19th International Conference on

Database Theory

ICDT’16, March 15-18, 2016, Bordeaux, France

Edited by
Wim Martens
Thomas Zeume

\\v LIPICS

LIPlcs — Vol. 48 - ICDT’16

www.dagstuhl.de/lipics



Editors

Wim Martens Thomas Zeume
University of Bayreuth TU Dortmund University
Bayreuth, Germany Dortmund, Germany

wim.martens@uni-bayreuth.de thomas.zeume@tu-dortmund.edu

ACM Classification 1998

H.2 Database Management, H.2.1 Normal forms, H.2.2 Schema and subschema, H.2.3 Query languages,
H.2.4 Query processing, H.2.4 Relational databases, H.2.4 Distributed databases, H.2.5 Heterogeneous
Databases, H.3.5 Online Information Services, H.1 Miscellaneous — Privacy, H.4.1 Office Automation:
Workflow management, B.4.4 Performance Analysis and Design Aids: Formal models, Verification,
F.1.3 Complexity measures and classes, F.4.1 Computational Logic, Model Theory, G.2.2 Graph The-
ory|Hypergraphs

ISBN 978-3-95977-002-6

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-002-6.

Publication date
March, 2016

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPlcs.ICDT.2016.0

ISBN 978-3-95977-002-6 ISSN 1868-8969 http://www.dagstuhl.de/lipics


http://www.dagstuhl.de/dagpub/978-3-95977-002-6
http://www.dagstuhl.de/dagpub/978-3-95977-002-6
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.0
http://www.dagstuhl.de/dagpub/978-3-95977-002-6
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

O:iii

LIPlcs — Leibniz International Proceedings in Informatics

LIPlcs is a series of high-quality conference proceedings across all fields in informatics. LIPlcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (TU Miinchen)

Chris Hankin (Imperial College London)

Deepak Kapur (University of New Mexico)

Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Catuscia Palamidessi (INRIA)

Wolfgang Thomas (Chair, RWTH Aachen)

Pascal Weil (CNRS and University Bordeaux)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

ICDT 2016


http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics




Contents

Preface
................................................................................ 0:ix
Organization
................................................................................ 0:xi
External Reviewers
................................................................................ 0:xiii
List of Authors
................................................................................ 0:xv
ICDT 2016 Test of Time Award
The ICDT 2016 Test of Time Award Announcement
Foto N. Afrati, Claire David, and Georg Gottlob ........... ... ... ... .. . ... 1:1-1:2
Invited Talks
Scale Independence: Using Small Data to Answer Queries on Big Data
Floris Geerts ... et e e 2:1-2:2
Top-k Indexes Made Small and Sweet
Yufei Tao .. ..o 3:1-3:1
New Algorithms for Heavy Hitters in Data Streams
David P. Woodruff .. ... ... o 4:1-4:12
Awards Session
Beyond Well-designed SPARQL
Mark Kaminski and Egor V. Kostylev ........ .. .. 5:1-5:18
A Framework for Estimating Stream Expression Cardinalities
Anirban Dasqupta, Kevin J. Lang, Lee Rhodes, and Justin Thaler ................ 6:1-6:17
(Regular Paper)
Declarative Probabilistic Programming with Datalog
Vince Barany, Balder ten Cate, Benny Kimelfeld, Dan Olteanu,
and Zografoula Vagena ............o.ooi i 7:1-7:19
Distribution and Paralellism
Worst-Case Optimal Algorithms for Parallel Query Processing
Paraschos Koutris, Paul Beame, and Dan Sucits ............coeeiiiiinennann... 8:1-8:18
Parallel-Correctness and Containment for Conjunctive Queries with Union and
Negation
Gaetano Geck, Bas Ketsman, Frank Neven, and Thomas Schwentick ............. 9:1-9:17

19th International Conference on Database Theory (ICDT 2016).
Editors: Wim Martens and Thomas Zeume

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:vi

Contents

A Formal Study of Collaborative Access Control in Distributed Datalog

Serge Abiteboul, Pierre Bourhis, and Victor Vianu ........... ... .

Optimization

It’s All a Matter of Degree: Using Degree Information to Optimize Multiway Joins

Manas R. Joglekar and Christopher M. Ré ... ... .o ..

Filtering With the Crowd: CrowdScreen Revisited
Benoit Groz, Ezra Levin, Isaac Meilijson, and Tova Milo ........................

Streaming Partitioning of Sequences and Trees

Christian Konrad . ... ... .. e

Evolving Data

Dynamic Graph Queries

Pablo Munoz, Nils Vortmeier, and Thomas Zeume ..............c.ccoiiiiiiiiin..

Verification of Evolving Graph-structured Data under Expressive Path Constraints

Diego Calvanese, Magdalena Ortiz, and Mantas Simkus ..........................

Query Stability in Monotonic Data-Aware Business Processes

Ognjen Savkovié, Elisa Marengo, and Werner Nutt .......... ... iiiiiiii....

Data Extraction and Analytics

Document Spanners: From Expressive Power to Decision Problems
Dominik D. Freydenberger and Mario Holldack ............ .. .ccccciiiiiiiin..

Algorithms for Provisioning Queries and Analytics

Sepehr Assadi, Sanjeev Khanna, Yang Li, and Val Tannen .......................

Schemas and Consistency

Limits of Schema Mappings

Phokion G. Kolaitis, Reinhard Pichler, Emanuel Sallinger, and Vadim Savenkov .

Reasoning About Integrity Constraints for Tree-structured Data

Wojciech Czerwinski, Claire David, Filip Murlak, and Pawel Parys ...............

Complexity of Repair Checking and Consistent Query Answering
Sebastian Arming, Reinhard Pichler, and Emanuel Sallinger .....................

SPARQL and Graphs

On the Complexity of Enumerating the Answers to Well-designed Pattern Trees

Markus Kréll, Reinhard Pichler, and Sebastian Skritek ...........................

10:1-10:17

11:1-11:17

12:1-12:18

13:1-13:18

14:1-14:18

15:1-15:19

16:1-16:18

17:1-17:17

18:1-18:18

19:1-19:17

20:1-20:18

21:1-21:18

22:1-22:18



Contents 0:vii

A Practically Efficient Algorithm for Generating Answers to Keyword Search
Over Data Graphs
Konstantin Golenberg and Yehoshua Sagiv ........ ... oo, 23:1-23:17

ICDT 2016






Preface

The 19" International Conference on Database Theory (ICDT 2016) was held in Bordeaux,
France, March 15-18, 2016. Originally biennial, the ICDT conference has been held annually
and jointly with EDBT (“Extending Database Technology”) since 2009.

The proceedings of ICDT 2016 include an overview of a keynote by Floris Geerts (Uni-
versity of Antwerp), an overview of a keynote by Yufei Tao (University of Queensland),
a paper by David P. Woodruff (IBM Almaden) based on his invited lecture, a laudation
concerning the ICDT 2016 Test of Time Award, and 19 research papers that were selected
by the Program Committee from 41 submissions.

Out of the 19 accepted papers, the Program Committee selected the paper Beyond
Well-Designed SPARQL by Mark Kaminski and Egor V. Kostylev for the ICDT 2016 Best
Paper Award. Furthermore, the Program Committee selected the paper A Framework for
Estimating Stream Ezpression Cardinalities by Anirban Dasgupta, Kevin Lang, Lee Rhodes,
and Justin Thaler for the ICDT 2016 Best Newcomer Award. The Test of Time Award for
ICDT 2016 is given to the paper Conjunctive Query Containment Revisited by Chandra
Chekuri and Anand Rajaraman, which originally appeared in the proceedings of ICDT 1997.
Warmest congratulations to the authors of these award winning papers!

I thank all authors who submitted papers to ICDT 2016. I would also like to thank all
members of the Program Committee, and the external reviewers, for the enormous amount
of work they have done. The Program Committee carried out extensive discussions during
the electronic PC meetings, before and after rebuttal. I am very grateful to Foto Afrati,
Claire David, and Georg Gottlob for their efforts and expertise in selecting the paper for the
Test of Time Award. I thank Andrei Voronkov for his EasyChair system, which made it easy
to manage and coordinate the discussion.

I thank the ICDT Council members for their help in selecting the Program Committee
and in particular the Council Chair Thomas Schwentick for his continuous advice on a
wide variety of matters concerning ICDT. Special thanks also go to Thomas Zeume, the
Proceedings Chair of ICDT 2016. I thank last year’s PC Chair Marcelo Arenas and last
year’s Proceedings Chair Martin Ugarte for sharing their knowledge and experience which
substantially helped us in producing the proceedings. Finally, I thank many colleagues
involved in the organisation of the conference for fruitful collaboration, in particular, Sofian
Maabout (EDBT/ICDT 2016 Conference Chair).

Wim Martens
January 2016

19th International Conference on Database Theory (ICDT 2016).
Editors: Wim Martens and Thomas Zeume

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/




Organization

Conference Chair

Sofian Maabout (U. of Bordeaux)

Program Chair

Wim Martens (U. of Bayreuth)

Program Committee

Yael Amsterdamer (Tel Aviv U.)

Pablo Barcelé (U. de Chile)

Hubie Chen (U. del Pais Vasco and Ikerbasque)
Sara Cohen (Hebrew U. of Jerusalem)

Graham Cormode (U. of Warwick)

Wenfei Fan (U. of Edinburgh)

Amélie Gheerbrant (LIAFA, U. Paris Diderot)
Giorgio Ghelli (U. di Pisa)

Benny Kimelfeld (Technion)

Markus Krotzsch (TU Dresden)

Carsten Lutz (U. Bremen)

Wim Martens (U. of Bayreuth)

Anca Muscholl (LaBRI)

Jeffrey Naughton (U. of Wisconsin)

Dan Olteanu (U. of Oxford)

Juan Reutter (PUC Chile)

Luc Segoufin (INRIA)

Dan Suciu (U. of Washington)

Dirk Van Gucht (Indiana U.)

Ke Yi (Hong Kong U. of Science and Technology)

Proceedings Chair

Thomas Zeume (TU Dortmund U.)

19th International Conference on Database Theory (ICDT 2016).
Editors: Wim Martens and Thomas Zeume

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/




External Reviewers

Pierre Bourhis
Simone Bova
Florent Capelli
Nicolas de Rugy-Altherre
André Hernich
Markus Latte
Stefan Mengel
Sebastian Siebertz
Francesco Silvestri
Domagoj Vrgoc¢
Haitao Wang
Adam Witkowski
Qirun Zhang

19th International Conference on Database Theory (ICDT 2016).
Editors: Wim Martens and Thomas Zeume

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/




List of Authors

Serge Abiteboul
Sebastian Arming
Sepehr Assadi
Vince Barany

Paul Beame

Pierre Bourhis
Diego Calvanese
Wojciech Czerwinski
Anirban Dasgupta
Claire David
Dominik D. Freydenberger
Gaetano Geck
Floris Geerts
Konstantin Golenberg
Benoit Groz

Mario Holldack
Manas R. Joglekar
Mark Kaminski

Bas Ketsman
Sanjeev Khanna
Benny Kimelfeld
Phokion G. Kolaitis
Christian Konrad
Egor V. Kostylev
Paraschos Koutris
Markus Kroll

Kevin Lang

Ezra Levin

Yang Li

Elisa Marengo

Isaac Meilijson
Tova Milo

Pablo Muifioz

Filip Murlak
Frank Neven
Werner Nutt

Dan Olteanu
Magdalena Ortiz
Pawel Parys
Reinhard Pichler
Christopher M. Ré
Lee Rhodes
Yehoshua Sagiv
Emanuel Sallinger
Vadim Savenkov
Ognjen Savkovié¢
Thomas Schwentick
Mantas Simkus
Sebastian Skritek
Dan Suciu

Val Tannen
Balder ten Cate
Yufei Tao

Justin Thaler
Zografoula Vagena
Victor Vianu

Nils Vortmeier
David P. Woodruff

Thomas Zeume

19th International Conference on Database Theory (ICDT 2016).

Editors: Wim Martens and Thomas Zeume

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/




The ICDT 2016 Test of Time Award
Announcement

Foto N. Afrati!, Claire David?, and Georg Gottlob?

1 National Technical Universtity of Athens, Athens, Greece
afrati@softlab.ece.ntua.gr

2  Université Paris-Est Marne-la-Vallée, Marne-la-Vallée, France
Claire.David@u-pem.fr

3  University of Oxford, Oxford, UK
georg.gottlob@cs.ox.ac.uk

—— Abstract

We describe the 2016 ICDT Test of Time Award which is awarded to Chandra Chekuri and
Anand Rajaraman for their 1997 ICDT paper on “Conjunctive Query Containment Revisited”.

1998 ACM Subject Classification H.2.3 [Database Management] Languages
Keywords and phrases conjunctive query, treewidth, NP-hardness, rewriting

Digital Object Identifier 10.4230/LIPIcs.ICDT.2016.1

1 The ICDT 2016 Test of Time Award

In 2013, the International Conference on Database Theory (ICDT) began awarding the ICDT
Test of Time (ToT) Award, with the goal of recognizing one paper, or a small number of
papers, presented at earlier ICDT conferences that have best met the “test of time”. In
2016, the award recognizes a paper selected from the proceedings of the ICDT 1995 & 1997
conferences, that has had the highest impact in terms of research, methodology, conceptual
contribution, or transfer to practice over the past decade. The award was presented during
the EDBT/ICDT 2016 Joint Conference, March 15-18, 2016 in Bordeaux, France.

The 2016 Test of Time Award Committee, consisting of Foto N. Afrati, Claire David,
and Georg Gottlob (chair), has chosen the following contribution for the 2016 ICDT Test of
Time Award:!

Conjunctive Query Containment Revisited
by Chandra Chekuri and Anand Rajaraman
6th International Conference on Database Theory (ICDT 1997)

The paper is available here: http://dx.doi.org/10.1007/3-540-62222-5_36.

2  Contribution

This landmark paper made highly significant contributions to the problems of conjunctive
query containment and optimization. While it was known that these NP-hard problems
are tractable in case of acyclic queries, Chekuri and Rajaraman observed that the most

Y Full citation is given in [1].

© Foto N. Afrati, Claire David, and Georg Gottlob;

licensed under Creative Commons License CC-BY
19th International Conference on Database Theory (ICDT 2016).
Editors: Wim Martens and Thomas Zeume; Article No. 1; pp. 1:1-1:2

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.1
http://dx.doi.org/10.1007/3-540-62222-5_36
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2

The ICDT 2016 Test of Time Award Announcement

commonly encountered queries, while not necessarily acyclic, are in some sense nearly acyclic
and still lend themselves to polynomial-time containment and minimization algorithms. To
make this precise, they introduced the concept of query width, which is based on the notion
of query decomposition combining treewidth-like decomposition techniques with set covering
methods. In particular, the class of acyclic queries coincides with the class of queries having
query width 1. They showed that the problems of query-containment and query minimization
are tractable for classes of queries whose query width is bounded by some constant k in case
a query decomposition of width < k is given.

The paper contains a number of further important results on (i) the relationship between
the query width of a query and the treewidth of its incidence graph, (ii) the hardness of
approximating query minimization, and (iii) rewriting and answering queries of bounded
query width in presence of views.

This highly cited paper, whose full version has appeared in Theoretical Computer Sci-
ence [2], had a major impact on subsequent work in Database Theory and Artificial Intelligence
(in particular, constraint satisfaction). Its pioneering use of hypergraph-based rather than
graph-based decomposition techniques marked the beginning of a still ongoing series of invest-
igations that have led to the definition of further, successively more general decomposition
techniques, rooted in the very idea of query decomposition.

Foto N. Afrati Claire David Georg Gottlob
The ICDT Test of Time Award Committee for 2016

—— References

1 Chandra Chekuri and Anand Rajaraman. Conjunctive query containment revisited. In
Proc. of the 6th International Conference on Database Theory (ICDT’97), Delphi, Greece,
January 8-10, 1997, volume 1186 of Lecture Notes in Computer Science, pages 56-70.
Springer, 1997. doi:10.1007/3-540-62222-5_36.

2 Chandra Chekuri and Anand Rajaraman. Conjunctive query containment revisited. Theor.
Comput. Sci., 239(2):211-229, 2000. doi:10.1016/S0304-3975(99)00220-0.


http://dx.doi.org/10.1007/3-540-62222-5_36
http://dx.doi.org/10.1016/S0304-3975(99)00220-0

Scale Independence: Using Small Data to Answer
Queries on Big Data

Floris Geerts

Department of Mathematics & Computer Science, University of Antwerp, Belgium
floris.geertsQuantwerpen.be

—— Abstract

Large datasets introduce challenges to the scalability of query answering. Given a query @ and a
dataset D, it is often prohibitively costly to compute the query answers Q(D) when D is big. To

this end, one may want to use heuristics, “quick and dirty” algorithms which return approximate
answers. However, in many applications it is a must to find exact query answers. So, how can
we efficiently compute Q(D) when D is big or when we only have limited resources?

One idea is to find a small subset D¢ of D such that Q(Dg) = Q(D) where the size of Dy, is
independent of the size of the underlying dataset D. Intuitively, when such a D¢ can be found
for a query @, the query is said to be scale independent [1, 2, 9]. Indeed, for answering such
queries the size of the underlying database does not matter, i.e., query processing is independent
of the scale of the database.

In this talk, I will survey various formalisms that enable large classes of queries to be scale
independent. These formalisms primarily rely on the availability of access constraints, a com-
bination of indexes and cardinality constraints, on the data [8, 9]. We will take a closer look at
how, in the presence of such constraints, queries can often be compiled into efficient query plans
that access a bounded amount data [6, 8], and how these techniques relate to query processing
in the presence of access patterns [3, 4, 7]. Finally, we illustrate that scale independent queries
are quite common in practice and that they indeed can be efficiently answered on big datasets
when access constraints are present [5, 6].

1998 ACM Subject Classification H.2.4 [Database Management] Systems — Query Processing,
H.2.3 [Database Management] Languages — Query Languages, H.2.2 [Database Management]
Physical Design — Access methods

Keywords and phrases Scale independence, Access constraints, Query processing

Digital Object ldentifier 10.4230/LIPIcs.ICDT.2016.2

Category Invited Talk

—— References

1 Michael Armbrust, Kristal Curtis, Tim Kraska, Armando Fox, Michael J. Franklin, and
David A. Patterson. PIQL: Success-tolerant query processing in the cloud. PVLDB,
5(3):181-192, 2011.

2 Michael Armbrust, Eric Liang, Tim Kraska, Armando Fox, Michael J. Franklin, and
David A. Patterson. Generalized scale independence through incremental precomputation.
In Proc SIGMOD 2013, pages 625—636, 2013.

3 Michael Benedikt, Julien Leblay, and Efthymia Tsamoura. Querying with access patterns
and integrity constraints. PVLDB, 8(6):690-701, 2015.

4 Michael Benedikt, Balder ten Cate, and Efthymia Tsamoura. Generating low-cost plans
from proofs. In Proc. PODS 2014, pages 200-211, 2014.

© Floris Geerts;
37 licensed under Creative Commons License CC-BY

19th International Conference on Database Theory (ICDT 2016).
Editors: Wim Martens and Thomas Zeume; Article No. 2; pp. 2:1-2:2

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2

Scale Independence: Using Small Data to Answer Queries on Big Data

5 Yang Cao, Wenfei Fan, Jinpeng Huai, and Ruizhe Huang. Making pattern queries bounded
in big graphs. In Proc. ICDFE 2015, pages 161-172, 2015.

6 Yang Cao, Wenfei Fan, Tianyu Wo, and Wenyuan Yu. Bounded conjunctive queries.
PVLDB, 7(12):1231-1242, 2014.

7 Alin Deutsch, Bertram Ludéascher, and Alan Nash. Rewriting queries using views with
access patterns under integrity constraints. T'CS, 371(3):200-226, 2007.

8 Wenfei Fan, Floris Geerts, Yang Cao, Ting Deng, and Ping Lu. Querying big data by
accessing small data. In Proc. PODS 2015, pages 173-184, 2015.

9 Wenfei Fan, Floris Geerts, and Leonid Libkin. On scale independence for querying big data.
In Proc. PODS 2014, pages 51-62, 2014.



Top-k Indexes Made Small and Sweet

Yufei Tao

University of Queensland, Brisbane, Queensland, Australia
taoyfQitee.uq.edu.au

—— Abstract

Top-k queries have become extremely popular in the database community. Such a query, which
is issued on a set of elements each carrying a real-valued weight, returns the k elements with the
highest weights among all the elements that satisfy a predicate. As usual, an index structure is
necessary to answer a query substantially faster than accessing the whole input set.

The existing research on top-k queries can be classified in two categories. The first one, which
is system-oriented, aims to devise indexes that are simple to understand and easy to implement.
These indexes, typically designed with heuristics, are reasonably fast in practical applications,
but do not necessarily offer strong performance guarantees — in other words, they are small but
not sweet. The other category, which is theory-oriented, aims to develop indexes that promise
attractive bounds on the space consumption and query overhead (sometimes also update cost).
These indexes, unfortunately, are often excessively sophisticated in the adopted techniques, and
are rarely applied in practice — they are sweet but not small.

This talk will discuss the progress of an on-going project that strives to take down the barrier
between the two categories, by crafting a framework for acquiring simple top-k indexes with
excellent performance guarantees — namely, small and sweet. This is achieved with reductions
that produce top-k indexes automatically from the existing data structures for conventional
reporting queries on unweighted elements (i.e., finding all elements satisfying a predicate), and /or
the existing data structures on top-1 queries. Our reductions promise nearly no performance
deterioration with respect to those existing structures, are general enough to be applicable to
a huge variety of top-k problems, and work in both the external memory model and the RAM
model.

1998 ACM Subject Classification F.2.2 Analysis of Algorithms and Problem Complexity
Keywords and phrases Data Structures, Top-k, External Memory, RAM, Reductions
Digital Object Identifier 10.4230/LIPIcs.ICDT.2016.3

Category Invited Talk

© Yufei Tao;
37 licensed under Creative Commons License CC-BY

19th International Conference on Database Theory (ICDT 2016).
Editors: Wim Martens and Thomas Zeume; Article No. 3; pp. 3:1-3:1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de




New Algorithms for Heavy Hitters in Data
Streams

David P. Woodruff

IBM Research Almaden, San Jose, CA, USA
dpwoodruQus.ibm.com

—— Abstract

An old and fundamental problem in databases and data streams is that of finding the heavy
hitters, also known as the top-k, most popular items, frequent items, elephants, or iceberg queries.
There are several variants of this problem, which quantify what it means for an item to be frequent,

including what are known as the ¢1-heavy hitters and ¢s-heavy hitters. There are a number of
algorithmic solutions for these problems, starting with the work of Misra and Gries, as well as
the CountMin and CountSketch data structures, among others.

In this paper (accompanying an invited talk) we cover several recent results developed in this
area, which improve upon the classical solutions to these problems. In particular, we develop
new algorithms for finding ¢;-heavy hitters and ¢>-heavy hitters, with significantly less memory
required than what was known, and which are optimal in a number of parameter regimes.

1998 ACM Subject Classification H.2.8 [DatabaseManagement] Database Applications — Data
mining, C.2.3 [Computer-Communication Networks]: Network Operations — Network monitoring,
F.2.2 [Analysis of Algorithms and Problem Complexity] Nonnumerical Algorithms and Problems

Keywords and phrases data streams, heavy hitters
Digital Object Identifier 10.4230/LIPIcs.ICDT.2016.4

Category Invited Talk

1 The Heavy Hitters Problem

A well-studied problem in databases and data streams is that of finding the heavy hitters,
also known as the top-k, most popular items, frequent items, elephants, or iceberg quries.
These can be used for flow identification at IP routers [20], in association rules and frequent
itemsets [1, 44, 47, 25, 24], and for iceberg queries and iceberg datacubes [21, 6, 23]. We
refer the reader to the survey [16], which presents an overview of known algorithms for this
problem, from both theoretical and practical standpoints.

There are various different flavors of guarantees for the heavy hitters problem. We start
with what is known as the ¢;-guarantee:

» Definition 1 (€1-(e, ¢)-Heavy Hitters Problem). In the (¢, ¢)-Heavy Hitters Problem, we
are given parameters 0 < € < 1 and 2¢ < ¢ < 1, as well as a stream ayq,...,a,, of items
a; € {1,2,...,n}. Let f; denote the number of occurrences of item i, i.e., its frequency. The
algorithm should make one pass over the stream and at the end of the stream output a
set S C {1,2,...,n} for which if f; > ¢m, then ¢ € S, while if f; < (¢ — €)m, then i ¢ S.
Further, for each item i € S, the algorithm should output an estimate f; of the frequency f;
which satisfies |f; — fi| < em.

We are interested in algorithms which use as little space (i.e., memory) in bits as possible
to solve the ¢1-(¢, ¢)-Heavy Hitters Problem. We allow the algorithm to be randomized and

© David P. Woodruff;
37 licensed under Creative Commons License CC-BY

19th International Conference on Database Theory (ICDT 2016).
Editors: Wim Martens and Thomas Zeume; Article No. 4; pp. 4:1-4:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2

New Algorithms for Heavy Hitters in Data Streams

to succeed with probability at least 1 — 4, for 0 < § < 1. We do not make any assumption on
the ordering of the stream aq,...,a,. This is desirable, as often in applications one cannot
assume a best-case or even a random order. We will assume m is known in advance, though
many of the algorithms below (including ours) can deal with unknown m. We note that while
the problem still makes sense for any ¢ > e, it is well-known that an (n) space lower bound
exists when ¢ is very close to €, e.g., if ¢ = e+ 1/n. Indeed, this follows via a reduction from
communication complexity, which is a standard method for proving lower bounds in data
streams. In particular, a reduction from the so-called INDEX problem is readily apparent -
we refer the reader to [32] for more details of the communication problem (see, e.g., [43] for
a recent survey discussing the INDEX problem).

The first algorithm for the ¢1-(¢, ¢)-Heavy Hitters Problem was given by Misra and Gries
[38], who achieved O(e~!logn) bits of space for any ¢ > 2¢. This algorithm was rediscovered
by Demaine et al. [18], and again by Karp et al. [31]. Other than these algorithms, which are
deterministic, there are a number of randomized algorithms, such as the CountSketch [13],
Count-Min sketch [17], sticky sampling [34], lossy counting [34], space-saving [36], sample
and hold [20], multi-stage bloom filters [11], and sketch-guided sampling [33]. Berinde et al.
[5] show that using O(ke~!log(mn)) bits of space, one can achieve the stronger guarantee of
reporting, for each item i € S, f; with |f; — fi| < %Ffes(k), where F{es(k) < m denotes the
sum of frequencies of items in {1,2,...,n} excluding the frequencies of the k£ most frequent
items. This is particularly useful when there are only a few large frequencies, since then the
error iFf es(h) il depend only on the remaining small frequencies.

While the ¢1-heavy hitters have a number of applications, there is also a sometimes
stronger notion known as the fo-heavy hitters, which we now define.

» Definition 2 (£2-(e, ¢p)-Heavy Hitters Problem). In the (¢, ¢)-Heavy Hitters Problem, we
are given parameters 0 < ¢ < 1 and 2¢ < ¢ < 1, as well as a stream ay, ..., a,, of items
a; € {1,2,...,n}. Let f; denote the number of occurrences of item i, i.e., its frequency.
Let Fo =0, f?. The algorithm should make one pass over the stream and at the end
of the stream output a set S C {1,2,...,n} for which if f? > ¢Fy, then i € S, while if
f? < (¢ — €)Fy, then i ¢ S. Further, for each item i € S, the algorithm should output an
estimate f; of the frequency f; which satisfies |fi — fZ| < eVFs.

One of the algorithms for ¢;-heavy hitters mentioned above, the CountSketch [14], refined
in [46], actually solves the £2-(¢, ¢)-Heavy Hitters Problem. Notice that this guarantee can
be significantly stronger than the aforementioned ¢;-guarantee that f; > em. Indeed, if
fi > ¢m, then f2 > ¢>m? > $?Fy. So, an algorithm for finding the fo-heavy hitters, with ¢
replaced by ¢2, will find all items satisfying the ¢;-guarantee with parameter ¢. On the other
hand, given a stream of n distinct items in which f;« = /n for an i* € [n] ={1,2,3,...,n},
yet f; = 1 for all i # i*, an algorithm satisfying the f5-heavy hitters guarantee will identify
item 4 with constant ¢, but an algorithm which only has the ¢;-guarantee would need to set
¢ = 1/+/n, therefore using Q(y/n) bits of space. In fact, f2-heavy hitters are in some sense
the best one can hope for with a small amount of space in a data stream, as it is known for
p > 2 that finding those i for which fP > ¢F, requires n'~2/? bits of space even for constant
¢ [4, 12].

The /¢5-heavy hitter algorithms of [14, 46] have broad applications in compressed sensing
[22, 42, 37] and numerical linear algebra [15, 35, 40, 9], and are often used as a subroutine in
other data stream algorithms, such as £,-sampling [39, 3, 29], cascaded aggregates [28], and
frequency moments [27, 8].

Given the many applications of heavy hitters, it is natural to ask what the best space
complexity for them is. For simplicity of presentation, we make the common assumption
that the stream length m is polynomially related to the universe size n.



D. P. Woodruff

It is clear that for constant ¢ and ¢, that there is an Q(logn) bit lower bound, as this is
just the number of bits needed to specify the identity of the heavy hitter.

For constant ¢, given the aforementioned results, this is actually tight for the ¢1-(e, ¢)-
Heavy Hitters Problem. The main focus then, for the ¢1-(¢, ¢)-Heavy Hitters Problem is on
obtaining tight bounds as a function of € and ¢.

On the other hand, for the ¢5-(¢, ¢)-Heavy Hitters Problem, even for constant € and ¢,
the best previous algorithms of [14] and the followup [46] achieve ©(log® n) bits of space. It
is known that if one allows deletions in the stream, in addition to insertions, then ©(log?n)
bits of space is optimal [19, 29]. However, in many cases we just have a stream of insertions,
such as in the model studied in the seminal paper of Alon, Matias, and Szegedy [2]. Thus,
for the ¢5-(€, ¢)-Heavy Hitters Problem, our focus will be on the regime of constant € and ¢
and on understanding the dependence on n.

There are a number of other desirable properties one would want out of a heavy hitters
algorithm. For instance, one is often also interested in minimizing the update time and
reporting time of such algorithms. Here, the update time is defined to be the time the
algorithm needs to update its data structure when processing a stream insertion. The
reporting time is the time the algorithm needs to report the answer after having processed
the stream. In this article we will focus primarily on the space complexity.

2  Our Recent Results

In several recent works [10, 7], together with coauthors we significantly improve known
algorithms for finding both ¢;-heavy hitters as well as £a-heavy hitters. For many settings of
parameters, our algorithms are optimal.

2.1 ¢,-Heavy Hitters

In joint work with Bhattacharyya and Dey [7], we improve upon the basic algorithm of Misra
and Gries [38] for the /1-(e, ¢)-Heavy Hitters Problem, the latter achieving O(e~!logn) bits
of space for any ¢ > 2¢. We now describe the algorithm of [7].

We first recall the algorithm of Misra and Gries. That algorithm initializes a table of
1/e+ 1 pairs of (v, c) to (L,0), where v is an element in the universe {1,2,...,n} UL, and ¢
is a non-negative integer. When receiving a new stream insertion a;, the algorithm checks if
v = a; for some (v, ¢) pair in the table. If so, it replaces (v, ¢) with (v,c+ 1). Otherwise, if
there is a (v, ¢) in the table with v = L, then the algorithm replaces that (v, c¢) pair with
(as, 1). If neither of the previous two cases hold, the algorithm takes each (v, ¢) pair in the
table, and replaces it with (v,c—1). If ¢ — 1 = 0, then the corresponding v is replaced with
1.

Note that the algorithm, as described in the previous paragraph, naturally can be
implemented using O(e~!logn) bits of space (recall we assume the stream length m and the
universe size n are polynomially related, so logm = O(logn)). Moreover, a nice property is
that the algorithm is deterministic.

For the correctness, note that if an item 7 occurs f; > 2em times, then it will appear in
the table at the end of the stream. Indeed, notice that for each occurrence of 7 in the stream,
if it is not included in the table via the operation of replacing a pair (¢,¢) with (i,¢+ 1) for
some value of ¢, or replacing a pair (L, 0) with (i,1), then this means that there were at least
1/e 4+ 1 stream updates that were removed from the table upon seeing this occurrence of 4,
since each counter ¢ for each (v, c) pair in the table is decremented by 1. We can therefore
charge those stream updates to this occurrence of i. Moreover, if (i,¢) is in the table for

4:3

ICDT 2016



4:4

New Algorithms for Heavy Hitters in Data Streams

some value of ¢ and is replaced with (i,¢ — 1) or (L,0), this means we can charge at least
1/e stream updates to items not equal to ¢ to this occurrence of i. Since we are charging
distinct stream updates for each occurrence of ¢, we have the relationship that f; - (1/€) < m,
which is a contradiction to f; > 2em. Therefore, ¢ will occur in a pair in the table at the
end of the stream. The same analysis in fact implies that at most em occurrences of ¢ will
not be accounted for in the table at the end of the stream, which means that for the (i, ¢)
pair in the table, we have f; > ¢ > f; — em. This latter guarantee enables us to solve the
l1-(e, $)-Heavy Hitters Problem for any ¢ > 2e.

One shortcoming of the algorithm above is that if ¢ is much larger than €, say ¢ is
constant, then the above algorithm still requires O(e~!logn) bits of space, that is, it is
insensitive to the value of ¢. Consider for instance, the case when € = 1/logn and ¢ = 1/10,
so one wants a very high accuracy estimate to each of the item frequencies for items occurring
at least 10% of the time. The above algorithm would use O(log? n) bits of space for this
problem. In this case, the only known lower bound is Q(logn) bits, which just follows from
the need to return the identities of the heavy hitters. Is it possible to improve this O(log? n)
bits of space upper bound?

This is precisely what we show in [7]. Here we sketch how to achieve a bound of
O((1/¢)logn + (1/€)log(1/€)) bits of space and refer to [7] for further optimizations as
well as extensions to related problems. Note that this translates to a space bound of
O(lognloglogn) bits for the above setting of parameters.

The first observation is that if we randomly sample r = ©(1/€?) stream updates, then with
probability 99%, simultaneously for every universe item i, if we let fl denote its frequency
among the samples, and f; its frequency in the original stream, then we have

i f

It <
,

€

This follows by Chebyshev’s inequality and a union bound. Indeed, consider a given i € [n]
with frequency f; and suppose we sample each of its occurrences pairwise-independently with
probability r/m, for a parameter r. Recall that pairwise independence here implies that
any single occurrence is sampled with probability r/m and any two occurrences are jointly
sampled with probability exactly 72/m?, though we do not impose any constraints on the
joint distribution of any three or more samples. Also, a pairwise independent hash function
can be represented with only O(logn) bits of space. Then the expected number E[ fl] of
sampled occurrences is f; - /m and the variance Var[f;] is fi - r/m(1 —r/m) < fir/m (here
we use pairwise independence to conclude the same variance bound as if the samples were
fully independent). Applying Chebyshev’s inequality,

re Var[fi] 4fir
5} = (re/2)? = mr2e2’

Ji — E[f]

v

Setting r = 6% for a constant C' > 0 makes this probability at most é{n . By the union
bound, if we sample each element in the stream independently with probability -, then the
probability there exists an i for which |f; — E[f;]| > % is at most 3., 2= < 4, which for
C > 400 is at most ﬁ, as desired.

After sampling so that the stream length is reduced to O(1/e?), it follows that the
number of distinct items in the stream is also O(1/€?), and therefore if we hash the item
identifiers to a universe of size O(1/e*), by standard arguments with probability 99% the
items will be perfectly hashed, that is, there will be no collisions. This follows even with a

pairwise-independent hash function h. The high level idea then is to run the algorithm of




D. P. Woodruff

Misra and Gries, but the pairs (v, ¢) correspond to the hashed item identity and the count in
the sampled stream, respectively. Notice that it takes only O(log(1/€)) bits to represent such
pairs and so the algorithm of Misra and Gries would take O(e~!log(1/¢)) bits of space.

However, we still want to return the actual item identifiers! To do this, we maintain
a parallel data structure containing actual item identifiers in [n], but the data structure
only contains O(1/¢) items. In particular, these item identities correspond to the items v
for which (h(v),c) is stored in the algorithm of Misra and Gries, for which the ¢ values are
largest. Namely, the items with top 1/¢ c-values have their actual identities stored. This can
be maintained under stream insertions since given a new stream update, one has the actual
identity in hand, and therefore can appropriately update the identities of the items with top
O(1/¢) counts. Moreover, when we subtract one from all counters in the algorithm of Misra
and Gries, the only thing that changes in the top O(1/¢) identities is that some of them
may now have zero frequency, and so can be thrown out. Thus, we can always maintain the
actual top O(1/¢) identities in the original (before hashing) universe.

We refer the reader to [7] for more details, optimizations, and extensions to related
problems.

2.2 ¢>-Heavy Hitters

In joint work with Braverman, Chestnut, and Ivkin [10], we improve upon the CountSketch
data structure [14] for the ¢o-(e€, ¢)-Heavy Hitters Problem. To illustrate the algorithm of [10],
we consider € and ¢ to be constants in what follows, and further, we suppose there is only a
single i* € [n] for which f2 > ¢F, and there is no i for which (¢ — €)Fy < f2 < ¢Fy. Tt is
not hard to reduce to this case by first hashing into O(1) buckets (recall ¢, € are constants
for this discussion), since the O(1/¢) heavy hitters will go to separate buckets with large
constant probability (if, say, we have (1/¢?) buckets). Thus, we focus on this case. In this
case the CountSketch algorithm would use ©(log? n) bits of space, whereas in [10] we achieve
O(lognloglogn) bits of space, nearly matching the trivial Q(logn) bit lower bound.

We first explain the CountSketch data structure. The idea is to assign each item i € [n]
a random sign o(i) € {—1,1}. We also randomly partition [n] into B buckets via a hash
function h and maintain a counter ¢; = 3, ,;—; 0(é) - fi in the j-th bucket. Then, to
estimate any given frequency f;, we estimate it as o(i) - ¢j(;). Note that E[o(i) - cu;)] =
E[o(i)%f; + > jzin)=h(iy Jio (7)o ()] = fi, using that E[o(i)o(j)] = 0 for i # j. Moreover,
by computing the variance and applying Chebyshev’s inequality, one has that

lo(i) - cny — fil = O(\/ F2/B)

with probability at least 9/10. The intuitive explanation is that due to the random sign
combination of remaining items in the same hash bucket as i, the absolute value of this linear
combination concentrates to the Euclidean norm of the frequency vector of these items. The
idea then is to repeat this independently O(logn) times in parallel. Then we estimate f;
by taking the median of the estimates across each of the O(logn) repetitions. By Chernoff
bounds, we have that with probability 1 — 1/n?, say, the resulting estimate is within an
additive O(y/ Fa/B) of the true frequency f;. This then holds for every i € [n] simultaneously
by a union bound, at which point one can then find the ¢5-heavy hitters, if say, one sets
B =0(1/€?).

Notice that it is easy to maintain the CountSketch data structure in a data stream since
we just need to hash the new item ¢ to the appropriate bucket and add o(4) to the counter
in that bucket, once for each of the O(logn) repetitions. The total space complexity of
the CountSketch algorithm is O(B - log® n), where the “B” is the number of hash buckets,

4:5

ICDT 2016



4:6

New Algorithms for Heavy Hitters in Data Streams

one logn factor is to store the counter in each bucket, and the other logn factor is for the
number of repetitions. For constant e and B = ©(1/€?) this gives O(log® n) bits of space. It
is also not hard to see that the CountSketch data structure can be maintained in a stream
with deletions as well as insertions, since given a deletion to item ¢, this just corresponds
to subtracting o (i) from the bucket ¢ hashes to in each repetition. Moreover, as mentioned
earlier, this O(log® n) space bound is optimal for streams with deletions.

To give some intuition for our new algorithm, let i* € [n] be the identity of the single
ly-heavy hitter that we wish to find. Suppose first that f;» > v/nlogn and that f; € {0,1}
for all 4 € [n] \ {¢*}. For the moment, we are also going to ignore the issue of storing random
bits, so assume we can store poly(n) random bits for free (which can be indexed into using
O(logn) bits of space). We will later sketch how to remove this assumption. As in the
CountSketch algorithm, we again assign a random sign o(4) to each item 4 € [n]. Suppose
we randomly partition [n] into two buckets using a hash function & : [n] — {1,2}, and
correspondingly maintain two counters ¢1 = 3, ;=1 (i) - fi and c2 = 32,2, 0(0) - fi.
Suppose for discussion that A(i*) = 1. A natural question is what the values ¢; and c¢s look
like as we see more updates in the stream.

Consider the values ¢; — o (i*) - fi» and co. Then, since all frequencies other than i* are
assumed to be 0 or 1, and since the signs o(j) are independent, these two quantities evolve
as random walks starting at 0 and incrementing by +1 with probability 1/2, and by —1 with
probability 1/2; at each step of the walk. By standard theory of random walks (e.g., Levy’s
theorem), there is a constant C' > 0 so that with probability at least 9/10, simultaneously
at all times during the stream we have that |¢; — o (i*) - fi+| and |co| are upper bounded by
C'\/n. The constant of 9/10, like typical constants in this paper, is somewhat arbitrary. This
suggests the following approach to learning i*: at some point in the stream we will have that
fix > 2Cy/n, and at that point |c1| > Cy/n, but then we know that i* occurs in the first
bucket. This is assuming that the above event holds for the random walks. Since we split [n]
randomly into two pieces, this gives us 1 bit of information about the identity of i*. If we
were to repeat this O(logn) times in parallel, we would get exactly the CountSketch data
structure, which would use @(log2 n) bits of space. Instead, we get much better space by
repeating O(logn) times sequentially!

To repeat this sequentially, we simply wait until either |c;| or |ca| exceeds Cn
which point we learn one bit of information about ¢*. Then, we reset the two counters to
0 and perform the procedure again. Assuming f;» = Q(y/nlogn), we will have Q(logn)
repetitions of this procedure, each one succeeding independently with probability 9/10. By
Chernoff bounds, there will only be a single index ¢ € [n] which match a 2/3 fraction of these
repetitions, and necessarily ¢ = i*.

12 at

2.2.1 Gaussian Processes

In general we do not have f;x = Q(y/nlogn), nor do we have that f; € {0,1} for all
i € [n]\ {#*}. We fix both problems using the theory of Gaussian processes.

» Definition 3. A Gaussian process is a collection {X;};cr of random variables, for an
index set T, for which every finite linear combination of the random variables is Gaussian.

We assume E[X;] = 0 for all ¢, as this will suffice for our application. It then follows that the
Gaussian process is entirely determined by its covariances E[XX;]. This fact is related to
the fact that a Gaussian distribution is determined by its mean and covariance. The distance
function d(s,t) = (E[(X,s — X;)?])*/? is then a pseudo-metric on T' (the only property it lacks
of a metric is that d(s,t) may equal 0 if s # t).



D. P. Woodruff

The connection to data streams is the following. Suppose we replace the signs o (i) with
standard normal random variables g(¢) in our counters above, and consider a counter ¢ at
time ¢, denoted c(t), of the form ), (i) - fi(t). Here f;(t) is the frequency of item ¢ after
processing t stream insertions. The main point is that ¢(t) is a Gaussian process! Indeed,
any linear combination of the ¢(t) values for different ¢ is again Gaussian since the sum of
normal random variables is again a normal random variable.

The reason we wish to make such a connection to Gaussian processes is the following
powerful inequality called the “chaining inequality”.

» Theorem 4 (Talagrand [45]). Let {X;}ier be a Gaussian process and let To C Ty C T C
.-« C T be such that |To| = 1 and |T;| < 2% fori > 1. Then,

E {supxt} <O(1)-sup Y " 27%d(t,T),
teT teT i>0

where d(t,T;) = minge, d(t, s).

We wish to apply Theorem 4 to the problem of finding ¢5-heavy hitters. Let Fy(¢) be the
value of the second moment Fy after seeing ¢ stream insertions. We now describe how to
choose the sets T; in order to apply the chaining inequality; the intuition is that we recursively
partition the stream based on its Fy value.

Let a; be the first stream update for which Fy(m)/2 < Fy(t). Then Ty = {t}. We then
let T} be the set of 22 times t1, to, . . . ,tyei in the stream for which ¢; is the first point in the
stream for which j - Fy(m)/22" < F5(t;). Then, we have created a nested sequence of subsets
ToCTy CTy, C--- CT with |Ty| =1 and |T}| < 2% fori > 1.

We are now in position to apply Theorem 4. A straightforward computation based on
our recursive partitioning of the stream around where Fy changes (see [10] for details) shows
that for any stream position ¢ and set T; we have created,

d(t,Ty) = (E[min le(t) — c(s)|2]>1/2 —0 <F2.>1/2.

seT;

Applying Theorem 4, we have

4 0\ /2
teT teT 133 2

This is exactly the same bound that the theory for random walks gave us earlier! (recall in
that case >, ;. 2 <n).

Using Gaussian processes has therefore allowed us to remove our earlier assumption
that f; € {0,1} for all ¢ € [n] \ {i*}. The same random walk based algorithm will now
work; however, we still need to assume the f; = Q(y/Fylogn) in order to learn logn bits
of information to identify i*, as before. This is not satisfactory, as an ¢s-heavy hitter only
satisfies f; = Q(/F2) (recall we have assumed ¢ and e are constants), which is weaker than
the fi~ = Q(v/Fzlogn) that the above analysis requires.

2.2.2 Amplification

To remove the assumption that f;x = Q(y/Fzlogn), our work [10] designs what we call
an “amplification” procedure. This involves for j = 1,2,...,0(loglogn), independently
choosing a pairwise independent hash function h’ : [n] — {1,2}. For each j, we as before

4:7

ICDT 2016



4:8

New Algorithms for Heavy Hitters in Data Streams

maintain two counters ¢ =37, ;=1 9;(¢) - fi and &3 = 37(5)=0 95 (i) - fi, where the g; (i)
are independent standard normal random variables.

Applying the chaining inequality to each of the O(loglogn) counters created, we have
that with large constant probability, in a constant fraction of the O(loglogn) pairs, both
counters c{ and c; will be bounded by O(v/F) in magnitude. It follows that if fi- > C/Fy
for a sufficiently large constant C' > 0 (which we can assume by first hashing the universe
into O(1) buckets before the streaming algorithm begins), then in say, a 9/10 fraction of
pairs 7, the counter c,i, k € {1,2}, of larger magnitude will contain i*. Moreover, by Chernoff
bounds, only a log%n fraction of other ¢ € [n] will hash to the larger counter in at least a
9/10 fraction of such pairs, where ¢ > 0 is a constant that can be made arbitrarily large by
increasing the constant in the number O(loglogn) of pairs of counters created. Now the idea
is to effectively run our previous algorithm only on items which hash to the heavier counter
in at least a 9/10 fraction of pairs. By definition, this will contain i*, and now the expected
second moment of the other items for which we run the algorithm on will be F5/log®n,
which effectively makes f;- = Q(v/Fylogn), where Fy is now measured with respect to the
items for which we run the algorithm on. Now we can sequentially learn O(logn) bits of
information about ¢* in our algorithm, as before.

One thing to note about this approach is that after seeing a sufficiently large number of
insertions of i*, i.e., ©(v/F2) such insertions, then most of the pairs of counters will have
the property that the larger counter (in absolute value) stays larger forever. This is due to
the chaining inequality. This can be used to fix the itemset for which we run the algorithm
on. In fact, this is precisely why this does not result in a 2-pass algorithm, which one might
expect since one does not know the itemset to run our algorithm on in advance. However, we
always run the algorithm on whichever current itemset agrees with at least a 9/10 fraction of
the larger counters, and just accept the fact that in the beginning of the stream the bits we
learn about 7* are nonsense; however, after enough updates to i* have occurred in the stream
then the counters “fix” themselves in the sense that the larger counter does not change. At
this point the bits we learn about i* in our algorithm are the actual bits that we desire. At
the end of the stream, we only look at a suffix of these bits to figure out ¢*, thereby ignoring
the nonsensical bits at the beginning of the stream. We refer the reader to [10] for more
details.

2.2.3 Derandomization

The final piece of the algorithm is to account for the randomness used by the algorithm. We
need to derandomize the counters, which use the theory of Gaussian processes to argue their
correctness. We also cannot afford to maintain all of the hash functions that were used to
learn specific bits of i* (which we need ad the end of the stream to figure out what ¢* is).
To derandomize the Gaussian processes, we use a derandomized Johnson Lindenstrauss
transform of Kane, Meka, and Nelson [30]. The rough idea is to first apply a Johnson-
Lindenstrauss transform to the frequency vectors for which we take inner products with
independent Gaussian random variables in our counters. This will reduce the dimension from
n to O(logn), for which we can then afford to take an inner product with fully independent
Gaussian random variables. The nice thing about Johnson-Lindenstrauss transforms is that
they preserve all the covariances up to a constant factor in our specific Gaussian process,
and therefore we can use Slepian’s Lemma (see [10] for details) to argue that the Gaussian
process is roughly the same as before, since it is entirely determined by its covariances. Here
the derandomized Johnson-Lindenstrauss transform of [30] can be represented using only
O(lognloglogn) bits of space. Also, instead of using Gaussian random variables, which



D. P. Woodruff

require truncation, we can directly use sign random variables (+1 with probability 1/2, —1
with probability 1/2), which results in what are called Bernoulli processes, together with
a comparison theorem for Bernoulli processes and Gaussian processes. This enables us to
avoid arguments about truncating Gaussians.

To derandomize the hash functions, we use Nisan’s pseudorandom generator in a similar
way that Indyk uses it for derandomizing his algorithms for norm estimation [41, 26]. Please
see [10] for further details.

3 Conclusions

We presented new algorithms for finding ¢;-heavy hitters and /5-heavy hitters in a data
stream. We refer the reader to the original papers [10, 7] for further details. As these
algorithms are inspired from applications in practice, it is very interesting to see how the
improved theoretical algorithms perform in practice. In ongoing work we are testing these
algorithms in practice on real datasets.

Another interesting aspect is that the technique of using Gaussian processes in the fo-
heavy hitters algorithm has led to a number of other improvements to data stream algorithms,
including for example the ability to estimate the second moment F5 at all times in a stream
of insertions. Previously, given a stream of length n and a universe of size n, to estimate F5
at all points in a stream up to a constant factor would require @(log2 n) bits of space, since
it takes O(lognlog(1/J)) bits to estimate it at a single point with failure probability J, and
one needs to union bound over n stream positions. Using Gaussian processes, we achieve
only O(lognloglogn) bits of space for this task. It would be interesting to see if Gaussian
processes are useful for other problems in data streams.

Obtaining simultaneously optimal update time, reporting time, and space in all parameter
regimes is also a very important goal.

—— References

1 Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules
in large databases. In VLDB’9/, Proceedings of 20th International Conference on Very
Large Data Bases, September 12-15, 1994, Santiago de Chile, Chile, pages 487-499, 1994.

2 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci., 58(1):137-147, 1999.

3 Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming algorithms via
precision sampling. In IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 363-372, 2011.

4 Ziv Bar-Yossef, T.S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. J. Comput. Syst. Sci., 68(4):702—
732, 2004.

5 Radu Berinde, Piotr Indyk, Graham Cormode, and Martin J. Strauss. Space-optimal
heavy hitters with strong error bounds. ACM Trans. Database Syst., 35(4):26, 2010. doi:
10.1145/1862919.1862923.

6 Kevin S. Beyer and Raghu Ramakrishnan. Bottom-up computation of sparse and iceberg
cubes. In SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Man-
agement of Data, June 1-3, 1999, Philadelphia, Pennsylvania, USA., pages 359-370, 1999.

7 Arnab Bhattacharyya, Palash Dey, and David P. Woodruff. A new algorithm for ¢;-heavy
hitters in insertion streams and related problems. Manuscript, 2016.

8 Lakshminath Bhuvanagiri, Sumit Ganguly, Deepanjan Kesh, and Chandan Saha. Sim-
pler algorithm for estimating frequency moments of data streams. In Proceedings of the

4:9

ICDT 2016


http://dx.doi.org/10.1145/1862919.1862923
http://dx.doi.org/10.1145/1862919.1862923

4:10

New Algorithms for Heavy Hitters in Data Streams

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami,
Florida, USA, January 22-26, 2006, pages 708-713, 2006.

Jean Bourgain and Jelani Nelson. Toward a unified theory of sparse dimensionality reduc-
tion in euclidean space. CoRR, abs/1311.2542, 2013.

Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, and David P. Woodruff. Beating
countsketch for heavy hitters in insertion streams. CoRR, abs/1511.00661, 2015.

Yousra Chabchoub, Christine Fricker, and Hanene Mohamed. Analysis of a bloom filter
algorithm via the supermarket model. In 21st International Teletraffic Congress, ITC 2009,
Paris, France, September 15-17, 2009, pages 1-8, 2009.

Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds on the
multi-party communication complexity of set disjointness. In 18th Annual IEEE Conference
on Computational Complexity (Complexity 2003), 7-10 July 2003, Aarhus, Denmark, pages
107-117, 2003.

Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. Theoretical Computer Science, 312(1):3-15, 2004.

Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. Theor. Comput. Sci., 312(1):3-15, 2004.

Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in
input sparsity time. In Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 81-90, 2013.

Graham Cormode and Marios Hadjieleftheriou. Finding frequent items in data streams.
Proceedings of the VLDB Endowment, 1(2):1530-1541, 2008.

Graham Cormode and S Muthukrishnan. An improved data stream summary: the count-
min sketch and its applications. Journal of Algorithms, 55(1):58-75, 2005.

Erik D. Demaine, Alejandro Lépez-Ortiz, and J. Tan Munro. Frequency estimation of
internet packet streams with limited space. In Algorithms—FESA 2002, pages 348-360.
Springer, 2002.

Khanh Do Ba, Piotr Indyk, Eric Price, and David P. Woodruff. Lower bounds for sparse
recovery. CoRR, abs/1106.0365, 2011.

Cristian Estan and George Varghese. New directions in traffic measurement and accounting:
Focusing on the elephants, ignoring the mice. ACM Trans. Comput. Syst., 21(3):270-313,
2003.

Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Motwani, and Jeffrey D.
Ullman. Computing iceberg queries efficiently. In VLDB’98, Proceedings of 24rd Interna-
tional Conference on Very Large Data Bases, August 24-27, 1998, New York City, New
York, USA, pages 299-310, 1998.

Anna C. Gilbert, Yi Li, Ely Porat, and Martin J. Strauss. Approximate sparse recovery:
optimizing time and measurements. In Proceedings of the 42nd ACM Symposium on Theory
of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 475~
484, 2010.

Jiawei Han, Jian Pei, Guozhu Dong, and Ke Wang. Efficient computation of iceberg cubes
with complex measures. In Proceedings of the 2001 ACM SIGMOD international conference
on Management of data, Santa Barbara, CA, USA, May 21-24, 2001, pages 1-12, 2001.
Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate genera-
tion. In Proceedings of the 2000 ACM SIGMOD International Conference on Management
of Data, May 16-18, 2000, Dallas, Texas, USA., pages 1-12, 2000.

Christian Hidber. Online association rule mining. In SIGMOD 1999, Proceedings ACM
SIGMOD International Conference on Management of Data, June 1-3, 1999, Philadelphia,
Pennsylvania, USA., pages 145-156, 1999.



D. P. Woodruff

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. J. ACM, 53(3):307-323, 2006.

Piotr Indyk and David P. Woodruff. Optimal approximations of the frequency moments of
data streams. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
Baltimore, MD, USA, May 22-24, 2005, pages 202-208, 2005.

T.S. Jayram and David P. Woodruff. The data stream space complexity of cascaded
norms. In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2009, October 25-27, 2009, Atlanta, Georgia, USA, pages 765-774, 2009.

Hossein Jowhari, Mert Saglam, and Gabor Tardos. Tight bounds for lp samplers, finding
duplicates in streams, and related problems. In Proceedings of the 30th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2011, June 12-16,
2011, Athens, Greece, pages 49-58, 2011.

Daniel M. Kane, Raghu Meka, and Jelani Nelson. Almost optimal explicit johnson-
lindenstrauss families. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques — 14th International Workshop, APPROX 2011, and 15th
International Workshop, RANDOM 2011, Princeton, NJ, USA, August 17-19, 2011. Pro-
ceedings, pages 628-639, 2011.

Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. A simple algorithm for
finding frequent elements in streams and bags. ACM Transactions on Database Systems
(TODS), 28(1):51-55, 2003.

Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication
complexity. Computational Complezity, 8(1):21-49, 1999.

Abhishek Kumar and Jun (Jim) Xu. Sketch guided sampling — using on-line estimates
of flow size for adaptive data collection. In INFOCOM 2006. 25th IEEE International
Conference on Computer Communications, Joint Conference of the IEEE Computer and
Communications Societies, 23-29 April 2006, Barcelona, Catalunya, Spain, 2006.

Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over data
streams. In Proceedings of the 28th international conference on Very Large Data Bases,
pages 346-357. VLDB Endowment, 2002.

Xijangrui Meng and Michael W. Mahoney. Low-distortion subspace embeddings in input-
sparsity time and applications to robust linear regression. In Symposium on Theory of
Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 91-100,
2013.

Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation of fre-
quent and top-k elements in data streams. In Proceedings of the 10th International Con-
ference on Database Theory, ICDT’05, pages 398-412, Berlin, Heidelberg, 2005. Springer-
Verlag. doi:10.1007/978-3-540-30570-5_27.

Gregory T. Minton and Eric Price. Improved concentration bounds for count-sketch. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 669—686, 2014.

Jayadev Misra and David Gries. Finding repeated elements. Sci. Comput. Program.,
2(2):143-152, 1982.

Morteza Monemizadeh and David P. Woodruff. 1-pass relative-error lp-sampling with ap-
plications. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 11431160, 2010.
Jelani Nelson and Huy L. Nguyen. OSNAP: faster numerical linear algebra algorithms
via sparser subspace embeddings. In 54th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 117-126,
2013.

4:11

ICDT 2016


http://dx.doi.org/10.1007/978-3-540-30570-5_27

4:12

New Algorithms for Heavy Hitters in Data Streams

41

42

43

44

45

46

47

Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449-461, 1992.

Eric Price. Efficient sketches for the set query problem. In Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, Cali-
fornia, USA, January 23-25, 2011, pages 41-56, 2011.

Tim Roughgarden.  Communication complexity (for algorithm designers). CoRR,
abs/1509.06257, 2015.

Ashok Savasere, Edward Omiecinski, and Shamkant B. Navathe. An efficient algorithm for
mining association rules in large databases. In VLDB’95, Proceedings of 21th International
Conference on Very Large Data Bases, September 11-15, 1995, Zurich, Switzerland., pages
432444, 1995.

Michel Talagrand. Majorizing measures: The generic chaining. The Annals of Probability,
24(3), 1996.

Mikkel Thorup and Yin Zhang. Tabulation-based 5-independent hashing with applications
to linear probing and second moment estimation. SIAM J. Comput., 41(2):293-331, 2012.
Hannu Toivonen. Sampling large databases for association rules. In VLDB’96, Proceedings
of 22th International Conference on Very Large Data Bases, September 3-6, 1996, Mumbai
(Bombay), India, pages 134-145, 1996.



Beyond Well-designed SPARQL

Mark Kaminski! and Egor V. Kostylev?

1 Department of Computer Science, University of Oxford, UK
2 Department of Computer Science, University of Oxford, UK

—— Abstract
SPARQL is the standard query language for RDF data. The distinctive feature of SPARQL is the
OPTIONAL operator, which allows for partial answers when complete answers are not available
due to lack of information. However, optional matching is computationally expensive — query
answering is PSPACE-complete. The well-designed fragment of SPARQL achieves much better
computational properties by restricting the use of optional matching — query answering becomes

coNP-complete. However, well-designed SPARQL captures far from all real-life queries — in fact,
only about half of the queries over DBpedia that use OPTIONAL are well-designed.

In the present paper, we study queries outside of well-designed SPARQL. We introduce the
class of weakly well-designed queries that subsumes well-designed queries and includes most com-
mon meaningful non-well-designed queries: our analysis shows that the new fragment captures
about 99% of DBpedia queries with OPTIONAL. At the same time, query answering for weakly
well-designed SPARQL remains coNP-complete, and our fragment is in a certain sense maximal
for this complexity. We show that the fragment’s expressive power is strictly in-between well-
designed and full SPARQL. Finally, we provide an intuitive normal form for weakly well-designed
queries and study the complexity of containment and equivalence.

1998 ACM Subject Classification H.2.3 Languages — Query languages
Keywords and phrases RDF, Query languages, SPARQL, Optional matching

Digital Object ldentifier 10.4230/LIPIcs.ICDT.2016.5

1 Introduction

The Resource Description Framework (RDF) 29, 17, 21] is the W3C standard for representing
linked data on the Web. RDF models information in terms of labeled graphs consisting of
triples of resource identifiers (IRIs). The first and last IRIs in such a triple, called subject
and object, represent entity resources, while the middle IRI, called predicate, represents a
relation between the two entities.

SPARQL [35, 20] is the default query language for RDF graphs. First standardised
in 2008 [35], SPARQL is now recognised as a key technology for the Semantic Web. This is
witnessed by a recently adopted new version of the standard, SPARQL 1.1 [20], as well as by
active development of SPARQL query engines in academia and the industry, for instance, as
part of the systems AllegroGraph [1], Apache Jena [2], Sesame [3], or OpenLink Virtuoso [4].

In recent years, SPARQL has been subject to a substantial amount of theoretical research,
based on the foundational work by Pérez et al. [30, 31]. In particular, we now know much
about evaluation [36, 28, 6, 32, 25, 23, 7, 22], optimisation [27, 33, 16, 15, 12, 24], federation
[14, 13], expressive power [5, 34, 25, 39], and provenance tracking [18, 19] for queries from
various fragments and extensions of SPARQL. These studies have had a great impact in the
community, in fact influencing the evolution of SPARQL as a standard.

A distinctive feature of SPARQL as compared to SQL is the OPTIONAL operator
(abbreviated as OPT in this paper). This operator was introduced to “not reject (solutions)
? Mark Kaminski an.d Egor V. Kost)./lev;

5v icensed under Creative Commons License CC-BY
19th International Conference on Database Theory (ICDT 2016).
Editors: Wim Martens and Thomas Zeume; Article No. 5; pp. 5:1-5:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2

Beyond Well-designed SPARQL

P1,rdf:type, foaf :person 7 ™ P1,rdf:type, foaf :person 7 i
yp p yp p
(P2, rdf:type, foaf:person) | P1 | Ana (P2, rdf: type, foaf : person) P1 | Anastasia
(P1, foaf :name, Ana) P2 (P1,v_card:name, Anastasia) | P2
(a) (b) () (d)

Figure 1 (a) Graph G; (b) answers to query (1) over G; (c) graph G'; and (d) answers over G'.

because some part of the query pattern does not match” [35]. For instance, consider the
SPARQL query

SELECT ?i, ?7n WHERE (7?4, rdf : type, foaf : person) OPT (7?4, foaf :name, 7n), (1)

which retrieves all person IDs from the graph together with their names; names, however, are
optional — if the graph does not contain information about the name of a person, the person
ID is still retrieved but the variable ?n is left undefined in the answer. For instance, query (1)
has two answers over the graph G in Figure 1(a), where the second answer is partial (see
Figure 1(b)). However, if we extend G with a triple supplying a name for P2, the second
answer will include this name.

The OPT operator accounts in a natural way for the open world assumption and the
fundamental incompleteness of the Web. However, evaluating queries that use OPT is
computationally expensive — Pérez et al. [31] showed PSPACE-completeness of SPARQL
query evaluation, and Schmidt et al. [36] refined this result by proving PSPACE-hardness
even for queries using no operators besides OPT. This is not surprising given that SPARQL
queries are equivalent in expressive power to first-order logic queries, and translations in
both directions can be done in polynomial time [5, 34, 25].

This spurred a search for restrictions on the use of OPT that would ensure lower complexity
of query evaluation. It was also recognised that queries that are difficult to evaluate are often
unintuive. For instance, they may produce less specified answers (i.e., answers with fewer
bound variables) as the graph over which they are evaluated grows larger.

Perez et al. [31] introduced the well-designed fragment of SPARQL queries by imposing
a syntactic restriction on the use of variables in OPT-expressions. Roughly speaking, each
variable in the optional (i.e., right) argument of an OPT-expression should either appear in the
mandatory (i.e., left) argument or be globally fresh for the query, i.e., appear nowhere outside
of the argument. Well-designed queries have lower complexity of query evaluation — the
problem is CONP-complete (provided all the variables in the query are selected). Moreover,
such queries have a more intuitive behaviour than arbitrary SPARQL queries; in particular,
they enjoy the monotonicity property that we observed for query (1): each partial answer
over a graph can potentially be extended to undefined variables if the graph is completed
with the missing information, and the more information we have the more specified are
the answers. Well-designed queries can be efficiently transformed to an intuitive normal
form allowing for a transparent graphical representation of queries as trees [27, 33]. Hence,
many recent studies concentrate partially [27, 25, 23, 37, 38] or entirely [33] on well-designed
queries.

Such a success of well-designed queries may lead to the impression that non-well-designed
SPARQL queries are just a useless side effect of the early specification. But is this impression
justified by the use of SPARQL in practice? To answer this question, a comprehensive analysis
of real-life queries is required. We are aware of two works that analyse the distribution
of operators in SPARQL queries asked over DBpedia [32, 9]. Both studies show that
OPT is used in a non-negligible amount of practical queries. However, only Picalausa and



M. Kaminski and E. V. Kostylev

Vansummeren [32] go further and analyse how many of these queries are well-designed; and
the result is quite interesting — well-designed queries make up only about half of all queries
with OPT. In other words, well-designed queries are common, but by far not exclusive.

The main goal of this paper is to investigate SPARQL queries beyond the well-designed
fragment. We wanted to see if the well-designedness condition could be extended so as to
include most practical queries while preserving good computational properties. The main
result of our study is very positive — we identified a new fragment of SPARQL queries, called
weakly well-designed queries, that covers about 99% of queries over DBpedia and has the
same complexity of query evaluation as the well-designed fragment. We also show that our
fragment is in a sense maximal for this complexity.

We next describe our results and techniques in more detail. Our first step was to identify
most typical real-life queries that are not well-designed. We analysed the USEWOD2013 [10]
and USEWOD2014 [11] query logs for DBpedia 3.8 and 3.9 and found two interesting types
of non-well-designed queries. The first type is exemplified by the following query:

SELECT 7?4, ?7n WHERE
((?4,rdf : type, foaf :person) OPT (7, foaf :name, ?n)) OPT (?¢,v_card:name, ?n).

(2)

This query is clearly not well-designed because variable ?n, binding the name of a person,
appears in two different unrelated optional parts. Let us analyse answers to this query over
different graphs. On graph G in Figure 1(a) the result is exactly the same as for query (1),
shown in Figure 1(b), simply because the IRI v_card:name is not present in G, and so
cannot be matched against the second optional part of the query. Similarly, on graph G’ in
Figure 1(c), where the source of the name and the name itself are different, the result is as
in Figure 1(d). In this case, the first optional part in the query does not match anything
in the graph so the variable ?n is left unbound at this point; then the second optional
is matched, and the variable is assigned with the name from v_card. More interestingly,
query (2) evaluated over the graph GU G’ once again yields the result in Figure 1(b). Indeed,
in this case, the first optional part has a match again and 7n is assigned the value Ana; then,
this variable is already bound and there is no match for the second optional part that agrees
with this value, meaning that the alternative v_card name is disregarded by the query. To
summarise, query (2) is once again looking for person IDs and, optionally, their names. Now,
however, names are collected from two different sources, foaf and v_card, where the first
source is given preference over the second (maybe because it is considered more reliable or
more informative, or for some other reason). In other words, if we know the foaf name of a
person, it is returned as part of the answer regardless of his v_card name; however, if there
is no foaf name, then the v_card name is also acceptable and should be returned; variable
7n is left unbound only if the name cannot be extracted from either source.

Of course, preference patterns encountered in real-life queries are often more complex.

Still, in most cases they do not increase the complexity of query evaluation.
Our second example query is as follows:

SELECT ?i, 7n WHERE ((?4, rdf : type, foaf :person) OPT (74, foaf :name, 7n)) (3)
FILTER (=bound(?n) V =(?n = Ana)).

The query uses FILTER, a standard SPARQL operator that admits only answers conforming
to a specified constraint. Again, this query is not well-designed because the FILTER constraint
mentions the variable ?n, which occurs in the optional part of the query but not in the
mandatory part. However, the intention of the query is quite clear: it searches for people
whose names are not known to be Ana, including people whose names are unknown.

5:3

ICDT 2016



5:4

Beyond Well-designed SPARQL

This use of FILTER is in fact very common in real-life queries. Moreover, it is intuitive as
long as FILTER is essentially the outermost operator in the query, as it is in our example. In
all such cases, however, FILTER cannot lead to an increase in complexity.

Having isolated these typical uses of non-well-designedness, we identify a new fragment
of SPARQL that (a) includes all queries of the above two types, (b) subsumes well-designed
queries, and (c) has the same complexity of query evaluation as well-designed queries. We
call such queries weakly well-designed. They are the maximal fragment without structural
restrictions on conjunctive blocks and filter conditions that has the above properties. Our
analysis shows that about 99% of DBpedia queries with OPT are weakly well-designed.

Besides low complexity of query evaluation, we establish a few more useful properties
of weakly well-designed queries, which are summarised in the following outline of the
paper. After introducing the syntax and semantics of SPARQL in Section 2, we formally
define our new fragment in Section 3. In Section 4, we show that, similarly to the well-
designed case, weakly well-designed queries can be transformed to an intuitive normal form,
which allows for a natural graphical representation as constraint pattern trees. Using this
representation, in Section 5, we formally show that the step from well-designed to weakly
well-designed queries does not increase complexity of query evaluation; minimal relaxations
of weak well-designedness, however, already lead to a complexity jump. In Section 6, we
compare the expressive power of our fragment (and its extensions with additional operators)
with well-designed queries and unrestricted SPARQL queries; in particular, we show that
the expressivity of weakly well-designed queries lies strictly in-between well-designed and
unrestricted queries. In Section 7, we study static analysis problems for weakly well-designed
queries and establish IT5-completeness of equivalence, containment, and subsumption. Finally,
in Section 8, we detail our analysis of DBpedia logs.

2 SPARQL Query Language

We begin by formally introducing the syntax and semantics of SPARQL that we adopt
in this paper. Our formal setup mostly follows [31], which has some differences from the
W3C specification [35, 20]; in particular, we use two-placed OPT and two-valued FILTER
(conditional OPT and errors in FILTER evaluation as in the standard are expressible in our
formalisation [5]), and adopt set semantics, leaving multiset answers for future work.

RDF Graphs. An RDF graph is a labeled graph where nodes can also serve as edge labels.
Formally, let I be a set of IRIs. Then an RDF triple is a tuple (s,p,0) from I x I x I, where
s is called subject, p predicate, and o object. An RDF graph is a finite set of RDF triples.

SPARQL Syntax. Let X be an infinite set {?x, 7y, ...} of variables, disjoint from I. Filter
constraints are conditions of the form

T, 7z = u, 7x =7y, or bound(?z) for 7z, 7y in X and u € I (atomic constraints),

= Ri, Ri AN Ry, or Ry V Ry for filter constraints R; and Rs.
A basic pattern is a set of triples from (IUX) x (IUX) x (IUX). Then, SPARQL (graph)
patterns P are defined by the grammar

P =B |(PAND P) | (POPT P) | (P UNION P) | (P FILTER R),

where B ranges over basic patterns and R over filter constraints. Additionally, we require
all filter constraints to be safe, that is, vars(R) C vars(P) for every pattern (P FILTER R),
where vars(S) is the set of all variables in S (which can be pattern, constraint, etc.) When



M. Kaminski and E. V. Kostylev

needed, we distinguish between patterns by their top-level operator (e.g., OPT-pattern or
FILTER-pattern). The set of all triples in basic patterns of a pattern P is denoted triples(P).
We write U for the set of all patterns. We also distinguish the fragment P of U that
consists of all UNION-free patterns, i.e., patterns that do not use the UNION operator.
Projection is realised in SPARQL by means of queries with select result form, or queries
for short, which are expressions of the form

SELECT X WHERE P, (4)

where X is a set of variables and P is a graph pattern. We write S for the set of all queries.
Note that every pattern P can be seen as a query of the form (4) where X = vars(P).
Hence, all definitions that refer to “queries” implicitly extend to patterns in the obvious way.

SPARQL Semantics. The semantics of graph patterns is defined in terms of mappings,
that is, partial functions from variables to IRIs. The domain dom(u) of a mapping p is the
set of variables on which p is defined. Two mappings 1 and ps are compatible (written
1~ p2) if py(?z) = pe(?z) for all variables 7z € dom(py) Ndom(pz). If wy ~ pe, then
11 U po constitutes a mapping that coincides with p; on dom(ug) and with pg on dom(uz).
Given two sets of mappings €27 and €23, we define their join, union and difference as follows:

M xQy = {1 Upg|p € Q,pe € Q, and py ~ o},
QU = {M|/,LEQlOI'/,LEQQ},
U \Q2 = {w|p € QA pe forall s € Qo).

Based on these, the left outer join operation is defined as 1 x Qo = (21 X Q) U (Q1 \ Q2).
Given a graph G, the evaluation [P]a of a graph pattern P over G is defined as follows:
if B is a basic pattern, then [B]g = {p: vars(B) = I | u(B) C G};
[(P1 AND P)]c = [Pi]a % [P:]a;
[(PLOPT P)]e = [Pilc ™ [P2]es
[[(Pl UN'ON PQ)HG = [[Plﬂg U [[Pzﬂg;
[(P' FILTER R)]c = {« | # € [Pl and u = R},
where p satisfies a filter constraint R, denoted by p |= R, if one of the following holds:
Ris T;
R is 7z = u, o € dom(p), and p(?z) = u;
Ris Tx =7y, {7z, 7y} C dom(u), and p(?z) = u(?y);
R is bound(?z) and 7z € dom(u);
R is a Boolean combination of filter constraints evaluating to true under the usual
interpretation of =, A, and V.

Ll A

Let p|x be the projection of a mapping u to variables X, that is, p|x(?x) = u(?x) if
?r € X and p|x(?x) is undefined if 7z ¢ X. The evaluation [Q]c of a query @ of the
form (4) is the set of all mappings p|x such that p € [P]¢.

Finally, a solution to a query (or pattern) @ over G is a mapping p such that u € [Q]q-

3 Weakly Well-Designed Patterns

We begin by recalling the notion of well-designed patterns and then formulate our generalisa-
tion. For now, we focus on the AND-OPT-FILTER fragment P, leaving the operators UNION
and SELECT for later sections.

5:5

ICDT 2016



5:6

Beyond Well-designed SPARQL

Note that a given pattern can occur more than once within a larger pattern. In what
follows we will sometimes need to distinguish between a (sub-)pattern P as a possibly
repeated building block of another pattern P’ and its occurrences in P’, that is, unique
subtrees in the parse tree. Then, the left (right) argument of an occurrence i is the subtree
rooted in the left (right) child of the root of ¢ in the parse tree, and an occurrence ¢ is inside
an occurrence j if the root of 7 is a successor of the root of j.

» Definition 1 (Pérez et al. [31]). A pattern P from P is well-designed (or wd-pattern,
for short) if for every occurrence ¢ of an OPT-pattern P; OPT P, in P the variables from
vars(P,) \ vars(P;) occur in P only inside (the labels of) i.

We write Pyq for the fragment of wd-patterns. Such patterns comply with the basic
intuition for optional matching in SPARQL: "do not reject (solutions) because some part
of the query pattern does not match” [20]; indeed, our canonical use case (1) is clearly
well-designed. Evaluation of wd-patterns, that is, checking if y € [P]¢s for a mapping u,
graph G and pattern P € Pyq, is CONP-complete, as opposed to PSPACE-complete for
P [31, 36]. The high complexity of unrestricted patterns is partially due to the fact that
unrestricted combinations of OPT and FILTER allow to express nesting of the difference
operator MINUS with semantics [Py MINUS P]¢ = [Pi]¢ \ [P:]¢ (for non-empty P; and
Pg)l

P, MINUS P, = (P, OPT (P, AND (%2, 7y, ?z))) FILTER —bound(?z). (5)

This property is well-known [5, 31], and has been usually considered the main source of
non-well-designed patterns in practice. We challenge this claim by answering differently the
question on the prevalent structure of real-life queries beyond the well-designed fragment.
This question is not just of theoretical interest: as previous studies [32] show (and our
analysis confirms), about half of queries with OPT asked over DBpedia are not well-designed.

Next we discuss two sources of non-well-designedness in patterns as revealed by the
example queries (2) and (3) in the introduction — one based on OPT and another on FILTER.

Source 1. There are two substantially different ways of nesting the OPT operator in
patterns:

P, OPT (P, OPT P3), (Opt-R) (P; OPT P,) OPT Ps. (Opt-L)

Non-well-designed nesting of type (Opt-R) is responsible for the PSPACE-hardness of query
evaluation [31, 36]. Moreover, such nesting is not very intuitive. On the contrary, as we saw
in the introduction, non-well-designed nesting of type (Opt-L) can be used for prioritising
some parts of patterns to others, and is indeed used in real life. As we will see later, nesting
of type (Opt-L) cannot lead to high complexity of evaluation.

Source 2. Well-designedness can be violated by using “dangerous” variables from the right
side of OPT in filter constraints. In particular, patterns of the form (P; OPT P,) FILTER R
with R using a variable from vars(P;) \ vars(P;) are not well-designed, but rather frequent
in practice. However, such patterns almost never occur inside the right argument of other
OPT-patterns. We will see that if we restrict the usage of such filters to the “top level”, we
preserve the good computational properties of wd-patterns.

Motivated by these observations, we considerably generalise the notion of wd-patterns to
allow for useful queries like (2) and (3) while retaining important properties of such patterns.



M. Kaminski and E. V. Kostylev

We start with two auxiliary notions. Given a pattern P, an occurrence ¢; in P dominates
another occurrence io if there exists an occurrence j of an OPT-pattern such that i; is
inside the left argument of j and iy is inside the right argument. An occurrence i of a
FILTER-pattern P’ FILTER R in P is top-level if there is no occurrence j of an OPT-pattern
such that ¢ is inside the right argument of j.

» Definition 2. A pattern P € P is weakly well-designed (wwd-pattern) if, for each occur-
rence i of an OPT-subpattern P; OPT Py, the variables in vars(P) \ vars(P;) appear outside ¢
only in

subpatterns whose occurrences are dominated by ¢, and

constraints of top-level occurrences of FILTER-patterns.

We write Pywa for the fragment of wwd-patterns. They extend wd-patterns by allowing
variables from the right argument of an OPT-subpattern that are not “guarded” by the left
argument to appear in certain positions outside of the subpattern. Note that the patterns of
queries (4) and (3) are wwd-patterns. Also, patterns which allow only for OPT nesting of
type (Opt-L) are always weakly well-designed, same as the pattern in the right hand side of
(5), which expresses MINUS. However, patterns that have subpatterns of the latter form in
the right argument of OPT are not weakly well-designed. Next we give a few more examples.

» Example 3. Consider the following patterns:

((?z,a,a) OPT ((?x,b, 7y) OPT (?y,c, ?2))) OPT (?x,d,?z), (6)
((?x,a,a) OPT (?z,d, ?z)) OPT ((?,b, ?7y) OPT (?y, ¢, ?2)), (7)
(((?u, f,7v) OPT (?u, g, 7w)) FILTER ?v # ?w) OPT (?u, h, ?s), (8)
(Pu, h,?7s) OPT (((?u, f,?v) OPT (?u, g, ?w)) FILTER ?v # ?w). (9)

Pattern (6) is not well-designed because of variable 7z, but is weakly well-designed since the
occurrence of (?y, ¢, ?z) dominates (?x,d, ?z). However, the similar pattern (7) is not weakly
well-designed because the occurrence of the inner OPT-pattern with the second occurrence of
?z does not dominate the first. Pattern (8) is weakly well-designed since the FILTER-pattern
is top-level (we write 7z # ?y for —(?z = ?y)), but pattern (9) is not, because of variable ?w
in a non-top-level FILTER.

» Proposition 4. Checking whether a pattern P belongs to the fragment Pywa can be done
in time O(|P|?), where |P| is the length of the string representation of P.

4 OPT-FILTER-Normal Form and Constraint Pattern Trees

One of the key properties of wd-patterns is that they can always be converted to a so-called
OPT-normal form, in which all AND- and FILTER-subpatterns are OPT-free [31]. Also,
FILTER-free patterns in OPT-normal form can be naturally represented as trees [27, 33],
which gives a good intuition for the evaluation and optimisation of such patterns. In this
section, we show that these notions can be generalised to wwd-patterns.

» Definition 5. A pattern P € P is in OPT-FILTER-normal form (or OF-normal form for
short) if it adheres to the grammar

P := F|(PFILTERR) | (POPTS), S == F|(SOPTS), F := (BFILTERR),

where B ranges over basic patterns and R over filter constraints.

5:7

ICDT 2016



5:8

Beyond Well-designed SPARQL

OPT B OPT B1
AN \ VAN AN
Bi  OPT vs. B OPT Bz vs. B B3

VAN \ VAN
B2 B3 B3 Bl B2
(a) (b)

Figure 2 Parse trees vs. constraint pattern trees for patterns (a) B1 OPT (B2 OPT Bs) and (b)
(B1 OPT B2) OPT Bs, with B1, B2, and Bs basic patterns.

In other words, the parse tree of a pattern in OF-normal form can be stratified as follows:
1. (occurrences of) basic patterns as the bottom layer,
2. a FILTER on top of each basic pattern as the middle layer,
3. a combination of OPT and FILTER as the top layer;
moreover, each occurrence of a FILTER-pattern in the top layer is top-level. Note that our
normal form is AND-free: all conjunctions are expressed via basic patterns.

» Example 6. None of the four patterns in Example 3 are in OF-normal form. However, the
first three of them can be easily normalised by replacing each triple ¢ with ¢, where PT is
an abbreviation of P FILTER T for a pattern P. Also, compare the pattern

(((?x,a,a)" OPT (?z,b,?7y) ") OPT ((?z,b,?2) T OPT (?z,¢,7u) ")) FILTER ?u # 72, (10)
which is in OF-normal form, with the very similar pattern
(((?xz,a,a)" OPT (2x,b,?u) ") OPT ((?z,b,?72)" OPT (?2,¢,?u)") FILTER ?u # ?2),
which is not, because the outer FILTER is in the right argument of the outermost OPT.

As shown by Letelier et al. [27], FILTER-free patterns in OPT-normal form can be
represented by means of so-called pattern trees. We next show that this representation can
be naturally extended to patterns in OF-normal form.

Let P be a pattern in OF-normal form. The constraint pattern tree (CPT) T (P) of P is
the directed ordered labelled rooted tree recursively constructed as follows (in this definition
we abuse notation and confuse patterns and their occurrences; strictly speaking, we create a
fresh sub-tree for each occurrence, so the resulting object is indeed always a tree):

1. if B is a basic pattern then 7 (B FILTER R) is a single node v labelled by the pair (B, R);
2. if P’ is not a basic pattern then 7 (P’ FILTER R) is obtained by adding a special node

labelled by R as the last child of the root of T (P’);

3. T(P, OPT P,) is the tree obtained from 7 (P;) and T (P;) by adding the root of T (Ps)

as the last child of the root of T(P).

By definition, there is a one-to-one correspondence between patterns in OF-normal form
and CPTs. Hence, such trees can be seen as a convenient representation of patterns in
OF-normal form.

Unlike parse trees, which represent the syntactic shape of patterns, CPTs show the
semantic structure of OPT and FILTER nesting. Figure 2 shows how OPT nestings of
types (Opt-R) and (Opt-L) are represented in both formats. Note that CPTs treat different
FILTER-subpatterns differently: if the filter is over a basic pattern, the constraint of the
FILTER is paired with this pattern; however, if the filter is over an OPT-subpattern, then
the constraint is represented by a separate special node. Moreover, since in the second case



M. Kaminski and E. V. Kostylev

({2, a,a)},T) ({C2,0,0)},T)
(o b T) b toh T 7t 7s (b)) Tm 47
({(?z,c,‘?u)},T) {(72,5,22)4,T) ({(72,5,72), (22, ¢, 7u)}, T)
(a) (b)

Figure 3 Constraint pattern trees of (a) (((?z,a,a)’ OPT (?z,b,7y)") OPT ((?z,b,?2)" OPT
(?z,¢,7u) ")) FILTER ?u # ?z (i.e., pattern (10)) and (b) equivalent pattern in “flat” form (13).

the FILTER-pattern must be top-level, special nodes can only occur in CPTs as children of
the root. For instance, the CPT of the example pattern (10) is given in Figure 3(a).

Each wwd-pattern can be converted to OF-normal form and hence can be represented
by a CPT. To prove this statement we make use of a number of equivalences. Formally, a
pattern Py is equivalent to a pattern Py (written Py = P) if [Pi]¢ = [P2]¢ holds for any
graph G. There are several equivalences, such as associativity and commutativity of AND,
as well as filter decompositions, such as P FILTER (R; A Ry) = (P FILTER R;) FILTER Ry,
which hold for all patterns (see [36] for an extensive list). Moreover, the key equivalences
used in [31] for normalising wd-patterns can easily be adapted to serve our needs.

» Proposition 7. Let Py, P>, P5 be patterns and R a filter constraint such that vars(Pz) N
vars(Ps3) C vars(Py) and vars(Py) Nvars(R) C vars(Py). Then the following equivalences hold:

(P1 OPT Pg) AND P3 = (Pl AND Pg) OPT PQ,
(P, OPT P,) FILTER R = (P, FILTER R) OPT P;.

Since all the equivalences preserve weak well-designedness, we obtain the desired result.

» Proposition 8. Each wwd-pattern P is equivalent to a wwd-pattern in OF-normal form of
size O(|P|).

Relying on this proposition, in the rest of the paper we silently assume that all wwd-
patterns are in OF-normal form and hence can be represented by CPTs.

We next transfer the notion of weak well-designedness to CPTs. Let < be the strict
topological sorting of the nodes in 7 (P), computed by a depth first search traversal visiting
the children of a node according to their ordering (i.e., v < u holds if v is visited before u).

» Proposition 9. A pattern P in OF-normal form is weakly well-designed if and only if,
for each edge (v,u) in its CPT T(P), every variable Tx € vars(u) \ vars(v) occurs only in
nodes w such that v < w. The pattern is well-designed if and only if for every variable 7z in
P the set of all nodes v in T (P) with 7x € vars(v) is connected.

Note that if a pattern is FILTER-free, its OF-normal form coincides with the OPT-normal
form in [31] (modulo tautological filters), and its CPT is the pattern tree from [27, 33]. In
fact, the second part of Proposition 9 generalises an observation from [27] to the case with
filters. An important difference to pattern trees is that in our case the order of children of a
node is semantically relevant since wwd-patterns do not satisfy the equivalence

(P, OPT P,) OPT Py = (P, OPT P3) OPT P. (11)

This equivalence, established in [30], holds whenever (vars(Pz) Nvars(Ps)) C vars(P;), which
is always the case for wd-patterns but not for wwd-patterns, as can be seen on query (2).

5:9

ICDT 2016



5:10

Beyond Well-designed SPARQL

We conclude this section with a property that is unique to wwd-patterns: each wwd-
pattern is equivalent to a pattern whose corresponding CPT has depth one.

» Definition 10. A pattern in P is in depth-one normal form if it has the structure

(-~ ((Bopy S1)opy S2) - ++) op,, S, (12)

where B is a basic pattern and each op; S;, 1 < i < n, is either OPT (B; FILTER R;) with
B; a basic pattern and R; a filter constraint, or just FILTER R;.

To show that each wwd-pattern can be brought to this form we use another equivalence.

» Proposition 11. For patterns Py, Ps, Ps with vars(Py) Nvars(Ps) C vars(Pz) it holds that
P, OPT (P, OPT P3) = (P, OPT P,) OPT (P> AND Ps). (13)

Applied from left to right, equivalence (13) preserves weak well-designedness (but not
well-designedness). Each such application transforms a weakly well-designed OPT nesting of
type (Opt-R) to a nesting of type (Opt-L), decreasing the depth of the CPT.

» Corollary 12. Every wwd-pattern is equivalent to a wwd-pattern in depth-one normal form.

For instance, pattern (10) is equivalent to the pattern
((((?x,a,a)"OPT(?z,b, 2y) " )OPT (?2,b, ?2) " YOPT{(?x,b, ?2), (2, ¢, 7u)} )FILTER ?u # 7,

represented by the CPT in Figure 3(b). Such “flat” patterns are attractive in practice because
of their regular structure. However, “flattening” a pattern can incur an exponential blowup
in size. Hence, in the rest of the paper we consider arbitrary wwd-patterns in OF-normal
form rather than restricting our attention to depth-one-normal patterns.

5 Evaluation of wwd-Patterns

In this section, we look at the query answering problem for wwd-patterns and their extensions
with union and projection. We show that in all three cases, complexity remains the same as
for wd-patterns. To obtain these results, we develop several new techniques.

Formally, we look at the following decision problem for a given SPARQL fragment L.

EvAL(L) Input: Graph G, query @ € £, and mapping p
Question:  Does p belong to [Q]a?

It is known that EVAL(U) for general patterns U is PSPACE-complete [31], and the result
easily propagates to queries with projection (i.e., §) [27]. For wd-patterns, the evaluation
problem is CONP-complete, and can be solved by exploiting the following idea [27].

Suppose we are given a wd-pattern P in OPT-normal form (for simplicity, suppose P is
FILTER-free), a graph G, and a mapping u. First, we look for a subtree of 7 (P) that includes
the root of T (P), contains precisely the variables in dom(u), and “matches” G under p (i.e.,
images of all its triples under p are contained in ). This is doable in polynomial time. If
such a subtree does not exist, then p cannot be a solution. Otherwise, the subtree witnesses
that p is a part of a solution to P. Finally, to verify that p is a complete solution, we need
to check that the subtree is maximal, that is, cannot be extended to any more nodes in 7 (P)
with a match in G. There are linearly many such nodes to check, and each check can be
performed in CONP. So, the overall algorithm runs in CONP.



M. Kaminski and E. V. Kostylev

Inspired by this idea, we next show that the low evaluation complexity of wd-patterns
transfers to wwd-patterns by developing a CONP algorithm for EVAL(Pywd)-

Let P be a wwd-pattern in OF-normal form. An r-subtree of T (P) is a subtree containing
the root of T(P) and all its special children. Every r-subtree is also a CPT representing a
wwd-pattern that can be obtained from P by dropping the right arguments of some OPT-
subpatterns (i.e., a pattern P’ with P’ < P in the notation of [31]). A child of an r-subtree
T(P") of T(P) is a node in 7 (P) that is not contained in 7 (P’) but whose parent is.

» Definition 13. A mapping p is a potential partial solution (or pp-solution for short)
to a wwd-pattern P over a graph G if there is an r-subtree 7(P’) of 7 (P) such that
dom(p) = vars(P’), u(triples(P’)) C G, and p |= R for the constraint R of any ordinary node
in T(P).

A pp-solution p to P over G can be witnessed by several r-subtrees. However, the union of
such r-subtrees is also a witness. Hence, there exists a unique maximal witnessing r-subtree,
denoted T (P,), with P, being the corresponding wwd-pattern.

Potential partial solutions generalise “partial solutions” as defined in [31] for wd-patterns.
There, every “partial solution” is either a solution or can be extended to one. This is not the
case for wwd-patterns. While every solution is clearly a pp-solution, not every pp-solution
can be extended to a real one. Real solutions may not just extend pp-solutions by assigning
previously undefined variables but can also override variable bindings established in some
node v of 7(P,) by extending 7 (P,) to a child that precedes v according to the order <.

An additional complication is the presence of non-well-designed top-level filters. Note that
pp-solutions are only required to satisfy the constraints of ordinary nodes in the corresponding
CPT, thus ignoring top-level filters. Indeed, requiring pp-solutions to satisfy constraints of
top-level filters would be too strong since real solutions do not generally satisfy this property,
as demonstrated by the following example.

» Example 14. Consider the graph G = {(1,a,1),(3,a,3)} and wwd-pattern
P = (((?z,a,1) OPT (?y,a,2)) FILTER —bound(?y)) OPT (?y, a, 3).
The mapping p = {7z — 1,7y — 3} is a solution to P over G, but p [~ —bound(?y).

We now present a characterisation of solutions for wwd-patterns in terms of pp-solutions
that (a)takes into account that not every pp-solution can be extended to a real solution and
(b) ensures correct treatment of non-well-designed top-level filters. For this we need some
more notation. Given a wwd-pattern P, a node v in 7 (P), a graph G, and a pp-solution p
to P over G, let ul, be the projection u|x of u to the set X of all variables appearing in
nodes u of T(P,) such that u < v. A mapping p; is subsumed by a mapping ps (written
w1 E po) if py ~ po and dom(pg) C dom(ps) (this notion is from [31, §]).

» Lemma 15. A mapping p is a solution to a wwd-pattern P over a graph G if and only

if

1. p is a pp-solution to P over G;

2. for any child v of T(P,) labelled with (B, R) there is no p' such that pl, C 1/, pf/ = R,
and ' (B) C G;

3. uls E R for any special node s in T (P) labelled with R.

Intuitively, a pp-solution p needs to satisfy two conditions to be a real solution to a
wwd-pattern P. First, u|, (as opposed to u for wd-patterns) must be non-extendable to v for
any child v of 7(P,). Indeed, if such an extension exists, then it is either possible to provide

5:11

ICDT 2016



5:12

Beyond Well-designed SPARQL

bindings for some variables that are undefined in u, or some variables from dom(u) can be
assigned different values of higher “priority” than the corresponding values in u. Second,
every top-level filter R labelling a node s needs to be satisfied by u|s, which is precisely the
part of i bound by the subpattern of P that is paired with R in the FILTER-pattern.

Checking whether a mapping p satisfies this characterisation is feasible in CONP: testing
whether p is a pp-solution takes polynomial time, same as computing the maximal witnessing
tree T (P,); to check that (the relevant part of) 7(P,) is not extendable to any of its children
we need to consider linearly many children, and each check is in CONP; finally, the checks
for top-level filters are again polynomial. Hence, we obtain the following theorem, where the
hardness part follows from the CONP-hardness for wd-patterns [31].

» Theorem 16. EVAL(Pywa) is CONP-complete.

Pérez et al. [31] extended wd-patterns to UNION by considering unions of wd-patterns,
that is, patterns of the form P; UNION ... UNION P, with all P; € Pyq. We denote the
resulting fragment by Uy,q. This syntactic restriction on the use of UNION in U4 is motivated
by the fact that any pattern in U can be equivalently expressed as a union of UNION-free
patterns [31]. We denote the fragment of all queries over patterns in Uyq as Syq. Similarly,
we write Uywa for unions of wwd-patterns and Sy,wq for queries over unions of wwd-patterns.

Analogously to the well-designed case, Theorem 16 extends to fragments Uywa and Sywd-

» Corollary 17. EVAL(Uywa) is CONP-complete and EVAL(Sywa) is X5-complete.

The coNP-algorithm for Uyyq is obtained simply by applying the algorithm for Pywa to
each pattern in the union. Hardness for Sywq follows from the hardness of the well-designed
case [27], while for membership we just guess the values of the existential variables and then
call a cONP-oracle for Uyywq on the resulting mapping and the normalised body of the query.

Hence, the complexity of evaluation for wwd-patterns is the same as for wd-patterns. We
next show that wwd-patterns are, in a certain sense, a maximal extension of wd-patterns that
preserves CONP evaluation complexity (under the usual complexity-theoretic assumptions).

There are two possible minimal relaxations of weak well-designedness that allow for basic
patterns and filter constraints of arbitrary shape. We show that both lead to IT5-hardness.

The first such relaxation is to allow for at least some non-well-designed OPT-nesting
of type (Opt-R). However, even a minimal extension of this sort increases complexity. To
see this, consider the fragment Py, of patterns of the form B; OPT (B, OPT Bs), where
B1, By and B3 are basic patterns. Intuitively, Popi.r allows for the most simple form of
non-well-designed nesting of type (Opt-R).

The other syntactic relaxation is to allow for some non-well-designed non-top-level filters.
However, while requiring special nodes to be children of the root may look somewhat ad-
hoc, it cannot be substantially relaxed. Consider the fragment Pgiter.o of patterns of the
form B; OPT ((Bg OPT Bj3) FILTER R), where By, Bo and Bs are basic patterns such that
vars(Bs) Nvars(B;) C vars(Bs), and R is a filter constraint. Intuitively, Paiter-2 allows for the
simplest form of “second-level” filters.

» Proposition 18. The problems EVAL(Poptr) and EVAL(Phiter-2) are I15-complete.

Proposition 18 implies that Pywq is a maximal fragment of P that does not impose
structural restrictions on basic patterns or filter constraints and has a CONP evaluation
algorithm (assuming CONP # I15). Hence, going beyond wwd-patterns while preserving
good computational properties requires more refined restrictions, as done, for example, in [27,
Section 4].



M. Kaminski and E. V. Kostylev

6 Expressivity of wwd-Patterns and their Extensions

In this section, we analyse the expressive power of our fragments. Formally, a language £
has the same expressive power as a language Lo (written £, ~ Lo) if for every query Q2 in
Lo there is a query Q1 in £ such that Q2 = @1 and vice versa; £y is strictly more expressive
than Lo (written £o < L£7) if the property holds in the forward but not in the backward
direction. We begin by establishing Pywq < Pwwd < P. Then we proceed to unions, showing
that Uyq < Uwwa < U. Finally, we establish Sywq ~ S, i.e., wwd-patterns with union and
projection have the full expressive power of SPARQL (whereas it is known that Syq < S [31],
which then implies Syaq < Swwd)-

Following [31, 8], a set of mappings ; is subsumed by a set of mappings Qo (written
Q1 C Qo) if for every p; € £ there exists a mapping us € Qo such that p; C ps. A query
Q is weakly monotone if [Q]a, C [Q]¢, for any two graphs G and Gy with G7 C Ga, and
a fragment L is weakly monotone if it contains only weakly monotone queries. Arenas and
Pérez [8] showed that, unlike P, the fragment Pyq is weakly monotone, and hence Pyq < P.

» Example 19 (Pérez et al. [31]). Consider the non-well-designed pattern
P = (?z,a,1) OPT ((?y,a,2) OPT (?z,a,3))

as well as graphs G; = {(1,a,1),(2,a,2)} and G2 = G1 U{(3,a,3)}. Then pu; = {7z —
1,7y — 2} is the only mapping in [P]¢, while us = {72 — 1} is the only mapping in [P]g,.
Hence [P]a, Z [P]¢,, meaning P is not weakly monotone.

Analogously, we show that Pyq < Pwwa by observing that Pywa is not weakly monotone.
Indeed, the pattern in example query (2) violates weak monotonicity: if a graph G contains
the triple (P1,v_card:name, Anastasia) but no triple of the form (P1, foaf:name,u) for any
IRI u, then extending G with (P1, foaf :name, Ana), that is, adding more reliable information
about the name of P1, does not extend the original solution {?i — P1, ?n — Anastasia} but
modifies it by overriding the value of ?n. Since Pywq C Pwwd, we conclude that Pyq < Pywwd-

To distinguish Pywq from P we need a different property.

» Definition 20. A query @ is non-reducing if for any two graphs G1, G2 such that G; C G»
and any mapping p1 € [Q]q, there is no us € [Q] g, such that ps T py (ie., po C py and
ta 7 p1). A fragment L is non-reducing if it contains only non-reducing queries.

Intuitively, for a non-reducing query extending a graph cannot result in a previously
bound answer variable becoming unbound. Weakly monotone queries are non-reducing but
not vice versa. Moreover, it is easily seen that wwd-patterns are non-reducing.

This property is not generally satisfied by patterns that are not weakly well-designed. For
instance, consider again pattern P, graphs G1, G2, and mappings p1, pe from Example 19.
Pattern P is not non-reducing since p; € [P]g, and pg € [Pla, but ps C .

» Theorem 21. It holds that Pywq < Pwwa < P.

We next compare Uywa t0 Uwg and U, and Sywda to Swa and S (note that neither UNION
nor projection via SELECT can be expressed by means of the other operators [37], so adding
either construct makes each fragment strictly more expressive). It is easily seen that Uyq and
Sywa inherit weak monotonicity from Pyq [31, 27], and hence Uyq < Uwwa and Sya < Swwd-
Non-reducibility, however, propagates neither to unions nor to projection.

5:13

ICDT 2016



5:14

Beyond Well-designed SPARQL

» Example 22. Consider the following Us,q-pattern with G, G2 and pq, p2 from Example 19:
P = ((?r,a,1) OPT (?y,a,2)) UNION (?z,a,1).

We have uy € [P]g, and ps € [P]a, but us T p1, which is due to the fact that po is already
contained in [P]g, along with p;. This is only possible in the presence of UNION since all
mappings in the evaluation of a UNION-free pattern are mutually non-subsuming [31].

Thus, to account for UNION, we introduce the following, more delicate property.

» Definition 23. A query Q is extension-witnessing (e-witnessing) if for any two graphs
G1 C G5 and mapping p € [Q]q, such that u ¢ [Q]¢, there is a triple ¢ in @ such that
vars(t) C dom(u) and p(t) € G2 \ G1. A fragment is e-witnessing if so are all of its queries.

Informally, a query @ is e-witnessing if whenever an extension of a graph leads to a new
answer, this answer is justified by a triple pattern in () which maps to the extension. Unions
of wwd-patterns can be shown e-witnessing. On the other hand, U is not e-witnessing, as can
be seen on the pattern and graphs in Example 19. Hence, we obtain the following theorem.

» Theorem 24. It holds that Uyq < Ugwa < U.
In contrast, queries over unions of wwd-patterns are as expressive as full SPARQL.
» Theorem 25. It holds that Sywq ~ S.

As a consequence, every SPARQL query can be rewritten to a query over a union of “flat”
patterns in depth-one normal form (Definition 10), albeit at the expense of a worst-case
exponential blow-up in size.

7 Static Analysis of wwd-Patterns

In this section, we look at the general static analysis problems of query equivalence, contain-
ment, and subsumption. Formally, equivalence for a language £ is defined as follows.

EQUIVALENCE(L) Input: Queries @ and Q' from £
Question: Is Q =Q’?

This problem is commonly generalised to CONTAINMENT (L), in which one checks whether @
is contained in @', that is, whether [Q]¢ C [Q']¢ holds for every graph G. We have Q = Q'
if and only if @ and @’ contain each other. Furthermore, Letelier et al. [27] proposed the
problem SUBSUMPTION(L), where one checks whether @ is subsumed by @', that is, whether
[Qlc E [Q']¢ holds for every G.

These problems have been studied for FILTER-free wd-patterns in [27, 33], establishing
NP-completeness of equivalence and containment, and IT5-completeness of subsumption.
Moreover, all three problems are IT5-complete for unions of FILTER-free wd-patterns, and
undecidable for fragments with projection. Finally, from the results in [38] it follows that
containment and subsumption are undecidable for ¢/. On the other hand, nothing seems to
be known so far for well-designed patterns with FILTER.

We next show that equivalence, containment, and subsumption are all IT5-complete for
Puwd and Uywa (whereas Sywa is undecidable by the results in [33]). The upper bound for
containment follows from a small counterexample property: if P € P’ for some P and P’
from Uywa, then there is a witnessing mapping of size O(|P| + |P’|). Given this property, a



M. Kaminski and E. V. Kostylev

Table 1 Structure of query patterns in DBpedia logs.

DBpedia 3.8 DBpedia 3.9
unique fraction fraction| wunique fraction fraction
patterns  of total of OPT | patterns of total of OPT

total | 7014249 100% 27854 100%
patterns with OPT 742002  10.58% 100% 1639 5.83% 100%
unions of wd-patterns| 238995 341%  32.32% 972 3.49%  59.31%

unions of wwd-patterns| 736051  10.49%  99.19% 1620 5.82%  98.84%

1% algorithm for containment is straightforward — we guess a mapping u and a graph G of
linear size, check that u ¢ [P']q, and then call a CONP oracle for checking u € [P]g. As a
corollary, EQUIVALENCE (Uywa) is also in II5. The argument for subsumption is analogous.

Hardness of subsumption and equivalence is established by a reduction from V33SAT,
while containment is IT5-hard by the results in [33].

» Theorem 26. Problems EQUIVALENCE(L), CONTAINMENT(L) and SUBSUMPTION(L) are
115 -complete for any L€ {Pwwd, Uwwd }-

Hence, for UNION- and FILTER-free patterns the step from well-designed to weakly well-
designed OPT incurs a complexity jump for containment and equivalence. However, for the
fragments with UNION or projection complexity remains the same in all three cases. As far
as we are aware, these are the first decidability results on query equivalence and related
problems for SPARQL fragments with OPT and FILTER.

8 Analysis of DBpedia Logs

In this section, we present a preliminary analysis of query logs over DBpedia, which suggests
that the step from wd- to wwd-patterns makes a dramatic difference in real life: while only
about half of the queries with OPT have well-designed patterns, almost all of these patterns
fall into the weakly well-designed fragment.

DBpedia [26] is a project providing access to RDF data extracted from Wikipedia via a
SPARQL endpoint. DBpedia query logs are well suited for analysing the structure of real-life
SPARQL queries as they contain a large amount of general-purpose knowledge base queries,
generated both manually and automatically. DBpedia query logs have been analysed by
Picalausa and Vansummeren [32], who reported that, over a period in 2010, about 46.38% of a
total of 1344K distinct DBpedia queries used OPT. However, only 47.80% of the queries with
OPT had well-designed patterns. Another analysis of DBpedia logs from the USEWOD2011
data set performed by Arias Gallego et al. [9] concluded that 16.61% of about 5166K queries
contain OPT; however, detailed structure of queries was not analysed.

We considered query logs over DBpedia 3.8 from USEWOD2013 [10] and DBpedia 3.9
logs from USEWOD2014 [11]. The DBpedia 3.8 set is a random selection of almost 12M
queries from 2012 while the DBpedia 3.9 set contains only 253K queries, from 2013 and
beginning of 2014. We removed syntactically incorrect queries as well as queries outside
of § (in particular, queries using operators specific to SPARQL 1.1). Also, we rewrote the
patterns of the remaining queries to unions of UNION-free patterns as proposed in [31] and
eliminated duplicates, which left us with just over 7M queries over DBpedia 3.8 and 28K
queries over DBpedia 3.9 (the decrease from 253K to 28K for DBpedia 3.9 is mostly due
to duplicate elimination — with duplicates, we still have 197K queries). Finally, we isolated
queries involving OPT and counted how many of their patterns were in Uywq and in Usyq.

5:15

ICDT 2016



5:16

Beyond Well-designed SPARQL

The results are given in Table 1. They confirm that a non-negligible number of DBpedia
queries use OPT; the exact fraction, however, varies considerably between the logs. In both
cases, however, by far not all queries with OPT are well-designed (only 32% for DBpedia 3.8
and 59% for DBpedia 3.9), which is consistent with the results in [32]. On the other hand,
almost all of the patterns with OPT (around 99% in both cases) are weakly well-designed,
which we consider as the main practical justification for wwd-patterns.

9 Conclusion and Future Work

In this paper, we introduced a new fragment of SPARQL patterns called weakly well-
designed patterns. This fragment extends the widely studied well-designed fragment by
allowing variables from the optional side of an OPT-subpattern that are not “guarded” by
the mandatory side to occur in certain positions outside of the subpattern. We showed that
queries with wwd-patterns enjoy the same low complexity of evaluation as well-designed
queries but cover almost all real-life queries. Moreover, our fragment is the maximal CONP
fragment that does not impose structural restrictions on basic patterns and filter conditions.
We studied the expressive power of the fragment and the complexity of its query optimisation
problems.

For future work, we want to extend wwd-patterns to allow for non-top-level occurrences
of UNION and projection. Also, we want to take into account features of SPARQL 1.1 [20]
such as GRAPH, NOT EXISTS and property paths. Finally, we would like to implement our
ideas in a prototype and compare its performance with existing SPARQL engines.

—— References

1 AllegroGraph. URL: http://franz.com/agraph/allegrograph/.

Apache Jena. URL: http://jena.apache.org.

RDF4J. URL: http://rdf4j.org.

Virtuoso Universal Server. URL: http://virtuoso.openlinksw.com.

Renzo Angles and Claudio Gutierrez. The expressive power of SPARQL. In ISWC, pages

114-129, 2008.

6 Marcelo Arenas, Sebastidn Conca, and Jorge Pérez. Counting beyond a yottabyte, or
how SPARQL 1.1 property paths will prevent adoption of the standard. In WWW, pages
629-638, 2012.

7 Marcelo Arenas, Georg Gottlob, and Andreas Pieris. Expressive languages for querying the
semantic web. In PODS, pages 14-26, 2014.

8 Marcelo Arenas and Jorge Pérez. Querying semantic web data with SPARQL. In PODS,
pages 305-316, 2011.

9 Mario Arias Gallego, Javier D. Fernandez, Miguel A. Martinez-Prieto, and Pablo de la
Fuente. An empirical study of real-world SPARQL queries. In USEWOD, 2011.
arXiv:1103.5043.

10 Bettina Berendt, Laura Hollink, Markus Luczak-Résch, Knud Moller, and David Vallet.
USEWOD2013: 3rd international workshop on usage analysis and the web of data. In
ESWC, 2013.

11  Bettina Berendt, Laura Hollink, Markus Luczak-Résch, Knud Moller, and David Vallet.
USEWOD2014: 4th international workshop on usage analysis and the web of data. In
ESWC, 2014.

12 Stefan Bischof, Markus Krotzsch, Axel Polleres, and Sebastian Rudolph. Schema-agnostic
query rewriting in SPARQL 1.1. In ISWC, pages 584-600, 2014.

a s~ O0ODN


http://franz.com/agraph/allegrograph/
http://jena.apache.org
http://rdf4j.org
http://virtuoso.openlinksw.com

M

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

. Kaminski and E. V. Kostylev

Carlos Buil-Aranda, Marcelo Arenas, and Oscar Corcho. Semantics and optimization of
the SPARQL 1.1 federation extension. In ESWC, pages 1-15. Springer, 2011.

Carlos Buil Aranda, Axel Polleres, and Jiirgen Umbrich. Strategies for executing federated
queries in SPARQL1.1. In ISWC, pages 390405, 2014.

Melisachew Wudage Chekol, Jérome Euzenat, Pierre Geneves, and Nabil Layaida. SPARQL
query containment under RDF'S entailment regime. In IJCAR, pages 134-148, 2012.
Melisachew Wudage Chekol, Jérome Euzenat, Pierre Geneves, and Nabil Layaida. SPARQL
query containment under SHI axioms. In AAAI pages 10-16, 2012.

Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 concepts and abstract
syntax. W3C recommendation, W3C, February 2014. URL: http://www.w3.org/TR/
rdfll-concepts/.

Floris Geerts, Grigoris Karvounarakis, Vassilis Christophides, and Irini Fundulaki. Algeb-
raic structures for capturing the provenance of SPARQL queries. In ICDT, pages 153-164,
2013.

Harry Halpin and James Cheney. Dynamic provenance for SPARQL updates. In ISWC,
pages 425-440, 2014.

Steve Harris and Andy Seaborne. SPARQL 1.1 query language. W3C recommendation,
W3C, March 2013. URL: http://www.w3.org/TR/sparqlll-query/.

Patrick J. Hayes and Peter F. Patel-Schneider. RDF 1.1 semantics. W3C recommendation,
W3C, February 2014. URL: http://www.w3.org/TR/rdf11-mt/.

Roman Kontchakov, Martin Rezk, Mariano Rodriguez-Muro, Guohui Xiao, and Michael
Zakharyaschev. Answering SPARQL queries over databases under OWL 2 QL entailment
regime. In ISWC, pages 552-567, 2014.

Egor V. Kostylev and Bernardo Cuenca Grau. On the semantics of SPARQL queries with
optional matching under entailment regimes. In ISWC, pages 374-389, 2014.

Egor V. Kostylev, Juan L. Reutter, Miguel Romero, and Domagoj Vrgoc. SPARQL with
property paths. In ICWC, pages 3-18, 2015.

Egor V. Kostylev, Juan L. Reutter, and Martin Ugarte. CONSTRUCT queries in SPARQL.
In ICDT, pages 212-229, 2015.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N.
Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Séren Auer, and Chris-
tian Bizer. DBpedia — A large-scale, multilingual knowledge base extracted from Wikipedia.
Semantic Web, 6(2):167-195, 2015.

Andrés Letelier, Jorge Pérez, Reinhard Pichler, and Sebastian Skritek. Static analysis and
optimization of semantic web queries. ACM Transactions on Database Systems, 38(4:25),
2013.

Katja Losemann and Wim Martens. The complexity of evaluating path expressions in
SPARQL. In PODS, pages 101-112, 2012.

Frank Manola, Eric Miller, and Brian McBride. RDF 1.1 primer. W3C working group note,
W3C, June 2014. URL: http://www.w3.org/TR/rdf11-primer/.

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of SPARQL.
In ISWC, pages 30-43, 2006.

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of SPARQL.
ACM Transactions on Database Systems, 34(3), 2009.

Frangois Picalausa and Stijn Vansummeren. What are real SPARQL queries like? In
SWIM, 2011.

Reinhard Pichler and Sebastian Skritek. Containment and equivalence of well-designed
SPARQL. In PODS, pages 39-50, 2014.

Axel Polleres and Johannes Peter Wallner. On the relation between SPARQL1.1 and answer
set programming. Journal of Applied Non-Classical Logics, 23(1-2):159-212, 2013.

5:17

ICDT 2016


http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/rdf11-mt/
http://www.w3.org/TR/rdf11-primer/

5:18

Beyond Well-designed SPARQL

35

36

37

38

39

Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for RDF. W3C re-
commendation, W3C, January 2008. URL: http://www.w3.org/TR/rdf-sparql-query/.
Michael Schmidt, Michael Meier, and Georg Lausen. Foundations of SPARQL query op-
timization. In ICDT, pages 4-33, 2010.

Xiaowang Zhang and Jan Van den Bussche. On the primitivity of operators in SPARQL.
Information Processing Letters, 114(9):480-485, 2014.

Xiaowang Zhang and Jan Van den Bussche. On the satisfiability problem for SPARQL
patterns, 2014. arXiv:1406.1404.

Xiaowang Zhang and Jan Van den Bussche. On the power of SPARQL in expressing
navigational queries. The Computer Journal, 58(11):2841-2851, 2015.


http://www.w3.org/TR/rdf-sparql-query/

A Framework for Estimating Stream Expression
Cardinalities

Anirban Dasgupta!, Kevin J. Lang?, Lee Rhodes®, and
Justin Thaler?

1 IIT Gandhinagar, Gandhinagar, India
anirban.dasgupta@gmail.com

2 Yahoo Inc., 701 First Ave, Sunnyvale, CA, USA
langk@yahoo-inc.com

3  Yahoo Inc., 701 First Ave, Sunnyvale, CA, USA
lrhodes@yahoo-inc.com

4  Yahoo Inc., New York, NY, USA
jthaler@fas.harvard.edu

—— Abstract
Given m distributed data streams Ay, ..., A,,, we consider the problem of estimating the number
of unique identifiers in streams defined by set expressions over Ay,..., A,,. We identify a broad

class of algorithms for solving this problem, and show that the estimators output by any algorithm
in this class are perfectly unbiased and satisfy strong variance bounds. Our analysis unifies and
generalizes a variety of earlier results in the literature. To demonstrate its generality, we describe
several novel sampling algorithms in our class, and show that they achieve a novel tradeoff
between accuracy, space usage, update speed, and applicability.

1998 ACM Subject Classification G.3 [Probability and Statistics] Probabilistic algorithms,
Stochastic processes, H.2.8 [Database Applications] Data mining

Keywords and phrases sketching, data stream algorithms, mergeability, distinct elements, set
operations

Digital Object ldentifier 10.4230/LIPIcs.ICDT.2016.6

1 Introduction

Consider an internet company that monitors the traffic flowing over its network by placing a
sensor at each ingress and egress point. Because the volume of traffic is large, each sensor
stores only a small sample of the observed traffic, using some simple sampling procedure.
At some later point, the company decides that it wishes to estimate the number of unique
users who satisfy a certain property P and have communicated over its network. We refer to
this as the DISTINCTONSUBPOPULATION p problem, or DISTINCT p for short. How can the
company combine the samples computed by each sensor, in order to accurately estimate the
answer to this query?

In the case that P is the trivial property that is satisfied by all users, the answer to
the query is simply the number of DISTINCTELEMENTS in the traffic stream, or DISTINCT
for short. The problem of designing streaming algorithms and sampling procedures for
estimating DISTINCTELEMENTS has been the subject of intense study. In general, however,
P may be significantly more complicated than the trivial property, and may not be known
until query time. For example, the company may want to estimate the number of (unique)
men in a certain age range, from a specified country, who accessed a certain set of websites

© Anirban Dasgupta, Kevin J. Lang, Lee Rhodes, and Justin Thaler;
37 licensed under Creative Commons License CC-BY

19th International Conference on Database Theory (ICDT 2016).

Editors: Wim Martens and Thomas Zeume; Article No. 6; pp. 6:1-6:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2

A Framework for Estimating Stream Expression Cardinalities

during a designated time period, while excluding IP addresses belonging to a designated
blacklist. This more general setting, where P is a nontrivial ad hoc property, has received
somewhat less attention than the basic DISTINCT problem.

In this paper, our goal is to identify a simple method for combining the samples from
each sensor, so that the following holds. As long as each sensor is using a sampling procedure
that satisfies a certain mild technical condition, then for any property P, the combining
procedure outputs an estimate for the DISTINCTp problem that is unbiased. Moreover, its
variance should be bounded by that of the individual sensors’ sampling procedures.!

For reasons that will become clear later, we refer to our proposed combining procedure as
the Theta-Sketch Framework, and we refer to the mild technical condition that each sampling
procedure must satisfy to guarantee unbiasedness as 1-Goodness. If the sampling procedures
satisfy an additional property that we refer to as monotonicity, then the variance of the
estimate output by the combining procedure is guaranteed to satisfy the desired variance
bound. The Theta-Sketch Framework, and our analysis of it, unifies and generalizes a variety
of results in the literature (see Section 2.5 for details).

The Importance of Generality. As we will see, there is a huge array of sampling procedures
that the sensors could use. Each procedure comes with a unique tradeoff between accuracy,
space requirements, update speed, and simplicity. Moreover, some of these procedures come
with additional desirable properties, while others do not. We would like to support as many
sampling procedures as possible, because the best one to use in any given given setting will
depend on the relative importance of each resource in that setting.

Handling Set Expressions. The scenario described above can be modeled as follows. Each
sensor observes a stream of identifiers A; from a data universe of size n, and the goal is to
estimate the number of distinct identifiers that satisfy property P in the combined stream
U = U;A;. In full generality, we may wish to handle more complicated set expressions applied
to the constituent streams, other than set-union. For example, we may have m streams
of identifiers Ay, ..., A,,, and wish to estimate the number of distinct identifiers satisfying
property P that appear in all streams. The Theta-Sketch Framework can be naturally
extended to provide estimates for such queries. Our analysis applies to any sequence of
set operations on the A;’s, but we restrict our attention to set-union and set-intersection
throughout the paper for simplicity.

2 Preliminaries, Background, and Contributions

2.1 Notation and Assumptions

Streams and Set Operations. Throughout, A denotes a stream of identifiers from a data
universe [n] := {1,...,n}. We view any property P on identifiers as a subset of [n], and
let np 4 := DISTINCTp(A) denote the number of distinct identifiers that appear in A and
satisfy P. For brevity, we let n4 denote DISTINCT(A). When working in a multi-stream
setting, A1,..., Ay, denote m streams of identifiers from [n], U := UJL; A; will denote the
concatenation of the m input streams, while I := ﬁ;’;lAj denotes the set of identifiers that

L More precisely, we are interested in showing that the variance of the returned estimate is at most that
of the (hypothetical) estimator obtained by running each individual sensor’s sampling algorithm on
the concatenated stream Aj o--- o0 A,,. We refer to the latter estimator as “hypothetical” because it is
typically infeasible to materialize the concatenated stream in distributed environments.



A. Dasgupta, K. J. Lang, L. Rhodes, and J. Thaler

appear at least once in all m streams. Because we are interested only in distinct counts, it
does not matter for definitional purposes whether we view U and I as sets, or as multisets.
For any property P: [n] — {0,1}, npy := DI1STINCTp(U) and np := DISTINCTp(I), while
ny := DISTINCT(U) and ny := DISTINCT(I).

Hash Functions. For simplicity and clarity, and following prior work (e.g. [4, 5]), we assume
throughout that the sketching and sampling algorithms make use of a perfectly random hash
function h mapping the data universe [n] to the open interval (0, 1). That is, for each x € [n],
h(zx) is a uniform random number in (0,1). Given a subset of hash values S computed
from a stream A, and a property P C [n], P(S) denotes the subset of hash values in S
whose corresponding identifiers in [n] satisfy P. Finally, given a stream A, the notation X ™4
refers to the set of hash values obtained by mapping a hash function h over the ny4 distinct
identifiers in A.

2.2 Prior Art: Sketching Procedures for Distinct Queries

There is a sizeable literature on streaming algorithms for estimating the number of distinct
elements in a single data stream. Some, but not all, of these algorithms can be modified to
solve the DISTINCTp problem for general properties P. Depending on which functionality is
required, systems based on HyperLogLog Sketches, K’th Minimum Value (KMV) Sketches,
and Adaptive Sampling represent the state of the art for practical systems [11].2 For clarity
of exposition, and due to space constraints, we defer a more thorough overview of these
algorithms to the full version of the paper [6]. Here, we briefly review the main concepts and
relevant properties of each.

HLL: HyperLoglLog Sketches. HLL is a sketching algorithm for the vanilla DISTINCT
problem. Its accuracy per bit is superior to the KMV and Adaptive Sampling algorithms
described below. However, unlike KMV and Adaptive Sampling, it is not known how to
extend the HLL sketch to estimate np 4 for general properties P (unless, of course, P is
known prior to stream processing).

KMV: K’th Minimum Value Sketches. The KMV sketching procedure for estimating
DisTINCT(A) works as follows. While processing an input stream A, KMV keeps track of
the set S of the k smallest unique hashed values of stream elements. The update time of a
heap-based implementation of KMV is O(log k). The KMV estimator for DISTINCT(A) is:
KMV 4 = k/mygy1, where my. 1 denotes the k+15¢ smallest unique hash value.® It has been

proved by [4], [10], and others, that E(KMV 4) = n4, and 02(KMV 4) = "ikf# < ,;l—_?“l
Duffield et al. [7] proposed to change the heap-based implementation of the KMV sketching
algorithm to an implementation based on quickselect [12]. This reduces the sketch update
cost from O(logk) to amortized O(1). However, this O(1) hides a larger constant than
competing methods. At the cost of storing the sampled identifiers, and not just their hash
values, the KMV sketching procedure can be extended to estimate np 4 for any property

P C[n].

2 Algorithms with better asymptotic bit-complexity are known [13], but they do not match the practical
performance of the algorithms discussed here.

3 Some works use the estimate k/ms, e.g. [3]. We use k/my11 because it is unbiased, and for consistency
with the work of Cohen and Kaplan [5] described below.

6:3

ICDT 2016



6:4

A Framework for Estimating Stream Expression Cardinalities

Adaptive Sampling. Adaptive Sampling maintains a sampling level ¢ > 0, and the set S of
all hash values less than 27% whenever |S| exceeds a pre-specified size limit, i is incremented
and S is scanned discarding any hash value that is now too big. Because a simple scan
is cheaper than running quickselect, an implementation of this scheme is typically faster
than KMV. The estimator of n is Adapt, = |S|/27%. It has been proved by [8] that this
estimator is unbiased, and that o?(Adapt 4) ~ 1.44(n%/(k — 1)), where the approximation
sign hides oscillations caused by the periodic culling of S. Like KMV, Adaptive Sampling
can be extended to estimate np 4 for any property P. Although the stream processing speed
of Adaptive Sampling is excellent, the fact that its accuracy oscillates as n4 increases is a
shortcoming.

HLL for set operations on streams. HLL can be directly adapted to handle set-union. For
set-intersection, the relevant adaptation uses the inclusion/exclusion principle. However,
the variance of this estimate is approximately a factor of ny/n; worse than the variance
achieved by the multiKMV algorithm described below. When n; < ny, this penalty factor
overwhelms HLL’s fundamentally good accuracy per bit.

KMV for set operations on streams. Given streams Aq,..., Ay, let S; denote the KMV
sketch computed from stream A;. A trivial way to use these sketches to estimate the number
of distinct items ny in the union stream U is to let M{, denote the (k + 1)** smallest value
in the union of the sketches, and let S;; = {x € U;S;: < M{;}. Then S, is identical to
the sketch that would have been obtained by running KMV directly on the concatenated
stream Aj o..., A, and hence KMV py := k/M]; is an unbiased estimator for ny, by the
same analysis as in the single-stream setting. We refer to this procedure as the “non-growing
union rule.”

Intuitively, the non-growing union rule does not use all of the information available
to it. The sets S; contain up to k- M distinct samples in total, but Sy, ignores all but
the k smallest samples. With this in mind, Cohen and Kaplan [5] proposed the following
adaptation of KMV to handle unions of multiple streams. We denote their algorithm by
multiKMV, and also refer to it as the “growing union rule”. Define My = minJ’; M;, and
Sy ={z € U;S;: © < My}. Then ny is estimated by multiKMVy := |Sy|/My, and npy
is estimated by multiKMV p := |P(Sy)|/My.

At first glance, it may seem obvious that the growing union rule yields an estimator that
is “at least as good” as the non-growing union, since the growing union rule makes use of at
least as many samples as the non-growing rule. However, it is by no means trivial to prove
that multiKMV p; is unbiased, nor that its variance is dominated by that of the non-growing
union rule. Nonetheless, [5] managed to prove this: they showed that multiKMVp is
unbiased and has variance that is dominated by the variance of KMV p ;:

o (multiKMV p i) <a*(KMVp ). (1)

As observed in [5], multiKMV can be adapted in a similar manner to handle set-intersections
(see Section 3.7 for details).

Adaptive Sampling for set operations on streams. Adaptive Sampling can handle set
unions and intersections with a similar “growing union rule”. Specifically, let My =
min7";(27%);. Here, (27%); denotes the threshold for discarding hash values that was
computed by the jth Adaptive Sampling sketch. We refer to this algorithm as multiAdapt.

[9] proved epsilon-delta bounds on the error of multiAdapt p ;, but did not derive expressions



A. Dasgupta, K. J. Lang, L. Rhodes, and J. Thaler

for mean or variance. However, multiAdapt and multiKMV are both special cases of our
Theta-Sketch Framework, and in Section 3 we will prove (apparently for the first time) that
multiAdaptp; is unbiased, and satisfies strong variance bounds. These results have the
following two advantages over the epsilon-delta bounds of [9]. First, proving unbiasedness is
crucial for obtaining estimators for distinct counts over subpopulations: these estimators are
analyzed as a sum of a huge number of per-item estimates (see Theorem 11 for details), and
biases add up. Second, variance bounds enable derivation of confidence intervals that an
epsilon-delta guarantee cannot provide, unless the guarantee holds for many values of delta
simultaneously.

2.3 Overview of the Theta-Sketch Framework

In this overview, we describe the Theta-Sketch Framework in the multi-stream setting
where the goal is to output npy, where U = UL A; (we define the framework formally in
Section 2.4). That is, the goal is to identify a very large class of sampling algorithms that
can run on each constituent stream A;, as well as a “universal” method for combining the
samples from each A; to obtain a good estimator for np . We clarify that the Theta-Sketch
Framework, and our analysis of it, yields unbiased estimators that are interesting even in the
single-stream case, where m = 1.

We begin by noting the striking similarities between the multiKMV and multiAdapt
algorithms outlined in Section 2.2. In both cases, a sketch can be viewed as pair (0, .S) where
0 is a certain threshold that depends on the stream, and S is a set of hash values which
are all strictly less than 6. In this view, both schemes use the same estimator |S|/6, and
also the same growing union rule for combining samples from multiple streams. The only
difference lies in their respective rules for mapping streams to thresholds §. The Theta-Sketch
Framework formalizes this pattern of similarities and differences.

The assumed form of the single-stream sampling algorithms. The Theta-Sketch Frame-
work demands that each constituent stream A; be processed by a sampling algorithm samp;
of the following form. While processing A;, samp; evaluates a “threshold choosing function
(TCF) TW(A4;). The final state of samp; must be of the form (¢; := TW(A;),S), where
S is the set of all hash values strictly less than ¢; that were observed while processing A;.
If we want to estimate npy for non-trivial properties P, then samp; must also store the
corresponding identifier that hashed to each value in S. Note that the framework itself does
not specify the threshold-choosing functions 7). Rather, any specification of the TCFs 7V
defines a particular instantiation of the framework.

b2

» Remark. It might appear from Algorithm 1 that for any TCF TU), the function samp; [T0)]
makes two passes over the input stream: one to compute 6;, and another to compute S;.
However, in all of the instantiations we consider, both operations can be performed in a
single pass.

The universal combining rule. Given the states (6; := T\ (A;),5;) of each of the m
sampling algorithms when run on the streams Ay, ..., Ay, define 6y := min7", 6;, and Sy :=
{zx € U;S;: © <0y} (see the function ThetaUnion in Algorithm 1). Then ny is estimated by
Ay = |Sul|/0u, and npy as ipy = |P(Su)|/0u (see the function EstimateOnSubPopulation
in Algorithm 1).

The analysis. Our analysis shows that, so long as each threshold-choosing function 77
satisfies a mild technical condition that we call 1-Goodness, then fipy is unbiased. We also

6:5

ICDT 2016



6:6

A Framework for Estimating Stream Expression Cardinalities

Algorithm 1 Theta Sketch Framework for estimating npy. The framework is parameterized by
choice of TCF’s TY) (k,A;,h), one for each input stream.

1: Definition: Function samp; [T (k, Aj, h)
2: 0 + T (k,Aj,h)
3: Sj — {(z € h(Aj)) < Gj}.
4: return (60;,S5;).

5: Definition: Function ThetaUnion(Theta Sketches {(6;,S;)})
6: 0U — min{Gj}.
7: Sy +— {(JJ S (USj)) < QU}.
8: return (Ay, Sv).

9: Definition: Function EstimateOnSubPopulation(Theta Sketch (6,S) produced from stream A,
Property P mapping identifiers to {0,1})

10: return fa p = @.

show that if each TU) satisfies a certain additional condition that we call monotonicity, then
fip,u satisfies strong variance bounds (analogous to the bound of Equation (1) for KMV).
Our analysis is arguably surprising, because 1-Goodness does not imply certain properties
that have traditionally been considered important, such as permutation invariance, or S
being a uniform random sample of the hashed unique items of the input stream.

Applicability. To demonstrate the generality of our analysis, we identify several valid
instantiations of the Theta-Sketch Framework. First, we show that the TCF’s used in KMV
and Adaptive Sampling both satisfy 1-Goodness and monotonicity, implying that multiKMV
and multiAdapt are both unbiased and satisfy the aforementioned variance bounds. For
multiKMV, this is a reproof of Cohen and Kaplan’s results [5], but for multiAdapt the
results are new. Second, we identify a variant of KMV that we call pKMV, which is useful
in multi-stream settings where the lengths of constituent streams are highly skewed. We
show that pKMYV satisfies both 1-Goodness and monotonicity. Third, we introduce a new
sampling procedure that we call the Alpha Algorithm. Unlike earlier algorithms, the Alpha
Algorithm’s final state actually depends on the stream order, yet we show that it satisfies
1-Goodness, and hence is unbiased in both the single- and multi-stream settings. We also
establish variance bounds on the Alpha Algorithm in the single-stream setting. We show
experimentally that the Alpha Algorithm, in both the single- and multi-stream settings,
achieves a novel tradeoff between accuracy, space usage, update speed, and applicability.

Unlike KMV and Adaptive Sampling, the Alpha Algorithm does not satisfy monotonicity
in general. In fact, we have identified contrived examples in the multi-stream setting on
which the aforementioned variance bounds are (weakly) violated. The Alpha Algorithm
does, however, satisfy monotonicity under the promise that the Aq,..., A,, are pairwise
disjoint, implying variance bounds in this case. Our experiments suggest that, in practice,
the normalized variance in the multi-stream setting is not much larger than in the pairwise
disjoint case.

Deployment of Algorithms. Within Yahoo, the pKMV and Alpha algorithms are used
widely. In particular, stream cardinalities in Yahoo empirically satisfy a power law, with
some very large streams and many short ones, and pKMYV is an attractive option for such
settings. We have released an optimized open-source implementation of our algorithms at
http://datasketches.github.io/.


http://datasketches.github.io/

A. Dasgupta, K. J. Lang, L. Rhodes, and J. Thaler

2.4 Formal Definition of Theta-Sketch Framework

The Theta-Sketch Framework is defined as follows. This definition is specific to the multi-
stream setting where the goal is to output npy, where U = U7, A; is the union of constituent
streams Aq,..., Ap,.

» Definition 1. The Theta-Sketch Framework consists of the following components:

The data type (0,5), where 0 < § < 1 is a threshold, and S is the set of all unique
hashed stream items 0 < z < 1 that are less than . We will generically use the term
“theta-sketch” to refer to an instance of this data type.

The universal “combining function” ThetaUnion(), defined in Algorithm 1, that takes

as input a collection of theta-sketches (purportedly obtained by running samp[T]() on

constituent streams Ay, ..., A,,), and returns a single theta-sketch (purportedly of the
union stream U = U2, A4;).

The function EstimateOnSubPopulation(), defined in Algorithm 1, that takes as input a

theta-sketch (6, S) (purportedly obtained from some stream A) and a property P C [n]

and returns an estimate of fp 4.

Any instantiation of the Theta-Sketch Framework must specify a “threshold choosing function”
(TCF), denoted T'(k, A, h), that maps a target sketch size, a stream, and a hash function h
to a threshold . Any TCF T implies a “base” sampling procedure samp[7’]() that maps a
target size, a stream A, and a hash function to a theta-sketch using the pseudocode shown in
Algorithm 1. One can obtain an estimate 7ip 4 for np 4 by feeding the resulting theta-sketch
into EstimateOnSubPopulation().

Given constituent streams Ay, ..., A,,, the instantiation obtains an estimate np of npy
by running samp[7']() on each constituent stream Aj;, feeding the resulting theta-sketches
to ThetaUnion() to obtain a “combined” theta-sketch for U = U A;, and then running
EstimateOnSubPopulation() on this combined sketch.

» Remark. Definition 1 assumes for simplicity that the same TCF T is used in the base
sampling algorithms run on each of the constituent streams. However, all of our results that
depend only on 1-Goodness (e.g. unbiasedness of estimates and non-correlation of “per-item
estimates”) hold even if different 1-Good TCF’s are used on each stream, and even if different
values of k are employed.

2.5 Summary of Contributions

In summary, our contributions are: (1) Formulating the Theta-Sketch Framework. (2) Identi-
fying a mild technical condition (1-Goodness) on TCF’s ensuring that the framework’s
estimators are unbiased. (3) Identifying an additional mild technical condition (monotonicity)
ensuring that the framework’s estimators come with strong variance bounds analogous to
Equation (1). (4) Introducing the pKMV Algorithm, a novel variant of multiKMV that
can be useful in industrial big-data systems. (5) Proving that multiKMV, multiAdapt, and
pKMYV all satisfy 1-Goodness and monotonicity, implying unbiasedness and variance bounds
for each. (6) Introducing the Alpha Algorithm, and proving that it satisfies 1-Goodness
(thus implying unbiasedness), but not monotonicity. We also derive quantitative bounds
on the Alpha Algorithm’s variance in the single-stream setting, and present experimental
evidence that it provides a novel tradeoff between accuracy, space usage, update speed, and
applicability in both the single-stream and multi-stream settings.

6:7

ICDT 2016



6:8

A Framework for Estimating Stream Expression Cardinalities

3  Analysis of the Theta-Sketch Framework

Section Qutline. Section 3.1 shows that KMV and Adaptive Sampling are both instan-
tiations of the Theta-Sketch Framework. Section 3.2 defines 1-Goodness. Section 3.3
proves that the TCF’s that instantiate behavior identical to KMV and Adapt both satisfy
1-Goodness. Section 3.4 proves that if a framework instantiation’s TCF satisfies 1-Goodness,
then so does the TCF that is implicitly applied to the union stream via the composition
of the instantiation’s base algorithm and the function ThetaUnion(). Section 3.5 proves
that the estimator fip 4 for np 4 returned by EstimateOnSubPopulation() is unbiased when
applied to any theta-sketch produced by a TCF satisfying 1-Goodness. Section 3.6 defines
monotonicity and shows that 1-Goodness and monotonicity together imply variance bounds
on fpy. Section 3.7 explains how to tweak the Theta-Sketch Framework to handle set
intersections and other set operations on streams.

3.1 Example Instantiations

Define my41 to be the k415" smallest unique hash value in h(A) (the hashed version of the
input stream). The following is an easy observation.

» Observation 2. When the Theta-Sketch Framework is instantiated with the TCF
T(k,A,h) = myy1, the resulting instantiation is equivalent to the multiKMV algorithm
outlined in Section 2.2.

Let 8 be any real value in (0,1). For any z, define 5°*) to be the largest value of 5 (with i
a non-negative integer) that is less than z.

» Observation 3. When the Theta-Sketch Framework is instantiated with the TCF
T(k, A, h) = B*(™x+1) the resulting instantiation is equivalent to multiAdapt, which combines
Adaptive Sampling with a growing union rule (cf. Section 2.2).*

3.2 Definition of 1-Goodness

The following circularity is a main source of technical difficulty in analyzing theta sketches:
for any given identifier £ in a stream A, whether its hashed value z, = h(¢) will end up
in a sketch’s sample set S depends on a comparison of xy versus a threshold T'(X"4) that
depends on z; itself. Adapting a technique from [5], we partially break this circularity by
analyzing the following infinite family of projections of a given threshold choosing function
T(X™4).

» Definition 4 (Definition of Fix-All-But-One Projection). Let T be a threshold choosing
function. Let £ be one of the ny unique identifiers in a stream A. Let Xﬁ;‘ be a fixed
assignment of hash values to all unique identifiers in A except for £. Then the fix-all-but-
one projection Tp[X"}](x¢) : (0,1) — (0,1] of T is the function that maps values of z; to
theta-sketch thresholds via the definition T,[X"}](x,) = T'(X"™4), where X™4 is the obvious
combination of X"¢ and x.

[5] analyzed similar projections under the assumption that the base algorithm is specifically
(a weighted version of) KMV; we will instead impose the weaker condition that every
fix-all-but-one projection satisfies 1-Goodness, defined below.?

4 Section 2.2 assumed that the parameter 8 was set to the most common value: 1/2.

5 We chose the name 1-Goodness due to the reference to Fix-All-But- One Projections.



A. Dasgupta, K. J. Lang, L. Rhodes, and J. Thaler

» Definition 5 (Definition of 1-Goodness for Univariate Functions). A function f(x): (0,1) —
(0, 1] satisfies 1-Goodness iff there exists a fixed threshold F' such that:

If x < F, then f(z)=F. (2)
If £ > F, then f(z)<ux. (3)

» Condition 6 (Definition of 1-Goodness for TCF's). A TCF T(X"™4) satisfies 1-Goodness
iff for every stream A containing n, unique identifiers, every label £ € A, and every fixed
assignment X"} of hash values to the identifiers in A\, the fix-all-but-one projection
To[X"}](x,) satisfies Definition 5.

3.3 TCF’s of multiKMV and multiAdapt Both Satisfy 1-Goodness

The following two easy theorems show that the Threshold Choosing Functions used respect-
ively in KMV and in Adaptive Sampling both satisfy the 1-Goodness condition.

» Theorem 7. If T(X"™4) = myy1, then every fiz-all-but-one projection To¢[X"}|(x¢) of T
satisfies 1-Goodness.

Proof. Let T,[X"}](x() be any specific fix-all-but-one-projection of T'(X"4) = my1;. We
will exhibit the fixed value Fy[X"] that causes (2) and (3) to be true for this projection. Let
a and b respectively be the k’th and (k+1)%* smallest hash values in X"¢. Then Subconditions
(2) and (3) hold for Fy[X"}] = a. There are three cases:
Case (z, < a < b): In this case, Ty[X"}|(z¢) = T(X"4) = mpy1 = a. Since x; <
(Fy[X™}] = a), (2) holds because (T;[X"}](x¢) = a) = F;[X"}], and (3) holds vacuously.
Case (a < xy < b) : In this case, T([X"}](x;) = T(X™*) = mp4y1 = x¢. Since x; >
(Fy[X™}] = a), (3) holds because (T([X"}](x¢) = z¢) < x4, and (2) holds vacuously.
Case (a < b < x¢) : In this case, T¢[X"}|(z¢) = T(X™) = mp41 = b. Since x; >
(Fy[X™}] = a), (3) holds because (T,[X"¢](x;) =b) < x¢, and (2) holds vacuously.
<

» Theorem 8. If T(X"4) = pi™e+1)  then every fiz-all-but-one projection To[X"}](x¢) of
T satisfies 1-Goodness.

Proof. Let Ty[X"¢](z¢) be any specific fix-all-but-one-projection of T'(X™4) = Bimx+1) We
will exhibit the fixed value Fy[X"™] that causes (2) and (3) to be true for this projection. Let
a and b respectively be the k’th and (k+1)%* smallest hash values in X"¢. Then Subconditions
(2) and (3) hold for F;[X"4] = p%(*). There are four cases:

Case (z, < B <a <b): mpi =a,so T X" (xe) = Bi@) " Since xp < F[ X"} =
3@ (2) holds because (T([X"}](x¢) = 8/¥) = F,[X"}], and (3) holds vacuously.
Case (,Bi(“) <xpg<a<b): myp=a,so T [X"}](x) = B4 Since x; > F[X"}] =

3@ (3) holds because (T¢[X"¢](z,) = B'@) < z,, and (2) holds vacuously.
Case (B* ) < a < xp < b): mpyr = x4, 50 T[X"] () = @), Since 7y > F)[X"4] =
B@) (3) holds because (T¢[X"¢](z¢) = B*9)) < x4, and (2) holds vacuously.
Case B%) < a <b<xg): my1 =b, 50 Te[X"4](z) = B®). Since z, > F[X"}] =
B@) | (3) holds because (T¢[X"¢](z¢) = ') < b < 2, and (2) holds vacuously.
<

6:9

ICDT 2016



6:10

A Framework for Estimating Stream Expression Cardinalities

3.4 1-Goodness Is Preserved by the Function ThetaUnion()

Next, we show that if a framework instantiation’s TCF T satisfies 1-Goodness, then so
does the TCF TV that is implicitly being used by the theta-sketch construction algorithm
defined by the composition of the instantiation’s base sampling algorithms and the function
ThetaUnion(). We begin by formally extending the definition of a fix-all-but-one projection
to cover the degenerate case where the label ¢ isn’t actually a member of the given stream A.

» Definition 9. Let A be a stream containing n 4 identifiers. Let ¢ be a label that is not a
member of A. Let the notation X"¢ refer to an assignment of hash value to all identifiers in
A. For any hash value x; of the non-member label ¢, define the value of the “fix-all-but-one’
projection Ty[ X"} ](x,) to be the constant T'(X"}).

i

» Theorem 10. If the threshold choosing functions TW) (X™4) of the base algorithms used
to create sketches of m streams A; all satisfy Condition 6, then so does the TCF:

TY(X™) = min{T) (X")} (4)

that is implicitly applied to the union stream via the composition of those base algorithms
and the procedure ThetaUnion ().

Proof. Let TJ[X"Y](z¢) be any specific fix-all-but-one projection of the threshold choosing
function TV (X™v) defined by Equation (4). We will exhibit the fixed value FU[X"Y] that
causes (2) and (3) to be true for T} [X"V](xy).

The projection Ty [X"Y](z;) is specified by a label ¢ € (Ay = U;4;), and a set X"Y
of fixed hash values for the identifiers in Ay\¢. For each j, those fixed hash values XY

induce a set X f?j of fixed hash values for the identifiers in A;\¢. The combination of ¢
and Xﬁ?i then specifies a projection ng)[Xi?j](xg) of TW(X7). Now, if £ € A;, this is a
fix-all-but-one projection according to the original Definition 4, and according to the current
theorem’s pre-condition, this projection must satisfy 1-Goodness for univariate functions.
On the other hand, if ¢ ¢ A;, this is a fix-all-but-one projection according to the extended
Definition 9, and is therefore a constant function, and therefore satisfies 1-Goodness. Because
the projection T?)[X ﬁ?j |(z¢) satisfies 1-Goodness either way, there must exist a fixed value
Fi [Xﬁ?'j] such that Subconditions (2) and (3) are true for ng)[Xf;jK!Eg).

We now show that the value FJ[X"V] := minj(FjZ[Xf;j]) causes Subconditions (2) and
(3) to be true for the projection T} [X"Y](z¢), thus proving that this projection satisfies
1-Goodness.

To show: z, < F[X"Y] implies T{ [X"Y](x,) = FY[X"Y]. The condition z, < Fy[X"V]

implies that for all j, z, < FL[XZ”]. Then, for all j, Téj)[Xiﬁj](xg) = Fjé[Xf?j] by

Subcondition (2) for the various Téj)[Xfﬁj](xg). Therefore, FY [X"Y] = min; (F) [Xf?]}) =
Aj

min; (ng)[XZZ J(z¢)) = TY[X"Y](2¢), where the last step is by Eqn (4). This establishes
Subcondition (2) for the projection Ty [X"Y](z¢).

To show: z, > FE [X™7] implies z, > T?[ng](a:g). Because xz, is greater than or equal
to FY/[X™Y] = min, (F} [Xf?j]), there exists a j such that z, > F} [Xﬁ?j]. By Subcondition
(3) for this Téj)[Xi?.](.rg), we have zp > ng)[Xf?j](a:g). By Eqn (4), we then have z, >
TY[X"Y](x¢), thus establishing Subcondition (3) for TY[X"™Y](zy).

Finally, because the above argument applies to every projection Ty [X"Y](x) of TV (X"V),
we have proved the desired result that 7V (X"v) satisfies Condition 6. <



A. Dasgupta, K. J. Lang, L. Rhodes, and J. Thaler

3.5 Unbiasedness of EstimateOnSubPopulation()

We now show that 1-Goodness of a TCF implies that the corresponding instantiation of the
Theta-Sketch Framework provides unbiased estimates of the number of unique identifiers on
a stream or on the union of multiple streams.

» Theorem 11. Let A be a stream containing na unique identifiers, and let P be a property
evaluating to 1 on an arbitrary subset of the identifiers. Let h denote a random hash function.
Let T be a threshold choosing function that satisfies Condition 6. Let (8,S4) denote a sketch
of A created by samp[T](k, A, h), and as usual let P(S4) denote the subset of hash values in
Sa whose corresponding identifiers satisfy P. Then Ep, (fip 4) := Ep, (W) =npA4.
Theorems 10 and 11 together imply that, in the multi-stream setting, the estimate 7 py
for npy output by the Theta-Sketch Framework is unbiased, assuming the base sampling
schemes samp, () each use a TCF TU) satisfying 1-Goodness.

Proof. Let A be a stream, and let 7' be a Threshold Choosing Function that satisfies 1-
Goodness. Fix any £ € A. For any assignment X™4 of hash values to identifiers in A, define
the “per-identifier estimate” V; as follows:

Sg(X"A)
T(Xna)

1if 2p < T(X™A)

Xn4a) =
Vi ) 0 otherwise.

where Sp(X"4) = { (5)
Because T satisfies 1-Goodness, there exists a fixed threshold F(X"¢) for which it is a
straightforward exercise to verify that:

1/F(X"}) if xp < F(X"})
0 otherwise.

v = (6)

Now, conditioning on X"} and taking the expectation with respect to z;:

1
n n n 1
E(Vi|X"3) = /0 Ve[ X" (ze)dze = F(X27) - FX) L. (7)
Since Equation (7) establishes that F(V;) = 1 when conditioned on each X"}, we also have
E(V;) = 1 when the expectation is taken over all X™4. By linearity of expectation, we
conclude that E(fp.a) = 3 sca.prey=1 E(V2) = npa. <

3.6 1-Goodness and Monotonicity Imply Variance Bound

As usual, let U = U, A; be the union of m data streams. Our goal in this section is to
identify conditions on a threshold choosing function which guarantee the following: whenever
the Theta-Sketch Framework is instantiated with a TCF T satisfying the conditions, then for
any property P C [n], the variance o (fip ) of the estimator obtained from the Theta-Sketch
Framework is bounded above by the variance of the estimator obtained by running samp|[T’]()
on the stream A* := A 0 Ay o---0 A, obtained by concatenating Aj,..., A,,.

It is easy to see that 1-Goodness alone is not sufficient to ensure such a variance bound.
Consider, for example, a TCF T that runs KMV on a stream A unless it determines that
na > C, for some fixed value C, at which point it sets 6 to 1 (thereby causing samp|[T]() to
sample all elements from A). Note that such a base sampling algorithm is not implementable
by a sublinear space streaming algorithm, but 7" nonetheless satisfies 1-Goodness. It is
easy to see that such a base sampling algorithm will fail to satisfy our desired comparative

6:11

ICDT 2016



6:12

A Framework for Estimating Stream Expression Cardinalities

variance result when run on constituent streams A, ..., A, satisfying n4, < C for all ¢, and
ny > C. In this case, the variance of fiyy will be positive, while the variance of the estimator
obtained by running samp[7] directly on A* will be 0.

Thus, for our comparative variance result to hold, we assume that T satisfies both
1-Goodness and the following additional monotonicity condition.

» Condition 12 (Monotonicity Condition). Let Ay, A1, A2 be any three streams, and let

A* := Ag o Ay o A; denote their concatenation. Fix any hash function h and parameter k.
Let 6 =T(k, A1, h), and 6/ = T'(k, A*,h). Then 6’ < 4.

» Theorem 13. Suppose that the Theta-Sketch Framework is instantiated with a TCF T
that satisfies Condition 6 (1-Goodness), as well as Condition 12 (monotonicity). Fiz a
property P, and let Ay, ... A, be m input streams. Let U = UA; denote the union of the
distinct labels in the input streams. Let A* = A; 0 Ayo...0 A,, denote the concatenation
of the input streams. Let (0%, 5*) = samp[T|(k, A*, h), and let i}y 4. denote the estimate of
np - = npy obtained by evaluating EstimateOnSubPopulation((0*, 5*), P). Let (8Y,8Y) =
ThetaUnion({(0;,S;)}), and let ipy denote the estimate of npy = npa~ obtained by
evaluating EstimateOnSubPopulation((8Y, SY), P). Then, with the randomness being over
the choice of hash function h, o*(RY ;) < o?(A 4.).

The proof of Theorem 13 is rather involved, and is deferred to the full version of the paper.

On the applicability of Theorem 13. It is easy to see that Condition 12 holds for any TCF
that is (1) order-insensitive and (2) has the property that adding another distinct item to the
stream cannot increase the resulting threshold §. The TCF T used in multiKMV (namely,
T(k, A, h) = myy1), satisfies these properties, as does the TCF used in Adaptive Sampling.
Since we already showed that both of these TCF’s satisfy 1-Goodness, Theorem 13 applies
to multiKMV and multiAdapt. In Section 4, we introduce the pKMV algorithm, which is
useful in multi-stream settings where the distribution of stream lengths is highly skewed, and
we show that Theorem 13 applies to this algorithm as well.

In Section 5, we introduce the Alpha Algorithm and show that it satisfies 1-Goodness.
While the Alpha Algorithm does not satisfy monotonicity in general, it does under the promise
that Ay,..., A, are pairwise disjoint; Theorem 13 applies in this case. Our experiments
(deferred to the full version of the paper) suggest that, in practice, the normalized variance
in the multi-stream setting is not much larger than in the pairwise disjoint case.

3.7 Handling Set Intersections

The Theta-Sketch Framework can be tweaked in a natural way to handle set intersection and
other set operations, just as was the case for multiKMV. Specifically, define 6y = minJ, 6;,
and St = {(z € N;S;) < Ou}. The estimator for np is fpr := |[P(Sr)|/0uv.

It is not difficult to see that fip; is exactly equal to fip/ , where P’ is the property
that evaluates to 1 on an identifier if and only if the identifier satisfies P and is also in 1.
Since the latter estimator was already shown to be unbiased with variance bounded as per
Theorem 13, fp 1 satisfies the same properties.

4 The pKMV Variant of KMV

Motivation. An internet company involved in online advertising typically faces some version
of the following problem: there is a huge stream of events representing visits of users to



A. Dasgupta, K. J. Lang, L. Rhodes, and J. Thaler

web pages, and a huge number of relevant “profiles”, each defined by the combination of
a predicate on users and a predicate on web pages. On behalf of advertisers, the internet
company must keep track of the count of distinct users who generate events that match each
profile. The distribution (over profiles) of these counts typically is highly skewed and covers
a huge dynamic range, from hundreds of millions down to just a few.

Because the summed cardinalities of all profiles is huge, the brute force technique (of
maintaining, for each profile, a hash table of distinct user ids) would use an impractical
amount of space. A more sophisticated approach would be to run multiKMV, treating each
profile as separate stream A;. This effectively replaces each hash table in the brute force
approach with a KMV sketch. The problem with multiKMV in this setting is that, while
KMV does avoid storing the entire data stream for streams containing more than k distinct
identifiers, KMV produces no space savings for streams shorter than k. Because the vast
majority of profiles contain only a few users, replacing the hash tables in the brute force
approach by KMV sketches might still use an impractical amount of space.

On the other hand, fixed-threshold sampling with 8 = p for a suitable sampling rate p,
would always result in an expected factor 1/p saving in space, relative to storing the entire
input stream. However, this method may result in too large a sample rate for long streams
(i.e., for profiles satisfied by many users), also resulting in an impractical amount of space.

The pKMV algorithm. In this scenario, the hybrid Threshold Choosing Function T'(k, A, h)
= min(myg41,p) can be a useful compromise, as it ensures that even short streams get
downsampled by a factor of p, while long streams produce at most k samples. While it is
possible to prove that this TCF satisfies 1-Goodness via a direct case analysis, the property
can also be established by an easier argument: Consider a hypothetical computation in which
the ThetaUnion procedure is used to combine two sketches of the same input stream: one
constructed by KMV with parameter k, and one constructed by fixed-threshold sampling
with parameter p. Clearly, this computation outputs § = min(my1,p). Also, since KMV
and fixed-threshold sampling both satisfy 1-Goodness, and ThetaUnion preserves 1-Goodness
(cf. Theorem 11), T also satisfies 1-Goodness.

It is easy to see that Condition 12 applies to T'(k, A, h) = min(mg,1,p) as well. Indeed,
T is clearly order-insensitive, so it suffices to show that adding an additional identifier to
the stream cannot increase the resulting threshold. Since p never changes, the only way
that adding another distinct item to the stream could increase the threshold would be by
increasing my41. However, that cannot happen.

5 Alpha Algorithm

5.1 Motivation and Comparison to Prior Art

Section 3’s theoretical results are strong because they cover such a wide class of base sampling
algorithms. In fact, 1-Goodness even covers base algorithms that lack certain traditional
properties such as invariance to permutations of the input, and uniform random sampling
of the input. We are now going to take advantage of these strong theoretical results for
the Theta Sketch Framework by devising a novel base sampling algorithm that lacks those
traditional properties, but still satisfies 1-Goodness. Our main purpose for describing our

Alpha Algorithm in detail is to exhibit the generality of the Theta-Sketch Framework.

Nonetheless the Alpha Algorithm does have the following advantages relative to HLL, KMV,
and Adaptive Sampling.

6:13

ICDT 2016



6:14

A Framework for Estimating Stream Expression Cardinalities

Advantages over HLL. Unlike HLL, the Alpha Algorithm provides unbiased estimates
for DISTINCTp queries for non-trivial predicates P. Also, when instantiating the Theta-
Sketch Framework via the Alpha Algorithm in the multi-stream setting, the error behavior
scales better than HLL for general set operations (cf. Section 2.2). Finally, because the
Alpha Algorithm computes a sample, its output is human-interpretable and amenable to
post-processing.

Advantages over KMV. Implementations of KMV must either use a heap data structure
or quickselect [12] to give quick access to the k+15" smallest unique hash value seen so far.
The heap-based implementation yields O(log k) update time, and quickselect, while achieving
O(1) update time, hides a large constant factor in the Big-Oh notation (cf. Section 2.2).
The Alpha Algorithm avoids the need for a heap or quickselect, yielding superior practical
performance.

Advantages over Adaptive Sampling. The accuracy of Adaptive Sampling oscillates as n 4
increases. The Alpha Algorithm avoids this behavior.

The remainder of this section provides a detailed analysis of the Alpha Algorithm. In
particular, we show that it satisfies 1-Goodness, and we give quantitative bounds on its
variance in the single-stream setting. The full version of the paper describes experiments
showing that, in both the single- and multi-stream settings, the Alpha Algorithm achieves a
novel tradeoff between accuracy, space usage, update speed, and applicability.

5.2 AlphaTCF

Algorithm 2 describes the threshold choosing function AlphaTCF. AlphaTCF can be viewed
as a tightly interleaved combination of two different processes. One process uses the set D to
remove duplicate items from the raw input stream; the other process uses a technique similar
to Approximate Counting [14] to estimate the number of items in the de-duped stream
created by the first process. In addition, the second process maintains and frequently reduces
a threshold # = o that is used by the first process to identify hash values that cannot be
members of S, and therefore don’t need to be placed in the de-duping set D. If the set D
is implemented using a standard dynamically-resized hash table, then well-known results
imply that the amortized cost® of processing each stream element is O(1), and the space
occupied by the hash table is O(]D|). However, there is a simple optimized implementation
of the Alpha Algorithm, based on Cuckoo Hashing, that implicitly, and at zero cost, deletes
all members of D that are not less than 6, and therefore are not members of S (see the full
version of the paper for details). This does not affect correctness, because those deleted
members will not be needed for future de-duping tests of hash values that will all be less than
6. Furthermore, in Theorem 15 below, it is proved that |S| is tightly concentrated around k.
Hence, the space usage of this optimized implementation is O(k) with probability 1 — o(1).

5.3 AlphaTCF Satisfies 1-Goodness

We will now prove that AlphaTCF satisfies 1-Goodness, thus implying unbiasedness.

» Theorem 14. If T(X"™*) = AlphaTCF, then every fiz-all-but-one projection T ;[ X"} ](z¢)
of T(X™4) satisfies 1-Goodness.

5 Recent theoretical results imply that the update time can be made worst-case O(1) [1, 2].



A. Dasgupta, K. J. Lang, L. Rhodes, and J. Thaler

Algorithm 2 The Alpha Algorithm’s Threshold Choosing Function

Function AlphaTCF (target size k, stream A, hash function h)
o k/(k+1).
prefix(h(A)) < shortest prefix of h(A) containing exactly k unique hash values.
suffix(h(A)) < the corresponding suffix.
D « the set of unique hash values in prefix(h(A)).
1+ 0.
for all z € suffix(h(A)) do

if £ < o' then

if z ¢ D then

10: 141+ 1.
11: D« DU {z}.
12: end if
13:  end if
14: end for

15: return 0 < a'.

Proof. Fix the number of distinct identifiers n4 in A. Consider any identifier ¢ appearing
in the stream, and let = h(¢) be its hash value. Fix the hash values of all other elements
of the sequence of values X"}. We need to exhibit a threshold F' such that # < F implies
Ty[X"}](x)(x) = F and & > F implies T;[X"}](x) < .

First, if 2 lies in one of the first k + 1 positions in the stream, then T,[X"¢](z) is a
constant independent of z; in this case, F' can be set to that constant.

Now for the main case, suppose that ¢ does not lie in one of the first £ 4+ 1 positions of
the stream. Consider a subdivision of the hashed stream into the initial segment preceding
x = h({), then z itself, then the final segment that follows x. Because all hash values besides
x are fixed in X"}, during the initial segment, there is a specific number a of times that 6
is decreased. When x is processed, 6 is decreased either zero or one times, depending on
whether x < a®. Then, during the final segment, 6 will be decreased a certain number of
additional times, where this number depends on whether < a®. Let b denote the number of
additional times 6 is decreased if x < a®, and ¢ the number of additional times 6 is decreased
otherwise. This analysis is summarized in the following table:

Rule | Condition on z | Final value of 6
L r<a® ottt
G x> aa aa+c+0

We prove the theorem using the threshold F' = a®t**+1, We note that F = a*t0*! < 2,
so F' and a® divide the range of x into three disjoint intervals, creating three cases that need
to be considered.

Case 1: < F < a®. In this case, because < F, we need to show that T,[X"}](x) = F.

By Rule L, Ty[X"4](z) = a®t*T! = F.

Case 2: F' <z < a®. Because x > F, we need to show that T;[X"}](xz) < . By Rule L,
Ty X" (z) = ottt = F < g

Case 3: F' < a® < x. Because v > F, we need to show that T;[X"}](z) < 2. By Rule G,
T, X"} (z) = a®Tet0 < a0 < g. <

5.4 Analysis of Alpha Algorithm on Single Streams

The following two theorems show that the Alpha Algorithm’s space usage and single-stream
estimation accuracy are quite similar to those of KMV. That means that it is safe to use the
Alpha Algorithm as a drop-in replacement for KMV in a sketching-based big-data system,

6:15

ICDT 2016



6:16

A Framework for Estimating Stream Expression Cardinalities

which then allows the system to benefit from the Alpha Algorithm’s low update cost. See
the experiments in the full version of the paper for an empirical comparison of these costs.

Random Variables. When Line 15 of Algorithm 2 is reached after processing a randomly
hashed stream, the program variable ¢ is governed by a random variable Z. Similarly, when
Line 3 of Algorithm 1 is subsequently reached, the cardinality of the set S is governed by
a random variable S. The following two theorems characterize the distributions of S and
of the Theta Sketch Framework’s estimator S/(a?). Specifically, Theorem 15 shows that
the number of elements sampled by the Alpha Algorithm is tightly concentrated around
k, and hence its space usage is concentrated around that of KMV. Theorem 16 shows that
the variance of the estimate returned by the Alpha Algorithm is very close to that of KMV.
Their proofs are deferred to the full version of the paper.

» Theorem 15. Let S denote the cardinality of the set S computed by the Alpha Algorithm’s
Threshold Choosing Function (Algorithm 2). Then:

E(S) = k. (8)
) ko1
*(S) <5+ (9)

» Theorem 16. Let S denote the cardinality of the set S computed by the Alpha Algorithm’s
Threshold Choosing Function (Algorithm 2). Then:

(2k+1)n% — (K> +k)(2na — 1) —na

o*(S/(a7)) = -

5.5 Variance of the Alpha Algorithm in the Multi-Stream Setting

The Alpha Algorithm does not satisfy monotonicity (Condition 12) in general, so Theorem 13
does not immediately imply variance bounds in the multi-stream setting. In fact, we have
identified contrived examples in the multi-stream setting on which the variance of the
Theta-Sketch Framework when instantiated with the TCF of the Alpha Algorithm is slightly
larger than the hypothetical estimator obtained by running the Alpha Algorithm on the
concatenated stream Aj o...A,, (the worst-case setting appears to be when A; ... A,, are
all permutations of each other).

However, we show in this section that the Alpha Algorithm does satisfy monotonicity
under the promise that all constituent streams are pairwise disjoint. This implies the
variance guarantees of Theorem 13 do apply to the Alpha Algorithm under the promise that
Ay, ..., A, are pairwise disjoint. Our experiments suggest that, in practice, the normalized
variance of the Alpha Algorithm in the multi-stream setting is not much larger than in the
pairwise disjoint case.

» Theorem 17. The TCF computed by the Alpha Algorithm satisfies Condition 12 under
the promise that the streams A1, As, As appearing in Condition 12 are pairwise disjoint.

Proof. Due to space constraints, the proof is deferred to the full version of the paper. <«



A. Dasgupta, K. J. Lang, L. Rhodes, and J. Thaler

—— References

1

10

11

12

13

14

Yuriy Arbitman, Moni Naor, and Gil Segev. De-amortized cuckoo hashing: Provable worst-
case performance and experimental results. In Automata, Languages and Programming,
36th International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings,
Part I, pages 107-118, 2009. doi:10.1007/978-3-642-02927-1_11.

Yuriy Arbitman, Moni Naor, and Gil Segev. Backyard cuckoo hashing: Constant worst-case
operations with a succinct representation. In 51th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages
787-796, 2010. doi:10.1109/F0CS.2010.80

Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting
distinct elements in a data stream. In Randomization and Approximation Techniques, 6th
International Workshop, RANDOM 2002, Cambridge, MA, USA, September 18-15, 2002,
Proceedings, pages 1-10, 2002. doi:10.1007/3-540-45726-7_1.

Kevin S. Beyer, Rainer Gemulla, Peter J. Haas, Berthold Reinwald, and Yannis Sismanis.
Distinct-value synopses for multiset operations. Commun. ACM, 52(10):87-95, 2009. doi:
10.1145/1562764.1562787.

Edith Cohen and Haim Kaplan. Leveraging discarded samples for tighter estimation
of multiple-set aggregates. In Proceedings of the Eleventh International Joint Confer-
ence on Measurement and Modeling of Computer Systems, SIGMETRICS/Performance

2009, Seattle, WA, USA, June 15-19, 2009, pages 251-262, 2009. doi:10.1145/1555349.

1555379.

Anirban Dasgupta, Kevin Lang, Lee Rhodes, and Justin Thaler. A framework for es-
timating stream expression cardinalities. CoRR, abs/1510.01455, 2015. URL: http:
//arxiv.org/abs/1510.01455.

Nick G. Duffield, Carsten Lund, and Mikkel Thorup. Priority sampling for estimation of
arbitrary subset sums. J. ACM, 54(6), 2007. doi:10.1145/1314690.1314696.

Philippe Flajolet. On adaptive sampling. Computing, 43(4):391-400, 1990. doi:10.1007/
BF02241657.

Phillip B. Gibbons and Srikanta Tirthapura. Estimating simple functions on the union of
data streams. In SPAA, pages 281-291, 2001. doi:10.1145/378580.378687.

Frédéric Giroire. Order statistics and estimating cardinalities of massive data sets. Discrete
Applied Mathematics, 157(2):406-427, 2009. doi:10.1016/j.dam.2008.06.020.

Stefan Heule, Marc Nunkesser, and Alexander Hall. Hyperloglog in practice: algorithmic en-
gineering of a state of the art cardinality estimation algorithm. In Joint 2013 EDBT/ICDT
Conferences, EDBT’13 Proceedings, Genoa, Italy, March 18-22, 2013, pages 683—-692, 2013.
doi:10.1145/2452376.2452456.

C. A. R. Hoare. Algorithm 65: Find. Commun. ACM, 4(7):321-322, July 1961. doi:
10.1145/366622.366647.

Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the
distinct elements problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2010, June 6-11, 2010,
Indianapolis, Indiana, USA, pages 41-52, 2010. doi:10.1145/1807085.1807094.

Robert Morris. Counting large numbers of events in small registers. Commun. ACM,
21(10):840-842, October 1978. doi:10.1145/359619.359627.

6:17

ICDT 2016


http://dx.doi.org/10.1007/978-3-642-02927-1_11
http://dx.doi.org/10.1109/FOCS.2010.80
http://dx.doi.org/10.1007/3-540-45726-7_1
http://dx.doi.org/10.1145/1562764.1562787
http://dx.doi.org/10.1145/1562764.1562787
http://dx.doi.org/10.1145/1555349.1555379
http://dx.doi.org/10.1145/1555349.1555379
http://arxiv.org/abs/1510.01455
http://arxiv.org/abs/1510.01455
http://dx.doi.org/10.1145/1314690.1314696
http://dx.doi.org/10.1007/BF02241657
http://dx.doi.org/10.1007/BF02241657
http://dx.doi.org/10.1145/378580.378687
http://dx.doi.org/10.1016/j.dam.2008.06.020
http://dx.doi.org/10.1145/2452376.2452456
http://dx.doi.org/10.1145/366622.366647
http://dx.doi.org/10.1145/366622.366647
http://dx.doi.org/10.1145/1807085.1807094
http://dx.doi.org/10.1145/359619.359627




Declarative Probabilistic Programming with
Datalog

Vince Barany!, Balder ten Cate?, Benny Kimelfeld3, Dan Olteanu?,
and Zografoula Vagena®

1 LogicBlox, Atlanta, GA, USA*

2 LogicBlox, Atlanta, GA, USAf

3  Technion, Haifa, Israel; and
LogicBlox, Atlanta, GA, USA

4  University of Oxford, Oxford, UK; and
LogicBlox, Atlanta, GA, USA

5 LogicBlox, Atlanta, GA, USA

—— Abstract

Probabilistic programming languages are used for developing statistical models, and they typic-
ally consist of two components: a specification of a stochastic process (the prior), and a specific-
ation of observations that restrict the probability space to a conditional subspace (the posterior).
Use cases of such formalisms include the development of algorithms in machine learning and ar-

tificial intelligence. We propose and investigate an extension of Datalog for specifying statistical
models, and establish a declarative probabilistic-programming paradigm over databases. Our
proposed extension provides convenient mechanisms to include common numerical probability
functions; in particular, conclusions of rules may contain values drawn from such functions. The
semantics of a program is a probability distribution over the possible outcomes of the input
database with respect to the program. Observations are naturally incorporated by means of
integrity constraints over the extensional and intensional relations. The resulting semantics is
robust under different chases and invariant to rewritings that preserve logical equivalence.

1998 ACM Subject Classification D.1.6 Logic Programming, G.3 Probability and Statistics,
H.2.3 Languages

Keywords and phrases Chase, Datalog, probability measure space, probabilistic programming

Digital Object ldentifier 10.4230/LIPIcs.ICDT.2016.7

1 Introduction

Languages for specifying general statistical models are commonly used in the development
of machine learning and artificial intelligence algorithms for tasks that involve inference
under uncertainty. A substantial effort has been made on developing such formalisms and
corresponding system implementations. An actively studied concept in that area is that
of Probabilistic Programming (PP) [20], where the idea is that the programming language
allows for specifying general random procedures, while the system executes the program not
in the standard programming sense, but rather by means of inference. Hence, a PP system
is built around a language and an (approximate) inference engine, which typically makes
use of Markov Chain Monte Carlo methods (e.g., the Metropolis-Hastings algorithm). The

* Now at Google, Inc.
T Now at Google, Inc.

© Vince Barany, Balder ten Cate, Benny Kimelfeld, Dan Olteanu, and Zografoula Vagena;
37 licensed under Creative Commons License CC-BY

19th International Conference on Database Theory (ICDT 2016).

Editors: Wim Martens and Thomas Zeume; Article No. 7; pp. 7:1-7:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2

Declarative Probabilistic Programming with Datalog

relevant inference tasks can be viewed as probability-aware aggregate operations over all
possible worlds, that is, possible outcomes of the program. Examples of such tasks include
finding the most likely possible world, or estimating the probability of an event. Recently,
DARPA initiated the project Probabilistic Programming for Advancing Machine Learning
(PPAML), aimed at advancing PP systems (with a focus on a specific collection of systems,
e.g., [40, 30, 32]) towards facilitating the development of algorithms and software that are
based on machine learning.

In probabilistic programming, a statistical model is typically phrased by means of two
components. The first component is a generative process that produces a random possible
world by straightforwardly following instructions with randomness, and in particular, sampling
from common numerical probability functions; this gives the prior distribution. The second
component allows to phrase constraints that the relevant possible worlds should satisfy, and,
semantically, transforms the prior distribution into the posterior distribution — the subspace
obtained by conditioning on the constraints.

As an example, in supervised text classification (e.g., spam detection) the goal is to
classify a text document into one of several known classes (e.g., spam/non-spam). Training
data consists of a collection of documents labeled with classes, and the goal of learning is
to build a model for predicting the classes of unseen documents. One common approach
to this task assumes a generative process that produces random parameters for every class,
and then uses these parameters to define a generator of random words in documents of the
corresponding class [33, 31]. The prior distribution thus generates parameters and documents
for each class, and the posterior is defined by the actual documents of the training data.
In unsupervised text classification the goal is to cluster a given set of documents, so that
different clusters correspond to different topics (not known in advance). Latent Dirichlet
Allocation [10] approaches this problem in a similar generative way as the above, with the
addition that each document is associated with a distribution over topics.

A Datalog program is a set of logical rules, interpreted in the context of a relational
database (where database relations are also called the extensional relations), that are used to
define additional relations (known as the intensional relations). Datalog has traditionally been
used as a database query language. In recent years, however, it has found new applications
in data integration, information extraction, networking, program analysis, security, cloud
computing, and enterprise software development [23]. In each of these applications, being
declarative, Datalog makes specifications easier to write (sometimes with orders-of-magnitude
fewer lines of code than imperative code, e.g., [28]), and to comprehend and maintain.

In this work, we extend Datalog with the ability to program statistical models. In par
with existing languages for PP, our proposed extension consists of two parts: a generative
Datalog program that specifies a prior probability space over (finite or infinite) sets of facts
that we call possible outcomes, and a definition of the posterior probability by means of
observations, which come in the form of ordinary logical constraints over the extensional and
intensional relations. We subscribe to the premise of the PP community (and PPAML in
particular) that this paradigm has the potential of substantially facilitating the development
of applications that involve machine learning for inferring missing or uncertain information.
Indeed, probabilistic variants are explored for the major programming languages, such as
C [37], Java [27], Scala [40], Scheme [30] and Python [38] (we discuss the relationship of this
work to related literature in Section 6). At LogicBlox, we are interested in extending our
Datalog-based LogiQL [22] with PP to enable and facilitate the development of predictive
analysis [6]. We believe that, once the semantics becomes clear, Datalog can offer a natural
and appealing basis for PP, since it has an inherent (and well studied) separation between
given data (EDB), generated data (IDB), and conditioning (constraints).



V. Barany, B. ten Cate, B. Kimelfeld, D. Olteanu, and Z. Vagena

The main challenge, when attempting to extend Datalog with probabilistic programming
constructs, is to retain the inherent features of Datalog. Specifically, the semantics of Datalog
does not depend on the order by which the rules are resolved (chased). Hence, it is safe to
provide a Datalog engine with the ability to decide on the chasing order that is estimated
to be more efficient. Another feature is invariance under logical equivalence: two Datalog
programs have the same semantics whenever their rules are equivalent when viewed as
theories in first-order logic. Hence, it is safe for a Datalog engine to rewrite a program, as
long as logical equivalence is preserved.

For example, consider an application where we want to predict the number of vis-
its of clients to some local service (e.g., a doctor’s office). For simplicity, suppose that we
have a schema with the following relations: LivesIn(person, city), WorksIn(person, employer),
LocatedIn(company, city), and AvgVisits(city, avg). The following rule provides an appealing
way to model the generation of a random number of visits for a person.

Visits(p, Poisson[\]) < LivesIn(p, ¢), AvgVisits(c, A) (1)

The conclusion of this rule involves sampling values from a parameterized probability
distribution. Next, suppose that we do not have all the addresses of persons, and we wish to
expand the simulation with employer cities. Then we might use the following additional rule.

Visits(p, Poisson[\]) +— WorksIn(p, e), LocatedIn(e, ¢), AvgVisits(c, A) (2)

Now, it is not clear how to interpret the semantics of Rules (1) and (2) in a manner that retains
the declarative nature of Datalog. If, for a person p, the right sides of both rules are true,
should both rules “fire” (i.e., should we sample the Poisson distribution twice)? And if p works
in more than one company, should we have one sample per company? And if p lives in one city
but works in another, which rule should fire? If only one rule fires, then the semantics becomes
dependent on the chase order. To answer these questions, we need to properly define what it
means for the head of a rule to be satisfied when it involves randomness such as Poisson[}].
Furthermore, consider the following (standard) rewriting of the above program.

PersonCity(p, ¢) < LivesIn(p, c)
PersonCity(p, ¢) < WorksIn(p, e), LocatedIn(e, c)
Visits(p, Poisson[\]) < PersonCity(p, ¢), AvgVisits(c, \)

As a conjunction of first-order sentences, the rewritten program is equivalent to the previous
one; we would therefore like the two programs to have the same semantics. In rule-based
languages with a factor-based semantics, such as Markov Logic Networks [15] or Probabilistic
Soft Logic [11], the above rewriting may change the semantics dramatically.

We introduce PPDL, a purely declarative probabilistic programming language based
on Datalog. The generative component of a PPDL program consists of rules extended
with constructs to refer to conventional parameterized numerical probability functions (e.g.,
Poisson, geometrical, etc.). Specifically, these mechanisms allow sampling values from the
given parameterized distributions in the conclusion of a rule (and if desired, use these values
as parameters of other distributions). In this paper, our focus is on discrete numerical
distributions (the framework we introduce admits a natural generalization to continuous
distributions, such as Gaussian or Pareto, but we defer the details of this to future work).
Semantically, a PPDL program associates to each input instance I a probability distribution
over possible outcomes. In the case where all the possible outcomes are finite, we get a discrete
probability distribution, and the probability of a possible outcome can be defined immediately

7:3

ICDT 2016



7:4

Declarative Probabilistic Programming with Datalog

from its content. But in general, a possible outcome can be infinite, and moreover, the set of
all possible outcomes can be uncountable. Hence, in the general case we obtain a probability
measure space. We define a natural notion of a probabilistic chase where existential variables
are produced by invoking the corresponding numerical distributions. We define a measure
space based on a chase, and prove that this definition is robust, in the sense that the same
probability measure is obtained no matter which chase order is used.

A short version of this paper has appeared in the 2015 Alberto Mendelzon International
Workshop [47].

2 Preliminaries

In this section we give basic notation and definitions that we use throughout the paper.

Schemas and instances. A (relational) schema is a collection S of relation symbols, where
each relation symbol R is associated with an arity, denoted arity(R), which is a natural
number. An attribute of a relation symbol R is any number in {1,. .., arity(R)}. For simplicity,
we consider here only databases over real numbers; our examples may involve strings, which
we assume are translatable into real numbers. A fact over a schema S is an expression of the
form R(cq,...,c,) where R is an n-ary relation in S and ¢y, ..., ¢, € R. An instance I over
S is a finite set of facts over S. We denote by R! the set of all tuples (ci,...,c,) such that
R(ci,...,cn) €1

Datalog programs. PPDL extends Datalog without the use of existential quantifiers. How-
ever, we will make use of existential rules indirectly in the definition of the semantics. For
this reason, we review here Datalog as well as existential Datalog. Formally, an existential
Datalog program, or Datalog® program, is a triple D = (£,Z,0) where: (1) £ is a schema,
called the extensional database (EDB) schema, (2) Z is a schema, called the intensional
database (IDB) schema, disjoint from &, and (3) © is a finite set of Datalog” rules, that is,
first-order formulas of the form Vx| (Iyv(x,y)) + ¢(x) | where ¢(x) is a conjunction of
atomic formulas over £ UZ and v(x,y) is an atomic formula over Z, such that each variable
in x occurs in ¢. Here, by an atomic formula (or, atom) we mean an expression of the form
R(t1,...,t,) where R is an n-ary relation and ¢, ..., t, are either constants (i.e., numbers)
or variables. For readability’s sake, we omit the universal quantifier and the parentheses
around the conclusion (left-hand side), and write simply Jy¢(x,y) < ¢(x). Datalog is
the fragment of Datalog? where the conclusion of each rule is an atomic formula without
existential quantifiers.

Let D = (£,Z,0) be a Datalog® program. An input instance for D is an instance I over
E. A solution of I w.r.t. D is a possibly infinite set F of facts over £UZ, such that I C F and
F satisfies all rules in © (viewed as first-order sentences). A minimal solution of I (w.r.t. D)
is a solution F' of I such that no proper subset of F' is a solution of I. The set of all, finite
and infinite, minimal solutions of I w.r.t. D is denoted by min-solp(I), and the set of all
finite minimal solutions is denoted by min-solfy(I). It is a well known fact that, if D is a
Datalog program (that is, without existential quantifiers), then every input instance I has a
unique minimal solution, which is finite, and therefore min—solﬁpn (I) = min-solp(I).

Probability spaces. We separately consider discrete and continuous probability spaces. We
initially focus on the discrete case; there, a probability space is a pair (Q, ), where § is
a finite or countably infinite set, called the sample space, and m : Q@ — [0, 1] is such that



V. Barany, B. ten Cate, B. Kimelfeld, D. Olteanu, and Z. Vagena

Y oca m(0) = 1. If (2, 7) is a probability space, then 7 is a probability distribution over Q.

We say that 7 is a numerical probability distribution if 2 C R. In this work we focus on
discrete numerical distributions.

A parameterized probability distribution is a function § : Q x R — [0,1], such that
5(-,p) : Q — [0,1] is a probability distribution for all p € R¥. We use pardim(4) to denote

the parameter dimension k. For presentation’s sake, we may write d(o|p) instead of (o, p).

Moreover, we denote the (non-parameterized) distribution §(-|p) by d[p]. An example of a
parameterized distribution is Flip(:|p), where € is {0,1}, and for a parameter p € [0, 1] we
have Flip(1|p) = p and Flip(0|p) = 1 — p. Another example is Poisson(-|\), where Q = N, and
for a parameter \ € (0,00) we have Poisson(z|\) = A\®e~*/z!. In Section 7 we discuss the
extension of our framework to models that have a variable number of parameters, and to
continuous distributions.

Let € be a set. A o-algebra over () is a collection F of subsets of €2, such that F contains
Q and is closed under complement and countable unions. (Implied properties include that
F contains the empty set, and that F is closed under countable intersections.) If F' is a
nonempty collection of subsets of Q, then the closure of ' under complement and countable
unions is a c-algebra, and it is said to be generated by F'. A probability measure space
is a triple (2, F,m), where: (1) Q is a set, called the sample space, (2) F is a o-algebra
over Q, and (8) m : F — [0,1], called a probability measure, is such that 7(2) = 1, and
T(UE) = > .ce m(e) for every countable set £ of pairwise-disjoint elements of F.

3 Generative Datalog

A Datalog program without existential quantifiers specifies how to obtain a minimal solution
from an input instance by producing the set of inferred IDB facts. In this section we
present generative Datalog programs, which specify how to infer a distribution over possible
outcomes given an input instance. In Section 5 we will complement generative programs with
constraints to establish the PPDL framework.

3.1 Syntax

The syntax of a generative Datalog program is defined as follows.

» Definition 1 (GDatalog[A]). Let A be a finite set of parameterized numerical distributions.

1. A A-term is a term of the form d[p1,...,px] where 6 € A is a parameterized distribution
with pardim(§) = £ < k, and each p; (i = 1,...,k) is a variable or a constant. To improve
readability, we will use a semicolon to separate the first £ arguments (corresponding to
the distribution parameters) from the optional other arguments (which we will call the
event signature), as in 6[p; q]. When the event signature is empty (i.e., when k = ¢), we
write §[p;].!

2. A A-atom in a schema § is an atomic formula R(ty,...,t,) with R € S an n-ary relation,
such that exactly one term t; (¢ = 1,...,n) is a A-term and the other terms t; are
variables and/or constants.?

! Intuitively, 5[p; q] denotes a sample from the distribution §(:|p) where different samples are drawn for
different values of the event signature q (cf. Example 2).
2 The restriction to at most one A-term per atom is only for presentational purposes, cf Section 3.5.

7:5

ICDT 2016



7:6

Declarative Probabilistic Programming with Datalog

House Business City AlarmOn
id city id city name burglaryrate unit
NP1 Napa NP3 Napa Napa 0.03 NP1
NP2 Napa YC1l VYucaipa Yucaipa 0.01 YC1
YC1l VYucaipa YC2

Figure 1 Input instance I of the burglar example.

Earthquake(c, Flip[0.01; Earthquake, c]) <+ City(c,7)
Unit(h,c) < House(h,c)

Unit(b,c¢) < Business(b, ¢)

Burglary(zx, ¢, Flip[r; Burglary, z,c]) <« Unit(z,c), City(c,r)
Trig(x, Flip[0.6; Trig,z]) <+ Unit(z, ¢), Earthquake(c, 1)
Trig(x, Flip[0.9; Trig,z]) + Burglary(x,c, 1)

Alarm(z) « Trig(z,1)

Nogogkrwbn=

Figure 2 GDatalog[A] program G for the burglar example.

3. A GDatalog|A] rule over a pair of disjoint schemas £ and 7 is a first-order sentence of
the form Vx (¢ (x) < ¢(x)) where ¢(x) is a conjunction of atoms in £ UZ and (x) is
either an atom in 7 or a A-atom in Z.

4. A GDatalog[A] program is a triple G = (£,Z,0), where £ and Z are disjoint schemas and
© is a finite set of GDatalog[A] rules over £ and Z.

» Example 2. Our example is based on the burglar example of Pearl [39] that has been
frequently used to illustrate probabilistic programming (e.g., [36]). Consider the EDB schema
& consisting of the following relations: House(h, ¢) represents houses h and their location
cities ¢, Business(b, ¢) represents businesses b and their location cities ¢, City(c, r) represents
cities ¢ and their associated burglary rates r, and AlarmOn(z) represents units (houses or
businesses) « where the alarm is on. Figure 1 shows an instance I over this schema. Now
consider the GDatalog[A] program G = (£,Z,0) of Figure 2.

Here, A consists of only one distribution, namely Flip. The first rule in Figure 2, intuitively,
states that, for every fact of the form City(c,r), there must be a fact Earthquake(c, y) where
y is drawn from the Flip (Bernoulli) distribution with the parameter 0.01. Moreover, the
additional arguments Earthquake and ¢ given after the semicolon (where Earthquake is a
constant) enforce that different samples are drawn from the distribution for different cities
(even if they have the same burglary rate), and that we never use the same sample as in
Rules 5 and 6. Similarly, the presence of the additional argument = in Rule 4 enforces that a
different sample is drawn for a different unit, instead of sampling only once per city.

» Example 3. The program of Figure 3 models virus dissemination among computers of

email users. For simplicity, we identify each user with a distinct computer. Every message

has a probability of passing a virus, if the virus is active on the source. If a message passes

the virus, then the recipient has the virus (but it is not necessarily active, e.g., since the

computer has the proper defence). And every user has a probability of having the virus

active on her computer, in case she has the virus. Our program has the following EDBs:
Message(m, s,t) contains message identifiers m sent from the user s to the user ¢.
VirusSource(z) contains the users who are known to be virus sources.



V. Barany, B. ten Cate, B. Kimelfeld, D. Olteanu, and Z. Vagena

PassVirus,1 PassVirus,2

1. PassVirus(m, Flip[0.1;m]) < Message(m, s,t), ActiveVirus(s, 1)

2. HasVirus(t) <« PassVirus(m, 1), Message(m, s, t) ActiveVirus,1 ActiveVirus,2
3. ActiveVirus(z, Flip[0.5; z]) < HasVirus(z) \ al

4 HasVirus,1

ActiveVirus(z,1) < VirusSource(x)

Figure 3 Program and dependency graph for the virus-dissemination example.

Earthquake(c, Flip[0.01]) <« City(c,r)
Unit(h,c) < House(h,c)

Unit(b,c) < Business(b, ¢)

Burglary(z, ¢, Flip[r]) < Unit(z,c), City(c,r)
Trig(x, Flip[0.6]) < Unit(z, c¢), Earthquake(c, 1)
Trig(x, Flip[0.9]) < Burglary(z,c,1)

Alarm(z) « Trig(z,1)

Nogogkrwbn=

Figure 4 Burglar program from Figure 2 modified to use syntactic sugar.

In addition, the following IDBs are used.
PassVirus(m, b) determines whether a message m passes a virus (b = 1) or not (b = 0).
HasVirus(z, b) determines whether user x has the virus (b = 1) or not (b = 0).
ActiveVirus(z, b) determines whether user = has the virus active (b = 1) or not (b = 0).
The dependency graph depicted in Figure 3 will be used later on, in Section 3.4, when we
further analyse this program.

Syntactic sugar. The syntax of GDatalog[A], as defined above, requires us to always make
explicit the arguments that determine when different samples are taken from a distribu-
tion (cf. the argument c¢ after the semicolon in Rule 1 of Figure 2, and the arguments
x, c after the semicolon in Rule 4 of the same program). To enable a more succinct nota-
tion, we use the following convention: consider a A-atom R(t1,...,t,) in which the i-th
argument, t;, is a A-term. Then ¢; may be written using the simpler notation 4[p], in
which case it is understood to be a shorthand for §[p; q] where q is the sequence of terms
ryi,t1,...,ti—1,ti+1,...,tn. Here, r is a constant uniquely associated to the relation R.
Thus, for example, Earthquake(c, Flip[0.01]) <« City(c,r) is taken to be a shorthand for
Earthquake(c, Flip[0.01; Earthquake, 2, ¢]) « City(c,r). Using this syntactic sugar, the pro-
gram in Figure 2 can be rewritten in a notationally less verbose way, cf. Figure 4. Note,
however, that the shorthand notation is less explicit as to describing when two rules involve
the same sample vs. different samples from the same probability distribution.

3.2 Possible Outcomes

A GDatalog[A] program G = (£,Z, ©) is associated with a corresponding Datalog® program
G = (,I7,0%). The possible outcomes of an input instance I w.r.t. G will then be minimal
solutions of T w.r.t. G. Next, we describe 72 and 602.

The schema 72 extends Z with the following additional relation symbols: for each § € A
with pardim(8) = k and for each n > 0, we have a (k 4+ n 4 1)-ary relation symbol Result?.
These relation symbols Resultfb are called the distributional relation symbols of 7%, and the

77

ICDT 2016



7:8

Declarative Probabilistic Programming with Datalog

la. Jy Resultg“p(().OLEarthquake,c,y) + City(c,r)

1b. Earthquake(c,y) <« City(c,r),Resultg"p(O.()l,Earthquake,c,y)

2. Unit(h,c) < House(h,c)

3. Unit(b,c¢) ¢ Business(b,c)

4a. Jy Resultg“p(nBurglary,:r,c, y) < Unit(z,c), City(c,r)

4b. Burglary(z,c,y) < Unit(z,c), City(c,r),Resultglip(r,Burglaryw,c, Y)
5a. HyResultg“p(O.G,Trig,x,y) < Unit(z, ¢), Earthquake(c, 1)

5b. Trig(x,y) « Unit(z,c), Earthquake(c, 1), Result}™ (0.6, Trig, y, )
6a. HyResultgnp(O.Q,Trig,x,y) < Burglary(z,c, 1)

6b. Trig(x,y) <« Burglary(:z:,c,1),Resultg“p(O.Q,Trig,x,y)

7. Alarm(z) + Trig(z, 1)

Figure 5 The Datalog® program G for the GDatalog[A] program G of Figure 2.

other relation symbols of Z2 (namely, those of Z) are referred to as the ordinary relation
symbols. Intuitively, a fact in Resulti represents the result of a particular sample drawn
from & (where k is the number of parameters of § and n is the number of optional arguments
that form the event signature).

The set ©2 contains all Datalog rules from © that have no A-terms. In addition, for every
rule of the form 1 (x) < ¢(x) in ©, where ¢ contains a A-term of the form ¢[p; q] withn = |q|,
©2 contains the rules IyResult® (p, q,y) < ¢(x) and ¢/ (x,y) + ¢(x), Result’ (p, q,y), where
' is obtained from 1 by replacing 6[p;q] by v.

A possible outcome is defined as follows.

» Definition 4 (Possible Outcome). Let I be an input instance for a GDatalog[A] program G.
A possible outcome for I w.r.t. G is a minimal solution F of I w.r.t. G, such that §(b|p) > 0
for every distributional fact Resulti(p, q,b) € F.

We denote the set of all possible outcomes of I w.r.t. G by Qg(I), and we denote the set of
all finite possible outcomes by Q" (I).

» Example 5. The GDatalog[A] program G given in Example 2 gives rise to the Datalog?
program G of Figure 5. For instance, Rule 6 of Figure 2 is replaced with Rules 6a and 6b
of Figure 5. An example of a possible outcome for the input instance I is the instance
consisting of the relations in Figure 6 (ignoring the “pr(f)” columns for now), together with
the relations of I itself.

3.3 Probabilistic Semantics

The semantics of a GDatalog[A] program is a function that maps every input instance I to
a probability distribution over Qg (I). We now make this precise. For a distributional fact f
of the form Resulti (p, q, a), the probability of f, denoted pr(f), is defined to be §(a|p). For
an ordinary (non-distributional) fact f, we define pr(f) = 1. For a finite set F' of facts, we
denote by P(F) the product of the probabilities of all the facts in F:3

P(F) = [ pr(s)

fer

3 The product reflects the law of total probability and does not assume that different random choices are
independent (and indeed, correlation is clear in the examples throughout the paper).



V. Barany, B. ten Cate, B. Kimelfeld, D. Olteanu, and Z. Vagena

Resulth™ Unit Earthquake Alarm

D atty atts result  pr(f) id city city eq unit
0.01 Earthquake Napa 1 0.01 NP1 Napa Napa 1 NP1
0.01 Earthquake Yucaipa 0 0.99 NP2 Napa Yucaipa O NP2
0.9 Trig NP1 1 0.9 NP3 Napa
0.9 Trig NP3 0 0.1 YC1l VYucaipa
0.6 Trig NP1 1 0.6
0.6 Trig NP2 1 0.6

0.6 Trig NP3 0 0.4

Result}™ Burglary Trig

D atty atts atts result  pr(f) unit city draw unit  Trig
0.03 Burglary NP1 Napa 1 0.03 NP1 Napa 1 NP1 1
0.03 Burglary NP2 Napa 0 0.97 NP2 Napa 0 NP3 0
0.03 Burglary NP3 Napa 1 0.03 NP3 Napa 1 NP2 1
0.01 Burglary YC1 Yucaipa 0 0.99 YC1l Yucaipa 0 NP3 0

Figure 6 A possible outcome for the input instance I in the burglar example.

» Example 6 (continued). Let J be the instance that consists of all of the relations in
Figures 1 and 6. As we already remarked, J is a possible outcome of I w.r.t. G. For
convenience, in the case of distributional relations, we have indicated the probability of each
fact next to the corresponding row. P(.J) is the product of all of the numbers in the columns
titled “pr(f),” that is, 0.01 x 0.99 x 0.9 x - -+ x 0.99.

One can easily come up with examples where possible outcomes are infinite, and in
fact, the space Qg(I) of all possible outcomes is uncountable. Hence, we need to consider
probability spaces over uncountable domains; those are defined by means of measure spaces.

Let G be a GDatalog[A] program, and let I be an input for G. We say that a finite
sequence f = (f1,..., fn) of facts is a derivation (w.r.t. I) if for all 4 = 1,... n, the fact f; is
the result of applying some rule of G that is not satisfied in 7 U {f1,..., fi—1} (in the case of
applying a rule with a A-atom in the head, choosing a value randomly). If f1,..., f, is a
derivation, then the set {f1,..., fn} is a derivation set. Hence, a finite set F' of facts is a
derivation set if and only if I U F' is an intermediate instance in some chase tree.

Let G be a GDatalog[A] program, I be an input for G, and F be a set of facts. We denote
by Qgg(I) the set of all possible outcomes J C Qg(I) such that FF C J. The following

theorem states how we determine the probability space defined by a GDatalog[A] program.

» Theorem 7. Let G be a GDatalog[A] program, and let I be an input for G. There
exists a unique probability measure space (2, F,m), denoted ug,r, that satisfies all of the
following.

1. Q= Qg(I);

2. (Q, F) is the o-algebra generated from the sets of the form Qgg(l) where F is finite;

3. W(Qgg(l)) = P(F) for every derivation set F.

Moreover, if J is a finite possible outcome, then w({J}) is equal to P(J).

Theorem 7 provides us with a semantics for GDatalog[A] programs: the semantics of a
GDatalog[A] program G is a map from input instances I to probability measure spaces pig
over possible outcomes (as uniquely determined by Theorem 7). The proof of Theorem 7 is
by means of the chase procedure, which we discuss in the next section. A direct corollary of
the theorem applies to the important case where all possible outcomes are finite (and the
probability space may be infinite, but necessarily discrete).

7:9

ICDT 2016



7:10

Declarative Probabilistic Programming with Datalog

» Corollary 8. Let G be a GDatalog|A] program, and I an input instance for G, such
that Qg(I) = Qfn(I). Then P is a discrete probability function over Qg(I); that is,

ZJGQQ([) P(J) == 1.

3.4 Finiteness and Weak Acyclicity

Corollary 8 applies only when all solutions are finite, that is, Qg(I) = Qfgi“ (I). We now
present the notion of weak acyclicity for a GDatalog[A] program, as a natural syntactic
condition that guarantees finiteness of all possible outcomes (for all input instances). This
draws on the notion of weak acyclicity for Datalog? [18]. Consider any GDatalog[A] program
G =(€,Z,0). A position of T is a pair (R,i) where R € 7 and ¢ is an attribute of R. The
dependency graph of G is the directed graph that has the positions of Z as the nodes, and the
following edges:

A normal edge (R,i) — (S,j) whenever there is a rule 1(x) + ¢(x) and a variable z

occurring at position (R, 1) in ¢(x), and at position (S, j) in 1(x).

A special edge (R,i) —* (S, j) whenever there is a rule of the form

S(tla oo 7tj7176[[p;q]]7tj+15 s 7tn) <~ SD(X)

and a variable  occurring at position (R, %) in ¢(x) as well as in p or q.
We say that G is weakly acyclic if no cycle in its dependency graph contains a special edge.

» Theorem 9. If a GDatalog[A] program G is weakly acyclic, then Qg(I) = Qfgi“(I) for all
input instances I.

» Example 10. The burglar example program in Figure 2 is easily seen to be weakly acyclic
(indeed, every non-recursive GDatalog[A] program is weakly-acyclic). In the case of the
virus-dissemination example, the dependency graph in Figure 3 shows that, although this
program features recursion, it is weakly acyclic as well.

3.5 Discussion

We conclude this section with some comments. First, we note that the restriction of a
conclusion of a rule to include a single A-term significantly simplifies the presentation, but
does not reduce the expressive power. In particular, we could simulate multiple A-terms in
the conclusion using a collection of predicates and rules. For example, if one wishes to have
conclusion where a person gets both a random height and a random weight (possibly with
shared parameters), then she can do so by deriving PersonHeight(p, h) and PersonWeight(p, w)
separately, and using the rule PersonHW (p, h, w) < PersonHeight(p, h), PersonWeight(p, w).
We also highlight the fact that our framework can easily simulate the probabilistic database
model of independent tuples [46] with probabilities mentioned in the database. The framework
can also simulate Bayesian networks, given relations that store the conditional probability
tables, using the appropriate numerical distributions (e.g., Flip for the case of Boolean random
variables). In addition, we note that a disjunctive Datalog rule [16], where the conclusion
can be a disjunction of atoms, can be simulated by our model (with probabilities ignored): If
the conclusion has n disjuncts, then we construct a distributional rule with a probability
distribution over {1,...,n}, and additional n deterministic rules corresponding to the atoms.

4 Chasing Generative Programs

The chase [29, 3] is a classic technique used for reasoning about database integrity constraints
such as tuple-generating dependencies. This technique can be equivalently viewed as a



V. Barany, B. ten Cate, B. Kimelfeld, D. Olteanu, and Z. Vagena

tableaux-style proof system for V*3*-Horn sentences. In the special case of full tuple-
generating dependencies, which are syntactically isomorphic to Datalog rules, the chase is
closely related to (a tuple-at-a-time version of) the naive bottom-up evaluation strategy for
Datalog program (cf. [2]). We now present a suitable variant of the chase for generative
Datalog programs, and use it in order to construct the probability space of Theorem 7.

We note that, although the notions and results could arguably be phrased in terms
of a probabilistic extension of the bottom-up Datalog evaluation strategy, the fact that a
GDatalog[A] rule can create new values makes it more convenient to phrase them in terms
of a suitable adaptation of the chase procedure.

Throughout this section, we fix a GDatalog[A] program G = (£,Z,0) and its associated
Datalog® program G= (£,7%,0%). We first define the notions of chase step and chase tree.

Chase step. Consider an instance J, a rule 7 € ©4 of the form 1 (x) + ¢(x), and a tuple
a such that p(a) is satisfied in J but (a) is not satisfied in J. If 1)(x) is a distributional
atom of the form EIyResult;S (P, q,y), then ¥ being “not satisfied” is interpreted in the logical
sense (regardless of probabilities): there is no y such that (p,q,y) is in Resultf. In that case,
let J be the set of all instances J, obtained by extending J with (a) for a specific value b of
the existential variable y, such that §(b|p) > 0. Furthermore, let 7 be the discrete probability
distribution over J that assigns to Jj, the probability §(b|p). If ¢(x) is an ordinary atom
without existential quantifiers, [J is simply defined as {J'}, where J’ extends J with the fact

Y(a), and w(J') = 1. We say that J @), (J,m) is a valid chase step.

Chase tree. Let I be an input instance for G. A chase tree for I w.r.t. G is a possibly

infinite tree, whose nodes are labeled by instances over £ UZ, and whose edges are labeled

by real numbers, such that:

1. The root is labeled by I;

2. For each non-leaf node labeled J, if J is the set of labels of the children of the node,
and if 7 is the map assigning to each J' € J the label of the edge from J to J', then

J (a)
)

3. For each leaf node labeled J, there does not exist a valid chase step of the form J &
(T, ). In other words, the tree cannot be extended to a larger chase tree.

(J,m) is a valid chase step for some rule 7 € ©* and tuple a.

We denote by L(v) the label (instance) of the node v. Each L(v) is said to be an
intermediate instance w.r.t. the chase tree. Consider a GDatalog[A] program G and an input
I for G. A maximal path of a chase tree T is a path P that starts with the root, and either
ends in a leaf or is infinite. Observe that the labels (instances) along a maximal path form a
chain (w.r.t. the set-containment partial order). A maximal path P of a chase tree is fair
if whenever the premise of a rule is satisfied by some tuple in some intermediate instance
on P, then the conclusion of the rule is satisfied for the same tuple in some intermediate
instance on P. A chase tree T' is fair (or has the fairness property) if every maximal path is
fair. Note that finite chase trees are fair. We restrict attention to fair chase trees. Fairness

4 moreover, fair chase trees can be

is a classic notion in the study of infinite computations;
constructed, for example, by maintaining a queue of “active rule firings.”

Let G be a GDatalog[A] program, I be an input for G, and T be a chase tree. We denote
by paths(T') the set of maximal paths of T. (Note that paths(T) may be uncountably infinite.)

For P € paths(T'), we denote by UP the union of the (chain of) labels L(v) along P.

4t any textbook on term rewriting systems or lambda calculus.

7:11

ICDT 2016



7:12

Declarative Probabilistic Programming with Datalog

» Theorem 11. Let G be a GDatalog|A] program, I an input for G, and T a fair chase tree.
The mapping P — UP is a bijection between paths(T) and Qg(I).

Chase measure. Let G be a GDatalog[A] program, let I be an input for G, and let T' be
a chase tree. Our goal is to define a probability measure over Qg (I). Given Theorem 11, we
can do that by defining a probability measure over paths(T'). A random path in paths(T) can
be viewed as a Markov chain that is defined by a random walk over T', starting from the root.
A measure space for such a Markov chain is defined by means of cylindrification [7]. Let v
be a node of T. The v-cylinder of T, denoted CI', is the subset of paths(T) that consists
of all the maximal paths that contain v. A cylinder of T is a subset of paths(T) that forms
a v-cylinder for some node v. We denote by C(T') the set of all the cylinders of T'.

Recall that L(v) is a finite set of facts, and observe that P(L(v)) is the product of the
probabilities along the path from the root to v. The following theorem is a special case of a
classic result on Markov chains (cf. [7]).

» Theorem 12. Let G be a GDatalog[A] program, let I be an input for G, and let T be
a chase tree. There exists a unique probability measure (Q, F,m) that satisfies all of the
following.

1. Q = paths(T).

2. (Q,F) is the o-algebra generated from C(T).

3. 7(CT) = P(L(v)) for all nodes v of T

Theorems 11 and 12 suggest the following definition.

» Definition 13 (Chase Probability Measure). Let G be a GDatalog[A] program, let I be an
input for G, let T be a chase tree, and let (2, F, ) be the probability measure of Theorem 12.
The probability measure ur over Qg(I) is the one obtained from (2, F, ) by replacing every
maximal path P with the possible outcome UP.

The following theorem states that the probability measure space represented by a chase
tree is independent of the specific chase tree of choice.

» Theorem 14. Let G be a GDatalog[A] program, let I be an input for G, and let T and T’
be two fair chase trees. Then ur = pug.

5 Probabilistic-Programming Datalog

To complete our framework, we define probabilistic-programming Datalog, PPDL for short,
wherein a program augments a generative Datalog program with constraints; these constraints
unify the traditional integrity constraints of databases and the traditional observations of
probabilistic programming.

» Definition 15 (PPDL[A]). Let A be a finite set of parameterized numerical distributions.
A PPDL[A] program is a quadruple (£,Z,0, ®), where (£,Z,0) is a GDatalog[A] program
and @ is a finite set of logical constraints over £ UZ.5

» Example 16. Consider again Example 2. Suppose that we have the EDB relations
ObservedHAlarm and ObservedBAlarm that represent observed home and business alarms,
respectively. We obtain from the program in the example a PPDL[A]-program by adding
the following constraints:

5 We will address the choice of constraint language, and its algorithmic impact, in future work.



V. Barany, B. ten Cate, B. Kimelfeld, D. Olteanu, and Z. Vagena

1. ObservedHAlarm(h) — Alarm(h)

2. ObservedBAlarm(b) — Alarm(b)

We use right (in contrast to left) arrows to distinguish constraints from ordinary Datalog
rules. Note that a possible outcome J of an input instance I satisfies these constraints if J
contains Alarm(z) for all z € ObservedHAlarm’ U ObservedBAlarm’.

A PPDLI[A] program defines the posterior distribution over its GDatalog[A] program,
conditioned on the satisfaction of the constraints. A formal definition follows.

Let P = (£,Z,0,®) be a PPDL[A] program, and let G be the GDatalog[A] program
(£,Z,0). An input instance for P is an input instance I for G. We say that I is a legal input
instance if {J € Qg(I) | J = ®} is a measurable set in the probability space ug 1, and its
measure is nonzero. Intuitively, I is legal if it is consistent with the observations (i.e., with
the constraints in @), given G. The semantics of a PPDL[A] program is defined as follows.

» Definition 17. Let P = (£,Z,0,®) be a PPDL[A] program, G the GDatalog[A] program
(€,Z,0), I alegal input instance for P, and ug 1 = (Qg(I), Fg,ng). The probability space
defined by P and I, denoted pp 1, is the triple (Qp(I), Fp, mp) where:

L Qp(l)={J €Qg() | J = 2}

2. Fp={SNnQp()|S e Fg}

3. mp(S) =ng(S)/ng(Qp(I)) for every S € Fp.

In other words, up r is pug,r conditioned on ®.

» Example 18. Continuing Example 16, the semantics of this program is the posterior
probability distribution that is obtained from the prior of Example 2, by conditioning on the
fact that Alarm(z) holds for all z € ObservedHAlarm’ U ObservedBAlarm’. Similarly, using

an additional constraint we can express the condition that an alarm is off unless observed.

One can ask various natural queries over this probability space of possible outcomes, such as
the probability of the fact Earthquake(Napa, 1).

We note that when G is weakly acyclic, the event defined by ® is measurable (since in
that case the probability space is discrete) and the definition of legality boils down to the
existence of a possible outcome.

5.1 Invariance under First-Order Equivalence

PPDL[A] programs are fully declarative in a strong sense: syntactically their rules and
constraints can be viewed as first-order theories. Moreover, whenever two PPDL[A] programs,
viewed in this way, are logically equivalent, then they are equivalent as PPDL[A] programs,
in the sense that they give rise to the same set of possible outcomes and the same probability
distribution over possible outcomes.

Formally, we say that two PPDL[A] programs, P; = (£,Z,01,®;) and Py = (£,Z, 04, ®3),
are semantically equivalent if, for all input instances I, the probability spaces pup, r and pp, 1
coincide. Syntactically, the rules and constraints of a PPDL[A] program can be viewed as a
finite first-order theory over a signature consisting of relation symbols, constant symbols, and
function symbols (here, if the same name of a function name is used with different numbers
of arguments, such as Flip in Figure 2, we treat them as distinct function symbols). We say
that P; and Ps are FO-equivalent if, viewed as first-order theories, O is logically equivalent
to O3 (i.e., the two theories have the same models) and likewise for ®; and ®5. We have the
following theorems.

» Theorem 19. If two PPDL[A] programs are FO-equivalent, then they are semantically
equivalent (but not necessarily vice versa).

7:13

ICDT 2016



7:14

Declarative Probabilistic Programming with Datalog

» Theorem 20. First-order equivalence is decidable for weakly acyclic GDatalog[A] programs.
Semantic equivalence is undecidable for weakly acyclic GDatalog[A] programs (in fact, even

for A=10).

6 Related Work

Our contribution is a marriage between probabilistic programming and the declarative spe-
cification of Datalog. The key features of our approach are the ability to express probabilistic
models concisely and declaratively in a Datalog extension with probability distributions as
first-class citizens. Existing formalisms that associate a probabilistic interpretation with logic
are either not declarative (at least in the Datalog sense) or depart from the probabilistic
programming paradigm (e.g., by lacking the support for numerical probability distributions).
We next discuss representative related formalisms and contrast them with our work. They can
be classified into three broad categories: (1) imperative specifications over logical structures,
(2) logic over probabilistic databases, and (3) indirect specifications over the Herbrand base.
(Some of these formalisms belong to more than one category.)

The first category includes imperative probabilistic programming languages [42]. We also
include in this category declarative specifications of Bayesian networks, such as BLOG [32]
and P-log [8]. Although declarative in nature, these languages inherently assume a form
of acyclicity that allows the rules to be executed serially. Here we are able to avoid such
an assumption since our approach is based on the minimal solutions of an existential
Datalog program. The program in Figure 3, for example, uses recursion (as is typically
the case for probabilistic models in social network analysis). In particular, it is not clear
how this program can be phrased by translation into a Bayesian network. BLOG can
express probability distributions over logical structures, via generative stochastic models that
can draw values at random from numerical distributions, and condition values of program
variables on observations. In contrast with closed-universe languages such as SQL and logic
programs, BLOG considers open-universe probability models that allow for uncertainty about
the existence and identity of objects.

The formalisms in the second category view the generative part of the specification of a
statistical model as a two-step process. In the first step, facts are randomly generated by a
mechanism external to the program. In the second step, a logic program, such as Prolog [26]
or Datalog [1], is evaluated over the resulting random structure. This approach has been
taken by PRISM [44], the Independent Choice Logic [41], and to a large extent by probabilistic
databases [46] and their semistructured counterparts [25]. We focus on a formalism that
completely defines the statistical model, without referring to external processes. As an
important example, in PPDL one can sample from distributions that have parameters that
by themselves are randomly generated using the program. This is the common practice in
Bayesian machine learning (e.g., logistic regression), but it is not clear how it can be done
within approaches of the second category.

One step beyond the second category and closer to our work is taken by uncertainty-
aware query languages for probabilistic data such as TriQL [48], I-SQL, and world-set
algebra [4, 5]. The latter two are natural analogs to SQL and relational algebra for the
case of incomplete information and probabilistic data [4]. They feature constructs such
as repair-key, choice-of, possible, and group-worlds-by that can construct possible
worlds representing all repairs of a relation w.r.t. key constraints, close the possible worlds
by unioning or intersecting them, or group the worlds into sets with the same results to
sub-queries. World-set algebra has been extended to (world-set) Datalog, fixpoint, and



V. Barany, B. ten Cate, B. Kimelfeld, D. Olteanu, and Z. Vagena

while-languages [14] to define Markov chains. While such languages cannot explicitly specify
probability distributions, they may simulate a specific categorical distribution indirectly
using non-trivial programs with specialized language constructs like repair-key on input
tuples with weights representing samples from the distribution.

MCDB [24] and SimSQL [12] propose SQL extensions (with for-loops and probability
distributions) coupled with Monte Carlo simulations and parallel database techniques for
stochastic analytics in the database. Their formalism does not involve the semantic challenges
that we have faced in this paper. Although being based on SQL, these extensions do not
offer a truly declarative means to specify probabilistic models, and end up being more similar
to the imperative languages mentioned under the first category.

Formalisms in the third category use rule weighting as indirect specifications of probability
spaces over the Herbrand base, which is the set of all the facts that can be obtained using the
predicate symbols and the constants of the database. This category includes Markov Logic
Networks (MLNs) [15, 34], where the logical rules are used as a compact and intuitive way of
defining factors. In other words, the probability of a possible world is the product of all the
numbers (factors) that are associated with the grounded rules that the world satisfies. This
approach is applied in DeepDive [35], where a database is used for storing relational data
and extracted text, and database queries are used for defining the factors of a factor graph.
We view this approach as indirect since a rule does not determine directly the distribution of
values. Moreover, the semantics of rules is such that the addition of a rule that is logically
equivalent to (or implied by, or indeed equal to) an existing rule changes the semantics and
thus the probability distribution. A similar approach is taken by Probabilistic Soft Logic [11],
where in each possible world every fact is associated with a degree of truth.

Further formalisms in this category are probabilistic Datalog [19], probabilistic Datalog+ /-
[21], and probabilistic logic programming (ProbLog) [26]. There, every rule is associated
with a probability. For ProbLog, the semantics is not declarative as the rules follow a
certain evaluation order; for probabilistic Datalog, the semantics is purely declarative. Both
semantics are different from ours and that of the other formalisms mentioned thus far. A
Datalog rule is interpreted as a rule over a probability distribution over possible worlds, and
it states that, for a given grounding of the rule, the marginal probability of being true is as
stated in the rule. Probabilistic Datalog+ /- uses MLNs as the underlying semantics. Besides
our support for numerical probability distributions, our formalism is used for defining a single
probability space, which is in par with the standard practice in probabilistic programming.

As discussed earlier, GDatalog[A] allows for recursion, and the semantics is captured by
(possibly infinite) Markov chains. Related formalisms are that of Probabilistic Context-Free
Grammars (PCFG) and the more general Recursive Markov Chains (RMC) [17], where
the probabilistic specification is by means of a finite set of transition graphs that can call
one another (in the sense of method calls) in a possibly recursive fashion. In the database
literature, PCFGs and RMCs are used in the context of probabilistic XML [13, 9]. These
formalisms do not involve numerical distributions. In future work, we plan to study their
relative expressive power compared to restrictions of our framework.

7 Concluding Remarks

We proposed and investigated a declarative framework for specifying statistical models in
the context of a database, based on a conservative extension of Datalog with numerical
distributions. The framework differs from existing probabilistic programming languages not
only due to the tight integration with a database, but also because of its fully declarative

7:15

ICDT 2016



7:16

Declarative Probabilistic Programming with Datalog

rule-based language: the interpretation of a program is independent of transformations
(such as reordering or duplication of rules) that preserve the first-order semantics. This
was achieved by treating a GDatalog[A] program as a Datalog program with existentially
quantified variables in the conclusion of rules, and applying a suitable variant of the chase.

This paper opens various important directions for future work. One direction is to
establish tractable conditions that guarantee that a given input is legal. Also, an interesting
problem is to detect conditions under which the chase is a self conjugate [43], that is, the
probability space pp 1 is captured by a chase procedure without backtracking.

Our ultimate goal is to develop a full-fledged PP system based on the declarative
specification language that we proposed here. In this work we focused on the foundations
and robustness of the specification language. As in other PP languages, inference, such as
computing the marginal probability of an IDB fact, is a challenging aspect, and we plan to
investigate the application of common approaches such as sampling-based and lifted-inference
techniques. We believe that the declarative nature of PPDL can lead to identifying interesting
fragments that admit tractable complexity due to specialized techniques, just as is the case
for Datalog evaluation in databases.

Practical applications will require further extensions to the language. We plan to support
continuous probability distributions (e.g., continuous uniform, Pareto, and Gaussian), which
are often used in statistical models. Syntactically, this extension is straightforward: we
just need to include these distributions in A. Likewise, extending the probabilistic chase
is also straightforward. More challenging is the semantic analysis, and, in particular, the
definition of the probability space induced by the chase. We also plan to extend PPDL to
support distributions that take a variable (and unbounded) number of parameters. A simple
example is the categorical distribution where a single member of a finite domain of items is
to be selected, each item with its own probability; in this case we can adopt the repair-key
operation of the world-set algebra [4, 5]. Finally, we plan to add support for multivariate
distributions, which are distributions with a support in R* for k > 1 (where, again, k can be
variable and unbounded). Examples of popular such distributions are multinomial, Dirichlet,
and multivariate Gaussian distribution.

At LogicBlox, we are working on extending LogiQL with PPDL. An interesting syntactic
and semantic challenge is that a program should contain rules of two kinds: probabilistic
programming (i.e., PPDL rules) and inference over probabilistic programs (e.g., find the
most likely execution). The latter rules involve the major challenge of efficient inference
over PPDL. Towards that, our efforts fall in three different directions. First, we implement
samplers of random executions. Second, we translate programs of restricted fragments into
external statistical solvers (e.g., Bayesian Network libraries and sequential Monte Carlo [45]).
Third, we are looking into fragments where we can apply exact and efficient (lifted) inference.

Acknowledgments. We are thankful to Molham Aref, Todd J. Green and Emir Pasalic for
insightful discussions and feedback on this work. We also thank Michael Benedikt, Georg
Gottlob and Yannis Kassios for providing useful comments and suggestions. Benny Kimelfeld
is a Taub Fellow, supported by the Taub Foundation. Kimelfeld’s work was supported in
part by the Israel Science Foundation. Dan Olteanu acknowledges the support of the EPSRC
programme grant VADA. This work was supported by DARPA under agreements #FA8750-
15-2-0009 and #FA8750-14-2-0217. The U.S. Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstanding any copyright thereon.



V. Barany, B. ten Cate, B. Kimelfeld, D. Olteanu, and Z. Vagena

—— References

1

10

11

12

13

14

15

16

17

18

19

20

21

22

Serge Abiteboul, Daniel Deutch, and Victor Vianu. Deduction with contradictions in Data-
log. In ICDT, pages 143-154, 2014.

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-
Wesley, 1995.

Alfred V. Aho, Catriel Beeri, and Jeffrey D. Ullman. The theory of joins in relational
databases. ACM Trans. on Datab. Syst., 4(3):297-314, 1979.

Lyublena Antova, Christoph Koch, and Dan Olteanu. From complete to incomplete inform-
ation and back. In SIGMOD, pages 713-724, 2007. doi:10.1145/1247480.1247559.
Lyublena Antova, Christoph Koch, and Dan Olteanu. Query language support for incom-
plete information in the MayBMS system. In VLDB, pages 1422-1425, 2007.

Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu, Emir
Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. Design and implementation of the
LogicBlox system. In PDOS, pages 1371-1382. ACM, 2015.

Robert B. Ash and Catherine Doleans-Dade. Probability & Measure Theory. Harcourt
Academic Press, 2000.

Chitta Baral, Michael Gelfond, and Nelson Rushton. Probabilistic reasoning with answer
sets. Theory Pract. Log. Program., 9(1):57-144, 2009.

Michael Benedikt, Evgeny Kharlamov, Dan Olteanu, and Pierre Senellart. Probabilistic
XML via Markov chains. PVLDB, 3(1):770-781, 2010.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J. of
Machine Learning Research, 3:993-1022, 2003.

Matthias Brocheler, Lilyana Mihalkova, and Lise Getoor. Probabilistic similarity logic. In
UAI pages 73-82, 2010.

Zhuhua Cai, Zografoula Vagena, Luis Leopoldo Perez, Subramanian Arumugam, Peter J.
Haas, and Christopher M. Jermaine. Simulation of database-valued Markov chains using
SimSQL. In SIGMOD, pages 637-648, 2013.

Sara Cohen and Benny Kimelfeld. Querying parse trees of stochastic context-free grammars.
In ICDT, pages 62-75. ACM, 2010.

Daniel Deutch, Christoph Koch, and Tova Milo. On probabilistic fixpoint and Markov
chain query languages. In PODS, pages 215226, 2010. doi:10.1145/1807085.1807114.
Pedro Domingos and Daniel Lowd. Markov Logic: An Interface Layer for Artificial Intel-
ligence. Synthesis Lectures on Al and Machine Learning. Morgan & Claypool Publishers,
2009.

Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive Datalog. ACM Trans.
Database Syst., 22(3):364-418, 1997.

Kousha Etessami and Mihalis Yannakakis. Recursive Markov chains, stochastic grammars,

and monotone systems of nonlinear equations. J. ACM, 56(1), 2009. doi:10.1145/1462153.

1462154.

Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange:
Semantics and query answering. In ICDT, pages 207-224, 2003.

Norbert Fuhr. Probabilistic Datalog: Implementing logical information retrieval for ad-
vanced applications. JASIS, 51(2):95-110, 2000.

Noah D. Goodman. The principles and practice of probabilistic programming. In POPL,
pages 399-402, 2013.

Georg Gottlob, Thomas Lukasiewicz, MariaVanina Martinez, and Gerardo Simari. Query
answering under probabilistic uncertainty in Datalog+ /- ontologies. Annals of Math.€& Al
69(1):37-72, 2013. doi:10.1007/s10472-013-9342-1.

Terry Halpin and Spencer Rugaber. LogiQL: A Query Language for Smart Databases. CRC
Press, 2014.

7:17

ICDT 2016


http://dx.doi.org/10.1145/1247480.1247559
http://dx.doi.org/10.1145/1807085.1807114
http://dx.doi.org/10.1145/1462153.1462154
http://dx.doi.org/10.1145/1462153.1462154
http://dx.doi.org/10.1007/s10472-013-9342-1

7:18

Declarative Probabilistic Programming with Datalog

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. Datalog and emerging ap-
plications: An interactive tutorial. In SIGMOD, pages 1213-1216, 2011. doi:10.1145/
1989323.1989456.

Ravi Jampani, Fei Xu, Mingxi Wu, Luis Leopoldo Perez, Christopher M. Jermaine, and
Peter J. Haas. MCDB: a Monte Carlo approach to managing uncertain data. In SIGMOD,
pages 687-700, 2008.

Benny Kimelfeld and Pierre Senellart. Probabilistic XML: models and complexity. In
Advances in Probabilistic Databases for Uncertain Information Management, volume 304
of Studies in Fuzziness and Soft Computing, pages 39—-66. Springer, 2013.

Angelika Kimmig, Bart Demoen, Luc De Raedt, Vitor Santos Costa, and Ricardo Rocha.
On the implementation of the probabilistic logic programming language ProbLog. Theory
and Practice of Logic Programming, 11:235-262, 2011. doi:10.1017/51471068410000566.
Lyric Labs. Chimple. URL: http://chimple.probprog.org/.

Boon Thau Loo, Tyson Condie, Minos N. Garofalakis, David E. Gay, Joseph M. Heller-
stein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica. Declarative
networking. Commun. ACM, 52(11):87-95, 2009. doi:10.1145/1592761.1592785.

David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. Testing implications of data
dependencies. ACM Trans. on Datab. Syst., 4(4):455-469, 1979.

Vikash K. Mansinghka, Daniel Selsam, and Yura N. Perov. Venture: a higher-order prob-
abilistic programming platform with programmable inference. CoRR, abs/1404.0099, 2014.
URL: http://arxiv.org/abs/1404.0099.

Andrew Kachites McCallum. Multi-label text classification with a mixture model trained
by EM. In Assoc. for the Advancement of Artificial Intelligence workshop on text learning,
1999.

B. Milch and et al. BLOG: Probabilistic models with unknown objects. In IJCAI pages
1352-1359, 2005.

Kamal Nigam, Andrew McCallum, Sebastian Thrun, and Tom M. Mitchell. Text classific-
ation from labeled and unlabeled documents using EM. Machine Learning, pages 103-134,
2000.

Feng Niu, Christopher Ré, AnHai Doan, and Jude W. Shavlik. Tuffy: Scaling up statistical
inference in Markov Logic Networks using an RDBMS. PVLDB, 4(6):373-384, 2011.

Feng Niu, Ce Zhang, Christopher Re, and Jude W. Shavlik. DeepDive: Web-scale
knowledge-base construction using statistical learning and inference. In Int. Workshop
on Searching and Integrating New Web Data Sources, volume 884 of CEUR Workshop Pro-
ceedings, pages 25-28, 2012.

Aditya V. Nori, Chung-Kil Hur, Sriram K. Rajamani, and Selva Samuel. R2: an efficient
MCMC sampler for probabilistic programs. In AAAI pages 2476-2482, 2014.

Brooks Paige and Frank Wood. A compilation target for probabilistic programming lan-
guages. In ICML, volume 32, pages 1935-1943, 2014.

Anand Patil, David Huard, and Christopher J. Fonnesbeck. PyMC: Bayesian Stochastic
Modelling in Python. J. of Statistical Software, 35(4):1-81, 2010.

Judea Pearl. Probabilistic reasoning in intelligent systems — networks of plausible inference.
Morgan Kaufmann, 1989.

Avi Pfeffer. Figaro: An object-oriented probabilistic programming language. Technical
report, Charles River Analytics, 2009.

David Poole. The independent choice logic and beyond. In Probabilistic Inductive Logic
Programming — Theory and Applications, pages 222-243, 2008.

Repository on probabilistic programming languages, 2014. URL: http://www.
probabilistic-programming.org.


http://dx.doi.org/10.1145/1989323.1989456
http://dx.doi.org/10.1145/1989323.1989456
http://dx.doi.org/10.1017/S1471068410000566
http://chimple.probprog.org/
http://dx.doi.org/10.1145/1592761.1592785
http://arxiv.org/abs/1404.0099
http://www.probabilistic-programming.org
http://www.probabilistic-programming.org

V. Barany, B. ten Cate, B. Kimelfeld, D. Olteanu, and Z. Vagena

43

44

45

46

47

48

H. Raiffa and R. Schlaifer. Applied Statistical Decision Theory. Harvard University Press,
Harvard, 1961.

Taisuke Sato and Yoshitaka Kameya. PRISM: A language for symbolic-statistical modeling.

In IJCAI pages 1330-1339, 1997.

Adrian Smith, Arnaud Doucet, Nando de Freitas, and Neil Gordon. Sequential Monte Carlo
methods in practice. Springer Science & Business Media, 2013.

Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Databases.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2011.

Balder ten Cate, Benny Kimelfeld, and Dan Olteanu. PPDL: probabilistic programming
with Datalog. In AMW, volume 1378 of CEUR Workshop Proceedings. CEUR-WS.org,
2015.

Jennifer Widom. Trio: a system for data, uncertainty, and lineage. In Charu Aggarwal,
editor, Managing and Mining Uncertain Data, chapter 5. Springer-Verlag, 2008.

7:19

ICDT 2016






Worst-Case Optimal Algorithms for Parallel Query
Processing”*

Paraschos Koutris!, Paul Beame?, and Dan Suciu?®

1  University of Washington, Seattle, WA, USA
pkoutris@cs.washington.edu

2  University of Washington, Seattle, WA, USA
beame@cs.washington.edu

3  University of Washington, Seattle, WA, USA
suciu@cs.washington.edu

—— Abstract

In this paper, we study the communication complexity for the problem of computing a conjunctive
query on a large database in a parallel setting with p servers. In contrast to previous work, where
upper and lower bounds on the communication were specified for particular structures of data
(either data without skew, or data with specific types of skew), in this work we focus on worst-case
analysis of the communication cost. The goal is to find worst-case optimal parallel algorithms,
similar to the work of [17] for sequential algorithms.

We first show that for a single round we can obtain an optimal worst-case algorithm. The
optimal load for a conjunctive query ¢ when all relations have size equal to M is O(M/p'/*"),
where 1* is a new query-related quantity called the edge quasi-packing number, which is different
from both the edge packing number and edge cover number of the query hypergraph. For
multiple rounds, we present algorithms that are optimal for several classes of queries. Finally,
we show a surprising connection to the external memory model, which allows us to translate
parallel algorithms to external memory algorithms. This technique allows us to recover (within
a polylogarithmic factor) several recent results on the I/O complexity for computing join queries,
and also obtain optimal algorithms for other classes of queries.

1998 ACM Subject Classification H.2.4 [Systems] Query Processing
Keywords and phrases conjunctive query, parallel computation, worst-case bounds

Digital Object Identifier 10.4230/LIPIcs.ICDT.2016.8

1 Introduction

The last decade has seen the development and widespread use of massively parallel systems
that perform data analytics tasks over big data: examples of such systems are MapReduce [7],
Dremel [16], Spark [21] and Myria [10]. In contrast to traditional database systems, where the
computational complexity is dominated by the disk access time, the data now typically fits in
main memory, and the dominant cost becomes that of communicating data and synchronizing
among the servers in the cluster.

In this paper, we present a worst-case analysis of algorithms for processing of conjunctive
queries (multiway join queries) on such massively parallel systems. Our analysis is based
on the Massively Parallel Computation model, or MPC [4, 5]. MPC is a theoretical model
where the computational complexity of an algorithm is characterized by both the number of

* This work is partially supported by NSF 11S-1247469, AitF 1535565, CCF-1217099 and CCF-1524246.

© Paraschos Koutris, Paul Beame, and Dan Suciu;

37 licensed under Creative Commons License CC-BY
19th International Conference on Database Theory (ICDT 2016).
Editors: Wim Martens and Thomas Zeume; Article No. 8; pp. 8:1-8:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2

Worst-Case Optimal Algorithms for Parallel Query Processing

rounds (so the number of synchronization barriers) and the maximum amount of data, or
mazimum load, that each processor receives at every round.

The focus of our analysis on worst-case behavior of algorithms is a fundamentally different
approach from previous work, where optimality of a parallel algorithm was defined for a
specific input, or a specific family of inputs. Here we obtain upper bounds on the load of the
algorithm across all possible types of input data. To give a concrete example, consider the
simple join between two binary relations R and S of size M in bits (and m tuples), denoted
q(z,y,z) = R(x, 2), S(y, z), and suppose that the number of servers is p. In the case where
there is no data skew (which means in our case that the frequency of each value of the z
variable in both R and S is at most m/p), it has been shown in [5] that the join can be
computed in a single round with load O(M/p) (where the notation O hides a polylogarithmic
factor depending on p), by simply hashing each tuple according to the value of the z variable.
However, if the z variable is heavily skewed both in R and S (and in particular if there
exists a single value of z), computing the query becomes equivalent to computing a cartesian
product, for which we need Q(M /pl/ 2) load. In this scenario, although for certain instances
we can obtain better guarantees for the load, the heavily skewed instance is a worst-case
input, in the sense that the lower bound Q(M/ pt/ %) specifies the worst possible load that
we may encounter. Our goal is to design algorithms for single or multiple rounds that are
optimal with respect to such worst-case inputs and never incur larger load for any input.

Related Work. Algorithms for joins in the MPC model were previously analyzed in [4, 5].
In [4], the authors presented algorithms for one and multiple rounds on input data without
skew (in particular when each value appears exactly once in each relation, which is a called a
matching database). In [5], the authors showed that the HyperCube (HC) algorithm, first
presented by Afrati and Ullman [2], can optimally compute any conjunctive query for a single
round on data without skew. The work in [5] also presents one-round algorithms and lower
bounds for skewed data but the upper and lower bounds do not necessarily coincide.

Several other computation models have been proposed in order to understand the power
of MapReduce and related massively parallel programming paradigms [8, 13, 15, 1]. All these
models identify the number of communication steps/rounds as a main complexity parameter,
but differ in their treatment of the communication. Previous work [20, 14] has also focused
on computing various graph problems in message-passing parallel models. In contrast to this
work, where we focus on algorithms that require a constant number of rounds, the authors
consider algorithms that need a large number of rounds.

Our setting and worst-case analysis can be viewed as the analogous version of the work
of Ngo et al. [17] on worst-case optimal algorithms for multiway join processing. As we will
show later, the worst-case instances for a given query ¢ are different for the two settings
in the case of one round, but coincide for all the families of queries we examine when we
consider multiple rounds.

Our Contributions. We first present in Section 3 tight upper and lower bounds for the
worst-case load of one-round algorithms for any full conjunctive query ¢ without self-joins.’
The optimal algorithm uses a different parametrization (share allocation) of the HyperCube

algorithm for different parts of the input data, according to the values that are skewed. In

1 The restriction to queries without self-joins is not limiting, since we can extend our result to queries
with self-joins (by losing a constant factor) by treating copies of a relation as distinct relations. The
parallel complexity for queries with projections is however an open question.



P. Koutris, P. Beame, and D. Suciu

the case where all relation sizes are equal to M, the algorithm achieves an optimal load
O(M/p"/*" (@) where ¥*(q) is the edge quasi-packing number of the query g. An edge
quasi-packing is an edge packing on any vertex-induced projection of the query hypergraph
(in which we shrink hyperedges when we remove vertices).

In Section 4, we show that for any full conjunctive query ¢, any algorithm with a constant
number of rounds requires a load of Q(M/pl/”*)7 where p* is the edge cover number. We
then present optimal (within a polylogarithmic factor) multi-round algorithms for several
classes of join queries. Our analysis shows that some queries (such as the star query T}) can
be optimally computed using the optimal single-round algorithm from Section 3. However,
other classes of queries, such as the cycle query C} for k # 4, the line query Ly, or the
Loomis-Whitney join LW}, require 2 or more rounds to achieve the optimal load. For example,
we present an algorithm for the full query (or clique) K} that uses k — 1 rounds to achieve
the optimal load (although it is open whether only 2 rounds are sufficient).

Finally, in Section 5 we present a surprising application of our results in the setting of
external memory algorithms. In this setting, the input data does not fit into main memory,
and the dominant cost of an algorithm is the I/O complexity: reading the data from the disk
into the memory and writing data on the disk. In particular, we show that we can simulate
an MPC algorithm in the external memory setting, and obtain almost-optimal (within a
polylogarithmic factor) external memory algorithms for computing triangle queries; the same
technique can be easily applied to other classes of queries.

2 Background

In this section, we introduce the MPC model and present the necessary terminology and
technical tools that we will use later in the paper.

2.1 The MPC Model

We first review the Massively Parallel Computation model (MPC), which allows us to analyze
the performance of algorithms in parallel environments. In the MPC model, computation is
performed by p servers, or processors, connected by a complete network of private channels.
The computation proceeds in steps, or rounds, where each round consists of two distinct
phases. In the communication phase, the servers exchange data, each by communicating with
all other servers. In the computation phase, each server performs only local computation.

The input data of size M bits is initially uniformly partitioned among the p servers, that
is, each server stores M/p bits of data. At the end of the execution, the output must be
present in the union of the output of the p processors.

The execution of a parallel algorithm in the MPC model is captured by two parameters.
The first parameter is the number of rounds r that the algorithm requires. The second
parameter is the mazimum load L, which measures the maximum amount of data (in bits)
received by any server during any round.

All the input data will be distributed during some round, since we need to perform some
computation on it. Thus, at least one server will receive at least data of size M/p. On the
other hand, the maximum load will never exceed M, since any problem can be trivially
solved in one round by simply sending the entire data to server 1, which can then compute
the answer locally. Our typical loads will be of the form M /p!~=¢, for some parameter &
(0 <& < 1) that depends on the query. For a similar reason, we do not allow the number of
rounds to reach r = p, because any problem can be trivially solved in p rounds by sending

8:3

ICDT 2016



8:4

Worst-Case Optimal Algorithms for Parallel Query Processing

M /p bits of data at each round to server 1, until this server accumulates the entire data. In
this paper we only consider the case r = O(1).

2.2 Conjunctive Queries

In this paper we focus on a particular class of problems for the MPC model, namely computing
answers to conjunctive queries over a database. We fix an input vocabulary Sy, ..., Sy, where
each relation S; has a fixed arity a;; we denote a = Zle
relation instance for each symbol.

We consider full conjunctive queries (CQs) without self-joins, denoted as follows:

a;. The input data consists of one

Q1. xp) = S0 ) Sel)

The query is full, meaning that every variable in the body appears in the head (for example
g(z) = S(z,y) is not full), and without self-joins, meaning that each relation name S; appears
only once (for example ¢(z,y,2) = S(x,y), S(y, 2) has a self-join). We use vars(S;) to denote
the set of variables in the atom .S}, and vars(g) to denote the set of variables in all atoms of ¢.
Further, k and ¢ denote the number of variables and atoms in g respectively. The hypergraph
of a conjunctive query ¢ is defined by introducing one node for each variable in the body
and one hyperedge for each set of variables that occur in a single atom.

The fractional edge packing associates a non-negative weight u; to each atom S; such that
for every variable x;, the sum of the weights for the atoms that contain z; does not exceed 1.
We let pk(g) denote the set of all fractional edge packings for g. The fractional covering number
7* is the maximum sum of weights over all possible edge packings, 7*(q) = maxyepk(q) Zj Uj.

The fractional edge cover associates a non-negative weight w; to each atom Sj, such that
for every variable x;, the sum of the weights of the atoms that contain x; is at least 1. The
fractional edge cover number p* is the minimum sum of weights over all possible fractional
edge covers. The notion of the fractional edge cover has been used in the literature [3, 17] to
provide lower bounds on the worst-case output size of a query (and consequently the running
time of join processing algorithms).

For any x C vars(q), we define the residual query gx as the query obtained from g¢
by removing all variables x, and decreasing the arity of each relation accordingly (if the
arity becomes zero we simply remove the relation). For example, for the triangle query
q(z,y,2) = R(x,y),S(y, 2), T(z, ), the residual query g, is q(1 (v, 2) = R(y), S(y,2), T(2).
Similarly, qg.43(2) = S(2),T(z). Observe that every fractional edge packing of ¢ is also a
fractional edge packing of any residual query ¢, but the converse is not true in general.

We now define the fractional edge quasi-packing to be any edge packing of a residual query
gx of ¢, where the atoms that have only variables in x get a weight of 0. Denote by pk™(q)
the set of all edge quasi-packings. It is straightforward to see that pk(q) € pk*(g); in other
words, any packing is a quasi-packing as well. The converse is not true, since for example
(1,1,0) is a quasi-packing for the triangle query, but not a packing. The edge quasi-packing
number ¢* is the maximum sum of weights over all edge quasi-packings:

¥*(¢) = max uj = max  max E uj .
uepkt (q) ; xCvars(q) uepk(gx) ;

2.3 Previous Results

Suppose that we are given a full CQ ¢, and input such that relation S; has size M; in bits
(we use m; for the number of tuples). Let M = (M, ..., M) be the vector of the relation



P. Koutris, P. Beame, and D. Suciu

sizes. For a given fractional edge packing u € pk(q), we define as in [5]:

14 uj \ 1/ § Zv, uj
MY j=1
Hj_l J > (1)

L(u,M,p) = (
p

Let us also define L@ (M, p) = maXyepk(q) L(1, M, p). In our previous work [5], we
showed that any algorithm that computes ¢ in a single round with p servers must have
load L > L(Q)(M, p). The instances used to prove this lower bound is the class of matching
databases, which are instances where each value appears exactly once in the attribute of each
relation. Hence, the above lower bound is not necessarily tight; indeed, as we will see in the
next section, careful choice of skewed input instances can lead to a stronger lower bound.

The HyperCube algorithm. To compute conjunctive queries in the MPC model, we use
the basic primitive of the HyperCube (HC) algorithm. The algorithm was first introduced by
Afrati and Ullman [2], and was later called the shares algorithm; we use the name HC to
refer to the algorithm with a particular choice of shares. The HC algorithm initially assigns
to each variable x; a share p;, such that Hle p; = p. Each server is then represented by
a distinct point y € P, where P = [p1] X -+ X [pg]; in other words, servers are mapped
into a k-dimensional hypercube. The HC algorithm then uses k independently chosen hash
functions h; : {1,...,n} = {1,...,p;} (where n is the domain size) and sends each tuple ¢ of
relation S; to all servers in the destination subcube of t:

D(t) ={y € P | Va; € vars(S;) : hi(t[z:]) =y}

where t[x;] denotes the value of tuple ¢ at the position of the variable x;. After the tuples
are received, each server locally computes ¢ for the subset of the input that it has received.

If the input data has no skew, the above vanilla version of the HC algorithm is optimal
for a single round. The lemma below presents the specific conditions that define skew, and
will be frequently used throughout the paper.

» Lemma 1 (Load Analysis for HC [5]). Let p = (p1,...,pk) be the optimal shares of the HC
algorithm. Suppose that for every relation S; and every tuple t over the attributes U C [a;]
we have that the frequency of t in relation S; is ms,(t) < m;/[[,cy pi- Then with high
probability the mazimum load per server is O(L(D (M, p)).

3 One-Round Algorithms

In this section, we present tight upper and lower bounds for the worst-case load of one-round
algorithms that compute conjunctive queries. Thus, we identify the database instances for
which the behavior in a parallel setting is the worst possible. Surprisingly, these instances are

often different from the ones that provide a worst-case running time in a non-parallel setting.

As an example, consider the triangle query Cs = R(z,y),S(y,z),T(z,x), where all
relations have m tuples (and M in bits). It is known from [3] that the class of inputs that
will give a worst-case output size, and hence a worst-case running time, is one where each
relation is a \/m x y/m fully bipartite graph. In this case, the output has m3/? tuples. The
load needed to compute C3 on this input in a single round is Q(M/ p2/3 ), and can be achieved
by using the HyperCube algorithm [4] with shares p'/3 for each variable. Now, consider the
instance where relations R, T have a single value at variable x, which participates in all the
m tuples in R and T'; S is a matching relation with m tuples. In this case, the output has m

8:5

ICDT 2016



8:6

Worst-Case Optimal Algorithms for Parallel Query Processing

tuples (and so M bits), and thus is smaller than the worst-case output. However, as we will
see next, we can show that any one-round algorithm that computes the triangle query for
the above input structure requires Q(M/p'/?) maximum load.

3.1 An Optimal Algorithm

We present here a worst-case optimal one-step algorithm that computes a conjunctive query
g. Recall that the HC algorithm achieves an optimal load on data without skew [5]. In
the presence of skew, we will distinguish different cases, and for each case we will apply a
different parametrization of the HC algorithm, using different shares.

We say that a value h in relation S; is a heavy hitter in S; if the frequency of this
particular value in S, denoted ms, (h), is at least m;/p, where m; is the number of tuples
in the relation. Given an output tuple ¢, we say that ¢ is heavy at variable x; if the value
t[x;] is a heavy hitter in at least one of the atoms that include variable ;.

We can now classify each tuple ¢ in the output depending on the positions where ¢ is
heavy. In particular, for any x C vars(q), let ¢™!(I) denote the subset of the output that
includes only the output tuples that are heavy at exactly the variables in x. Observe that
the case ¢¥ (I) denotes the case where the tuples are light at all variables; we know from
an application of Lemma 1 that this case can be handled by the standard HC algorithm.
For each of the remaining 2¥ — 1 possible sets x C vars(q), we will run a different variation
of the HC algorithm with different shares, which will allow us to compute ¢!(I) with the
appropriate load. Our algorithm will compute all the partial answers in parallel for each
x C vars(g), and thus requires only a single round.

The key idea is to apply the HC algorithm by giving a non-trivial share only to the
variables that are not in x; in other words, every variable in x gets a share of 1. In particular,
we will assign to the remaining variables the shares we would assign if we would execute the
HC algorithm for the residual query ¢x. We will thus choose the shares by assigning p; = p®
for each z; € x and solving the following linear program:

minimize A\
subject to Z —e; > —1
L Ex
Vj s.t. S; € atoms(gx) : Z ei+A>
iz Evars(S;)\x

Vist x; ¢x:¢; >0, A>0 (2)

For each variable z; € x, we set ¢; = 0 and thus the share is p; = 1. We next present the
analysis of the load for the above algorithm.

» Theorem 2. Any full conjunctive query q with input relation sizes M can be computed in
the MPC model in a single round using p servers with mazimum load

L= O( max L(q")(M,p)) .
xCvars(q)
Proof. Let us fix a set of variables x C vars(q); we will show that the load of the algorithm
that computes ¢ (I) is O(L(%) (M, p)). The upper bound then follows from the fact that
we are running in parallel algorithms for all partial answers.
Indeed, let us consider how each relation S; is distributed using the shares assigned. We
distinguish two cases. If an atom S; contains variables that are only in x, then the whole



P. Koutris, P. Beame, and D. Suciu

relation will be broadcast to all the p servers. However, observe that the part of S; that
contributes to ¢! (I) is of size at most p®, where a; is the arity of the relation.

Otherwise, we will show that for every tuple J of values over variables v C vars(S;), we
have that the frequency of J is at most m;/[[;.,.c, pi- Indeed, if v contains only variables
from x, then by construction H”: cv Pi = 1; we observe then that the frequency is always
at most m;. If v contains some variable x; € v \ x, then the tuple J contains at position
x; a value that appears at most m;/p times in relation S;, and since Hi:xiev p; < p the
claim holds. We can now apply Lemma 1 to obtain that for relation \S;, the load will be
O(M;/ (ILi.2; evars S;)\x p;)). Summing over all atoms in the residual query gx, and assuming
that m; > p (and in particular that p% is always much smaller than the load), we obtain
that the load will be O(maxj .S, catoms(qx) M /(Hi:wie\/ars(sj)\x p;)), which by an LP duality

argument is equal to O(L(%) (M, p)). <

When all relation sizes are equal, that is, My = My = --- = My = M, the formula for
the maximum load becomes O(M /p'/*" (@), where 1)*(q) is the edge quasi-packing number,
which we have defined as 1/*(q) = maXxcyars(q) MAXyepk(gy) Zj u;. We will discuss about the
quantity ¥*(q) in detail in Section 3.3. We will see next how the above algorithm applies to
the triangle query Cs.

» Example 3. We will describe first how the algorithm works when each relation has size M
(and m tuples). There are three different share allocations, for each choice of heavy variables
(all other cases are symmetrical).

x = () : we consider only tuples with values of frequency < m/p. The HC algorithm will
assign a share of p'/? to each variable, and the maximum load will be O(M/p?/3).

x = {x} : the tuples have a heavy hitter value at variable z, either in relation R or T or in
both. The algorithm will give a share of 1 to z, and shares of p!/2 to y and z. The load
will be O(M /p'/?).

x = {x,y} : both x and y are heavy. In this case we broadcast the relation R(x,y), which
will have size at most p?, and assign a share of p to z. The load will be O(M/p).

Notice finally that the case where x = {x,y, 2} can be handled by broadcasting all
necessary information. The load of the algorithm is the maximum of the above quantities,
thus O(M/p'/?). When the size vector is M = (M, My, M3), the load achieved becomes

O(L), where: L:max{M My My \/Mle \/M2M3 \/MIMS}

p’p’p’

3.2 Lower Bounds

We present here a worst-case lower bound for the load of one-step algorithms for computing
conjunctive queries in the MPC model, when the information known is the cardinality
statistics M = (My, ..., My). The lower bound matches the upper bound in the previous
section, hence proving that the one-round algorithm is worst-case optimal. We give a self-
contained proof of the result in the full version of this paper, but many of the techniques
used can be found in previous work [4, 5], where we proved lower bounds for skew-free data
and for input data with known information about the heavy hitters.

» Theorem 4. Fix cardinality statistics M for a full conjunctive query q. Consider any
deterministic MPC' algorithm that runs in one communication round on p servers and has
mazimum load L in bits. Then, for any x C vars(q), there exists a family of (random)
instances for which the load L will be:

L > min — - L% (M, p) .

J aj

8:7

ICDT 2016



8:8

Worst-Case Optimal Algorithms for Parallel Query Processing

Since a; > 1, Theorem 4 implies that for any query g there exists a family of instances such
that any one-round algorithm that computes ¢ must have load Q(maxxg\,ars(q) L(‘b‘)(M7 D)).

3.3 Discussion

We present here several examples for the load of the one-round algorithm for various classes
of queries, and also discuss the edge quasi-packing number *(¢) and its connection with
other query-related quantities.

Recall that we showed that when all relation sizes are equal to M, the load achieved is of
the form O(M/p*/¥"(9)), where 1*(q) is the quantity that maximizes the sum of the weights
of the edge quasi-packing. ¥*(q) is in general different from both the fractional covering
number 7*(q), and from the fractional edge cover number p*(¢). Indeed, for the triangle
query Cs we have that p*(C3) = 7*(C3) = 3/2, while ¢*(C3) = 2. Here we should remind
the reader that 7* describes the load for one-round algorithms on data without skew, which
is O(M /p*/™ (@), Also, p* characterizes the maximum possible output of a query ¢, which is
MP (@, We can show the following relation between the three quantities:

» Lemma 5. For every conjunctive query q, ¥*(q) > max{7*(q), p*(¢)}.

Proof. Since any edge packing is also an edge quasi-packing, it is straightforward to see that
7*(q) < ¢*(q) for every query gq.

To show that p*(¢) < 1*(¢), consider the optimal (minimum) edge cover u; we will show
that this is also an edge quasi-packing. First, observe that for every atom .S, there must
exist at least one variable z € vars(S;) such that Zj:wevars(sj)
for every variable in S; we have that the sum of the weights strictly exceeds 1; then, we can
obtain a better edge cover by slightly decreasing w;, which is a contradiction.

u; = 1. Indeed, suppose that

Now, let x be the set of variables such that their cover in u strictly exceeds 1, and
consider the residual query ¢x. By our previous claim, every relation in ¢ is still present in
gx, since every relation includes a variable with cover exactly one. Further, for every variable
x € vars(gx) we have Zj:mevars(sj) uj = 1, and hence u € pk(gx). <

In Table 1 we have computed the quantities 7*, p*, ¥* for several classes of queries of
interest: the star query T}, the spiked star query SPg, the cycle query C, the line query Ly,
the Loomis-Whitney join LW}, the generalized semi-join query W}, and the clique (or full)
query Kj. We next present some of these queries in more detail.

» Example 6. Consider the star query T}, which generalizes the simple join between relations.
As we can see, the optimal edge packing cannot be more than 1, since every relation includes
the variable z. To obtain the maximum edge quasi-packing, we simply consider the residual
query q, that removes the common variable z: then, we can pack each relation with weight
one, thus achieving a sum of k. Notice that this is an example which shows that 7* and ¥*
cannot be within a constant factor.

» Example 7. Consider the full/clique query K}, which includes all possible binary relations
among the k variables. Here the optimal edge packing is achieved by assigning a weight of
1/(k — 1) to each relation; the corresponding share allocation for the HC algorithm assigns
1/k to each variable. For the optimal edge quasi-packing, consider the
residual query (K}).,, and notice that it includes (k — 1) unary relations, one for each of
Ta,...,T. Hence, we can obtain an edge packing by assigning a weight of 1 to each, which
shows that *(Kj) = k.

an equal share of p



P. Koutris, P. Beame, and D. Suciu

Table 1 Computing the optimal edge packing 7, edge cover p* and edge quasi-packing ¥* for
several classes of conjunctive queries.

conjunctive query T* o o

T = N\)_, Sj(z,25) 1 k k

SPe = N\, Ri(z, @), Si(wi, i) k kE+1 k41
Cr = Ny Si(@5,2( mod 1) 1) /2 /2 [2(k - 1)/3)
Li=NAj_, Sj(x;-1,7)) [k/21 | [(k+1)/2] [2k/3]
LWi = Ayc g pr1ons S1(F1) k/(k—1) | k/(k—1) 2

Wi = R(@1,...,2) N, Si(x;) k 1 k
Kk:/\lgi<j§k Si (i, xj) k/2 k/2 k

» Example 8. Consider the cycle query Cf. The optimal edge packing assigns a weight of
1/2 to each edge; the corresponding share allocation for the HC algorithm gives an equal
share of p'/*
To find the best x for the optimal edge quasi-packing, we will pick every third variable:
Z1,Z4,.... This creates |k/3| copies of the query Si(x1), Sa(x1,z2), S3(x2), which has an
edge packing of size 2 (assign weight 1 to S1,S3). If k = 3m or k = 3m + 1, these copies cover
the whole query. If k = 3m + 2, we can add one more edge with weight 1 to the packing.

to each variable.

4  Multi-round Algorithms

In this section, we present algorithms for multi-round computation of several conjunctive
queries in the case where the relation sizes are all equal to M. We also prove a lower bound
that proves that they are (almost) optimal.

4.1 Multi-round Lower Bound

We prove here a general lower bound for any algorithm that computes conjunctive queries
using a constant number of rounds. Observe that the lower bound is expressed in terms of
number of tuples (and not bits); our upper bounds will be expressed in terms of bits, and
thus will be a log(n) factor away from the lower bound, where n is the domain size.

» Theorem 9. Let g be a conjunctive query. Then, there exists a family of instances where
relations have the same size M in bits (and m in tuples) such that every algorithm that
computes q with p servers using a constant number of rounds requires load Q(m/pl/p*(q)).

Proof. In order to prove the lower bound, we will use a family of instances that give the
maximum possible output when every input relation has at most m tuples, which is m?” (@
(see [3]). We also know how we can construct such a worst-case instance: for each variable
x; we assign an integer n; (which corresponds to the domain size of the variable), and we
define each relation as the cartesian product of the domains of the variables it includes:

Xi:z; evars(s,) [1i]. The output size then will be [, n; = m? (@) (using a LP duality argument).

We now define the following random instance I as input for the query ¢: for each relation
S;, we choose each tuple from the full cartesian product of the domains independently at
random with probability 1/2. It is straightforward to see that the expected size of the output
is Ef|q(I)]] = (1/2)° T, n:, where 3 is the maximum number of relations where any variable

8:9

ICDT 2016



8:10

Worst-Case Optimal Algorithms for Parallel Query Processing

occurs (and thus a constant depending on the query). Using Chernoff’s bound we can claim
an even stronger result: the output size will be ©(m? () with high probability (the failure
probability is exponentially small in m).

Now, assume that algorithm A computes ¢ with load L (in bits) in r rounds. Then, each
server receives at most L’ = r - L bits. Fix some server and let msg be the whole sequence
of bits received by this server during the computation; hence, |msg| < L’. We will next
compute how many tuples from S; are known by the server, denoted Kpsg(S;). W.lo.g. we
can assume that all L' bits of msg contain information from relation 5.

We will show that the probability of the event Knes(S;) > (1 4+ §)L’ is exponentially
small on 0. Let m; = Hi:wi€vars(sj) n; < m. Observe first that the total number of message
configurations of size L’ is at most oL’ Also, since the size of the full cartesian product is
m;, msg can encode at most 27~ (1H+9)L" relations S; (if m; < (1 + &)L/, then trivially the
probability of the event is zero, and S; will have "few" tuples). It follows that

P(Kmsg > (1+ (5)L’) < oL’ gm;—(1+8)L" (1/2)™ = (1/2)5L’.

So far we have shown that with high probability each server knows at most L’ tuples from
each relation S;, and further that the total number of output tuples is @(m? (). However,
if a server knows L’ tuples from each relation, using the AGM bound from [3], it can output
at most (rL)? (@ tuples. The result follows by summing over the output of all p servers, and
using the fact that the algorithm has only a constant number of rounds. |

The theorem implies that whenever ¥*(¢q) = p*(q) the one-round algorithm is essentially
worst-case optimal, and using more rounds will not result in an algorithm with better load.
As a result, and following our discussion in the previous section, the classes of queries T}
and S Py can be optimally computed in a single round. This may seem counterintuitive, but
recall that we study worst-case optimal algorithms; there may be instances where using more
rounds is desirable, but our goal is to match the load for the worst such instance.

We will next present algorithms that match (within a logarithmic factor) the above lower
bound using strictly more than one round. We start with the algorithm for the triangle
query Cj3, in order to demonstrate our novel technique and prove a key result (Lemma 10)
that we will use later in the section.

4.2 Warmup: Computing Triangles in 2 Rounds

The main component of the algorithm that computes triangles is a parallel algorithm that
computes the join Si(z,z),S2(y,2) in a single round, for the case where skew appears
exclusively in one of the two relations. If the relations have size M7, My respectively, then we
have shown that the load can be as large as /M; My /p. However, in the case of one-sided
skew, we can compute the join with maximum load only O(max{M;, M5} /p).

» Lemma 10. Let g = Si(z, 2), S2(y, ), and let my and mo be the relation sizes (in tuples)
of S1,Sa respectively. Let m = max{m1,ma}. If the degree of every value of the variable z
in S1, mg, (2), is at most m/p, then we can compute q in a single round with p servers and
load (in bits) O(M/p), where M = 2mlog(n) (n is the domain size).

Proof. We say that a value h is a heavy hitter in Sy if the degree of h in Sy is mg,(h) > m/p.
By our assumption, there are no heavy hitters in relation S;.

For the values h that are not heavy hitters in S, we can compute the join by applying
the standard HC algorithm (which is a hash-join that assigns a share of p to z); the load
analysis of Lemma 1 will give us a load of O(M/p) with high probability.



P. Koutris, P. Beame, and D. Suciu

For every heavy hitter h, the algorithm computes the subquery g[h/z] = Si(z, h), Sa(y, h),
which is equivalent to computing the residual query ¢, = Sj(x), S4(y), where Sj(z) = S (z, h)
and S5 (y) = S2(y, h). We know that |S5| = mg, (k) and |S7| < m/p by our assumption. The
algorithm now allocates p, = [p - mg,(h)/m] exclusive servers to compute g[h/z] for each
heavy hitter h. To compute ¢[h/z] with pj, servers, we simply use the simple broadcast join
that assigns a share of p to variable x and 1 to y. A simple analysis will give us that the
load (in tuples) for each heavy hitter h is

0 (fﬁ' - '530 =0 (msm) + m/p>> — O(m/p).

p-mg, (h)/m

Finally, observe that the total number of servers we need is »_, pn < 2p, hence we have used
an appropriate amount of the available p servers. |

Thus, we can optimally compute joins in a single round in the presence of one-sided skew.
We can apply Lemma 10 to obtain a useful corollary for the semi-join query g = R(z),S(y, 2).
Indeed, notice that we can extend R to a binary relation R'(z,z), where z is a dummy
variable that takes a single value; then, the semi-join becomes essentially a join, where R’
has no skew, since the degree of z in R’ will be always one. Consequently:

» Corollary 11. Consider the semi-join query q = R(z), S(y, z), and let My and My be the
relation sizes of R, S respectively in bits. Then we can compute q in a single round with p
servers and load O(max{My, Ms}/p).

We now outline the algorithm for computing triangles using two rounds. The central idea
in the algorithm is to identify the values that create skew in the computation, and spread
this computation into more rounds.

» Theorem 12. The triangle query Cs = S1(x1,x2), S2(x2, x3), S3(x3, 1) on input with sizes
My = My = M3z = M can be computed by an MPC algorithm in 2 rounds with O(M/p2/3)
load, under any input data distribution.

Proof. We say that a value h is heavy if for some relation S;, we have m;(h) > m/p*/3. We
first compute the answers for the tuples that are not heavy at any variable. Indeed, if for
every value we have that the degree is at most m/ p'/3, then the load analysis (Lemma 1)
tells us that we can compute the output in a single round with load O(M / p?/ 3) using the
HC algorithm that allocates a share of p'/3

Thus, it remains to output the tuples for which at least one variable has a heavy value.
Without loss of generality, consider the case where variable x; has heavy values and observe
that there are at most 2p'/? such heavy values for z; (p'/3 for S; and p'/3 for S3). For
each heavy value h, we assign an ezclusive set of p/ = p?/3

to each variable.

servers to compute the query
qlh/z1] = Si(h,x2), S2(x2,23), S3(x3,21), which is equivalent to computing the residual
query ¢' = S1(22), S2(x2, x3), S(w3).

To compute ¢’ with p’ servers, we use 2 rounds. In the first round, we compute in parallel
the semi-join queries S1a(x2,x3) = S1(22), Sa(22,x3) and Saz(x2, x3) = Sa(22, x3), S5(x3).
Since |S]| < m and |S5| < m, we can apply Corollary 11 for semi-join computation to
obtain that we can achieve this computation with load (in tuples) O(m/p') = O(m/p*/?).
Observe that the intermediate relations Sio, So3 have size at most m. In the second round,
we simply perform the intersection of the relations Si2, .S23; this can be achieved with tuple
load O(m/p') = O(m/p*/?).2 <

2 Observe that the load for computing the intersection of two or more relations does not have any
additional logarithmic factors.

8:11

ICDT 2016



8:12

Worst-Case Optimal Algorithms for Parallel Query Processing

Notice that the 2-round algorithm achieves a better load than the 1-round algorithm in
the worst-case scenario. Indeed, in the previous section we proved that there exist instances
for which we can not achieve load better than O(M/p'/?) in a single round. By using an
additional round, we can beat this bound and achieve a better load. This confirms our
intuition that with more rounds we can reduce the maximum load. Moreover, observe that
the load achieved matches the multi-round lower bound (within a polylogarithmic factor).

4.3 Computing General CQs

We now generalize the ideas of the above example, and extend our results to several standard
classes of conjunctive queries. Throughout this section, we assume that all relations have the
same size M in bits (and m in tuples). We present in detail optimal multiround algorithms
for odd and even cycles, which both achieve a maximum load of O(M/p*/*) for Cy. The
algorithm uses as a component an optimal algorithm that computes the line query Ly.

» Lemma 13. The line query Ly = S1(xo, 1), So(x1,x2), ..., Sk(xr_1,2x) can be computed
by an MPC algorithm with a constant number of rounds and load O(M /p*/T(F+1/21),

We then briefly present our algorithmic results for Loomis-Whitney joins and Clique
queries; the detailed proofs of the desired load are in the full version of this paper.

4.3.1 0Odd Cycles

We will first show how we can compute any odd cycle Cy; the algorithm is a generalization
of the method for computing triangle queries presented as a warmup example.

We say that a value h is heavy for variable z; if for relation S;_; or S;, we have
m;(h) > m/p'/* or m;_i(h) > m/p'/*. We first compute the answers for the tuples that are
not heavy at any position. Lemma 1 implies that we can compute the output in a single
round with load O(M/p*/*), by applying the vanilla HC algorithm for cycles, where each
variable has equal share p/*.

We next compute the tuples that are heavy at variable x; (we similarly do this for every
variable z;); observe that there are at most 2p'/* such values. For each such heavy value
h, we will assign an exclusive number of p’ = p'~1/* servers, such that the total number
of servers we use is (2p'/*) - p’ = O(p), and using these servers we will compute the query
qlh/z1] = S1(h,x2), ..., Sk(xk, h), which amounts to computing the residual query ¢’ = g, :

q' = S1(x2), Sa(x2,x3), ..., Sp—1(Tp—1,21), Sg (k) -

To compute ¢’ with p’ servers we need two rounds of computation. In the first round, we
compute in parallel the two semi-joins

S12(xe,x3) = S1(22), Sa2(2, x3), Skk—1(Tr—1, k) = Sk—1(Tp—1,2), St (k)

which can be achieved with tuple load O(m/p’) = O(m/p'~1/*), since |S;| < m and |S}| < m
(by applying Corollary 11). Since for any k > 3 we have 1 — 1/k > 2/k, the load for the first
round will be O(M/p?/*). For the second round, we compute the query

q" = S12(z2,x3), S5(x3,24), ..., Sk—1(Tk—1,2k), Sk -1 (Th—1, Tk)

which is equivalent to computing the line query Lj_o, where each relation has size at most m;
we know from Lemma 13 that we can compute such a query with tuple load O(m,/p/*/[(:=1)/21)

using multiple rounds. For the final step of the proof, recall that p’ = p*~/¥. Then:
k—1 1 k—1 2
. kel 2 o
EOTh—10/2] ~ kRl

Thus, the load for the second round will be O(M/p*/*) as well.




P. Koutris, P. Beame, and D. Suciu

4.3.2 Even Cycles

For even length cycles, our previous argument does not work, and we have to use a different

approach. We say that a value h is §-heavy, for some ¢ € [0, 1], if the degree of h is at least

m/p® in some relation. We distinguish two different cases:

1. Suppose that there exist two variables x;, ;s such that (i —4’) is an odd number, x; is
0-heavy, x; is §’-heavy, and § + ¢’ < 2/k. Observe that there are at most pdtd < p2/k

1-2/k explicit servers to

such pairs of heavy values: for each such pair, we assign p’ = p
compute the residual query ¢’ = (C})s, 2; in two rounds. We now consider two subcases.
If i/ = i+ 1, then x;, x; belong in the same relation S;. Then, by performing the semi-join
computations in the first round, we reduce the computation of the next rounds to the
residual query Lj,_s, which requires tuple load O(m /p/"/[(:=2/21) = O(m /p?/*), since k is
even. Otherwise, if z;, x;; are not in the same relation, we still do the semi-joins in the first
round, and then notice that in the subsequent rounds we need to compute the cartesian
product of two line queries, Ly, Lg, where v + § = k — 4 and both are odd numbers.
To perform this cartesian product, we will split the p’ servers into a p(@TD/k x p(B+1)/k
grid, and within each row/column compute the line queries. Then, the tuple load will be
O(m/pot0)/k)(A/T(e+1)/21)) = O (m/pl(B+D/E)(A/TBE+D/2D) = O (m /p*/*).

2. Otherwise, define depen as the largest number in [0, 1] such that for every even variable the
frequency is at most m /p%ven. Similarly define d,44. Since we do not fall in the previous
case, it must be that depen + oaa > 2/k. W.lo.g. assume that depen, = Ooqq. Then,
consider the HC algorithm with the following share allocation: for odd variables assign
po = p%d, and for even variables assign p, = p?/F—%eda,
degree at most m/p%dd, there are no skewed values there. As for the even variables, their
degree is at most m/pdever < m/pz/k_5odd = m/p.. Hence, the tuple load achieved will
be O(m/(pope) = O(m/p*/*). In the case where p, is ill-defined because d,qq4 > 2/k, we

also have that deyen, > 2/k and in this case we can just apply the standard HC algorithm
1/k

Since the odd variables have

that assigns a share of p'/* to every variable.

4.3.3 Other Conjunctive Queries

For the Loomis-Whitney (LW) join, the algorithmic idea is the same as the one we used for
even cycles (notice that LWj is the triangle query Cj).

» Lemma 14. The LW]OZn LWy = Sl(l‘Q, . ,l‘k), 52(331,1‘3, . ,Z‘k), ceey Sk(xl, - ,.Z‘k_l)
can be computed by an MPC' algorithm in 2 rounds with load O(M /p'—1/*).

For the clique queries, we have the following result:

» Lemma 15. The clique query Kj = A1§i<j§k S;.j(xi, xj) can be computed by an MPC
algorithm in k — 1 rounds with load O(M/p*/*) for any k > 3.

Finally, we show an almost optimal algorithm for queries ¢ that contain an atom which
includes all the variables in the body of q.

» Lemma 16. Let g be a query that contains an atom R, such that vars(R) = vars(q). Then,
q can be computed by an MPC algorithm with O(M/p) load.

Notice that the generalized semi-join query W satisfies the property of the above lemma,
and hence we can compute Wy, with load O(M /p) using two rounds (while using one round
the load is Q(M/p'/*)).

8:13

ICDT 2016



8:14

Worst-Case Optimal Algorithms for Parallel Query Processing

5 Applications to the External Memory Model

In the external memory model, we model computation in the setting where the input data
does not fit into main memory, and the dominant cost is reading the data from the disk into
the memory and writing data on the disk.

Formally, we have an external memory (disk) of unbounded size, and an internal memory
(main memory) that consists of W words.®> The processor can only use data stored in the
internal memory to perform computation, and data can be moved between the two memories
in blocks of B consecutive words. The I/O complexity of an algorithm is the number of
input/output blocks that are moved during the algorithm, both from the internal memory to
the external one, and vice versa.

The external memory model has been recently used in the context of databases to analyze
algorithms for large datasets that do not fit in the main memory, with the main application
being triangle listing [6, 12, 18, 11]. In this setting, the input is an undirected graph, and
the goal is to list all triangles in the graph. In [18] and [11], the authors consider the
related problem of triangle enumeration, where instead of listing triangles (and hence writing
them to the external memory), for each triangle in the output we call an emit() function.
The best result comes from [11], where the authors design a deterministic algorithm that
enumerates triangles in O(|E|*/?/(v/W B)) 1/Os, where E is the number of edges in the graph.
The authors in [11] actually consider a more general class of join problems, the so-called
Loomis- Whitney enumeration. In [19], the author presents external memory algorithms for
enumerating subgraph patterns in graphs other than triangles.

The problem we consider in the context of external memory algorithms is a generalization
of triangle enumeration. Given a full conjunctive query g, we want to enumerate all possible
tuples in the output, by calling the emit() function for each tuple in the output of query g.
We assume that each tuple in the input can be represented by a single word.

5.1 Simulating an MPC Algorithm

We will show how a parallel algorithm in the tuple-based MPC model can help us construct
an external memory algorithm. The tuple-based MPC model is a restriction of the MPC
model, where only tuples from subqueries of ¢ can be communicated, and moreover the
communication can take a very specific form: each tuple ¢ during round k is sent to a set of
servers D(t, k), where D depends only on the data statistics that are initially available to
the algorithm. Such statistical information is the size of the relations, or information about
the heavy hitters in the data.* All of the algorithms that we have presented so far in the
previous sections satisfy the above assumption.

The idea behind the construction is that the distribution of the data to the servers can
be used to decide which input data will be loaded into memory; hence, the load L will
correspond to the size of the internal memory W. Similarities between hash-join algorithms
used for parallel processing and the variants of hash-join used for out-of-core processing have
been already known, where the common theme is to create partitions and then process them
one at a time. Here we generalize this idea to the processing of any conjunctive query in

3 The size of the main memory is typically denoted by M, but we use W to distinguish from the relation
size in the previous sections.

4 Even if this information is not available initially to the algorithm, we can easily obtain it by performing
a single pass over the input data, which will cost O(|I|/B) I/Os.



P. Koutris, P. Beame, and D. Suciu

a rigorous way. We should also note that previous work [9] has studied the simulation of
MapReduce algorithms on a parallel external memory model.

Let A be a tuple-based MPC algorithm that computes query ¢ over input I using r
rounds with load L(I,p). We show next how to construct an external memory algorithm B
based on the algorithm A.

Simulation. The external memory algorithm B simulates the computation of algorithm A
during each of the r rounds: round k, for kK = 1,...,r simulates the total computation of
the p servers during round k of A. We pick a parameter p for the number of servers that we
show how to compute later. The algorithm will store tuples of the form (¢, s) to denote that
tuple t resides in server s.

To initialize B, we first assign the input data to the p servers (we can do this in any
arbitrary way, as long as the data is equally distributed). More precisely, we read each tuple
t of the input relations and then produce a tuple (¢, s), where s =1,...,p in a round-robin
fashion, such that in the end each server is assigned |I|/B data items. To achieve this, we
load each relation in chunks of size B in the memory. After the initialization, the algorithm
B, for each round k£ =1,...,r, performs the following steps:

1. All tuples, which will be of the form (¢, s), are sorted according to the attribute s.

2. All tuples are loaded in memory in chunks of size W, in the order by which they were
sorted in the external memory. If we choose p such that r - L(I,p) < W, we can fit in the
internal memory all the tuples of any server s at round k. ® Hence, we first read into the
internal memory the tuples for server 1, then server 2, and so on. For each server s, we
replicate in the internal memory the execution of algorithm A in server s at round k.

3. For each tuple ¢ in server s (including the ones that are newly produced), we compute
the tuples {(¢,s") | ' € D(t,k)}, and we write them into the external memory in blocks
of size B.

In other words, writing to the internal and external memory simulates the communication
step, where data is exchanged between servers. The algorithm B produces the correct result,
since by the choice of p we guarantee that we can load enough data in the memory to simulate
the local computation of A at each server. Observe that we do not need to write the final
result back to the external memory, since at the end of the last round we can just call emit()
for each tuple in the output.

Let us now identify the choice for p; recall that we must make sure that r - L(I,p) < W.

Hence, we must choose p, such that p, = min,{L(I,p) < W/r}. We next analyze the I/O
cost of algorithm B for this choice of p,.

Analysis. The initialization I/O cost for the algorithm is |I|/B. To analyze the cost for a
given round k = 1,...,7, we will measure first the size of the data that will be sorted and
then loaded into memory at round k. For this, observe that at every round of algorithm
B, the total amount of data that is communicated is at most p, - L(I, p,). Hence, the total
amount of data that will be loaded into memory will be at most & - p, - L(I, p,) < poW, from
our definition of p,.

For the first step that requires sorting the data, we will not use a sorting algorithm,
but instead we will partition the data into p parts, and then concatenate the parts (this is

5 The quantity L(I,p) measures the maximum amount of data received during any round. Since data is
not destroyed, over r rounds a server can receive as much as r - L(I,p) data. All of this data must fit
into the memory of size W, since the decisions of each server depend on all the data received.

8:15

ICDT 2016



8:16

Worst-Case Optimal Algorithms for Parallel Query Processing

possible only if p, is smaller than the memory W, i.e. it must be p, < W). We can do this
with a cost of O(p,W/B) I/Os. The second step of loading the tuples into memory has a
cost of p,W/B, since we are loading the data using chunks of size B; we can do this since
the data has been sorted according to the destination server. As for the third step of writing
the data into the external memory, observe that the total number of tuples written will be
equal to the number of tuples communicated to the servers at round k + 1, which will be at
most poL(I,p,) < poW/r. Hence, the I/0O cost will be p,W/(rB).

Summing the I/O cost of all three steps over r rounds, we obtain that the I/O cost of
the constructed algorithm B will be:

1l = (oW WY (], rpeW
O<B+Z B~ 5)) "%\ BB

k=1

We have thus proved the following theorem:

» Theorem 17. Let A be a tuple-based MPC algorithm that computes query q over input I
using r rounds with load L(I, p). For internal memory size W, let p, = min,{L(I,p) < W/r}.
If W > p,, then there exists an external memory algorithm B that computes q over the same
input I with I/0 cost:

| rpoW
0(B+ W

We can simplify the above I/O cost further in the context of computing conjunctive
queries. In all of our algorithms we used a constant number of rounds r, and the load is
typically L(I,p) > |I|/p. Then, we can rewrite the I/O cost as O (p,W/B).

We can apply Theorem 17 to any of the optimal multi-round algorithms we presented in
the previous sections, and obtain state-of-the-art external memory algorithms for several
classes of conjunctive queries. We show next an application for the case of query Cs.

» Example 18. We presented a 2-round algorithm that computes triangles for any input
data with load (in tuples) L = O(m/p?/?), in the case where all relations have size m. By
applying Theorem 17, we obtain an external memory algorithm that computes triangles with
O(m?/2 /(BW'/2)) 1/O cost for any W > m?/%. Notice that this cost matches the I/O cost
for triangle computation from [18] up to polylogarithmic factors.

6 Conclusion

In this work, we present the first worst-case analysis for parallel algorithms that compute
conjunctive queries, using the MPC model as the theoretical framework for the analysis. We
also show an interesting connection with the external memory computation model, which
allows us to translate many of the techniques from the parallel setting to obtain algorithms
for conjunctive queries with (almost) optimal I/O cost.

The central remaining open question is to design worst-case optimal algorithms for
multiple rounds for any conjunctive query. We also plan to investigate further the connection
between the parallel setting and external memory setting. It is an interesting question
whether our techniques can lead to optimal external memory algorithms for any conjunctive
query, and also whether we can achieve a reverse simulation of external memory algorithms
in the MPC model.

Acknowledgements. We would like to thank Ke Yi for pointing out an error in the compu-
tation of the edge quasi-packing of the query L.



P. Koutris, P. Beame, and D. Suciu

—— References

1

10

11

12

13

14

15

16

17

Foto N. Afrati, Anish Das Sarma, Semih Salihoglu, and Jeffrey D. Ullman. Upper and
lower bounds on the cost of a map-reduce computation. CoRR, abs/1206.4377, 2012.

Foto N. Afrati and Jeffrey D. Ullman. Optimizing joins in a map-reduce environment. In
EDBT, pages 99-110, 2010. doi:10.1145/1739041.1739056.

Albert Atserias, Martin Grohe, and Daniel Marx. Size bounds and query plans for relational
joins. In FOCS, pages 739-748, 2008. doi:10.1109/F0CS.2008.43.

Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query
processing. In PODS, pages 273-284, 2013. doi:10.1145/2463664.2465224.

Paul Beame, Paraschos Koutris, and Dan Suciu. Skew in parallel query processing. In
PODS, pages 212-223, 2014. doi:10.1145/2594538.2594558.

Shumo Chu and James Cheng. Triangle listing in massive networks. TKDD, 6(4):17, 2012.
doi:10.1145/2382577.2382581.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. In OSDI, pages 137-150, 2004.

Jon Feldman, S. Muthukrishnan, Anastasios Sidiropoulos, Clifford Stein, and Zoya Svitkina.
On distributing symmetric streaming computations. ACM Transactions on Algorithms,
6(4), 2010.

Gero Greiner and Riko Jacob. The efficiency of mapreduce in parallel external memory.
In Proceedings of the 10th Latin American International Conference on Theoretical In-
formatics, LATIN’12, pages 433-445, Berlin, Heidelberg, 2012. Springer-Verlag. doi:
10.1007/978-3-642-29344-3_37.

Daniel Halperin, Victor Teixeira de Almeida, Lee Lee Choo, Shumo Chu, Paraschos Koutris,
Dominik Moritz, Jennifer Ortiz, Vaspol Ruamviboonsuk, Jingjing Wang, Andrew Whitaker,
Shengliang Xu, Magdalena Balazinska, Bill Howe, and Dan Suciu. Demonstration of the
Myria big data management service. In Curtis E. Dyreson, Feifei Li, and M. Tamer Ozsu,
editors, International Conference on Management of Data, SIGMOD 2014, Snowbird, UT,
USA, June 22-27, 2014, pages 881-884. ACM, 2014. doi:10.1145/2588555.2594530.
Xiaocheng Hu, Miao Qiao, and Yufei Tao. Join dependency testing, Loomis-Whitney join,
and triangle enumeration. In Proceedings of the 34th ACM Symposium on Principles of
Database Systems, PODS 2015, Melbourne, Victoria, Australia, May 31 — June 4, 2015,
pages 291-301, 2015. doi:10.1145/2745754.2745768.

Xiaocheng Hu, Yufei Tao, and Chin-Wan Chung. Massive graph triangulation. In
Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages 325-336, 2013. doi:
10.1145/2463676.2463704.

Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for
mapreduce. In SODA, pages 938-948, 2010.

Hartmut Klauck, Danupon Nanongkai, Gopal Pandurangan, and Peter Robinson. Distrib-
uted computation of large-scale graph problems. In Proceedings of the Twenty-Sixzth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA’15, pages 391-410. STAM, 2015.
Paraschos Koutris and Dan Suciu. Parallel evaluation of conjunctive queries. In PODS,
pages 223-234, 2011. doi:10.1145/1989284.1989310.

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt
Tolton, and Theo Vassilakis. Dremel: Interactive analysis of web-scale datasets. PVLDB,
3(1):330-339, 2010.

Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal join al-
gorithms: [extended abstract]. In PODS, pages 37-48, 2012. doi:10.1145/2213556.
2213565.

8:17

ICDT 2016


http://dx.doi.org/10.1145/1739041.1739056
http://dx.doi.org/10.1109/FOCS.2008.43
http://dx.doi.org/10.1145/2463664.2465224
http://dx.doi.org/10.1145/2594538.2594558
http://dx.doi.org/10.1145/2382577.2382581
http://dx.doi.org/10.1007/978-3-642-29344-3_37
http://dx.doi.org/10.1007/978-3-642-29344-3_37
http://dx.doi.org/10.1145/2588555.2594530
http://dx.doi.org/10.1145/2745754.2745768
http://dx.doi.org/10.1145/2463676.2463704
http://dx.doi.org/10.1145/2463676.2463704
http://dx.doi.org/10.1145/1989284.1989310
http://dx.doi.org/10.1145/2213556.2213565
http://dx.doi.org/10.1145/2213556.2213565

8:18

Worst-Case Optimal Algorithms for Parallel Query Processing

18

19

20

21

Rasmus Pagh and Francesco Silvestri. The input/output complexity of triangle enumera-
tion. In PODS, pages 224-233, 2014. doi:10.1145/2594538.2594552.

Francesco Silvestri. Subgraph enumeration in massive graphs. CoRR, abs/1402.3444, 2014.
URL: http://arxiv.org/abs/1402.3444.

DavidP. Woodruff and Qin Zhang. When distributed computation is communication ex-
pensive. In Yehuda Afek, editor, Distributed Computing, volume 8205 of Lecture Notes
in Computer Science, pages 16-30. Springer Berlin Heidelberg, 2013. doi:10.1007/
978-3-642-41527-2_2.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shen-
ker, and I. Stoica. Resilient distributed datasets: a fault-tolerant abstraction for in-memory
cluster computing. In NSDI, 2012.


http://dx.doi.org/10.1145/2594538.2594552
http://arxiv.org/abs/1402.3444
http://dx.doi.org/10.1007/978-3-642-41527-2_2
http://dx.doi.org/10.1007/978-3-642-41527-2_2

Parallel-Correctness and Containment for
Conjunctive Queries with Union and Negation

Gaetano Geck!, Bas Ketsman*?, Frank Neven?, and
Thomas Schwentick?

1 TU Dortmund University, Dortmund, Germany
2  Hasselt University, Hasselt, Belgium; and

Transnational University of Limburg, Belgium/The Netherlands
3  Hasselt University, Hasselt, Belgium; and

Transnational University of Limburg, Belgium/The Netherlands
4 TU Dortmund University, Dortmund, Germany

—— Abstract

Single-round multiway join algorithms first reshuffle data over many servers and then evaluate
the query at hand in a parallel and communication-free way. A key question is whether a given
distribution policy for the reshuffle is adequate for computing a given query, also referred to as
parallel-correctness. This paper extends the study of the complexity of parallel-correctness and its
constituents, parallel-soundness and parallel-completeness, to unions of conjunctive queries with
and without negation. As a by-product it is shown that the containment problem for conjunctive
queries with negation is CONEXPTIME-complete.

1998 ACM Subject Classification H.2.3 Query Languages, H.2.4 Distributed databases
Keywords and phrases Conjunctive queries, distributed evaluation

Digital Object ldentifier 10.4230/LIPIcs.ICDT.2016.9

1 Introduction

Motivated by recent in-memory systems like Spark [7] and Shark [21], Koutris and Suciu
introduced the massively parallel communication model (MPC) [15] where computation
proceeds in a sequence of parallel steps each followed by global synchronisation of all servers.
Of particular interest in the MPC model are queries that can be evaluated in one round of
communication [9]. In its most naive setting, a query Q is evaluated by reshuffling the data
over many servers, according to some distribution policy, and then computing Q at each
server in a parallel but communication-free manner. A notable family of distribution policies
is formed within the Hypercube algorithm [3, 9, 11]. A property of Hypercube distributions
is that for any instance I, the central execution of Q(I) always equals the union of the
evaluations of Q at every computing node (or server). The latter guarantees the correctness
of the distributed evaluation for any conjunctive query by the Hypercube algorithm.
Ameloot et al. [4] introduced a general framework for reasoning about one-round evaluation
algorithms under arbitrary distribution policies. They introduced parallel-correctness as a
property of a query w.r.t. a distribution policy which states that central execution always
equals distributed execution, that is, equals the union of the evaluations of the query at each
server under the given distribution policy. One of the main results of [4] is that deciding

* PhD Fellow of the Research Foundation — Flanders (FWO).

© Gaetano Geck, Bas Ketsman, Frank Neven, and Thomas Schwentick;
37 licensed under Creative Commons License CC-BY

19th International Conference on Database Theory (ICDT 2016).

Editors: Wim Martens and Thomas Zeume; Article No.9; pp.9:1-9:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2

Parallel-Correctness and Containment for CQs with Union and Negation

parallel-correctness for conjunctive queries (CQs) is I} -complete under arbitrary distribution
policies. The upper bound follows rather directly from a semantical characterisation of
parallel-correctness in terms of properties of minimal valuations. Specifically, it was shown
that a conjunctive query is parallel-correct w.r.t. a distribution policy, if the distribution
policy sends for every minimal valuation its required facts to at least one node.

As union and negation are fundamental operators, we extend in this paper the study
of parallel-correctness to unions of conjunctive queries (UCQ), conjunctive queries with
negation (CQ) and unions of conjunctive queries with negation (UCQ™). In fact, we
study two additional but related notions: parallel-soundness and parallel-completeness.
While parallel-correctness implies equivalence between centralised and distributed execution,
parallel-soundness (respectively, parallel-completeness) requires that distributed execution
is contained in (respectively, contains) centralised execution. Of course, parallel-soundness
and parallel-completeness together are equivalent to parallel-correctness. Furthermore, since
all monotone queries are parallel-sound, on this class parallel-correctness is equivalent to
parallel-completeness.

We start by investigating parallel-correctness for UCQ. Interestingly, for a UCQ to be
parallel-correct under a certain distribution policy it is not required that every disjunct is
parallel-correct. We extend the characterisation for parallel-correctness in terms of minimal
valuations for CQs to UCQs and thereby obtain membership in IT{. The matching lower
bound follows, of course, from the lower bound for CQs [4].

Next, we study parallel-correctness for (unions of) conjunctive queries with negation.
Sadly, when negation comes into play, parallel-correctness can no longer be characterised in
terms of properties of valuations. Instead our algorithms are based on counter-examples of
exponential size, yielding CONEXPTIME upper bounds. It turns out that this is optimal,
though, as our corresponding lower bounds show. The proof of the lower bounds comes along
an unexpected route: we exhibit a reduction from query containment for CQ™ to parallel-
correctness of CQ™ (and its two variants) and show that query containment for CQ™ is
CONEXPTIME-complete. This is considerably different from what we thought was folklore
knowledge of the community. Indeed, the IT5-completeness result for query containment for
CQ™ mentioned in [19] only seems to hold for fixed database schemas (or a fixed arity bound,
for that matter). We note that Mugnier et al. [17] provide a IT5 upper bound proof for CQ™
containment and explicitly mention that it holds under the assumption that the arity of
predicates is bounded by a constant. Altogether, parallel-correctness (and its variants) for
(unions of) conjunctive queries with negation is thus complete for CONEXPTIME.

Finally, a natural question is how the high complexity of parallel-correctness in the presence
of negation can be lowered. We identify two cases in which the complexity drops. More
specifically, the complexity decreases from CONEXPTIME to II} if the database schema is
fixed or the arity of relations is bounded, and to CONP for unions of full conjunctive queries
with negation. In the latter case, we again employ a reduction from containment of full
conjunctive queries (with negation) and obtain novel results on the containment problem in
this setting as well. All upper bounds hold for queries with inequalities.

Outline. This paper is further organised as follows. In Section 2, we discuss related work.
In Section 3, we introduce the necessary definitions. We address parallel-correctness for
unions of conjunctive queries in Section 4. We consider containment of conjunctive queries
with negation in Section 5 and parallel-correctness together with its variants in Section 6.
We discuss the restriction to full conjunctive queries in Section 7. We conclude in Section 8.

Missing proof details can be found in the full version of this paper [14].



G. Geck, B. Ketsman, F. Neven, and T. Schwentick

2 Related work

As mentioned in the introduction, Koutris and Suciu introduced the massively parallel
communication model (MPC) [15]. A key property is that computation proceeds in a
sequence of parallel steps, each followed by global synchronisation of all computing nodes.
In this model, evaluation of conjunctive queries [8, 15] and skyline queries [2] has been
considered. Beame, Koutris and Suciu [9] proved a matching upper and lower bound for the
amount of communication needed to compute a full conjunctive query without self-joins in
one communication round. The upper bound is provided by a randomised algorithm called
Hypercube which uses a technique that can be traced back to Ganguly, Silberschatz, and
Tsur [13] and is described in the context of map-reduce by Afrati and Ullman [3].

Ameloot et al. [4] introduced a general framework for reasoning about one-round evaluation
algorithms under arbitrary distribution policies. They introduced the notion of parallel-
correctness and proved its associated decision problem to be II5-complete for conjunctive
queries. In addition, towards optimisation in MPC, they considered parallel-correctness
transfer. Here, parallel-correctness transfers from Q to Q' when Q' is parallel-correct under
every distribution policy for which Q is parallel-correct. The associated decision problem
for conjunctive queries is shown to be II5-complete. In addition, some restricted cases (e.g.,
transferability under Hypercube distributions), are shown to be NP-complete.

Our definition of a distribution policy is borrowed from Ameloot et al. [5] (but already
surfaces in the work of Zinn et al. [22]), where distribution policies are used to define the class of
policy-aware transducer networks. The work by Ameloot et al. [6, 5] relates coordination-free
computation with definability in variants of Datalog. One-round communication algorithms
in MPC can be seen as very restrictive coordination-free computation.

The complexity of query containment for conjunctive queries is proved to be NP-complete
by Chandra and Merlin [10]. Levy and Sagiv provide a test for query containment of
conjunctive queries with negation [16] that involves exploring an exponential number of
possible counter-example instances. In the context of information integration, Ullman [19]
gives a comprehensive overview of query containment (with and without negation) and states
the complexity of query containment for CQ™ to be IT5-complete. As mentioned in the
introduction, the latter apparently only holds when the database schema is fixed or the arity
of relations is considered to be bounded. A proof for the IT5-lowerbound is given by Farré et
al. [12]. Based on [16], Wei and Lausen [20] study a method for testing containment that
exploits containment mappings for the positive parts of queries, and additionally provide a
characterisation for UCQ ™ containment.

3 Definitions

3.1 Queries and instances

We assume an infinite set dom of data values that can be represented by strings over some
fixed alphabet. By dom,, we denote the set of data values represented by strings of length
at most n. A database schema D is a finite set of relation names R, each with some arity
ar(R). We also write R(®) as a shorthand to denote that R is a relation of arity k. We call
R(t) a fact when R is a relation name and t a tuple over dom of appropriate arity. We say
that a fact R(t) is over a database schema D if R € D. For a subset U C dom we write
facts(D,U) for the set of possible facts over schema D and U and by facts(D) we denote
facts(D,dom). A (database) instance I over D is a finite set of facts over D. By adom(I)
we denote the set of data values occurring in I. A query Q over input schema D1 and output

9:3

ICDT 2016



9:4

Parallel-Correctness and Containment for CQs with Union and Negation

schema D5 is a generic mapping from instances over D; to instances over Ds. Genericity
means that for every permutation m of dom and every instance I, Q(w(I)) = n(Q(I)). We
say that Q is contained in @', denoted Q C Q' iff for all instances I, Q(I) C Q'(I).

3.2 Unions of conjunctive queries with negation

Let var be an infinite set of variables, disjoint from dom. An atom over schema D is of the
form R(x), where R is a relation name from D and x = (z1,..., ) is a tuple of variables
in var with k = ar(R). A conjunctive query Q with negation and inequalities over input
schema D is an expression of the form

T(X) — Rl(y1)7 .. aRm(ym)a _‘Sl(zl)a .. -7_‘Sn<zn)761a s 76})

where all R;(y;) and S;(z;) are atoms over D, every [3; is an inequality of the form s # s” where
s, s’ are distinct variables occurring in some y; or z;, and T'(x) is an atom for which T' ¢ D.
Additionally, for safety, we require that every variable in x occurs in some y; and that every
variable occurring in a negated atom has to occur in a positive atom as well (safe negation). We
refer to the head atom T'(x) as headg, to the set {R1(y1),..., Rm(Ym),S1(21),-.., Sn(zn)}
as body o, and to the set {f1,..., 3,} as ineqq. Specifically, we refer to {R1(y1), ..., Rm(ym)}
as the positive atoms in Q, denoted posg, and to {S1(z1),...,Sn(2n)} as the negated atoms
of Q, denoted negg. We denote by vars(Q) the set of all variables occurring in Q. We refer
to the class of conjunctive queries with negation and inequalities by CQ ™7, its restriction to
queries without inequalities, without negated atoms, and without both by CQ ", CQ7, and
CQ, respectively. As a shorthand we refer to queries from C(Lfﬁ'é as CQ“’és and similarly
for the other classes.

A pre-valuation for a CQ™7 Q is a total function V : vars(Q) — dom, which naturally
extends to atoms and sets of atoms. It is consistent for Q, if V(posg) NV (negg) = 0, and
V(s) # V(s'), for every inequality s # s’ of Q, in which case it is called a valuation. Of course,
for a conjunctive query without negated atoms and without inequalities, every pre-valuation
is also a valuation. We refer to V (posg) as the facts required by V, and to V(negg) as the
facts prohibited by V.

A valuation V satisfies Q on instance I if all facts required by V are in I while no fact
prohibited by V' is in I, that is, if V(posg) C I and V(negg) N1 = (. In that case, V derives
the fact V(headg). The result of Q on instance I, denoted Q(I), is defined as the set of
facts that can be derived by satisfying valuations for Q on I.

A union of conjunctive queries with negation and inequalities is a finite union of CQ“’gs.
That is, Q is of the form U?Zl Q; where all subqueries Q;, ..., 9, have the same relation
name in their head atoms. We assume disjoint variable sets among different disjuncts in Q.
That is, vars(Q;) Nwvars(Q;) = () for i # j and, in particular, vars(headg,) # vars(headg,).
By varmaz(Q) we denote the maximum number of variables that occurs in any disjunct
of Q. By UCCF’;‘£ we denote the class of unions of conjunctive queries with negation and
inequalities and its fragments are denoted correspondingly.

A CQ™7 is called full if all of its variables occur in its head. A UCQ™7" is Sfull if all its
subqueries are full.

The result of Q@ on instance I is Q(I) = U, Q;(I). Accordingly, a mapping from
variables to data values is a wvaluation for a UCQ“?é Q if it is a valuation for one of its
subqueries.



G. Geck, B. Ketsman, F. Neven, and T. Schwentick

3.3 Networks, data distribution, and policies

A network N is a nonempty finite set of values from dom, which we call (computing) nodes
(or servers). A distribution policy P = (U, rfactsp) for a database schema D and a network N’
consists of a universe U and a total function rfactsp that maps each node of A to a set of facts
from facts(D,U). A node k is responsible for fact f (under policy P) if f € rfactsp(k). As
a shorthand (and slight abuse of notation), we denote the set of nodes k that are responsible
for some given fact f by P(f). For a distribution policy P and an instance I over D, let
loc-instp,; denote the function that maps each kK € N to I N rfactsp(k), that is, the set of
facts in I for which « is responsible. We sometimes refer to a given instance I as the global
instance and to loc-instp (k) as the local instance at node k.

We note that for some facts from facts(D,U) there are no responsible nodes. This gives
our framework some additional flexibility. However, it does not affect our results: in the
lower bound proofs we only use distributions for which all facts from facts(D, U) have some
responsible nodes. Each distribution policy implicitly induces a network and each query
implicitly defines a database (sub-) schema. Therefore, we often omit the explicit notation
for networks and schemas.

Given some policy P that is defined over a network A, the result [Q, P](I) of the
distributed evaluation of a query Q on an instance I in one round is defined as the union of
the results of the query evaluated on each node’s local instance. Formally,

(9, P](I) Lof U Q(loc—instpvl(n)).
KEN

In the decision problem for parallel correctness (to be formalised later), the input consists of
a query Q and a distribution policy P. However, it is not obvious how distribution policies
should be specified. In principle, they could be defined in an arbitrary fashion, but it is
reasonable to assume that given a potential fact f, a node x and a policy P, it is not too
hard to find out whether & is responsible for f under P.

For UCQ’és, which are monotone, our complexity results are remarkably robust with
respect to the choice of the representation of distribution policies. In fact, the complexity
results coincide for the two extreme possible choices that we consider in this article. In the
first case, distribution policies are specified by an explicit list of tuple-node-pairs, whereas
in the second case the test whether a given node is responsible for a given tuple can be
carried out by a non-deterministic polynomial-time algorithm. However, we do require that
some bound n on the length of strings that represent node names and data values is given.
Without such a restriction, no upper complexity bounds would be possible as nodes with
names of super-polynomial length in the size of the input would not be accessible.

Considering queries with negated atoms, however, these two settings (seem to) differ,
complexity-wise. The reason is that testing parallel-correctness in this setting requires counter
examples of size exponential in the size of the query which can not be succinctly represented
by policies in Pg,. We therefore introduce the class Py allowing for a more economic rule
based description of policies. In particular, in Pyye, the universe U of a policy is explicitly
enumerated and the responsibilities are defined by simple constraints (described below). The
latter representation enjoys the same complexity properties as the full NP-test based case.

Now we give more precise definitions of classes of policies and their representations
as inputs of algorithmic problems. As said before, policies P = (U, rfactsp) from Pgy,
are specified by an explicit enumeration of U and of all pairs (k, f) where k € P(f). A
policy P = (U, rfactsp) from Ppye is given by an explicit enumeration of U and a list of
rules of the form p = (A, k), where A is an atom with variables and/or constants from U,

9:5

ICDT 2016



9:6

Parallel-Correctness and Containment for CQs with Union and Negation

and a network node k. The semantics of such a rule is as follows: for every substitution
1 : var Udom — dom that maps variables to values from U and leaves constants from U
unchanged, the node « is responsible for the fact u(A). A rule is a fact rule if its atom does
not contain any variables, that is, A = R(ay,...,ay), where ai,...,a, € U. In particular,
Ptin € Prule-

» Example 1. Let distribution policy P over schema {Re1®®} and network {ri,rs} be
given by U = {1,...,10} and the rules (Rel(l,,z),x1), (Rel(2,z,y),x2). On global in-
stance I = {Rel(1,7,7),Rel(1,7,8),Rel(2,9,8),Rel(2,9,9)}, policy P induces local instances
loc-instp (k1) = {Rel(1,7,7)} and loc-instp (k2) = {Rel(2,9,8),Rel(2,9,9)}. O

The most general classes of policies allow to specify policies by means of a ‘test algorithm’
with time bound ¢*, where ¢ is the length of the input and k some constant. Such an
algorithm decides, for an input consisting of a node x and fact f, whether & is responsible for
f.1 A policy P = (U, rfactsp) from Pﬁfpoly is specified by a pair (n, Ap), where n is a natural
number in unary representation and Ap is a non-deterministic algorithm.? The universe
U of P is the set of all data values that can be represented by strings of length at most n
(for some given fixed alphabet) and the underlying network consists of all nodes which are
represented by strings of length at most n, that is, N' = dom,,. A node & is responsible
for a fact f if Ap, on input (k, f), has an accepting run of at most |(x, f)|* steps. Clearly,
each policy of Pgn can be described in P? Let Pupory denote the set® {PF | k> 2} of

npoly* npoly
distribution policies and by B the set {Pfn, Prute } U Bnpoly-

3.4 Parallel-correctness, soundness, and completeness

In this paper, we mainly consider the one-round evaluation algorithm for a query Q that first
distributes (reshuffles) the data over the computing nodes according to P, then evaluates @
in a parallel step at every computing node, and finally outputs all facts that are obtained
in this way.? As formalised next, the one-round evaluation algorithm is correct (sound,
complete) if the query Q is parallel-correct (parallel-sound, parallel-complete) under P.

» Definition 2. Let Q be a query, I an instance, and P a distribution policy.
Q is parallel-sound on I under P if Q(I) 2 [Q, P](I).
Q is parallel-complete on I under P it Q(I) C [Q, P](I); and,
Q is parallel-correct on I under P it Q(I) = [Q, P](I), that is, if it is parallel-sound and
parallel-complete.

» Definition 3. A query Q is parallel-correct (respectively, parallel-sound and parallel-
complete) under distribution policy P = (U, rfactsp), if Q is parallel-correct (respectively,
parallel-sound and parallel-complete) on all instances I C facts(D,U).

In [4], parallel-correctness is characterised in terms of minimal valuations as defined next:

» Definition 4. Let Q be a CQ. A valuation V for Q is minimal for Q if there exists no
valuation V' for Q such that V(headg) = V'(headg) and V'(bodyg) C V(body,).

We note that it is important that for each class of policies there is a fixed k£ that bounds the exponent
in the test algorithm as otherwise we could not expect a polynomial bound for all policies of that class.
For concreteness, say, a non-deterministic Turing machine.

Since ‘linear time’ is a subtle notion, we rather not consider Pﬁpoly.

We note that, since P is defined on the granularity of a fact, the reshuffling does not depend on the
current distribution of the data and can be done in parallel as well.



G. Geck, B. Ketsman, F. Neven, and T. Schwentick

The following lemma is key in obtaining the II5 upper bound on the complexity of testing
parallel-correctness for conjunctive queries:

» Lemma 5 (Characterisation of parallel-correctness for CQs [4]). A CQ Q is parallel-correct
under distribution policy P = (U, rfactsp) if and only if the following holds:

For every minimal valuation V' for Q over U, there is a node k € N such that

V(bodyg) C rfactsp (k). (C1)

» Remark 6. Informally, condition (C1) states that there is a node in the network where all
facts required for V. meet.

3.5 Algorithmic problems

We consider the following decision problems for various sub-classes C and C’ of UCQ“7£ and
classes P of distribution policies from {Pgn, Prute } U Bnpoly -

CONTAINMENT(C, C’): PARALLEL-SOUND(C, P):

Input: @ €C and Q' €’ Input: QeC, PcP

Question: Is Q C Q'7 Question: Is Q parallel-sound under P?
PARALLEL-COMPLETE(C, P): PARALLEL-CORRECT(C, P):

Input: Q€C, PeP Input: Q€C, PeP

Question: Is O parallel-complete under P? | | Question: Is Q parallel-correct under P?

4 Parallel-correctness: unions of conjunctive queries

Parallel-correctness of unions of conjunctive queries (without negation) reduces to parallel-
completeness for the simple reason that these queries are monotone and therefore parallel-
sound for every distribution policy. We show below that parallel-completeness remains in IT5.
Hardness already follows from IT5-hardness of PARALLEL-CORRECT(CQ, Prn) [4].

As a UCQ is parallel-complete under a policy P when all its disjuncts are, it might be
tempting to assume that this condition is also necessary. However, as the following example
illustrates, this is not the case.

» Example 7. Let Q = Q1 U Q, where Q1 and Q- are the following CQs:

Q1: H(z,z)
Q2 : H(yaz)

+— R(z,x),

+— R(y,2),S(y,z).

Further, let P be the policy over network {k1, ko} that maps facts R(a,a) to node k1, for
all a € dom, and all other R-facts and all S-facts to node ks.

We argue that Q is parallel-complete under P on all instances. Indeed, assume H(a,b) €
Q(I) for some instance I and a,b € dom. If a # b, only the valuation {y — a, z — b} can de-
rive H(a,b). This means that {R(a,b),S(a,b)} C I. Furthermore, {R(a,b),S(a,b)} C
rfactsp(k2). Hence, H(a,b) € Q(loc-instp j(k2)). If a = b, then R(a,a) € I. So,
R(a,a) € rfactsp(k1) and H(a,a) € Q(loc-instp ;(k1)). On the other hand, Qs is not
parallel-complete under P on instance I = {R(0,0),.5(0,0)}. Indeed, H(0,0) € Qs(I) but
Qs (loc-instp (k1)) = Q2({R(0,0)}) = 0 and Qs (loc-instp r(r2)) = Q2({5(0,0)}) =0. O

9:7

ICDT 2016



9:8

Parallel-Correctness and Containment for CQs with Union and Negation

We recall from Section 3.2 that disjuncts in unions of conjunctive queries use disjoint
variable sets and a valuation for @ is a valuation for exactly one disjunct. As formalised next,
the notion of minimality for valuations given in Definition 4 naturally extends to UCQ’é.

» Definition 8. Let Q =J, Q; be a UCQ7. A valuation V; for Q;, with i € {1,...,n},is
minimal for Q, if for no j € {1,...,n} there is a valuation Vj for Q;, such that Vj(headg,) =
Vi(headg,) and Vj(bodyg,) S Vi(bodyo,).

» Example 9. Consider a simple UCQVé Q = 901U Qs where Q1,95 € CQ3‘é are as follows:

Ql : H(u,v)
Q2 : H(Iay)

+ R(u,v), R(v,u), R(u,u),

« R(z,y),R(y,2),y # 2.

Valuation V5 & {z — 0,y — 0,z — 1} is not minimal for Q because valuation V; B
{u — 0,v — 0} derives the same fact H(0,0) requiring only {R(0,0)} C {R(0,0), R(0,1)}.
Similarly, valuation W, = {u + 0,v — 1}, requiring { R(0, 1), R(1,0), R(0,0)}, is not minimal
for Q because valuation Wy = {z — 0,y — 1,z — 0} only requires {R(0,1), R(1,0)}. O

The notion of minimality leads to basically the same simple characterisation of parallel-
completeness:

» Lemma 10. A UCQ;‘é Q is parallel-correct under distribution policy P = (U, rfactsp) if
and only if the following holds:

For every minimal valuation V' for Q over U, there is a node k € N such that o1
V(bodyg) C rfactsp(k). (1)
Proof. (If) Assume (C1’) holds. Because of monotonicity, we only need to show that
Q(I) € Uyen Qlloc-instp 1()) for every instance I. To this end, let f be an arbitrary fact
that is derived by some valuation V for Q on I. Then, there is also a minimal valuation
V' that is satisfying on I and which derives f. Because of (C1’), there is a node kK € N
where all facts required by V' meet (cf. Remark 6). Hence, f € .o Q(loc-instp 1(k)), i.e.
query Q is parallel-correct under policy P.

(Only if) For a proof by contraposition, suppose that there is a minimal valuation V' for Q for
which the required facts do not meet under P. Consider the input instance I = V'(body,).
By definition of minimality, there is no valuation that agrees on the head variables and is
satisfying for Q on a strict subset of V'(bodyg). Therefore, V'(headg) is in Q(I) but it is
not derived on any node and thus query Q is not parallel-complete under policy P. |

The characterisation in Lemma 10, in turn, can be used to prove a II5 upper bound.
» Lemma 11. PARALLEL-CORRECT(UCQ”, P) is in 115, for every P € B.

Proof. Tt suffices to show that the complement of PARALLEL-COMPLETE(UCQ7 Prlfpoly) is

in X% for arbitrary k > 2. Let P = (n,T) be a policy from ’Plffpoly. We have to consider only
instances whose data values can be represented by strings of length n over networks whose
nodes can be represented by strings of length n.

By Lemma 10, a query Q is not parallel-correct under distribution policy P if and only if
there exists a minimal valuation V that satisfies Q on some instance I with adom(I) C dom,,
such that no node in dom,, is responsible for all facts from V (body,).

First, the algorithm non-deterministically guesses a valuation V', which can be represented

by a string in length polynomial in @ and n. Subsequently, it checks for all valuations V’,



G. Geck, B. Ketsman, F. Neven, and T. Schwentick

all nodes k, and all strings x of polynomial length whether V' contradicts minimality of V
(in which case the algorithm rejects the input) and, by use of algorithm T', whether node & is
not responsible for at least one fact from V(bodyg) (if so, the algorithm continues, otherwise
it rejects). All tests can be done in polynomial time. <

From [4] we know the following result.
» Theorem 12 ([4]). PARALLEL-CORRECT(CQ, Pfyn) is II5-complete.
Together with Lemma 11 we get the following result.

» Theorem 13. PARALLEL-CORRECT( UCQf,P) is 115 -complete, for every P € B.

5 Containment of CQ " and UCQ"™

In this section, we establish the complexity of containment for CQ™ and UCQ™~. We need
these results to establish lower bounds on parallel-correctness and its constituents in the next
section. Whereas containment for CQ has been intensively studied in the literature, the
analogous problems for CQ™ and UCQ ™ have hardly been addressed and seem to belong to
folklore. In fact, we only found a reference of a complexity result for containment of CQ™ in
[19], where a II5-algorithm for the problem is given, based on observations in [16], and the
existence of a matching lower bound is mentioned. However, as we show below, although
the problem is indeed in II5 for queries defined over a fixed schema (or when the arity of
relations is bounded), it is CONEXPTIME-complete in the general case.

We first show the lower bounds. They actually already hold for Boolean queries. We
show that CONTAINMENT(BCQ ™, UBCQ") is CONEXPTIME-hard by a reduction from
the succinct 3-colorability problem and afterwards that CONTAINMENT(BCQ ', UBCQ ")
can be reduced to CONTAINMENT(BCQ ', BCQ ). Here, BCQ ™ and UBCQ " denote the
class of Boolean CQ s and unions of Boolean CQ s, respectively. Together this establishes
that CONTAINMENT(BCQ,BCQ™) and therefore also CONTAINMENT(CQ™,CQ™) are
CONEXPTIME-hard.

» Proposition 14. CONTAINMENT(BCQ ™, UBCQ™) is CONEXPTIME-hard.

Proof. The proof is by a reduction from the succinct 3-colorability problem, which asks,
whether a graph G, which is implicitly given by a circuit with binary AND- and OR- and
unary NEG-gates, is 3-colorable. The latter problem is known to be NEXPTIME-complete
[18]. We say that a circuit C, with 2¢ Boolean inputs, describes a graph G = (N, E), when
N = {0,1}*, and there is an edge (ny,n2) € N2 if and only if C' outputs true on input n;ns.

Let C be an input for the succinct 3-colorability problem with 2¢ Boolean inputs. We
construct queries Q; and Qs such that Q1 Z Qs if and only if the graph described by C' is
3-colorable.

Both queries are over schema D, which consists of relation names DomainValues(®),
Bool, And®), 0r®), Neg®, and Label“+1V) Intuitively, satisfaction of Q; will guarantee
that there is a tuple (ag, a1, a2) with three different values in relation DomainValues. We
will use, for some such tuple, ag, a1, as as colors and ag, a; as truth values. We will often
assume without loss of generality that (ag,a1,a2) = (0,1,2). In particular, for such a tuple,
ag is interpreted as false while a; is interpreted as true. The unary relation Bool will be
forced by Qi to contain at least ag and a.

Relations And, Or, and Neg are intended to represent the respective logical functions.
The first two attributes represent input values, and the last attribute represents the output.

9:9

ICDT 2016



9:10

Parallel-Correctness and Containment for CQs with Union and Negation

Again, Q; will guarantee that at least all triples of Boolean values that are consistent with
the semantics of AND, OR, and NEG are present in these relations. Tuples in relation Label
represent nodes together with their respective color (one can think of the representation of a
node by f-ary addresses over a ternary alphabet).

We define query Q; as follows:

T() +DomainValues(wg, w;,ws), "DomainValues(ws;, wo, ws),
—DomainValues(ws, wy,wp), "DomainValues(wy, we, wy),
Bool(wg),Bool(w; ), Neg(wi, wp), Neg(wp, wy),

And(wo, wo, wo), And(wp, w1, wp), And(wy, wo, wo ), And (w1, w1y, wy),

Dr(w07w07w0), OI‘('(UO,’wl,U)l), Or(wla wOawl)a Or(wl,wla w1)~

It is easy to see that Q; enforces the conditions mentioned above.
In the following, we denote sequences x1, ...,z of £ variables by «.
We define Q5 as the union of the queries Q% and Q%, where subquery Q% is defined as:

T() <-Bool(z1),Bool(xs),...,Bool(z,), DomainValues(y,, Yg, Ys),
—Label(x,y,), "Label(x, y,), "Label(x, yp).

Intuitively, @} can be satisfied in a database if for some node, represented by @, there is no
color.

Subquery Q2 deals with the correctness of a coloring and uses a set CIRCUIT of atoms
that is intended to check whether for two nodes v and v, represented by y and z, respectively,
there is an edge between u and v.

To this end, CIRCUIT uses the variables y1,...,ys, 21,-.., 2¢, representing the input and,
at the same time, the 2¢ input gates of C', and an additional variable u;, for each gate of
C, with the exception of the output gate. The output gate is represented by variable w;.
For each AND-gate represented by variable v; with incoming edges from gates represented
by variables u; and ug, CIRCUIT contains an atom And(ui,us,v;). Likewise for OR- and
NEG-gates.

Subquery Q3 is defined as:

T() «DomainValues(wp, ws,ws), CIRCUIT, Label(y, u), Label(z, u).

Intuitively, Q3 returns true when two nodes, witnessed to be adjacent by the circuit, have
the same color.

Correctness of the reductions can be shown rather straightforwardly, as is done in the
full version of this paper [14]. <

Next, we provide the above mentioned reduction.
» Proposition 15. CONTAINMENT(BCQ™, UBCQ") <, CONTAINMENT(BCQ ", BCQ").

Proof. Let Q; be in BCQ™ and Q, = [J;~, Q4 be in UBCQ™ over some database schema
D. Recall our assumption, that each disjunct is defined over a disjoint set of variables. Next,
we construct CQs Q) and Q) such that Q] C Qj if and only if, Q; C Q.

We explain the intuition behind the reduction by means of an example. To this end, let
Q1 be H() + A(z,y) and let Qy be the O U Q% where Q1 is H() + A(uy,v1), B(uy,v1)



G. Geck, B. Ketsman, F. Neven, and T. Schwentick

and Q3 is H() < A(ug,v2), ~B(uz,vs), both formulated over the schema D = {A(), B},
The query Q) takes the following form:

H() + Active(zg,x1;41,42), a(lq, Q%),O&(fg, Qg),
——— ————
Q5 Q0

where a(w, Q) denotes the modification of the body of Q by replacing every atom R(x) by
R'(w,x). Both queries are defined over the schema D' = {A’®), B'®) Active®}. Notice
that Q) contains a concatenation of the disjuncts of Qs. In addition, relations A and B are
extended with a new first column with the purpose of labelling tuples. This labelling allows
to encode two (or even more) instances over D by one instance over D’. Specifically, bodygll
(not shown) is constructed in such a way that when there is a satisfying valuation for Q)
there are two different data values, say 0 and 1. So, an instance I over D can be encoded as
I° = {A'(0,a,b) | A(a,b) € I} U{B'(0,a,b) | B(a,b) € I} or as I = {A’(1,a,b) | A(a,b) €
ITU{B'(1,a,b) | B(a,b) € I}. In addition, when there is a satisfying valuation for Qf, there
is an instance I on which every disjunct of Q5 is true, and there is an instance I; on which
Q1 is true. So, both Q5 ; and Qj , evaluate to true on I9 when ¢; and /5 are interpreted by
label 0. However, for Q; to be contained in Qs, we need that at least one of the disjuncts
Q5,1 or Q5 5 evaluates to true over [ 1, that is, when its labelling variable is interpreted as 1.
Atom Active(x,x1;¥1,¥¢2) will ensure that o and 27 correspond with the values 0 and 1,
and that at least one of the labelling variables £1 or ¢5 is equal to 1. In other words, Active
chooses which disjunct to activate over I;. So, at least one disjunct of Q5 evaluates to true
on the instance I; on which QO is satisfied.

The reduction is explained in more detail in the full version of this paper [14]. <

Combining Propositions 14 and 15 we get the following corollary:
» Corollary 16. CONTAINMENT(CQ™, CQ") is CONEXPTIME-hard.

The corresponding upper bounds hold also in the presence of inequalities and are shown
by small model (i.e., counter-example) properties. To this end, we make use of a restricted
monotonicity property of UCQ™7s which was already observed in Proposition 2.4 of [1]. For
an instance I and a set D of data values we denote by I|p the restriction of I to facts that
only use values from D.

» Lemma 17 ([1]). For Q € UCQ™7, I an instance with a compatible schema, and D a
set of data values, it holds that Q(I|p) € Q(I).

Proof. Let f € Q(I|p) via a valuation V for a disjunct Q; of Q. Thus, V(posg,) C I|p C I.

By definition, every variable = of Q; occurs in a positive atom and therefore V(x) € D. Thus,
V(negg,) NI =V (nego,) NIjp =0 and f € Q(I) as claimed. <

Now we can establish the following small model property for testing containment.

» Lemma 18. Let Q1,95 € UCQﬁ”é. If there is an instance I, where Q1(I) € Qo(I), then
there is also an instance J C I, where Q1(J) € Qa(J), and |adom(J)| < varmaz(Q;).

Proof. Let I be as in the lemma and let f be a fact with f € Q1(I) and f & Qo(I). Let V
be a valuation that derives f via some disjunct Q} of Q;.

Let D = adom(V (posg: )) and J = I)p the set of all facts in I using only values from
adom(V (posg,)). By definition, [adom(J)| < varmaz(Q;). Clearly, V' is still a satisfying

valuation for Qf over J. However, by Lemma 17, f & Qs(J) = Qa2({|p)- <

9:11

ICDT 2016



9:12

Parallel-Correctness and Containment for CQs with Union and Negation

The upper bounds follow easily from Lemma 18.

» Proposition 19. The following upper bounds hold:
1. CONTAINMENT(UCQﬁ’#, UCQW&) is in CONEXPTIME.
2. For every k, containment of UCQﬁ’;é—quem'es over schemas with arity bound k is in I15.

Proof. In both cases, we consider the complement of CONTAINMENT(UCQ“’é, UCQﬁ#).

Let m < varmaz(Q;).

1. A NEXPTIME algorithm, on input Qi, 92, can simply guess an instance J with a
domain of at most m elements and a fact f, and verifies that f € Q1(J) but f & Qa(J).
For the latter tests, it can simply cycle, in exponential time, to all valuations over J for
Q; and Qs.

2. For a fixed arity bound, the minimal counter-example .J is of size at most m¥. It can thus
be guessed in polynomial time. That f € Q1(J) can be verified non-deterministically.
That f & Qz(J) can be verified by a universal computation in polynomial time. <

A claim of a IT5 upper bound for containment of CQs with negation can be found in [19].
It was not made clear there, that this claim assumes bounded arity of the schema. That the
containment problem is IT5-complete for schemas of bounded arity has been explicitly shown
n [17]. Clearly, Proposition 19.2 follows directly and 19.1 is only a variation of it. From
Proposition 19 and Corollary 16 the main result of this section immediately follows.

» Theorem 20. CONTAINMENT(BCQ~, BCQ™) and CONTAINMENT(UCQ ™, UCQ™7)
are CONEXPTIME-complete.

Of course, the theorem also holds for all classes C of queries with BCQ " C C C UCQﬁ’;‘é.

6 Parallel-correctness: unions of conjunctive queries with negation

As mentioned in Section 4, for conjunctive queries without negation parallel-soundness
always holds and thus parallel-correctness and parallel-completeness coincide, thanks to
monotonicity. For queries with negation the situation is different. Distributed evaluation can
be complete but not sound, or vice versa. For this reason, we have to distinguish all three
problems separately: correctness, soundness, and completeness. However, the complexity is
the same in all three cases.

Our results show a second, more crucial difference. Whereas parallel completeness for CQs
without negation could be characterised in terms of valuations, that is, objects of polynomial
size, our algorithms for CQs with negation involve counter-examples of exponential size (if
the arity of schemas is not bounded) and the CONEXPTIME lower bound results indicate
that this is unavoidable. We illustrate the observation that counter-examples might need an
exponential number of tuples by the following example.

» Example 21. Let Q be the following conjunctive query with negation:

H() < Bool(wp,wp),Bool(wr,ws),Bool(z1,x1),...,Bool(xy,,x,),
—Bool(wp, w1 ), "Rel(xy,...,op).

Let P be the policy defined over universe U = {0, 1} and two-node network {1, K2}, which
distributes all facts except Rel(0,...,0) to node k; and only fact Rel(0,...,0) to node ko.
Query @ is not parallel-sound under policy P, but the smallest counter-example I is of

def

exponential size as we argue next. Indeed, let I = {Boo1(0,0),Bool(1,1)}U{Rel(ay,...,ay) |
(a1,...,ay) € {0,1}"}. Furthermore, let valuation V map variables w; and wp to 1 and 0,



G. Geck, B. Ketsman, F. Neven, and T. Schwentick

respectively, and map x; to 0, for every ¢ € {1,...,n}. Then, valuation V satisfies Q on
instance loc-instp 1 (k1) = I \ {Rel(0,...,0)} because neither Bool(0,1) nor Rel(0,...,0) is
contained in the local instance. Furthermore, there is no satisfying valuation W for Q on
the global instance I because W would have to map each z; to either 0 or 1 implying that
W (Rel(zy,...,zy)) € I.

However, there is no smaller instance: let I* be some instance over universe U that
has a locally satisfying valuation V. The combination of atoms Bool(wq, wp),Bool(ws, w1),
and —Bool(wp,w;) in query Q then implies existence of both facts Boo1(0,0) and Bool(1,1)
because variables wgy and w; cannot be mapped onto the same data value.

Assume that fact Rel(aq, ..., a,), for some (a,...,a,) € {0,1}" is missing from I'*. Then
the valuation W that maps wg — 0,w; — 1 and z; — a;, for every i € {1,...,n}, satisfies
Q also globally, on instance I*, and can therefore be no example against parallel-soundness,
which contradicts our choice of I*. Thus, Rel(as,...,a,) € I*, for every (a1,...,a,) €
{0,1}". We therefore have I C I* and, in particular, instance I* contains at least as many
facts as instance I. O

The results of this section are summarised in the following theorem:

» Theorem 22. For every class P € {Pruie} U Bnpoy of distribution policies, the following
problems are CONEXPTIME-complete.

PARALLEL-SOUND(UCQ™, P)

PARALLEL-COMPLETE(UCQ™, P)

PARALLEL-CORRECT(UCQ ™, P)
Theorem 22 follow from Propositions 23 and 25 below. It also holds for UCQ™7. It is easy
to show that, when restricted to schemas with some fixed (but sufficiently large, for hardness)
arity bound, all these problems are IT5-complete.

6.1 Upper bounds

In this section, we show the upper bounds of Theorem 22, summarised in the following
proposition.

» Proposition 23. PARALLEL-SOUND(UCQ 7, P), PARALLEL-COMPLETE(UCQ ™7, P),
and PARALLEL-CORRECT( UCQﬂ”&,P) are in CONEXPTIME, for every class P € B of
distribution policies. If the arity of schemas is bounded by some fixed number, these problems
are in I15.

Proof. As already indicated above, the proof relies on a bound on the size of a smallest
counter-example. More specifically, we first show the following claim.

» Claim 24. Let Q € UCQﬁﬁ‘é and let P be an arbitrary distribution policy. Then the

following statements hold:

1. If Q is not parallel-complete under P, then there is an instance J over a domain with at
most varmaz(Q) elements such that Q is not parallel-complete on J under P.

2. If Q is not parallel-sound under P, then there is an instance J over a domain with at
most varmaz(Q) elements such that Q is not parallel-sound on J under P.

Towards (1) let us assume that Q is not parallel-complete on some instance I under P.

Let V be a valuation of a disjunct Q; of Q that derives a fact f globally that is not
derived on any node of the network. Let D = adom(V (posg,)) and J = Iip. Clearly,
|D| < varmaz(Q) and V still derives f globally on instance J via Q;. On the other hand,

for every node k, Q(ZOC—Z'TLSth(H)) = Q(ZOC-Z'nStP,](K/)‘D) C Q(ZOC-Z'TZStP,](/‘(;)), thanks to

9:13

ICDT 2016



9:14

Parallel-Correctness and Containment for CQs with Union and Negation

Lemma 17. Therefore f is not derived on x, and thus J witnesses the lack of parallel-
completeness of Q under P.

The proof of (2) is completely analogous. Given a counter-example I and a valuation V'
that derives a fact f on some node x via Q;, for which f is not derived globally, we define
D= I|adom(V(posQi)) and show that J = I|p is the desired counter-example.

An algorithm that tests the complement of parallel-completeness non-deterministically is

described in the full version of this paper [14]. <

6.2 Lower bounds

The lower bounds stated in Theorem 22 follow from a polynomial time reduction from
problem CONTAINMENT(BCQ ', BCQ "), for which we showed CONEXPTIME-hardness in
Section 5.

» Proposition 25. PARALLEL-COMPLETE(CQ ", Pruie), PARALLEL-SOUND(CQ, Pryi),
and PARALLEL-CORRECT(CQ", Prye) are CONEXPTIME-hard.

Proof. Interestingly, all three results are shown by the same reduction from decision problem
CONTAINMENT(BCQ ™, BCQ).

The basic idea for this reduction is very simple: it combines both queries @1, Q> € BCQ™
of the given containment instance into a single query @ € BCQ and infers an appropriate
distribution policy P. To emulate separate derivation for both queries in the combined
query, an activation mechanism is used that resembles the proof of Proposition 15. In this
fashion, the two queries can be evaluated over different subsets of the considered instance by
annotating both the facts in the instance as well as the atoms of the query.

We next describe the reduction in detail. Let thus Q, Q> € BCQ ™ be queries over some
schema D and let m = max {varmaz(Q;), varmaz(Qz)}. Without loss of generality, we
assume the variable sets of Q7 and Qs to be disjoint. We will also assume in the following that
both Q; and Q, are satisfiable. This is the case (for Q1) if and only if posg, Nnegy, = 0 and
can therefore be easily tested in polynomial time. If one of the test fails, some appropriate
constant instance of PARALLEL-COMPLETE(CQ ™, Pryle) or one of the other problem variants,
respectively, can be computed.

We define a (Boolean) query Q@ € BCQ ™ and a policy P € Pyyle over domain {1,...,m}
that can be computed from Q; and Qs in polynomial time. The schema for Q is D’ =f
{R'*+1) | R%) € D}. That is, each relation name R of D occurs as R’ in D’ with an arity
incremented by one. Additionally, Q uses relation names Type, Start,, Start,, and Stop,
which we assume not to occur in schema D. Besides the variables of @, and Qs, query Q
uses variables 1, £o, t.

We use the function «, defined in the proof of Proposition 15, which adds its first
parameter as first component to every tuple in its second parameter and translates relation
names R into R’. In Proposition 15, the first parameter was always a variable and the
second a set of atoms, but we use a also for a data value as first and a set of facts as second
parameter in the obvious way. We write o, ! for the function mapping sets of facts over
D’ to sets of facts over D, by selecting, from a set of facts, all facts with first parameter a,
deleting this parameter and replacing each name R’ by R. Finally, m,(I) = afa,az'(D)) is
the restriction of I to all facts with @ in their first component.

def

The combined query Q has headg = H() and body

body o = all, bodyo,) U a(la, bodyg, )
U {Type(t),Start,(¢1),Start,(¢1), Start,(f2)} U{—-Stop(¢1), ~Stop(f2)}.

A A~



G. Geck, B. Ketsman, F. Neven, and T. Schwentick

Policy P is defined over universe U = {1,...,m}, schema D’ U {Type, Start,,Start,, Stop}
and network N & {K1y++ s Em,01,...,0m,p}. Facts are distributed as follows:
Every node k; is respounsible for the facts Type(1), Start,(¢), Start,(z), Stop(i), and all
facts from facts(D’,U).
Every node o; is responsible for the facts Type(2), Start,(:), Stop(i), all Start,-facts,
and all facts from facts(D',U).
Finally, node p is responsible for facts Type(3),...,Type(m), and all facts over other
relation names.
It is easy to see that P can be expressed by a polynomial number of rules and that @ and P
can be computed in polynomial time. In the full version of this paper [14], we show that the
described function is indeed the desired reduction. <

7  Full conjunctive queries

In this section, we focus attention on full conjunctive queries, in an attempt to lower the
complexity of testing parallel-correctness. Requiring queries to be full is a very natural
restriction which is known to have practical benefits. For example, the Hypercube algorithm,
which describes an optimal way to compute CQs in a setting very similar to ours, completely
ignores projections when shuffling data, and only applies them when computing the query
locally. The latter is possible because correctness for the full-variant of a query is in a sense
more strict than correctness for the query itself.

Formally, a (union of) conjunctive queries is called full if all variables of the body also
occur in the head. We denote by FCQ ™7 and UFCQ ™7 the class of full CQ ™7 and full
UCQ“’ﬁ queries, respectively, and likewise for other fragments.

The presentation is similar to that of Section 5 and 6. First, we establish the complexity
of query containment. Then, we show that containment reduces to parallel-correctness (and
variants). Finally, we obtain matching upper bounds.

The following theorem shows that unlike for general conjunctive queries the complexity
of deciding containment for FCQ™ and UFCQ™ do not coincide.

» Theorem 26.

1. CONTAINMENT(FCQ", FCQ") is in P;

2. CONTAINMENT(FCQ", UFCQ") is CONP-complete; and
3. CONTAINMENT(UFCQ", UFCQ™) is CONP-complete.

All these results also hold for queries with inequalities.

As one can reduce from CONTAINMENT(FCQ ™, UFCQ") to parallel-soundness, com-
pleteness, and correctness, we obtain the following hardness results:

» Proposition 27. PARALLEL-SOUND(UFCQ",P), PARALLEL-COMPLETE(UFCQ ", P),
and PARALLEL-CORRECT(UFCQ ", P) are CONP-hard, for every P € {Pryie} U Bnpoly-

The following theorem determines the complexity for the upper bounds:

» Theorem 28. The following problems are CONP-complete:
1. PARALLEL-SOUND(UFCQ ", Pruic);

2. PARALLEL-COMPLETE(UFCQ ", Pryie);

3. PARALLEL-CORRECT(UFCQ™, Pyy)-

The result also holds for queries with inequalities.

9:15

ICDT 2016



9:16

Parallel-Correctness and Containment for CQs with Union and Negation

8 Discussion

In this paper, we continued the study of parallel-correctness initiated by Ameloot et al. [4] as a
framework for reasoning about one-round evaluation algorithms for conjunctive queries under
arbitrary distribution policies. Specifically, we considered the case with union and negation.
While parallel-correctness for unions of conjunctive queries can be tested by examining
properties of single valuations, just like in the union-free case, the latter no longer holds true
when negation is present. Consequently, we obtained that deciding parallel-correctness for
unions of conjunctive queries remains in IT5, while the analog problem in the presence of
negation is hard for CONEXPTIME. Since conjunctive queries with negation are no longer
monotone, we considered the related problems of parallel-completeness and parallel-soundness
as well and obtained the same bounds. Interestingly, when negation is present, containment
of conjunctive queries can be reduced to parallel-correctness (and its variants) allowing the
transfer of lower bounds. We prove that containment for conjunctive queries with negation
is hard for CONEXPTIME, which, to the best of our knowledge, is a novel result. In an
attempt to lower complexity, we show that parallel-correctness for unions of full conjunctive
queries with negation is CONP-complete.

There are quite a number of directions towards future work. While parallel-correctness
for first-order logic is undecidable, it would be interesting to determine the exact frontier
for decidability. As the considered problem is a static analysis problem that relates to the
size of the queries and not to the size of the instances (at least in the setting of Prye),
exponential lower bounds do not necessarily exclude practical application. It could still
be interesting to identify settings that would make parallel-correctness tractable. Possibly
independent of tractability considerations, such settings could incorporate bag semantics,
integrity constraints, or specific classes (and representations) of distribution policies. We
also plan to consider evaluation algorithms that use knowledge about the distribution policy
to compute better query results, locally. Another direction for future work is to investigate
transferability of parallel-correctness for conjunctive queries as defined in [4] in the presence
of union and negation.

—— References

1  Foto N. Afrati, Stavros S. Cosmadakis, and Mihalis Yannakakis. On datalog vs. polynomial
time. J. Comput. Syst. Sci., 51(2):177-196, 1995. doi:10.1006/jcss.1995.1060.

2 Foto N. Afrati, Paraschos Koutris, Dan Suciu, and Jeffrey D. Ullman. Parallel skyline
queries. In International Conference on Database Theory (ICDT 2012), pages 274-284,
2012. doi:10.1145/2274576.2274605.

3  Foto N. Afrati and Jeffrey D. Ullman. Optimizing joins in a map-reduce environment. In
FEatending Database Technology (EDBT 2010), pages 99-110, 2010. doi:10.1145/1739041.
1739056.

4 Tom J. Ameloot, Gaetano Geck, Bas Ketsman, Frank Neven, and Thomas Schwentick.
Parallel-correctness and transferability for conjunctive queries. In Principles of Database
Systems (PODS 2015), pages 47-58. ACM, 2015.

5 Tom J. Ameloot, Bas Ketsman, Frank Neven, and Daniel Zinn. Weaker forms of monoton-
icity for declarative networking: a more fine-grained answer to the CALM-conjecture. In
Principles of Database Systems (PODS 2014), pages 64-75, 2014.

6 Tom J. Ameloot, Frank Neven, and Jan Van den Bussche. Relational transducers for
declarative networking. J. ACM, 60(2):15, 2013. doi:10.1145/2450142.2450151.

7 Apache spark. URL: http://spark.apache.org.


http://dx.doi.org/10.1006/jcss.1995.1060
http://dx.doi.org/10.1145/2274576.2274605
http://dx.doi.org/10.1145/1739041.1739056
http://dx.doi.org/10.1145/1739041.1739056
http://dx.doi.org/10.1145/2450142.2450151
http://spark.apache.org

G. Geck, B. Ketsman, F. Neven, and T. Schwentick

10

11

12

13

14

15

16

17

18

19

20

21

22

Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query
processing. In Principles of Database Systems (PODS 2013), pages 273-284, 2013.

Paul Beame, Paraschos Koutris, and Dan Suciu. Skew in parallel query processing. In
Principles of Database Systems (PODS 2014), pages 212-223, 2014.

Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries in
relational data bases. In Symposium on Theory of Computing (STOC 1979), pages 77-90,
1977.

Shumo Chu, Magdalena Balazinska, and Dan Suciu. From theory to practice: Efficient
join query evaluation in a parallel database system. In ACM SIGMOD Conference, pages
63-78, 2015.

Carles Farré, Werner Nutt, Ernest Teniente, and Toni Urpi. Containment of conjunctive
queries over databases with null values. In International Conference on Database Theory
(ICDT 2007), pages 389-403, 2007. doi:10.1007/11965893_27.

Sumit Ganguly, Abraham Silberschatz, and Shalom Tsur. Parallel bottom-up processing
of datalog queries. J. Log. Program., 14(1&2):101-126, 1992.

Gaetano Geck, Bas Ketsman, Frank Neven, and Thomas Schwentick. Parallel-correctness
and containment for conjunctive queries with union and negation. CoRR, abs/1512.06246,
2015. URL: http://arxiv.org/abs/1512.06246.

Paraschos Koutris and Dan Suciu. Parallel evaluation of conjunctive queries. In Principles
of Database Systems (PODS 2011), pages 223-234, 2011.

Alon Y. Levy and Yehoshua Sagiv. Queries independent of updates. In International
Conference on Very Large Data Bases (VLDB 1993), pages 171-181, 1993.

Marie-Laure Mugnier, Geneviéve Simonet, and Michaél Thomazo. On the complexity of
entailment in existential conjunctive first-order logic with atomic negation. Inf. Comput.,
215:8-31, 2012.

Christos H. Papadimitriou and Mihalis Yannakakis. A note on succinct representations
of graphs. Information and Control, 71(3):181-185, 1986. doi:10.1016/30019-9958(86)
80009-2.

Jeffrey D. Ullman. Information integration using logical views. Theoretical Computer
Science, 239(2):189-210, 2000.

Fang Wei and Georg Lausen. Containment of conjunctive queries with safe negation. In
International Conference on Database Theory (ICDT 2003), pages 343-357, 2003.
Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J. Franklin, Scott Shenker, and Ton
Stoica. Shark: SQL and rich analytics at scale. In ACM SIGMOD Conference, 2013.
Daniel Zinn, Todd J. Green, and Bertram Ludéscher. Win-move is cordination-free (some-
times). In International Conference on Database Theory (ICDT 2012), pages 99-113, 2012.

9:17

ICDT 2016


http://dx.doi.org/10.1007/11965893_27
http://arxiv.org/abs/1512.06246
http://dx.doi.org/10.1016/S0019-9958(86)80009-2
http://dx.doi.org/10.1016/S0019-9958(86)80009-2




A Formal Study of Collaborative Access Control in
Distributed Datalog

Serge Abiteboul!, Pierre Bourhis?, and Victor Vianu®

1 INRIA Saclay, Palaiseau, France; and
ENS Cachan, Cachan, France
serge.abiteboul@inria.fr
2 CNRS, France; and
Centre de Recherche en Informatique, Signal et Automatique (CRIStAL) —
UMR 9189, Lille, France
pierre.bourhis@univ-lillel.fr
3  University of California San Diego, La Jolla, USA; and
INRIA Saclay, Palaiseau, France
vianu@cs.ucsd.edu

—— Abstract

We formalize and study a declaratively specified collaborative access control mechanism for data
dissemination in a distributed environment. Data dissemination is specified using distributed
datalog. Access control is also defined by datalog-style rules, at the relation level for extensional
relations, and at the tuple level for intensional ones, based on the derivation of tuples. The model
also includes a mechanism for “declassifying” data, that allows circumventing overly restrictive
access control. We consider the complexity of determining whether a peer is allowed to access
a given fact, and address the problem of achieving the goal of disseminating certain information
under some access control policy. We also investigate the problem of information leakage, which
occurs when a peer is able to infer facts to which the peer is not allowed access by the policy.
Finally, we consider access control extended to facts equipped with provenance information,
motivated by the many applications where such information is required. We provide semantics
for access control with provenance, and establish the complexity of determining whether a peer
may access a given fact together with its provenance. This work is motivated by the access
control of the Webdamlog system, whose core features it formalizes.

1998 ACM Subject Classification H.2.0 [Database Management] General — Security, integrity
and protection, H.2.1 [Database Management] Logical Design — Data models, H.2.3 [Database
Management] Languages — Data description languages, data manipulation languages

Keywords and phrases Distributed datalog, access control, provenance

Digital Object ldentifier 10.4230/LIPIcs.ICDT.2016.10

1 Introduction

The personal data and favorite applications of Web users are typically distributed across many
heterogeneous devices and systems. In [19], a novel collaborative access control mechanism for
a distributed setting is introduced in the context of the language Webdamlog, a datalog-style
language designed for autonomous peers [3, 2]. The experimental results of [19] indicate
that the proposed mechanism is practically feasible, and deserves in-depth investigation. In
the present paper, we provide for the first time formal grounding for the mechanism of [19]
and answer basic questions about the semantics, expressiveness, and computational cost of
such a mechanism. In the formal development, we build upon distributed datalog [16, 20],

© Serge Abiteboul, Pierre Bourhis, and Victor Vianu;

licensed under Creative Commons License CC-BY
19th International Conference on Database Theory (ICDT 2016).
Editors: Wim Martens and Thomas Zeume; Article No. 10; pp. 10:1-10:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2

A Formal Study of Collaborative Access Control in Distributed Datalog

which abstracts the core of Webdamlog, while ignoring certain features, such as updates and
delegation.

In this investigation, as in Webdamlog, access control is collaborative in the following
sense. The system provides the means to specify and infer access rights on disseminated
information, thus enabling peers to collectively enforce access control. The system is agnostic
as to how peers are motivated or coerced into conforming to the access control policy. This
can be achieved in various ways, from economic incentives to legal means (see, e.g., [28]),
possibly relying on techniques such as encryption or watermarking (see, e.g., [5]). We do not
address these aspects here.

The access control of [19] that we formalize and study here works as follows. First,
each peer specifies which other peers may access each of its extensional relations using
access-control-list rules. This provides in a standard manner an initial coarse-grained
(relation-at-a-time) access control, enforced locally by each peer. Next, facts can be derived
among peers using application rules. Access control is extended to such facts based on their
provenance: to see a propagated fact, a peer must have access to the extensional relations
used by the various peers in producing the fact. This enables controlling access to data
disseminated throughout the entire network, at a fine-grain (i.e., tuple) level. This capability
is a main distinguishing feature of Webdamlog’s access control model. The access control
also includes a hide mechanism that allows circumventing overly restrictive access control on
some disseminated facts, thus achieving a controlled form of “declassification” for selected
peers.

Access control in distributed datalog raises a variety of novel semantic, expressiveness
and complexity issues. How complex is it to check whether a peer has the right to access a
propagated fact? What are the appropriate complexity measures in this distributed setting?
Does the access control mechanism prevent leakage of unauthorized information? What
does it mean to extend access control to facts equipped with their provenance? Is there an
additional cost? These are some of the fundamental questions we study, described in more
detail next.

While the experimental results of [19] suggest that the computational cost of the proposed
mechanism is modest, we show formally that its complexity is reasonable. Specifically, we
prove that the data complexity of determining whether a peer can access a given fact is
PTIME-complete (with and without hide).

We next consider the problem of information leakage, which occurs when a peer is able
to infer some facts to which the peer is not allowed access by the policy. We show that, while
undecidable in general, information leakage can be tested for certain restricted classes of
policies and is guaranteed not to occur for more restricted classes.

One of the challenges of access control is the intrinsic tension between access restrictions
and desired exchange of information. We consider the issue of achieving the goal of dis-
seminating certain information under some access control policy. The goal is specified as a
distributed datalog program. We show that it is undecidable whether a goal can be achieved
without declassification (i.e., without hide). We study the issue of finding a policy without
hide that achieves a maximum subset of the specified goal. While any goal can be achieved
by extensive use of hide, we show, more interestingly, how this can be done with minimal
declassification.

In many applications, it is important for inferred facts to come with provenance informa-
tion, i.e., with traces of their derivation. We demonstrate that adding such a requirement has
surprising negative effects on the complexity. For this, we introduce an intermediate measure
between data and combined complexity, called locally-bounded combined complexity that



S. Abiteboul, P. Bourhis, and V. Vianu

allows making finer distinctions than the classical measures in our context. The intuition is
that the peers are seen as part of the data and not of the schema, which is more in the spirit
of a Web setting. We show that the locally bounded complexity of query answering increases
from PTIME-complete to PSPACE-complete when it is required that the query answer carries
provenance information.

The organization is as follows. Section 2 recalls the distributed datalog language [3]. In
Section 3, we formalize the core aspects of the access control mechanism of [19], establish
the complexity of answering queries under access control. Information leakage is studied in
Section 4. The issue of achieving some dissemination goal under a particular access control
policy is the topic of Section 5. Access control in the presence of provenance is investigated
in Section 6. Finally, we discuss related work and conclude.

2 Distributed Datalog

In this preliminary section, we formally define a variant of distributed datalog, which captures
the core of Webdamlog [3].

The language. We assume infinite disjoint sets Ezt of extensional relation symbols, Int of
intensional relation symbols, P of peers (e.g. p,q), D, of pure data values (e.g., a,b), and
V of variables (e.g., x,y, X,Y). For relations, we use symbols such as R,S,T. The set D
of constants is P U D, U Ext U Int. A schema is a mapping ¢ whose domain dom(o) is a
finite subset of P, that associates to each p a finite set o(p) of relation symbols in Int U Ext,
with associated arities. Let o be a schema, p € dom(c). A relation R in o(p) is denoted
by RQp, and its arity by arity(RQp). We denote ext(p) = o(p) N Ext, int(p) = o(p) N Int,
ext(0) = Upedom(o) €rt(p), and int(c) = Upecdom(o)int(p). An instance I over o is a mapping
associating to each relation schema R@Qp a finite relation over D of the same arity. For a tuple
a in I(RQp), the expression R@p(a) is called a (p-)fact in RQp. An extensional instance
is one that is empty on int(o). Observe that RQp and RQgq, for distinct p, ¢, are distinct
relations with no a priori semantic connection, and possibly different arities. Note also that
an expression RQp(ay,...,ax) for R,p, a1, ...,ax in D is a fact for a schema o if: p is a peer
in dom(o), R is a relation schema in o(p), and arity(RQp) = k. Note that relations may
contain pure data values, peers, as well as relation symbols. Finally, (U)CQ denotes (unions)
of conjunctive queries (see [6]).

» Definition 1 (distributed datalog). A d-datalog program P over schema o is a finite set of
rules of the form
Z0Qz(Zo) -~ R1Qp(z1), - RpQp(zr) where
p € dom(o), k > 0, and for every ¢ > 1, R; is in o(p) and Z; is a vector of variables and
constants in D of the proper arity;
z € dom(c) UV, Zy € Int UV; and
each variable occurring in the head appears in z; for some ¢ > 1.

Note that the relation or peer names in the head may be variables. Note also that all
the relations in the body of a rule come from the same peer. Although we define a global
d-datalog program, one should think of each peer p as having its separate program consisting
of all the rules whose bodies use relations at p.

» Example 2. Consider the rules:
Album@Alice(x) :— Album@QBob(x)
Album@z(x) — Album@Bob(x), FriendQBob(z)
ZQz(z) :— Album@Bob(x), FriendPhotosQBob(Z, z)

10:3

ICDT 2016



10:4

A Formal Study of Collaborative Access Control in Distributed Datalog

Bob uses the first rule to publish his photos in Alice’s album, and the second to publish his
photos in all of his friends’ albums (peer variable z). In the last rule, different names can be
used for the relations where the friends keep their photos (variable Z for a relation name).

A d-datalog program defines the meaning of intensional relations from given extensional
relations. The semantics is in the spirit of the datalog semantics. More precisely:

» Definition 3 (Semantics). Let P be a d-datalog program over some schema o. The
immediate consequence operator I'p on instances over o is defined as follows. Let I be an
instance over o.

Consider a rule Zp@Qz(Zg) :— R1Qp(Z1), - - - RQp(Zx) of P. An instantiation of the rule
in I is a mapping v from its variables to the active domain (the set of values occurring in P,
1, or dom(o)), extended with the identity on constants, such that:

for each i > 1, R;@Qp(v(Z;)) € I; and

v(Zp)Qu(z)(v(Zo)) is a fact for schema o.
I'p(I) is obtained by adding to I all facts v(Zp)@Qu(z)(v(Zp)) where v is an instantiation
in I of some rule ZyQz(zg) :— R1@p(Zy),- - Rp@Qp(Zy) of P. Note that I'p is monotonic.
The semantics of P for an extensional instance I, denoted P(I), is the mapping associating
to each extensional instance I the projection on the intensional relations of P of the least
fixpoint of I'p containing 1.

Observe that a rule may “attempt” to derive an improper fact, for which v(z) is not in
dom(o), or v(Zp) is not a relation in o(v(z)), or the arity is incorrect. In such cases, the fact
is simply not derived.

» Remark. Consider a rule with variable peer or relation name. Suppose for instance that
both are variables. A head-instantiation v of that rule for a schema o is a mapping over
Zy, z such that v(z) is a peer of o, v(Zy) an intensional relation of o(v(z)), and arity(v(Zy))
= |Zg|. One can define similarly the notion of head-instantiation for a rule with only a
variable peer or only a variable relation name. It is easy to see that the program obtained by
replacing each rule by all its head-instantiations has the same semantics as the original. So
if the set of peers is fixed (known in advance), one can assume that, for each rule, the name
of the relation and the peer in the head are constants.

3 The access control model

In this section, we formalize the core aspects of the access control mechanism of [19]. The
focus here is on the READ privilege; we will ignore the GRANT privilege (allowing a peer to
define permissions on another peer’s relations) and the WRITE privilege (allowing a peer
to push data to another peer’s relations), see [19]. We also provide in this section basic
expressiveness and complexity results on access control.

The extensional relations at a given peer are owned by the peer. The peer can give READ
privilege on these extensional relations to other peers. This is specified at each peer p using
an intensional relation acl@p (for access control list) of arity 2. A fact acl@p(R, q) states
that peer ¢ is allowed to read the extensional relation RQp.

In the following, we assume that for each peer p, acl € int(p) and arity(acl@p) = 2. For
instance, a rule “acl@p(R, z) :— Likes@p(z)” can be used in a program to grant access to
relation R@p to all the peers z that are in relation Likes@Qp.

A d-datalog program P with access control (denoted d-datalog,.) over some schema o is
a finite set of d-datalog rules Zp@z(Zg) :— R1Qp(Z1), - - Rx@p(Zy), where Ry, ..., Ry are not
acl and the rules are of one of the following two kinds:



S. Abiteboul, P. Bourhis, and V. Vianu

Application rule: Zj is not acl; and
Access control rule: The rule head is acl@p(Z, z) for some terms Z, z.

Given a program P, the set of application rules forms the application program of P,
denoted P,,,, and the set of access control rules forms the (access control) policy of P,
denoted P,,;. Facts of the form acl@p(R, q) are called access control facts, and the others are
called application facts. It should be noted that no such distinction is made in Webdamlog.
We distinguish here between access control and application rules to be able to formally
compare access control policies.

The meaning of an access control policy Py for a given extensional instance I is clear in
the absence of intensional relations: use the access rules to compute at each peer the set of
peers allowed to read its extensional relations. This yields relation-at-a-time, coarse-grained
access control to the extensional relations. For intensional relations, we use tuple-level
fine-grained access control. Intuitively, an intensional fact can be read by a peer p if it can

be derived by some application of a rule from tuples that p is already allowed to access.

Then, for a d-datalog,. program P, P,,, and P,, may interact recursively: the derivation
of an intensional fact may yield some new permission for an extensional relation, which, in
turn, may enable the derivation of a new intensional fact, and so on. The fine-grained access
control at the tuple level is illustrated in an example.

» Example 4. Consider the program P:

Pooi  acl@Bob(Album, z)  :— friends@QBob(z)
acl@QBob(Tagged, z)  — friendsQBob(z)
Pupp Album@Qz(z) :— Album@QBob(x), Tagged@QBob(z, z);

)
)

The access control rules allow Bob’s friends access to his Album and Tagged relations. The
application rule transfers to a given person the photos in which he/she is tagged. Consider
a photo a with tagging Sue, assuming she is a friend of Bob. Then the picture a belongs
(intensionally) to Sue’s album. A friend of Bob who will ask to see Sue’s album will see the
photo a.

With standard access control, peers are only be able to control access to their local data.

With the proposed mechanism, they further control the dissemination of their data. In other
words, they can control what other peers should do with their data. This is achieved by
propagating, together with data, permissions via application rules, based on provenance
information about derived facts. A tuple derived by some instantiation of an application
rule is accessible by a peer if that peer has access to each tuple in the body of the rule.

The semantics. To define the semantics of programs, we associate with each peer p in
dom(o) and each relation RQp, R # acl, a relation I/%@p of arity arity(R) + 1. Intuitively,
ﬁ@p(f, q) says that peer ¢ is allowed access to the fact R@p(z). The semantics is defined
using a d-datalog program. We describe next the construction of that program.

» Definition 5 (13 construction). The semantics of a d-datalog,. program P over some schema
o for an extensional instance I over o is defined using a d-datalog program P (without
access control) defined as follows. Its schema consists of: (i) the extensional and intensional
relations of ¢; and (ii) intensional relations {E@p | R@p € o(p), R # acl}.
The rules of P are as follows: for a tuple = of distinct variables,
1. }A%@p(a_c,p) :— RQ@p(x) for each peer p in o and each R € ext(p) (each peer can read its
own extensional relations);

10:5

ICDT 2016



10:6

A Formal Study of Collaborative Access Control in Distributed Datalog

2. ﬁ@p(:ﬁ, z) = acl@p(R, z), RQp(x) for each peer p in o and each R € ext(p) (each peer z
entitled to read R@p can read all of its tuples);
3. for each rule acl@p(Z,z) = R1Qp(Z1), - - RQp(ZTg) in Ppoi,

a rule acl@p(Z,z) = Ry@p(&y,p),--- , Rx@p(Zk, p):;
4. for each rule ZyQz(Zo) :— R1Qp(Z1), -+, Rx@p(Zx) in Py, and for each intensional
rAelation Ry # acl occurring in o, a rule!
Ro@z(Zo,y) = Zo = Ro, Ri@p(T1,y), -+, Re@p(Tx, y), R1@p(T1,2), - , Ri@p(3y, 2)
5. A rule R@p(Z) :— ﬁ@p(fc,p) for each p € dom(c) and R € int(p) (ﬁ@p defines the local
facts visible at p).

The fourth item requires that both z (the next reader) and y (potential future readers)
may access the facts in the body of the rule, in order be allowed to see the fact derived by
the rule. The third item is the analog for acl. Note that (3.) is simpler than (4.) because
the relation acl is only defined locally.

Clearly, the size of P is linear in P and the image of 0. Moreover, it is independent of
the data, i.e. dom(o) and I. Using ]3, we define two semantics for P: state semantics, and
visibility semantics.

State semantics. State semantics provides for each peer the local intensional facts inferred
by taking into account the combined effect of the access control rules and the application
rules. More precisely, the state semantics of a d-datalog,. program P over schema o is a
mapping [P] associating to each extensional instance I over o the set of facts

[P)(I) = {R@p(a) € P(I) | p € dom(c), R € int(p)} .

One can easily verify by induction that [P](I) C P(I). (Recall that P(I) is the access-
control-free semantics). The inclusion may be strict because the derivation of a fact at a
peer p may be blocked because p does not have access to some data.

Visibility semantics. This semantics captures more broadly the facts at all peers that a
given peer is allowed to see. Indeed, in addition to their local state provided by [P], peers
also have permission to see facts residing at other peers. The facts that they are allowed to
see are specified by the relations ﬁ@q(—, p) defined by the program P. We say that such a
fact is wvisible by a peer p. For each p, we denote by [P];f the mapping associating to each
instance I over ext(o) the set of facts { RQq(u) | ﬁ@q(ﬂ,p) € P(I)}. We refer to [P]) as the
visibility semantics for peer p. Clearly, for each p, [P]Y(I) and [P](I) agree on int(p).

Intuitively, if a fact RQq(a) is visible by p, then p can access it by querying the re-
lation R@Qq. More precisely, let P’ be the program obtained by adding to P a rule
temp@p(u) :— RQg(u) for some new relation temp@p and vector w of distinct variables.
Then temp@p(a) € [P'[(I) iff RQq(a) € [P]Y(I), i.e. RQq(a) is visible by p. Thus, visibility
semantics can be reduced to state semantics by the addition of such rules.

In addition to state and visibility semantics, we consider in Section 4 the facts that a
peer may infer from the visible ones, possibly circumventing the access control policy. We
will refer to this as implicit visibility.

L Strictly speaking, equalities Z = Ry are not allowed in d-datalog, but these can be easily simulated by
substituting the variable by the constant everywhere in the rule.



S. Abiteboul, P. Bourhis, and V. Vianu

Hiding access restrictions. The above access control mechanism may be too constraining
in some situations. We next consider means of relaxing it. To do so, we introduce a hide
annotation that can be attached to atoms in rule bodies, e.g., [hide RQq(Z)]. Intuitively,
such an annotation lifts access restrictions on RQq(Z) by “hiding its provenance”.

We illustrate this feature with an example.

» Example 6. Consider the two rules:

Album@z(z) :— Album@Bob(x), friend@Bob(z)

Album@z(z) :— Album@Bob(x), [ hide friendQBob(z)]
The first rule is used by Bob to publish his photos in all of his friends albums. Suppose Sue
is a friend. Will the photos in Album@Bob be transferred to Album@Sue? Yes, but only
if Sue has read privileges on both Album@Bob and friends@QBob. However, it may be the
case that Bob wishes to keep his list of friends private, but still let his friends see his album
pictures. He can do this by “hiding” the access restrictions on friends@QBob as in the second
rule. Intuitively, Bob is in effect reducing the protection level of the friend relation, in some
sense “declassifying” it.

In the example, Bob declassifies his own extensional relation. As we will see, “hide” also
allows a peer to declassify information received from other peers, thus overriding their access
control restrictions. In the actual Webdamlog system [19], doing so requires the peer to have
GRANT privilege on that piece of information. As previously mentioned, for simplicity we do
not consider explicitly the GRANT mechanism here.

For further illustration, we show how the hide mechanism can be used to simulate
accessing a relation with binding patterns [24].

» Example 7. Suppose that peer p wishes to export an extensional binary relation R with
binding pattern bf. The intuition is that one cannot obtain the entire relation, but if one
provides bindings for the first column, peer p will provide the corresponding values in the
second column. This is done as follows:

SeedQ@p(x) — SQq(x)

QQq(z,y) — Seed@p(z), [ hide RQp(x,y) ]
Suppose the access control policy is such that p has read privilege on SQgq, but ¢ has no read
privilege on R@p. Observe that Seed@p is a copy of SQq, and QQ@q is the join of Seed@p
and RQp. Peer ¢ cannot see RQp. But if ¢ provides some values for the first column of RQp
(in relation S@Qgq), then ¢ will obtain in Q@q the corresponding values for the second column
of R@p.

Programs with hide are defined as follows.

» Definition 8. A d-datalog,. program with hide (denoted h-d-datalog,.) over some schema
o consists of: (i) a d-datalog,. program P = P,,,U P,,; and (ii) a function h (called the hide
function) whose domain h is the set Py, of rules?, such that for each rule r, h(r) is a strict
subset of the atoms in the body of r. The pair (Ppo, h) forms the policy of the program.

As in Example 6, the function A is represented using annotations. More precisely, in each
rule, the atoms in h(r) are annotated with the keyword hide. For instance, the rule r that is
A = By,...Bs with h(r) = {Bg, B4} is denoted: A :— By, [hide Bs], Bs, [hide By), Bs.

We next consider how hide annotations modify the semantics of access control. The

semantics for h-d-datalog,. programs is obtained by replacing item (4) of Definition 5 with:

2 Because of the way we define access control rules, hide annotations would have no effect on them.

10:7

ICDT 2016



10:8

A Formal Study of Collaborative Access Control in Distributed Datalog

4, for each application rule Zy@Qz(Zo) :— R1@p(Z1),- -, Rx@p(Zk) of P,p,, for each inten-
sional relation Ry # acl occurring in o, and some new variable y, the rule RyQz(Zg,y) -
Zy = Ro, R1Qp(Z1,y1), - -+ ReQp(Zp, yx), R1Qp(Z1,q1), - -~ Re@p(Zk, qr) where for each
i, if R;@p(Z;) is not hidden in the rule, y; = y and ¢; = z; and if it is hidden, y; = ¢; = p.

Note that this imposes that both y (a potential future reader) and z (the site that will
host the fact) can read the facts in the body of the rule that are not annotated by hide, in
order for the reader to be allowed to see the fact derived by the rule. For a h-d-datalogg.
program P, we denote by [P] the state semantics of P as defined by the above program.

The next result, namely Proposition 10, shows that the use of hide extends the expressive
power of d-datalog,, relative to state semantics. (One can obtain a similar result for visibility
semantics.) This is illustrated by the following example.

» Example 9. Consider a peer p that has a binary extensional relation RQp. Suppose we
wish to specify that peer ¢ sees from RQ@Qp exactly the tuples of the form (x,0), and no other
peer sees anything from RQp. As a first attempt, one might use an intensional relation
Reaport and the rule: Reypor@q(z,0):- RQp(x,0).

However, either acl@p(R, ¢) holds, so RQ@p is entirely visible to ¢; or not, and RezportQq
is empty. Considering hide, assume the existence of some extensional fact ok,@p() that only
g can read. Then there is a solution: Regport@q(z,0) = 0kq@p(), [hide RQp(zx,0)].

» Proposition 10. There is a h-d-datalog,. program P over schema o for which there is no
d-datalog,. program P such that, for every extensional instance I over o, [P](I) = [P](I).

Thus, the hide construct strictly increases the expressivity of the language. In fact, we
will show in Section 5 that h-d-datalog,. is in some sense expressively complete.

The complexity of access control. We consider throughout the paper the complexity of
various problems related to access control. Typically, three kinds of complexity are considered
in databases: data, query, and combined complexity. In d-datalog,., the distinction between
data and schema/program is less clear. For instance, the set of peers affects both the schema
and the data. If there are many peers, the global program may be large, even if each peer
has a small program. To capture this situation, we consider a measure assuming that the size
of the program at each peer is bounded. This gives rise to a novel notion of complexity that
we call locally-bounded combined complexity. More precisely, for a decision problem whose
input is an extensional instance I and a d-datalog,. program P over some schema o:

The combined complexity is computed as a function of |I|, | P|, and o.

The data complexity is computed as a function of || only (o and P are fixed).

The locally-bounded combined complexity is computed as a function of |I| and |dom(o)|,

assuming some fixed bound on the size of the program at each peer (so |P| is linear in

the number of peers).

We begin by establishing the complexity of checking the visibility of a fact.

» Theorem 11. Let o be a schema, I an extensional instance, and P a h-d-datalog,. program
over o. Determining whether a fact is in [P];j([) for some peer p has PTIME-complete data
and locally-bounded combined complexity, and EXPTIME-complete combined complexity,

While the data and the locally-bounded combined complexities are the same in this case,
we will see later that the two differ in other settings, allowing to draw finer distinctions than
the classical notions.



S. Abiteboul, P. Bourhis, and V. Vianu

Static analysis of policies. To conclude this section, we briefly discuss the issue of comparing

policies relative to a given application program, based on the visible facts they allow.

This leads to the notion of a policy being more relaxed than another. By reduction from
containment of datalog programs, one can show that this is undecidable for given policies
and application program. As for datalog containment, one can consider restrictions for which
the policy comparison can be performed, e.g., “frontier-guarded” rules [8]. As an alternative
to comparing policies, one can consider applying syntactic transformations to a given policy
in order to relax or tighten it. For example, augmenting the hide function of a program, or
adding rules to P, always results in a more relaxed policy. Due to space limitations, we do
not further consider these issues here.

4 Implicit visibility

The purpose of access control is to analyse the ability of peers to see unauthorized information.

As discussed in Section 3, a peer can access information by examining its own state or by
querying relations of other peers. But can a peer infer more information beyond what is
allowed according to the policy? We capture this using the notion of implicit visibility
(i-visibility) that we formalize next. For this, we use the auxiliary notion of “visibility
instance”. For a program P over ¢ and a peer p, we say that an instance I, over o is a
visibility instance of p if there is some instance J over ext(o) for which I, = [P]Y(.J). Now

P
we define:

» Definition 12. Let P be a d-datalog,. program over some schema o, p a peer and I, a
visibility instance for p. A fact RQq(u) (for some ¢, R) is i(mplicitly)-visible at p given I,,, if
for each instance J over ext(c) such that [P]Y(J) = I,,, RQq(u) € J U [P](J).

It turns out that facts beyond [P]Y(J) may be i-visible at peer p. To see how such
information “leakage” can occur, suppose that we have a rule acl@q(R, p) :— QQq(p), where
(QQq is an extensional relation. If peer p sees some fact in RQgq, it can infer that it has access
to RQq, so that Q@Qg(p) holds, although the policy may not allow p to see QQ@g. This may
in turn provide additional information on other relations. Before exploring this formally, we
introduce some restrictions of policies.

» Definition 13. Let o be a schema and P = P, U P, a d-datalog program.
The policy of P is static iff for each rule of P, its body is empty;
The policy of P is simple iff for each rule of P,,;, the atoms in its body are extensional;
The policy of P is local for P,y iff for each peer p and rule of P,,; at p, the atoms in its
body are either extensional, or intensional but not depending on non-local relations.

We can show that with static policy, no leakage can occur.

» Proposition 14. Let P be a d-datalog,. program over o with static policy. For each peer p

and instance I over ext(o), the set of i-visible facts at p is precisely [P]} (I).

In contrast to the above, when P,,; contains arbitrary rules, i-visibility provides additional
information, and is in fact undecidable.

» Theorem 15. It is undecidable, given a d-datalog,. program P over o, a visibility instance I,
for p, and a fact RQq(u), whether RQq(u) is i-visible at p given I,. Moreover, undecidability
holds even for programs with local access policies.

10:9

ICDT 2016



10:10

A Formal Study of Collaborative Access Control in Distributed Datalog

The above undecidability result uses the fact that the acl relations are defined by datalog
programs. We next show that i-visibility becomes decidable if recursion is disallowed in the
definition of acl relations. The problem can be reduced to computing certain answers to
datalog queries using exact UCQ views, which is known to be in co-NP [4]. However, using
the fact that the views we use are particular UCQs, we can show that the complexity goes
down to PTIME.

» Theorem 16. The i-visibility problem for d-datalog,. programs with simple policies is
decidable in PTIME (data complexity).

The i-visibility problem with hide. We now turn to the problem of i-visibility for d-datalog,
programs with hide. The notions of visibility and i-visibility are adapted to this setting in
the natural way. We first illustrate the fact that hide can lead to non-trivial i-visibility of
facts, even when the acl policy is static.

» Example 17. Consider the following h-d-datalog,. program P where P, consists of the
rule acl@Qq(Q,p):- and P,p, of the rules:

Ri1@p(X) = QQq(), [ hide RQq(X,Y)];

Ry@p(Y) - Qg(), [ hide Rag(X,Y)]
Consider the p-visibility instance {R;Qg(a), R2@q(b)}. Note that p does not have access to
RQq. However, it is clear that RQq(a,b) is i-visible at p.

The following result shows that i-visibility is undecidable for h-d-datalog,. programs even
for static policies (when, by Proposition 14, no leakage occurs in the absence of hide). The
proof is by reduction from finding certain answers to identity queries using exact datalog
views, known to be undecidable [4].

» Theorem 18. It is undecidable, given a h-d-datalog,. program P over o with static policy,
in which hide is applied only to extensional relations, a peer p, a p-visibility instance I,, and
an extensional fact RQq(a), whether RQq(a) is i-visible at p given I,,.

Testing information leakage. The previous result concerned i-visibility for a given instance.
We finally consider the problem of testing whether a d-datalog,. program has information
leakage beyond that provided by the access control policy for some instance (the static
analysis analog).

» Definition 19. A d-datalog,. program P leaks information at p if for some p-visibility
instance I, there exists some fact RQqg(a) ¢ I, that is i-visible at p given I,,.

We show that one cannot generally decide whether a program leaks information. However,
one can do so for programs with simple policies. The undecidability is proved using a
reduction from datalog program containment. The 2EXPTIME algorithm for simple policies is
by reduction to an exponential set of inclusions of datalog programs into UCQs.

» Theorem 20.

1. It is undecidable, given a d-datalog,. program P and a peer p, whether P leaks information
at p.

2. The problem is 2EXPTIME-complete if P has a simple acl policy.



S. Abiteboul, P. Bourhis, and V. Vianu

5 Achieving dissemination goals

We next consider the problem of achieving a specific data dissemination goal among peers,
when a particular access control policy is imposed. The goal is specified by a d-datalog

program. Clearly, a given goal may violate the policy, so it may be impossible to achieve it.

We study the problem of determining whether achieving a goal is possible, and if not, how
one might maximize what can be achieved. We then consider the issue of relaxing the access
control policy in order to achieve the goal, using the hide mechanism. Not surprisingly, it is
always possible to achieve a goal using hide. More interestingly, we will show how to do so
while minimizing its use. But first, we consider what can be done without hide.

Strict adherence to the policy. Consider a policy P, and a goal d-datalog program P.
We wish to know whether there is a d-datalog program P, such that (i) Py, uses the
relations of P and possibly additional intensional relations, and (ii) for each extensional
instance I, [(Ppoi U Pypp)](I) and P(I) agree on the intensional relations of P. In this case,
we say that P,p, simulates P under policy Pp,. We will see that it is generally impossible to
find such a P,y, without hide, and present restrictions on the policies that make it possible.
When such a simulation does not exist, we will attempt to find a program that is as close as
possible to the goal.

The next example illustrates how a policy may prevent achieving a goal even in the
simplest setting. The example is more complicated than needed because we will also use it
to illustrate finding a “maximum” simulation.

» Example 21. Consider the following policy and goal program:

Ppor  acl@p(Ry,r) =~ ;P RQq(z) :~ R1Qp(x);
acl@p(Rg, 1) = RQq(z) -~ R@p(x);
acl@p(Ry,q) — ; RQr(z) :-RQq(x)

The d-datalog P does not simulate P under P,,; because ¢ is not allowed to see the relation
R>@p and therefore the relation RQq does not hold tuples from R@p under the policy Ppo.
In such cases, we can try to find a program that is, in some sense, maximally achieves the
goal. This is a nontrivial issue. In this example, a maximum application program is:

Pupp : RQq(z) :— R1Qp(z); | RQr(z) :— RQq(x); | RQr(x) :— RyQp(x).

Note that [(Ppor U Papp)] C P but [(Ppor U P)] C [(Ppot U Papp)] (as mappings).

The first result states that one cannot decide whether a program can be simulated under
a particular policy.

» Theorem 22. [t is undecidable, given a policy Ppo; and a goal d-datalog program P, whether
there exists a d-datalog program Py, without hide such that P,p, simulates P under Pp,.
This holds even if Ppo is static.

If such a simulation is not possible, can we find a “maximum simulation”? Let P be
a d-datalog program over some schema o and P,, a policy program over o. A d-datalog
program Pg,, without hide is a mazimum simulation of P under P, iff
1. [(PporU Pupp)] C P, and
2. for each P, such that [(Ppe; U Py,,)] € P, [(Ppor U Pyyp)] € [(Ppot U Papp)]-
The question of whether a maximum simulation always exists remains open. Moreover, there
does not exist an algorithm building a maximum simulation, if such ezists.

10:11

ICDT 2016



10:12

A Formal Study of Collaborative Access Control in Distributed Datalog

» Theorem 23. There is no algorithm that computes, given a d-datalog program P and a
policy Ppoi, @ mazimum simulation without hide P,y,, of P under Py, whenever such a
mazximum simulation exists. This holds even for local policies.

While it is not known whether a maximum simulation always exists, we present informally
a plausible candidate for a maximum simulation of P under P,,; and explore its potential.
The program, denoted by MAC(P,,;, P), is based on a simple idea: each peer collects all the
extensional tuples that peer is allowed to see under P,,;, and then simulates P locally.

» Definition 24. Let P be a d-datalog program over some schema o and P,y a policy over

the relations in 0. The program Pgp, = MAC(Ppor, P) is constructed as follows:

1. For all peers p,q, p # ¢ and each (extensional or intensional) relation RQq, P,,, has an
intensional relation R_ ¢@p of the same arity as RQq. These relations allow p to perform
a simulation of P with the data that p has access to.

2. For all peers p,q, p # g, and each extensional relation RQq, P, has rules copying RQq
into R_ qQp, if acl@q(R,p) holds.

3. Finally, for each peer p, P,p, has rules that simulate P locally with the data that p has
access to.

Observe how MAC(P,,;, P) interacts with P,,;. During the computation, some peer p
may use rules in P,y to derive a new fact acl@p(R,¢). This results in copying R@p into
R__pQ@q which may lead to the derivations of more facts at p.

Note the connection between MAC(P,,;, P) and P itself. By definition, [(Pp, U P)] C
[(Ppor UMAC(P, Ppor))]. However, the inclusion may be strict. For instance, P may try to
transfer a fact from p to ¢ via a peer r that is not allowed to see this fact whereas it is
possible to send this fact directly (with a different rule) without violating access rights.

It turns out, surprisingly, that MAC(Pp;, P) is not always a maximum simulation of P
under P,,;, and it is in fact undecidable whether MAC(Ppo;, P) is a maximum simulation
for some given (P, and P, even for local policies. However, MAC(Pp, P) is a maximum
simulation if P, is static.

» Theorem 25. Let Py, be a local policy and P a d-datalog goal program over o. (i) It is
undecidable whether the program MAC(P, Ppo1) is a mazimum simulation of P under Pp.
(ii) If Ppor is static, then MAC(P, Ppoy) is a mazimum simulation of P under Ppyy.

Besides ensuring the existence of a maximal simulation, a simple policy is of interest for
another reason: it guarantees that, if there exists some application program simulating P
under P,,;, then P itself simulates P under that policy (details omitted).

Declassifying information. Let us now consider the issue of achieving a goal at the cost of
declassifying information, in other words using the hide construct. There is an immediate
solution that would consist in modifying every rule of the goal program P by hiding the
entire body. The goal would be satisfied, but in a brutal way: each derived fact would be
visible to all peers.

It is possible to realize the goal in a much more controlled way as illustrated by Example 9.
In that exemple, special relations of the form ok,@p are used to limit as much as possible
the visibility of data. The example suggests the following mild technical assumptions: (f)
for all distinct peers p,q € dom(o), (1) o contains a 0-ary extensional relation ok,@p, and
(2) extensional instances of o are assumed to contain the fact ok,Qp().

We next show that (}) is sufficient to guarantee that the hide construct allows achieving
any goal program by declassifying no more information than necessary.



S. Abiteboul, P. Bourhis, and V. Vianu

» Theorem 26. Let o satisfy (1.1). For each policy Ppo; and a d-datalog goal program P over
o, there exists an application P,p, with hide over the same o such that, for each extensional
instance I satisfying (1.2), Pupp simulates P under Ppyy; and on input I, a fact RQp(u) is
visible at q # p for (Ppoi U Papp) iff it is visible at q for (Ppo U P).

6 Accessing provenance

We considered so far the inference of individual facts using d-datalog,. rules, subject to an
access control policy. In many applications, it is essential for inferred facts to be accompanied
by provenance information. In this section, we extend our approach to access control to
cover provenance. We adopt a simple model of provenance of a fact, consisting of derivation
trees tracing the application of the rules at different peers that participated in the inference
of the fact. To simplify the presentation, we ignore hide. The definition of provenance can
be easily adapted to the presence of hide (a hide annotation in a rule results in truncating
the corresponding portion of the proof tree) and the complexity results continue to hold.

Consider a d-datalog,. program P over schema o. Let I be an extensional instance over
o, and R@p(a) a fact in P,p,(I). A provenance tree for RQp(a) is a derivation tree for
RQ@p(a) using P,p, and I. Intuitively, we are interested in passing provenance information
from peer to peer, so that a peer p not only knows that some fact R@p(u) holds, but can
also know how R@p(u) has been derived.

» Example 27. Consider a schema o with peers {po, p1, p2, ps, pa}, O-ary extensional

relations (propositions), RQpg, R@p;, and 0-ary intensional relations SQps, SQps, SQpy.

Let I = {RQpy, RQp;}. Consider the following application program:
Popp SQpy = RQpg; | SQpy :— RQpy; | SQps :— SQpg; | SQpy i~ SQps.

Note that SQps € Py, (I) and has two provenance trees (linear in this case):
S@p4 — S@pg <« S@pg — R@p1 S@p4 — S@pg <« S@pg < R@po

Suppose we have the following access control rules in addition to Pgpp:
Ppol : aCl@pO(R7p2) R ‘ aCl@pO(R,pﬁl) =3 aCl@Pl(RaPS) R ‘ aCl@pl(Rvp4) B

Consider again the two provenance trees of SQpy € Pg,,(I). Neither satisfies the access
control policy defined by P,,;. Indeed, the first tree violates the policy because py does not
have access to RQp;. The second also violates the policy, because ps does not have access to
RQpy. If we add the access control rule: acl@py(R,ps) :— then the second provenance tree
satisfies the access control policy.

Note the difference between visibility of a fact A by a peer p and visibility of its provenance.

In order for A to be visible by p, it suffices for each fact involved in its derivation to be visible
by the corresponding intermediate peer, based on its own access permissions, independently
derived. In other words, peers may justify their permissions by derivations independent of
each other and of the actual derivation of A. Visibility of provenance imposes a stronger
condition, as it requires each intermediate peer to have access to the entire history of the
partial derivation of p. As seen in the example, a fact A may itself be visible by p but not
have any provenance tree visible by p. More formally we have:

» Definition 28 (Provenance access control). Let P be a d-datalog,. program over some
schema o and I an extensional instance over o. A fact F' has visible provenance if there exists
a provenance tree T of F such that: For each internal node R@Qp(a) in T and extensional

fact EQq(c) occurring in the subtree rooted at R@p(a), we have that acl@Qq(FE,p) € [P](I).

For given P and I, [P]P™"(I) denotes the set of facts that have visible provenance.

10:13

ICDT 2016



10:14

A Formal Study of Collaborative Access Control in Distributed Datalog

It is clear that visible provenance implies visibility. More precisely, one can show that for
each P, o, and each extensional instance I, [P]?™"(I) C [P](I), but Example 27 shows the
converse does not hold. We next show that, although the definition of provenance visibility is
proof-theoretic, one can simulate it using a d-datalog program. However, unlike the program
P constructed earlier, the program simulating provenance visibility is exponential in the
number of peers.

» Proposition 29. Let P be a d-datalog,. program over some schema o. There exists a d-
datalog program (without access control) PP™" of size exponential in dom(o) (and polynomial
in o and P if dom(o) is fived) with the same extensional relations as o, such that for each
extensional instance I, [P]P™Y(I) and PP™"(I) agree on the intensional relations of o.

The program PP™? (in the proof of the previous result) uses constants to denote sets
of peers. An alternative would consist in using an extension of d-datalog with nesting, in
the style of extensions of datalog with nesting [6]. (Such a nested datalog is used in the
implementation in [19].)

The d-datalog program PP™" is exponential in the set dom(co) of peers. Is it possible to
avoid the exponential blowup? The following complexity result implies a negative answer
(subject to usual assumptions). Consider the problem of deciding, given an extensional
instance I and a program P, whether a fact is in [P]?""(I). Recall from Theorem 11 that
the complexity of checking visibility of a fact has EXPTIME-complete combined complexity,
and PTIME-complete data and locally-bounded combined complexity. Now we have:

» Theorem 30. Let o be a schema, I an extensional instance, and P a d-datalog,. pro-
gram over o. Determining whether a fact is in [P]P™"(I) has EXPTIME-complete combined
complezity, PTIME-complete data complexity and PSPACE-complete locally-bounded combined
complexity.

Theorems 11 and 30 show that provenance visibility has the same combined and data
complexity as the standard semantics, but different locally-bounded combined complexity.
As a corollary, the exponential blowup in Proposition 29 cannot be avoided (unless PTIME
= PSPACE). This highlights the usefulness of this complexity measure in making finer
distinctions than the classical ones.

7 Related work

Database security and access control have been studied in depth (e.g., see [10]) since the
earliest works on System R [26] and Ingres [27].

Controlling access to intensional facts in deductive languages is related to managing
virtual views in SQL, which is handled differently among various database systems. When
an authorized user accesses a view, it is usually evaluated with the privileges of the defining
user (“definer’s rights”). Some systems (e.g. mySQL) allow the creator of a view to specify
that later access to the view will be with respect to the privileges of the invoker of the view
(“invoker’s rights”). This is similar in spirit to our approach.

The access control model we have described is fine-grained, unlike the SQL standard.
Lefevre et al [18] propose a fine-grained access control model for implementing personal
privacy policies in a relational database. They use query modification to enforce their policies,
as we do, but their policy model and implementation are oriented towards a centralized
database system. A commercial example of fine-grained access control is Oracle’s Virtual
Private Database (VPD), which supports access control at the level of tuples or cells. VPD



S. Abiteboul, P. Bourhis, and V. Vianu

allows an administrator to associate an external function with a relation and automatically
modifies queries to restrict access by tuple or cell. Alternative semantics for fine-grained
access control have been investigated thoroughly [18, 25, 29]. Rizvi et al. [25] distinguish
between Truman and Non-Truman models (the expression is motivated by the movie The
Truman Show where the hero is unaware that he lives in an artificial environment). Query
answers in our system follow the Truman paradigm: queries are not rejected because of lack
of privilege but the user’s privileges limit the answers that are returned.

Fine-grained access control is also studied in [13], where predicate-based specification of
authorization is supported. The inference of sensitive data from exposed data (that we study
here under the name of i-visibility) is related to a notion studied in [30].

Our model of access control shares some features with the model of reflective database
access control (RDBAC) in which access policies can be specified in terms of data contained
in any part of the database. Olson et al. [21] formalize RDBAC using a version of datalog
with updates [11] but their model does not include distribution, delegation, or the use of
provenance. In Cassandra [17], access rights are specified using a language based on datalog
with constraints. The language supports complex specifications based on “user roles”. On
the other hand, fine-grained access control is not con