-maximal matching in

anonymous networks. In Proc. WALCOM 2015, pages 187–198, 2015.
2 J.R.S. Blair and F. Manne. Efficient self-stabilizing algorithms for tree networks. In Proc.

ICDCS 2003, pages 20–26, 2003.
3 S. Chattopadhyay, L. Higham, and K. Seyffarth. Dynamic and self-stabilizing. In Proc.

PODC 2002, pages 290–297, 2002.
4 A. K. Datta and L. L. Larmore. Leader election and centers and medians in tree networks.

In Proc. SSS 2013, pages 113–132, 2013.
5 E.W. Dijkstra. Self stabilizing systems in spite of distributed control. Communications of

the ACM, 17:643–644, 1974.
6 W. Goddard, S.T. Hedetniemi, D.P. Jacobs, and P.K. Srimani. Self-stabilizing protocols

for maximal matching and maximal independent sets for ad hoc networks. In Proc. IPDPS
2003, page 162, 2003.

7 W. Goddard, S.T. Hedetniemi, and Z. Shi. An anonymous self-stabilizing algorithm for
1-maximal matching in trees. In Proc. PDPTA 2006, pages 797–803, 2006.

8 N. Guellati and H. Kheddouci. A survey on self-stabilizing algorithms for independence,
domination, coloring, and matching in graphs. Journal of Parallel and Distributed Com-
puting, 70(4):406–415, 2010.

9 S.T. Hedetniemi, D.P. Jacobs, and P.K. Srimani. Maximal matching stabilizes in time
Opmq. Information Processing Letters, 80(5):221–223, 2001.

10 S.C. Hsu and S.T. Huang. A self-stabilizing algorithm for maximal matching. Information
Processing Letters, 43(2):77–81, 1992.

11 M.H. Karaata and K.A. Saleh. A distributed self-stabilizing algorithm for finding maximum
matching. Computer Systems Science and Engineering, 15(3):175–180, 2000.

12 M. Kimoto, T. Tsuchiya, and T. Kikuno. The time complexity of Hsu and Huang’s
self-stabilizing maximal matching algorithm. IEICE Trans. Infrmation and Systems, E93-
D(10):2850–2853, 2010.

13 F. Manne, M. Mjelde, L. Pilard, and S. Tixeuil. A new self-stabilizing maximal matching
algorithm. In Proc. SIROCCO 2007, pages 96–108, 2007.

14 F. Manne, M. Mjelde, L. Pilard, and S. Tixeuil. A self-stabilizing 2/3-approximation
algorithm for the maximum matching problem. Theoretical Computer Science, 412(4):5515–
5526, 2011.

15 G. Tel. Maximal matching stabilizes in quadratic time. Information Processing Letters,
49(6):271–272, 1994.

Atomic Snapshots from Small Registers
Leqi Zhu1 and Faith Ellen2

1 University of Toronto, Toronto, Canada
2 University of Toronto, Toronto, Canada

Abstract
Existing n-process implementations of atomic snapshots from registers use large registers. We con-
sider the problem of implementing an m-component snapshot from small, Θ(log n)-bit registers.
A natural solution is to consider simulating the large registers. Doing so straightforwardly can
significantly increase the step complexity. We introduce the notion of an interruptible read and
show how it can reduce the step complexity of simulating the large registers in the snapshot of
Afek et al. [1]. In particular, we show how to modify a recent large register simulation [2] to
support interruptible reads. Using this modified simulation, the step complexity of UPDATE
and SCAN changes from Θ(nm) to Θ(nm + mw), instead of Θ(nmw), if each component of
the snapshot consists of Θ(w log n) bits. We also show how to modify a limited-use snapshot
[4] to use small registers when the number of UPDATE operations is in nO(1). In this case, we
change the step complexity of UPDATE from Θ((log n)3) to O(w + (log n)2 log m) and the step
complexity of SCAN from Θ(log n) to O(mw + log n).

1998 ACM Subject Classification E.1 Distributed data structures

Keywords and phrases atomic snapshot, limited-use snapshot, small registers, simulation

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.17

1 Introduction

Atomic snapshots give processes the ability to obtain a consistent view of shared memory
through a SCAN operation, even when other processes are concurrently performing UPDATE
operations to the memory. This allows programmers to reason about the concurrency in
the system in a higher-level manner and can greatly simplify development and verification
of concurrent programs. In their seminal paper on atomic snapshots, Afek et al. [1] cite
many applications. In the same paper, they presented an n-process, m-component snapshot
implementation from registers (i.e., using only READ and WRITE) with Θ(nm) step
complexity for both SCAN and UPDATE.

A well-known concern with this implementation, and indeed all known snapshot imple-
mentations from registers, is the assumption that the system provides registers large enough
to store the result of a SCAN. As the number of components or the size of each component
of the snapshot grows, this assumption becomes less and less practical. We consider the
problem of implementing snapshots shared by n processes from Θ(log n)-bit registers. We
call such registers words. It is customary to use registers with Ω(log n) bits, so they can store
process identifiers.

A natural solution is to consider simulating the large registers. Recently, Aghazadeh,
Golab, and Woelfel [2] showed how to simulate a Θ(w log n)-bit register from words with
optimal step complexity, Θ(w), for READ and WRITE. Straightforwardly applying their
register simulation to the snapshot implementation by Afek et al. significantly increases the
step complexity from Θ(nm) to Θ(nmw), if each component of the snapshot consists of
Θ(w log n) bits.

© Leqi Zhu and Faith Ellen;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 17; pp. 17:1–17:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Atomic Snapshots from Small Registers

Most of these extra steps come from (unnecessarily) reading the embedded scans and
value fields contained in each of the large registers during the double-collects. However,
it is possible to determine if the embedded scans and values are needed by reading only
Θ(log n) bits from each of the registers. Motivated by this, we introduce the notion of an
interruptible read. This means that a process can read part of the large register’s data, pause
the simulated READ to perform other operations, and then return to read more of the data,
so that the entire read appears to occur at the same time. The large register simulation of
Aghazadeh, Golab, and Woelfel can be modified to have interruptible reads. Applying this
modified simulation to the snapshot of Afek et al. reduces the step complexity of UPDATE
and SCAN from Θ(nmw) to Θ(nm + mw).

Recently, Aspnes, Attiya, Censor-Hillel, and Ellen [4] showed that, if the number of
UPDATE operations, b, is in nO(1), then it is possible to implement a b-limited-use m-
component snapshot from Θ(nmw log n)-bit registers with step complexity Θ((log n)3) for
UPDATE and step complexity Θ(log n) for SCAN. Simulating the large registers from words
increases the step complexity of UPDATE to Θ(n2mw) and the step complexity of SCAN to
Θ(nmw), even with interruptible reads.

We show how to directly modify their implementation to use Θ(log n)-bit registers
while only slightly increasing the step complexity: O(w + (log n)2 log m) for UPDATE and
O(mw + log n) for SCAN. The idea is similar to interruptible reads. Instead of directly
returning a view, a SCAN returns an index into a sequence of views, whose length is
proportional to the number of UPDATE operations that have been performed. We call this
an implicit SCAN. The view may then be examined by using this index as input to a VIEW
operation. We call snapshots implemented in this way implicit. We provide a simple recursive
construction of an implicit snapshot from two implicit snapshots with fewer components.
Instead of representing a view directly, we represent it implicitly, by a pair of indices into the
sequences of views of these two smaller implicit snapshots. The actual view can be recovered
recursively. This also allows us to also implement a partial scan [5], in which only c of the
components are queried, with step complexity O(c(w + log m) + log n).

2 Model and Preliminaries

We consider an asynchronous shared memory system with n processes which communicate
using shared Θ(log n)-bit (multi-writer) registers. We call these registers words. We assume
that processes may fail at any time by crashing.

An execution in this system is an alternating sequence of configurations and events
C0, e1, C1, Each event ei (or, step) is either a READ or WRITE operation on a shared
register and each configuration Ci consists of the contents of every register and the state of
each process after event ei is applied to configuration Ci−1. For any two events a and b in
an execution, we write a→ b to mean that a precedes b in the execution.

An implementation of a shared object in this system provides a representation of the
object using words and an algorithm for each type of operation supported by the object
and for each process sharing the object. We only consider wait-free implementations, where
each operation invoked by a non-faulty process is guaranteed to be completed within a finite
number of its own steps. The step complexity of an operation O in an implementation is the
maximum, over all possible executions, of the number of steps taken by any process to finish
an instance of O that it invoked.

Given an execution, the execution interval of an operation is the portion of the execution
which begins with the first step in the operation and ends with the last step in the operation.

L. Zhu and F. Ellen 17:3

An implementation is linearizable [8] if, for every execution, we can choose a linearization
point in the execution interval of each operation such that operations appear to occur
instantaneously at their linearization points.

An m-component atomic snapshot (or simply snapshot) has two operations, SCAN and
UPDATE(j, v). The SCAN operation returns an instantaneous view of the components,
as if all m components were read in a single atomic step. The UPDATE(j, v) operation
updates component j to have value v and returns nothing. For b ≥ 1, we say a snapshot is
b-limited-use if it supports at most b UPDATE operations in any execution.

A max register has two operations, READ-MAX and WRITE-MAX(v). The READ-MAX
operation returns the largest value written thus far, while WRITE-MAX(v) adds a number
v to the set of values written and returns nothing. For b ≥ 1, we say a max register is
b-bounded if its values are restricted to {0, . . . , b− 1}. Aspnes, Attiya, and Censor-Hillel [3]
showed that:

I Theorem 1. There is a b-bounded max register implementation with step complexity
Θ(log b) which uses only 1-bit registers.

A 2-component max array has two operations, MAX-SCAN and MAX-UPDATE(j, v).
Each component behaves like a max register. The MAX-SCAN operation returns an
instantaneous view of the two components, as if both components had READ-MAX performed
on them in a single atomic step. The MAX-UPDATE(j, v) operation updates component j

as if it had performed WRITE-MAX(v) to it and returns nothing. For b1, b2 ≥ 1, we say a
2-component max array is (b1, b2)-bounded if the values of its first component are restricted to
{0, . . . , b1 − 1} and the values of its second component are restricted {0, . . . , b2 − 1}. Aspnes,
Attiya, Censor-Hillel, and Ellen [4] showed that:

I Theorem 2. There is a (b1, b2)-bounded 2-component max array implementation with step
complexity Θ(log b1 log b2) which uses only 1-bit registers.

3 Unlimited-use snapshot from small registers

We show how to obtain an m-component snapshot implementation from words with step
complexity Θ(nm+mw) for SCAN and UPDATE, if each component of the snapshot consists
of Θ(w log n) bits.

Our approach is to simulate the large registers in the m-component snapshot by Afek et
al. [1] from words. In their implementation, a SCAN performs Θ(n) collects on an array of
m registers, each containing Θ(w log n) bits. The large register simulation by Aghazadeh,
Golab, and Woelfel [2] has Θ(w) step complexity for READ and WRITE of a Θ(w log n)-bit
register. Thus, if we directly apply their simulation, the step complexity of SCAN and
UPDATE (which contains an embedded SCAN) becomes Θ(nmw) instead of Θ(nm).

We observe that not all the bits read during the collects are needed. Indeed, in all but the
last collect, only Θ(log n) bits from each of the m registers end up being used. Furthermore,
after reading only these bits, it is possible to determine which additional bits need to be read.
Motivated by this, we introduce the notion of an interruptible read which, intuitively, allows
a process to reserve a copy of the value in the large register (BEGIN-IREAD), read particular
words in the copy (READ-WORD), and then return the memory for reuse (END-IREAD).
In general, this is useful for algorithms in which a process can read only a small fraction of
the bits in a large register to determine if it needs to read the rest of the bits.

In Section 3.1, we formally define an interruptible read. In Section 3.2, we explain how
to modify the simulation by Aghazadeh et al. to implement BEGIN-IREAD, READ-WORD,

OPODIS 2015

17:4 Atomic Snapshots from Small Registers

p1

p2

W(00)

BI = t1 RW(t1, 1) = 0

W(11)

BI = t2 RW(t2, 1) = 1 RW(t2, 0) = 0

Figure 1 Example of an execution using interruptible reads.

and END-IREAD in constant time. In Section 3.3, we carefully apply this modified simulation
with interruptible reads to the standard snapshot of Afek et al. to obtain an m-component
snapshot with SCAN and UPDATE step complexity Θ(nm + mw). Finally, in Section 3.4,
we describe some other, faster snapshot implementations and why it is difficult to modify
them to use words while maintaining their step complexity.

3.1 Interruptible reads
Formally, a simulation of a Θ(w log n)-bit register from words supports interruptible reads
if it implements 3 operations: BEGIN-IREADp, READ-WORDp, and END-IREADp, for
each process p. BEGIN-IREADp takes no arguments and returns a pointer to a block of w

words which represents the current value of the large register. END-IREADp takes a pointer
returned by a BEGIN-IREADp operation and returns nothing. READ-WORDp takes a
pointer t returned by a BEGIN-IREADp operation and an integer j. It returns the value
of the j’th word in the block of memory pointed to by t. Between a BEGIN-IREADp that
returns a pointer t and the next occurrence of END-IREADp(t), the memory pointed to by t

is not changed. We say that a process p has an active interruptible read at the end of an
execution if the execution contains a BEGIN-IREADp operation that returns some pointer t

which is not followed by a corresponding END-IREADp(t) operation.
For example, we can use interruptible reads to implement a normal READ by obtaining a

pointer t via BEGIN-IREADp, concatenating the values returned by READ-WORDp(t, j) for
j = 1, . . . , w into a single value v, releasing the memory pointed to by t via END-IREADp(t),
and then returning v.

Figure 1 gives an example of an execution involving 2 processes, p1 and p2, using
interruptible reads. It features a 2-bit register being simulated by 1-bit registers. At the
start, p1 writes 00, denoted by W(00). Then p2 begins an interruptible read and obtain a
pointer t1. This is denoted by BI = t1. Next, p2 reads the first word (in this case, a bit)
being pointed to by t1, which has value 0. We denote this by RW(t1, 1) = 0. Now p1 writes
11. Then p2 begins another interruptible read to obtain a pointer t2 and reads the first word
being pointed to by t2, which has value 1. Finally, when p2 reads the second word pointed
to by t1, it is still 0. At the end of this execution, p2 has 2 active interruptible reads.

3.2 A large register simulation supporting fast interruptible reads
Not all large register simulations support fast interruptible reads. For instance, Peterson
[10] showed how to simulate a large single-writer Θ(w log n)-bit register from single-writer
Θ(log n)-bit registers. His simulation represents a large register by collections of Θ(w) words,
called buffers. The writer alternately writes to two of these buffers. A switch bit indicates
which of these two buffers was most recently written to. The writer flips the switch bit after
completing a sequence of Θ(w) writes to one of these buffers. Ideally, the readers would
read from one buffer while the writer writes to the other. However, processes may fall asleep
for a long time. Using handshakes, the writer can detect if a reader is concurrent with its
WRITE. In this case, it also writes the current value of the register to the reader’s designated
copy buffer. The reader performs collects on both of the main buffers as well as its own

L. Zhu and F. Ellen 17:5

copy buffer. By checking the switch and handshake bits, the reader returns the value of a
buffer that was not being written to while it was being read. Implementing fast interruptible
reads is difficult in this case because the reader cannot quickly determine which pointer
BEGIN-IREAD should return.

The simulation by Aghazadeh et al. [2] can easily be modified to support a polynomial
(in n) number of active interruptible reads per process. Like Peterson’s simulation, they use
buffers. Writers have a pool of buffers to which they may write and there is a pointer to
the most recently written buffer. To READ, a reader reads the pointer to the most recently
written buffer and announces this pointer. The algorithm guarantees that an announced
buffer will not be modified by any writer. Since a writer may miss this announcement, there
is also a mechanism for a writer to pass hints to the reader about alternate buffers which
have been written to in the meantime, from which it is safe to read. These hints can be read
by the reader in a constant number of steps. The algorithm guarantees that, until the reader
acknowledges a hint, no writer is allowed to modify the buffers mentioned in the hint. The
reader acknowledges a hint when it will no longer read from the buffer to which it points.
This takes a constant number of steps. It is possible, but not necessary, for the reader to
clear its initial announcement.

To implement interruptible reads, we break this READ operation into pieces. In particular,
BEGIN-IREAD is the portion of the READ that determines the buffer to be read. It returns a
pointer to that buffer. READ-WORD simply reads the appropriate word from the buffer. By
the correctness of the simulation, the words may be read in any order. Finally, END-IREAD
is be the portion of the READ that acknowledges hints. Note that each of these operations
take a constant number of steps.

This simulation assumes that each process can only have one operation active at a time.
To support c ∈ nO(1) active interruptible reads of the same large register per process, we
need to increase the size of the buffer pool for each writer by a factor of c. Then the size of
each pointer increases by dlog2 ce = Θ(log n) bits.

3.3 Application to Afek et al.
We consider the m-component snapshot implementation of Afek et al. [1]. Suppose that
each component of the snapshot consists of Θ(w log n) bits. The implementation uses binary
registers, qi,j and q′i,j , for i, j ∈ {0, 1, . . . , n−1}, which are the handshaking bits, Θ(mw log n)-
bit registers, view1, . . . , viewn, which store views, and Θ(w log n)-bit registers, R1, . . . , Rm,
each of which stores the current value of the component, a process identifier, and a toggle bit.

A SCAN operation by process pi consists of a loop, each iteration of which (1) col-
lects q1,i, . . . , qn,i, (2) writes to q′i,1, . . . , q′i,n, (3) collects R1, . . . , Rm twice, and (4) collects
q1,i, . . . , qn,i again. The iteration is successful if the handshaking bits read in both collects of
q1,i, . . . , qn,i are the same and the process identifiers and toggle bits read in both collects of
R1, . . . , Rm are the same. In this case, (5) the current value of the components read from
the second collect of R1, . . . , Rm are returned. Otherwise, the algorithms (6) checks (by
examining the previously read handshaking bits, process identifiers, and toggle bits) if some
process pj has performed at least one complete UPDATE since the start of the SCAN and,
if so, (7) reads and returns viewj . They prove that there can be at most O(n) iterations of
the loop. An UPDATE operation by process pi consists of a collect of q′1,i, . . . , q′n,i, writes to
qi,j , for j ∈ {0, 1, . . . , n− 1}, an embedded SCAN, a write to viewi, and a write to Rc, for
some c ∈ {1, . . . , m}.

Steps (1), (2), and (4) have Θ(n) step complexity. If we directly apply the simulation of
Aghazadeh et al. [2], the step complexity of step (3) will be Θ(mw) and the step complexity

OPODIS 2015

17:6 Atomic Snapshots from Small Registers

of the SCAN is Θ(nmw). We can improve this to Θ(m) using interruptible reads by reading
only the words containing the process identifiers and toggle bits from R1, . . . , Rm in both
collects. We can end the interruptible reads started during the first collect immediately after
the first collect is finished. If the iteration is successful, then we read the current value of
each component and end each interruptible read started during the second collect. If the
iteration is unsuccessful, then we end each interruptible read started during the second collect
without reading the current value of each component. We note that each process has at
most one active interruptible read on each register at any time. Steps (5) and (7) have step
complexity Θ(mw). Step (6) consists of only local operations. Since steps (5) and (7) are
performed just before returning, they contribute Θ(mw) steps to the total. Steps (1) to (4)
occur Θ(n) times in the worst case. Overall, the step complexity of SCAN is Θ(nm + mw).

I Theorem 3. For k ∈ Ω(log n), there is an m-component snapshot implementation from
k-bit registers with step complexity Θ(nm + mw) for SCAN and UPDATE, if each component
of the snapshot consists of Θ(wk) bits.

3.4 Other snapshots
There are snapshots with better step complexity. Attiya and Rachman [7] implemented a
single-writer snapshot from single-writer registers with Θ(n log n) step complexity. However,
they perform too many reads on large registers. In particular, they perform Θ(n log n) reads
of Θ(nw log n)-bit registers, if each component of the snapshot consists of Θ(w log n) bits.
Moreover, they always use the entire value obtained from each read, so interruptible reads
are not helpful. This results in a step complexity of Ω(n2w log n) using any large register
simulation. Inoue and Chen [9] showed how to implement lattice agreement from multi-writer
registers with Θ(n) step complexity. Attiya, Herlihy, and Rachman showed how to implement
a single-writer snapshot from lattice agreement [6]. This implies an implementation of a
single-writer snapshot from multi-writer registers with Θ(n) step complexity. Unfortunately,
the implementation of Attiya, Herlihy, and Rachman uses unbounded size registers. It is
unclear whether it is possible to modify these implementations to use small registers while
maintaining their step complexity.

4 Limited-use snapshot from small registers

An implicit snapshot object is like a regular snapshot object except that a SCAN operation
is separated into two parts, an ISCAN operation and a VIEW operation. Intuitively, the
ISCAN operation is where the actual SCAN occurs. It returns a pointer to a view, which
may then be read via the VIEW operation. To facilitate our implementation of a partial
SCAN [5], a VIEW operation takes a range of components as input and returns the values of
the components in that range. We formalize this as follows.

An ISCAN operation S returns a value t(S) ≥ 0, which we call the index of S. We require
that, for any two ISCAN operations S1 and S2, t(S1) < t(S2) if and only if S1 is linearized
before S2 and there is at least one UPDATE linearized between them. We also require that
an ISCAN operation S has t(S) = 0 if and only if no UPDATE operation is linearized before
it.

Given an ISCAN operation S, we define the view at index t(S) to be the m-component
vector whose c’th component contains the value of the last UPDATE operation to component
c linearized before S, or the initial value ⊥, if no such operation exists, for all c ∈ {1, . . . , m}.
This is well-defined since, by our requirement on the indices returned by ISCANs, there can

L. Zhu and F. Ellen 17:7

be no UPDATE operations linearized between two ISCAN operations returning the same
index. The VIEW(t, i, j, V) operation, takes as input an index t returned by a previously
completed ISCAN operation, integers 1 ≤ i ≤ j ≤ m, and an output array V [1..j − i + 1].
It writes components i through j of the view at index t(S) into entries 1 through j − i + 1
of V . A VIEW could simply return an array containing the values of components i to j.
However, since we recursively build implicit snapshots from implicit snapshots with fewer
components in Section 4.2, it is more efficient to copy values to one array versus repeatedly
creating arrays and concatenating them.

We note that an implicit snapshot object can implement a regular snapshot object
by substituting the SCAN operation with VIEW(ISCAN(), 1, m, V [1..m]). Furthermore,
an implicit snapshot can implement a partial SCAN [5] on a set of disjoint component
ranges (i1, j1), . . . , (ir, jr) by performing ISCAN and then running VIEW(t, ik, jk, V [c]) for
all k ∈ {1, . . . , r}, where t is the index returned by the initial ISCAN.

4.1 A 1-component limited-use implicit snapshot implementation
We can implement a b-limited-use 1-component single-writer implicit snapshot using an array
A of b single-writer registers and a single-writer register index. To UPDATE component 1 to
v, the writer increments a local counter t, writes v to A[t], and then writes t to index. An
ISCAN reads index and returns it. VIEW(t, 1, 1, V) reads A[t] and writes this value to V [1].

To extend this implementation to multiple writers, we change index to be a (bn + 1)-
bounded max register. Furthermore, instead of incrementing a local counter, a writer
performs index.read-max to determine the current index t, chooses an index t′ > t that no
other writer will choose, writes the value v to A[t′], and then performs index.write-max(t′).
An ISCAN consists of performing index.read-max and returning the resulting value. The
VIEW operation is unchanged. Always choosing t′ to be the smallest integer larger than t

which is congruent to the writer’s process identifier modulo n ensures that different indices
are chosen by different writers and they are all bounded above by bn. See Algorithm 1 for
the pseudocode.

Algorithm 1 A b-limited-use 1-component implicit snapshot object.
1: procedure UPDATE(1, u)
2: t← index.read-max()
3: t′ ← min{j : j > t and j ≡ i mod n} . code for process pi

4: A[t′].write(u)
5: index.write-max(t′)
6: procedure ISCAN
7: return index.read-max()
8: procedure VIEW(t, 1, 1, V [1..1])
9: V [1]← A[t].read()

Recall that, from Theorem 1, there is a linearizable implementation of a bounded max
register from binary registers. Thus, we will assume that all operations on index are atomic
and treat them as steps in the executions we consider.

For every UPDATE operation U , let t(U) be the value t′ used as the argument of the
index.write-max that U performed on line 5.

I Lemma 4. For all t ≥ 1, there is at most one UPDATE operation U with t(U) = t. No
UPDATE operation U has t(U) = 0.

OPODIS 2015

17:8 Atomic Snapshots from Small Registers

Proof. By line 3, if t ≡ i mod n, then only process pi can choose t. Since pi performs
index.write-max(t) on line 5, the values returned to pi from index.read-max on line 2 are
strictly increasing. Therefore, pi will never choose t again. Since index is initially 0, t(U) > 0
for all UPDATE operations U . J

An UPDATE operation U is linearized at the first point that index has value at least
t(U). This occurs when some process, not necessarily the process performing U , performs
index.write-max(t), for some t ≥ t(U). If multiple UPDATE operations are linearized at the
same point, then they are linearized in increasing order of their indices. By Lemma 4, there
will be no ties. An ISCAN operation is linearized when it performs index.read-max. A VIEW
operation is linearized when it performs A[t].read.

Since an UPDATE operation U begins with an index.read-max and t(U) is chosen to be
larger than the value it returns, index < t(U) at the beginning of U ’s execution interval.
Furthermore, since U ends with index.write-max(t(U)), index ≥ t(U) at the end of U ’s
execution interval. Since the value of a max-register is non-decreasing, it follows that each
UPDATE operation is linearized at a point within its execution interval.

I Lemma 5. If an UPDATE operation U1 is linearized before another UPDATE operation
U2, then t(U1) < t(U2).

Proof. Let X be the index.write-max(t) step at which U1 is linearized, so that t ≥ t(U1). If
the index.read-max step of U2 occurs after X, then the value returned by the index.read-max
step of U2 is at least t, so t(U2) > t ≥ t(U1). So, suppose that the index.read-max of U2
occurs before X. If U2 is also linearized at X, then, from the way the linearization order is
defined when multiple UPDATE operations are linearized at the same step, t(U2) > t(U1).
Otherwise, U2 is linearized after X so, by definition, t(U2) > t ≥ t(U1). J

I Lemma 6. Let S be an ISCAN operation. If no UPDATE operation is linearized before
S, then t(S) = 0. Otherwise, if U is the last UPDATE operation linearized before S, then
t(U) = t(S).

Proof. Every UPDATE operation is linearized at no later than its index.write-max step. If
S is linearized before every UPDATE operation, then its index.read-max step occurs before
any index.write-max step and, hence, returns 0. So, suppose some UPDATE operation is
linearized before S and let U be the last such UPDATE operation. Since S obtained index
t(S) from its index.read-max step, there was an UPDATE operation U ′ that previously
performed index.write-max(t(U ′)) with t(U ′) = t(S). U ′ is linearized at no later than its
index.write-max step. Hence, it is linearized before S. Suppose, for a contradiction, that
U 6= U ′, so that U is linearized between U ′ and S. By Lemma 5, t(U) > t(U ′). By definition,
there was a index.write-max(t) with t ≥ t(U) at the linearization point of U . This implies
that t(S) ≥ t(U). This is a contradiction, since t(U) > t(U ′) = t(S). J

I Lemma 7. An UPDATE operation U is linearized before an ISCAN operation S if and
only if t(U) ≤ t(S).

Proof. Suppose an UPDATE operation U is linearized before an ISCAN S. Let U ′ be the
last UPDATE operation linearized before S. By Lemma 6, t(U ′) = t(S). If U = U ′, then
t(U) = t(S). Otherwise, by Lemma 5, t(U) < t(U ′) = t(S). Conversely, suppose that U is
linearized after S. If no UPDATE operation is linearized before S, then t(S) = 0 and, by
Lemma 4, t(U) > t(S). So, suppose that some UPDATE operation is linearized before S

and let U ′ be the last such UPDATE operation. Since U is linearized after U ′, by Lemma 5,
t(U) > t(U ′) = t(S). J

L. Zhu and F. Ellen 17:9

I Lemma 8. For any two ISCAN operations S1 and S2, t(S1) < t(S2) if and only if S1 is
linearized before S2 and there is at least one UPDATE linearized between them.

Proof. If t(S1) < t(S2), then S1 is linearized before S2, since they are linearized at their
respective index.read-max steps. By Lemma 4, there is an unique UPDATE operation U with
t(U) = t(S2). Since t(U) > t(S1), Lemma 7 implies that U is linearized after S1. Since U is
the only UPDATE operation with t(U) = t(S2), the index.write-max step in U occurs before
the index.read-max step in S2. Since U is linearized at no later than its index.write-max
step, it follows that U is linearized before S2. Conversely, suppose S1 is linearized before
S2 and there is at least one UPDATE operation U linearized between them. By Lemma 7,
t(S1) < t(U) ≤ t(S2). J

I Lemma 9. For any two ISCAN operations S1 and S2, |t(S1) − t(S2)| ≤ kn, where k is
the number of UPDATE operations linearized between them.

Proof. Without loss of generality, assume S1 is linearized before S2. Let U1, U2, . . . , Uk be the
UPDATE operations linearized between S1 and S2, in that order. By Lemma 7, t(S1) < t(U1).
By Lemma 6, t(Uk) = t(S2). By Lemma 5, t(Ui−1) < t(Ui) for 2 ≤ i ≤ k. Suppose the
index.read-max step in U1 returned a value t > t(S1). Then there was a index.write-max(t′)
after S1 with t(S1) < t′ < t(U1), and the UPDATE operation U which performed this
index.write-max would be linearized between S1 and U1, contradicting the definition of U1.
Therefore, the index.read-max step in U1 returned a value which is at most t(S1). Similarly,
for 2 ≤ i ≤ k, the index.read-max step in Ui returned a value which is at most t(Ui−1). It
follows by line 3 that |t(U1)− t(S1)| ≤ n and |t(Ui)− t(Ui−1)| ≤ n, for 2 ≤ i ≤ k. It follows
that |t(S1)− t(S2)| = |t(S1)− t(U1) + t(U1)− t(U2) + · · ·+ t(Uk−1)− t(Uk)| ≤ nk. J

I Lemma 10. Let S be an ISCAN operation and let U be the last UPDATE operation
linearized before S. Then every VIEW(t(S), 1, 1, V) operation starting after S will set V [1]
to the value written by U .

Proof. By Lemma 6, t(U) = t(S). By Lemma 4, U is the unique UPDATE operation
with t(U) = t(S). After U completes, A[t(S)] contains the value written by U , since each
UPDATE operation U ′ only writes to A[t(U ′)]. The index.read-max step in S occurs after the
index.write-max step in U , so U completes before S. It follows that any VIEW(t(S), 1, 1, V)
operation starting after S will set V [1] to the value of A[t(S)], which contains the value
written by U . J

I Theorem 11. There is an implementation of a b-limited-use 1-component implicit snapshot
object from w-bit registers and 1-bit registers, where w is the number of bits needed to represent
each component of the snapshot. In the implementation, UPDATE consists of a write to
a w-bit register and Θ(log(bn + 1)) writes and reads on 1-bit registers, SCAN consists of
Θ(log(bn+1)) reads on 1-bit registers, and VIEW consists of a single read on a w-bit register.

Proof. Lemma 10 shows that a VIEW(t, 1, 1, V) operation on an index t returned by an
ISCAN operation S will set V [1] to the value of the last UPDATE linearized before S. It
follows that the implementation is linearizable. Lemma 8 shows that, for any two ISCANs
S1 and S2, t(S1) < t(S2) if and only if S1 is linearized before S2 and there is an UPDATE
linearized between them, so the indices returned by ISCAN operations are correct. Lemma 9
shows that index is bounded by bn, since there can be at most b UPDATE operations between
any two ISCANs. Hence a (bn + 1)-bounded max register suffices and A needs at most bn + 1
entries. By Theorem 1, a READ-MAX or WRITE-MAX on a (bn + 1)-bounded max register
requires Θ(log(bn + 1)) reads and writes on 1-bit registers. J

OPODIS 2015

17:10 Atomic Snapshots from Small Registers

4.2 An m-component implicit snapshot implementation
For m > 1, we obtain a b-limited-use m-component implicit snapshot recursively. Our
implementation is essentially a modification of the implementation in Aspnes, Attiya, Censor-
Hillel, and Ellen [4]. The result is a simpler implementation which uses substantially smaller
registers.

Let snap1 and snap2 be b-limited-use c1-component and c2-component implicit snapshots,
respectively. Let indices be a bounded 2-component max array. We describe a simple, but
incorrect implementation of a b-limited-use (c1 + c2)-component implicit snapshot from snap1
and snap2 and then show how to fix it.

UPDATEs on the first c1 components are handled by snap1.update while UPDATEs on
the last c2 components are handled by snap2.update. The idea is that the ISCAN will use the
2-component max array to keep track of the most recent indices for snap1 and snap2. ISCAN
performs snapj .iscan to obtain index uj and performs indices.max-update(j, uj), for j ∈ {1, 2}.
Then it performs indices.max-scan to obtain new indices (t1, t2), which it writes to the register
T[t1 + t2], before finally returning t1 + t2. The VIEW operation for an index t returned by a
previously completed ISCAN operation reads T[t] to obtain indices (t1, t2), and then calls
snapj .view on index tj , for j ∈ {1, 2}, as necessary to get the appropriate components. By
definition of a 2-component max-array, the indices (t1, t2) and (t′1, t′2) seen by two ISCAN
operations as a result of their indices.max-scan steps are comparable component-wise. It
follows that if t1 + t2 = t′1 + t′2, then t1 = t′1 and t2 = t′2. Hence, if two ISCAN operations
write to T[t], for some index t, then they write the same value.

An UPDATE operation consists of a single snapj .update step, at which it must be linearized.
It is tempting to linearize an ISCAN seeing indices (t1, t2) from its indices.max-scan step
at the first point in its execution interval that component 1 of indices has index t1 and
component 2 of indices has index t2. It is possible to show that, with these linearization
points, for any two ISCAN operation S1 and S2, if t(S1) < t(S2), then S1 is linearized
before S2 and there was an UPDATE operation linearized between them. The converse,
however, does not hold. The problem is that, for S2, some UPDATE operations to the first
c1 components may linearized between the first time that component 1 of indices has index
t1 and the first time that component 2 of indices has index t2, and S2 will fail to see these
UPDATEs, even though it is linearized after them.

To fix this, we ensure that an UPDATE completes only after it knows it will be seen
by all ISCANs linearized after it. Thus, after the UPDATE operation updates snapj , it
performs snapj .iscan to obtain an index t, and then performs indices.max-update(j, t). Since
UPDATEs now perform snapj .iscan and indices.max-update(j,−), we can, in fact, remove the
snapj .iscan and indices.max-update(j,−) steps from ISCAN, for j ∈ {1, 2}. The pseudocode
is presented in Algorithm 2.

Recall that, from Theorem 2, a bounded 2-component max array can be implemented
from 1-bit registers. Thus, we will assume that all operations on indices are atomic and treat
them as steps in the executions we consider.

An ISCAN operation S is linearized at its indices.max-scan step. We use (t1(S), t2(S)) to
denote the value returned by this step, so that t(S) = t1(S) + t2(S). An UPDATE operation
which updates snapj is linearized at the first point in its execution interval that component
j of indices is at least the value returned in its snapj .iscan step. More formally, for each
UPDATE operation U , let X(U) be the snapj .update step in U , let Y(U) be the set of all
snapj .iscan steps occurring after X(U), and let Z(U) be the set of all indices.max-update(j, t)
steps, where t = t(Y) for some Y ∈ Y(U). Let Z(U) be the earliest step in Z(U). Z(U)
is part of some UPDATE operation U ′ which updates snapj . Let Y (U) be the snapj .iscan

L. Zhu and F. Ellen 17:11

Algorithm 2 A b-limited use (c1 + c2)-component implicit snapshot object.
1: procedure UPDATE(c, v)
2: j ← if c ≤ c1 then 1 else 2
3: c← if c ≤ c1 then c else c− c1
4: snapj .update(c, v)
5: t← snapj .iscan()
6: indices.max-update(j, t)
7: procedure ISCAN()
8: (t1, t2)← indices.scan-max()
9: T[t1 + t2].write((t1, t2))

10: return t1 + t2

11: procedure VIEW(t, i, j, V [1..j − i + 1])
12: (t1, t2)← T[t].read()
13: if i ≤ c1 then
14: snap1.view(t1, i, min{j, c1}, V [1.. min{c1 − i + 1, j − i + 1}])
15: if j ≥ c1 + 1 then
16: snap2.view(t2, max{i− c1, 1}, j − c1, V [max{1, c1 − i + 2}..j − i + 1])

step in U ′. Since there is a Y ∈ Y(U) with t(Y) = t(Y (U)), X(U) cannot occur between
Y and Y (U), so X(U) → Y (U) and Y (U) ∈ Y(U). We linearize U at Z(U). If multiple
UPDATE operations are linearized at the same point, then linearize them in the order of
their snapj .update steps. A VIEW operation is linearized when it returns.

I Lemma 12. An UPDATE operation U that updates snapj is linearized before an ISCAN
operation S if and only if X(U) occurs before the first snapj .iscan step returning tj(S).

Proof. Suppose U is linearized before S. Let Y be the first snapj .iscan step returning tj(S).
Since U is linearized before S, its linearization point, Z(U), occurs before the indices.max-scan
step in S, so t(Y (U)) ≤ tj(S) = t(Y). If t(Y (U)) < t(Y), then X(U) → Y (U) → Y .
Otherwise, if t(Y (U)) = t(Y), then Y → Y (U) by definition of Y . Since t(Y) = t(Y (U)),
there are no snapj .update steps between Y and Y (U), so we must have X(U)→ Y → Y (U).

Conversely, suppose X(U) occurs before the first snapj .iscan step Y returning tj(S). Let Z

be the first snapj .max-update(j, tj(S)) step, which is part of some UPDATE operation U ′, and
let Y ′ be the snapj .iscan step in U ′ which returned tj(S). By assumption, X(U)→ Y → Y ′,
so Y ′ ∈ Y(U) and Z ∈ Z(U). Thus, U is linearized no later than Z, which is before the
indices.max-scan step in S, so U is linearized before S. J

I Lemma 13. Let S be an ISCAN operation, and let U1, . . . , Up be the UPDATE operations
linearized before S that update snapj, in the order in which they are linearized. Then
X(U1)→ X(U2)→ · · · → X(Up) and t(Y (U1)) ≤ t(Y (U2)) ≤ · · · ≤ t(Y (Up)) = tj(S).

Proof. Let 1 ≤ i < j ≤ p. Suppose, for a contradiction, that t(Y (Ui)) > t(Y (Uj)), so
X(Uj) → Y (Uj) → Y (Ui), Y (Ui) ∈ Y(Uj), and Z(Ui) ∈ Z(Uj). It follows that Z(Ui) =
Z(Uj), for otherwise Uj is linearized before Ui. Thus, Y (Ui) = Y (Uj), so t(Y (Ui)) = t(Y (Uj)),
which is a contradiction. To see that t(Y (Up)) = tj(S), note that the UPDATE operation
which performs the first indices.max-update(j, tj(S)) step Z, is linearized no later than Z,
which is linearized before S.

Similarly, suppose for a contradiction that X(Uj) → X(Ui). It follows that X(Uj) →
Y (Ui), Y (Ui) ∈ Y(Uj), and Z(Ui) ∈ Z(Uj). Thus, Uj would be linearized at no later than
Z(Ui), and it would be linearized before Ui since X(Uj)→ X(Ui), a contradiction. J

OPODIS 2015

17:12 Atomic Snapshots from Small Registers

I Lemma 14. Consider any ISCAN operation S and any VIEW(t(S), 1, c1 +c2, V [1..c1 +c2])
operation. Then, after this VIEW operation completes, V [c] is set to the value of the last
UPDATE operation on component c linearized before S, or ⊥ if no such operation exists, for
all components c.

Proof. We only consider when c ∈ {1, . . . , c1}; the case for c ∈ {c1 + 1, . . . , c1 + c2} is
similar. Suppose that no UPDATE to component c is linearized before S. By Lemma 12, no
snap1.update(c, u) step occurs before the first snap1.iscan step returning index t1(S). Thus,
the view of snap1 at index t1(S) has component c set to ⊥, so V [c] = ⊥.

Now, suppose some UPDATE to component c is linearized before S. Let U be the last
such UPDATE, and let Y be the first snap1.iscan step returning index t1(S). By Lemma 12,
any UPDATE operation U ′ on component c such that X(U ′) → Y is linearized before S.
Since U is the last UPDATE on component c linearized before S, Lemma 13 implies that
X(U ′)→ X(U). It follows that the view of snap1 at index t1(S) has component c set to the
value of X(U), which is the value of U , so V [c] is set to the value of U . J

I Lemma 15. For any two ISCAN operations S1 and S2, t(S1) < t(S2) if and only if S1 is
linearized before S2 and there is at least one UPDATE linearized between them.

Proof. If t(S1) < t(S2), then S1 is linearized before S2 since they are linearized at their
respective indices.max-scan steps. Furthermore, we must have either t1(S1) < t1(S2) or
t2(S1) < t2(S2). Suppose t1(S1) < t1(S2); the other case is similar. Since t1(S1) < t1(S2),
there was a indices.max-update(1, t1(S2)) step Z before the start of S2. Let U be the UPDATE
operation which performed Z. Let Y be the first snap1.iscan with t(Y) = t1(S2). Since
t(Y) = t(Y (U)), X(U) → Y and Lemma 12 implies that U is linearized before S. Since
t(Y (U)) = t1(S2) > t1(S1), Lemma 13 implies that U is linearized after S1.

Conversely, suppose S1 is linearized before S2 and there is an UPDATE operation U

linearized between them. Suppose that U updates snapj . Since S1 is linearized before
S2, t(S1) ≤ t(S2). Since U is linearized after S1, by Lemma 12, X(U) occurred after
the first snapj .iscan step Y returning tj(S1). Since Y → X(U) → Y (U), it follows that
t(Y (U)) > t(Y) = tj(S1). Furthermore, since U is linearized before S2, by Lemma 13,
t(Y (U)) ≤ tj(S2). Therefore t(S1) = tj(S1) + t3−j(S1) < tj(S2) + t3−j(S1) ≤ tj(S2) +
t3−j(S2) = t(S2), where t2(S1) ≤ t2(S2) follows since the indices.max-scan step in S1 occurs
before the indices.max-scan step in S2. J

I Lemma 16. For every ` ≥ 0, there is an implementation of a b-limited use 2`-component
implicit snapshot from w-bit registers, Θ(log(bn+1))-bit registers, and 1-bit registers, where w

is the number of bits needed to represent each component of the snapshot. The implementation
satisfies the following properties:
1. The ISCAN operation consists of O((log(bn + 1))2) reads and writes on 1-bit registers

and a write to a Θ(log(bn + 1))-bit register. Furthermore, for any two ISCAN operations
S1 and S2, |t(S1)− t(S2)| ≤ kn, where k is the number of UPDATE operations linearized
between S1 and S2.

2. The UPDATE operation consists of O((log(bn + 1))2(` + 1)) reads and writes on 1-bit
registers, ` writes to Θ(log(bn + 1))-bit registers, and a write to a w-bit register.

3. The VIEW operation on an index returned by an ISCAN operation and a range (i, j) of
components consists of T`(i, j) = 1 + ` + 2(j − i)−

∑`−1
d=0(yd− xd) ≤ 1 + 2(` + j − i) reads

on Θ(log(bn + 1))-bit registers and j − i + 1 reads on w-bit registers, where x`−1 · · ·x0
and y`−1 · · · y0 are the binary representations of i− 1 and j − 1, respectively.

L. Zhu and F. Ellen 17:13

Proof. By induction on `. The base case, when ` = 0, holds by Theorem 11. Suppose now
that the claim holds for ` and consider ` + 1. We consider what happens when we build a
b-limited use 2`+1-component implicit snapshot object from two b-limited use 2`-component
implicit snapshot objects using Algorithm 2.

(1) Let S1 and S2 be any two ISCAN operations. For i, j ∈ {1, 2}, let Y i
j be the first

snapj .iscan step returning tj(Si). By assumption, |tj(Y 1
j)− tj(Y 2

j)| ≤ qjn, where kj is the
number of UPDATE operations which had their snapj .update step linearized between Y 1

j

and Y 2
j . By Lemma 12, an UPDATE operation U which updates snapj is linearized between

S1 and S2 if and only if X(U) occurs between Y 1
j and Y 2

j . It follows that k1 + k2 = k. Thus,
|t(S1)− t(S2)| = |t1(Y 1

1)− t1(Y 2
1) + t2(Y 1

2)− t2(Y 2
2)| ≤ |t(Y 1

1)− t(Y 2
1)|+ |t(Y 1

2)− t(Y 2
2)| ≤

(k1 + k2)n = kn. Since k ≤ b, this shows that indices can be (bn + 1, bn + 1)-bounded and
T can be an array of bn + 1 Θ(log(bn + 1))-bit registers. By Theorem 2, indices can be
implemented from 1-bit registers with step complexity Θ((log(bn + 1))2) for MAX-UPDATE
and MAX-SCAN. Therefore, an ISCAN consists of O((log(bn + 1))2) reads and writes on
1-bit registers, and a write to a Θ(log(bn + 1))-bit register.

(2) snapj .update consists of O((log(bn + 1))2(` + 1)) reads and writes on 1-bit registers, `

writes to Θ(log(bn + 1))-bit registers, and a write to a w-bit register. snapj .iscan consists
of O((log(bn + 1))2) reads and writes on 1-bit registers and a write to a Θ(log(bn + 1))-bit
register. indices.max-update consists of O((log(bn + 1))2) reads and writes on 1-bit registers.
Thus, in total, an UPDATE consists of O((log(bn + 1))2(` + 2)) reads and writes on 1-bit
registers, ` + 1 writes to Θ(log(bn + 1))-bit registers, and a write to a w-bit register.

(3) By Algorithm 2, a VIEW operation at an index returned by an ISCAN operation on a
range (i, j) of components consists of

T`+1(i, j) =

T`(i− 2`, j − 2`) + 1 i > 2`

T`(i, j) + 1 j ≤ 2`

T`(i, 2`) + T`(1, j − 2`) + 1 otherwise

reads on Θ(log(bn + 1))-bit registers. Let x` · · ·x0 and y` · · · y0 be the binary representations
of i− 1 and j − 1, respectively. If i > 2`, then x` = y` = 1 and 0x`−1 · · ·x0 and 0y`−1 · · · y0
are the binary representations of (i− 2`)− 1 and (j − 2`)− 1. In this case, it follows that

T`+1(i, j) = T`(i− 2`, j − 2`) + 1 = 1 + ` + 2((j − 2`)− (i− 2`))−
`−1∑
d=0

(xd − yd) + 1

= 1 + (` + 1) + 2(j − i)−
∑̀
d=0

(xd − yd) .

If j ≤ 2`, then x` = y` = 0 and 0xk−1 . . . x0 and 0yk−1 · · · y0 are the binary representations
of i− 1 and j − 1, respectively. In this case, it follows that

T`+1(i, j) = T`(i, j) + 1 = 1 + ` + 2(j − i)−
`−1∑
d=0

(yd − xd) + 1

= 1 + (` + 1) + 2(j − i) +
∑̀
d=0

(yd − xd) .

OPODIS 2015

17:14 Atomic Snapshots from Small Registers

Otherwise, if i ≤ 2` and j > 2`, then x` = 0 and y` = 1 and 0x`−1 . . . x0 and 0y`−1 . . . y0
are the binary representations of i− 1 and (j − 2`)− 1, respectively. Note that the binary
representation of 2` − 1 is 01 · · · 1 (one zero followed by `− 1 ones). In this case, it follows
that

T`+1(i, j) = T`(i, 2`) + T`(1, j − 2`) + 1

=
[

1 + ` + 2(2` − i)−
`−1∑
d=0

(1− xd)
]

+
[

1 + ` + 2(j − 2` − 1)−
`−1∑
d=0

yd

]
+ 1

= 1 + (` + 1) + 2(j − i)−
∑̀
d=0

(yd − xd) .

In all 3 cases, there are j − i + 1 reads on w-bit registers. J

Inductively constructing implicit snapshots from implicit snapshots on a smaller number
of components via Lemma 16, we obtain the following:

I Theorem 17. There is an implementation of a b-limited-use m-component implicit snapshot
from w-bit registers, Θ(log(bn + 1))-bit registers, and 1-bit registers. The implementation
satisfies the following:
1. The ISCAN operation consists of O((log(bn + 1))2) reads and writes on 1-bit registers

and a write to a Θ(log(bn + 1))-bit register.
2. The UPDATE operation consists of O((log(bn + 1))2 log m) reads and writes on 1-bit

registers, log m writes to Θ(log(bn + 1))-bit registers, and a write to a w-bit register.
3. The VIEW operation on an index returned by an ISCAN operation and a range (i, j) of

components consists of at most 1 + 2(log m + j − i) reads on Θ(log(bn + 1))-bit registers
and j − i + 1 reads on w-bit registers.

Algorithm 3 A faster b-limited-use m-component implicit snapshot object.
1: procedure UPDATE(c, v)
2: old.update(c, v)
3: index.write-max(old.iscan())
4: procedure ISCAN()
5: return index.read-max()
6: procedure VIEW(t, i, j, V)
7: old.view(t, i, j, V)

We can reduce the step complexity of ISCAN to O(log(bn+1)) reads on Θ(log(bn+1))-bit
registers. The idea is to use the old implicit snapshot implementation from Theorem 17
and use a (bn + 1)-bounded max register index, as in Algorithm 1, to store the most recent
index. An UPDATE operation performs old.update to handle the actual update and then
performs index.write-max(old.iscan()) to store the most recent index. An ISCAN simply
returns the result of index.read-max. A VIEW operation calls old.view. See Algorithm 3 for
the pseudocode.

Since old is linearizable, we can assume that the embedded old.update and old.iscan
operations are atomic. UPDATEs which write t to index are linearized at the first point that
index has value at least t. Ties are broken in order of the embedded old.update operations.
ISCANs are linearized when they perform index.read-max.

L. Zhu and F. Ellen 17:15

Finally, by using the large register simulation of Aghazadeh, Golab, and Woelfel [2], we
can obtain an implementation from k-bit registers, for k ∈ Ω(log n). Putting this all together,
we obtain the following:

I Theorem 18. For b ∈ nO(1) and k ∈ Ω(log n), there is an implementation of a b-limited-use
m-component snapshot from k-bit registers with step complexity O(w + (log n)2 log m) for
UPDATE and step complexity O(mw + log n) for SCAN, if each component of the snapshot
consists of Θ(wk) bits.

5 Conclusions

Aghazadeh, Golab, and Woelfel’s [2] large register simulation requires registers with Ω(log n)
bits. Peterson’s large register simulation works for arbitrarily small registers, but it is a
single-writer register simulation and it is unclear if the simulation can be modified to efficiently
implement interruptible reads. It would be interesting to find a large register simulation,
which works for arbitrarily small registers, that can implement efficient interruptible reads.

It is not possible to directly apply our techniques to other, more efficient, snapshots
[7, 6, 9] without significantly increasing their step complexities because they read too many
large registers and they need most of the bits they read. We would like to investigate
the possibility of modifying these snapshots to obtain a faster snapshot from Θ(log n)-bit
registers.

For b ∈ nO(1), we showed how to implement a b-limited-use m-component snapshot from
Θ(log n)-bit registers with UPDATE step complexity Θ(w + (log n)2 log m) and SCAN step
complexity Θ(mw + log n), if each component of the snapshot consists of Θ(w log n) bits.
We had to use multi-writer registers. It would be interesting to see if it is possible to obtain
similar results with only single-writer registers.

Acknowledgments. We thank Hagit Attiya and David Solymosi for helpful discussions.
This research was supported by the Natural Science and Engineering Research Council of
Canada.

References
1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit.

Atomic snapshots of shared memory. Journal of the ACM, 40(4):873–890, 1993.
2 Zahra Aghazadeh, Wojciech Golab, and Philipp Woelfel. Making objects writable. In

Proceedings of the Thirty-Third ACM Symposium on Principles of Distributed Computing
(PODC), pages 385–395, 2014.

3 James Aspnes, Hagit Attiya, and Keren Censor-Hillel. Polylogarithmic concurrent data
structures from monotone circuits. Journal of the ACM, 59(1):2:1–2:24, 2012.

4 James Aspnes, Hagit Attiya, Keren Censor-Hillel, and Faith Ellen. Limited-use atomic
snapshots with polylogarithmic step complexity. Journal of the ACM, 62(1):3:1–3:22, 2015.

5 Hagit Attiya, Rachid Guerraoui, and Eric Ruppert. Partial snapshot objects. In Proceedings
of the Twentieth Annual ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 336–343, 2008.

6 Hagit Attiya, Maurice Herlihy, and Ophir Rachman. Atomic snapshots using lattice agree-
ment. Distributed Computing, 8(3):121–132, 1995.

7 Hagit Attiya and Ophir Rachman. Atomic snapshots in O(n log n) operations. In Pro-
ceedings of the Twelfth Annual ACM Symposium on Principles of Distributed Computing
(PODC), pages 29–40, 1993.

OPODIS 2015

17:16 Atomic Snapshots from Small Registers

8 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems, 12(3):463–
492, 1990.

9 Michiko Inoue, Toshimitsu Masuzawa, Wei Chen, and Nobuki Tokura. Linear-time snap-
shot using multi-writer multi-reader registers. In Proceedings of the Eighth International
Workshop on Distributed Algorithms (WDAG), pages 130–140, 1994.

10 Gary L. Peterson. Concurrent reading while writing. ACM Transactions on Programming
Languages and Systems, 5(1):46–55, 1983.

Anonymous Obstruction-Free (n, k)-Set
Agreement with n− k + 1 Atomic Read/Write
Registers∗

Zohir Bouzid1, Michel Raynal2, and Pierre Sutra3

1 IRISA, Université de Rennes, Rennes, France
2 IRISA, Université de Rennes, Rennes, France; and

Institut Universitaire de France, Paris, France
3 University of Neuchâtel, Neuchatel, Switzerland; and

Télécom SudParis, CNRS, Université Paris-Saclay, Paris, France

Abstract
The k-set agreement problem is a generalization of the consensus problem. Namely, assuming
that each process proposes a value, every non-faulty process should decide one of the proposed
values, and no more than k different values should be decided. This is a hard problem in the sense
that we cannot solve it in an asynchronous system, as soon as k or more processes may crash. One
way to sidestep this impossibility result consists in weakening the termination property, requiring
that a process must decide a value only if it executes alone during a long enough period of time.
This is the well-known obstruction-freedom progress condition.

Consider a system of n anonymous asynchronous processes that communicate through atomic
read/write registers, and such that any number of them may crash. In this paper, we address and
solve the challenging open problem of designing an obstruction-free k-set agreement algorithm
using only (n− k+ 1) atomic registers. From a shared memory cost point of view, our algorithm
is the best algorithm known so far, thereby establishing a new upper bound on the number of
registers needed to solve the problem, and in comparison to the previous upper bound, its gain
is (n−k) registers. We then extend this algorithm into a space-optimal solution for the repeated
version of k-set agreement, and an x-obstruction-free solution that employs (n − k + x) atomic
registers (with 1 ≤ x ≤ k < n).

1998 ACM Subject Classification D.1.3 [Software] Concurrent Programming, F.2 [Theory of
Computation] Analysis of Algorithms and Problem Complexity, F.2.2 [Theory of Computation]
Nonnumerical Algorithms and Problems

Keywords and phrases Anonymous processes, Asynchronous system, Atomic read/write register,
Consensus, Fault-tolerance, k-Set agreement, Obstruction-freedom, Upper bound

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.18

1 Introduction

Due to failures, concurrent processes have to deal not only with finite asynchrony, i.e., finite
but arbitrary process speed, but also with infinite asynchrony. In this context, mutex-based

∗ This work has been partially supported by the French ANR project DISPLEXITY devoted to comput-
ability and complexity in distributed computing, the Franco-German ANR project DISCMAT devoted
to connections between mathematics and distributed computing, as well as the European Commission’s
Seventh Framework Program (FP7) under grant agreement No. 318809 (LEADS).

© Zohir Bouzid, Michel Raynal, and Pierre Sutra;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 18; pp. 18:1–18:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Obstruction-Free (n, k)-Set Agreement with n− k + 1 Registers

synchronization becomes useless, and pioneering works in fault-tolerant distributed computing,
e.g., [21, 25], have instead promoted the design of concurrent algorithms [19, 26, 29].

A first challenge: multi-writer registers. When processes communicate with Single-Writer
Multi-Reader (SWMR) atomic registers, a concurrent algorithm usually associates each
process with a register. In the case where processes communicate with Multi-Writer Multi-
Reader (MWMR) atomic registers, as any process can write any register, the previous
association is no longer granted for free. To still benefit from existing SWMR registers-based
solutions, a classical reduction consists in emulating SWMR registers on top of MWMR
registers. In a system of n processes, it is shown [7, 9] that (2n− 1) MWMR atomic registers
are needed to wait-free [16] simulate one SWMR atomic register, and that n MWMR
atomic registers are needed if the simulation is required to be only non-blocking [20].1 As a
consequence, the simulation approach becomes irrelevant if the system provides less than
n MWMR registers. In this context, the present paper focuses on what we name genuine
concurrent algorithms, where “genuine” means “without simulating SWMR registers on
top of MWMR registers”. As underlined in [8], the design of genuine algorithms based on
MWMR registers is still in its infancy, and sometimes resembles “black art” in the sense that
the underlying intuition is difficult to grasp and formulate.

A second challenge: anonymity. Some algorithms based on MWMR registers, e.g., [26],
require processes to write control values that include their identities. On the contrary, in an
anonymous system, processes have no identity, the same code, and the same initialization
of their local variables. Hence, they are in a strong sense identical. In such a context, the
core question that interests us is the following: “Is it possible to solve a given problem with
MWMR registers and anonymous processes, and if the answer is “yes”, how many registers
do we need ?”

Consensus and k-set agreement. We focus on the k-set agreement problem in a system of
n processes. This problem introduced in [6], and denoted (n, k)-set agreement in the following,
is a generalization of consensus, which corresponds to the case where k = 1. Assuming that
each participating process proposes a value, every non-faulty process must decide a value
(termination), which was proposed by some process (validity), and at most k different values
are decided (agreement).

Impossibility results and the case of obstruction-freedom. Designing a deterministic wait-
free consensus in an asynchronous system prone to even a single crash failure is not possible
[12, 23]. If now k or more processes may crash, there is no deterministic wait-free read/write
solution to (n, k)-set agreement [4, 18, 27]. As we are interested in the computing power of
pure read/write asynchronous systems, we neither want to enrich the underlying system with
additional power (e.g., synchrony assumptions, random numbers, or failure detectors), nor
impose constraints on the input vector collectively proposed by the processes. To sidestep the
above impossibility result, we thus consider a progress property weaker than wait-freedom,
namely obstruction-freedom [17]. For (n, k)-set agreement, this property states that a process
decides a value only if it executes solo during a “long enough” period of time without

1 “Wait-free” means that any read or write invocation on the SWMR register that is built must terminate
if the invoking process does not crash [16]. “Non-blocking” means that at least one process that does
not crash returns from all its read and write invocations [20].

Z. Bouzid, M. Raynal, and P. Sutra 18:3

interruption. The notion of x-obstruction-freedom [30] generalizes this idea to any group of
at most x processes.

Contributions of the paper. This paper details a genuine obstruction-free algorithm
solving the (n, k)-set agreement problem in an asynchronous anonymous read/write system
where any number of processes may crash. Our algorithm makes use of (n− k + 1) MWMR
registers, i.e., exactly n registers for consensus. For (n, k)-set agreement, the best lower
bound known so far [10] is Ω(

√
n
k − 2), while the best obstruction-free (n, k)-set agreement

algorithm requires 2(n− k) + 1 MWMR registers [8, 10]. As a consequence, our algorithm
provides a gain of (n− k) MWMR registers. In the case of consensus, Gelashvili [14] proved
recently that n/20 registers are necessary, and Zhu [31] improved this bound to n− 1. Hence,
our algorithm is up to an additive factor of 1 close to the best known lower bound.

In the repeated version of the (n, k)-set agreement problem, processes participate in a
sequence of (n, k)-set agreement instances. It was recently proved [10] that (n − k + 1)
atomic registers are necessary to solve repeated (n, k)-set agreement. This paper shows that
a simple modification of our base construction solves repeated (n, k)-set agreement without
additional atomic registers. The resulting algorithm is thus optimal, closing the gap on
previous proposed upper bounds for this problem.

Our construction is round-based, following the pattern “snapshot; local computation;
write”, where the snapshot and write operations occur on the (n−k+1) MWMR registers. This
pattern is reminiscent of the one named “look; compute; move” found in robot algorithms [28].
Interestingly, processes do not maintain any local information between successive rounds. In
this sense, our algorithm is locally memoryless. Each register contains a quadruplet consisting
of a round number, two control bits, and a proposed value. The algorithm exploits a partial
order over the quadruplets. The way a process computes a new quadruplet is the key of our
algorithm. The variation for repeated (n, k)-set agreement employs sixuplets.

Roadmap. Section 2 presents the computing model and definitions used in this paper.
Section 3 depicts a base anonymous obstruction-free algorithm solving consensus; this
algorithm captures the essence of our solution. We prove its correctness in Section 4.
Section 5 extends our algorithm to solve (n, k)-set agreement, We address the case where
(n, k)-set agreement is used repeatedly in Section 6. Section 7 considers the x-obstruction-
freedom progress condition, and presents a solution using (n− k + x) registers. We conclude
in Section 8. Due to space constraints, we defer some details to our companion technical
report [5].

2 Context & Problem Definition

2.1 Computing Model
We assume a distributed system of n asynchronous processes {p1, . . . , pn}. When considering
a process pi, we name integer i its index. Indexes are used to ease the exposition from an
external observer point of view. Processes do not have identities and execute the very same
code. We assume that they know the value n.

Let T denote the increasing sequence of time instants (observable only from an external
point of view). At each instant, a unique process is activated to execute a step. A step
consists in a read or a write to a register (access to the shared memory) possibly followed by
a finite number of internal operations (on local variables).

OPODIS 2015

18:4 Obstruction-Free (n, k)-Set Agreement with n− k + 1 Registers

Up to (n− 1) processes may crash. A crash is an unexpected halting. After it has crashed
(if it ever does), a process remains crashed forever. From a terminology point of view, and
given an execution, a faulty process is a process that crashes, and a correct process is a
process that does not crash.2

In addition to processes, the computing model includes a communication medium made up
of m multi-writer/multi-reader (MWMR) registers.3 Registers are encapsulated in an array
denoted REG[1..m]. The registers are atomic. This means that read and write operations
appear as if they have been executed sequentially, and this sequence (a) respects the real-time
order of non-concurrent operations, and (b) is such that each read returns the value written
by the closest preceding write operation [22]. When considering some concurrent object
defined from a sequential specification, atomicity is named linearizability [20].

From atomic registers to a snapshot object. At the upper layer (where consensus and
(n, k)-set agreement are solved), we use the array REG[1..m] to construct a snapshot object [1].
This object, denoted REG hereafter, provides processes with the operations write() and
snapshot(). When a process invokes REG.write(x, v), it deposits the value v in REG[x].
When it invokes REG.snapshot() it obtains the content of the whole array. The snapshot
object is linearizable, i.e., every invocation of REG.snapshot() appears as instantaneous. For
the REG object, a linearization is a sequence of write and snapshot operations.

An anonymous non-blocking (hence obstruction-free) implementation of a snapshot object
is described in [15]. This implementation does not require additional atomic registers. In the
following, we consider that the snapshot object REG is implemented using this algorithm.

2.2 Obstruction-free consensus and obstruction-free (n, k)-set
agreement

Obstruction-free consensus. An obstruction-free consensus object is a one-shot object that
provides each process with a single operation denoted propose(). This operation takes a value
as input parameter and returns a value.

“One-shot” means that a process invokes propose() at most once. When a process invokes
propose(v), we say that it “proposes v”. When the invocation of propose() returns value
v′, we say that the invoking process “decides v′”. A process executes “solo” when it keeps
on executing while the other processes have stopped their execution (at any point of their
algorithm). The obstruction-free consensus problem is defined by the following properties
(that is, to be correct, any obstruction-free algorithm must satisfy such properties).

Validity. If a process decides a value v′, this value was proposed by a process.
Agreement. No two processes decide different values.
OB-termination. If there is a time after which a process executes solo, it decides a value.
SV-termination4. If a single value is proposed, all correct processes decide.

Validity relates outputs to inputs. Agreement relates the outputs. Termination states the
conditions under which a correct process must decide. There are two cases. The first is

2 No process knows if it is correct or faulty. This is because, before crashing, a faulty process behaves as
a correct one.

3 As pointed out in the introduction, we recall that anonymity prevents processes from using single-
writer/multi-reader registers.

4 This termination property, which relates termination to the input values, is not part of the classical
definition of the obstruction-free consensus problem. It is an additional requirement which demands
termination under specific circumstances that are independent of the concurrency pattern.

Z. Bouzid, M. Raynal, and P. Sutra 18:5

function sup(T) is
(S1) let 〈r, `eve`,−, v〉 be max(T);
(S2) let vals(T) be {w | ∃〈r,−,−, w〉 ∈ T};
(S3) let conf `ict1(T) be ∃ 〈r,−, true,−〉 ∈ T ;
(S4) let conf `ict2(T) be |vals(T)| > 1;
(S5) let conf `ict(T) be conf `ict1(T) ∨ conf `ict2(T);
(S6) return

(
〈r, `eve`, conf `ict(T), v〉

)
.

Figure 1 The function sup().

related to obstruction-freedom. The second one is independent of the concurrency and failure
pattern; it is related to the input value pattern.

Obstruction-free (n, k)-set agreement. An obstruction-free (n, k)-set agreement object is
a one-shot object which has the same validity, OB-termination, and SV-termination properties
as consensus, and for which we replace the agreement property with:

Agreement. At most k different values are decided.
As for consensus, SV-termination property is a new property strengthening the classical
definition of k-set agreement [6].

In what follows, we describe first an obstruction-free anonymous algorithm that solves
the consensus problem, then we extend it to address (n, k)-set agreement.

3 Obstruction-free Anonymous Consensus Algorithm

Our consensus algorithm is detailed in Figure 2. As indicated in the Introduction, its essence
is captured by the quadruplets that can be written in the MWMR atomic registers.

Shared memory. The shared memory is made up of a snapshot object REG, composed
of m = n MWMR atomic registers. Each of them contains a quadruplet initialized to
〈0, down, false,⊥〉. The meaning of these fields is the following.

The first field, denoted rd, is a round number.
The second field, denoted `v` (level), has a value in {up, down}, where up > down.
The third field, denoted cf ` (conflict), is a Boolean (initially equals to false). We assume
true > false.
The last field, denoted va`, is initialized to ⊥, and then contains always a proposed value.
It is assumed that the set of proposed values is totally ordered, and that ⊥ is smaller
than any proposed value.

When considering the lexicographical ordering, it is easy to see that all the possible quadruplets
〈rd, `v`, cf `, va`〉 form a totally ordered set. This total order, and its reflexive closure, are
denoted "<” and “≤”, respectively.

Notion of conflict and the function sup(). The function sup(), defined in Figure 1, plays
a central role in our algorithm. It takes a non-empty set of quadruplets T as input parameter,
and returns a quadruplet, which is the supremum of T , defined as follows.

Let 〈r, `eve`,−, v〉 be the maximal element of T according to the lexicographical ordering
(line S1), and vals(T) be the values in the quadruplets of T associated with the maximal
round number r (line S2). The set T is conflicting if one of the two following cases occurs
(line S5).

OPODIS 2015

18:6 Obstruction-Free (n, k)-Set Agreement with n− k + 1 Registers

operation propose(vi) is
(01) repeat forever
(02) view ← REG.snapshot();
(03) case (∃r > 0, va` : ∀x : view[x] = 〈r, up, false, va`〉) then

return(va`)
(04) (∃r > 0, va` : ∀x : view[x] = 〈r, down, false, va`〉) then

REG.write(1, 〈r + 1, up, false, va`〉)
(05) (∃r > 0, va`, `eve` : ∀x : view[x] = 〈r, `eve`, true, va`〉) then

REG.write(1, 〈r + 1, down, false, va`〉);
(06) otherwise let 〈r, `eve`, cf `, va`〉

← sup(view[1], · · · , view[n], 〈1, down, false, vi〉);
(07) x← smallest index such that view[x] 6= 〈r, `eve`, cf `, va`〉;
(08) REG.write(x, 〈r, `eve`, cf `, va`〉)
(09) end case
(10) end repeat.

Figure 2 Anonymous obstruction-free Consensus.

There is a quadruplet X = 〈r,−, true,−〉 in T (line S3). In this case, there is a
quadruplet X ∈ T whose round number is the highest (X.rd = r), and whose conflict
field X.`v` = true. We then say that the conflict is “inherited”.
There are at least two quadruplets X and Y in T , that have the highest round number
in T (i.e., X.rd = Y.rd = r), and that contain two different values (i.e., X.va` 6= Y.va`)
(lines S2 and S4). In such a case, we say that the conflict is “discovered”.

Function sup(T) first checks whether T is conflicting (lines S2–S5). Then, it returns at
line S6 the quadruplet 〈r, `eve`, conf `ict(T), v〉, where conf `ict(T) indicates if the input set
T is conflicting (line S5). Let us notice that, since true > false, the quadruplet returned by
sup(T) is always greater than, or equal to, the greatest element in T , i.e., sup(T) ≥ max(T).

The algorithm. Our base construction is pretty simple, and consists in an appropriate
management of the snapshot object REG, so that the n quadruplets it contains (a) never
allow validity or agreement to be violated, and (b) eventually allow termination under good
circumstances (which occur when obstruction-freedom is satisfied or when a single value is
proposed).

In Figure 2, when a process pi invokes proposes(vi), it enters a loop that it will exit at
line 03 (provided it terminates) with the statement return(va`), where va` is the decided
value. After entering the loop, a process issues a snapshot and assigns the returned array to
its local variable view[1..n] (line 02). Then, there are two main cases according to the value
stored in view.

Case 1 (lines 03–05). All entries of viewi contain the same quadruplet 〈r, `eve`, conflict, va`〉,
and r > 0. Then, there are three sub-cases to consider.

Case 1.1. If the level is up and the conflict is false, the invoking process decides the
value va` (line 03).
Case 1.2. If the level is down and the conflict field is false, process pi enters the next
round by writing 〈r + 1, up, false, val〉 in the first entry of REG (line 04).
Case 1.3. If there is a conflict, pi enters the next round by writing 〈r+1, down, false, val〉
in the first entry of REG (line 05).

Z. Bouzid, M. Raynal, and P. Sutra 18:7

Case 2 (lines 06–08). Not all the entries of viewi are equal, or one of them contains a tuple
〈0,−,−,−〉. In such a case, pi first calls sup(view[1], · · · , view[n], 〈1, down, false, vi〉)
(line 06), which returns a quadruplet X greater than all the input quadruplets, or equal
to the greatest of them. As we have seen previously, this quadruplet X may inherit or
discover a conflict. Moreover, as 〈1, down, false, vi〉 is an input parameter of sup(), X.va`
cannot equal ⊥. As none of the predicates at lines 03–05 is satisfied, at least one entry of
view[1..n] is different than X. Process pi writes then X into REG[x], where, from its
point of view, x is the first entry of REG whose content differs from X (lines 07–08).

The underlying operational intuition. To understand the intuition that underlies our
algorithm, let us first consider the very simple case where a single process pi executes the
algorithm. From its first invocation of REG.snapshot() (line 02), it obtains a view view in
which all the elements are equal to 〈0, down, false,⊥〉. Hence, pi executes line 06, where the
invocation of sup() returns the quadruplet 〈1, down, false, vi〉, that is written into REG[1]
at line 08. Then, during the second round, pi computes with the help of function sup()
again the quadruplet 〈1, down, false, vi〉, and pi writes it into REG[2]; etc., until pi writes
〈1, down, false, vi〉 in all the atomic registers of REG[1..n]. When this occurs, pi obtains
at line 02 a view where all the elements equal 〈1, down, false, vi〉. It consequently executes
line 04 and writes 〈2, up, false, vi〉 in REG[1]. Then, during the following rounds, process
pi writes 〈2, up, false, vi〉 in the other registers of REG (line 08). When this is done, pi
obtains a snapshot containing solely 〈2, up, false, vi〉, and when this occurs, pi executes
line 03 where it decides the value vi.

Let us now consider the case where, while pi is executing, another process pj invokes
propose(vj) with vj = vi. It is easy to see that, in such a case, pi and pj collaborate
to fill in REG with the same quadruplet 〈2, up, false, vi〉. If vj 6= vi, depending on the
concurrency pattern, a conflict may occur. For instance, it occurs if REG contains both
〈1, down, false, vi〉 and 〈1, down, false, vj〉. If a conflict appears, it will be propagated from
round to round, until a process executes alone a higher round.
I Remark 1. We first notice that no process needs to memorize in its local memory the
values that it will use during the next rounds. Not only processes are anonymous, but their
code is also memoryless (no persistent variables). The snapshot object REG constitutes the
whole memory of the system. Hence, as defined in the Introduction, the algorithm is locally
memoryless. In this sense, and from a locality point of view, it has a “functional” flavor.
I Remark 2. Let us consider the n-bounded concurrency model [2, 24]. This model is made
up of an arbitrary number of processes, but, at any time, there are at most n processes
executing steps. This allows processes to leave the system and other processes to join it as
long as the concurrency degree does not exceed n.

The previous algorithm works without modification in such a model. A proposed value is
now a value proposed by any of the N processes that participate in the algorithm. Hence,
if N > n, the number of proposed values can be greater than the upper bound n on the
concurrency degree. This versatility dimension of our algorithm is a direct consequence of
the previous “locally memoryless” property.

4 Proof of the Algorithm

In this section, we present the correctness proof of our obstruction-free anonymous consensus
algorithm. After a few definitions provided in Section 4.1, Section 4.2 shows that a relation
“w” defined over the quadruplets is a partial order. This relation is central to prove the

OPODIS 2015

18:8 Obstruction-Free (n, k)-Set Agreement with n− k + 1 Registers

key properties of our algorithm. Such properties are established in Sections 4.3 and 4.4.
Then, based on these properties, Section 4.5 shows that our algorithm is correct. Notice that,
due to space restrictions, we state some lemmata without their corresponding proofs. The
interested reader will find them in our companion technical report [5].

4.1 Definitions and notations
Let E be a set of quadruplets that can be written in REG. Given X ∈ E , its four fields
are denoted X.rd,X.`v`,X.cf ` and X.va`, respectively. Relations > and ≥ refer to the
lexicographical ordering over E . Moreover, where appropriate, we consider the array view[1..n]
as the set {view[1], · · · , view[n]}.

I Definition 3. Let X,Y ∈ E .

X A Y
def= (X > Y) ∧ [(X.rd > Y.rd) ∨ (X.cf `) ∨ (¬Y.cf ` ∧X.va` = Y.va`)].

At the operational level the algorithm ensures that the quadruplets it generates are
totally ordered by the relation >. Differently, the relation A (which is a partial order on
these quadruplets, see Section 4.2) captures the relevant part of this total order, and is
consequently the key cornerstone on which the proof of our algorithm relies.

When X A Y holds, we say that “X strictly dominates Y ”. Similarly, X dominates Y ,
written X w Y , when (X A Y) or (X = Y) holds. Relations @ and v are defined in the
natural way.

I Definition 4. Given a set of quadruplets T , we shall say that T is homogeneous when it
contains a single element, say X. We then write it “T is H(X)”.

I Notation 1. The value, at time τ , of the local variable α of a process pi is denoted ατi .
Similarly the value of an atomic register REG[x] at time τ is denoted REGτ [x], and the
value of REG at time τ is denoted REGτ .
I Notation 2. We note W(x,X) the writing of a quadruplet X in the register REG[x].

I Definition 5. We say “a process pj covers REG[x] at time τ” when its next non-local step
after time τ is W(x,X), where X is the quadruplet which is written. In this case we also
say “W(x,X) covers REG[x] at time τ” or “REG[x] is covered by W(x,X) at time τ”.

Let us notice that if pj covers REG[x] at time τ , then τ necessarily lies between the last
snapshot issued by pj at line 02 and its planned write W(x,X) that will occur at line 04,
05, or 08.

4.2 The relation w is a partial order
I Lemma 6. ((X A Y A Z)∧ (X.rd = Y.rd = Z.rd)) ⇒ (X.cf `∨ (¬Z.cf `∧X.va` = Z.va`)).

I Lemma 7. w is a partial order.

4.3 Extracting the relations A and w from the algorithm
The definition of sup() appears in Figure 1.

I Lemma 8. Let T be a set of quadruplets. For every X ∈ T : sup(T) w X.

I Lemma 9. If pi executes W(−, Y) at time τ , then for every X ∈ viewτi : Y w X.

Z. Bouzid, M. Raynal, and P. Sutra 18:9

I Lemma 10. Let us assume that no process is covering REG[x] at time τ . For every write
W(−, X) that (a) occurs after τ and (b) was not covering a register of REG at time τ , we
have X w REGτ [x].

Proof. The proof is by contradiction. Let pi be the first process that executes a write
W(−, X) contradicting the lemma. This means that W(−, X) is not covering a register of
REG at time τ and X 6w REGτ [x]. Let this write occur at time τ2 > τ . Thus, all writes that
take place between τ and τ2 comply with the lemma. We derive a contradiction by showing
that X w REGτ [x].

Let τ1 < τ2 be the linearization time of the last snapshot taken by pi (line 02) before
executing W(−, X). Since W(−, X) was not covering a register of REG at time τ , the
snapshot preceding this write was necessarily taken after τ . That is, τ1 > τ , and we have
τ2 > τ1 > τ .

According to Lemma 9, X w viewτ2
i [x]. But since the snapshot returning viewτ2

i is
linearized at τ1, it follows that viewτ2

i = REGτ1 . Therefore, we have X w REGτ1 [x]
(assertion R).

In the following we show that REGτ1 [x] w REGτ [x]. If REG[x] was not updated between
τ and τ1, then REGτ1 [x] = REGτ [x] and the claim follows. Otherwise, if REG[x] was
updated between τ and τ1, the content of REGτ1 [x], let it be Y , is the result of a write
W(x, Y) that occurred between τ and τ1 and that was not covering a register of REG at
time τ (remember that no write is covering REG[x] at time τ). We assumed above that τ2
is the first time at which the lemma is contradicted. Hence the write W(x, Y), which occurs
before τ2, complies with the requirements of the lemma. It follows that Y w REGτ [x], and
we consequently have REGτ1 [x] w REGτ [x].

But it was shown above (see assertion R) that X w REGτ1 [x]. Hence, due to the
transitivity of the relation w (Lemma 7), we obtain X w REGτ [x], a contradiction that
concludes the proof of the lemma. J

I Lemma 11. Let τ and τ ′ ≥ τ be two time instants. If REGτ ′
is H(Y), then there exists

X ∈ REGτ such that Y w X.

The following two lemmata are corollaries of Lemma 11.

I Lemma 12. If REGτ is H(X), REGτ ′
is H(Y), and τ ′ ≥ τ , then Y w X.

I Lemma 13. If REGτ is H(X), REGτ ′
is H(Y), τ ′ ≥ τ , (Y.rd = X.rd) and (¬Y.cf `) then

(Y.va` = X.va`).

4.4 Exploiting homogeneous snapshots
I Lemma 14. [(X ∈ REGτ) ∧ (X.`v` = up)] ⇒

(
∃ τ ′ < τ : REGτ

′ is H(Z), where
Z = 〈X.rd− 1, down, false, X.va`〉

)
.

Proof. Let us first show that there is a process that writes the quadruplet X ′ into REG,
with X ′ = 〈X.rd,X.`v`, false, X.va`〉. We have two cases depending on the value of X.cf `.

If X.cf ` = false, then let X ′ = X. Since X.`v` = X ′.`v` = up, X was necessarily
written into REG by some process (let us recall that the initial value of each register of
REG is 〈0, down, false,⊥〉).
If X.cf ` = true, let us consider the time τ1 at which X was written for the first time
into REG, say by pi. Since X.`v` = up, both τ1 and pi are well defined. This write of X
happens necessarily at line 08 (If it was at line 04 or 05, we would have X.cf ` = false).

OPODIS 2015

18:10 Obstruction-Free (n, k)-Set Agreement with n− k + 1 Registers

Therefore, X was computed at line 06 by the function sup(). Namely we have X = sup(T),
where the set T is equal to {viewτ [1], · · · , viewτ [n], 〈1, down, false, vi〉}. Observe that
X 6∈ T , otherwise X would not be written for the first time at τ1. Let X ′ = max(T).
Since X 6∈ T , it follows that X 6= X ′. Due to line S6 of the function sup(), X and X ′ differ
only in their conflict field. Therefore, as X.cf ` = true, it follows that X ′.cf ` = false.
Finally, as X ′.`v` = up and all registers of REG are initialized to 〈0, down, false,⊥〉, it
follows that X ′ was necessarily written into REG by some process.

In both cases, there exists a time at which a process writesX ′ = 〈X.rd,X.`v`, false, X.va`〉
into REG. Let us consider the first process pi that does so. This occurs at some time τ2 < τ .
As X ′.`v` = up, this write can occur only at line 04 or line 08.

We first show that this write occurs necessarily at line 04. Assume for contradiction
that the write of X ′ into REG happens at line 08. In this case, the quadruplet X ′

was computed at line 06. Therefore, X ′ = sup(T) where where the set T is equal to
{viewτ2 [1], · · · , viewτ2 [n], 〈1, down, false, vi〉}. Observe that sup(T) and max(T) can differ
only in their conflict field. As sup(T).cf ` = X ′.cf ` = false, it follows that X ′ = sup(T) =
max(T). Consequently, X ′ ∈ viewτ2 . That is, pi is not the first process that writes X ′ in
REG, contradiction. Therefore, the write necessarily happens at line 04.

From the precondition at line 04, viewτ2 is H(〈X ′.rd− 1, down, false, X ′.va`〉), and the
lemma holds. J

I Lemma 15. [(REGτ is H(X)) ∧ (X.`v` = up) ∧ (¬X.cf `) ∧ (REGτ ′
is H(Y)) ∧ (Y.rd ≥

X.rd)] ⇒ (Y.va` = X.va`).

4.5 Proof of the algorithm: using the previous lemmata
I Lemma 16. No two processes decide different values.

Proof. Let r be the smallest round in which a process decides, pi and va` being the
deciding process and the decided value, respectively. There is a time τ at which viewτi is
H(〈r, up, false, va`〉). Due to Lemma 15, every homogeneous snapshot starting from round
r is necessarily associated with the value va`. Therefore, only this value can be decided in
any round higher than r. Since r was assumed to be the smallest round in which a decision
occurs, the consensus agreement property follows. J

I Lemma 17. For every quadruplet X that is written in REG, X.va` is a value proposed by
some process.

I Lemma 18. A decided value is a proposed value.

I Lemma 19. Let T be a set of quadruplets. For every T ′ ⊆ T : sup(T ′∪{sup(T)}) = sup(T).

I Lemma 20. If there is a time after which a process executes solo, it decides a value.

I Lemma 21. If a single value is proposed, all correct processes decide.

I Theorem 22. The algorithm described in Figure 2 solves the obstruction-free consensus
problem (as defined in Section 2.2).

Proof. The proof follows directly from the Lemma 16 (Agreement), Lemma 18 (Validity),
Lemma 20 (OB-Termination), and Lemma 21 (SV-Termination). J

Z. Bouzid, M. Raynal, and P. Sutra 18:11

5 From Consensus to (n, k)-Set Agreement

The algorithm. Our obstruction-free (n, k)-set agreement algorithm is the same as the one
of Figure 2, except that now there are only m = n− k + 1 MWMR atomic registers instead
of m = n. Hence REG is now REG[1..(n− k + 1)].

Its correctness. The arguments for the validity and liveness properties are the same as the
ones of the consensus algorithm since they do not depend on the size of REG.

As far as the k-set agreement property is concerned (no more than k different values
are decided), we have to show that (n− k + 1) registers are sufficient. To this end, let us
consider the (k − 1) first decided values, where the notion “first” is defined with respect to
the linearization time of the snapshot invocation (line 02) that immediately precedes the
invocation of the corresponding deciding statement (return() at line 03). Let τ be the time
just after the linearization of these (k − 1) “deciding” snapshots. Starting from τ , at most
(n − (k − 1)) = (n − k + 1) processes access the array REG, which is made up of exactly
(n− k + 1) registers. Hence, after time τ , these (n− k + 1) processes execute the consensus
algorithm of Figure 2, where (n− k + 1) replaces n, and consequently at most one new value
is decided. Therefore, at most k values are decided by the n processes.

6 From One-shot to Repeated (n, k)-Set Agreement

6.1 The repeated (n, k)-set agreement problem
In the repeated (n, k)-set agreement problem, processes executes a sequence of (n, k)-set
agreement instances. Hence, a process pi invokes sequentially the operation propose(1, vi),
then propose(2, vi), etc., where sni = 1, 2, ... is the sequence number of its current instance,
and vi is the value it proposes to this instance.

It would be possible to associate a specific instance of the base algorithm described in
Figure 2 with each sequence number, but this would require (n− k + 1) atomic read/write
registers per instance. The next section shows that we can solve the repeated problem with
only (n− k + 1) atomic registers. According to the complexity results of [10], it follows that
this algorithm is optimal in the number of atomic registers it uses, which consequently closes
the space complexity discussion regarding repeated (n, k)-set agreement.

6.2 Adapting the algorithm
From quadruplets to sixuplets. Instead of a quadruplet, an atomic read/write register is
now a sixuplet X = 〈sn, rd, `v`, cf `, va`, dcd〉. The four fields X.rd, X.`v`, X.cf `, X.va` are
the same as before. The additional field X.sn contains a sequence number, while the other
additional field X.dcd is an initially empty list. From a notational point of view, the jth
element of this list is denoted X.dcd[j]; it contains a value decided by the jth instance of the
repeated (n, k)-set agreement.

The total order on sixuplets “>” is the classical lexicographical order defined on the first
five fields, while relation “A” is now defined as follows:

X A Y
def= (X > Y)∧[(X.sn > Y.sn)∨(X.rd > Y.rd)∨(X.cf `)∨(¬Y.cf `∧X.va` = Y.va`)].

Local variables. Each process pi now manages two local variables whose scope is the whole
repeated (n, k)-set agreement problem.

OPODIS 2015

18:12 Obstruction-Free (n, k)-Set Agreement with n− k + 1 Registers

operation propose(sni , vi) is
(01) repeat forever
(02) view ← REG.snapshot();
(03) case (∃r > 0, va` : ∀x : view[x] = 〈sni , r, up, false, va`,−〉) then

dcdi[sni]← va`; return(va`)
(04) (∃r > 0, va` : ∀x : view[x] = 〈sni , r, down, false, va`,−〉) then

REG.write(1, 〈sni , r + 1, up, false, va`, dcdi〉)
(05) (∃r > 0, va`, `eve` : ∀x : view[x] = 〈sni , r, `eve`, true, va`,−〉) then

REG.write(1, 〈sni , r + 1, down, false, va`, dcdi〉)
(06) otherwise let 〈inst, r, `eve`, conflict, va`, dec〉

← sup(view[1], · · · , view[n], 〈sni , 1, down, false, vi, dcdi〉);
(07) if (inst > sni) then dcdi [sni]← dec[sni]; return dcdi [sni] end if
(08) x← smallest index such that view[x] = min(view[1], · · · , view[n]);
(09) REG.write(x, 〈inst, r, `eve`, conflict, va`, dec〉)
(10) end case
(11) end repeat.

Figure 3 Repeated obstruction-free Consensus.

The variable sni, initialized to 0, is used by pi to generate its sequence numbers. It is
assumed that pi increments sni before invoking propose(sni, vi).
The local list dcdi is used by pi to store the value it has decided during the previous
instances of the (n, k)-set agreement. Hence, dcdi[j] contains the value decided by pi
during the jth instance.

The algorithm. The algorithm executed by a process pi is described in Figure 3. Parts
that are new with respect to the base algorithm appear in blue in Figure 2. We detail the
internals of our construction below.

Line 03. When all the entries of the view obtained by pi contain only sixuplets whose
first five fields are equal, pi decide the value va`. But before returning va`, pi writes va`
in dcdi[sni]. The idea is that, when pi will execute the next (n, k)-set agreement instance
(whose sequence number will be sni + 1), it will be able to help processes, whose current
sequence number sn′ are smaller than sni.
Line 04. In this case, pi obtains a view where the first five entries are equal to
〈sni , r, down, false, va`〉. It then writes in REG[1] the value 〈sni, r, down, false, va`, dcdi〉.
Line 05. Similar to the previous case, except that a conflict now appears in the view of pi.
Lines 06-10. Process pi computes the supremum of the snapshot value view obtained at
line 03 plus the sixuplet 〈sni, 1, down, false, va`, dcdi〉. There are two cases to consider.

If the sequence number of this supremum inst is greater than sni (line 07), pi can
benefit from the list of values already decided in (n, k)-set agreement instances whose
sequence number is greater than sni. This help is obtained from dec[sni]. Consequently,
similarly to line 03, pi writes this value in dcdi[sni] and decides it.
If now inst equals sni, process pi executes the same operations as in our base algorithm
(lines 08–09).

It follows from the algorithm depicted in Figure 3 that solving repeated (n, k)-set agreement
in an anonymous system does not require more atomic read/write registers than the base
non-repeated version. The only additional cost lies in the size of the atomic registers which
contain two supplementary unbounded fields. As pointed out in the introduction, the lower
bound established in [10] induces that our solution is space optimal.

Z. Bouzid, M. Raynal, and P. Sutra 18:13

function sup(T) is of each of them is now a set of values
(S1’) let 〈r, `eve`, cf `, valset〉 be max(T);
(S2’) let vals(T) be {v | 〈r,−,−, valset〉 ∈ T ∧ v ∈ valset};
(S3) let conf `ict1(T) be ∃ 〈r,−, conflict,−〉 ∈ T ;
(S4’) let conf `ict2(T) be |vals(T)| > x;
(S5) let conf `ict(T) be conf `ict1(T) ∨ conf `ict2(T);
(N) if conf `ict(T) then vals′(T)← valset

else vals′(T)← the set of the (at most) x greatest values in vals(T) end if;
(S6’) return

(
〈r, `eve`, conf `ict(T), vals′(T)〉

)
.

Figure 4 Function sup() suited to x-obstruction-freedom.

7 From Obstruction-Freedom to x-Obstruction-Freedom

This section extends the base algorithm to obtain an algorithm that solves the x-obstruction-
free (n, k)-set agreement problem.

Notion of x-obstruction-freedom. This progress condition, introduced in [30], is a natural
generalization of obstruction-freedom, which corresponds to the case where x = 1. It
guarantees that for every set of processes P , with |P | ≤ x, every correct process in P returns
from its operation invocation if no process outside P takes steps for a “long enough” period
of time. It is easy to see that x-obstruction-freedom and wait-freedom are equivalent in any
n-process system where x ≥ n. Differently, when x < n, x-obstruction-freedom depends on
the concurrency pattern while wait-freedom does not.

On the value of x. We assume that x ≤ k. Such an assumption follows from the impossib-
ility result stating that (n, k)-set agreement cannot be wait-free solved for n > k, when any
number of processes may crash [4, 18, 27].

Termination. In regard to x-obstruction-freedom, the Validity, Agreement and SV-Termination
properties defining obstruction-free (n, k)-set agreement are the same as the ones stated in
Section 2.2. The OB-Termination property now becomes:

x-OB-termination. If there is a time after which at most x correct processes execute
concurrently, each of these processes eventually decides a value.

The shared memory. To cope with the x-concurrency allowed by obstruction-freedom,
that is the fact that up to x processes may compete, the array REG is such that it has
now m = n− k + x entries. At core, this modification in the size of the array comes from
the fact that the algorithm terminates in more scenarios than the the ones covered with
obstruction-freedom.

Content of a quadruplet. In the base algorithm, the four fields of a quadruplet X are a
round number X.rd, a level X.`v`, a conflict value X.cf`, and a value X.val. Coping with
x-concurrency requires to replace the last field, which was initially a singleton, with a set of
values denoted hereafter X.valset.

Modifying function sup(). Coping with x-concurrency requires also to adapt function sup().
We describe its novel definition at Figure 4. The lines that are modified (with respect to the
base definition) are followed by a “prime”. We also add a new line (marked N). In detail, our
modifications are the following.

OPODIS 2015

18:14 Obstruction-Free (n, k)-Set Agreement with n− k + 1 Registers

operation propose(vi) is
(01) Q← 〈1, down, false, {vi}〉;
(02) repeat forever
(03) view ← REG.snapshot();
(04) case (∃r > 0, valset : ∀x : view[x] = Q = 〈r, up, false, valset〉) then

return any value in valset
(05) (∃r > 0, valset : ∀x : view[x] = Q = 〈r, down, false, valset〉) then

Q← 〈r + 1, up, false, valset〉; REG.write(1, Q)
(06) (∃r > 0, valset, `eve` : ∀x : view[x] = Q = 〈r, `eve`, true, valset〉) then

let v be any value in valset;
Q← 〈r + 1, down, false, {v}〉;
REG.write(1, Q);

(07) otherwise let Q← sup(view[1], · · · , view[n], Q);
(08) x← smallest index such that view[x] 6= Q;
(09) REG.write(x,Q)
(10) end case
(11) end repeat.

Figure 5 Anonymous x-obstruction-free Consensus.

Line S1’. The last field of a quadruplet is now a set of values, denoted valset. Regarding
the lexicographical ordering, we order the sets valset as follows. We order first by size,
then sets of the same size are ordered from their greatest to their smallest element.
Line S2’. The set vals(T) is now the union of all the valset associated with the greatest
round number appearing in T .
Lines S3 and S5: We do not modify these lines.
Line S4’. conf `ict2(T) is modified to take into account x-concurrency. A conflict is now
discovered when more than x (instead of 1) values are associated with the round number
of the maximal element of T .
New line N. The set vals′(T) is equal to valset if conflict(T) = true. Otherwise, it
contains the (at most) x greatest values of vals(T).
Line S6’. The quadruplet returned by sup(T) differs from the one computed in Figure 2,
and its last field is now the set vals′(T).

Solving x-Obstruction-free (n, k)-set agreement. Figure 5, describe our x-obstruction-
free (n, k)-set agreement solution. We now present its internals, detailing the key differences
with our base construction described at Figure 2.

The relation “A” introduced in Section 4.1 is extended to take into account the fact that
the last field of a quadruplet is now a non-empty set of values. It becomes:

X A Y
def= (X > Y) ∧ [(X.rd > Y.rd) ∨ (X.cf `) ∨ (¬Y.cf ` ∧X.valset ⊇ Y.valset)].

Each process pi maintains a local quadruplet denotedQ, and containing the last quadruplet
it has computed. Initially, Q is equal to 〈1, down, false, {vi}〉 (line 01). This quadruplet
allows its owner pi to have an order on the quadruplets it champions during the execution
of propose(vi): if pi champions Q at time τ , and champions Q′ at time τ ′ ≥ τ , we have
Q′ w Q. This is to ensure x-OB-termination.

Z. Bouzid, M. Raynal, and P. Sutra 18:15

The meaning of the three predicates at lines 04-06, is the following. All entries of view
are the same and are equal to Q, where the content of Q is either 〈r, up, false, valset〉,
or 〈r, down, false, valset〉, or 〈r, `eve`, true, valset〉. Hence, according to the terminology
of the proof of our base construction (see Section 4.1), view is homogeneous, i.e., view is
H(Q), where Q obeys to some predefined pattern.
Lemma 15 needs to be re-formulated to take into account the last field of a quadruplet.
It becomes:

[(REGτ is H(X)) ∧ (X.`v` = up) ∧ (¬X.cf `) ∧ (REGτ ′
is H(Y)) ∧ (Y.rd ≥ X.rd)]

⇒ (Y.valset ⊇ X.valset ∨X.valset ⊇ Y.valset).

The lemma is true as soon as the number of participating processes does not exceed the
number of available registers in REG.
For the agreement property, we have to show that (n − k + x) registers are sufficient.
Our reasoning is similar to the one depicted in Section 5. More precisely, let us consider
the (k − x) first decided values, where the notion “first” is defined with respect to the
linearization time of the snapshot invocation (line 03) that immediately precedes the
invocation of the corresponding deciding statement (return() at line 04). Let τ be the
time just after the linearization of these (k − x) “deciding” snapshots. Starting from τ ,
at most (n− (k− x)) = (n− k+ x) processes access the array REG, which is made up of
exactly (n − k + x) registers. Consider the (k − x + 1)-th deciding snapshot, let it be
at τ ′ > τ . According to the precondition at line 04, REGτ ′

is H(X) for some X with
X.`v` = up and X.cf ` = false. Observe that in such case |X.valset| ≤ x.
According to the new statement of Lemma 15, since starting from τ the number of
participating processes is always less than the number of registers, then all the deciding
snapshots computed after τ ′ are associated with a set of values that is either a subset or
a superset of X.valset. Hence, at most x values can be decided starting from τ ′.
Regarding now x-OB-termination, let us first notice that the underlying snapshot al-
gorithm is non-blocking [15]. Hence, it ensures that, whatever the concurrency pattern is,
at least one snapshot invocation always terminates. Then, the key is at line 06. When a
process pi detects a conflict (Q.cf ` = true), it starts a new round with a singleton set.
Hence, if there is a finite time after which no more than x processes are taking steps,
there is a round after which at most x values survive and appear in the next rounds.
From that round, no new conflict can appear, and eventually each of the (at most) x
running processes obtains a snapshot entailing a decision.

8 Conclusion

In this paper, we first present a one-shot obstruction-free (n, k)-set agreement algorithm
for a system made up of n asynchronous anonymous processes that communicate with
atomic read/write registers. This algorithm uses only (n − k + 1) registers. In terms of
space complexity, it is the best algorithm known so far, and in the case of consensus it
is asymptotically optimal [14]. This algorithm answers the challenge posed in [8], and
establishes a novel upper bound of (n− k + 1) on the number of registers to solve one-shot
obstruction-free (n, k)-set agreement. This upper bound improves the ones stated in [10] for
anonymous and non-anonymous systems.

Further, we introduce a simple extension of our base construction that solves repeated
(n, k)-set agreement . The lower bound of (n− k+ 1) atomic registers was established in [10]
for this problem. Our algorithm proves that this bound is tight. Then, we detail a one-shot

OPODIS 2015

18:16 Obstruction-Free (n, k)-Set Agreement with n− k + 1 Registers

algorithm to solve the (n, k)-set agreement problem in the context of x-obstruction-freedom.
This algorithm makes use of (n− k + x) atomic read/write registers.

All our algorithms rely on the same round-based data structure. The base one-shot
algorithm does not require persistent local variables, and in addition to a proposed value, an
atomic register solely contains two bits and a round number. The algorithm solving repeated
(n, k)-set agreement requires that each atomic register includes two additional fields.

Let us call “MWMR-nb” of a problem P , the minimal number of MWMR atomic registers
needed to solve P in an asynchronous system of n processes. This paper shows that (n−k+1)
is the MWMR-nb of repeated obstruction-free (n, k)-set agreement. We conjecture that
(n − k + 1) is also the MWMR-nb of one-shot obstruction-free (n, k)-set agreement, and
more generally that (n− k + x) is the MWMR-nb of one-shot x-obstruction-free (n, k)-set
agreement, when 1 ≤ x ≤ k < n.

References
1 Afek Y., Attiya H., Dolev D., Gafni E., Merritt M., and Shavit N., Atomic snapshots of

shared memory. Journal of the ACM, 40(4):873–890 (1993)
2 Aguilera M., A pleasant stroll through the land of infinitely many creatures. ACM SIGACT

news, DC column, 35(2):36–59 (2004)
3 Attiya H., Guerraoui R., Hendler D., and Kuznetsov P., The complexity of obstruction-free

implementations. Journal of the ACM, 56(4), Article 24, 33 pages (2009)
4 Borowsky E. and Gafni E., Generalized FLP impossibility result for t-resilient asynchronous

computations. Proc. 25-th Annual ACM Symposium on Theory of Computing (STOC’93),
ACM Press, pp. 91–100 (1993)

5 Bouzid Z. and Raynal M. and Sutra P. Anonymous Obstruction-free (n, k)-Set Agreement
with n− k + 1 Atomic Read/Write Registers RR 2027, Univerité de Rennes 1, (2015)

6 Chaudhuri S., More Choices Allow More Faults: Set Consensus Problems in Totally Asyn-
chronous Systems. Information and Computation, 105:132–158 (1993)

7 Delporte C., Fauconnier H., Gafni E., and Lamport L., Adaptive register allocation with a
linear number of registers. Proc. 27th Int’l Symposium on Distributed Computing (DISC’13),
Springer LNCS 8205, pp. 269–283 (2013)

8 Delporte C., Fauconnier H., Gafni E., and Rajsbaum S., Black art: obstruction-free k-set
agreement with |MWMR registers| < |proccesses|. Proc. First Int’l Conference on Net-
worked Systems (NETYS’13), Springer LNCS 7853, pp. 28–41 (2013)

9 Delporte C., Fauconnier H., Gafni E., and Rajsbaum S., Linear space bootstrap commu-
nication schemes. Theoretical Computer Science, 561:122–133 (2015)

10 Delporte C., Fauconnier H., Kuznetsov P. and Ruppert E., On the space complexity of set
agreement. Proc. 34th Int’l Symposium on Principles of Distributed Computing (PODC’15),
ACM Press (2015)

11 Ellen Fich F., Luchangco V., Moir M., and Shavit N., Obstruction-free algorithms can
be practically wait-free. Proc. 19th Int’l Symposium on Distributed Computing (DISC’05),
Springer LNCS 3724, pp. 78–92 (2005)

12 Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374–382 (1985)

13 Flocchini P., Prencipe G., Santoro N., and Widmayer P., Hard tasks for weak robots:
the role of common knowledge in pattern formation by autonomous mobile robots. Proc.
10th Int’l Symposium on Algorithms and Computation (ISAAC’99), Springer LNCS 1741,
pp. 93–102 (1999)

14 Gelashvili R., Optimal Space Complexity of Consensus for Anonymous Processes Proc. 29th
Int’l Symposium on Distributed Computing (DISC’15), Springer LNCS, in press, (2015)

Z. Bouzid, M. Raynal, and P. Sutra 18:17

15 Guerraoui R. and Ruppert E., Anonymous and fault-tolerant shared-memory computations.
Distributed Computing, 20:165–177 (2007)

16 Herlihy M.P., Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13(1):124–149 (1991)

17 Herlihy M.P., Luchangco V., and Moir M., Obstruction-free synchronization: double-ended
queues as an example. Proc. 23th Int’l IEEE Conference on Distributed Computing Systems
(ICDCS’03), IEEE Press, pp. 522–529 (2003)

18 Herlihy M.P. and Shavit N., The topological structure of asynchronous computability.
Journal of the ACM, 46(6):858–923 (1999)

19 Herlihy M.P. and Shavit N., The art of multiprocessor programming. Morgan Kaufmann,
508 pages (2008) (ISBN 978-0-12-370591-4).

20 Herlihy M.P. and Wing J.M, Linearizability: a correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems, 12(3):463–492 (1990)

21 Lamport L., Concurrent reading while writing. Communications of the ACM, 20(11):806–
811 (1977)

22 Lamport L., On interprocess communication, Part I: basic formalism. Distributed Comput-
ing, 1(2):77–85 (1986)

23 Loui M.C., and Abu-Amara H.H., Memory Requirements for Agreement Among Unreliable
Asynchronous Processes. Par. and Distributed Computing: vol. 4 of Advances in Comp.
Research, JAI Press, 4:163–183 (1987)

24 Merritt M. and Taubenfeld G., Computing with infinitely many processes. Information &
Computation, 233:12–31 (2013)

25 Peterson G.L., Concurrent reading while writing. ACM Transactions on Programming Lan-
guages and Systems, 5:46–55 (1983)

26 Raynal M., Concurrent programming: algorithms, principles, and foundations. Springer,
530 pages (2013) (ISBN 978-3-642-32026-2).

27 Saks M.S. and Zaharoglou F., Wait-Free k-Set Agreement is Impossible: The Topology of
Public Knowledge. SIAM Journal Computing 29(5):1449–1483 (2000)

28 Suzuki I. and Yamashita M., Distributed anonymous mobile robots. Proc. 3rd Int’l Col-
loquium on Structural Information and Communication Complexity (SIROCCO’96), Car-
leton University Press, pp. 313–330 (1996)

29 Taubenfeld G., Synchronization algorithms and concurrent programming. Pearson Educa-
tion/Prentice Hall, 423 pages (2006) (ISBN 0-131-97259-6).

30 Taubenfeld G., Contention-sensitive data structure and algorithms. Proc. 23th Int’l Sym-
posium on Distributed Computing (DISC’09), Springer LNCS 5805, pp. 157–171 (2009)

31 L Zhu, A Tight Space Bound for Consensus. Private communication (2015)

OPODIS 2015

Making “Fast” Atomic Operations
Computationally Tractable

Antonio Fernández Anta∗1, Nicolas Nicolaou†2, and
Alexandru Popa3

1 IMDEA Networks Institute, Madrid, Spain
antonio.fernandez@imdea.org

2 IMDEA Networks Institute, Madrid, Spain
nicolas.nicolaou@imdea.org

3 Department of Computer Science, Nazarbayev University, Astana, Kazakhstan
alexandru.popa@nu.edu.kz

Abstract
Communication overhead is the most commonly used performance metric for the operation com-
plexity of distributed algorithms in message-passing environments. However, aside with com-
munication, many distributed operations utilize complex computations to reach their desired
outcomes. Therefore, a most accurate operation latency measure should account of both compu-
tation and communication metrics.

In this paper we focus on the efficiency of read and write operations in an atomic read/write
shared memory emulation in the message-passing environment. We examine the operation com-
plexity of the best known atomic register algorithm, presented in [2], that allows all read and
write operations to complete in a single communication round-trip. Such operations are called
fast. At its heart, the algorithm utilizes a predicate to allow processes to compute their outcome.
We show that the predicate used in [2] is computationally hard, by devising a computationally
equivalent problem and reducing that to Maximum Biclique, a known NP-hard problem. To
improve the computational complexity of the algorithm we derive a new predicate that leads to a
new algorithm, we call ccFast, and has the following properties: (i) can be computed in polyno-
mial time, rendering each read operation in ccFast tractable compared to the read operations
in the original algorithm, (ii) the messages used in ccFast are reduced in size, compared to the
original algorithm, by almost a linear factor, (iii) allows all operations in ccFast to be fast, and
(iv) allows ccFast to preserve atomicity. A linear time algorithm for the computation of the new
predicate is presented along with an analysis of the message complexity of the new algorithm.
We believe that the new algorithm redefines the term fast capturing both the communication
and the computation metrics of each operation.

1998 ACM Subject Classification C.3.4 Distributed Systems, C.4 Performance of Systems

Keywords and phrases atomicity, read/write objects, shared memory, computational complexity

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.19

∗ The work of the first author is supported in part by FP7-PEOPLE-2013-IEF grant ATOMICDFS
No:629088, Ministerio de Economia y Competitividad grant TEC2014- 55713-R, Regional Government
of Madrid (CM) grant Cloud4BigData (S2013/ICE-2894, co- funded by FSE & FEDER), NSF of China
grant 61520106005, and European Commission H2020 grants ReCred and NOTRE.

† The work of the second author is fully supported byFP7-PEOPLE-2013-IEF grant ATOMICDFS
No:629088.

© Antonio Fernández Anta, Nicolas Nicolaou, and Alexandru Popa;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 19; pp. 19:1–19:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Making “Fast” Atomic Operations Computationally Tractable

1 Introduction

Emulating atomic [8] (linearizable [7]) read/write objects in message-passing environments
is one of the fundamental problems in distributed computing. The problem becomes more
challenging when participants in the service may fail and the environment is asynchronous, i.e.
it cannot provide any time guarantees on the delivery of the messages and the computation
speeds. To cope with failures, traditional distributed object implementations like [1, 10],
use redundancy by replicating the object to multiple (possibly geographically dispersed)
network locations (replica servers). Replication however raises the challenge of consistency, as
multiple object copies can be accessed concurrently by multiple processes. To determine the
value of the object when this is accessed concurrently, researchers defined several consistency
guarantees, the strongest of those being atomicity. Atomicity is the most intuitive consistency
semantic as it provides the illusion of a single-copy object that serializes all accesses: each
read operation returns the value of the latest preceding write operation, and this value is at
least as recent as that returned by any preceding read.

The seminal work of Attiya, Bar-Noy, and Dolev [1], was the first to present an algorithm,
we refer to as ABD, to implement Single-Writer, Multiple-Reader (SWMR) atomic objects,
in message-passing, crash-prone, and asynchronous environments. Here, 〈timestamp, value〉
pairs are used to order the write operations, and each operation is guaranteed to terminate
as long as some majority of replica servers do not crash. The write protocol involves a
single round-trip communication, while the read protocol involves two round-trip stages. In
particular, the writer increments the timestamp for each write and propagates the new value
along with its timestamp to some majority of replicas. The readers are implemented as a
two-phase protocol, where the first phase obtains from some majority of the replicas their
〈timestamp, value〉 pairs, and uses the value corresponding to the highest timestamp as the
return value. Before returning, each reader performs a second phase, in which it propagates
the highest 〈timestamp, value〉 pair to some majority of replica servers, ensuring that any
subsequent read will discover the value that is at least as recent. Here atomicity is guaranteed
in all executions relying on the fact that any two majorities have a non-empty intersection.
Avoidance of the second round-trip could lead to violations of atomicity. Following this
development, a folklore belief persisted that in asynchronous multi-reader atomic memory
implementations “reads must write”.

The work by Dutta et al. [2] refuted this belief, by presenting atomic register implement-
ations where reads involve only a single communication round-trip. Such an implementation
is called fast. This is shown to be possible whenever the number of readers R is appropriately
constrained with respect to the number of replicas S and the maximum number of crashes f in
the system; this constraint is expressed by R < S

f − 2. In this same work the authors showed
that it is not possible to devise fast implementations in the multiple-write and multiple-reader
(MWMR) model. Subsequently, works like [5, 6], proposed implementations in the SWMR
model where some operations were allowed to perform two communication round-trips, in an
attempt to relax the constraint proposed in [2] and allow unbounded number of readers. Such
implementations traded communication for scalability. Under conditions of low concurrency,
this requirement allowed most reads to complete in a single communication round-trip. Even
with this relaxed model [6] showed that MWMR implementations where all write are fast
are not possible. Following these developments, [3] provided tight bounds on the efficiency
of read/write operations in terms of communication round-trips, and introduced the first
algorithm to allow some fast read and write operations in the MWMR model.

A trend appeared in the algorithms that aimed for fast operations: algorithms with lower
communication rounds demanded higher computation overhead at the processes. The first

A. Fernández Anta, N. Nicolaou, and A. Popa 19:3

work to question the computational complexities of the “fast” implementations, and how
that affects the performance of the algorithms, was presented by Georgiou et al. [4]. In that
paper the authors analyzed the computational complexity of the algorithm presented in [3],
the only algorithm that allows both fast reads and writes in the MWMR model, and showed
both theoretically and experimentally that the computational overhead of the algorithm was
suppressing the communication costs. In particular, the authors expressed the predicate
used in the algorithm by a computationally equivalent problem and they showed that such
a problem is NP-hard. To improve the complexity of the algorithm presented in [3], they
proposed a polynomial approximation algorithm.

Contributions. In this paper, we focus in the efficiency of read and write operations
in distributed SWMR atomic read/write register implementations. We show that the
computation costs have an impact on the best known atomic register implementation,
presented in [2], and we propose a deterministic solution to improve both the computational
and communication burdens of the original algorithm while maintaining fault-tolerance and
consistency. Enumerated our contributions are the following:

We introduce a new problem that is computationally equivalent to the predicate used
in [2]. We show that the new problem, and thus the computation of the predicate, is
NP-hard. For our proof we reduce the new problem to the Maximal Biclique problem,
which is known to be an NP-hard problem.
We then devise a revised fast implementation, called ccFast, which uses a new polynomial
time predicate to determine the value to be returned by each read operation. The idea of
the new predicate is to examine the replies received in the first communication round of
a read operation and determine how many processes witnessed the maximum timestamp
among those replies. With the new predicate we reduce the size of each message sent by
the replicas, and we prove rigorously that atomicity is preserved.
Finally, we analyze the operation complexity of ccFast, in terms of communication,
computation, and message length. For the computational complexity, we provide a linear
time algorithm for the computation of the new predicate. The algorithm utilizes buckets
to count the number of appearances of each timestamp in the collected replies. We present
a complexity analysis of the proposed algorithm and we prove that it correctly computes
the predicate of ccFast.

Our results lower the bar of operation latency in SWMR atomic object implementations
in the message-passing, asynchronous environment and redefine the term fast to capture
both the communication and computation overheads of the proposed algorithms.

2 Model

We assume a system consisting of three distinct sets of processes: a single process (the writer)
with identifier w, a set R of readers, and a set S of replica servers. Let I = {w} ∪ R ∪ S.
In a read/write object implementation, we assume that the object may take a value from a
set V . The writer is the sole process that is allowed to modify the value of the object, the
readers are allowed to obtain the value of the object, and each server maintains a copy of the
object to ensure the availability of the object in case of failures. We assume an asynchronous
environment, where processes communicate by exchanging messages. The writer, any subset
of readers, and up to f servers may crash without any notice.

Each process p of the system can be modeled as an I/O Automaton Ap [11]. The
automaton Ap of process p is defined over a set of states, states(Ap), and a set of actions,

OPODIS 2015

19:4 Making “Fast” Atomic Operations Computationally Tractable

actions(A). There is a state σ0,p ∈ states(Ap) which is the initial state of automaton Ap.
An algorithm A is the automaton obtained from the composition of automata Ap, for p ∈ I.
A state σ ∈ states(A) is a vector containing a state for each process p ∈ I and the state
σ0 ∈ states(A) is the initial state of the system that contains σ0,p for each process p ∈ I.
The set of actions of A is actions(A) =

⋃
p∈I actions(Ap). An execution fragment φ of A is

an alternate sequence σ1, α1, σ2, . . . , σk−1, αk−1, σk of states and actions, s.t. σi ∈ states(A)
and αi ∈ actions(A), for 1 ≤ i ≤ k. An execution is the execution fragment starting with
some initial state σ0 of A. We say that an execution fragment φ′ extends an execution
fragment φ (or execution), denoted by φ ◦ φ′, if the last state of φ is the first state of φ′. A
triple 〈σi, αi+1, σi+1〉 is called a step and denotes the transition from state σi to state σi+1
as a result of the execution of action αi+1. A process p crashes in an execution ξ if the event
failp appears in ξ; otherwise p is correct. Notice that if a process p crashes, then failp is the
last action of that process in ξ.

In a read/write atomic object implementation each automaton A contains an invocation
action readp,O (or write(v)p,O) to invoke a read (resp. write) operation π on an object O.
Similarly, read-ack(v)p,O and write-ack(v)p,O are the response actions and return the result
of the operation π on O. The steps that contain the invocation and response actions, are
called invocation and response steps respectively. An operation π is complete in an execution
ξ, if ξ contains both the invocation and the matching response actions for π; otherwise π is
incomplete. An execution ξ is well formed if any process p that invokes an operation π in ξ
does not invoke any other operation π′ before the matching response action of π appears in
ξ. In other words each operation invokes one operation at a time. Finally we say that an
operation π precedes an operation π′ in an execution ξ, denoted by π → π′, if the response
step of π appears before the invocation step of π′ in ξ. The two operations are concurrent if
none precedes the other.

Correctness of an implementation of an atomic read/write object is defined in terms of the
atomicity and termination properties. The termination property requires that any operation
invoked by a correct process eventually completes. Atomicity is defined as follows [9]. For any
execution of a memory service, all the completed read and write operations can be partially
ordered by an ordering ≺, so that the following properties are satisfied:
P1. The partial order is consistent with the external order of invocation and responses, that

is, there do not exist operations π1 and π2, such that π1 completes before π2 starts, yet
π2 ≺ π1.

P2. All write operations are totally ordered and every read operation is ordered with respect
to all the writes.

P3. Every read operation returns the value of the last write preceding it in the partial order,
and any read operation ordered before all writes returns the initial value of the object.

For the rest of the paper we assume a single register memory system. By composing multiple
single register implementations, one may obtain a complete atomic memory [9]. Thus, we
omit further mention of object names.

Efficiency Metrics. We are interested in the complexity of each read and write operation.
The complexity of each operation π is measured from the invocation step of the π to the
response step of π. To measure the complexity of an operation π that is invoked by a process
p we use the following three metrics: (i) communication round-trips , (ii) computation steps
taken by p during π, and (iii) message bit complexity which measures the length of the
messages used during π. A communication round-trip (or simply round) is more formally
defined in the following definition that appeared in [2, 6, 5]:

A. Fernández Anta, N. Nicolaou, and A. Popa 19:5

I Definition 1. Process p performs a communication round during operation π if all of the
following hold:
1. p sends request messages that are a part of π to a set of processes,
2. any process q that receives a request message from p for operation π, replies without

delay, i.e. without waiting for any other messages before replying to π.
3. when process p receives “enough” replies it terminates the round

At the end of a communication round process p may complete π or start a new round.
Operation π is fast [2] if it completes after its first communication round; an implementation
is fast if in each execution all operations are fast.

3 Fastness and its Implications in Atomic Memory Implementations

The algorithm by Dutta et al. in 2004 [2](we refer to it as Fast) was the first to present an
atomic register implementation for the message-passing environment where all read and write
operations required just a single communication round before completing. The same work
showed that for any implementation to be fast it must be the case that the number of readers
are constrained with respect to the number of servers and server failures in the service by
|R| < |S|

f − 2. Fast is using 〈timestamp, value〉 pairs as in ABD [1] to impose an order on
the write operations. The write operation is almost identical to the one round write in [1]:
the writer increments its local timestamp, and sends the new timestamp with the value to
be written to the majority of the servers. The read operation is much different as it only
takes a singe round to complete. To avoid the second round for each read operation, Fast
uses two mechanisms: (i) a recording mechanism at the servers, and (ii) a predicate that
uses the server recordings at the readers. Essentially each server records all the processes
that witness its local timestamp, in a set called seen. This set of processes is reset whenever
the server learns a new timestamp. The predicate at the readers is the following:

∃α ∈ [1, . . . , |R|+ 1] ∧ MS ⊂ S s.t. (1)
∀s ∈MS, s.ts = maxTs ∧ |MS| ≥ |S| − αf ∧ |

⋂
s∈MS

s.seen| ≥ α (2)

Essentially the reader looks at the seen sets of the servers that replied, and tries to extract
whether “enough” processes witnessed the maximum timestamp. If the predicate holds, the
reader returns the value associated with the maximum timestamp. Otherwise it returns
the value associated with the previous timestamp. Notice here that the predicate takes
in account which processes witnessed the latest timestamp as it examines the intersection
of the seen sets. Let us now examine what are the complexity costs of Fast in terms of
communication, computation and message size. Table 1, presents the comparison of Fast
with ABD in all three complexity metrics. Notice that we assume that all three algorithms
utilize the same technique to generate timestamps. Thus, we ommit counting the overhead
that the timestamp may incur to the complexities presented in Table 1.

Communication Complexity. As previously mentioned, Fast uses one communication
round-trip for each read and write operation. That is, each operation sends messages to all
the servers and waits replies from a majority. No further communication is required once
those replies are received. ABD on the other hand needs one round per write and two rounds
per read operation.

OPODIS 2015

19:6 Making “Fast” Atomic Operations Computationally Tractable

Table 1 Communication, Computation, and Message-Bit Complexities of ABD vs Fast vs ccFast.
(WR/RR: write/read-rounds, WC/RC: write/read-computation, WB/RB: write/read-message bits)

Algorithm WR RR WC RC WB RB
ABD 1 2 O(1) O(|S|) O(lg |V |) O(lg |V |)
Fast 1 1 O(1) O(|S|2 · 2|S|) O(lg |V |) Θ(|S|+ lg |V |)

ccFast 1 1 O(1) O(|S|) O(lg |V |) O(lg |S|+ lg |V |)

Computation Complexity. The reduction on the communication rounds had a negative
impact on the computational complexity of Fast. The write operation, as also in ABD,
terminates once the appropriate number of servers reply, without imposing any further
computation. During the read operation the computation complexity of Fast explodes. If
we try to examine all possible subsets MS of S, then we obtain 2|S| possibilities. If we
restrict this space to include only the subsets with size |MS| = |S|−αf for all α ∈ [1, . . . ,R]
(namely 1 ≤ |MS| ≤ |S| − f), then we may examine up to 2(|S|−f) different subsets. Recall
also that each seen set contains identifiers from the set R∪ {w}, and hence at most |R|+ 1
elements. To compute the intersection we need to check for each element if it belongs in
all the seen sets. As MS may include |S| − f servers (and thus as many seen sets) the
computation of the intersection may take (|S| − f)(|R|+ 1) comparisons. As |R| is bounded
by |S| then the previous quantity is bounded by O(|S|2). So that leads to an upper bound of
O(|S|2 · 2|S|). Such complexity may explode the computation time even when the size of S is
small. As however the communication complexity is linear to the size of S then small set of
servers will keep the communication overhead small. In contrast the computation complexity
in ABD is bounded by O(|S|) as the reader parses the replies of at most |S| servers to detect
the maximum timestamp.

Message Bit Complexity. Finally, for each write operation in both Fast and ABD, all
servers may send messages containing a value and a timestamp, thus resulting in a bit
complexity of O(lg |V |) per message. The main difference in the message bit complexity
lies in the fact that in Fast servers attach the seen set along with the 〈value, timestamp〉
pair for each read operation. To obtain a tight bound we assume that each server sends
a bitmap indicating whether each client identifier belongs or not in its seen set. As each
seen set may contain up to |R|+ 1 identifiers, and since |R| < |S|

f − 1, then the bitmap will
contain less than or equal to |S| bits. Hence the length of each message in Fast is bounded
by Θ(|S|+ lg |V |).

4 Formulation and Hardness of the Predicate in Fast

We formulate the predicate used in Fast by the following computational problem.

I Problem 1.
Input: Two sets U1 = {s1, s2, . . . , sn}, U2 = {p1, p2, . . . , pk}, where ∀si ∈ U1, si ⊆ U2.
Moreover, we are given two integers α and f such that n− αf ≥ 1.
Goal: Is there a set M ⊆ U1 such that | ∩s∈M s| ≥ α and |M | > n− αf?

It is easy to see the computational equivalence of the above problem and the predicate in
Fast: U1 can be substituted by the set of all the seen sets of the servers that replied, M by
MS, and U2 by R∪ {w}. We prove that the Problem 1 is NP-hard via a reduction from the
decision version of the Maximum Biclique problem defined below. The reduction is similar
to the one in [12] for showing that the Maximum k-Intersection Problem is NP-hard.

A. Fernández Anta, N. Nicolaou, and A. Popa 19:7

Figure 1 The left side of the graph (nodes A, B and C) corresponds to the elements of the set
U1 and the right side (nodes 1,2 and 3) corresponds to the elements of the set U2. Thus, A = {1, 2},
B = {2, 3} and C = {1, 2, 3}. The maximum biclique in this example has two nodes on each side. In
the figure, one of the two maximum bicliques is emphasized with bold edges.

I Definition 2 (Maximum Biclique Problem). Given a bipartite graph G = (X,Y,E) a biclique
consists of two sets A ⊆ X, B ⊆ Y such that ∀a ∈ A, ∀b ∈ B, (a, b) ∈ E. The goal is to
decide if the given graph G has a biclique of size at least c.

I Theorem 3. Problem 1 is NP-hard.

Proof. We show that if we can solve Problem 1 in polynomial time, then we can solve the
decision version of the Maximum Biclique problem in polynomial time. Given an instance
of the biclique problem, i.e., a bipartite graph G = (X,Y,E), we construct the following
instance of Problem 1. First, let U2 = Y . Then, each element si ∈ U1 corresponds to a
vertex v ∈ X such that si = {u ∈ Y : (v, u) ∈ E}. See Figure 1 for an example.

In order to decide if a biclique of size at least c exists, we solve |X| instances of Problem 1
where α and f are set such that α · (n − αf) = c. If there exists a positive instance of
Problem 1 among those |X| checked, then there exists a biclique of size at least c. Otherwise,
no such biclique exists.

We focus now on two particular values of α and f such that α · (n − αf) = c and we
prove the graph G has a biclique of size c with α vertices in the set X and n− αf vertices
on the other side, if and only if a subset M that satisfies the constraints of Problem 1 exists.

First, given a biclique A ∪ B of size c with |B| = α, then the set M ⊆ U1 contains the
elements of U1 associated with the vertices in A. Since the biclique A ∪ B has size c, it
follows that the number of the sets in M is larger than c/α = n− αf .

Conversely, given a set M of size n − αf whose elements have intersection at least α,
we can find a biclique of size c = α · (n − αf). The elements A ⊆ X of the biclique are
those corresponding to the elements of the set M . Since the elements in the set M have
intersection greater than or equal to α, we have that the common neighborhood of the
vertices in A is greater than or equal to α(n− αf). Thus, the size of the biclique is at least
c = α · (n− αf). J

5 Algorithm ccFast: Refining “Fastness” for Atomic Reads

In this section we modify the algorithm presented in [2] to make it even “faster”. Since we
allow only single round trip operations, the new algorithm adheres to the bound presented
in [2] and [3] regarding the possible number of read participants in the service. Thus, the
algorithm is possible only if |R| < |S|

f − 1. Also, from the results in [2, 6], it follows that such
algorithm is impossible in the MWMR model. To expedite the calculation of the predicate
we aim to eliminate the use of sets in the predicate and we focused on the question: “Can we
preserve atomicity if we know how many and not which processes read the latest value of a
server?”. An answer to this question could yield two benefits: (i) reduce the size of messages,
and (ii) reduce the computation time of the predicate. We provide a positive answer to this

OPODIS 2015

19:8 Making “Fast” Atomic Operations Computationally Tractable

question and we present a new algorithm, we call ccFast, that is communicationally the
same and computationally faster than algorithm Fast.

Algorithm 1 Read, Write and Server protocols of algorithm ccFast
1: at the writer w
2: Components:
3: ts ∈ N+, v, vp ∈ V,wcounter ∈ N+

4: Initialization:
5: ts← 0, v ← ⊥, vp← ⊥, wcounter ← 0
6: function write(val)
7: vp← v; v ← val;
8: ts← ts + 1
9: wcounter ← wcounter + 1
10: send(〈ts, v, vp〉, w, wcounter) to all servers
11: wait until |S| − f servers reply
12: return(OK)
13: end function

14: at each reader ri

15: Components:
16: ts ∈ N+, maxTS ∈ N+, v, vp ∈ V, rcounter ∈ N+

17: srvAck ⊆ S ×M, maxTSmsg ⊆M
18: Initialization:
19: ts← 0, maxTS ← 0, v ← ⊥, vp← ⊥, rcounter ← 0
20: srvAck ← ∅, maxTSmsg ← ∅
21: function read
22: rcounter ← rcounter + 1
23: send(〈ts, v, vp〉, ri, rcounter) to all servers
24: wait until |srvAck| = |S|−f servers reply //Collect the (serverid, 〈〈ts′, v′, vp′〉, views〉) pairs in srvAck
25: maxTS ← max({m.ts′|(s,m) ∈ srvAck})
26: maxAck ← {(s,m)|(s,m) ∈ srvAck ∧ m.ts′ = maxTS}
27: 〈ts, v, vp〉 ← m.〈ts′, v′, vp′〉 for (∗,m) ∈ maxAck
28: if ∃α ∈ [1, |R|+ 1] s.t. MS = {s : (s,m) ∈ maxAck ∧ m.views ≥ α} and |MS| ≥ |S| − αf then
29: return(v)
30: else
31: retutn(vp)
32: end if
33: end function

34: at each server si

35: Components:
36: ts ∈ N+, seen ⊆ R ∪ {w}, v, vp ∈ V,Counter[1 . . . |R|+ 1]
37: Initialization:
38: ts← 0, seen← ∅, v, vp ∈ V,Counter[i]← 0 for i ∈ R ∪ {w}
39: function rcv(〈ts′, v′, vp′〉, q, counter) //Called upon reception of a message
40: if Counter[q] < counter then
41: if ts′ > ts then
42: 〈ts, v, vp〉 ← 〈ts′, v′, vp′〉
43: seen← {q}
44: else
45: seen← seen ∪ {q}
46: end if
47: send(〈ts, v, vp〉, |seen|) to q
48: end if
49: end function

The formal specification of the algorithm appears in Figure 1. Here we present a high
level description of each protocol in the algorithm. The counter variables used throughout
the algorithm are solely used to help processes identify “fresh” from “stale” messages due to
asynchrony. In the rest of the description we will not refer to the counters, but rather we
assume that the messages received by each process are fresh messages.

Write Protocol. To perform a write operation, the writer process w calls the write(val)
function. During the write operation the writer stores the value to be written in a variable
v and the previous written value in a variable vp (Line 7). Then it increments its local
timestamp variable ts (Line 8), and sends a write request along with the triple 〈ts, v, vp〉 to
all the servers and waits for |S| − f replies. Once those replies are received the operation
terminates.

A. Fernández Anta, N. Nicolaou, and A. Popa 19:9

Server Protocol. We now describe the server protocol before proceeding to the read protocol,
as it contains the recording mechanism which generates information that is used by each
read to determine the value of the register. Each server in S maintains a timestamp variable
along with the values associated with that timestamp. In addition, the server maintains a set
of reader and writer identifiers, called seen. Initially each server is waiting for read and/or
write requests. When a request is received the server examines if the timestamp ts′ attached
in the request is larger than its local timestamp ts (Line 41). If ts′ > ts, the server updates
its local timestamp and values to be equal to the ones attached in the received message (Line
42), and resets its seen set to include only the identifier of the process that sent this message
(Line 43); otherwise the server just inserts the identifier of the sender in the seen set (Line
45). Then, the server replies to the sender by sending its local 〈ts, v, vp〉 triple, and the size
of its recording set |seen|. This is a departure from the Fast algorithm where the server
was attaching the complete seen set.

Read Protocol. The read protocol is the most involved. When a reader process invokes a
read operation it sends read requests along with its local 〈ts, v, vp〉 triple to all the servers,
and waits for |S| − f of them to reply. Once the reader receives those replies it: (i) discovers
the maximum timestamp, maxTS, among the messages, (ii) collects all the messages that
contained maxTS in a set maxAck, and (iii) updates its local 〈ts, v, vp〉 triple to be equal
to the triple attached in one of those messages (Lines 25-27). Then it runs the following
predicate on the set maxAck (Line 28):

∃α ∈ [1, |R|+1] s.t. MS = {s : (s,m) ∈ maxAck ∧ m.views ≥ α} and |MS| ≥ |S|−αf .

The predicate examines how many processes the maximum timestamp has been sent to. If
more than |S| − αf servers sent this timestamp to more than α processes, for α between
[1, . . . , |R|+ 1], then the predicate is true and the read operation returns the value associated
with maxTS, namely v; otherwise the read operation returns the value associated with
maxTS − 1, namely vp.

Idea of the predicate. The goal of the predicate is to help a read operation to predict
the value that was potentially returned by a preceding read operation. To understand the
idea behind the predicate consider the following execution, ξ1. Let the writer perform a
write operation ω and receive replies from a set S1 of |S| − f servers. Let a reader follow
and perform a read operation ρ1 that receives replies from a set of servers S2 again of size
|S| − f that misses f servers that replied to the write operation. Due to asynchrony, an
operation may miss a set of servers if the messages of the operation are delayed to reach any
servers in that set. So the two sets intersect in |S1 ∩ S2| = |S| − 2f servers. Consider now ξ2
where the write operation ω is not complete and only the servers in S1 ∩ S2 receive the write
requests. If ρ1 receive replies from the same set S2 in ξ2 then it won’t be able to distinguish
the two executions. In ξ1 however the read has to return the value written, as the write in
that execution proceeds the read operation. Thus, in ξ2 the read has to return the value
written as well. If we extend ξ2 by another read operation ρ2 from a third process, then it
may receive replies from a set S3 missing f servers in |S1 ∩ S2|. Thus it may see the value
written in |S1 ∩ S2 ∩ S3| = |S| − 3f servers. But since there is another read that saw the
value from these servers (ρ1) then ρ2 has to return the written value to preserve atomicity.
Observe now that ρ1 saw the written value from |S| − 2f servers and each server replied
to both {w, ρ1}, and ρ2 saw the written value from |S| − 3f and each server replied to all
three {ω, ρ1, ρ2}. By continuing with the same logic, we derive the predicate that if a read

OPODIS 2015

19:10 Making “Fast” Atomic Operations Computationally Tractable

sees a value written in |S| − αf servers and each of those servers sent this value to α other
processes then we return the written value.

Notice that in order for an operation to see the written value it must be the case that
there is at least one server that replied with that value, and thus |S| − αf ≥ f . Solving
this equation results in α ≤ S−1

f . But α is the number of processes in the system. As the
maximum number of processes is |R| + 1, hence we derive the bound on the number of
possible reader participants that |R| < S−1

f .

5.1 Algorithm Correctness
To show that the algorithm is correct we need to show that each correct process terminates
(liveness) and that the algorithm satisfies the properties of atomicity (safety). As the main
departure of ccFast from Fast, is the predicate logic, some of the proofs that follow are
very similar to the ones presented in [2]. The lack of complete knowledge of which processes
witnessed a value, introduced challenges in proving that consistency is preserved even when
we know how many witnessed a value. Termination is trivially satisfied with respect to our
failure model: up to f servers may fail and each operation waits for no more than |S| − f
replies. The atomicity properties can be expressed in terms of timestamps as follows:
A1. For each process p the ts variable is non-negative and monotonically nondecreasing.
A2. If a read ρ succeeds a write operation ω(ts) and returns a timestamp ts′, then ts′ ≥ ts.
A3. If a read ρ returns ts′, then either a write ω(ts′) precedes ρ, i.e. ω(ts′)→ ρ, or ω(ts′) is

concurrent with ρ.
A4. If ρ1 and ρ2 are two read operations such that ρ1 → ρ2 and ρ1 returns ts1, then ρ2

returns ts2 ≥ ts1.

Monotonicity allows the ordering of the values according to their associated timestamps. So
Lemma 4 shows that the ts variable maintained by each process in the system is monotonically
increasing. Let us first make the following observation:

I Lemma 4. In any execution ξ of the algorithm, if a server s replies with a timestamp ts
at time T , then s replies with a timestamp ts′ ≥ ts at any time T ′ > T .

Proof. A server attaches in each reply its local timestamp. Its local timestamp in turn is
updated only whenever the server receives a higher timestamp (Lines 37-38). So the server
local timestamp is monotonically non-decreasing and the lemma follows. J

The following is also true for a server process.

I Lemma 5. In any execution ξ of the algorithm, if a server s receives a timestamp ts at
time T from a process p, then s replies with a timestamp ts′ ≥ ts at any time T ′ > T .

Proof. If the local timestamp of the server s, tss, is smaller than ts, then tss = ts. Otherwise
tss does not change and remains tss ≥ ts. In any case s replies with a timestamp tss ≥ ts
to π. By Lemma 4 the server s attaches a timestamp ts′ ≥ tss, and hence ts′ ≥ ts to any
subsequent reply. J

Now we show that the timestamp is monotonically non-decreasing for the writer and the
reader processes.

I Lemma 6. In any execution ξ of the algorithm, the variable ts stored in any process is
non-negative and monotonically non-decreasing.

A. Fernández Anta, N. Nicolaou, and A. Popa 19:11

Proof. The lemma holds for the writer as it changes its local timestamp by incrementing it
every time it performs a write operation. The timestamp at each reader becomes equal to
the largest timestamp the reader discovers from the server replies. So it suffices to show that
in any two subsequent read from the same reader, say ρ1, ρ2 s.t. ρ1 → ρ2, then ρ2 returns
a ts′ that is bigger or equal to the timestamp ts returned by ρ1. This can be easily shown
by the fact that ρ2 attaches the maximum timestamp discovered by the reader before the
execution of ρ2. Say this is ts discovered during ρ1. By Lemma 5 any server that will receive
the message from ρ2 will reply with a timestamp tss ≥ ts. So ρ2 will discover a maximum
timestamp ts′ ≥ ts. If ts′ = ts then the predicate will hold for α = 1 for ρ2 and thus it stores
ts′ = ts. If ts′ > ts then ρ2 stores either ts′ or ts′ − 1. In either case it stores a timestamp
greater or equal to ts and the lemma follows. J

Now we can show that if a read operation succeeds a write operation, then it returns a
value at least as recent as the one written.

I Lemma 7. In any execution ξ of the algorithm, if a read ρ from r1 succeeds a write
operation ω that writes timestamp ts from the writer w , i.e. ω → ρ, and returns a timestamp
ts′, then ts′ ≥ ts.

Proof. According to the algorithm, the write operation ω communicates with a set of
|Sw| = |S| − f servers before completing. Let |S1| = |S| − f be the number of servers that
replied to the read operation ρ. The intersection of the two sets is |Sw ∩ S1| ≥ |S| − 2f and
since f < |S|/2 there exists at least a single server s that replied to both operations. Each
server s ∈ Sw ∩ S1 replies to ω before replying to ρ. Thus, by Lemma 5 and since s receives
the message from ω before replying to any of the two operations, then it replies to ρ with a
timestamp tss ≥ ts. Thus there are two cases to investigate on the timestamp: (1) tss > ts,
and (2) tss = ts.

Case 1: In the case where tss > ts, ρ will observe a maximum timestamp maxTS ≥ tss.
Since ρ returns either ts′ = maxTS of ts′ = maxTS − 1, then ts′ ≥ tss − 1. Thus, ts′ ≥ ts
as desired.

Case 2: In this case all the servers in Sw ∩ S1 reply with a timestamp tss = ts. The read
ρ may observe a maximum timestamp maxTS ≥ tss. If maxTS > tss, then, with similar
reasoning as in Case 1, we can show that ρ returns ts′ ≥ ts. So it remains to investigate the
case where maxTS = tss = ts. In this case, at least |Sw ∩ S1| = |S| − 2f servers replied
with maxTS to ρ. Also for each s ∈ Sw ∩ S1, s included both the writer identifier w and r1
before replying to ω and ρ2 respectively. So s replied with a size at least s.views ≥ 2 to ρ2.
Thus, given that |R| ≥ 2, the predicate holds for α = 2 and the set Sw ∩ S1 for ρ, and hence
it returns a timestamp ts′ = ts. And the lemma follows. J

So now it remains to show that in two succeeding read operations, the latest operation
returns a value that is the same or greater than the value returned by the first read. More
formally:

I Lemma 8. In any execution ξ of the algorithm, if ρ1 and ρ2 are two read operations such
that ρ1 → ρ2, and ρ1 returns ts1, then ρ2 returns ts2 ≥ ts1.

Proof. Let the two operations ρ1 and ρ2 be executed from the same process, say r1. As
explained in Lemma 6, ρ2 will discover a maximum timestamp maxTS ≥ ts1. If maxTS >
ts1, then ρ2 returns either ts2 = maxTS or ts2 = maxTS − 1, and thus in both cases

OPODIS 2015

19:12 Making “Fast” Atomic Operations Computationally Tractable

ts2 ≥ ts1. It remains to examine the case where maxTS = ts1. Since ρ1 → ρ2, then any
message sent during ρ2 contains timestamp ts1. By Lemma 5, every server s that receives
the message from ρ2 replies with a timestamp tss ≥ ts1. Since maxTS = ts1, then it follows
that all |S| − f servers that replied to ρ2, sent the timestamp ts1. Before each server replies
adds r1 in their seen set. So they include a views ≥ 1 in their messages. Thus, the predicate
holds for ρ2 for α = 1 and returns ts2 = maxTS = ts1.

For the rest of the proof we assume that the read operations are invoked from two different
processes r1 and r2 respectively. Let maxTS1 be the maximum timestamp discovered by
ts1. We have two cases to consider: (1) ρ1 returns ts1 = maxTS1 − 1, or (2) ρ1 returns
ts1 = maxTS1.

Case 1: In this case ρ1 returns ts1 = maxTS1 − 1. It follows that there is a server s
that replied to ρ1 with a timestamp maxTS1. This means that the writer invoked the
write operation that tries to write a value with timestamp maxTS1. Since the single writer
invokes a single operation at a time (by well-formedness), it must be the case that the
writer completed writing timestamp maxTS1− 1 before the completion of ρ1. Let that write
operation be ω. Since, ρ1 → ρ2, then it must be the case that ω → ρ2 as well. So by Lemma
7, ρ2 returns a timestamp ts2 greater or equal to the timestamp written by ω, and thus
ts2 ≥ maxTS1 − 1⇒ ts2 ≥ ts1.

Case 2: This is the case where ρ1 returns ts1 = maxTS1. So it follows that the predicate
is satisfied for ρ1, and hence ∃α ∈ [1, . . . , |R|] and a set of servers M1 such that every server
s ∈M1 replied with the maximum timestamp maxTS1 and a seen set size s.views ≥ α, and
|M1| ≥ |S| − αf . We know that ρ2 receives replies from a set of servers |S2| = |S| − f before
completing. Let M2 be the set of servers that replied to ρ2 with a maximum timestamp
maxTS2. Since |R| < |S|

f − 2, then

|M1| > |S| − (|S|
f
− 2)f ⇒ |M1| > f .

Hence, S2∩M1 6= ∅ and by Lemma 5 every server s ∈ S2∩M1 replies to ρ2 with a timestamp
tss ≥ maxTS1. Therefore maxTS2 ≥ maxTS1. If maxTS2 > maxTS1, then ρ2 returns a
timestamp ts2 ≥ maxTS2 − 1⇒ ts2 ≥ maxTS1 and hence ts2 ≥ ts1.

It remains to investigate the case where maxTS2 = maxTS1. Notice that any server in
s ∈ S2 ∩M1 is also in M2. Since ρ2 may skip f servers that reply to ρ1, then |M1 ∩M2| ≥
|S| − (a+ 1)f . Recall that for each server s ∈M1 ∩M2, s replied with a size s.views ≥ a to
ρ1. Also s adds r2 in its seen set before replying to ρ2. So there are two subcases to examine:
(a) either r2 was already in the seen set of s, or (b) r2 was not a member of s.seen.

Case 2(a): If r2 was already a part of the seen set of s, then the size of the set remains the
same. It also means that r2 obtained maxTS1 from s in a previous read operation, say ρ′2
from r2. Since each process satisfies well-formdness, it must be the case that r2 completed
ρ′2 before invoking ρ2. All the messages sent by ρ2 contained maxTS1. So by Lemma 5 any
server s ∈ S2 replies to r2 with a timestamp tss = maxTS2 = maxTS1. In this case |S| − f
servers replied with maxTS2 and their seen set contains at least r2, having s.views ≥ 1.
Thus, the predicate is valid with α = 1 for ρ2 which returns ts2 = maxTS2 = maxTS1 = ts1.

Case 2(b): This case may arise if r2 is not part of the seen set of every server s ∈M1 ∩M2.
If r2 is part of the seen set of some server s′ ∈M1 ∩M2, then this is resolved by case 2(a).

A. Fernández Anta, N. Nicolaou, and A. Popa 19:13

So each server s ∈M1 ∩M2 inserts r2 in their seen sets before replying to ρ2. So if the size of
the set s.views = α when s replied to ρ1, s includes a size s.views ≥ a+ 1 when replying to
ρ2. Notice here that if α = |R|+ 1 for ρ1, then it means that r2 was already part of the seen
set of s when s replied to ρ1. This case is similar to 2(a). So we assume that α < |R|+ 1, in
which case α+ 1 ≤ |R|+ 1. Since every server s ∈M1 ∩M2 replies with s.views ≥ α+ 1 to
ρ2 and since |M1 ∩M2| ≥ |S| − (α+ 1)f , then the predicate holds for α+ 1 ≤ |R|+ 1 and
the set MS = M1 ∩M2 for ρ2, and thus ρ2 returns ts2 = maxTS2 = maxTS1 = ts1 in this
case as well. And this completes our proof. J

6 A Linear Algorithm for the Predicate and Complexity of ccFast

Table 1 presents the comparison of the complexities of ccFast with the complexities of both
algorithms ABD and Fast.

Communication Complexity. The communication complexity of ccFast is identical to the
communication complexity of Fast: both read and write operations terminate at the end of
their first communication round trip.

Message Bit Complexity. Each message sent in ccFast contains a triple with timestamp
and two values. Omitting the timestamp as discussed earlier, then the values alone result in
an upper bound of O(lg |V |) bits. Additionally, each server attaches the size of its seen set,
which may include |R|+ 1 processes. The number of readers however, is bounded by |S|,
and hence the size of the seen set can be obtained with lg |S| bits. Thus, the size of each
message sent in ccFast is bounded by O(lg |V |+ lg |S|) bits.

Computation Complexity. Computation is minimal at the writer and server protocols. The
most computationally intensive procedure is the computation of the predicate during a read
operation. To analyze the computation complexity of ccFast we design and analyze an
algorithm to compute the predicate during any read operation.

Algorithm 2 presents the formal specification of the algorithm. Briefly, we assume that
the input of the algorithm is a set srvAck and a value maxTS which indicate the servers
that reply to a read operation and the maximum timestamp discovered among the replies.
The algorithm uses a set of |R| + 1 “buckets” each of which is initialized to 0. Running
through the set of replies, srvAck, a bucket k is incremented whenever a server replied with
the maximum timestamp and reports that this timestamp is seen by k processes (Lines 3-7).
At the end of the parsing of the srvAck set, each bucket k holds how many servers reported
the maximum timestamp and they sent this timestamp to k processes. Once we accumulate
this information we check if the number of servers collected in a bucket k are more than
|S| − kf . If they are, the procedure terminates returning TRUE; else the number of servers
in bucket k is added to the number of servers of bucket k − 1 and we repeat the check of the
condition (Lines 8-14). At this point the number kept at bucket k − 1 indicates the total
number of servers that reported that their timestamp was seen by more or equal to k − 1
processes. This procedure continues until the above condition is satisfied or we reach the
smallest bucket. If none of the buckets satisfies the condition the procedure returns FALSE.

I Theorem 9. Algorithm 2 implements the predicate used in every read operation in algorithm
ccFast.

OPODIS 2015

19:14 Making “Fast” Atomic Operations Computationally Tractable

Algorithm 2 Linear Algorithm for Predicate Computation.
1: function isValidPredicate(srvAck,maxTS)
2: buckets← Array[1 . . . |R|+ 1], initially [0, . . . , 0]
3: for all s ∈ srvAck do
4: if s.ts == maxTS then
5: buckets[s.views] + +
6: end if
7: end for
8: for α = |R|+ 1 to 2 do
9: if buckets[α] ≥ (|S| − αf) then
10: return TRUE
11: else
12: buckets[α− 1]← buckets[α− 1] + buckets[α]
13: end if
14: end for
15: if buckets[1] == (|S| − f) then
16: return TRUE
17: end if
18: return FALSE
19: end function

Proof. To show that Algorithm 2 correctly implements the predicate used by the read
operations in ccFast, we need to show that it returns TRUE whenever the predicate holds
and returns FALSE otherwise. Recall that the predicate is the following:

∃α ∈ [1, |R|+1] s.t. MS = {s : (s,m) ∈ maxAck ∧ m.views ≥ α} and |MS| ≥ |S|−αf .

According to our implementation we have a bucket for each α. For each α the predicate
demands that we collect all the servers that replied with maxTS and with views ≥ α

(set MS). Then we check if these servers are more than |S| − αf . Let Si = {s : s ∈
srvAck ∧ s.ts = maxTS ∧ s.views = i}, for 1 ≤ i ≤ |R| + 1, be the set of servers who
replied with views = i. Since each server includes a single views number, notice that for any
i, j ∈ [1, |R|+ 1], Si ∩ Sj = ∅.

It is easy to see that initially each bucket k, for 1 ≤ k ≤ |R|+ 1, holds the number of
servers with exactly k views, and hence bucket[k] = |Sk|. Notice that the last bucket |R|+ 1
collects all the servers that replied to all possible processes (including the writer). Thus, no
server may reply with views > |R|+ 1. So, if the predicate is valid for α = |R|+ 1, it follows
that MS = S|R|+1, and hence |S|R|+1| ≥ |S| − (|R|+ 1)f . Since bucket[|R|+ 1] = |S|R|+1|,
then bucket[|R|+ 1] ≥ |S| − (|R|+ 1)f and the condition of Algorithm 2 also holds. Thus,
the algorithm returns TRUE in this case.

It remains to investigate any case where α < |R| + 1. Notice that the MS set in the
predicate includes all the servers that replied with views ≥ α. Thus, for any α < |R|+ 1,

MS =
⋃

α≤i≤|R|+1

Si .

Since no two sets Si and Sj intersect, then

|MS| =
∑

α≤i≤|R|+1

|Si| .

A. Fernández Anta, N. Nicolaou, and A. Popa 19:15

When a bucket k < |R|+ 1 is investigated the value of the bucket becomes

bucket[k] =
∑

k≤i≤|R|+1

bucket[i]

where bucket[i] = |Si|, the initial value of the bucket. Thus, the above summation can be
written as

bucket[k] =
∑

k≤i≤|R|+1

|Si| .

Therefore, bucket[k] = |MS|, whenever k = α. Hence, if |MS| ≥ |S| − αf in the predicate it
must be the case that bucket[α] ≥ |S|−αf in the algorithm. It follows that if the predicate is
valid the algorithm returns TRUE. Similarly, if the condition does not hold for the predicate
it does not hold for the algorithm either. If there is no α to satisfy the predicate then there
is no k to satisfy the condition in the algorithm. Thus, the algorithm in this case returns
FALSE, completing the proof. J

Finally we can analyze the complexity of Algorithm 2 which in turn specifies the compu-
tational complexity of the ccFast. Algorithm 2 traverses once the set srvAck and once the
array of |R|+ 1 buckets. Since, the set srvAck may contain at most |S| servers, and |R| is
bounded by |S|, then the complexity of the algorithm is:

I Theorem 10. Algorithm 2 takes O(|S|) time.

This shows that we can compute the predicate of algorithm ccFast in linear time with
respect to the number of servers in the system. This is a huge improvement over the time
required by the Fast algorithm, and matches the computational efficiency of the two round
ABD algorithm. This result demonstrates that fastness does not necessarily has to sacrifice
computation efficiency.

7 Conclusions

In this paper we questioned the overall complexity of algorithms that implement atomic
SWMR R/W registers in the asynchronous, message-passing environment where processes
are prone to crashes. Communication used to be the prominent operation efficiency metric
for such implementations. We pick the best known (in terms of communication) algorithm
that implements an atomic SWMR R/W register, Fast, that allows both reads and writes
to terminate in just a single communication round. We show that the predicate utilized by
the Fast to achieve such performance is hard to be computed, and hence the problem is not
tractable. Next we present a new predicate that provides the following properties: (i) can be
computed in polynomial time, (ii) allows operations to complete in a single communication
round, and (iii) allows algorithm ccFast to preserve atomicity. A rigorous proof of the
correctness of the algorithm is presented. Finally we conclude with a linear time algorithm to
compute the newly proposed predicate. We believe that the new results redefine the term fast
in atomic register implementations as operation performance accounts of all, communication,
computation, and message bit complexity metrics. It is yet to be determined if the new
operation efficiency is optimal or can be further improved.

References
1 Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message

passing systems. Journal of the ACM, 42(1):124–142, 1996.

OPODIS 2015

19:16 Making “Fast” Atomic Operations Computationally Tractable

2 Partha Dutta, Rachid Guerraoui, Ron R. Levy, and Arindam Chakraborty. How fast can
a distributed atomic read be? In Proceedings of the 23rd ACM symposium on Principles
of Distributed Computing (PODC), pages 236–245, 2004.

3 Burkhard Englert, Chryssis Georgiou, Peter M. Musial, Nicolas Nicolaou, and Alexander A.
Shvartsman. On the efficiency of atomic multi-reader, multi-writer distributed memory. In
Proceedings 13th International Conference On Principle Of DIstributed Systems (OPODIS
09), pages 240–254, 2009.

4 Chryssis Georgiou, Nicolas Nicolaou, Alexander Russel, and Alexander A. Shvartsman.
Towards feasible implementations of low-latency multi-writer atomic registers. In 10th
Annual IEEE International Symposium on Network Computing and Applications, August
2011.

5 Chryssis Georgiou, Nicolas C. Nicolaou, and Alexander A. Shvartsman. On the robustness
of (semi) fast quorum-based implementations of atomic shared memory. In DISC’08: Pro-
ceedings of the 22nd international symposium on Distributed Computing, pages 289–304,
Berlin, Heidelberg, 2008. Springer-Verlag. doi:10.1007/978-3-540-87779-0_20.

6 Chryssis Georgiou, Nicolas C. Nicolaou, and Alexander A. Shvartsman. Fault-tolerant
semifast implementations of atomic read/write registers. Journal of Parallel and Distributed
Computing, 69(1):62–79, 2009. doi:10.1016/j.jpdc.2008.05.004.

7 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems (TOPLAS),
12(3):463–492, 1990. doi:10.1145/78969.78972.

8 Leslie Lamport. How to make a multiprocessor computer that correctly executes multipro-
cess progranm. IEEE Transactions on Computers, 28(9):690–691, 1979. doi:10.1109/TC.
1979.1675439.

9 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
10 Nancy A. Lynch and Alexander A. Shvartsman. Robust emulation of shared memory using

dynamic quorum-acknowledged broadcasts. In Proceedings of Symposium on Fault-Tolerant
Computing, pages 272–281, 1997.

11 Nancy A. Lynch and Mark Tuttle. An introduction to input/output automata. CWI-
Quarterly, pages 219–246, 1989.

12 Eduardo C. Xavier. A note on a maximum k-subset intersection problem. Information
Processing Letters, 112(12):471–472, 2012. doi:10.1016/j.ipl.2012.03.007.

http://dx.doi.org/10.1007/978-3-540-87779-0_20
http://dx.doi.org/10.1016/j.jpdc.2008.05.004
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1016/j.ipl.2012.03.007

Robust Shared Objects for Non-Volatile Main
Memory
Ryan Berryhill1, Wojciech Golab2, and Mahesh Tripunitara3

1 University of Toronto, Toronto, Canada
ryan@eecg.utoronto.ca

2 University of Waterloo, Waterloo, Canada
wgolab@uwaterloo.ca

3 University of Waterloo, Waterloo, Canada
tripunit@uwaterloo.ca

Abstract
Research in concurrent in-memory data structures has focused almost exclusively on models
where processes are either reliable, or may fail by crashing permanently. The case where pro-
cesses may recover from failures has received little attention because recovery from conventional
volatile memory is impossible in the event of a system crash, during which both the state of main
memory and the private states of processes are lost. Future hardware architectures are likely to
include various forms of non-volatile random access memory (NVRAM), creating new opportun-
ities to design robust main memory data structures that can recover from system crashes. In
this paper we advance the theoretical foundations of such data structures in two ways. First,
we review several known variations of Herlihy and Wing’s linearizability property that were pro-
posed in the context of message passing systems but also apply in our NVRAM-based model, we
discuss the limitations of these properties with respect to our specific goals, and we propose an
alternative correctness condition called recoverable linearizability. Second, we discuss techniques
for implementing shared objects that satisfy such properties with a focus on wait-free implement-
ations. Specifically, we demonstrate how to achieve different variations of linearizability in our
model by transforming two classic wait-free constructions.

1998 ACM Subject Classification D.1.3 Concurrent Programming

Keywords and phrases non-volatile main memory, concurrency, recovery, data structures

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.20

1 Introduction

Shared data structures are essential building blocks for modern operating systems and
applications, which are empowered almost exclusively by multi-core hardware platforms.
Although the multi-core revolution has propelled research in this area to new heights over the
last decade, questions pertaining to specifying and implementing concurrent data structures
were considered in the literature long before thread-level parallelism became mainstream.
Dijkstra’s pioneering work on concurrent programming dates back to 1965 [10], followed by
a series of seminal papers on inter-process communication, wait-free synchronization, and
linearizability [14, 16, 22, 23]. The fundamental abstractions introduced in this body of work
have been studied widely in the context of various theoretical models of shared memory
computation that capture precise assumptions regarding the synchrony and reliability of
processes, as well as the set of primitive operations available for accessing memory. In
particular, recent research has paid close attention to asynchronous models, in which there is

© Ryan Berryhill, Wojciech Golab, and Mahesh Tripunitara;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 20; pp. 20:1–20:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Robust Shared Objects for Non-Volatile Main Memory

no bound on the amount of time a process takes to transition to its next step, or to complete
a memory operation. This assumption reflects in a meaningful way the behavior of modern
memory hierarchies, in which different media (e.g., L1 cache vs. L2 cache vs. main memory)
incur vastly different and often unpredictable access latencies, as well as the effect of the
operating system (e.g., via preemption and interrupts) on the liveness of processes. Aside
from capturing these important aspects of real world performance, asynchrony is also related
to reliability in a precise way: algorithms that provide non-blocking progress properties (e.g.,
lock-freedom and wait-freedom) in an asynchronous environment with reliable processes
continue to provide the same progress properties if crash failures are introduced. Informally
speaking, this property holds because a process that crashes permanently at an arbitrary
point in the execution of its algorithm is indistinguishable to the other processes from one
that is merely very slow.

Owing to its simplicity and intimate relationship with asynchrony, the crash failure
model is almost ubiquitous in the treatment of non-blocking shared memory algorithms and
message passing protocols [4, 7, 11, 14, 20]. In comparison, much less attention has been
paid to crash-recovery models, in which a failed process may be resurrected after a crash
failure. For example, in the message passing paradigm a process may crash and recover
state information either from its private stable storage or from another process on a different
node [3]. Although similar techniques are in principle applicable in the shared memory
paradigm of computation, they are poorly matched to modern multi-core architectures with
volatile SRAM-based caches and DRAM-based main memories [29]. Any state stored in
main memory is lost entirely in the event of a system crash or power loss, and recording
recovery information in non-volatile secondary storage (e.g., on a hard disk drive or solid
state drive) imposes overheads that are unacceptable for performance-critical tasks, such as
synchronizing threads inside the operating system kernel.

In this paper, we consider correctness properties and implementation techniques for
data structures intended for future shared memory architectures that incorporate non-
volatile random-access memory (NVRAM) – a form of main memory that promises to marry
performance comparable to DRAM with the high density and persistence of secondary
storage. We assume that NVRAM is accessed using memory operations (e.g., reads, writes,
and read-modify-write primitives), similarly to ordinary DRAM, and that such operations
can be made both atomic and durable through appropriate extensions to conventional
caching and memory ordering mechanisms [9, 18, 25, 28, 30]. Under these assumptions,
concurrent data structures such as stacks, queues, and trees may reside directly in NVRAM
and algorithms for accessing them may follow conventional techniques for synchronization.
However, conventional techniques do not address the problem of recovering such structures
following a failure, such as may occur when a multiprocessor suffers a power outage, leading
to the loss of all volatile state including the program counter and other vital CPU registers.

Our technical contributions with respect to robust shared objects for multiprocessors that
incorporate NVRAM are the following:
1. We refine the conventional abstract model of a shared memory multiprocessor by intro-

ducing non-volatility.
2. We survey known correctness properties proposed for shared objects in models with crash

and crash-recovery failures, discuss their limitations, and propose an alternative property
we call recoverable linearizability (or R-linearizability for short).

3. We explore techniques for transforming ordinary linearizable implementations into R-
linearizable ones, with a special focus on wait-freedom. Our discussion uses as examples
Herlihy’s universal wait-free construction [14] and a classic wait-free implementation of
MRSW registers from SRSW registers [15].

R. Berryhill, W. Golab, and M. Tripunitara 20:3

p.write(X, 1)

time

p.write(X, 2)

crash

p.read(X) 2

Figure 1 Example execution in which process p writes 1 to object X, then begins writing 2 to X,
fails due to a system crash before the write returns, and then reads 2 from X.

2 Related Work

Constructing robust shared objects for NVRAM requires two ingredients: a correctness
property that provides meaningful guarantees in the presence of failures, and a set of
algorithmic techniques that leverage the non-volatility of the storage medium for recovery.
Conventional relational databases provide both, namely serializability for correctness and
write-ahead logging for recovery (e.g., ARIES [26]), but perform orders of magnitude slower
than main memory data structures owing to their internal complexity as well as their use
of a centralized recovery log in secondary storage. Coburn et al. propose NV-Heaps as
an alternative method of providing transactional access to persistent shared objects [8].
NV-Heaps use NVRAM directly to store both object state and recovery information in the
form of operation descriptors, which are similar to recovery logs but more fine-grained. Like
conventional databases, NV-Heaps use locks for concurrency control and perform recovery
by analyzing the operation descriptors while execution of new transactions is temporarily
suspended. Mnemosyne is another transactional interface to NVRAM that uses lock-based
concurrency control and log-based recovery [35]. Venkataraman et al. define Consistent and
Durable Data Structures (CDDSs), which provide lock-free access to readers but rely on
mutual exclusion to synchronize writers [33]. These structures are linearizable in failure-free
executions, and any updates that are interrupted by a crash failure are discarded on recovery.

Aside from techniques targeted specifically at NVRAM, related work includes methods
for recovering process state from stable storage and for dealing with unreliable memory.
Schlichting and Schneider consider the problem of restarting a process that halts due to
a processor failure by defining fault-tolerant actions that leverage stable storage to persist
program state [32]. This work focuses on fault tolerance and considers limited interprocess
communication through multi-reader single-writer shared state variables. Several papers
consider computation with unreliable memory: Afek et al. consider the consensus problem
in this general context [1], Moscibroda and Oshman focus on mutual exclusion [27], and
Jayanti et al. propose implementations of shared objects from unreliable base objects [20].
In contrast to these techniques, which break if the number of corruptions exceeds a specified
bound, Hoepman et al. [17] as well as Johnen and Higham [21] propose self-stabilizing shared
objects that can tolerate any number of memory failures. These objects guarantee wait-free
progress, and also ensure that operations return correct values except possibly during the
period of instability immediately following a failure.

As regards correctness properties, specifically consistency properties, the dominant ideas
in research have long been serializability in the context of databases [5], and linearizability
in the context of in-memory shared objects [16]. Informally speaking, both require that
actions – transactions or operations on objects – appear to take effect instantaneously in some

OPODIS 2015

20:4 Robust Shared Objects for Non-Volatile Main Memory

serial order. Linearizability further constrains this order so that if operation op1 happens
before operation op2 (i.e., op1 ends before op2 begins), then op1 should precede op2 in the
serial order. Strict serializability imposes an analogous constraint on the serial order of
transactions. Serializability naturally accommodates crash-recovery failures in the following
sense: a transaction interrupted by a failure can simply be aborted and excluded from the
serial order. In contrast, linearizability (defined formally in Section 3) has no notion of an
aborted or failed operation, and requires that a process finish one operation before it invokes
the next. Figure 1 illustrates an execution that is outside the scope of such a model because
a process fails in the middle of an operation, then recovers and invokes another operation
without completing the previous one.

Frølund et al. address the technicality illustrated in Figure 1 by treating the crash
of a process as a response, either successful or unsuccessful, to the interrupted operation
[12]. A successful response means that the operation takes effect at some point between its
invocation and the crash failure, and an unsuccessful response means that the operation does
not take effect at all. This correctness property is stated in [12] as an extension of Lamport’s
atomicity property for read/write registers [22, 23], and generalized to arbitrary object types
by Aguilera and Frølund as strict linearizability [2]. The same idea is used by Saito et al. in
FAB, a fault-tolerant distributed storage system [31].

Aguilera and Frølund show that strict linearizability has an interesting property in the
context of shared memory: it precludes wait-free implementations of multi-reader single-writer
(MRSW) registers from single-reader single-writer (SRSW) registers [2]. Intuitively, this is
because the effect of a write operation on the implemented object can only be made visible
to other processes by a non-atomic series of operations on the single-reader base objects. As
a result, when a write is interrupted by a crash, it is sometimes possible for a subsequent
read to return either the old or the new value of the implemented object, depending on the
identity of the reader. This leads to a scenario where the write appears to take effect after
the crash because one read returns the old value and a later read returns the new value.

Guerraoui and Levy propose two correctness properties for read/write registers simulated
using message passing in a crash-recovery model [13]. Persistent atomicity is similar to
strict linearizability, but allows an operation interrupted by a failure to take effect before the
subsequent invocation of the same process, possibly after the failure. Transient atomicity
relaxes this criterion even further and allows an interrupted operation to take effect before
the subsequent write response of the same process. Although the intent underlying Guerraoui
and Levy’s definitions was to explore trade-offs between performance and consistency, their
properties are quite relevant in the context of shared objects for NVRAM, particularly
wait-free implementations that employ helping mechanisms whereby an operation invoked by
a process p may take effect by the action of another process q after p fails. In contrast, strict
linearizability forbids this behavior. Censor-Hillel, Petrank and Timnat recently formalized
the concept of helping and showed that without it, certain types of objects lack wait-free
linearizable implementations in a conventional shared memory model [6].

Correctness properties for shared objects are easier to reason about when they are local,
meaning that a collection of objects satisfy a given property P if and only if every object
in the collection individually satisfies P [16]. Locality makes it possible to implement and
verify shared objects independently, which benefits modularity and concurrency. It is known
that linearizability, strict linearizability, and strict serializability are local properties, while
ordinary serializability is not. As we explain in Section 4, persistent and transient atomicity
are also not local. Vitenberg and Friedman formulate a number of general theorems that can
be used to deduce the locality (or lack thereof) of various correctness properties for shared

R. Berryhill, W. Golab, and M. Tripunitara 20:5

objects [34], however these theorems are proved in a conventional model similar to Herlihy
and Wing’s, in which a process must complete one operation before it invokes another. Hence,
these theorems are not applicable directly in our more general model.

3 Model

Our model is closely based upon Herlihy and Wing’s [16].

Processes and objects. We consider N asynchronous processes, denoted p0, p1, ..., pN−1,
that communicate by applying operations on shared base objects that support atomic
operations such as reads, writes, and read-modify-write primitives. Base objects can be used
to construct more complex implemented objects, such as queues and stacks, by defining access
procedures that simulate each operation on the implemented object using operations on base
objects. Base objects can be volatile or non-volatile, which determines their behavior during
a failure. The state of a process is a collection of private variables, including a program
counter. We consider only one type of failure, called a system crash (or crash for short),
which resets all volatile base objects as well as the private variables of all processes to their
initial values, but preserves the values of all non-volatile base objects. Following a crash a
process may either halt permanently or resume its execution (i.e., recover).

Steps and histories. We model the interaction of processes with implemented objects
using steps and histories. There are three types of steps: (1) an invocation step, denoted
(INV, p, X, op), represents the invocation by process p of operation op on implemented object
X; (2) a response step, denoted (RES, p, X, ret), represents the completion by process p

of the last operation it invoked on object X, with response ret; (3) a crash step, denoted
(CRASH), denotes a system crash. We include explicit crash steps to accommodate strict
linearizability (defined formally in Section 4), but we do not use explicit recovery steps; a
process recovers implicitly following a crash by taking an invocation step.

A history H is a sequence of steps, possibly involving multiple processes and implemented
objects. For a given history H, we denote by H|p the projection of H onto the steps of process
p. Similarly, we denote by H|O the projection of H onto the steps involving implemented
object O. We adopt the convention that both H|p and H|O retain all crash steps in H. A
response step is matching with respect to an invocation step s by a process p on object X in
a history H if it is the first response step by p on X that follows s in H, and it occurs before
p’s next invocation (if any) in H.

Operations. For any history H and any process p, an operation by p in H comprises an
invocation step and its matching response, if it exists. An operation is complete if it has
a matching response step, and pending otherwise. Given two operations op1 and op2 in a
history H, we say that op1 happens before op2, denoted by op1 <H op2, if op1 has a matching
response that precedes the invocation step of op2 in H. If neither op1 <H op2 nor op2 <H op1
holds then we say that op1 and op2 are concurrent in H.

Properties of histories. A history H is sequential if no two operations in it are concurrent.
Two histories H and H ′ are equivalent if for every process p, H|p = H ′|p holds. Every
history H must be well-formed, meaning that for each process p two conditions hold: (1) each
response step in H|p is immediately preceded by an invocation step for which the response is
matching, and (2) each invocation step in H|p, except possibly the last one, is immediately

OPODIS 2015

20:6 Robust Shared Objects for Non-Volatile Main Memory

followed by a matching response or by a crash step. Note that p may have multiple pending
operations in H|p, in contrast to Herlihy and Wing’s model, where at most the last operation
may be pending.

Sequential specifications. Every implemented object O has a sequential specification that
defines its allowed behaviors and is expressed as a set of possible sequential histories over
O. A sequential history H is legal if for every implemented object O accessed in H, H|O
belongs to the sequential specification of O.

4 Correctness Properties

In this section we consider correctness properties for shared objects in NVRAM. Our goal is
to identify a small set of candidate properties that could describe the behavior of a variety
of shared object implementations. Specifically, we are interested in variations of Herlihy and
Wing’s linearizability property as it is widely adopted for shared objects in conventional
shared memory models. We will give formal definitions of some of the properties discussed
in Section 2, discuss their limitations, and then propose an alternative correctness property.

Linearizability itself, as defined by Herlihy and Wing [16], can be formalized in our model
but only for histories that are free of crash steps. Given such a history H, we first define
its completion H ′ by appending matching responses for a subset of pending operations, and
finally removing any remaining pending operations. Appending the responses rather than
inserting them between steps of H ensures that H and H ′ share the same “happens before”
relation (i.e., <H=<H′).

I Definition 1 (Linearizability). A finite history H that does not contain any crash steps is
linearizable if it has a completion H ′ and there exists a legal sequential history S such that:
L1. H ′ is equivalent to S; and
L2. <H⊆<S (i.e., if op1 <H op2 and both ops. appear in S then op1 <S op2).

To formalize strict linearizability we introduce a strict completion H ′, which is obtained
from H by inserting matching responses for a subset of pending operations after the operation’s
invocation and before the next crash step (if any), and finally removing any remaining pending
operations and crash steps. Inserting responses in this manner may alter the “happens before”
relation but guarantees that <H⊆<H′ (i.e., if op1 <H op2 then op1 <H′ op2).

I Definition 2 (Strict linearizability). A finite history H is strictly linearizable if it has a
strict completion H ′ and there exists a legal sequential history S such that:
SL1. H ′ is equivalent to S; and
SL2. <H′⊆<S (i.e., if op1 <H′ op2 and both ops. appear in S then op1 <S op2).

Referring to H ′ in clause SL2 ensures that any operation invoked before a crash in H

and completed in H ′ happens before any operation invoked after the crash. As an example,
consider the history H corresponding to Figure 1, where ⊥ denotes the response of a write:

(INV, p, X, write(1)), (RES, p, X, ⊥), (INV, p, X, write(2)), (CRASH),
(INV, p, X, read()), (RES, p, X, 2)

A strict completion H ′ of H can be obtained by inserting a matching response for the write
of 2 immediately before the crash step, and then removing the crash step:

(INV, p, X, write(1)), (RES, p, X, ⊥), (INV, p, X, write(2)), (RES, p, X, ⊥),
(INV, p, X, read()), (RES, p, X, 2)

R. Berryhill, W. Golab, and M. Tripunitara 20:7

The legal sequential history S that satisfies Definition 2 with respect to H and H ′ is H ′

itself, and thus H is strictly linearizable.
Although strict linearizability is an attractive property, Aguilera and Frølund show that

it is somewhat restrictive as it forbids wait-free implementations of multi-reader single-
writer (MRSW) registers from single-reader single-writer (SRSW) registers [2]. In contrast,
linearizability does allow such an implementation, which we discuss further in Section 5.2.
Guerraoui and Levy’s definitions are less restrictive in comparison as they allow operations
interrupted by a failure to take effect after the failure, for example by the action of another
process executing a helping mechanism in a wait-free implementation.

Persistent atomicity, which we refer to later on as persistent linearizability, can be
formalized in our model as follows. Given a history H, a persistent completion H ′ is
obtained from H by inserting matching responses for a subset of pending operations after the
operation’s invocation and before the next invocation step of the same process, and finally
removing any remaining pending operations and crash steps.

I Definition 3 (Persistent linearizability). A finite history H is persistently linearizable if
it has a persistent completion H ′ and there exists a legal sequential history S such that
conditions SL1 and SL2 from Definition 2 hold.

Defining transient atomicity formally in our model presents two technical difficulties,
both related to Guerraoui and Levy’s definition of a weak completion in which a matching
response can be added for a pending operation anywhere after the invocation and “before the
subsequent write reply of the same process.” First, it is not obvious how to generalize this
concept to arbitrary object types, which may not even support a write operation. Second,
the weak completion may contain complete operations invoked by the same process that
overlap, even if we restrict our attention to a single object. This not only violates the well-
formedness property defined in Section 3 for histories, but also allows operations executed by
the same process to take effect in an order different from the order of invocation. (The model
in [13] uses a slightly different well-formedness property but the same issues arise.) This
anomaly, which we call program order inversion, complicates reasoning about the behavior of
implemented objects and goes against the intuition underlying Herlihy and Wing’s model, in
which one process may have at most one pending operation at any given point in time. On
the other hand, some reordering among operations may be justifiable in our crash-recovery
model for the following reason: if an operation op by process p on object X is interrupted
by a crash failure, process p should be free to resume execution and invoke an operation
on some other object Y independently of any steps on X, by p or any other process, that
may cause p’s interrupted operation to take effect later on. We refer to this requirement as
independent recovery, and suggest that it follows naturally from the nonblocking property of
linearizability: “processes invoking totally-defined operations are never forced to wait” [16].

A more fundamental drawback of both persistent and transient atomicity is the lack of
locality, which we consider essential. In both cases the placement of a matching response
for a pending operation is constrained by other operations in a manner that may become
more restrictive when single-object histories are merged to create a history in which multiple
objects are accessed. Figure 2 illustrates a specific example of this problem. Letting H

denote the illustrated history, H|X satisfies persistent atomicity because when p’s write(Y, 1)
is out of the picture, the remaining operations are permitted to take effect in the following
order:

p.write(X, 1), q.read(X) → 1, p.write(X, 2), p.read(X) → 2

OPODIS 2015

20:8 Robust Shared Objects for Non-Volatile Main Memory

p.write(X, 1)

time

p.write(X, 2)

crash

p.read(X) 2

q.read(X) 1

p.write(Y, 1)

Figure 2 Example execution involving processes p, q and objects X, Y . A failure interrupts p’s
second write operation before it returns a response.

In particular, p’s write(X, 2) is permitted to take effect after q’s read(X) as long as it takes
effect before the invocation of p’s read(X). Similarly H|Y satisfies persistent atomicity
because it comprises only a single write operation, namely p’s write(Y, 1). However, H itself
lacks persistent atomicity because p’s write(X, 2) would be forced to take effect before p’s
write(Y, 1), and hence before q’s read(X), which returns 1. An analogous argument shows
that transient atomicity is not local because p’s write(X, 2) would be forced to take effect
before the response of p’s write(Y, 1), and hence before q’s read(X).

To remedy the technical issues surrounding persistent and transient atomicity, we propose
an alternative property called recoverable linearizability (or R-linearizability for short) that
accommodates arbitrary object types and guarantees locality. Our property is formalized
by first defining an appropriate completion procedure, similarly to strict linearizability and
persistent atomicity, but deals with the “happens before” relation differently. Given a history
H, a recoverable completion H ′ is obtained from H in exactly the same manner as a strict
completion. As we discuss shortly, the strictness of the completion does not prevent an
operation from taking effect after a failure that interrupts it. However, it does simplify the
proof of Theorem 6 later on. Next, we define a precedence order on operations to prevent
program order inversion for operations applied to the same object.

I Definition 4. Given a history H, the invoked before relation over pairs of operations in H,
denoted �H , is an irreflexive partial order defined as follows: if op1 and op2 are operations
invoked by the same process p on the same object X, and the invocation step of op1 precedes
the invocation step of op2 in H, then op1 �H op2.

We use both <H and �H to constrain the order in which operations appear to take effect:

I Definition 5 (Recoverable linearizability). A finite history H is R-linearizable if it has a
recoverable completion H ′ and there exists a legal sequential history S such that:
RL1. H ′ is equivalent to S;
RL2. <H⊆<S (i.e., if op1 <H op2 and both ops. appear in S then op1 <S op2); and
RL3. �H⊆<S (i.e., if op1 �H op2 and both ops. appear in S then op1 <S op2)

Note that clause RL2 refers to H and not H ′, in contrast to clause SL2 in Definition 2.
This ensures that the placement of matching responses in the construction of the recoverable
completion, which preserves well-formedness, does not impose undesirable constraints on the
order in which operations may appear to take effect. Clause RL3 compensates for this by
disallowing program order inversion at the level of individual objects. Two operations invoked
by the same process on different objects may still take effect in an order different from their
invocation order, which enables independent recovery. As we show later on in Theorem 7
and Section 5.2, R-linearizability is a local property similarly to strict linearizability, and

R. Berryhill, W. Golab, and M. Tripunitara 20:9

yet is weak enough to permit a wait-free implementation of MRSW registers from SRSW
registers in contrast to strict linearizability.

To illustrate R-linearizability in action, a recoverable completion H ′ for the history H

shown in Figure 2 can be constructed as follows:

(INV, p, X, write(1)), (RES, p, X, ⊥), (INV, p, X, write(2)), (RES, p, X, ⊥),
(INV, p, Y , write(1)), (RES, p, Y , ⊥), (INV, q, X, read()), (INV, p, X, read()),
(RES, q, X, 1), (RES, p, X, 2)

The precedence constraints imposed by clause RL2 on the legal sequential history S are the
transitive closure of the following:

p.write(X, 1) <S p.write(X, 2), p.write(X, 1) <S p.write(Y, 1)
p.write(Y, 1) <S q.read(X), p.write(Y, 1) <S p.read(X)

Clause RL3 imposes the additional constraint p.write(X, 2) <S p.read(X). The legal
sequential history S that satisfies Definition 5 with respect to H and H ′ is the following:

(INV, p, X, write(1)), (RES, p, X, ⊥), (INV, p, Y , write(1)), (RES, p, Y , ⊥),
(INV, q, X, read()), (RES, q, X, 1), (INV, p, X, write(2)), (RES, p, X, ⊥),
(INV, p, X, read()), (RES, p, X, 2)

Thus, the history H shown in Figure 2 is recoverably linearizable or R-linearizable.
In our model it can be shown that strict linearizability is strictly stronger than persistent

linearizability, which is strictly stronger than R-linearizability.

I Theorem 6. Let H be a history. If H is strictly linearizable (Definition 2) then H is
also persistently linearizable (Definition 3), and if H is persistently linearizable then H

is also recoverably linearizable (Definition 5). Furthermore, there exists a history that is
R-linearizable but not persistently linearizable, and there exists a history that is persistently
linearizable but not strictly linearizable.

Finally, we consider locality in Theorem 7, whose detailed proof is omitted due to lack of
space.

I Theorem 7 (locality). A history H is R-linearizable if and only if, for every object X

accessed in H, H|X is R-linearizable.

Proof Sketch. The “only if” direction follows easily, and so we focus on the “if” direction.
Informally speaking, it suffices to define for each object X a linearization point for each
operation in H|X, such as a base object step at which the operation appears to take effect,
and then order the operations in H according to the same linearization points. The main
technicality is to show that the linearization points chosen initially are still applicable after
the projections H|X are merged together. This point follows easily as long as the definitions
of the linearization points are independent of operations on other objects – a property that
holds by design in R-linearizability. For a complete operation, clause RL2 of Definition 5
restricts the linearization point to occur between its own invocation and response, and does
not refer to any other operation. For a pending operation, clause RL3 of Definition 5 restricts
the linearization point to occur between its own invocation and the response of the next
operation by the same process on the same object (see Definition 4), and also does not refer
to operations on any other object. J

OPODIS 2015

20:10 Robust Shared Objects for Non-Volatile Main Memory

5 Implementations

In this section we consider techniques for implementing shared objects that are robust against
failures in our crash-recovery model in the sense of providing non-blocking progress guarantees
in addition to one (or more) of the safety properties formalized in Section 4. A very general
but naive technique for constructing such implementations is to take an algorithm designed
for the conventional shared memory model, make all program variables non-volatile, and have
each process adopt a new and distinct ID on recovery after a crash failure. This approach
circumvents enough of the technical issues discussed in Section 4 to make Herlihy and Wing’s
linearizability property applicable directly, but suffers from two problems. First, it opens
the door to program order inversion among operations applied by the same process under
different IDs. Second, unless the number of crash failures in a history is bounded, the process
IDs grow without bound, leading to a blowup in space complexity for algorithms that store
process IDs in variables or use them to index arrays. Merritt and Taubenfeld show that such
a blowup is unavoidable for many fundamental problems [24].

Another general strategy for constructing robust objects is to record housekeeping
information in NVRAM as processes execute operations on objects, similarly to write-ahead
logging in a database, and use it on recovery to repair any operation that was interrupted by
a failure. This strategy requires additional writes to NVRAM during failure-free operation,
and in practice relies on a specialized recovery procedure that is executed automatically
upon recovery while ordinary operations on objects are temporarily suspended (e.g., as in
NV-Heaps [8]). Such a recovery procedure is outside the scope of our model, and also implies
the use of mutual exclusion to isolate recovery actions from ordinary operations, which is
counter to our goal of non-blocking progress.

As an alternative to renaming processes and database-style logging, we explore in this
section the following technique: start with a linearizable implementation for ordinary volatile
shared memory, make all variables non-volatile, and then modify the algorithm as needed
to achieve the desired correctness properties. We focus specifically on two known wait-
free implementations: Herlihy’s universal construction [14], and a construction of atomic
multi-reader single-writer (MRSW) registers from atomic single-reader single-writer (SRSW)
registers [15]. In our subsequent discussion of these constructions, we define time complexity
as the number of base object operations executed per implemented operation between its
invocation and either its response or a failure, whichever occurs first.

5.1 Herlihy’s Wait-Free Universal Construction
Herlihy [14] proposes a construction of wait-free linearizable objects that is universal – it can
implement any shared object type. The construction, which we reproduce in Figure 3, works
as follows. Each process, when it wants to apply an operation on the implemented object,
attempts to have a cell structure representing its invocation threaded onto a linked list of
such structures. This list determines both the subset of operations that have taken effect
and their respective linearization order. The invocation is passed to the access procedure
Universal as a structure of type INVOC, which encodes the operation to be applied and its
arguments. At line 2, the process announces its invocation to others by storing a pointer to
the corresponding cell at a dedicated element of the array Announce. Each process also has
a dedicated element in the array Head, and uses a scan of this array at lines 3–5 to identify a
cell near the end of the linked list. The max operator at line 4 compares cell structures by
their seq member, which is a sequence number indicating the position of a cell in the linked
list. Arrays Announce and Head are initialized with all elements pointing to a special anchor
cell, which represents the start of the list and has a sequence number of one.

R. Berryhill, W. Golab, and M. Tripunitara 20:11

Base objects:
Announce, head: array[0..N -1, 0..N -1] of
pointer to cell, each element initialized to the address of the anchor cell

Function Universal(what: INVOC) for process p

1 mine: cell := [seq: 0, inv: what,
new: consensus object, before: NULL,
after : consensus object]

2 Announce[p] := mine
3 foreach process ID q do
4 Head[p] := max(Head[p], Head[q])
5 end
6 while Announce[p].seq = 0 do
7 c: pointer to cell := Head[p]
8 help: pointer to cell :=

Announce[(c.seq mod N) + 1]
9 if help.seq = 0 then

10 prefer := help
11 else
12 prefer := Announce[p]
13 end
14 d := decide(c.after, prefer)
15 decide(d.new, apply (d.inv, c.new.state))
16 d.before := c
17 d.seq := c.seq + 1
18 Head[p] := d
19 end
20 Head[p] := Announce[p]
21 return Announce[p].new.result

Figure 3 Herlihy’s universal wait-free construction for N processes [14].

The universal construction deals with concurrency using two consensus objects per cell:
after is a pointer to the next cell in the list and deals with concurrent attempts to thread
a cell onto the list; new is a structure that holds the state of the implemented object (in
new.state) and the corresponding response (in new.result), and deals with concurrent attempts
to determine the state transition for an invocation when the transition function denoted by
“apply” at line 15 is nondeterministic.

For wait-freedom the construction uses a helping mechanism whereby a process attempting
to thread a new cell onto the linked list at line 14 may act on a cell announced by another
process, which is chosen at lines 8–13. This mechanism ensures that every cell that is
announced is threaded onto the linked list in a bounded number of base object operations,
as long as some process continues to take steps.

Let UC denote Herlihy’s universal construction in our model with all base objects made
non-volatile, and let UC′ denote the same implementation but with the Announce array made
volatile. In the remainder of this section we show that UC provides R-linearizability but not
persistent or strict linearizability, and that UC′ provides all three properties. Detailed proofs
of correctness for Theorems 8–10 are omitted due to lack of space.

OPODIS 2015

20:12 Robust Shared Objects for Non-Volatile Main Memory

I Theorem 8. Every finite history H of implementation UC is R-linearizable.

Proof sketch. Intuitively, we must show that when an operation applied by a process p

is interrupted by a failure, it is safe for p to abandon this operation and start executing
procedure Universal from line 1 when it invokes its next operation. To that end, we prove
that p’s abandoned operation takes effect at most once, and moreover it never takes effect out
of order with respect to any operation that p invokes after the failure on the same instance of
the universal construction. The key to the proof is the observation that each time p executes
procedure Universal, it overwrites its element of the Announce array at line 2, which has two
implications. First, the cell associated with p’s interrupted operation becomes inaccessible
to future iterations of the helping mechanism, unless that cell has already been threaded
onto the linked list. Second, any iteration of the helping mechanism that is acting on that
cell and has already begun prior to p’s execution of line 2, is doomed to fail if any other
cell is threaded onto the linked list first. The detailed proof uses both points to establish
R-linearizability for all histories of UC. J

I Theorem 9. Implementation UC for N ≥ 2 processes has a finite history H that is neither
strictly or persistently linearizable.

Proof sketch. We show that when an operation applied by a process p is interrupted by a
failure, this operation may take effect after p’s next invocation step by the action of another
process that is participating in the helping mechanism. J

I Theorem 10. Every finite history H of implementation UC′ is strictly linearizable.

Proof sketch. Extending the proof of Theorem 8, we show that when an operation applied
by a process p is interrupted by a failure, its cell is either threaded before the failure or not
at all, since the array Announce is volatile in UC′. J

I Theorem 11. Implementations UC and UC′ for N processes have time complexity O(N).

Proof. As in the original analysis [14] it can be shown that the while loop has at most
N + 1 iterations during any execution of the procedure Universal. Furthermore, the loop
at lines 3–5 has exactly N iterations. Since each loop iteration applies O(1) base object
operations, this implies the claimed time complexity. J

Our discussion of UC and UC′, which are extensions of Herlihy’s universal construction,
shows that any object type can be implemented in a wait-free and R-linearizable manner in
our crash-recovery model using base objects of types read/write register and consensus. Thus,
consensus is universal in our model just as in Herlihy’s [14]. Furthermore, UC′ demonstrates
that it is possible to achieve wait-freedom and strict linearizability (hence freedom from
program order inversion) simultaneously in a construction that depends crucially on a helping
mechanism. Specifically, the use of volatile base objects as elements of the array Announce is
sufficient to ensure a “clean shutdown” of the helping mechanism during a failure.

5.2 Implementation of MRSW Registers from SRSW Registers
As our second example we analyze a wait-free implementation of atomic multi-reader single-
writer (MRSW) registers from atomic single-reader single-writer (SRSW) registers. The
construction, which we refer to as MRSW, is presented in Section 4.2.5 of [15] and is similar
to Israeli and Li’s [19]. We chose this example because it illustrates the case when a known
implementation fails to satisfy R-linearizability “out of the box,” even if we assume that

R. Berryhill, W. Golab, and M. Tripunitara 20:13

Base objects:
A: shared array[0..N -1, 0..N -1] of record

[V : value, T : timestamp] initialized to
(V0, 0) where V0 is the implemented
type’s initial value

Tmax: integer, initially 0

Function write(V : value) for pro-
cess pw

22 T := Tmax + 1
23 Tmax := T

24 foreach i: int in 0..N -1 do
25 A[i, i] := (V, T)
26 end

Function read() for process pi

27 (Vi, Ti) := (NULL,−1)
28 foreach j: int in 0..N -1 do
29 (Vtemp, Ttemp) := A[j, i]
30 if Ttemp > Ti then
31 (Vi, Ti) := (Vtemp, Ttemp)
32 end
33 end
34 foreach j: int in 0..N -1 do
35 if j 6= i then
36 A[i, j] := (Vtemp, Ttemp)
37 end
38 end
39 return Vtemp

Figure 4 Implementation of atomic MRSW registers from atomic SRSW registers [15].

base objects are non-volatile. Furthermore, as we explain later on, a modified R-linearizable
version of this implementation separates R-linearizability from strict linearizability. For
completeness the pseudo-code for the implementation is included in Figure 4.

The implemented object is represented using an array A[0..N -1, 0..N -1] of SRSW register
base objects. The distinguished writer process, denoted pw for some w ∈ 0..N -1, maintains a
variable Tmax, initially 0, for timestamping write operations. Each process pi is able to read
column i, and write row i with the exception of the diagonal element A[i, i], which is only
written by pw. Each element of A is of the form (V, T), where V is a value written to the
implemented MRSW register and T is a timestamp assigned by the writer. In the initial state,
V holds the implemented register’s initial value and T = 0 for each array element. To apply
a write(V) operation, process pw increments Tmax to obtain a timestamp T higher than any
prior timestamp, and writes (V, T) to the diagonal elements of A. To apply a read operation,
process pi reads the highest timestamp Ti in column i to determine the corresponding latest
value V , then writes (V, Ti) to each element in row i except A[i, i], and finally returns V .
By writing (V, Ti) in row i, pi announces its response to other readers, which ensures that
subsequent reads do not return older values. (Values are ordered naturally in terms of “age”
because there is only one writer.) This register implementation has time complexity O(N)
for N processes, and is linearizable in the absence of failures.

Before analyzing the implementation in the crash-recovery model, a subtle detail must be
settled: we assume that by default pw writes the diagonal elements in the order specified by
the pseudo-code, namely from A[0, 0] to A[N -1, N -1]. This point is irrelevant in a conventional
asynchronous model with permanent crash failures, but as we explain shortly, it is crucial for
correctness in our crash-recovery model. Assuming that both A and Tmax are non-volatile
base objects, which is necessary for Tmax to increase monotonically whenever the implemented
register object is written, the MRSW register construction violates R-linearizability in our
crash recovery model. Thus, the construction does not work correctly “out of the box,” in
contrast to Herlihy’s construction. This result is stated in Theorem 12, whose detailed proof
is omitted due to lack of space.

I Theorem 12. For any number of processes N ≥ 2, implementation MRSW has a history
that is not R-linearizable.

OPODIS 2015

20:14 Robust Shared Objects for Non-Volatile Main Memory

Function write(V : value) for process pw

40 T := Tmax + 1
41 Tmax := T

42 A[w, w] := (V, T)
43 foreach i: int in 0..N -1 do
44 if i 6= w then
45 A[i, i] := (V, T)
46 end
47 end

Figure 5 Access procedure for the write operation of implementation MRSW′.

Proof sketch. Consider N = 2, with p1 being the designated writer. The implementation
has a history where p1 begins a write(1) operation and a crash failure occurs after p1 has
written only one of the diagonal elements of A, namely A[0, 0]. Next, p1 executes a read()
and obtains the initial value, say 0, from A[0, 1] and A[1, 1]. Finally, p0 executes a read()
and obtains the new value, namely 1, from A[0, 0]. Thus, p1’s interrupted write appears to
take effect not only after the failure but also after its subsequent read() operation.1 J

I Corollary 13. For any number of processes N ≥ 2, implementation MRSW has a history
that is not persistently linearizable or strictly linearizable.

The proof of Theorem 12 not only illustrates a weakness of implementation MRSW with
respect to R-linearizability, but it also suggests a remedy. That is, while executing a write
operation, the distinguished writer process pw should overwrite the diagonal elements of
array A starting with the row and column corresponding to its own process ID. We refer to
the modified implementation as MRSW′, and present the pseudo-code for the modified write
access procedure in Figure 5. The correctness of MRSW′ is established in Theorems 14–16.
The detailed proofs are omitted due to lack of space.

I Theorem 14. Every finite history H of implementation MRSW′ is R-linearizable.

Proof sketch. Writing the diagonal elements of A in the modified order addresses the specific
problem described in the proof sketch of Theorem 12 because p1’s read() operation correctly
observes the value assigned by p1’s earlier write(1). Thus, the interrupted write appears
to take effect before the writer’s subsequent operation on the same object. The case of an
interrupted write followed by another write is also dealt with correctly, as the latter operation
overwrites all the base objects accessed by the former. J

I Theorem 15. For any number of processes N ≥ 2, implementation MRSW′ has a finite
history that is neither persistently nor strictly linearizable.

Proof sketch. Consider N = 2, with p1 being the designated writer. The implementation has
a history where p1 begins a write(1) operation and a crash failure occurs after p1 has written
only one of the diagonal elements of A, namely A[1, 1]. Next, p1 invokes a read() operation

1 In a conventional crash failure model, there is no need to implement a read() operation for the designated
writer because this process can record the last value written to the implemented register using a private
variable. In contrast, in our model the value of such a private variable would be lost during a failure.

R. Berryhill, W. Golab, and M. Tripunitara 20:15

but does not yet access any base objects. Process p0 then races ahead and completes a read()
that obtains the initial value, say 0, from A[0, 0] and A[1, 0]. Finally, p1 completes its read()
and obtains the new value, namely 1, from A[1, 1]. In this history, p1’s interrupted write(1)
operation appears to take effect after p0’s read(), hence after the invocation step of p1’s
read(), which violates both persistent and strict linearizability. J

I Theorem 16. Implementations MRSW and MRSW′ for N processes have time complexity
O(N).

Theorems 14–15 separate R-linearizability from strict linearizability in the following sense:
whereas a strictly linearizable wait-free implementation of MRSW registers from atomic
SRSW registers is impossible in an asynchronous model with crash failures, an R-linearizable
wait-free implementation is possible in our asynchronous model with crash-recovery failures.

6 Conclusion

In this paper we defined a shared memory model with crash-recovery failures and a com-
bination of volatile and non-volatile main memory. We then surveyed a number of safety
properties inspired by linearizability that address the behavior of operations interrupted
by failures in our model, identified the limitations of these properties, and proposed an
alternative property called R-linearizability. Finally, we discussed implementation techniques.

Our coverage of implementation techniques centers around an approach where a known lin-
earizable implementation designed for a conventional shared memory model is instantiated by
making all base objects non-volatile, and then transformed as needed to yield R-linearizability.
We showed that Herlihy’s construction is R-linearizable “out of the box”, and can be made
strictly linearizable using an additional transformation that prevents the helping mechanism
from acting on operations invoked prior to the most recent failure. In contrast, we showed
that the MRSW register construction is not immediately R-linearizable, but can be made
R-linearizable using a transformation that changes the order in which base objects are
written. As shown by Aguilera and Frølund, a wait-free strictly linearizable MRSW register
implementation from SRSW registers is impossible [2], and thus our transformed MRSW
construction separates R-linearizability formally from strict linearizability.

Acknowledgments. Ryan Berryhill contributed to this research while enrolled in under-
graduate studies at the University of Waterloo, ECE Department. Wojciech Golab and
Mahesh Tripunitara are supported in part by the NSERC Discovery Grants Program. The
authors are grateful to the anonymous referees and to Vassos Hadzilacos for their feedback
on this work.

References
1 Yehuda Afek, David S. Greenberg, Michael Merritt, and Gadi Taubenfeld. Computing

with faulty shared memory. In Proc. 11th ACM Symposium on Principles of Distributed
Computing (PODC), pages 47–58, 1992.

2 Marcos K. Aguilera and Svend Frølund. Strict linearizability and the power of aborting.
Technical Report HPL-2003-241, HP Labs, Palo Alto, CA, USA, November 2003.

3 Marcos K. Aguilera, Wei Chen, and Sam Toueg. Failure detection and consensus in the
crash-recovery model. Distributed Computing, 13(2):99–125, 2000.

4 Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-
passing systems. J. ACM, 42(1):124–142, 1995.

OPODIS 2015

20:16 Robust Shared Objects for Non-Volatile Main Memory

5 Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and
Recovery in Database Systems. Addison Wesley, 1987.

6 Keren Censor-Hillel, Erez Petrank, and Shahar Timnat. Help! In Proc. of the 34th Annual
ACM Symposium on Principles of Distributed Computing (PODC), pages 241–250, 2015.

7 Tushar D. Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector for
solving consensus. J. ACM, 43(4):685–722, July 1996.

8 Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit
Jhala, and Steven Swanson. NV-heaps: making persistent objects fast and safe with next-
generation, non-volatile memories. In Proc. of the 16th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS), pages
105–118, 2011.

9 Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee,
Doug Burger, and Derrick Coetzee. Better I/O through byte-addressable, persistent
memory. In Proc. of the ACM SIGOPS 22nd Symposium on Operating Systems Principles
(SOSP), pages 133–146, 2009.

10 Edsger W. Dijkstra. Solution of a problem in concurrent programming control. Commu-
nications of the ACM, 8(9):569, August 1965.

11 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, April 1985.

12 Svend Frølund, Arif Merchant, Yasushi Saito, Susan Spence, and Alistair Veitch. Building
storage registers from crash-recovery processes. Technical Report HPL-SSP-2003-14, HP
Labs, Palo Alto, CA, USA, 2003.

13 Rachid Guerraoui and Ron R. Levy. Robust emulations of shared memory in a crash-
recovery model. In Proc. of the 24th International Conference on Distributed Computing
Systems (ICDCS), pages 400–407, 2004.

14 Maurice Herlihy. Wait-free synchronization. ACM TOPLAS, 13(1):124–149, January 1991.
15 Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan

Kaufmann, 2012.
16 Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for

concurrent objects. ACM TOPLAS, 12(3):463–492, July 1990.
17 Jaap-Henk Hoepman, Marina Papatriantafilou, and Philippas Tsigas. Self-stabilization of

wait-free shared memory objects. J. Parallel Distrib. Comput., 62(5):818–842, 2002.
18 Engin Ipek, Jeremy Condit, Edmund B. Nightingale, Doug Burger, and Thomas Mos-

cibroda. Dynamically replicated memory: building reliable systems from nanoscale resist-
ive memories. In Proc. of the 15th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 3–14, 2010.

19 Amos Israeli and Ming Li. Bounded time-stamps. In Proc. of the 28th Annual Symposium
on Foundations of Computer Science (FOCS), pages 371–382, 1987.

20 Prasad Jayanti, Tushar Deepak Chandra, and Sam Toueg. Fault-tolerant wait-free shared
objects. Journal of the ACM, 45:451–500, 1998.

21 Colette Johnen and Lisa Higham. Fault-tolerant implementations of regular registers by
safe registers with applications to networks. In Proc. of 10th International Conference of
Distributed Computing and Networking (ICDCN), pages 337–348, 2009.

22 Leslie Lamport. On interprocess communication, Part I: Basic formalism. Distributed
Computing, 1(2):77–85, 1986.

23 Leslie Lamport. On interprocess communication, Part II: Algorithms. Distributed Comput-
ing, 1(2):86–101, 1986.

24 Michael Merritt and Gadi Taubenfeld. Computing with infinitely many processes. In Proc.
of the 14th International Conference on Distributed Computing (DISC), pages 164–178,
2000.

R. Berryhill, W. Golab, and M. Tripunitara 20:17

25 Jeffrey C. Mogul, Eduardo Argollo, Mehul A. Shah, and Paolo Faraboschi. Operating
system support for NVM+DRAM hybrid main memory. In Proc. of the 12th Workshop on
Hot Topics in Operating Systems (HotOS), 2009.

26 C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. ARIES: a
transaction recovery method supporting fine-granularity locking and partial rollbacks using
write-ahead logging. ACM Trans. Database Syst., 17(1):94–162, March 1992.

27 Thomas Moscibroda and Rotem Oshman. Resilience of mutual exclusion algorithms to
transient memory faults. In Proc. of the 30th Annual ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing (PODC), pages 69–78, 2011.

28 Stan Park, Terence Kelly, and Kai Shen. Failure-atomic msync(): A simple and efficient
mechanism for preserving the integrity of durable data. In Proc. of the 8th ACM European
Conference on Computer Systems (EuroSys), pages 225–238, 2013.

29 David A. Patterson and John L. Hennessy. Computer Organization and Design: The
Hardware/Software Interface. Morgan Kaufmann Publishers, second edition, 1997.

30 Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory persistency. In Proc. of the
41st Annual International Symposium on Computer Architecuture (ISCA), pages 265–276,
2014.

31 Yasushi Saito, Svend Frølund, Alistair C. Veitch, Arif Merchant, and Susan Spence. FAB:
building distributed enterprise disk arrays from commodity components. In Proc. of the
11th International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 48–58, 2004.

32 Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: An approach to design-
ing fault-tolerant computing systems. ACM Trans. Comput. Syst., 1(3):222–238, August
1983.

33 Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H. Campbell.
Consistent and durable data structures for non-volatile byte-addressable memory. In Proc.
of the 9th USENIX conference on File and Storage Technologies (FAST), 2011.

34 Roman Vitenberg and Roy Friedman. On the locality of consistency conditions. In Proc. of
the 17th International Symposium on Distributed Computing (DISC), pages 92–105, 2003.

35 Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: lightweight persist-
ent memory. In Proc. of the 16th international conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 91–104, 2011.

OPODIS 2015

The Benefits of Entropy in Population Protocols
Joffroy Beauquier1, Peva Blanchard∗2, Janna Burman†3, and
Rachid Guerraoui4

1 LRI, Paris-South University, Orsay, France
joffroy.beauquier@lri.fr

2 LPD, EPFL, Lausanne, Switzerland
peva.blanchard@epfl.ch

3 LRI, Paris-South University, Orsay, France
janna.burman@lri.fr

4 LPD, EPFL, Lausanne, Switzerland
rachid.guerraoui@epfl.ch

Abstract
A distributed computing system can be viewed as the result of the interplay between a dis-
tributed algorithm specifying the effects of a local event (e.g. reception of a message), and an
adversary choosing the interleaving (schedule) of these events in the execution. In the context of
large networks of mobile pairwise interacting agents (population protocols), the adversary models
the mobility of the agents by choosing the successive pairs of interacting agents. For some prob-
lems, assuming that the adversary selects the schedule according to some probability distribution
greatly helps to devise (almost) correct solutions. But how much randomness is really necessary?
To what extent does a problem admit implementations that are robust against a “not so random”
schedule?

This paper takes a first step in addressing this question by borrowing the concept of T -
randomness, 0 ≤ T ≤ 1, from algorithmic information theory. Roughly speaking, the value T
fixes the entropy rate of the considered schedules. For instance, the case T = 1 corresponds, in
a specific sense, to schedules in which the pairs of interacting agents are chosen independently
and uniformly (perfect randomness). The holy grail question can then be precisely stated as
determining the optimal entropy rate to solve a given problem.

We first show that perfect randomness is never required. Precisely, if a finite-state algorithm
solves a problem with 1-randomness, then this algorithm still solves the same problem with
T -randomness for some T < 1. Second, we illustrate how to compute bounds on the optimal
entropy rate of a specific problem, namely the leader election problem.

1998 ACM Subject Classification F. Theory of Computation, F.1.0 General, F.1.2 [Modes of
Computation] Parallelism and Concurrency

Keywords and phrases algorithmic randomness, entropy, leader election, distributed computing,
scheduler, population protocols

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.21

1 Introduction

The way that events in a distributed system are triggered depends on some external causes,
often referred to as the environment. To model the environment, an abstraction, called

∗ Acknowledgment: the European ERC Grant 339539 – AOC.
† Acknowledgment: the Israeli-French Maimonide and the INS2I PEPS JCJC research grants.

© Joffroy Beauquier, Peva Blanchard, Janna Burman, and Rachid Guerraoui;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 21; pp. 21:1–21:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 The Benefits of Entropy in Population Protocols

scheduler, is introduced. The scheduler specifies which sequences of events are possible
and which ones are impossible. As the correctness of a distributed algorithm depends both
on the algorithm and on the scheduler, this latter is often considered as an adversary. In
this context, one can think of the scheduler as trying to trigger a sequence of events that
will fool the algorithm. Most of the impossibility proofs rely on exhibiting a particular
schedule for which the specification of the problem is not satisfied. One way to circumvent
such impossibility proofs is to assume that the adversary selects a random schedule. This
assumption is generally not in contradiction with real environments, which endure phenomena
like variations of temperature, power supply, network traffic, etc., in sort of a randomized
way.

However, it is not as obvious as it may seem at first sight that a given environment
yields truly random schedules. Actually, truly random sequences are very hard to get. For
instance, the scheduling of processes in a multi-core architecture depends on a physical
process which may exhibit a partially predictable behaviour. Or, this scheduler may rely on
some algorithm using a pseudo-random source, which is not truly random. In other settings,
like mobile networks, the interactions between nodes may follow some regularity because,
e.g., the mobility area is limited, or some paths are statistically preferred to others, etc.

This raises the following interesting question: to what extent an algorithm may exhibit
some robustness against imperfect randomness? And, for a specific problem, what is the
optimal robustness that one may hope to achieve? The main goal of this paper is to tackle
these important questions.

A first step towards this goal is to lay down a definition of randomness, and a measure
of robustness, which are amenable to analysis. Randomness and probability theory are
obviously strongly related, but here probability theory does not help because it does not
allow to qualify an individual schedule as being random. In this context, probability theory
is more about measuring the number of, say, “bad” schedules, which leads to notions of
solving a problem almost surely, or with high probability.

Algorithmic information theory, on the other hand, allows to define what it means for
an individual schedule to be random. Intuitively, the complexity of a finite schedule is
defined as the length of the shortest computer program able to produce this schedule; and
the schedule is random if no program is substantially shorter than the sequence itself1. This
intuition extends to infinite schedule by considering how the complexity of its prefixes grow.
More precisely, we borrow the concept of T -randomness, 0 ≤ T ≤ 1, from [23, 24], where T
measures the entropy rate of a schedule, i.e., the complexity growth of the schedule’s prefixes.
Roughly speaking, the larger is T , the more random is the schedule. In particular, the case
of T = 1 represents perfect randomness.

This notion allows to precisely quantify the robustness of an algorithm against imperfect
randomness: this is simply the least entropy rate T such that any T -random schedule induces
an execution that still satisfies the problem’s specification. In this context, a natural issue
is to determine, given a problem P , the optimal entropy rate T such that some algorithm
solves P for all T -random schedules.

We illustrate this notion in a simple distributed computing model (population protocols
[5]). Our contributions are twofold. First, we show that perfect randomness is never required
in finite-state systems (Section 4). That is, whenever a finite-state algorithm solves a problem
P over the 1-random schedules, then this algorithm solves the same problem P over the
T -random schedules for some T < 1. That is, the optimal entropy rate of P is strictly less

1 Roughly speaking, the shortest computer program just enumerates the successive events of the schedule.

J. Beauquier, P. Blanchard, J. Burman, and R. Guerraoui 21:3

than 1. Moreover, our proof exhibits a general method to compute upper bounds on the
optimal entropy rate.

Our second contribution focuses on a specific problem, fundamental in distributed
computing, namely leader election (Section 5). In this problem, all processes start in the
same initial state (with the same initial knowledge), and a unique process (the elected leader)
eventually permanently outputs 1 while the others output 0. The method exhibited in the
previous part (Section 4) is applied to derive an explicit upper bound on the optimal entropy
rate of leader election. Next, we compute a lower bound Tsym. This bound exploits the
relation between leader election and symmetry breaking. Indeed, some schedulers are able
to produce schedules which “maintain symmetry”, in the sense that any process have the
same state as some other process; thereby preventing the election of a unique leader. The
bound Tsym quantifies exactly the maximum entropy rate above which a schedule cannot be
symmetric in the previous sense.

The rest of the paper is organized as follows. Section 2 recalls basic definitions of
algorithmic information theory, as well as the distributed computing model we consider. In
Section 3, we introduce the notions of T -random adversary and optimal entropy rate of a
distributed computing problem. Our first contribution, i.e., proving that perfect randomness
is never required, is presented in Section 4. We give upper and lower bounds for the entropy
rate of leader election in Section 5.

For the sake of clarity, some proofs are postponed to the appendix.

Related Work. Algorithmic information theory has started with the seminal work of
Solomonoff [20, 21] and Kolmogorov [16]. One of the major achievements of this field was
a precise definition of randomness. In [18], Martin-Löf defines random sequences as those
which withstand all effective statistical tests. In [10], an equivalent formulation of a random
sequence is given, as one whose shortest (prefix-free) program has the same length as the
schedule. In [23, 24], Tadaki generalizes this formulation, and introduces the notion of partial
randomness, namely T -randomness (0 ≤ T ≤ 1). The original Martin-Löf’s definition of
randomness then coincides with 1-randomness.

The computational model used in this paper, known as population protocol, has been
introduced by Angluin et al. in [5] to model large wireless networks of anonymous finite-state
mobile processes interacting pairwise. In much of the literature on this model [5, 6, 4], the
scheduler is subject to a fairness condition, namely global fairness, which depends on the
algorithm being run: if a configuration is reachable infinitely often, then this configuration is
reached infinitely often. Actually, the proof in Section 4 (indirectly) shows that 1-randomness,
which is a condition independent of the algorithm being run, implies global fairness for
any finite-state algorithm. In particular, any algorithm working under global fairness is
guaranteed to work under 1-randomness.

Being an important primitive in distributed computing, leader election has been extensively
studied. In particular, in [3], Angluin relates the notion of graph coverings with the
impossibility of leader election, and more generally, to any problem that requires “symmetry
breaking”. This approach has been proved to be fruitful in other contexts as well [12, 19].
To circumvent this issue, many approaches [15, 1, 13] have proposed randomized algorithms,
each process having access to some random sequence. These algorithms are probabilistic and
solve the problem at hand, either almost surely, or with high probability, but not exactly.
Our approach is orthogonal. We consider deterministic algorithms, the randomness being put
entirely on the side of the adversary. In some sense, our approach is closer to the works [2, 7],
where random scheduling helps solving the problem at hand; except that our motivation is

OPODIS 2015

21:4 The Benefits of Entropy in Population Protocols

to assess the amount of randomness required. In [8], thanks to the almost random nature
of global fairness, authors propose a deterministic algorithm solving leader election over
arbitrary graphs.

2 Background Definitions

Let X be a finite set, |X| its cardinality, and X∗ (resp. Xω) the set of finite (resp. infinite)
sequences on X. The length of a finite sequence w ∈ X∗ is denoted by |w|. For any w ∈ X∗,
we denote by w � n the prefix of w of length n. The concatenation of two sequences u, v ∈ X∗
is denoted by uv. We denote by uk the concatenation of k copies of u.

2.1 Algorithmic Information Theory
Here, we briefly recall the basic definitions and properties. For further details, please refer
to, e.g., [17, 9, 22, 25]. Our presentation is slightly different from the usual one as we will be
dealing with several alphabets.

Consider finite alphabets X,Y . A (partial) recursive function M : X∗ → Y ∗ is a function
computed by some Turing machine (with input alphabet X, and output alphabet Y). The
function M is prefix-free if its domain does not contain two elements, one of which being a
prefix of the other. It is known that there exists a universal prefix-free recursive function
UXY : X∗ → Y ∗. Intuitively, this function is universal in the sense that it can simulate any
other prefix-free recursive function (of type X∗ → Y ∗).2 We fix such a universal function
UXY .

The following defines the complexity of a finite word S ∈ X∗ as the length (in bits) of the
smallest word p (with the same alphabet) such that the universal function UXX(p) produces
S. Intuitively, the word p is the program which computes S when executed on the machine
U .

I Definition 1 (Complexity). The complexity of a sequence S ∈ X∗ is HX(S) = |p| log |X|
where p ∈ X∗ is the shortest sequence such that UXX(p) = S.

The factor log |X| is simply a rescaling factor, so that the complexity is expressed in bits.
We now consider infinite sequences, i.e., elements of Xω. The notion of partial randomness

from [23] allows to quantify the degree of randomness of an infinite sequence by looking at
how the complexity of its prefixes grows. We adapt Tadaki’s definition to the case of an
arbitrary alphabet.

I Definition 2 (T -randomness). Given a real value T ∈ [0, 1], S ∈ Xω is T -random on X if,
for all n, HX(S � n) ≥ T · n · log |X| −O(1).

All the entropy-related computations in the paper rely solely on the following lemmas.
These are adaptations of known results of algorithmic information theory [17, 9]. For
the reader’s convenience, we give an intuitive interpretation of Lemma 3 in the appendix
(Section A).

I Lemma 3.
(a) Let q : X∗ → Y ∗ be a partial recursive function. Then, for all S ∈ X∗, HY (q(S)) ≤

HX(S) +O(1).

2 Formally, there exists an effective enumeration (Mi)i∈X∗ of all the prefix-free recursive function (type
X∗ → Y ∗) such that, for all i, p ∈ X∗, UXY 〈i, p〉 = Mi(p).

J. Beauquier, P. Blanchard, J. Burman, and R. Guerraoui 21:5

(b) For all S ∈ X∗, HX(S) ≤ |S| · log |X|+ 2 · log |S|+O(1).
(c) Let A ⊆ X∗×N be a recursively enumerable set such that the subset An = {w : (w, n) ∈

A} is finite for every n ∈ N. Then, for all n, for every S ∈ An with |S| = n,
HX(S) ≤ log |An|+ 4 · logn+O(1).

(d) An infinite sequence S ∈ Xω is T -random if and only if any of its suffixes is T -random.

I Lemma 4 (Existence of a T -random sequence). For any 0 ≤ T ≤ 1, there exists an infinite
sequence S ∈ Xω which is T -random on X.

2.2 Computational Model
The computational model used in this paper was introduced in [5]. The model involves two
parts: a graph representing the possibilities of interactions between the processes, and a list
of rules (the algorithm) describing how the states of two interacting processes are updated.

Formally, a communication graph is a directed graph G (without self-loops). Each node x
represents a process. Each directed edge (x, y) represents a possible meeting event in which
x is the initiator and y is the responder. We denote by V(G) and E(G) the set of processes
(vertices) and meeting events (edges) of G respectively. In this work, unless stated otherwise,
every graph is assumed to be weakly connected. A schedule on G is a sequence of edges of G,
that is, a finite or infinite sequence on the alphabet E(G). An assignment on G is a map
that associates with every vertex in G some value (in some given set). A trace on G is a
sequence of assignments on G.

An algorithm A is a tuple (Q,X I−→ Q,Q
O−→ Y,Q2 δ−→ Q2) where Q is a set called the

state space, X I−→ Q is the input function, Q O−→ Y is the output function, and Q2 δ−→ Q2 is
the transition function. Note that we consider only deterministic algorithms (the transition
function is single valued).

An input assignment (resp. output assignment) is an assignment with values in X (resp.
Y). A configuration is an assignment with values in the state space Q. Each input assignment
α yields an initial configuration I ◦ α. Similarly, each configuration γ yields an output
assignment O ◦ γ.

Given an edge e = (x, y) in G and two configurations γ, γ′, we write γ e−→ γ′ when
(γ′(x), γ′(y)) = δ(γ(x), γ(y)) and, for all z 6∈ {x, y}, γ(z) = γ′(z). An (finite or infinite)
execution of A on G is a sequence γ0

e1−→ γ1 . . . where γ0 is the initial configuration. The
sequence of edges of G appearing in the execution is the underlying schedule of the execution.
Note that an execution is entirely determined by its underlying schedule and the initial
configuration. It is assumed that every edge occurs infinitely often in the schedule. The
output trace of an execution γ0

e1−→ γ1 . . . is the corresponding sequence (O ◦ γ0)(O ◦ γ1) . . .
of output assignments.

3 Entropy of Schedules

Since schedules are infinite sequences on the alphabet E(G), we can apply the concept of
T -randomness to classify them. This motivates the following definition.

I Definition 5 (Adversary A(T,G)). Given a real value T ∈ [0, 1], and a communication
graph G, the T -random adversary A(T,G) is the set of infinite schedules S ∈ E(G)ω such
that S is T -random on E(G).

For the sake of simplicity, schedules of A(T,G) are simply said to be T -random on G. We
denote by HG(·) the quantity HE(G)(·).

OPODIS 2015

21:6 The Benefits of Entropy in Population Protocols

A decision problem on G is a tuple (P,X, Y) where X is the input alphabet, Y the output
alphabet, and P is a function that associates with every input assignment α (with values in
X) on G, a set P (α) of output assignments (with values in Y) on G. The input and output
alphabets are often implicitly assumed, and we refer to P as the problem directly.

An algorithm A is said to solve a problem P on G under adversary A(T,G) if, for every
schedule S ∈ A(T,G), for every input assignment α, the execution induced by S and α yields
an output trace having a suffix ββ . . . where β ∈ P (α). Intuitively, this means that the
output of the algorithm eventually stabilizes to a legal output assignment, given the input
assignment the execution started with.

I Definition 6 (Optimal entropy rate). The optimal entropy rate of P on G is T (P,G) =
inf{T : some algorithm solves P on G with adversary A(T,G)}. If the problem is impossible
to solve with any A(T,G), we set T (P,G) =∞.

I Remark. Note that we classify the schedules according to their entropy rate only. Hence,
this classification applies to a very broad spectrum of adversary schedulers, from, e.g., typical
schedules of a uniform bernoullian scheduler, to, e.g., those of a possibly non-markovian one.
If an algorithm is proven to solve a problem for all T -random schedules, then it does not
matter how exactly the real schedules are produced: as long as they are all T -random, the
algorithm will work.

4 Perfect Randomness is Never Required

I Proposition 7. Let P be a problem, and G a graph. If there exists a protocol A with finite
state space solving problem P under adversary A(1, G), then there exists 0 ≤ T < 1 such that
A solves P under A(T,G). In particular, the optimal entropy rate of P on G is strictly less
than 1.

The main idea consists in the analysis of the transition graph of the protocol, whose nodes
represent the configurations, and the (directed) edges, the transitions between configurations.
The transition graph can be partitioned into strongly connected components. The final
components, i.e., the components with no out-going edges play a particular role. Indeed,
a 1-random schedule necessarily drives the system towards a final component, and makes
it visit every configuration in that component infinitely often. Thus, by the assumption
on the protocol, the configurations in this component produce the same output assignment
satisfying the problem’s specification. In particular, it suffices to drive the system into one
final component to yield an execution satisfying the problem’s specification.

The proof below relies on the observation that, if an execution is stuck into a non-final
component C, then its underlying schedule repeatedly avoids some pattern of events which
would drive the system out of this component. This repeated dodge imposes an upper
bound t(C) < 1 on the underlying schedule. Taking the contrapositive, if the schedule were
T -random with t(C) < T < 1, then the corresponding execution would escape the component
C. Since the protocol is finite-state, there are finitely many non-final components, and it
suffices to take maxC t(C) < T < 1 for any T -random schedule to escape any non-final
component. We now give the detailed proof.

Proof.
Basics. We define the transition graph Γ = Γ(A) as the edge-labeled directed graph whose
nodes are the configurations reachable from the initial configurations, and the edges denote
the transition γ e−→ γ′ where e is an event (an edge of G). The underlying schedule of a finite

J. Beauquier, P. Blanchard, J. Burman, and R. Guerraoui 21:7

path in Γ is the sequence of successive labels (edges of G) along the path. Since A has a
finite state space, the graph Γ has finitely many nodes.

We can decompose Γ in strongly connected components. A final component is a component
without any out-going transitions. Given a component C in Γ, we define for each natural
number n, the set C[n] of underlying schedules of paths of length n in C. Then, letting d be
the number of edges in G, we define t(C) = lim infn→∞ log |C[n]|

n log d and T0 = max t(C) over all
the non-final components C.
T0 < 1. We prove that T0 < 1. Consider any non-final component C. We build a finite
schedule u such that applying u to any configuration in C leads outside of C. Because it
is non-final, there exists configuration γ0 ∈ C, and an event u0 such that the transition
γ0

u0−→ γ′0 6∈ C. We consider the set D0 of configurations such that applying u0 to any of them
leads outside of C. If D0 comprises all the configurations of C, then we are done. Otherwise,
pick any configuration γ1 ∈ C − D0; then γ1

u0−→ γ′1 ∈ C. Since C is strongly connected,
there exists a finite schedule w1 such that applying w1 to γ′1 leads to some configuration in
D0. Therefore, applying the schedule u1 = u0w1u0 to any configuration in D0 ∪ {γ1} leads
outside of C. We can consider the set D1 of configurations in C such that applying the
schedule u1 to any of them leads outside of C. If D1 comprises all the configurations of C,
then we are done. Otherwise, we can repeat the same procedure. Because C has finitely
many configurations, this process eventually ends: applying the constructed schedule u to
any configuration of C leads outside of C.

Therefore, for all n sufficiently large, C[n] is included in the set of finite schedules of length
n which do not contain u as a factor. In [14], the authors describe the asymptotic behaviour
of the number of finite words of length n not containing a given word. Their results imply that
there exists a constant k > 0, and a real value 1.7 < θ < d (depending on u only) such that
for all n |C[n]| ≤ k · θn + O((1.7)n). In particular, t(C) = lim infn→∞ log |C[n]|

n·log d ≤
log θ
log d < 1.

Since there are finitely many non-final components, we have T0 < 1.
Final components reachability. Consider a T -random schedule S on G, and an input
assignment α. Assume that the corresponding execution never reaches a final component
of Γ. Then a suffix of this execution remains in some non-final component C forever. In
particular, the underlying schedule S′ of this suffix is such that, for all n, the prefix S′ � n
belongs to C[n]. By Lemma 3, HG(S′ � n) ≤ log |C[n]| + 4 logn + O(1). But S′ is also
T -random, which implies that

T · n log d ≤ log |C[n]|+ 4 logn+O(1)

T ≤ log |C[n]|
n log d +O

(
logn
n

)
Taking the inferior limit, we get T ≤ T0. Therefore, for every T0 < T ≤ 1, every execution
whose underlying schedule is T -random reaches a final component.
Output is constant in any final component. Let α be an input assignment, and F any
final component reachable from the initial configuration γα corresponding to α. We claim
that the output assignments yielded by the configurations in F are all equal to some β ∈ P (α).
Let S0 be any finite schedule leading to F when applied to γα, and S be any 1-random
extension of S0 (it suffices to append a 1-random schedule, which exists by Lemma 4). Let
E be the execution with schedule S starting with γα. The execution E eventually reaches
the final component F and remains inside forever. Since A solves P under A(1, G), the
output assignments associated with the configurations in F which are visited infinitely often
during E are all equal to some output assignment β ∈ P (α). Since F is strongly connected,
if the execution E did not visit all the configurations in F , then, by an argument similar

OPODIS 2015

21:8 The Benefits of Entropy in Population Protocols

to the second paragraph above, the schedule S could not be 1-random. Therefore, all the
configurations in F are visited infinitely often during E, and they all yield the same output
assignments β ∈ P (α).
Conclusion. Pick any T0 < T < 1. Consider any input assignment α, and any T -random
schedule S. The corresponding execution E reaches a final component F and remains in
there forever. Moreover, the output assignments associated with the configurations in F

are all equal to some β ∈ P (α). This implies that the execution E yields an output trace
which is eventually constant and equal to β ∈ P (α). In other words, the algorithm A solves
P under adversary A(T,G) with T < 1. In particular, the optimal entropy of P on G is less
than 1. J

I Remark. Note that, the value T0 = T0(A) defined in the proof is the optimal entropy above
which the algorithm A solves the problem P on G. This is different, a priori, from the value
T (P,G) which is the optimal entropy above which, some algorithm solves the problem P on
G.

5 Entropy Bounds for Leader Election

The previous section addressed the issue of randomness in a general setting. Now that we
know that full randomness is not needed, it is natural to ask for the optimal entropy rate of
a problem. We tackle this issue in this section, by considering the leader election problem.

Its specifications are the following. There is no input, and all the processes start in the
same initial state and with the same initial knowledge. In particular, they do not have
identifiers. The output of each process is 0 or 1. The goal is to eventually have a unique
process permanently outputting 1 while the others permanently output 0. Note that, the
processes are not required to make an irrevocable decision: we only ask for their outputs to
eventually stabilize.

We are interested in computing upper and lower bounds on the optimal entropy rate for
solving leader election. Actually, the approach taken in the proof of Proposition 7 already
leads to an upper bound.

I Proposition 8 (LE – upper bound). For any strongly connected graph G with d = |E(G)|
edges, T (LE,G) ≤ log θ(G)

log d < 1 where θ(G) is the absolute value of the largest zero of the
polynomial 1 + (z − d)(z2K(G)−1 + zK(G)−1), and K(G) is the length of the shortest loop
visiting each vertex at least once in G.

We postpone the details to the appendix (Section B). The proof relies on an analysis of an
algorithm from [8]. Roughly speaking, we exhibit a specific schedule S0 of length 2K(G)
which drives the system out of any non-final component of the transition graph. Then, we
show that, whenever T > log θ(G)/ log d, any T -random schedule contains infinitely many
occurrences of S0.

As for a lower bound, the method presented in the proof Proposition 7 cannot be applied.
In the sequel, we adopt another approach for deriving a lower bound.

5.1 Lower Bound
Our approach here exploits the fact that leader election requires symmetry breaking. If the
communication graph G has local symmetries, then one can design schedules that maintain
the symmetry of the system, as shown below. We prove that these schedules have an entropy
rate, at most, Tsym(G); thereby exhibiting a lower bound on T (LE,G).

J. Beauquier, P. Blanchard, J. Burman, and R. Guerraoui 21:9

Figure 1 Graph covering: the ring G of 12 vertices is projected onto the ring B of 4 vertices, the
dashed lines indicate the fibers, the degree is 12/4 = 3.

Formally, the local symmetries of a graph G are measured by coverings. A covering is
a surjective graph morphism φ : G → B such that, for every vertex b ∈ V(B), for every
neighbor c of b, for every vertex x ∈ φ−1(b) (the fiber over b), there exists a unique neighbor
y of x in the fiber over c. This concept measures the local symmetries of G in the sense that
all vertices in the same fiber have isomorphic neighborhoods. It can be shown that every
fiber φ−1(b) has the same cardinality ∆φ, and that |E(G)| = ∆φ · |E(B)|. The number ∆φ is
the degree of the covering. The covering is proper if ∆φ ≥ 2, i.e., φ is not an isomorphism.

I Proposition 9 (LE – Lower bound). For any graph G with d = |E(G)| edges

Tsym(G) =
def

max
φ

log(d/∆φ) + log ∆φ!
∆φ log d ≤ T (LE,G)

where φ runs over all the proper coverings from G. If there are no proper coverings, Tsym(G)
is set to zero.

To illustrate the proof’s basic idea, fix any algorithm A. Let’s say that a configuration
on G is symmetric if, any two processes in the same fiber (the same color in Figure 1) have
the same state. Being uniform, the initial configuration is obviously symmetric. We describe
a possible strategy to obtain symmetric configurations infinitely often. The adversary first
selects an edge b of B, picks any enumeration of the fiber φ−1(b) (the edges in G projecting
to b), triggers the events according to the enumeration order, and repeats this operation.
Since the algorithm A is deterministic, applying such a sequence of events to a symmetric
configuration yields infinitely many symmetric configurations. The successive choices of the
adversary are equivalently described by a sequence Z = (b1, σ1)(b2, σ2) . . . where bi is an
edge of B, and σi is an ordering of the fiber φ−1(bi), i.e., an element of the permutation
group S∆ on {1, . . . ,∆}. To maximize randomness, we assume that Z is 1-random on the
alphabet E(B) × S∆. This allows to compute the entropy rate Tsym(G) of the schedule
produced by the adversary given Z. Since this schedule prevents the election of a leader,
Tsym(G) is a lower bound of the optimal entropy rate T (LE,G). Now, we present the full
proof.

LE – Lower bound. Pick any proper covering φ : G→ B with degree ∆. We have d = ∆ · r
where r = |B|. For each edge b in B, we fix a reference enumeration of the fiber over
b, φ−1(b) = {e1(b), . . . , e∆(b)}. We define X = E(B) × S∆ where S∆ is the group of
permutations on {1, . . . ,∆}. For each element (b, σ) ∈ X, we define the sequence ψ(b, σ) =
eσ(1)(b) . . . eσ(∆)(b) of edges in G; ψ(b, σ) is simply an enumeration of the fiber φ−1(b) ordered
according to σ. Note that the map ψ is injective.

OPODIS 2015

21:10 The Benefits of Entropy in Population Protocols

Let A be any (deterministic) algorithm. Assume that γ is a symmetric configuration in
the sense that for every vertex z ∈ B, for any two vertices x, y ∈ φ−1(z), γ(x) = γ(y). Then
for any element µ ∈ X, applying the schedule ψ(µ) to γ yields a configuration γ′ that is also
symmetric.

Let Z = µ1µ2 . . . be a 1-random sequence on X (which exists by Lemma 4). By
definition, for all m, HX(Z � m) ≥ m · log(r ·∆!)−O(1). We define the schedule S = ψ(Z) =
ψ(µ1)ψ(µ2) Thanks to the previous remark, for any deterministic algorithm A, since the
initial configuration is symmetric (all the processes starts in the same state), the schedule S
yields an execution in which, infinitely often, a symmetric configuration is reached. Hence,
this prevents any algorithm to solve the leader election problem with the schedule S. Now,
it remains to determine a lower bound on the entropy rate of S. For all n

S � n = ψ(µ1) . . . ψ(µm)R

where m = bn/∆c. Each sequence ψ(µi) has length ∆, and R is strict prefix of ψ(µm+1).
Knowing S � n allows to compute the sequence Z � bn/∆c. In other words, there exists a
prefix-free recursive function q : E(G)∗ → E(B)∗ such that, for all n, q(S � n) = Z � bn/∆c.
By Lemma 3, and the fact that Z is 1-random on X, we have, for all n

HG(S � n) ≥ HX(Z � bn/∆c)−O(1)

≥ n

∆ · log(r ·∆!)−O(1)

≥ log r + log ∆!
∆ · log d︸ ︷︷ ︸
T (φ)

·n · log d−O(1)

Therefore, S is T (φ)-random; whence T (φ) ≤ T (LE,G). J

I Remark. There is a subtlety about this lower bound related to the specification of the
leader election problem we have chosen. Indeed, as stated above, the processes are not
required to make an irrevocable decision, but only to have a stabilized output eventually.

When, instead, the processes have to make an irrevocable decision, the relevant notion
of local symmetries (in the context of population protocols) is that of pseudo-coverings3
[11]. Roughly speaking, a graph G is a pseudo-covering of another graph H, if there exists
a subgraph G′ of G with the same set of vertices such that G′ is a covering of H. In the
case where H is not isomorphic to G′ (i.e., G is not pseudo-covering minimal), one can lift
any terminating execution on H to a terminating execution on G such that, at the end,
any process in G always has the same state as another process in G. In particular, leader
election with irrevocable decision cannot be solved on a graph G which is not pseudo-covering
minimal.

However, when irrevocable decisions are not required, the lifting argument does not hold.
Indeed, one has to lift an infinite execution on H to an infinite execution on G in which
every edge occurs infinitely often. This cannot be achieved if the intermediate graph G′ is
a strict subgraph of G. In other words, not being pseudo-covering minimal may not be an
obstruction to the possibility of leader election without irrevocable decisions.

3 We thank the reviewers for having highlighted this point.

J. Beauquier, P. Blanchard, J. Burman, and R. Guerraoui 21:11

6 Conclusion

We have shown that, once a problem can be solved by some finite-state algorithm for perfectly
random (1-random) schedules, the optimal entropy rate of the problem is strictly less than 1.
Doing so, we have exhibited a general method for computing upper bounds on a problem’s
optimal entropy rate. Next, we focused on the leader election problem. By refining the
method above, we have computed an upper bound on the optimal entropy rate of leader
election. Then, we computed a lower bound Tsym which encodes the maximum entropy rate
of schedules maintaining symmetry during the execution. Notice that this lower bound also
holds for any other problem requiring symmetry breaking like, e.g., enumeration or spanning
tree construction.

This work opens many interesting questions. It seems that the bound Tsym could be
reached by some algorithm with unbounded memory. The intuition goes as follows. The
processes could record the whole history of their interactions, and try to deduce the past
schedule. If this schedule breaks symmetry at some point, then it means that the processes
have pairwise different “views” of the past. This distinction could be used to distinguish a
leader among them. Nevertheless, the required memory may be unbounded, as the scheduler
may maintain the symmetry for an arbitrarily long time. This leaves open the question of
determining the optimal entropy rate of leader election achievable with finite-state algorithms.

In this work, we have focused on randomness in the scheduling. But one could also study
algorithms involving local random coins. Similar questions can be raised, e.g., to what extent
randomized algorithms are sensitive to imperfect local coins?

From a more general point of view, we believe that the relation between randomness and
hardness of problems is not yet fully understood in the context of distributed computing.

References
1 Yehuda Afek and Yossi Matias. Elections in anonymous networks. Information and Com-

putation, 113(2):312–330, 1994. doi:10.1006/inco.1994.1075.
2 Dan Alistarh, Keren Censor-Hillel, and Nir Shavit. Are lock-free concurrent algorithms

practically wait-free? In Symposium on Theory of Computing, STOC 2014, New York, NY,
USA, May 31 – June 03, 2014, pages 714–723, 2014. doi:10.1145/2591796.2591836.

3 Dana Angluin. Local and global properties in networks of processors (extended abstract).
In Proceedings of the 12th Annual ACM Symposium on Theory of Computing, April 28-30,
1980, Los Angeles, California, USA, pages 82–93, 1980. doi:10.1145/800141.804655.

4 Dana Angluin, James Aspnes, Melody Chan, Hong Jiang, Michael J. Fischer, and René
Peralta. Stably computable properties of network graphs. In Distributed Computing in
Sensor Systems, pages 63–74. LNCS 3560, 2005.

5 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Com-
putation in networks of passively mobile finite-state sensors. Distributed Computing,
18(4):235–253, 2006. doi:10.1007/s00446-005-0138-3.

6 Dana Angluin, James Aspnes, and David Eisenstat. Stably computable predicates are
semilinear. In PODC’06: Proceedings of the twenty-fifth annual ACM symposium on Prin-
ciples of distributed computing, pages 292–299, New York, NY, USA, 2006. ACM Press.
doi:10.1145/1146381.1146425.

7 James Aspnes. Fast deterministic consensus in a noisy environment. In Proceedings of the
Nineteenth Annual ACM Symposium on Principles of Distributed Computing, PODC’00,
pages 299–308, New York, NY, USA, 2000. ACM. doi:10.1145/343477.343631.

8 Joffroy Beauquier, Peva Blanchard, and Janna Burman. Self-stabilizing leader election in
population protocols over arbitrary communication graphs. In Principles of Distributed

OPODIS 2015

http://dx.doi.org/10.1006/inco.1994.1075
http://dx.doi.org/10.1145/2591796.2591836
http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1007/s00446-005-0138-3
http://dx.doi.org/10.1145/1146381.1146425
http://dx.doi.org/10.1145/343477.343631

21:12 The Benefits of Entropy in Population Protocols

Systems – 17th International Conference, OPODIS 2013, Nice, France, December 16-18,
2013. Proceedings, pages 38–52, 2013. doi:10.1007/978-3-319-03850-6_4.

9 Cristian S. Calude and Marius Zimand. Algorithmically independent sequences. In
Developments in Language Theory, 12th International Conference, DLT 2008, Kyoto,
Japan, September 16-19, 2008. Proceedings, pages 183–195, 2008. doi:10.1007/
978-3-540-85780-8_14.

10 Gregory J. Chaitin. A theory of program size formally identical to information theory.
Journal of the ACM, 22(3):329–340, July 1975. doi:10.1145/321892.321894.

11 Jérémie Chalopin. Local computations on closed unlabelled edges: The election problem
and the naming problem. In SOFSEM 2005: Theory and Practice of Computer Science,
31st Conference on Current Trends in Theory and Practice of Computer Science, Liptovský
Ján, Slovakia, January 22-28, 2005, Proceedings, pages 82–91, 2005.

12 Jérémie Chalopin, Yves Métivier, and Thomas Morsellino. Enumeration and leader elec-
tion in partially anonymous and multi-hop broadcast networks. Fundamenta Informaticae,
120(1):1–27, 2012. doi:10.3233/FI-2012-747.

13 Yuval Emek, Christoph Pfister, Jochen Seidel, and Roger Wattenhofer. Anonymous
networks: randomization = 2-hop coloring. In ACM Symposium on Principles of Dis-
tributed Computing, PODC’14, Paris, France, July 15-18, 2014, pages 96–105, 2014.
doi:10.1145/2611462.2611478.

14 Leonidas J. Guibas and Andrew M. Odlyzko. String overlaps, pattern matching, and
nontransitive games. Journal of Combinatorial Theory, Series A, 30(2):183–208, 1981.
doi:10.1016/0097-3165(81)90005-4.

15 Alon Itai and Michael Rodeh. Symmetry breaking in distributive networks. In 22nd An-
nual Symposium on Foundations of Computer Science, Nashville, Tennessee, USA, 28-30
October 1981, pages 150–158, 1981. doi:10.1109/SFCS.1981.41.

16 Andreï Nikolaïevitch Kolmogorov. Three approaches to the quantitative definition of in-
formation. Problemy Peredachi Informatsii, 1(1):3–31, 1965.

17 Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its
Applications, Third Edition. Texts in Computer Science. Springer, 2008. doi:10.1007/
978-0-387-49820-1.

18 Per Martin-Löf. The definition of random sequences. Information and Control, 9(6):602–
619, 1966.

19 Antoni Mazurkiewicz. Distributed enumeration. Information Processing Letters, 61(5):233–
239, March 1997. doi:10.1016/S0020-0190(97)00022-7.

20 Ray J. Solomonoff. A formal theory of inductive inference part i. Information and Control,
7(1):1–22, March 1964.

21 Ray J. Solomonoff. A formal theory of inductive inference part ii. Information and Control,
7(2):224–254, June 1964.

22 Ludwig Staiger. The kolmogorov complexity of infinite words. Theoretical Computer Sci-
ence, 383(2-3):187–199, 2007. doi:10.1016/j.tcs.2007.04.013.

23 Kohtaro Tadaki. A generalization of Chaitin’s halting probability Ω and halting self-similar
sets. Hokkaido Mathematical Journal, 31(1):219–253, 02 2002. doi:10.14492/hokmj/
1350911778.

24 Kohtaro Tadaki. Partial randomness and dimension of recursively enumerable reals. In
Mathematical Foundations of Computer Science, pages 687–699, 2009. doi:10.1007/
978-3-642-03816-7_58.

25 Alexander K. Zvonkin and Leonid A. Levin. The complexity of finite objects and the
development of the concepts of information and randomness by means of the theory of
algorithms. Russian Mathematical Surveys, page 11, 1970.

http://dx.doi.org/10.1007/978-3-319-03850-6_4
http://dx.doi.org/10.1007/978-3-540-85780-8_14
http://dx.doi.org/10.1007/978-3-540-85780-8_14
http://dx.doi.org/10.1145/321892.321894
http://dx.doi.org/10.3233/FI-2012-747
http://dx.doi.org/10.1145/2611462.2611478
http://dx.doi.org/10.1016/0097-3165(81)90005-4
http://dx.doi.org/10.1109/SFCS.1981.41
http://dx.doi.org/10.1007/978-0-387-49820-1
http://dx.doi.org/10.1007/978-0-387-49820-1
http://dx.doi.org/10.1016/S0020-0190(97)00022-7
http://dx.doi.org/10.1016/j.tcs.2007.04.013
http://dx.doi.org/10.14492/hokmj/1350911778
http://dx.doi.org/10.14492/hokmj/1350911778
http://dx.doi.org/10.1007/978-3-642-03816-7_58
http://dx.doi.org/10.1007/978-3-642-03816-7_58

J. Beauquier, P. Blanchard, J. Burman, and R. Guerraoui 21:13

A Interpretation of Lemma 3

We briefly give an intuitive interpretation of the facts mentioned in Lemma 3.

I Lemma 3 (restated).
(a) Let q : X∗ → Y ∗ be a partial recursive function. Then, for all S ∈ X∗, HY (q(S)) ≤

HX(S) +O(1).
(b) For all S ∈ X∗, HX(S) ≤ |S| · log |X|+ 2 · log |S|+O(1).
(c) Let A ⊆ X∗×N be a recursively enumerable set such that the subset An = {w : (w, n) ∈

A} is finite for every n ∈ N. Then, for all n, for every S ∈ An with |S| = n,
HX(S) ≤ log |An|+ 4 · logn+O(1).

(d) An infinite sequence S ∈ Xω is T -random if and only if any of its suffixes is T -random.

The point a. states that the information content of the sequence q(w) is no more than
the information content of w (up to an additive constant). This simply comes from the fact
that a computer program cannot produce more information than the information already
present in its input.

The point b. comes from the fact that one can define a computer program p which simply
copies its input to its output. Therefore, a program for generating the sequence S is given
by the concatenation 〈p, S〉 of the program p, and the input S itself. This concatenation has
length |S| plus the length of p (which is independent of S), and an additional logarithmic
term required to distinguish the two sequences p, S in the concatenation. The inequality
follows by the definition of the complexity as the length of the shortest program producing
the sequence S.

The interpretation of c. is slightly more involved. The set A being recursively enumerable
means that there is a computer program p which can successively enumerate all the elements
of A. Thanks to p, one can design a new program q which takes as input a number n
(requiring logn bits), and an index 1 ≤ i ≤ |An| (requiring log |An| bits), and returns the
i-th element in An having length equal to n. Therefore an element S ∈ An with |S| = n can
be generated by the program 〈q, i, n〉 where i is the corresponding index of S. This explains
the logarithmic terms on the right hand side.

Finally, the point d. simply comes from the fact that the notion of T -randomness depends
only on the asymptotic behaviour of the infinite schedule.

B Leader election – upper bound

The proof is achieved by analyzing a specific algorithm, hereafter called B3, from a previous
work [8]. The authors have shown that the algorithm B3 solves leader election over arbitrary
strongly connected graphs using another fairness assumption, namely the global fairness [5].
We show that, actually, the algorithm B3 solves leader election on G under adversary A(T,G)
for every T > log θ(G)/ log d. In the sequel, we use some combinatorial results from [14].

I Definition 10 (Word Correlation [14]). Let u, v be two sequences in X∗. The correlation
〈u, v〉 is the polynomial a1z

|u|−1 + a2z
|u|−2 · · ·+ a|u| where ai ∈ {0, 1} is obtained as follows.

Place v under u so that its leftmost symbol is under the i-th symbol of u. Then if all the
pairs of symbols in the overlapping segment are identical, ai = 1, else ai = 0.

I Lemma 11 (Number of words omitting some word [14]). Consider some sequence u ∈ X∗ of
length k. Let f(z) = 〈u, u〉 be the autocorrelation polynomial of u. Then, the absolute value

OPODIS 2015

21:14 The Benefits of Entropy in Population Protocols

θu of the largest zero of the polynomial 1 + (z − d)f(z) satisfies 1.7 < θu < d. Moreover, the
set An(u) of sequences of length n not containing u as a factor satisfies

|An(u)| = θnu
1− (d− θu)2f ′(θu) +O((1.7)n)

Now, we prove that the algorithm B3 presented in [8] solves leader election on G with
adversary A(T,G) for all T ∈ (log θ(G)/ log d, 1].

The pseudo-code is presented in Algorithm 1. Each process x can be leader or non-leader
(variable leaderx) and can hold a white or black token (variable tokenx). Initially, every
process is a leader and holds a black token. The tokens move through the network by
swapping between two processes during an interaction. When two black tokens meet, one of
them turns white. When a white token interacts with a leader x, x becomes a non-leader
and the token is destroyed. Given a configuration γ, let b(γ) be the number of black tokens,
w(γ) the number of white tokens and l(γ) the number of leaders in γ.

Algorithm 1: Algorithm B3

1 variables for every process x:
2 leaderx : 0 (non-leader) or 1 (leader);
3 tokenx : ⊥ (no token), white or black;
4 initialization: ∀x, (leaderx, tokenx) = (1, black); /* uniform */
5 algorithm (initiator x, responder y):
6 if tokenx = tokeny = black then
7 tokeny ← white;
8 if tokenx = white ∧ leadery = 1 then
9 leadery ← 0 ; /* y becomes a non-leader */

10 tokenx ← ⊥ ; /* the token is destroyed */
11 tokenx ↔ tokeny; /* swap the tokens */

I Lemma 12. For any configuration γ of Algorithm 1 reachable from the initial configuration,
b(γ) + w(γ) = l(γ) and b(γ) ≥ 1.

Proof. The initial configuration satisfies this relation. During an interaction, if no leader is
turned into a non-leader, then the total number of tokens remains constant. When a leader
is turned into a non-leader (by a white token), the corresponding token is also destroyed.
Moreover, destroying a black token requires that another black token collide with it, so there
is always at least one black token. In any case, the first formula still holds. J

Consider the shortest loop π = (a1, a2)(a2, a3) . . . (ak, a1) in G which visits every node
at least once. We have k = K(G). We define a finite schedule S0 = ππ, i.e., the path π

repeated twice.

I Lemma 13. Let γ be any configuration reachable from the initial configuration such that
l(γ) ≥ 2. Then, applying the finite schedule S0 to γ yields a configuration γ′ such that
(1, 1) ≤ (l(γ′), b(γ′)) < (l(γ), b(γ)) in the lexicographical order (l first).

Proof. We denote by l, b, w (resp. l′, b′, w′) the value of l(γ), b(γ), w(γ) (resp. l′(γ), b′(γ), w′(γ)).
We first examine the case b = 1. By Lemma 12, we have w = l − 1 ≥ 1 and, since no black
token is ever created, b′ = 1. Let ai be some process in the path π which holds a white
token in the configuration γ. When applying the schedule S0 to the configuration γ, the
white token moves (by swapping) from the process ai through all the processes of G at least
once. Thus, the white token necessarily meets with some leader in the graph, and this leader

J. Beauquier, P. Blanchard, J. Burman, and R. Guerraoui 21:15

then disappears (along with the white token). Therefore, l′ < l. Assume now that b ≥ 2.
When applying the schedule S0 to γ, either the previous scenario occurs (and then l′ < l), or
two black tokens meet, and one of them turns white (thus b′ < b). In either case, we have
(l′, b′) < (l, b). J

I Proposition 14. For any strongly connected graph G

T (LE,G) ≤ log θ(G)
log d < 1

where θ(G) is the absolute value of the largest zero of the polynomial 1 + (z − d)(z2K(G)−1 +
zK(G)−1) with K(G) being the length of the shortest loop visiting every node at least once in
G.

Proof. Consider any T > log θ(G)/ log d, and any T -random schedule S. We prove that S0
occurs infinitely often in S. Assume that S0 occurs only finitely many times. Without loss
of generality, we can assume that S0 does not occur at all in S. Then, for every n, the prefix
S � n belongs to the set An(S0) of finite schedule of length n which do not contain S0 as a
factor. By Lemma 3, we have, for all n,

HG(S � n) ≤ log |An(S0)|+ 4 logn+O(1) (1)

To estimate the value of |An(S0)|, we compute the autocorrelation polynomial of S0 = ππ.
Since π is a loop of shortest length k = K(G) visiting every node at least once, the
autocorrelation polynomial of π is zK(G)−1. Indeed, let π = (a1, a2) . . . (ak, ak+1) with
ak+1 = a1. Assume that for some 1 ≤ i ≤ k,

(ai, ai+1) . . . (ak, a1) = (a1, a2) . . . (ak−i+1, ak−i+2)

Then, defining j = max(i, k − i + 1), the sequence (a1, a2) . . . (aj , aj+1) is a loop visiting
every vertex at least once. This imposes j = k, and thus i = 1. By definition, this implies
that the autocorrelation polynomial of π is zK(G)−1. Since S0 = ππ, the autocorrelation
polynomial of S0 is z2K(G)−1 + zK(G)−1.

Note that θ = θ(G) is precisely the absolute value of the largest zero of the autocorrelation
polynomial of S0. By Lemma 11, there exists a constant k > 0 such that, for all n,
|An(S0)| = kθn + O((1.7)n). Plugging this into Equation 1, and using the fact that S is
T -random, we have, for all n,

T · n log d ≤ n log θ(G) + 4 logn+O(1)

Therefore, T ≤ log θ(G)/ log d; whence a contradiction. This proves that S0 occurs infinitely
often in S.

Then, by Lemma 13, the corresponding execution of B3 satisfies the specification of
the leader election problem. In other words, B3 solves leader election with adversary
A(T,G). In particular, this shows T (LE,G) ≤ T for every T > log θ(G)/ log d; whence
T (LE,G) ≤ log θ(G)/ log d. J

I Remark. Note that this algorithm was designed in [8] to solve leader election without any
knowledge about the underlying communication graph. Adding such a knowledge may yield
a better upper bound on T (LE,G).

OPODIS 2015

Byzantine Agreement with Median Validity
David Stolz1 and Roger Wattenhofer2

1 ETH Zürich, Zürich, Switzerland
stolzda@ethz.ch

2 ETH Zürich, Zürich, Switzerland
wattenhofer@ethz.ch

Abstract
We introduce a stronger validity property for the byzantine agreement problem with orderable
initial values: The median validity property. In particular, the decision value is required to be
close to the median of the initial values of the non-byzantine nodes. The proximity to the median
scales with the desired level of fault-tolerance: If no fault-tolerance is required, algorithms have to
decide for the true median. If the number of failures is maximal, algorithms must still decide on a
value within the range of the input values of the non-byzantine nodes. We present a deterministic
algorithm satisfying this property for n ≥ 3t + 1 within t + 1 phases, where t is the maximum
number of byzantine nodes and n is the total number of nodes.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Reliability, fault-tolerance, median, consensus

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.22

1 Introduction

A distributed system consists of a number of nodes, which collaboratively achieve fault-
tolerance: Even if some of the nodes fail, the system as a whole can continue to operate
reliably. As such, distributed systems are omnipresent in areas that have strong availability
and reliability requirements. The challenging problem is to keep the system in a consistent
and reasonable state. The following example illustrates this problem.

An airplane control system consists of multiple machines. In order to reach a decision on
what action the plane performs next, the system relies on data from various sensors. One
type of sensor is the altitude meter. Assume that the system needs to decide whether or not
it is safe to descend, and queries the altitude meters. As those sensors are susceptible to
freezing – and known to malfunction when frozen – each plane is equipped with multiple
altitude meters. The airplane control system needs to agree on a value, and in order to avoid
a single point of failure, this agreement will be achieved in a distributed manner.

One may argue that this agreement operation is at the core of many distributed systems,
and generally fundamental for distributed computing research. Depending on the failure
model, it is sometimes referred to as consensus (to cope with crash failures, e.g. [10]) or as
byzantine agreement (to cope with arbitrary failures, e.g. [24]). In our airplane scenario – as
well as in many other scenarios – one must be able to tolerate arbitrary failures, as a frozen
sensor might not simply crash but still continue to provide data, even though that data is
totally bogus. Nodes not complying with the protocol or reporting wrong data are called
byzantine, nodes which behave correctly we simply call good.

The byzantine agreement (BA) problem consists of three properties: Termination, agree-
ment, and validity. We need termination since we require our algorithm to come to a decision
within finite time, as not deciding how high a plane is flying for a long time is disastrous. We

© David Stolz and Roger Wattenhofer;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 22; pp. 22:1–22:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Byzantine Agreement with Median Validity

need agreement as we want the nodes of our distributed system to continue their operation
in the same state. To rule out trivial solutions (“The altitude is always 10,000 meters.”) we
need a third property: Validity. The purpose of the validity property is to make sure that
the value agreed on is reasonable. There exist slightly different definitions for validity, but
the most common one is the following (see, e.g. [12, 4]):

Validity: If all good nodes start with the same input value, they agree on this value.

Unfortunately, there is no limitation on what the decision value can be for configurations
in which not all good nodes start with the same input value. Surprisingly, in the literature,
dissenting configurations receive only little attention. Informally speaking, one is obliged
to accept a solution as long as the nodes agree on any value. The rationale for this weak
validity condition is as follows: Since initially there is disagreement among the good nodes,
a byzantine node can propose a bad value but follow the protocol of the algorithm, and
there is no way to guarantee that the decision value will always be the input value of a good
node. While this argument is formally correct, it implicitly assumes that it is impossible to
distinguish good from bad values.

We believe that there is room for improvement, in particular in cases where input values
can be ordered. Assume that we use an existing algorithm for BA in the previously described
airplane example, and that we have four altitude meters which report the altitudes 995, 1002,
1004, and 5000, respectively. Even though it is clear that the correct altitude is roughly 1000,
existing algorithms for BA might choose 5000, which might lead to a catastrophe. Often
one must solve BA on input values in R, e.g., measurements. Measured values are usually
prone to noise, hence even the good nodes will have slightly different input values. The
classic validity property (which is only concerned with the case where all input values are
equal) does not help. To address this problem, we introduce a stronger validity property:
The median validity property. In particular, we require the decision value to be “reasonably
close” to the median of the values of the good nodes. We will later specify this requirement
precisely.

In Section 4 we present a new BA algorithm called the Jack algorithm. Our algorithm
has an optimal resilience, i.e., it works as long as n ≥ 3t + 1, where n is the total number
of nodes, and t denotes the tolerance, i.e., the maximum number of byzantine nodes. Note
that we distinguish between t and f , where f ≤ t is the actual number of byzantine nodes
during an execution of the algorithm, analogous to [8]. This distinction is necessary, as the
nodes only know the tunable parameter t, since f is only known to the adversary. We will
prove that the algorithm works for every f ≤ t, thus the algorithm does not rely on any
particular f . The Jack algorithm is deterministic and terminates in t + 1 phases, where
each phase consists of a constant number of synchronous rounds. The algorithm additionally
guarantees that the decision value will be reasonably close to the median of the good nodes.
The proximity of the decision to the median of the good nodes is defined in an elastic way: In
the best case, if we do not need any fault-tolerance, the algorithm agrees on the median itself.
In the worst case, if the number of byzantine nodes is maximal, we require the value only to
be within the interval spanned by the good nodes; in our airplane example, the algorithm
will choose a value x with 995 ≤ x ≤ 1004.

In addition, we present a lower bound for our validity property. If all byzantine nodes
collude and suggest arbitrarily small (respectively large) input values, no algorithm can
guarantee to find the correct median of the good nodes. In Section 5, we will provide exact
bounds on this error.

D. Stolz and R. Wattenhofer 22:3

2 Related Work

The BA problem has a long history, starting in 1980 when it was first introduced by Lamport
et al. [24]. Since then, a vast amount of research has been conducted and many models and
questions have been studied. The earlier works focused mainly on general computability
questions, e.g.,[10, 2]. The first algorithms required message sizes exponential in n, or had a
runtime that was far from optimal, but these shortcomings have been addressed and solved
later.

With the proliferation of data centers, companies started implementing a large number of
BA protocols, and the interest from the practical distributed systems community exploded.
Well-known protocols include e.g. PBFT [6], Farsite [1], Google’s Chubby [5], PeerReview
[14], Zyzzyva [17], AZyzzyva [13], Apache ZooKeeper [15], SMART [20], ZZ [27], or RAFT
[22]. These protocols try to improve various practical aspects of BA, in particular runtime,
but do not address validity. We believe that some of these protocols could benefit from our
orthogonal goal of strengthening the validity property.

Our contribution is a relative of the Queen [3] and King [4] algorithms by Berman, Garay
(and Perry). These algorithms operate in the synchronous model and terminate in t + 1
phases, which is asymptotically optimum for algorithms that terminate simultaneously [8].
While the Queen algorithm does not have optimal resilience, the King algorithm tolerates
the maximum number of byzantine nodes. Our Jack algorithm achieves optimum runtime
and resilience as well, and additionally satisfies a stronger validity condition as discussed in
the introduction.

There are also algorithms that are closely related to the BA problem, but do not satisfy
all three BA properties. In distributed average consensus, nodes try to achieve consensus
on the average of all input (sensor) values. There are some major differences to BA: First,
algorithms do not tolerate byzantine failures, but, e.g., only link failures [29, 23], systematic
failures on the input (noise) [28], or both [16]. Second, the goal is not to agree on a specific
value after a finite amount of time, but rather to converge towards a value. Hence, these
algorithms do not satisfy the termination property, and cannot be used in many scenarios,
e.g. in our airplane example. Please refer to the book of Ren and Beard [25] for an extensive
survey.

The clock synchronization problem [18] is another agreement problem, which usually
assumes that the clock values are initially close to each other, however, not exactly equal.
While this problem was only loosely related to the BA with the classical validity property,
the relation to BA with median validity is evident, since an agreement on the median is a
reasonable goal for clock synchronization.

In a very recent work [26] Su and Vaidya study the problem of byzantine distributed
optimization of real valued convex cost functions. Instead of starting with an initial value,
every node starts with a cost function h(x). The goal is to reach consensus on a value
x, such that the total cost (the sum of the costs of the good nodes) is minimized. Since
the optimization problem is similar to the problem we study, it is not surprising that they
establish a proof that the optimization problem cannot be solved exactly in the presence of
byzantine nodes, which conveys a similar message as our lower bound (see Section 5).

The work which is most closely related to our contribution is the one which aims at
strengthening the validity property. We are aware of two different approaches. The first
one is the approximate agreement problem by Dolev et al. [7]. Dolev et al. strengthen the
validity property at the expense of the agreement property. The agreement property by
Dolev et al. does not require the nodes to agree consistently on one value, but allows the

OPODIS 2015

22:4 Byzantine Agreement with Median Validity

nodes to choose different values which are in ε-distance of each other. In their algorithm,
the range of acceptable values is iteratively reduced, until the range satisfies the ε-property.
They can guarantee that the algorithm terminates as early as possible. On the other hand,
the agreement property cannot be guaranteed anymore. We believe that many applications
depend on all three BA properties, as future actions depend on past decision values.

The second one is the strong consensus problem [21, 11]. The strong consensus problem
allows input values from a finite Domain D, and strengthens the validity property by requiring
the nodes to agree on a value that was the initial value of at least one good node. It might
seem that such a validity property is also the right choice for real valued inputs; however,
Neiger [21] showed that n must be at least |D| · t, which is clearly not applicable to scenarios
which require initial values in R.

Our validity property is hence both in the spirit of Dolev et al.[7] and Neiger [21], and
we think that we found a reasonable trade-off between agreement, validity of the decision
and the required number of nodes.

3 Model

Let A denote an array of length l. Throughout this paper we will use zero-based arrays,
meaning that the first element of an array is A[0] and the last element is A[l − 1]. When we
refer to the median of an array A, we want the median to be a value which actually occurs
in that array. As this raises a problem with arrays of even size, we define the median to be
the element at index A[d l

2e − 1], assuming A is sorted.
The network consists of n nodes which are fully connected, i.e., every node can communi-

cate with every other node. Nodes communicate by exchanging messages, and we assume
that time elapses in synchronous rounds. We allow every node to send exactly one message
to every other node in each round, and we assume that these messages will be received in
the following round. The network itself is assumed to be reliable, meaning that messages
are not altered or delayed between sender and receiver. The different links between nodes
are isolated from each other, i.e., only the sender and receiver of a message know about the
message. Hence, if a node broadcasts a message, it sends a single message to every node,
including itself.

The byzantine agreement problem tends to be specified in different ways in different
papers: Sometimes the input values are only binary, sometimes there is a predetermined
“leader node”. In this paper, we define the BA problem as follows:

Every node has an input value x ∈ R. There are f ≤ t byzantine nodes which can behave
arbitrarily. This includes lying about their input value, not following the protocol, sending
different messages to different nodes in the same round, crashing, and so on. We allow an
adaptive adversary, which can determine during the execution of the protocol which nodes are
byzantine, and how they behave. Note however, that the adversary is limited to selecting at
most t nodes, meaning that a node that is byzantine cannot be declared as non-byzantine at
later point in time. We call a node good if it is not selected by the adversary to be byzantine
at any point throughout the execution; it follows directly that there are always at least n− t

good nodes. However, a good node does not a priori know which of the other nodes are good;
a good node only knows that there must be at least n− t good nodes in the system. At the
end of the algorithm, every good node must have decided for a certain value, which we will
refer to as the decision.

Any algorithm that solves byzantine agreement with median validity must satisfy the
following three properties:

D. Stolz and R. Wattenhofer 22:5

Agreement: For every selection of input values and every selection of byzantine nodes, all
good nodes must decide on the same value.

Termination: Every good node must decide on a value in finite time.
Median Validity: The decision is always a valid value1 (see definition below).

Let us now define which values are valid. For that purpose, we denote by G the sorted
array of the input values of the good nodes. Note that the length of the array is n−f ≥ n− t,
and the median of the good nodes is G[dn−f

2 e − 1].

I Definition 1 (valid value). We call a value x valid, if it holds that

G[
⌈

n− f

2

⌉
− 1− t] ≤ x ≤ G[

⌈
n− f

2

⌉
− 1 + t].

Note that in the best case, where f = t = 0, the median of the good nodes is the only valid
value. In the worst case, where n = 3t + 1 and f = t (which corresponds to the maximum
number of byzantine nodes so that BA is solvable, see [24, 19]), every value which is between
the smallest input value of a good node and the largest input value of a good node is valid.

Observe that even though the decision must be between the smallest and largest input
value of a good node, the decision is not necessarily the input value of a good node! For
example, we allow that the value proposed by a byzantine node can be chosen, as long as it
satisfies the required proximity to the median. Even though this relaxation has only little
negative impact on the quality of the decision, it is a crucial enabler of the validity property:
As shown by [11], a validity property which also satisfies that the decision is the input value
of a good node is impossible for real values, and even with input values from a finite domain,
the failure tolerance decreases linearly with the size of the domain, which is an unfeasible
requirement for many applications.

4 The Jack Algorithm

We developed an algorithm that uses some ideas from the Phase King algorithm developed
by Berman, Garay and Perry [4]. One such idea is to have t + 1 nodes predetermined as
kings. In t + 1 phases there is always one of those kings the depicted king for that phase,
assuming a special role. We use the same idea in our algorithm, but refer to this special role
as the jack.

Note that the Jack algorithm requires the tolerance as an input parameter t, which
is tunable. The choice of t affects the runtime of the algorithm, its fault-tolerance, and
how close to the median of the good nodes the final decision value will be. In particular, t
determines the maximum number of byzantine nodes that the algorithm can tolerate, and it
determines which values are considered valid, according to the definition of a valid value (see
Definition 1).

All nodes start the execution of the algorithm at the same time, and execute the same
steps at the same time; the only exception is the step marked with Only Jack, in which
only the respective jack of that phase is active, and all other nodes remain silent. Note that
since it is predetermined which node is the jack of which phase, every node can simply ignore
byzantine nodes pretending to be the jack in a wrong phase.

1 Note that the classic validity property is implied by our validity property as a special case.

OPODIS 2015

22:6 Byzantine Agreement with Median Validity

Algorithm 1: The Jack algorithm
input : inputValue, n, t
output : consensusValue
Setup Stage

1 Broadcast(inputValue)

2 Store and sort all received values in array values
interval = values.Subarray(dn−t

2 e − 1, n− bn−t
2 c − 1)

Broadcast(“bounds: interval.first, interval.last”)

3 Store all received interval bounds
if inputValue is in at least n-t bounds then

suggestion = inputValue
else

suggestion = pick any value from interval that is in at least n-t bounds
current = suggestion
Search Stage

for i = 1 to t + 1 do
4 Broadcast(current)
5 if some value x appears ≥ n-t times then

Broadcast(“propose x”)

6 if some “propose x” received > t times then
current = x

Only Jack if some “propose x” received > t times then
jackSuggestion = current

else
jackSuggestion = suggestion

Broadcast(“suggest jackSuggestion”)

7 if current == jackSuggestion or
(interval.first ≤ jackSuggestion ≤ interval.last) then

Broadcast(“support jackSuggestion”)

8 if received “propose x” < n-t times then
if some “support jackSuggestion” received > t times then

current = jackSuggestion

9 consensusValue = current

D. Stolz and R. Wattenhofer 22:7

The Jack algorithm works as follows: At the start there is a setup stage consisting of 3
rounds, in which all nodes determine which values they will support later on. It is followed
by the search stage consisting of t+1 phases, in which the nodes agree on the decision value.
In each of these phases there is at first a part where all nodes perform the same actions, and
a second part, in which a predetermined jack tries to suggest a value. As there are t+1 jacks,
we are guaranteed to have at least one non-byzantine jack. Since we do not know in which
of these phases we have a non-byzantine jack, we need the first part: This part prevents
a byzantine jack to change an existing agreement. The second part (the part of the jack)
allows a good jack to suggest a valid value, so that we are assured to reach agreement.

In the following sections, we prove the correctness of the algorithm.

4.1 Preliminaries

I Lemma 2. The median of the good nodes G[dn−f
2 e − 1] is in the interval of every good

node.

Proof. The intervals are created during the setup stage in Step 2 by truncating the array of
received input values on both sides, i.e., by removing a subarray with the smallest values,
and by removing a subarray with the largest values. In order to show that the median of the
good nodes will always remain in the subarray interval, we show that it cannot be in either
of two parts of the array that are removed.

Let us first look at the part of the array which is removed since the values within this
part are considered too small. The smallest index of the sorted array that is kept in the
array interval is dn−t

2 e − 1. Since we use arrays that start at index 0, the number of values
that are smaller or equal to the value at a certain index of the array is equal to the index.
Thus, we know that the construction of the subarray interval discards the smallest dn−t

2 e − 1
values. As there are dn−f

2 e− 1 input values of good nodes which are smaller than the median
of the good nodes (by definition of the median), and since dn−f

2 e − 1 ≥ dn−t
2 e − 1, it follows

that the median of the good nodes will never be removed because it is considered too small.
Analogously we show that the median of the good nodes cannot lie in the part of the array

that is removed due to the values being too large. The largest index of the received value
that is kept is n− bn−t

2 c − 1. Therefore, the number of received values that are discarded
since they are considered too large is bn−t

2 c. Again, due to definition of the median, this is
at most the number of input values of good nodes which are larger or equal to the median of
the good nodes. Thus, the median of the good nodes will also never be considered to be too
large, which concludes the proof. J

I Lemma 3. All values stored in the interval arrays of good nodes are valid.

Proof. Note that valid values are around the median of the good nodes. Thus, for a value to
be not valid, it must either be too small, or too large. We prove the lemma by proving the
two cases individually.

The smallest value of the received input values that is taken into the interval is at the
index dn−t

2 e − 1 of the sorted array of all received values, thus the number of input values

OPODIS 2015

22:8 Byzantine Agreement with Median Validity

that are discarded since they are too small is dn−t
2 e − 1. Note that f ≤ dn−t

2 e − 1, since:

3t < n | −t, ·12
t <

n− t

2

t ≤
⌈

n− t

2

⌉
− 1 | f ≤ t

f ≤
⌈

n− t

2

⌉
− 1

Within those values that are discarded, there are at most f values from byzantine nodes.
Therefore, the number of good values that are discarded is at least dn−t

2 e − 1− f , meaning
that the largest input value of a good node that is discarded because it is too small is at
least G[dn−t

2 e − 1− f − 1].
We can distinguish two cases: The first case is that all the byzantine nodes have sent a

value that is discarded since it was too small. In this case, the smallest value in the interval
must be from a good node, and since dn−t

2 e − 1− f good values have been discarded, the
smallest value of the interval is G[dn−t

2 e − 1 − f], which is at least as large as the lower
bound of being valid, since:

f ≤ t⌈
n− f

2

⌉
+ f ≤

⌈
n− t

2

⌉
+ t | −f − t− 1⌈

n− f

2

⌉
− 1− t ≤

⌈
n− t

2

⌉
− 1− f

And therefore G[dn−f
2 e − 1− t] ≤ G[dn−t

2 e − 1− f].
The second case is where at least one byzantine node sent a value that is not discarded

for being too small. In that case, the number of good values that are discarded for being too
small is at least one more than in the previous case. In particular, the value G[dn−t

2 e− 1− f]
will be discarded. Since all nodes that are not discarded must be bigger than the discarded
ones, the lower bound holds.

We show that no value in the interval can be too large to be valid analogously. The
number of values that are not taken into the interval since they are too large is bn−t

2 c. As
there might be at most f values from byzantine nodes, there will be at least bn−t

2 c− f values
from good nodes discarded because they are too large. Hence, the smallest discarded good
value is at most G[(n− f)− (bn−t

2 c− f)] = G[dn−t
2 e+ t]. We distinguish the two cases again:

First, the case where all byzantine values are discarded, as they are too large. In that case,
the largest value kept in the interval is G[dn−t

2 e+ t− 1], and since dn−t
2 e ≤ d

n−f
2 e, it follows

that G[dn−t
2 e+ t− 1] ≤ G[dn−f

2 e+ t− 1], i.e., the required bound is satisfied. Second, the
case where there is at least one byzantine value that is not discarded. In that case, the value
G[dn−t

2 e+ t− 1] is discarded, implying that all values in the interval are smaller than this
value, and thus the upper bound holds. J

4.2 Main Theorem
I Theorem 4. The Jack algorithm achieves byzantine agreement with median validity in
O(t + 1) rounds, if and only if n ≥ 3t + 1.

D. Stolz and R. Wattenhofer 22:9

Note that the Jack algorithm matches the upper bound on the number of byzantine nodes
that it can tolerate [19], and that it has an asymptotically optimal runtime [8, 9].

Proof. To facilitate the readability of the proof, we split it up into separate lemmas. Note
that throughout the proof, we often use the fact that n− f ≥ n− t implicitly.

I Lemma 5. Each good node has at least one value in its interval which is within the bounds
of at least n− f received bounds.

Proof. We proved that the median of the good nodes is in the interval of every good node
(Lemma 2). Hence the value of the median of the good nodes is at least in all good bounds,
i.e., every good node receives at least n− f bounds containing the median of the good nodes.
Since every good node has the median in its own interval, the lemma holds. J

This lemma guarantees that the setup stage can always be completed successfully, i.e.,
that every good node can always find an eligible suggestion.

I Lemma 6. If all good nodes have the same value stored in the variable current at the
beginning of a phase, they will not change the value of current during this phase.

Proof. Let v denote the value which is stored in the variable current at all good nodes. In
Step 4 all n−f good nodes broadcast v, and thus all good nodes hear at least n−f messages
containing v. Therefore, all good nodes propose v in Step 5, and all good nodes hear at least
n− f proposals for v in Step 6. They update their value to v, i.e., they keep v. The only
other step where the nodes update their variable current is Step 8, but since every good node
received at least n− f proposals for v, no good node updates to the jackSuggestion. J

I Corollary 7. If all good nodes have the same value v stored in the variable current in the
beginning of any phase, they will agree on v when the algorithm terminates.

I Lemma 8. If all good nodes start with the same input value v, they will agree on this
value. (The classic validity property holds.)

Proof. Since all good nodes start with the input value v, this value is also the median of the
good nodes. Lemma 2 states that v must be in the interval of every good node. Thus, every
good node sets its variable current to v in Step 3. As every good node starts the search stage
with current set to v, it follows from Corollary 7 that they agree on v when the algorithm
terminates. J

I Lemma 9. A good node will only store values in its variable current which are within the
bounds of an interval of at least one good node.

Proof. Note that every good node picks a value from its own interval as the starting value
for current, thus the lemma holds at the end of the setup stage. For the search stage, it is
sufficient to show, that if the lemma holds at the beginning of a phase, it will also hold at
the end of the phase (and thus at the beginning of the next phase). There are two steps in
which a good node can update its variable current: Step 6 and Step 8.

If a good node updates the variable current in Step 6 to a new value x, we know that more
than t nodes sent a proposal for x, i.e., at least one good node sent a “propose x”. Hence, the
good node which sent the proposal must have received x in Step 5 least n− t ≥ 2t + 1 > f

times, meaning that at least one good node must have sent x in Step 4. Since we assumed
that the lemma holds at the beginning of the phase, this value must have been in the interval
of a good node.

OPODIS 2015

22:10 Byzantine Agreement with Median Validity

The second possibility to update current is in Step 8. If a good node updates the value in
Step 8 to a jackSuggestion x, it must have received a message “support x” from at least one
good node. Such a message is sent in Step 7, but a good node only supports a suggestion
from the jack if the suggestion is either the current of the good node, or if the suggestion
is within the bounds of its interval. In the latter case the lemma holds, as this is condition
enforces exactly what the lemma states. Looking at the former case, we know that the lemma
holds after Step 6, and thus it also holds in Step 7, as current was not changed in between.
Therefore, x must be within the interval of at least one good node, concluding the lemma. J

Combining this lemma with Lemma 3 yields the following corollary:

I Corollary 10. A good node always has a valid value stored in its variable current.

Since the value for which a good node decides when the algorithm terminates is the value
stored in the variable current, it follows that every good node will always decide for a valid
value. Before we can establish the last lemma that concludes the proof of Theorem 4, we
need to show the following lemma. Please note that this lemma has already been shown in
slightly different form in [4], since the authors use the same idea in the Phase King algorithm.

I Lemma 11. If a good node updates its variable current in Step 6 to x, no good node updates
its variable current to y in Step 6 in the same phase, if x 6= y.

Proof. Assume for a contradiction that there are two good nodes, one updating its value
to x, and one updating its value to y. Therefore, one node must have heard at least t + 1
proposals for x, and another node heard at least t + 1 proposals for y. Thus, at least one
good node proposed x, and one good node proposed y. In order for a good node to propose
a certain value in Step 5, it must have heard this value at least n− t times. Since at most t

of those values can come from byzantine nodes, it must have heard the value from at least
n− 2t good nodes. Therefore at least n− 2t good nodes sent x in Step 4, and at least n− 2t

good nodes sent y; with x 6= y, the total number of good nodes must be at least 2n − 4t.
Since the number of good nodes is by definition n− t, it follows that n− t ≥ 2n− 4t, i.e.,
n ≤ 3t must hold, which contradicts our initial assumption that n ≥ 3t + 1. J

With the help of this lemma, we only need to show the following lemma to complete the
proof of Theorem 4.

I Lemma 12. At the end of a phase with a non-byzantine jack, all good nodes store the
same value in their variable current.

Proof. If all good nodes store the same value in current at the beginning of the phase, this
lemma follows directly from Lemma 6. Hence we only need to prove the case where not all
good nodes start with the same value in current.

Note that the jack has two values which it can propose: Either the value stored in the
suggestion created in the setup stage, or the value stored in its variable current. Both these
values are valid: suggestion is chosen from the interval in the setup stage, and thus valid (see
Lemma 3), and the value stored in current is always valid (see Corollary 10).

Let us first look at the case where the jack suggests its value stored in its variable current.
As the jack suggests its current, it must have received more than t proposals for a certain
value x, and therefore it has updated its current to x in Step 6. Since the jack heard more
than t proposals, at least one good node proposed x. This node must have heard at x in
Step 5 at least n− t times, i.e., it heard it at least from n− 2t good nodes. As we assume
that n ≥ 3t + 1, it follows that at least t + 1 good nodes started this phase with the value

D. Stolz and R. Wattenhofer 22:11

x. As a consequence of Lemma 11, those nodes will not change the value in their variable
current in Step 6, as the only value for which they can hear enough proposals is in fact x.
This implies that the number of good nodes which have value x stored in current in Step
7 must be at least t + 1, and because the jack suggests x, there will be at least t + 1 good
nodes that support x. Any good node that heard less than n− t proposal messages for x

will therefore accept the suggestion of the jack, which is x. Every node that ignores the
suggestion from the jack does so, because it heard at least n− t proposal messages for the
same value x in Step 6. It follows from Lemma 11 that these nodes updated their current
to the same value x as the jack did in Step 6. Therefore, all nodes have value x stored in
current at the end of the phase.

It remains to be shown that if the jack suggests its value stored in suggestion, that all
good nodes update their variable accordingly. If the jack suggests its suggestion, it heard at
most t proposals for any value in Step 6. Hence, any other good node can hear at most 2t

proposals for any value. Recall that the jack picked a value for its suggestion in the setup
stage that was in at least n− t bounds (note that there is always such a value, see Lemma 5).
As at most t of those bounds might have been sent by byzantine nodes, the chosen value
is in within at least n − 2t ≥ t + 1 bounds of good nodes, where we used that n ≥ 3t + 1.
Therefore, at least those t + 1 good nodes support the suggested value in Step 7. Since every
good node heard at most 2t < n− t proposals, and the suggestion of the jack has at least
t + 1 support, every good node accepts the suggested value of the jack in Step 8. J

Since we perform t + 1 phases, we are guaranteed to have at least one phase with a
non-byzantine jack. In combination with Corollary 7, this establishes the agreement property,
and with Corollary 10 follows the median validity property. As the termination property
follows from the construction of the algorithm, Theorem 4 follows. J

5 Discussion

In the following, we put our result into context, by providing a tight bound on how close to
the median of the good nodes any algorithm can get, and by doing so, we also discuss an
alternative approach to the initially stated problem of achieving agreement on a reasonable
value.

I Theorem 13. There is no deterministic algorithm that can guarantee that, for every
selection of input values and every selection of byzantine nodes, the decision value x will
always satisfy

G[
⌈

n− f

2

⌉
− 1−

⌊
t

2

⌋
] < x < G[

⌈
n− f

2

⌉
− 1 +

⌈
t

2

⌉
].

Proof. To prove this theorem, it is not necessary to assume byzantine behavior throughout
the execution of the protocol; it suffices to let the byzantine nodes select tedious input values.
We assume that f = t. Let us look at two different selections of input values: First, we let
the start the good nodes with input values G1 = {1, . . . , n − t}, and the byzantine nodes
pick the input values {n− t + 1, . . . , n}. Second, we start the good nodes with input values
G2 = {t + 1, . . . , n}, and the byzantine nodes with {1, . . . , t}. Throughout the execution of
the protocol, the byzantine nodes adhere to the protocol defined by the algorithm. As the
two executions will be exactly equal, the good nodes agree on the same value v in both runs.

We will now show by contradiction that no value satisfies the bounds for both scenarios.
Note that for all values which are in both sets of good input values G1, G2 it holds by

OPODIS 2015

22:12 Byzantine Agreement with Median Validity

construction that G1[i] = G2[i− t]. Assume that v is a value that satisfies the upper bound
for G1. Note that:

v < G1[
⌈

n− f

2

⌉
− 1 +

⌈
t

2

⌉
] =⇒ v ≤ G1[

⌈
n− f

2

⌉
− 1 +

⌈
t

2

⌉
− 1]

Due to the selection of the input values of the good nodes. Therefore it must hold that:

v ≤ G1[
⌈

n− f

2

⌉
− 1 +

⌈
t

2

⌉
− 1] = G2[

⌈
n− f

2

⌉
− 2−

⌊
t

2

⌋
] < G2[

⌈
n− f

2

⌉
− 1−

⌊
t

2

⌋
]

Hence, every value that satisfies the upper bound for the first scenario, does not satisfy the
lower bound for the second scenario. J

I Theorem 14. There is a deterministic algorithm that guarantees that the decision value x

always satisfies

G[
⌈

n− f

2

⌉
− 2−

⌊
t

2

⌋
] ≤ x ≤ G[

⌈
n− f

2

⌉
+

⌈
t

2

⌉
].

Proof. The algorithm works in two stages: First, we use any algorithm that achieves
interactive consistency (for example the one from [24]). With interactive consistency, every
node agrees on the input values of all nodes; in particular, it knows all the input values of
the good nodes, and for all the byzantine nodes, there is either agreement on a value, or the
good nodes agree that the node is byzantine. The second stage of the algorithm is to pick
the median of the agreement array.

The agreement array will consist of all values from G, and some byzantine values. Note
that every node that is identified as a byzantine node has no effect on the resulting decision
value; therefore, the distortion created by the byzantine nodes is maximal if all byzantine
nodes succeed in adding a bad value to the agreement array. Observe that this distortion
can be maximized, if all byzantine nodes add values that are either smaller than the median
of the good nodes, or larger2. It is clear that in order to achieve the maximal effect on the
value of the resulting decision, and not only to maximize the index shift on the median of
the good nodes, all byzantine values must be either smaller than the smallest good value, or
larger than the largest good value, and that f = t. As n ≥ 3t + 1, it is not possible for the
byzantine nodes to move the median of the agreement array beyond the value range spanned
by the good values; thus, the minimal (maximal) decision value can be bounded by a value
from G. Due to the definition of the median, the t byzantine nodes can shift the decision
value at most by d t

2e index positions. Hence, the upper bound follows directly, and the lower
bound follows with the fact that d t

2e ≤ b
t
2c+ 1. J

Comparing how close to the median of the good nodes the decision value of the Jack
algorithm is in terms of index position difference within G yields the following corollary:

I Corollary 15. The Jack algorithm is a 2-approximation with respect to the index distance
in G in the worst case.

Having shown that the Jack algorithm is not optimal, one might argue, that it is better
to use an algorithm based on interactive consistency, as outlined before. However, we are not

2 If one byzantine node proposes a value that is smaller than the median, and one proposes a value that
is larger, the median does not change.

D. Stolz and R. Wattenhofer 22:13

aware of any algorithm that achieves interactive consistency with real valued3 input values
in an efficient way. The algorithm in [24] uses messages of exponential size, and also local
computation that requires exponential runtime in each step. Since the Jack algorithm only
requires small messages (only one4 value), and only simple local computations, we claim that
our algorithm achieves a reasonable trade-off between precision and complexity.

6 Conclusion

We introduced the median validity property which addresses a shortcoming in the specification
of the byzantine agreement problem for many practical scenarios. Algorithms satisfying the
median validity property can be used in environments with orderable input values, and such
algorithms are particularly suitable if one cannot expect the input values of the nodes to
be exactly equal. We presented an algorithm that achieves byzantine agreement satisfying
this stronger validity property within an asymptotically optimal runtime of t + 1 phases,
requiring only small messages. To analyze the quality of the validity property, we established
a lower bound on the index distance to the good median within the input values of the good
nodes, and we showed that our algorithm achieves a 2-approximation; i.e., if the input values
are tightly clustered around a certain value v, the Jack algorithm guarantees to decide for a
value that is very close to v.

References
1 Atul Adya, William J Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken, John R

Douceur, Jon Howell, Jacob R Lorch, Marvin Theimer, and Roger P Wattenhofer. Farsite:
Federated, available, and reliable storage for an incompletely trusted environment. ACM
SIGOPS Operating Systems Review, 36(SI):1–14, 2002.

2 Michael Ben-Or. Another advantage of free choice (extended abstract): Completely asyn-
chronous agreement protocols. In Proceedings of the second annual ACM symposium on
Principles of distributed computing, pages 27–30. ACM, 1983.

3 Piotr Berman and Juan A Garay. Asymptotically optimal distributed consensus. Springer,
1989.

4 Piotr Berman, Juan A Garay, and Kenneth J Perry. Towards optimal distributed consensus.
In Foundations of Computer Science, 1989., 30th Annual Symposium on, pages 410–415.
IEEE, 1989.

5 Mike Burrows. The chubby lock service for loosely-coupled distributed systems. In Proceed-
ings of the 7th symposium on Operating systems design and implementation, pages 335–350.
USENIX Association, 2006.

6 Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI, vol-
ume 99, pages 173–186, 1999.

7 Danny Dolev, Nancy A Lynch, Shlomit S Pinter, Eugene W Stark, and William E Weihl.
Reaching approximate agreement in the presence of faults. Journal of the ACM (JACM),
33(3):499–516, 1986.

8 Danny Dolev, Ruediger Reischuk, and H Raymond Strong. Early stopping in byzantine
agreement. Journal of the ACM (JACM), 37(4):720–741, 1990.

9 Michael J Fischer and Nancy A Lynch. A lower bound for the time to assure interactive
consistency. Information processing letters, 14(4):183–186, 1982.

3 Note that many of the existing algorithms assume binary input values.
4 In the setup stage two values are sent in one round, which could of course be split into two rounds in

which only one value is sent.

OPODIS 2015

22:14 Byzantine Agreement with Median Validity

10 Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

11 Matthias Fitzi and Juan A Garay. Efficient player-optimal protocols for strong and differ-
ential consensus. In Proceedings of the twenty-second annual symposium on Principles of
distributed computing, pages 211–220. ACM, 2003.

12 Oded Goldreich and Erez Petrank. The best of both worlds: Guaranteeing termination in
fast randomized byzantine agreement protocols. Information Processing Letters, 36(1):45–
49, 1990.

13 Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. The next 700
bft protocols. In Proceedings of the 5th European conference on Computer systems, pages
363–376. ACM, 2010.

14 Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. The case for byzantine fault
detection. In HotDep, 2006.

15 Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. Zookeeper:
Wait-free coordination for internet-scale systems. In USENIX Annual Technical Conference,
volume 8, page 9, 2010.

16 Soummya Kar and José MF Moura. Distributed consensus algorithms in sensor networks
with imperfect communication: Link failures and channel noise. Signal Processing, IEEE
Transactions on, 57(1):355–369, 2009.

17 Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong.
Zyzzyva: speculative byzantine fault tolerance. ACM SIGOPS Operating Systems Review,
41(6):45–58, 2007.

18 Leslie Lamport and P Michael Melliar-Smith. Synchronizing clocks in the presence of faults.
Journal of the ACM (JACM), 32(1):52–78, 1985.

19 Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.
ACM Trans. on Programming Languages and Systems (TOPLAS), 4(3):382–401, 1982.

20 Jacob R Lorch, Atul Adya, William J Bolosky, Ronnie Chaiken, John R Douceur, and Jon
Howell. The smart way to migrate replicated stateful services. ACM SIGOPS Operating
Systems Review, 40(4):103–115, 2006.

21 Gil Neiger. Distributed consensus revisited. Information Processing Letters, 49(4):195–201,
1994.

22 Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm.
In Proc. USENIX Annual Technical Conference, pages 305–320, 2014.

23 Stacy Patterson, Bassam Bamieh, and Amr El Abbadi. Distributed average consensus with
stochastic communication failures. In Decision and Control, 2007 46th IEEE Conference
on, pages 4215–4220. IEEE, 2007.

24 Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence
of faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

25 Wei Ren and Randal W Beard. Distributed consensus in multi-vehicle cooperative control.
Springer, 2008.

26 Lili Su and Nitin Vaidya. Byzantine multi-agent optimization: Part I. arXiv preprint
arXiv:1506.04681, 2015.

27 Timothy Wood, Rahul Singh, Arun Venkataramani, Prashant Shenoy, and Emmanuel Cec-
chet. Zz and the art of practical bft execution. In Proceedings of the sixth conference on
Computer systems, pages 123–138. ACM, 2011.

28 Lin Xiao, Stephen Boyd, and Seung-Jean Kim. Distributed average consensus with least-
mean-square deviation. Journal of Parallel and Distributed Computing, 67(1):33–46, 2007.

29 Lin Xiao, Stephen Boyd, and Sanjay Lall. A scheme for robust distributed sensor fusion
based on average consensus. In Information Processing in Sensor Networks, 2005. IPSN
2005. Fourth International Symposium on, pages 63–70. IEEE, 2005.

Ensuring Average Recovery with Adversarial
Scheduler
Jingshu Chen1, Mohammad Roohitavaf2, and Sandeep S. Kulkarni3

1 Michigan State University, East Lansing, USA
chenji15@cse.msu.edu

2 Michigan State University, East Lansing, USA
roohitav@cse.msu.edu

3 Michigan State University, East Lansing, USA
sandeep@cse.msu.edu

Abstract
In this paper, we focus on revising a given program so that the average recovery time in the
presence of an adversarial scheduler is bounded by a given threshold λ. Specifically, we consider
the scenario where the fault (or other unexpected action) perturbs the program to a state that
is outside its set of legitimate states. Starting from this state, the program executes its action-
s/transitions to recover to legitimate states. However, the adversarial scheduler can force the
program to reach one illegitimate state that requires a longer recovery time.

To ensure that the average recovery time is less than λ, we need to remove certain trans-
itions/behaviors. We show that achieving this average response time while removing minimum
transitions is NP-hard. In other words, there is a tradeoff between the time taken to synthesize
the program and the transitions preserved to reduce the average convergence time. We present
six different heuristics and evaluate this tradeoff with case studies. Finally, we note that the
average convergence time considered here requires formalization of hyperproperties. Hence, this
work also demonstrates feasibility of adding (certain) hyperproperties to an existing program.

1998 ACM Subject Classification F.4 Mathematical logic and formal languages

Keywords and phrases Average Recovery Time, Hyper-liveness, Program Repair

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.23

1 Introduction

The problem of model repair focuses on revising a given program so that it satisfies new
properties while preserving its existing properties. Such model repair is highly desirable
when program requirements change (especially when new requirements are added) or bugs
are identified in an existing program. The problem of model repair has been studied in the
context of revising a program to add safety properties (e.g., to ensure that program never
reaches an undesired state), liveness properties (e.g., if the program reaches a state where
predicate X is true, then it will reach a state where some predicate Y is true), fault-tolerance
properties (e.g., ensuring that safety and/or liveness is preserved in the presence of faults),
and timing constraints [7, 12, 19, 6, 14, 18, 20, 22, 16, 13, 15].

All of the properties considered in [7, 12, 19, 6, 14, 18, 20, 22, 16, 13, 15] are expressed
in terms of the framework in [2] that shows that any specification can be decomposed into a
safety specification and a liveness specification. An important characteristic of the properties
in [2] is that Whether a program computation satisfies the specification is independent of
other computations produced by that program. So, if we consider a safety requirement of the

© Jingshu Chen, Mohammad Roohitavaf, and Sandeep S. Kulkarni;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 23; pp. 23:1–23:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Ensuring Average Recovery with Adversarial Scheduler

form: the value of a variable x is never 0 then we can evaluate a given program computation
to decide whether x ever reaches 0. If yes, it implies that the computation violates the
specification. It does not depend upon all other computations that the program can produce.
Likewise, if the specification requires that: if the program reaches a state where X is true then
it will reach a state where predicate Y is true and the given program computation satisfies
this requirement then this observation remains true irrespective of other computations
produced by that program. This implies that if we want to verify whether a given program
is correct, we can evaluate each of its computations separately to determine if it satisfies
the specification. If all of them satisfy the specification, we can identify that the program
satisfies the specification. Otherwise, the program violates the specification.

Certain requirements however do not satisfy this constraint. Examples of this include some
security properties (e.g., information flow [4], noninterference [17]) and some performance
properties (e.g., average response time). To illustrate this, consider the requirement if the
program reaches a state where X is true then the average number of transitions required to
reach a state in Y is 5 or less. If a program has a computation where the response time (i.e.,
the number of steps required from X to Y) is 6 that does not imply that the specification is
violated. In particular, if the program has several other computations with response time
of 4 or less, then including the computation with response time of 6 is perfectly acceptable.
In other words, properties such as average response time require analysis of all program
computations simultaneously to decide whether program satisfies the specification or not. In
[9], authors have introduced the notion of hyperproperties to characterize such requirements.
They have also shown that hyperproperties are strictly more general than the (simpler)
properties identified in [2].

Existing work in [7, 12, 19, 6, 14, 18, 20, 22, 16, 13, 15] is designed for addition of
properties from [2] and does not address performing model repair to add hyperproperties.
With this motivation, in this paper, we focus on developing complexity results and algorithms
for the addition of one type of hyperproperty, namely average response time.

To motivate the requirement considered in this paper, consider a typical requirement in
the context of fault-tolerant and/or stabilizing programs: In these programs, it is required
that after faults stop occurring, the program recovers to a legitimate state. An important
attribute for this recovery is the time taken for it. There are several ways –worst case, average
case etc – to compute the recovery time. The recovery time is also affected by assumptions
made about any non-deterministic choices the program may face. In our work, we consider
the following approach to compute the average time for recovery (convergence). We focus
on the case where the fault perturbs the program to an illegitimate state and the program
recovers from there to a legitimate state. Since faults are typically random in nature, there
is a probability distribution associated with illegitimate states. (For sake of simplicity, in our
case studies, we assume that all illegitimate states are reached equally likely. However, our
approach can handle any probability distribution.) Subsequently, during program recovery,
there is often a non-deterministic choice given to the program. When faced with such a
choice, we consider the case where we use adversarial scheduler that attempts to force the
program down on a path that increases the convergence time. This enables one to account
for an implementation where the designer considers the non-deterministic choices in any
arbitrary order.

Based on the choices considered above, we focus on ensuring that the average recovery
time in the presence of an adversarial scheduler (denoted as average convergence time for
brevity) is less than λe. Furthermore, during this repair, we want to preserve existing safety
and liveness properties. Hence, during repair, we focus on removing existing behaviors so
that the average convergence time is less than λe.

J. Chen and M. Roohitavaf, and S. S. Kulkarni 23:3

Contributions of the paper. The main contributions of the paper are as follows:
Since repair for satisfying the average response time constraint requires removal of
behaviors/transitions that are responsible for increasing the convergence time, we evaluate
the complexity of revision for satisfying the average convergence time requirement while
removing a minimum number of transitions. We show that this problem is NP-hard.
We also show that if we omit the requirement about removing only a minimum transitions
then the problem can be solved in P . We present an approach (denoted as SCP) to
evaluate this approach. While it is very fast, we find that it removes a large number of
transitions (in some cases > 99%).
To overcome the limitations of SCP and the NP-hardness of maximizing the number of
transitions, we present five additional heuristics namely ELP, KBP, RIA, RIAD and SSP.
Of these, RIA and RIAD take into account possible distribution constraints that prevent
a process from reading or writing all program variables. We show that these approaches
provide a tradeoff between the time required to find the desired program and the number
of transitions that are removed to guarantee average convergence time.

Organization of the paper. The rest of the paper is organized as follows: In Section 2, we
define the notion of programs and average convergence time. In Section 3, we define the
problem of adding average convergence time. The complexity analysis of this problem is
discussed in Section 4. In Section 5, we present our six approaches that identify the tradeoff
between the time for repair and the non-determinism preserved in the repaired program. We
discuss our experimental results for two case studies in Section 6. Finally, we discuss related
work in Section 7 and conclude in Section 8.

2 Preliminaries

In this section, we formally introduce the notions of program and other related definitions.
Our definitions are based on those given by Arora and Gouda [3].

I Definition 1 (Program). A program P is a tuple 〈SP , δP〉, where:
SP is the (finite) state space, i.e., the set of all states of P.
δP is a set of transitions. Specifically, δP ⊆ SP × SP .

For simplicity of presentation, we assume that there is at least one outgoing transition of
P from each state. If there is no transition from state s, we can simply add transition (s, s).
We would like to note that this is not a restriction in any sense. However, it avoids having to
consider terminating states in subsequent definitions.

I Definition 2 (State Predicate). Given a program P (〈SP , δP〉), a state predicate P is a
subset of SP .

I Definition 3 (Computation). A computation of P is an infinite sequence of states, ρ =
〈s0, s1, . . . 〉, where
∀j, j > 0: (sj−1, sj) ∈ δP .

I Definition 4 (Distance of a state predicate in a computation). Let ρ = 〈s0, s1, . . . 〉 be a
computation of P. Let S be a state predicate of P. We say that the distance of ρ to S
(denoted by compdist(P, ρ, S)) is w iff ∀j : (j < w)⇒ sj 6∈ S and sw ∈ S.

In the above definition, if ρ does not contain a state in S, we say that compdist(P, ρ, S) =
∞. Next, we overload the definition of distance to define the notion of a distance of a state

OPODIS 2015

23:4 Ensuring Average Recovery with Adversarial Scheduler

predicate from a given state, say s. There may be several computations that start from s.
Since we focus on an adversarial scheduler, distance of a state s from state predicate S is
described by considering the maximum number of steps required from s in some computation
of P. In other words, this definition captures the maximum distance from state s to state
predicate S.

I Definition 5 (Distance of a state predicate from a state). Distance of state s to a state
predicate S in program P, denoted by statedist(P, s, S), is max(compdist(P, ρ, S)|ρ is a
computation of P that starts in s).

Using the above definition, we can define the notion of average time to recover from some
state predicate T to another state predicate S as follows:

I Definition 6 (Distance between two state predicates). Let S and T be state predicates of
P . The average convergence time from T to S in program P , denoted by predist(P, T, S) is
average(statedist(P, s, S)|s ∈ T − S).

For sake of simplicity, we define predist(P, S, S) to be 0.

I Definition 7 (Average convergence time). Let S and T be state predicates of P. Let λ be
a real number. We say that T converges to S within λ iff

predist(P, T, S) ≤ λ.

Observe that if some computation of P starts from a state in T and never reaches a state
in S then predist(P, T, S) ≥ λ from any number λ.

3 Problem Formulation

In this section, we formally state our program repair problem with respect to average
convergence time requirements. The goal of this problem is to revise a given program P
to P ′ that uses a subset of behaviors of P to reduce the convergence time to the set of
legitimate states. Since P ′ only uses a subset of behaviors of P, it follows that if P satisfied
any safety or liveness property (that is described using the framework [2]) then P ′ satisfies
that property as well.

The input to the repair program consists of program P with state space SP and transitions
δP . It also includes the state predicate denoting the legitimate states, S. Finally, it includes
the desired average convergence time λ. The goal of the program is to identify program P ′
that uses the behaviors of P , and provides convergence to S with average time λ. Thus, the
problem statement is as follows:

I Definition 8 (The Program Repair Problem). Given a program P = 〈SP , δP〉, the set of
legitimate states S, and the required average convergence time λ, identify P ′ = 〈SP′ , δP′〉
such that

SP′ ⊆ SP
δP′ ⊆ δP
P ′ converges to S from SP′ within λ′, λ′ ≤ λ.

In order to characterize the complexity of the above problem, we identify a corresponding
decision problem. The first attempt to find this decision problem is as follows:

I Definition 9 (The Decision Problem (Attempt 1) (Dec1).). Given a program P = 〈SP , δP〉,
the set of legitimate states S, and the required average convergence time λ: Does there exist
a program P ′ = 〈SP′ , δP′〉 that satisfies the requirements specified for the program repair
problem in Definition 8.

J. Chen and M. Roohitavaf, and S. S. Kulkarni 23:5

The decision problem Dec1 can be trivially answered by setting SP′ to S. In this case, it
is straightforward that P converges to S from S within 0. To avoid such trivial answer, we
require that recovery from all states in SP be preserved. Hence, we require that SP′ = SP .
Hence, the second attempt at defining the decision problem is as follows:

I Definition 10 (The Decision Problem (Attempt 2) (Dec2)). Given a program P = 〈SP , δP〉,
the set of legitimate states S, and the required average convergence time λ: Does there exist
a program P ′ = 〈SP′ , δP′〉, such that SP′ = SP and P ′ satisfies the requirements specified
for the program repair problem in Definition 8.

The decision problem Dec2 can also be solved in P (in the state space of the program)
as follows: We start with P ′ that contains no transitions in SP − S. Then, from each state
in SP − S, we add the shortest path (least recovery in terms of number of transitions) to
some state in S. If there are several shortest paths, we can choose any one of them. We
argue (in Section 4) that the resulting program guarantees that starting from any state
in SP , the program reaches a state in S. Also, the resulting program provides the least
average convergence time. Hence, if the average convergence time is larger than λ then it is
impossible to find P ′ that satisfies the problem statement Dec2.

In both decision problems Dec1 and Dec2, we require that δP′ ⊆ δP . Requiring δP′ = δP
is meaningless since it would require P and P ′ to be identical. However, we can focus on
finding P ′ that preserves the maximum behavior of P . Having P ′ with more non-determinism
is desirable, as it provides the designer with a maximum choice in terms of implementation.
It is also known to increase the ability to add new properties in the future. Thus, we define
the decision problem as follows:

I Definition 11 (The Decision Problem (Final) (Dec3)). Given a program P = 〈SP , δP〉, the
set of legitimate states S, the required average convergence time λ, and integer k: Does
there exist a program P ′ = 〈SP′ , δP′〉, such that SP′ = SP , |δP′ | ≥ k, and P ′ satisfies the
requirements specified for the program repair problem in Definition 8.

In Section 4, we show that Dec3 is NP-complete in the state space SP . Given that Dec2 is
in P but Dec3 is NP-complete, it follows that there is a tradeoff between the time required to
find P ′ and the fraction of transitions/behaviors removed by P ′. In particular, it is efficient
to find P ′ that preserves only a small subset of behaviors. However, it is significantly more
complex to design P ′ that designs the maximum possible behaviors.

4 Complexity Analysis

In this section, we show that Dec2 can be solved in polynomial time in the state space of the
program, using a straightforward approach, but Dec3 is NP-complete.

Regarding Dec2, we construct transitions of Pminpath as follows: For each state, s 6∈ S,
we include the transitions corresponding to the path Ls which is the shortest path from s to
some state in S. Next, in Lemmas 12 and 13, we show that the resulting program provides
the least average convergence time for any program that solves the problem in Definition 8.
Hence, if this program does not provide the desired average recovery time then the answer
to Dec2 is false.

I Lemma 12. Pminpath guarantees that starting from any state in Sp, the program reaches
a state in S.

I Lemma 13. Pminpath provides the least average recovery time for any program that solves
the problem in Definition 8.

OPODIS 2015

23:6 Ensuring Average Recovery with Adversarial Scheduler

I Theorem 14. Dec2 can be solved in polynomial time in the state space of the input
program P.

Regarding Dec3, we can reduce the problem of adding liveness constraints in [5] to Dec3.
Specifically, in [5], it is shown that the following problem is NP-complete.

Given a program P, two state predicates S and T and a positive integer k, does there
exist a P ′ such that SP′ = SP , δP′ ⊆ δP , every computation of P ′ that starts in a state
predicate T reaches a state in state predicate S and δP′ ≥ k.

Showing that Dec3 is in NP is straightforward. To reduce the above problem to an
instance of Dec3, we essentially need to set the value of λ, the average convergence time of
P ′ to |SP |. It is straightforward to observe that if every computation of P ′ reaches the state
predicate S then the average convergence time is less than |SP |. Thus, we have

I Theorem 15. Dec3 is NP-complete in the state space of the input program P.

5 Repair Approaches

In this section, we consider the problem of repairing a given program P to meet the average
convergence time λ requirement. As shown in Theorem 15, this problem is NP-hard under the
constraint that the revised program must preserve a given number of transitions. By contrast,
if we solve this problem minimally (Dec2) without the above constraint, then the problem
can be solved in P (cf. Theorem 14). However, the solution for this approach (discussed in
Section 5.1) is likely to include only a small number of transitions in the repaired program.
In other words, there is a tradeoff between the time required to design the repaired program
and the level of non-determinism (choices) available to that repaired program. Hence, we
evaluate this tradeoff with several heuristics. At one extreme, we consider the approach that
is expected to be the fastest but provides least non-determinism. This approach is based on
the algorithm that solves Dec2. The other extreme, i.e., the solution with maximum choices,
requires exponential time (unless P = NP) and, hence, is infeasible. We also consider several
intermediate heuristics as well.

We develop the following six approaches. Of these, the first approach, Shortest Convergence
Path (SCP), focuses on adding those transitions which lead to the shortest convergence paths.
The second approach, Eliminate Longest Path (ELP), focuses on removing offending behaviors
that cause an increase in the delay of convergence. The third approach, Keep Best Path
(KBP), repairs the given program by only preserving transitions that lead to the shortest
convergence paths when several outgoing transitions are available for states.

These first three approaches view the program purely in terms of its transitions. They
ignore the structure of the program. In the next two heuristics, we focus on the structure of
the program in terms of guarded commands [11]. Specifically, the forth approach, Restrict
Individual Actions (RIA), uses the guarded commands of the input program P and constructs
P ′ whose guards are a combination of guards involved in P. The fifth approach, Restrict
Individual Actions with Distribution Restrictions (RIAD), extends RIA to deal with restrictions
imposed by distributed systems. In particular, it restricts the actions whose guards can be
combined. This allows one to ensure that the repaired program can be implemented in low
atomicity where each process can read or write only a subset of variables. Hence, RIAD
provides a mechanism to guarantee average convergence time to distributed systems where
each process can read/write only a subset of program variables.

Finally, the sixth approach, Solve Similar Problem (SSP) partitions the problem into two
subproblems. Of these, in the first step, we focus on guaranteeing worst case convergence

J. Chen and M. Roohitavaf, and S. S. Kulkarni 23:7

time with value that is larger than the desired average convergence time. And, in the second
step, we apply ELP on the resulting program.

In all these approaches, our algorithm takes as input the program P , its set of legitimate
states S and the desired average convergence time λe. The algorithm returns the desired
program P ′ if a solution is found that solves the problem in Definition 8. Otherwise, it
returns φ.

5.1 Approach 1 (SCP): A Refinement Procedure via Including Shortest
Convergence Paths

In this section, we present SCP (Shortest Convergence Path) – a fast heuristic that focuses on
reducing convergence time without considering the number of preserved transitions. Based
on the idea of Dec2, SCP repairs a given program by preserving only those transitions that
lead a program to shortest convergence paths. This reduces/eliminates choices that the
scheduler can play. However, it is anticipated that it would eliminate a large number of
transitions/behaviors. To identify transitions that lead to the shortest convergence path, our
approach SCP performs a backward computation from legitimate states.

Figure 1 gives pseudocode for the overall refinement algorithm of SCP. We initialize
the revised program to ∅ and set the current reachable state set to the set of legitimate
states. In each iteration of the RepairBySCP loop, starting from current reachable states, we
perform a backward computation to identify transitions that lead to the shortest convergence
path. Based on such one-step backward search per iteration, we identify newly reachable
state Snext (Line 8) and calculate the transitions that lead program from Snext, Scurrent

(Line 9). Then, we update the current reachable state set in Line 10. In this step, our
implementation simply performs Scurrent ∪ Snext. Now, we use the transitions computed in
Line 9 to update the current revised program (Line 11). In particular, our implementation
simply performs δcurrent ∪ δtmp. Based on the updated program transitions, we re-calculate
the average convergence time of Pc. There are two scenarios for our algorithm to stop
the while loop. One is that if we reach a program Pc whose average convergence time is
larger than λe, the loop will stop. As in Line 7, P ′ records the revised program that fits
the average convergence time requirement. The other one is that our refinement procedure
has included all the transitions in the shortest convergence path and the generated program
fits the average convergence time requirement, that is, λr < λe. In this case, our refinement
process will break the loop.

Hence, after executing such an iterative refinement procedure, our refinement algorithm
generates a program P ′ that holds the maximum λP′ and λP′ ≤ λe.

5.2 Approach 2 (ELP): A Refinement Procedure via Eliminating
Maximal Transitions

In this section, we present ELP (Eliminate Maximal Path) –a heuristic that focuses on
reducing convergence time while preserving maximum non-determinism.

The key idea of ELP is to find the set Smax, the set of states from where the (worst case)
convergence path is the longest. Let λworst be this worst case convergence path. Let Snext

be the set of states from where the worst case convergence path is λworst − 1. After finding
Smax and Snext, we remove transitions {(s1, s2)|s1 ∈ Smax ∧ s2 ∈ Snext}. This process is
repeated until we find the desired program or conclude that realizing such a program is
impossible. As an illustration, consider the Figure 3. This figure shows four states s1, s2, s3
and s4. Assume that the worst case convergence path from s2, s3 and s4 are 10, 7 and 5

OPODIS 2015

23:8 Ensuring Average Recovery with Adversarial Scheduler

RepairBySCP(P , λe):
Input λe: the expected average convergence time.

P : transitions δP and invariant SP .
Output P ′: λP′ ≤ λe

1 Scurrent = invariant;
2 δcurrent = empty;
3 P ′ = ∅;
4 Pc = ∅;
5 do
6 {
7 P ′ = Pc;
8 Snext ← BackwardOneStepCompute(Scurrent);
9 δtmp ← CalculateTransition(Snext, Scurrent);
10 Scurrent ← UpdateCurrentState(Scurrent, Snext);
11 Pc ← RefineProgramTransitions(δcurrent, δtmp);
12 λr ← CalculateAvgConvTime(Pc);
13 if (Pc = ∅)
14 break ;
15 }
16 while (λr > λe);// λr is the current average convergence time after refinement.
17 Return P ′;

Figure 1 SCP: program repair by preserving shortest convergence path.

RepairByELP(P , λe):
Input λe: the expected average convergence time.

P : transitions δP and invariant SP .
Output P ′: λP′ ≤ λe

1 P ′ = P ;
2 do
3 {
4 Smax ← CalculateMaximalState(P ′);
5 Snext ← CalculateNextMaxState(P ′);
6 δmaxGroup ← CalculateMaxTrans(Smax, Snext);
7 P ′ ← RefineProgramTransitions(Pc, δmaxGroup);
8 λr ← CalculateAvgConvTime(Pc);
9 if (P ′ = ∅)
10 break ;
11 }
12 while (λr > λe);// λr is the current average convergence time after refinement.
13 Return P ′

Figure 2 ELP: A Refinement Procedure via Eliminating Maximal Transitions.

respectively. In that case, worst case path from s1 is 11. Also, assume that s1 ∈ Smax. In
this case, we remove the transition (s1, s2).

Figure 2 gives the pseudo code for the overall refinement algorithm. The procedure
RepairByELP repairs the given program P top-down, starting with original program transition
δP . In each iteration, we calculate the maximal state set Smax (Line 4) and the next-maximal
state set Snext (Line 5) for the current revised program P ′. With Smax and Snext, we calculate
a group of maximal transitions. As in Line 6, we calculate maximal transitions (denoted
as δmaxGroup). Then in Line 7, we repair program by eliminating δmaxGroup from current
program transitions set. Line 8 calculates the current average (maximal) convergence time for
P ′. Line 9 describes a possible case where our algorithm reaches an empty program. If this
case occurs, Line 10 would break the computation loop. Otherwise, the whole RepairByELP
loop will stop when it reaches a point where current average convergence time is less than λe.
The resulting program P ′ fits the average convergence time requirement, that is λP′ ≤ λe.

J. Chen and M. Roohitavaf, and S. S. Kulkarni 23:9

Figure 3 Four states s1, s2, s3 and s4.

RepairByKBP(P , λe):
Input λe: the expected average convergence time.

P : transitions δP and invariant SP .
Output P ′: λP′ ≤ λe

1 P ′ = P ;
2 do
3 {
4 Smax ← CalculateMaxState(P ′);
5 δnonMin ← CalculateNotMinTrans(Smax);
6 P ′ ← RefineProgram(P ′, δnonMin);
7 λr ← CalculateAvgConvTime(P ′);
8 if (Pc = ∅)
9 break ;
10 }
11 while (λr > λe);// λr is the current average convergence time after refinement.
12 Return P ′;

Figure 4 KBP: A Refinement Procedure via Removing NonMinimum Transitions.

5.3 Approach 3 (KBP): A Refinement Procedure via Eliminating
NonMinimum Transitions

In this section, we present KBP (Keep Best Path) – a heuristic that focuses on reducing
convergence time with considering preservation of least non-determinism for those maximal
states. Similar to the approach ELP, during the refinement procedure, our approach KBP
iteratively removes a group of transitions from current program transition set until we reach
a point where the revised program fits the average convergence time requirement. The
difference between KBP and ELP is that we remove not only the maximal transitions from
Smax but also other transitions except those that provide the best recovery time.

Once again, consider the transitions in Figure 3. In this figure, assuming that s1 ∈ Smax,
we keep the transition (s1, s4) and remove (s1, s2) and (s1, s3). Observe that in this case,
we are removing more transitions while making a bigger impact on the average convergence
time. Compared with ELP, we expect that KBP will reduce the time for repair but it will
result in more transitions being removed.

The procedure RepairByKBP in Figure 4 repairs the given program top-down, starting
with original transitions. Specifically, we calculate Smax in Line 4 and corresponding
nonminimum transition set δnonmin for each state in Smax. Then, we repair program by
eliminating δnonmin from current program transitions (Line 6). Line 7 calculates the current
average (maximal) convergence time for P ′. Line 8 describes a possible case where our
algorithm reaches an empty program. If this case occurs, Line 9 would break the computation
loop. The resulting program P ′ is one solution that fits the average convergence time
requirement, that is, λP′ ≤ λe.

OPODIS 2015

23:10 Ensuring Average Recovery with Adversarial Scheduler

5.4 Approach 4 (RIA): A Refinement Procedure via Revising Maximal
Actions with Minimal Actions

While the previous three approaches focused on repair at transition level, in this approach,
we focus on additional structure in the given program to perform the repair. This allows
one to take into consideration problems that arise in distributed systems as well as possible
limitations on how programs are evaluated.

Before we describe our approach, we consider the case where the state space is more
compactly represented by variables and program transitions are compactly represented using
guarded commands of the form g −→ st. In particular, in this case, the state space is obtained
by assigning each variable value from its respective domain. And, transitions corresponding
to an action g −→ st, where g is a Boolean expression involving program variables and st
is a statement that updates those program variables, are represented by the set {(s0, s1)|g
evaluates to true in s0 and s1 is obtained by updating those variables as prescribed by s1} 1

Specifically, in this approach, we focus on revising the given program so that the guards
and statements in the repaired program are comparable to that in the original program.
To illustrate our approach, consider Figure 3. In this figure, let the transition (s1, sa) be
executed by the action ga −→ sta, where 2 ≤ a ≤ 4. In this figure, in approach ELP, we
removed the transition (s1, s2). In RIA, we achieve the same by restricting the corresponding
action g2 −→ st2 to be executed only if the action corresponding to (s1, s4) is not enabled.
In other words, we change the action to g2 ∧ (¬g4) −→ st2. Observe that this change causes
removal of additional transitions that start from a state where g2 is true and g4 is false.
This approach is based on the heuristic that this overall change will result in reduction in
the average convergence time. Observe that with this change, the guards involved in the
repaired program are a combination of the guards involved in the original program. And,
the statements in the repaired program are same as that in the original program. Since the
guards of the original program represent predicates that could be checked in the original
program, this allows the user to control the types of actions that can appear in the repaired
program.

Figure 5 gives the pseudo code for the overall refinement algorithm. Specifically, Line
4 computes Smax, the state set in which each state has a possibility to reach maximal
convergence path. Line 5 calculate the maximal actions for each state in Smax. Line 6
calculate the minimal actions for each state in Smax. Line 7 revise the maximal actions for
each state in Smax using the corresponding minimal actions. Then Line 8 refines program by
repairing those maximal actions from current program transition set. Line 9 calculates the
current average (maximal) convergence time for P ′. Line 10 describes a possible case where
our algorithm reaches an empty program. If this situation occurs, Line 11 would break the
computation loop. Otherwise, the resulting program P ′ satisfies the average convergence
time, that is λP′ ≤ λe.

After executing such an interatively refinement procedure, our refinement algorithm
either reaches an empty program or returns a program that fits the average convergence time
requirement.

1 As an illustration, if the program had two variables x and y with domain {0, 1} and {0, 1, 2} respectively
then the state space contains 6 possible states 00, 01, 02, 10, 11 and 12 where the first value denotes
the value of x and the second denotes the value of y. And, action x = y −→ x = 0 corresponds to
transitions (00, 00), (11, 01).

J. Chen and M. Roohitavaf, and S. S. Kulkarni 23:11

RepairByRIA(P , λe):
Input λe: the expected average convergence time.

P : transitions δP and invariant SP .
Output P ′: λP′ ≤ λe

1 P ′ = P ;
2 do
3 {
4 Smax ← CalculateMaxState(P ′);
5 actmax ← CalculateMaxAct(Smax,P ′);
6 actmin ← CalculateMinAct(Smin,P ′);
7 act′max ← RepairActions(actmax, actmin);
8 P ′ ← RefineProgram(act′max,P ′);
9 λr ← CalculateAvgConTime(P ′);
10 if (P ′ = ∅)
11 break ;
12 }
13 while (λr > λe);// λr is the actual average convergence time of P .
14 Return P ′;

Figure 5 RIA: A Refinement Procedure via Revising Maximal Actions with Minimal Actions.

5.5 Approach 5 (RIAD): A Refinement Procedure via Revising
Maximal Actions with Distribution Consideration

In this section, we extend RIA to take into account what guards could be used in repairing a
given action. In turn, this allows to fully capture the requirements of a distributed system.
To illustrate this, consider the case where the nature of distributed systems prevents a process
from accessing all program variables. Rather, each process is only allowed to read and write
a subset of variables.

Recall that in RIA, we restricted the guard of one action by negation of the guard of
another action. Given a guard, it is straightforward to identify the variables that it is allowed
to read. Hence, for each action, we identify neighborhood actions that can be used to restrict
it while preserving the read/write restrictions. By only selecting this subset of actions, we
can ensure that the synthesized program satisfies the read/write restrictions of the given
system. Since RIAD is similar to RIA (except for this neighborhood restriction), we do not
provide a detailed algorithm for RIAD.

5.6 Approach 6 (SSP): A Refinement Procedure via Eliminating
Maximal Transitions from a Reduced Program

In this section, we propose SSP (Solve Simpler Problem). The main idea of this algorithm
is to use the same repair technique as ELP (from Section 5.2) on a program Pr (described
next) rather than the original program P.

Let λe be the desired average convergence time. Let λworst be the worst case convergence
time of P. The goal of Pr is to ensure that the worst case convergence time is bounded by
λPr where λworst ≥ λPr ≥ λe. Subsequently, we utilize ELP to remove any behaviors from
Pr to ensure that the average convergence requirements are satisfied.

The motivation behind SSP is that each step involved could be implemented efficiently.
Specifically, the first step, which involves ensuring worst case behavior, is simpler. This is
due to the fact that worst case analysis of repaired programs is substantially easier than
average case behavior. Also, the transitions removed in the first step are good candidates for

OPODIS 2015

23:12 Ensuring Average Recovery with Adversarial Scheduler

removal from the desired program P ′. Also, it is anticipated that Pr is close to the desired
program P ′. Hence, the amount of time involved in the second step would be small as well.

Observe that SSP provides a continuum of possible values for λPr
. At one extreme,

choosing λPr = λworst will result in SSP to be equivalent to ELP. At another extreme,
choosing λPr

= λ will result in unnecessary removal of transitions in the first step and
obviate the need for the second step. For the sake of analysis, we choose λPr to be the
average of λworst and λe. Since the construction of Pr is straightforward and the remaining
algorithm is same as ELP, we do not provide detailed algorithm for SSP.

6 Case Study & Experiment Results

We have developed a tool Rtime that implements the six approaches described previously.
Rtime takes as input the following parameters:

the input program P,
the set of legitimate states, S
the desired convergence time, λ, and
approach to be used for adding average convergence time

It identifies the program that satisfies the requirements of Problem 8. For the sake of
analysis, we allow Rtime to output a program even if it removes all transitions from some
state s ∈ SP . When this happens, the fraction of transitions that are preserved will be lower
as well. Since our goal is to compare the level of non-determinism left in the program and
the time taken for synthesis, this allows us to compare the different approaches directly.

Observe that all our approaches are sound by construction, i.e., when they output a
program, we have already validated that the average convergence time of that program is less
than the given parameter λ. Also, since these programs only use polynomial time, the number
of transitions they preserve is not necessarily maximum. Also, if any of these approaches
remove all transitions from some state s, making s be a deadlock state then they cannot
satisfy SP′ = SP . However, instead of declaring failure in this case, we report the number of
transitions still preserved in the program. This allows us to compare all approaches in all
examples. Note that the worst case is that all states outside S become deadlock states. In
this case, the fraction of preserved transitions will be 0.

We now demonstrate our approaches on a classic stabilizing algorithm, which is K-state
token ring program [10] and the Stabilizing Tree based algorithm [21] that is obtained adding
stabilization to the classic mutual exclusion algorithm by Raymond [21]. All the experiments
are performed on an Intel Core i7 machine 2.90GHz with 8GB memory. Also, the reachability
analysis required for the different approaches is performed with the BDD package [8].

6.1 K-state Token Ring Program
We give a brief description of the K-state token ring program from [10]. The program Ptk

consists of n processes, 0..(n− 1), that are arranged in a unidirectional ring. For each process
pi, it has one variable xi with domain {0, 1, . . . K-1}.

Action0 : x0 == xn−1 −→ x0 = (x0 + 1) mod K;
Action1 : xi 6= xi−1 −→ xi = xi−1;

In the above two actions, Action0 is only for process p0. When x0 == xn−1 is satisfied,
this action is enabled for execution. If chosen for execution, process 0 increments x0 by 1 in
modulo K arithmetic. Action1 is for all other processes pi, i 6= 0. When xi differs from xi−1,
Action1 is enabled for execution. When pi executes its action, it sets xi to the value of xi−1.

J. Chen and M. Roohitavaf, and S. S. Kulkarni 23:13

Legitimate states. The legitimate states of the program are those states where only one
token is circulated along the ring. To calculate this set, we start from a state where all x
values are 0. Then, we compute all the states reached by the execution of the above program.

I Remark. In subsequent analysis, we let K = n to ensure that convergence to legitimate
states is guaranteed.

We conduct our experiments for repairing the token-ring program Ptk with different
average convergence requirements. Instead of using specific real number values for the desired
average convergence time, we use a fraction of the existing worst case convergence time. This
is due to the fact that the time required to obtain an average convergence time of 10 for 3
processes is not comparable to that for 4 processes. Hence, to obtain a valid comparison, we
first identify the average convergence time for each of the programs. Subsequently, we use
a fraction of this worst case requirement as the value of desired average convergence time.
Specifically, we use three values: λ1, λ2 and λ3, where λ1 is 70% of the original average
convergence time, λ2 is 80% of the original convergence time and λ3 is 90% of the original
convergence time. We perform our experiments for k ∈ {3, 4, 5, 6, 7}, where k is the number
of processes in the input program.

Our results are as shown in Tables 1 and 2. Specifically, Table 1 presents transition
preservation percentage of original program for the revised program generated by our
approaches. Table 2 presents revision time (in seconds) for generating the revised program
that fits the λ requirements. In particular, we run each experiment for at most one hour.
We set the running time as N/A when the experiment couldn’t return a result within one
hour. From these results, we find that SCP identifies the desired program most quickly. For
example for 7 processes when requiring λ3, SCP could find the desired program within 0.26
seconds. However, it eliminated most of the transitions. It only maintained 00.03 percentage
of the original transitions. By contrast, KBP took significantly longer time. However, it kept
81.26 percentage of transitions. Observed from these results, for token-ring program, we find
that RIAD provides the best approach for tradeoff between the time required to obtain the
desired program and the number of transitions preserved in that program.

6.2 Stabilizing Algorithm Based on Raymond’s Tree based Mutual
Exclusion Program

This program, Prt, consists of n processes, numbered 0..(n−1). These processes are arranged
in a fixed binary tree. For each process pi, it has one variable hi with domain{i,NBRi},
where NBRi denotes the neighbor processes of pi. When hi = i, then process pi has the
token. Otherwise, the holder of pi points to one of its neighbors. In particular, Prt provides
three types of convergence actions as follows.

Action0 : hi 6= NBRi ∪ {i} −→ hi = PRi|i|NBRi;
Action1 : hi 6= PRi ∧ hP Ri 6= i −→ hi = PRi;
Action2 : hi = PRi ∧ hP Ri

= i −→ hP Ri
= PRi;

In the above actions, PRi denotes the parent process of pi in the static tree and NBRi

denotes the neighbor processes of pi. Specifically, the first action Action0 ensures that the
holder of a process points to its neighbors or itself. This action is executed by all processes.
The second and third actions are exeted by all processes except the root process. Of these,
the second action ensures that the holder of pi is either PRi or holder of PRi is same as i.
And, the third action ensures that the holder relation between pi and PRi is acyclic.

OPODIS 2015

23:14 Ensuring Average Recovery with Adversarial Scheduler

Table 1 Transition Coverage Percentage of Different Apporaches forK-state Token Ring Program.

λ # proc SCP ELP KBP RIA RIAD SSP

0.7 3 46.67% 80.00% 51.00% 60.00% 48.57% 80.00%
0.7 4 16.25% 80.00% 60.16% 70.00% 62.50% 80.00%
0.7 5 02.96% 63.62% 53.36% 55.97% 74.70% 63.62%
0.7 6 00.37% 53.96% 33.48% 64.58% 79.57% 53.96%
0.7 7 00.03% 46.91% 26.50% 53.85% 82.60% 46.91%

0.8 3 46.67% 93.33% 51.11% 60.00% 48.57% 80.00%
0.8 4 16.25% 88.75% 68.60% 92.50% 92.50% 80.00%
0.8 5 02.96% 81.84% 65.29% 77.81% 74.70% 71.53%
0.8 6 00.37% 72.76% 60.01% 64.58% 79.57% 61.00%
0.8 7 00.03% 64.85% 55.70% 70.11% 82.60% 59.27%

0.9 3 46.67% 93.33% 82.22% 94.29% 94.29% 80.00%
0.9 4 16.25% 95.63% 85.47% 92.50% 92.50% 80.00%
0.9 5 02.96% 91.11% 84.69% 99.57% 99.57% 63.62%
0.9 6 00.37% 88.16% 83.07% 99.44% 99.44% 60.99%
0.9 7 00.03% 83.93% 81.26% 84.67% 82.60% 53.76%

Table 2 Revision Time (in seconds) of Different Approaches for K-state Token Ring Program.

λ # proc SCP ELP KBP RIA RIAD SSP

0.7 3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
0.7 4 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
0.7 5 <0.01 0.06 0.20 0.07 0.06 0.07
0.7 6 0.02 3.34 9.05 0.50 0.43 3.30
0.7 7 0.26 N/A 1,134.79 4.30 2.60 N/A

0.8 3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
0.8 4 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
0.8 5 <0.01 0.04 0.16 0.05 0.06 0.06
0.8 6 0.024 1.93 6.34 0.50 0.43 2.80
0.8 7 0.26 N/A 905.66 3.83 2.58 N/A

0.9 3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
0.9 4 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
0.9 5 <0.01 0.02 0.09 0.03 0.04 0.07
0.9 6 0.02 0.95 4.13 0.29 0.34 2.71
0.9 7 0.25 206.50 580.12 2.80 2.77 N/A

J. Chen and M. Roohitavaf, and S. S. Kulkarni 23:15

Table 3 Transition Coverage of Different Apporaches(Raymond Tree Based Mutual Exclusion
Program).

λ # proc SCP ELP KBP RIA RIAD SSP

0.7 4 3.13% 86.03% 82.91% 58.46% 58.46% 77.67 %
0.7 5 0.38% 81.25% 83.73% 43.02% 58.46% 81.25 %
0.7 6 00.03 % 85.60% 84.43% 38.97% 52.06 % 81.96%
0.7 7 <0.01% 86.22% 85.60% 33.91% 49.66% 84.40%
0.7 8 <0.01% 87.20 % 87.81 % 34.14% 39.00% 86.25%

0.8 4 3.13% 77.67% 75.83% 49.63% 53.66% 77.67 %
0.8 5 0.38% 85.66% 83.73% 55.12% 60.98% 81.25 %
0.8 6 00.03% 85.60% 87.73% 40.44% 57.35 % 81.96%
0.8 7 <0.01% 88.39% 87.37% 36.04% 52.70 % 84.18%
0.8 8 <0.01% 88.37% 89.43% 35.00% 49.90% 86.23%

0.9 4 3.13% 86.03% 91.64% 76.47% 76.47% 77.67 %
0.9 5 0.38% 91.31% 89.13% 55.12% 63.41% 78.61 %
0.9 6 0.03% 89.22% 91.89% 62.21% 58.82% 81.96%
0.9 7 <0.01% 91.42% 93.58% 61.92% 57.77% 84.18%
0.9 8 <0.01% 92.88% 91.87% 63.85% 53.94% 86.23%

Table 4 Revision Time (in seconds) of Different Approaches (Raymond Tree Based Mutual
Exclusion Program).

λ # proc SCP ELP KBP RIA RIAD SSP

0.7 4 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
0.7 5 <0.01 0.01 0.03 0.03 0.02 0.01
0.7 6 0.02 0.25 1.11 1.08 0.71 0.30
0.7 7 0.15 11.87 53.52 49.80 30.53 12.67
0.7 8 0.01 17.47 1,741.98 3,249.34 2,180.22 24.73

0.8 4 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
0.8 5 <0.01 0.01 0.03 0.02 0.02 0.01
0.8 6 0.02 0.24 1.14 1.00 0.69 0.30
0.8 7 0.16 9.45 50.18 47.77 32.58 12.67
0.8 8 0.01 12.59 1,706.08 3,170.72 1,905.08 24.54

0.9 4 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
0.9 5 <0.01 <0.01 0.02 0.02 0.01 0.01
0.9 6 0.02 0.19 0.95 0.67 0.58 0.30
0.9 7 0.16 6 .35 32.63 42.37 28.80 12.67
0.9 8 0.01 5.39 1,678.03 1,845.25 1,845.94 24.54

OPODIS 2015

23:16 Ensuring Average Recovery with Adversarial Scheduler

Tables 3 and 4 present our experiment results for Raymond Tree based mutual exclusion
program. In particular, Table 3 illustrates the transition coverage percentage of the original
program for the newly generated program with respect to our six approaches. Table 4 shows
the performance of these six approach in revision time (in seconds). Similar to previous
study, we run each experiment for at most one hour. If the revision time exceeds one hour,
we will identify it as N/A in the table.

We perform our experiments for n ∈ {4, 5, 6, 7, 8}, where n is the number of processes in
the input program. From these results, same as in the experiment for token-ring program,
SCP identifies the desired program most quickly. For example for 7 processes when λ is set
to 0.9, SCP could find the desired program within 0.25 seconds. However, it eliminated most
of the transitions. It maintained less than 0.01 percentage of the original transitions. By
contrast, SSP took significantly longer time. However, it kept 86.23 percentage of transitions.
Observed from these results, we find that KBP provide the best approach for tradeoff between
the time required to obtain the desired program and the number of transitions preserved in
that program.

7 Related Work

In this work, we focused on the problem of adding average recovery in the presence of
an adversarial scheduler. The closest comparable work to this is [1] where authors have
considered the problem of synthesizing a program with given average recovery time. In this
work, the authors omit the notion of an adversarial scheduler. Instead, they assume that
each non-deterministic choice is resolved through randomization. Hence, if the program
synthesized using these approaches is used to reduce the recovery time then its average
convergence time in the presence of an adversary can be higher. By contrast, in our work,
we have focused on the problem of guaranteeing average recovery time in the presence of an
adversary. In other words, the solution provided by our approaches will ensure that even if
the adversary puts arbitrary probabilities on different non-deterministic choices, the average
recovery constraint will be satisfied.

The work in [7, 12, 19, 6, 14, 18, 20, 22, 16, 13, 15] has focused on the topic of adding safety
properties, liveness properties and fault-tolerance properties. The properties considered in
this work are represented using the framework of safety and liveness by Alpern and Schneider
[2]. As discussed in Section 1, each program computation can be evaluated independently to
determine whether it satisfies or violates the specification. By contrast, the average response
time considered in this paper cannot be represented using the framework in [2]. It requires
a more generalized framework of hyperproperties [9]. In this framework, satisfaction of a
requirement is determined by all computations included by the program. In particular, the
average convergence time is an instance of a hyperliveness property. While the work in this
paper enables one to repair a given program to add one hyperliveness property, one future
work in this area is to generalize to other hypersafety and hyperliveness properties.

8 Conclusion

We focused on the problem of revising a given program to add average recovery time in
the presence of an adversarial scheduler who could force the program to choose the least
desirable path during recovery. Adding average recovery time requires removal of some
behaviors/transitions that cause the recovery to increase beyond acceptable limit. We showed
that ensuring that only a minimum number of transitions are removed is NP-hard. Hence,
we proposed six different heuristics.

J. Chen and M. Roohitavaf, and S. S. Kulkarni 23:17

We find that, as expected, the first heuristic, SCP, constructs the desired program in
the least amount of time. However, it ends up removing a large number of transitions
unnecessarily. For example, in case of the token ring program with 7 processes, it found the
desired program in 0.2 seconds. However, it preserved only 00.03 percent of transitions. By
contrast, RIAD preserved 82.60% of transitions but took around 2 seconds to obtain the
desired program.

We presented the analysis of our six approaches in two case studies. Based on these case
studies, we find that RIAD and KBP provide the best approaches for tradeoff between the
time required to obtain the desired program and the number of transitions preserved in that
program. We plan to conduct more case studies in the future so that we could identify the
effect of specific program structure on program revision for the problem of average recovery
time.

In our work, we focused on the problem of average recovery time in the presence of
an adversarial scheduler. There are two aspects to the recovery in the presence of faults:
(1) state to which the program is perturbed to when faults stop occurring, and (2) the
non-deterministic choices made by the scheduler during recovery. Regarding the first aspect,
we considered the case where the state to which the program is perturbed to is chosen with
equal probability. However, it is straightforward to extend it to the case where each state is
associated with a different probability distribution. This will only change the way average
convergence time is computed. However, all our aprpaoches could still be used. Regarding
the second aspect, we assumed that the scheduler can arbitrarily choose the execution order.
Our work could also be extended to other choices of scheduler.

This work also demonstrates the feasibility of adding some hyperproperties [9]. Specifically,
the requirement of average convergence time cannot be expressed in terms of the framework
of safety and liveness by [2]. This is due to the fact that checking whether a given program
computation is acceptable or not depends upon other computations involved in the program.
A possible future work in this area is to pursue such repair for other hyperproperties.

References
1 Saba Aflaki, Fathiyeh Faghih, and Borzoo Bonakdarpour. Synthesizing self-stabilizing

protocols under average recovery time constraints. In 35th IEEE International Conference
on Distributed Computing Systems, ICDCS 2015, Columbus, OH, USA, June 29 – July 2,
2015, pages 579–588, 2015.

2 Bowen Alpern and Fred B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185,
1985. doi:10.1016/0020-0190(85)90056-0.

3 A. Arora and M. G. Gouda. Closure and convergence: A foundation of fault-tolerant
computing. IEEE Transactions on Software Engineering, 19(11):1015–1027, 1993.

4 Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow by self-
composition. Mathematical Structures in Computer Science, 21(6):1207–1252, 2011. doi:
10.1017/S0960129511000193.

5 Borzoo Bonakdarpour. Automated Revision of Distributed and Real-Time Programs. PhD
thesis, Michigan State University, 2009.

6 Borzoo Bonakdarpour, Ali Ebnenasir, and Sandeep S. Kulkarni. Complexity results in
revising unity programs. ACM Transactions on Autonomous and Adaptive Systems (TAAS),
4(1):5:1–5:28, Feb. 2009.

7 Borzoo Bonakdarpour, Sandeep S. Kulkarni, and Fuad Abujarad. Symbolic synthesis of
masking fault-tolerant distributed programs. Distributed Computing, 25(1):83–108, 2012.
doi:10.1007/s00446-011-0139-3.

OPODIS 2015

http://dx.doi.org/10.1016/0020-0190(85)90056-0
http://dx.doi.org/10.1017/S0960129511000193
http://dx.doi.org/10.1017/S0960129511000193
http://dx.doi.org/10.1007/s00446-011-0139-3

23:18 Ensuring Average Recovery with Adversarial Scheduler

8 Buddy – a binary decision diagram package. http://buddy.sourceforge.net/manual/
main.html.

9 Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer Security,
18(6):1157–1210, 2010. doi:10.3233/JCS-2009-0393.

10 Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM,
17(11):643–644, 1974. doi:10.1145/361179.361202.

11 Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
12 Ali Ebnenasir and Aly Farahat. Swarm synthesis of convergence for symmetric protocols.

In Cristian Constantinescu and Miguel P. Correia, editors, EDCC, pages 13–24. IEEE, 2012.
doi:10.1109/EDCC.2012.22.

13 Ali Ebnenasir and Aly Farahat. Swarm synthesis of convergence for symmetric protocols. In
Proceedings of the Ninth European Dependable Computing Conference, pages 13–24, 2012.

14 Ali Ebnenasir and Sandeep S. Kulkarni. Feasibility of stepwise design of multitolerant
programs. ACM Trans. Softw. Eng. Methodol., 21(1):1, 2011. doi:10.1145/2063239.
2063240.

15 Aly Farahat and Ali Ebnenasir. A lightweight method for automated design of convergence
in network protocols. ACM Transactions on Autonomous and Adaptive Systems (TAAS),
7(4):38:1–38:36, December 2012.

16 Aly Farahat and Ali Ebnenasir. Local reasoning for global convergence of parameterized
rings. In IEEE International Conference on Distributed Computing Systems (ICDCS),
pages 496–505, 2012.

17 Joseph A. Goguen and José Meseguer. Security policies and security models. In IEEE
Symposium on Security and Privacy, pages 11–20, 1982.

18 Alex Klinkhamer and Ali Ebnenasir. A software tool for swarm synthesis of self-stabilization.
http://www.cs.mtu.edu/~apklinkh/protocon/index.html.

19 Alex Klinkhamer and Ali Ebnenasir. On the complexity of adding convergence. In Farhad
Arbab and Marjan Sirjani, editors, FSEN, volume 8161 of Lecture Notes in Computer
Science, pages 17–33. Springer, 2013. doi:10.1007/978-3-642-40213-5_2.

20 Alex Klinkhamer and Ali Ebnenasir. Synthesizing self-stabilization through superposition
and backtracking. In 16th International Symposium on Stabilization, Safety, and Security
of Distributed Systems (SSS), pages 252–267. Springer, 2014.

21 K. Raymond. A tree-based algorithm for distributed mutual exclusion. ACM Transactions
on Computer Systems, 7(1):61–77, 1989.

22 Amer Tahat and Ali Ebnenasir. A hybrid method for the verification and synthesis of
parameterized self-stabilizing protocols. In 24th International Symposium on Logic-Based
Program Synthesis and Transformation (LOPSTR), 2014.

http://buddy.sourceforge.net/manual/ main.html
http://buddy.sourceforge.net/manual/ main.html
http://dx.doi.org/10.3233/JCS-2009-0393
http://dx.doi.org/10.1145/361179.361202
http://dx.doi.org/10.1109/EDCC.2012.22
http://dx.doi.org/10.1145/2063239.2063240
http://dx.doi.org/10.1145/2063239.2063240
http://www.cs.mtu.edu/~apklinkh/protocon/index.html
http://dx.doi.org/10.1007/978-3-642-40213-5_2

Towards Establishing Monotonic Searchability in
Self-Stabilizing Data Structures∗

Christian Scheideler1, Alexander Setzer2, and Thim Strothmann3

1 Paderborn University, Paderborn, Germany
2 Paderborn University, Paderborn, Germany
3 Paderborn University, Paderborn, Germany

Abstract
Distributed applications are commonly based on overlay networks interconnecting their sites so
that they can exchange information. For these overlay networks to preserve their functionality,
they should be able to recover from various problems like membership changes or faults. Various
self-stabilizing overlay networks have already been proposed in recent years, which have the
advantage of being able to recover from any illegal state, but none of these networks can give
any guarantees on its functionality while the recovery process is going on. We initiate research
on overlay networks that are not only self-stabilizing but that also ensure that searchability is
maintained while the recovery process is going on, as long as there are no corrupted messages in
the system. More precisely, once a search message from node u to another node v is successfully
delivered, all future search messages from u to v succeed as well. We call this property monotonic
searchability. We show that in general it is impossible to provide monotonic searchability if
corrupted messages are present in the system, which justifies the restriction to system states
without corrupted messages. Furthermore, we provide a self-stabilizing protocol for the line for
which we can also show monotonic searchability. It turns out that even for the line it is non-trivial
to achieve this property. Additionally, we extend our protocol to deal with node departures in
terms of the Finite Departure Problem of Foreback et al. (SSS 2014). This makes our protocol
even capable of handling node dynamics.

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases Topological Self-Stabilization, Monotonic Searchability, Node Departures

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.24

1 Introduction

The Internet has opened up tremendous opportunities for people to interact and exchange
information. Particularly popular ways to interact are peer-to-peer systems and social
networks. For these systems to stay popular, it is very important that they are highly
available. However, once these systems become large enough, changes and faults are not an
exception but the rule. Therefore, mechanisms are needed that ensure that whenever there
are problems, they are quickly repaired, and all parts of the system that are still functional
should not be affected by the repair process. Protocols that are able to recover from arbitrary
states are also known as self-stabilizing protocols.

Since the seminal paper of Dijkstra in 1974 [4], self-stabilizing protocols have been
investigated for many classical problems including leader election, consensus, matching,

∗ This work was partially supported by the German Research Foundation (DFG) within the Collaborative
Research Center “On-The-Fly Computing” (SFB 901).

© Christian Scheideler, Alexander Setzer, and Thim Strothmann;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 24; pp. 24:1–24:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures

clock synchronization and token distribution problems. Recently, also various protocols
for self-stabilizing overlay networks have been proposed (e.g., [14, 9, 6, 10, 5, 1, 11, 12, 2]).
However, for all of these protocols it is only known that they eventually converge to the
desired solution, but the convergence process is not necessarily monotonic. In other words, it
is not ensured for two points in time t, t′ with t < t′ that the functionality of the topology at
time t′ is better than the functionality at time t.

In this paper, we focus on protocols for self-stabilizing overlay networks that guarantee
the monotonic preservation of a characteristic that we call searchability, i.e., once a search
message from node u to another node v is successfully delivered, all future search messages
from u to v succeed as well. Searchability is a useful and natural characteristic for an
overlay network since searching for other participants is one of the most common tasks in
real-world networks. Moreover, a protocol that preserves monotonic searchability has the
huge advantage that in every state, even if the self-stabilization process has not converged
yet, the already built topology can already be used for search requests.

As a starting point for rigorous research on monotonic searchability, we will focus
on building a self-stabilizing protocol that preserves monotonic searchability for the line
graph. Although the topology itself is fairly simple, to preserve searchability during the
self-stabilization process turns out to be quite challenging. Additionally, we study monotonic
searchability for the line graph if the node set is dynamic, i.e., nodes are allowed to leave the
network.

1.1 Model
We consider a distributed system consisting of a fixed set of nodes in which each node has a
unique reference and a unique immutable numerical identifier (or short id). The system is
controlled by a protocol that specifies the variables and actions that are available in each
node. In addition to the protocol-based variables there is a system-based variable for each
node called channel whose values are sets of messages. We denote the channel of node u

as u.Ch and u.Ch contains all incoming messages to u. Its message capacity is unbounded
and messages never get lost. A node can add a message to u.Ch if it has a reference to u.
Besides these channels there are no further communication means, so only point-to-point
communication is possible.

There are two types of actions. The first type of action has the form of a standard
procedure 〈label〉(〈parameters〉) : 〈command〉, where label is the unique name of that
action, parameters specifies the parameter list of the action, and command specifies the
statements to be executed when calling that action. Such actions can be called remotely.
In fact, we assume that every message must be of the form 〈label〉(〈parameters〉) where
label specifies the action to be called in the receiving node and parameters contains the
parameters to be passed to that action call. All other messages will be ignored by the nodes.
Apart from being triggered by messages, these actions may also be called locally by the
nodes, which causes their immediate execution. The second type of action has the form
〈label〉 : 〈guard〉 −→ 〈command〉, where label and command are defined as above and guard

is a predicate over local variables. We call an action whose guard is simply true a timeout
action.

The system state is an assignment of a value to every variable of each node and messages
to each channel. An action in some node p is enabled in some system state if its guard
evaluates to true, or if there is a message in p.Ch requesting to call it. In the latter case the
corresponding message is processed (in which case it is removed from p.Ch). An action is
disabled otherwise. Receiving and processing a message is considered as an atomic step.

C. Scheideler, A. Setzer, and T. Strothmann 24:3

A computation is an infinite fair sequence of system states such that for each state si,
the next state si+1 is obtained by executing an action that is enabled in si. This disallows
the overlap of action execution. That is, action execution is atomic. We assume weakly
fair action execution and fair message receipt. Weakly fair action execution means that if
an action is enabled in all but finitely many states of the computation, then this action
is executed infinitely often. Note that the timeout action of a node is executed infinitely
often. Fair message receipt means that if the computation contains a state where there is
a message in a channel of a node that enables an action in that node, then that action is
eventually executed with the parameters of that message, i.e., the message is eventually
processed. Besides these fairness assumptions, we place no bounds on message propagation
delay or relative nodes execution speeds, i.e., we allow fully asynchronous computations
and non-FIFO message delivery. A computation suffix is a sequence of computation states
past a particular state of this computation. In other words, the suffix of the computation
is obtained by removing the initial state and finitely many subsequent states. Note that a
computation suffix is also a computation.

We consider protocols that do not manipulate the internals of node references. Specifically,
a protocol is compare-store-send if the only operations that it executes on node references
is comparing them, storing them in local memory and sending them in a message. That is,
operations on references such as addition, radix computation, hashing, etc. are not used.
In a compare-store-send protocol, if a node does not store a reference in its local memory,
the node may learn this reference only by receiving it in a message. A compare-store-send
protocol cannot introduce new references to the system. It can only operate on the references
that are already there.

The overlay network of a set of nodes is determined by their knowledge of each other. We
say that there is a (directed) edge from a to b, denoted by (a, b), if node a stores a reference of
b in its local memory or has a message in a.Ch carrying the reference of b. In the former case,
the edge is called explicit (drawn solid in figures), and in the latter case, the edge is called
implicit (drawn dashed). With NG we denote the directed network (multi-)graph given by the
explicit and implicit edges. ENG is the subgraph of NG induced by only the explicit edges.
A weakly connected component of a directed graph G is a subgraph of G of maximum size so
that for any two nodes u and v in that subgraph there is a (not necessarily directed) path from
u to v. Two nodes that are not in the same weakly connected component are disconnected.
We say a node a is to the left (right, respectively) of a node b if id(a) < id(b) (id(a) > id(b)).
If there is an edge (a, b) between the two, then a is a left neighbor (right neighbor). For three
nodes a, b, c with id(a) < id(b), id(a) < id(c) (or id(a) > id(b), id(a) > id(c), respectively),
we say a node b is closer to a than c, if |id(a)− id(b)| < |id(a)− id(c)|. If it is clear from the
context we sometimes refer to the identifier of a node by dropping the id notation to , e.g.,
we write a < b instead of id(a) < id(b).

In this paper we are particularly concerned with search requests, i.e., Search(v, destID)
messages that are routed along ENG according to a given routing protocol, where v is the
sender of the message and destID is the identifier of a node we are looking for. Note that
destID does not necessarily belong to an existing node w, since we also want to model
search requests to not existing nodes. If a Search(v, destID) message reaches a node w

with id(w) = destID, the search request succeeds; if the message reaches some node u with
id(u) 6= destID and cannot be forwarded anymore according to the given routing protocol,
the search request fails. We assume that nodes themselves initiate Search() requests at
will. Therefore, the Search(destID) action is never explicitly called.

We need some additional notation for our results of Section 4, in which we extend
the protocol to handle nodes that want to leave the system. A node u has a variable

OPODIS 2015

24:4 Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures

mode ∈ {leaving, staying} that is read-only. If this variable is set to leaving, the node is
leaving; the node is staying if the variable is set to staying. Note that staying nodes can
dynamically decide at any arbitrary state if they want to leave the system by executing a
corresponding leave action. However, a leaving node cannot switch back to staying. The
ultimate goal of a leaving node is to depart from the system. There is one special command
that is important for the study of leaving nodes: exit. If a node executes exit it enters
a designated exit state and all remaining edges to or from that node are deleted. We call
such a node gone. A node that is not gone is called present. For a gone node all actions are
disabled, in particular it will not execute the timeout action regularly.

1.2 Problem Statement
A protocol is self-stabilizing if it satisfies the following two properties.
Convergence: starting from an arbitrary system state, the protocol is guaranteed to arrive

at a legitimate state.
Closure: starting from a legitimate state the protocol remains in legitimate states thereafter.
A self-stabilizing protocol is thus able to recover from transient faults regardless of their
nature. Moreover, a self-stabilizing protocol does not have to be initialized as it eventually
starts to behave correctly regardless of its initial state. In topological self-stabilization we
allow self-stabilizing protocols to perform changes to the overlay network, resp. NG. A
legitimate state may then include a particular graph topology or a family of graph topologies.

In this paper we want to build a self-stabilizing protocol for the linearization problem,
i.e., the nodes are sorted by identifiers and each node stores only two references: its closest
successor and its closest predecessor. From a global point of view, the nodes build a line
graph topology. Of course, searching is easy once a legitimate state has been reached.
However, searching reliably during the stabilization phase is much more involved. We say a
(self-stabilizing) protocol satisfies monotonic searchability according to some routing protocol
R if it holds for any pair of nodes v, w that once a Search(v, id(w)) request (that is routed
according to R) initiated at time t succeeds, any Search(v, id(w)) request initiated at a
time t′ > t will succeed. We do not mention R if it is clear from the context. A protocol is
said to satisfy non-trivial monotonic searchability if it satisfies monotonic searchability and
in every computation of the protocol there is a suffix such that for each pair of nodes v, w

for which there is a path from v to w in the target topology Search(v, id(w)) requests will
succeed.

Furthermore, we give a self-stabilizing protocol that satisfies non-trivial monotonic
searchability, solves the linearization problem and solves the Finite Departure Problem of [7].
The following problem statement is adapted from [13]:
Finite Departure Problem (FDP): In case the exit command is available, eventually reach

a system state in which (i) every staying node is awake, (ii) every leaving node is gone
and (iii) for each weakly connected component of the initial network graph, the staying
nodes in that component still form a weakly connected component.

Consequently, a leaving node u should safely execute exit, i.e., the removal of u and
its incident edges from NG does not disconnect any present nodes and does not violate
searchability.

1.3 Related work
The idea of self-stabilization in distributed computing was introduced in a classical paper
by E.W. Dijkstra in 1974 [4], in which he looked at the problem of self-stabilization in a

C. Scheideler, A. Setzer, and T. Strothmann 24:5

token ring. In order to recover certain network topologies from any weakly connected state,
researchers started with simple line and ring networks (e.g. [17, 15, 8]. Over the years more
and more network topologies were considered, ranging from skip lists and skip graphs [14, 9],
to expanders [6], Delaunay graphs [10], hypertrees and double-headed radix trees [5, 1],
small-world graphs [11] and a Chord variant [12]. Also a universal algorithm for topological
self-stabilization is known [2].

Close to our work is the notion of monotonic convergence by Yamauchi and Tixeuil [18].
A self-stabilizing protocol is monotonically converging if every change done by a node p

makes the system approach a legitimate state and if every node changes its output only once.
The authors investigate monotonically converging protocols for different classic distributed
problems (e.g., leader election and vertex coloring) and focus on the amount of non-local
information that is needed for them.

Our study of the Finite Departure Problem is heavily inspired by [7], in which the authors
propose the aforementioned problem to study graceful departures of nodes in a self-stabilizing
setting, i.e., nodes that want to leave a distributed system should decide when they can
leave without affecting weak connectivity of the topology. They conclude that in general
it is not possible to solve the FDP. However, with the use of distributed oracles (which
are specialized failure detectors [3]) the authors propose a protocol that solves the problem
and arranges the nodes in a line. Additionally, they can show that oracles are not needed if
the problem is transformed into a non-decision variant. In [13] the idea is generalized to a
protocol framework that solves the FDP without being reliant on a certain topology and is
thereby combinable with most existing overlay protocols.

1.4 Our contribution

To the best our knowledge, this paper presents the first attempt to have stricter requirements
towards the self-stabilization process in topological self-stabilization. We define and study
monotonic searchability, which captures a typical use case for overlay networks, i.e., searching
other nodes. More formally, we want to guarantee for a self-stabilizing topology that once
a search message from node u to another node v is successfully delivered, all future search
messages from u to v succeed as well. We focus on studying non-trivial monotonic searchability
for the list topology. First, we show that in general it is impossible to provide non-trivial
monotonic searchability from any initial system state, due to the presence of certain initial
messages. This justifies to study searchability only for so-called admissible system states in
which these messages are not present anymore, as long as the protocol gurantees convergence
to these states. We give a self-stabilizing list protocol and an appropriate search protocol that
achieve the desired goal and prove their correctness. Moreover, we broaden the elaborateness
of the problem statement, by allowing nodes to leave the line topology, i.e., solving the Finite
Departure Problem in addition to the aforementioned problems. Also for this combination of
problems we present suitable protocols and prove their correctness.

2 Preliminaries

Since gone nodes will never execute any action, we only consider initial states in which
all nodes are present. We also restrict the initial state to contain only a finite number of
messages that can trigger actions specified by our protocol, since other messages are ignored
by the nodes. Finally, we do not allow the presence of references that do not belong to a
node in the system. From now on, an initial system state satisfies all of these constraints.

OPODIS 2015

24:6 Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures

The following propositions are restatements of results in [14] and imply further necessary
conditions on initial system states.
1. If a compare-store-send program solves the linearization problem, each computation starts

in a weakly connected initial state.
2. If a compare-store-send program solves the linearization problem, each computation starts

in a state in which all references belong to present nodes.

A message invariant is a predicate of the following form: If there is a message m in the
incoming channel of a node, then a predicate P ′ must hold. A protocol may specify one
or more message invariants. An arbitrary message m in a system is called corrupted if the
existence of m violates one of the message invariants. A state s is called admissible if there
are no corrupted messages in s. We say a protocol admissible-message satisfies a property if
the following two conditions hold: (i) in computations in which every state is admissible, it
satisfies the property, and (ii) starting from any initial state, there is a computation suffix in
which every state is admissible. A protocol unconditionally satisfies a property if it satisfies
this property starting from any state.

With this notion in mind, we can show that admissible-message satisfaction is necessary
for non-trivial monotonic searchability for any routing algorithm R.

I Lemma 1. If a compare-store-send self-stabilizing protocol satisfies non-trivial monotonic
searchability then this protocol must be admissible-message satisfying.

The structure of the proof is as follows: we consider an arbitrary unconditionally satisfying
protocol and show that it does not satisfy monotonic searchability by creating a bad instance
for this protocol. In particular, we exploit that our model does not ensure FIFO delivery of
messages. The proof can be found in the full version of this paper [16].

Consequently, to prove non-trivial monotonic searchability for a protocol (according to a
given routing protocol R) it is sufficient to show that: (i) the protocol has a computation
suffix in which every state is admissible and (ii) the protocol guarantees non-trivial monotonic
searchability according to R in admissible states.

For the FDP , it was shown in [7], there is no distributed protocol within our model that
can decide when it is safe for a node u to leave the system and thereby solve the FDP . The
authors circumvent this impossibility result with the help of oracles. In general, an oracle is
a predicate that depends on the current system state and the node calling it. In the context
of the FDP, an oracle is supposed to advise a leaving node when it is safe to execute exit.
We use the oracle NIDEC as introduced in [7] in order to solve the FDP . NIDEC evaluates
to true for a node u calling it, if no node v 6= u has a reference to u in its local memory or
in a message in v.Ch and if u.Ch is empty. For an in depth discussion of oracles for the
FDP, we refer the reader to [7, 13].

3 The Build-List+ and the Search+ protocols

In this section, we present the Build-List+ protocol and the Search+ protocol. Build-
List+ solves the linearization problem and is admissible-message satisfying non-trivial
monotonic searchability according to Search+. Note that any protocol satisfying non-trivial
monotonic searchability must be admissible-message satisfying as shown in Section 2. This
section is organized as follows: First, we describe Build-List+ and Search+ in detail
(Subsection 3.1). Then, we prove that the Build-List+ protocol solves the linearization
problem (Subsection 3.2). Last, we prove that the Build-List+ protocol satisfies non-trivial

C. Scheideler, A. Setzer, and T. Strothmann 24:7

monotonic searchability according to Search+ (Subsection 3.3). From now on we drop the
“according to Search+” clause, since we only consider searchability for Search+.

3.1 Description of Build-List+ and Search+
The Build-List+ Protocol builds upon the protocol introduced in [15] that solves the
linearization problem. For this protocol, every node only keeps a single left and right
neighbor. If a node u receives a reference of a node v with u < v (u > v, respectively), u

either saves v as its new right (left) neighbor if v is closer to u than the current right (left)
neighbor w and delegates the reference of w to v or (in case v is not closer), v is not saved
and delegated to w. Here, delegation means that the reference of a node is sent in a message
to another node and not kept in the local memory. A natural (local) search protocol for this
topology is to always forward search requests to the neighbor closest to the desired target
node, or to abort the search request in case no such neighbor exists. Note that these easy and
elegant protocols cannot guarantee monotonic searchability due to three simple facts: (i) due
to delegation, it is possible that an explicit edge (u, v) is replaced by an explicit edge (u, w)
and an implicit edge (w, v), (ii) consequently, u, v are not in the same weakly connected
component in ENG (even though they were before delegation) and (iii) searchability is
defined for ENG.

The Build-List+ protocol introduces the following changes in order to satisfy monotonic
searchability: Instead of having a single left and right neighbor, a node u has sets of neighbors
Left and Right (that it sorts implicitly according to id). In the following, whenever we use
the notation Left(u)/Right(u), we refer to these sets of a node u. The main principle that we
use is that every node w does not delegate any edge to a node v stored in Left(w) or Right(w)
directly. Instead it first introduces (using Introduce(v, w)) this node to another node u,
waits for an acknowledgement that the edge has been added to Left(u) or Right(u) (which is
basically the Linearize(v) message) and then delegates the edge to a node closer to v (using
TempDelegate(v)). More specifically, whenever a node u has multiple neighbors to one side,
it does not delegate edges to the closest neighbor directly, but does the following. W.l.o.g.
assume that it has multiple neighbors w1, . . . , w` to the right with id(wi) < id(wi+1). In
the Timeout action u introduces wi to wi−1, with an Introduce(wi, u) message. Thereby,
wi−1 knows that it got the reference from u, saves the reference to wi directly, sends a
Linearize(wi) message back to u and a TempDelegate(u) to itself (the latter is only to
preserve connectivity). Node u can now react to that Linearize(wi) message, by deleting
wi from its memory and sending the reference to the closest node to the left of wi in Right
(which is not necessarily wi−1 anymore). Thereby, u preserves a path of explicit edges
between u and wi. Additionally, u sends its own reference to the closest neighbors with a
Introduce(u,⊥) message who turn this into a TempDelegate(u) message. In general,
the TempDelegate(u) action is used to delegate an implicit edge to a node u into one
direction (i.e., to the left or to the right) as long as there is a node between the current node
and u in Left or Right. Note that implicit edges are not used for search, thus we do not have
to apply the principle of introducing first and delegating afterwards for this kind of edges.
However, we have to delegate in order to preserve connectivity and to stabilize to the line
eventually. Note that, even though a node has temporarily more references than necessary
for the final line topology our protocol still eventually stabilizes to the line, as we will show
later. The pseudocode for all Build-List+ actions is given in Listing 1. Note that a node
refers to itself with the expression self . Additionally, keep in mind that the timeout action
is the only action that is not triggered as a result of another action. Instead, is triggered
regularly.

OPODIS 2015

24:8 Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures

Listing 1 Build-List+ protocol
Timeout

for all destID ∈Waiting
send forwardProbe(self , destID, {self }, self .seq) to self

// Let Left = {v1, v2, . . . , vk} with id(v1) < id(v2) < · · · < id(vk)
for all vi ∈ Left with 1 ≤ i < k

send Introduce(vi, self) to vi+1

// Let Right = {w1, w2, . . . , wl} with id(w1) < id(w2) < · · · < id(wl)
for all wi ∈ Right with 1 < i ≤ l

send Introduce(wi, self) to wi−1

send Introduce(self ,⊥) to v1

send Introduce(self ,⊥) to w1

Introduce(v, w)
if(id(v) < id(self))

if{w 6= ⊥}
Left ← Left ∪ {v}
send Linearize(v) to w

send TempDelegate(w) to self
else //w = ⊥

send TempDelegate(v) to self
else if(id(v) > id(self))

// Analogous to the previous case.

Linearize(v)
send TempDelegate(v) to self
if(id(v) < id(self))

if(Left 6= ∅)
x← argmax{id(x′)|x′ ∈ Left}
if(v 6= x)

w ← argmin{id(w′)|w′ ∈ Left und id(w′) > id(v)}
Left ← Left \ {v}
send TempDelegate(v) to w

else if(id(v) > id(self))
// Analogous to the previous case.

TempDelegate(u)
if(id(u) < id(self))

if(Left = ∅)
Left ← Left ∪ {u}

else //Left 6= ∅
x← argmax{id(x′)|x′ ∈ Left}
if(id(x) < id(u))

Left ← Left ∪ {u}
else if(id(x) > id(u))

send TempDelegate(u) to x

else if{id(u) > id(self)}
// Analogous to the previous case.

C. Scheideler, A. Setzer, and T. Strothmann 24:9

The Search+ protocol works as follows: Whenever the InitiateNewSearch(destID)
action is called at a node u, u creates a new Search(u, destID) message and starts to
periodically initiate ForwardProbe(u, destID, {u}, self.seq) messages that it sends to
itself. In the following, assume id(u) < destID (the other case is analogous). Each
ForwardProbe() message has a set of nodes, called Next attached to it, which contains the
nodes the message will visit in its future. It also has a counter seq attached to it whose meaning
we will explain later. Whenever a ForwardProbe(u, destID, Next, seq) message is at a
node w, w removes itself from Next and adds all its right neighbors x with id(x) ≤ destID

to Next. Then it forwards the ForwardProbe(u, destID, Next, seq) message to the node
with minimal id in Next. If a ForwardProbe(u, destID, Next, seq) message arrives at
a node v with id(v) = destID, it directly responds with a ProbeSuccess(destID, seq, v)
message to u. However, if Next is empty at a node w with id(w) 6= destID after w has
added the aforementioned right neighbors, the ForwardProbe() message is answered with
a ProbeFail(destID, seq) message. In any case, as soon as u receives the response, it
acts accordingly: If the answer to a ForwardProbe(u, destID, Next, seq) message is a
ProbeFail(destID, seq) message, it drops the corresponding Search(u, destID) message
completely. If the answer is ProbeSuccess(destID, v), Search(u, destID) messages
waiting at u are directly sent to v.

Note that if additional Search(u, destID) messages are created at u while u is still
waiting for an answer to an earlier initiated ForwardProbe(u, destID), these requests
simply wait together with the previous request (realized by simple WaitingFor[destID] field)
and are aborted or sent as soon as the ProbeFail(destID) or ProbeSuccess(destID, v)
response arrives at u, (i.e., search requests to the same destination are sent out in batches
if possible). Furthermore, note that nodes do not memorize whether they have already
sent ForwardProbe() messages to a certain destination. Due to corrupt initial states,
this knowledge could be wrong and nodes relying on this knowledge would wait forever.
Therefore, nodes periodically send ForwardProbe() messages, instead of only once. Note
that because we make no assumptions on the message delivery speed and channels are not
FIFO, it is possible that ProbeFail() messages arrive at a node u that are answers to
ForwardProbe() messages initiated long ago. However, in the meantime, there might
have been successful responses. To deal with this, each node u stores a sequence number
counter seq. Whenever InitiateNewSearch(destID) is executed by u and there is no
Search(u, destID) that waits for an answer to a ForwardProbe(u, destID, Next, seq)
message, u increments u.seq, stores the new u.seq value in an entry for v and always attaches
the current sequence number (u.seq) to each ForwardProbe() message u sends. Responses
to probes (success and failure) sent by u also contain this sequence number. Whenever a
response is sent back to u, u checks whether the sequence number in this message is at
least the sequence number stored for destID. If not, it simply drops the message, since in
that case, the answer belongs to a ForwardProbe() message sent for an earlier batch of
Search(u, destID) messages that have already been processed. The complete pseudocode
for Search+ is given in Listing 2.

In order to not unnecessarily blow up the pseudocode, we intentionally left out a sanity
check for each node, i.e., before executing each action, each node u makes sure that Left only
contains nodes v with v < u and that Right only contains nodes v with u < v. If this is not
the case for some node v, u rearranges the reference to v accordingly. This way, in every
computation, the following lemma holds:

I Lemma 2. For every node v it holds: For all x ∈ Left, id(x) < id(v), and for all y ∈ Right,
id(v) < id(y).

OPODIS 2015

24:10 Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures

Listing 2 Search+ protocol
InitiateNewSearch(destID)

create new message m = Search(self , destID)
if(WaitingFor [destID] = ∅)

WaitingFor [destID]← {}
self .seq ← self .seq + 1
seq[destID]← self .seq

// Store the messages to WaitingFor
WaitingFor [destID]←WaitingFor [destID] ∪ {m}

ForwardProbe(source, destID, Next, seq)
if(destID = id(self))

if(Next 6= ∅)
for all u ∈ Next

send TempDelegate(u) to self
send ProbeSuccess(destID, seq, self) to source
send TempDelegate(source) to self

else //destID 6= id(self)
if(destID > id(self))

Next ← Next \ {self } ∪ {w ∈ Right|id(w) ≤ destID}
if(Next = ∅)

send ProbeFail(destID, seq) to source
send TempDelegate(source) to self

else //Next 6= ∅
u← argmin{id(u)|u ∈ Next}
if(id(u) < id(self))

send TempDelegate(u) to self
else if(id(u) < id(argmin{id(v)|v ∈ Right}))

Right ← Right ∪ {u}
send ForwardProbe(source, destID, Next, seq) to u

else if(destID < id(self))
// Analogous to the previous case.

ProbeSuccess(destID, seq, dest)
if(seq ≥ seq[destID])

/* The message belongs to currently
* stored search requests to dest. */

send all m ∈WaitingFor [destID] to dest
WaitingFor [destID]← ∅

send TempDelegate(dest) to self

ProbeFail(destID, seq)
if(seq ≥ seq[destID])

/* The message belongs to currently
* stored search requests to dest. */

WaitingFor [destID]← ∅

C. Scheideler, A. Setzer, and T. Strothmann 24:11

3.2 Build-List+ solves the linearization problem
In this section, we prove the following theorem:

I Theorem 3. Build-List+ is a self-stabilizing solution to the linearization problem.

We prove the theorem in three steps: First, we show that starting from any initial state in
which NG is weakly connected, NG will always be weakly connected. Second, we show that
starting from any initial state, there will be a state in which ENG will be a supergraph of
the line graph and that the explicit edges corresponding to the line will never be removed.
Third, we prove that all superfluous explicit edges will eventually vanish. Note that all proofs
that are omitted in this section can be found in the full version [16].

The first step is represented by the following lemma:

I Lemma 4. If a computation of Build-List+ starts from a state where NG is weakly
connected then in every state, NG remains weakly connected.

For the second step of the proof of the theorem, we introduce the notation nextLeft(u) :=
argmax{id(v)|v ∈ Left(u)} and nextRight(u) := argmin{id(v)|v ∈ Right(u)}. Furthermore,
let length(u, v) for two nodes u and v denote the hop distance in the (ideal) line topology
between u and v. We define rv(v) for a node v as length(v, nextRight(v)) if Right(v) 6= ∅
or as n if Right(v) = ∅; we define lv(v) analogously for nextLeft(v). With this, we define a
potential function Φ :=

∑n−1
i=1 rv(vi) +

∑n
i=2 lv(vi) where v1 < v2 < · · · < vn are all nodes

ordered by their id increasingly. Notice that Φ is bounded from above by 2n(n− 1) and from
below by 2(n− 1). Also notice that according to the protocol, nextLeft(v) (nextRight(v)) can
only change if v puts a node closer to v than nextLeft(v) (nextRight(v)) into Left (Right).
Thus, Φ never increases. We define the closest neighbor graph as the graph GNB = (V, ENB)
where V is the set of all nodes and (x, y) ∈ ENB iff y = nextRight(x) ∨ y = nextLeft(x).
Furthermore, we say an edge is temporary if it is an implicit edge due to a TempDelegate()
message. All other types of implicit edges are called non-temporary. One can show the
following:

I Lemma 5. Assume there is a system state such that Φ does not decrease in any further
step of the computation. Then GNB is bidirected and strongly connected.

We prove this lemma step-by-step, starting with the following lemma:

I Lemma 6. Assume a system state such that Φ does not decrease in any further step of the
computation. Then GNB is bidirected.

The definition of a closest neighbor graph and Lemma 2 imply the following:

I Corollary 7. If GNB is bidirected and disconnected, every connected component forms a
line.

To show that GNB is also strongly connected, we need two additional lemmata. We start
with the following:

I Lemma 8. Assume that in a state of the computation of Build-List+ GNB is bidirected
and disconnected. If there is a non-temporary edge (w, v) with w ∈ C1, v /∈ C1 for a connected
component C1, then eventually either there will be an explicit or a temporary edge (x, y) with
x ∈ C1 and y /∈ C1 or Φ will decrease.

OPODIS 2015

24:12 Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures

I Lemma 9. Assume that in a state of the computation of Build-List+ GNB is bidirected
and disconnected. If there is an explicit or a temporary edge (w, v) with w ∈ C1 and v /∈ C1
for a connected component C1, then eventually there will be an explicit or temporary edge
(x, y) with x ∈ C1, y /∈ C1 and length(x, y) < length(w, v), or Φ will decrease.

We are now ready to prove Lemma 5:

Proof. Assume there is an initial state in which Φ does not decrease anymore. Furthermore,
assume that the closest neighbor graph GNB is disconnected. Firstly, Lemma 6 guarantees
that GNB is bidirected. Furthermore, by Lemma 4, there must be at least one (implicit or
explicit) edge (w, v) between a connected component C1 and another connected component.
Together with Lemma 8 this implies that at some point there must be a temporary or explicit
edge (x, y) with x ∈ C1 and y /∈ C1. However, then Lemma 9 can be applied. Since there is
only a finite number of times that there can be a shorter edge, at some state, Φ must decrease,
yielding a contradiction. Thus GNB must be weakly connected. Note that Lemma 6 implies
that GNB is also strongly connected, yielding the claim of Lemma 5. J

Note that since Φ can never increase and since Φ is bounded from below, Φ can only decrease
for a finite number of states. After that, the conditions of Lemma 5 are fulfilled. This lemma
and Corollary 7 imply the following corollary:

I Corollary 10. For any computation of Build-List+, there is a state in which the graph
formed by the explicit edges is a supergraph of the line topology.

For the third step of the proof of the theorem, we have the following lemma:

I Lemma 11. If a computation of Build-List+ contains a state in which ENG is a
supergraph of the line topology, then there will be a suffix in which ENG is the line topology
and no new explicit edges will ever be created again.

Note that Corollary 10 and Lemma 11 imply that Build-List+ converges to the list.
Moreover, Lemma 11 yields the closure property. This finishes the proof of Theorem 3.

3.3 Build-List+ satisfies non-trivial monotonic searchability
In this subsection we prove the following theorem:

I Theorem 12. Build-List+ admissible-message satisfies non-trivial monotonic searcha-
bility according to Search+.

Note that all proofs that are omitted in this section can be found in the full version [16].
We start with some preliminaries. First we define R(v) as the set of all nodes x with

id(v) < id(x) for which there is a directed path from v to x consisting solely of explicit edges
(y, z) with id(y) < id(z). Furthermore, we define R(v, ID) := {x ∈ R(v)|id(x) ≤ ID}. In
addition, we define L(v) as the set of all nodes x with id(x) < id(v) for which there is a
directed path from v to x consisting solely of explicit edges (y, z) with id(z) < id(y). For
a set U , R(U) := U ∪

⋃
u∈U R(u) and R(U, ID) := {x ∈ R(U)|id(x) ≤ ID}. Accordingly,

L(U) := U ∪
⋃

u∈U L(u) and L(U, ID) := {x ∈ L(U)|id(x) ≥ ID}.
Moreover, we define a state as admissible if the following message invariants hold:

1. If there is an Introduce(v, w) message with w 6= ⊥ in u.Ch, then v 6= w, and u ∈ R(w)
(or u ∈ L(w)).

2. If there is a Linearize(v) message in w.Ch, then there is a node u 6= v with u ∈ Right(w)
and v ∈ R(u) if w < v (or u ∈ Left(w) and v ∈ L(u) if v < w).

C. Scheideler, A. Setzer, and T. Strothmann 24:13

3. If there is a ForwardProbe(source, destID, Next, seq) message in u.Ch, then
a. id(source) < destID and ∀x ∈ Next : id(x) ≥ id(u) and u = argminu{id(u)|u ∈

Next} (alternatively destID < id(source) and ∀x ∈ Next : id(x) ≤ id(u) and
u = argmaxu{id(u)|u ∈ Next}).

b. id(source) < destID and R(next) ⊆ R(source) (or destID < id(source) and u ∈
L(source)).

c. if v exists such that id(v) = destID and id(source) < destID and v /∈ R(Next, destID)
(or id(source) < destID and v /∈ L(Next, destID)) then for every admissible state
with source.seq[destID] < seq, v /∈ R(source, destID) (v /∈ L(source, destID)).

4. If there is a ProbeSuccess(destID, seq, dest) message in u.Ch, then id(dest) = destID

and dest ∈ R(u) if destID > id(u) (or dest ∈ L(u) if destID < id(u)).
5. If there is a ProbeFail(destID, seq) message in u.Ch, then either there is no node

with id destID, or for every admissible state with u.seq[destID] < seq, v /∈ R(u) (and
v /∈ L(u)), where v such that id(v) = destID.

6. If there is a Search(v, destID) message in u.Ch, then id(u) = destID and u ∈ R(v) if
id(v) < destID (or u ∈ L(v) if destID < id(v)).

One can show the following Lemma 13 and Lemma 14 which together imply Corollary 15.

I Lemma 13. If in a computation of Build-List+, there is an admissible state, then all
subsequent states are admissible.

I Lemma 14. In every computation of Build-List+ there is an admissible state.

I Corollary 15. In every computation of Build-List+, there exists a suffix in which every
state is admissible.

For the rest of this subsection, we assume that every computation starts in an admissible state,
since we want to show monotonic searchability must hold starting from admissible states only.
Furthermore, w.l.o.g., we only consider Search(u, destID) messages with id(u) < destID.

Before we can prove Theorem 12, we need an additional result:

I Lemma 16. For every message m = ForwardProbe(v, destID, Next, seq) ∈ u.Ch with
id(u) < destID, it holds that if there is a node w with id(w) = destID and w ∈ R(u), then
there will be a state with m′ = ForwardProbe(v, destID, Next′, seq) ∈ w.Ch.

We are now ready to prove Theorem 12:

Proof. Let m, m′ be two Search(u, destID) messages initiated in u in admissible states
with m being initiated before m′ and assume that m is delivered successfully, but m′ is not.
Let v be such that id(v) = destID. Note that if m′ is added to the set WaitingFor[destID]
when m is already in the set, then the protocol will handle both messages identical, i.e., if
m is successfully delivered to v due to an ProbeSuccess() message, m′ is as well. There-
fore, m′ is added to WaitingFor[destID] when m /∈ WaitingFor[destID], which implies
u.seq[destID] has increased since the successful delivery of m (according to the protocol).
Since we assume that m′ is not delivered successfully, either a ProbeFail(dest, seq) message
eventually arrives at u with seq ≥ u.s[destID], or no ProbeSuccess(destID, seq, dest)
with seq ≥ u.s[destID], dest = destID will ever arrive at u. We consider both cases in-
dividually. In the first case, by the fifth invariant, v /∈ R(u) has to hold even though
m was already successfully delivered. By the sixth invariant, when m was delivered,
v ∈ R(u), which is why this is a contradiction to Lemma ??. In the second case, note
that ForwardProbe(u, destID, {u}, seq) messages are regularly initiated by u with seq ≥

OPODIS 2015

24:14 Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures

u.s[destID] (since u.seq is monotonically increasing). Again, due to the successful delivery
of m, by the sixth invariant and Lemma ??, v ∈ R(u) when m′ was initiated, and therefore,
by Lemma 16, a ForwardProbe(u, destID, Next′, seq) message with seq ≥ u.s[destID]
will eventually be in v.Ch, which will be answered with a ProbeSuccess(destID, seq, v)
message, causing m′ to be sent to v. By the fair message receipt assumption, this contradicts
the assumption that m′ is not successfully delivered. J

4 The Build-List* and the Search* protocols

For the Build-List+ protocol in Section 3 we implicitly assumed a static node set, i.e.,
nodes are not allowed to leave or join the network. In this section we want investigate
monotonic searchability in terms of the Finite Departure Problem (FDP) of [7]. Naturally, a
leaving node does not execute InitiateNewSearch(), since it aims at leaving the system.
Additionally, a leaving node that is the destination of a ForwardProbe() message, will
deliberately answer with ProbeFail(). Consequently, monotonic searchability can only be
maintained for pairs of staying nodes.

We note that the FDP deliberately ignores that new nodes can join the network. However,
this abstraction is justified in a self-stabilizing setting, since from an algorithmic point of
view for some node u a new node joining the network is the same as getting a message from
a node that it has never been in contact with.

In this section, we present the Build-List* and the Search* protocols. In the full
version [16], we further show that Build-List* solves the FDP and also the linearization
problem, and extend the proofs of Section 3.3 to show that Build-List* also satisfies
non-trivial monotonic searchability according to Search*.

4.1 Description of Build-List* and Search*
For two staying nodes that interact with each other, Build-List* is analogous to Build-
List+. Therefore, we only specify the changes in case a node itself is leaving or receives a
message from a leaving node. A leaving node distinguishes between two different kinds of
neighbors: those that it already had before switching to the leaving mode (which are Left
and Right from Build-List+) and those which it received while being leaving (TempL and
TempR). Searchability is only preserved for nodes in the former two sets.

For the ForwardProbe(), Introduce(), Linearize() and TempDelegate() actions,
a leaving node u will always save nodes in TempL and TempR in cases where a staying
node saves them in Left and Right. In its Timeout action, a leaving node u either in-
troduces all its neighbors to each other and executes exit if NIDEC is true or it sends
a ReverseAndLinearizeREQ() message to all neighbors. With this ReverseAndLin-
earizeREQ(dir) message u requests all neighbors to stop holding its reference. As it was
shown in [7], leaving nodes should never send their own reference for a successful departure
protocol. Therefore, a ReverseAndLinearizeREQ(dir) message only contains a value
dir ∈ {left, right} that indicates whether a left or right neighbor should be removed, i.e., u

sends a ReverseAndLinearizeREQ(left) message to all its neighbors to the right and
and a ReverseAndLinearizeREQ(right) message to all its neighbors to the left. If a node
v receives a ReverseAndLinearizeREQ(dir) message, there are two possible scenarios. If
v is staying, it sends a ReverseAndLinearizeACK(v,uniqueValue) message to all neigh-
bors in the given direction, which contains its own reference and for each neighbor a uniquely
created value (i.e., in our case a local counter or the id of a node would be sufficient). This val-
ues is also saved as satellite data by v at the corresponding node reference in the neighbor set.

C. Scheideler, A. Setzer, and T. Strothmann 24:15

If v is leaving, it behaves like a staying node if the dir is right; otherwise it ignores the request.
Thereby, leaving nodes with a higher id are given a higher priority for exiting the system.
Once a leaving node u receives a ReverseAndLinearizeACK(v,uniqueValue) message, it
responds with ReverseAndLinearize(nodeList, uniqueV alue) message that contains the
received unique value (for identification purposes) and also all its neighbors that are on the
opposite of the node in the message (i.e., if the received node is to the right of u, u sends all
left neighbors and vice-versa). A ReverseAndLinearizeACK(v,uniqueValue) message is
ignored by a staying node, meaning that it is transformed into a TempDelegate(v) to itself.
Finally, the ReverseAndLinearize(nodeList, uniqueV alue) message is received by v and v

checks if it has a neighbor with the given unique value. If this is the case, v either finishes the
reversal process by deleting the reference to u and saving the newly received neighbors (if v is
staying or getting the ReverseAndLinearize(nodeList, uniqueV alue) message from a right
neighbor) or v ignores the message by simply saving all nodes in TempL (if v is leaving and get-
ting the ReverseAndLinearize(nodeList, uniqueV alue) message from a left neighbor). In
case the unique value does not match, the ReverseAndLinearize(nodeList, uniqueV alue)
message is not a response to a former ReverseAndLinearizeACK(v,uniqueValue)
message and all received nodes are processed by TempDelegate() messages to v itself.

The Search* protocol is very similar to the Search+ protocol. As already men-
tioned, leaving nodes will neither execute InitiateNewSearch(), nor will they send out a
ProbeSuccess() message. In fact the only action that is different in multiple places is the
ForwardProbe() action, since we have to make sure that references are not saved in Left
and Right but in TempL and TempR.

Similar to Build-List+, Build-List* performs a sanity check for TempL, TempR,
Left and Right before each action. The same is done for the nodeList received in a
ReverseAndLinearize() message. However, in the last case a failing sanity check (i.e.,
the nodes in nodeList are from two different sides of the current node) directly implies that
the message is corrupt and it is safe to process the nodes with TempDelegate(). The
pseudocode for Build-List* and Search* can be found in the full version [16].

We have the following results regarding Build-List*:

I Theorem 17. Build-List* is a self-stabilizing solution to the FDP.

I Theorem 18. Build-List* is a self-stabilizing solution to the linearization problem.

I Theorem 19. Build-List* admissible-message satisfies non-trivial monotonic searchability
according to Search*.

The proofs of these theorems can be found in the full version [16].

5 Conclusion and Outlook

To the best of our knowledge, we presented the first protocol that self-stabilizes a topology
whilst satisfying monotonic searchability. We focused on the line topology as a starting point
and extended our protocol such that it additionally solves the Finite Departure Problem. In
the design of our protocol, it turned out that the principle of delegating explicit edges only if
they have been successfully introduced before is crucial to enable monotonic searchability. A
natural open question is whether the application of this principle is sufficient for monotonic
searchability. That is, does applying this principle to other protocols that stabilize a topology
(e.g., rings, skip-graphs, Delaunay graphs) directly yield monotonic searchability, or do other
topologies require more-specialized solutions?

OPODIS 2015

24:16 Towards Establishing Monotonic Searchability in Self-Stabilizing Data Structures

References

1 James Aspnes and Yinghua Wu. O(logn)-time overlay network construction from graphs
with out-degree 1. In Principles of Distributed Systems, 11th International Conference,
OPODIS 2007, Guadeloupe, French West Indies, December 17-20, 2007. Proceedings, pages
286–300, 2007.

2 Andrew Berns, Sukumar Ghosh, and Sriram V. Pemmaraju. Building self-stabilizing overlay
networks with the transitive closure framework. Theor. Comput. Sci., 512:2–14, 2013.

3 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, 1996. doi:10.1145/226643.226647.

4 Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM,
17(11):643–644, 1974.

5 Shlomi Dolev and Ronen I. Kat. Hypertree for self-stabilizing peer-to-peer systems. Dis-
tributed Computing, 20(5):375–388, 2008.

6 Shlomi Dolev and Nir Tzachar. Spanders: Distributed spanning expanders. Sci. Comput.
Program., 78(5):544–555, 2013.

7 Dianne Foreback, Andreas Koutsopoulos, Mikhail Nesterenko, Christian Scheideler, and
Thim Strothmann. On stabilizing departures in overlay networks. In Stabilization, Safety,
and Security of Distributed Systems – 16th International Symposium, SSS 2014, Paderborn,
Germany, September 28 – October 1, 2014. Proceedings, pages 48–62, 2014.

8 Dominik Gall, Riko Jacob, Andréa W. Richa, Christian Scheideler, Stefan Schmid, and
Hanjo Täubig. A note on the parallel runtime of self-stabilizing graph linearization. Theory
Comput. Syst., 55(1):110–135, 2014. doi:10.1007/s00224-013-9504-x.

9 Riko Jacob, Andréa W. Richa, Christian Scheideler, Stefan Schmid, and Hanjo Täubig.
Skip+: A self-stabilizing skip graph. J. ACM, 61(6):36:1–36:26, 2014. doi:10.1145/
2629695.

10 Riko Jacob, Stephan Ritscher, Christian Scheideler, and Stefan Schmid. Towards higher-
dimensional topological self-stabilization: A distributed algorithm for delaunay graphs.
Theor. Comput. Sci., 457:137–148, 2012.

11 Sebastian Kniesburges, Andreas Koutsopoulos, and Christian Scheideler. A self-
stabilization process for small-world networks. In 26th IEEE International Parallel and
Distributed Processing Symposium, IPDPS 2012, Shanghai, China, May 21-25, 2012, pages
1261–1271, 2012.

12 Sebastian Kniesburges, Andreas Koutsopoulos, and Christian Scheideler. Re-chord: A
self-stabilizing chord overlay network. Theory Comput. Syst., 55(3):591–612, 2014. doi:
10.1007/s00224-012-9431-2.

13 Andreas Koutsopoulos, Christian Scheideler, and Thim Strothmann. Towards a universal
approach for the finite departure problem in overlay networks. In Stabilization, Safety, and
Security of Distributed Systems – 17th International Symposium, SSS 2015, Edmonton, AB,
Canada, August 18-21, 2015, Proceedings, pages 201–216, 2015.

14 Rizal Mohd Nor, Mikhail Nesterenko, and Christian Scheideler. Corona: A stabilizing
deterministic message-passing skip list. Theor. Comput. Sci., 512:119–129, 2013. doi:
10.1016/j.tcs.2012.08.029.

15 Melih Onus, Andréa W. Richa, and Christian Scheideler. Linearization: Locally self-
stabilizing sorting in graphs. In Proceedings of the 9th Workshop on Algorithm Engineering
and Experiments, ALENEX 2007, New Orleans, Louisiana, USA, January 6, 2007, 2007.

16 C. Scheideler, A. Setzer, and T. Strothmann. Towards Establishing Monotonic Searchability
in Self-Stabilizing Data Structures (full version). ArXiv e-prints, December 2015. arXiv:
1512.06593.

http://dx.doi.org/10.1145/226643.226647
http://dx.doi.org/10.1007/s00224-013-9504-x
http://dx.doi.org/10.1145/2629695
http://dx.doi.org/10.1145/2629695
http://dx.doi.org/10.1007/s00224-012-9431-2
http://dx.doi.org/10.1007/s00224-012-9431-2
http://dx.doi.org/10.1016/j.tcs.2012.08.029
http://dx.doi.org/10.1016/j.tcs.2012.08.029
http://arxiv.org/abs/1512.06593
http://arxiv.org/abs/1512.06593

C. Scheideler, A. Setzer, and T. Strothmann 24:17

17 Ayman Shaker and Douglas S. Reeves. Self-stabilizing structured ring topology P2P sys-
tems. In Fifth IEEE International Conference on Peer-to-Peer Computing (P2P 2005), 31
August – 2 September 2005, Konstanz, Germany, pages 39–46, 2005.

18 Yukiko Yamauchi and Sébastien Tixeuil. Monotonic stabilization. In Principles of Dis-
tributed Systems – 14th International Conference, OPODIS 2010, Tozeur, Tunisia, Decem-
ber 14-17, 2010. Proceedings, pages 475–490, 2010.

OPODIS 2015

QuickLex: A Fast Algorithm for Consistent Global
States Enumeration of Distributed Computations
Yen-Jung Chang1 and Vijay K. Garg2

1 Department of Electrical and Computer Engineering, University of Texas,
Austin, USA
cyenjung@utexas.edu

2 Department of Electrical and Computer Engineering, University of Texas,
Austin, USA
garg@ece.utexas.edu

Abstract
Verifying the correctness of executions of concurrent and distributed programs is difficult because
they show nondeterministic behavior due to different process scheduling order. Predicate detec-
tion can alleviate this problem by predicting whether the user-specified condition (predicate)
could have become true in any global state of the given concurrent or distributed computation.
The method is predictive because it generates inferred global states from the observed execu-
tion path and then checks if those global states satisfy the predicate. An important part of the
predicate detection method is global states enumeration, which generates the consistent global
states, including the inferred ones, of the given computation. Cooper and Marzullo gave the first
enumeration algorithm based on a breadth first strategy (BFS). Later, many algorithms have
been proposed to improve the space and time complexity. Among the existing algorithms, the
Tree algorithm due to Jegou et al. has the smallest time complexity and requires O(|P |) space,
which is linear to the size of the computation P . In this paper, we present a fast algorithm,
QuickLex, to enumerate global states in the lexical order. QuickLex requires much smaller space
than O(|P |). From our experiments, the Tree algorithm requires 2–10 times more memory space
than QuickLex. Moreover, QuickLex is 4 times faster than Tree even though the asymptotic
time complexity of QuickLex is higher than that of Tree. The reason is that the worst case
time complexity of QuickLex happens only in computations that are not common in practice.
Moreover, Tree is built on linked-lists and QuickLex can be implemented using integer arrays.
In comparison with the existing lexical algorithm (Lex), QuickLex is 7 times faster and uses al-
most the same amount of memory as Lex. Finally, we implement a parallel-and-online predicate
detector for concurrent programs using QuickLex, which can detect data races and violation of
invariants in the programs.

1998 ACM Subject Classification D.2.4 [Software/Program Verification] Validation

Keywords and phrases consistent global state, algorithm, computation

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.25

1 Introduction

The technique of predicate detection was first proposed for distributed debugging [5, 14].
Many tools also use this technique for detecting various types of bugs in concurrent systems
[4, 9, 21, 16]. The problem of predicate detection is to detect if the user-specified condition
(or simply predicate) could happen in the given concurrent or distributed computation, which
is modeled as a partially ordered set (poset) of events where each event corresponds to an

© Yen-Jung Chang and Vijay K. Garg;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 25; pp. 25:1–25:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 QuickLex

p1
e1

e5

e3e2

e4
G1 G2 G3 G4 G5 G6 G7 G8

p2

(a)

G1 G2 G3

G4

G5

G6

G7
G8

(b)

Figure 1 (a) The captured logical order between events, which form a poset. The dashed lines
are consistent global states of the program. (b) The relationship of the set of consistent global states.

operation of the program. On this poset, the inferred consistent global states of the system
are generated and checked if any one of them satisfies the predicate.

We use the computation in Fig. 1a to explain the technique of predicate detection. In
this computation, the event e2, which occurs on process p1, sends a message to event e4 on
process p2. Because of the message, the causal dependency between e2 and e4 is established.
A global state is consistent if there exists an execution path to reach that state. In Fig. 1a,
the dashed lines show all consistent global states of the computation and each global state
contains all the events to the left of the corresponding dashed line. For example, the global
state G4 contains events e1, e2, and e3.

Fig. 1b shows the relationship of the consistent global states in Fig. 1a. Assume that the
sequence G1, G2, G3, G5, G6, G8 of global states is the observed execution of the program.
The objective of predicate detection is to generate the inferred global states G4 and G7
without re-executing the program in order to reach G4 and G7. In this paper, we study the
method for enumerating all consistent global states, including the inferred ones, of the given
computation. From now on, the term computation refers to a concurrent or a distributed
computation, the term processes refers to threads in a concurrent computation or processes
in a distributed computation, and the term global state means consistent global state; unless
specified otherwise.

Enumerating all global states of a computation P requires exponential time because the
number of global states, i(P), grows exponentially in n – the number of processes in the
computation. With some assumptions on the predicate, the complexity may be reduced to
polynomial time because only a partial set of global states is enumerated [9, 17, 23, 24, 26].
If no assumption is made regarding the predicate, i.e., the enumeration algorithm is general-
purpose, then enumerating every global state is necessary. Thus, the time complexity of a
general-purpose algorithm can be calculated by multiplying i(P) by the time complexity per
global state, which is the time to advance from one global state to the other. For simplicity, we
use the time complexity per global state to represent the time complexity of a general-purpose
algorithm.

Cooper and Marzullo [5] gave the first general-purpose enumeration algorithm based on
a breadth first strategy (BFS) that requires O(n3) time and exponential space in n, which is
the number of processes in the computation P . Alagar and Venkatesan [1] presented the
notion of global interval which reduces the space complexity to O(|P |). Steiner [28] gave an
algorithm that uses O(|P |) time, and Squire [27] further improved the computation time
to O(log|P |). Pruesse and Ruskey [25] gave an algorithm that enumerates global states in
a combinatorial Gray code manner. The algorithm uses O(|P |) time and can be reduced
to O(∆(P)), where ∆(P) is the maximal in-degree of any event; however, the space grows
exponentially in |P |. Later, Jegou et al. [18] and Habib et al. [15] improved the space
complexity to O(|P |). Ganter [10] presented an algorithm, which enumerates global states in

Y.-J. Chang and V.K. Garg 25:3

Table 1 Time and space complexity of algorithms.

Algorithms Time per Global State Space
Cooper–Marzullo [5] O(n3) exp. in n
Alagar–Venkatesan [1] O(n3) O(|P |)
Steiner [28] O(|P |) not available
Squire [27] O(log|P |) not available
Pruesse–Ruskey [25] O(|P |) exp. in |P |
Jegou and Habib et al. [18, 15] O(∆(P)) O(|P |)
Lexical [10, 11] O(n2) O(1)
QuickLex O(n·∆(P)) O(n2) †)

†) n is the number of processes in the computation P . Thus, n2 is usually much smaller than |P |
because the number of events per process is much greater than n.

lexical order, and Garg [11] gave an implementation using vector clocks [8, 22]. The lexical
algorithm requires O(n2) time, but the algorithm requires only O(1) space besides the input,
i.e., the computation. Note that the space complexity of an enumeration algorithm only
considers the memory space that stores the intermediate information during the enumeration.
Table 1 summarizes the time and space complexity of the algorithms.

In this paper, we present QuickLex — a fast algorithm for global states enumeration in
lexical order. In comparison with the existing lexical algorithm (Lex) [10, 11], QuickLex
reduces the time complexity from O(n2) to O(n·∆(P)). The time complexity can be reduced
to O(n) for the commonly used computations [4, 20, 9, 15, 18], in which most events send
and receive at most one message.

Both QuickLex and Lex algorithms enumerate global states in the same order. However,
they are fundamentally different in computing the next global state in the lexical order.
The Lex algorithm simply uses the current global state and vector clocks to determine the
next global state. Thus, it has to repeatedly calculate the information that is reusable.
QuickLex reduces the computational cost using two approaches. First, it preprocesses the
computation and pre-calculates the statically reusable information. Second, it incorporates
dynamic programming to reuse the dynamic information during the enumeration.

We evaluate QuickLex using multiple benchmarks including four computations that are
captured from the executions of real-world applications. In our experiments, QuickLex is 7
times faster than the Lex algorithm [10, 11] and 4–5 times faster than the Tree algorithm
[15, 18]. We note here that QuickLex is faster than the Tree algorithm even though the
asymptotic worst case time complexity for the Tree algorithm is lower. There are two reasons
for this. First, the time complexity of QuickLex is calculated as the worst case, which is not
a common computation in practice. Second, the Tree algorithm needs to store its temporary
spanning tree in a linked-list, which induces large overhead during enumeration; QuickLex
only uses arrays. As far as space complexity is concerned, QuickLex uses almost the same
amount of memory as Lex, which shows that the extra space for dynamic programming in
QuickLex is quite small. The Tree algorithm uses 2–10 times more memory than QuickLex.

In [3], we have discussed a technique, named ParaMount, to decompose any lattice of
global states into multiple sublattices and to enumerate those using Lex in a parallel-and-
online fashion. Since Lex and QuickLex are similar, we can easily speed up ParaMount
by replacing Lex with QuickLex. The experimental results show that QuickLex speeds up
ParaMount by a factor of 3. The technique in [3] focuses on the high-level parallelization of
the enumeration of consistent global states, which uses sequential enumeration algorithms
for its subroutines. In this paper, we focus on the fast sequential enumeration algorithm.

The rest of the paper is organized as follows. Section 2 gives the model of computation.

OPODIS 2015

25:4 QuickLex

e5 e6 e7

e2 e3 e4

e1p1

p3

p2

G''G'G

(a)

e5 e6 e7

e2 e3 e4

e1p1

p3

p2

[1, 1, 0]

[0, 1, 0]

[0, 2, 0]

[0, 3, 0]

[0, 0, 1] [0, 2, 2] [0, 2, 3]

(b)

e5

e5 e6 e7

e5 e6 e7

e7 e7

e4 e4 e4 e4

G13 G14

G15 G16 G17 G18

G19 G20 G21 G22
e1 e1 e1 e1

e1e1e1e1

e1 e1

G1

G3 G4

G5 G6 G7 G8

G9 G10 G11 G12

1 e5

e5

e5 e6 e7

e5 e6 e7

e2 e2

e3 e3

e4 e4 e4 e4

G2

(c)

Figure 2 (a) A computation is composed of a partially ordered set (poset) of events. G and G′′

are consistent global states and G′ is an inconsistent global state. (b) The vector clocks of the events.
(c) The distributive lattice formed by the set of consistent global states of the computation.

Section 3 presents the algorithm of QuickLex. Section 4 shows the experimental results.
Section 5 discusses the applications of QuickLex. Section 6 concludes this paper.

2 The Model of Computations

The observed execution of the program is modeled as a computation that is composed of
a poset P = (E,→) of events, which contains a set E of events together with Lamport’s
happened-before (HB) relation → [19]. Fig. 2a shows a graphical representation of a
computation with three processes p1, p2, and p3. The horizontal arrows represent the total
order of the events that occur on the same process. The arrows between two events that
occur on different processes represent messages. The HB relation between two events e and
f is established by the following rules:
1. If e occurs before f on the same process, then e→ f .
2. If e sends a message and f receives the message, then e→ f .
3. If e→ g and g → f , then e→ f .

In the computation, the HB relation between events is captured using vector clocks [8, 22].
A vector clock, vc, is an array of integers. For an event e, which occurs on process pi, the
integer e.vc[i] is the index of e among the events that occur on pi. For j 6= i, e.vc[j] is the
largest index of event f among the events that occur on process pj such that f → e. For
instance, the vector clock of event e7 in Fig. 2b is [0, 2, 3], which means the index of the
current event e7 is 3. Moreover, the event e3, which has index 2 in p2, happened before e7.

2.1 The Lattice of Consistent Global States
A consistent global state G is a subset of E, such that if G includes any event f , then it also
includes all events that happened before f [2]. Formally, G ⊆ E is a consistent global state if

∀e, f : (f ∈ G) ∧ (e→ f)⇒ (e ∈ G).

In Fig. 2a, the global states G and G′′ are consistent and G′ is not, because e3 → e6 but
e3 6∈ G′.

A global state can equivalently be identified by the maximal events of each process. These
maximal events are simply represented by an array of integers, in which the i-th integer
indicates the index of the maximal event among the events that occur on process pi. If the

Y.-J. Chang and V.K. Garg 25:5

index is zero then no event on the corresponding process is included in the global state. For
instance, G′′ in Fig. 2a is represented by [1, 2, 2]. The symbol G[i] denotes the maximal event
of process pi in G, e.g., G′′[2] refers to event e3.

The set of consistent global states forms a distributive lattice [6]. Fig. 2c shows the
lattice that is formed by the consistent global states of the computation. Each node of the
lattice corresponds to a consistent global state and the edge label denotes the event that
takes the system from one consistent global state to the other. The objective of QuickLex is
to enumerate the lattice of consistent global states of the computation in the lexical order.

2.2 Lexical Order among the Global States of the Computation
A lexical algorithm explores the lattice of global states using a pre-defined total order, called
lexical order (denoted ≺), among the global states. The order ≺ is defined on global states
as follows:

G ≺ G′ ⇔ ∃k : (∀i : 1 ≤ i < k : G[i] = G′[i]) ∧ (G[k] < G′[k]),

where G and G′ are two arbitrary global states in the lattice. In Fig. 2c, the lexical order of
the two global states G2 = [0, 0, 1] and G3 = [0, 1, 0] is G2 ≺ G3. The number of each global
state in Fig. 2c is its lexical order among the global states in the lattice.

2.3 Remote Events and Predecessor of an Event
If an event r sends a message to an event e, r is the remote event of e. Formally, an event r

is a remote event of event e if 1) r → e, 2) r and e occur on different processes, and 3) there
does not exist any event f such that r → f → e. If an event does not have any remote event,
it is a local event. In Fig. 2a, for example, event e6’s remote event is event e3. Similarly,
event d is the predecessor of e if 1) d→ e, 2) d and e occur on the same process, and 3) there
does not exist any event f such that d→ f → e. In Fig. 2a, event e6’s predecessor is e5.

3 QuickLex

3.1 Overview
For simplicity, we consider the array of indices of a global state as a number and each index
is a single digit of that number. Fig. 3 shows the mapping between an array of indices and a
number of digits. In a global state, the processes at the left are high priority processes and
those at the right are low priority processes.

To advance from one global state to the other (which is also referred as one iteration in
this paper) in the lexical order, we use the notion of carrying over from arithmetic addition,
in which we continuously add one to the low-order digit of a number and propagate the carry
to a higher order digit that has not reached its limit. Then, all lower order digits are reset
to their least value. Similarly, QuickLex contains two main parts. The first part adds the
next event of the least priority process pn into the current global state. If the next event
of pn is not available (e.g., if the limit of the digit is reached), the carry is propagated to a
higher priority process, say pk. The second part resets the maximal events of lower priority
processes, i.e., p(k+1) to pn.

Algorithm 1 shows the pseudo code of QuickLex, which takes as input a computation
P . The least global state L and the greatest global state M of P are acquired from the
computation itself and no additional calculation is needed. Take Fig. 2a for example,

OPODIS 2015

25:6 QuickLex

Number = 1 2 ... 2

digits

digits: high order low order

indices

Global State = [1, 2, ..., 2]
p2p1 pn

processes: high priority low priority

Figure 3 A number consists of
multiple digits and the array of in-
dices, which is considered as a num-
ber and each index is considered as
a digit of that number.

Algorithm 1 QuickLex(P)
Input: A computation P with L as the least global state

and M as the greatest global state.
1: G := L . Use L as the initial global state.
2: for every event e in P do locateRemoteEvents(e)
3: initialStacks()
4: while true do
5: enumerate(G) . Evaluate the predicate on G.
6: k := propagate(G, M) . Find pk to propagate.
7: if k < 1 then break . true: no process to propagate.
8: G[k] := G[k] + 1 . Add the new event ek into G.
9: reset(G, k) . Reset the maximal events of lower

priority processes, i.e., pk+1 to pn.
10: end while

where L = [0, 0, 0] and M = [1, 3, 3]. QuickLex enumerates every global state G such that
L � G � M . The function locateRemoteEvents at line 2 pre-calculates the reusable
information for the propagate procedure. The function initializeStack at line 3 initializes
the memory space for dynamic programming, which speeds up the reset procedure.

Part 1 (lines 6–8): Informally, an event is enabled if it can be added into the current global
state G without violating the consistency of G. There might be multiple enabled events
with respect to G. Since we enumerate global states in the lexical order, the propagate
procedure locates the enabled event that occurs on the process that has the least priority,
say pk. If k is 0, then the next global state has exceeded the maximal global state M and
hence the enumeration is terminated; otherwise, the enabled event is added into G.

Once k is decided by the propagate procedure, the processes in the computation are
divided into two sets: Ph and Pl. The set Ph contains the processes whose priorities are
higher or equal to process pk, and Pl contains those whose priorities are lower than pk. In
Fig. 2a, for example, if k = 2, then Ph = {p1, p2} and Pl = {p3}. From now on, the symbols
ph and pl denote an arbitrary process in Ph and Pl, respectively. Moreover, h ≤ k < l.

Part 2 (line 9): After part 1, the maximal events for Ph are decided and fixed. Thus, we
need to ensure that all the events of Pl that happened before the events of Ph are included
in the next global state. We define the maximum dependency event of any process pl as the
event, which has the largest index among the events that occur on pl, that has to be included
in G due to the consistency of the HB relation. The procedure reset finds the maximum
dependency event for every pl.

The details of the first and second part of QuickLex are described next.

3.2 Part 1: Procedure propagate and the Enabled Event ek

Fig. 2 shows how part 1 works during an iteration of QuickLex. Assume that the current
global state is G2 = [0, 0, 1] and thus the next global state to be enumerated is G3 = [0, 1, 0].
The advancement from G2 to G3 is shown as a dashed arrow in Fig. 2c. First, event e6 is
considered as the next event to be added into G2. However, e6 cannot be included in G2
because e3→ e6 and e3 6∈ G2, i.e., e6 is not enabled. Thus, the carry is propagated to p2.
Since event e2 is enabled, it is added to G2. Now, we have reached an intermediate global

Y.-J. Chang and V.K. Garg 25:7

Algorithm 2 Locate the set R(e) of remote events for event e

1: function locateRemoteEvents(e)
2: Let d be e’s predecessor.

. Find the new HB relation on event e.
3: for i from 1 to n except e.pid do . e.pid

is the id of the process on which e occurs.
4: if d.vc[i] 6= e.vc[i] then Add

event(i, e.vc[i]) into RCandidate.
5: end for

. Find the direct HB relation on event e.
6: for every r ∈ RCandidate do
7: Let r′ be any other event in

RCandidate.
8: if r.vc[r.pid] is larger than all r′.vc[r.pid]

then Add r to R(e).
9: end for

10: end function

Algorithm 3 Procedure propagate and Function isEnabled
Input: The maximal global state M .
Output: The process pk to propagate.
1: procedure propagate(G, M)
2: for k from n to 1 do . From pn to p1.
3: if G[k] + 1≤M [k] then . G + ek �M

4: ek := the next event on process pk.
5: if isEnabled(G, ek) then return k

6: end if
7: end for
8: return 0 . No process to propagate.
9: end procedure

Input: The next event ek on process pk.
Output: Returns true if ek is enabled w.r.t. G.
10: function isEnabled(G, ek)
11: if ek is a local event then return true
12: if ∀r∈R(ek) s.t. r.vc[r.pid] > G[r.pid]

then return true . r.pid is the id of the
process on which r occurs.

13: return false
14: end function

state [0, 1, 1]. In this example, the maximal event G[3] of p3 will be reset to 0 in the second
part of QuickLex and hence G3 = [0, 1, 0] is reached.

I Definition 1. An event e is enabled in a global state G iff all events that happened before
e are included in G.

Assuming that event e occurs on process pi, this condition can be determined using the
property of vector clocks [8, 22]: (e.vc[i] = G[i] + 1)∧ (∀j 6= i : e.vc[j] ≤ G[j]). Unfortunately,
it takes O(n) time to compare the vector clocks in the latter part of the condition. QuickLex
uses the following theorem to reduce the time complexity to O(∆(P)), where ∆(P) is the
maximal number of remote events for any event:

I Theorem 2. Let R(e) be the set of remote events of event e, which occurs on process pi,
and event d be the predecessor of e, then e is enabled iff d ∈ G and ∀r ∈ R(e) : r ∈ G.

Proof (Sketch). It can be shown using the property of vector clocks. J

Theorem 2 reduces the computational cost of the procedure that determines whether event
e is enabled by ignoring the events that transitively happened before e. For example, if
event e is a local event, which does not have any remote event, then e is enabled when its
predecessor is included in G. In a computation P , ∆(P) is at most (n− 1) because there are
at most (n− 1) events that occur on different processes and send messages to e. If any event
in P can have at most one remote event [4, 20, 9, 15, 18], then ∆(P) is O(1).

Algorithm 2 uses the property of vector clocks to locate the set R(e) of remote events
for any event e. The function has two steps. In the first step (lines 2-5), the vector clock
of e and that of e’s predecessor are compared. If the i-th value (except the one for e itself)
of e’s vector clock is updated, then a new HB relation is established between e and event(i,

OPODIS 2015

25:8 QuickLex

e.vc[i]), which is the event, whose index is e.vc[i], that occurs on process pi. However, we are
interested in only direct HB relation because of Theorem 2. Thus, the second step (lines 6-9)
uses another property of vector clocks: if event r has not happened-before event r′, then
the vector clock of r′ does not contain r’s latest clock value, i.e., r.vc[r.pid], where pid is
the id of the process on which r occurs. Note that Algorithm 2 is invoked only once at the
beginning of QuickLex and the calculated R(e) for event e is reused during the enumeration.

Algorithm 3 shows the procedure propagate. The procedure decides which process to
propagate starting from the least to the highest priority processes in order to follow the
lexical order. Moreover, the event that occurs after the currently maximal event of process
pk is chosen. Thus, the predecessor of ek is always included in G. The function isEnabled
checks if either one of the following two conditions holds to determine whether ek is enabled:
1) ek is a local event or 2) all remote events of ek are included in G. If any event in the
computation has at most one remote event, then isEnabled takes constant time. If ek is
enabled, then propagate has found the process pk and it returns k. If the process pk does
not exist, which implies that M is reached, then propagate returns 0.

3.3 Part 2: Procedure reset and the Maximum Dependency Events

The maximal events of Pl are not always reset to index 0. Assume that we are advancing
from G12 = [0, 3, 3] to G13 = [1, 1, 0] in Fig. 2. After propagate decides k = 1, we reach the
intermediate global state [1, 3, 3]. However, we cannot simply reset the global state to [1, 0, 0]
because it is not consistent; it includes e1 but does not include e2 even though e2→ e1 (see
Fig. 2a). So, the procedure reset has to find the maximum dependency events of p2 and p3
that would satisfy the consistency of the global state.

From now on, the symbol Gm[l] denotes the maximum dependency event of pl, which
becomes the maximal event G[l] of pl after reset. When ek is decided, the maximal events
of Ph are also decided. The maximum dependency event Gm[l] for every pl can be calculated
using the property of vector clocks:

Gm[l] = max
1≤j≤n

(G[j].vc[l])

For simplicity, the expression max1≤j≤i(G[j].vc[l]) is denoted by the symbol Xl(i) from now
on. Fig. 4 shows how the maximum dependency event Gm[l] of a process pl is identified
by Xl(n). In Fig. 4, the events e1, e2, e3, and e4 are four events that occur on process p5.
Assume that their indices are 1, 2, 3, and 4, respectively. Suppose that k = 4. Thus, G[4] is
the new event ek. The fifth indices of the vector clocks of the maximal events of p1, p2, p3,
and p4 are shown in the figure (i.e., G[1].vc[5], G[2].vc[5], G[3].vc[5], and G[4].vc[5]). The
bold arrows between events are the HB relations that are obtained from these indices. Since
G[3].vc[5] has the largest index, i.e., 4, it follows that e4 is the maximum dependency event
of p5. In other words, Gm[5] = X5(4) = 4.

In fact, Gm[l] can be identified by Xl(k) instead of Xl(n):

I Theorem 3. For a global state G, k, and any process pl, Xl(i) = Xl(k) for all i > k.

Proof. Assume that the condition is not true, i.e., ∃i : i > k : Xl(i) > Xl(k). The condition
implies that Gm[l]→ ei, which is an event that occurs on process pi. Because i > k, we get
pi ∈ Pl and thus ei → Gm[i]; so ei is included in G. Moreover, since Gm[i] is a maximal
dependency event, there exists an event eh such that Gm[i] → eh, where eh occurs on a
process ph, where h ≤ k.

Y.-J. Chang and V.K. Garg 25:9

p1

p2

p3

p5

G[1].vc[5]=2

Ph
Pl

G[2].vc[5]=1

G[3].vc[5]=4

pk=4
G[4].vc[5]=3

G

idx = 1 2 3 4

G[1]

e1 e2 e3 e4
the maximum dependency event for p5

X5(1)=2

X5(2)=2

X5(3)=4

X5(4)=4

G[2]

G[3]

G[4]

p1:2
p3:4 top

index value (val)

stack5

X5(5)=4

Figure 4 The symbol Xl(i) denotes the function max1≤j≤iG[j].vc[l]. The upside-down stack5

on the right is the actual stackl that is used by QuickLex.

Algorithm 4 Incremental update of array
Xl

Input: The process id of pl, the decided k,
and ∀i : 1 ≤ i ≤ n : Xl[i] = Xl(i) w.r.t.
global state F .

Output: ∀i : 1 ≤ i ≤ n : Xl[i] = Xl(i) w.r.t.
global state G.

1: function updateArrayX(l, k)
2: Xl[k] := max

(
Xl[k − 1], G[k].vc[l])

)
3: for i from (k +1) to n do Xl[i] := Xl[k]
4: end function

Algorithm 5 Initialize stacks for every process
1: function initializeStacks()
2: for i from 1 to n do . For every process pi in

P .
3: push [p1 : G[1].vc[i]] into stacki

4: for j from 1 to (i− 1) do . k < i is always
true.

5: if top.val < G[j].vc[i] then
6: push [pj : G[j].vc[i]] into stacki

7: end for
8: end for
9: end function

Due to the transitivity of HB relation, we get Gm[l]→ ei → Gm[i]→ eh and hence Xl(h)
also contains the largest value of Xl(i). Since h ≤ k < i, we get Xl(h) = Xl(k) = Xl(i),
which contradicts the assumption. J

According to Theorem 3, Xl(k) has the largest clock value among Xl(i) for all i. Con-
sequently, Gm[l] can be identified by Xl(k). Now we show how to calculate the value of
Xl(k) in amortized constant time for each iteration using dynamic programming. It is easy
to see that the value of Xl(i) satisfies the following recursive equation:

Xl(i) =
{

G[1].vc[l], if i = 1
max

(
Xl(i− 1), G[i].vc[l]

)
, otherwise

(1)

We use an auxiliary integer array Xl for each process pl, in which each value Xl[i] stores the
value of Xl(i). Note that Xl(i) is the value of max1≤j≤i(G[j].vc[l]) and Xl[i] is a calculated
result. The array Xl has to satisfy the invariant:
∀i : 1 ≤ i ≤ n : Xl[i] = Xl(i)

For any global state G and a given k, we can calculate the array Xl for each process
pl with respect to G. Assume that F is the previous global state of G in the lexical order.
Instead of calculating the array Xl for G from scratch, we incrementally construct Xl from
that of F . The incremental update procedure is shown in the function updateArrayX in
Algorithm 4.

I Theorem 4. Function updateArrayX maintains the invariant of Xl after the incremental
update.

OPODIS 2015

25:10 QuickLex

Algorithm 6 Function updateStack and Procedure reset
Input: The process id of pl and the decided k.
Output: The top value of stackl is G[l].
1: function updateStack(l, k)
2: pop stackl until top.pid ≤ k.
3: if top.val < G[k].vc[l] then
4: if top.pid = k then top.val := G[k].vc[l]
5: else push [pk : G[k].vc[l]] into stackl

6: end if
7: end function

Input: The decided k.
Output: The maximum dependency events of

Pl are found.
8: procedure reset(G, k)
9: for l from (k + 1) to n do

10: UpdateStack(l, k)
11: G[l] := top.val . Set G[l] to Gm[l].
12: end for
13: end procedure

Proof. We consider the three intervals of the values in Xl:
(a) i < k: Since the maximal events of Ph are not changed, the true values of Xl(i) for i < k

remain the same. Thus, updateArrayX does not need to update Xl[i] for i < k.
(b) i = k: Xl[i] is updated at line 2 using equation (1), where the true value of Xl(i− 1) is

obtained from Xl[i− 1].
(c) i > k: Xl[i] is updated at line 3 using Theorem 3. J

Since the results of Xl are non-decreasing, we only need to store the values that are
larger than their previous one and the process ids of the events that provide the values. For
instance, stack5 in Fig. 4 is the actual stack (which is shown upside down) for storing the
results of X5. In stack5, the top entry [p3 : 4] means X5[3] = X5[4] = · · · = X5[n] = 4 and
the bottom entry [p1 : 2] means X5[1] = X5[2] = 2.

Algorithm 5 constructs the stacki of each process pi for the initial global state of a
computation, which is [0, 0, ..., 0]. Although k does not exist in the initial global state,
we know that k < i for each process pi because of the definition of Pl. Therefore, it
is safe to assume that k = (i − 1) when constructing stacki. It is easy to see that the
construction of stacki is equivalent to the construction of the array Xi. Moreover, the
function updateArrayX in Algorithm 4 can be converted to the function updateStack in
Algorithm 6. Line 2 of updateArrayX is equivalent to lines 2-6 of updateStack and line
3 of updateArrayX is achieved by the property of stackl.

I Theorem 5. Gm[l] can be identified using stackl in an amortized constant time per global
state.

Proof. At line 2 of Algorithm 6, if stackl pops m entries, then there exist m iterations that
cumulatively pushed m entries into stackl. Therefore, the cost of the pop operations can
be evenly charged to the m iterations and be reduced to amortized constant time. The
operations at lines 4 and 5 take constant time. As a result, the time complexity for updating
a stack is amortized constant time per global state. J

Finally, lines 8-13 of Algorithm 6 shows the procedure reset, which updates stackl for every
pl. The maximum dependency event of pl is identified from the top entry of stackl.

3.4 The Correctness and Worst Time Complexity of QuickLex
I Theorem 6. QuickLex enumerates the lattice of global states of a computation in the
lexical order such that every global state is enumerated exactly once.

Proof. Assume that F is the previously enumerated global state and G is the current global
state to be enumerated.

Y.-J. Chang and V.K. Garg 25:11

Table 2 The information of benchmarks and runtimes (sec.) of each algorithm.
Benchmark n #events #global states BFS Tree Lex QuickLex

d-300 10 300 42,695,907 58.43 3.80 3.41 0.76
d-500 10 500 237,475,992 375.06 19.40 18.67 3.78
d-10K 10 10,000 4,962,876,973 8,211.87 393.74 448.28 86.38
bank 8 96 815,730,721 out of memory 56.67 64.37 9.69
tsp 8 105,282 13,474,170 9.85 1.63 2.37 0.37
hedc 12 216 4,486,599,595 out of memory 322.04 488.22 78.34

elevator 12 38,528 27,643,588,608 out of memory 2,248.39 4,677.12 660.40
w-4 4 480 9,381,251 2.51 0.88 0.38 0.16
w-8 8 480 7,392,009,768 out of memory 609.74 454.28 128.03
w-12 12 480 206,379,406,870 out of memory 19,225.98 21,303.66 3,996.17
w-16 16 480 991,493,848,554 out of memory 111,452.52 179,844.62 23,263.05

Lexical Order: Since propagate adds a new event ek to F , we get ∃k : (∃i : 1 ≤ i < k :
F [i] = G[i]) ∧ (F [k] < G[k]) and hence F ≺ G.

Exactly Once: Since F ≺ G, every global state is enumerated at most once. We next show
that every global state is enumerated at least once. Since F ≺ G, we get ∀i : 1 ≤ i < k :
F [i] = G[i] and G[k] = F [k] + 1. Assume that F ′ is a consistent global state such that
F ≺ F ′ ≺ G. We consider the following cases:
(a) F ′[k] < F [k]: This case implies that F ′ ≺ F , which contradicts the assumption F ≺ F ′.
(b) F ′[k] = F [k]: Since F ≺ F ′, this case implies that there exists a process pk′ such that

k′ > k and pk′ has an enabled event w.r.t. F . However, propagate locates the enabled
event from pn to p1 and hence k′ ≤ k. A contradiction.

(c) F ′[k] = F [k] + 1 = G[k]: After reset, any pl cannot have a maximal event that is
smaller than its maximum dependency event Gm[l] due to the consistency of the HB
relation. Thus, we get 6 ∃l : F ′[l] < G[l] = Gm[l]. So, F ′ does not exist.

(d) F ′[k] > F [k]+1 = G[k]: This case implies that G ≺ F ′, which contradicts the assumption
F ′ ≺ G.

J

I Theorem 7. The worst case time complexity of QuickLex is O(n·∆(P)) per global state.

Proof. There are two main procedures during each iteration of QuickLex: propagate and
reset. We first analyze the worst time complexity of propagate. Each invocation the
function isEnabled takes O(∆(P)) time and the for loop of propagate is executed at
most n iterations. So, the worst time complexity of propagate is O(n·∆(P)) time.

We now analyze the worst case time complexity of reset. Each invocation of the function
updateStack takes amortized O(1) time and the for loop of reset is executed at most n

iterations. So, the worst case time complexity of reset is amortized O(n) time. As a result,
the worst time complexity of each iteration of QuickLex is O(n·∆(P)). J

4 Evaluation

4.1 Setup of Benchmarks
Table 2 shows the information of the benchmarks that are used in the experiments. The
benchmarks contain three different sets of computations. The benchmarks that start with the
prefix “d-” are randomly generated posets of events for modeling distributed computations.
The benchmarks bank, tsp, hedc, and elevator are the computations that are captured from
the executions of real-world concurrent applications. We establish the HB relation in these
concurrent computations using the following rules [9, 20]:

OPODIS 2015

25:12 QuickLex

1. If e occurs before f on the same thread, then e→ f .
2. If event e corresponds to a thread releasing a lock and f corresponds to subsequent

acquisition of that lock (including implicit locks and monitors), then e→ f .
3. If the parent thread forks a new thread on event e and the child thread is created on

event f , then e → f . Similarly, if a child thread terminates on event e and the parent
thread joins the child thread on event f , then e→ f .

4. If e→ g and g → f , then e→ f .
The benchmark banking contains a typical error pattern in concurrent programs [7]; tsp is a
parallel solver for the traveling salesman problem; hedc is a crawler for searching Internet
archives; and elevator is a discrete event simulator for an elevator system. The benchmarks
tsp, hedc, and elevator are the benchmark programs that are used in [4, 9, 29].

Finally, the benchmarks that start with the prefix “w-” have the same number of events,
i.e., 480 events, but different number of processes in the computation. The set of benchmarks
is used to show how different n influences the performance of enumeration algorithms, and
therefore we keep the number of events constant.

4.2 Compared Enumeration Algorithms
Besides QuickLex, we implemented the breadth-first strategy (BFS) algorithm [5, 11], the
ideal tree traversal algorithm (Tree) [18, 15], and the original lexical algorithm (Lex) [10, 11].
In BFS algorithm [5], a global state might be enumerated more than once, so we use
the strategy in [11] to ensure that every global state is enumerated exactly once. In our
experiments, we use the improved BFS algorithm.

For Lex [11], we improve the nested for loops of function LeastGlobalState(). Each of
the for loop goes through process p1 to process pn, which takes O(n2) time. However, looping
through all processes is not necessary. We modify the first loop, which only loops from p1 to
pk, and the second loop, which only loops from pk+1 to pn. Although the time complexity
remains the same, the practical runtime is improved significantly. In our experiments, we
use the improved Lex algorithm.

The Tree algorithm [15, 18] finds a backward spanning tree in the lattice of global states,
where the root is the global state that contains all events, e.g., the state G22 that is shown
in Fig. 2c. Then it traverses the spanning three in a depth-first manner. The performance of
Tree mainly dependents on SList [18], which is a customized linked list that continuously
adds and removes the nodes of the spanning tree. So, we use the following implementation
techniques to improve its performance. First, we calculate the least number of nodes that is
required by SList during the enumeration. Then, we pre-allocate all the nodes in an object
pool, which is implemented using an array, and reuse the nodes through the enumeration
procedure. Second, each node of SList has a counter that has to be updated and there
are ∆(P) nodes that need to be updated in each iteration. We replace the counter with a
timestamp, which achieves the same functionality but only needs to be set once and requires
no further updates. Hence, the cost of the update is reduced from O(∆(P)) time to constant
time. From our empirical observations, the implementation enhancements have reduced
approximately 50

4.3 Experimental Results
The input of the compared algorithms is the vector clocks of the events in the computation
and the output is the set of global states of the computation. Table 2 also shows the
experimental results. All the experiments are conducted on a Linux machine with an Intel

Y.-J. Chang and V.K. Garg 25:13

d-30
0

d-50
0

d-10
k bank tsp hedc elev

ator w-4 w-8 w-12 w-16
0

0.25
0.5

1

1.5

2

2.5

Benchmark

N
or
m
al
iz
ed

R
un

tim
e
w
.r.
t.

Tr
ee

Tree
Lex

QuickLex

Figure 5 Normalized runtime of each algorithm w.r.t. the runtime of Tree algorithm.

p1
p2
p3

(a)

p1
p2
p3

(b)

Figure 6 (a) The best case for QuickLex. (b) The worst case for QuickLex.

Xeon 2.67GHz CPU and the heap size of Java virtual machine is limited to 2GB. The
runtime is measured in seconds. As it can be seen, BFS algorithm has the worst performance
because of its high time complexity. Moreover, it failed to finish on more than half of the
benchmarks because it ran out of the available 2GB memory. The reason is that it has to
store intermediate global states for future iterations and the number of intermediate global
states might grow exponentially in n in the worst case.

We first compare the runtimes of Tree, Lex, and QuickLex in the first and second set of
benchmarks. Fig. 5 shows the normalized runtimes of each algorithm with respect to the
runtime of Tree. We normalized the runtimes to those of Tree because it has an amortized
time complexity of O(1) per global state and the smallest theoretical time complexity among
the existing enumeration algorithms. From Fig. 5, QuickLex is approximately 7 times faster
than Lex and consistently 4–5 times faster than Tree. One reason that Tree is not as fast as
QuickLex is that its intermediate information has to be stored in a linked list and therefore
the cost of accessing the information is high.

We compare the runtimes of Tree, Lex, and QuickLex in the third set of benchmarks,
which starts with the prefix “w-”. From Fig. 5, we can see that the normalized runtimes
of Lex increase as the number of processes increases. On the other hand, the normalized
runtimes of QuickLex are consistently 4 times faster than those of Tree, which shows that
the time complexity of QuickLex can achieve amortized O(1) per global state in practice.

We now explain how QuickLex achieves amortized O(1) time per global state in practice.
Suppose that any event in the computation can have at most one remote event, then the
worst time complexity of propagate is O(n) per global state. Recall that each call of
propagate runs through (n− k + 1) processes before returning k. If there exist more than
(n− k + 1) global states between current and most recent propagate call that returns the
same k, then the cost of current propagate call can be charged to the iterations between
these two propagate calls, which cumulatively enumerated (n− k + 1) global states. Thus,
the current propagate call is amortized to O(1).

Fig. 6a illustrates the explanation. Assume that the cost of a propagate call is c if

OPODIS 2015

25:14 QuickLex

d-30
0

d-50
0

d-10
k bank tsp hedc elev

ator w-4 w-8 w-12 w-16
0

50

100

150

200

250

300

Benchmark

M
em

or
y
(M

B
)

Tree
Lex

QuickLex

Figure 7 Memory usage of Tree, Lex, and QuickLex algorithm.

Table 3 The performance of ParaMount with different enumeration algorithms.

Information Runtime (ms) # Detection
Benchmark LoC Thread #Var Lex QuickLex
banking 139 4 7 72 20 1
set (faulty) 223 4 10 152 69 1
set (correct) 260 4 10 110 51 0
arraylist1 1,474 4 6 19 19 3
arraylist2 1,377 4 16 22 15 0
sor 255 4 20 81 25 0
elevator 547 4 23 890 667 0
tsp 702 4 36 114 42 1
raytracer 1,885 4 77 1240 236 1
hedc 25,027 8 345 940 335 4

the while loop of propagate executes c iterations. For instance, the cost of a propagate
call that returns k = 2 is 2. However, QuickLex has enumerated 4 global states, e.g.,
[0, 0, 0], [0, 0, 1], [0, 0, 2], and [0, 0, 3], between any two propagate calls that return k = 2.
Consequently, the additional cost of the current propagate call, which returns k = 2, can
be evenly charged to 5 global states, including the current one. Similarly, there are 17 global
states for any propagate call that returns k = 1 to share the additional cost. As a result,
the time complexity of any propagate call can be amortized to O(1) time per global state.
The same reason holds for the time complexity of reset. Fig. 6b shows the worst case
for QuickLex, in which only one global state exists between propagate calls. Therefore,
the cost cannot be amortized and hence propagate takes O(n) time. The events in this
computation are totally ordered, which is not a common computation.

Fig. 7 shows the memory usage of the compared enumeration algorithms. Since Lex is
stateless, its memory is mainly used for storing the input, i.e., the computation. From Fig. 7,
QuickLex uses almost the same amount of memory even though QuickLex requires additional
O(n2) space to store the stacks for dynamic programming. The O(n2) space is quite small
because the space only stores integers. Tree, however, consumes much more memory space
than Lex and QuickLex because it needs to store the information regarding its backward
spanning tree, whose size is linear to O(|P |). Note that |P | is much larger than n2.

5 The Applications of QuickLex

5.1 Predicate Detection in Concurrent Systems
In [3], we implemented a predicate detector, named ParaMount, for concurrent programs.
ParaMount uses a sequential enumeration algorithm (e.g., Lex or QuickLex) as a subroutine to

Y.-J. Chang and V.K. Garg 25:15

enumerate the set of global states in an online-and-parallel fashion. During the enumeration,
each global state is checked for the predicate corresponding to data races. Table 3 shows
the result of the detection. The columns “LoC”, “Thread”, and “#Var” show the lines of
code of each benchmark, the number of threads that are used to drive each benchmark,
and the number of variables of each benchmark, respectively. The column “Lex” shows the
original execution time of ParaMount using the Lex as its subroutine and column “QuickLex”
shows the improved execution time. On average, QuickLex improves the execution time of
ParaMount by a factor of 3. The column “#Detection” shows the number of variables that
have data races; all the detected variables are also detected by [4, 9].

5.2 Other Applications
In [12, 13], it has been shown that many families of combinatorial objects can be mapped to
the lattice of global states of appropriate posets. Thus, lexical traversal that is discussed in
this paper can also be used to efficiently enumerate all subsets of [n], all subsets of [n] of size
m, all permutations, all permutations with a given inversion number, all integer partitions
less than a given partition, all integer partitions of a given number, and all n-tuples of a
product space.

6 Conclusion

In this paper, we presented a fast algorithm, named QuickLex, for global states enumeration
of concurrent and distributed computations. In comparison with the original lexical algorithm,
QuickLex has a preprocessing procedure and incorporates dynamic programming to reduce
the time complexity from O(n2) to O(n·∆(P)). In the evaluation section, we implemented
and compared QuickLex with several existing enumeration algorithms, i.e., BFS [5, 11], Lex
[10, 11], and Tree [18, 15]. Moreover, these algorithms are enhanced with different techniques.
From our experimental results, QuickLex is 7 times faster than Lex and 4–5 times faster
than Tree. The experiments also show that QuickLex can achieve amortized constant time
for a certain type of computations. QuickLex uses almost the same amount of memory
as Lex while Tree requires 2–10 times more memory than QuickLex. For the real-world
applications, QuickLex is used to implement an online-and-parallel predicate detector for
concurrent programs. The experimental results show that the detector speeds up 3 times in
comparison with its previous version (which uses Lex as its subroutine).

References
1 Sridhar Alagar and Subbarayan Venkatesan. Techniques to tackle state explosion in global

predicate detection. IEEE Transactions on Software Engineering, 27:412–417, 2001.
2 K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of dis-

tributed systems. ACM Transactions on Computer Systems, 3(1):63–75, February 1985.
3 Yen-Jung Chang and Vijay K. Garg. A parallel algorithm for global states enumeration in

concurrent systems. In ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2015.

4 Feng Chen, Traian Florin Serbanuta, and Grigore Roşu. jPredictor: a predictive runtime
analysis tool for java. In Proceedings of the International Conference on Software Engin-
eering, pages 221–230, 2008.

5 R. Cooper and K. Marzullo. Consistent detection of global predicates. In Proceedings of
the ACM/ONR Workshop on Parallel and Distributed Debugging, pages 163–173, 1991.

OPODIS 2015

25:16 QuickLex

6 B. A. Davey and H. A. Priestley. Introduction to lattices and order. In Cambridge University
Press, Cambridge, UK, 1990.

7 E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how to test them. In Proceedings
of the International Parallel and Distributed Processing Symposium, 2003.

8 Colin J. Fidge. Timestamps in message-passing systems that preserve the partial ordering.
In Proceedings of the Australian Computer Science Conference, pages 56–66, 1988.

9 Cormac Flanagan and Stephen N. Freund. FastTrack: efficient and precise dynamic race
detection. In Proceedings of ACM SIGPLAN the Conference on Programming Language
Design and Implementation, pages 121–133, 2009.

10 Bernhard Ganter. Two basic algorithms in concept analysis. In Proceedings of the Interna-
tional Conference on Formal Concept Analysis, pages 312–340, 2010.

11 Vijay K. Garg. Enumerating global states of a distributed computation. In Proceedings of
the International Conference on Parallel and Distributed Computing Systems, pages 134–
139, 2003.

12 Vijay K. Garg. Algorithmic combinatorics based on slicing posets. Theoretical Computer
Science, 359(1-3):200–213, 2006. doi:10.1016/j.tcs.2006.03.005.

13 Vijay K. Garg. Introduction to Lattice Theory with Computer Science Applications. John
Wiley & Sons, Inc., 2015.

14 Vijay K. Garg and B. Waldecker. Detection of unstable predicates. In Proceedings of the
Workshop on Parallel and Distributed Debugging, 1991.

15 Michel Habib, Raoul Medina, Lhouari Nourine, and George Steiner. Efficient algorithms
on distributive lattices. Discrete Applied Mathematics, 110(2-3):169–187, 2001.

16 Jeff Huang and Charles Zhang. Persuasive prediction of concurrency access anomalies.
In Proceedings of the International Symposium on Software Testing and Analysis, pages
144–154, 2011.

17 M. Hurfin, M. Mizuno, M. Raynal, and M. Singhal. Efficient distributed detection of
conjunctions of local predicates. IEEE Transactions on Software Engineering, 24:664–677,
1998.

18 Roland Jegou, Raoul Medina, and Lhouari Nourine. Linear space algorithm for on-line
detection of global predicates. In Proceedings of the International Workshop on Structures
in Concurrency Theory, pages 175–189, 1995.

19 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commu-
nications of the ACM, 21(7):558–565, 1978.

20 Y. Lei and R.H. Carver. Reachability testing of concurrent programs. IEEE Transactions
on Software Engineering, 32(6):382–403, 2006.

21 Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. AVIO: detecting atomicity viol-
ations via access interleaving invariants. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating Systems, pages 37–48,
2006.

22 Friedemann Mattern. Virtual time and global states of distributed systems. In Proceed-
ings of the International Workshop on Parallel and Distributed Algorithms, pages 125–226,
Chateau de Bonas, France, 1988.

23 Vinit A. Ogale and Vijay K. Garg. Detecting temporal logic predicates on distributed
computations. In Proceedings of International Symposium in Distributed Computing, pages
420–434, 2007.

24 Soyeon Park, Shan Lu, and Yuanyuan Zhou. CTrigger: exposing atomicity violation bugs
from their hiding places. In Proceedings of the International Conference on Architectural
support for programming languages and operating systems, pages 25–36, 2009.

25 Gara Pruesse and Frank Ruskey. Gray codes from antimatroids. Springer LNCS Order,
10:239–252, 1993.

http://dx.doi.org/10.1016/j.tcs.2006.03.005

Y.-J. Chang and V.K. Garg 25:17

26 Francesco Sorrentino, Azadeh Farzan, and P. Madhusudan. PENELOPE: weaving threads
to expose atomicity violations. In Proceedings of the ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, pages 37–46, 2010.

27 Matthew B. Squire. Enumerating the ideals of a poset. In PhD Dissertation, Department
of Computer Science, North Carolina State University, 1995.

28 George Steiner. An algorithm to generate the ideals of a partial order. Operations Research
Letters, 5(6):317–320, 1986.

29 Christoph von Praun and Thomas R. Gross. Object race detection. In Proceedings of the
ACM SIGPLAN conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 70–82, 2001.

OPODIS 2015

The Synchronization Power of Atomic Bitwise
Operations

Damien Imbs

Department of Mathematics, University of Bremen, Bremen, Germany
imbs@math.uni-bremen.de

Abstract
In a distributed system, processes must reach a certain level of synchronization to solve a common
problem. The strongest form of synchronization can be reached through consensus: all the
processes must agree on a common value that has been proposed by one of them. Consensus
is universal in shared memory systems: any type of shared object can be implemented using it.
Unfortunately, consensus is impossible to solve using only shared registers when processes can
crash.

To circumvent this impossibility, one can use stronger objects, for example Test&Set or Com-
pare&Swap. The synchronization power of these objects can be measured using the concept of
Consensus Number: the maximum number of processes for which they can solve consensus in a
crash-prone system.

Bitwise AND, OR and XOR operations are very widely used, but have received little attention
in the distributed setting. Because bitwise operations are available in most modern processors,
they can constitute a valuable tool for synchronization in distributed systems. It is then natural
to consider the level of synchronization that these operations can achieve.

This paper introduces shared AND/OR and AND/OR/XOR registers. A shared AND/OR
register consists of an array of x bits and offers three atomic operations: AND and OR operations,
which take an array of x bits as parameter and change the state of the register by applying the
corresponding bitwise operation, and a read operation which returns the content of the array. A
shared AND/OR/XOR register additionally offers a XOR operation.

We show that shared AND/OR registers of x bits have consensus number bx+1
2 c, by presenting

an algorithm that solves consensus using these registers, and by proving that consensus cannot be
solved for n processes using AND/OR registers that have strictly less than 2n− 1 bits. We then
show that shared AND/OR/XOR registers of x bits have consensus number x using a similar
technique.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Asynchronous systems, Binary operations, Consensus, Consensus num-
ber, Read/write shared memory, Shared objects, Synchronization, Wait-freedom

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.26

1 Introduction

A fundamental issue in distributed systems is the synchronization of various processes. The
highest level of synchronization can be attained when processes can reach consensus, that
is, when they can all agree on a value proposed by one of them. Consensus is universal
in shared memory: using consensus, one can build any shared object that has a sequential
specification [8, 9, 14].

© Damien Imbs;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 26; pp. 26:1–26:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 The Synchronization Power of Atomic Bitwise Operations

Unfortunately, in some communication models, consensus is impossible when even a single
process can crash. This impossibility was first proven for message-passing systems [5], and
was then extended to shared memory systems [13].

In order to implement consensus, one must then use objects stronger than shared registers,
for example Compare&Swap. The synchronization power of such objects can be measured
using their consensus number: the maximum number of processes for which they can solve
consensus in a wait-free manner, that is, when any number of processes can crash [9].
Compare&Swap, for example, has consensus number +∞: it can solve consensus for any
number of processes. Test&Set, on the other hand, has a much lower synchronization power:
its consensus number is only 2, meaning that it can solve consensus for 2 processes, but not
for 3 processes.

The concept of consensus number was introduced in [9] but it was not clear whether
this hierarchy was robust, that is, whether various objects of consensus number x could
combine to give an object with a higher consensus number. In [12], an object is presented
that, when only a single instance is used, can solve consensus for two processes but not for
three processes. However, when x such objects are used, consensus can be solved for x + 1
processes. The author of [12] refined the definition of the consensus number of an object to
make this hierarchy robust: an object type X has consensus number x if, using any number
of objects of type X and of shared registers, the maximum number of processes for which
consensus can be solved is x. According to this definition, when combining various objects of
different types that have consensus number at most x, one cannot obtain an object that has
consensus number y > x.

Content of the paper

Bitwise operations are very widely used in the sequential setting but have received surprisingly
little attention in the context of distributed computing. Because bitwise operations are
available in most modern processors, they can constitute a valuable tool for synchronization
in distributed systems. It is then natural to consider the level of synchronization that these
operations can achieve.

This paper introduces the concepts of shared AND/OR and AND/OR/XOR registers.
An x-bits shared AND/OR register consists of an array of x bits and offers three operations:
and(), or(), and read(). The and() and or() operations take as a parameter an array of x bits,
and apply the corresponding bitwise operation to the object. The read() operation returns
the content of the whole array. An shared AND/OR/XOR register offers an additional xor()
operation that applies the XOR bitwise operation.

The paper first presents an algorithm that solves wait-free consensus for n processes
using (2n− 1)-bits AND/OR registers. The algorithm consists of a series of competitions
between one process that tries to impose its input as the value chosen for the consensus,
and the other processes that try to prevent it from doing so. The algorithm is formally
proved correct.
A modification of the previous algorithm that solves wait-free consensus for n processes
using n-bits AND/OR/XOR registers is then presented.
Two impossibility results are given. It is shown that consensus cannot be solved for
n processes using read/write registers and AND/OR registers that have strictly less
than (2n − 1) bits. This impossibility implies that the first algorithm is optimal with
respect to the number of processes that can solve consensus using AND/OR registers, and
thus shows that the consensus number of x-bits AND/OR registers is bx+1

2 c. It is then
shown that consensus cannot be solved for n processes using read/write registers and

D. Imbs 26:3

AND/OR/XOR registers that have strictly less than n bits, thus showing that the second
algorithm is also optimal and that the consensus number of n-bits AND/OR registers
is x.

Related work

In [9], after introducing the concept of consensus number, its value is studied for various
objects. Among other results, it is shown that Test&Set, Fetch&Add, Swap, the stack and
the FIFO queue all have consensus number 2, Compare&Swap, memory-to-memory move,
memory-to-memory-swap all have consensus number +∞ and that m-register assignment
(writing to m registers atomically) has consensus number 2m− 2. The bitwise operations
considered here differ from m-register assignment in that they can only modify bits of a
single bounded register, whereas m-register assignment can modify any arbitrary set of m

registers. Additionally, in the case of the XOR bitwise operation, the new values of the bits
modified by the operation depend on their previous values; m-register assignment simply
overwrites previous values.

Among the objects that have consensus number 2, the objects of the Common2 class [2]
have an additional property: they can all be implemented using consensus objects that can
only be accessed by two processes. In [1] it is shown that the stack belongs to Common2.
Whether the FIFO queue belongs to Common2 is still an open problem.

Test&Set belongs to the Common2 class. In [11], its specification is slightly modified
to obtain a new object that has consensus number +∞. The idea of the modification is to
share the value returned by the operation.

In [7], a model of multicore architectures such as Compute Unified Device Architecture
(CUDA) is presented, and its consensus number is studied.

The consensus problem has been generalized to the set agreement problem [4]. In the
k-set agreement problem, processes must decide at most k different values that have been
proposed by some process. The k-set agreement problem has been shown to be impossible
to solve in shared memory when any number of processes can crash, even when k = n− 1
[3, 10, 15]. In [6], tasks (one-shot objects) are classified according to their ability to solve
k-set agreement, for k from 1 (consensus) to n− 1.

Roadmap

The paper is composed of 6 sections. Section 2 presents the model, introduces the concept
of AND/OR and AND/OR/XOR registers, and presents the consensus number hierarchy.
Section 3 presents an algorithm that solves consensus using AND/OR registers. Section 4
presents a modification of the previous algorithm that solves consensus using AND/OR/XOR
registers. Section 5 shows that these algorithms are optimal with respect to the number of
processes that can solve consensus, and determines the consensus number of AND/OR and
AND/OR/XOR registers. Finally, Section 6 concludes the paper.

2 Model and definitions

We consider a set Π of n processes p1, . . . , pn. Processes are asynchronous; there is no
assumption on their respective speeds. Moreover, any process can crash: it can stop its
execution at any point in time.

In a given execution, a process that crashes is said to be faulty. Otherwise, it is correct
and executes an infinite number of steps.

OPODIS 2015

26:4 The Synchronization Power of Atomic Bitwise Operations

2.1 Communication model: shared memory, AND/OR registers and
AND/OR/XOR registers

Processes communicate by reading and writing atomic registers. In addition, they can also
access shared AND/OR registers or shared AND/OR/XOR registers.

An AND/OR register REG consists of an array STATE of x bits and offers three
operations: and(), or(), and read(). All these operations are atomic: they appear as being
executed at a single time instant.

The REG.and(array) operation. The and() operation takes as a parameter an array
array of x bits. It does not return a value.
For each entry y ∈ [1..x] of its array STATE , it executes the binary and operation with
the corresponding entry array[y] of the operation parameter. It then stores the result
back in the yth entry of its own array. More formally, it executes the following:

∀y ∈ [1..x] : STATE [y]← STATE [y] ∧ array[y]

Due to the nature of the binary AND operation, it can be reformulated as follows:

∀y ∈ [1..x] : if array[y] = 0 then STATE [y]← 0 end if

The REG.or(array) operation. The or() operation is similar to the and() operation, the
difference being that instead of applying the binary and operation, it applies the binary
or operation. It executes the following.

∀y ∈ [1..x] : STATE [y]← STATE [y] ∨ array[y]

Again due to the nature of the binary OR operation, it can be reformulated as follows:

∀y ∈ [1..x] : if array[y] = 1 then STATE [y]← 1 end if

The REG.read() operation. The read() operation atomically returns the content of the
x-bits array of the register.

An AND/OR/XOR register REG offers an additional operation xor().
The REG.xor(array) operation. The atomic xor() operation is similar to the and() and
or() operations. It applies the binary xor operation. It executes the following.

∀y ∈ [1..x] : STATE [y]← STATE [y]⊕ array[y]

Differently from the and() and or() operations, it cannot be reformulated as a set of
writes: for any entry of array and STATE , the result depends on both values.

2.2 The consensus number hierarchy
The consensus number of an object is a measure of its power of synchronization in failure-prone
shared memory systems [9]. It is based on the consensus problem.

Consensus is a one-shot problem: it offers a single operation propose() that each process
can invoke only once. The propose(v) operation takes a value v as input and returns an
output: a process decides a value if it chooses this value as its output.

The consensus problem is defined by the following properties.
Validity. The decided value is a proposed value.
Agreement. No two different processes decide different values.
Wait-free termination. Every correct process decides.

D. Imbs 26:5

pi (and)

pj (or)

1 x n x + n− 1

Figure 1 AND_OR[i] (2n− 1 bits): bits modified by the owner pi and another process pj .

An object type T is then said to have consensus number c if, in an asynchronous shared
memory system in which any number of processes can crash, consensus can be solved for c

processes using atomic read/write registers and any number of objects of type T , but not for
c + 1 processes. If consensus can be solved for any number of processes, T is said to have
consensus number ∞.

3 Solving consensus using AND/OR registers

In this section, we present an algorithm that solves consensus for n processes using (2n− 1)-
bits AND/OR registers. The algorithm, presented in Figure 2, constitutes a proof that x-bits
AND/OR registers have consensus number at least bx+1

2 c.

3.1 Mechanism of the algorithm
Every process, except pn, competes against all the other processes. There are then n − 1
“competitions”, each associated to a single process, the “owner” of the competition. If a
process wins in its competition, its value may be decided. If it loses, its value cannot be
decided. Among the processes that win their competition, the one with the greatest id wins
the consensus, that is, all the correct processes decide its input value. If there is no such
process (all the processes p1, . . . , pn−1 lost their competition), then the value of pn is decided.

Process pi, for i < n, participates in its own competition before participating in the
competitions of all the other processes. Process pn participates directly in all the competitions.
If a process participates alone in its own competition, it wins. If a process participates alone
in the competition of another process, the owner loses. This guarantees that, if pn does not
participate, at least one process wins its own competition and its value can be decided. If no
process wins its own competition, then pn has participated and its value can be decided.

Each competition uses an AND/OR register AND_OR[i] of 2n − 1 bits. The register
is initialized with AND_OR[i][1..n] = [1, . . . , 1] and AND_OR[i][n + 1..2n− 1] = [0, . . . , 0].
The owner pi uses an and operation, while the other processes use an or operation. Process
pi overwrites (by having the corresponding bits of the parameter of its and() operation set to
0) the bits AND_OR[i][1..n]. Process pj overwrites (by having the corresponding bits of the
parameter of its or() operation set to 1) the bits AND_OR[i][x] and AND_OR[i][x + n− 1],
where x = j + 1 if j < i, and x = j otherwise (the difference between j < i and j > i comes
from the fact that pi does not have dedicated AND_OR[i][x] and AND_OR[i][x + n− 1]
bits). The modifications of AND_OR[i][1] by pi and of AND_OR[i][x + n − 1] by pj

allow determining if the corresponding process issued its operation. The modification of
AND_OR[i][x] by both pi and pj allows determining which process issued its operation
first. Figure 1 presents the layout of the bits of an AND/OR register modified during a
competition.

OPODIS 2015

26:6 The Synchronization Power of Atomic Bitwise Operations

Initially:
∀x ∈ [1..n− 1] :
∀y ∈ [1..n] : AND_OR[x][y] = 1;
∀z ∈ [n + 1..2n− 1] : AND_OR[x][z] = 0.

Operation proposei(v): % Code for pi %
(01) IN [i]← v;
(02) if (i < n) then % and_array: array of 2n− 1 bits %
(03) and_array ← [0, . . . , 0];
(04) for x from n + 1 to 2n− 1 do
(05) and_array[x]← 1
(06) end for;
(07) AND_OR[i].and(and_array)
(08) end if ;
(09) for j from 1 to n− 1 do
(10) if (j 6= i) then % or_array: array of 2n− 1 bits %
(11) or_array ← [0, . . . , 0];
(12) if (i < j) then
(13) or_array[i + 1]← 1;
(14) or_array[n + i]← 1
(15) else % i > j %
(16) or_array[i]← 1;
(17) or_array[n + i− 1]← 1
(18) end if ;
(19) AND_OR[j].or(or_array)
(20) end if
(21) end for;
(22) output← ⊥;
(23) for j from 1 to n− 1 do
(24) current← AND_OR[j].read();
(25) if (current[1] = 0) then
(26) if

(
@x ∈ [2..n] : (current[x] = 0) ∧ (current[n + x− 1] = 1)

)
(27) then output← IN [j]
(28) end if
(29) end if
(30) end for;
(31) if (output = ⊥) then output← IN [n] end if ;
(32) return(output).

Figure 2 An algorithm that solves consensus for n processes using (2n− 1)-bits AND/OR
registers (code for pi).

3.2 Shared objects

The algorithm uses the following shared objects.

An array IN [1..n] of read/write registers. The array IN contains one entry per process.
When a process starts its execution, it writes its input in the corresponding entry of the
array IN (line 01). The array is used to determine the input value of the process whose
value is decided (lines 27 and 31).

An array AND_OR[1..n− 1] of (2n− 1)-bits shared AND/OR registers. Each process,
except pn, has an associated AND/OR register. These registers are used as arbiters.
Process pi (for i 6= n) uses AND_OR[i] to compete against all other processes. In this
competition, pi uses an and operation (line 07), while the other processes use an or

operation (line 19). If pi is the first to invoke an operation on AND_OR[i], it wins
and its value may be chosen. Otherwise, another process has invoked an operation on
AND_OR[i] before pi and the value of pi will not be chosen. After competing in all
AND/OR registers, process pi reads them all to determine which value to decide (line 24).

D. Imbs 26:7

3.3 Process behavior
When it begins its execution, process pi writes its input value in its entry of the array IN
(line 01). If it has an associated AND/OR register AND_OR[i] (that is, if i 6= n), it then
prepares the array that will be used as a parameter for its and operation on AND_OR[i]
(lines 02–06). The goal of the and operation is (1) to let other processes determine if pi has
issued its and operation when they read AND_OR[i] (line 25) and (2) to let them determine
if an or operation has been issued on AND_OR[i] before this and operation (line 26). The
entry and_array[1] is used to signify that pi has issued the and operation, while the entries
and_array[2..n] are used to determine whether pi was the first process to issue an operation
on AND_OR[i].

After issuing its and operation on AND_OR[i] (line 07), pi prepares the array that will be
used for the or operations on the AND/OR registers AND_OR[j] with j 6= i (lines 11–18). In
each of these registers, the or operation may modify 2 bits: the first bit (AND_OR[j][i+1] if
i < j, AND_OR[j][i] otherwise) is used to determine whether pi issued its or operation before
the and operation by pj , if the latter has been issued. The second bit (AND_OR[j][n + i] if
i < j, AND_OR[j][n + i− 1] otherwise) is used to signify that pi issued its or operation on
AND_OR[j].

Process pi then determines the value that it will return. For all the AND/OR registers
AND_OR[j], pi determines whether pj won its competition, that is, whether pj was the first
process to issue an operation on AND_OR[j] (lines 25–26). If that is the case, pi updates
its estimate of the value it has to return by setting output to IN [j] that contains pj ’s input
(line 27). If no process has won its competition, pi returns pn’s input value (line 31).

3.4 Proof of the algorithm
I Lemma 1. The decided value is a proposed value.

Proof. The variable output is returned at line 32. If it is not written at line 27, during the
loop at lines 23–30, it is written at line 31. When it is returned, output thus always contains
the value of an entry of the array IN . There are then two cases.
1. The last write of output is at line 27.

The write of output at line 27 can only happen if the first bit of the corresponding
AND/OR register AND_OR[j] has been set to 0 (read of AND_OR[j] at line 24 and
condition at line 25) and if the condition at line 26 is respected. This can only happen if
pj , the process to which AND_OR[j] is associated, has invoked the and operation on
AND_OR[j] at line 07, which it does after writing its input value in IN [j] at line 01.
The read of IN [j] at line 27 thus returns pj ’s input value.

2. The last write of output is at line 31.
Let us note that, except pn (which doesn’t have an associated AND/OR register), every
process competes in its own associated AND/OR register (line 07) before competing
in any other AND/OR register (line 19). Let us then consider the set of participating
processes minus pn, and the first operation on an AND/OR register by any of these
processes. Because operations on AND/OR registers are atomic, the first operation is
well defined. Let pi be the process that issues it.
Suppose, by way of contradiction, that pn issued its first operation on AND_OR[i]
after pi, or not at all. By definition of pi, when it issues its and operation on the
AND/OR register AND_OR[i], no other process has issued an or operation on it yet.
Note that no other and operation will be issued on AND_OR[i]. After this operation,
the condition at line 25 is respected. The condition at line 26 is also respected: before

OPODIS 2015

26:8 The Synchronization Power of Atomic Bitwise Operations

any process issues an or operation, for any x ∈ [n + 1..2n − 1], AND_OR[i][x] = 0
(initialization of AND_OR[i]). Any subsequent or operation by any process pj will set
an entry AND_OR[i][n + x− 1] with x ∈ [2..n] to 1, but it will also set AND_OR[i][x]
to 1 (lines 13–14 if j < i or lines 16–17 if j > i, and or operation at line 19).
Any process that reads AND_OR[i] (line 24) after the first operation by pi will then
observe the conditions at lines 25 and 26 as respected, and will execute line 27. It will
then not execute the write of output at line 31, a contradiction. In case (2), process
pn must then have issued its first operation on an AND/OR register before any other
process. Its write of IN precedes its first operation: the read of IN [n] at line 31 thus
returns pn’s input value, which concludes the proof of the lemma. J

I Lemma 2. No two different processes decide different values.

Proof. The proof relies on the fact that, for each AND/OR register, the result of the
competition (whether the process to which it is associated has won or lost) is fixed after the
first operation applied on it. All the processes apply an operation on all AND/OR registers
before deciding, and thus have the same “view” of the competition.

Let us first note that, before entering the loop at lines 23–30, and thus checking the
conditions at lines 25 and 26, any process applies either an and or an or operation on all
AND/OR registers (and operation at line 07 or or operations at line 19 in the loop at
lines 09–21). Consider the AND/OR register AND_OR[i], for any i ∈ [1..n− 1]. Because
operations on AND/OR registers are atomic, the first operation on an AND/OR register is
well defined. There can then be two cases.
1. The first operation on AND_OR[i] is an and operation.

Let us first consider the value of AND_OR[i][1]. The and operation by process pi (the
only and operation issued on AND_OR[i]) sets AND_OR[i][1] to 0 (lines 04–06 and and

operation at line 07). The condition at line 25 will then be observed as respected by all
the processes which read AND_OR[i] (line 23 which, for any process, happens after its
and or or operation on AND_OR[i]).
Let us now consider the condition at line 26, that depends, for any x ∈ [2..n], on the
values of AND_OR[i][x] and AND_OR[i][n + x − 1]. Before any process issues an or

operation on AND_OR[i], the value of AND_OR[i][n + x−1], for any x ∈ [2..n], is equal
to 0 (initialization of AND_OR[i]) and thus the condition at line 26 is respected. Because
any or operation on AND_OR[i] happens after the first and only and operation on it,
after any such or operation by a process pj , both the values of AND_OR[i][j + 1] and
AND_OR[i][n+j] (if j < i, lines 13 and 14) or of AND_OR[i][j] and AND_OR[i][n+j−1]
(if j > i, lines 16 and 17) will be equal to 1. The condition at line 26 will then always be
observed as respected.
Any process that reads AND_OR[i] at line 24 will then observe the conditions at lines 25
and 26 as respected, and will execute line 27, overwriting the value of output with pi’s
input value.

2. The first operation on AND_OR[i] is an or operation.
Before pi executes its and operation on AND_OR[i], the value of AND_OR[i][1] is equal
to 1. Any process that reads AND_OR[i] (line 24) before the and operation by pi will
then not execute line 27.
Let us now consider the case of a process that reads AND_OR[i] after the and operation
by pi. Let pj be the first process that issued an or operation on AND_OR[i]. By
definition, this operation happened before pi’s and operation. The or operation of pj

sets the values of AND_OR[i][j + 1] and AND_OR[i][n + j] (if j < i, lines 13–14)

D. Imbs 26:9

or AND_OR[i][j] and AND_OR[i][n + j − 1] (if j > i, lines 16–17) to 1 . For any
x ∈ [2..n], pi’s operation then sets AND_OR[i][x] to 0 (lines 04–06 and and operation,
line 07). Apart from pi, pj is the only process that can modify its corresponding entries
of AND_OR[i] (AND_OR[i][j + 1] and AND_OR[i][n + j] if j < i, lines 13–14, or
AND_OR[i][j] and AND_OR[i][n + j − 1] if j > i, lines 16–17).
Any process that reads AND_OR[i] after the and operation by pi will then observe
AND_OR[i][x] equal to 0 and AND_OR[i][n + x− 1] equal to 1, for x = j + 1 if j < i

or x = j if j > i. It will then not execute line 27.
We then have the following: for any AND/OR register AND_OR[i], if the first operation
on it is an and operation, every correct process will execute output ← IN [i] at line 27.
If the first operation on it is an or operation, no process will execute output ← IN [i]
at line 27. Every correct process will then have the same sequence of assignments in
the loop at lines 23–30. For every correct process, the last assignment to output will
then correspond to the same entry of IN . By Lemma 1, this entry, say IN [j], always
corresponds to the input value of pj , which concludes the proof of the lemma. J

I Lemma 3. Every correct process decides.

Proof. The algorithm does not contain any blocking operation, and the only three loops
(lines 04–06, lines 09–21 and lines 23–30) are for loops, which terminate after a predetermined
number of iterations. Any correct process will then terminate its execution of the algorithm
by deciding a value at line 32, which concludes the proof of the lemma. J

I Theorem 4. The algorithm presented in Figure 2 solves consensus for n processes in the
shared memory model extended with shared (2n− 1)-bits AND/OR registers.

Proof. The correctness of the algorithm follows from Lemma 1 (validity), Lemma 2 (agree-
ment) and Lemma 3 (wait-free termination). J

The following corollary is a direct consequence of Theorem 4.

I Corollary 5. Shared x-bits AND/OR registers have consensus number at least bx+1
2 c.

4 Solving consensus using AND/OR/XOR registers

This section presents an algorithm that solves consensus for n processes using n-bits
AND/OR/XOR registers. The algorithm, presented in Figure 3, constitutes the proof
that x-bits AND/OR/XOR registers have consensus number at least x.

Differences with the previous algorithm

The main difference resides in the way that the objects are used to decide the output of each
competition. The previous algorithm used two bits in each AND/OR register to determine
whether the process associated to the object has issued its and operation before another given
process has issued its or operation. The use by the process associated to the AND/OR/XOR
register of a xor operation allows using a single bit to determine whether this process issued
its operation before another given process. This is due to the fact that xor operations don’t
work as multiple assignments: the state of each individual bit after a xor operation depends
on its previous state, even when it is modified.

Each competition uses an AND/OR/XOR register AND_OR_XOR[i] of n bits. The
owner pi uses an xor operation, while the other processes use an or operation. Process pi

OPODIS 2015

26:10 The Synchronization Power of Atomic Bitwise Operations

Initially:
∀x ∈ [1..n− 1] :
∀y ∈ [1..n] : AND_OR_XOR[x][y] = 0.

Operation proposei(v): % Code for pi %
(01) IN [i]← v;
(02) if (i < n) then % xor_array: array of n bits %
(03) xor_array ← [1, . . . , 1];
(04) AND_OR_XOR[i].xor(xor_array)
(05) end if ;
(06) for j from 1 to n− 1 do
(07) if (j 6= i) then % or_array: array of n bits %
(08) or_array ← [0, . . . , 0];
(09) if (i < j) then
(10) or_array[i + 1]← 1
(11) else % i > j %
(12) or_array[i]← 1
(13) end if ;
(14) AND_OR_XOR[j].or(or_array)
(15) end if
(16) end for;
(17) output← ⊥;
(18) for j from 1 to n− 1 do
(19) current← AND_OR_XOR[j].read();
(20) if (current[1] = 1) then
(21) if (@x ∈ [2..n] : current[x] = 0)
(22) then output← IN [j]
(23) end if
(24) end if
(25) end for;
(26) if (output = ⊥) then output← IN [n] end if ;
(27) return(output).

Figure 3 An algorithm that solves consensus for n processes using n-bits AND/OR/XOR registers
(code for pi).

modifies (by having the corresponding bits of the parameter of its xor() operation set to 1)
the bits AND_OR_XOR[i][1..n]. Process pj overwrites (by having the corresponding bit
of the parameter of its or() operation set to 1) a single bit AND_OR_XOR[i][x], where
x = j + 1 if j < i, and x = j otherwise. The modification of AND_OR_XOR[i][1] by pi

allows determining if pi issued its operation. The modification of AND_OR_XOR[i][x]
by both pi and pj allows determining (a) if pj issued its operation (in combination with
AND_OR_XOR[i][1]) and (b) which process issued its operation first. The layout of the
bits of an AND/OR/XOR register modified during a competition is presented in Figure 4.

I Theorem 6. The algorithm presented in Figure 3 solves consensus for n processes in the
shared memory model extended with shared n-bits AND/OR/XOR registers.

Proof. Apart from the differences outlined previously, the algorithm is similar to the algorithm
presented in Figure 2, and thus the proof is similar to the proof of Theorem 4. J

The following corollary is a direct consequence of Theorem 6.

I Corollary 7. Shared x-bits AND/OR/XOR registers have consensus number at least x.

5 Optimality of the algorithms

This section first presents a proof that x-bits shared AND/OR registers cannot solve consensus
for more than bx+1

2 c processes, when any number of processes can crash. This shows that

D. Imbs 26:11

pi (xor)

pj (or)

1 x n

Figure 4 AND_OR_XOR[i] (n bits): bits modified by the owner pi and another process pj .

the algorithm presented in Section 3 is optimal with respect to the number of processes
that can solve consensus and thus that the consensus number of x-bits AND/OR registers is
exactly bx+1

2 c. It then presents a proof that x-bits shared AND/OR/XOR registers cannot
solve consensus for more than x processes, when any number of processes can crash, and
thus that the algorithm presented in Section 4 is optimal and that the consensus number of
x-bits AND/OR/XOR registers is exactly x.

5.1 Preliminaries
The following concepts are used in the proofs of Lemmas 9 and 12.

Steps and executions

During a step, a process applies an atomic operation on a base shared object. An execution
consists of a set of initial local states (one for each process) and a sequence of steps. A correct
process takes steps in the execution until it decides (returns a value). A faulty process stops
taking steps before deciding.

Prefixes and extensions

A prefix of a given execution consists of the set of initial local states of the execution and a
prefix of the sequence of steps that constitutes it. An extension of a prefix starts with the
prefix and is completed by a (possibly empty) sequence of steps by processes of the system.
The first step that a process can take after a prefix is defined by the algorithm it is executing.

Indistinguishable executions

For a given process, an execution A is indistinguishable from an execution B if its local state
is the same in both executions. Note that this is the case if the values it obtained from
its operations are the same in A and in B. If it is correct and finishes its execution of the
algorithm, it will then have to decide the same value in A and in B.

Valence

The prefix P of an execution is univalent if, in any execution of which P is a prefix, the
correct processes decide the same value v. This means that in P , the value that processes
will decide is already fixed. The same concept can apply to an extension of a prefix. A prefix
that is not univalent is multivalent.

OPODIS 2015

26:12 The Synchronization Power of Atomic Bitwise Operations

Modification of a bit

As was explained in Section 2.1, and() and or() operations can be seen as a series of
assignments. The and() operation can only modify the bits of the object on which it is
applied that correspond to the entries of its parameter that are equal to 0. The or() operation
can only modify the bits that correspond to the entries of its parameter that are equal to 1.
The xor() operation cannot be seen as a series of assignments, but it only modifies the bits
that correspond to the entries of its parameter that are equal to 1.

In a given execution, we then say that a process can modify a given bit of a shared
AND/OR or AND/OR/XOR register if its next step is (a) an and() operation and the
corresponding bit of its parameter is set to 0, or (b) an or() or xor() operation and the
corresponding bit of its parameter is set to 1.

The following lemma is similar to results that have been shown in various other papers
(see e.g. [9]). It is used in the proofs of Lemmas 9 and 12. Due to page limitations, its proof
is not presented here.

I Lemma 8. Any multivalent prefix of an execution of any wait-free consensus protocol
in the shared memory model extended with shared objects has a multivalent extension such
that:
1. the next operation of any process forces a decision,
2. all these operations are on the same object X,
3. all these operations modify the state of X and
4. X is not a read/write register.

5.2 Consensus number of shared AND/OR registers
I Lemma 9. Shared AND/OR registers of x bits have consensus number at most bx+1

2 c.

Proof. Let us consider the empty prefix of an execution in which the processes propose at
least two different values. By Lemma 8, there is an extension E such that E is multivalent,
the next step of any process imposes a decision and these steps all modify a single AND/OR
register X (and thus, they are and or or operations). We will prove that X cannot have less
than 2n− 1 bits, and thus that in a system of n > x+1

2 processes in which they communicate
only through read/write registers and AND/OR registers of x bits, consensus is impossible.

For each process pi, there must be at least one bit of X such that only pi can modify
it.

Consider the extension E such that, if pi’s step is the next step, then the value v1 must be
decided and, for some process pj , if pj ’s step is the next step, then the value v2 6= v1 must
be decided. Because E is multivalent, pj must exist. Consider now the extension of E in
which pi executes one step first and then crashes, then pj executes one step, then all other
processes (if any) execute one step. Suppose now, by way of contradiction, that there is
no bit of X such that only pi can modify it. Let us recall that and() and or() operations
can be viewed as assignments (Section 2.1). The and() and or() operations that follow pi’s
step then overwrite its modifications to X. After these operations, the remaining processes
cannot distinguish the previous extension of E, in which v1 must be decided, from the one in
which pi did not execute its step (all other steps being executed in the same order), in which
v2 must be decided. A contradiction which proves that, for each process pi, there must be at
least one bit of X such that only pi can modify it.

D. Imbs 26:13

For each pair of processes pi and pj such that the next step of pi imposes the
decision of v1 and the next step of pj imposes the decision of v2 6= v1, there must be
at least one bit of X such that only pi and pj can modify it.

Consider again the extension of E in which pi executes one step first, then pj , then all other
processes. Suppose, again by way of contradiction, that there is no bit of X such that only
pi and pj can modify it. All the modifications by pi and pj of a common bit have then been
overwritten by the other processes (if pi and pj are the only processes in the system, x ≤ 2
and thus, because of the previous item, they cannot modify the same bit). After all these
steps, the processes cannot distinguish the previous extension of E, in which v1 must be
decided, from the one in which pi took its step after pj , in which v2 must be decided. A
contradiction which proves that, for each pair of processes pi and pj such that the next step
of pi imposes the decision of v1 and the next step of pj imposes the decision of v2 6= v1, there
must be at least one bit of X such that only pi and pj can modify it.

Let us now partition the processes in sets P1, . . . , Pk such that, if the next operation after
E is by a process in P`, the decided value has to be v`, with ` 6= m ⇒ v` 6= vm. Because
E is multivalent, there are at least two such sets and thus k ≥ 2. The number of pairs of
processes belonging to different sets is then equal to the number of edges of a complete
k-partite graph in which the processes of P` correspond to the vertices of the `th part of the
graph. For k ≥ 2, complete k-partite graphs are connected. The minimum number of edges
of a connected graph of n vertices being n− 1, the number of pairs of processes belonging
to different sets is at least n− 1. The number of bits needed for all pairs of processes that
impose different values is then at least n− 1.

The AND/OR register X must then have at least (1) one bit per process, and (2) one bit
per pair of processes that can impose different values, giving a minimum of n+n−1 = 2n−1.
Consensus is thus impossible in a system in which processes communicate only through
read/write registers and AND/OR registers of strictly less than 2n− 1 bits, and thus shared
AND/OR registers of x bits have consensus number at most bx+1

2 c. J

I Theorem 10. Shared AND/OR registers of x bits have consensus number exactly bx+1
2 c.

Proof. The proof follows from Corollary 5 (lower bound) and Lemma 9 (upper bound). J

5.3 Consensus number of shared AND/OR/XOR registers
I Lemma 11. Let S be a set and A a family of subsets of S. If |A| > |S|, there exists a
non-empty A′ ⊆ A such that every element of S appears in an even number of elements of
A′.

Proof. Let n = |S|. Define the signature sigB of a family B of subsets of S as an n-entries
vector, in which sigB [i] = 0 if the ith element of S appears in an even number of elements of
B, and 1 otherwise (any arbitrary total order can be used on the elements of S). There are
then 2n possible signatures for subfamilies of A.

Because |A| > n, there are at least 2n+1 different possible subfamilies of A, of which at
least 2n+1 − 1 > 2n are non-empty. By the pigeonhole principle, there must then be at least
two different non-empty subfamilies B and C of A such that sigB = sigC .

Let B′ = B − (B ∩ C) and C ′ = C − (B ∩ C). B′ and C ′ are then disjoint. Because
sigB = sigC , we also have sigB′ = sigC′ . Because B 6= C, at least one of B′ and C ′ is
non-empty.

OPODIS 2015

26:14 The Synchronization Power of Atomic Bitwise Operations

Let A′ = B′ ∪ C ′. A′ is then non-empty. Because B′ and C ′ are disjoint and have the
same signature, every element of S appears in an even number of elements of A′, which
concludes the proof of the lemma. J

I Lemma 12. Shared AND/OR/XOR registers of x bits have consensus number at most x.

Proof. Like in Lemma 9, let us consider the empty prefix of an execution in which the
processes propose at least two different values. By Lemma 8, there is an extension E such
that E is multivalent, the next step of any process forces a decision and these steps all modify
a single AND/OR/XOR register X (and thus, they are and, or or xor operations). We will
prove that X cannot have less than n bits, and thus that in a system of n > x processes
in which they communicate only through read/write registers and shared AND/OR/XOR
registers of x bits, consensus is impossible.

Note that the case in which the next step of any process is an and() or or() operation is
already covered by Lemma 9. We will thus consider that in E, the next step of at least one
process is a xor() operation.

Let Pxor be the set of processes such that their next step in E is a xor() operation. Let
pi and pj be processes in Pxor such that the next step of pi in E imposes the value vi and the
next step of pj imposes the value vj . The execution in which pi executes one step first (and
thus vi must be decided), then pj executes a step, cannot be distinguished by any process
from the execution in which pj executes its step first (and thus vj must be decided) and then
pi. All the next steps in E of processes in Pxor must then impose the same value vxor.

There must be at least |Pxor| bits of X that can only be modified by the processes
in Pxor.

Consider the extension of E in which first, the processes in some P ′xor ⊆ Pxor execute one
step (in any order) and crash. Then, a process pi such that its next step in E imposes a
value vi 6= vxor executes one step, then all the remaining processes (if any) also execute
one step. Suppose, by way of contradiction, that strictly less that |Pxor| bits are modified
only by the processes in Pxor. We will show that in this case, there exists a non-empty P ′xor

such that this execution (in which vxor must be decided) is indistinguishable by the other
processes from the execution in which all the processes in Pxor crash before executing a step,
and pi imposes the value vi 6= vxor (note that if |Pxor| = 1, no bit is modified by the single
process in Pxor and this is trivially verified).

Let S be the set of bits modified only by the processes in Pxor. By Lemma 11, there
exists a non-empty set P ′xor ⊆ Pxor such that every bit in S is modified by an even number
of processes in P ′xor, and thus appear unmodified after all the processes in P ′xor apply
their operations. Because all the other bits of X are modified afterwards by and() or or()
operations, the state of X is the same as if the processes in P ′xor hadn’t executed their
operations, a contradiction.

For each process pi not in Pxor, there must be at least one bit of X such that the
only process not in Pxor that can modify it is pi.

The reasoning is the same as in Lemma 9. Consider the execution in which first, a process
pi 6∈ Pxor executes one step, imposing a value vi 6= vxor, and then crashes. Afterwards, a
process pj ∈ Pxor executes one step, followed by all the other processes (if any) that also
execute one step. If there is no bit such that the only process not in Pxor that can modify it
is pi, then this execution is indistinguishable by all the other processes from the execution in
which pi crashes before executing its step and in which vxor is imposed, a contradiction.

D. Imbs 26:15

There must then be at least |Pxor| bits modified only by the processes in Pxor and at
least n − |Pxor| bits modified only by the processes not in Pxor. To solve consensus for n

processes, AND/OR/XOR registers must then have at least n bits, which concludes the
proof of the lemma. J

I Theorem 13. Shared AND/OR/XOR registers of x bits have consensus number exactly x.

Proof. The proof follows from Corollary 7 (lower bound) and Lemma 12 (upper bound). J

5.4 Other variants
Until now, we have only considered shared AND/OR and AND/OR/XOR registers. This
section briefly discusses other variants. Shared AND (resp. OR or XOR) registers offer,
in addition to the read() operation, a single operation and() (resp. or() or xor()). Shared
OR/XOR (resp. AND/XOR) offer or() (resp. and()) and xor() operations, but not the
and() (resp. or()) operation.

Shared AND, OR and XOR registers

Operations of a single type (and(), or() or xor()) are commutative: the effect of various
and() (resp. or() or xor()) operations on the state of an object, when only these operations
are issued, does not depend on the order in which they have been issued.

Consider, as in Lemmas 9 and 12, an execution E in which the next step by process pi

imposes the decision of vi, and the next step by process pj imposes the value vj 6= vi. Neither
pi nor pj can distinguish the extension of E in which pi takes a step first, then pj , from
the extension in which pj takes its step before pi. This implies that shared AND, OR and
XOR registers cannot solve consensus, even for two processes. Consequently, their consensus
number is 1.

Shared OR/XOR and AND/XOR registers

The algorithm presented in Figure 3 uses or() and xor() operations, but not the and()
operation. It can easily be modified to use and() operations instead of or() operations.
Lemma 12 trivially applies if the objects only offer or() and xor() (or and() and xor())
operations, and thus shared OR/XOR and AND/XOR registers have the same consensus
number as shared AND/OR/XOR registers.

6 Conclusion

Bitwise operations are a common tool in sequential computing but, until now, they had not
been considered in the distributed context. This paper studied their synchronization power
by presenting the following contributions.

The concept of shared AND/OR and AND/OR/XOR registers. A shared AND/OR
register contains an array of x bits, to which it allows applying atomically bitwise AND
and OR operations. A shared AND/OR/XOR register additionally offers the XOR
operation.
A wait-free algorithm that solves consensus for bx+1

2 c processes using x-bits shared
AND/OR registers. This algorithm constitutes a lower bound on the consensus number
of shared AND/OR registers.

OPODIS 2015

26:16 The Synchronization Power of Atomic Bitwise Operations

A modification of the previous algorithm that solves consensus for x processes using
x-bits shared AND/OR/XOR registers. This algorithm constitutes a lower bound on the
consensus number of shared AND/OR/XOR registers.
A proof that x-bits shared AND/OR registers cannot solve consensus for more than
bx+1

2 c processes. This constitutes an upper bound on the consensus number of shared
AND/OR registers, and thus proves that the previous bound is tight.
A proof that x-bits shared AND/OR/XOR registers cannot solve consensus for more
than x processes. This constitutes an upper bound on the consensus number of shared
AND/OR/XOR registers, and thus proves that the previous bound is tight.

These results show that shared AND/OR registers have consensus number bx+1
2 c and that

shared AND/OR/XOR registers have consensus number x. Because bitwise operations are
available in most modern processors, they can constitute a valuable tool for synchronization
in distributed systems.

Acknowledgements. The author would like to thank Dmitry Kozlov for his help in the
proof of Lemma 11.

References
1 Yehuda Afek, Eli Gafni, and Adam Morrison. Common2 extended to stacks and unbounded

concurrency. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of
Distributed Computing (PODC’06), pages 218–227, 2006. doi:10.1145/1146381.1146415.

2 Yehuda Afek, Eytan Weisberger, and Hanan Weisman. A completeness theorem for a
class of synchronization objects (extended abstract). In Proceedings of the Twelth Annual
ACM Symposium on Principles of Distributed Computing (PODC’93), pages 159–170, 1993.
doi:10.1145/164051.164071.

3 Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result for t-resilient
asynchronous computations. In Proceedings of the Twenty-Fifth Annual ACM Symposium
on Theory of Computing (STOC’93), pages 91–100, 1993. doi:10.1145/167088.167119.

4 Soma Chaudhuri. More choices allow more faults: Set consensus problems in totally asyn-
chronous systems. Information and Computation, 105(1):132–158, 1993. doi:10.1006/
inco.1993.1043.

5 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, 1985. doi:10.
1145/3149.214121.

6 Eli Gafni and Petr Kuznetsov. On set consensus numbers. Distributed Computing, 24(3-
4):149–163, 2011. doi:10.1007/s00446-011-0142-8.

7 Phuong Hoai Ha, Philippas Tsigas, and Otto J. Anshus. The synchronization power of coa-
lesced memory accesses. IEEE Transactions on Parallel and Distributed Systems, 21(7):939–
953, 2010. doi:10.1109/TPDS.2009.135.

8 Maurice Herlihy. Impossibility and universality results for wait-free synchronization. In
Proceedings of the Seventh Annual ACM Symposium on Principles of Distributed Computing
(PODC’88), pages 276–290, 1988. doi:10.1145/62546.62593.

9 Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems (TOPLAS), 13(1):124–149, 1991. doi:10.1145/114005.102808.

10 Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability.
Journal of the ACM, 46(6):858–923, 1999. doi:10.1145/331524.331529.

11 Damien Imbs and Michel Raynal. A note on atomicity: Boosting test&set to solve consensus.
Information Processing Letters, 109(12):589–591, 2009. doi:10.1016/j.ipl.2009.02.004.

http://dx.doi.org/10.1145/1146381.1146415
http://dx.doi.org/10.1145/164051.164071
http://dx.doi.org/10.1145/167088.167119
http://dx.doi.org/10.1006/inco.1993.1043
http://dx.doi.org/10.1006/inco.1993.1043
http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1007/s00446-011-0142-8
http://dx.doi.org/10.1109/TPDS.2009.135
http://dx.doi.org/10.1145/62546.62593
http://dx.doi.org/10.1145/114005.102808
http://dx.doi.org/10.1145/331524.331529
http://dx.doi.org/10.1016/j.ipl.2009.02.004

D. Imbs 26:17

12 Prasad Jayanti. Robust wait-free hierarchies. Journal of the ACM, 44(4):592–614, 1997.
doi:10.1145/263867.263888.

13 Michael C. Loui and Hosame H. Abu-Amara. Memory requirements for agreement among
unreliable asynchronous processes. Advances in Computing research, 4:163–183, 1987.

14 Serge A. Plotkin. Sticky bits and universality of consensus. In Proceedings of the Eighth
Annual ACM Symposium on Principles of Distributed Computing (PODC’89), pages 159–
175, 1989. doi:10.1145/72981.72992.

15 Michael E. Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible: The
topology of public knowledge. SIAM Journal on Computing, 29(5):1449–1483, 2000. doi:
10.1137/S0097539796307698.

OPODIS 2015

http://dx.doi.org/10.1145/263867.263888
http://dx.doi.org/10.1145/72981.72992
http://dx.doi.org/10.1137/S0097539796307698
http://dx.doi.org/10.1137/S0097539796307698

Wait-Free Concurrent Graph Objects with
Dynamic Traversals
Nikolaos D. Kallimanis1 and Eleni Kanellou2

1 FORTH-ICS, Foundation for Research and Technology – Hellas (FORTH),
Institute of Computer Science (ICS), Heraklion, Greece
nkallima@ics.forth.gr

2 FORTH-ICS, Foundation for Research and Technology – Hellas (FORTH),
Institute of Computer Science (ICS), Heraklion, Greece, and
University of Rennes 1, Rennes, France
kanellou@ics.forth.gr

Abstract
Graphs are versatile data structures that allow the implementation of a variety of applications,
such as computer-aided design and manufacturing, video gaming, or scientific simulations. How-
ever, although data structures such as queues, stacks, and trees have been widely studied and
implemented in the concurrent context, multi-process applications that rely on graphs still largely
use a sequential implementation where accesses are synchronized through the use of global locks
or partitioning, thus imposing serious performance bottlenecks. In this paper we introduce an
innovative concurrent graph model that provides addition and removal of any edge of the graph,
as well as atomic traversals of a part (or the entirety) of the graph. We further present Dense,
a concurrent graph implementation that aims at mitigating the two aforementioned implement-
ation drawbacks. Dense achieves wait-freedom by relying on helping and provides the inbuilt
capability of performing a partial snapshot on a dynamically determined subset of the graph.

1998 ACM Subject Classification F.1.2 Modes of Computation

Keywords and phrases graph, shared memory, concurrent data structure, snapshot

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.27

1 Introduction

The irrevocable paradigm shift towards multi-core hardware has been accompanied by
developments in concurrent data structure design. Data structures that are at the heart
of many applications built for the sequential setting have been ported into the concurrent
domain. Such data structures include trees (e.g. [2, 6, 10, 12]), stacks (e.g. [5, 14, 17, 23]) or
queues (e.g. [16, 23, 25, 34]).

However, numerous are also the applications that rely on data structures with a more
complex or irregular morphology. An example of such a data structure is the graph. A graph
consists of a set V of vertices and a set E of edges, which are pairs of type (x, y), where x
and y are elements of V . Each edge may additionally be associated with a value w, referred
to as the weight of the edge, out of some set W . Vertices can be used to represent many
types of entities, from simple or complex data structures to tasks, functions or processes,
while the edges can flexibly express several types of relations. Graphs are essential building
blocks for applications in robotics (e.g. [9]), machine learning (e.g. [36]), automated design of
digital circuits (e.g. [24]), task scheduling in operating systems (e.g. [27]), garbage collection
(e.g. [39]), and video-game design (e.g. [7]) to name a few.

© Nikolaos D. Kallimanis and Eleni Kanellou;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 27; pp. 27:1–27:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 Wait-Free Concurrent Graph Objects with Dynamic Traversals

Thus, in the multi-core era, applications that rely on graphs are also important in the
concurrent context, where they can be used either in message-passing or in shared memory
settings. Notable shared memory examples include Computer-Aided Manufacturing (CAM)
applications, scientific simulation tools, or video games, where a virtual world is represented
as a graph. Vertices of the graph model objects in the virtual world, while edges represent
the relationships and interactions of those objects [3]. As these relationships and interactions
are unlikely to be static, this implies that processes executing the application need to update
the structure and connectivity of the graph frequently. However, concurrent applications
that rely on graphs still mostly use sequential implementations and synchronize the access of
multiple processes to them with the help of a global lock or by partitioning the vertices into
disjoint sets that can then individually be accessed by different processes [37].

If a global lock is used, accesses become expensive and the lock poses a global bottleneck
for overall performance. Furthermore, even if fine-grained locking is employed on subsets
of the graph, the liveness of the application is restricted, as it becomes blocking by the
reliance on locks. By relying on graph partitioning instead, the interaction of processes for
the purpose of synchronizing accesses to the graph can be minimized, as different processes
access distinct partitions. Such an implementation can offer a higher degree of parallelism
to applications that are suitable for exploiting it. However, such an application then either
has to rely on a static, predefined partitioning, or it has to perform re-partitioning in order
to accommodate dynamicity, in which case synchronization among all processes may be
necessary and performance is likely to suffer.

These issues may be aggravated when the operation to be performed affects the entire
graph or a subset of it, as is the case with iterations, searches, or partial traversals. In those
cases it is important to provide a consistent view of the graph or some subgraph for the
operation, but without blocking or impeding concurrent updates on it. This possibility is
offered by atomic snapshots [1]. A snapshot is a concurrent object that consists of a collection
of components and which provides two operations: Update, which modifies the value of one
of the components, and Scan, which returns a consistent view of the values of all components.
To implement a graph, a one-to-one correspondence is established between graph edges and
snapshot components. Modifications on the graph structure are performed by using the
Update operation of the snapshot, while reads are done by using Scan.

When only a subset of the graph has to be accessed, the overhead that a snapshot incurs
can be avoided by using partial snapshot implementations, such as [4, 22]. There, Scan
takes as input argument the subset of components on which the snapshot is to be performed.
However, this precludes applications, in which the subgraph that should be accessed is not
known a priori, e.g. when there is the need to perform a random traversal on some part of
the graph, where the next edge to be accessed is determined dynamically.

In this paper we are concerned with the problem of providing such a dynamic traversal
for graphs. A generalized solution consists in using transactional memory (TM) [20, 35].
This paradigm offers the transaction abstraction. A transaction encapsulates one or several
read and update operations and attempts to apply them atomically. If this is possible,
the transaction commits making the effects of the operations visible. Otherwise, it aborts
discarding any change. We want to avoid the commit/abort semantics inherent in this
paradigm, the performance overheads that this paradigm can entail, as well as well-known
progress limitations [8]. For this reason, we define a novel concurrent graph object. It
supports the addition, removal, and modification of edges of the graph, as well as the atomic
walk of a dynamically-determined subset of the graph edges, such that a consistent view of it
may be obtained. The model we propose for the dynamic traversals is reminiscent of TM:

N.D. Kallimanis and E. Kanellou 27:3

Dynamic traversals resemble read-only transactions, while modifications of the edges of the
graph behave like mini-transactions that encapsulate a single update on a single transactional
object. Contrary to common transactional semantics, however, our model does not need,
and so does not include the possibility to abort.

We further present Dense, a adjacency matrix concurrent graph implementation based on
the proposed model. Dense provides the linearizable operation Update, which is used to add
or remove edges of the graph or to modify existing edge weights. The step complexity (i.e.,
the total number of accesses in the shared base objects) is O(k), where k is the number of
active processes (i.e. Dense is an adaptive algorithm). Dynamic traversals are implemented
as a composite operation, reminiscent of read-only transactions. For this purpose, Dense
provides DynamicTraverse, another linearizable operation that is used to initiate a dynamic
traversal, and a matching EndTraverse operation which terminates it. An auxiliary routine,
Read, is used for obtaining edge weights. Instances of Read that are enclosed by an instance
of DynamicTraverse and a matching instance of EndTraverse, return a consistent view for
the weights of the edges they read. As such, dynamic traversals appear to be atomic and can
be considered as a virtual operation that is linearizable.

Dense operations are wait-free, i.e. an operation by a process that does not fail terminates
in a finite number of steps in any execution. Wait-freedom is achieved by employing
light-weight helping using a mechanism reminiscent of the one presented in [19]. Instances
of operations that are concurrent with instances of Update help them carry out edge
modifications. Operations are aware of concurrent active dynamic traversals and ensure
that those dynamic traversals can return a consistent view by storing old edge versions for
them (in the worst case, Dense keeps n different versions, one for each process, on a given
edge of the graph). The step complexity of DynamicTraverse and Read is O(k) and O(1),
respectively. Dense uses m LL/SC base objects (one for each edge), one atomic Add base
object of n bits, and an additional LL/SC object. Dense is of theoretical interest since the
size of LL/SC objects is big. We further present S-Dense, a practical version of Dense, with
step complexity O(k2), which uses small base objects.

The rest of the paper is organized as follows. Section 2 summarizes relevant literature.
Section 3 provides our view of the underlying system. Section 4 gives an overview of the
defining characteristics of the proposed implementation, while Section 5 provides a detailed
description of it and sketches out the proof of the correctness argument. Finally, Section 6
contains a discussion of the presented results and of prospects for future work.

2 Related Work

A great body of work on the concurrent implementation of graph algorithms tackles common
graph-related issues (e.g. [11, 29, 33]) and focuses either on parallelizing existing sequential
algorithms or on providing concurrency through the use of locks on well-known sequential
algorithms. Then, liveness guarantees are rather relaxed, as most of these implementations
are blocking. In contrast, we are interested in the graph as a general-purpose, concurrent
data structure and are especially concerned with providing wait-freedom and linearizability.

Work on concurrent data structures has been devoted to commonly-used ones, such as
queues, stacks, or trees, with the focus on providing interesting progress properties – initially
simply by avoiding locks (e.g. [28, 34]), and recently a step further, by proposing wait-free
implementations. Notably, [25] uses helping via an announce array in order to make a
wait-free version out of the CAS-based lock-free queue of [28]. Together with a “fast path,
slow path” methodology [38], previously used for the implementation of a wait-free linked list

OPODIS 2015

27:4 Wait-Free Concurrent Graph Objects with Dynamic Traversals

out of well-known lock-free design [15], this method is proposed as a generalized methodology
of designing wait-free concurrent data structures, given a lock-free implementation [26]. Our
method is “stand-alone”, providing wait-freedom without requiring a lock-free design as base.

Recently, techniques that provide iterators of concurrent data structures have been
proposed. An iterator parses a data structure in order to obtain a consistent view. In [31],
a methodology is proposed for enhancing lock-free or wait-free set-based data structures
with a CAS-based implementation of a wait-free iterator. It entails reporting data structure
updates to any active snapshot, so that they can be taken into account, depending on the
order of linearization. In [32], update and read operations on a trie are aware of an ongoing
iterator, and copy – and thus, effectively rebuild – the parts of the trie that they access,
leaving intact the albeit obsolete version that the iterator is parsing. The complexity is
divided among updates and reads, while the snapshot occurs in constant time. In [30] a
theoretical framework for defining the consistency of iterators is proposed and used in a case
study that equips the well-known lock-free concurrent queue of [28] with a wait-free iterator
that is linearizable according to the provided framework.

We, however, are interested in a partial view, which, furthermore, is dynamically defined.
Thus, we want to avoid the overhead that is induced by iterating over the entire data
structure. Arguably, the implementation in [32] does not induce it, having a constant-time
snapshot. However, to achieve that, it must employ either double compare, single swap
(DCSS) primitives, or a custom-made, CAS-like software primitive,unlike our method, which
simply relies on LL/SC. Moreover, those works take advantage of the structural regularity of
the underlying data structure. In contrast, a graph usually has irregular characteristics. Our
work is more akin to partial snapshots, such as [4, 22], as we use an adjacency matrix to
represent the graph. However, partial snapshots are more restrictive than our model as they
require a priori knowledge of the component subset to be scanned.

The required dynamicity can be provided by using transactional memory to access a
graph. Indeed the dynamic traversal provided by our model resembles a read-only transaction.
However, efficient TM algorithms commonly rely on locks, while even obstruction-free or non-
blocking ones commonly burden reads and updates with the processing overhead necessary
for conflict-detection and resolution (cf. with [13] for a survey on TM algorithmic techniques).
We wish to avoid these issues, as well as the commit/abort semantics inherent in TM, but
unusual for data structures. The recent impossibility result in [8] further implies that, even
if commit/abort semantics are included in our model, the TM progress property equivalent
to wait-freedom cannot be achieved.

3 Model

System model. We assume an asynchronous, shared memory system of n processes, which
communicate by accessing base objects. A base object O has a state and provides a set of
primitives, used by processes in order to access, i.e. read and/or modify, the state of O. We
use the following base objects: A read/write object O has a state that takes values out of
some set S. It provides the primitives read(O), which returns the state of O, and write(O, v),
v ∈ S, which sets the state of O to v. An Add object O has a state that takes values out of
some set of integers S. It provides the primitives read(O), which returns the state of O, and
add(O, v), v ∈ S, which adds the value v to the state of O. An LL/SC object O has a state
that takes values out of some set S. It provides the primitives LL(O) and SC(O, v), v ∈ S.
LL(O) returns the current state of O. SC(O, v), executed by a process pu, u ∈ {1, 2, . . . , n},
must follow an execution of LL(O) also by pu. It changes the state of O to v if O has not

N.D. Kallimanis and E. Kanellou 27:5

changed since the last execution of LL(O) by pu. The concurrent implementation of a data
structure also has a state, stored in shared base objects. It provides algorithms for the
operations provided by the data structure, which processes may use in order to access or
modify its state. A process executes an operation by issuing an invocation for it and an
operation terminates by returning a response to the process.

Executions. At any point in time, the system is characterized by a configuration C, which
is a vector that contains the state of each process in the system and the state of each base
object. We denote by C0 the initial configuration of the system. A step φ is either the
execution of a primitive by some process, or the issuing of an operation invocation by some
process, or the response of some operation to some process.

A (possibly infinite) sequence C0, φ1, C1, . . . , Ci−1, φi, Ci, . . ., of alternating configurations
(Ck) and steps (φk), starting from the initial configuration C0, where for each k ≥ 0, Ck+1
results from applying step φk+1 to configuration Ck, is referred to as an execution. A
subsequence of an execution α in the form Ci, φi+1, Ci+1, . . . , Cj , φj+1, Cj+1, of alternating
configurations and steps, starting from some configuration Ck, k > 0, is referred to as an
execution interval of α.

If some configuration C occurs before some configuration C ′, C 6= C ′, in an execution α,
then we say that C precedes C ′ in α and denote it as C < C ′. Conversely, we say that C ′
follows C in α. Precedence among a step φi and a step φj , or precedence among a step φi

and a configuration Cj is defined in a similar fashion and denoted by the same operation <.
Let α1 and α2 be two execution intervals of some execution α. If the last configuration

of α1 precedes or is the same with the first configuration in α2, then we say that α1 precedes
α2 and denote it α1 < α2. In that case we also say that α2 follows α1. If neither α1 < α2
nor α2 < α1 are the case, then we say that α1 and α2 overlap.

Given the instance of some operation op for which the invocation and response steps are
included in α, we define αop, the execution interval of op, as that subsequence of α which
starts with the configuration in which op is invoked and ends with the configuration that
results from the response of op. If there are no two operation instances op1, op2 in α for
which the execution intervals overlap, then we say that α is a sequential execution, or that
operations in α are executed sequentially.

Concurrent graph. A graph G = 〈V,E〉 is composed of V , a (finite) set of elements referred
to as vertices, and E, a set of pairs of vertices, referred to as the edges between them. Each
edge ei,j ∈ E has a weight wij , that takes values out of some setW . A graph supports several
abstract operations, well-known in literature, such as operations for adding vertices or edges,
deleting vertices or edges, modifying attributes of vertices or edges, returning specific subsets
of the graph vertices or edges, etc. A concurrent graph is a graph that can be accessed
concurrently, through those types of operations, by n processes.

We propose the dynamic traversal (henceforth referred to as d-traversal for brevity) as a
concurrent graph operation exhibiting the following characteristics: (i) starts from a vertex v
of the graph, (ii) visits a sequence of vertices that is not necessarily known at the point that
the traversal initiates, (iii) the sequence of visits may be decided while the visiting is taking
place; (iv) the dynamic traversal returns a consistent view of the weights of all the edges
that it has traversed, i.e., all the returned values have co-existed at some point in time.

We further propose a concurrent graph implementation. The graph is represented as an
m×m adjacency matrix, for some positive integer m, and it allows the addition, and removal
of edges, the modification of edge weights by providing an Update operation. Update(i, j, w),

OPODIS 2015

27:6 Wait-Free Concurrent Graph Objects with Dynamic Traversals

where i, j are indices of vertices in V and where w is in W ∪ {⊥}, modifies the graph as
follows: Assume that ei,j ∈ E. If w = ⊥, then the edge is removed. Otherwise, its weight
is changed to w. If ei,j 6∈ E, then it is inserted in E with weight w. The implementation
supports the d-traversal as a composite operation, consisting of the following ones:

DynamicTraverse, which is used to mark the beginning of a d-traversal of the graph.
EndTraverse, which is used to mark the end of a d-traversal of the graph.
Read(i, j), where i, j are indices of vertices in V . It returns a weight for edge eij,, if
ei,j ∈ E, and ⊥ if ei,j 6∈ E.

Read is only used in d-traversals, as part of a sequence of Read operations. A d-traversal by
process pu consists in an instance bt of a DynamicTraverse operation, followed by a sequence
of instances of Read, followed in turn by an instance et of an EndTraverse operation. No
other operation is invoked between bt and et. The execution interval of the d-traversal starts
in the configuration in which pu invokes bt and ends in the configuration resulting from the
response of et. For correctness argumentation, we consider d-traversal as a virtual operation
that is invoked at the point that DynamicTraverse is invoked and responds at the matching
EndTraverse (if any).

Correctness criteria. We consider linearizability [21] as correctness criterion for the graph
operations. An execution α is linearizable if it is possible to assign a linearization point
inside the execution interval of each operation in α (Update and d-traversal operations), so
that the result of these operations is the same as it would be, if they had been performed
sequentially in the order dictated by their linearization points. A d-traversal operation is
considered linearizable if it is possible to assign a linearization point in its execution interval
so the result of the Read operations enclosed in it, is the same as it would be, if all the Read
operations had been performed at the linearization point in the sequential execution (the
order of Read is imposed by the invocation steps). Roughly speaking, we consider that the
entire sequence of Read operations enclosed in a dynamic traversal have a linearization point
inside the execution interval of the d-traversal, such that the Read return the weights that
the traversed edges had in the configuration in which the linearization point is placed.

Progress criteria. In this work we consider that processes that participate in an execution
α may suffer from crash failures, i.e. we consider that a process may unexpectedly stop taking
steps in α after some configuration. In this context, we provide a graph implementation with
operations that satisfy wait-freedom [18]. A data structure implementation is wait-free if in
any execution, each process finishes the execution of every operation it initiates within a
finite number of steps independently of the speed or the failure of other processes.

4 Main Ideas

Our implementation provides linearizable, wait-free operations and linearizable d-traversals
by using light-weight helping. To achieve it, each Update or DynamicTraverse operation
is first announced by a process, subsequently agreed by all processes, and then it can be
applied by some process – not necessarily the one that invoked it – and finally, terminate
and return a response. Processes provide very light-weight assistance to each other when
applying operations. In the case of DynamicTraverse operations, helping consists in storing
an integer number for it, while in the case of Update, helping consists in applying the update
on the edge. In order to coordinate how announced operations are executed among multiple

N.D. Kallimanis and E. Kanellou 27:7

processes, the processes collaborate to alternate between two types of phases, namely AGREE
and APPLY. An announce array of dimension n, an n-bit bitvector Add object, and two sets
of n bits each, namely ann and done, are used for this coordination.

To announce an operation, a process pu, 1 ≤ u ≤ n, starts by writing the operation type
and arguments (the operation information or op-info for brevity) in the u-th element of the
announce array. Notice that pu is the only process that may write to this element while all
processes in the system can read it. Subsequently, pu flips the value of the u-th bit of the
bitvector. Other processes can now also help the operation of pu.

The AGREE phase is used by processes in order detect which op-info in the announce
array corresponds to a pending operation: pu has a pending operation if the u-th bit of the
bitvector is not equal to done[u]. In this phase, processes essentially “agree” on a set of
operations that they will attempt to apply on the graph in the following APPLY phase. Then,
the APPLY phase that follows is used by processes for attempting to apply those pending
operations. As a result, operations are applied to the graph in batches. When an announced
operation is carried out by some process, we say that it is applied. Otherwise, it is pending.
An applied operation can return a response to the process that invoked it. The status of
an operation, i.e. whether it has been already applied or not, is reflected in the values of
ann[u] and done[u]: An invariant in our implementation is that when ann[u] = done[u], the
latest agreed operation by pu has been applied, while when ann[u] 6= done[u], it is pending.
A process which completes the actions associated with a phase, attempts to flip it.

A shared integer seq acts as global version counter and is also used to make the wait-
free partial traversals possible. Each time the phase changes from AGREE to APPLY, seq is
incremented. Apart from their weight, edges of the graph also have a version number as a
further attribute. In each configuration, the version of an edge is the value of seq at the
configuration in which the edge was last updated. Each d-traversal that is initiated, is also
assigned – either by the process that executes it or by some other, helping process – the
value that seq has at the configuration in which its DynamicTraverse is applied. This value
is referred to as the d-traversal read value and is visible to all processes.

Before a process pu applies an Update on edge ei,j , it also detects whether a d-traversal
by some other process pl, 1 ≤ u ≤ n, is active. If the read version of pl’s d-traversal is lower
than the current version of ei,j , pu stores the weight and version of ei,j for pl – as previous
weight and previous version for pl – and updates them only afterwards. For this, each edge
contains a vector prev of dimension n, where element l corresponds to pl and contains the
previous weight and previous version that pl may need during its d-traversal.

When pl uses Read to collect the weight-version pair of an edge that it accesses during
a d-traversal, it compares the edge’s version with the read version of the d-traversal. If
it is greater, pl collects the previous weight and previous version of the edge. Otherwise
it uses the current weight and value. This way, all the Read that are enclosed between
the DynamicTraverse and the matching EndTraverse operation of pl’s d-traversal, return
mutually consistent values and the d-traversal forms a consistent view.

5 Dense, a Concurrent Graph Implementation

In the following, Dense, an algorithm for our proposed concurrent graph implementation, is
presented. Dense is so named because it is mostly suitable for dense graphs, i.e. graphs with
high connectivity, in which case the allocated adjacency matrix is sufficiently exploited.

Listing 1 shows the data structures used by Dense (initial values are indicated on lines 20–
23). Operation information is stored in a structure of type AnnStruct. This structure

OPODIS 2015

27:8 Wait-Free Concurrent Graph Objects with Dynamic Traversals

1 type OpType = { DynamicTraverse , Update , Noop }; // operation types

2 struct AnnStruct // the data type of the announce array elements
3 OpType op; // the announced operation
4 int i, j; // if OpType =Update , ei,j has to be updated
5 int value; // weight to be assigned to ei,j if OpType = Update
6 };

7 struct StateStruct // data type for storing the graph ’s state
8 int seq; // the sequence number , used as a version counter
9 boolean phase; // current phase of execution , Announce or Apply

10 int ann [1..n]; // used as n-bit vector
11 int done [1..n]; // used as n-bit vector
12 int rvals [1..n]; // read value for each process
13 };

14 struct EdgeStruct { // the data type of a graph edge
15 〈 weightval , int 〉 prev [1..n]; // one element per process
16 int seq; // current version of the edge
17 weightval w; // current weight of the edge
18 };

19 shared int BitVector ; // used as n-bit vector
20 shared AnnStruct Announce [1..n] = {〈〈Noop, 0, 0, 0〉, . . . , 〈Noop, 0, 0, 0〉〉};
21 shared StateStruct ST = 〈0, AGREE, 〈0, . . . , 0〉, 〈0, . . . , 0〉, 〈0, . . . , 0〉〉;

// operations status and phase indicator
22 shared EdgeStruct Edges [1..m][1..m] = {〈〈0, 0〉, 0, 0〉, . . . , 〈〈0, 0〉, 0, 0〉};

// adjacency matrix representing the graph
23 private int toggleu = 2u; // a variable per process , u ∈ {1, . . . , n}

Listing 1 Dense: Data structures for a concurrent graph object suitable for dense graphs.

consists of four fields, namely: (i) op, of type OpType, which represents operations provided
by Dense (i.e., DynamicTraverse, Update, and the void operation Noop); (ii) i and j which
identify the edge on which an Update operation is to be applied (if op = Update); and
(iii) value, an integer representing the value that an Update operation has to apply to the
weight of the edge specified by fields i and j (if op = Update).

The status of operations on the graph is indicated by ST , an LL/SC object of type
StateStruct consisting of: (i) seq, an integer which serves as global version counter. It is
incremented each time a process successfully switches the execution phase from AGREE to
APPLY; (ii) phase, a boolean variable which indicates whether the execution of Dense is in
an AGREE or an APPLY phase at any given moment; (iii) ann[1..n], an array implemented as
n-bit integer, where ann[u] corresponds to process pu, u ∈ {1, 2, . . . , n}, and whose value is
toggled each time an operation by pu is agreed; (iv) done[1..n], an array implemented as n-bit
integer, where done[u] corresponds to process pu, u ∈ {1, 2, . . . , n}, and whose value is set
equal to ann[u] each time an operation by pu is applied to the graph; and (v) rvals[1..n], an
array of n elements, where t rvals[u] corresponds to process pu, u ∈ {1, 2, . . . , n}, and which
stores the value of seq that pu uses as read version, in case it is performing a d-traversal.

We represent the graph G with Edges, an adjacency matrix, i.e. a two-dimensional array,
where each element (i, j) of the array represents edge between vertices i and j, i, j ≤ m.
Graph edges, i.e. adjacency matrix elements, are LL/SC objects of type EdgeStruct. This
type is a record of three fields: (i) prev, an array of n elements (one for each process),

N.D. Kallimanis and E. Kanellou 27:9

24 void Update (int i, int j, int value) { // for process pu, u ∈ {1, . . . , n}
25 BTU(Update , int i, int j, int value)
26 }

27 void DynamicTraverse () { // for process pu, u ∈ {1, . . . , n}
28 BTU(DynamicTraverse , ⊥, ⊥, ⊥);
29 }

30 void EndTraverse () { // for process pu, u ∈ {1, . . . , n}
31 ;
32 }

33 int Read(int i, int j) { // for process pu, u ∈ {1, . . . , n}
34 EdgeStruct edge;
35 int val , int seq , int rval;
36 edge = Edges[i][j];
37 rval = ST.rvals[u];

38 if (edge.seq > rval) {
39 〈val, seq〉 = edge.prev[u];
40 }
41 else val = edge.w;
42 return val;
43 }

Listing 2 Dense: Operations Update, DynamicTraverse, EndTraverse, and Read.

where each element is a pair < w, seq > of integers. Whenever an update operation modifies
the weight of an edge, it stores the current weight and version in prev[u] if process pu is
performing a d-traversal on the graph using as read value, stored in ST.rvals[u], a value that
is larger than the current version of the edge; (ii) seq, an integer which stores the current
version of the edge; (iii) w, of type weightval, which stores the current weight of the edge -
recall that if this value is ⊥, the corresponding edge does not exist.

Recall that Dense implements the helping mechanism, where any process pu that invokes
an operation also attempts to apply pending operations by other processes. Operation
information is stored by processes in Announce[1..n], an announce array of n elements, where
each element Announce[u], u ∈ {1, 2, . . . , n}, is of type AnnStruct and can be written to
only by process pu, but can be read by all processes. The announcing of an operation is
complemented by the use of BitV ector, shared vector of n bits (represented as a n-bit integer)
where bit u corresponds to process pu. In order to indicate a pending operations, each time
pu announces operation information in Announce[u], it flips the u-th bit of BitV ector. It
does so with the aid of a local, persistent variable, toggleu, with initial value 2u. After pu

announces an operation, it inverts the value of toggleu.

Pseudocode Description. Pseudocode for the operations of the graph that are described in
Section 3 is presented in Listing 2. Operations Update and DynamicTraverse require that the
processes that execute them, assist each other. In order to do this, they both invoke auxiliary
routine BTU (these initials stand for “Begin a Traversal or Update”). BTU implements the
phase alternation and is further detailed below. We say that an execution of Dense is
in AGREE or APPLY phase during those execution intervals in which ST.phase = AGREE, or
ST.phase = APPLY, respectively. Notice that Read is independent of the phases. Instances of

OPODIS 2015

27:10 Wait-Free Concurrent Graph Objects with Dynamic Traversals

Read are only invoked by a process following the execution of a DynamicTraverse operation
by the same process. They rely on Update operations to store possibly useful old edge
versions for them in the prev arrays of each modified edge.

The DynamicTraverse operation that initiates some d-traversal d, obtains as read version
the current value v of ST.seq (this happens when either the process that initiated d or some
other process helps to apply this DynamicTraverse operation while executing line 74). An
instance r of Read that is invoked by process pu on edge ei,j and that is included in d, must
check whether the version of ei,j is greater than v (line 38). If this is the case, then ei,j was
updated after d started. However, in Dense, d-traversals must not be aware of concurrent
edge updates and have to return values that the edge weights had before the d-traversal
initiated. For this reason, r must return a previous weight of ei,j , and finds this in ei,j .prev[u]
(line 39). If the version of ei,j is less than v, then r returns ei,j ’s current weight (line 41).
Notice that although the instances of Read that are included in a d-traversal are not aware
of concurrent Update instances (i.e. instances whose execution intervals overlap with that of
the d-traversal), those Update instances become aware of d-traversals and store the necessary
old edge weights for them when they modify edges the graph.

Listing 2 presents BTU, which is at the heart of the Dense implementation. It is invoked
by Update specifying as arguments the operation type, integers i and j, which identify the
edge to be modified, and integer value, which specifies the weight to be written to this
edge. When BTU is invoked by DynamicTraverse, then only the operation type is specified
as argument, while the remaining three are ⊥, as they are not required for the d-traversal.

An instance of BTU by pu first writes the operation information into element u of the
announce array (line 48) and then sets the value of the u-th bit of BitV ector (line 49), using
the current value of local persistent variable toggleu bit. It then flips toggleu (line 50) in
order to prepare its value for the next execution of an operation by pu. The algorithm
implements this practice in order to provide a previously mentioned invariant: by comparing
ST.ann[u] and ST.done[u], a process is able to detect whether the latest agreed operation
by pu has already been applied or not. Notice that the contents of BitV ector are copied into
ST.ann by each process that successfully executes an AGREE phase of Dense (lines 53, 56, 80),
while they are copied into ST.done by a process that successfully executes an APPLY phase
of Dense (lines 53, 77, 80). Therefore, each operation by pu must correspond to a different
BitV ector[u] value than the previous one.

BTU carries out any light-weight helping in addition to the execution of the operation that
invoked it. To do this, it iterates via a for loop (lines 51-81). An iteration of this for loop
consists in locally copying ST (line 52), and then attempting to perform the actions that
are required by the phase indicated in ST.phase. Once these actions have been performed,
BTU attempts to change the phase by executing the SC of line 80. If this SC is successful,
we say that BTU (or, abusing terminology, the process or the operation that invoked it)
successfully executed the phase. The execution of this primitive may fail if some instance
of BTU, executed by a process other than pu, has already performed the current phase and
advanced the execution to the next phase. When executing the for loop (lines 51-81), BTU
proceeds as follows, depending on the phase it performs:

AGREE phase (lines 55-58). This phase updates the status record ST with the newly
announced operations, so that all processes can agree on them. So, BTU first records
this status locally on st, before using an SC instruction in order to attempt to update it
globally on ST . In order to set st, BTU collects information from the BitV ector regarding
newly announced and therefore possibly pending operations. It does so by copying the
contents of BitV ector into st.ann (line 56). Notice that for a process pl, 1 ≤ l ≤ n

N.D. Kallimanis and E. Kanellou 27:11

44 void BTU(OpType op, int i, int j, int value) { // for pu, u ∈ {1, . . . , n}
45 StateStruct st;
46 int lbv , opi , opj;
47 EdgeStruct e;

48 Announce [u] = 〈op, i, j, value〉;
49 Add(BitVector , toggleu);
50 toggleu = - toggleu;

51 for (i=0; i < 4; i++) {
52 st = LL(ST);
53 lbv = BitVector ;

54 if (lbv[u] == st.done[u]) break;

55 if (st.phase == AGREE) { // AGREE Phase
56 st.ann[1..n] = lbv[1..n];
57 st.seq = st.seq + 1;
58 st.phase = APPLY;
59 } else { // APPLY Phase
60 for (r = 1; r ≤ n; r++) {

// at most k shared memory accesses , k =active processes
61 if (st.ann[r] 6= st.done[r]) {
62 if (Announce [r].op == Update) {
63 opi = Announce [r].i;
64 opj = Announce [r].j;
65 e = LL(Edges[opi][opj]);
66 if (e.seq < st.seq) {
67 for (k = 1; k ≤ n; k++) {
68 if (e.seq < st.rvals[k]) e.prev[k] = 〈e.w, e.seq〉;
69 }
70 e.w = Announce [r]. value;
71 e.seq = st.seq;
72 SC(Edges[opi][opj], e);
73 } // if (e.seq < st.seq)
74 } else st.rvals[r] = st.seq;
75 } // if (st.ann[r] 6= st.done[r])
76 } // for (r = 1; r ≤ n; r++)
77 st.done[1..n] = lbv[1..n];
78 st.phase = AGREE;
79 }
80 SC(ST , st);
81 }
82 }

Listing 3 Dense: BTU auxiliary routine.

that has a newly announced operation, the invariant st.ann[u] 6= st.done[u] must hold.
Therefore, a successful assignment of st to ST (through the execution of the SC of line 80)
creates the inequality between ST.ann[u] and ST.done[u] and makes all processes “agree”
that pu has a newly announced operation which has not been applied yet. Once the
information regarding pending operation for each process has been copied into st, BTU
increments seq, the global version counter in st (line 57) and changes the phase field of
st from AGREE to APPLY.

OPODIS 2015

27:12 Wait-Free Concurrent Graph Objects with Dynamic Traversals

APPLY phase (lines 59–78). This phase applies any pending agreed Update operation on
the edges of the graph, and assigns read version to any pending agreed DynamicTraverse
operation. For this, BTU uses st again, and for each process pu (line 60) it checks whether
such a pending operation exists (line 61), in which case it holds that st.ann[u] 6= st.done[u].
Consider the case of a pending Update operation by pu on edge ei,j . Since multiple
processes may be executing an operation on ei,j , these modifications must be synchronized
in order to safeguard correctness. For this reason, ei,j is copied locally into e using LL
(line 65). If the current version number of ei,j , e.seq is greater than st.seq then the
specific Update operation has already been applied, namely by some process other than
pu, that has also changed the state. However, if this is not the case, the modification
of ei,j is carried out. Before setting the new value for the weight (line 70) and version
(line 71) of ei,j , a comparison of the current version of ei,j and all read versions stored
in st.rvals is performed (lines 67–68). If the current version of ei,j is less than the read
version for some process pr, 1leqr ≤ n, then the condition e.seq<st.rvals[r] is true. This
means that a concurrent d-traversal by process pr might be in progress. In order to
guarantee that an eventual such d-traversal can read mutually consistent values, the
current values of ei,j ’s weight and version are stored in e.prev[r]. There, instances of
Read on ei,j that are included in a d-traversal, can later find it if necessary. BTU then
attempts to finalize the update of ei,j by using SC to copy e into ei,j (line 72). Whether
the SC on the edge is successful or not, the operation is considered applied.
If pu’s pending operation is a DynamicTraverse, the read version must simply be set.
This is first recorded in st.rvals[u] (line 74) and is eventually stored in ST.rvals[u]
(line 80) by the process that successfully executes the phase. Recall that it is used by a
concurrent Update operation in order to judge whether to discard the current value of
the edge that it is updating or whether to keep it for the ongoing d-traversal of pu. If
the assignment of line 74 followed by a successful SC on ST is executed more than once
for a given DynamicTraverse instance or for the d-traversal that it initiated, then the
consistency of the Read instances of the d-traversal could be compromised. An eventual
bad scenario would happen if Read instances that are invoked before the second execution
of those lines and Read instances that are invoked after the second execution would use a
different read version when reading edges.
Thus, at the end of an APPLY phase, the done bits in st are set equal to the corresponding
ann bits (line 77). Then, BTU attempts to change the phase from APPLY back to AGREE
(line 78) by switching the phase field of st, which is reflected on ST if the SC instruction
of line 80 is successful.

Notice that an instance of BTU may be slow and end up performing the actions associated
with a phase while the execution has already progressed to the next phase. Notice also that
in the worst case, an instance of BTU has to perform four iterations of the for loop before
the operation that invoked it is applied. Such a worst-case scenario is the following: Let Ibtu

be an instance of BTU that executes the first iteration of the for loop during an AGREE phase
and let pl be the process that successfully flips the phase to APPLY by executing the SC on
ST of line 80. Consider however that the execution of line 49 by Ibtu occurs after pl executes
the LL of line 52, which corresponds to the successful SC on ST . This means that in the
following APPLY phase, the operation that invoked Ibtu will not be executed. In the worst
case, all other processes are slow and the process that invoked Ibtu must perform the actions
associated with the APPLY phase itself, during the second iteration of the for loop, as well
as the actions required by the following AGREE phase, during the third iteration of its for
loop. During this AGREE phase, the Add on BitV ector by Ibtu is guaranteed to be observed

N.D. Kallimanis and E. Kanellou 27:13

by the process that performs the successful SC on ST and changes the phase to APPLY. Here
again, in the worst case, all other processes are once more slower than the process which
invoked Ibtu, and thus it is Ibtu that performs the actions associated with the APPLY phase,
in its fourth iteration of the for loop. This time, however, the operation that invoked it is
guaranteed to have been applied.

However, in the common case, the operation may be applied earlier, by some other,
helping process. The condition that signals this is expressed on line 54 and is checked at each
iteration of the for loop. It consists in verifying whether the toggle bit for pl, the process
executing BTU, in shared array BitV ector has the same value as the corresponding bit in the
ST.done array. If that is the case, the operation executed by BTU is considered applied and
the iteration of the for loop terminates as well.

S-Dense. We provide S-Dense, a variation on Dense, implemented with smaller registers.
S-Dense is meant to conform to current machine architectures restrictions. The main
difference with Dense is the implementation of the EdgeStruct, which no longer contains
a large register prev. Instead, a 3-dimensional array prev, external to the EdgeStruct
structure, is used. A process that updates some edge ei,j records locally the weight wold and
version seqold that it read in ei,j . After performing the SC on ei,j (as on line 72 of Dense), the
process uses the LL/SC primitive to attempt to write wold and seqold into the prev position
they have to be recorded for some other traversing process. Notice that the status LL/SC
object ST can also be implemented with smaller registers, by applying the technique that is
used in the P-Sim algorithm that is presented in [14]. A detailed description of S-Dense will
be presented in the full version of the paper.

5.1 Proof of Correctness Sketch
Due to space constraints, we present a sketch of the correctness argument for our algorithm.
Consider an execution α of Dense. Denote by SCST

1 , SCST
2 , . . . the sequence of successful

SC of line 80 on ST in α and by LLST
1 , LLST

2 , . . . the sequence of matching LL on ST . We
first prove that the phases of Dense indeed oscillate between AGREE and APPLY.

I Corollary 1. Any SCST
k such that k mod 2 = 1 changes ST.phase from AGREE to APPLY.

Any SCST
k such that k mod 2 = 0 changes ST.phase from APPLY to AGREE.

Let op be an instance of some operation, invoked by process pu, 1 ≤ u ≤ n. When line 49 is
executed for op, we say that op is announced. Let op be an operation that is announced in
some configuration C. Let pl, 1 ≤ l ≤ n where possibly l 6= u, be a process which executes a
successful SC on ST after C, such that the value written to BitV ector[u] at C is copied into
ST.toggles[u]. If this occurs, we say that op has been agreed. Let op be a DynamicTraverse
operation that is agreed in some configuration C ′. Let pl, where possibly l 6= u, be a process
which executes a successful SC on ST after C ′, such that the value written to BitV ector[u]
at C is now also copied into ST.done[u]. If this occurs, we say that op has been applied. We
say that an agreed Update operation op, with edge ei,j as parameter, has been applied, if
some process pl successfully executes the SC of line 72 on ei,j with the parameter v of op. We
assign the linearization points to operations in the configuration in which they are applied.

We prove that each operation is agreed in its execution interval and use this to prove that
it is also applied exactly once during its execution interval, as well as the following lemmas:

I Lemma 2. Let OP be any instance of either DynamicTraverse or Update. The lineariza-
tion point of OP is included in its execution interval.

OPODIS 2015

27:14 Wait-Free Concurrent Graph Objects with Dynamic Traversals

Then, we prove that instances of Read enclosed in a d-traversal, read edge values that
are mutually consistent.

I Lemma 3. Consider an instance R of Read with arguments i and j, executed by pu and let
r be the executed by R on line 36. Let DT be the last instance of DynamicTraverse executed
by pu before R. Then, R returns as the weight for edge ei,j the value v, which is the weight
written to ei,j by U , where U is the last instance of Update with arguments i, j, v, that was
linearized before the linearization point of DT .

We prove then that d-traversals have a linearization point inside their execution interval
and use all the above to prove the following theorem.

I Theorem 4. Dense is a wait-free linearizable concurrent graph implementation with O(k)
step complexity, where k is the number of active processes.

6 Discussion

We have introduced a concurrent graph and provided an implementation, which supports wait-
free operations, which include updates to the graph edges and the possibility of performing
dynamically defined partial traversals. Operations implemented by Dense access and affect
edges of a graph. Thus, the algorithm is designed with the implicit assumption of a fixed or
at least, maximal number of possible vertices out of a specific vertex set. Dense operations
are oblivious to the values or possible other attributes of those vertices. Indeed, there are
many applications that are concerned with the connectivity of a graph only and need only
access graph edges. Examples include garbage-collection – where objects are represented by
graph nodes, while references to them are represented by graph edges – and graph-based
video game navigation – where the edges of a graph represent walkable surfaces between
obstacles, represented in turn by graph nodes. Nevertheless, an interesting line of future work
is to extend the update and traversal capabilities of Dense to also provide information about
the state or attributes of the visited vertices. Dense takes an irregular data structure and
uses a regularized representation of it, in order to provide dynamic traversals. An interesting
question concerns whether the helping mechanism employed by Dense can be used as a
generalized traversal technique. It would be interesting to explore what other irregular or
regular data structures (trees, lists, queues, etc) can benefit from it.

Acknowledgements. The authors would further like to thank Prof. Panagiota Fatourou for
the useful comments and fruitful discussion that she provided. We thankfully acknowledge
the support of the ARISTEIA Action of the Operational Programme Education and Lifelong
Learning which is co-funded by the European Social Fund (ESF) and National Resources
through the GreenVM project, and the support of the European Commission under the 7th
Framework Programs through the EuroServer (FP7-ICT-610456) and HiPEAC3 (FP7-ICT-
287759) projects.

References
1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit.

Atomic snapshots of shared memory. J. ACM, 40(4):873–890, September 1993. doi:10.
1145/153724.153741.

2 Marcos Kawazoe Aguilera, Wojciech M. Golab, and Mehul A. Shah. A practical scalable
distributed b-tree. PVLDB, 1(1):598–609, 2008.

http://dx.doi.org/10.1145/153724.153741
http://dx.doi.org/10.1145/153724.153741

N.D. Kallimanis and E. Kanellou 27:15

3 Zeyad Abd Algfoor, Mohd Shahrizal Sunar, and Hoshang Kolivand. A comprehensive study
on pathfinding techniques for robotics and video games. International Journal of Computer
Games Technology, 2015.

4 Hagit Attiya, Rachid Guerraoui, and Eric Ruppert. Partial snapshot objects. In Proceedings
of the 20th Annual Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 336–343, NY, USA, 2008. ACM.

5 Gal Bar-Nissan, Danny Hendler, and Adi Suissa. A dynamic elimination-combining stack
algorithm. CoRR, abs/1106.6304, 2011.

6 Trevor Brown, Faith Ellen, and Eric Ruppert. A general technique for non-blocking trees. In
Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 329–342, NY, USA, 2014. ACM. doi:10.1145/2555243.
2555267.

7 Vadim Bulitko, Yngvi Bjornsson, Nathan R. Sturtevant, and Ramon Lawrence. Real-time
heuristic search for pathfinding in video games. In Artificial Intelligence for Computer
Games, pages 1–30. Springer New York, 2011. doi:10.1007/978-1-4419-8188-2_1.

8 Victor Bushkov, Rachid Guerraoui, and Michal Kapalka. On the liveness of transactional
memory. In Proceedings of the 31st Annual ACM SIGACT-SIGOPS Symposium on Prin-
ciples of Distributed Computing (PODC), pages 9–18, NY, USA, 2012. ACM.

9 Joseph Carsten, Arturo Rankin, Dave Ferguson, and Anthony Stentz. Global planning
on the mars exploration rovers: Software integration and surface testing. J. Field Robot.,
26(4):337–357, April 2009. doi:10.1002/rob.v26:4.

10 Bapi Chatterjee, Nhan Nguyen, and Philippas Tsigas. Efficient lock-free binary search
trees. In Proceedings of the 33rd Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing (PODC), pages 322–331, NY, USA, 2014. ACM. doi:10.1145/
2611462.2611500.

11 Guojing Cong, Sreedhar B. Kodali, Sriram Krishnamoorthy, Doug Lea, Vijay A. Saraswat,
and Tong Wen. Solving large, irregular graph problems using adaptive work-stealing. In
37th International Conference on Parallel Processing (ICPP), pages 536–545, 2008.

12 Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-blocking
binary search trees. In Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (PODC), pages 131–140, NY, USA, 2010. ACM. doi:
10.1145/1835698.1835736.

13 Panagiota Fatourou, Mykhailo Iaremko, Eleni Kanellou, and Eleftherios Kosmas. Al-
gorithmic techniques in stm design. In Transactional Memory. Foundations, Algorithms,
Tools, and Applications, volume 8913, pages 101–126. Springer, 2015. doi:10.1007/
978-3-319-14720-8_5.

14 Panagiota Fatourou and Nikolaos D. Kallimanis. Highly-efficient wait-free synchronization.
Theory of Computing Systems, pages 1–46, 2013. doi:10.1007/s00224-013-9491-y.

15 Timothy L. Harris. A pragmatic implementation of non-blocking linked-lists. In Proceed-
ings of the 15th International Conference on Distributed Computing (DISC), pages 300–
314, London, UK, 2001. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=
645958.676105.

16 Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Scalable flat-combining based
synchronous queues. In Distributed Computing, volume 6343, pages 79–93. Springer, 2010.

17 Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack algorithm.
In Proceedings of the 16th Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 206–215. ACM, 2004.

18 Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–
149, January 1991. doi:10.1145/114005.102808.

OPODIS 2015

http://dx.doi.org/10.1145/2555243.2555267
http://dx.doi.org/10.1145/2555243.2555267
http://dx.doi.org/10.1007/978-1-4419-8188-2_1
http://dx.doi.org/10.1002/rob.v26:4
http://dx.doi.org/10.1145/2611462.2611500
http://dx.doi.org/10.1145/2611462.2611500
http://dx.doi.org/10.1145/1835698.1835736
http://dx.doi.org/10.1145/1835698.1835736
http://dx.doi.org/10.1007/978-3-319-14720-8_5
http://dx.doi.org/10.1007/978-3-319-14720-8_5
http://dx.doi.org/10.1007/s00224-013-9491-y
http://dl.acm.org/citation.cfm?id=645958.676105
http://dl.acm.org/citation.cfm?id=645958.676105
http://dx.doi.org/10.1145/114005.102808

27:16 Wait-Free Concurrent Graph Objects with Dynamic Traversals

19 Maurice Herlihy. A methodology for implementing highly concurrent data objects. ACM
Transactions on Programming Languages and Systems (TOPLAS), 15(5):745–770, 1993.

20 Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support for
lock-free data structures. SIGARCH Comput. Archit. News, 21(2):289–300, May 1993.

21 Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems (TOPLAS),
12(3):463–492, 1990.

22 Damien Imbs and Michel Raynal. Help when needed, but no more: Efficient read/write
partial snapshot. In Distributed Computing, volume 5805, pages 142–156. Springer Berlin
Heidelberg, 2009.

23 Prasad Jayanti and Srdjan Petrovic. Logarithmic-time single deleter, multiple inserter
wait-free queues and stacks. In Proceedings of the 25th International Conference on Found-
ations of Software Technology and Theoretical Computer Science (FSTTCS), pages 408–419.
Springer-Verlag, 2005. doi:10.1007/11590156_33.

24 Frank M. Johannes. Partitioning of vlsi circuits and systems. In Proceedings of the 33rd
Annual Design Automation Conference, DAC’96, pages 83–87, NY, USA, 1996. ACM.

25 Alex Kogan and Erez Petrank. Wait-free queues with multiple enqueuers and dequeuers. In
Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel Program-
ming (PPoPP), pages 223–234, NY, USA, 2011. ACM. doi:10.1145/1941553.1941585.

26 Alex Kogan and Erez Petrank. A methodology for creating fast wait-free data structures.
SIGPLAN Not., 47(8):141–150, February 2012. doi:10.1145/2370036.2145835.

27 Yu-Kwong Kwok and Ishfaq Ahmad. Benchmarking and comparison of the task graph
scheduling algorithms. J. Parallel Distrib. Comput., 59(3):381–422, December 1999. doi:
10.1006/jpdc.1999.1578.

28 Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms. In Proceedings of the 15th Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 267–275, NY, USA, 1996. ACM.
doi:10.1145/248052.248106.

29 Donald Nguyen and Keshav Pingali. Synthesizing concurrent schedulers for irregular
algorithms. In Proceedings of the 16th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), pages 333–344, 2011.
doi:10.1145/1950365.1950404.

30 Yiannis Nikolakopoulos, Anders Gidenstam, Marina Papatriantafilou, and Philippas Tsigas.
A consistency framework for iteration operations in concurrent data structures. In 2015
IEEE International Parallel and Distributed Processing Symposium, IPDPS 2015, Hydera-
bad, India, May 25-29, 2015, pages 239–248, 2015. doi:10.1109/IPDPS.2015.84.

31 Erez Petrank and Shahar Timnat. Lock-free data-structure iterators. In Distributed Com-
puting, volume 8205, pages 224–238. Springer Berlin Heidelberg, 2013. doi:10.1007/
978-3-642-41527-2_16.

32 Aleksandar Prokopec, Nathan G. Bronson, Phil Bagwell, and Martin Odersky. Concurrent
tries with efficient non-blocking snapshots. SIGPLAN Not., 47(8):151–160, Feb 2012. doi:
10.1145/2370036.2145836.

33 Dimitrios Prountzos, Roman Manevich, and Keshav Pingali. Elixir: A system for syn-
thesizing concurrent graph programs. SIGPLAN Not., 47(10):375–394, October 2012.
doi:10.1145/2398857.2384644.

34 William N. Scherer III, Doug Lea, and Michael L. Scott. Scalable synchronous queues. In
Proceedings of the 11th ACM Symposium on Principles and Practice of Parallel Program-
ming (PPOPP), NY, USA, 2006. ACM.

http://dx.doi.org/10.1007/11590156_33
http://dx.doi.org/10.1145/1941553.1941585
http://dx.doi.org/10.1145/2370036.2145835
http://dx.doi.org/10.1006/jpdc.1999.1578
http://dx.doi.org/10.1006/jpdc.1999.1578
http://dx.doi.org/10.1145/248052.248106
http://dx.doi.org/10.1145/1950365.1950404
http://dx.doi.org/10.1109/IPDPS.2015.84
http://dx.doi.org/10.1007/978-3-642-41527-2_16
http://dx.doi.org/10.1007/978-3-642-41527-2_16
http://dx.doi.org/10.1145/2370036.2145836
http://dx.doi.org/10.1145/2370036.2145836
http://dx.doi.org/10.1145/2398857.2384644

N.D. Kallimanis and E. Kanellou 27:17

35 Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of the 14th
Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 204–213,
NY, USA, 1995. ACM.

36 Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and
Karsten M. Borgwardt. Weisfeiler-lehman graph kernels. J. Mach. Learn. Res., 12:2539–
2561, November 2011. URL: http://dl.acm.org/citation.cfm?id=1953048.2078187.

37 S. Taylor, J.R. Watts, M.A. Rieffel, and M.E. Palmer. The concurrent graph: basic techno-
logy for irregular problems. Parallel Distributed Technology: Systems Applications, IEEE,
4(2):15–25, Summer 1996. doi:10.1109/88.494601.

38 Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Petrank. Wait-free linked-
lists. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), pages 309–310, NY, USA, 2012. ACM. doi:10.1145/
2145816.2145869.

39 Chung Yung, Jheng-Jyun Syu, and Shiang-Yu Yang. A graph-based algorithm of mostly
incremental garbage collection for active object systems. In International Computer Sym-
posium (ICS), pages 988–996, 2010. doi:10.1109/COMPSYM.2010.5685367.

OPODIS 2015

http://dl.acm.org/citation.cfm?id=1953048.2078187
http://dx.doi.org/10.1109/88.494601
http://dx.doi.org/10.1145/2145816.2145869
http://dx.doi.org/10.1145/2145816.2145869
http://dx.doi.org/10.1109/COMPSYM.2010.5685367

A Faster Counting Protocol for Anonymous
Dynamic Networks
Alessia Milani1 and Miguel A. Mosteiro2

1 LABRI, University of Bordeaux 1, INP, Talence, France
milani@labri.fr

2 Department of Computer Science, Kean University, Union, USA
mmosteir@kean.edu

Abstract
We study the problem of counting the number of nodes in a slotted-time communication network,
under the challenging assumption that nodes do not have identifiers and the network topology
changes frequently. That is, for each time slot links among nodes can change arbitrarily provided
that the network is always connected.

This network model has been motivated by the ongoing development of new communication
technologies that enable the deployment of a massive number of devices with highly dynamic
connectivity patterns. Tolerating dynamic topologies is clearly crucial in face of mobility and
unreliable communication. Current communication networks do have node identifiers though.
Nevertheless, in future massive networks, it might be suitable to avoid nodes IDs to facilitate mass
production. Consequently, knowing what is the cost of anonymity is of paramount importance
to understand what is feasible or not for future generations of Dynamic Networks.

Counting is a fundamental task in distributed computing since knowing the size of the system
often facilitates the desing of solutions for more complex problems. Also, the size of the system
is usually used to decide termination in distributed algorithms. Currently, the best upper bound
proved on the running time to compute the exact network size is double-exponential. However,
only linear complexity lower bounds are known, leaving open the question of whether efficient
Counting protocols for Anonymous Dynamic Networks exist or not.

In this paper we make a significant step towards answering this question by presenting a
distributed Counting protocol for Anonymous Dynamic Networks which has exponential time
complexity. This algorithm, which we call Incremental Counting, ensures that eventually
every node knows the exact size of the system and stops executing the protocol. Previous
Counting protocols have either double-exponential time complexity, or they are exponential but
do not terminate, or terminate but do not provide running-time guarantees, or guarantee only an
exponential upper bound on the network size. Other protocols are heuristic and do not guarantee
the correct count.

1998 ACM Subject Classification F.2.0 General

Keywords and phrases Anonymous Dynamic Networks, Counting, Time-varying Graphs

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.28

1 Introduction

We study the problem of Counting the number of nodes in a communication network, under
the challenging assumption that nodes do not have identifiers (IDs) and the network topology
changes frequently. We consider broadcast networks in slotted-time scenarios. That is, in any
given time slot, a message sent by a given node is received by all nodes directly connected
to it (one-hop neighbors). Worst-case topology changes are modeled assuming the presence

© Alessia Milani and Miguel A. Mosteiro;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 28; pp. 28:1–28:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 A Faster Counting Protocol for Anonymous Dynamic Networks

of an adversary that, for each time slot, chooses the set of links among nodes. The choice
is arbitrary as long as, in each time slot, the network is connected. This dynamic topology
model, called 1-interval connectivity, was introduced in [10] for Dynamic Networks where
each node has a unique identifier.

The network model described, called Anonymous Dynamic Network, has attracted a lot of
attention recently [12, 4, 5, 6]. The model has been motivated by the ongoing development of
new communication technologies that enable the deployment of a massive number of devices
with highly dynamic connectivity patterns. Tolerating dynamic topologies is clearly crucial
in face of mobility and unreliable communication. Current communication networks do have
node IDs (or otherwise a labeling is defined at startup). Nevertheless, in future massive
networks, it might be suitable to avoid nodes IDs to facilitate mass production. Consequently,
knowing what is the cost of anonymity is of paramount importance to understand what is
feasible or not for future generations of Dynamic Networks.

Counting is a fundamental distributed computing problem since knowing the size of the
system facilitates the solution of more complex problems. Also this parameter is usually
used to ensure the termination of the algorithm.

Counting can be solved in Anonymous Dynamic Networks, but the best known upper
bound on the time complexity is double-exponential [4]. A double-exponential running time
precludes the application of such algorithm to networks of significant size, but only linear
lower bounds are known. Such a large gap leaves open the question of whether practical
protocols exist or not.

The protocol presented in this paper makes a significant step towards answering the latter
question, reducing the time complexity for exact Counting to exponential. Our algorithm,
which we call Incremental Counting, ensures that there is a time slot when all nodes
know the exact size of the system and they stop executing the algorithm. All nodes stop at
the same round and this is known by every node. Thus it is easy to concatenate another
algorithm which uses the system size.

Previous Counting protocols for Anonymous Dynamic Networks have either double-
exponential time complexity [4], or they are exponential but do not terminate [4], or
terminate but do not provide running-time guarantees [5], or guarantee only an exponential
upper bound on the network size [12]. Other protocols are heuristic and do not guarantee
the correct count [6].

All current Counting protocols for Anonymous Dynamic Networks [5, 12, 4, 6] assume
the presence of one distinguished node, usually called leader, and additionally use some
knowledge of the number of neighbors of each node, called degree. In our model, we include
both assumptions. Namely, the presence of a leader node, and an upper bound on the
maximum degree of the adversarial topology which is known by all nodes. While these
assumptions may seem too strong it was proved in [12] that Counting is not solvable in
Anonymous Networks without the presence of a leader, even if the topology does not change.
In the same work, it was conjectured that any non-trivial computation is impossible without
knowledge of some network characteristics.

Incremental Counting is inspired by the algorithm presented by Di Luna et al. in [4],
which starts computing an upper bound on the network size using the algorithm presented
in [12]. Then, it verifies each candidate size down to the correct size. To verify each candidate
size, an energy-transfer approach is used. Namely, each non-leader node is initially assigned
a unit of energy which is shared evenly with neighbors in each communication round, except
for the leader that works as a sink. This energy-transfer protocol is a backwards version
of mass-distribution and gossip-based algorithms [9, 1, 8] used to compute the size in other

A. Milani and M.A. Mosteiro 28:3

network models. The unit mass initially held in only one node in the latter system is shared
throughout the network, converging to the average which is the inverse of the size. The
energy-transfer protocol is shown to be at most exponential in the candidate size which in
turn is exponential in the worst case, yielding a double-exponential Counting protocol.

Starting with an upper bound on the size of the system (as in previous works) facilitates
the verification phase, because it tells the leader after how many rounds it has “heard” (i.e.
received any needed information) from all the nodes. Unfortunately, it is not known how to
obtain an upper bound better than exponential, and if an upper bound is not known, the
challenge is to understand which is the condition the leader has to check to know that all
nodes have been heard.

In this paper, Incremental Counting leverages the above idea of verifying candidate
sizes using an energy-transfer protocol, but rather than starting with an upper bound, it
follows a bottom-up approach. That is, it verifies 2, 3, . . . , etc. up to the actual size. Then,
an energy threshold is carefully chosen to decide when the count is accurate. This novel
approach yields an exponential speedup in the worst-case running-time guarantees.

The running time proved also identifies the collection of energy at the leader as the speedup
bottleneck for gossip-based Counting, given that all other factors in the time complexity
obtained are polynomial. In contrast, in the running time of other exact Counting protocols
that terminate, all factors are exponential or double exponential [4], or the running time is
not proved [5].

Contributions

In the following we summarize the main contributions of our work.
Following-up on the Conscious Counting protocol of [4], we present an improved Incre-
mental Counting protocol for Anonymous Dynamic Networks that computes the exact
number of nodes in less than (2∆)n+1(n+ 1) ln(n+ 1)/ ln(2∆) communication rounds,
where n is the number of nodes and ∆ is any upper bound on the maximum number of
neighbors that any node will ever have. Incremental Counting tolerates worst-case
changes of topology, limited to 1-interval connectivity. The protocol requires the presence
of one leader node and knowledge of ∆.
The running time of Incremental Counting entails an exponential speedup over
the previous best Counting algorithm in [4], which was proved to run in O(e(∆2n)∆3n)
communication rounds, which is double-exponential. The speedup attained is mainly due
to a carefully chosen energy threshold used to verify candidate sizes that are not bigger
than the actual size. Our analysis shows the correctness of such verification.
The time complexity proved identifies the phase where the leader collects energy from
all other nodes as the speedup bottleneck for Counting with gossip-based protocols.
Indeed, the exponential cost is due to this collection, whereas all other terms in the
time complexity are polynomial. In contrast, in the running time of [4] all terms are
exponential or double exponential.

Roadmap

The rest of the paper is organized as follows. In Section 2 we briefly overview previous work
directly related to this paper. After formally defining the model and the problem in Section 3,
we present the Incremental Counting protocol in Section 4 and its analysis in Section 5.

OPODIS 2015

28:4 A Faster Counting Protocol for Anonymous Dynamic Networks

2 Related Work

The following is an overview of previous work on Counting in Anonymous Dynamic Networks
directly related to this paper. Other related work may be found in a survey on Dynamic
Networks and Time-varying Graphs by Casteigts et al. [3], and in the papers cited below.

Worst-case topology changes in Dynamic Networks may be limited assuming that the
network is always connected (cf. [12, 10, 14, 4]), or sometimes disconnected but for some
limited time (cf. [2, 15, 7, 13]). The T -interval connectivity model was introduced in [10].
For T ≥ 1, a network is said to be T -interval connected if for every T consecutive rounds
the network topology contains a stable connected subgraph spanning all nodes. In the
same paper, a Counting protocol was presented, but it requires each node to have a unique
identifier. In [10] it is also proved that, if no restriction on the size of the messages is required,
the counting problem can be easily solved in O(n) time when nodes have IDs. In our work,
we focus on Anonymous Dynamic Networks. Understanding if a linear counting algorithm
exists also when IDs are not available will help to understand the difficulty introduced by
anonymity (if any).

A Counting protocol for Anonymous Dynamic Networks where an upper bound ∆ on the
maximum degree is known was presented in [12]. The adversarial topology is limited only to
1-interval connectivity, but the algorithm obtains only an upper bound on the size of the
network n, which in the worst case is exponential, namely O(∆n). In our work, we aim to
obtain an exact count, rather than only an upper bound.

The Conscious Counting algorithm presented later in [4] does obtain the exact count for
the same network model, but requires knowledge of an initial upper bound K on the size of
the network. Conscious Counting would be exponential if such upper bound were tight, since
it runs in O(eK2

K3) communication rounds. However, K is obtained using the algorithm
in [12] mentioned above. Consequently, in the worst case the overall running time of the
Conscious Counting Algorithm is O(e(∆2n)∆3n), which is double-exponential. In our work,
we obtain the exact count in exponential time. That is, we reduce exponentially the best
known upper bound for exact Counting.

Anonymous Dynamic Networks where an upper bound on the maximum degree is not
known where also studied [4, 5, 6]. In [4], the protocol does not have a termination condition.
That is, nodes running the protocol do not know whether the correct count has been reached
or not. Hence, they have to continue running the protocol forever. In a companion paper [6],
the authors stop the protocol heuristically. Hence, the count obtained is not guaranteed to be
correct. Indeed, errors appear when the conductance of the underlying connectivity graph is
low. In our work, we aim for Counting algorithms that terminate returning always the correct
count. The protocol in [5] is shown to eventually terminate, although the running time is not
proved. In their model, it is assumed that each node is equipped with an oracle that provides
an estimation of its degree at each round. This is still an assumption of knowledge of network
characteristics, although local. This and the above shortcomings are not unexpected in light
of the conjecture in [12], which states that Counting (actually, any non-trivial computations)
in Anonymous Dynamic Networks without knowledge of some network characteristics is
impossible. Nevertheless, a proof of such conjecture has not been found yet.

Known lower bounds for Counting in Anonymous Dynamic Networks include only the
trivial Ω(D), where D is the dynamic diameter of the network, and Ω(logn) 1 even if D is
constant, proved in [11].

1 Throughout the paper, log means logarithm base 2, unless otherwise stated.

A. Milani and M.A. Mosteiro 28:5

3 Preliminaries

3.1 The Counting Problem
An algorithm is said to solve the Counting problem if whenever it is executed in a Dynamic
Network comprising n nodes, all nodes eventually terminate and output n.

3.2 The Anonymous Dynamic Network Model
We consider a synchronous Dynamic Network composed of a fixed set of nodes V where
|V | = n. Nodes have no identifiers (IDs) or labels. We also assume the presence of a special
node called the leader and denoted `.

Nodes communicate by broadcast. In particular, communication proceeds in synchronous
rounds. At each round a node broadcasts a message to its neighbors and simultaneously
receives the messages broadcast in the same round by its neighbors (if any), then it makes
some local computation. The time of computation is negligible. Thus, we compute the time
complexity in rounds of communication.

At each round the set of communication links changes adversarially. Thus, the network is
modeled as a dynamic graph G = (V,E) where E : N→ {(u, v)s.t.(u, v) ∈ V } is a function
mapping a round number r to a set of undirected edges E(r). In particular, we consider the
following 1-interval connectivity model proposed by Kuhn et al. in [10].

I Definition 1. A dynamic graph G = (V,E) is 1-interval connected if for all r ∈ N, the
static graph Gr := (V,E(r)) is connected.

Finally, we assume that the size of the neighborhood of a node is upper bounded by a
number ∆ > 0 at every round, and we assume that ∆ is known by the nodes.

At a first glance, some knowledge of the degree seems unnecessary because, after one
message from each neighbor has been received in a given round, the degree is simply the
message count. However, for the next round of communication, the degree may change due
to changing topology. Thus, a node does not know its current degree before sending messages
to its neighbors.

4 Distributed Counting Algorithm

Incremental Counting consists of a sequence of iterations. In each iteration, a candidate
size is checked to decide if it is correct. If not, the candidate size is increased and a new
iteration starts. In the following, we provide a high level explanation of the algorithm
executed in each iteration.

At the beginning of each iteration every node is assigned energy value 1, except for
the leader which has 0 energy. Then, the iteration proceeds in three consecutive phases
described below. Each phase lasts a fixed amount of rounds which only depends on the
current estimation of the system size. This is intended to synchronize the computation at all
the nodes in the system without extra communication.

During the first phase, called the Collection Phase, each node discharges itself by sending
at each round a fraction at most half of its current energy to its neighbors. Then it computes
its new energy by taking into account the energy given to its neighbors and the energy
received from them. The leader acts as a sink collecting energy but not disseminating it.
This phase completes when the leader has received an amount of energy such that, if the
candidate size for the current iteration is the correct system size n, there is no node in the

OPODIS 2015

28:6 A Faster Counting Protocol for Anonymous Dynamic Networks

system with more than 1/kc residual energy, for some constant c > 1. The function τ(k)
in Algorithms 1 and 2 gives the number of iterations of the Collection Phase needed to
guarantee this. An exponential upper bound on τ(k) is computed in Corollary 7. However,
the bound may not be tight, so τ(k) is left as a parameter in the protocol. Should a better
bound on τ(k) be proved, the protocol can be used as is.

Then, the Verification Phase starts. During this phase, the energy at each node does not
change and the leader verifies the correctness of the current candidate size looking for a node
with residual energy greater than 1/kc. To this aim at each round of the Verification phase
each non leader node broadcasts the maximal energy it has “heard” during this phase. At
the beginning each such node broadcasts its own residual energy. This phase lasts sufficiently
long to ensure that if a node with residual energy greater than 1/kc exists, then the leader
will hear from it. If the leader does not hear from such node, it knows that the candidate
size was indeed correct, and the verification phase completes successfully.

The last phase, called Notification Phase, is used by the leader when the verification
phase completes successfully. To notify such event, the leader broadcasts a special 〈Halt〉
message, and each node in turn broadcasts it as soon as it is received and as long as the
Notification Phase is not completed. If the Verification Phase completes unsuccessfully, the
leader and every other node simply wait for the same number of rounds of communication
without taking any action, and then all the nodes start a new iteration. This procedure
ensures synchronism. A node stops executing the algorithm at the end of the Notification
phase if it has received the 〈Halt〉 message. At this time every node knows the exact size of
the system.

The Incremental Counting protocol for the leader and non-leader nodes is detailed
in Algorithms 1 and 2.

PseudoCode

Variables at the leader node
e` is the energy of the leader at the current round. It is initialized to 0 at the beginning
of each iteration.
k is the estimation of the system size. Initially equal to 1 and increased by one in each
iteration.
1/kc is a threshold value for the energy such that, for a given estimate k, if k is the
correct size of the system, after the Collection Phase no node has energy greater than
1/kc for some constant c > 1.
IsCorrect, initially true is set to false if the leader discovers that its estimate k is wrong.
This happens if the value of e` > k− 1 at the end of the Collection phase or if during the
Verification phase the leader discovers a node with energy greater than 1/kc.
halt, initially false is set to true when the leader verifies that k is the correct size of the
system.

Variables at non leader nodes
e is the energy of the node at the current round. It is initialized to 1 at the beginning of
each iteration.
k is the estimation of the system size. Initially equal to 1 and increased by one in each
iteration.
emax, is the maximum energy the node is aware of at the current round of the Verification
Phase.
halt, initially false, is set to true when the node receives a 〈Halt〉 message.

A. Milani and M.A. Mosteiro 28:7

Algorithm 1: Incremental Counting algorithm for the leader node.
1 k ← 1
2 halt← false

3 while ¬halt do
4 k ← k + 1
5 IsCorrect← true

6 e` ← 0
// Collection Phase

7 for each of τ(k) communication rounds do
8 receive e1, e2, . . . es from neighbors, where 1 ≤ s ≤ ∆
9 e` ← e` + e1 + e2 + . . .+ es

// Verification Phase

10 for each of 1 +
⌈

k
1−1/kc

⌉
communication rounds do

11 receive e1, e2, . . . es from neighbors, where 1 ≤ s ≤ ∆
12 if k − 1− 1/kc ≤ e` ≤ k − 1 then
13 for j := 1 . . . s do
14 if ej > 1/kc then
15 IsCorrect← false

16 else
17 IsCorrect← false

// Notification Phase
18 for each of k communication rounds do
19 if IsCorrect then
20 broadcast 〈Halt〉
21 halt← true

22 else
23 do nothing

24 output k

5 Analysis

The following notation will be used. The energy of node i at the beginning of round r, is
denoted as eri , which is also generalized to any set of nodes S ⊆ V as erS =

∑
i∈S e

r
i . For any

given round r and node i, let the set of neighbors of i be Nr
i and the average energy of i’s

neighbors be eNr
i
. The superindex indicating the round number will be omitted when clear

from context or irrelevant. Also, at any time, let
∑
i∈V ei be called the system energy and∑

i∈V \{`} ei be called the energy left. At the beginning of each iteration of the protocol, that
is, for each new size estimate k, the energy of the leader is reset to zero and the energy of the
non-leader nodes is reset to 1. Thus, the system energy is

∑
i∈V ei = n− 1 and the energy

left is
∑
i∈V \{`} ei = n− 1.

I Lemma 2. For any network of n nodes, including a leader `, running the Incremental
Counting Protocol under the communication and connectivity models defined the following
holds. For any given node i ∈ V \ {`} and for any given round r of the Collection Phase, it
is eri ≤ 1.

OPODIS 2015

28:8 A Faster Counting Protocol for Anonymous Dynamic Networks

Algorithm 2: Incremental Counting algorithm for non-leader nodes.
1 k ← 1
2 halt← false

3 while ¬halt do
4 k ← k + 1
5 e← 1

// Collection Phase
6 for each of τ(k) communication rounds do
7 broadcast 〈 e2∆ 〉 and receive e1, e2, . . . es from neighbors, where 1 ≤ s ≤ ∆
8 e← e · (1− s

2∆) +
∑s
j=1 ej

// Verification Phase
9 emax ← e

10 for each of
⌈
1 + k

1−1/kc

⌉
communication rounds do

11 broadcast 〈emax〉 and receive e1, e2, . . . es from neighbors, where 1 ≤ s ≤ ∆
12 for j := 1 . . . s do
13 if ej > emax then
14 emax ← ej

// Notification Phase
15 for each of k communication rounds do
16 if halt then
17 broadcast 〈Halt〉
18 if receive 〈Halt〉 from some neighbor
19 then
20 halt← true

21 output k

Proof. Fix some arbitrary (non-leader) node i. Consider the transition between round r and
r + 1. We have that

er+1
i ≤ eri + eNr

i

|Nr
i |

2∆ − eri
|Nr

i |
2∆ = eri + (eNr

i
− eri)

|Nr
i |

2∆ .

If eNr
i
≤ eri , then er+1

i ≤ eri . That is, i’s energy does not increase from round r to round
r + 1. If on the other hand it is eNr

i
> eri , we have

er+1
i ≤ eri + (eNr

i
− eri)/2 = (eri + eNr

i
)/2.

That is, the energy of i in round r + 1 is at most the average between the energy of i in
round r and the average of i’s neighbors’ energy in round r.

Now consider the evolution of the protocol along many rounds. We ignore the rounds
when eNr

i
≤ eri since they do not increase the energy. For the other rounds, given that all

nodes start with energy 1, and that the average of some numbers cannot be bigger than
the maximum, the energy at any given node cannot get bigger than 1. Hence, the claim
follows. J

I Lemma 3. For any network of n nodes, under the communication and connectivity models
defined, the following holds. If a message m is held by all nodes in a set V1 ⊆ V , after

A. Milani and M.A. Mosteiro 28:9

|V | − |V1| rounds when every node holding the message broadcasts m in each round, all nodes
in V hold the message.

Proof. For any round r > 0, consider the partition of nodes {V r1 , V r2 } defined by the nodes
holding the message at the beginning of round r. That is, ∀i ∈ V r1 the node i holds m and
∀j ∈ V r2 the node j does not hold m. By 1-interval connectivity, there must exist a link u, v,
such that u ∈ V r1 and v ∈ V r2 . Given that all nodes holding the message broadcast m, v must
receive the message in round r. Thus, at the beginning of round r + 1 it is |V r+1

1 | ≥ |V r1 |+ 1
and |V r+1

2 | ≤ |V r2 | − 1. Applying the same argument inductively, after |V r+1
2 | more rounds

all nodes hold the message. J

The following lemma is a straightforward application of Lemma 3 to the Notification
Phase, where the message broadcasted is 〈Halt〉 for the first time when k = n.

I Lemma 4 (Correctness of the Notification Phase). For any network of n nodes, including
a leader `, running the Incremental Counting Protocol under the communication and
connectivity models defined the following holds. If at the end of the Verification Phase
IsCorrect = true, then at the end of the Notification Phase all nodes stop the Counting
Protocol holding the size n.

I Lemma 5 (Correctness of the Verification Phase). For any network of n > 3 nodes, including
a leader `, running the Incremental Counting Protocol under the communication and
connectivity models defined the following holds. For any estimate of the size of the network
k and constant c > 1, at the end of the Verification Phase IsCorrect = true if and only if
k = n.

Proof. We start observing that, for each estimate k, each non-leader node is initialized with
one unit of energy (Line 5 in Algorithm 2) and the leader’s energy is initialized to 0 (Line 6
in Algorithm 1). Until a new iteration of the outer loop (in both algorithms) is executed, no
energy is lost or gained by the system as a whole. Hence, the system energy is always n− 1.

We prove first that, if k = n, at the end of the Verification Phase it is IsCorrect = true.
Given that k = n, the system energy is k−1 and therefore e` ≤ k−1. Also because k = n, we
know that after the Collection Phase it is e` ≥ k − 1− 1/kc by definition of τ(k). Therefore,
IsCorrect is not set to false in Line 17 of Algorithm 1. Also because e` ≥ k− 1− 1/kc at the
end of the Collection Phase, we know that the energy left at the beginning of the Verification
Phase is eV \{`} = k − 1− e` ≤ 1/kc. Therefore, no non-leader node could have more than
that energy. That is, ∀i ∈ V \ {`} : ei ≤ 1/kc. Thus, during the Verification Phase, the
leader will not be able to detect a node with energy bigger than 1/kc. Therefore, IsCorrect
is not set to false in Line 15 of Algorithm 1 either. There is no other line where IsCorrect is
set to false. Hence, at the end of the Verification Phase it is IsCorrect = true.

We prove now the other direction of the implication. That is, if at the end of the
Verification Phase IsCorrect = true, then it is k = n. For the sake of contradiction, assume
that IsCorrect = true but k 6= n. Notice that k cannot be larger than n, because the estimate
is increased one by one, we already proved that if k = n at the end of the Verification Phase
it is IsCorrect = true, and Lemma 4 shows that all nodes would have stopped running the
protocol. Thus, we are left with the case when k < n.

Notice that if e` > k − 1 the variable IsCorrect is set to false in Line 17 of Algorithm 1.
Hence, it must be e` ≤ k − 1 and, given that the system energy is n− 1, the energy left is
eV \{`} ≥ n− k. This energy left is stored in the n− 1 non-leader nodes. Hence, there must
exist some node j ∈ V \{`} in the network such that ej ≥ (n−k)/(n−1). If IsCorrect = true

it means that the leader did not detect a node with energy bigger than 1/kc in Line 14 of

OPODIS 2015

28:10 A Faster Counting Protocol for Anonymous Dynamic Networks

Algorithm 1. However, for any 2 ≤ k ≤ n− 1, n > 3, and c > 1, it is 1/kc < (n− k)/(n− 1)
which means that such node must exist.

To see why the latter inequality is true, we verify that kc(n− k)− n+ 1 > 0 as follows.
With respect to k, this function has a maximum for k = cn/(c+1). That is, for 2 ≤ k ≤ n−1
(recall that we are in the case k < n), the function has minima in 2 and n− 1. Then, it is
enough to verify that 2c(n− 2)− n+ 1 > 0, which is true for any c > 1 and n > 3, and that
(n− 1)c − n+ 1 > 0, which is also true for any c > 1 and n ≥ 2.

Thus, to complete the proof, it is enough to show that 1 + kc+1/(kc − 1) rounds are
enough to detect a node with energy bigger than 1/kc. To do that, we upper bound the
number of nodes in the network with energy at most 1/kc as follows. We know that at any
time when the leader has energy e`, the energy left is n− 1− e`. Let S ⊆ V be the set of
nodes with energy at most 1/kc. Then, we have that n − 1 − e` =

∑
j∈S ej +

∑
k∈V \S ek.

To maximize the size of S, we minimize the size of V \ S assuming that all nodes in
V \ S have maximum energy, which according to Lemma 2 is at most 1. Then, we have
that n − 1 − e` =

∑
j∈S ej + (n − |S|) which yields |S| − 1 − e` =

∑
j∈S ej Given that∑

j∈S ej ≤ |S|/kc, we have that |S| ≤ (1 + e`)/(1− 1/kc). Recall that e` ≤ k − 1 because
IsCorrect would have been set to false in Line 17 of Algorithm 1 otherwise. Replacing, we
get |S| ≤ kc+1/(kc − 1).

Let {V1, V2} be a partition of V such that V2 = S ∪ {`}. Recall that, for any v ∈ V1
it is ev > 1/kc. Using Lemma 3, we know that |V2| = 1 + kc+1/(kc − 1) iterations in the
Verification Phase of Algorithm 1 are enough for the leader to detect that there is a node
with energy larger than 1/kc, which contradicts our assumption that IsCorrect = true. J

The following theorem establishes our main result.

I Theorem 6. For any anonymous dynamic network of n > 3 nodes, including a leader `,
and for any constant c > log 5, the following holds. If the adversarial topology is limited by a
maximum degree ∆ and the connectivity model defined, and nodes run the Incremental
Counting Protocol in Algorithms 1 and 2 under the communication model defined, after r
rounds, all nodes stop holding the size of the network n, where

r < n(n+ 3) + lnn− 4 +
n∑
k=2

τ(k).

Where τ(k) is a function such that, if k = n and the Collection Phase is executed for at least
τ(k) rounds, then at the end of the phase the leader has energy e` ≥ k − 1− 1/kc.

Proof. Correctness is a direct consequence of Lemmas 4 and 5. The running time is obtained
adding the number of iterations of each phase, as follows.

r =
n∑
k=2

(
τ(k) +

⌈
1 + k

1− 1/kc

⌉
+ k

)

≤
n∑
k=2

(
τ(k) + 2 + k

1− 1/kc + k

)

= n(n+ 3)− 4 +
n∑
k=2

(
τ(k) + k

kc − 1

)
.

A. Milani and M.A. Mosteiro 28:11

Using that k/(kc − 1) < 1/k for any c > log 5 and k ≥ 2, we obtain the following.

r < n(n+ 3)− 4 +
n∑
k=2

(
τ(k) + 1

k

)

≤ n(n+ 3) + lnn− 4 +
n∑
k=2

τ(k). J

Bounding the running time of the Collection Phase using Lemma 2 in [4] in Theorem 6,
the following corollary is obtained.

I Corollary 7. For any anonymous dynamic network of n > 6 nodes, including a leader `,
the following holds. If the adversarial topology is limited by a maximum degree 1 ≤ ∆ ≤ n− 1
and the connectivity model defined, and nodes run the Incremental Counting Protocol in
Algorithms 1 and 2 under the communication model defined, after r rounds, all nodes stop
holding the size of the network n, where

r <
(2∆)n+1(n+ 1) ln(n+ 1)

ln(2∆) .

Proof. Lemma 2 in [4] proves that, for any estimate k ≥ n and integer ρ > 0, starting with
e` = 0 and ei = 1 for all i ∈ V \ {`}, after running ρk rounds of the energy transfer protocol
the energy stored in the leader is e` ≥ n(1− (((2∆)k − 1)/(2∆)k)ρ). Notice in Theorem 6
that the condition e` ≥ k − 1− 1/kc only applies when k = n. Thus, it is enough to find ρ
such that

k

(
1−

(
(2∆)k − 1

(2∆)k

)ρ)
≥ k − 1− 1/kc

ρ ≥ ln(k/(1 + 1/kc))
ln (1/(1− 1/(2∆)k)) .

Using that 1 − x ≤ e−x for x ≤ 1, it is enough to have ρ = d(2∆)k ln ke. Replacing in
Theorem 6, we obtain

r < n(n+ 3) + lnn− 4 +
n∑
k=2

kd(2∆)k ln ke

≤ n(n+ 3) + lnn− 4 +
n∑
k=2

k(1 + (2∆)k ln k)

= n(3n+ 7)/2 + lnn− 5 +
n∑
k=2

k(2∆)k ln k.

Bounding with the integral,

r < n(3n+ 7)/2 + lnn− 5 +
∫ n+1

k=2
k(2∆)k ln k dk

= n(3n+ 7)/2 + lnn− 5 + (2∆)k((k ln(2∆)− 1) ln k − 1) + Ei(k ln(2∆))
ln2(2∆)

∣∣∣∣n+1

2

≤ n(3n+ 7)/2 + lnn+
(2∆)n+1(((n+ 1) ln(2∆)− 1) ln(n+ 1)− 1) + Ei((n+ 1) ln(2∆))

ln2(2∆)
.

OPODIS 2015

28:12 A Faster Counting Protocol for Anonymous Dynamic Networks

Using that Ei(ln x) = li(x) < x, for any real number x 6= 1, it is Ei((n+1) ln(2∆)) < (2∆)n+1.
Replacing,

r < n(3n+ 7)/2 + lnn+ (2∆)n+1((n+ 1) ln(2∆)− 1) ln(n+ 1)
ln2(2∆)

= n(3n+ 7)/2 + lnn+ (2∆)n+1(n+ 1) ln(n+ 1)
ln(2∆) − (2∆)n+1 ln(n+ 1)

ln2(2∆)
.

Using that n(3n+ 7)/2 + lnn < (2∆)n+1 ln(n+ 1)/ ln2(2∆) for any n > 6 and 1 ≤ ∆ ≤ n− 1,
the claim follows. J

5.1 Discussion
In this paper we have studied the problem of Counting in Anonymous Dynamic Networks.
The problem is challenging because the lack of identifiers and changing topology make difficult
to decide if a new message has been received before from the same node. Also, the obvious
lack of knowledge of the network size makes difficult to decide when the algorithm has to
stop.

Assuming an upper bound on the size of the system facilitates termination but may lead
to very bad time complexity if the upper bound is a huge overestimate. According to our
knowledge, the algorithm in [12] is the only one to compute an upper bound of the system
size for Anonymous Dynamic Networks and in the worst case it is exponential, i.e. O(∆n)
where n is the size of the system and ∆ is an upper bound on the nodes’ degree. Finding
the termination condition when an upper bound on the network size is not available is more
challenging, but it is expected to provide more efficient algorithms. Our Incremental
Counting algorithm does not assume such upper bound, and computes the exact size of
the system applying a bottom-up approach where the size is possibly underestimated several
times.

It is known that if no restriction on the size of the messages is required, the Counting
problem can be easily solved in O(n) time when nodes have IDs [10]). In this paper, we
have made a significant step towards understanding if a linear Counting algorithm exists also
when IDs are not available, by identifying the speedup bottleneck and reducing exponentially
the best known upper bound. This will help to understand the difficulty introduced by
anonymity (if any). Despite our contribution, there is still a big gap with respect to the
linear lower bound trivially given by the dynamic diameter.

Finally, although we focus on communication networks, our results carry over into any
distributed system of similar characteristics.

Acknowledgements. We thank Arnaud Casteigts for introducing the model to us, and
Antonio Fernández Anta for useful discussions.

References
1 Paulo Sérgio Almeida, Carlos Baquero, Martín Farach-Colton, Paulo Jesus, and Miguel A.

Mosteiro. Fault-tolerant aggregation: Flow-updating meets mass-distribution. In Antonio
Fernández Anta, Giuseppe Lipari, and Matthieu Roy, editors, Principles of Distributed
Systems – 15th International Conference, OPODIS 2011, Toulouse, France, December 13-
16, 2011. Proceedings, volume 7109 of Lecture Notes in Computer Science, pages 513–527.
Springer, 2011. doi:10.1007/978-3-642-25873-2_35.

http://dx.doi.org/10.1007/978-3-642-25873-2_35

A. Milani and M.A. Mosteiro 28:13

2 Antonio Fernández Anta, Alessia Milani, Miguel A. Mosteiro, and Shmuel Zaks. Opportun-
istic information dissemination in mobile ad-hoc networks: the profit of global synchrony.
Distributed Computing, 25(4):279–296, 2012. doi:10.1007/s00446-012-0165-9.

3 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-
varying graphs and dynamic networks. International Journal of Parallel, Emergent and
Distributed Systems, 27(5):387–408, 2012.

4 Giuseppe Antonio Di Luna, Roberto Baldoni, Silvia Bonomi, and Ioannis Chatzigianna-
kis. Conscious and unconscious counting on anonymous dynamic networks. In Mainak
Chatterjee, Jian-nong Cao, Kishore Kothapalli, and Sergio Rajsbaum, editors, Distributed
Computing and Networking, volume 8314 of Lecture Notes in Computer Science, pages
257–271. Springer Berlin Heidelberg, 2014. doi:10.1007/978-3-642-45249-9_17.

5 Giuseppe Antonio Di Luna, Roberto Baldoni, Silvia Bonomi, and Ioannis Chatzigianna-
kis. Counting in anonymous dynamic networks under worst-case adversary. In Distributed
Computing Systems (ICDCS), 2014 IEEE 34th International Conference on, pages 338–347.
IEEE, 2014.

6 Giuseppe Antonio Di Luna, Silvia Bonomi, Ioannis Chatzigiannakis, and Roberto Bal-
doni. Counting in anonymous dynamic networks: An experimental perspective. In Paola
Flocchini, Jie Gao, Evangelos Kranakis, and Friedhelm Meyer auf der Heide, editors, Al-
gorithms for Sensor Systems, volume 8243 of Lecture Notes in Computer Science, pages
139–154. Springer Berlin Heidelberg, 2014. doi:10.1007/978-3-642-45346-5_11.

7 K. Fall. A delay-tolerant network architecture for challenged internets. In Proceedings of
the 2003 conference on Applications, technologies, architectures, and protocols for computer
communications (SIGCOMM), pages 27–34, 2003.

8 Antonio Fernández Anta, Miguel A. Mosteiro, and Christopher Thraves. An early-stopping
protocol for computing aggregate functions in sensor networks. J. Parallel Distrib. Comput.,
73(2):111–121, 2013. doi:10.1016/j.jpdc.2012.09.013.

9 D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate information.
In Proc. of the 44th IEEE Ann. Symp. on Foundations of Computer Science, pages 482–491,
2003.

10 Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed computation in dynamic
networks. In Proceedings of the Forty-second ACM Symposium on Theory of Comput-
ing, STOC’10, pages 513–522, New York, NY, USA, 2010. ACM. doi:10.1145/1806689.
1806760.

11 Giuseppe Antonio Di Luna and Roberto Baldoni. Investigating the cost of anonymity on
dynamic networks. CoRR, abs/1505.03509, 2015. URL: http://arxiv.org/abs/1505.
03509.

12 Othon Michail, Ioannis Chatzigiannakis, and Paul G Spirakis. Naming and counting in an-
onymous unknown dynamic networks. In Stabilization, Safety, and Security of Distributed
Systems, pages 281–295. Springer, 2013.

13 Othon Michail, Ioannis Chatzigiannakis, and Paul G Spirakis. Causality, influence, and
computation in possibly disconnected synchronous dynamic networks. Journal of Parallel
and Distributed Computing, 74(1):2016–2026, 2014.

14 Regina O’Dell and Rogert Wattenhofer. Information dissemination in highly dynamic
graphs. In Proceedings of the 2005 Joint Workshop on Foundations of Mobile Com-
puting, DIALM-POMC’05, pages 104–110, New York, NY, USA, 2005. ACM. doi:
10.1145/1080810.1080828.

15 L. Pelusi, A. Passarella, and M. Conti. Opportunistic networking: data forwarding in
disconnected mobile ad hoc networks. Communications Magazine, IEEE, 44(11):134–141,
2006.

OPODIS 2015

http://dx.doi.org/10.1007/s00446-012-0165-9
http://dx.doi.org/10.1007/978-3-642-45249-9_17
http://dx.doi.org/10.1007/978-3-642-45346-5_11
http://dx.doi.org/10.1016/j.jpdc.2012.09.013
http://dx.doi.org/10.1145/1806689.1806760
http://dx.doi.org/10.1145/1806689.1806760
http://arxiv.org/abs/1505.03509
http://arxiv.org/abs/1505.03509
http://dx.doi.org/10.1145/1080810.1080828
http://dx.doi.org/10.1145/1080810.1080828

ActiveMonitor: Asynchronous Monitor Framework
for Scalability and Multi-Object Synchronization∗

Wei-Lun Hung1, Himanshu Chauhan2, and Vijay K. Garg3

1 University of Texas, Austin, USA
wlhung@utexas.edu

2 University of Texas, Austin, USA
himanshu@utexas.edu

3 University of Texas, Austin, USA
garg@ece.utexas.edu

Abstract
Monitor objects are used extensively for thread-safety and synchronization in shared memory
parallel programs. They provide ease of use, and enable straightforward correctness analysis.
However, they inhibit parallelism by enforcing serial executions of critical sections, and thus the
performance of parallel programs with monitors scales poorly with number of processes. Their
current design and implementation is also ill-suited for thread synchronization across multiple
thread-safe objects. We present ActiveMonitor – a framework that allows multi-object synchron-
ization without global locks, and improves parallelism by exploiting asynchronous execution of
critical sections. We evaluate the performance of Java based implementation of ActiveMonitor
on micro-benchmarks involving light and heavy critical sections, as well as on single-source-
shortest-path problem in directed graphs. Our results show that on most of these problems,
ActiveMonitor based programs outperform programs implemented using Java’s reentrant-lock
and condition constructs.

1998 ACM Subject Classification D.1.3 Concurrent Programming

Keywords and phrases concurrent/parallel programming, monitors, concurrency

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.29

1 Introduction

Most, if not all, programmers follow a standard recipe to implement shared memory parallel
programs: they identify the critical sections in the serial implementation of the program,
and make them thread-safe in the style of monitors [22]. Monitors provide dual abstractions:
mutual exclusion and synchronization between threads. Their simplicity and elegance of use,
and ready availability of mutexes/locks are two key factors behind such a wide adoption of
this style. By enforcing serialized executions of critical sections, mutexes trivially guarantee
the safety of data. Under high contention scenarios, however, such serialized executions
become obvious performance bottleneck. In addition, mutexes force memory fencing due
to which latency hiding techniques such as caching, pre-fetching, and operation re-ordering
cannot be exploited to their fullest. As a combined effect of all these factors, programs in
traditional monitor-style fare poorly in terms of throughput and scalability on multi-core
CPUs. Mutex-based monitor implementations have another limitation: method invocations

∗ Supported in part by NSF Grants CNS-1346245, CNS-1115808, and Cullen Trust. A short version of
this paper appeared as a brief announcement in DISC’2014.

© Wei-Lun Hung, Himanshu Chauhan, and Vijay K. Garg;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 29; pp. 29:1–29:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.29
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

29:2 ActiveMonitor: Asynchronous Monitor Framework

ActiveMonitor
Java Library

ActiveMonitor
Preprocessor

ActiveMonitor
Code

Java Code Standard Java
Compiler

Java
Bytecode

Figure 1 ActiveMonitor framework.

across multiple monitors cannot be combined easily. For example, given two thread-safe
blocking queues, consider the problem of dequeueing an item from either of them. There is
no easy solution to the problem of using mutex based synchronous monitors [19].

We present ActiveMonitor, a framework that provides significant programming ease in
writing thread-safe programs, allows multi-object synchronization, as well as improves the
runtime performance of these programs by exploiting asynchronous delegated executions
on modern multi-core hardware. Extending our previous work AutoSynch [24], which
provides waituntil keyword for automatic signaling and thread synchronization, ActiveMonitor
framework enables asynchronous executions of critical sections, as well as method composition
across monitor objects through simple constructs. Recall that monitors were envisioned in
1970’s when saving processor cycles of the single-core CPUs was a primary programming
concern. In contrast, not only multi-core processors are now ubiquitous, but they are also
significantly cheaper and faster. In order to exploit the multi-core resources, we allow a
monitor object to exist as a thread – hence it becomes an active artifact of the program.
With this change, method invocations on this monitor object can be delegated [35]. In
addition, we allow the monitor thread to execute critical sections asynchronously, so that
calling threads can return to their local work without waiting for their completion.

Using ActiveMonitor involves the following steps (Fig. 1 shows the framework over-
view):
(a) The programmer writes a monitor based parallel program using the ActiveMonitor

keywords. These keywords are: monitor, waituntil, synchronous, asynchronous, and notthread-
safe. He/she can use two additional operators OR and AND for compositionality across
multiple monitor objects. ActiveMonitor automatically manages the use use of locks,
and their acquisition/release so that the user is not required to explicitly program them.
The user is also free from the responsibility of checking the predicate condition(s) and
signaling appropriate threads. The framework observes the values of predicate conditions
at runtime, and signals the appropriate threads automatically.

(b) He/she then runs the ActiveMonitor pre-processor to generate the program’s equivalent
Java code. The pre-processor injects code snippets to provide the corresponding function-
ality of framework keywords. The pre-processor also links invocations of ActiveMonitor
runtime library API in the generated code.

(c) The program is then compiled as a standard Java program, and the binaries benefit
from asynchronous executions of critical sections, and automatic signaling. If needed,
the user can easily disable asynchronous executions at runtime by simply passing a flag.
ActiveMonitor enables operations that are not possible with traditional synchronous

monitors. Solving the problem of removing an element from either of n blocking queues,
where n ≥ 2, is a challenging task with traditional monitors [19]. In ActiveMonitor it is
just a matter of using the framework’s OR construct: x = Q1.deqeue() OR Q2.dequeue()
. . . . Similarly, the AND construct of the framework allows the programmer to aggregate
results from multiple operations across different monitors. Our design and implementation
integrates seamlessly with current constructs provided by most programming languages, and

W.L. Hung, H. Chauhan, and V.K. Garg 29:3

can thus benefit existing programs with only a handful of syntactic changes. The results
of our experimental evaluation (using Java1) on five multi-threading problems show that
ActiveMonitor outperforms, by a factor of two or more in some cases, traditional monitor
based programs implemented using Java’s ReentrantLock [30], and delegation technique [35]
on most of these problems. In our current implementation of ActiveMonitor, use of thread
dependent variables and functions is restricted. Note that this only disables the asynchronous
executions provided by ActiveMonitor and the framework can still be used for such problems.
We discuss these issues in § 9.

2 ActiveMonitor: Concepts & Design

In ActiveMonitor framework, each method of a monitor is a critical section – unless oth-
erwise specified (using notthreadsafe keyword described shortly ahead). We use the term
worker to denote an application thread/process. A monitor object can be instantiated as a
thread/process based on the availability of system resources. This thread is called a server,
and invocation of critical sections of monitor by workers are delegated to it. Delegation [35]
is a technique in which critical sections of a monitor are not executed directly by workers
invoking the method, but are processed by the server thread on behalf of workers. The
workers announce their execution requests – in the form of tasks – to the server by adding
the requests (task objects) to a shared storage that is owned by the monitor. Combining
[15, 10] is a version of delegation in which the role of server is assumed by the worker that
succeeds in acquiring the lock to the critical section. This thread becomes the combiner,
and in addition to its own request, serves requests announced by other threads for a period
of time before releasing the lock and allowing some other thread to become the combiner.
Throughout this paper, we use the term server in both delegation and combining contexts.
A critical section is asynchronous (or non-blocking) if the worker can return to executing
its own local program from the critical section before its completion. Otherwise the critical
section is synchronous (or blocking).

ActiveMonitor provides the following constructs for writing monitor based programs:
1. monitor: keyword that declares a class as a monitor, and frees the user from explicit lock

instantiations, and their acquisition/release to make the critical sections thread-safe.
2. waituntil: a statement for conditional waits and notifications. The statement requires a

boolean predicate as an argument.
3. synchronous: keyword used in declaration of monitor methods. Such methods are made

thread-safe but not delegated to the server (monitor thread) for execution.
4. asynchronous: keyword used in declaration of monitor methods. Such methods are

delegated to the server (monitor thread) , and the worker thread returns to its own
local execution before completing the method. If the worker requires the result of the
computation, it receives a future [12] instance which can be evaluated – a blocking call if
the result is not yet available – to fetch the result.

5. notthreadsafe: this keyword in a method signature tells the framework to not generate
thread-safe code for this method. incompatible with the previous two keywords: waituntil
and asynchronous.

6. OR/AND: operators for logical composition of monitor methods. If a result is required
from either of these operator calls, then the framework stipulates that all the operand

1 Our technique is not limited to Java, and applies to any other modern programming language.

OPODIS 2015

29:4 ActiveMonitor: Asynchronous Monitor Framework

1 monitor class BoundedQueue<T> {
2 T[] items;
3 int putPtr, takePtr, count, size;
4 BoundedQueue(int size) {
5 this.size = size;
6 items = new Object[size];
7 }
8 aysnchronous void put(T item) {
9 waituntil(count < size);

10 items [putPtr++] = item;
11 putPtr = putPtr % size;
12 ++count;
13 }
14 T take() {
15 waituntil(count > 0);
16 T x = (T)(items [takePtr++]);
17 takePtr = takePtr % size;
18 --count;
19 return x;
20 }
21 }

Figure 2 Bounded-Queue with ActiveMonitor.

method calls have the same return type. The order of operations is defined based on the
evaluation of the pre-conditions (of operand monitor methods) at runtime.

Defaults: ActiveMonitor makes all monitor methods thread-safe by default. Each method
that returns void and updates monitor state is asynchronous by default unless otherwise
declared. Each method that returns a type value (and not a void) is made synchronous unless
explicitly declared asynchronous by the user. Each read-only method – determined by static
analysis of the program in the pre-processing/compilation phase – is also made synchronous
irrespective of its return type. By doing so, the framework is able to use read-locks for
such methods to exploit the inherent read parallelism in the program. The bounded queue
implementation in Fig. 2 shows the actual usage of monitor, and asynchronous keywords, as
well as the waituntil statement. Note that take() method will be made synchronous by the
framework as it returns a value and is not explicitly declared asynchronous. As shown in the
design overview of Fig. 1, the framework has two main components: a pre-processor and a
runtime Java library. The pre-processor translates ActiveMonitor code into Java code. In
addition, it also identifies the critical sections that are eligible for asynchronous execution.
For each such method (critical section), the pre-processor generates its equivalent task.

It then replaces invocation of these methods (by application threads on monitor object) by
submission of tasks to the server of the monitor. The runtime library has two sub-components:
condition manager and task executer. The condition manager is responsible for observing the
state of the monitor object for conditional waits and signaling an appropriate thread whenever
its precondition becomes true. The task executer component manages the submission and
completion of monitor tasks and also handles their asynchronous executions.

Our pre-processor uses a set of parsing rules that identify the ActiveMonitor keywords,
and is an extension of the pre-processor in our previous work AutoSynch [24]. We briefly
discuss its steps, and refer the reader to [24] for details. For a source class that is declared

W.L. Hung, H. Chauhan, and V.K. Garg 29:5

monitor, the pre-processor ensures that each method of the class is protected using the
re-entrant lock by inserting lock acquisition and release statements at the beginning and
end of method code. It then parses the method code for waituntil statements, and for each
such statement it creates a new condition in the monitor class. For every condition, the
notification criteria is the boolean predicate provided as the argument to its corresponding
waituntil statement. Then it analyzes the method to decide whether or not it should be
delegated. If the method is declared asynchronous or does not returns a value and updates
the shared data, the pre-processor generates an equivalent task for delegation. We discuss
monitor tasks, their generation and compositionality in the next section.

3 Monitor Tasks

In ActiveMonitor, a monitor task is defined as follows.

I Definition 1 (Monitor Task). A monitor task t consists of a boolean predicate P and a set
of statements S. At runtime, if the precondition defined by P is true then t is ‘executable’
and statements in S can be executed to complete t. Otherwise, t is ‘unexecutable’.

For a task t, its set of statements S can be empty. The pre-condition P – passed as an
argument to waituntil statement – can either be absent altogether or may not appear as the
first statement in the monitor method. When a monitor method has no precondition, the
pre-processor creates a task with its precondition as tautology, indicating that the task can
be executed at any time. If a monitor method does not start with a waituntil statement but
has some such statement in between, then the precondition of the first derived task is a
tautology. Consider the put method (lines 8–13) of the bounded-buffer program of Fig. 2. For
this monitor method, the equivalent monitor task t is defined by the code of lines 9–12. For t,
the precondition P is (count < buffer_size); and it checks if the buffer has any space to insert
the item. If this condition is false, the waituntil construct ensures that any thread trying to
complete this task has to wait until the buffer has some space to insert the items. Lines 10
and 11 together form the set of statements S. The method is explicitly declared asynchronous,
so the generated task is submitted for an asynchronous execution to the monitor thread.

3.1 Asynchronous Execution of Tasks
After an equivalent task t for a method m has been generated, all the invocations of m by
workers are executed with combining technique [15, 10]. We use futures [12] for asynchronous
(non-blocking) executions of critical sections. For each asynchronous method call the pre-
processing phase injects submission of a task to the server (monitor thread) . A future
reference is returned to the worker as a pointer to the computation. Whenever the server
finishes the execution of a task, it updates its corresponding future reference with the result
of the computation. If the worker needs the result of the computation it evaluates the future.
Evaluation of a future is a blocking method: if the computation has not finished then the
caller must wait until its completion. Note that unlike the schemes of [35, 15, 10], neither the
server nor the worker threads perform busy-wait/spinning in ActiveMonitor. Thus, we do not
waste any processing cycles and yield the CPU when there are no tasks to execute. Hence,
ActiveMonitor provides a much more practical implementation for delegated executions.

To guarantee program order, ActiveMonitor framework stipulates that each worker can
only submit one asynchronous task at a time. The task executor sub-component of the
runtime library handles this by storing a map of ids of worker threads and their corresponding
task submissions. Whenever a worker tries to submit an asynchronous task, it first checks

OPODIS 2015

29:6 ActiveMonitor: Asynchronous Monitor Framework

the map to verify if there is some previous asynchronous task stored against its id that is not
yet finished. The worker is forced to wait – by evaluating the future – for the completion of
that task before being allowed to submit the new task. If the programmer understands the
implications of out-of-program-order asynchronous executions, and wishes to exploit them
then he/she can relax the program order execution by passing an argument to the runtime
library. This change usually results in higher program throughputs. A detailed discussion on
this topic can be found in our technical report [1].

4 Runtime Library

The runtime library of ActiveMonitor provides two key functionalities: (a) automatic signaling
of threads under conditional waiting, and (b) delegation and asynchronous executions of
critical sections. We extend our previous work AutoSynch [24] to enable functionality (a) for
task based asynchronous executions and for multi-object synchronization through OR/AND
operators. We summarize the key concepts here, and refer the interested reader to [24] for
details.

4.1 Automatic Signaling
In current programming languages/libraries conditional synchronization through mutexes
requires programmers to explicitly associate conditional predicates with condition variables
and call signal (signalAll) or await statements manually. In contrast, ActiveMonitor frame-
work manages conditional synchronization and thread signaling, and relieves the programmer
of their explicit handling. The programmer only needs to use the waituntil clause. The
idea of automatic signaling was initially explored by Hoare [22], but rejected in favor of
condition variables due to efficiency considerations. Buhr et al. [3] claim that automatic
monitors are 10 to 50 times slower than explicit signals. This is mainly due the sub-optimal
implementation techniques that result in excessive predicate evaluations for conditions and
subsequent context switches. In [24], we provide an efficient mechanism that improves the
automatic signaling performance tremendously.

We use three concepts that enable efficient automatic signaling: closure of predicates,
relay invariance, and predicate tagging. The technique of closure of a predicate P is used
to reduce the number of context switches for its evaluation. In the current systems, only
the thread that is waiting for the predicate P can evaluate it. When the thread is signaled,
it wakes up, acquires the lock to the monitor and then evaluates the predicate P . If the
predicate P is false, it goes back to waiting. This results in an additional context switch. In
our system, the thread that is in the monitor evaluates the condition for the waiting thread
and wakes it only if the condition is true. Since the predicate P may use variables local to
the thread waiting on it, ActiveMonitor derives a closure predicate P ′ of the predicate P ,
such that other threads can evaluate P ′.

The idea of relay invariance is used to avoid signalAll calls in ActiveMonitor. We ensure
that if there is any thread whose waiting condition is true, then there exists at least one
thread whose waiting condition is true and is signaled by the system. With this invariance,
the signalAll call is unnecessary in our automatic-signal mechanism. With relay invariance,
the privilege to enter the monitor is transmitted from one thread to another thread whose
condition has become true. This mechanism guarantees progress, and reduces the number of
context switches by avoiding signalAll calls.

The idea of predicate tagging is used to accelerate the process of deciding which thread
to signal. All the waiting conditions are analyzed and tags are assigned to every predicate

W.L. Hung, H. Chauhan, and V.K. Garg 29:7

according to its semantics. To decide which thread should be signaled, we identify tags that
are most likely to be true after examining the current state of the monitor. Then we only
evaluate the predicates with those tags.

We extend these concepts to task based executions by allowing conditions within asyn-
chronous tasks. As defined in Defn. 1, each task has a boolean predicate P . This predicate
captures the pre-condition for the task’s execution. Before executing any task, the server
thread must verify that this condition is true. If not, the task is not executable and the
server does not execute it. The runtime handling of conditional synchronization for OR/AND
operators is described in § 5.

4.2 Execution of Monitor Tasks
ActiveMonitor runtime library executes monitor tasks using the following rules.

I Rule 1 (Mutex Invariant). If some thread t is executing a task m of monitor M , then no
other thread can execute any task m′ of M concurrently.

This rule maintains the mutual exclusion of critical sections of a monitor. We require two
additional rules to guarantee execution of tasks in program order. Let proc(t) denote the
worker thread that submits the task t to a monitor. Let sub(t) and exe(t) respectively
indicate the timestamps when t is submitted to the monitor, and when the server thread
starts executing t.

I Rule 2. For a pair of tasks s and t submitted to a monitor M , if proc(s) = proc(t), then
sub(s) < sub(t)⇒ exe(s) < exe(t).

This rule ensures that a server (monitor thread) executes every worker’s tasks in the program
order of worker.

I Rule 3. Let m1, m2 be two successive method invocations by a worker thread on two
different monitors M1 and M2 in the user program, and let t1, t2 be their corresponding task
submissions at runtime. Then, t1 must be completed before t2’s submission.

This rule enforces the constraint on a thread’s successive invocations of methods on different
monitor objects. Blocking method invocations in between these two calls are acceptable.

The notions of method invocation and response used to define linearizability [21] need a
different interpretation under asynchronous executions. In short, invocation now corresponds
to submission of the equivalent task to monitor thread, and response corresponds to this
task’s completion. Observe that the legal sequential history we get may not preserve the
order of invocation of operations, but only the thread order. With this interpretation, we
can easily validate the following result.

I Lemma 2. Rules 1, 2 and 3 guarantee executions equivalent to lock-based executions.

5 Compositionality: Multi-object Synchronization

Monitor tasks are compositional in nature. Suppose a monitor method declares n in the
form of waituntil(Pi) Si, where 1 ≤ i ≤ n, to enforce that the set of statements Si must
be executed iff predicate Pi is true. To execute this method, ActiveMonitor generates n

tasks such that each task ti has a precondition Pi and a corresponding set of statements Si.
More importantly, with monitors allowed to be ‘active’ as threads, ActiveMonitor enables
compositionality of blocking operations across different monitor objects. Consider two

OPODIS 2015

29:8 ActiveMonitor: Asynchronous Monitor Framework

instances Q1 and Q2 of a blocking queue implementation, with dequeue method signature
being deq(). As the queue is blocking, a call to deq() will block the calling thread if the
queue is empty. Consider the problem of dequeueing from either of these instances, and
storing the returned item into a variable x. If both queues are empty, then we should block
until an item is available in either one. In ActiveMonitor, the code is simply one statement:
x = Q1.deq() OR x = Q2.deq(). Solving this problem using the traditional mutex based
blocking queue implementations is extremely difficult [19]. An ad hoc solution is to use a
global lock and a lock-free/wait-free implementation of deq. But this solution does not scale
because a global lock inhibits parallelism. Even with transactional memory [19] the problem
is not easy to solve. To the best of our knowledge, no transactional memory implementation
provides explicit wait/notify construct on individual thread-safe objects to release the CPU.
An implementation [38] to allow waiting in transactional memory requires continuous loop
based busy-waiting on conditions. Implementations such as [9] propose global lock based
solutions for waiting and thus curb parallelism. Not only ActiveMonitor’s asynchronous
execution approach provides an elegant solution, but it also allows parallelism. Similarly, the
AND operator allows conjunction of operations across multiple monitor objects, such that
these operations can be performed in parallel.

5.1 Implementing AND & OR Operators in ActiveMonitor
For both of these operators, ActiveMonitor stipulates that the operands – monitor method
calls – must be on different monitor objects. This is needed to guarantee program order
under conditional synchronization across monitors. The pre-processor raises a parsing error if
this constraint is not met. If the constraint is met, the pre-processor generates the equivalent
task for each operand conjunct/disjunct clause, and stores them as a collection within a
container object that is directly mapped to the operator. Note that if there are multiple
statements with same operator usage, all of them are treated as independent, and a container
object is generated for each of them. The operand calls are then replaced by the submission
of tasks to the corresponding monitors.

The runtime library delegates the tasks to their respective target servers (monitor threads)
for execution. It also observes all the preconditions of these tasks and ensures that they are
executed whenever these conditions are met. For AND operator, the worker that called the
operator is forced to wait for the completion of all the tasks. This is achieved by forcing
the worker to evaluate the future reference returned by each task submission. Once all the
futures have been evaluated, the result of the operator is stored in the designated storage if
needed. For example, consider the statement: Q1.enq(a) AND Q2.enq(b); where Q1 and Q2
are two bounded-queues. Then the framework generates two tasks t1 and t2, and submits
them to the server threads of Q1 and Q2. It then registers the returned future references with
the worker thread that called the statement, and forces it to evaluate both the futures such
that the worker remains blocked until both a and b are enqueued in Q1 and Q2 respectively.

For statements with OR operator, the container object that holds the tasks – that are
equivalent to the constituent disjunct clauses of OR– also maintains an atomic flag called
taken. This flag is initially set to false. To execute the composition statement, the runtime
first parks the calling worker thread, and submits the tasks stored in the container object to
their respective server (monitor). Recall that the relay invariance of our automatic signaling
ensures that whenever the pre-condition of some task of the OR is met, its server thread is
signaled. To guarantee that only one clause (equivalent task) of the OR statement is executed,
the server thread performs a compare-and-swap (CAS) operation on the taken flag of the
container object. If and only if the server’s CAS operation succeeds, ie. the value of the flag

W.L. Hung, H. Chauhan, and V.K. Garg 29:9

was false and this server set it to true, the server proceeds to execute the task submitted to
it. Since only one thread can succeed in atomically setting the flag, we are guaranteed that
only one of the tasks will be executed. Every other server thread that executes the CAS and
fails can discard its task for the OR statement.

6 Implementation

We now describe implementation details that make ActiveMonitor practical in terms of
use with real world applications, as well as scalable and faster. Recall that unlike other
delegation/combining implementations [35, 15, 10], threads do not perform busy-wait in
ActiveMonitor. To enable conditional wait and yielding the CPU, our implementation uses a
read/write lock for executing updates on each server thread. This ensures: (a) reads do not
return stale values, and (b) servers/workers can release the CPU and go into waiting state
whenever required as per runtime conditions. We employ a modified version of combining
[15, 10] for executing critical section updates. When submitting a task to a monitor, a worker
thread checks if the server of the monitor is in waiting state. If so, the worker acquires the
lock – becomes the combiner – and executes a predefined number (five in our implementation)
of tasks before releasing the lock. Observe that the actual acquisitions of the write-lock are
mostly uncontended under this approach. Uncontended lock acquisitions are known to be
relatively inexpensive, and thus threads does not incur significant performance penalty in
doing so. For asynchronous tasks, we use a lightweight version of future objects that are
shared between only one worker thread and the server. Only the server can update the state
of these objects. Instead of using the default ones provided by the Java concurrent library
[30], we create these objects using only a few volatile variables. Instead of using the default
wait/notify mechanism provided by Java, we use the lower level API of park and unpark [30]
for threads. Using the lower level API allows a more fine-grained control on execution of
these threads.

6.1 Storage of Tasks: Single Consumer Optimal Bounded Queue
Although asynchronous executions generally benefit the application performance, a large
number of asynchronous tasks in the system lead to degraded performance due to higher
number of cache misses. To prevent this, ActiveMonitor maintains a bounded FIFO queue for
each server in which the workers enqueue their tasks. Given that ActiveMonitor instantiates
only one server thread (if any) per monitor object, this bounded-queue is a special case of
the producer-consumer problem with only one consumer and multiple producers. Only the
server consumes the items (tasks) from this queue, and all the workers produce the items.
For this use-case, we developed an optimized algorithm for a thread-safe bounded FIFO
queue that minimizes the synchronization costs for the consumer. The pseudocode of this
algorithm can be found in the technical report at [1].

Our BoundedQueue is backed by a linked-list: the items are stored in the nodes of the
linked-list. Only insertions in the queue require guarded execution under a lock to ensure
correctness while multiple threads concurrently attempt to insert items. Only a single thread
performs removal of items, and thus we do not require a lock to protect concurrent removals.
However, maintaining the correct count of actual number of items in the queue is essential.
This is done using the atomic integer count. We adopt a ‘stealing’ strategy in which the
consumer locally caches the number of available items in a look-ahead manner and reads
and updates the atomic integer count only when needed. Hence, the number of upadates to
the atomic integer count is kept low, which in turn reduces the cache-coherence traffic, and

OPODIS 2015

29:10 ActiveMonitor: Asynchronous Monitor Framework

Table 1 Short description of problems evaluated.

Name Short Desc. CS Work [Type] Details

PSSSP Parallel single-source-shortest-path using
Dijkstra’s algorithm [7] using priority queue. O(log n) [Heavy] (a) USA road network graphs

(b) R-MAT Graphs [5]

BQ Bounded FIFO queue of plain Java
objects. O(1) [Light] Capacity varied from 4 to 64; number of

enqueuers is equal to the number of dequeuers.

SLL Linked-list of integers; entries are kept
sorted in non-decreasing order. O(n) [Heavy]

(a) Read-heavy: 90% reads, 9% insert, 1% delete
(b) Write-heavy: 0% reads, 50% insert, 50% delete
(c) Mixed: 70% reads, 20% insert, 10% delete

RR Round-robin monitor access from [24]. O(1) [Light] each thread accesses monitor in a predefined
round-robin manner based on thread-id.

improves the throughput and scalability. Whenever there is no task (in its bounded-queue)
for the server to execute, it is forced to go into wait. The server performs this wait outside
the queue using a condition variable that it owns. The automatic signaling mechanism of the
runtime library ensures that it is signaled and wakes up from the wait if a new executable
task is enqueued in the queue.

For the single consumer multiple producer use-case, the throughput of our implementation
is significantly higher than those of queue implementations from Java’s util.concurrent package.
The throughput comparison results on a saturation based micro-benchmark can be found
in [1].

6.2 Monitor Thread Management
If we spawn a new thread for every monitor object, the performance of programs with
relatively large number of monitors could suffer. ActiveMonitor allows the programmer
to manually control this number, as well as itself controls the number of monitor threads
based on the system hardware resources. The programmer can indicate an upper bound on
the number of monitor threads when starting the application. The ActiveMonitor runtime
library uses this limit in restricting the number of monitor threads spawned. If this limit is
reached, no other monitor threads are created, and invocations of asynchronous methods
on remaining monitors (that are not instantiated as threads) also follow the conventional
synchronous (blocking) execution.

Irrespective of the user provided upper bound on server threads, the runtime library
only instantiates a thread for a monitor if there is sufficient hardware available. The
runtime library monitors the system environment information: CPU usage (for example from
/proc/stat on Unix), and the size of wait-queues of monitor objects, to decide whether or not
monitors should be executing as threads. If the CPU usage is high, our framework switches
to traditional locking.

7 Evaluation

We implement monitor based solutions to multiple concurrency problems using ActiveMonitor,
ReentrantLocks from JDK7, and combining [10] – that does not perform continuous busy-
waits – by executing ActiveMonitor in only synchronous mode. We evaluate the performance
of these implementations on light and heavy critical sections. Light critical sections (relatively
small number of operations) do not involve much work within them, and favor traditional
lock-based monitors as the overhead of maintaining additional information for delegated
executions outweighs their benefits. On the other hand, heavy critical sections (large
number of operations within CS) provide increased opportunity for exploiting asynchrony
and parallelism. Table 1 presents a summary of problems used for our evaluation.

W.L. Hung, H. Chauhan, and V.K. Garg 29:11

All the experiments are conducted on a 40-core Intel Xeon machine that consists of four
sockets of Xeon E7-4850 10-core (20 hyper-threads), running at 2 GHz with 32 KB L1, 256
KB L2, and 24 MB LLC, respectively. Compilation and execution both are performed with
Oracle Java 1.7 (64-bit VM). Across all results, we denote the implementations with the
following notation: LK: implementation using Java’s ReentrantLock, AM: ActiveMonitor
with asynchronous executions, and AMS: ActiveMonitor running with only synchronous
delegations.

For PSSSP problem, a thread-safe priority queue is used as an underlying data structure.
ActiveMonitor solution of this problem uses the monitor-based implementation of an unboun-
ded blocking priority queue from Java’s concurrency package java.util.concurrent, and only
modifies it to make the put method asynchronous. We evaluate the time taken to compute
the shortest paths to all vertices from a randomly selected source vertex. We use five large
sized directed graphs. Two of these graphs, FLA and NY, are USA road-network graphs
of Florida, and New York obtained from [8], and the remaining three graphs: R16, R128,
and R512 are generated using the GTGraph [2] generator suite. The three synthetic graphs –
R16, R128, and R512 – have 5× 104 vertices each, and 1.6× 106, 1.28× 107, and 5.12× 107

edges respectively.
For all other problems we collect the throughput of operations over a 2 second period

with varying number of workers. For BQ problem, the items in queue are randomly generated
strings, with enqueue operation being asynchronous and dequeue being synchronous. For
SLL problem, we pre-populated the data structure with 1000 entries to simulate steady
state behavior. For all the operations, the operand values are chosen uniformly at random
between 0 and 2000. This guarantees that on average, half of the operations are successful
and the structure size does not grow too large. Insertions and deletions in the list are
asynchronous and searches are synchronous. For RR, all accesses to the critical section
are synchronous. BQ and RR problems require threads to perform conditional waiting.
For these two problems, we also compare the performance of ActiveMonitor with that of
Queue Delegation Locking [26], denoted by QD notation, by adding conditional waiting to
QD. The purpose of this comparison is to establish that our approach of using automatic
signaling with asynchronous executions can out-perform QD’s approach of asynchronous
delegation under lock-unavailability. In addition, we also compute throughput of performing
OR implementations. For logical-or operations, we also tried to evaluate the performance of
a transactional memory implementation [40] but this implementation resulted in runtime
errors and could not execute the statements.

We perform multiple warm-up runs to negate just-in-time compilation related performance
variations. In addition, all threads perform a fixed number of warm-up operations before
starting the time measurements. For all the experiments, we collect runtimes for 7 runs, and
report the mean value of 5 runs after discarding the highest and lowest values.

7.1 Results
Fig. 3 plots the throughput of the three PSSSP implementations in edges traversed per unit
time format. Given that the three synthetic R-MAT [5] generated graphs are relatively
dense in comparison to the road network graphs NY and FLA, the throughput values for
all the implementations are higher for these graphs. AM outperforms both of LK and AMS.
Specifically, on R512 graph – one with the highest density – AM is much faster than the other
two. Given that the same implementation of priority queue is used as the underlying data
structure for all three implementations, and the only difference is in terms of asynchronous
inserts, these results validate our claim that AM approach is much more beneficial for heavy
critical sections.

OPODIS 2015

29:12 ActiveMonitor: Asynchronous Monitor Framework

LK AM AMS QD

0

320

640

960

1280

1600

0 20 40 60 80T
hr
ou

gh
pu

t
(K

ed
ge
s/
s)

NY

0

340

680

1020

1360

1700

0 20 40 60 80

FLA

0

300

600

900

1200

1500

0 20 40 60 80

R16

0

1060

2120

3180

4240

5300

0 20 40 60 80

R128

0

3260

6520

9780

13040

16300

0 20 40 60 80

R512

Figure 3 Throughput for PSSSP using priority queue (x-axis shows the number of threads)

0

80

160

240

320

400

0 20 40 60 80

T
hr
ou

gh
pu

t
(K

op
s/
s)

Capacity = 4

0

100

200

300

400

500

0 20 40 60 80

Capacity = 8

0

160

320

480

640

800

0 20 40 60 80

Capacity = 16

0

280

560

840

1120

1400

0 20 40 60 80

Capacity = 32

0

500

1000

1500

2000

2500

0 20 40 60 80

Capacity = 64

Figure 4 Throughput for Bounded FIFO Queue (x-axis shows the number of threads)

0

20

40

60

0 20 40 60 80T
hr
ou

gh
pu

t
(K

ed
ge
s/
s)

SLL Write-heavy

0

20

40

60

80

0 20 40 60 80

SLL Mixed

0

40

80

120

160

200

0 20 40 60 80

SLL Read-heavy

0

60

120

180

240

300

0 20 40 60 80

Round-Robin

0

160

320

480

640

800

0 20 40 60 80

OR Composition

Figure 5 Throughput for SLL, RR, and OR problems (x-axis shows the number of threads).

Fig. 4 plots throughput of operations for different capacities of bounded queues for three
implementation techniques. For smaller buffer sizes, in the range of 4 to 16 AM significantly
outperforms LK implementation. This result highlights the benefits of asynchronous executions
because LK is much slower in comparison to AM, as well as AMS due to high contention
on locks. For larger capacities of 32 and 64, LK implementations perform better than AM
because the availability of sufficient storage space allows worker threads to repeatedly acquire
critical sections without being blocked out, and LK benefits from Java’s policy of non-fairness
in lock acquisitions. In contrast, AM and AMS provide almost ‘fair’ executions for workers.
However, in doing so, they end up performing more work in these cases where blocking due
to unavailability of space occurs rarely. In the technical report version [1] of this paper,
we analyze the performance benefit of asynchronous delegation by dropping the program
order constraint and conducting the same experiment. In the new setting, AM performance
further improves, and outperforms LK even on capacity of 32 (see Fig. 7 in [1]). These results
highlight that when asynchronous executions are allowed to be out of program order, the
overall throughput of the program can improve significantly.

Fig. 5 shows the operations throughput for the SLL and RR, and OR composition
problems. In all the runs on these problems, (AM) significantly outperforms the read-write
reentrant lock based monitor (LK), as well as delegation technique of AMS. Note that RR

W.L. Hung, H. Chauhan, and V.K. Garg 29:13

problem does not involve any asynchronous operation, and thus AM and AMS runs are exactly
the same. Given that the critical section involved in SLL problem is heavy, the performance
gap highlights the benefits of asynchronous monitors for such cases. Surprisingly, AM (as
well as AMS) is ∼3–4× faster than LK on RR problem too. This is because the RR problem
setup simulates a critical section that is similar to BQ problem with capacity one. Hence, LK
implementation spends a lot of its execution time in waiting for lock acquisitions, whereas
AM and AMS benefit from lower contention.

On all the problems with conditional waits, AM significantly outperforms QD in terms
of throughput. Hence, extending QD to incorporate conditional waiting is not sufficient to
match our approach. Our techniques for efficient conditional synchronization with automatic
signaling provide significant benefits in comparison to QD.

8 Related Work

Our idea of having monitor objects execute as independent threads is influenced by Hoare’s
proposed communicating sequential processes (CSP) [23] mechanism in which all objects are
active, of long ago. However, CSP does not have the notion of shared memory, and every
object is a process. In contrast, our focus is solely on shared memory parallel programs on
multi-core machines.

We use futures [12, 30] to realize the idea of non-blocking/asynchronous executions.
Kogan et al. [27] explore a similar approach in making use of futures for non-blocking
executions. However, we explore changes to the general paradigm of monitors, whereas [27]
only focuses on three data structures: stacks, queues, and linked-lists, none of them requiring
conditional waiting. In addition, [27] uses data structure specific local elimination/combining,
and allows read/fetch operations on these data structures to be asynchronous whereas we do
not – our assumption being that in almost all the cases, a programmer needs the result of
read/fetch immediately so that she can use it in the subsequent program logic. Hence, our
approach spans a more generic level of monitors, and does not rely on knowledge of internal
functionality of critical section it protects. Some theoretical results that establish the bounds
on improvements in cache locality by the use of futures have been established in [17]. These
results are not directly related to monitor based executions, but lead the direction in terms
of use of futures for improving the performance of multi-threaded programs.

Existing implementations of the combining technique [35, 10, 15] perform busy waits
for task completions and do not yield the CPU; additionally they also do not provide any
mechanisms for conditional waits – these issues together make them more or less impractical
for use in real world applications. Remote Core Locking (RCL) [31] addresses such issues by
allowing conditional waits, and uses a dedicated core for executing critical section, but does
not incorporate asynchronous executions. Recently, works such as [36, 4] have performed
extensive experimental analysis in identifying the performance gains/losses with asynchronous
message-passing like executions over synchronous shared memory ones. [36] provides various
insights for effective implementations that perform well using hardware message passing
support on shared memory machines. This work minimizes the remote-memory-references
(RMRs) during executions, and quantifies the performance gains for asynchronous executions,
but assumes that the method data fits in a single cache-line. In addition, it does not consider
the conditional wait based monitor implementations. Similarly, [4] studies the pros and cons
of message passing based executions on performance of shared memory parallel programs.
This work highlights that different approaches perform best under different circumstances,
and that the communication overhead of message passing can often outweigh its benefits,

OPODIS 2015

29:14 ActiveMonitor: Asynchronous Monitor Framework

and discusses ways in which this balance may shift in the future. Queue Delegation Locking
(QDL) [26], uses the approach of combining to provide a locking library implementation in
C++. However, QDL does not provide a mechanism for synchronization between threads,
and waiting, based on conditions.

Transactional memory [18, 37] is a well-known research effort that proposes modified
syntax for ease of writing multi-threaded programs. However, constructs for conditional
waiting under transactional memory are limited [38, 32, 9]. Hence, writing many conditional
synchronization based multi-threaded programs is rather difficult. Also, unlike transactional
memory, our approach merely transfers the responsibility of data manipulation to monitor
threads and does not require any complicated rollback mechanism for resolving conflicting
updates on the shared data. x10 [6] programming language focuses on providing features that
have an overlap with both transactional memory and our work. However, there are significant
differences in the support and usage of these constructs. The support for conditional waiting
is present syntactically, but as stated in [6] is deprecated for runtime execution.

Lock-free algorithmic techniques using atomic hardware instructions such as compare-
and-swap have gained momentum for implementing scalable thread-safe data structures
[13, 33, 16, 11, 20, 28, 29, 39, 34]. In addition, [14, 25] have explored alternate implementation
techniques that combine/eliminate complementary operations for increasing parallelism in
data structures. However, the difficulty involved in designing lock-free/wait-free algorithms,
and operation eliminating data structures is well known. At present, it is not clear how
lock-free techniques can be used to implement critical sections that involve many operations
spanning across multiple shared objects. The absence of any wait-notify mechanism in
lock-free techniques is another hurdle for their use in many real world programs.

9 Discussion & Conclusion

Despite providing programming ease and performance benefits, our framework’s current
implementation has some limitations. We discuss them below.

Thread Dependent Variables and Functions: In our current implementation, thread de-
pendent variables and functions within a monitor method cannot be used directly in the
Runnable or Callable object that is used in task generation by our approach. This is because
the tasks are executed by the monitor thread and not by the worker thread. For example,
suppose there is a monitor method that invokes Thread.currentThread(), if we directly add
this statement to the generated Runnable object (in the task), then this method’s invocation
at runtime will return the reference to the monitor thread when it is executed. However,
it is obvious that the intent of this call inside the monitor method was to refer to the
worker thread. To handle this situation, currently, we require the programmer to perform
reference copy and storage and storage in thread-local variables. For read operations of
thread dependent variables and functions, the worker thread would need to evaluate them
outside the monitor, and store the result with final variables. These final variables can be
accessed by the runnable and callable objects. An additional constraint/limitation applies
for the case of write operation on thread dependent variables. For write operations, if the
monitor method is non-blocking then the results can be stored as intermediate data. The
worker thread then writes these results back to its local variable after the task is executed.

Concluding Remarks: We have shown that our proposed scheme of asynchronous executions
in monitors provides significant improvement over traditional lock-based monitors. At present,

W.L. Hung, H. Chauhan, and V.K. Garg 29:15

writing parallel programs that provide high throughput and scalability is an arduous task for
most programmers. The main challenge is a lack of simple programming language constructs
that guarantee thread-safety while exploiting parallelism of executions and availability
of hardware in a seamless and portable manner. Our proposed design of asynchronous
monitors is a step in the direction of providing such constructs. The current version of our
implementation consumes some additional processing resources. We believe, however, that
with further research efforts in this direction our proposed technique can lead to significant
improvements in programmability as well as performance of shared memory parallel programs.

References
1 ActiveMonitor: Technical Report Version. http://pdsl.ece.utexas.edu/TechReports/

2016/opodis_tr.pdf.
2 David A Bader and Kamesh Madduri. Gtgraph: A synthetic graph generator suite. Atlanta,

GA, February, 2006.
3 Peter A. Buhr, Michel Fortier, and Michael H Coffin. Monitor classification. ACM Com-

puting Surveys, 27(1):63–107, March 1995.
4 Irina Calciu, Dave Dice, Tim Harris, Maurice Herlihy, Alex Kogan, Virendra J. Marathe,

and Mark Moir. Message passing or shared memory: Evaluating the delegation abstraction
for multicores. In OPODIS, pages 83–97, 2013.

5 Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-mat: A recursive model
for graph mining. In SDM, volume 4, pages 442–446. SIAM, 2004.

6 Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kiel-
stra, Kemal Ebcioglu, Christoph Von Praun, and Vivek Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. Acm Sigplan Notices, 40(10):519–538, 2005.

7 E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1(1):269–
271, December 1959. doi:10.1007/BF01386390.

8 9th DIMACS Implementation Challenge – Shortest Paths. http://www.dis.uniroma1.
it/challenge9/download.shtml.

9 P. Dudnik and M. Swift. Condition variables and transactional memory: Problem or
opportunity? In The 4th ACM SIGPLAN Workshop on Transactional Computing, 2009.

10 Panagiota Fatourou and Nikolaos D Kallimanis. Revisiting the combining synchronization
technique. ACM SIGPLAN Notices, 47(8):257–266, 2012.

11 Faith Fich, Danny Hendler, and Nir Shavit. On the inherent weakness of conditional
synchronization primitives. In Proceedings of the Twenty-third Annual ACM Symposium
on Principles of Distributed Computing, PODC’04, pages 80–87, 2004.

12 Robert H. Halstead. Multilisp: A language for concurrent symbolic computation. ACM
Trans. Program. Lang. Syst., 7(4):501–538, October 1985.

13 Timothy L Harris. A Pragmatic Implementation of Non-blocking Linked-Lists. In Pro-
ceedings of the 15th International Conference on Distributed Computing, pages 300–314,
2001.

14 Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, WilliamN III Scherer, and
Nir Shavit. A Lazy Concurrent List-Based Set Algorithm. In Principles of Distributed
Systems, pages 3–16. Springer Berlin Heidelberg, 2006.

15 Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat Combining and the
Synchronization-parallelism Tradeoff. In SPAA, pages 355–364, 2010.

16 Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack algorithm. In
Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA’04, pages 206–215, 2004.

OPODIS 2015

http://pdsl.ece.utexas.edu/TechReports/2016/opodis_tr.pdf
http://pdsl.ece.utexas.edu/TechReports/2016/opodis_tr.pdf
http://dx.doi.org/10.1007/BF01386390
http://www.dis.uniroma1.it/challenge9/download.shtml
http://www.dis.uniroma1.it/challenge9/download.shtml

29:16 ActiveMonitor: Asynchronous Monitor Framework

17 Maurice Herlihy and Zhiyu Liu. Well-structured futures and cache locality. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP’14,
Orlando, FL, USA, February 15-19, 2014, pages 155–166, 2014.

18 Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support for
lock-free data structures. In Proceedings of the 20th Annual International Symposium on
Computer Architecture, ISCA’93, pages 289–300, 1993.

19 Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann Publishers Inc., 2008.

20 Maurice P. Herlihy. Impossibility and universality results for wait-free synchronization. In
Proceedings of the Seventh Annual ACM Symposium on Principles of Distributed Comput-
ing, PODC’88, pages 276–290, 1988.

21 Maurice P Herlihy and Jeannette M Wing. Linearizability: A Correctness Condition
for Concurrent Objects. ACM Transactions on Programming Languages and Systems,
12(3):463–492, 1990.

22 C A R Hoare. Monitors: An Operating System Structuring Concept. Communications of
the ACM, 17(10):549–557, 1974.

23 C A R Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666–677, 1978.

24 Wei-Lun Hung and Vijay K. Garg. AutoSynch: An Automatic-signal Monitor Based on
Predicate Tagging. In PLDI, pages 253–262, 2013.

25 Joseph Izraelevitz and Michael L. Scott. Brief announcement: a generic construction for
nonblocking dual containers. In ACM Symposium on Principles of Distributed Computing,
PODC’14, pages 53–55, 2014.

26 David Klaftenegger, Konstantinos Sagonas, and Kjell Winblad. Delegation locking libraries
for improved performance of multithreaded programs. In Euro-Par, 2014.

27 Alex Kogan and Maurice Herlihy. The future (s) of shared data structures. In Proceedings
of the 2014 ACM symposium on Principles of distributed computing, pages 30–39. ACM,
2014.

28 Alex Kogan and Erez Petrank. Wait-free queues with multiple enqueuers and dequeuers.
In Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP’11, pages 223–234, 2011.

29 Alex Kogan and Erez Petrank. A methodology for creating fast wait-free data structures. In
Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP’12, pages 141–150, 2012.

30 Doug Lea. The Java.Util.Concurrent Synchronizer Framework. Sci. Comput. Program.,
58(3):293–309, 2005.

31 Jean-Pierre Lozi et al. Remote core locking: Migrating critical-section execution to improve
the performance of multithreaded applications. In USENIX Annual Technical Conference,
pages 65–76, 2012.

32 V. Luchangco and V. J. Marathe. Revisiting condition variables and transactions. In The
6th ACM SIGPLAN Workshop on Transactional Computing, 2011.

33 Maged M Michael. High Performance Dynamic Lock-free Hash Tables and List-based
Sets. In Proceedings of the Fourteenth Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 73–82, 2002.

34 Aravind Natarajan and Neeraj Mittal. Fast concurrent lock-free binary search trees. In
Proceedings of the 19th ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 317–328. ACM, 2014.

35 Yoshihiro Oyama, Kenjiro Taura, and Akinori Yonezawa. Executing parallel programs
with synchronization bottlenecks efficiently. In Proceedings of International Workshop on

W.L. Hung, H. Chauhan, and V.K. Garg 29:17

Parallel and Distributed Computing for Symbolic and Irregular Applications (PDSIA’99).
World Scientific, 1999.

36 Darko Petrovic, Thomas Ropars, and André Schiper. Leveraging hardware message passing
for efficient thread synchronization. In ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP’14, Orlando, FL, USA, February 15-19, 2014,
pages 143–154, 2014.

37 Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of the Four-
teenth Annual ACM Symposium on Principles of Distributed Computing, PODC’95, pages
204–213, 1995.

38 A. Skyrme and N. Rodriguez. From locks to transactional memory: Lessons learned from
porting a real-world application. In The 8th ACM SIGPLAN Workshop on Transactional
Computing, 2013.

39 Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Petrank. Wait-free linked-
lists. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP’12, pages 309–310, 2012.

40 TMWare – TMJava. http://tmware.org/.

OPODIS 2015

http://tmware.org/

Communicating with Beeps∗

Artur Czumaj1 and Peter Davies2

1 Department of Computer Science, Centre for Discrete Mathematics and its
Applications (DIMAP), University of Warwick, Warwick, UK
A.Czumaj@warwick.ac.uk

2 Department of Computer Science, Centre for Discrete Mathematics and its
Applications (DIMAP), University of Warwick, Warwick, UK
P.W.Davies@warwick.ac.uk

Abstract
The beep model is a very weak communications model in which devices in a network can commu-
nicate only via beeps and silence. As a result of its weak assumptions, it has broad applicability
to many different implementations of communications networks. This comes at the cost of a
restrictive environment for algorithm design.

Despite being only recently introduced, the beep model has received considerable attention,
in part due to its relationship with other communication models such as that of ad-hoc radio
networks. However, there has been no definitive published result for several fundamental tasks
in the model. We aim to rectify this with our paper.

We present algorithms for the tasks of broadcast, gossiping, and multi-broadcast, and also,
as intermediary results, means of depth-first search and diameter estimation. Our O(D + log M)-
time algorithm for broadcasting is a simple formalization of a concept known as beep waves, and
is asymptotically optimal. We give an O(n log L)-time depth-first search procedure, and show
how this can be used as the basis for an O(n log LM)-time gossiping algorithm. Finally, we
approach the more general problem of multi-broadcast. We differentiate between two variants
of this problem: one where nodes must know the origin of all source messages, and another
where this information is not required. In the first instance we achieve an algorithm running
in time O(k log LM

k + D log L), and in the second an O(k log M
k + D log L)-time algorithm (or

O(M + D log L) when M ≤ k). We then give corresponding lower bounds: Ω(k log LM
k + D) in

the case where nodes must know message origins, and Ω(k log M
k +D) and Ω(M +D) in the other

case, for M > k and M ≤ k respectively. These lower bounds demonstrate that our algorithms
are optimal except for the D log L additive term. In these running-time expressions, n represents
network size, D network diameter, L range of node labels, M range of source messages, and k

number of sources.
Our algorithms are all explicit, deterministic, and practical, and give efficient means of com-

munication while making arguably the minimum possible assumptions about the network.

1998 ACM Subject Classification C.2.1 Distributed Networks

Keywords and phrases Beep model, Communication networks, Broadcasting, Gossiping, Leader
election

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.30

∗ Research partially supported by the Centre for Discrete Mathematics and its Applications (DIMAP).

© Artur Czumaj and Peter Davies;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 30; pp. 30:1–30:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2 Communicating with Beeps

1 Introduction

The beep model, introduced recently by Cornejo and Kuhn [3], is a very weak network
communications model in which information can be passed only in the form of a beep or a
lack thereof. The model is related to the ad-hoc radio network model, and has been used as
a surrogate model in results concerning radio networks with collision detection. As well as
attracting study from this angle, the beep model is interesting in its own right because of its
generality, simplicity, and wide range of areas where it could be applied.

1.1 Model
The network is modeled as an undirected connected graph G = (V, E), where vertices in
the graph represent devices in the network, and edges represent direct reachability. Time is
divided into discrete steps, with a synchronized global clock (though, as in [4], we can extend
to the case where only a subset of nodes wake up at time 0 and others must be woken by
receiving beeps). In each time-step every node decides whether to beep or to listen. Nodes
which choose to listen in a particular time-step hear a beep if at least one of their neighbors
chose to beep, and they cannot distinguish between one neighbor beeping or many. We will
assume that nodes have unique labels (IDs), which is essential (at least when considering
deterministic algorithms) in order to break symmetry.

We will use the following parameters in analysis of our algorithms:
n will denote network size, i.e., |V |.
D will denote network diameter, the largest distance between any pair of nodes.
L will be the range of node labels, i.e., labels will be strings of no more than log L bits.
M will be the range of messages, i.e., messages will be strings of no more than log M bits.
k will be the number of source nodes when considering the multi-broadcast task.

We do not, however, assume that nodes have any prior knowledge of these parameters,
nor any other knowledge about the network.

1.2 Related Work
There has been a large amount of research focusing on fundamental communication problems
in distributed computing, see e.g., [9] and the references therein. The beep model was
introduced by Cornejo and Kuhn [3], who used it to design an algorithm for interval coloring.
This task is a variant of vertex coloring used in resource allocation problems, and is, in a
sense, tailored to the model. In another recent work, Afek et al. [1] presented an algorithm for
finding a maximal independent set in the beep model. The beep model is strictly weaker than
the model of radio networks with collision detection (see, e.g., [9]), though the aforementioned
two results did not approach it from this angle, and so algorithmic results in the former also
apply in the latter. This relationship was exploited by Ghaffari and Haeupler [6] to give
almost optimal O((D + log n log log n) ·min(log log n, log n

D))-time randomized algorithm for
leader election in radio networks with collision detection. Ghaffari and Haeupler [6] introduces
the method of “beep waves” to transmit bit strings, a method which is also employed here
for the purpose of broadcast. Ghaffari et al. [5] give a randomized broadcast algorithm in
radio networks with collision detection which employs beeping techniques, but, unlike the
algorithm of [6], does not entirely translate over to the beep model. A deterministic leader
election algorithm in the beep model was given by Förster et al. [4], taking O(D log L) time.
While a simple binary search approach, like that used in [2] for radio networks, gives the
same running time, the method of [4] has the benefit of not requiring prior knowledge of

A. Czumaj and P. Davies 30:3

parameters D and L, an advantage which we make use of in our results. In another related
work, Gilbert and Newport [7] studied the quantity of computational resources needed to
solve specific problems in the beep model.

Concurrently with this paper, Hounkanli and Pelc [8] give a O(D + log M) time broad-
casting algorithm and an O(n2 log M + nD log L)-time gossiping algorithm in a slightly
different model where nodes know network parameters n, L, M but wake-up at arbitrary
different time-steps, rather than simultaneously. To our knowledge there have been no earlier
published results for broadcast, gossiping, and multi-broadcast in the model we study.

1.3 Our Results
In this paper, we present the following results:

An optimal O(D+log M)-time algorithm for broadcasting a log M bit message, developing
and formalizing the “beep waves” method of [6].
An O(n log L)-time procedure for performing depth-first search.
An O(n log LM)-time gossiping algorithm based on depth-first search.
An O(D)-time procedure for estimating diameter.
An O(k log LM

k + D log L)-time algorithm for multi-broadcast with provenance (where
every node must learn all (source ID, source message) pairs).
A corresponding Ω(k log LM

k + D) lower bound.
An algorithm for multi-broadcast without provenance (where every node must learn all
unique source messages) taking O(k log M

k +D log L) time when M > k and O(M+D log L)
time when M ≤ k.
A corresponding lower bound of Ω(k log M

k + D) when M > k and Ω(M + D) when
M ≤ k.
These multi-broadcasting algorithms imply O(n log LM

n +D log L) and (n log M
n +D log L)-

time gossiping algorithms with and without provenance respectively.

The multi-broadcasting algorithms are our most significant results. The first outperforms
the DFS-based gossiping algorithm despite being designed for a more general problem.
Furthermore, perhaps surprisingly, the second is faster even than the k log M time-steps
required for a node to directly transmit or hear the source messages, which might intuitively
have appeared to be a lower bound for the problem.

2 Broadcasting

Broadcasting is perhaps the most fundamental task in distributed communication models.
It assumes that one designated source node has a message (which we will assume to be an
integer in the range [0, M − 1]) that must be known by all nodes in the network. We achieve
optimal an O(D + log M)-time algorithm for broadcasting based on the idea of “beep waves.”

2.1 Beep Waves
Beep waves were first introduced by Ghaffari and Haeupler [6] as a means of transmitting
information in the beep model. Variations of the technique are useful for different circum-
stances, and here we give a simple formalization tailored to the task of broadcasting from a
single source.

The idea is the following: every three time-steps, starting at zero, the source transmits a
bit of its message, that is it beeps to represent a 1 or remains silent to represent a 0. We can
encode the message so that it is obvious when the beginning and end are, for example by

OPODIS 2015

30:4 Communicating with Beeps

duplicating every bit of the message and then placing 10 at the beginning and end. We will
denote this coding method C, and note that for any message m, |C(m)| ≤ 2|m|+ 4. When
we refer to the size of the message, we mean its length in bits, i.e. |m| ≤ log M . It is easy to
see that we can decode to find the original message(s), even if there are several, separated by
any number of 0s. This will become necessary within algorithms for more complex tasks
which involve several successive broadcasts.

All non-source nodes, upon hearing a beep in some time-step i, then relay the beep
themselves in time-step i + 1, unless they themselves beeped in time-step i− 1.

Algorithm 1 Beep-Wave(s, m(s)) at source s

for i = 1 to |C(m(s))| do
if bit C(m(s))i is 1 then

s beeps in time-step 3i

end if
end for

Algorithm 2 Beep-Wave(s, m(s)) at non-source u

while end of message not heard do
if u hears a beep in time-step i and did not itself beep in time-step i− 1 then

u beeps in time-step i + 1
bit m(u)bi/3c ← 1

end if
end while
output C−1(m(u))

I Lemma 1. Beep-Wave(s, m(s)) correctly performs broadcast in time O(D + |m(s)|) =
O(D + log M).

Proof. Partition all nodes into layers depending on their distance from the source s, i.e.
layer Li = {v ∈ V : dist(v, s) = i}. Every beep emitted by the source is propagated one layer
per time-step, reaching all nodes in layer i after i time-steps. Nodes in layer i only ever relay
beeps from layer i− 1, because the only times layer i + 1 beeps are directly after layer i does.
This can be seen by an inductive argument.

Therefore, a node in layer i receives a beep exactly i steps after the source transmits one,
and so can decode its received bit-string to recover the source’s message. J

To use our broadcast algorithm, we must have a designated source node, and we must
also have a good estimate of D if we want to know how much time to allow for completion.
We do not require nodes to have access to a synchronized global clock when performing
Beep-Wave; however, non-source nodes must know that they should be behaving in a
“beep-forwarding” fashion. If we wish to use broadcast as part of larger algorithms, then we
must take care to ensure that each node has the correct behavior during the time period
involved.

2.2 Lower Bound for Broadcasting
It is straightforward to demonstrate that the O(D + log M) running time of Beep-Wave is
asymptotically optimal:

A. Czumaj and P. Davies 30:5

I Lemma 2. Any algorithm for broadcasting a message m(s) ∈ [0, M − 1] must take at least
c(D + log M) time-steps for some constant c.

Proof. The message can be any of M different bit-strings, and so requires log M bits to
specify. Let u be the furthest non-source node from the source s. Since u can only receive
at most one bit of information per time-step (a beep or silence), log M time-steps must be
required for it to know the message.

Information can only be propagated through the network at most one adjacency layer
per time-step, since non-adjacent nodes have no means of communication. Therefore at least
dist(u, s) time-steps are required for any information to reach u. Since dist(u, s) ≥ D

2 , the
total number of time-steps required to inform u of the message is at least max(D

2 , log M) ≥
1
2 (D

2 + log M) ≥ 1
4 (D + log M) J

3 Leader Election

If we wish to use broadcast as part of a more complex algorithm, we must be sure that we
have a single source who wishes to send a message. To ensure this, we can perform the task
of leader election.

Leader election enables all nodes to agree on the ID of one particular node. In our
applications, we will always choose the node with the highest ID in the entire network. More
generally, though, leader election can be used on any subset of nodes, whenever each holds
some integer value, to find the participating node with the highest (or lowest) such value.
The values need not even be unique, since if multiple nodes hold the target value, we can
pick out one by performing leader election again on their IDs. Leader election, particularly
when used in this way, is sometimes also referred to as Find Max.

We wish to be able to perform leader election in O(D log L) time. We note that there is a
straightforward way to do this: we can perform a binary search for the highest ID, iterating
through the bits of the IDs and having all nodes who are still “in the running” for leader, and
who have a 1 in the current position, broadcast. While we cannot use our previous broadcast
procedure with multiple sources, since these nodes need only transmit a single bit we can
still use beep-waves to ensure that the network hears something. This is sufficient for all
nodes to determine whether any have a 1 in the current position. A similar method to this
was used to perform leader election in radio networks in [2].

However, there is a problem with this approach: we would need a common linear upper
bound on D and a polynomial upper bound on L to correctly perform it. Since we do not
assume this knowledge, we instead make use of a result of Förster et al. [4] (paraphrased):

I Theorem 3. There is an algorithm ElectLeader which performs leader election in time
O(D log L) without prior knowledge of D or L.

Upon completion, all nodes have knowledge of the highest ID, and can therefore use this
as L in future operations. Förster et al. extend their algorithm to function when only some
subset of nodes wake up at time 0, removing the assumption of synchronous wake-up. Since
we employ it as a subroutine at the beginning of all our forthcoming algorithms, they can
also forgo this assumption.

4 Network Traversal

We may wish to perform operations which require an organized exploration of the entire
network. For this purpose, we give a procedure for depth-first search, and an application to
the task of gossiping.

OPODIS 2015

30:6 Communicating with Beeps

4.1 Depth-First Search

Depth first search is performed here in fundamentally the usual way. There is a network-wide
“token,” i.e., only one node is the ‘active” node at any one time. This node checks for
unexplored neighbors, passes the token to one if any exist, or sends it back to its parent
if not. Here we also wish to pass round a counter, incremented upon reaching each new
unexplored node, so that nodes know the order in which they were explored.

To detect unexplored neighbors we use a process much like the binary-search method
mentioned for leader election, in which nodes iteratively agree on each bit of an ID. Here,
though, we do not need to broadcast to the whole network between every step, since the
nodes involved are all adjacent to the current active node. To organize this process we
need predetermined constant-size control messages; this can easily be achieved by using any
sensible system of code-words.

To apply Algorithm 4 we must first have a designated leader node. This leader is the
parameter v taken as input in our description of the algorithm.

Algorithm 3 Depth-First Search(v, x, count)
number(x)← count

loop
x transmits “child-acknowledge” message
unvisited neighbors beep
if x received no beep then

break loop
end if
x transmits “child-search” message
for i = 1 to log L do

unvisited nodes still in running for highest ID beep if ith bit of ID is 1
x transmits “acknowledge 1” message if it heard a beep, “acknowledge 0” otherwise
if “acknowledge 1” received, nodes with ith bit 0 drop out

end for
y ← ID highest unvisited neighbor
x transmits the message (y,count + 1)
count← Depth-First Search(v, y, count + 1)

end loop
if v = x then

terminate procedure
else

return count (by transmitting back to parent)
end if

I Lemma 4. Depth-First Search(v, v, 1) correctly performs depth-first search within
O(n log L) time-steps.

Proof. Each round of the “child-search” loop ensures that the current token node and its
unexplored children all agree on a bit of the target ID, and since only one node has the token
there will be no interference from the rest of the network. Thus, after log L such rounds, the
ID of the next node to explore is agreed upon. This process must be performed n times to
explore the entire graph, taking n log L total time-steps. We must also consider the cost of

A. Czumaj and P. Davies 30:7

passing count, which is O(log n) time-steps each time the token moves, and so O(n log n) in
total. Since L ≥ n, total running time is O(n log L). J

4.2 DFS-Based Gossiping
An application of our depth-first search algorithm is to the task of gossiping. The premise of
gossiping is that every node has a message which must become known to the entire network.
We can achieve this in O(n log LM) time by first electing a leader, then performing depth-first
search, and finally having each node broadcast its message in the order in which it was
explored by the DFS.

This last broadcast stage is not quite as straightforward as it may seem, since in general
n different consecutive broadcasts would take O(n(D + log M)) time, exceeding our desired
O(n log LM) running time. However, since we can encode messages so that it is obvious when
they start and end (without affecting asymptotic size), and we also know that transmissions
during Beep-Wave move exactly one distance layer per time-step and never move backwards,
we can pipeline the broadcasts. That is, once a node’s message, in its entirety, has been heard
by the next node in the ordering, that next node can immediately begin its own broadcast
without waiting for the previous message to reach the entire network. The waves of beeps
will not interfere with each other, since the start of the new message cannot reach any node
quicker than the end of the old message, and the behavior of all other nodes does not change,
so they do not need to know the precise time-step when the new node starts broadcasting.

Algorithm 4 Gossip(m(V))
v ← ElectLeader
perform Depth-First Search(v, v, 1)
for i = 1 to n do

let u be such that number(u) = i

Beep-Wave(u, m(u))
end for

I Theorem 5. Gossip correctly performs gossiping within O(n log LM) time-steps.

Proof. Performing ElectLeader and Depth-First Search takes O(n log L) time in
total. Upon completion, each node knows its ordering in the DFS tree. Nodes then
broadcast in order, and a node can begin broadcasting immediately after hearing the end
of the message from its predecessor. The total time taken for all n broadcasts is then
O(
∑n

i=1(log M + dist(i, i + 1))). Since this sum of distances is no greater than the distance
traveled when traversing the DFS tree, this expression is O(n log M). Therefore total running
time is O(n log L + n log M) = O(n log LM). J

5 Auxiliary Procedures

We next define some procedures for useful auxiliary tasks, which we will need for our multi-
broadcast algorithms, but are also general enough to be useful elsewhere. Specifically, we
give protocols for:

Diameter estimation, i.e. allowing all nodes to calculate a common linear upper bound
on D.
Message collection, where a designated leader node receives the logical OR-superimposition
of bit-strings from several source nodes.

OPODIS 2015

30:8 Communicating with Beeps

Message length determination, i.e. providing all nodes with the size of the largest of a set
of bit-strings from source nodes.

5.1 Diameter Estimation
Our model assumes that nodes do not have access to any of the network parameters. In
algorithms for complex tasks, we generally wish to start with a leader election phase, and
this provides all nodes with knowledge of L. However, if we also wish to know the value of
D, we must perform an extra task for this purpose.

Our diameter estimation procedure (Algorithm 5) works as follows: we take as input a
leader node to co-ordinate the process. An initial beep from the leader propagates through
the network. Having received this beep, nodes beep to acknowledge their existence back to
the leader; a modularity restriction on when nodes can transmit ensures that these beeps
only travel backwards through the layers. While the initial beep from the leader is still
reaching further nodes, acknowledgment beeps will continue to return through the network
every three time-steps. Once all nodes have been reached, this pattern will cease, and the
leader will know that the diameter of the graph is no greater then the current time-step value.
All of the other nodes have also ceased transmission, and so an application of Beep-Wave
can safely be used to broadcast the diameter estimate.

We split the algorithm into two parts, one performed by the leader, and one performed
by all non-leader nodes, since their behavior is quite different.

Algorithm 5 EstimateDiameter(v) at leader v

v beeps in time-step 1
let i be the first time-step (greater than 2) in which v has not received a beep for 3 previous
time-steps
D̃ ← i

perform Beep-Wave(v, D̃)
output D̃

Algorithm 6 EstimateDiameter(v) at non-leader u

let j be the first time-step in which u receives a beep
u beeps in the next time-step which is equivalent to (−j) mod 3
while u has heard a beep in the last 3 time-steps do

any beep u hears in a time-step equivalent to (2 − j) mod 3, it relays in the next
time-step
end while
D̃ ← Beep-Wave(v, D̃)
output D̃

I Lemma 6. EstimateDiameter(v) correctly broadcasts an estimate D̃ satisfying D ≤
D̃ ≤ 2D + 7, and terminates within O(D) time-steps.

Proof. Let D′ be the distance from the leader to the furthest node. Then, D ≥ D′ ≥ D/2.
The leader emits a beep in time-step 1 which travels to this furthest node by time-step D′+ 1.
After at most 3 more time-steps, the node transmits its acknowledgment beep, which travels
back to the leader in a further D′ time-steps. After another 3 time-steps, the leader knows

A. Czumaj and P. Davies 30:9

that it has received the final acknowledgment beep, and takes the current time-step i as
its diameter estimate. Since 2D′ ≤ i ≤ 2D′ + 7, the estimate D̃ which is broadcast to the
network satisfies D ≤ D̃ ≤ 2D + 7. Running time of the estimation phase is no more than
2D + 7 time-steps, and the final broadcast takes O(D + log D) = O(D) time. J

Since we are only interested in asymptotic behavior, we will assume, for ease of notation,
that having performed EstimateDiameter as part of a more complex algorithm we can
then make use of the exact value of D.

5.2 Message Collection
We next introduce a sub-procedure (Algorithm 7) which will allow the leader to collect
messages m(S) from a set of sources S, receiving an OR-superimposition of all the messages.
This works similarly to the usual beep-waves procedure, except that nodes use their distance
from the leader (inferred by the time taken to receive the initial Beep-Wave(v, 1)) to ensure
that the waves only travel towards the source, and all messages arrive at the same time. We
must have an input parameter p giving an upper bound on the length of messages, so that
nodes know when the procedure is finished, and we assume that we have already performed
EstimateDiameter and so can make use of D.

Algorithm 7 CollectMessages(v, S, m(S), p) at source s ∈ S \ {v}
perform Beep-Wave(v, 1)
for i = 1 to p do

if bit m(s)i is 1 then
s beeps in time-step 3i + D − dist(s)

end if
end for

Algorithm 8 CollectMessages(v, S, m(S), p) at u /∈ S \ {v}
perform Beep-Wave(v, 1)
for j = 0 to 3p + D do

if u hears a beep in time-step j such that j ≡ 2 + D − dist(u) mod 3 then
u beeps in time-step j + 1
if u = v then

bit m(u)bj/3c ← 1
end if

end if
end for
output m(v)

We note that even if leader v is itself a source, it should perform the non-source behavior.
Since it already knows its own message, it can superimpose it with the string it receives
manually upon termination of the procedure.

I Lemma 7. CollectMessages(v, S, m(S), p) correctly informs v of the OR-superimposition
of m(S) within O(D + p) time-steps.

Proof. The modularity restriction on relaying beeps ensures that beep-waves only travel
towards the v, and the starting times for sources ensure that bits in the same position

OPODIS 2015

30:10 Communicating with Beeps

arrive simultaneously. Thus, v hears a 1 in a position iff one of the sources messages
contained a 1 in the same position. After D + 3p time-steps it must then have received the
OR-superimposition of m(S). J

5.3 Message Length Determination
One issue with using CollectMessages is the necessity of prior knowledge of a common
upper bound on message size. We give a simple method of obtaining this bound (Algorithm 9).

We perform CollectMessages using strings which are as long as the messages we
actually want to collect, but consist of entirely 1s. The superimposition of these strings is
a 1-string of equal length to the longest message. Since the leader will be able to tell that
this string has ended when it hears the substring 10, the procedure can be terminated even
without an upper bound for the CollectMessages call.

Algorithm 9 GetMessageLength(v, S, m(S))

perform p ← CollectMessages(v, S, 1m(S),∞), terminating when v hears the sub-
string 10
perform Beep-Wave(v, |p|)
output |p|

I Lemma 8. GetMessageLength(v, S, m(S)) correctly informs all nodes of
p = maxs∈S |m(s)| within O(D + p) time-steps.

Proof. CollectMessages will terminate after D + 3p steps, since v will hear the final 1
and then a 0. All other nodes will be inactive and so Beep-Wave(v, |p|) will successfully
inform the network of p (nodes will be aware that the CollectMessages phase is over and
so perform Beep-Wave correctly, since they either heard a string of contiguous 1s and then
a 0 during CollectMessages, or silence for more than D time-steps).

Running time is O(D + p) for CollectMessages and O(D + log p) for Beep-Wave,
giving O(D + p) total. J

6 Multi-Broadcast

We are now ready to approach the most general of the communication tasks we will consider,
that of multi-broadcast. As in gossiping, multiple source nodes have messages which must
become known to the entire network. However, rather than all nodes being sources, only
those belonging to some unknown subset are. We denote the number of sources as k, but
this value is not known to the network.

There are two slightly different variants of the problem we consider: multi-broadcast with
provenance, where the network must become aware of all (source ID, source message) pairs,
and multi-broadcast without provenance, where the IDs need not be known. Since we do not
assume that messages are unique, we also allow in the case without provenance that only
one copy of each distinct message must be output. That is, nodes need not be aware of how
many sources held each message.

6.1 Multi-Broadcast With Provenance
We first present an algorithm for multi-broadcast with provenance, where all nodes must be
made aware of not only the source messages, but also the IDs of the sources they originated
from.

A. Czumaj and P. Davies 30:11

The idea of the algorithm is essentially to conduct k simultaneous binary searches to
allow a leader to ascertain the IDs of all sources. The process consists of log L rounds, one
for each bit of the IDs. Each node will maintain a list of known prefixes of source IDs, and
we aim to preserve the invariant that, after round i, all nodes know the first i bits of every
source ID. We denote the number of distinct known prefixes at the start of round i by ki.

At the start of round i, sources know ki distinct i− 1-bit ID prefixes (note ki may be
less than k, since some IDs may share prefixes), and they will each construct a 2ki-bit string
in which each bit corresponds to a particular i-bit prefix. Specifically, if we denote the
known prefixes in lexicographical order by (p1, p2, . . . , pki

), then bit 2j in the new string will
represent the prefix pj0, and bit 2j + 1 will represent pj1. Each source constructs its string
by placing a 1 in the position corresponding to its own ID’s i-bit prefix, and 0 in all others.
We will denote the string constructed in this manner by source s in round i by Zs,i

Performing CollectMessages with these strings ensures that the leader receives the
OR-superimposition, which informs it of all i-bit prefixes of source IDs (since it is aware of
which prefix each position corresponds to). It then broadcasts this back out to the network
via the standard beep wave procedure, and thus the invariant is fulfilled round i. After
log L rounds, the IDs of all sources are known in entirety by all nodes. We then perform
one final CollectMessages procedure, this time to collate all of the messages the sources
wish to broadcast to the network. We construct a k log M -bit string in which the jth block
of log M bits corresponds to the message of the jth source (in lexicographical order of ID).
Each source individually fills in its own message in the appropriate block, leaving all other
bits as 0. We denote the string constructed in this manner by source s as m̃s. Performing
CollectMessages on these strings ensures that the full string of messages arrives at the
leader, who then broadcasts it back out to the network.

Algorithm 10 Multi-Broadcast With Provenance(S, m(S))
v ← ElectLeader
D ← EstimateDiameter(v)
log M ← GetMessageLength(v, S, m(S))
for i = 1 to log L do

Zi ← CollectMessages(v, S, ZS,i, 2ki)
perform Beep-Wave(v, Zi)

end for
m̃← CollectMessages(v, S, m̃S , k · logM)
perform Beep-Wave(v, m̃)

I Theorem 9. Multi-Broadcast With Provenance(S, m(S)) correctly performs multi-
broadcast with provenance within O(k log LM

k + D log L) time-steps.

Proof. The three sub-procedure calls in initial “set-up” phase take a total of O(D log L +
log M) time-steps, and provide a leader node and knowledge of D and log M .

Round i of the main loop of the algorithm takes O(D + ki) time, since it consists of
performing CollectMessages on strings of length O(ki), and then Beep-Wave on a string
of the same length. Furthermore, since the number of known prefixes at most doubles each
round, ki ≤ 2i−1. Hence, there exists some constant c such that total time for the loop is

OPODIS 2015

30:12 Communicating with Beeps

bounded by:
log L∑
i=1

c(D + ki) = cD log L + c

log k∑
i=1

ki +
log L∑

i=log k+1
ki

≤ cD log L + c

log k∑
i=1

2i−1 +
log L∑

i=log k+1
k

≤ cD log L + c(k + k(log L− log k))

= O(D log L + k log L

k
) .

The final call to CollectMessages then takes a further O(D + k log M) time, and so
total running time is O(D log L + k log L

k + k log M) = O(k log LM
k + D log L)

Correctness follows since each round of the loop informs the leader of the next bit in
each ID prefix, and it then broadcasts this information to the network. After log L rounds,
all nodes know all source IDs and each source s can correctly construct its string m̃s. The
OR-superimposition of these strings, broadcast to all nodes, is a list of messages in source
ID order, which fulfills the goal of the algorithm. J

We remark that this result yields an algorithm for gossiping with running time O(n log LM
n +

D log L), slightly improving over the O(n log LM) running time of Algorithm 4.

6.2 Multi-Broadcast Without Provenance
It may be the case that we do not need to know where messages originated from, or the
number of duplicate messages; for example when using short control messages instructing all
nodes to perform some action, for which provenance might be irrelevant. For this reason,
we also study the variant of multi-broadcast where nodes need only know one copy of each
unique source message, and no source IDs.

The main difference in concept for our multi-broadcast without provenance algorithm
(Algorithm 11) is that the concurrent binary searches are performed on the bits of the source
messages rather than the IDs. However, this turns out to be slower when k is smaller than
D, and so we first run Algorithm 10, curtailing it when our number ki of known ID prefixes
(which is a lower bound for k) exceeds D, in order to efficiently deal with these cases.

If k ≤ D then the call to Algorithm 10 will complete multi-broadcast (meeting the
requirements for the case without provenance, since they are strictly weaker than those with
provenance). Otherwise, we move onto performing binary searches on the bits of the message.
This functions in much the same way as in Algorithm 10, except that we do not need the
final CollectMessages and Beep-Wave stage since the network is already aware of all
source messages upon completion of the main loop. We will use k̃i to denote the number of
i− 1-bit message prefixes known to nodes at the start of round i of the for loop, and Z̃s,i to
be the string constructed by source s in round i by placing a 1 in the position corresponding
to the i-bit prefix of its message and 0 in all others.

I Theorem 10. Multi-Broadcast Without Provenance(S, m(S)) correctly performs
multi-broadcast without provenance within O(k log M

k + D log L) time-steps if k < M , and
O(M + D log L) time-steps if k ≥M .

Proof. By the same argument as for Theorem 10, each round of the main loop informs
all nodes of the next bit in each message prefix. Therefore, after log M rounds we have
performed multi-broadcast without provenance.

A. Czumaj and P. Davies 30:13

Algorithm 11 Multi-Broadcast Without Provenance(S, m(S))
perform Multi-Broadcast With Provenance(S, m(S)) until ki > D

if it did not complete then
for i = 1 to log M do

Z̃i ← CollectMessages(v, S, Z̃S,i, 2k̃i)
perform Beep-Wave(v, Z̃i)

end for
end if

We separate the running-time proof into four cases:
1. k ≤ D and k < M .
2. k ≤ D and k ≥M .
3. k > D and k < M .
4. k > D and k ≥M .

Case 1: k ≤ D and k < M . For the k ≤ D case, the number of unique i-bit source ID
prefixes ki will never exceed D (since it is bounded above by k), and so the call to
Multi-Broadcast With Provenance will successfully perform multi-broadcast (with
provenance, and therefore also without) in O(k log LM

k + D log L) = O(k log L + k log M
k +

D log L) = O(k log M
k + D log L) time-steps.

Case 2: k ≤ D and k ≥ M . As above, the call to Multi-Broadcast With Proven-
ance will successfully perform multi-broadcast in O(k log LM

k + D log L) = O(k log L +
D log L) = O(D log L) time-steps.

Case 3: k > D and k < M . Since k > D, the call will not complete multi-broadcast, but
its “set-up” phase will provide a leader v and knowledge of D and log M , so these steps
are not duplicated in our description of Algorithm 11. Each round of the main loop then
informs every node of the next bit in each unique message prefix, and so after log M

rounds we are done.
Let t be the round of the loop at which the call to Multi-Broadcast With Provenance
terminates. Running time for the call is then bounded above (for some constant c) by

cD log L+
t∑

i=1
c(D+ki) ≤ cD log L+

t∑
i=1

2cD ≤ cD log L+
log L∑
i=1

2cD = 3cD log L = O(D log L) ,

where the first inequality is due to the fact that ki ≤ D until termination.
Running time for the main loop of Algorithm 11 is bounded above (again for some
constant c) by:

log M∑
i=1

c(D + k̃i) = cD log M + c

log k∑
i=1

k̃i +
log M∑

i=log k+1
k̃i

≤ cD log M + c

log k∑
i=1

2i−1 +
log M∑

i=log k+1
k

≤ cD log M + c(k + k(log M − log k)) = O(D log M + k log M

k
) .

OPODIS 2015

30:14 Communicating with Beeps

Total time is therefore

O(D log L + D log M + k log M

k
) = O(D log L + D log M

k
+ D log k + k log M

k
)

= O(k log M

k
+ D log L) ,

where the last expression holds since D log k ≤ D log L and D log M
k ≤ k log M

k .
Case 4: k > D and k ≥ M . The call to Multi-Broadcast With Provenance will fail

and take O(D log L) time as before. Running time for the main loop of Algorithm 11 is
now bounded by:

log M∑
i=1

c(D + k̃i) = cD log M + c

log M∑
i=1

k̃i ≤ cD log M + c

log M∑
i=1

2i−1

≤ cD log M + cM = O(D log M + M) .

Since M ≤ k ≤ L, total running time is O(M + D log L).

Combining cases

When M > k total running time is O(k log M
k + D log L), and when M ≤ k, total running

time is O(M + D log L). J

It may seem unintuitive that Algorithm 11 achieves multi-broadcast in fewer then the
k log M time-steps required for a single node to directly transmit or hear the messages,
since this might seem to be a natural lower bound. The improvement stems from implicit
compression of the messages within the algorithm’s method. We next prove lower bounds
that match our algorithmic results, modulo the D log L additive term.

6.3 Lower Bounds
In this section we give lower bounds for the problem of multi-broadcasting. The proofs of
these bounds assume that k is greater than 1; the k = 1 case follows from the lower bounds
given for broadcasting.

I Theorem 11. Any algorithm achieving multi-broadcast with provenance must require
Ω(k log LM

k + D) time-steps.

Proof. D is an obvious lower bound, since information can only be propagated via beeps
one adjacency layer per time-step. Hence, if nodes u and v are the furthest pair in the
network, D time-steps are required for v to receive any information from u. When u is a
source, this means that at least D time-steps are required before v can know its message,
which is necessary for multi-broadcast to be successful.

Consider any node w. By the end of the multi-broadcast algorithm, w must be aware
of all (source ID, source message) pairs. It may be that w is itself a source, and already
knows its own pair, but it must still learn all k − 1 others. The number of possibilities for
this k − 1-size set of pairs is

(
L−1
k−1
)
·Mk−1, since IDs must be unique but messages need not

be. The number of bits required to distinguish one particular case is at least:

log
((

L− 1
k − 1

)
·Mk−1

)
≥ log

(
(L− 1)M

k − 1

)k−1
= (k − 1) log

(
(L− 1)M

k − 1

)
≥ k

2 log
(

M

√
L

k

)
≥ 1

4k log LM

k
.

A. Czumaj and P. Davies 30:15

Here we used the inequality L−1
k−1 ≥

√
L
k , which is true whenever L ≥ k > 1.

Since a node can only receive at most one bit of information per time-step, 1
4 k log LM

k

time-steps are required for it to receive all of the information necessary for multi-broadcast
with provenance. Therefore, total time required is at least max(D, 1

4 k log LM
k) ≥ 1

8 (D +
k log LM

k) = Ω(k log LM
k + D). J

I Theorem 12. Any algorithm achieving multi-broadcast without provenance must require
Ω(k log M

k + D) time-steps if M > k, or Ω(M + D) if M ≤ k. We assume that M > 1.

Proof. As before, D is an obvious lower bound.
We will again consider the amount of information a node w must receive for multi-

broadcast to be successful. Node w must become aware of the set of all source messages, and
it starts with knowledge of at most 1 (its own, if it is a source). The number of possibilities
for the remaining messages is at least

∑k−1
i=0

(
M−1

i

)
, since any subset of size at most k − 1 of

the remaining message space is possible (messages need not be unique, so there need not
be exactly k − 1 other messages). To distinguish a particular case, the number of bits of
information w must receive is at least log

(∑k−1
i=0

(
M−1

i

))
.

If M > k, then we have the following:

log
(

k−1∑
i=0

(
M − 1

i

))
≥ log

(
M − 1
k − 1

)
≥ log

(
M − 1
k − 1

)k−1
≥ (k − 1) log

(√
M

k

)

≥ 1
4k log

(
M

k

)
.

Similarly to the proof of Theorem 11, we used that M−1
k−1 ≥

√
M
k for M ≥ k > 1.

If M ≤ k, then we have the following:

log
(

k−1∑
i=0

(
M − 1

i

))
= log(2M−1) = M − 1 ≥ M

2 .

So, if M > k then w must receive at least 1
4 k log M

k bits, and therefore max(D, 1
4 k log M

k) ≥
1
8 (D + k log M

k) = Ω(k log M
k + D) time-steps are required.

If M ≤ k, then w must receive at least M
2 bits, and therefore max(D, M

2) ≥ 1
4 (D + M) =

Ω(M + D) time-steps are required. J

The assumption that M > 1 is essential; in the case that M = 1 and k = n, all nodes
know the only possible message already, and a multi-broadcast without provenance algorithm
can terminate immediately rather than requiring the Ω(D) time-steps the lower bound would
imply.

7 Conclusion

The beep model is interesting as a widely applicable model that requires very little of
communications devices, and can be applied even where restrictive circumstances frustrate
communication under more complex models. Furthermore, it is an interesting technical
challenge to design efficient algorithms while making the minimum possible assumptions about
the network. In this paper we have given deterministic algorithms for several fundamental
communications tasks in the beep model. The model is still young, however, and there are
many remaining avenues for fruitful research.

OPODIS 2015

30:16 Communicating with Beeps

The most pressing question our work here raises is whether the D log L additive term
in the running time of our multi-broadcasting algorithms can be reduced to D, or whether
the algorithms are in fact optimal in all cases. Since D log L is the cost of leader election,
a fundamental starting point for our algorithms, any improvement would have to begin
here. However, a faster leader election algorithm alone would not be sufficient to improve
multi-broadcast time, since it is not a bottleneck in our algorithms; they also require D log L

time elsewhere. This may suggest that D log L is indeed a lower bound, and again, it may
be wisest to focus on leader election to prove this. Multi-broadcast with provenance and
constant M is at least as hard as leader election from a set of k candidates, since after
performing the multi-broadcast with the candidates as sources, their IDs (and in particular
the highest ID) are known to all nodes.

A different possible focus for further research is to determine to what extent random-
ization can help. The leader election algorithm of [6], taking O((D + log n log log n) ·
min(log log n, log n

D)) time and succeeding with high probability, demonstrates that improve-
ments over deterministic algorithms can be made. It seems likely that randomization could
also be of use in algorithms for multi-broadcast, though as mentioned, simply employing this
randomized leader election algorithm rather than the deterministic one does not reduce the
asymptotic running time of our multi-broadcast algorithms.

References
1 Y. Afek, N. Alon, Z. Bar-Joseph, A. Cornejo, B. Haeupler, and F. Kuhn. Beeping a max-

imal independent set. In Proceedings of the 25th International Symposium on Distributed
Computing (DISC), pages 32–50, 2011.

2 M. Chrobak, L. Gąsieniec, and W. Rytter. Fast broadcasting and gossiping in radio net-
works. Journal of Algorithms, 43(2):177–189, 2002.

3 A. Cornejo and F. Kuhn. Deploying wireless networks with beeps. In Proceedings of the
24th International Symposium on Distributed Computing (DISC), pages 148–262, 2010.

4 K.-T. Förster, J. Seidel, and R. Wattenhofer. Deterministic leader election in multi-hop
beeping networks. In Proceedings of the 28th International Symposium on Distributed
Computing (DISC), pages 212–226, 2014.

5 M. Ghaffari, B. Haeupler, , and M. Khabbazian. Randomized broadcast in radio networks
with collision detection. In Proceedings of the 32nd Annual ACM Symposium on Principles
of Distributed Computing (PODC), pages 325–334, 2013.

6 M. Ghaffari and B. Haeupler. Near optimal leader election in multi-hop radio networks. In
Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 748–766, 2013.

7 S. Gilbert and C. Newport. The computational power of beeps. In Proceedings of the 29th
International Symposium on Distributed Computing (DISC), pages 31–46, 2015.

8 K. Hounkanli and A. Pelc. Deterministic broadcasting and gossiping with beeps. In arxiv
1508.06460, 2015.

9 D. Peleg. Time-efficient broadcasting in radio networks: A review. In Proceedings of the
4th International Conference on Distributed Computing and Internet Technology (ICDCIT),
pages 1–18, 2007.

Nontrivial and Universal Helping for Wait-Free
Queues and Stacks
Hagit Attiya∗1, Armando Castañeda†2, and Danny Hendler3

1 Technion – Israel Institute of Technology, Haifa, Israel
2 Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
3 Ben-Gurion University, Beer-Sheva, Israel

Abstract
This paper studies two approaches to formalize helping in wait-free implementations of shared
objects. The first approach is based on operation valency, and it allows us to make the important
distinction between trivial and nontrivial helping. We show that a wait-free implementation of
a queue from common2 objects (e.g., Test&Set) requires nontrivial helping. In contrast, there
is a wait-free implementation of a stack from Common2 objects with only trivial helping. This
separation might shed light on the difficulty of implementing a queue from Common2 objects.

The other approach formalizes the helping mechanism employed by Herlihy’s universal wait-
free construction and is based on having an operation by one process restrict the possible linear-
izations of operations by other processes. We show that objects possessing such universal helping
can be used to solve consensus.

1998 ACM Subject Classification C.1.4 Parallel Architectures, D.4.1 Process Management

Keywords and phrases helping, wait-free, nonblocking, queues, stacks, common2

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.31

1 Introduction

A key component in the design of concurrent applications are shared objects providing higher-
level semantics for communication among processes. For example, a shared queue to which
processes can concurrently enqueue and dequeue, allows them to share tasks, and similarly
a shared stack. Shared objects are implemented from more basic primitives supported
by the multiprocessing architecture, e.g., reads, writes, Test&Set, or Compare&Swap. An
implementation is wait-free if an operation on the shared object is guaranteed to terminate
after a finite number of steps; the implementation is nonblocking if it only ensures that
some operation (perhaps by another process) completes in this situation. Clearly, a wait-free
implementation is nonblocking but not necessarily vice versa.

Many implementations of shared objects, especially the wait-free ones, include one process
helping another process to make progress. The helping mechanism is often some code that
is added to a nonblocking implementation. Typically, the code uses only reads and writes,
in addition to the primitives used in the nonblocking implementation (e.g., Test&Set). The
aim of this extra code is that processes that complete an operation “help” the blocked
processes to terminate, so that the resulting implementation is wait-free. An interesting

∗ Supported by the Israel Science Foundation (grant 1749/14).
† Supported partially by PAPIIT-UNAM IA101015. This research was partially done while the second

author was at the Department of Computer Science of the Technion, supported by an Aly Kaufman
post-doctoral fellowship.

© Hagit Attiya, Armando Castañeda, and Danny Hendler;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 31; pp. 31:1–31:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

31:2 Nontrivial and Universal Helping for Wait-Free Queues and Stacks

example is a shared queue, for which there is a simple nonblocking implementation using
only reads, writes and Test&Set [14]. Such a helping mechanism would provide a wait-free
queue implementation using those primitives, showing that the queue belongs to Common2,
the family of shared objects that are wait-free implementable from primitives with consensus
number 2 for any number of processes [1, 2]. The Common2 family contains Test&Set, Swap,
stacks and other objects.

The question whether queues belong to Common2 has been open for many years and has
received a considerable amount of attention [2, 4, 5, 6, 8, 14]. It essentially asks if there is an
n-process linearizable wait-free implementation of a queue from Test&Set, for every n ≥ 3.

This paper investigates ways to formalize helping, with the purpose of being able to sep-
arate objects for which there are wait-free implementations from those with only nonblocking
implementations. We are especially interested in implementations using primitives with finite
consensus number [12], like Test&Set, which allows us to solve consensus exactly for two
processes. Primitives with an infinite consensus number, like Compare&Swap, are universal
and provide generic wait-free implementation for any shared object [12]; clearly, with such
primitives nonblocking and wait-freedom cannot be separated.

We first introduce a notion of helping that is based on one process determining the return
value of an operation by another process; it relies on the notion of operation valency [11],
i.e., the possible values an operation might return. Roughly speaking, an implementation
has helping if in some situation, a process makes an undecided operation of another process
become decided on some value. In the context of specific objects, like queues and stacks,
which have a distinguished “empty” value (denoted ⊥), we say that helping is nontrivial if
one process makes another become decided on a non-⊥ value. Helping is nontrivial since
the helping process needs to “grab” the value it gives to the helped process. Therefore, the
helping process has to communicate with the other processes to ensure that this value is not
taken by someone else.

Our first main result is a separation between stacks and queues implemented from
Test&Set. It shows that any wait-free queue must have nontrivial helping while this is not
true for stacks, as we show that the wait-free stack of Afek et al. [1] (which established that
stacks belong to Common2) does not have nontrivial helping.

The paper also studies an alternative way to formalize helping, which is based on
restricting the possible linearizations of an operation by the progress of another process.
This kind of helping, which we call universal, formalizes the helping mechanism employed
in Herlihy’s universal construction. Intuitively, an implementation has universal helping if
for every execution α, for every long enough extension of it, all pending operations in α

(which might be still pending in the extension) are linearized. We show that universal helping
for queues and stacks is strong enough to solve consensus, namely, any wait-free n-process
implementation of a queue or stack with universal helping can solve n-process consensus.

These results provide insights on why finding a wait-free implementation for queues from
Test&Set has been a longstanding open question: any such implementation must have some
helping mechanism; however, this mechanism cannot be too strong, otherwise the resulting
implementation would be able to solve consensus for n processes, n ≥ 3, which is impossible
to do with Test&Set since it has consensus number 2.

Finally, the paper compares the two formalizations proposed here to the formalization
of helping recently introduced in [3]. It also shows that universal helping has implications
on strong linearizability [9] for queues and stacks: there is no n-process wait-free strong
linearizable implementation of queues or stacks from primitives with consensus number
smaller than n.

H. Attiya, A. Castañeda, and D. Hendler 31:3

2 Model of Computation

We consider a system with n asynchronous processes, p1, . . . , pn. Processes communicate
with each other by applying primitives to shared base objects; the primitives can be read and
write, or more powerful primitives like Test&Set or Compare&Swap. Any process may crash
at any time in an execution, namely, it stops taking steps from that point on. A process that
does not crash is correct.

A (high-level) concurrent object, or data type, is defined by a state machine consisting of a
set of states, a set of operations, and a set of transitions between states. Such a specification
is known as sequential. In the rest of the paper we will concentrate on stacks and queues.
A shared stack provides two operations push(·) and pop(). A push(x) operation puts x at
the top of the stack, and a pop() removes and returns the value at the top, if there is one,
otherwise it returns ⊥. A shared queue provides operations enq(·) and deq(). An enq(x)
operation puts x at the tail of the queue, and a deq() removes and returns the value at the
head of the queue, if there is one, otherwise it returns ⊥.

An implementation of an object O is a distributed algorithm A consisting of local state
machines A1, . . . , An. Local machine Ai specifies which primitives pi executes in order to
return a response when it invokes an operation of O. An implementation is wait-free if
every process completes each of its invocations in a finite number of its steps. Formally, if a
process executes infinitely many steps in an execution, it completes all its invocations. An
implementation is nonblocking if whenever processes take steps, at least one of the operations
terminates. Namely, in every infinite execution, infinitely many invocations are completed.
Thus, a wait-free implementation is nonblocking but not necessarily vice versa.

A configuration C of the system is a collection containing the states of all base objects
and processes. A configuration is initial if base objects and processes are in initial states.
Given a configuration C, for any process p, p(C) denotes the configuration after p takes its
next step. A process p is idle in a configuration C if p is in a state in which all its operations
are completed.

An execution of the system is modelled by a history, which is a possibly infinite sequence
of invocations and responses of high-level operations and primitives. For a set of processes S,
an S-execution is an execution in which only processes in S take steps. If S = {p}, we say
that the execution is p-solo. An operation op in a history is complete if both its invocation
inv(op) and response res(op) appear in the history. An operation is pending if only its
invocation appears in the history.

A history H induces a natural partial order <H on the operations of H: op <H op′ if and
only if res(op) precedes inv(op′). Two operations are concurrent if they are incomparable. A
sequential history alternates matching invocations and responses and starts with an invocation
event. Hence, if H is sequential, <H induces a total order.

Linearizability [13] is the standard notion used to identify a correct implementation.
Roughly speaking, an implementation is linearizable if each operation appears to take effect
atomically at some time between the invocation and response of an operation.

Let A be an implementation of an object O. A history H of A is linearizable if H can be
extended by adding response events for some pending invocations such that the sequence H ′

containing only the invocation and responses of O agrees with the specification of O, namely,
there is an initial state of O and a sequence of invocations and responses that produces H ′.
We say that A is linearizable if each of its histories is linearizable.

In the consensus problem, each process proposes a value and is required to decide on a
value such that the following properties are satisfied in every execution:

OPODIS 2015

31:4 Nontrivial and Universal Helping for Wait-Free Queues and Stacks

Termination. Every correct process decides.
Agreement. Processes decide on the same value.
Validity. Processes decide proposed values.

Consensus is universal [12] in the sense that from reads and writes and objects solving
consensus among n processes, it is possible to obtain a wait-free implementation for n
processes of any concurrent object with a sequential specification. The consensus number
of a primitive [12] is the maximum number n such that it is possible to solve consensus on
n processes from reads, writes and the primitive. For example, the consensus number of
Test&Set is 2. Hence, Test&Set allows us to implement any concurrent object in a system
with 2 processes.

3 Separating Stacks and Queues with Nontrivial (Valency-Based)
Helping

In this section, we present a notion of helping that differentiates between queues and
stacks: any queue implementation must exhibit this kind of helping, but there is a stack
implementation that does not (essentially, that of [1]). This sheds some light on the difficulty
of finding a wait-free implementation of a queue from Common2.

Let A be a wait-free linearizable implementation of a data type T , such as a stack or
queue. The input for an invocation of an operation of T is from some domain V and the
output of a response is from the domain V ∪ {⊥}, where ⊥ /∈ V denotes the empty or initial
state of T .

Let C be a reachable configuration of A and let opType(·) be an operation by a process p.
We say that opType(·) is v-univalent in C (or just univalent when v is irrelevant) if in every
configuration C ′ that is reachable from C in which opType(·) is complete, its output value is
v; otherwise, opType(·) is multivalent in C. We say that opType(·) is critical on v in C (or
just critical in C) if it is multivalent in C but v-univalent in p(C).

I Definition 1 (Nontrivial and trivial (valency-based) helping). Process q helps process p 6= q

in configuration C if there is a multivalent opType(·) ∈ C by p that is v-univalent in q(C).
We say that q nontrivially helps p if v 6= ⊥; otherwise, it trivially helps p.
An implementation of a type T has nontrivial (trivial) helping if it has a reachable configura-
tion C such that some process q nontrivially (trivially) helps process p in C.

Directly from the previous definition we get the following claim.

I Claim 2. If C is a reachable configuration of an algorithm without nontrivial helping, and
an operation op by p is multivalent in C, then op is not v-valent in q(C), for any value v 6= ⊥
and process q 6= p.

The proof of the next theorem captures the challenging “tail chasing" phenomenon one
faces when trying to implement a queue from objects in Common2. Observe that in the case
of a queue implementation, only dequeues can be nontrivially helped since enqueues always
return true, and are therefore trivially univalent.

I Theorem 3. Any two-process wait-free linearizable queue implementation from read/write
and Test&Set operations has nontrivial helping.

Proof. Assume, by way of contradiction, there is such an implementationA without nontrivial
helping. Let p and q be two distinct processes, and let Cinit be the initial configuration of A.

H. Attiya, A. Castañeda, and D. Hendler 31:5

For any k ≥ 1, we construct an execution αk of p and q, starting with Cinit and ending in
configuration Ck. In αk, p executes a single deqp() operation, and the following properties
hold:
1. q is idle in Ck,
2. p has at least k steps in αk,
3. in every linearization of αk, all enqueues appear in the same order and enqueue distinct

values,
4. there is no linearization of αk in which deqp() outputs ⊥, and
5. deqp() is multivalent in Ck (in particular, it is pending).

We proceed by induction. For the base case, k = 1, let α1 be the execution that starts at
Cinit and in which p completes alone enq(1) and then starts deqp() until it is critical on 1.
This execution exists because A is wait-free. Clearly, there is no linearization of α1 in which
deqp() outputs ⊥. The other properties also hold.

Suppose that we have constructed αk, k ≥ 1; we show how to obtain αk+1. Let β1 be the
q-solo extension of αk in which q completes enq(z), where z is a value that is not enqueued
in αk, and then starts a deqq() operation. Let β2 be an extension of αk β

1 in which p and q
take steps until both their dequeue operations are critical. The extension β2 exists because,
first, A is wait-free and, second, by Claim 2, a step of p does not make deqq() univalent, and
a step of q does not make deqp() univalent.

Let C be the configuration at the end of αk β
1 β2; note that deqp() is critical on some

value yp in C and that deqq() is critical on some value yq in C.
Note that neither yp nor yq is ⊥ since the queue has at least two values in C. This holds

since the induction hypothesis is that there is no linearization of αk in which deqp() outputs
a non-⊥ value, and in the extension β1 β2, q first completes an enqueue and then starts a
dequeue.

By a similar argument, there is no linearization of αk β
1 β2 in which either deqp() or

deqq() outputs ⊥.
The following claim is where the specification of a queue comes into play. (This claim

does not hold for a stack, for example.)

I Claim 4. yp = yq.

Proof. Suppose, by way of contradiction, that yp 6= yq. By the induction hypothesis, in
every linearization of αk, the order of enqueues is the same. The same holds for αk β

1 β2

because q is idle in αk, by induction hypothesis, and then its enqueue in β1 happens after all
enqueues in αk. Suppose, without loss of generality, that enq(yq) precedes enq(yp) in every
linearization of αk β

1 β2. Consider the p-solo extension in which p completes deqp(), ending
with configuration D.

Since deqp() is critical on yp in C, it outputs yp in D. We claim that deqq() outputs yq

in every extension from D. Otherwise, another dequeue outputs yp in some extension from
D. Since this dequeue starts after deqp() completes, it must be linearized after deqp(). This
contradicts the linearizability of A, since in every linearization of αk β

1 β2, enq(yq) precedes
enq(yp). Therefore, deqq() is yq-univalent in D. This contradicting Claim 2, since a step of p
makes deqq() univalent on a non-⊥ value. J

Note that there is no extension of C in which deqp() and deqq() output the same value
because the enqueues in αk have distinct values and in β1, q enqueues z, a value that is not
enqueued in αk.

OPODIS 2015

31:6 Nontrivial and Universal Helping for Wait-Free Queues and Stacks

p

q

Cinit deqp() is
multivalent

deqp() and deqq()
are critial on 1

deqp() is
multivalent

enq(1)

enq(2)

deqp() : ?

deqq() : 1

Figure 1 Getting α2 from α1.

Assume that p is poised to access Rp in C (i.e. the next step of p is on Rp) and that q
is poised to access Rq in C. If Rp 6= Rq, then in the p-solo extension of q(p(C)) in which p
completes deqp(), its output is y = yp = yq. But in p(q(C)), the local state of p and the state
of the shared memory is the same as in q(p(C)). Hence, in the p-solo extension of p(q(C)), p
completes deqp() with output y, as well. This contradicts the fact that deqq() is critical on y
in C. Thus, Rp = Rq = R.

A similar argument, by case analysis, shows that p and q must apply Test&Set primitives
to R in C, and that the value of R is 0 in C. These facts are used in the proof of the next
claim.

I Claim 5. deqp() is not critical in q(C).

Proof. Let y = yp = yq be the value that deqp() and deqq() are critical on in C. Suppose,
by way of contradiction, that deqp() is critical on y′ in q(C). We have that y′ 6= y.

Let γ be an extension of αk β
1 β2 q in which deqp() outputs. Write γ = λ1 p λ2, where

λ1 is p-free (λ1 might be empty). Since p and q are about to perform Test&Set primitives
on R in C, the state of the shared memory and the local state of p are the same at the
end of αk β

1 β2 q λ1 p and αk β
1 β2 q p λ1, because in both executions q is the first process

accessing R (using Test&Set) and then when p accesses R (using Test&Set also), it gets false,
no matter when it accesses R. Then, p is in the same local state in αk β

1 β2 q λ1 p λ2 and
in αk β

1 β2 q p λ1 λ2. We have that deqp() is critical in q(C), which implies that the output
of it in αk β

1 β2 q p λ1 λ2 is y′, and thus the output of deqp() in αk β
1 β2 q λ1 p λ2 is y′ too,

since, as already said, the local state of p is the same in both executions. This implies that
deqp() is univalent in q(C), contrary to our assumption that it is critical in q(C). J

Let αk+1 = αk β
1 β2 q p β3, where β3 is the q-solo extension in which q completes its

deqq() (β3 exists because A is wait-free). See Figure 1. We argue that αk+1 has the desired
properties.
1. q is idle in αk+1 because in β3 it completes deqq() and does not start a new operation.
2. p has at least k + 1 steps of deqp() in αk+1, since p has at least k steps of deqp() in αk,

by the induction hypothesis, and at least one step in β1 β2 q p β3.
3. By the induction hypothesis, in every linearization of αk, the enqueue operations follow

the same order. The enqueue of q in β1 happens after all enqueues in αk. Then, in every
linearization of αk+1, the enqueues follow the same order. The enqueues in αk+1 enqueue
distinct values because that is true for αk, by the induction hypothesis, and the enqueue
of q in β1 enqueues a value that is not in αk.

4. As argued above, there is no linearization of αk β
1 β2 in which either deqp() or deqq()

output ⊥. In β3, q just completes deqq(). Then, there is no linearization of αk+1 in which
deqp() outputs ⊥.

H. Attiya, A. Castañeda, and D. Hendler 31:7

Shared Variables:
range : Fetch&Add register initialized to 1
items : array [1, . . . ,] of read/write registers
T : array [1, . . . ,] of Test&Set registers

Operation Push(x):
(01) i = Fetch&Add(range, 1)
(02) items[i]← x

return true
end Push

Operation Pop():
(03) t = Fetch&Add(range, 0)

for i← t downto 1 do
(04) x← items[i]
(05) if x 6= ⊥ then
(06) if Test&Set(T [i]) then return x

end if
end for

(07) return ⊥
end Pop

Figure 2 The stack implementation of Afek et al. [1].

5. Since deqp() is not critical in q(C), it is multivalent at the end of αk β
1 β2 q p. Since β3

is q-solo, Claim 2 implies that deqp() is multivalent at the end of αk+1.

This yields an execution of A in which p executes an infinite number of steps but its
deqp() operation does not complete, contradicting the wait-freedom of A. J

As we just saw, any wait-free implementation of a queue from Test&Set must have
nontrivial helping. This is not the case for stack implementations, as we show next.

I Theorem 6. There is an n-process wait-free linearizable stack implementation from
read/write and m-process Test&Set primitives, 2 ≤ m ≤ n, without nontrivial helping.

Proof. First, we show that an n-process wait-free linearizable Test&Set operation can be
implemented from 2-process Test&Set without nontrivial helping. [2] present an n-process
wait-free linearizable implementation of a Test&Set operation from 2-process one-shot swap
primitives. Let us call this algorithm A. It is easy to check that A does not have nontrivial
helping. It is also easy to implement one-shot 2-process swap from 2-process Test&Set without
helping (the processes just use Test&Set to decide who swaps first), and hence, from A we
can get an n-process wait-free linearizable implementation of a Test&Set operation from
2-process Test&Set without nontrivial helping. Let us call the resulting algorithm B.

Now, consider Afek et al.’s stack implementation [1] (Figure 2). We argue that the
implementation does not have nontrivial helping: just note that there is no configuration C
in which process q makes another process p v-univalent, v 6= ⊥, because the only way a pop
operation becomes univalent on a non-⊥ value is by winning the Test&Set in line 6; thus,
it is impossible that a multivalent pop operation by p in C becomes univalent on a non-⊥
value in q(C), with q 6= p.

Afek et al. proved that one can get an n-process wait-free linearizable Fetch&Add from
2-process wait-free linearizable Test&Set primitives [2]. Let C be this implementation.

Now, we replace each Test&Set primitive in Afek et al.’s implementation in Figure 2
with an instance of B, and each Fetch&Add with an instance of C. Let A be the resulting
implementation. Clearly, A is an n-process wait-free linearizable implementation of a stack.

OPODIS 2015

31:8 Nontrivial and Universal Helping for Wait-Free Queues and Stacks

inv(op) α γ β

∞

The order of op is fixed

Figure 3 Universal helping: every pending operation is eventually linearized.

Moreover, it has no helping because, as mentioned already, B has no helping (in the sense
described above) and Afek et al.’s stack implementation has no helping as well. Note that it
does not matter if C has helping or not (trivial or nontrivial) because, as already pointed
out, the only way a pop operation can become univalent is by winning the Test&Set in line 6,
hence the C cannot change this. J

From Theorems 3 and 6, we get that nontrivial helping is a distinguishing factor between
stacks and queues: while a stack can be implemented without nontrivial helping from
read/write and Test&Set, any implementation of a queue from the same primitives necessitates
nontrivial helping. Although the stack implementation of Theorem 6 is without nontrivial
helping, it does have trivial helping. An example is when a process p reads the counter
range in line 3 when there is only a single non-⊥ value in T [1, . . . , t] (where t is the value
that p reads), and then a process q 6= p reads range after p and takes the only non-⊥ value
in T [1, . . . , t] (namely, q overtakes p). When q wins in line 6, it makes p’s pop operation
⊥-univalent because p will scan the range T [1, . . . , t] without seeing any non-⊥ value, and
will therefore return ⊥ in line 7.

4 Universal (Linearization-Based) Helping

In this section we propose another formalization of helping, in which a process ensures that
operations by other processes are eventually linearized. This definition captures helping
mechanisms such as the one used in Herlihy’s universal wait-free construction [12]. We
evaluate the power of this helping mechanism via consensus and compare it with the valency-
based helping notion studied in Section 3.

Throughout this section, we assume, without loss of generality, that the first step of
every operation is to publish its signature (i.e., the operation type and its parameters) to the
shared-memory so that it may be helped by other processes. An operation is pending if it
has published its signature but did not yet terminate.

I Definition 7 (Universal (linearization-based) Helping). Consider an n-process wait-free
linearizable implementation of a data type T . The implementation has universal helping
if every infinite extension αβ of a finite history α has a finite prefix γ with a linearization
lin(γ), which satisfies the following conditions:

lin(γ) contains every pending high-level operation of α (see Figure 3), in addition to all
high-level operations that complete in γ.
Every extension γλ of γ has a linearization lin′(γλ) such that lin′(γ) is a prefix of it.

If the above conditions are satisfied for every γ such that some process completes f(n) or
more high-level operations in the extension γ − α, for some function f : N→ N, then we say
the implementation has f -universal helping.

H. Attiya, A. Castañeda, and D. Hendler 31:9

Operation propose(vi):
(01) V als[i]← vi

(02) Simulate to completion f(n) + 1 enq(i) operations
(03) S ← Snapshot of the shared-memory variables used by B
(04) d← Locally simulate a deq() operation on B, starting from S
(05) decide V als[d]
endoperation

Figure 4 Solving consensus using B.

Universal helping requires that the progress of some processes eventually ensures that
all pending invocations are linearized and all processes make progress. f -universal helping
bounds from above the number of high-level operations a process needs to perform in order
to ensure the progress of other processes.

I Theorem 8. Let B be an n-process nonblocking linearizable implementation of a queue
or stack. If B has f-universal helping, then n-process consensus can be solved using B and
read/write registers.

Proof. First assume that B implements a queue. Figure 4 shows the pseudocode of an
algorithm that solves consensus using B and read/write registers. Each process pi first
writes its proposal to V als[i] (initialized to ⊥) in Line 01 and then performs f(n) + 1 enq(i)
operations in Line 02.

To solve consensus, pi computes a snapshot that reads the state of the queue from the
shared memory to a local variable S (Line 03) and then invokes a single deq() operation
using state S in Line 04 (we say that pi locally simulates the deq() operation). Finally, pi

decides (in Line 05) on the value proposed by the process whose identifier it dequeues in
Line 04. The snapshot in Line 03 is taken as follows. In all executions of B in which each
process executes at most f(n) + 1 enqueue operations, processes access a finite set of base
objects in the shared memory. Let R be the set with all base objects in all those executions.
Then, processes use any read/write wait-free snapshot algorithm to take a snapshot of R.
We now prove that the algorithm is correct.

Termination. Every correct process decides as each process invokes a finite number of
operations of B, which is nonblocking.

Validity. The view stored to S in Line 03 represents a state of B in which the queue is
non-empty, since at least a single enq() operation completed and no deq() operations were
invoked. Moreover, if pi gets d from its local simulation, pd participated in the execution.
It follows that every correct process pi decides on a proposed value.

Agreement. We prove that all correct processes dequeue the same value in Line 04, from
which agreement follows easily. Let E be an execution of the algorithm of Figure 3. Let
pi, pj be two distinct correct processes. Let αi (resp. αj) be the shortest prefix of E in
which the first enqueue operation performed by pi (resp. pj) in Line 02 completes. Let γi

(resp. γj) denote the shortest extension of αi in which pi (resp. pj) completes the last
enqueue operation in Line 02.
WLOG, assume that γi is a prefix of γj , that is, pi is the first to complete Line 02. In
γi, pi completed f(n) enq() operations after completing its first enqueue operation on
B. Consequently, Definition 7 guarantees that its first enq(i) operation, as well as any
operations that preceded it and pending operations that were concurrent with it, are
linearized in lin(γi) and their order is fixed. Since no dequeue operations are applied to

OPODIS 2015

31:10 Nontrivial and Universal Helping for Wait-Free Queues and Stacks

(the shared copy of) B, lin(γi) consists of enqueue operations only. Let enq(k) be the
first operation in lin(γi).
Let βi (resp. βj) denote the shortest prefix of E in which pi (resp. pj) completes
Line 04. Since γi is a prefix of both βi and βj , it follows from Definition 7 that there
are linearizations lin′(βi) and lin′(βj) in which enq(k) is the first operation. It follows in
turn that the dequeue operations of both pi and pj in Line 04 return k, hence they both
decide on vals[k] in Line 05.

A similar argument gives the same result for stacks. The difference is that in the local
simulation, a process simulates pop operations until it gets an empty response, and then
decides on the proposed value of the process whose identifier was popped last (hence, pushed
first). J

Herlihy’s universal construction [12] has f -universal helping. Thus, Theorem 8 implies
that, for stacks and queues, Herlihy’s construction uses the full power of n-consensus in the
sense that the resulting implementations can actually be used to solve n-consensus.

The next lemma will be used to show that for queues and stacks, universal helping implies
nontrivial helping.

I Lemma 9. Let T be a data type with two operations put(x) and get() such that, for
distinct processes p and q, there is an infinite sequential execution S of T containing only
put operations by q with a prefix S′ such that:
P1: For every prefix S′ · S′′ of S, in every sequential extension S′ · S′′ · 〈p.get() : return y〉,

y 6= ⊥ holds, where ⊥ is the initial state of T .
P2: In every pair of sequential extensions S′ · 〈p.get() : return y1〉 · 〈q.get() : return z1〉 and

S′ · 〈q.get() : return z2〉 · 〈p.get() : return y2〉, y1 6= y2 holds.
Then, any wait-free linearizable implementation of T with universal helping also has nontrivial
helping.

Proof. Consider sequential executions S and S′ of T as the lemma assumes. Let A be a
wait-free linearizable implementation of T with universal helping. Let α be an execution of
A in which q completes alone all operations in S′, in that order. We claim that a getp() by p
is multivalent in the configuration at the end of α (note that at the end of α, getp() has not
even started): by property P2, the output of getp() in the extension of α in which getp() is
completed alone and then a getq() by q is completed alone, is different from the output in
which the operations are completed in the opposite order.

Now, let α′ be an extension of α in which p executes alone a getp() until the operation is
critical. Let β be an infinite extension of α′ in which q runs alone and executes the operations
in S−S′, in that order. Since A has universal helping, there is a finite prefix γ of β such that
there is a linearization lin(γ) containing getp(). Moreover, for every extension λ of γ, there is
a linearization lin′(λ) such that lin(γ) = lin′(γ). Intuitively, this means that the linearization
order of getp() in γ is fixed, hence it is univalent at the end of γ. We formally prove this.

Let v be the return value of getp() in lin(γ). We claim that getp() is v-univalent in the
configuration at the end of γ. Let λ be any extension of γ in which getp() is completed. Let
u be the output value of getp() in λ. Since getp() is completed in λ, any linearization of λ
contains getp(). As noted above, there is a linearization lin′(λ) of λ such that lin(γ) = lin′(γ),
which implies that u = v. We conclude that getp() is v-univalent at the end of γ. We now
show that v 6= ⊥. Observe that lin(γ) must have the form S′ · S′′ · 〈getp() : return v〉 · S′′′,
for some sequences S′′ and S′′′ of put operations by q. Note that S′ · S′′ · S′′′ is a prefix of

H. Attiya, A. Castañeda, and D. Hendler 31:11

S, since q executes its operations in the order they appear in S. Thus, by property P1, it
follows that v 6= ⊥.

Finally, since getp() is multivalent at the end of α′ and it is univalent on a non-⊥ value
at the end of γ, there must be a prefix of γ that ends in a configuration C in which getp()
is multivalent but it is univalent in q(C) on a non-⊥ value. Therefore, A has nontrivial
helping. J

I Corollary 10. A wait-free linearizable implementation of a queue or stack with universal
helping has nontrivial helping.

Proof. For the case of the stack, S is the infinite execution in which some process q performs
a sequence of push operations with distinct values and S′ is any non-empty prefix of S. The
case of the queue is defined similarly. J

Figure 5 presents a stack implementation that has nontrivial helping but not universal
helping, as established by Lemma 14 in the appendix. It augments the wait-free stack of
Afek et al. [1] with a helping mechanism, added by lines 01–05 in push and lines 08–14 in pop.
Each process pi 6= pn that wants to push value x, first checks if pn’s current pop operation
is pending (lines 02–03), and if so, tries to help pn by directly giving x to its current pop
operation. If pi succeeds in updating H[j] in line 05, then it does not access the items array.
In that case, pn is not able to update H[j] in line 11, implying that it must take the value
in h_items that pi left for it (lines 12–14). If pn manages to update H[j] in line 11, then
no process succeeded in helping it and it proceeds as in Afek et al.’s stack (lines 15–23).
Similarly, processes whose Push operation fails to help pn proceed as in Afek et al.’s stack
(lines 06–07).

In Appendix A, we prove that the algorithm in Figure 5 is a wait-free linearizable
implementation of a stack that has nontrivial helping but not universal helping. Together
with Lemma 9, this implies that, for stacks, universal helping is strictly stronger than
nontrivial helping.

5 Related Notions

This section compares valency-based helping and universal helping to the definition of helping
in [3] and the notion of strong linearizability [9].

5.1 Relation to the help definition of [3]
Helping is formalized in [3] as follows. A linearizable implementation of a concurrent object
has helping, which we call here linearization-based helping, if there is an execution α with
distinct operations op1 and op2 by p and q, such that
1. there are linearizations lin(α) and lin′(α) such that op1 precedes op2 in lin(α) and op2

precedes op1 in lin′(α), and
2. in every linearization of α · r, for some r 6= p (possibly r = q), op1 precedes op2.

In a sense, valency-based helping and linearization-based helping are incomparable. On
the one hand, valency-based helping allows us to distinguish stacks and queues, as queues need
nontrivial (valency-based) helping and stacks do not (Theorems 3 and 6), while both stacks
and queues necessarily have linearization-based helping [3]. On the other hand, valency-based
helping cannot capture helping among enqueues, as they always return true. Nevertheless,
enqueues are taken into account, since the dequeues in an execution reveal how the helping
mechanism determines the order of enqueues.

OPODIS 2015

31:12 Nontrivial and Universal Helping for Wait-Free Queues and Stacks

Shared Variables:
range : Fetch&Add register initialized to 1
current : read/write register initialized to 1
items : array [1, . . . ,] of read/write registers
h_items : 2-dimensional array [1, . . . , n− 1, 1, . . . ,] of read/write registers
pend : array [1, . . . ,] of boolean read/write registers initialized to false
T : array [1, . . . ,] of Test&Set objects
H : array [1, . . . ,] of Compare&Swap objects initialized to ⊥

Operation Push(x):
(01) if ID 6= n then
(02) j ← current
(03) if pend[j] then
(04) h_items[ID][j]← x
(05) if Compare&Swap(H[j],⊥, ID) then return true

end if
end if

(06) i = Fetch&Add(range, 1)
(07) items[i]← x

return true
end Push

Operation Pop():
(08) if ID = n then
(09) j ← current
(10) pend[j]← true
(11) if ¬Compare&Swap(H[j],⊥, ID) then
(12) current← j + 1
(13) k ← get(H[j])
(14) return h_items[k][j]

end if
end if

(15) t = Fetch&Add(range, 0)
(16) for i← t downto 1 do
(17) x← items[i]
(18) if x 6= ⊥ then
(19) if Test&Set(T [i]) then
(20) if ID = n then current← j + 1
(21) return x

end if
end if

end for
(22) if ID = n then current← j + 1
(23) return ⊥
end Pop

Figure 5 A stack implementation without universal helping.

A proof similar to the proof of Lemma 9 shows that universal helping implies linearization-
based helping. Consider any implementation (wait-free or nonblocking) of a data type with
universal helping. Consider an infinite execution β that starts in an initial configuration,
where a process p starts some operation op1 and stops before the operation is completed,
and afterwards a distinct process q completes infinitely many operations (the type does not
matter). Since the implementation has universal helping, eventually, the order of op1 in any
linearization is fixed. More precisely, there is a prefix γ of β such that, for every linearization
of every extension of γ, the order of op1 is the same. This implies that, at some point, a step
of q made op1 precede an operation op2 of q, in every linearization. Thus, the implementation
has linearization-based helping.

The other direction is not necessarily true, since one can modify Herlihy’s universal
construction to get a nonblocking implementation of any data type from Compare&Swap in

H. Attiya, A. Castañeda, and D. Hendler 31:13

which each process is helped just once. The resulting implementation has linearization-based
helping but not universal helping because universal helping requires that every pending
operation is eventually linearized, which does not happen once every process in the execution
has been helped, since from this point on some operations may be blocked forever.

I Theorem 11. For every data type T , every nonblocking or wait-free implementation of T
with universal helping has linearization-based helping, while the opposite is not necessarily
true.

5.2 Relation to strong linearizability [9]
Roughly speaking, an implementation of a data type is strongly linearizable [3] if once
an operation is linearized, its linearization order cannot be changed in the future. More
specifically, there is a function L mapping each execution to a linearization, and the function
is prefix-closed: for every two executions α and β, if α is a prefix of β, then L(α) is a prefix
of L(β).

In a sense, universal helping can be thought of as a sort of eventual strong linearizability.
For every execution α, as it is extended, there is eventually an extension α′ with a linearization
lin(αα′) such that for every execution β, if αα′ is a prefix of β, then there is a linearization
lin′(β) with lin(αα′) = lin′(αα′). We stress that universal helping provides the property that
pending operations are linearized eventually, which is not guaranteed by strong linearizability.

The simulation in the proof of Theorem 8 solves consensus because from some point on,
all processes agree on a first operation and this agreement cannot be changed as a result of
future steps. The following theorem can be proven using a simulation similar to the one in
the proof of Theorem 8, with the difference being that each process only needs to complete
a single enqueue because the linearization order of that operation does not change in the
future.

I Theorem 12. Let B be an n-process strongly-linearizable nonblocking implementation of a
queue (stack). Then, n-process consensus can be solved from B.

The previous theorem shows that, for some data types, strong linearizability for n processes
can only be obtained through consensus number n, thus strong linearizability is costly, even
if we are looking for nonblocking implementations. However, for stacks, linearizability can
be obtained from consensus number 2 as there are wait-free stack implementations from
Test&Set [1].

I Corollary 13. There is no n-process strongly-linearizable nonblocking implementation of a
queue (stack) from primitives with consensus number less than n.

All previous impossibility results on strongly-linearizable implementations that we are
aware of consider only implemenations from consensus-number 1 base objects [7, 10].

6 Discussion

We have considered two ways to formalize helping in implementations of shared objects,
one that is based on operation valency and another that is based on possible linearizations.
We used these notions to study the kind of helping needed in wait-free implementations of
queues and stacks, from Test&Set and stronger primitives. In this work we used an ad-hoc
definition of nontrivial helping for queues and stacks, but this notion can be generalized by
defining two disjoint sets of outputs values, trivial and nontrivial, and defining trivial and

OPODIS 2015

31:14 Nontrivial and Universal Helping for Wait-Free Queues and Stacks

nontrivial helping accordingly. These notions might facilitate further study of the relations
between nonblocking and wait-free implementations.

References
1 Yehuda Afek, Eli Gafni, and Adam Morrison. Common2 extended to stacks and unbounded

concurrency. Distributed Computing, 20(4):239–252, 2007.
2 Yehuda Afek, Eytan Weisberger, and Hanan Weisman. A completeness theorem for a class

of synchronization objects. In Proceedings of the Twelfth Annual ACM Symposium on
Principles of Distributed Computing, PODC’93, pages 159–170, 1993.

3 Keren Censor-Hillel, Erez Petrank, and Shahar Timnat. Help! In Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing, PODC’15, pages 241–250, 2015.

4 Matei David. A single-enqueuer wait-free queue implementation. In Distributed Computing,
18th International Conference, DISC 2004, Amsterdam, The Netherlands, October 4-7,
2004, Proceedings, pages 132–143, 2004. doi:10.1007/978-3-540-30186-8_10.

5 Matei David. Wait-free linearizable queue implementation. Master’s thesis, Department of
Computer Science, University of Toronto, 2004.

6 Matei David, Alex Brodsky, and Faith Ellen Fich. Restricted stack implementations. In Dis-
tributed Computing, 19th International Conference, DISC 2005, Cracow, Poland, Septem-
ber 26-29, 2005, Proceedings, pages 137–151, 2005. doi:10.1007/11561927_12.

7 Oksana Denysyuk and Philipp Woelfel. Wait-freedom is harder than lock-freedom under
strong linearizability. In Distributed Computing – 29th International Symposium, DISC
2015, Tokyo, Japan, October 7-9, 2015, Proceedings, pages 60–74, 2015. doi:10.1007/
978-3-662-48653-5_5.

8 David Eisenstat. A two-enqueuer queue. CoRR, abs/0805.0444, 2008. URL: http://arxiv.
org/abs/0805.0444.

9 Wojciech Golab, Lisa Higham, and Philipp Woelfel. Linearizable implementations do not
suffice for randomized distributed computation. In Proceedings of the Forty-third Annual
ACM Symposium on Theory of Computing, STOC’11, pages 373–382, 2011.

10 Maryam Helmi, Lisa Higham, and Philipp Woelfel. Strongly linearizable implementations:
possibilities and impossibilities. In ACM Symposium on Principles of Distributed Com-
puting, PODC’12, Funchal, Madeira, Portugal, July 16-18, 2012, pages 385–394, 2012.
doi:10.1145/2332432.2332508.

11 Danny Hendler and Nir Shavit. Operation-valency and the cost of coordination. In Pro-
ceedings of the Twenty-second Annual Symposium on Principles of Distributed Computing,
PODC’03, pages 84–91, 2003.

12 Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13(1):124–149, January 1991.

13 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems, 12(3):463–
492, July 1990.

14 Zongpeng Li. Non-blocking implementations of queues in asynchronous distributed shared-
memory systems. Master’s thesis, Department of Computer Science, University of Toronto,
2001.

A Stack without Universal Helping

I Lemma 14. The algorithm in Figure 5 is a wait-free linearizable implementation of a
stack that has nontrivial helping but no universal helping.

http://dx.doi.org/10.1007/978-3-540-30186-8_10
http://dx.doi.org/10.1007/11561927_12
http://dx.doi.org/10.1007/978-3-662-48653-5_5
http://dx.doi.org/10.1007/978-3-662-48653-5_5
http://arxiv.org/abs/0805.0444
http://arxiv.org/abs/0805.0444
http://dx.doi.org/10.1145/2332432.2332508

H. Attiya, A. Castañeda, and D. Hendler 31:15

Proof. We first prove that the implementation is linearizable (clearly, it is wait-free). Let α
be an execution of the algorithm. Intuitively, we show that there is an execution γ of Afek et
al.’s stack implementation (see Figure 2) such that the operations in γ respect the real-time
order of the operations in α and the outputs are the same. Thus, α is linearizable since γ is
linearizable.

In any execution of the algorithm, a pushi(x) operation of pi matches the j-th popn()
operation of pn, if pi successfully updates H[j] during the execution. We call such a pair of
operations a matching.

Let k be the number of matchings in α. By induction on k, we show that α is linearizable.
If k = 0, then α is linearizable because it corresponds to some execution of Afek et al.’s
implementation. Suppose that the claim holds for k − 1. Below we show that it holds for k.

Let pushi(x) by pi and popn() by pn be the k’th matching in α. Note that pushi(x) and
popn() are concurrent in α. Moreover, the Compare&Swap in line 05 of pushi(x) precedes the
Compare&Swap in line 11 of popj() (if pn ever executes it).

We now construct an execution α′ that is easier to reason about than α. Let β be the
longest prefix of α that does not have the Compare&Swap in line 05 of pushi(x). Thus, in the
configuration at the end of β, pi is about to perform the Compare&Swap in line 05, and pn is
about to perform the Compare&Swap in line 11.

Let βi and βn respectively denote the subsequences of α− β containing only the steps of
pushi(x) and popn(). Let λ be the subsequence of α− β obtained by removing the steps of
βi and βn.

Then, α′ is the execution β βi βn λ. Intuitively, in α′, the steps of pushi(x) and popn()
are placed together.

It can be seen that there is no process that can distinguish between α and α′: since
neither pi nor pn change items or range in pushi(x) and popn(), the position in the execution
when they take the steps in βi and βn does not affect other operations. Moreover, α′ respects
the real-time order in α: if an operation op1 precedes op2 in α, op1 also precedes op2 in α′.
Although there may be concurrent operations in α that are not concurrent in α′, this is not
a problem for linearizability.1 Therefore, if α′ is linearizable, then α is linearizable too. We
now show that it is.

Consider the following execution γ that starts with β and then:
1. pn executes the Compare&Swap in line 11 (hence sets H[j]).
2. pi executes three consecutive steps, which correspond to lines 05, 06 and 07 (because it

cannot set H[j]).
3. If popj() (by pn) is completed in α′, pn completes it in γ (thus it outputs x).
4. If pushi(x) is completed in α′, pi completes it in γ.
5. λ is appended at the end.

Thus, in γ, pn is about to take its output from items, pi places x in items (at the top of
the stack) and pn takes it from there. The steps of λ, following pushi(x) and popj(), proceed
as in α and the only difference is that the Fetch&Add in lines 06 and 15 outputs in γ an
integer larger than in α, since pi adds 1 to range in γ in operation pushi(x).

Also observe that γ respects the real-time order in α′. By induction hypothesis, γ is
linearizable, since it has k − 1 matchings. Let lin(γ) be a linearization of γ. From the

1 For example, in α′, pushi(x) precedes any operation starting in λ, however, in α those operations might
be concurrent.

OPODIS 2015

31:16 Nontrivial and Universal Helping for Wait-Free Queues and Stacks

properties of γ just described, it follows that lin(γ) is actually a linearization of α′ as well,
hence a linearization of α. Therefore, the implementation is linearizable.

We now show that the algorithm has nontrivial helping. Starting at the initial configura-
tion, let α be the execution in which pn completes alone a push(1) operation and then starts
a pop() operation and stops just before executing the Compare&Swap in line 11. Then, p1
starts a push(2) operation and stops just before executing the Compare&Swap in line 05.

Let C be the configuration at the end of α. We claim that the pop() is multivalent in C.
Indeed, let x ≥ 3. In the extension of α in which first p2 completes a push(x) alone and then
pn completes its pop(), the output of the pop() is x. Also, note that pop() is 2-univalent in
p1(C) because there is no extension of p1(C) in which pn updates H[1] in Line 11, so if it
ever returns a value, this must be the value in h_items[1][1] (which is 2).

Finally, we prove that the implementation has no universal helping. Starting at the initial
configuration, let α be the execution in which p1 starts pop() and stops before executing
the Fetch&Add in line 15. Let β the the infinite extension of α in which p2 completes alone
(infinitely many) push operations with distinct values. If the algorithm would have had
universal helping, then there would have been a finite prefix γ of β such that there was a
linearization lin(γ) containing pop(), and for every extension λ of γ, there would have been a
linearization lin′(λ) such that lin(γ) = lin′(γ).

Let γ be such a prefix of β and let λ be the extension of γ in which p2 completes any
pending operation in γ and a push(x), where x is greater than any value in γ. Let λ′ be
the extension of λ in which p1 completes its pop() operation. Observe that p1’s operation
outputs x in λ′. Moreover, there is no linearization lin′(λ′) of λ′ with lin(γ) = lin′(γ) because
push(x) does not appear in γ. Thus, the implementation has no universal helping. J

Generic Proofs of Consensus Numbers for
Abstract Data Types
Edward Talmage1 and Jennifer Welch2

1 Parasol Laboratory, Texas A&M University, College Station, USA
etalmage@tamu.edu

2 Parasol Laboratory, Texas A&M University, College Station, USA
welch@cse.tamu.edu

Abstract
The power of shared data types to solve consensus in asynchronous wait-free systems is a funda-
mental question in distributed computing, but is largely considered only for specific data types.
We consider general classes of abstract shared data types, and classify types of operations on those
data types by the knowledge about past operations that processes can extract from the state of
the shared object. We prove upper and lower bounds on the number of processes which can
use data types in these classes to solve consensus. Our results generalize the consensus numbers
known for a wide variety of specific shared data types, such as compare-and-swap, augmented
queues and stacks, registers, and cyclic queues. Further, since the classification is based directly
on the semantics of operations, one can use the bounds we present to determine the consensus
number of a new data type from its specification.

We show that, using sets of operations which can detect the first change to the shared object
state, or even one at a fixed distance from the beginning of the execution, any number of processes
can solve consensus. However, if instead of one of the first changes, operations can only detect
one of the most recent changes, then fewer processes can solve consensus. In general, if each
operation can either change shared state or read it, but not both, then the number of processes
which can solve consensus is limited by the number of consecutive recent operations which can
be viewed by a single operation. Allowing operations that both change and read the shared
state can allow consensus algorithms with more processes, but if the operations can only see one
change a fixed number of operations in the past, we upper bound the number of processes which
can solve consensus with a small constant.

1998 ACM Subject Classification E.1 Distributed Data Structures

Keywords and phrases Distributed Data Structures, Abstract Data Types, Consensus Numbers,
Distributed Computing, Crash Failures

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.32

1 Introduction

Determining the power of shared data types to implement other shared data types in
an asynchronous crash-prone system is a fundamental question in distributed computing.
Pioneering work by Herlihy [7] focused on implementations that are both wait-free, meaning
any number of processes can crash, and linearizable (or atomic). As shown in [7], this
question is equivalent to determining the consensus number of the data types, which is the
maximum number of processes for which linearizable shared objects of a data type can be
used to solve the consensus problem. If a data type has consensus number n, then in a
system with n processes, shared objects of this type can be used to implement shared objects

© Edward Talmage and Jennifer Welch;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 32; pp. 32:1–32:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.32
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 Generic Proofs of Consensus Numbers for Abstract Data Types

of any other type. Thus, knowing the consensus number of a data type gives us a good idea
of its computational strength.

We wish to provide tools with which it is easy to determine the consensus number of
any given data type. So far, most known consensus number results are for specific data
types. These are useful, since we know the upper and lower bounds on the strength of many
commonly-used objects, but are of no help in determining the consensus number of a new
shared data type. Further, even among the known bounds, there are some that seem similar,
and even have nearly identical proofs of their bounds, but these piecemeal proofs for each
data type give no insight into those relations.

1.1 Summary of Results
We define a general schema for classifying data types, based on their sequential specifications,
which we call sensitivity. If the information about the shared state which an operation returns
can be analyzed to extract the arguments to a particular subsequence of past operations, we
say that the data type is sensitive to that subsequence. For example, a register is sensitive to
the most recent write, since a read returns the argument to that write. A stack is sensitive
to the last Push which does not have a matching Pop, since a Pop will return the argument
to that Push. We define several such classes in this paper, such as data types sensitive to
the kth change to the state, data types sensitive to the kth most recent change, and data
types sensitive to the l consecutive recent changes.

We show a number of bounds, both upper and lower, on the number of processes which
can use shared objects whose data types are in these different sensitivity classes to solve
wait-free consensus. Specifically, we begin by showing that information about the beginning
of a history of operations of a shared data type allows processes to solve consensus for any
number of processes. This is a natural result, since the ordering of operations on the shared
objects allows the algorithm to break symmetry.

An augmented queue, as in [7], using Enqueue and Peek is such a data type, as Peeks
can always determine what value was enqueued first, and all processes can decide that value.
Other examples include a Compare-and-Swap (CAS) object using a function which stores its
argument if the object is empty and returns the contents without changing them, if it is not.
Repeated applications of this operation have the effect of storing the argument to the first
operation executed and returning it to all subsequent operations. There are data types which
are stronger than this, such as with operations which return the entire history of operations
on the shared object, but our result shows that that strength is unneeded for consensus.

Next, we consider what happens if a data type has operations which depend on the last
operations executed. We show that if a data type has only operations whose return values
depend exclusively on one operation at a fixed distance back in history, then that data type
can only solve consensus for a small, constant number of processes. A data type whose
operations which cannot atomically both read and change the shared state, consensus is only
possible for one process. If a data type’s operations reveal some number l of consecutive
changes to the shared state, then it can solve consensus for l processes.

These data types model the scenario when there is limited memory. If we want to store a
queue, but only have enough memory to store k elements, we can throw away older elements,
yielding a data type sensitive to recent operations. A cyclical queue has such behavior, and
with operations Enqueue and Peek, where Peek returns the kth-most recent argument to
Enqueue, has consensus number 1. To solve consensus for more processes with a similar data
type, we show that knowledge of consecutive past operations is sufficient. If instead of only
one recent argument, we can discern a contiguous sequence of them, we can solve consensus

E. Talmage and J. Welch 32:3

for more processes. Using the same cyclical k-queue, if our Peek operation is replaced with
a ReadAll which tells the entire contents of the queue atomically, we show that we can solve
consensus for k processes. This parameterized result suggests a fundamental property of the
amount of necessary information for solving consensus.

1.2 Related Work
Herlihy[7] first introduced the concepts of consensus numbers and the universality of consensus
in asynchronous, wait-free systems. He showed that a consensus object could provide a
wait-free and linearizable implementation of any other shared object. Further, he showed
that different objects could only solve consensus for certain numbers of processes. This gives
a hierarchy of object types, sorted by the maximum number of processes for which they can
solve consensus. He also proved consensus numbers for a number of common objects.

Many researchers have worked to understand exactly what level of computational power
this represents, and when consensus numbers make sense as a measure of computational
power. Jayanti and Toueg [8] and Borowsky, et al. [3] established that consensus numbers
of specific data types make sense when multiple objects of the type and R/W registers are
used, regardless of the objects’ initial states. Bazzi et al. [2] showed that adding registers
to a deterministic data type with consensus number greater than 1 does not increase the
data type’s consensus number. Other work establishes that non-determinism collapses the
consensus number hierarchy [9, 10], that consensus is impossible with Byzantine [1], and
what happens when multiple shared objects can be accessed atomically [11].

Ruppert [12] provides conditions with which it is possible to determine whether a data
type can solve consensus. He considers two generic classes of data types, RMW types and
readable types. RMW types have a generic Read-Modify-Write operation which reads the
shared state and changes it according to an input function. Readable types have operations
which return at least part of the state of the shared object without changing it. He shows
that for both of these classes, consensus can be solved among n processes if and only if they
can discern which of two groups the first process to act belonged to. This condition, called
n-discerning, is defined in terms of each of the classes of data types. This has a similar flavor
to our first result below, where seeing what happened first is useful for consensus. We define
our conditions more directly as properties of the sequential specification of a shared object
and also consider different perspectives on what previous events are visible.

Chordia et al. [5] have lower bounds on the number of processes which can solve consensus
using classes of objects with definitions similar to [12]–the duration for which two operation
orderings are distinguishable affects the objects’ consensus power–using algebraic properties,
as we do. These results are not directly comparable to those in [12], since they have different
assumptions about the algorithms and exact data returned. [5] also does not provide upper
bounds, which we focus on.

In another direction, Chen et al. [4] consider the edge cases of several data types, when
operations’ return values are not traditionally well-defined. An intuitive example is the effect
of a Dequeue operation on an empty queue, where it could return ⊥ or return an arbitrary
value, never return a useful value again, or a number of other possibilities. They consider
a few different possible failure modes, and show that the consensus numbers of objects are
different when they have different behaviors when the object “breaks” in such a case. These
results are orthogonal to our paper, as they primarily focus on queues and stacks, and assume
that objects break in some permanent way when they hit such an edge case. We assume
that there is a legal return value for any operation invocation, and that objects will continue
to operate even after they hit such an edge case.

OPODIS 2015

32:4 Generic Proofs of Consensus Numbers for Abstract Data Types

2 Definitions and Model

We consider a shared-memory model of computation, where the programming system provides
a set of shared objects, accessible to processes. Each object is linearizable (or atomic) and
thus will be modeled as providing operations that occur instantaneously. Each object has an
abstract data type, which gives the interface by which processes will interact with the object.
A data type T provides two things: (1) A set of operations OPS which specify an association
of arguments and return values as operation instances OP (arg, ret), OP ∈ OPS and (2) A
sequential specification `T which is a set of all the legal sequences of operation instances. We
use argOP and retOP to denote the sets of possible arguments and return values, respectively,
to instances of operation OP . Given any sequence ρ of operation instances, we use ρ|args to
denote the sequence of arguments to the instances in ρ.

We assume the following constraints on the set of legal sequences:
Prefix Closure: If a sequence ρ is legal, every prefix of ρ is legal.
Completeness: If a sequence ρ is legal, for every operation OP in the data type and every
argument arg ∈ argOP , there exists a response ret ∈ retOP such that ρ ·OP (arg, ret) is
legal (where · is concatenation).
Determinism: If a sequence ρ · OP (arg, ret) is legal, there is no ret′ 6= ret such that
ρ ·OP (arg, ret′) is legal.

We say that two finite legal sequences ρ1 and ρ2 of operation instances are equivalent (denoted
ρ1 ≡ ρ2) if and only if for every sequence ρ3, the sequence ρ1 · ρ3 is legal if and only if ρ2 · ρ3
is legal.

We classify all operations of a data type into two classes, not necessarily disjoint. Infor-
mally, accessors return some value about the state of a shared object and mutators change
the state of the object. An operation may be both an accessor and a mutator, in which case
we call it a mixed operation. If it is an accessor but not a mutator, we say that it is a pure
accessor. Similarly, pure mutators are mutators but not accessors. Formally,

I Definition 1. An operation OP of an abstract data type T is a mutator if there is some
legal sequence ρ of instances of operations of T and some instance op of OP such that
ρ 6≡ ρ · op.

I Definition 2. An operation OP of an abstract data type T is an accessor if there is some
legal sequence ρ of instances of operations of T , an instance op of some operation of T such
that ρ · op is legal, and an instance aop of OP such that ρ · aop is legal, but ρ · op · aop is not
legal.

We consider only data types with non-vacuous sets of operations, which include both a
mutator and an accessor (not necessarily distinct). Any shared object which does not have a
mutator is a constant which can be replaced by a local copy and any shared object without
an accessor is of no use to any party, since they cannot discern the state of the object. We
further consider only data types whose operation set has at least one mutator which accepts
at least two distinct arguments.

2.1 Sensitivity
We will use the concept of sensitivity to classify operations. The sensitivity of a set of
operations is a means of tracking which previous operations on a shared object cause a
particular instance to return a specific value. Intuitively, an operation which has a return
value will usually return a value dependent on some subset of previous operation instances.

E. Talmage and J. Welch 32:5

For example, a read on a register will return the argument to the last previous write. On a
queue, an instance of Dequeue will return the argument of the first Enqueue instance which
has not already been returned by a Dequeue. We categorize operations by which previous
instances (first, latest, first not already used, etc.) we can deduce, or “see”, based on the
return value of an instance of an accessor operation.

I Definition 3. Let OPS be a subset of the operations of a data type T . Let OPSM denote
the set of all mutators in OPS. Let S be an arbitrary function that, given a finite sequence
ρ ∈ `T , returns a subsequence of ρ consisting only of instances of mutators.

OPS is defined to be S-sensitive iff there exist an accessor AOP ∈ OPS and a com-
putable function decode : retAOP → the set of finite sequences over

⋃
MOP∈OP SM

argMOP

such that for all ρ ∈ `T , arg ∈ argAOP , and ret ∈ retAOP with ρ · AOP (arg, ret) ∈ `T ,
decode(ret) = S(ρ)|args.

I Definition 4. A subset OPS of the operations of a data type T is strictly S-sensitive if for
every ρ ∈ `T , every accessor AOP and every instance AOP (arg, ret) with ρ·AOP (arg, ret) ∈
`T , ret = S(ρ)|args. That is, AOP (arg, ret) gives no knowledge about the shared state except
for S(ρ)|args.

An example, for which we will later show bounds on the consensus number, is k-front-
sensitive sets of operations:

I Definition 5. A subset OPS of the operations of a data type T is k-front-sensitive for a
fixed integer k if OPS is S-sensitive where S(ρ) is the kth mutator instance in ρ for every
ρ ∈ `T consisting of instances of operations in OPS which has at least k mutator instances.

In an augmented queue (as in [7]), the operation set {Enqueue, Peek} is k-front-sensitive
by this definition, where k = 1, S returns the first mutator in a sequence of operation
instances, the accessor AOP is Peek, and the decode function is the identity, since the return
value of Peek is the argument to the first Enqueue on the queue. In fact, this operation set
is also strictly 1-front-sensitive, since the return value of an instance of Peek is the argument
to the single first Enqueue.

2.2 Consensus
We are studying the binary Consensus problem in an asynchronous wait-free model with n
processes. In an asynchronous model, processes have no common timing. One process can
perform an unbounded number of actions before another process performs a single action. A
wait-free model allows for up to n− 1 processes to fail by crashing. A process which crashes
ceases to perform any further actions. Processes may fail at any time and give no indication
that they have crashed. Processes which do not crash are said to be correct. Any algorithm
running in this model must be able to continue despite all other processes crashing, while
it cannot in a bounded amount of time distinguish between a crashed process and a slow
process. Thus, any algorithm in this model must never require a process to wait for any
other process to complete an action or reach a certain state.

We say that an execution of an algorithm using a shared data type is a sequence of
operation instances, each labeled with a specific process and shared object. The projection
of an execution onto a single object must be a legal operation sequence, by the sequential
specification of the data type.

The consensus problem is defined as follows: Every process has an initial input value
v ∈ {0, 1}. After that, if it is correct, it will decide a value d ∈ {0, 1}. Once a process decides

OPODIS 2015

32:6 Generic Proofs of Consensus Numbers for Abstract Data Types

a value, it cannot change that decision. Further, all correct processes must satisfy three
conditions:

Termination: All correct processes eventually decide some value
Agreement: All correct processes decide the same value d
Validity: All correct processes decide a value which was some process’ input

An abstract data type T can implement consensus if there is an algorithm in the given
model which uses objects of T (plus registers) to solve consensus. The consensus number of
an abstract data type is the largest number of processes n for which there exists an algorithm
to implement consensus among n processes using objects of that data type. If there is no
such largest number, we say the data type has consensus number ∞.

We use valency proofs, as in [7], to show upper bounds on the number of processes for
which an abstract data type can solve consensus. The following lemma was implicit in [7]
and made explicit in [12]. We will use this to make proofs of upper bounds on consensus
numbers cleaner.

To state the lemma, we recall the concepts of valency and critical configurations. A
configuration represents the local states of all processes and the states of all shared objects.
When a process pi executes a step of a consensus algorithm, it causes the system to proceed
from one configuration C to another, which we call a child configuration, and denote by pi(C).
A configuration is bivalent if it is possible, starting from that configuration, for the algorithm
to cause all processes to decide 0 and also possible for it to cause all processes to decide 1.
A configuration is univalent if from that configuration, the algorithm will necessarily cause
processes to always reach the same decision value. If this value is 0, the configuration is
0-valent and if it is 1, the configuration is 1-valent. A configuration is critical if it is bivalent,
but all its child configurations are univalent.

I Lemma 6. Every critical configuration has child configurations with different valencies
which are reached by different processes acting on the same shared object, which cannot be a
register.

We also restate the following lemma based on Fischer et al. [6].

I Lemma 7. A consensus algorithm always has an initial bivalent configuration and must
have a reachable critical configuration in every execution.

Note that we do not require that the set of sensitive operations is the entire set of
operations supported by the shared object(s) in the system. There may be other operations.
These extra operations do not detract from the ability of a sensitive set of operations to
solve consensus, since an algorithm may just choose not to use any other operations. This
means that our proofs of the ability to solve consensus are powerful. Impossibility proofs do
not get this extra strength, as a clever combination of operations which are not sensitive in a
particular way may allow stronger algorithms.

3 k-Front-Sensitive Data Types

We begin by proving a result that generalizes the consensus number of augmented queues.
We observe that if all processes can determine which among them was the first to modify a
shared object, then they can solve consensus by all deciding that first process’ input. For,
example, in an augmented queue, any number of processes can solve consensus by each
enqueuing their input value, then using peek to determine which enqueue was first [7].

E. Talmage and J. Welch 32:7

More generally, processes do not need to know which mutator was first, as long as they
can all determine, for some fixed integer k, the argument of the kth mutator executed on the
shared object. Thus, we have the following general theorem, which applies to either a mutator
and pure accessor or to a mixed operation. An example (for k = 1) is an augmented queue,
where Peek returns the first argument ever passed to an Enqueue, requiring no decoding.
Another similar example is a Compare-And-Swap operation which places a value into a
shared register in an initial state and leaves any other value it finds in the object, leaving
the argument of the first operation instance still in the shared object, and thus decodable at
each subsequent operation. For any k, a mixed operation which stores a value and returns
the entire history of past changes, satisfies the definition, since the first argument is always
visible to later operations.

I Theorem 8. The consensus number of a data type containing a k-front-sensitive subset of
operations is ∞.

We give a generic algorithm (Algorithm 1) which we can instantiate for any k-front-
sensitive set of operations (which has a mutator with at least two possible distinct arguments)
to solve consensus among any number of processes and prove its correctness as a consensus
algorithm. The mutator and accessor in the algorithm are not necessarily distinct operations.

Algorithm 1 Consensus algorithm for a data type with a k-front-sensitive subset of opera-
tions, OPS, using a mutator OP and accessor AOP , in OPS

1: for i = 1 to k do
2: OP (input)
3: end for
4: result← AOP (arg) . Arbitrary argument arg
5: val← decode(result)
6: decide(val)

Proof. We must show that this algorithm satisfies the three properties of a consensus
algorithm.

Termination: Each process performs a finite number of operations, never waiting for
another process. Thus, even in a wait-free system, where any number of other processes
may have crashed, all running processes will terminate in a finite length of time.
Validity: By the definition of sensitivity, the decision value at each process will be an
argument to a past mutator, and only processes’ input values are passed as inputs to
mutators on the shared object. Thus, each decision value is some process’ input value,
and is valid.
Agreement: decode(result) will return the argument to the kth mutator instance at all
processes. Since each process completes k mutators before it invokes AOP , there are
guaranteed to be at least k mutators preceding the instance of AOP in line 4. Thus, each
process decides the same value.

No part of the algorithm or proof is constrained by the number of participating processes,
which means that this algorithm solves consensus for any number of processes using a k-front-
sensitive data object, so the consensus number of any shared object with a k-front-sensitive
set of operations is ∞. J

OPODIS 2015

32:8 Generic Proofs of Consensus Numbers for Abstract Data Types

4 Consensus with End-Sensitive Data Types

While data types which “remember” which mutator went first, or kth as above, are intuitively
very useful for consensus, other data types can also solve consensus, though not necessarily
for an arbitrary number of processes. As a motivating example, consider the difference
in semantics and consensus numbers between stacks and queues, shown in [7]. Both store
elements given them in an ordered fashion, and the basic version of each has consensus
number 2. However, adding extra power to a queue in the form of a peek operation gives it
consensus number ∞, while adding a similar operation top to stacks does not give them any
extra power.

If we view the difference between an augmented queue and an augmented stack in terms
of sensitivity, Enqueue and Peek on a queue are front-sensitive, while Push and Top on a
stack are end-sensitive. That is, queues see what operation was first, while stacks see which
was latest. When processes cannot tell how far in the algorithm other processes have gotten,
though, due to asynchrony, knowing what operation was latest is not helpful for consensus,
as another mutator could finish after some process decides, and that other process will see a
different last value. We explore generalizations of this problem and what power still remains
in end-sensitive data types.

Unfortunately, the picture for data types with end-sensitive operations sets is more
complex than that for front-sensitive types. Here, we have variations depending on exactly
which part of the end of the previous history is visible or partly visible to an accessor. It is
also important that shared objects have a pure accessor, or some other means of maintaining
the state of the object, or else every operation will change what future operations see, making
it difficult or impossible to come to a consensus.

We begin with a symmetric definition to that in Section 3, but for recent operations
instead of initial, and show that it is not useful for consensus. We then show that certain
subclasses, which are sensitive to more than one past operation, have higher consensus
numbers.

I Definition 9. A subset OPS of the operations of a data type T is k-end-sensitive for a
fixed integer k if OPS is S-sensitive where S(ρ) is the kth-last mutator instance in ρ for
every ρ ∈ `T consisting entirely of instances of operations in OPS and containing at least k
mutator instances, and S(ρ) is a null operation instance ⊥(⊥,⊥), if there are not at least k
mutator instances in ρ.

This definition does not lead to as simple a result as that for front-sensitive sets of
operations. As we will show, there is no algorithm for solving consensus for n processes
with an arbitrary k-end-sensitive set of operations, for n > 1. We will give a number of
more fine-grained definitions, showing that different subsets of the class of k-end-sensitive
operation sets range in power from consensus number 1 to consensus number ∞.

Consider a set of operations which is S-sensitive, where for all ρ, S(ρ) is the entire sequence
of mutator instances in ρ. This set of operations is both k-end-sensitive and k-front-sensitive,
for k = 1. By the result from Section 3, we know that such a set of operations has consensus
number ∞. A similar result holds for any k for which an operation set is k-front-sensitive.
Thus, in this section, we will only consider operation sets which are not k-front-sensitive for
any k and consider only the strength and limitations of end-sensitivity.

4.1 k-End-Sensitive Types
Unlike front-sensitive data types, if a set of operations is strictly k-end-sensitive, for some
fixed k, the data type does not have infinite consensus number. This is a result of the fact that

E. Talmage and J. Welch 32:9

the kth-last mutator is a constantly moving target, as processes execute more mutators. As
we will show, in an asynchronous system, if there are more than one or three processes in the
system (depending on the types of operations in the set), operations can be scheduled such
that the “moving target” is always obscured for some processes, so they cannot distinguish
which process took a step first after a critical configuration, which prevents them from safely
deciding any value. We formalize this in the following theorems.

I Theorem 10. For k > 2, any data type with a strictly k-end-sensitive operation set
consisting only of pure accessors and pure mutators has consensus number 1.

Proof. Suppose we have a consensus algorithm A for at least 2 processes, p0 and p1, using
such an operation set. Consider a critical configuration C of an execution of algorithm A, as
per Lemmas 6, 7. If p0 is about to execute a pure accessor, p1 will not be able to distinguish
C from the child configuration p0(C) when running alone, by the definition of a pure accessor.
Thus, it will decide the same value in the executions where it runs from either of those states,
which contradicts the fact that they have different valencies. If p1’s next operation is a pure
accessor, a similar argument holds.

Thus, both processes’ next operations from configuration C must be mutators. Assume
without loss of generality that p0(C) is 0-valent and p1(C) is 1-valent. Then the states
C0 = p1(p0(C)) and C1 = p0(p1(C)) are likewise 0-valent and 1-valent, respectively.

We construct a pair of executions, extending C0 and C1, in which at least one process
cannot learn which configuration it is executing from. By the Termination condition for
consensus algorithms, at least one process must decide in a finite number of steps, and since
the two executions return the same values to the first process to decide, it will decide the
same value after p1(p0(C)) as after p0(p1(C)), despite those configurations having different
valencies. This is a contradiction to the supposed correctness of A, showing that no such
algorithm can exist.

We construct the first execution, from C0, as follows. Assuming for the moment that
both processes continue to execute mutators (we will discuss what happens when they don’t,
below), let p0 run alone until it is ready to execute another mutator. Then pause p0 and let
p1 run alone until it is also ready to execute a mutator, and pause it. Let p0 run alone again
until it has completed k − 2 mutators and is ready to execute another. Next, allow p1 to run
until has executed one mutator, and is prepared to execute a second. We then continue to
repeat this sequence, allowing p0 to run alone again for k − 2 mutators, then p1 for one, etc.

The second execution is constructed identically from C1 except that after C1, p0 first
runs until it has executed k − 3 mutators and is ready to execute another, then p1 executes
a mutator. After that, the processes alternate as in the first execution, with p0 executing
k − 2 mutators and p1 executing one.

We know that each process, running alone from C0 (or C1), must execute at least k − 2
mutators to be able to see what mutator was first after C, since we have a strictly k-end-
sensitive set of operations, which means that any correct algorithm must execute at least
that many mutators, since it must be able to distinguish p0(C) from p1(C). The way we
construct the executions, though, we interleave the operation instances in such a way that
each process sees only its own operation instances, and cannot distinguish these executions
from running alone from C0 (or C1). It is an interesting feature of this construction that we
do not force any processes to crash. In fact, we need both processes to continue running to
ensure that they successfully hide their own operations from each other.

If we denote any mutator by m and any accessor by a, with subscripts to indicate the
process to which the operations belong and superscripts for repetition (in the style of regular

OPODIS 2015

32:10 Generic Proofs of Consensus Numbers for Abstract Data Types

expressions), we can represent these two execution fragments, restricted to the shared object
operated on in configuration C, as follows:

m0 ·m1 · ·a∗0 · a∗1 · (m0 · a∗0)k−2 · (m1 · a∗1) · (m0 · a∗0)k−2 · · ·

m1 ·m0 · ·a∗1 · a∗0 · (m0 · a∗0)k−3 · (m1 · a∗1) · (m0 · a∗0)k−2 · · ·

Since the return value of each accessor is determined by the kth most recent mutator,
all operations are pure, and operations are deterministic, we can see that corresponding
accessor instances will return the same value in the two executions. Thus, neither process
can distinguish the two executions. This is true despite the possibility of operations on other
shared objects. To discern the two runs, each process must determine which process executed
an operation first after C, and that can only be determined by operations on this shared
object. Thus, as long as the return values to operations on this object are the same, since
the algorithm is deterministic, the processes will continue to invoke the same operations in
the two runs, and will be unable to distinguish the two executions.

This interleaving of operation instances works as long as both processes continue to invoke
mutators. Each process must decide after a finite time, though, so they cannot continue to
invoke mutators indefinitely. When a process ceases to invoke mutators, we can no longer
schedule operations as before to continue hiding its past operations. There are two possible
cases for which process(es) finish their mutators first in the two executions.

First, one process (WLOG p0) may execute its last mutator before the other does, in
both executions. When p0 executes its last mutator in each execution, let it continue to run
alone until it decides. Since configuration C, it has only seen its own mutators, and since
the data type is strictly k-end-sensitive and no more mutators are executed, will continue to
see only its own past mutators in both executions. Thus, the two executions are identical for
p0 and it will decide the same value in both, contradicting their differing valencies.

Second, it may be that in one execution, p0 executes its last mutator before p1 does
and in the other, p1 executes its last mutator before p0. Each process will follow the same
progression of local states in both executions, so this case can only arise when p0’s last
mutator in the first execution is the last in a block of k − 2 mutators it runs by itself, and
thus first in such a block in the second execution. In the first execution, after p0 executes
its last mutator, let it run alone, as in the first case. In the second execution, after p1
executes its last mutator, pause it, and allow p0 to run alone, executing its last mutator and
continuing until it decides. By the same argument as case 1, p0 decides the same value in
both executions, contradicting the fact that they have the same valency.

Thus, the assumed consensus algorithm cannot actually exist. J

If mixed operations are allowed, the above proof does not hold, as a mixed operation
immediately after C will potentially have a different return value than it would in a different
execution where there is an intervening mutator. We can show the following:

I Theorem 11. For k > 2, any data type with an operation set which is strictly k-end-
sensitive has consensus number at most 3.

The proof of this theorem is almost identical to the previous, and is therefore omitted.
The primary difference, which yields a higher bound, is that the first two processes which
execute operations in a critical configuration crash immediately after those operations, since
they may have seen different shared states depending on their order. The other two (assumed)
processes can continue in a manner similar to the above, hiding their executions from each
other, and not satisfying the univalency of the configurations, yielding a contradiction.

E. Talmage and J. Welch 32:11

4.2 1- and 2-End-Sensitive Types
The bounds in the previous section require k > 2, so we here explore what bounds hold when
k ≤ 2. We continue to consider strictly k-end-sensitive operations; we will consider operation
sets with knowledge of additional operations (that is, with larger sensitive sequences S(ρ))
later.

We first consider the case k = 1, which implies that accessor operations can see the last
previous mutator. If all operations are pure mutators or accessors, then it is intuitive that
consensus would not be possible, since we could schedule operations such that each process
only saw its own mutators. We show that this is, in fact, the case. This generalizes the bound
that registers can only solve consensus for one process. If mixed operations are allowed, then
a process can obtain some information about other operations, which we will show is enough
to solve consensus for two processes, but no more. We know that this bound of 2 is tight,
that is, no lower bound can be proved for the entire class, since Test&Set, for example, is
sensitive to only the last previous mutator and has consensus number 2 [7].

I Theorem 12. Any data type with a strictly 1-end-sensitive operation set with no mixed
operations has consensus number 1.

I Theorem 13. Any data type with a strictly 1-end-sensitive operation set has consensus
number at most 2.

The proofs for these theorems are standard bivalency proofs, and can be found in the full
version of the paper: Technical Report 2015-11-1 at http://www.cse.tamu.edu/research/tr.

Next, we consider k = 2. If the sensitive set of operations includes a pure accessor, we
show that we can solve consensus for 2 processes. Here, unlike our other results, the presence
or absence of a mixed operation does not seem to affect the strength for consensus. Instead,
it is important to have a pure accessor, which can see the 2nd-last mutator without changing
it, which makes it practical for both processes to see the same value.

Data types without a pure accessor seem to have less power than consensus, since it is
impossible to check the shared state without changing it. This makes it very difficult for
processes to avoid confusing each other. A similar argument to that for Theorem 11 provides
an upper-bound of n ≤ 3 for this data type. We conjecture that it is lower(n = 1), but do
not yet have the tools to prove this formally.

For now, an upper bound on the consensus number of 2-end-sensitive operation types is
an open question, but we conjecture that it will be 2, or perhaps 3 with mixed operations as
for k-end-sensitive types with k > 2, above.

I Theorem 14. For k = 2, a data type containing a k-end-sensitive set of operation types
which includes a pure accessor has consensus number at least 2, using Algorithm 2.

The proof of Theorem 14 is left to the full version.

4.3 Knowledge of Consecutive Operations
Operation sets which only allow a process to learn about one past operation are generally
limited to solving consensus for at most a small constant number of processors. We now
show that knowledge about several consecutive recent operations allows more processes to
solve consensus. In effect, we are enlarging the moving target we discussed before. We will
show that this does, in fact, allow consensus algorithms on more processes, as many as the
size of the target, or the number of consecutive operations we can decode. We will then show
that when we know the last mutator instances that have happened, the bound is tight.

OPODIS 2015

32:12 Generic Proofs of Consensus Numbers for Abstract Data Types

Algorithm 2 Consensus Algorithm for 2 processes using 2-end-sensitive set of operations
using mutator OP and pure accessor AOP

1: OP (input)
2: val← AOP ()
3: if decode(val) = ⊥ then
4: decide(input)
5: else
6: decide(decode(val))
7: end if

This is interesting because the consensus number is not affected by how old the visible
operations are, as long as they are at a consistent distance. That is, if we always know a
window of history that is a certain fixed number of operations old (no matter what that
number is), we can use it to solve consensus. Also interesting is the fact that the bound is
parameterized. While knowing a single element of history can solve consensus for a constant
number of processes, if we know l consecutive mutators in the history, we can solve consensus
for l processes for any natural number l. Thus, knowing more consecutive elements always
increases the consensus number.

We could use this to create a family of data types which solve consensus for an arbitrary
number of processes, with a direct cost trade-off. If we maintain a rolling cache of several
consecutive mutators, we trade off the size of the cache we maintain against the number of
processes which can solve consensus. If we only need consensus for a few processes, we know
we only need to maintain a small cache. If we have the available capacity to maintain a large
cache, we can solve consensus for a large number of processes.

We begin by defining the sensitivity of these large-target operation sets, and giving a
consensus algorithm for them. In effect, the algorithm watches for the target to fill up,
and as long as it is not full, can determine which process was first. Since we can only see
instances as long as the target “window” does not overflow, this gives the maximum number
of processes which can use this algorithm to solve consensus. We later show this number is
tight, if there are no mixed operations.

I Definition 15. A subset OPS of the operations of a data type T is l-consecutive-k-end-
sensitive for fixed integers l and k if OPS is S-sensitive where for every ρ ∈ `T , S(ρ) is the
sequence of l consecutive mutator instances in ρ, the last of which is the kth-last mutator
instance in ρ. If there are not that many mutator instances in ρ, the missing ones are replaced
by ⊥(⊥,⊥) in S(ρ).

I Theorem 16. Any data type with an l-consecutive-k-end-sensitive set of operations has
consensus number at least l, using Algorithm 3.

We will show that this is the maximum possible number of processes for which we can
give an algorithm which solves consensus using any l-consecutive-k-end-sensitive operations
set. We do this by considering a special case of that class, l-consecutive-0-end-sensitive with
only pure operations, and showing that the bound is tight for it. As with most end sensitive
classes, a set of operations which satisfies the definition of l-consecutive-k-end-sensitive may
also be sensitive to more, earlier operations, and thus have a higher consensus number. We
will show a particular example of such an operation set, to show that there is more work to
be done to classify end-sensitive data types.

Theorem 17 below shows an upper bound on the consensus number of strictly l-consecutive-
0-end-sensitive operation sets. That is, operation sets in which accessors can learn exactly the

E. Talmage and J. Welch 32:13

Algorithm 3 Consensus algorithms for l processes using an l-consecutive-k-end-sensitive
operation set. (A) Using mutator OP and pure accessor AOP . (B) Using mixed operation
BOP .

(A)
1: for x = 1 to k do
2: OP (input)
3: vals[1..l]← decode(AOP ())
4: let m = arg minn∈1..l{vals[n] 6= ⊥}
5: if m exists then
6: decide(vals[m])
7: end if
8: end for

(B)
1: for x = 1 to k do
2: vals[1..l]← decode(BOP (input))
3: let m = arg minr∈1..l{vals[r] 6= ⊥}
4: if m exists then
5: decide(vals[m])
6: end if
7: end for
8: decide(input)

last l mutators. To achieve this bound, we need to restrict ourselves to operation sets which
have no mixed accessor/mutator operations. This is a strong restriction, but we will give
an example showing that a mutator which also returns even a small amount of information
about the state of the shared object can increase the consensus number of an operation set.
The proof of Theorem 17 is given in the full version of the paper.

I Theorem 17. Any data type with a strictly l-consecutive-0-end-sensitive set of operations
which has no mixed accessor/mutators has consensus number at most l.

There are sets of operations which are strictly l-consecutive-0-end-sensitive, but have a
mixed operation which returns information about the state of the object. We here give an
example such set. Specifically, the mixed operation returns a (limited) count of the number
of preceding mutators. Even this small amount of extra information is enough to increase
the consensus power of a set of operations.

Consider an l-element shared cyclic queue with operations Enql(x) and ReadAll().
Enql(x) is a mixed accessor/mutator which adds x to the tail of the queue, discarding the
head element if there are more than l elements in the queue, and returning the number of
Enql operations which have previously been executed, up to l. If more than l Enql operations
have been previously executed, the return value will continue to be l. ReadAll() is a pure
accessor which returns the entire contents of the l-element queue. This is clearly a strictly
l-consecutive-0-end-sensitive set of operations, since the return values of ReadAll() and Enql

depend on the last l Enql(x) calls, but only the last l are visible to each instance of one of
these. We show that it has consensus number at least l + 1 by giving Algorithm 4.

The intuition for this algorithm is that all processes but one will be able to see which
process was first. The variable state will tell how many previous Enql instances processes
have executed. If this is less than k, all previous Enqls are visible, and the process can return
the input of the first. If there have been k previous Enqls, then we cannot see the first, but
we know that there are at most l + 1 processes and each executed only one Enql, so the one
process whose Enql we cannot see must have been first, and we decide that process’ input.

This algorithm shows that mixed operations can give extra strength for consensus, beyond
sensitivity, which is difficult to quantify. In general, mixed operations can not only give
different return values based on the state of the shared object, but can alter the way they
modify the object’s state based on its previous state. This allows them to preserve any
non-empty state, which means that it can keep a record of which process first modified

OPODIS 2015

32:14 Generic Proofs of Consensus Numbers for Abstract Data Types

Algorithm 4 Algorithm for each process i to solve consensus for l + 1 processes using a
l-element cyclic queue with Enql and ReadAll

1: Writei(input) . In a shared SWMR register
2: state← Enql(i)
3: l_history ← (ReadAll())
4: if There are state values preceding i in l_history then
5: decide oldest element in l_history
6: else
7: j ← processor id not appearing in l_history
8: decide Readj() . Value from pj ’s SWMR register
9: end if

the state, giving a front-sensitive data type, which can solve consensus for any number of
processes. For example, a Read-Modify-Write operation can exhibit this behavior.

5 Conclusion

We have defined a number of classes of operations for shared objects, and explored their
power for solving consensus. First, we generalized, with an intuitive result, the common
understanding that knowing what process acted on a shared object first allows a consensus
algorithm for any number of processes. We then considered what might be possible if only
knowledge about recent operations, instead of initial operations, is available.

Here, because the set of recent operations is constantly changing, we must be more precise
about what knowledge is available. If operations cannot both change and view the shared
state atomically, then the number of processes which can solve consensus is given by the
number of consecutive changes a process can view atomically. Further, these do not need to
be the most recent changes, as long as processes know how old the data they receive is.

If operations can atomically view and change the shared state, then they generally have
the potential for more computational power. We show in a few cases that if an operation set
has a mixed operation, then it can solve consensus for one more process than a similarly-
sensitive operation set without a mixed operation. Unfortunately, mixed operations may
be more expensive to implement than pure accessors or mutators, which would lead to a
trade-off between computational power and operation cost.

We point out that the quantity of information learned in a single atomic step is a
dominating factor in a data type’s consensus power. This appears strongly in types sensitive
to consecutive past mutators and weakly in the marginally greater power of mixed operations.

We summarize our results in Table 1. We have results for front-sensitive sets of operations
and several subclasses of end-sensitive operation sets. Several of these classes have different
consensus numbers if we allow mixed accessor/mutator operations or only allow pure accessors
and pure mutators, so we separate those results. Note also that all upper bounds further
assume a data type with a strictly sensitive set of operations.

In future work, we wish to fill missing entries in the above table. In addition, we wish to
further explore conditions on the knowledge of the execution which operations can extract
to classify more operations. More generally, the idea of exploring how information travels
through the execution history of a shared object, affecting the return values of different
subsequent operations in different ways, is fascinating. As currently defined, sensitivity
cannot classify all possible operation sets, so an exploration of classifying and providing
generic results for other shared data types is of interest.

E. Talmage and J. Welch 32:15

Table 1 Summary of Upper and Lower Bounds on Consensus Numbers.

Operation Set Lower Bounds Upper Bounds
Pure Mixed Pure Mixed

Front-sensitive ∞ -

End-Sensitive k-end: k > 2 1 ? 1 3
k = 1 1 2 1 ?
k = 2 2 ? ? 3

l-consecutive-k-end l l (k = 0) ?

Another direction is to consider trade-offs between the implementation costs of shared
operations and their consensus numbers. It would be interesting to develop a metric which
balances an operation’s cost with its computational strength. Finding minima of such a metric
would be an interesting result, potentially showing the optimal cost for solving consensus for
any given number of processes.

Acknowledgments. This work was supported in part by NSF grants 0964696, 1526725. We
would also like to thank the anonymous reviewers for their helpful comments.

References

1 Paul C. Attie. Wait-free byzantine consensus. Inf. Process. Lett., 83(4):221–227, 2002.
doi:10.1016/S0020-0190(01)00334-9.

2 Rida A. Bazzi, Gil Neiger, and Gary L. Peterson. On the use of registers in achiev-
ing wait-free consensus. Distributed Computing, 10(3):117–127, 1997. doi:10.1007/
s004460050029.

3 Elizabeth Borowsky, Eli Gafni, and Yehuda Afek. Consensus power makes (some) sense!
(extended abstract). In Proceedings of the Thirteenth Annual ACM Symposium on Princi-
ples of Distributed Computing, PODC’94, pages 363–372, New York, NY, USA, 1994. ACM.
doi:10.1145/197917.198126.

4 Wei Chen, Guangda Hu, and Jialin Zhang. On the power of breakable objects. Theor.
Comput. Sci., 503:89–108, 2013. doi:10.1016/j.tcs.2013.05.036.

5 Sagar Chordia, Sriram K. Rajamani, Kaushik Rajan, Ganesan Ramalingam, and Kapil
Vaswani. Asynchronous resilient linearizability. In Yehuda Afek, editor, Distributed Com-
puting – 27th International Symposium, DISC 2013, Jerusalem, Israel, October 14-18, 2013.
Proceedings, volume 8205 of Lecture Notes in Computer Science, pages 164–178. Springer,
2013. doi:10.1007/978-3-642-41527-2_12.

6 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, 1985. doi:10.1145/3149.
214121.

7 Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–
149, 1991. doi:10.1145/114005.102808.

8 Prasad Jayanti and Sam Toueg. Some results on the impossibility, universality, and de-
cidability of consensus. In Adrian Segall and Shmuel Zaks, editors, Distributed Algo-
rithms, 6th International Workshop, WDAG’92, Haifa, Israel, November 2-4, 1992, Pro-
ceedings, volume 647 of Lecture Notes in Computer Science, pages 69–84. Springer, 1992.
doi:10.1007/3-540-56188-9_5.

OPODIS 2015

http://dx.doi.org/10.1016/S0020-0190(01)00334-9
http://dx.doi.org/10.1007/s004460050029
http://dx.doi.org/10.1007/s004460050029
http://dx.doi.org/10.1145/197917.198126
http://dx.doi.org/10.1016/j.tcs.2013.05.036
http://dx.doi.org/10.1007/978-3-642-41527-2_12
http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1145/114005.102808
http://dx.doi.org/10.1007/3-540-56188-9_5

32:16 Generic Proofs of Consensus Numbers for Abstract Data Types

9 Wai-Kau Lo and Vassos Hadzilacos. All of us are smarter than any of us: Nondeterministic
wait-free hierarchies are not robust. SIAM J. Comput., 30(3):689–728, 2000. doi:10.1137/
S0097539798335766.

10 Ophir Rachman. Anomalies in the wait-free hierarchy. In Gerard Tel and Paul M. B.
Vitányi, editors, Distributed Algorithms, 8th International Workshop, WDAG’94, Ter-
schelling, The Netherlands, September 29 – October 1, 1994, Proceedings, volume 857 of Lec-
ture Notes in Computer Science, pages 156–163. Springer, 1994. doi:10.1007/BFb0020431.

11 Eric Ruppert. Consensus numbers of multi-objects. In Brian A. Coan and Yehuda Afek, ed-
itors, Proceedings of the Seventeenth Annual ACM Symposium on Principles of Distributed
Computing, PODC’98, Puerto Vallarta, Mexico, June 28 – July 2, 1998, pages 211–217.
ACM, 1998. doi:10.1145/277697.277736.

12 Eric Ruppert. Determining consensus numbers. SIAM J. Comput., 30(4):1156–1168, 2000.
doi:10.1137/S0097539797329439.

http://dx.doi.org/10.1137/S0097539798335766
http://dx.doi.org/10.1137/S0097539798335766
http://dx.doi.org/10.1007/BFb0020431
http://dx.doi.org/10.1145/277697.277736
http://dx.doi.org/10.1137/S0097539797329439

Non Trivial Computations in Anonymous Dynamic
Networks∗

Giuseppe Di Luna1 and Roberto Baldoni2

1 Dipartimento di Ingegneria Informatica, Automatica e Gestionale Antonio
Ruberti, Università degli Studi di Roma La Sapienza, Via Ariosto, 25, I-00185
Rome, Italy
diluna@dis.uniroma1.it

1 Dipartimento di Ingegneria Informatica, Automatica e Gestionale Antonio
Ruberti, Università degli Studi di Roma La Sapienza, Via Ariosto, 25, I-00185
Rome, Italy
baldoni@dis.uniroma1.it

Abstract
In this paper we consider a static set of anonymous processes, i.e., they do not have distinguished
IDs, that communicate with neighbors using a local broadcast primitive. The communication
graph changes at each computational round with the restriction of being always connected, i.e.,
the network topology guarantees 1-interval connectivity. In such setting non trivial computations,
i.e., answering to a predicate like “there exists at least one process with initial input a?”, are
impossible. In a recent work, it has been conjectured that the impossibility holds even if a
distinguished leader process is available within the computation. In this paper we prove that the
conjecture is false. We show this result by implementing a deterministic leader-based terminating
counting algorithm. In order to build our counting algorithm we first develop a counting technique
that is time optimal on a family of dynamic graphs where each process has a fixed distance h
from the leader and such distance does not change along rounds. Using this technique we build
an algorithm that counts in anonymous 1-interval connected networks.

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases Distributed System, Anonymous Networks, Dynamic Networks

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.33

1 Introduction

Highly dynamic distributed systems are attracting a lot of interest from the relevant research
community [13, 7]. These models are well suited to study the new challenges introduced
by distributed systems where there is an immanent dynamicity given by the presence of
mobile devices, unstable communication links and environmental constraints. A critical
element in such future distributed systems is the anonymity of the devices; the uniqueness of
a process ID is not guaranteed due to operational limit (e.g., in highly dynamic networks
maintaining unique IDs may be infeasible due to mobility and failure among processes [22])
or to maintaining user’s privacy (e.g., where users may not wish to disclose information
about their behavior [11]).

In this paper we consider a static set of anonymous process |V |, this set of processes is
connected by a dynamic communication graph that is governed by a fictional omniscient

∗ This work has been partially supported by the TENACE project (MIUR-PRIN 20103P34XC).

© Giuseppe Di Luna and Roberto Baldoni;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 33; pp. 33:1–33:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.33
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

33:2 Non Trivial Computations in Anonymous Dynamic Networks

entity the adversary who has the power to change at each round the graph. The adversary
is able to read the local memory of each process in order to deploy the worst possible
communication graph to challenge the computation. The only restriction imposed to the
adversary is that the graph has to be connected at each round. This corresponds to the
1-interval connectivity model proposed in [12].

We focus on the problem of counting the number of processes in the system which is one
of the fundamental problems of distributed computing [12, 17, 10, 21, 2]. The system model
employed in this paper also assumes each process communicates with its neighbors using a
local broadcast primitive. Under this model, it has been proved that the presence of a leader
process is necessary in order to compute non trivial tasks [19]. In the case of leader absence,
the adversary could indeed perpetually generate an anonymous ring graph of unknown size,
and it is well known that in such graph non-trivial computation are impossible [1, 25]. Let
us remark that a leader is actually present in many realistic settings, such as a base station
in a mobile network, a gateway in a sensors network etc. Additionally, the computability
in the model where all processes are anonymous but a leader has been widely investigated
in the static network case and in population protocols [24, 26, 8, 4]. Furthermore, having a
leader can be sometimes simpler than ensuring an unique ID for each process. From a formal
point of view, it has been proved when processes communicate using broadcast, assuming
the existence of a leader is strictly weaker than assuming unique IDs [19].

Anonymity and the adversarial dynamic graph make the system model very challenging
for performing non-trivial computation. More specifically, it has been conjectured in [19, 18]
that, in such model, the presence of a leader is not sufficient to compute, non trivial tasks
such as counting. The main result of this paper is to show that the conjecture is false, and
that a distinguished leader process is necessary and sufficient to do deterministic non trivial
computations on anonymous 1-interval connected dynamic networks with broadcast. This is
shown by introducing a deterministic terminating counting algorithm, namely EXT.

The paper introduces one by one the main sub-algorithms forming EXT, namely OPT,
VCD and InstanceCount. As second result presented in this paper, we show that OPT is a
time optimal counting algorithm for graphs in G(PD)2, a specific subset of interval connected
dynamic graphs where each process has a fixed distance h from the leader with h ≤ 2 and
such distance is fixed across rounds. We showed in [14] that counting on G(PD)2 is function
of the network size even if there is unlimited bandwidth and a constant dynamic diameter
w.r.t. |V |. Thus OPT shows that the bound introduced in [14] for counting in G(PD)2 is
tight.

Outline

Section 4 presents an optimal algorithm for graphs belonging to G(PD)2. Section 5 illustrates
the basic structure of the counting algorithm, EXT, for 1-interval connected networks. EXT
has two main components: VCD and InstanceCount which are introduced in Section 6 and
Section 7 respectively. Finally, we prove that the conjecture presented in [19, 18] is false in
Section 8. Due to lack of space, some of the proofs can be found in the full version of the
paper1.

1 https://midlab.diag.uniroma1.it/publications.php

https://midlab.diag.uniroma1.it/publications.php

G. Di Luna and R. Baldoni 33:3

2 Related Work

The question concerning what can be computed on top of static anonymous networks, has
been pioneered by Angluin in [1] and it has been the further investigated in many papers
[25, 26, 6, 5]. In a static anonymous network with broadcast, the presence of a leader is
enough to have a terminating counting algorithm as shown in [18].

Considering dynamic non anonymous networks, counting has been studied under several
dynamicity models. In [3], dynamicity corresponds to processes churn where processes leave
and join the system. In [17, 23] dynamicity is governed by a random adversary to model
peer-to-peer networks. Finally considering the dynamicity model employed in this paper
(worst-case adversary), in [12], a counting algorithm for 1-interval connectivity has been
proposed. Other results related to counting can be found in [22] where a model similar
to 1-interval connected is considered. In the context of possibly disconnected adversarial
network, counting has been studied in [20]. The approaches followed by the latter works are
not suitable in the model proposed by this paper, they use the asymmetry introduced by IDs.

Counting in anonymous dynamic networks: In [10], the authors propose a gossip-based
protocol to compute aggregation function. The network graph considered by [10] is governed
by a fair random adversary, moreover the proposed approach converges to the actual count
without having a terminating condition. A similar model and strategy is also used by [9].
The first work investigating the problem of terminating counting in an anonymous network
with worst-case adversary and a leader node is [18]. They show that when a process is
able to send a different messages to each neighbors, the presence of a leader is enough to
have a terminating naming algorithm. For the broadcast case, under the assumption of
a fixed known upper bound on the maximum process degree, they provided an algorithm
that computes an upper bound on the network size. Building on this result, [15] proposes
an exact counting algorithm under the same assumption. Finally, [16] provides a counting
algorithm for 1-interval connected networks considering each process is equipped with a local
degree detector, i.e. an oracle able to predict the degree of the process before exchanging
messages. Other works [12, 21] have investigated leader-less randomized approaches to obtain
approximated counting algorithms. We are interested in study how anonymity impacts the
computational power of 1-interval connected networks with broadcast, for this reason we
assume that processes do not have access to a source of randomness, e.g. they cannot break
symmetry by using coin tosses.

3 Model of the computation

We consider a synchronous distributed system composed by a finite static set of processes V .
Processes in V are anonymous, they initially have no identifiers and execute a deterministic
round-based computation. Processes communicate through a communication network which
is dynamic. We assume at each round r the network is stable and represented by a graph
Gr = (V,E(r)) where E(r) ⊆ V × V is the set of bidirectional links at round r connecting
processes in V .

I Definition 1. A dynamic graph G = {G0, G1, . . . , Gr, . . .} is an infinite sequence of graphs
one at each round r of the computation.

A dynamic graph is 1-interval connected, if, and only if, G ∈ G(1-IC), if ∀Gr ∈ G we
have that Gr is connected. The neighborhood of a process v at round r is denoted by

OPODIS 2015

33:4 Non Trivial Computations in Anonymous Dynamic Networks

N(v, r) = {v′ : (v′, v) ∈ E(r)}. We say that v has degree d at round r iff |N(v, r)| = d.
Given a round r we denote with pv,v′ a path on Gr between v and v′. Moreover we denote
as Pr(v′, v), the set of all paths between v, v′ on graph Gr. The distance dr(v′, v) is the
minimum length among the lengths of the paths in Pr(v′, v), the length of the path is defined
as the number of edges. We consider the computation proceed by exchanging messages
through synchronous rounds.

Every round is divided in two phases: (i) send where processes send the messages for the
current round, (ii) receive where processes elaborates received messages and prepare those
that will be sent in the next round. Processes can communicate with its neighbors through
an anonymous broadcast primitive. Such primitive ensures that a message m sent by process
vi at the beginning of a certain round r will be delivered to all its neighbors during round
r. A process v floods message m by broadcasting it for each round. If process receives a
flooded message m then it starts the flooding of m. The flood of m terminates when it has
been received by all processes. We say that a network has dynamic diameter D if for any v
and any round r the flood of a message that starts at round r from process v terminates
by at most round r +D. Intuitively the dynamic diameter is the maximum time needed to
disseminate messages to all processes in the network.

Leader-based computation and worst case adversary: We assume the selection of a topo-
logy graph at round r is done by an omniscient adversary that may choose at each step the
worst configuration to challenge a counting algorithm. Due to the impossibility result shown
in [18], we assume any counting algorithm that works over a dynamic graph has a leader
process vl starting with a different unique state w.r.t. all the other processes.

I Definition 2. Given a dynamic network G with |V | processes, a distributed algorithm A
solves the counting on G if it exists a round r at which the leader outputs |V | and terminates.

Persistent distance dynamic graphs: Let us characterize dynamic graphs according to the
distances among a process v and the leader vl.

I Definition 3. (Persistent Distance over G) Consider a dynamic graph G. The distance
between v and vl over G, denoted D(v, vl) = d, is defined as follow: D(v, vl) = d iff
∀r, dr(v, vl) = d.

Let us now introduce a set of dynamic graphs based on the distance between the leader
and the processes of a graph.

I Definition 4 (Persistent Distance set). A graph G belongs to Persistent Distance set,
denoted G(PD) , iff ∀v ∈ G, ∃d ∈ N+ such that D(v, vl) = d

Graphs in G(PD)2

Among the dynamic graphs belonging to G(PD) we can further consider the set of graphs,
denoted G(PD)h, whose processes have maximum distance h from the leader with 1 < h ≤ |V |.
Thus, given a graph in G(PD)h we can partition its processes in h sets, {V0, V1, . . . , Vh},
according to their distance from the leader. In Figure 1 there is an example of G(PD)2 graph.
The depicted dynamic graph has dynamic diameter D = 4, if process v0 starts a flood at
round 0 this flood will reach process v3 at round 3. The task of the leader process vl is to
count processes in V2. Let us notice that if a process knows |N(v, r) ∩ V1| before the receive
phase of round r then counting in G(PD)2 needs O(1) rounds, the algorithm is trivial each

G. Di Luna and R. Baldoni 33:5

vl vl

v0 v3 v0 v3

Round 0 Round 1 Round 2

v0 v3

V1

V2

V0vl

Figure 1 An example of a graph belonging to G(PD)2 along three rounds.

process in V2 sends a message 1
|N(v,r)∩V1| to processes in V1. A process in V1 collects these

messages and send their sum to the leader. Also if IDs are present counting requires O(1)
rounds, in 2 rounds the leader collects the IDs of all processes. It is interesting to notice that
if |N(v, r)| is known only when a process receives messages from its neighbors then the time
for counting become Ω(log |V |) rounds, see Th.2 of [14].

4 An asymptotically optimal algorithm for G(PD)2

OPT initially starts a get_distance phase. At the end of this phase each process is aware of
its distance from the leader. In G(PD)2 this phase takes one round and it works as follow:
Each process knows if it is the leader or not. This information is broadcast by each process
(including the leader) to its neighbors at the beginning of round 0. Thus, at the end of round
0, each process knows if it belongs either to V1 or to V2.

Non-leader process behavior

Starting from round 1, a process broadcasts its distance from the leader (i.e., 1 or 2) and
each process v in V2 builds its degree history v.H(r) with r ≥ 0 where v.H(r) is an ordered
list containing the number of neighbors of v belonging to V1 at rounds [0, . . . , r − 1]. Thus
v.H(r) = [⊥, |N(v, 1) ∩ V1|, . . . , |N(v, r − 1) ∩ V1|].

Starting from round r > 0, each v ∈ V2 broadcasts v.H(r). These histories are collected
by each process v′ ∈ V1 and sent to the leader at the beginning of round r + 1.

Leader behavior

Starting from the beginning of round r ≥ 2 the leader receives degree histories from each
process in V1. The leader merges histories in a multiset denoted vl.M(r). Let us remark that
vl.M(r) may contain the same history multiple times.

Data structure: The leader uses vl.M(r) to build a tree data structure T whose aim is to
obtain |V2|. For each distinct history [A] ∈ vl.M(r) the leader creates a node t ∈ T with label
[A] and two variables < m[A], n[A] >. m[A] denotes the number of histories [A] in vl.M(r)
and n[A] is the number of processes in V2 that have sent [A]. Following the information flow,
at round 2, vl.M(2) will be formed by a single history [⊥] with multiplicity m[⊥]. The leader
creates the root of T with label [⊥], value m[⊥], and n[⊥] =? (where ? means unknown value).
It is important to remark that m values are directly computed from vl.M(r) while n values
are set by the leader at a round r′ ≥ r through a counting rule that will be explained later.

OPODIS 2015

33:6 Non Trivial Computations in Anonymous Dynamic Networks

The leader final target is to compute n[⊥] which corresponds to the number of processes
in V2.
At round r+2 if the leader receives a history h = [⊥, x0, . . . , xr−2, xr−1] and n[⊥,x0,...,xr−2] =?,
then it creates a node in t ∈ T with label h and value mh, this node is a child of the node
with label [⊥, x0, . . . , xr−2]. Otherwise the leader ignores h. It is straightforward to see that
the following equations hold:{

m[⊥,x0,...,xr−2,xr−1] =
∑|V1|

i=1 i · n[⊥,x0,...,xr−2,xr−1,i]

n[⊥,x0,...,xr−2,xr−1] =
∑|V1|

i=1 n[⊥,x0,...,xr−2,xr−1,i]
(1)

where i·n[⊥,x0,...,xr−2,xr−1,i] means that the leader received i copies of history [⊥, x0, . . . , xr−2,

xr−1], one for each process in V2 that at round r + 1 had history [⊥, x0, . . . , xr−2, xr−1, i].

Counting Rule: When in T there is a non-leaf node with label [⊥, x0, . . . , xr−2, xr−1, xr]
such that the leader knows the number of processes (i.e., n[A]), for each of its children
but one (i.e., n[⊥,x0,...,xr−1,xr,j] =?). Then the leader computes n[⊥,x0,...,xr−1,xr,j] using
m[⊥,x0,...,xr−2,xr−1,xr] =

∑|V1|
i=1 i · n[⊥,x0,...,xr−2,xr−1,xr,i].

When the leader knows the values n for each of the children of a non leaf-node t, it sums
the children values and sets the nt (see the second equation of Eq. 1).

Due to the fact that the number of processes is finite, eventually there will be a non-leaf
node in T with only one child (a leaf). Thanks to the counting rule, the n variables of the
child and of the father will be set. This will start a recursive procedure that will eventually
set n[⊥] terminating the counting.

In Figure 2 is depicted an example run of the algorithm. In the full version the detailed
pseudocode for T is provided.

Correctness proof

I Lemma 5. Let us consider the algorithm OPT. Eventually vl sets a value for n[⊥] and
this value is |V2|.

Proof. We first prove that eventually we reach a round in which the counting rule can be
applied for any leaf of T . Let us consider the subtree of T rooted in the node with label [A],
if there is only one child then the counting rule can be applied and n[A] can be computed.
Thus let us suppose that [A] has at least two children with labels [A, x], [A, x′] with x 6= x′.
We have that n[A,x] ≥ 1 and n[A,x′] ≥ 1 because there must be at least one sending process
for each degree-history. Considering that n[A] =

∑k
j=1 n[A,j], it follows that n[A,x] ≤ n[A]− 1.

Iterating this reasoning we have that when the height of the subtree rooted in [A] is greater
than n[A] − 1, then each leaf has no sibling: when there is a single process sending a certain
degree history H, in the next round there will be only one degree history with H as suffix.
As a consequence, after at most n[A] rounds, we may apply the counting rule for any leaf of
the subtree rooted in [A].

Now we prove by induction that: for each node v ∈ T if nv 6=?, then nv is equal to the
number of processes in V2 that had degree history equal to v at a given round.

Base case, leaf without siblings: Let v1 : [x0, . . . , xr+1] be a leaf without siblings and
v0 : [x0, . . . , xr] its father. vl sets, according to the counting rule, nv0 = nv1 = mv0

xr+1
. From

Eq 1 we have nv0 = nv1 which is equal to the number of processes in V2 that had degree
history [x0, . . . , xr].

G. Di Luna and R. Baldoni 33:7

round 0 round 1 round 2

Dynamic Graph

Data Structure Tree T

[?,1,1]

m[?] = 17, n? =?[?]

[?,1] [?,1] [?,1] [?,2] [?,2] [?,3] [?,3][?] [?] [?] [?] [?] [?] [?] [?,1,2] [?,1,2] [?,2,3] [?,2,3] [?,3,2] [?,3,1]

round 3

[?,1,1]

m[?] = 17, n? =?[?]

[?,1] [?,2] [?,3]
m[?,1] = 5 m[?,2] = 5 m[?,3] = 3

n[?,1] =? n[?,2] =? n[?,3] =?

[?,1,2]

[?,2,3]

[?,2]
n[?,2] = 2

n[?,2] =
m[?,2]

3
= 2

m[?,2] = 6

[?,3,2] [?,3,1]m[?,1,1] = 2
n[?,1,1] =?

m[?,1,2] = 3
n[?,1,2] =?

m[?,3,2] = 3

n[?,3,2] =?

m[?,3,1] = 3

n[?,3,1] =?

[?,1,1,2] [?,1,2,1] [?,1,2,2] [?,2,3,2] [?,2,3,1] [?,3,2,3] [?,3,1,3]

round 4

m[?] = 17, n? =?[?]

[?,1] [?,2] [?,3]
m[?,1] = 5 m[?,3] = 3

n[?,1] =? n[?,2] =? n[?,3] =?
m[?,2] = 6

m[?] = 17, n? =?[?]

[?,1] [?,2] [?,3]
m[?,1] = 5 m[?,2] = 5 m[?,3] = 3

n[?,1] =? n[?,2] =? n[?,3] =?

[?,1,2]

[?,2,3]

[?,2]
n[?,2] = 2

n[?,2] =
m[?,2]

3
= 2

m[?,2] = 6

[?,3,2] [?,3,1]m[?,1,1] = 2
n[?,1,1] =?

m[?,1,2] = 3
n[?,1,2] =?

m[?,3,2] = 3

n[?,3,2] =?

m[?,3,1] = 3

n[?,3,1] =?[?,1,1]
[?,1,1]

[?,1,1,2]

n[?,1,1] =
m[?,1,1]

2
= 1

n[?,1,1] = 1

n[?,1,2] = 2

n[?,1,2] =
m[?,1] � n[?,1,1]

2
= 2

n[?,1] = 3

n[?,3] =
m[?] � n[?,1] � 2n[?,2]

3
= 2

m[?] = 13 m[?] = 13

m[?] = 13
m[?] = 13

n[?,3] = 2

n[?] = 7

Figure 2 A run of OPT algorithm.

Inductive case: Let us consider v0 : [x0, . . . , xr] and the set of its children Cv0 with |Cv0 | > 1.
Let introduce a set Xv0 formed by the children for which n is known and set, formally:
Xv0 : {x ∈ Cv0 |nx 6=?}. If ∃!v1 : [x0, . . . , xr+1] ∈ Cv0 \ Xv0 , the leader sets (according to

the counting rule) nv1 =
mv0−

∑
∀[x0,...,xk]∈Xv0

(xk·n[x0,...,xk])

xr+1
. By inductive hypothesis we have

∀x ∈ Xv1 , nx is equal to the number of processes in V2 with degree history equal to x. Due
to Eq. 1, we have both nv1 and nv0 will be set to the correct value.

From the previous arguments we have that after at most |V2| rounds all the leaves of [⊥]
have no siblings, thus the counting rule will be applied recursively until the value n[⊥] is set
to |V2|. J

I Theorem 6. Let G be a dynamic graph of size |V | belonging to G(PD)2. A run of OPT
on G terminates in at most dlog2|V |e+ 3 rounds.

Proof. Let consider the algorithm OPT. The latter counts processes in V2, since the number
of processes in V1 is immediately known by vl at round 0, thus let us suppose that we
are in the worst case i.e., |V2| = O(|V |). Let us consider the tree T , given a node [A] the
maximum height of the subtree rooted in [A] is a function hmax(n[A]). We have that hmax

is non decreasing, hmax(n[A] − 1) ≤ hmax(n[A]): let us consider the worst scheduling that
the adversary uses with n[A] − 1 processes in order to obtain the maximum height. It easy

OPODIS 2015

33:8 Non Trivial Computations in Anonymous Dynamic Networks

to show that the same scheduling can be created with n[A] processes, the adversary will
simply force two processes to follow the behavior of a single process in the old schedule. Let
us restrict to the case when [A] has only two children: [A, x], [A, x′], for the counting rule
hmax(n[A]) = min(hmax(n[A,x]), hmax(n[A,x′])))+1. Considering the second equation of Eq. 1,
hmax(n[A]) can be rewritten as follows: hmax(n[A]) = 1 +min(hmax(n[A]

2 − δ), hmax(n[A]
2 +

δ)) ≤ 1 + min(hmax(n[A]
2), hmax(n[A]

2)) with δ ∈ [0, n[A]
2]. Thus, the optimal height can be

reached by having n[A,x] = n[A,x′] = n[A]
2 . Let us notice that when [A] has more than two

children, the maximum height of the subtree rooted in [A] cannot be greater than the one
obtained when [A] has two children. Iterating this reasoning, in the worst case T is a balanced
tree with degree at most 2 for each non leaf node and with exactly |V | leaves. The height of
this tree is dlog2(|V |)e. Each level of T corresponds to one round of OPT, this completes the
proof. J

A Ω(log |V |) bound on G(PD)2 has been shown in [14]. Therefore we have that OPT is
asymptotically optimal.

5 High level view of G(1-IC) counting algorithm

[19] and [18] conjectured: It is impossible to compute (even with a leader) the predicate
Na ≥ 1, that is “exists an a in the input”, in general anonymous unknown dynamic networks
with broadcast. In order to show that the conjecture is false we present a terminating counting
algorithm, namely EXT, on G(1-IC); this obviously implies the possibility to answer to any
existence predicate confuting the conjecture.

Let us introduce the underlying structure we use to build EXT. The first conceptual
step is to extend OTP to obtain a counting algorithm on G(PD)h. We denote this extended
algorithm OPT_h. As a second step, we consider networks in G(1-IC). In such networks,
at each round, processes can change their distance from the leader in [1, V − 1]. When a
process changes distance we say that the process “moved”.

5.1 Counting in G(PD)h: OPT_h Algorithm
As OPT, OPT_h begins with a get_distance phase over G(PD)h where each process v obtains
its distance from the leader, v.distance. This is done by using a simple flood and convergecast
algorithm. After this phase the counting begin.

Each non leader process v keeps a degree history, where each element is the number of
processes in N(v, r) whose distance from vl is v.distance− 1. Moreover v updates a multiset
v.M(r) that contains messages received by neighbors at distance v.distance+ 1. The degree
history and the multiset are broadcast at each round.

From an high level point of view the algorithm of vl works as follow: the leader first
computes the number of processes in V1. Then by using messages sent by process in V1, let
MS1 be this multiset2, it executes OPT to count the processes in V2. By counting processes
in V2 it also obtains the multiset MS2 of messages sent by these processes. At this point,
the leader simulates, using MS2, an execution of OPT counting processes in V3. Iterating
this procedure till processes at distance h we obtain the final count.

2 Due to anonymity multiple messages from different processes may be undistinguishable.

G. Di Luna and R. Baldoni 33:9

...

...

...

...

Dynamic Graph: G:{G0, G1, G2, . . .}
8G0

1, G
0
2, G

0
3, . . . ✓ G EXT executes

EXT

...

InstanceCount G0
2

InstanceCount G0
k

executes: executes:
InstanceCount G0

1
executes:

...
VCD to count

nodes in Vj

VCD to count
nodes in V1

...

VCD to count
nodes in V1

VCD to count
nodes in V1

VCD to count
nodes in Vj

VCD to count
nodes in Vj

OPT⇤ OPT⇤OPT⇤

OPT⇤OPT⇤ OPT⇤

Figure 3 Counting algorithm EXT and the relationship among its subalgorithms. Algorithms
VCD and OPT∗ are explained in Section 6; InstanceCount in Section 7. Finally, EXT is presented in
Section 8.

Let us remark that OPT_h is an asymptotically time optimal algorithm for graphs in
G(PD)h. A more detailed explanation of OPT_h, with pseudo-code and formal proofs can
be found in the full version.

5.2 Using G(PD)h to count in G(1-IC)

Let us introduce the notion of temporal subgraph G′ of G:

I Definition 7. (Temporal Subgraph) Given a dynamic graph G, a dynamic graph G′ is a
temporal subgraph of G (G′ ⊆ G) if and only if G′ : [Gi1 , Gi2 , . . .] is an ordered subsequence
of G : [G0, G1, G2, . . .].

We can show that in each G ∈ G(1-IC) there exists a temporal subgraph G′ that belongs
to G(PD)h:

I Lemma 8. Let us consider a dynamic graph G : [G0, G1, G2, . . .] ∈ G(1-IC). There exists
h ∈ N+ and ∃G′ ⊆ G such that G′ is infinite and G′ ∈ G(PD)h.

Now, let us define a counting algorithm InstanceCount. Such algorithm works on G ∈ G(1-
IC) and it has two properties: (P1) it terminates giving the correct count on instance
G′ ∈ G(PD)h; (P2) it does not give an incorrect count on G′ 6∈ G(PD)h. Thus, if G′ 6∈ G(PD)h

it can terminate giving either a correct count of the network or a special invalid value, i.e.
INVCNT. The strategy of EXT is to run a different instance of InstanceCount on each temporal
subgraph of G. Due to properties (P1) and (P2), EXT terminates correctly when an instance
of InstanceCount outputs a valid count value. For the property (P1) and for Lemma 8,
one instance of InstanceCount outputs a valid count value. Consequently, EXT is a correct
terminating counting algorithm.

InstanceCount counts as if the network is in G(PD)h. Therefore, the leader first counts
processes in V1, then processes in V2 and so on. This is done until vl counts processes of a
set Vh such that no set Vh+1 exists. The tricky part is to detect if the counting algorithm is
operating on a network in G(PD)h. In the affirmative, the count done with such strategy
will be correct. The procedure that counts each set Vj is a special algorithm, namely VCD.
VCD allows to detect if the count obtained for Vj is correct, returning the count value, or if
it is not possible to count Vj because some process moved during the counting, returning
NOCOUNT. The VCD algorithm is explained in the next Section.

OPODIS 2015

33:10 Non Trivial Computations in Anonymous Dynamic Networks

VM
2VM
2

VM
2VM
2

VM
2VM
2 VM

2VM
2

Unknown Size Unknown Size

v4v4

v4v4

v4v4v4v4

round rround r round r + 1round r + 1

round rround r round r + 1round r + 1

Vf
2Vf
2 Vf

2Vf
2

G(1-IC)G(1-IC) G(1-IC)G(1-IC)

G(PD)2G(PD)2 G(PD)2G(PD)2

Figure 4 In general G(1-IC) a subset V M
2 of processes in V2 may move changing the distance

from the leader and invalidating the correct count of processes in V2. Network size is unknown
therefore messages from process v4 need an unknown number of rounds to reach the leader. We
are interested in an algorithm that detects this using information from processes in V2 \ V M

2 . This
is equivalent to solve the problem on a networks in G(PD)2 where the subset V M

2 stops sending
messages after a certain round. In the example process v4 halts at round r + 1.

6 Valid Count Detection Algorithm (VCD)

Let us considering a network where processes in V1 do not change distance from the leader
along rounds. Remaining processes, including a proper subset V M

2 of processes in V2 at
round 0, may change distance along rounds. We wish to build an algorithm that solves this
problem: if no processes in V M

2 move during the counting, then the algorithm outputs the
correct count of processes at distance 2 at round 0. Otherwise, the algorithm outputs either
the correct count or a special invalid value. Unfortunately, in case processes change their
distance from the leader, OPT might fail outputting a wrong count.

One strategy to build such algorithm could be to first use OPT then, after OPT termination,
to start a waiting phase in order to receive messages from processes that could have moved.
Sadly, this simple OPT-based strategy does not work. If vl outputs the final count at round
r, the message from a process that moved could arrive at round r + 1, invaliding the count.
Thus, vl should wait for some time before outputting the count but this time cannot be
bounded as the size of the network is unknown. From this point of view, if a process changes
distance across rounds in a network of unknown size it is like if this process halts and it does
not send anymore messages. We denote this problem as Valid Count Detection.

Valid Count Detection Problem (VCDP)

Let us consider a graph in G(PD)2 where processes in V2 may halt at some point. We say
that vi halts at round r if it has send messages for any round r′′ < r, and it does not send
messages for any r′ ≥ r. We assume that processes halt from round r ≥ 1; that is they
send at least one message before their departure. Now we introduce the VCDP problem on
G(PD)2:

G. Di Luna and R. Baldoni 33:11

I Problem 9 (VCDP). Given two run R,RNC such that: in the run R no process halts; in
the run RNC there are processes that halt. An algorithm solves the Valid Count Detection
Problem if at some round r it outputs a value and terminates. The output could be either a
special value NOCOUNT or a number C = |V2|. On run R the output value has to be C. On
run RNC it could be either C or NOCOUNT.

The VCD Algorithm to solve VCDP

When identifiers are present a simple broadcast algorithm solves VCDP in G(PD)2. In our
model we solve it by using an extension OPT, denoted as OPT∗. When processes halt OPT∗
has a peculiar “overestimation” property (see Lemma 11).

Algorithm OPT∗

The algorithm OPT∗ differs from OPT in:
Its output is considered not valid if we have one of the following: (i) the value n computed
for some node of the tree is not in N+; (ii) if some of the Equations 1 are violated, i.e.
m[⊥,x0,...,xr−2,xr−1] ≷

∑|V1|
i=1 i · n[⊥,x0,...,xr−2,xr−1,i]; (iii) if at round r + 2 there exists a

node in T with label [⊥, x0, . . . , xr−2, xr−1, xr] and at round r+ 3 does not exists a node
with label [⊥, x0, . . . , xr−2, xr−1, xr, ∗].
Its counting rule is a restricted version of the OPT counting rule. Specifically: when in T
there is a non-leaf node with label [⊥, x0, . . . , xr−2, xr−1, xr] such that it has only one
child [⊥, x0, . . . , xr−1, xr, j] the leader computes n[⊥,x0,...,xr−1,xr,j] using:

m[⊥,x0,...,xr−2,xr−1,xr] = j · n[⊥,x0,...,xr−2,xr−1,xr,j] .

When the leader knows the values n for each of the children of a non leaf-node t, it sums
the children values and sets the nt (see the second equation of Eq. 1).

Algorithm OPT∗ has the following properties:

I Lemma 10. Let R be a run produced by OPT∗. R terminates in O(|V2|) rounds.

I Lemma 11. Let R be a run produced by OPT∗ that starts at round 0 and |V f
2 | be the

number of non-halted processes in V2 at the end of the execution of OPT∗. If at some round
r > 0 processes in V2 halt, then if the output C of OPT∗ is valid we have C > |V f

2 |.

Informally the previous Lemma says that, if there are halted processes, the output of
OPT∗ is always an overestimate on the number of non-halted processes. The following lemma
states that if no process halts then the output is the number of processes.

I Lemma 12. Let R be a run produced by OPT∗ that starts at round 0. If no process in V2
halts during the run, then the output of OPT∗ is valid and it is the correct count of processes
in V2.

Algorithm VCD

The algorithm executes sequentially k runs of OPT∗ starting from round 0, for some k > |V2|.
The leader compares the output of these runs: if they are all equal and valid, then VCD
outputs the count obtained by the first run of OPT∗. Otherwise VCD outputs NOCOUNT.
The value k is computed by counting the edges connecting processes in V1 with processes

OPODIS 2015

33:12 Non Trivial Computations in Anonymous Dynamic Networks

1: M(−1) = []
2: H(−1) = [⊥]
3: distance = −1
4:
5: procedure sending_phase
6: send(Message :< distance, M(r), H(r) >)
7:
8: procedure rcv_phase(MultiSet MS)
9: if distance == −1 ∧ ∃m ∈MS |m.distance 6= −1 ∧m.distance == r then
10: distance=m.distance+1
11: if r == distance then
12: for all m ∈MS |m.distance == −1 do
13: m.distance=distance+1
14: if distance 6= −1 then
15: if r > distance ∧ ∃m ∈MS |m.distance 6∈ {distance− 1, distance, distance + 1} then
16: M(r + 1) = M(r).append(INVCNT)
17: H(r + 1) = H(r).append(count_distance_neighbors(MS, distance− 1))
18: M(r + 1) = M(r).append(get_messages_from_distance(MS, distance + 1))

Figure 5 InstanceCount for G(1−IC): pseudocode for Non-Leader process.

belonging to V2 at round 0. This can be done trivially by vl using messages from nodes in
V1. Each node in V1 has to simply count neighbors in V2, the sum of these partial count is
equal to k − 1.

I Theorem 13. Algorithm VCD solves the VCDP problem.

7 InstanceCount

This algorithm assumes that the communication graph belongs to G(PD)h then if Instance-
Count notices that some process changed the distance from the leader along rounds, it invalids
the count.

Non-leader process behavior (Figure 5)

Each non leader process v has three variables: v.distance indicating its distance from
the leader and two lists v.M and v.H. v assigns a value to v.distance as follows: if, at
round r, v has v.distance = −1 and it is neighbor of a process with distance = r 6=
−1, v sets its distance to r + 1 (Line 9). Initially, the leader is the only process with
distance = 0. As in OPT, v updates its degree history v.H(r) by counting the number
of processes in N(v, r) whose distance is equal to v.distance − 1. Moreover v updates a
multiset v.M(r) that contains messages received by neighbors at distance v.distance+ 1; if
v has not received any of these messages, it adds ⊥ to the multiset. In the sending phase, v
broadcasts < v.distance, v.M(r), v.H(r) > to its neighbors. This is done by using functions
count_distance_neighbors and get_messages_from_distance.

A process that has distance = r adds the messages from processes with distance = −1
to M list, let us recall that these processes with distance = −1 will set distance = r + 1 at
round r. Finally at Line 16 a process adds an INVCNT message toM if it detects that at least
one its neighbor changed its distance from the leader which implies that the communication
graph is not in G(PD)h (see condition at Line 15). In the following when we refer to the set
Vh, we consider processes setting their distance from the leader to h.

G. Di Luna and R. Baldoni 33:13

Leader process behavior (Figure 6)

The leader vl first computes the number of processes in V1, this is simply done by counting
the messages received from these processes. After that, vl executes VCD to count processes
in V2. This is done (i) by receiving the multi-set of messages MS from processes in V1
(these processes are immediate neighbors of vl) and (ii) by calling at Line 16 the function
buildLastSet. This function takes the multi set MS and starts an instance of VCD to
construct the multi-set MSlast of messages sent by processes in V2. We define as VCD(MS, r)
the local leader side simulation of a run of VCD that starts at round r using the content of
messages in MS. The function returns one out of three possible values: (i) ⊥ if the messages
in MS are not enough to terminate the execution of VCD; (ii) NOCOUNT if VCD detects an
halt ; (iii) A multi-set MSlast of messages sent by processes belonging to V2 at round r.

This multi-set leads to the actual count of processes in V2 (see Line 21). This procedure
is iterated: each time the leader obtains the multi-set MS sent by processes in Vh−1, vl calls
buildLastSet to reconstruct the most recent multi-set sent by processes in Vh.

The leader returns INVCNT if either (i) there is a INVCNT message in some MS (see
Lines 26) or (ii) if one of the instances of VCD terminates returning NOCOUNT. If an halt
is detected then a process v ∈ Vj at some round had a distance from vl different than j.
Additionally, at Line 8 the leader checks if processes in V1, from which it receives messages,
are stable; if this set changes the current instance is considered INVCNT.

The leader outputs the count when it counts a set Vh such that no process in Vh has a
neighbor in Vh+1, see Line 13.

Correctness Proof

I Lemma 14. Let R be a run of InstanceCount on a dynamic graph G ∈ G(PD)h. We have
that vl will never output INVCNT in R.

I Lemma 15. Let R be a run of InstanceCount on a dynamic graph G ∈ G(1-IC). If Vh 6= ∅
in R, either (1) the leader obtains the count Vh or (2) the leader outputs INVCNT.

I Lemma 16. Let R be a run of InstanceCount on a dynamic graph G ∈ G(1-IC). If vl

outputs a value distinct from INVCNT in R, then that value is |V |.

I Lemma 17. Let R be a run of InstanceCount on a dynamic graph G ∈ G(PD)h. We have
that vl terminate and it outputs |V | in R.

8 EXT Counting Algorithm

EXT executes an instance of InstanceCount for each temporal subgraph of G. Let us define
as PG as the set of such subgraphs of G. We want that processes execute for each G′ ∈ PG a
different instance IG′ of InstanceCount and that such instances do not interfere with each
other. Let us remark that the system is synchronous and the current round number r is
known by all processes. Therefore each IG′ is uniquely identified by a binary string that has
value 1 in position j if Grj ∈ G′ and 0 otherwise. The uniqueness guarantees that instances
can run in parallel. At each new round r the number of instances is doubled, half of the new
instances will consider the messages exchanged within round r and the remaining ones will
not consider these messages. As example at the end round 0 we have two instances I1, I0. In
instance I1 the counting is started and processes have received the message exchanged in G0.
In instance I0 the counting has not been started, the messages exchanged in round 0 are
ignored. At round 1 we have four instances I11, I10, I01, I00: I11 is an instance of counting

OPODIS 2015

33:14 Non Trivial Computations in Anonymous Dynamic Networks

1: distance_count[] = ⊥
2: distance = 0
3: procedure sending_phase
4: send(< distance,⊥,⊥ >)
5:
6: procedure rcv_phase(MultiSet MS :< distance, M, H >)
7: i = 1
8: if (distance_count[i] 6= ⊥ ∧ distance_count[i] 6= |MS|) ∨ (∃m ∈MS|m.distance > 1) then
9: output(INVCNT)
10: distance_count[i] = |MS|
11: i + +
12: while true do
13: if MS 6= ∅ ∧ (∀m ∈MS : m.M = [⊥, . . . ,⊥] ∧ size(m.M) > 1) then
14: count =

∑
∀j|distance_count[j]6=⊥

distance_count[j]
15: output(count)
16: MS =buildLastSet (MS)
17: if ∃INVCNT ∈MS then
18: output(INVCNT)
19: if MS = ⊥ then
20: break
21: distance_count[i] = |MS|
22: i + +
23:
24: function buildLastSet(MS)
25: MSlast = ⊥
26: if MS.containsSymbol(INVCNT) then
27: return {INVCNT}
28: for r =MinRound(MS); r <MaxRound(MS); r + + do
29: if VCD(MS, r) ==NOCOUNT then
30: return {INVCNT}
31: if VCD(MS, r) 6= ⊥ then
32: if MSlast 6= ⊥ ∧ |MSlast| 6= | VCD(MS, r)| then
33: return {INVCNT}
34: MSlast = VCD(MS, r)
35: else
36: break
37: return MSlast

Figure 6 InstanceCount for G(1−IC): pseudocode for Leader process.

in which messages exchanged in G0, G1 are considered; in I10 are considered only messages
exchanged in G1 and ignored messages exchanged in G0; in I01 are considered only messages
exchanged in G0 and ignored messages exchanged in G1; in I00 the counting has not been
started. The pseudocode to implement the this procedure is trivial, thus it is omitted.

I Theorem 18. Let R be a run of EXT on a dynamic graph G ∈ G(1-IC). Eventually, vl

terminates and it outputs the correct count in R.

From the previous Theorem and from the impossibility of non trivial computation without
a leader presented in [18, 19] we have:

I Theorem 19. Let us consider an anonymous unknown 1-interval connected networks
with broadcast. A distinguished leader process is necessary and sufficient to do non trivial
computations.

Besides counting and existence predicates other non-trivial problems are solvable using
simple variation of EXT. Let us assume that each process has an initial input value. If this
initial input is attached in the messages of EXT the leader can compute the exact multiset
of these values. Thanks to this multiset the leader may compute aggregation functions as
average,min,max.

G. Di Luna and R. Baldoni 33:15

Complexity Discussion

The EXT algorithm has an exponential complexity:. If we consider that distances of each
node from vl are in [1, |V |−1], then it is easy to see that the number of possible combinations
of distances over the set of nodes is upper bounded by |V ||V |, therefore by definition of G(PD)
we have maxj(|ij − ij+1|) ≤ |V ||V |. Now what we have to bound is the number of instances
of G′ needed by EXT to terminate, but this can be easily computed by considering when
counting terminate with InstanceCount on a graph G(PD). At each level we count in at most
O(|V |3) rounds, therefore it is easy to show by straightforward induction that the total cost
is O(|V |4). So EXT terminates in at most O(|V ||V |+4) rounds.

9 Conclusion

In this paper we have shown that, in anonymous interval connected network with broadcast,
a leader node is enough to do non trivial computations. This answers negatively to the
conjecture presented in [19, 18]. Moreover we have shown an optimal counting algorithm
for G(PD)2 networks, proving the tightness of the bound shown in [14]. However, our EXT
algorithm has an exponential complexity, both in memory and in the number of rounds. In
G(1-IC) networks with IDs, when there is unlimited bandwidth, counting requires O(|V |)
rounds. It is unknown if handling anonymity in G(1-IC) requires this exponential cost. A
future line of work could be the investigation of this gap.

References

1 D. Angluin. Local and global properties in networks of processors (extended abstract). In
STOC’80, pages 82–93. ACM, 1980. doi:10.1145/800141.804655.

2 R. Baldoni, S. Bonomi, A. Kermarrec, and M. Raynal. Implementing a register in a dynamic
distributed system. In IEEE International Conference on Distributed Computing Systems
(ICDCS’09), pages 639–647, 2009. doi:10.1109/ICDCS.2009.46.

3 M. Bawa, A. Gionis, H. Garcia-Molina, and R. Motwani. The price of validity in dynamic
networks. J. Comput. Syst. Sci., 73(3):245–264, May 2007. URL: 10.1016/j.jcss.2006.
10.007, doi:10.1016/j.jcss.2006.10.007.

4 Joffroy Beauquier, Janna Burman, Simon Clavière, and Devan Sohier. Space-optimal count-
ing in population protocols. In (to appear) DISC’15, 2015. URL: https://hal.inria.fr/
hal-01169634.

5 P. Boldi and S. Vigna. Computing anonymously with arbitrary knowledge. In PODC’99,
pages 181–188. ACM, 1999.

6 P. Boldi and S. Vigna. Fibrations of graphs. Discrete Mathematics, 243(1-3):21–66, 2002.
doi:10.1016/S0012-365X(00)00455-6.

7 A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs and dy-
namic networks. CoRR, abs/1012.0009, 2010. URL: http://arxiv.org/abs/1012.0009.

8 P. Fraigniaud, A. Pelc, D. Peleg, and S. Pérennes. Assigning labels in an unknown
anonymous network with a leader. Distributed Computing, 14(3):163–183, 2001. doi:
10.1007/PL00008935.

9 M. Jelasity, A. Montresor, and Ö. Babaoglu. Gossip-based aggregation in large dynamic
networks. ACM Trans. Comput. Syst., 23(3):219–252, 2005.

10 D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate information.
In FOCS’03, pages 482–491. IEEE, 2003. doi:10.1109/SFCS.2003.1238221.

OPODIS 2015

http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1109/ICDCS.2009.46
10.1016/j.jcss.2006.10.007
10.1016/j.jcss.2006.10.007
http://dx.doi.org/10.1016/j.jcss.2006.10.007
https://hal.inria.fr/hal-01169634
https://hal.inria.fr/hal-01169634
http://dx.doi.org/10.1016/S0012-365X(00)00455-6
http://arxiv.org/abs/1012.0009
http://dx.doi.org/10.1007/PL00008935
http://dx.doi.org/10.1007/PL00008935
http://dx.doi.org/10.1109/SFCS.2003.1238221

33:16 Non Trivial Computations in Anonymous Dynamic Networks

11 J. Kong, X. Hong, and M. Gerla. An identity-free and on-demand routing scheme against
anonymity threats in mobile ad hoc networks. IEEE Transactions on Mobile Computing,
6(8):888–902, 2007.

12 F. Kuhn, N. Lynch, and R. Oshman. Distributed computation in dynamic networks. In
STOC’10, pages 513–522. ACM, 2010. doi:10.1145/1806689.1806760.

13 F. Kuhn and R. Oshman. Dynamic networks: Models and algorithms. SIGACT News,
42(1):82–96, March 2011. doi:10.1145/1959045.1959064.

14 G. Di Luna and R. Baldoni. Brief announcement: Investigating the cost of anonymity
on dynamic networks. In PODC’15, pages 339–341. ACM, 2015. doi:10.1145/2767386.
2767442.

15 G. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Conscious and unconscious
counting on anonymous dynamic networks. In ICDCN’14, pages 257–271. Springer, 2014.

16 G. Di Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Counting in anonymous
dynamic networks under worst case adversary. In ICDCS’14, pages 338–347. IEEE, 2014.

17 L. Massoulié, E. Le Merrer, A.-M. Kermarrec, and A. Ganesh. Peer counting and sampling
in overlay networks: Random walk methods. In PODC’06, pages 123–132. ACM, 2006.
doi:10.1145/1146381.1146402.

18 O. Michail, I. Chatzigiannakis, and P. Spirakis. Brief announcement: Naming and counting
in anonymous unknown dynamic networks. In DISC’12, pages 437–438. Springer, 2012.

19 O. Michail, I. Chatzigiannakis, and P. Spirakis. Naming and counting in anonymous
unknown dynamic networks. In SSS’13, pages 281–295. Springer, 2013. doi:10.1007/
978-3-319-03089-0_20.

20 O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Causality, influence, and computation
in possibly disconnected synchronous dynamic networks. In OPODIS’12, pages 269–283,
2012. doi:10.1007/978-3-642-35476-2_19.

21 D. Mosk-Aoyama and D. Shah. Computing separable functions via gossip. In PODC’ 06,
pages 113–122. ACM, 2006. doi:10.1145/1146381.1146401.

22 R. O’Dell and R. Wattenhofer. Information dissemination in highly dynamic graphs. In
DIALM-POMC’ 05, pages 104–110, 2005. doi:10.1145/1080810.1080828.

23 B. Ribeiro and D. Towsley. Estimating and sampling graphs with multidimensional random
walks. In IMC’10, pages 390–403, New York, NY, USA, 2010. ACM. doi:10.1145/1879141.
1879192.

24 N. Sakamoto. Comparison of initial conditions for distributed algorithms on anonymous
networks. In Proceedings of the eighteenth annual ACM symposium on Principles of dis-
tributed computing, PODC’99, pages 173–179. ACM, 1999. doi:10.1145/301308.301352.

25 M. Yamashita and T. Kameda. Computing on an anonymous network. In PODC’88, pages
117–130. ACM, 1988. doi:10.1145/62546.62568.

26 M. Yamashita and T. Kameda. Computing on anonymous networks: Part 1-characterizing
the solvable cases. IEEE Trans. on Parallel and Distributed Systems, 7(1):69–89, 1996.
doi:10.1109/71.481599.

http://dx.doi.org/10.1145/1806689.1806760
http://dx.doi.org/10.1145/1959045.1959064
http://dx.doi.org/10.1145/2767386.2767442
http://dx.doi.org/10.1145/2767386.2767442
http://dx.doi.org/10.1145/1146381.1146402
http://dx.doi.org/10.1007/978-3-319-03089-0_20
http://dx.doi.org/10.1007/978-3-319-03089-0_20
http://dx.doi.org/10.1007/978-3-642-35476-2_19
http://dx.doi.org/10.1145/1146381.1146401
http://dx.doi.org/10.1145/1080810.1080828
http://dx.doi.org/10.1145/1879141.1879192
http://dx.doi.org/10.1145/1879141.1879192
http://dx.doi.org/10.1145/301308.301352
http://dx.doi.org/10.1145/62546.62568
http://dx.doi.org/10.1109/71.481599

Analysis of Bounds on Hybrid Vector Clocks∗

Sorrachai Yingchareonthawornchai1, Sandeep Kulkarni2, and
Murat Demirbas3

1 Michigan State University, MI, USA
yingchar@cse.msu.edu

2 Michigan State University, MI, USA
sandeep@cse.msu.edu

3 University at Buffalo, SUNY, NY, USA
demirbas@buffalo.edu

Abstract
Hybrid vector clocks (HVC) implement vector clocks (VC) in a space-efficient manner by ex-
ploiting the availability of loosely-synchronized physical clocks at each node. In this paper, we
develop a model for determining the bounds on the size of HVC. Our model uses four parameters,
ε: uncertainty window, δ: minimum message delay, α: communication frequency and n: number
of nodes in the system. We derive the size of HVC in terms of a differential equation, and show
that the size predicted by our model is almost identical to the results obtained by simulation. We
also identify closed form solutions that provide tight lower and upper bounds for useful special
cases.

Our model and simulations show the HVC size is a sigmoid function with respect to increasing
ε; it has a slow start but it grows exponentially after a phase transition. We present equations to
identify the phase transition point and show that for many practical applications and deployment
environments, the size of HVC remains only as a couple entries and substantially less than n.
We also find that, in a model with random unicast message transmissions, increasing n actually
helps for reducing HVC size.

1998 ACM Subject Classification C.2.4 Distributed Systems, distributed databases, D.1.3 Con-
current Programming, D.4.2. Distributed memories, D.4.3 Distributed file systems

Keywords and phrases Vector Clocks, Physical Clocks, Large Scale Systems

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.34

1 Introduction

Work on theory of distributed systems abstract away from the wall-clock/physical-clock
time and use the notion of logical clocks for ordering events in asynchronous distributed
systems [12, 10, 13]. The causality relationship captured by these logical clocks, called
happened-before (hb), is defined based on passing of information, rather than passing of
time.1 Lamport’s logical clocks [12] (LC) prescribe a total order on the events: A hb B =⇒
lc.A < lc.B but vice a versa is not necessarily true. Vector clocks [10, 13] (VC) prescribe
a partial order on the events: A hb B ⇐⇒ vc.A < vc.B and A co B ⇐⇒ (¬(vc.A <

vc.B) ∧ ¬(vc.B < vc.A). Using LC or VC, it is not possible to query events in relation to
physical time. Moreover, for capturing hb, LC and VC assume that all communication occur

∗ This work is supported by NSF CNS 1329807, NSF CNS 1318678, NSF XPS 1533870, and XPS 1533802.
1 Event A hb event B, if A and B are on the same node and A comes earlier than B, or A is a send event

and B is the corresponding receive event, or this is defined transitively based on the previous two.

© Sorrachai Yingchareonthawornchai, Sandeep Kulkarni, and Murat Demirbas;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 34; pp. 34:1–34:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.34
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

34:2 Analysis of Bounds on Hybrid Vector Clocks

in the present system and there are no backchannels. This assumption is obsolete for today’s
integrated, loosely-coupled system of systems. Finally, the space requirement of VC is shown
to be Θ(n) [3], the number of nodes in the system, and is prohibitive.

Practice of distributed systems, on the other hand, employ loosely synchronized clocks,
mostly using NTP [15]. Unfortunately, there are fundamental limits to clock synchroniza-
tion and perfect synchronization is unachievable due to the nature of distributed systems:
messaging with uncertain latency, clock skew among processors, and NTP glitches [15].
Even using atomic clocks, as in Google TrueTime [5], it is hard to reduce ε, the uncer-
tainty of the clock synchronization, to less than a couple milliseconds. This requires that
operations/transactions wait out these ε uncertainties, which takes its toll on the performance.

Recently, we introduced a third option, hybrid clocks [6, 11]. Hybrid clocks combine the
best of logical and physical clocks; hybrid clocks are immune to their disadvantages while
providing their benefits. Hybrid clocks are loosely synchronized using NTP, yet they also
provide provable comparison conditions as in LC or VC within ε uncertainty. Hybrid clocks
also address the backchannel communication issue by introducing the notion of ε− hb that
captures the intuition that if event B happened far later than event A, then event A can
affect event B due to out-of-bound communication. If events A and B are close, then the
causality relation is taken into account to identify whether A can affect B.

Our hybrid clocks come in two flavors: hybrid logical clocks (HLC) [11] and hybrid vector
clocks (HVC) [6]. HLC satisfy the logical clock comparison condition as in LC [12]. HLC finds
applications in multiversion distributed database systems [4] and enable efficient querying of
consistent snapshots for read transactions, while ensuring commits of write transactions do
not get delayed despite the uncertainties in NTP clock synchronization [11]. HVC satisfy the
vector clock comparison condition as in VC [10, 13], and can serve in applications that HLC
become inadequate. In contrast to HLC that can provide a single consistent snapshot for a
given time, HVC is able to provide all possible/potential consistent snapshots for that given
time. As such, HVC finds applications in debugging for concurrency race conditions of safety
critical distributed systems and in causal delivery of messages to distributed system nodes.

HVC reduces the overhead of causality tracking in VC by utilizing the fact that the clocks
are reasonably synchronized. When ε is infinity, HVC behaves more like VC used for causality
tracking in asynchronous distributed systems. When ε is very small, HVC behaves more like
a scalar physical synchronized clock, but also combines the benefits of causality tracking
in uncertainty intervals. Although the worst case size for HVC is Θ(n), we observe that if
j does not hear (directly or transitively) from k within ε time then hvc.j[k] need not be
explicitly maintained. In that case, we still infer implicitly that hvc.j[k] equals hvc.j[j]− ε,
because hvc.j[k] can never be less than hvc.j[j] − ε thanks to the clock synchronization
assumption. Therefore, in practice the size of hvc.j would only depend on the number of
nodes that communicated with j within the last ε time and provided a fresh timestamp that
is higher than hvc.j[j]− ε. In other words, by using temporal slicing, HVC can circumvent
the Charron-Bost result [3] and can potentially scale the VC benefits to many thousands of
processes by still maintaining small HVC at each process.

Contributions of this paper. But how effective are HVC for reducing the size of VC? What
bounds should we expect on the number of entries in HVC for a given ε? Determining these
bounds on HVC would help developers to budget the size of the messages the nodes send,
the size of the memory to maintain at the nodes, and the scalability and performance of
their system. In this paper, we derive and identify these bounds.

To this end, we develop an analytical model that uses four parameters, ε: uncertainty
window, δ: minimum message delay, α: message rate, and n: number of nodes in the system.

S. Yingchareonthawornchai, S. Kulkarni, and M. Demirbas 34:3

We derive the size of HVC in terms of a differential equation, and show that the size predicted
is almost identical to the results obtained by simulation experiments. We also identify closed
form solutions that provide tight lower and upper bounds for useful special cases.

Our model and simulations show the HVC size is a sigmoid function with respect to
increasing ε; it has a slow start but it grows exponentially after a critical phase transition.
Before the phase transition threshold, HVC maintains couple entries per node, however when
a threshold is crossed, a node not only gets entries added to its clock from direct interaction
but also indirect transfer from another processes HVC, and this makes the HVC entries blow
up. We present equations to identify this transition point. Specifically, for the common case
of α ∗ δ < 1, we derive this threshold as (1

α + δ)(ln((2−
√

3)(n− 1))).
Using this equation, we describe how to avoid/delay the threshold point. If an application

developer reduces α, the phase transition is delayed, and small HVC sizes are still achievable
for a given ε and δ. Moreover, while in VC the size increases directly with n, we find that in
HVC, surprisingly, the increase of n, in fact, benefits in reducing the size of HVC. Using a
model with random unicast message transmissions, for larger n, the probability of indirect
HVC entry addition/transfer reduces slightly, and hence larger n, in fact delays the phase
transition to large HVC sizes.

We show in our discussion section that for most practical applications and deployment
environments, the size of HVC remains only as a couple entries and substantially less than n.
Yet, when it is needed HVC expands on demand to allow more entries to capture causality
both ways in the ε uncertainty slices.

Outline of the rest of the paper. After presenting the preliminaries in Section 2, we present
our analytical solutions in Section 3, and solutions for useful special cases in Section 4. We
present evaluation results in simulation to show how well the analytical models capture the
HVC bounds in Section 6. We discuss practical implications of our findings in Section 7,
related work in Section 8, and conclude in Section 9.

2 System Model

We use n to denote the number of processes in the system. Although processes can be
added dynamically, we assume that each of them has a distinct identifier. Each process j
is associated with a physical clock pt.j. We assume that clock synchronization algorithm
such as NTP [15] is used to provide a reasonable but imperfect clock synchronization to the
processes. For ease of presentation, we assume the existence of an absolute time: this time is
not accessible to processes themselves, and it is used only for the presentation and proofs
associated with our algorithm. Specifically, we assume that at any given time the difference
between any two clocks at processes, pt.j and pt.k, is bounded by ε, ε ≥ 0.

Processes communicate via messages. We make no assumptions such as FIFO ordering
or bounded delivery time. In other words, messages could be delivered out of order. They
could also be delivered a long time after they are sent. We assume that there is a minimum
message delay δmin (as computed by the absolute global time) before message is delivered.

In our analytical model to compute the size of HVC at any process, we assume that
at each absolute time tick, each process sends a message to some other process (selected
randomly) with probability α. We permit messages to be delivered as early as possible, we
allow a process to receive multiple messages simultaneously.

Let sj(t) be a random variable representing size of active HVC of process j at time t.
Thus, our goal is to identify an expected average active HVC size Ψ(t) = E[

∑
j sj(t)/n], and

OPODIS 2015

34:4 Analysis of Bounds on Hybrid Vector Clocks

ψ(t) = Ψ(t)/n. We aim to find an analytical solution to ψ(t) given four parameters ε, δ, α,
and n.

2.1 Unconstrained and Constrained Time Models
To develop this analytical solution, we develop two models: 1) an unconstrained model where
we compute the size of HVC by assuming that ε = ∞, and 2) a constrained model that
considers the value of ε. Without loss of generality, we focus on one sender process, say j.
Our goal is to identify the number of processes that maintain he clock of this process at a
given time t. In turn, this enables us to find the expected size of each HVC entry. To make
this analysis simpler to understand, we introduce the notion of a color –red or green– for
each process. The color of process k is red at time t iff k is maintaining the clock of process
j at time t. In other words, color.k is red iff the knowledge that k has about the clock of j is
more than that provided by clock synchronization. Clearly, in the initial state t = 0, j is red
and all other processes are green.

Model 1: unconstrained time model. Given the notion of color maintained by each process,
we can observe that if a red process sends a message to a green process, then the green process
learns information about the clock of j. In other words, it makes the recipient red. Messages
sent by green process can be ignored since they do not provide non-trivial information about
the clock of j.

In this model, let Y (t) denote number of red processes at time t. Note that n− Y (t) is
number of green processes at time t. Also, let y(t) = Y (t)/n be the fraction of red process at
time t. We aim to analytically compute y(t) given δ, α, n for ε→∞.

Model 1 captures the case where ε =∞. The reason we consider this model is due to an
important result (shown in Theorem 13) that demonstrates that the value of Y (ε) can be
used to compute the number of red processes in the ε-constrained model (discussed next)
that utilizes the actual value of ε in the given system.

Model 2: ε-constrained time model. To capture the effect of the hybrid model where ε
has a finite value (and hence, a red process will turn green if it does not hear recent clock
information of process j), we define τ -message as a message that is originated by the initial
red process j at time τ . τ -message triggers green process to be red if τ + ε ≤ t. Otherwise,
even if the green process receives information about the clock of j, this information is still
beyond the uncertainty interval. Let Yε(t) be number of red processes of Model 2 at time t.
We aim to compute an analytical solution to yε(t) = Yε(t)/n for given ε, δ, α, and n.

3 Analytical Solutions

Given that ε-constrained time model can be answered by unconstrained time model as shown
in Theorem 13, this means analytical solution to unconstrained time model implies the
solution to our system model.

Based on the definition of color.k, in the initial state, color.j is red and color.k is green
for any k 6= j. It follows that at time t = [0..δ], j is the only red process as message sent by
j has not been received by anyone. When a green process receives a message it turns red
and stays red forever. Let Y (t) be number of red processes at time t. Note that number of
green processes at time t is then n− Y (t). Since message delay for every message is δ, Y (t)
depends upon Y (t− δ), i.e., the number of processes that were red δ time before.

S. Yingchareonthawornchai, S. Kulkarni, and M. Demirbas 34:5

Our first result in this context, given in Lemma 1, captures the number of messages
delivered at time t to green processes.

I Lemma 1. The expected number of messages delivered to green processes at time t is
αY (t− δ)(1− Y (t)/n)

Proof. The expected number of red messages delivered at time t is αY (t− δ) since each red
process in Y (t− δ) has α probability to send a unicast message. At time t, the probability
of a message getting delivered to green is the fraction of green process at time t, 1− Y (t)/n
assuming that each process has equally likely change to receive such message. The result
follows immediately by linearity of expectation. J

Although Lemma 1, counts the number of red messages sent to green processes, it
overcounts the processes that can become red, as one green process may receive multiple
messages. To analyze the number of processes that turn red, we observe that this problem
can be viewed as throwing a number of balls (i.e., messages sent by red processes) into a
set of bins (i.e., the green processes) to identify the expected number of non-empty bins
(i.e., processes that receive at least one ball and therefore turn red). In this context, we use
Lemma 2.

I Lemma 2. Consider occupancy problem where there are A balls and B bins. All balls are
thrown to random bins. Expected number of non-empty bins is B(1− (1− 1/B)A).

Proof. Fix one bin. Probability of the bin being empty is (1− 1/B)A since all balls must
miss this bin. By linearity of expectation, expected number of empty bins is B(1− 1/B)A.
Hence, expected number of non-empty bins is B minus number of empty bins. J

Now, we can compute the change of red processes at time t by applying Lemma 2 using
A = αY (t− δ)(1− Y (t)/n) (from Lemma 1) and B = n− Y (t) since B is number of green
process at time t. Hence, dY (t)

dt is (n− Y (t))(1− (1− 1
(n−Y (t)))αY (t−δ)(1−Y (t)/n))

We can simplify the expression by using the fact that limn→∞(1 +x/n)n = ex. We adjust
some terms in Equation above and let x = −1

(1−Y (t)/n) , we obtain

(n− Y (t))(1− (1− 1
n(1−Y (t)/n))αnnY (t−δ)(1−Y (t)/n)) = (n− Y (t))(1− e

−αY (t−δ)
n)

Since y(t) = Y (t)/n, we get dy(t)
dt = (1− y(t))(1− e−αy(t−δ))

Finally, based on the initial values, we have y(t) = 1/n for t < δ. And, since we can
consider each process j independently, which means the expectation does not change. Thus,
we have the following Theorem.

I Theorem 3. The expected average size of hvc per process of ψ(t) satisfies the following
delay differential equation.

dψ

dt
= (1− ψ(t))(1− e−αψ(t−δ))

where initial condition is ψ(t) = 1/n for t < δ.

From this point on, we use ψ(t) (random variable of fraction of average size of hvc) and
y(t) (random variable of fraction of red processes) interchangably since they have same
expactation value.

OPODIS 2015

34:6 Analysis of Bounds on Hybrid Vector Clocks

4 Explicit Solutions for Special Cases

Theorem 3 provides a mechanism to compute the size of hvc. Since the differential equation
in Theorem 3 cannot be solved explicitly, one must utilize numerical tools, such as MATLAB
and Mathematica, to obtain the size of hvc from that equation.

However, closed form solutions —that can be computed with a basic calculator— may be
more desirable since they can offer a quick insight into the size of hvc.

In this section, we provide closed form solutions for some special cases. Specifically, when
α is arbitrarily small, we obtain an explicit solution to Theorem 3 given that α ∗ δ is small.
If α ∗ δ is not necessarily small, we derive an yet explicit solution up to ε ≤ 3δ for arbitrary δ.
Using simplification technique, we can obtain upper and lower bounds solution to Theorem 3
if α is not necessarily small. Based on our evaluation, the value of α ∗ δ < 1 is sufficient to
obtain accurate closed form solutions. Otherwise, ε ≤ 3δ can capture almost all value of y.

These bounds are fairly tight as shown in the simulation results in Section 6. The problem
for computing closed form solution where δ > 0 and ε > 3δ is currently open.

4.1 Explicit Solution for Arbitrarily Small α and α ∗ δ
We put two main simplifications to obtain explicit solutions. First, we assume that α
is small (typically, α < 0.1) so that we have good approximation of 1 − e−αy(t−δ) using
Taylor’s series expansion. The expansion is αy − α2y2/2 + O(α3y3). If α is small, this
expansion is approximately αy. Hence, the differential equation in Theorem 3 becomes
dy
dt = α(1− y(t))y(t− δ). Second simplification is suppose α ∗ δ that is arbitrarily small. We
have the following Lemma.

I Lemma 4. if αδ > 0 is arbitrarily small, then y(t) = (1 + αδ)y(t− δ)

Proof. We can approximate the change of y(t) over δ period of time in the past. That is, the
change y(t)−y(t−δ)

δ is approximately dy
dt . Based on expression above, the change is roughly

α(1− y(t))y(t− δ). Therefore, y(t) = y(t− δ) +αδ(1− y(t))y(t− δ). The result follows from
that the product αδ is approaching zero. J

Using Lemma above, we reduce delay differential equation to ordinary differential equation
as in the following. The differential equation is elementary to be solved by standard ordinary
differential equation procedure.

I Theorem 5. For the case where α ∗ δ > 0 is arbitrarily small, the change of y over time
is dy

dt = α
1+αδ (1− y)y with initial condition y(0) = 1/n. Further, the explicit solution to the

differential equation is

y(t) = 1
1 + (n− 1)e−αt/(1+αδ) .

4.2 Phase Transition
The result for Theorem 5 implies that the graph of y is essentially a logistic function (or
Sigmoid function). One important characteristic of this function is it has slow start in the
initial state and then the function grows exponentially after a phase transition. In this
section, we discover such transition in terms of δ, α and n. We define phase transition point
εp as the earliest point where the change of slope is maximum. In particular, we show the
following result.

S. Yingchareonthawornchai, S. Kulkarni, and M. Demirbas 34:7

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
standard inequality

x
1-exp(-x)
x/2

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
tight inequality

(1-exp(-1))*x
1-exp(-x)
(1-exp(-1))*x+c

Figure 1 Standard inequality and tight inequality.

I Theorem 6. The phase transition εp for Theorem 5 is (1
α + δ)(ln((2−

√
3)(n− 1))).

Proof. The slope of y(t) is y′(t). The change of slope is y′′(t). The maximum of change of
slope is when y(3)(t) = 0. We get the result by finding third order derivative of y. Then,
we set y′′′ to 0. Suppose the function is in the following form: dy

dt = a(1 − y)y. We apply
derivative twice from dy

dt to obtain the third order derivative of y. By simple differentiation,
we have

y′′′(t) = a3(n− 1)eat(−4(n− 1)eat + e2at + (n− 1)2)
(eat + n− 1)4 .

When y′′′(t) = 0, we obtain quadratic equation in the form of eat:

e2at − 4(n− 1)eat + (n− 1)2 = 0 .

Solving quadratic quation, we obtain eat = (n− 1)(2±
√

3). We select the earlier time by
definition of phase transition. Then, t = (1/a)(ln((n− 1)(2−

√
3)). The result follows when

we substitute a = α
1+αδ . J

4.3 Explicit Solution for t < 3δ
If α is not necessarily small, we can obtain bounds in terms of upper and lower bounds. The
technique is to simplify the function so that differential equation is easily solvable. Since the
equation in Theorem 3 involves ex, in Lemma 7, we first identify a tight bound on the value
of ex when x is in the range [0..1].2

I Lemma 7. For x, α ∈ [0, 1] , this inequality holds

(1− e−α)x ≤ 1− e−αx ≤ (1− e−α)x+ ξ

where

ξ = 1− (1− e−α

α
)(1 + ln(α

1− e−α)) .

2 Remark. The standard inequality identity regarding ex is that 1− e−x ≤ x for any real number x, and
x/2 ≤ 1− e−x for some small range x. We considered using these upper and lower bounds in subsequent
results. However, these bounds are not tight when x ∈ [0..1] as shown in Figure 1, which is the case in
Theorem 3. This is the reason we use Lemma 7 in subsequent computation.

OPODIS 2015

34:8 Analysis of Bounds on Hybrid Vector Clocks

Proof. We only need to find slope and y-intercept for two lines. The lower bound is easily
attainable by considering two points (0, 0) and (1, 1 − e−α). For the upper line, we know
that the slope must be equal to the lower line, which is 1− e−α. We want the upper line
to touch exactly one point above the function 1− e−αx in some point x ∈ [0, 1]. The only
remaining part is to find y-intercept. First, we find a point of the function 1− e−αx such
that the line passing it has slope of 1− e−αx. Using basic derivative and solve for x we get
x = 1

α ln(α
1−e−α)

Substituting x in the function 1− e−αx yields 1− (1−e−α

α). Finally, we find y-intercept
of upper line given slope of 1− e−α.

y = mx+ c

1− (1− e−α

α
) = (1− e−α)

α
(ln(α

1− e−α)) + c

c = 1− (1− e−α

α
)(1 + ln(α

1− e−α)) J

Subsequently, we use the upper and lower bounds identified in Lemma 7 in Theorem 3
for the case where δ is arbitrary but t ≤ 3δ. In other words, this allows us to capture how
the size of hvc grows in the first 3δ time. This gives us another explicit function if α ∗ δ > 1
and is evaluated in the Simulation section. Note that the bound in Lemma 7 is quite tight
as we can see the result presented in Section 6.3.

I Theorem 8. The solution ψ(t) to Theorem 3 is bounded by the following time condition.
For t ∈ [δ, 2δ],

ψ(t) = 1− ke−αt/n

where k = (1− 1/n)eαδ/n.
For t ∈ [2δ, 3δ],

1− k`H(t) ≤ ψ(t) ≤ 1− kuH(t)eξ(t−δ)

where H(t) = e(1−e−α)(kne−α(t−δ)/n/α+t−δ) and

k` = (1− (1− ke−2δα/n))e(1−e−α)(knα e
−δα/n+δ)

ku = k`e
δξ

ξ = 1− (1− e−α

α
)(1 + ln(α

1− e−α))

Proof. For t ∈ [δ, 2δ], we can model as a sequence of single unicast message from the past
t− δ and quantify the change accordingly. During t ∈ [δ, 2δ], there is at most one message
delivered because during t − δ there is only one green process, i.e., process j. Therefore,
at any time the change of y depends only current y and one message with probability
α. The expected change of fraction of Y over time is given a simple differential equation:
dy
dt = α

n (1− y) with initial condition y(δ) = 1/n. Solving ordinary differential equation is an
easy exercise.

I Lemma 9. The solution to differential equation: dy
dt = α

n (1 − y) with initial condition
y(δ) = 1/n is y1(t) = 1− ke−αt/n where k = (1− 1/n)eαδ/n.

For t ∈ [2δ, 3δ], we replace the term 1− e−αy with corresponding lower and upper bounds
in Lemma 7. Consider the delay differential equation in Theorem 3 dy

dt = (1−y)(1−e−αy(t−δ))

S. Yingchareonthawornchai, S. Kulkarni, and M. Demirbas 34:9

During t ∈ [2δ, 3δ], the function y(t− δ) becomes y1(t− δ) = 1− ke−αt/n By Lemma 9. We
use the tight lower and upper bounds as in Lemma 7 to obtain the equation:

(1− y)Ay ≤ dy

dt
≤ (1− y)(Ay + ξ)

where A = (1− e−α). Then, we instantiate value of y = y1 = 1− ke−α(t−δ)/n to obtain the
following inequality:

(1− y)((1− e−α)(1− ke−α(t−δ)/n)) ≤ dy

dt
≤ (1− y)((1− e−α)(1− ke−α(t−δ)/n) + ξ) .

From this expression, we can consider only the equation dy
dt = (1 − y)((1 − e−α)(1 −

ke−α(t−δ)/n) + ξ) as the lower bound term follows immediately from upper bound result
when instantiating b = 0 of Lemma 10, which is easily verified.

I Lemma 10. We have the following integral results∫
((1− e−α)(1− ke−α(t−δ)/n) + b)dt = (1− e−α)(kn

α
e−α(t−δ)/n + (t− δ)) + b(t− δ) +C .

The remaining part is to use the result from Lemma 10 to solve ordinary differential equation
and find a constant term with initial condition y(2δ) = 1− ke−2δα/n.

dy

dt
= (1− y)((1− e−α)(1− ke−α(t−δ)/n) + ξ)∫

(1
1− y)dy =

∫
((1− e−α)(1− ke−α(t−δ)/n) + b)dt

y = 1− k0e
−((1−e−α)(knα e

−α(t−δ)/n+t−δ)+b(t−δ))

The results follow since k0 can be solved with initial condition y(2δ) = 1 − ke−2δα/n.
This completes the proof. J

5 Reduction of ε-Constrained Time Model to Unconstrained Time
Model

In this section, we show that unconstrained and ε-constrained time model are closely related.
In particular, in Theorem 13, we show that ε-constrained time model can be solved by the
solution for the unconstrained time model.

We first describe the basic idea behind Theorem 13. Initially, the process j is the only
one red process. After some time, the number of red processes increases since process j sends
message to some other processes and other processes that carry active information about j
also send this entry, i.e., red processes help disseminate red messages. At the same time, if
a process does not hear a message that contains newer information (directly or indirectly)
about process j then in ε-constrained time model, this process should turn green. Therefore,
at any time, the change of number of red processes is due to (1) green processes turning red,
and (2) red processes turning green. We show that the number of red processes remains
unchanged after some period of time. That is, the increase due to (1) is equal to the decrease
due to (2), i.e., it reaches an equilibrium point.

To prove our result about ε-constrained time model (i.e., Model 2 in Section 2), we
put different time labels on color. A process is τ -red if it receives τ -message directly or
transitively, i.e., a message that is originated from process j at time τ . A process is red at
time t if and only if it is τ -red for some τ ∈ [t− ε, t].

OPODIS 2015

34:10 Analysis of Bounds on Hybrid Vector Clocks

Let rτ (t) be a set of τ -red processes at time t. Based on definition of rτ (t), we can
compute the cardinality of rτ (t).

I Lemma 11. The expected number of τ -red processes is given by

E[|rτ (t)|] =
{

0 if t ≤ τ or t > τ + ε

y(t− τ) otherwise

Proof. If t ≤ τ or t > τ + ε, it is either τ -message non-existent or expired. Otherwise, at
time τ , process j sends first τ -message. This time is the initial condition of y(t) which is
y(0). Thereafter, the number of τ -red process is equivalent to that of unconstrained time
model since the τ -message is not expired until t > τ + ε. Hence, the result follows. J

I Corollary 12. The following equation holds |rτ (t)| = |rτ+1(t+ 1)| with high probability.

Proof. The expression E[|rτ (t)|] = E[|rτ+1(t+ 1)|] holds by simply substituting t as t+ 1
and τ as τ + 1 in the Lemma 11. J

Using these two results, we show that the fraction of the red processes in the ε-constrained
time model can be derived by using the unconstrained time model as follows:

I Theorem 13. Let y(t), yε(t) be fraction of red process at time t from model 1 and 2
respectively. yε(t) can be computed by the following expression.

yε(t) =
{
y(t) if t ≤ ε
y(ε) otherwise

Proof. Define R(t) as a set of red processes at time t. This is basically a union of τ -red
processes at time t for t − ε ≤ τ ≤ t − 1. That is, R(t) =

⋃t−1
i=t−ε ri(t). We note that

r≤0(t) = ∅ by definition. Hence, R(i) for 0 ≤ i ≤ ε− 1 collects more term until i ≥ ε, which
follows terms from definition of R(t).

We show that expectation of E[|R(t)|] = E[|R(t+ 1)|] for t ≥ ε. By definition, observe
that R(t + 1) =

⋃t
i=t−ε+1 ri(t + 1) =

⋃t−1
i=t−ε ri+1(t + 1). Now, we can compare R(t) with

R(t+1) term by term. That is, we can compare ri(t) from R(t) with ri+1(t+1) from R(t+1).
By Corollary 12, we know that cardinality of both terms are equal for t − ε ≤ i ≤ t − 1.
That last thing to show is that stochastic process gives us equality. Consider the following
random process, there are n coupons. We can draw coupon ε trials by the following rule. For
i-th trial, we draw ri(t) distinct number of coupons randomly. Let X be a random variable
representing number of distinct coupons collected for ε trials. In this situation, R(t) and
R(t + 1) both represent X. Therefore, the expectation of two random variables must be
equal because R(t) and R(t+ 1) are random variables of identical stochastic process.

Hence, E[|R(t+ 1)|] = E[|R(t)|] for t ≥ ε. That is, yε(t) = y(ε) for t ≥ ε. J

This result implies that we can use t and ε interchangeably since the hvc size of ε-
constrained time model reaches equilibrium point after t ≥ ε.

6 Simulation Results

In this section, we evaluate our analytical model by comparing to simulation results. Since
the analytical results in this paper are captured by Theorems 3–13, we perform simulation
experiments to validate them.

S. Yingchareonthawornchai, S. Kulkarni, and M. Demirbas 34:11

epsilon
0 50 100 150

y

0

0.2

0.4

0.6

0.8

1

1.2
n=100, delta=20

Numerical
Simulation

alpha=1

alpha=0.5

alpha=0.25

epsilon
0 100 200 300 400 500 600 700 800 900 1000

y

0

0.2

0.4

0.6

0.8

1

1.2
n=100, delta=200, alpha=0.05

Simulation
Numerical

epsilon
0 50 100 150 200 250 300 350 400

y

0

0.2

0.4

0.6

0.8

1

1.2
n=100, delta=20, alpha=0.05

Simulation
Numerical

Figure 2 Simulation vs. Numerical Results from Theorem 3.

Simulation Setup. We implement according to our model in various configurations. For
the purpose of experiments, we simulate distributed processes with central absolute time
in one machine. We simulate sending event by adding a new message to priority queue
of destination process with on arrival time t + δ in future. At each absolute time, each
process checks if its inbox has messages with deliver time less than or equal to t. If so, we
perform receive events. We repeat until no such message exists in the inbox. Each process
has an access to physical time with ε-uncertainty interval guarantee. While we simulate
sending and receiving events using central absolute time, the absolute time is oblivious to
the processes. For purpose of reproducibility, all source codes for simulation are available at
http://www.cse.msu.edu/~yingchar/hvc.html. All parameters are configurable.

6.1 Analytical vs. Simulation Results (Validation of Theorem 3)

In this case, we compare the analytical model from Theorem 3 with simulation results. For
analytical solution, we use standard numerical solver dde23 in MATLAB. For experiments,
we run for sufficiently long time so that the active clock (i.e., number of hvc entries) is
stabilized. In particular, we plot the result for ε from various value of ε. For each ε, we run
simulation for t up to 2000 and calculate the average starting from t = ε since we start from
a state where a process knows only its own clock, we omit the initial clock values where the
size of the clock is small.

The results are shown in Figure 2. We overlay numerical solution and simulation results.
In Figure 2 (left), we set n = 100, δ = 20 and run for three different values of α = 1, 0.5 and
0.25 respectively. We overlay numerical solution and simulation results. In Figure 2 (mid)
and (right), we set n = 100, α = 0.05 and different values of δ = 200 and 20, respectively.
Note that the middle figure has α ∗ δ = 10 where as the right figure has α ∗ δ = 1. We notice
the difference of α ∗ δ and its effect to characteristic of the plot. When α ∗ δ is small as
suggested by Theorem 5, the graph looks like sigmoid function. This shows our analytical
model in Theorem 3 gives us an exact plot with simlation results with minimal error. We
notice slight perturbation for small value of α. This is due to discontinuity of the discrete
events.

From these results, we corroborate that the relation predicated in Theorem 3 is valid and
tight.

Given that we have an exact analytical model, we now consider the bound we have for
closed form approximation results. From now on, we use the numerical solution as a baseline.

OPODIS 2015

http://www.cse.msu.edu/~yingchar/hvc.html

34:12 Analysis of Bounds on Hybrid Vector Clocks

epsilon
0 500 1000 1500 2000 2500

y

0

0.2

0.4

0.6

0.8

1

1.2
alpha*delta =1

Numerical Solution
Explicit Function

epsilon
0 5000 10000 15000

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
alpha*delta =0.1

Numerical Solution
Explicit Function

epsilon #104
0 5 10 15

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
alpha*delta =0.01

Numerical Solution
Explicit Function

epsilon
0 100 200 300 400 500 600 700 800

y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
alpha*delta =1

Numerical Solution
Explicit Function

epsilon
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
alpha*delta =0.1

Numerical Solution
Explicit Function

epsilon #104
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y

0

0.1

0.2

0.3

0.4

0.5

0.6
alpha*delta =0.01

Numerical Solution
Explicit Function

Figure 3 We compare explicit function with numerical solution. The circle is the phase transition
εp obtained by Theorem 6. The bottom figures are zoomed version of the corresponding upper ones.

6.2 Explicit Form vs. Numerical Solutions (Validation of Theorem 5, 6
and 8)

Theorem 5 gives an explicit function when δ ∗α is arbitrarily small. How small does it need to
be is a subject of this section. In Figure 3, we fix δ = 100 and vary α for δ∗α = 1, 0.1,and 0.01,
respectively. This shows that the explicit function in Theorem 5 is identical to numerical
solution when α ∗ δ is small. Typical value is α ∗ δ < 1. Note that phase transition
εp = (α−1 + δ)(ln((2−

√
3)(n− 1))) is shown in circle. The bottom figures are the zoomed-in

version of corresponding top ones.
If α ∗ δ is large, the hvc size is typically big during t < 3δ. We obtain the upper and lower

bound close forms using a technique called method of steps in delay differential equation.
We evaluate the result accordingly.

By Theorem 8, we have exact solution for t ≤ 2δ and approximate closed form for
t ∈ [2δ, 3δ]. We simulate in various configurations. The result is shown in Figure 4. According
to these experiments, Theorem 8 gives us an exact bound during t ∈ [δ, 2δ] and reasonable
upper and lower bound during t ∈ [2δ, 3δ]. Note that when α is small, the approximation
converges to exact as shown in Figure 4 (mid and right).

6.3 Unconstrained vs. ε-constrained Time (Validation of Theorem 13)
We evaluate relationship between y(t) (from the unconstrained time model) and yε(t) (from
ε-constrained time model). Theorem 13 implies that yε(t) = y(t) for t ≥ ε. Specifically, in
Figure 5, we simulate the programs for 100 processes with α = 0.25 and δ = 10. The result
show that yx(t) is almost same as y(t) when t ≤ x. And, yx(t) is almost same as y(x) when
t > x for x = 30, 60. This conforms to the prediction in Theorem 13.

In addition, we plot the distribution of sizes of hvc of all processes at each time. In
Figure 5 (right), we plot box distribution which is based on normal distribution. The middle
point represents average value at time t. The thick area represents area within a standard

S. Yingchareonthawornchai, S. Kulkarni, and M. Demirbas 34:13

epsilon
0 50 100 150 200 250 300

y

0

0.2

0.4

0.6

0.8

1

1.2
n=100,delta=100,alpha=0.5

Numerical Solution
Lower Bound
Upper Bound

epsilon
0 50 100 150 200 250 300

y

0

0.1

0.2

0.3

0.4

0.5

0.6
n=100,delta=100

Numerical Solution
Lower Bound
Upper Bound

epsilon
0 500 1000 1500 2000 2500 3000

y

0

0.1

0.2

0.3

0.4

0.5

0.6
n=100,delta=1000

Numerical Solution
Lower Bound
Upper Bound

Figure 4 Numerical solution vs. closed form for t ≤ 3δ. Note we use α = 0.1, 0.05 and 0.025 for
middle figure. For right figure, we use α = 0.01, 0.005, and 0.0025, respectively.

t
30 60 90 120 150

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
n=100, delta = 10, alpha =0.25

epsilon=30

epsilon=60

epsilon=120

30 60 90 120 150

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Distribution of hvc over time for all processes

t

epsilon =30

Outliners

2 SD

1 SD

Mean

Figure 5 Validation of Theorem 13. (Left) We plot three graphs of n = 100, δ = 10, and α = 0.25.
Each graph uses different value of ε. Note that after t = ε, the function is stabilized. (Right) We
plot actual distribution in terms of box plot for each time t.

deviation. The thin area represents twice standard deviation. The above dots are outliners.
During before phase transition, we can expect a distribution around y(ε).

From these results, we find that the relation predicated in Theorem 13 is valid.

7 Practical considerations for HVC sizes and the phase transition

Our analytical derivations and simulation experiments point to a phase transition on HVC
size. Here we use typical values for δ and α from datacenter environments, and determine
the phase transition threshold. We show that ε achieved using NTP is much less than this
phase transition threshold, so for practical distributed systems and modern deployments, the
HVC sizes will remain very small and significantly less than n.

For convenience, we calculate phase transition ε∗ in terms of seconds rather than unit time
(clock tick) as follows. Let r be resolution of the time protocol, e.g., NTP has a theoretical
resolution of 2−32 seconds (233 picoseconds) [15]. The unit of r is seconds per clock tick.
Define f as messages frequency in terms of number of messages per second. Also, let d be
minimum messages delay in terms of seconds. It is easy to see that α = fr and δ = d

r . We
assume that α is small. This is true when the time protocol has sufficient resolution.

2 Technically, number of messages are equivalent to number of clock ticks that trigger the sending events.
Hence, the message rate α means proportion of such clock ticks over all clock ticks in the long run.

OPODIS 2015

34:14 Analysis of Bounds on Hybrid Vector Clocks

If α ∗ δ << 1, or equivalently f ∗ d << 1, we can apply these values into our phase
transition formula in Theorem 6 to obtain εp = (f−1+d)

r ln((2 −
√

3)(n − 1)). Note that
εp has unit of clock ticks. We can convert to seconds by multiplying by r. Therefore,
ε∗ = (f−1 + d) ln((2−

√
3)(n− 1)). In other words, ε∗ is proportional to f−1 + d , for fixed

value of n.
For example, consider the following configuration. A small value for d is 1 millisecond.

To determine a value for α, communication frequency, we will consider chatty nodes that
send 100 messages a second to other nodes in a distributed system of n nodes. Most practical
applications in fact use orders of magnitude lower α, since reducing message communication
rates can improve efficiency of distributed systems. Techniques for reducing α include
aggregation and batching of messages before sending a message.

Since α ∗ δ << 1, we can use Theorem 6 to calculate the phase transition threshold
ε∗. When we substitue above values for d and f with n = 100 in the formula, we get
(100−1 + 10−3) ln((2−

√
3)(99)) = 0.036 seconds.

In this situation, it is possible to get ε less than 10ms using NTP synchronized clocks,
which is less than the phase transition for above configuration. Our simulation results show
that this corresponds to an average 1.1 hvc size for 100 nodes. That is each hvc clock
maintains only few entries most of the time, yet when it is needed hvc expands on demand
to allow more entries to capture causality both ways in the ε uncertainty slices. Therefore,
we can see that for various deployments of practical distributed applications, our HVC
component will avoid the phase transition and achieve very small hvc sizes. Moreover, using
less chatty nodes, hence a smaller α communication frequency, would also lead to larger ε∗.

Finally, εp = (1
α + δ)(ln((2 −

√
3)(n − 1))) also tells us that the HVC sizes scale very

well with respect to n, the number of nodes in the network. As we can see from the above
equation increase in n will increase εp, and will delay the critical phase transition of HVC
sizes. In the traditional VC, the size of the VC increase directly with n. In HVC, surprisingly,
the increase of n, benefits in delaying the phase transition and reducing the size of HVC.
The intuition behind this is that, the critical phase transition occurs when a process not only
gets entries added to its clock from direct interaction but also from indirect transfer with
another processes’ HVC entries. This indirect hearing and addition makes the HVC entries
blow up. For larger n, the probability of such indirect addition reduces slightly, and hence
larger n, delays the phase transition to large HVC sizes.

7.1 Extensions to the model

Unicast is the predominant communication pattern in cloud computing systems. Sending a
message to many recipients is often implemented in terms of multiple unicast messages. Our
modeling however failed to capture the incast problem that occurs back when several nodes
send message back to the same node. Due to large fan-in/fan-outs in some cloud computing,
and especially web services systems, incast problem may occur. When many nodes may be
sending back to the same node at the same time, this may grow the number of HVC entries
at the recipient beyond what the model predicts.

In addition, our model uses a single worst case ε to denote clock synchronization uncer-
tainty in the system. However, in a large scale distributed system, there will some nodes that
are more tightly synchronized with real time, versus some nodes that are poorly synchronized
with real time. It is possible to go finer grain tracking of ε and record and use per-node ε.
We leave this as future work to explore.

S. Yingchareonthawornchai, S. Kulkarni, and M. Demirbas 34:15

8 Related work

Logical clock (LC) [12] was proposed in 1978 by Lamport as a way of timestamping and
ordering events in an asynchronous distributed system. In 1988, the vector clock (VC) [10, 13]
was proposed to maintain a vectorized version of LC. VC maintains a vector at each node
which tracks the knowledge this node has about the logical clocks of other nodes. While LC
finds one consistent snapshot (that with same LC values at all nodes involved), VC finds all
possible consistent snapshots, which is useful for debugging applications. Unfortunately, the
space requirement of VC is on the order of nodes in the system, and is prohibitive, and it
stays prohibitive with optimizations [9, 18, 14] that reduce the size of VC. Resettable vector
clocks (RVC) generalizes the notion of VC, and provides a bounded-space and fault-tolerant
implementation of VC applications. To this end, RVC identifies an interface contract under
which the RVC implementation can be substituted for VC in the client applications, without
affecting the client’s correctness. The number of entries in RVC is still n, the number of
nodes in the system.

A version vector (VV) [16] is a version of VC that is customized for summarizing the set
of updates applied to a replica in a replicated database system. While VC is employed for
establishing a partial order among a set of events occurring in the nodes, VV is employed
for establishing a partial order among the replicas in the distributed system. VV generally
uses less number of entries (typical replica sizes are 3 or 5) and offers more opportunities for
bounding the size of each entry [1]. As another approach to reducing VV sizes, a unilateral
VV pruning algorithm is introduced using loosely synchronized clocks [17]. That algorithm
assumes synchronous networking: it demands that each event be delivered to all live nodes
and processed by them within a fixed period [17].

The clocks discussed above have been adopted by many cloud computing systems. Dy-
namo [19] adopts version vectors for causality tracking of updates to the replicas. Orbe [7] uses
dependency matrix along with physical clocks to obtain causal consistency. In the worst case,
both these solutions require large timestamps. Cassandra uses physical time and LWW-rule
for updating replicas. Spanner [5] employs TrueTime (TT) to order distributed transactions
at global scale, and facilitate read snapshots across the distributed database. TT relies on a
well engineered tight clock synchronization available at all nodes thanks to GPS clocks and
atomic clocks made available at each cluster. In order to ensure e hb f ⇒ tt.e < tt.f and
provide consistent snapshots, Spanner requires waiting-out uncertainty intervals of TT at the
transaction commit time which restricts throughput on writes. In contrast, HVC and HLC
does not require waiting out the clock uncertainty, since they are able to record causality
relations within this uncertainty interval using the VC and LC update rules.

A recent work [2] surveys the use of clocks in cloud computing and investigates how the
logical and physical clock concepts are applied in the context of developing distributed data
store systems for the cloud and review the choice of clocks in relation to consistency/per-
formance tradeoffs.

An alternate approach for ordering events is to establish explicit relation between events.
This approach is exemplified in the Kronos system [8], where each event of interest is registered
with the Kronos service, and the application explicitly identifies events that are of interest
from causality perspective. This allows one to capture causality that is application-dependent
at the increased cost of searching the event dependency relation graph.

OPODIS 2015

34:16 Analysis of Bounds on Hybrid Vector Clocks

9 Conclusion

We presented an analytical model to compute the size of HVC. This analytical model had
four parameters: ε (window of uncertainty), δ (minimum message delay), α (message rate)
and n (size of the network). We presented a differential equation whose solution provides the
estimated size of HVC. We also identified closed form solutions for some special cases. We
used simulation results to validate the analytical model. In particular, we showed that the
results predicated by the analytical model are identical to the simulation results. Moreover,
the upper and lower bounds computed by the closed form solutions are also very close to the
simulation results. Hence, they can be used to predict the size of HVC in the given system
setting. We also showed that many deployments of practical distributed applications will
avoid the phase transition easily and achieve very small HVC sizes, significantly less than n,
the number of nodes in the system.

References

1 J. Almeida, P. Almeida S. Paulo, and C. Baquero. Bounded version vectors. Distributed
Computing: 18th International Conference, DISC 2004, pages 102–116, 2004.

2 M. Bravo, N. Diegues, J. Zeng, P. Romano, and L. Rodrigues. On the use of clocks to
enforce consistency in the cloud. IEEE Data Eng. Bull, 38(1):18–31, 2015.

3 B. Charron-Bost. Concerning the size of logical clocks in distributed systems. Inf. Process.
Lett., 39(1):11–16, 1991.

4 Cockroachdb: A scalable, transactional, geo-replicated data store.
http://cockroachdb.org/.

5 J. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, JJ. Furman, S. Ghemawat, A. Gubarev,
C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. Spanner: Google’s globally-distributed database. Proceedings
of OSDI, 2012.

6 M. Demirbas and S. Kulkarni. Beyond truetime: Using augmentedtime for improving google
spanner. LADIS’13: 7th Workshop on Large-Scale Distributed Systems and Middleware,
2013.

7 J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe: Scalable causal consistency using
dependency matrices and physical clocks. In Proceedings of the 4th Annual Symposium on
Cloud Computing, SOCC’13, pages 11:1–11:14, New York, NY, USA, 2013. ACM. doi:
10.1145/2523616.2523628.

8 R. Escriva, A. Dubey, B. Wong, and E.G. Sirer. Kronos: The design and implementation
of an event ordering service. EuroSys, 2014.

9 M. Ahamad F. J. Torres-Rojas. Plausible clocks: Constant size logical clocks for distributed
systems. Proceedings of WDAG, pages 71–88, 1996.

10 J. Fidge. Timestamps in message-passing systems that preserve the partial ordering. Pro-
ceedings of the 11th Australian Computer Science Conference, 10(1):56–66, Feb 1988.

11 S. Kulkarni, M. Demirbas, D. Madappa, B. Avva, and M. Leone. Logical physical clocks.
In Principles of Distributed Systems, pages 17–32. Springer, 2014.

12 L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communic-
ations of the ACM, 21(7):558–565, July 1978.

13 F. Mattern. Virtual time and global states of distributed systems. Parallel and Distributed
Algorithms, pages 215–226, 1989.

http://dx.doi.org/10.1145/2523616.2523628
http://dx.doi.org/10.1145/2523616.2523628

S. Yingchareonthawornchai, S. Kulkarni, and M. Demirbas 34:17

14 S. Meldal, S. Sankar, and J. Vera. Exploiting locality in maintaining potential causality.
In Proceedings of Principles of Distributed Computing (PODC), pages 231–239, 1991. doi:
10.1145/112600.112620.

15 D. Mills. A brief history of ntp time: Memoirs of an internet timekeeper. ACM SIGCOMM
Computer Communication Review, 33(2):9–21, 2003.

16 D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker, E. Walton, J. M. Chow,
D. Edwards, S. Kiser, and C. Kline. Detection of mutual inconsistency in distributed
systems. IEEE Transactions on Software Engineering, SE-9(3):240–247, May 1983. doi:
10.1109/TSE.1983.236733.

17 Y. Saito. Unilateral version vector pruning using loosely synchronized clocks. Technical
report, HP Labs, 2002.

18 M. Singhal and A. Kshemkalyani. An efficient implementation of vector clocks. Information
Processing Letters, 43:47–52, 1992.

19 W. Vogels. Eventually consistent. Communications of the ACM, 52(1):40–44, 2009.

OPODIS 2015

http://dx.doi.org/10.1145/112600.112620
http://dx.doi.org/10.1145/112600.112620
http://dx.doi.org/10.1109/TSE.1983.236733
http://dx.doi.org/10.1109/TSE.1983.236733

Non-Blocking Doubly-Linked Lists with Good
Amortized Complexity
Niloufar Shafiei

Department of Electrical Engineering and Computer Science, York University,
4700 Keele Street, Toronto, Ontario, Canada
niloo@cse.yorku.ca

Abstract
We present a new non-blocking doubly-linked list implementation for an asynchronous shared-
memory system. It is the first such implementation for which an upper bound on amortized
time complexity has been proved. In our implementation, operations access the list via cursors.
Each cursor is located at an item in the list and is local to a process. In our implementation,
cursors can be used to traverse and update the list, even as concurrent operations modify the
list. The implementation supports two update operations, insertBefore and delete, and two move
operations, moveRight and moveLeft. An insertBefore(c, x) operation inserts an item x into the
list immediately before the cursor c’s location. A delete(c) operation removes the item at the
cursor c’s location and sets the cursor to the next item in the list. The move operations move
the cursor one position to the right or left. Update operations use single-word Compare&Swap
instructions. Move operations only read shared memory and never change the state of the
data structure. If all update operations modify different parts of the list, they run completely
concurrently. A cursor is active if it is initialized, but not yet removed from the process’s set
of cursors. Let ċ(op) be the maximum number of active cursors at any one time during the
operation op. The amortized step complexity is O(ċ(op)) for each update op and O(1) for each
move. We provide a detailed correctness proof and amortized analysis of our implementation.

1998 ACM Subject Classification E.1 Data Structures

Keywords and phrases non-blocking data structure, doubly-linked list, shared memory, amort-
ized complexity, cursor

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.35

1 Introduction

The linked list is a fundamental data structure that has many applications in distributed
systems including processor scheduling, memory management and sparse matrix computations
[9, 15, 17]. It is also used as a building block for more complicated data structures such
as deques, skip graphs and Fibonacci heaps. We design a concurrent doubly-linked list for
asynchronous shared-memory systems that is non-blocking (also sometimes called lock-free):
it guarantees some operation will complete in a finite number of steps. Our list has a full proof
of correctness and analysis of its amortized complexity. The first non-blocking singly-linked
list [23] was proposed two decades ago. Designing a non-blocking doubly-linked list was an
open problem for a long time. Doubly-linked lists have been implemented using multi-word
synchronization primitives that are not widely available [1, 10]. Sundell and Tsigas [21] gave
the first implementation from single-word compare&swap (CAS). However, they did not
provide a correctness proof and their implementation has some problems. (See Section 2.)

A process accesses our list via a cursor, which is an object in the process’s local memory
that is located at an item in the list. Update operations can insert or delete an item at the

© Niloufar Shafiei;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 35; pp. 35:1–35:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.35
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

35:2 Non-Blocking Doubly-Linked Lists with Good Amortized Complexity

cursor’s location, and moveLeft and moveRight operations move the cursor to the adjacent
item in either direction. If the item where a cursor c located at is removed by another process,
an operation called with c first needs to recover c’s location in the list. In our list, recovering
a cursor’s location and moving a cursor are achieved using only reads of shared memory,
even when there are concurrent updates. Thus, in our list, only updates might interfere with
other concurrent operations. However, if all concurrent updates are on disjoint parts of the
list, they do not interfere with one another. Our implementation is modular and can be
adapted for other updates, such as replacing one item by another. For simplicity, we assume
the existence of a garbage collector such as the one in Java.

In Section 3, we give a novel specification that describes how updates affect cursors and
how a process gets feedback about other processes’ updates at the location of its cursor. This
interface makes the list easy to use as a black box. In our implementation, a cursor c becomes
invalid if an update is performed at c’s location using another cursor. If an operation is
called with an invalid cursor, it returns invalidCursor and makes the cursor valid again. This
avoids having a process perform an operation on the wrong item. If an insertion is performed
before a cursor c using another cursor, c becomes invalid for insertions only, to ensure that
an item can be inserted between two specific items. This makes it easy to maintain a sorted
list. For example, if two processes try to insert 5 and 7 at the same location simultaneously,
one fails and returns invalidCursor. This avoids inserting 7 and then 5 out of order.

We provide a detailed proof that our list is linearizable: each operation appears to take place
atomically at some time during the operation. One of the main challenges is to ensure the
two pointer changes required by an update appear to occur atomically. Our implementation
uses two CAS steps to change the pointers. Each update appears to take effect at the first
CAS. Between the two CAS steps, the data structure is temporarily inconsistent. We design
a mechanism for detecting such inconsistencies by only reading the shared memory, which
allows concurrent operations to behave as if the second change has already occurred. This
makes moves and recovering cursors’ locations very efficient.

We give an amortized analysis of our implementation (excluding garbage collection),
which is the first for any non-blocking doubly-linked list. A cursor is active if it is initialized,
but not removed from the process’s set of cursors. Let ċ(op) be the maximum number of
active cursors at any one time during the operation op. The amortized complexity of each
operation op is O(ċ(op)) for updates and O(1) for moves. Due to space restrictions, we sketch
the proof of correctness and amortized analysis here. Complete details are in [19].

To summarize the contributions of this paper:
We present a non-blocking linearizable doubly-linked list using single-word CAS.
The cursors provided by our implementation are robust: they can be used to traverse
and update the list, even as concurrent operations modify the list.
Cursors’ locations are recovered and cursors are moved by only reading the shared memory.
Our implementation and proof are modular and can be adapted for other data structures.
Our implementation can easily maintain a sorted list.
In our list, the amortized complexity of each update op is O(ċ(op)) and each move is O(1).
We empirically show our list outperforms the one in [21] on a multi-core machine.

2 Related Work

In this paper, we focus on non-blocking algorithms of doubly-linked lists, which do not use
locks. There are two general techniques for obtaining non-blocking data structures: universal
constructions (see [7] for a survey) and transactional memory (see [11] for a survey). Such

N. Shafiei 35:3

Implementation supports
cursors?

operations to
move cursor?

recover cursor’s
location?

primitive
used

of CAS with
no contention

Greenwald [10] No - - 2-CAS depends on
size of list

Attiya and Hillel [1] Yes No No 2-CAS 13-15
Sundell and Tsigas [21] Yes Yes (CAS used) Yes (CAS used) CAS 2-4
List presented here Yes Yes (No CAS) Yes (No CAS) CAS 5

Figure 1 Implementations of doubly-linked lists.

general techniques are usually less efficient than implementations designed for specific data
structures. Turek, Shasha and Prakash [22] and Barnes [2] introduced a technique in which
processes cooperate to complete operations to ensure non-blocking progress. Each update
operation stores information that other processes can use to help complete the update in
a descriptor object. This technique has been used for various data structures. Here, we
extend the scheme used in [3, 4, 5, 8] to coordinate processes for tree structures and the
scheme used in [18] for updates that make more than one change to a Patricia trie. The
implementations in [3, 4, 5, 8] only handle one change atomically, but updates in our list
make multiple changes atomically using a simpler scheme than the one used in [18]. However,
handling the cursors and move operations in our list are original.

The k-CAS primitive modifies k locations atomically. Although it is usually not available
in hardware, it can be implemented from single-word CAS [12, 16, 20]. Doubly-linked lists
can be implemented using k-CAS, but it is not completely straightforward to do so. Suppose
each item is represented by a node with nxt and prv fields that point to the adjacent nodes.
Consider a list of four nodes, A, B, C and D. A deletion of C must change the nxt pointer in
B from C to D and the prv pointer in D from C to B. It is not sufficient for the deletion to
update these two pointers with a 2-CAS. If two concurrent deletions remove B and C in this
way, C would still be accessible through A after the deletions. This problem can be avoided if
the deletion of C uses a 4-CAS to simultaneously update the two pointers and check whether
the two pointers of C still point to B and D. Then, the 4-CAS of one of the two concurrent
deletions would fail. The most efficient k-CAS implementation [20] uses 2k + 1 CAS steps to
update k words when there is no contention. Thus, at least 9 CAS steps would be used for a
4-CAS. Moreover, although the 4-CAS works for updating pointers, it is not obvious how to
recover a cursor’s location when another process deletes the cursor’s node.

Greenwald’s doubly-linked list [10] uses 2-CAS, but does not provide cursors. His approach
does not support concurrency: all processes cooperate to execute one operation at a time.

Attiya and Hillel [1] proposed a doubly-linked list using 2-CAS, but it only supports
update operations. It has the nice property that concurrent updates can interfere with
one another only if they are changing nodes close to each other. If there is no interference,
an update performs 13 to 15 CAS steps (and one 2-CAS). Their implementation does not
recover a cursor’s location, so deletions might make other processes lose their place in the
list. They also give a restricted implementation using single-word CAS, in which deletions
can be performed only at the ends of the list.

None of the implementations that use k-CAS handle cursors with the same functionality
as ours. (See Figure 1.) Since the implementations in [1, 10] do not provide a way to traverse
the list, they are not complete implementations of a doubly-linked list. Moreover, they all
perform many CAS steps for contention-free updates, whereas ours performs only five.

Sundell and Tsigas [21] gave the first non-blocking doubly-linked list using single-word
CAS (although a word must store both a bit and a pointer). Non-blocking data structures

OPODIS 2015

35:4 Non-Blocking Doubly-Linked Lists with Good Amortized Complexity

are notoriously difficult to design, so detailed correctness proofs are essential. In [21], the
claim of linearizability is justified by defining linearization points without proving that they
are correct. The implementation has at least minor errors: using the Java PathFinder
model checker [13], we found an execution that incorrectly dereferences a null pointer. We
contacted the authors, who suggested changing some lines to fix the problem, but a correctness
proof of the revised version is still lacking. Their implementation is ingenious but quite
complicated. In particular, the helping mechanism is very complex, partly because updates
can terminate before completing the necessary changes to the list, so operations may have to
help non-concurrent updates.

There are a number of differences between the designs of our list and the one in [21]. In
[21], to recover a cursor’s location or to move a cursor, sometimes CAS steps are performed.
Our approach is quite different, allowing a cursor’s location to be recovered and cursors to
be moved only by reading shared memory, even when there is contention. So, moves do not
interfere with one another. This is a desirable property since moves are more common than
updates in many applications. In the best case, the updates in [21] perform 2 to 4 CAS steps.
However, moves must perform CAS steps to help complete updates. In fact, deletions can
construct long chains of deleted nodes whose pointers do not get updated by the deletions.
Then, a move may have to traverse this chain, performing CAS steps at every node. In our list,
an update helps only updates that are concurrent with itself, and moves do not help at all.
Our implementation can easily be used to maintain a sorted list. It is not straightforward to
see how the implementation in [21] could maintain a sorted list. Our empirical evaluation
shows our list outperforms the one in [21] on a multi-core machine.

3 The Sequential Specification

We give a sequential specification, which describes how operations behave when performed
one at a time. (A more formal specification is available in [19].) This specification is extended
to concurrent implementations by requiring them to be linearizable [14].

A list is a pair (L, S) where L is a finite sequence of items ending with a special end-
of-list marker (EOL), and S is a set of cursors. Each cursor c in S is located at one item
in L and c.item presents that item. Eight types of operations are supported: initialize-
Cursor, destroyCursor, resetCursor, moveRight, moveLeft, get, delete and insertBefore.
An initializeCursor(c) adds new cursor c to S whose item is the first item in L. A
destroyCursor(c) removes cursor c from S. A process p can call an operation with a cursor
c only if p itself initialized c and c has not been removed from S. A resetCursor(c) locates
c at the first item in L. A moveRight(c) advances c’s location to the next item in L and
returns true, (unless it is already at the last item in L, in which case it returns false and has
no effect). Similarly, moveLeft(c) sets c’s location to the previous item in L and returns
true, (unless it is already at the first item in L, in which case it returns false and has no
effect). A get(c) returns the value of c.item.

To keep track of cursor invalidation, each cursor in S has two additional fields called
invDel and invIns, which indicates whether the cursor is invalid for different operations. A
delete(c) removes the item that c is located at and returns true, (unless c is located at EOL
in which case the delete returns false). If the deletion is successful, it also moves each cursor
c′ located at the deleted item to the next item in L. This ensures that all cursors continue
to point to items that are currently in the list, so that no other process can lose its place in
the list as a result of the deletion. For each cursor c′ 6= c that is moved as a result of the
delete, c′.invDel is set to true so that if the next operation called with c′ is an update, get

N. Shafiei 35:5

or move, it returns invalidCursor to indicate that c′ has been moved. This ensures that the
operation is not inadvertently applied to the wrong location. For example, suppose a process
p performs a delete(c) that removes item x. If another process p′ has cursor c′ located at x,
c′.item is set to the next item y in L and c′ becomes invalid (i.e., c′.invDel becomes true).
Thus, the deletion cannot cause c′ to lose its place in L. Since x is removed by p, p′ does not
yet know that c′ is no longer located at x. If p′ then calls a delete(c′) to attempt to remove
x, since c′.invDel is true, it returns invalidCursor and does not remove y. When c′.invDel

is true, the next operation called with c′ sets c′.invDel to false, making c′ valid again.
An insertBefore(c, v) adds a new item with value v to the left of c’s location and returns

true. When an insertBefore(c, v) succeeds, each other cursor c′ located at the same item
as c becomes invalid for insertions only. This is indicated by setting c′.invIns to true. If
an insertBefore(c′, v′) operation is called when c′.invIns is true, it returns invalidCursor.
This invalidation ensures an item can be inserted between two specific items in the list. For
example, suppose we wish to maintain L so that values of items are sorted and process p′

has a cursor c′ whose item’s value is 5. Then, p′ advances c′ to the next item in the sequence,
which has value 8. If 7 is inserted before 8 by another process p, c′ becomes invalid only
for insertions (i.e., c′.invIns becomes true). Since 7 is inserted by p, p′ does not yet know
that the item before 8 is 7. If p′ then calls an insertBefore operation with c′ to attempt to
insert 6 before 8, it does not succeed because that would place 6 between 7 and 8. Since
c′.invIns is true, insertion by p′ returns invalidCursor instead. When c′.invIns is true, the
next operation called with c′ sets c′.invIns to false, making c′ valid for insertions again.

4 The Non-blocking Implementation

List items are represented by Node objects, which have pointers to adjacent Nodes. A Cursor
object is simply a pointer to a Node in a process’s local memory. Updates are done in several
steps as shown in Fig. 2 and 3. To avoid simultaneous updates to overlapping parts of the
list, an update flags a Node before removing it or changing one of its pointers. This flag acts
like a lock on the Node’s pointers. To ensure the non-blocking property, other operations
can help complete the update that placed the flag and then remove the flag. To facilitate
this, a Node is flagged by storing a pointer to an Info object, which is a descriptor of the
update and contains the information needed to help complete the update. List pointers are
updated using CAS, so that helpers cannot perform an operation more than once.

The correctness of algorithms using CAS often depends on the fact that, if a CAS on
variable V succeeds, V has not changed since an earlier read. An ABA problem occurs when
V changes from one value to another and back before the CAS occurs, causing the CAS
to succeed when it should not. When a Node new is inserted between Node x and y, we
replace y by a new copy, yCopy (Fig. 3). This avoids an ABA problem that would occur if,
instead, insertBefore simply changed the pointers in x and y to new, because a subsequent
deletion of new could then change x’s pointer back to y again. Creating a new copy of y also
makes invalidation of Cursors for insertions easy. An insertion of a Node before y writes a
permanent pointer in y to yCopy before replacing y, so that any other process whose Cursor
is at y can detect that an insertion has occurred there and update its Cursor to yCopy.

The objects used in our implementation are described in line 1 to 16 of Fig. 4. A Node
has the following fields. The val field contains the item’s value, nxt and prv point to the
next and previous Nodes in the list, copy points to a new copy of the Node (if any), info
points to an Info object that is the descriptor of the update that last flagged the Node, and
state is initially ordinary and is set to copied (before the Node is replaced by a new copy)

OPODIS 2015

35:6 Non-Blocking Doubly-Linked Lists with Good Amortized Complexity

-
�

flagged

x
-
�

flagged

marked
y
-
�

flagged

z
-
�

Step 1: flagging

-
�

flagging

x �
R

flagged

marked
y
-
�

flagged

z
-
�

Step 2: CAS x.nxt

-
�

flagged

x �
R

flagged

marked
y
-

I

flagged

z
-
�

Step 3: CAS z.prv

-
� x �

R
marked
y
-

I

z
-
�

Step 4: unflagging

Figure 2 A delete operation.

-
�

flagged

x -�

flagged

copied
y -�

flagged

z -�

6
new-�

?
yCopy

Step 1: flagging

6

-
�

flagged

x �

?

flagged

copied
y -�

flagged

z -�

6
new-�

?
yCopy

Step 2: CAS x.nxt

6

-
�

flagged

x �

?

flagged

copied
y -

?

flagged

z -�

6
new-�

?
yCopy

6

Step 3: CAS z.prv

-
� x �

?
copied
y -

?

z -�

6
new-�

?
yCopy

6

Step 4: unflagging

Figure 3 An insertBefore operation.

or marked (before the Node is removed). The info field is initially set to a dummy Info
object, dum. The info, nxt and prv fields of a Node are changed using CAS steps. We call
the steps that try to modify these three fields flag CAS, forward CAS and backward CAS
steps, respectively. To avoid special cases, we add sentinel Nodes head and tail, which do
not contain values, at the ends of the list. They are never changed and Cursors never move
to head or tail. The last Node before tail always contains the value EOL.

Info objects are used as our update operation descriptors. An Info object I has the
following fields. I.nodes[0..2] stores the three Nodes x, y, z to be flagged before changing the
list. I.oldInfo[0..2] stores the expected values to be used by the flag CAS steps on x, y and z.
I.newNxt and I.newPrv store the new values for the forward and backward CAS steps on
x.nxt and z.prv. I.rmv indicates whether y should be removed from the list or replaced by a
new copy. I.status, indicates whether the update is inProgress (the initial value), committed
(after the update is completed) or aborted (after a Node is not flagged successfully). (One
exception is the dummy Info object dum whose status is initially aborted.) The status field
is the only field of I whose value might be changed after I’s creation. A Node is flagged
for I if its info field is I and I.status = inProgress. Thus, setting I.status to committed or
aborted also has the effect of removing I’s flags. As with locks, successful flagging of the three
Nodes guarantees that the operation will be completed successfully without interference from
other operations. Unlike locks, if the process performing an update crashes after flagging,
other processes may complete its update using the information in I.

4.1 Detailed Description of the Algorithms
Pseudo-code for our implementation is given in Fig. 4.

We say a Node v is reachable if there is a path of nxt pointers from head to v. At all
times, the reachable Nodes correspond to the items in the list. So, each update is linearized
when its forward CAS succeeds (step 2 of Fig. 2 and 3). Just after this CAS, y becomes
unreachable. We prove that no process changes y.nxt or y.prv after that, so y.prv remains
equal to x. Since there is no ABA problem, x.nxt is never set back to y after y becomes
unreachable. Thus, the test y.prv.nxt 6= y tells us whether y has become unreachable (even
between the successful forward and backward CAS of the update that removed y). This test
is used in recovering the location of a Cursor whose node is removed from the list (line 77)
and also by moveLeft operations (line 47).

Since a Cursor c is a pointer in a process’s local memory, it becomes out of date if the
Node it points to is deleted or replaced by another process’s update. Thus, at the beginning of

N. Shafiei 35:7

1. type Cursor
2. Node node B location of Cursor

3. type Node B represent list item
4. Value val
5. Node nxt B next Node
6. Node prv B previous Node
7. Node copy B new copy of Node (if replaced)
8. Info info B descriptor of update
9. {copied, marked, ordinary} state B indicates if Node

is copied by an insertion or marked for deletion

10. type Info B Descriptor of an update
11. Node[3] nodes B Nodes to be flagged
12. Info[3] oldInfo B expected values of CASs that flag
13. Node newNxt B set nodes[0].nxt to this
14. Node newP rv B set nodes[2].prv to this
15. Boolean rmv B is I.nodes[1] being deleted?
16. {inProgress, committed, aborted} status

17. insertBefore(c: Cursor, v: Value):{true, invalidCursor}
18. while (true){
19. 〈y, yInfo, z, x, invDel, invIns〉 ←

updateCursor(c) B recover c’s location
20. if invDel or invIns then return invalidCursor
21. nodes← [x, y, z]
22. oldI ← [x.info, yInfo, z.info]
23. if checkInfo(nodes, oldI) then{ B no interference
24. new ← new Node(v, null, x, null, dum, ordinary)
25. yCopy ← new Node(y.val, z, new, null, dum,

ordinary)
26. new.nxt← yCopy
27. I ← new Info(nodes, oldI, new, yCopy, false,

inProgress) B create descriptor
28. if help(I) then{ B if insert completed
29. c.node← yCopy B move c to new copy
30. return true }}}

31. delete(c: Cursor):{true, false, invalidCursor}
32. while (true){
33. 〈y, yInfo, z, x, invDel, -〉 ← updateCursor(c)

B recover c’s location
34. if invDel then return invalidCursor
35. nodes← [x, y, z]
36. oldI ← [x.info, yInfo, z.info]
37. if checkInfo(nodes, oldI) then{ B no interference
38. if y.val = EOL then return false B c is at last item
39. I ← new Info(nodes, oldI, z, x, true, inProgress)

B create descriptor
40. if help(I) then{ B if delete completed
41. c.node← z B move c to next item
42. return true}}}

43. moveLeft(c: Cursor):{true, false, invalidCursor}
44. 〈y,−,−, x, invDel, -〉 ← updateCursor(c)

B recover c’s location
45. if invDel then return invalidCursor
46. if x = head then return false B y is the 1st item
47. if x.prv.nxt 6= x and x.nxt = y then{ B x not in list
48. if x.state = copied then B x is replaced
49. c.node← x.copy B move c to new copy
50. else{ B x is deleted
51. w ← x.prv B read the item before x
52. if w = head then return false B x was the 1st item
53. c.node← w}} B move c to the item before x
54. else c.node← x B move c to the item before y
55. return true

56. moveRight(c: Cursor):{true, false, invalidCursor}
57. 〈y,−, z,−, invDel, -〉 ← updateCursor(c)

B recover c’s location
58. if invDel then return invalidCursor
59. if y.val = EOL then return false B y is the last item
60. c.node← z B move c to the item after y
61. return true

62. initializeCursor(c: Cursor):ack
63. c.node← head.nxt
64. return ack

65. destroyCursor(c: Cursor):ack
66. return ack

67. resetCursor(c: Cursor):ack
68. c.node← head.nxt B move c to the 1st item
69. return ack

70. get(c: Cursor):{Value, invalidCursor}
71. 〈y,−,−,−, invDel, -〉 ← updateCursor(c)
72. if invDel then return invalidCursor
73. return y.val

74. updateCursor(c: Cursor):〈Node, Info, Node, Node,
Boolean, Boolean〉

75. invDel← false
76. invIns← false
77. while(c.node.prv.nxt 6= c.node){ B c.node not in list
78. if c.node.state = copied then{ B c.node replaced
79. invIns← true B make c invalid for insertion
80. c.node← c.node.copy} B move c to new copy
81. if c.node.state = marked then{ B c.node deleted
82. invDel← true B make c invalid for deletion
83. c.node← c.node.nxt}} B move c to the next item
84. info← c.node.info B read info before pointers
85. return 〈c.node, info, c.node.nxt, c.node.prv, invDel,

invIns〉
86. checkInfo(nodes: Node[3], oldInfo: Info[3]):Boolean
87. for i← 0 to 2{ B detect other updates in progress
88. if oldInfo[i].status = inProgress then{
89. help(oldInfo[i]) B help other update
90. return false}} B retry my update
91. for i← 0 to 2 B detect removed nodes
92. if nodes[i].state 6= ordinary then return false
93. for i← 1 to 2 B if flag of 2nd or 3rd node fail
94. if nodes[i].info 6= oldInfo[i] then return false
95. return true B no interference detected

96. help(I: Info):Boolean
97. doP trCAS ← true, i← 0
98. while (i < 3 and doP trCAS){
99. CAS(I.nodes[i].info, I.oldInfo[i], I) B flag CAS

100. doP trCAS ← (I.nodes[i].info = I)
101. i← i + 1}
102. if doP trCAS then{ B flag CASs succeeded
103. if I.rmv then I.nodes[1].state← marked
104. else{ B in case of insertion
105. I.nodes[1].copy ← I.newP rv B set new copy
106. I.nodes[1].state← copied}
107. CAS(I.nodes[0].nxt, I.nodes[1], I.newNxt)

B forward CAS
108. CAS(I.nodes[2].prv, I.nodes[1], I.newP rv)

B backward CAS
109. I.status← committed} B unflag of successful update
110. else if I.status = inProgress then I.status← aborted

B unflag nodes for unsuccessful update
111. return (I.status = committed)

Figure 4 Pseudo-code for a non-blocking doubly-linked list.

OPODIS 2015

35:8 Non-Blocking Doubly-Linked Lists with Good Amortized Complexity

an update, move or get operation called using c, updateCursor(c) is called to bring c.node
up to date. If c.node has been replaced with a new copy by an insertBefore, updateCursor
sets invIns to true (line 79) and follows the copy pointer (line 80). Similarly, if c.node has
been deleted, updateCursor sets invDel to true (line 82) and follows the nxt pointer (line 83),
which was the next Node at the time of deletion. UpdateCursor repeats the loop at line 77–83
until the test on line 77 indicates that c.node is in the list. At the end, updateCursor returns
c.node, its info, nxt and prv field, invDel and invIns (line 85).

After calling updateCursor, each update op calls checkInfo to see if any Node that op
wants to flag is flagged with an Info object I ′ of another update. If so, checkInfo calls help(I ′)
(line 89) to try completing the other update, and returns false to indicate op should retry.
Similarly, if checkInfo sees that another operation has already removed one of the Nodes
(line 92) or changed the info field of y or z (line 94), it returns false, causing op to retry. If
checkInfo returns true, op creates a new Info object I that describes the update op (line 27
or 39) and calls help(I) to try to complete the update (line 28 or 40).

The help(I) routine performs the real work of the update. First, it uses flag CAS steps
to store I in the info fields of the Nodes to be flagged (line 99). If help(I) sees a Node v is
not flagged successfully (line 100), help(I) checks if I.status is inProgress (line 110). If so,
it follows that no helper of I succeeded in flagging all three Nodes; otherwise I’s flag on v
could not have been removed while I is inProgress. So, v was flagged by a different update
before help(I)’s flag CAS. Thus, I.status is set to aborted (line 110) and help(I) returns false
(line 111), causing op to retry.

If the Nodes x, y and z in I.nodes are all flagged successfully with I, y.state is set to
marked (line 103) for a deletion, or copied (line 106) for an insertion. In the latter case,
y.copy is first set to the new copy (line 105). Then, a forward CAS (line 107) changes x.nxt
and a backward CAS (line 108) changes z.prv. Finally, help(I) sets I.status to committed
(line 109) and returns true (line 111). A CAS of I refers to a CAS step executed inside
help(I). We prove below that the first forward and first backward CAS of I among all calls
to help(I) succeed (and no others do).

Both the insertBefore(c, v) and delete(c) operations have the same structure. They
first call updateCursor(c) to bring the Cursor c up to date, and return invalidCursor if
this routine indicates c has been invalidated. Then, they call checkInfo to see if there is
interference by other updates. If not, they create an Info object I and call help(I) to complete
the update. If unsuccessful, they retry.

A moveRight(c) calls updateCursor(c) (line 57), which sets c.node to a Node y and
also returns a Node z read from y.nxt. We show there is a time during the move when y is
reachable and y.nxt = z. If y.val = EOL, the operation returns false (line 59). Otherwise, it
sets c.node to z (line 60).

A moveLeft(c) is more complex because prv pointers are updated after an update’s
linearization point, so they are sometimes inconsistent with the true state of the list. A
moveLeft first calls updateCursor(c) (line 44), which updates c.node to some Node y and also
returns a Node x read from y.prv. If x is head, the operation cannot move c to head and
returns false (line 46). If the test on line 47 indicates x is reachable, c.node is set to x (line 54).
This is also done if x.nxt 6= y; in this case, we can show that y became unreachable during
the move, but x.nxt pointed to y just before y became unreachable. Otherwise, x has become
unreachable and the test x.nxt = y on line 47 ensures that x was the element before y when
it became unreachable. If x was replaced by an insertion, c.node is set to that replacement
Node (line 49). If x was removed by a deletion, we set c.node to x.prv (line 53), unless that
Node is head. We prove in Lemma 12, below, that whenever moveLeft updates c.node to
some value v, there is a time during the operation when v is reachable and v.nxt = y.

N. Shafiei 35:9

5 Correctness Proof

The detailed proof of correctness (available in [19]) is about 50 pages long, so we give only
a brief sketch. An execution is a sequence of configurations, C0, C1, ... such that, for each
i ≥ 0, Ci+1 follows from Ci by a step of the implementation. For the proof, we assign each
Node v a positive real value, called its abstract value, denoted v.absV al. The absV al of head,
EOL and tail are 0, 1 and 2 respectively. When insertBefore creates the Nodes new and
yCopy (see Fig. 3), yCopy.absV al = y.absV al and new.absV al = (x.absV al + y.absV al)/2.
The following basic invariant is straightforward to prove.

I Invariant 1.
Any field that is read in the pseudo-code is non-null.
Cursors do not point to head or tail.
If v.nxt = tail, then v.val = EOL.
If v.nxt = w or w.prv = v, then v.absV al < w.absV al.

5.1 Part 1: Flagging
Part 1 proves v is flagged for an Info object I when the first forward CAS or first backward
CAS of I is applied to Node v. We first show there is no ABA problem on info fields.

I Lemma 2. The info field is never set to a value that has been stored there previously.

Proof Sketch. The old value used for I’s flag CAS on Node v was read from v.info before I is
created. So, every time v.info is changed from I ′ to I, I is a newer Info object than I ′. J

By Lemma 2, only the first flag CAS of I on each Node in I.nodes can succeed since all
such CAS steps use the same expected value. We say I is successful if these three first flag
CAS steps all succeed.

I Lemma 3. After v.info is set to I, it remains equal to I until I.status 6= inProgress.

Proof Sketch. If v.info is changed from I to I ′, the operation that created I ′ at line 27 or 39
first called checkInfo on line 23 or 37 and that call returned true. Thus, that call to checkInfo
saw I.status 6= inProgress at line 88. J

I Observation 4. If a process executes line 103–109 inside help(I), I is already successful.

I Lemma 5. If I is successful, I.status is never aborted. Else, I.status is never committed.

Proof Sketch. If I is not successful, the claim follows from Observation 4. If I is successful,
the first flag CAS on each Node in I.nodes succeeds. By Lemma 3, doPtrCAS is not set to
false on line 100 until I.status 6= inProgress. So, every call to help(I) evaluates the test on
line 102 to true until I.status 6= inProgress. So, no process reaches line 110 before I.status
is set to committed on line 109. J

I Lemma 6. For each of lines 103–109, when the first execution of that line among all calls
to help(I) occurs, all Nodes in I.nodes are flagged for I.

Proof Sketch. Suppose one of lines 103–109 is executed inside help(I). By Observation 4, a
flag CAS of I already succeeded on each Node in I.nodes. By Lemma 5, I.status is never
aborted. By Lemma 3, all three Nodes remain flagged for I until some help(I) sets I.status
to committed on line 109. J

OPODIS 2015

35:10 Non-Blocking Doubly-Linked Lists with Good Amortized Complexity

yI .info = old -� yI .info = I -�
S1

read yI .info
= old on line
84

S2
read yI .nxt
= zI on line
85

S3
read old.status
6= inProgress on
line 88

S4
read zI .state
= ordinary on
line 92

S5
checkInfo return
true on line 23
or 37

S6
flag CAS changes
yI .info from old
to I on line 99

S7
the first forward
CAS of I on line
107

yI .nxt = zI

-�

no forward CAS of old
-�

Figure 5 Sequence of events used in proof of Lemma 8, Statement 3.

5.2 Part 2: Forward and Backward CAS Steps
Let 〈yI ,−, zI , xI ,−,−〉 be the result updateCursor(c) returns on line 19 or 33 before creating
I on line 27 or 39. Part 2 of our proof shows that successful flagging ensures that xI , yI and
zI are three consecutive Nodes in the list just before the first forward CAS of I, and that
the first forward and the first backward CAS of I succeed (and no others do).

I Lemma 7. At all configurations after I becomes successful, yI .info = I.

Proof sketch. To derive a contradiction, assume yI .info is changed from I to I ′. Before
creating I ′, the call to checkInfo returns true, so it sees I.status 6= inProgress at line 88 and
then yI .state = ordinary at line 92. This contradicts the fact that before I.status is set to
committed at line 109, yI .state is set to a non-ordinary value at line 103 or 106 (and no step
of the code can change it back to ordinary). J

I Lemma 8.
1. The first forward and the first backward CAS of I succeed and all other forward and

backward CAS steps of I fail.
2. The nxt or prv field of a Node is never set to a Node that has been stored there before.
3. At the configuration C before the first forward CAS of I, xI , yI and zI are reachable,

xI .nxt = yI , yI .prv = xI , yI .nxt = zI and zI .prv = yI .
4. At all configurations after the first forward CAS of I, yI .prv = xI and yI .nxt = zI .

Proof sketch. We use induction on the length of the execution.
Statement 1: By induction hypothesis 3, the first forward CAS of I succeeds, since
xI .nxt = yI just before it. By induction hypothesis 2, no other forward CAS of I succeeds. By
induction hypothesis 3, zI .prv was yI at some time before the first backward CAS of I. All
backward CASes of I use yI as the expected value of zI .prv, so only the first can succeed (by
induction hypothesis 2). By Lemma 6, zI .info = I at the first forward and first backward CAS
of I, and hence at all times between, by Lemma 2. By Lemma 6, no backward CAS of any
other Info object changes zI .prv during this time. So, the first backward CAS of I succeeds.

Statement 2: Intuitively, when the nxt field changes from v to another value, v is thrown
away and never used again. (See Fig. 2 and 3). Suppose the first forward CAS of I sets xI .nxt.
If I is created by an insertBefore, the CAS sets xI .nxt to a newly created Node. If I is created
by a delete, zI .info = I at the first forward CAS of I, by Lemma 6. No forward CAS of another
Info object I ′ can change xI .nxt from zI to another value earlier, since then zI .info would
have to be I ′ at the first forward CAS of I, by Lemma 7. The proof for prv fields is symmetric.

Statement 3: First, we prove yI .nxt = zI at C. Before I can be created, the sequence of
steps S1, . . . , S5 shown in Fig. 5 must occur. By Lemma 6, yI .info is set to I by some step
S6 and yI .info = I at S7. By Lemma 2, yI .info = old between S1 and S6 and yI .info = I

between S6 and S7. So, by Lemma 6, only the first forward CAS of old can change yI .nxt

N. Shafiei 35:11

between S1 and S7. Before yI .nxt can be changed from zI to another value by help(old),
zI .state is set to marked or copied (and it can never be changed back to ordinary). So,
yI .nxt is still zI at S4. The first forward CAS of old does not occur after S3 since old.state
is already committed or aborted at S3. So, yI .nxt is still zI at C.

By a similar argument, yI .prv = xI and xI , yI and zI are reachable in C. The prv and
nxt field of two adjacent reachable Nodes might not be consistent at C only if C is between
the first forward and first backward CAS of some Info object I ′ and one of the two Nodes
is flagged for I ′ (step 2 of Fig. 2 and 3). Since xI , yI and zI are flagged for I at C (by
Lemma 6), xI .nxt = yI and zI .prv = yI at C.

Statement 4: By induction hypothesis 3, yI .prv = xI at the first forward CAS of I. By
Lemma 7, yI .info is always I after that. So, by Lemma 6, no backward CAS of another Info
object changes yI .prv after the first forward CAS of I. Similarly for yI .nxt = zI . J

Consider Fig. 2 and 3. By Lemma 8.3, just before the first forward CAS of I, the nxt and
prv field of xI , yI and zI are as shown in step 1. By Lemma 8.1, this CAS changes xI .nxt
as shown in step 2 and the first backward CAS of I changes zI .prv as shown in step 3. The
next lemma follows easily.

I Lemma 9. A Node v 6= head that was reachable before is reachable now iff v.prv.nxt = v.

5.3 Part 3: Linearizability
Part 3 of our proof shows that operations are linearizable. The following four lemmas show
that there is a linearization point for each move operation. In the following four proofs,
〈y, -, z, x, -, -〉 denotes the result updateCursor(c) returns on line 44 or 57. Let C77 be the
configuration before the last execution of line 77 inside that call to updateCursor.

I Lemma 10. If moveRight(c) changes c.node from y to z at line 60, there is a configuration
during the move when y.nxt = z and y is reachable.

Proof Sketch. Invariant 1 and Lemma 9 imply that y 6= head is reachable in C77. (Some
reasoning is required to see this, since line 77 does two reads of shared memory.) If y is
reachable when y.nxt = z on line 85, the claim holds. Otherwise, between C77 and line 85, a
forward CAS of some Info object I with I.nodes[1] = y made y unreachable. By Lemma 8.4,
y.nxt is always I.nodes[2] after the CAS. Since y.nxt = z on line 85, z = I.nodes[2] and, by
Lemma 8.3, the claim holds just before the CAS. J

I Lemma 11. If moveRight(c) returns false, there is a configuration during the move when
c.node.val = EOL and c.node is reachable.

Proof Sketch. Invariant 1 and Lemma 9 imply, in C77, y is reachable and the claim is
true. J

I Lemma 12. If moveLeft(c) changes c.node from y to v at line 49, 53 or 54, there is a
configuration during the move when v.nxt = y and v is reachable.

Proof Sketch. Consider line 53. Since the move does not return on line 46, x 6= head.
Lemma 9 implies x is unreachable after line 47. By Lemma 8.1, x became unreachable
by the first forward CAS of some Info object I with I.nodes[1] = x. Since x.state =
marked on line 48, a delete created I. By Lemma 8.4, x.nxt is always I.nodes[2] after the
forward CAS. Since x.nxt = y on line 47, y = I.nodes[2]. Since the read of y.prv returns x

OPODIS 2015

35:12 Non-Blocking Doubly-Linked Lists with Good Amortized Complexity

on line 85, the first backward CAS of I did not occur before that read (step 2 of Fig. 2). So,
at some configuration C during the move (step 2 of Fig. 2), I.nodes[0].nxt = I.nodes[2] = y

and I.nodes[0] is reachable. Since x.prv is always I.nodes[0] after the forward CAS of I,
the move sets w to I.nodes[0] on line 51 and then sets c.node to w. So, the claim holds at
C. The proofs for line 49 and 54 are similar to the case above and the proof of Lemma 10,
respectively. J

I Lemma 13. If moveLeft(c) returns false, c.node is head.nxt in a configuration during the
move.

Proof Sketch. If moveLeft returns on line 46, the proof is similar to Lemma 10, since
x = head and c.node = head.nxt at a configuration during the move. For line 52, the proof
is similar to Lemma 12, since w = head and c.node = head.nxt at a configuration during
the move. J

We now define linearization points. A move is linearized at the step after the configuration
defined by Lemma 10, 11, 12 or 13. If there is a forward CAS of an Info object created by
an update, the update is linearized at the first such CAS. InitializeCursor and resetCursor
are linearized when they read head.nxt. Each get, each delete that returns false and each
operation that returns invalidCursor is linearized at the first step of the last execution of
line 77 inside its last call to updateCursor. Let (L, S) be an auxiliary variable of type list.
When an operation is linearized, the same operation is atomically applied to (L, S) according
to the sequential specification. To prove our linearization is correct, we show in Lemma 14
how the auxiliary variable (L, S) is accurately reflected in the state of the actual list, implying
each operation returns the same response as the corresponding operation on (L, S).

In Lemma 14, we use abstract values to construct a one-to-one correspondence between
Nodes in the list and items in L. The absVal of the EOL item is 1. If an item q is inserted
between items p and r in L, q.absV al = (p.absV al+ r.absV al)/2. If q is inserted before the
first item r, q.absV al = r.absV al/2. The cursor in S corresponding to Cursor c is denoted c.
After the linearization point of a successful operation op called with c, op might update
c.node, but c is updated at the linearization point. To keep track of the value of c, we define
a prophecy variable c.updatedNode. If a configuration C is after the linearization point of a
successful operation op called with c but before op sets c.node, then c.updatedNode in C is
the Node that op would set c.node to later. Otherwise, c.updatedNode = c.node. Since c is
a local variable, c.node might become out of date when other processes update c. The true
location of a cursor c whose c.upatedNode is x is

realNode(x) =

realNode(x.copy) if x.state = copied and x is unreachable,
realNode(x.nxt) if x.state = marked and x is unreachable,
x otherwise.

We say realNodePath(x) in configuration C is the sequence of Nodes used to define realNode(x)
starting with x and ending at a reachable Node. An update is successful if it is linearized at
a forward CAS.

I Lemma 14.
1. If operation op is linearized at step S and terminates with result r, the corresponding

abstract operation applied to (L, S) atomically at S also returns r.
2. The sequence of abstract values and values of Nodes that are reachable (excluding head

and tail) and of items in L are equal.
3. For each c in S, c.item.absV al = realNode(c.updatedNode).absV al.

N. Shafiei 35:13

4. c.invIns is true in configuration C iff (a) a Node x is on realNodePath(c.updatedNode)
in C such that x is copied and unreachable, or (b) C is between the invocation of an
operation op called with c and op’s linearization point and op’s local variable invIns is true.

5. c.invDel is true in configuration C iff (a) a Node x is on realNodePath(c.updatedNode)
in C such that x is marked and unreachable, or (b) C is between the invocation of an
operation op called with c and op’s linearization point and op’s local variable invDel is true.

Proof Sketch. Suppose the lemma is true up to step S and C is the configuration before S.
We show the lemma is true at the configuration C ′ after S.
Statement 1: Suppose S is the linearization point of op called with c.

Case 1: op returns invalidCursor. S is the first step of the last execution of line 77 inside
op’s last call to updateCursor. In C, op’s invDel or invIns is true and c.invDel or c.invIns is
true by induction hypothesis 4 and 5. So, the abstract operation also returns invalidCursor.

Case 2: op is a delete that returns false. S is the first step of the last execution of
line 77 inside op’s last call to updateCursor. By similar argument to Case 1, c.invDel
is false in C. We show c.item.value = EOL in C. In C, c.updatedNode = c.node. In-
variant 1 and Lemma 9 imply that c.node is reachable in C. In C, c.item.absV al =
realNode(c.updatedNode).absV al = realNode(c.node).absV al = c.node.absV al (by induc-
tion hypothesis 3). By induction hypothesis 2, c.item.value = c.node.value = EOL in C.
So, c.item.value = EOL in C and the abstract deletion must also return false.

Case 3: op is a move, get or successful update. This case is handled similarly to Case 1 and 2.

Statement 2: By Statement 1, unsuccessful updates change neither L nor the reachable
Nodes. By Lemma 8.1, L and the reachable Nodes are changed only by the first forward CAS
of an Info object. Suppose S is the first forward CAS of an Info object I created by a delete(c).
(A similar argument applies to insertBefore.) Since c.updatedNode = c.node = yI is reachable
at C (by Lemma 8.3), c.item.absV al = yI .absV al at C (by induction hypothesis 3). Only
yI becomes unreachable at C ′. Likewise, only c.item is removed from L at C ′.

Statement 3: Only linearization points of operations can change realNode(c.updatedNode)
or c.item. Suppose S is the linearization point of op. We consider different cases.

Case 1: op is an initializeCursor or resetCursor that terminates. Then, step S is a read
of head.nxt on line 63 or 68. By Statement 1, S sets c.item to the first item in L. Let
x be the value of head.nxt in C ′. The absV al of the first item in L is x.absV al in C ′ (by
Statement 2) and c.item.absV al = x.absV al in C ′. Since op sets c.node to x on line 63
or 68, c.updatedNode = x in C ′. In C ′, c.item.absV al = x.absV al = realNode(x).absV al =
realNode(c.updatedNode).absV al.

Case 2: op is called with c and returns invalidCursor or op is a delete(c) that returns false
or op is a get(c) that terminates. Then, S is the first step of the last execution of line 77
inside op’s last call to updateCursor. By Statement 1, S does not change c.item. By
induction hypothesis 3, c.item.absV al = realNode(c.updatedNode).absV al in C. Since S
does not change realNode(c.updatedNode), the same equality holds in C ′.

Case 3: op is a move or successful update. This case is handled similarly to Case 1.

Statement 4 and 5: We show Statement 4 is true. The proof of Statement 5 is symmetric.
It is easy to show that the only steps S that we must consider are linearization points of
operations, executions of line 79, 80 or 83 and invocations of an operation called with c.
Suppose S is the linearization point of an operation op called with c. In C ′, c.invIns and
Statement 4.b are false. It is easy to show that, in C ′, c.updatedNode is reachable and it is

OPODIS 2015

35:14 Non-Blocking Doubly-Linked Lists with Good Amortized Complexity

the only Node on realNodePath(c.updatedNode). So, Statement 4.a is false. The rest of
cases are handled similarly. J

Linearizability of our implementation follows from Lemma 14.1.

6 Amortized Analysis

Our amortized analysis gives an upper bound on the total number of steps performed by
all operations in any finite execution. A Cursor is active if it has been initialized, but not
yet destroyed. Let ċ(op) be the maximum number of active Cursors at any configuration
during operation op. We prove that the amortized complexity of each update op is O(ċ(op))
and each move is O(1). More precisely, for any finite execution α, the total number of steps
in α is O(

∑
op is an update in α ċ(op) +

∑
op is a move in α 1). It follows that the implementation

is non-blocking. The analysis (about 20 pages long in [19]) is quite complex, so we only
provide the intuition here. Parts of it are similar to the analysis of search trees in [6] but
the parts dealing with Cursors and moves are original. We simplified the analysis using the
potential method and show how to generalize the analysis of [6] to handle operations that
flag more than two nodes.

We first bound the number of iterations of line 77–83. Each update op deletes or replaces
at most one Node. Any Cursor c whose true location (as defined in Sec. 5) is at that Node
when op is performed will have to perform one iteration of line 77–83 when updateCursor(c)
is next called to follow the nxt or copy pointer of the Node. Since there are at most
ċ(op) such cursors, the total number of iterations of line 77–83 in the execution is at most∑
op is an update ċ(op).
Each iteration of line 18–30 or 32–42 inside an update is called an attempt, which is

successful if it returns on line 20, 30, 34 or 42, or unsuccessful otherwise. Excluding calls to
updateCursor (which have already been accounted for), each attempt of an update takes
O(1) steps and, each move and each get operation take a total of O(1) steps. It follows that
the amortized complexity of a move and a get is O(1). It remains to prove that the total
number of unsuccessful attempts in the execution is O(

∑
op is an update ċ(op)). An attempt is

unsuccessful because one of the Nodes to be flagged is either (1) observed to be marked or
copied when checkInfo returns false on line 92 or (2) flagged by another update.

First, consider attempts that fail for reason (1). Consider a Cursor c that is active when
an update op sets x.state to copied or marked. This causes at most two attempts of c’s
updates to fail: if an attempt of an update op′ fails when reading x.state at line 92, line 89
of the next attempt ensures op is completed and no subsequent attempt reaches x. To pay
for these attempts, op stores 2ċ(op) of potential when op sets x.state. There is one other
possibility: an operation op′ might be called with a Cursor that is created after op set x.state
to marked or copied. Again, at most two attempts of op′ might fail because of reading x.state
at line 92. To pay for these attempts, op′ stores 2ċ(op′) of potential when it is invoked, since
there are at most ċ(op′) reachable Nodes that are marked or copied when op′ begins. Thus,
the total number of attempts that fail for reason (1) is O(

∑
op is an update ċ(op)).

Bounding the number of attempts that fail for reason (2) is the most intricate part of
the analysis. An attempt att of an update may fail because a Node it wishes to flag gets
flagged by an attempt att′ of another operation, causing att’s test at line 88 or 94 to fail or
att’s flag CAS on line 99 to fail. If att′ were guaranteed to succeed in this case, the analysis
would be simple. However, att′ itself may also fail because it is blocked by the attempt of
a third operation, and so on. Since a successful flag CAS might belong to an unsuccessful
attempt, such a step does not store any potential. However, O(ċ(op)) of potential is stored

N. Shafiei 35:15

0.00E+00	

5.00E+07	

1.00E+08	

1.50E+08	

2.00E+08	

2.50E+08	

3.00E+08	

3.50E+08	

0	 10	 20	 30	 40	 50	 60	

Th
ro
ug
hp

ut
	 (n

um
be

r	 o
f	

op
er
a1

on
s	 p

er
	 se

co
nd

)	

Number	 of	 Threads	

our	 list	

SDLL	

Figure 6 Comparison of our list and the list in [21].

(a) when an update op is invoked, (b) when a forward or backward CAS step of op succeeds
and (c) when the status of an Info object created by op is set to committed. We prove that
this potential is sufficient to pay for any attempt that fails for reason (2). Thus, the total
number of attempts that fail for reason (2) is also O(

∑
op is an update ċ(op)). It follows the

amortized complexity of an update op is O(ċ(op)).

7 Concluding Remarks

A correctness proof is essential for data structures such as ours since it is not possible to
test all possible executions. Writing detailed correctness proofs helped us to correct bugs in
earlier versions and then verify the correctness of our list. It also helped us to simplify the
pseudo-code and improve its complexity.

Our amortized bound of O(ċ(op)) for an update op is quite pessimistic: the worst case
happens only if concurrent updates are scheduled in a very particular way. We expect our
list would have even better performance in practice. Our experimental results suggest that
on an Intel Xeon multi-core machine, a Java implementation of our list scales well and also
outperforms the list in [21] (SDLL). We used our own Java implementations for both our
list and SDLL. Each data point in Figure 6 is the average of eight 4-second trials in which
each thread continuously performs on-average 100 move operations and then one update
operation on a list with 200 items. Our results show that the throughput of SDLL is not
improved when the number of threads is increased, which agrees with the empirical results
presented in [21].

In our approach, as in [3, 4, 5, 8, 18], updates create Info objects and duplicate Nodes,
which induces some overhead. Despite such overheads, empirical evaluations in [4, 5, 18] and
here confirm the practicality and scalability of this technique.

Though moves have constant amortized time, they are not wait-free. For example, if
cursors c and c′ point to the same node, a moveLeft(c) may never terminate if an infinite
sequence of insertions at c′ succeed, since the updateCursor of the move could run forever.

Future work includes designing shared cursors. Generalizing our coordination scheme
could provide a simpler way to design non-blocking data structures. Although the proof of
correctness and analysis is complex, it is modular, so it could be applied more generally. Our
help routine gives a general way of coordinating operations that make several changes to
a data structure. Parts 1 and 2 of the proof are primarily about this routine and could be
reused for other data structures. Detailed arguments about linearizability of the operations
(Part 3 of the proof) would likely depend more on the data structure being implemented.

OPODIS 2015

35:16 Non-Blocking Doubly-Linked Lists with Good Amortized Complexity

Acknowledgements. I thank my supervisor, Eric Ruppert, for his great guidance and
advice, and the management, staff, and facilities of the Intel Manycore Testing Lab.1

References

1 Hagit Attiya and Eshcar Hillel. Built-in coloring for highly-concurrent doubly-linked lists.
Theory of Computing Systems, 52(4):729–762, 2013.

2 Greg Barnes. A method for implementing lock-free shared-data structures. In Proceedings
of the 5th ACM Symposium on Parallel Algorithms and Architectures, SPAA’93, pages
261–270, 1993.

3 Trevor Brown, Faith Ellen, and Eric Ruppert. Pragmatic primitives for non-blocking data
structures. In Proceedings of the 32nd ACM Symposium on Principles of Distributed Com-
puting, PODC’13, pages 13–22, 2013.

4 Trevor Brown, Faith Ellen, and Eric Ruppert. A general technique for non-blocking trees.
In Proceedings of the 19th ACM Symposium on Principles and Practice of Parallel Pro-
gramming, PPOPP’14, pages 329–342, 2014.

5 Trevor Brown and Joanna Helga. Non-blocking k-ary search trees. In Proceedings In-
ternational Conference on Principles of Distributed Systems, OPODIS’11, pages 207–221,
2011.

6 Faith Ellen, Panagiota Fatourou, Joanna Helga, and Eric Ruppert. The amortized com-
plexity of non-blocking binary search trees. In Proceedings of the 33rd ACM Symposium
on Principles of Distributed Computing, PODC’14, pages 332–340, 2014.

7 Faith Ellen, Panagiota Fatourou, Eleftherios Kosmas, Alessia Milani, and Corentin Travers.
Universal constructions that ensure disjoint-access parallelism and wait-freedom. In Pro-
ceedings of the 31st ACM Symposium on Principles of Distributed Computing, PODC’12,
pages 115–124, 2012.

8 Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-blocking
binary search trees. In Proceedings of the 29th ACM Symposium on Principles of Distributed
Computing, PODC’10, pages 131–140, 2010.

9 Zhixi Fang, Peiyi Tang, Pen-Chung Yew, and Chuan-Qi Zhu. Dynamic processor self-
scheduling for general parallel nested loops. IEEE Transactions on Computers, 39(7):919–
929, July 1990.

10 Michael Greenwald. Two-handed emulation: how to build non-blocking implementations
of complex data-structures using dcas. In Proceedings of the 21st Symposium on Principles
of Distributed Computing, PODC’02, pages 260–269, 2002.

11 Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory, 2nd Edition. 2010.
12 Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A practical multi-word compare-and-swap

operation. In Proceedings of the 16th International Conference on Distributed Computing,
DISC’02, pages 265–279, 2002.

13 Klaus Havelund and Thomas Pressburger. Model checking Java programs using Java
PathFinder. Software Tools for Technology Transfer, 2(4):366–381, 2000. See http:
//babelfish.arc.nasa.gov/trac/jpf.

14 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems, 12(3):463–
492, July 1990.

1 http://www.intel.com/software/manycoretestinglab
http://www.intel.com/software.

http://babelfish.arc.nasa.gov/trac/jpf
http://babelfish.arc.nasa.gov/trac/jpf
http://www.intel.com/software/manycoretestinglab
http://www.intel.com/software

N. Shafiei 35:17

15 Jikuan Hu and Weiqing Wang. Algorithm research for vector-linked list sparse matrix
multiplication. In Proceedings of the 2010 Asia-Pacific Conference on Wearable Computing
Systems, APWCS’10, pages 118–121, 2010.

16 Victor Luchangco, Mark Moir, and Nir Shavit. Nonblocking k-compare-single-swap. In Pro-
ceedings of the 15th ACM Symposium on Parallel Algorithms and Architectures, SPAA’03,
pages 314–323, 2003.

17 Matthias Pfeffer, Theo Ungerer, Stephan Fuhrmann, Jochen Kreuzinger, and Uwe Brink-
schulte. Real-time garbage collection for a multithreaded Java microcontroller. Real-Time
Systems, 26(1):89–106, January 2004.

18 Niloufar Shafiei. Non-blocking Patricia tries with replace operations. In Proceedings of
the 33rd International Conference on Distributed Computing Systems, ICDCS’13, pages
216–225, 2013.

19 Niloufar Shafiei. Non-blocking data structures handling multiple changes atomically. PhD
thesis, Department of Electrical Engineering and Computer Science, York University,
Toronto, Canada, August 2015.

20 Håkan Sundell. Wait-free multi-word compare-and-swap using greedy helping and grabbing.
International Journal of Parallel Programming, 39(6):694–716, 2011.

21 Håkan Sundell and Philippas Tsigas. Lock-free deques and doubly linked lists. Journal of
Parallel and Distributed Computing, 68(7):1008–1020, 2008.

22 John Turek, Dennis Shasha, and Sundeep Prakash. Locking without blocking: Making lock
based concurrent data structure algorithms nonblocking. In Proceedings of the 11th ACM
Symposium on Principles of Database Systems, PODS’92, pages 212–222, 1992.

23 John D. Valois. Lock-free linked lists using compare-and-swap. In Proceedings of the 14th
ACM Symposium on Principles of Distributed Computing, PODC’95, pages 214–222, 1995.

OPODIS 2015

Poly-Logarithmic Adaptive Algorithms Require
Unconditional Primitives
Hagit Attiya∗1 and Arie Fouren†2

1 Department of Computer Science, Technion, Haifa 32000, Israel
hagit@cs.technion.ac.il

2 Faculty of Business Administration, Ono Academic College, Kiryat Ono,
5545173, Israel
aporan@ono.ac.il

Abstract
This paper studies the step complexity of adaptive algorithms using primitives stronger than
reads and writes. We first consider unconditional primitives, like fetch&inc, which modify the
value of the register to which they are applied, regardless of its current value. Unconditional
primitives admit snapshot algorithms with O(log k) step complexity, where k is the total or
the point contention. These algorithms combine a renaming algorithm with a mechanism for
propagating values so they can be quickly collected.

When only conditional primitives, e.g., compare&swap or LL/SC, are used (in addition to
reads and writes), we show that any collect algorithm must perform Ω(k) steps, in an execution
with total contention k ∈ O(log logn). The lower bound applies for snapshot and renaming,
both one-shot and long-lived. Note that there are snapshot algorithms whose step complexity is
polylogarithmic in n using only reads and writes, but there are no adaptive algorithms whose
step complexity is polylogarithmic in the contention, even when compare&swap and LL/SC are
used.

1998 ACM Subject Classification C.1.4 Parallel Architectures, D.4.1 Process Management

Keywords and phrases collect, atomic snapshot, renaming, fetch&inc, compare&swap

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.36

1 Introduction

Collecting up-to-date information from all processes is a key to coordination and synchroniz-
ation, for example, for implementing atomic snapshots [1] or solving renaming [7]. A simple
way to do so is to have an array where each process stores its latest value in the entry
associated with its index, and to read this array in order to collect the values of all processes.

This scheme is an overkill when only a few processes participate in the algorithm: many
entries are read from the array although they contain irrelevant information about processes
not wishing to coordinate. Better performance is achieved when the step complexity depends
only on the total contention, namely, the number of processes that participate in the algorithm.
We say that such an algorithm is adaptive to total contention. Even better is an algorithm
whose step complexity is adaptive to point contention, which is the maximal number of
processes simultaneously executing the algorithm concurrently.

∗ This work is supported by the Israel Science Foundation (grant number 1749/14), and by Yad HaNadiv
foundation.

† This work is supported by the Ono Academic College Research Fund.

© Hagit Attiya and Arie Fouren;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 36; pp. 36:1–36:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.36
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

36:2 Poly-Logarithmic Adaptive Algorithms Require Unconditional Primitives

Algorithm Problem Step Complexity Contention Primitives

Algorithm 1,
using [22]

atomic snap-
shot

O(log(k)) point LL/SC, fetch&inc,
bounded-fetch&dec

Algorithm 1,
using fetch&inc

atomic snap-
shot

O(log(k)) total LL/SC, fetch&inc

Algorithm 2 atomic snap-
shot

O(min(k, log n)) point LL/SC

Figure 1 Summary of upper bounds for long-lived atomic snapshots.

There has been significant progress in designing adaptive collect algorithms that only use
reads and writes. These algorithms have step complexity that is at least linear in the total
or point contention [3, 12, 2]. They have been used in algorithms for atomic and immediate
snapshots, renaming and timestamping [9, 4, 10, 12, 11].

Much less is known about the complexity of adaptive collect using primitives stronger
than reads and writes. A notable exception is the collect algorithm of Moir et al. [17], which
uses test&set. This algorithm uses less memory than collect algorithms that use only reads
and writes, but its step complexity is not much better, as it is linear in the point contention.

This paper studies the step complexity of adaptive algorithms using primitives stronger
than reads and writes and investigates whether they can be used to obtain adaptive algorithms
with poly-logarithmic step complexity.

We present a snapshot algorithm with O(log k) step complexity, where k is the total
contention; the algorithm uses fetch&inc (as well as LL/SC). We also describe a snapshot
algorithm with O(log k) step complexity, where k is point contention, using fetch&inc and
bounded-fetch&dec primitives (and LL/SC). These algorithms combine a renaming algorithm
for having processes obtain unique locations to store their values, with a mechanism for
propagating these values up a tree (“bubbling” them up), so they can be quickly collected.
(See Table 1.)

These algorithms use unconditional primitives, like fetch&inc and bounded-fetch&dec,
which modify the value of the register to which they are applied regardless of the current
value of the register. In contrast, conditional primitives [15], like compare&swap and LL/SC,
modify the register only if it holds a specific value that depends on the input of the conditional
operation. When only conditional primitives are used (in addition to reads and writes), we
show that any collect algorithm must perform Ω(k) steps, in an execution with total contention
k ∈ O(log logn). Specifically, the bound applies for the sum of the step complexities of a
pair of store and collect operations performed by some process on a one-shot collect object.

There is a trade-off between the contention k and the step complexity lower bound of
collect. If the total contention k is in Θ(n), we prove that at least O(log k) steps are required
to perform store and collect. We present an algorithm with O(min(k, logn)) step complexity,
matching the lower bounds.

Clearly, the lower bound for collect immediately applies for snapshots. Moreover, the
reduction from collect to renaming, described earlier, implies that the lower bound also
applies to renaming, giving an alternative proof of the Ω(k) step complexity lower bound
previously proved by Alistarh et al. [5]. Obviously, it also implies a Ω(k) lower bound for the
long-lived versions of collect, snapshot and renaming, where k is point contention.

Related Work. The work of Fich, Hendler and Shavit [15] showed a separation (in terms
of space complexity) between conditional and unconditional primitives. It proves that any

H. Attiya and A. Fouren 36:3

wait-free implementation of a large class of objects that includes counters, stacks, queues and
snapshots from reads, writes and conditional primitives requires at least Ω(n) space. The
same space is required for any starvation-free mutual exclusion implemented from conditional
primitives. In contrast, using unconditional primitives (like fetch&add) allows to implement
these objects and to solve mutual exclusion using only constant space. These results align
with the separation in the terms of time complexity presented in our work.

There is an Ω(k) lower bound on the step complexity of adaptive mutual exclusion using
reads, writes and compare&swap [21].1 The lower bound requires that the total number of
the processes n = Ω(k2k), which is slightly higher than the requirement on n in our lower
bound.

Alistarh et al. [5] show how to transform any adaptive wait-free renaming with sub-
exponential name space M(k) into adaptive mutual exclusion with O(log(M(k)) = o(k)
additional steps. Using the Ω(k) lower bound on the step complexity of adaptive mutual
exclusion [21], they derive an Ω(k) lower bound on the step complexity of adaptive renaming.
This lower bound also requires n = Ω(k2k).

Another reduction from mutual exclusion to renaming can be obtained using unbalanced
tournament tree presented in [8]. For sub-exponential name space M(k) this transformation
also requires O(log(M(k)) = o(k) additional steps. Combined with the Ω(k) lower bound
for mutual exclusion [21], it also provides an Ω(k) step complexity lower bound for adaptive
renaming.

There is a simple implementation of O(k2)-renaming from lattice agreement, with O(1)
additional steps [16, Algorithm 11]. Together with the Ω(k) step complexity lower bound for
adaptive renaming [5, 8] it implies an Ω(k) step complexity lower bound for adaptive lattice
agreement (and therefore, for atomic and immediate snapshots).

We could not find a reduction with sublinear step complexity from these problems (mutual
exclusion, renaming or snapshots) to adaptive store / collect, even with compare&swap and
LL/SC. Without a way to deduce the lower bound for adaptive store-collect from the existing
lower bounds for mutual exclusion or renaming, we had to directly prove the lower bound for
adaptive collect presented in this paper.

2 The Computation Model

In the wait-free asynchronous shared-memory model, n processes, p0, . . . , pn−1 communicate
by applying primitive operations (in short, primitives) to shared memory registers [21]. A
process is described as a state machine, with a set of (possibility infinite number of) states,
one of which is a designated initial state, and a state transition function.

The executions of the system are sequences of events. In each event, based on its current
state, a process applies a primitive to a shared memory register and then changes its state,
according to the state transition function. At the beginning of the execution, all shared
registers hold the value ⊥. During an execution, no process ever changes the value of a
shared register to ⊥.

An event φ in which a process p applies a primitive op to register R is denoted by a triple
〈p,R, op〉. An execution α is a (finite or infinite) sequence of events φ0, φ1, φ2, There are
no constraints on the interleaving of events by different processes, reflecting the assumption

1 This lower bound holds also for LL/SC by using an implementation of LL/SC from compare&swap, with
constant step complexity [19].

OPODIS 2015

36:4 Poly-Logarithmic Adaptive Algorithms Require Unconditional Primitives

that processes are asynchronous. We denote by next_event(pi, α) the next event a process
pi will perform if it is scheduled to take a step after an execution prefix α.

For an execution α and a set of processes P , α|P is the sequence of all events in α by
processes in P ; α|P is the sequence of all events in α that are not by processes in P . If
P = {p}, we write α|p instead of α|{p} and α|p instead of α|{p}. An execution α is P -only if
α = α|P , and it is P -free execution if α = α|P . Two executions α and α′ are equivalent with
respect to P if α|P = α′|P .

We always assume the availability of read and write primitives. A read(R) primitive
returns the current value of R and does not change its value. A write(v, R) operation sets
the value of R to v, and does not return a value. We make no restrictions on which process
can read from or write to each register, i.e., they are multi-writer multi-reader.

A fetch&inc on register R atomically increments the value of the register by 1 and returns
the previous value. That is, if the value of R immediately before the invocation of fetch&inc
(R) was v, then the primitive sets the value of R to v + 1 and returns v. Similarly, fetch&dec
atomically decrements the value of the register by 1 and return the previous value. A
bounded-fetch&dec primitive is similar to standard fetch&dec, except that if the value of
register R is 0 before the primitive is applied to it, then the value of R remains unchanged.

LL on register R returns the current state of R. SC (R, v) invoked by a process p changes
the state of R to v only if no other process has changed the value of R since the the latest
execution of LL (R) by p. If the value of R is changed SC returns true, otherwise it returns
false.

A compare&swap(R, v, u) primitive works as follows. If the register R holds the value v,
then the state of R is changed to u and and true is returned (the compare&swap succeeds).
Otherwise, the state of R remains unchanged and false is returned (the compare&swap fails).

An implementation of a high-level object provides algorithms for each high-level operation
supported by the object. Some of the transitions are requests, invoking a high-level operation,
or responses to a high-level operation. When a high-level operation is invoked, the process
executes the algorithm associated with the operation, applying primitives to the shared
registers, until a response is returned.

In a well-formed execution, a high-level operation is invoked only if there is a response
to the previous high-level operation, that is, a process alternates between invocations and
matching responses, beginning with an invocation. A well-formed execution α defines a
partial order on operations: If the response of operation op1 occurs in α before the invocation
of operation op2, then op1 precedes op2 and op2 follows op1. We say that op1 and op2 are
non-overlapping.

We require implementations to be linearizable [18]. Roughly speaking, a linearizable
object guarantees that there is a reordering of the object operations which satisfies the
sequential specification of the object and respects the real-time order of non-overlapping
operations among all the processes.

Adaptive Algorithms. Let α′ be a finite prefix of an execution α. Process pi performing a
high-level operation op is active at the end of α′, if α′ includes an invocation of op without a
return from op. The set of the processes active at the end of α′ is denoted active(α′). The
point contention at the end of α′, denoted pointCont(α′), is |active(α′)|.

The total contention during α is the total number of processes active in α:

totalCont(α) =

∣∣∣∣∣∣
⋃

α′ prefix of α
active(α′)

∣∣∣∣∣∣ .

H. Attiya and A. Fouren 36:5

Assume that β is a finite interval β of α, i.e., α = α1βα2. The point contention during β,
denoted pointCont(β), is the maximum contention in all prefixes α1β

′ of α1β:

pointCont(β) = max
α1β′ prefix of α1β

pointCont(α1β
′) .

Consider an execution α of an algorithm A implementing a high-level operation op. For
process pi executing operation opi, step(A,α, opi) is the number of operations on shared
registers pi performs executing opi in α. The step complexity of A in α, denoted step(A,α),
is the maximum of step(A,α, opi) over all operations opi of all processes pi.

Consider a bounded function S : N 7→ N . An algorithm implementing operation op
is S-adaptive to total contention if for every execution α and every operation opi with
interval βi, step(A,α) ≤ S(totalCont(α)). That is, the step complexity of the algorithm in
any execution is bounded by a function of the total contention during the execution. An
algorithm implementing operation op is S-adaptive to point contention if for every execution
α and every operation opi with interval βi, step(A,α, opi) ≤ S(pointCont(βi)). That is, the
step complexity of an operation opi with interval βi is bounded by a function of the point
contention during βi.

Since contention is bounded by n, an operation opi of pi terminates within a bounded
number of steps of pi, regardless of the behavior of other processes; that is, adaptive algorithms
are wait-free.

3 Problems Studied in this Paper

Collect. A solution for the collect problem should define algorithms for two operations –
store and collect. Intuitively, a store(val) operation of pi declares val as the latest value for pi,
and a collect operation returns a view containing the latest values stored by active processes.
A view is a set of process-value pairs, V = {〈pi1 , vi1〉, . . .}, without repetitions of processes.
V (pj) refers to vj , if 〈pj , vj〉 ∈ V , and to ⊥ otherwise.

A collect operation cop returns a view V such that the following holds for every process
pj :
Validity: If V (pj) = ⊥, then no store operation of pj precedes cop; if V (pj) = v 6= ⊥ then v

is the value of a store operation sop of pj that does not follow cop, and there is no other
store operation sop′ of pj that follows sop and precedes cop.

That is, cop does not read from the future or miss a preceding store operation.
Moreover, if a collect operation op follows another collect operation cop′, then cop should

return a view which is more up-to-date. To capture this notion, we define a partial order on
views: V1 � V2, if for every process pi such that 〈pi, v1

i 〉 ∈ V1, we have 〈pi, v2
i 〉 ∈ V2, and v2

i

is written in a store operation of pi that follows or is equal to a store operation of pi which
writes v1

i . Using this definition, we formulate the property of the collect problem as follows:
Regularity: Assume a collect operation cop by pi returns V1, and a collect operation cop′ by

pj returns V2. If cop precedes cop′, then V1 � V2.

Atomic Snapshots. The atomic snapshot problem [1] extends the collect problem by
requiring views to look instantaneous. We assume a combined upscan operation, which
updates a new value and atomically collects a view. The returned views should satisfy the
following conditions:

OPODIS 2015

36:6 Poly-Logarithmic Adaptive Algorithms Require Unconditional Primitives

Validity: If an upscan operation op returns a view V , and precedes an upscan operation op′,
then V does not include the value written by op′.2

Self-inclusion: The view returned by the `th upscan operation of pj includes the `th value
written by pj .

Comparability: If V1 and V2 are the views returned by two upscan operations, then either
V1 � V2 or V2 � V1.

The lattice agreement problem is a special case of atomic snapshots, in which a process
performs the algorithm at most once, writing its own identifier and collecting a view which
contains identifiers of participating processes. The returned views should satisfy the validity,
self-inclusion and comparability properties of the atomic snapshot.

Immediate Snapshots. The immediate snapshot problem [14] is an extension of the atomic
snapshot problem; it supports a combined im-upscan operation, which updates a new value
and returns a view. In addition to the validity, self-inclusion, and comparability properties
of the atomic snapshot problem, returned views should satisfy the next condition:
Immediacy: If the view returned by some im-upscan operation, V1, includes the value written

in the `th im-upscan of pj which returns the view V2, then V2 � V1.

M -Renaming. In the long-lived M-renaming problem, processes p1, . . . , pn with unique
names from the range {0, . . . , N − 1} repeatedly acquire and release distinct names in the
range {0, . . . ,M − 1}. The range {0 . . . N − 1} is the initial name space, and the range
{0 . . .M − 1} is the final name space. A solution supplies two procedures: getName returning
a new name, and releaseName; pi alternates between invoking getNamei and releaseNamei,
starting with getNamei.

For the long-lived renaming problem we redefine the notion of an active process. Process
pi is active at the end of execution prefix α′, if α′ includes an invocation of getNamei without
a return from the matching releaseNamei. A long-lived renaming algorithm should guarantee
uniqueness of new names: Active processes hold distinct names at the end of α′.

A renaming algorithm has a name space adaptive to point contention, if there is a
function M, such that the name obtained in an interval β of getName is in the range
{1, . . . ,M(pointCont(β))}. The name space is adaptive to total contention, if the new names
are in the range {1, . . . ,M(totalCont(β))}.

One-shot M -renaming is a special case of long-lived renaming. The processes start with
unique names from the range {0, . . . , N − 1} and are required to choose distinct names in
the range {0 . . .M − 1}, where M < N .

4 Sub-linear Adaptive Algorithms for Atomic Snapshots

4.1 Atomic Snapshots Using Renaming
This section presents a modular construction of atomic snapshots using renaming. The
algorithm uses an unbalanced binary tree, consisting of a sequence of complete binary trees of
growing sizes, connected as shown in Figure 2. (This tree structure was also used in [6, 22].)

In Algorithm 1, a process starts by acquiring a name i using an adaptive renaming
algorithm (Line 1.2). Then it exclusively accesses the i-th leaf of the unbalanced binary tree,

2 Typically, this condition trivially holds and we do not prove it below.

H. Attiya and A. Fouren 36:7

Figure 2 Unbalanced binary tree used in Algorithm 1.

writes its information in the register associated with the leaf. Then, it climbs up to the root,
updating the views associated with the nodes on the path. (This part of the algorithm is
similar to the f -array implementation of Jayanti [20].) After updating the root, the process
releases the acquired name.

The next lemma shows that the sequence of the views stored in a node is monotonically
increasing:

I Lemma 1 (Comparability). Let V1, V2, . . . be the sequence of the views written into
v.subtree-View of some node v in Line 1.3, 1.17 or 1.17. Then V1 � V2 �

Proof. If node v is a leaf, then define a sequence of execution intervals γ1, γ2, . . . as follows:
γi starts in the ith time a process p acquires the name associated with leaf v (Line 1.2), and
it ends when p releases this name (Line 1.6). By the uniqueness of renaming, the intervals
γ1, γ2, . . . do not overlap.

If v is an inner node, let γ1, γ2, . . . be the execution intervals corresponding to the pairs
of successful LL/SC primitives that write views V1, V2, . . . into v.subtree-View. That is, for
each successful pair SCi, the interval γi starts with the corresponding LL (Line 1.16 or 1.18)
and ends with the corresponding SC (Line 1.17 or 1.19). Clearly, the intervals γ1, γ2, . . . do
not overlap.

In both cases, processes access node v in non-overlapping intervals γ1, γ2, Therefore,
a view Vi written by a process p into v.subtree-View in interval γi, (in Line 1.3 if v is a leaf,
or in Line 1.17 or 1.19 if v is an inner node) is read after that by a process q in the next
interval γi+1 (in Line 1.16 or 1.18). Therefore, it is included in the view Vi+1 written by q
into v.subtree-View (in Line 1.3, Line 1.17 or 1.19). This implies that Vi � Vi+1, and the
lemma follows by induction on i. J

The following lemma states that the views returned by scan operations satisfy the
self-inclusion property of atomic snapshot.

I Lemma 2 (Self-inclusion). Assume pi performs update(idi, vali), and then scan() that
returns view Vi. Then vali ∈ Vi.

Proof. We show by induction on the sequence of the nodes visited by pi during refresh that
vali ∈ v.subtree-View after pi leaves node v (Line 1.21).

If node v is a leaf, then pi appends vali to v.subtree-View in Line 1.3. Therefore,
vali ∈ v.subtree-View after pi leaves v.

OPODIS 2015

36:8 Poly-Logarithmic Adaptive Algorithms Require Unconditional Primitives

Algorithm 1 Adaptive atomic snapshot algorithm using renaming
Type:

node :
subtree-View: view of the values stored in the subtree of the node, initially ∅
left-child: pointer to left child node
right-child: pointer to right child node
parent: pointer to the parent node

Global variables:
T: unbalanced binary tree of nodes

Local variables:
id : process id
val : value to be written; for simplicity we assume increasing numbers

1: procedure update(id, val)
2: i = acquire-name() . using any adaptive long-lived renaming algorithm
3: v = i-th leaf of the unbalanced tree T . start at the bottom of the unbalanced tree
4: v.subtree-View = merge(v.subtree-View, {〈id, val〉}) . update your value in the leaf
5: refresh(v) . start from the current leaf v and ascend back to the root

. updating the views in the nodes along the path
6: release-name(i) . release the name associated with the i-th leaf
7: end procedure

8: procedure scan
9: return(root.subtree-View) . return the view from the root node

10: end procedure

11: procedure merge(views V1, V2, . . .) . return the view of the latest processors’ values
12: return({〈pi, vi〉 | vi = max(V1(pi), V2(pi), . . .)})
13: end procedure

14: procedure refresh(node v) . start at leaf v and ascend back to the root
15: while v 6= root do . updating the views in the nodes along the path
16: view = LL(v.subtree-View)

. merge the views stored v and in both its children and try to store it in v.subtree-View
17: if ¬ SC(v.subtree-View, merge(view, v.right-child.View,v.left-child.View) then
18: view = LL(v.subtree-View) . if the previous store failed, try once more
19: SC(v.subtree-View, merge(view, v.right-child.View,v.left-child.View))
20: end if
21: v = v.parent . climb up to the patent node even if both updates failed
22: end while
23: end procedure

H. Attiya and A. Fouren 36:9

For the induction step, assume that vali ∈ subtree-View in the left child or the right child
of the current node v. Process pi reads these views before it attempts to write the merged
view into v.subtree-View with SC (Line 1.17 or 1.19). If one of the SC primitives succeeds,
then vali ∈ v.subtree-View after pi leaves node v.

If both of these SC primitives fail, then there is a successful pair LLj and SCj by some
process pj such that LLj starts after the first LL of pi and SCj ends before the second
SC of pi. Process pj reads v.left-child.subtree-View and v.right-child.subtree-View (one of
them containing vali) between LLj and SCj . Therefore, SCj writes a view containing vali
into v.subtree-View. By Lemma 1, v.subtree-View is monotonically increasing. Therefore,
vali ∈ v.subtree-View after pi leaves node v.

Process pi completes refresh after leaving the root. Therefore, vali ∈ root.subtree-View
after pi returns from update. By Lemma 1, root.subtree-View is monotonically increasing.
Therefore, the view Vi returned by the following scan operation contains vali. J

By Lemmas 1 and 2 we have that Algorithm 1 implements a long-lived atomic snapshot.
Let M(k) be the size of the name space of the adaptive renaming algorithm used in the
algorithm. The distance from the M(k)-th leaf of the unbalanced tree to the root is
O(logM(k)). In each node on the path from the leaf to the root in update, a process
performs a constant number of steps. Therefore, the step complexity of the resulting
snapshot algorithm is f(k) +O(logM(k)), where f(k) is the step complexity of the adaptive
renaming algorithm.

A simple way to do renaming in Line 1 is by applying fetch&inc to a shared register.
When a process executes update for the first time, it performs fetch&inc to get a name, and
then it uses this name in all the following update operations. The names obtained in this
way are in 0, . . . , k − 1, where k is the total contention. Then the depth of the leaf acquired
is O(log k), and therefore the step complexity of the algorithm is O(log k), where k is the
total contention. The algorithm uses only LL/SC and fetch&inc.

Alternatively, we can use the long-lived adaptive k-renaming of Moir and Anderson [22,
Fig. 8]. The step complexity of this algorithm is O(log k), where k is the point contention.
However, it uses bounded-fetch&dec in addition to the more standard LL/SC and fetch&inc.
Using this algorithm gives a O(log(k)) long-lived atomic snapshot, where k is point contention,
using LL/SC, fetch&inc and bounded-fetch&dec.

4.2 Atomic Snapshot with Conditional Primitives
What is the best step complexity we can achieve with only conditional primitives? When
the number of participants is high (k ∼ n), at least Ω(logn) steps are required to perform
collect (and therefore atomic snapshot) [13]. This section presents a snapshot algorithm with
O(min(k, logn)) step complexity using only reads, writes and LL/SC. In the next section we
prove that at least Ω(k) steps are required when contention is low (k ∈ O(log logn)), and at
least Ω(log k) steps is required when contention is high (k ∈ Θ(n)). The algorithm matches
the both lower bounds.

Algorithm 2 is a modification of Algorithm 1. It uses an unbalanced tree with the
same structure, but the first logn leaves of the tree are reserved for processes that obtain
new names in logn-restricted adaptive k-renaming. This restricted renaming algorithm
guarantees that if the total (or point) contention is less than logn, then all the processes get
new names in range 0, . . . , k − 1. If the contention is higher than logn, then a process pi
either gets a name in range 0, . . . , logn or a special fail value. If pi gets fail then it accesses
the unbalanced tree using its original name idi, starting at leaf logn+ idi.

OPODIS 2015

36:10 Poly-Logarithmic Adaptive Algorithms Require Unconditional Primitives

Algorithm 2 Adaptive atomic snapshot with O(min(k, logn)) step complexity, using reads,
writes and LL/SC.

1: procedure update(id, val)
2: i = acquire-name() . using long-lived k-renaming restricted to logn names
3: if i == failed then
4: i = logn+ idi . if failed to get a name ≤ logn, use its original name + logn
5: end if
6: v = i-th leaf of the unbalanced tree T . start at the bottom of the unbalanced tree
7: v.subtree-View = merge(v.subtree-View, {val}) . update your value in leaf’s subtree

view
8: refresh(v) . start from the current leaf v and ascend back to the root

. updating the views in the nodes along the path
9: if i < logn then

10: release-name(i) . release the name if it was acquired by the adaptive renaming
11: end if
12: end procedure

The correctness of the algorithm follows by the uniqueness of the new names and by
Lemmas 1 and 2. We can get a restricted renaming adaptive to point contention by using a
sequence of logn LL/SC variables. A process sequentially accesses these variables until it
succeeds to acquire one of them. If the process fails in all logn variable, it returns failed.
This is essentially the k-renaming algorithm using test&set [22, Theorem 4], restricted to
the first logn names. The step complexity of the renaming is O(k), adaptive to point
contention. Therefore, if k < logn, each process gets a name ≤ k in O(k) steps, and accesses
a leaf at depth O(log k). Therefore the total number of steps is O(k). If k ≥ logn, then a
process accesses the tree using its original name at a leaf on depth O(logn). Thus the total
complexity is O(logn). This implies that Algorithm 2 correctly implements atomic snapshot
with O(min(k, logn)) step complexity, where k is the point contention.

5 Lower Bounds on Adaptive Collect with Conditional Primitives

This section proves a trade-off between the total contention and the step complexity of
adaptive one-time collect using conditional primitives. For low contention, k ∈ O(log logn),
at least Ω(k) steps are required to complete an update operation followed by a collect. If the
contention is high, k ∈ Θ(n), then at least Ω(log k) steps are required to complete this pair of
operations. Algorithm 2 presented in Section 4.2 solves the atomic snapshot problem using
only conditional primitives (writes, reads and LL/SC) with O(min(k, logn)) step complexity,
thus matching both lower bounds.

To prove the lower bounds, we construct an execution in which each active process
performs a store followed by a collect, and show that at least one process performs the
required number of steps. In the execution, the active processes are divided to visible
and invisible. Intuitively, an invisible process may be removed from the execution without
affecting the steps of the others. Formally, process p is invisible after an execution prefix α
if α and α|p are equivalent with respect to any process in active(α)− {p}. The set of the
processes invisible after α is denoted invisible(α).

The construction proceeds in rounds. In each round, every process that is still invisible
after the previous round performs its next computational event. After constructing the new

H. Attiya and A. Fouren 36:11

round, we keep in the execution all the invisible processes, and some of the processes that
became visible; the rest are deleted retroactively.

Provided that the initial number of processes is sufficiently high (as stated below), we
inductively build r rounds of execution so that at least two processes p and q remain invisible
after the last round. By the validity property of collect, it is impossible that two processes
complete their store and collect operations without being aware of each other. This implies
that at least one of them does not complete its collect in r rounds, implying that it takes at
least r steps.

Choosing the number of processes which are allowed to become visible in each round, we
can trade the level of contention, k, and the number of rounds, r. If we allow at most one
process to become visible, we get an execution with very low contention, k = O(log logn), but
the number of rounds is linear in k. Increasing the number of processes that become visible
increases the contention, but decreases the length of the execution. If we allow a constant
fraction of processes to become visible, then we get an execution with high contention
k = Θ(n), but the number of rounds decreases to log k.

The extension by one round relies on the fact that only conditional primitives are used.
Instead of defining conditional primitives formally, the lower bound proof uses a more refined
classification of primitives, according to their transparency, defined as follows.

I Definition 3. Suppose that after an execution prefix α there is a variable v such that
value(v, α) = ⊥ and there is a subset P = {p1, . . . , pk} of invisible processes whose next
events φ1, . . . , φk apply the same primitive Op to the same variable v:

P = {pi|pi ∈ invisible(α) ∧ next_event(pi, α) = 〈pi, v,Op〉} .

We say that primitive Op is (k −m)-transparent (for some m ≤ k), if there is a permutation
π of the next events φ1, . . . , φk such that after execution απ at most m processes from P

become visible, and the rest of the process in invisible(α) remain invisible.
More formally, define W to be the subset of processes P that become visible after α π :

W = {pi|pi ∈ P ∧ pi ∈ visible(α π)} .

The primitive Op is (k −m)-transparent if |W | ≤ m and every pi ∈ invisible(α)−W is in
invisible(α π).

Appendix A shows that read, compare&swap and LL/SC are k-transparent, and that write
is (k − 1)-transparent.

Suppose that the algorithms uses a constant number of primitive types, Op1,Op2, . . . ,Opt.
Assume, without loss of generality, that each process applies primitives cyclically in this
order during its execution. That is, in its i-th step the process performs a primitive of type
Opi mod t. Any algorithm may be modified in this way by introducing “dummy” primitives
of the required type. This increases the step complexity of the algorithm by a constant
factor, since the algorithm uses a constant number of primitive types, and does not affect
the asymptotic step complexity.

For completeness of the explanation, we state Turán’s Theorem [23] used in the induction
step of the lower bound proof (Lemma 5).

I Theorem 4 (Turán). Let G(V,E) be an undirected graph, where V is the set of vertices
and E is the set of edges. If an average degree of G is d, then G(V,E) has an independent
set with at least d|V |/(d+ 1)e vertices.

The next lemma provides the induction step for the lower bound proof.

OPODIS 2015

36:12 Poly-Logarithmic Adaptive Algorithms Require Unconditional Primitives

I Lemma 5. Suppose that there is an execution αr containing r rounds such that |invisible(αr)|
= mr. Then for any w, 1 ≤ w ≤ mr/2, there is an execution αr+1 containing r + 1 rounds,
such that after αr+1 the number of visible processes |visible(αr+1)| = |visible(αr)|+ w, and
the number of invisible processes mr+1 = |invisible(αr+1)| ≥ 2

√
mr·w

3 − 2w.

Proof. We show how to extend αr with one round (r + 1). In round r + 1, each process
pi ∈ invisible(αr), 1 ≤ i ≤ k, executes its next event φi = next_event(pi, αr). Define round
r + 1 as the sequence of these events πr+1 = φ1, φ2, . . . , φk, and define a new execution
α′r+1 = αr πr+1.

By assumption, all the next events after αr apply the same primitive in round r + 1.
In order to keep many processes invisible, we should take care of two things. First, we need

to ensure that the events of round r+ 1 do not conflict with events performed in the previous
rounds. Otherwise, if process p in round r + 1 overwrites a variable previously written by
another process q, then p can not be further deleted from the execution without making
q visible. We eliminate this kind of conflicts using Turàn’s Theorem. Next, we eliminate
conflicts between primitives in round r + 1, using the fact they are k- or (k − 1)-transparent.

Eliminating conflicts with previous rounds. Consider a visibility graph G(V,E), with
vertices V corresponding to the processes in invisible(αr). If in round r + 1, a process
pi accesses one of the variables previously changed by process pj , then there is an edge
pi → pj ∈ E. In round r+ 1, process pi accesses at most one memory location, and therefore
|E| ≤ |V | and the average degree of G is d = 2|E|/|V | ≤ 2. By Turàn’s Theorem, G has
an independent set V ′ ⊆ V with at least d|V |/(d+ 1)e = d|V |/3e vertices. We leave the
processes corresponding to V ′ in the execution, and delete all the other invisible processes
V − V ′. That is, we define α′′r+1 = α′r+1|V ′ . Note that in the execution α′′r+1, the processes
in V ′ access only variables which were not changed by other processes. Therefore, there are
no conflicts between the primitives of round r + 1 and the primitives of rounds 1, . . . , r.

Eliminating conflicts between events in round r + 1. Let M(V ′) the set of variables
accessed by the processes in V ′. Since |V ′| processes access |M(V ′)| different variables,
the average number of processes that access the same variable is |V ′|

|M(V ′)| . We order the
variables in M(V ′) by the number of processes accessing them, and choose the w variables
{v1, . . . , vw} ∈M(V ′) that are accessed by the largest number of processes. In round r + 1
we keep all the processes accessing the variables {v1, . . . , vw}, and exactly one process for
each variable M(V ′)− {v1, . . . , vw}. Let V ′ be the set of these processes (see Figure 3). We
define αr+1 = α′′r |V ′′ .

For each variable vi ∈ {v1, . . . , vw}, we choose exactly one process p(vi) ∈ V ′′ that
accesses this variable. In round r + 1, we schedule the process p(vi) after all the other
processes accessing vi. Thus, in round r + 1, process p(vi) covers all the other processes
accessing the variable vi, p(vi) becomes visible and is stopped. The rest of the processes
V ′′ − {p(v1), . . . , p(vw)} remain invisible after round r + 1. Below we bound from below the
number of processes that can be kept invisible after this round.

Note that the number of processes that access each variable vi ∈ {v1, . . . , vw} is more
than the average |V ′|

M(V ′) . Therefore, the number of invisible processes is

|V ′′| − w ≥ |V ′|
|M(V ′)| · w + (|M(V ′)| − w)− w = |V ′|

|M(V ′)| · w + |M(V ′)| − 2w .

For simplicity of notation, denote |M(V ′)| = x. Using this notation, the number of processes
that are invisible after round r + 1 is mr+1 ≥ |V

′|
x · w + x− 2w.

H. Attiya and A. Fouren 36:13

|)'(|

|'|

VM

V

w

|)'(| VM

''V

variables

)(1vp)(wvp

'V

Figure 3 Induction step in the proof of Lemma 5.

Differentiating by x and equating to 0, we get m′r+1(x) = − |V
′|w
x2 + 1 = 0, implying

x =
√
|V ′|w. Therefore, the minimal value of mr+1 is

|V ′|√
|V ′|w

· w +
√
|V ′|w − 2w = 2

√
|V ′|w − 2w .

Substituting |V ′| = mr/3, we get mr+1 ≥ 2
√

mr·w
3 − 2w. J

Different values of w lead to different trade-offs between the total contention and the
number of rounds in the execution. For two extreme values of w, we have lower bounds that
match the upper bounds:

When w = 1, Lemma 5 implies that the number of invisible processes after round r + 1
is mr+1 ≥ 2

√
mr

3 − 2 ≥
√

mr

3 . To prove the lower bound, we need that after r rounds
there are at least two invisible processes, i.e., mr = 2. Solving this recurrence, we get that
m0 = 22r 32r−1 = 62r

3 . That is, the total number of the processes in the system should be
n ≥ m0 ∈ Ω(62r), or r = O(log logn).

In each round of the execution αr, at most w = 1 processes become visible and stopped,
and two processes remain invisible after αr. The rest of processes are deleted from the
execution. Therefore the total contention in αr is k = r + 2 = Ω(log logn). Thus we have an
execution with contention k ∈ O(log logn), in which a pair of store and collect operations
take at least Ω(k) steps.

When w = |V ′|
2 = mr/6, Lemma 5 implies that the number of invisible processes we

have after round r + 1 is mr+1 ≥ 2
√

mr·w
3 − 2w = 2

√
mr·mr/6

3 − 2 ·mr/6 = mr

3(
√

2+1) . We
need that after r rounds there are at least two invisible processes, i.e., mr = 2. Solving
these recurrences, leads to m0 = 2

(
3
(√

2− 1
))r. Thus, the total number of processes in the

system is n ≥ m0 = 2
(
3
(√

2− 1
))r and hence, r = Θ(logn).

In each round r at most w = mr/6 processes become visible and are stopped. Therefore,
the total contention in the execution αr is k =

∑r
i
mi

6 = 1
6
∑r
i

m0
(3(
√

2+1))i
= Θ(m0) = Θ(n).

Thus we have an execution with contention k ∈ Θ(n), in which a pair of store and collect
operations take at least r = Ω(log k) steps.

Thus, we have the following theorem:

I Theorem 6. Any implementation of one-time collect using (k − 1)-transparent primitives
has an execution of k + 2 processes in which a pair of store and collect operations takes at
least (a) Ω(k) steps, provided k ∈ O(log logn), and (b) Ω(log k) steps, provided k ∈ Θ(n).

OPODIS 2015

36:14 Poly-Logarithmic Adaptive Algorithms Require Unconditional Primitives

The reduction from collect toM(k)-renaming presented in Section 4.1 requiresO(logM(k))
additional steps. This implies a linear lower bound on the step complexity of adaptive one-
shot renaming with sub-exponential name space M(k) = 2o(k), giving an alternative proof
for the lower bound of Alistarh et al. [5].

I Theorem 7. An adaptive implementation of one-shot M(k)-renaming with sub-exponential
name space M(k) = 2o(k) using (k − 1)-transparent primitives requires at least Ω(k) steps in
an execution with total contention k ∈ O(log logn).

6 Summary and Open Problems

We have shown that unconditional primitives, like fetch&inc, allow snapshot algorithms with
O(log k) step complexity, where k is the total or the point contention. In contrast, when only
conditional primitives, like compare&swap, are used, any snapshot or collect algorithm must
perform Ω(k) steps, in an execution with total contention k ∈ O(log logn).

We also give an adaptive algorithm whose step complexity is in O(min{k, logn}). The
algorithm has a linear step complexity O(k) when contention is low (this is optimal for
(k ∈ O(log logn)), and logarithmic step complexity O(logn) when contention is high (this
is optimal for k ≈ n). An immediate question is to understand the complexity of adaptive
algorithms in the intermediate range, when the contention is in o(logn), but still growing
faster than log logn.

It is interesting to investigate whether non-standard bounded unconditional primitives,
like bounded-fetch&dec, are needed in order to get adaptive algorithm with sublinear step
complexity as a function of point contention. We believe that sublinear algorithms adaptive
to point contention require unconditional primitives that prevent “wrapping around”, like
bounded-fetch&dec.

References
1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit.

Atomic snapshots of shared memory. Journal of the ACM, 40(4):873–890, September 1993.
2 Yehuda Afek and Yaron De Levie. Efficient adaptive collect algorithms. Distributed Com-

puting, 20(3):221–238, 2007.
3 Yehuda Afek, Gideon Stupp, and Dan Touitou. Long-lived adaptive collect with applic-

ations. In Foundations of Computer Science, 1999. 40th Annual Symposium on, pages
262–272. IEEE, 1999.

4 Yehuda Afek, Gideon Stupp, and Dan Touitou. Long-lived and adaptive atomic snapshot
and immediate snapshot. In Proceedings of the nineteenth annual ACM symposium on
Principles of distributed computing, pages 71–80. ACM, 2000.

5 Dan Alistarh, James Aspnes, Keren Censor-Hillel, Seth Gilbert, and Rachid Guerraoui.
Tight bounds for asynchronous renaming. J. ACM, 61(3):18:1–18:51, June 2014. doi:
10.1145/2597630.

6 James Aspnes, Hagit Attiya, and Keren Censoe-Hillel. Polylogarithmic concurrent data
structures from monotone circuits. Journal of ACM, 59:2:2–2:24, 2012.

7 Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Rüdiger Reischuk. Renaming
in an asynchronous environment. Journal of the ACM, 37(3):524–548, 1990.

8 Hagit Attiya and Vita Bortnikov. Adaptive and efficient mutual exclusion. Distributed
Computing, 15(3):177–189, 2002.

9 Hagit Attiya and Arie Fouren. Polynomial and adaptive long-lived (2k-1)-renaming. In
Distributed Computing, pages 149–163. Springer, 2000.

http://dx.doi.org/10.1145/2597630
http://dx.doi.org/10.1145/2597630

H. Attiya and A. Fouren 36:15

10 Hagit Attiya and Arie Fouren. Adaptive and efficient algorithms for lattice agree-
ment and renaming. SIAM J. Comput., 31(2):642–664, February 2002. doi:10.1137/
S0097539700366000.

11 Hagit Attiya and Arie Fouren. Algorithms adapting to point contention. J. ACM, 50(4):444–
468, July 2003. doi:10.1145/792538.792541.

12 Hagit Attiya, Arie Fouren, and Eli Gafni. An adaptive collect algorithm with applications.
Distributed Computing, 15(2):87–96, 2002.

13 Hagit Attiya, Danny Hendler, and Philipp Woelfel. Tight RMR lower bounds for mutual
exclusion and other problems. In Proceedings of the fortieth annual ACM symposium on
Theory of computing, pages 217–226. ACM, 2008.

14 Elizabeth Borowsky and Eli Gafni. Generalized flp impossibility result for t-resilient asyn-
chronous computations. In Proceedings of the Twenty-fifth Annual ACM Symposium on
Theory of Computing, STOC’93, pages 91–100, 1993.

15 Faith Fich, Danny Hendler, and Nir Shavit. On the inherent weakness of conditional
synchronization primitives. In Proceedings of the Twenty-third Annual ACM Symposium
on Principles of Distributed Computing, PODC’04, pages 80–87, 2004.

16 Arie Fouren. Adaptive Wait-Free Algorithms for Asynchronous Shared-Memory Systems.
PhD thesis, Technion, 2001.

17 Maurice Herlihy, Victor Luchangco, and Mark Moir. Space-and time-adaptive nonblocking
algorithms. Electronic Notes in Theoretical Computer Science, 78:260–280, 2003.

18 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems, 12(3):463–
492, July 1990.

19 Prasad Jayanti and Srdjan Petrovic. Efficient and practical constructions of LL/SC vari-
ables. In Proceedings of the twenty-second annual symposium on Principles of distributed
computing, pages 285–294. ACM, 2003.

20 Prasad Jayanty. f -arrays: Implementaion and applications. In Proceedings of the 21th
Annual Symposium on Princeples of Distributed Computing (PODC), pages 270–279, New
York, 2002. ACM.

21 Yong-Jik Kim and James H Anderson. A time complexity lower bound for adaptive mutual
exclusion. Distributed Computing, 24(6):271–297, 2012.

22 Mark Moir and James H. Anderson. Wait-free algorithms for fast, long-lived renaming.
Science of Computer Programming, 25:1–39, 1995.

23 P. Turan. On an extremal problem in graph theory (in Hungarian). Mat. Fiz. Lapok,
48:436–452, 1941.

A Transparent Primitives

I Claim 8.
(a) the write primitive is (k − 1)-transparent;
(b) the read primitive is k-transparent;
(c) the compare&swap primitive is k-transparent;
(d) the LL/SC prmitives are k-transparent.

Proof. According to definition 3, suppose that after an execution prefix α there is a variable
v such that value(α) = ⊥ and there is a subset P = {p1, . . . , pk} ⊆ invisible(α) whose next
events φ1, . . . , φk contain the same primitive Op on the variable v:

P = {pi|pi ∈ invisible(α) ∧ next_event(pi, α) = 〈pi, v,Op〉}

OPODIS 2015

http://dx.doi.org/10.1137/S0097539700366000
http://dx.doi.org/10.1137/S0097539700366000
http://dx.doi.org/10.1145/792538.792541

36:16 Poly-Logarithmic Adaptive Algorithms Require Unconditional Primitives

(a) Op is a write. Let π = 〈φ1, . . . , φk〉. In events φ1, . . . , φk processes P do not read
any information, therefore processes invisible(α)− P remain invisible also after α ◦ π. All
the write events φ1, . . . , φk−1 are overwritten by the following writes, thus these events are
undetectable, and therefore processes p1, . . . , pk−1 remain invisible also after α ◦ π. (The
only process that becomes visible after α ◦ π is pk that performs the last write event in π.
Since this event overwrites the previous values written to v, it can not be deleted from the
execution undetectably). By definition 3 this implies that write is (k − 1)-transparent.

(a) Op is a read. Define a permutation π = 〈φ1, . . . , φk〉. Since events φi read from an
empty variable v and do not change values of other variables, there is no information flow
between the processes in invisible(α), and therefore all the processes invisible after α remain
invisible also after α ◦ π. According to definition 3 this imply that read is k-transparent.

(c) Op is a compare&swap We define the permutation π of the events φ1, . . . , φk as follows.
As mentioned in the introduction, we assume that no process attempts to write ⊥. First, we
schedule primitives CAS(u,w) where u 6= ⊥. By semantics of CAS these primitives fail and
do not change the value of v. Then we schedule the remaining primitives CAS(⊥, w), where
w 6= ⊥. By atomicity of CAS, only the first of these primitives reads v = ⊥ and succeeds,
while the rest read v = w 6= ⊥ and fail.

Since none of the events π performed by processes P reads any value written previously
by another process, therefore all the processes in invisible(α)−P remain invisible after α ◦ π.
The k − 1 unsuccessful CAS primitives do not change the value of v. Since a successful
CAS (that changes the value of v from ⊥ to w) does not overwrites any value previously
written to v by another process, all the events π by processes P can be removed from the
execution without affecting the rest of the invisible processes invisible(α) − P . Therefore
all, the processes P remain invisible after α ◦ π, implying invisible(α ◦ π) = invisible(α). By
definition 3, CAS is k-transparent.

(d) Op is an LL. Define π = φ1, . . . , φk. All these primitives read ⊥ from v, thus and they
do not get any information written previously by other invisible processes. Therefore all
the processes invisible(α)− P remain invisible also after α ◦ π. Since LL primitives do not
overwrite any value previously written to v by other processes, all the events π by processes
P can be removed from the execution without affecting the steps of other invisible processes.
Therefore, invisible(α ◦ π) = invisible(α). By Definition 3, LL is k-transparent.

Op is an SCl. Let π = φ1, . . . , φk. By the semantics of LL/SC, only the first SC,
corresponding to event φ1 succeeds, and the rest fail. Since SC does not read any value
previously written by another process to v, the processes invisible(α)− P remain invisible
also after α ◦ π. The k − 1 unsuccessful primitives do not change the value of v, and the
single successful
SC(w), w 6= ⊥ does not overwrite any value written previously by another process. Therefore,
all the computational events π can be removed from the execution without affecting the
values of other invisible processes. Thus, all the processes P remain invisible after α ◦ π. By
Definition 3, SC is k-transparent. J

	p00-frontmatter
	Preface
	Committees

	p01-Raynal
	Introduction
	Aim of the tutorial
	Underlying computation model

	Reliable Broadcast Abstractions
	No-duplicity broadcast
	Reliable broadcast

	Read/write Register Abstraction
	Read/Write Register
	An Implementation in the process crash failure model
	Atomic registers in the Byzantine failure model

	Agreement Abstraction (Consensus)
	The consensus problem
	Related works
	An optimal algorithm

	Conclusion

	p02-Spiegelman
	Introduction
	Model
	Configurations
	Discovering available configurations

	Reconfiguration Problem
	Reconfiguration Solution
	SpSn abstraction
	Generic algorithm for reconfiguration
	Recasting existing algorithms in terms of SpSn
	RAMBO
	DynaStore
	SmartMerge
	Parsimonious SpSn

	Dynamic Atomic Register
	Definition
	Solution

	Conclusion

	p03-Santoro
	Introduction
	What and How to Represent?
	TVG
	Synchronous Systems
	Journeys and Distances

	 What to Investigate?
	 Dead or Live, Centralized or Distributed?
	Who is in Control?
	What Problems?

	Without Control What to Assume?
	Frequency Assumptions
	Connectivity Assumptions
	Power of Assumptions

	Conclusions

	p04-Spiegelman
	Introduction
	Lower bound
	Algorithm

	p04-ZZZ-Blank
	p05-Garay
	p05-ZZZ-Blank
	p06-Holzer
	Introduction
	Contribution
	Structure of the Paper

	Related Work
	Model and Definitions
	Lower Bounds for Weighted and Unweighted Diameter Computation and Approximation
	A Review of Basic Two-Party Communication Complexity
	Lower Bounds for Weighted Diameter Computation in the Unicast CONGEST Model
	Lower Bounds for Weighted Diameter Computation in the BCC Model

	Deterministic Hitting Set Computation in the BCC Model
	Deterministic (2+o(1))-Approximation of APSP in Time O(exp(n,1/2)) in the BCC Model
	Open Problems

	p07-Ahmadi
	Introduction
	Contributions

	Model and Problem Definition
	Upper Bound
	Randomized Broadcasting Algorithm
	Analysis

	Lower Bound
	Impossibility of Broadcast Against a 0-Oblivious Adversary

	p07-ZZZ-Blank
	p08-Gilbert
	Introduction
	Results
	Related Work

	Model
	Problem
	Static Links
	The RandSelect Algorithm
	The BCSSelect Algorithm
	Lower Bound

	Fast Fading Links
	Multihop Networks
	The MultiBCSSelect Algorithm
	Lower Bound for Multiple Path Optimality

	Conclusion

	p08-ZZZ-Blank
	p09-Langner
	Introduction
	Related Work
	Model
	Basic Idea
	Basic Capabilities
	Walking Around an Obstacle
	Bounded Offset Counter
	Combining Offset Counters

	Advanced Procedures
	Shifting the Position Along an Obstacle
	Probing Target Cells
	Procedure Scan
	Procedure Update

	Searching the Plane
	Correctness

	Conclusion

	p09-ZZZ-Blank
	p10-Kuhn
	Introduction and Related Work
	Model and Definitions
	Contributions
	Distributed Prefix Sums Computation
	Algorithm for Sparse Cut
	Computing the Random Walk Probabilities
	Evaluating the Induced Cuts

	p11-Halldorsson
	Introduction
	Preliminaries
	Centralized Greedy Algorithm
	Distributed Greedy Algorithm
	Client Classification
	Distributed Implementation of alpha-Greedy
	Modification

	p12-Capdevielle
	Introduction
	Preliminaries
	Lower bounds for interval-solo-fast consensus
	Optimal interval-solo-fast consensus
	Consensus using value-splitter
	Interval-solo-fast value-splitter implementations

	Concluding remarks

	p13-Saraph
	Introduction
	Related Work
	Background
	Distributed Computing
	Algebraic Topology
	Simplicial Complexes
	Homotopy and the Fundamental Group

	Loop Agreement

	Composite Loop Agreement
	Implementation by Multiple Tasks
	Relative Power
	Composite Loop Agreement

	Category Theory of Loop Agreement
	Categories
	The Category of Loop Agreement Tasks

	Applications
	Conclusions

	p14-Sudo
	Introduction
	Preliminaries
	Loosely-stabilizing Leader Election Protocol
	Complexity Analysis
	Conclusion

	p15-Tamir
	Introduction
	Priority Queues with Mutable Priorities
	A Sequential Heap with Mutable Priorities
	Champ: A Concurrent Heap with Mutable Priorities
	Linearizability
	DeadLock-Freedom
	Comparison with Hunt's Algorithm HuntHeap

	Case Study: Parallelizing Dijkstra's SSSP Algorithm
	ParDijk: A Parallel version of Dijkstra's SSSP Algorithm based on a Concurrent Priority Queue
	ParDijk-MP: A Parallel version of Dijkstra's SSSP Algorithm based on a Concurrent Priority Queue with Mutable Priorities

	Experimental Evaluation
	Related Work
	Conclusions and Future Work

	p16-Datta
	Introduction
	Related Work
	Contribution
	Outline

	Preliminaries
	Model of Computation

	Overview of Match
	Approach

	Formal Definition of Match
	Top Level Summary of Match
	Legitimate Configurations of Match

	Correctness
	Round Complexity
	Step Complexity
	Regularity Actions

	Conclusion

	p17-Zhu
	Introduction
	Model and Preliminaries
	Unlimited-use snapshot from small registers
	Interruptible reads
	A large register simulation supporting fast interruptible reads
	Application to Afek et al.
	Other snapshots

	Limited-use snapshot from small registers
	A 1-component limited-use implicit snapshot implementation
	An m-component implicit snapshot implementation

	Conclusions

	p18-Bouzid
	Introduction
	Context & Problem Definition
	Computing Model
	Obstruction-free consensus and obstruction-free (n,k)-set agreement

	Obstruction-free Anonymous Consensus Algorithm
	Proof of the Algorithm
	Definitions and notations
	The relation >= is a partial order
	Extracting the relations > and >= from the algorithm
	Exploiting homogeneous snapshots
	Proof of the algorithm: using the previous lemmata

	From Consensus to (n,k)-Set Agreement
	From One-shot to Repeated (n,k)-Set Agreement
	The repeated (n,k)-set agreement problem
	Adapting the algorithm

	From Obstruction-Freedom to x-Obstruction-Freedom
	Conclusion

	p18-ZZZ-Blank
	p19-FernandezAnta
	Introduction
	Model
	Fastness and its Implications in Atomic Memory Implementations
	Formulation and Hardness of the Predicate in Fast
	Algorithm ccFast: Refining ``Fastness'' for Atomic Reads
	Algorithm Correctness

	A Linear Algorithm for the Predicate and Complexity of ccFast
	Conclusions

	p20-Berryhill
	Introduction
	Related Work
	Model
	Correctness Properties
	Implementations
	Herlihy's Wait-Free Universal Construction
	Implementation of MRSW Registers from SRSW Registers

	Conclusion

	p20-ZZZ-Blank
	p21-Beauquier
	Introduction
	Background Definitions
	Algorithmic Information Theory
	Computational Model

	Entropy of Schedules
	Perfect Randomness is Never Required
	Entropy Bounds for Leader Election
	Lower Bound

	Conclusion
	Interpretation of Lemma 3
	Leader election – upper bound

	p21-ZZZ-Blank
	p22-Stolz
	Introduction
	Related Work
	Model
	The Jack Algorithm
	Preliminaries
	Main Theorem

	Discussion
	Conclusion

	p23-Chen
	Introduction
	Preliminaries
	Problem Formulation
	Complexity Analysis
	Repair Approaches
	Approach 1 (SCP): A Refinement Procedure via Including Shortest Convergence Paths
	Approach 2 (ELP): A Refinement Procedure via Eliminating Maximal Transitions
	Approach 3 (KBP): A Refinement Procedure via Eliminating NonMinimum Transitions
	Approach 4 (RIA): A Refinement Procedure via Revising Maximal Actions with Minimal Actions
	Approach 5 (RIAD): A Refinement Procedure via Revising Maximal Actions with Distribution Consideration
	Approach 6 (SSP): A Refinement Procedure via Eliminating Maximal Transitions from a Reduced Program

	Case Study & Experiment Results
	K-state Token Ring Program
	Stabilizing Algorithm Based on Raymond's Tree based Mutual Exclusion Program

	Related Work
	Conclusion

	p24-Scheideler
	Introduction
	Model
	Problem Statement
	Related work
	Our contribution

	Preliminaries
	The Build-List+ and the Search+ protocols
	Description of Build-List+ and Search+
	Build-List+ solves the linearization problem
	Build-List+ satisfies non-trivial monotonic searchability

	The Build-List* and the Search* protocols
	Description of Build-List* and Search*

	Conclusion and Outlook

	p24-ZZZ-Blank
	p25-Chang
	Introduction
	The Model of Computations
	The Lattice of Consistent Global States
	Lexical Order among the Global States of the Computation
	Remote Events and Predecessor of an Event

	QuickLex
	Overview
	Part 1: Procedure propagate and the Enabled Event e-k
	Part 2: Procedure reset and the Maximum Dependency Events
	The Correctness and Worst Time Complexity of QuickLex

	Evaluation
	Setup of Benchmarks
	Compared Enumeration Algorithms
	Experimental Results

	The Applications of QuickLex
	Predicate Detection in Concurrent Systems
	Other Applications

	Conclusion

	p25-ZZZ-Blank
	p26-Imbs
	Introduction
	Model and definitions
	Communication model: shared memory, AND/OR registers and AND/OR/XOR registers
	The consensus number hierarchy

	Solving consensus using AND/OR registers
	Mechanism of the algorithm
	Shared objects
	Process behavior
	Proof of the algorithm

	Solving consensus using AND/OR/XOR registers
	Optimality of the algorithms
	Preliminaries
	Consensus number of shared AND/OR registers
	Consensus number of shared AND/OR/XOR registers
	Other variants

	Conclusion

	p26-ZZZ-Blank
	p27-Kallimanis
	Introduction
	Related Work
	Model
	Main Ideas
	Dense, a Concurrent Graph Implementation
	Proof of Correctness Sketch

	Discussion

	p27-ZZZ-Blank
	p28-Milani
	Introduction
	Related Work
	Preliminaries
	The Counting Problem
	The Anonymous Dynamic Network Model

	Distributed Counting Algorithm
	Analysis
	Discussion

	p28-ZZZ-Blank
	p29-Hung
	Introduction
	ActiveMonitor: Concepts & Design
	Monitor Tasks
	Asynchronous Execution of Tasks

	Runtime Library
	Automatic Signaling
	Execution of Monitor Tasks

	Compositionality: Multi-object Synchronization
	Implementing AND & OR Operators in ActiveMonitor

	Implementation
	Storage of Tasks: Single Consumer Optimal Bounded Queue
	Monitor Thread Management

	Evaluation
	Results

	Related Work
	Discussion & Conclusion

	p29-ZZZ-Blank
	p30-Czumaj
	Introduction
	Model
	Related Work
	Our Results

	Broadcasting
	Beep Waves
	Lower Bound for Broadcasting

	Leader Election
	Network Traversal
	Depth-First Search
	DFS-Based Gossiping

	Auxiliary Procedures
	Diameter Estimation
	Message Collection
	Message Length Determination

	Multi-Broadcast
	Multi-Broadcast With Provenance
	Multi-Broadcast Without Provenance
	Lower Bounds

	Conclusion

	p31-Attiya
	Introduction
	Model of Computation
	Separating Stacks and Queues with Nontrivial (Valency-Based) Helping
	Universal (Linearization-Based) Helping
	Related Notions
	Relation to the help definition of CHPT2015
	Relation to strong linearizability GHW2011

	Discussion
	Stack without Universal Helping

	p32-Talmage
	Introduction
	Summary of Results
	Related Work

	Definitions and Model
	Sensitivity
	Consensus

	k-Front-Sensitive Data Types
	Consensus with End-Sensitive Data Types
	k-End-Sensitive Types
	1- and 2-End-Sensitive Types
	Knowledge of Consecutive Operations

	Conclusion

	p33-Diluna
	Introduction
	Related Work
	Model of the computation
	An asymptotically optimal algorithm for G(PD)-2
	High level view of G(1-IC) counting algorithm
	Counting in G(1-IC): OPT_h Algorithm
	Using G(PD)-h to count in G(1-IC)

	Valid Count Detection Algorithm (VCD)
	InstanceCount
	EXT Counting Algorithm
	Conclusion

	p34-Yingchareonthawornchai
	Introduction
	System Model
	Unconstrained and Constrained Time Models

	Analytical Solutions
	Explicit Solutions for Special Cases
	Explicit Solution for Arbitrarily Small alpha and alpha*
	Phase Transition
	Explicit Solution for t<3*delta

	Reduction of epsilon-Constrained Time Model to Unconstrained Time Model
	Simulation Results
	Analytical vs. Simulation Results (Validation of Theorem 3)
	Explicit Form vs. Numerical Solutions (Validation of Theorem 5, 6 and 8)
	Unconstrained vs. epsilon-constrained Time (Validation of Theorem 13)

	Practical considerations for HVC sizes and the phase transition
	Extensions to the model

	Related work
	Conclusion

	p34-ZZZ-Blank
	p35-Shafiei
	Introduction
	Related Work
	The Sequential Specification
	The Non-blocking Implementation
	Detailed Description of the Algorithms

	Correctness Proof
	Part 1: Flagging
	Part 2: Forward and Backward CAS Steps
	Part 3: Linearizability

	Amortized Analysis
	Concluding Remarks

	p35-ZZZ-Blank
	p36-Attiya
	Introduction
	The Computation Model
	Problems Studied in this Paper
	Sub-linear Adaptive Algorithms for Atomic Snapshots
	Atomic Snapshots Using Renaming
	Atomic Snapshot with Conditional Primitives

	Lower Bounds on Adaptive Collect with Conditional Primitives
	Summary and Open Problems
	Transparent Primitives

