
15th Scandinavian Symposium
and Workshops on Algorithm
Theory

SWAT 2016, June 22–24, 2016, Reykjavik, Iceland

Edited by

Rasmus Pagh

LIPIcs – Vo l . 53 – SWAT’16 www.dagstuh l .de/ l ip i c s

Editor
Rasmus Pagh
IT University of Copenhagen
Copenhagen, Denmark
pagh@itu.dk

ACM Classification 1998
F. Theory of Computation

ISBN 978-3-95977-011-8

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-011-8.

Publication date
June 2016

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.SWAT.2016.0

ISBN 978-3-95977-011-8 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-011-8
http://www.dagstuhl.de/dagpub/978-3-95977-011-8
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.0
http://www.dagstuhl.de/dagpub/978-3-95977-011-8
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Catuscia Palamidessi (INRIA)
Wolfgang Thomas (Chair, RWTH Aachen)
Pascal Weil (CNRS and University Bordeaux)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

SWAT 2016

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents
Preface

Rasmus Pagh . 0:ix–0:ix

Regular papers

Session 1: Approximations and graphs

Approximating Connected Facility Location with Lower and Upper Bounds via
LP Rounding

Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour 1:1–1:14

Approximation Algorithms for Node-Weighted Prize-Collecting Steiner Tree
Problems on Planar Graphs

Jarosław Byrka, Mateusz Lewandowski, and Carsten Moldenhauer 2:1–2:14

A Logarithmic Integrality Gap Bound for Directed Steiner Tree in Quasi-bipartite
Graphs

Zachary Friggstad, Jochen Könemann, and Mohammad Shadravan 3:1–3:11

Session 2: Graph Algorithms

A Linear Kernel for Finding Square Roots of Almost Planar Graphs
Petr A. Golovach, Dieter Kratsch, Daniël Paulusma, and Anthony Stewart 4:1–4:14

Linear-Time Recognition of Map Graphs with Outerplanar Witness
Matthias Mnich, Ignaz Rutter, and Jens M. Schmidt . 5:1–5:14

The p-Center Problem in Tree Networks Revisited
Aritra Banik, Binay Bhattacharya, Sandip Das, Tsunehiko Kameda,
and Zhao Song . 6:1–6:15

Session 3: Sets

A Simple Mergeable Dictionary
Adam Karczmarz . 7:1–7:13

Cuckoo Filter: Simplification and Analysis
David Eppstein . 8:1–8:12

Randomized Algorithms for Finding a Majority Element
Paweł Gawrychowski, Jukka Suomela, and Przemysław Uznański 9:1–9:14

Session 4: String and Streams

A Framework for Dynamic Parameterized Dictionary Matching
Arnab Ganguly, Wing-Kai Hon, and Rahul Shah . 10:1–10:14

Efficient Summing over Sliding Windows
Ran Ben Basat, Gil Einziger, Roy Friedman, and Yaron Kassner 11:1–11:14

Lower Bounds for Approximation Schemes for Closest String
Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk,
and Saket Saurabh . 12:1–12:10

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:vi Contents

Session 5: Parameterized Graph Algorithms

Coloring Graphs Having Few Colorings Over Path Decompositions
Andreas Björklund . 13:1–13:9

Parameterized Algorithms for Recognizing Monopolar and 2-Subcolorable Graphs
Iyad Kanj, Christian Komusiewicz, Manuel Sorge, and Erik Jan van Leeuwen 14:1–14:14

On Routing Disjoint Paths in Bounded Treewidth Graphs
Alina Ene, Matthias Mnich, Marcin Pilipczuk, and Andrej Risteski 15:1–15:15

Session 6: Hard Problems

Colouring Diamond-free Graphs
Konrad K. Dabrowski, François Dross, and Daniël Paulusma . 16:1–16:14

Below All Subsets for Some Permutational Counting Problems
Andreas Björklund . 17:1–17:11

Extension Complexity, MSO Logic, and Treewidth
Petr Kolman, Martin Koutecký, and Hans Raj Tiwary . 18:1–18:14

Session 7: Online Algorithms

Optimal Online Escape Path Against a Certificate
Elmar Langetepe and David Kübel . 19:1–19:14

Lagrangian Duality based Algorithms in Online Energy-Efficient Scheduling
Nguyen Kim Thang . 20:1–20:14

Online Dominating Set
Joan Boyar, Stephan J. Eidenbenz, Lene M. Favrholdt, Michal Kotrbčík,
and Kim S. Larsen . 21:1–21:15

Session 8: Sorting, Scheduling, and Games

Sorting Under Forbidden Comparisons
Indranil Banerjee and Dana Richards . 22:1–22:13

Total Stability in Stable Matching Games
Sushmita Gupta, Kazuo Iwama, and Shuichi Miyazaki . 23:1–23:12

Estimating The Makespan of The Two-Valued Restricted Assignment Problem
Klaus Jansen, Kati Land, and Marten Maack . 24:1–24:13

Session 9: Approximation and Geometry

A Plane 1.88-Spanner for Points in Convex Position
Mahdi Amani, Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel,
Anil Maheshwari, and Michiel Smid . 25:1–25:14

Approximating the Integral Fréchet Distance
Anil Maheshwari, Jörg-Rüdiger Sack, and Christian Scheffer . 26:1–26:14

Minimizing the Continuous Diameter when Augmenting Paths and Cycles with
Shortcuts

Jean-Lou De Carufel, Carsten Grimm, Anil Maheshwari, and Michiel Smid 27:1–27:14

Contents 0:vii

Session 10: Geometry

A Clustering-Based Approach to Kinetic Closest Pair
Timothy M. Chan and Zahed Rahmati . 28:1–28:13

Constrained Geodesic Centers of a Simple Polygon
Eunjin Oh, Wanbin Son, and Hee-Kap Ahn . 29:1–29:13

Time-Space Trade-offs for Triangulating a Simple Polygon
Boris Aronov, Matias Korman, Simon Pratt, André van Renssen,
and Marcel Roeloffzen . 30:1–30:12

Invited contributions

Excluded Grid Theorem: Improved and Simplified
Julia Chuzhoy . 31:1–31:1

The Complexity Landscape of Fixed-Parameter Directed Steiner Network Problems
Dániel Marx . 32:1–32:1

Computation as a Scientific Weltanschauung
Christos H. Papadimitriou . 33:1–33:1

SWAT 2016

Preface

The 15th Scandinavian Symposium and Workshop and Algorithms Theory (SWAT) received
90 submissions by authors from 31 countries, spanning a broad range of areas within design
and analysis of algorithms. The program committee, consisting of 23 members from across
the world, worked with 167 subreviewers to review the papers. With the exception of a
single paper that was withdrawn during the review process, all papers received at least 3
independent reviews. I would like to thank the program committee and subreviewers for a
great effort. For example, the average length of reviews exceeded 8300 characters per paper,
and during the subsequent discussion phase, program committee members posted more than
250 additional comments to papers.

In the end we selected 30 papers for inclusion in the conference proceedings and presenta-
tion at the conference in Reykjavik, Iceland. The selected papers confirm SWAT’s strong
reputation within important areas such as graph algorithms and computational geometry,
while at the same time spanning algorithms theory broadly with contributions within
e.g. data structures, data streaming, string algorithms, algorithmic game theory, and on-line
algorithms.

The program committee decided to give the best student paper to Adam Karczmarz for
his paper A Simple Mergeable Dictionary. In addition to presentations of regular papers,
SWAT will feature invited talks by Julia Chuzhoy, Dániel Marx, and Christos Papadimitriou.
Accompanying invited contributions can be found in the proceedings.

The present proceedings is the first after SWAT’s move to publish in the LIPIcs series.
I would like to thank Thomas Dybdahl Ahle at IT University of Copenhagen and Marc
Herbstritt at Dagstuhl for their contributions to editing the proceedings.

Rasmus Pagh
Program committee chair for SWAT 2016

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Program Committee

Christian Sohler Technische Universität Dortmund
Christian Wulff-Nilsen University of Copenhagen
Dimitris Fotakis National Technical University of Athens
Djamal Belazzougui Research Center on Scientific and Technical Information (CERIST)
Ely Porat Bar-Ilan University
Fabio Vandin University of Padova
Faith Ellen University of Toronto
Francois Le Gall Kyoto University
Gerhard Woeginger Technical University of Eindhoven
Gonzalo Navarro University of Chile
Kasper Green Larsen Aarhus University
Marek Karpinski University of Bonn
Marina Papatriantafilou Chalmers University of Technology
Nodari Sitchinava University of Hawaii at Manoa
Ola Svensson École Polytechnique Fédérale de Lausanne
Petteri Kaski Aalto University
Pinar Heggernes University of Bergen
Rasmus Pagh IT University of Copenhagen
Rob van Stee University of Leicester
Seth Pettie University of Michigan
Stefan Langerman Université Libre de Bruxelles
Suresh Venkatasubramanian University of Utah
Therese Biedl University of Waterloo

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Subreviewers

Abbas Bazzi, Adrian Dumitrescu, Alex Zelikovsky, Alexandru Popa, Amer Krivosija, Amer
Mouawad, Amihood Amir, Amir Abboud, André van Renssen, Andrew Winslow, Andrzej
Lingas, Antonios Antoniadis, Ariel Shiftan, Asaf Levin, Ashkan Norouzi-Fard, Avery Miller,
Avinatan Hassidim, Avivit Levy, Babak Farzad, Balazs Patkos, Boaz Patt-Shamir, Brian
Dean, Charalampos Stylianopoulos, Charis Papadopoulos, Chris Schwiegelshohn, Christoph
Durr, Christoph Gladisch, Christos Kalaitzis, Christos Levcopoulos, Clark Thomborson, Dan
Vilenchik, Daniel Lokshtanov, Daniel Valenzuela, Darren Strash, David Eppstein, David
Rosenbaum, Deeparnab Chakrabarty, Diego Seco, Eduardo Rivera-Campo, Elias Dahlhaus,
Elmar Langetepe, Emanuele Giaquinta, Erik Jan van Leeuwen, Fabrizio Montecchiani, Faisal
Abu-Khzam, Falk Hüffner, Francesco Silvestri, Frank Staals, Gábor Braun, Gawiejnowicz
Stanislaw, Ge Xia, Gerth Stølting Brodal, Grammateia Kotsialou, Guohui Lin, Guyslain
Naves, Hendrik Fichtenberger, Hjalte Wedel Vildhøj, Ian Munro, Ignasi Sau, Ignaz Rutter,
Iosif Salem, Irina Kostitsyna, Iyad Kanj, Jakub Tarnawski, Jamie Morgenstern, Jan Kra-
tochvil, Jean-Florent Raymond, Jean-Lou De Carufel, Jesper Nederlof, Joanna Berlinska,
Joe Halpern, John Hershberger, Joshimar Cordova, Kanstantsin Pashkovich, Kevin Schewior,
Kim Thang Nguyen, Kim-Manuel Klein, Klaus Kriegel, Kyriakos Axiotis, Leah Epstein,
Linda Farczadi, Ljubomir Perkovic, Luis Barba, Maarten Löffler, Mamadou Moustapha
Kanté, Marc Bury, Marc Renault, Marcin Wrochna, Marco Bressan, Maria Paola Bianchi,
Markus Chimani, Markus Sortland Dregi, Martin Fürer, Martin Milanic, Mathias Bæk Tejs
Knudsen, Mathias Hauptmann, Matthias Englert, Matthias Mnich, Matthias Westermann,
Maximilian Wötzel, Melanie Schmidt, Michał Pilipczuk, Michal Wlodarczyk, Michele Schimd,
Michele Zito, Michiel Smid, Mina Ghashami, Mohammad Ali Abam, Morteza Monemizadeh,
Moshe Lewenstein, Nick Arnosti, Pablo Pérez-Lantero, Paolo Serafino, Pat Morin, Paul
Renaud Goud, Pavlos Eirinakis, Peter Kling, Peyman Afshani, Philipp Kindermann, Rahul
Shah, Raphael Clifford, René Van Bevern, Rico Zenklusen, Riko Jacob, Rodrigo Silveira,
Rolf Fagerberg, Ross McConnell, Saeed Akhoondian Amiri, Saeed Mehrabi, Saket Saurabh,
Samira Daruki, Samuel McCauley, Sander Verdonschot, Sándor Fekete, Sebastian Pokutta,
Seffi Naor, Shahin Kamali, Sharma Thankachan, Simon Puglisi, Siwei Yang, Sören Riechers,
Spyros Kontogiannis, Stephane Durocher, Subhas Nandy, Sudeshna Kolay, Sunil Arya, Tandy
Warnow, Thomas Dueholm Hansen, Thomas Erlebach, Tomasz Kociumaka, Toshihiro Fujito,
Travis Gagie, Tsvi Kopelowitz, Uri Zwick, Van Bang Le, Vasileios-Orestis Papadigenopoulos,
Vincent Cohen-Addad, Vincent Froese, Wing-Kai Hon, Wolfgang Mulzer, Xian Qiu, Yakov
Nekrich, Yiannis Nikolakopoulos, Yixin Cao, Yoichi Iwata, Zachary Friggstad, Zhang Fu.

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Approximating Connected Facility Location with
Lower and Upper Bounds via LP Rounding
Zachary Friggstad∗1, Mohsen Rezapour2, and
Mohammad R. Salavatipour†3

1 Department of Computing Science, University of Alberta, Edmonton, Canada
zacharyf@ualberta.ca

2 Department of Computing Science, University of Alberta, Edmonton, Canada
rezapour@ualberta.ca

3 Department of Computing Science, University of Alberta, Edmonton, Canada
mrs@ualberta.ca

Abstract
We consider a lower- and upper-bounded generalization of the classical facility location problem,
where each facility has a capacity (upper bound) that limits the number of clients it can serve
and a lower bound on the number of clients it must serve if it is opened. We develop an LP
rounding framework that exploits a Voronoi diagram-based clustering approach to derive the first
bicriteria constant approximation algorithm for this problem with non-uniform lower bounds and
uniform upper bounds. This naturally leads to the the first LP-based approximation algorithm
for the lower bounded facility location problem (with non-uniform lower bounds).

We also demonstrate the versatility of our framework by extending this and presenting the
first constant approximation algorithm for some connected variant of the problems in which the
facilities are required to be connected as well.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Facility Location, Approximation Algorithm, LP Rounding

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.1

1 Introduction

We study the lower- and upper-bounded facility location (LUFL) problem, a natural gener-
alization of the well-known capacitated facility location (CFL) and lower bounded facility
location (LBFL) problems. We are given a complete graph G= (V,E), with metric edge
lengths ce ∈ Z≥0, e ∈ E containing a set of potential facilities F ⊆V and a set of demand
points (clients) D⊆ V . Each facility i ∈ F has an opening cost µi ∈ Z≥0 and a capacity
(upper bound) Ui ∈ Z>0, which limits the amount of demand it can serve. Moreover, each
facility i has a lower bound Li ∈ Z≥0 on the amount of demand it must serve if it is opened.

A feasible solution to LUFL consists of a set of facilities I ⊆ F to open, and a valid
assignment σ :D→ I of clients to the open facilities: an assignment is valid if it satisfies the
lower and upper bounds

Li ≤ |σ−1(i)| ≤ Ui ∀i ∈ I. (1)

∗ Supported by NSERC and funding from the Canada Research Chairs program.
† Supported by NSERC.

© Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 1; pp. 1:1–1:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Approximating Connected Facility Location with Lower and Upper Bounds

The goal is to minimize the total cost, i.e.,
∑
i∈I µi+

∑
j∈D cσ(j)j .

In many real-world applications, particularly in telecommunications, there is an additional
requirement to connect the open facilities via high bandwidth core cables. This leads to a
variant of LUFL in which open facilities are connected via a tree-like core network that
consists of infinite capacity cables. We model this variant as a connected lower- and upper-
bounded facility location (C-LUFL) problem. Let us introduce a parameter M ≥1 which
reflects the cost per unit length of core cables. A feasible solution to C-LUFL is given
by a set of facilities I⊆F , an assignment σ :D→ I of clients to the open facilities that is
valid, and a Steiner tree of T ⊆E connecting all facilities I via core cables. The objective of
C-LUFL is to minimize the total cost, i.e.,

∑
i∈I µi +

∑
j∈D cσ(j)j +M

∑
e∈T ce.

Both the CFL and LBFL problems have been well-studied in the literature. However,
there is not much work in studying these problems in a complementary way.1 To address
this gap of knowledge, in this paper, we develop a framework that combines LP rounding
techniques for facility location problems with a Voronoi diagram-based clustering approach
in order to obtain the first (biceriteria) approximation algorithms for several variants of the
problems.

I Definition 1. An (ρ, α, β)-approximation algorithm for LUFL (C-LUFL, resp.) is an
algorithm that computes in polynomial time a solution (I, σ) satisfying bLi/αc≤|σ−1(i)|≤
dβUie, ∀i∈I, with cost at most ρ ·OPT, where OPT denotes the minimum cost of a solution
to LUFL (C-LUFL, resp.) satisfying (1).

We often loosely refer to a (ρ, α, β)-approximation for LUFL or C-LUFL when ρ, α, β
are constants as a relaxed constant-factor approximation.

Related Work. The CFL problem is the special case of LUFL when Li=0 for all i ∈ F .
There are several approximation algorithms for CFL based on local search techniques. For the
case of uniform capacities, Korupolu et al. [13] gave the first constant factor approximation
algorithm, with ratio 8. This was later improved to 5.83 [6] and 3 [2]. The first constant
factor approximation for the case of non-uniform capacities was proposed by [17] who gave
an 9-approximation, which was eventually improved to 5 [5]. An LP-based approach to
CFL was employed by Shmoys et al. [18] who gave the first bicriteria approximation for
uniform capacities; this was extended to non-uniform capacities [1]. Levi et al. [14] obtained
an LP-based 5-approximation algorithm when facilities opening costs are uniform. For
a long time it was an open question to prove a constant factor approximation for CFL
based on LP-rounding. This was recently answered by An et al. [4] who gave an LP-based
288-approximation algorithm for CFL which works for the general case.

The LBFL problem is another special case of LUFL when Ui=∞ for all i ∈ F . This
problem was introduced independently by Guha et al. [9] and Karger et al. [12] who gave
a bicriteria approximation. The first true approximation algorithm for LBFL was given
by Svitkina [19] with ratio 448. The factor was then improved to 82.6 by [3] by applying a
modified variant of the algorithm of [19], combined with a more careful analysis. We note
that the approaches of both papers work only if all lower bounds are uniform. Finding a true
approximation for LBFL when the lower bounds are non-uniform remains an open problem.
To the best of our knowledge, there have been no LP-based approximation (even bicriteria)
algorithms for LBFL in the literature.

1 In an earlier version of [1] there was an attempt to study LUFL but there seemed to be an error in the
proof. After checking with the authors the claim about LUFL is retracted in the current version of [1].

Z. Friggstad, M. Rezapour, and M.R. Salavatipour 1:3

The Connected Facility Location (ConFL) problem is an obvious special case of C-
LUFL (when Ui =∞ & Li = 0 for all i ∈ F .) The ConFL problem was first introduced
by Gupta et al. [10], in the context of reserving bandwidth for virtual private networks,
where they gave the first constant-factor approximation algorithm for ConFL. Using the
primal-dual technique, the factor was then improved to 8.55 by [20], and to 6.55 by [11].
Applying sampling techniques, the guarantee was later reduced to 4 by [7], and to 3.19 by [8].

Our Results and Techniques. We explore LP-based approaches to obtain bicriteria approx-
imations for many combinations of lower/upper/connected facility location. Our first main
result is the first constant-factor (bicriteria) approximation algorithm for LUFL.

I Theorem 2. There is a relaxed constant-factor approximation for instances of LUFL with
uniform upper bounds (and non-uniform lower bounds).

To prove this theorem we start by presenting an LP-based bicriteria approximation for
LBFL with non-uniform lower bounds. Such approximations were known before, but ours
is the first one whose cost can be compared to an LP relaxation. We emphasize that such
bounds may be useful to obtain stronger results. For example, the LP-based CFL bicritera
approximation by [1] was a key component in devising the true LP-based approximation in
[4]. Perhaps our result could be used in an analogous result for LBFL.

Next, we incorporate the connectivity requirement. We obtain the first constant-factor
bicriteria approximation for the connected lower-bounded facility location problem with
non-uniform lower bounds. We then extend this to a relaxed constant-factor approximation
for C-LUFL when the upper bounds U are uniform and the core cable multiplier M is
O(U). Some remarks on the difficulty of extending our approach to the case M = ω(U) are
presented in the conclusion. Our second main result is the following.

I Theorem 3. There is a relaxed constant-factor approximation for instances of C-LUFL
with uniform upper bounds where M = O(U).

A key ingredient in our approach is a clustering step to avoid the standard “filtering”
steps. That is, in classic facility location and CFL rounding algorithms a popular approach
is to consider a ball around each client j whose radius is roughly the fractional cost of serving
j. Values xij where i lies far outside this ball are set to 0 and the remaining xi′j values are
rounded up by a small constant factor in order to get a solution that is “concentrated” around
each client. This approach fails when lower bounds are present. We develop a clustering
procedure to find a set of cluster centers C using a Voronoi diagram which is inspired by
approches to capacitated k-median problem that was considered in [15, 16].

2 LP Relaxations and Starting steps

We present LP relaxations for LUFL as well as C-LUFL. For each i ∈ F , yi indicates if
facility i is opened. For each i ∈ F and j ∈ D, xij indicates if client j is assigned to facility i.

SWAT 2016

1:4 Approximating Connected Facility Location with Lower and Upper Bounds

min
∑
i∈F

µiyi +
∑
j∈D

∑
i∈F

cijxij (LP-LUFL)

∑
i∈F

xij = 1 ∀j ∈ D (2)

xij ≤ yi ∀i ∈ F, j ∈ D (3)∑
j∈D

xij ≤ Uiyi ∀i ∈ F (4)

Liyi ≤
∑
j∈D

xij ∀i ∈ F (5)

xij , yi ∈ [0, 1] ∀i ∈ F, j ∈ D

Constraints (2) and (3) are standard facility location constraints saying that any client has
to be assigned to an open facility in an integer solution. Constraints (4) and (5) ensure the
lower and upper bounds are satisfied at the open facilities.

Extending LP-LUFL to model a relaxation for C-LUFL, we let ze indicate if edge e ∈ E
is used by the core Steiner tree. We first guess one particular facility r that is open in the
optimum solution and we called r the root. LP-C-LUFL is a linear programming relaxation
of C-LUFL.

min
∑
i∈F

µiyi +
∑
j∈D

∑
i∈F

cijxij +M
∑
e∈E

ceze (LP-C-LUFL)

(2)− (5)∑
e∈δ(S)

ze ≥
∑
i∈S

xij ∀S ⊆ V \ {r}, j ∈ D (6)

yr = 1 (7)
xij , yi, ze ∈ [0, 1] ∀i ∈ F, j ∈ D, e ∈ E

Constraints (6) guarantee that (in the optimal solution) all open facilities are connected to
facility r via core links, where Constraint (7) forces facility r to be opened.

Note that while (6) introduces exponentially many constraints, they can easily be separated
by an efficient minimum-cut algorithm. Thus we can solve both (LP-LUFL) and (LP-C-LUFL)
in polynomial time using the ellipsoid method.

2.1 Reduction Lemmas
In this section we present two lemmas that are used in the algorithms we present. The first
lemma is a general clustering step that is applied as a first step of our LP rounding and
reduces the facility location problem on hand to solving the problem on a specific cluster
of clients facilities. This clustering step has similarities to a Voronoi diagram and for that
reason we call it Voronoi clustering (inspired by [15, 16]). The second lemma shows how one
can then extend the results obtained via this reduction step to the case where connectivity
(with core cables) is required between open facilities.

Let (x, y, z) be a feasible solution to the LP relaxation of (LP-C-LUFL). Let Lj be the
connection cost of client j in the LP, i.e. Lj =

∑
i∈F cijxij . The general idea is to select

clients in increasing order of their Lj values and selecting them as centers if they are far
from all centers so far. We then define a Voronoi cell with center j to be the set of all

Z. Friggstad, M. Rezapour, and M.R. Salavatipour 1:5

facilities for which j is the closest center. This Voronoi clustering will be an important tool
in decomposition of an LP solution in our rounding algorithms.

The following algorithm finds a set of clients C that will act as the centers in the Voronoi
diagram and a partition {Pj}j∈C of F where i∈Pj means j is a closest center to i. Here, λ is
some parameter that we can specify. Larger values mean the centers are further apart. The
algorithm also records a cluster center δ(j)∈C for each j∈D: if j∈C then δ(j)= j and if
j 6∈C then δ(j) is the center that caused j to not be included in C (it may not be the closest
center to j).

Algorithm 1. Voronoi Clustering algorithm (λ)
C ← {j∗} where j∗ = arg minj L

j ;
for each j′ ∈ D − {j∗} in increasing order of Lj′

do
if cjj′ > 2λ · Lj′

for all j ∈ C then
C ← C ∪ {j′};
δ(j′)← j′;

else
let j ∈ C be some center with cjj′ ≤ 2λ · Lj′

;
δ(j′)← j;

end
end
for each j ∈ C do

Pj ← {i ∈ F : cij ≤ cik for all k ∈ C, k 6= j};
Comment: break ties arbitrarily so each i ∈ F lies in exactly one Pj .

end
return (C,P, δ)

Note that by construction of δ we have that cδ(j)j ≤ 2λLj for each j ∈ D.
In Lemma 4 we show that for each center j ∈ C, there is a facility i that is close to j whose

opening cost can be paid for by the fractional opening cost paid by the LP for facilities near
i. Furthermore, this facility i has a small enough lower bound that we can approximately
satisfy by assigning to it all fractional client demand that was sent to some facility in Pj .

For each client j and positive radius R, we let B(j, R) = {v ∈ V : cjv ≤R} be a ball
centered at j.

I Lemma 4. Let (x, y) be values satisfying constraints (2), (3), and (5). Suppose (C,P, δ)
is returned by calling Algorithm 1 with some given λ. Let X̂j =

∑
i∈Pj

∑
j′∈D xij′ and

let η ∈ (1, λ]. For each j ∈ C, there exists some i ∈ Bj := B(j, ηLj) fulfilling: (i)
µi ≤ 2η

η−1
∑
i′∈Bj µi′yi′ and (ii) Li ≤ 2η

η−1X̂j.

Proof. First observe that
∑
i∈Bj yi ≥ 1 − 1

η . For each i ∈ Bj , let yji = xij∑
i′∈Bj xi′j

. Note

that ∀i ∈ Bj ,

yji ≤
η

η − 1xij ≤
η

η − 1yi, (8)

holds by Constraints (3) and the fact that at least η−1
η portion of j’s demand is served within

Bj (using Markov’s inequality).
Now think of yj as a probability distribution over facilities in Bj (note that

∑
i∈Bj y

j
i = 1).

Suppose we sample a facility i from this distribution.

I Claim 5. Pr[µi > 2η
η−1

∑
i′∈Bj µi′yi′] < 1/2.

SWAT 2016

1:6 Approximating Connected Facility Location with Lower and Upper Bounds

Proof. Observe that
∑
i′∈Bj µi′y

j
i′ ≤

η
η−1

∑
i′∈Bj µi′yi′ . This, with Markov’s inequality,

implies: Pr[µi> 2η
η−1

∑
i′∈Bj µi′yi′]≤Pr[µi>2

∑
i′∈Bj µi′y

j
i′]<1/2. J

I Claim 6. Pr[Li > 2η
η−1X̂j] < 1/2.

Proof. Using (5) and (8) and the fact that by choice of η ∈ (1, λ], Bj ∩ F ⊆ Pj we have

X̂j ≥
∑
i∈Bj

∑
j′∈D

xij′ ≥
∑
i∈Bj

yiLi ≥
η − 1
η

∑
i∈Bj

Liy
j
i (9)

This implies: Pr[Li> 2η
η−1X̂j]≤Pr[Li>2

∑
i∈Bj y

j
iLi]<1/2. J

The above two claims immediately imply that with positive probability, there is a facility that
satisfies both conditions in inequalities (i) and (ii), respectively. Hence the lemma holds. J

Our next lemma demonstrates the utility of our clustering algorithm even in the presence
of the connectivity requirements. We show below that if we find a (lower/upper bounded)
facility location solution within each cluster and if we can connect those open facilities to the
center of the clusters using core cables cheaply then we can connect the centers using core
cables cheaply. This helps us to reduce the problem to solving each Voronoi cell separately.

I Lemma 7. Let (x, y, z) be values satisfying (2)–(3) and (6)–(7) and (C,P, δ) be returned
by Algorithm 1 with x, y, and some given λ. Let η ∈ (1, λ). Then we can efficiently find a
Steiner tree that connects C with cost at most λ

λ−η ·
2η
η−1 ·M ·

∑
e ceze.

Proof. Note that we require η < λ. We assume that facility r ∈ B(j, ηLj) for some
j ∈ C. The other case where r 6∈ B(j, ηLj) for any j ∈ C is nearly identical and results
in the same bound. We also observe that {B(j, ηLj) : j ∈ C} consists of disjoint sets: if
B(j, ηLj) ∩B(j′, ηLj′) 6= ∅ for distinct j, j′ ∈ C then cjj′ ≤ 2λ ·max{Lj , Lj′} so both j and
j′ could not be cluster centers.

Note that
∑
i∈B(j,ηLj) xij ≥

η−1
η holds for any j ∈ C, using of Markov’s inequality. This,

together with (6), implies that vector η
η−1z is a feasible fractional solution to the standard

cut based LP relaxation of the Steiner tree problem with terminals being balls B(j, ηLj)
contracted at their centers. Thus, we can efficiently find a Steiner tree T̂ over these contracted
balls (on the resulting graph after contracting balls) with cost at most 2η

η−1
∑
e ceze.

Now we have to convert this tree T̂ into a Steiner tree over centers C. When we uncontract
the balls, each edge of T̂ between two balls around centers j, j′ can be replaced with the edge
between two closest nodes, say u ∈ B(j, ηLj) and v ∈ B(j′, ηLj′). We add edges ju and vj′
for each such uv ∈ T̂ to complete the Steiner tree. To bound the cost of these new edges,
observe that η < λ and not only balls B(j, ηLj) and B(j′, ηLj′) are disjoint, but also balls
B(j, λLj) and B(j′, λLj′) are disjoint as well by the same argument. So we can “charge”
the cost of two new edges ju and vj′ to the section of edge uv that falls between the two
nested balls as follows. Let α = max{Lj , Lj′}. Since u ∈ B(j, ηLj) and v ∈ B(j, ηLj′) then
cuj + cj′v ≤ 2ηα. Furthermore, 2λα ≤ cjj′ ≤ cuj + cuv + cvj′ ≤ cuv + 2ηα. Therefore,

cju + cvj′ ≤ 2ηα = 2η
λ− η

· (λ− η) · α ≤ η

λ− η
cuv.

Thus, the total cost of this tree is at most
(

1 + η
λ−η

)
· 2η
η−1 ·M ·

∑
e ceze. J

Z. Friggstad, M. Rezapour, and M.R. Salavatipour 1:7

3 An LP-Based Approximation Algorithm for LUFL

In this section we present a rounding bicriteria approximation algorithm for LUFL. We start
with the simpler case where we only have lower bounds and then show how to extend the
algorithm to work for when there are both upper and lower bounds for facility loads.

3.1 Lower-Bounded Facility Location
We first consider the case where all facilities have infinite capacities. An LP to this case can
be written as follows. We let (x, y) and OPTLP be an optimal solution and the optimum
cost of LP-LFL, respectively.

min
∑
i∈F

µiyi +
∑
j∈D

∑
i∈F

cijxij (LP-LFL)

(2),(3), (5)
xij ,yi ≥ 0

It is easy to see that LP-LFL has unbounded integrality gap: Consider a small instance
of LBFL consisting of 2(L − 1) clients (with unit demands), two zero-cost facilities each
collocated with L− 1 clients, and an edge of length L between these two facilities. While
the optimal cost to IP is L(L− 1), LP can manage to pay only 2(L− 1) by opening both
facilities to the extent of L−1

L , and thereby only sending 1
L demand of each client to its far

facility. Hence, the integrality gap can be made arbitrarily large by increasing L. Therefore
bicriteria approximation is unavoidable if we use this LP.

Let η > 1 be a parameter we may choose, larger values result in more expensive solutions
with smaller violations in the lower bound. Our algorithm for LBFL has two steps and
works as follows. We first find a Voronoi clustering using Algorithm 1 and then for each
cluster center j we open one facility in the cell as guaranteed by Lemma 4. All demand
X̂j that is fractionally assigned to Pj is assigned to this open facility. To turn this into
an integer assignment of clients to facilities, we then compute the minimum-cost integer
flow that satisfies the relaxed lower bounds. The fact that this is cheap is witnessed by the
fractional assignment we find in the first part of the algorithm.

Algorithm 2: LBFL rounding

Step 1: Construct a Voronoi clustering (C,P, δ) by running Algorithm 1 with the given x,
y, and λ = η.

Step 2: Let I = {i(j) : j ∈ C}, where i(j) ∈ Pj is the facility described in Lemma 4. Open
facilities I and find the cheapest assignment of clients to them such that each open facility i
serves at least η−1

2η Li demand.

I Theorem 8. Algorithm 2 computes in polynomial time a solution to LBFL with the
following properties:
(i) The solution cost is at most max{4(η + 1), 2η

η−1} ·OPTLP .
(ii) Each open facility i ∈ I is serving at least bη−1

2η Lic clients.

Proof. We provide a solution as described in Step 2 fulfilling the claimed properties. Consider
(C,P, δ) costructed at Step 1. Recall X̂j =

∑
i∈Pj

∑
j′∈D xij′ .

SWAT 2016

1:8 Approximating Connected Facility Location with Lower and Upper Bounds

By Lemma 4 and the fact that Pj cells are disjoint, the total opening cost is bounded as
follows.

µ(I) ≤
∑
j∈C

µi(j) ≤
2η
η − 1

∑
j∈C

∑
i∈P j

µiyi ≤
2η
η − 1

∑
i∈F

µiyi. (10)

Assigning the fractional demands X̂j aggregated at j to each i(j) ∈ I guarantees the second
property; see Lemma 4. Hence, we only need to show this assignment is cheap and how to
turn it into an integer assignment of no more cost.

Consider some client j′ ∈ D and some facility i ∈ F . In what follows we show that
xij′ units of demand travel a distance of at most 4(ηLj′ + cij′). Say that i ∈ Pj and let
Bj := B(j, ηLj). Thus, in this assignment the xij′ -fraction of demand travels distance cj′i(j).
We consider two cases:

Case j′ 6∈ Bj : We have

cj′i(j) ≤ ci(j)j + cjj′ (by the triangle inequality)
≤ ηLj + cjj′ (using the fact that i(j) ∈ Bj)
≤ 2cjj′ (using the fact that j′ 6∈ Bj)
≤ 2(cij + cij′) (by the triangle inequality)
≤ 2(ciδ(j′) + cij′) (using the fact that i ∈ Pj)
≤ 2(cj′δ(j′) + 2cij′) (by the triangle inequality)
≤ 2(2ηLj′ + 2cij′) (from the clustering procedure)

Case j′ ∈ Bj : In this case cj′i(j) ≤ 2ηLj (by the triangle inequality). Below we show that
Lj ≤ 2Lj′ , which immediately implies cj′i(j) ≤ 4ηLj′ .

I Claim 9. Lj ≤ 2Lj′ .

Proof. Assume, for the sake of contradiction, that Lj > 2Lj′ . First observe that by the
ordering clients are selected as centers in C, j′ 6∈ C: note that j ∈ C, and since we assumed
(2Lj′

< Lj and so) Lj′
< Lj , and because cjj′ ≤ 2ηLj (recall j′ ∈ Bj), if j′ ∈ C then it

would have prevented j from being added to C in the first step. Now, consider δ(j′)∈C.
Note that Lδ(j′)≤Lj′ and cj′δ(j′)≤2ηLj′ . This implies

cjδ(j′) ≤ cj′j + cδ(j′)j′ (by the triangle inequality)
≤ ηLj + 2ηLj′ (by j′ ∈ Bj and clustering procedure)
≤ ηLj + ηLj (using the assumption that Lj > 2Lj′)
≤ 2ηLj

which is a contradiction because then δ(j′) would also have blocked j from being added
to C. The claim follows. J

This completes the proof of this case that cj′i(j) ≤ 4ηLj′ .

In either case, xij′ travels a distance of at most 4(ηLj′ + cij′). Thus, the total assignment
cost of this fractional solution is bounded by

4
∑
i∈F

∑
j′∈D

xij′
(
ηLj

′
+ cij′

)
= 4η

∑
j′∈D

Lj
′ ∑
i∈F

xij′ + 4
∑
i∈F

∑
j′∈D

cij′xij′

= 4η
∑
j′∈D

Lj
′
+ 4

∑
i∈F

∑
j′∈D

cij′xij′ using (2)

= 4(η + 1)
∑
i∈F

∑
j′∈D

xij′cij′ (by def. of Lj
′
)

Z. Friggstad, M. Rezapour, and M.R. Salavatipour 1:9

Together with (10), this implies the claimed bound.
Finally, because of the integrality of flows with integer lower bounds and because we have

explicitly described a cheap fractional flow from the clients to the open facilities that satisfies
the integer lower bounds bη−1

2η Lic, then there is an integer assignment σ : D → I that also
satisfies these lower bounds with no greater cost. J

For example, by choosing η = 1.28 we get a solution of cost at most 9.12OPTLP and the
load of each open facility i is at least b Li

9.12c.

3.2 The general case with lower and upper bounds
We now consider the case where each facility has capacity U (uniform across all facilities) as
well as a given lower bound Li. Let (x, y) be an optimal solution to (LP-LUFL).

As before, we first use Algorithm 1 to obtain a Voronoi clustering. We then decide to
open a number of facilities in each cell to route the clients demand to be served at them while
satisfying the upper and lower bounds on the facility loads (approximately). The algorithm
consists of two steps and works as follow.

Algorithm 3: LUFL rounding

Step 1: Construct a Voronoi clustering (C,P, δ) by running Algorithm 1 with the given x,
y, and λ = η.

Step 2: For each j ∈ C, we open a subset Ij ⊆ Pj of facilities and send the demand
served by facilities in Pj (namely X̂j =

∑
j′
∑
i∈Pj

xij′) to those facilities as described below,
depending on the value of X̂j :

Case 1. X̂j ≥ U : In this case, inspired by ideas from [16], we formulate the described
subproblem as another (simpler) facility location (inside the cell) using a simpler (sparse) LP.

We firstly move demand X̂j to center j as follows. For each client j′ ∈ D and each facility
i ∈ Pj , we send xij′ demand from j′ to i (this is what the LP is doing). Let d̂i =

∑
j′∈D xij′

be the demand sent to i. Next, for each facility i ∈ Pj , we send d̂i demand from i to j.
Obviously, the total cost of this moving is bounded by

∑
i∈Pj

∑
j′∈D xij′

(
cij′ + cij

)
.

We now ignore the facility lower bounds and write an LP to solve the subproblem. Solving
and then rounding this LP helps us to decide which facilities in Pj to open and how to assign
the X̂j demand (already aggregated at j) to them. We shall show how the cost of this LP
can be bounded by the cost of the original LP restricted to this cell and an optimum solution
to this LP satisfies the lower bounds on almost all facilities.

In this LP, we have a variable ωi for each i ∈ Pj indicating how much of the X̂j is assigned
to i.

min
∑
i∈Pj

ωi
(µi
U

+ cij
)

∑
i∈Pj

ωi = X̂j

0 ≤ ωi ≤ U ∀i ∈ Pj

Note that setting ωi :=
∑
j′∈D xij′ is a feasible solution with cost at most

∑
i∈Pj

µiyi +∑
i∈Pj

∑
j′∈D xij′cij because

∑
j xij ≤ Uyi.

SWAT 2016

1:10 Approximating Connected Facility Location with Lower and Upper Bounds

Note that there is only one constraint apart from constraints 0 ≤ ωi ≤ U . Thus, for all
but one i ∈ Pj we have ω∗i ∈ {0, U}, where ω∗ indicates an optimum extreme point solution
to this LP.

To round this solution ω∗i , let ζ ∈ (1, 1.6) be a parameter we get to choose. Let
Ij = {i ∈ Pj : ω∗i = U}. If there is some i′ ∈ Pj such 0 < ω∗i′ < U then add i′ to Ij if ω∗i′ ≥ U

ζ .
In this case, the upper bound is satisfied for every i ∈ Ij and the lower bound is violated by
no more than a ζ-factor. Assign precisely ω∗i units of demand to each i ∈ Ij . The cost of
this assignment plus the cost of opening Ij is at most ζ

∑
i∈Pj

µiyi + ζ
∑
i∈Pj

∑
j′∈D xij′cij .

Otherwise, if ω∗i′ < U
ζ then let i′′ be the facility in Ij closest to j and increase ω∗i′′

by ω∗i′ . Note that such a facility i′′ exists because we are assuming X̂j ≥ U . In this
case, no lower bounds are violated at any i ∈ Ij and the upper bound is violated by at
most a

(
1 + 1

ζ

)
-factor. The assignment and opening cost in this case are bounded by

ζ+1
ζ

∑
i∈Pj

µiyi + ζ+1
ζ

∑
i∈Pj

∑
j′∈D xij′cij .

In either case, we have opened Ij and assigned demand to each i ∈ Ij to satisfy the
relaxed lower bounds Li/ζ and the relaxed upper bounds ζ+1

ζ U . Since ζ+1
ζ > ζ holds for

any ζ ∈ (1, 1.6), the cost of assigning X̂j units of demand from j to Ij in this manner is at
most ζ+1

ζ

∑
i∈Pj

µiyi + ζ+1
ζ

∑
i∈Pj

∑
j′∈D xij′cij . Altogether, the total cost (of moving the

X̂j demand to center j plus the cost of assigning it from j to facilities Ij) is bounded by
ζ + 1
ζ

∑
i∈Pj

µiyi + ζ + 1
ζ

∑
i∈Pj

∑
j′∈D

xij′cij +
∑
i∈Pj

∑
j′∈D

xij′
(
cij′ + cij

)
=

ζ + 1
ζ

∑
i∈Pj

µiyi + 2ζ + 1
ζ

∑
i∈Pj

∑
j′∈D

xij′cij +
∑
i∈Pj

∑
j′∈D

xij′cij′ .

I Lemma 10. The total cost (over all cells of Voronoi clustering) incurred due to Case 1 of
Step 2 of the algorithm is at most ζ+1

ζ

∑
i∈F µiyi + (2ζ+1)(2η+1)+ζ

ζ

∑
i∈F

∑
j∈D xijcij.

Proof. The total cost is bounded by∑
j∈C

(ζ + 1
ζ

∑
i∈Pj

µiyi + 2ζ + 1
ζ

∑
i∈Pj

∑
j′∈D

xij′cij +
∑
i∈Pj

∑
j′∈D

xij′cij′

)
= ζ + 1

ζ

∑
i∈F

µiyi + 2ζ + 1
ζ

∑
j∈C

∑
i∈Pj

∑
j′∈D

xij′cij +
∑
i∈F

∑
j′∈D

xij′cij′ , (11)

using the fact that Pj cells are disjoint.
Note that for any i ∈ Pj and any j′ ∈ D we have

cij ≤ ciδ(j′) (using the fact that i ∈ Pj)
≤ cij′ + cj′δ(j′) (by the triangle inequality)
≤ cij′ + 2ηLj′ (from Step 1)

Hence, we have:
2ζ + 1
ζ

∑
j∈C

∑
i∈Pj

∑
j′∈D

xij′cij ≤
2ζ + 1
ζ

∑
j∈C

∑
i∈Pj

∑
j′∈D

xij′
(
cij′ + 2ηLj

′)
= 2ζ + 1

ζ

∑
i∈F

∑
j′∈D

cij′xij′ + (2ζ + 1)(2η)
ζ

∑
j′∈D

Lj
′

(by (2))

= (2ζ + 1)(2η + 1)
ζ

∑
i∈F

∑
j′∈D

cij′xij′ .

This, together with (11), implies the claimed bound. J

Z. Friggstad, M. Rezapour, and M.R. Salavatipour 1:11

Case 2. X̂j < U : Observe that in this case we can simply ignore the upper bound. So
(similar to that for LBFL) we open facility i(j) described in Lemma 4 and send the demand
to that facility as follows: For each client j′ ∈ D and each facility i ∈ Pj , we send xij′

demand from j′ (directly) to i(j). Let Ij = {i(j)} in this case. Note that facility i(j) serves
at least η−1

2η Li.
The following bound can be obtained using the exact same arguments used to bound that

in the proof of Theorem 8.

I Lemma 11. The total cost incurred due to Case 2 of Step 2 is at most 2η
η−1

∑
i∈F µiyi +

4(η + 1)
∑
i∈F

∑
j∈D xijcij.

Let I = ∪j∈CIj be the set of facilities opened over all Voronoi cells. Observe that each
of the two cases above finds a solution to LBFL in which each open facility i ∈ I serves at
least min

{ 1
ζ ,

η−1
2η
}
Li (based on the two cases above) and at most ζ+1

ζ U demand.
Summing our bounds on the cost of the solutions found in each Voronoi diagram (see

Lemmas 10 and 11), we see the cost of opening I is at most

(ζ + 1
ζ

+ 2η
η − 1

)∑
i∈F

µiyi, (12)

and the cost of assigning demands is at most:

((2ζ + 1)(2η + 1) + ζ

ζ
+ 4(η + 1)

)∑
j∈D

∑
i∈F

cijxij (13)

Together, (12) and (13) and using integrality of flows with integer lower and upper bounds,
imply the main results of this section.

I Theorem 2 (restated). Algorithm 3 is a polynomial time (ρ, α, β)-approximation for
instances of LUFL with uniform capacities where ρ = max{ (2ζ+1)(2η+1)+ζ

ζ + 4(η + 1), 2η
η−1 +

ζ+1
ζ }, α = max{ζ, 2η

η−1}, β = ζ+1
ζ .

4 An LP-Based Approximation Algorithm for C-LUFL

In this section we show that our rounding framework for LUFL extends to connected variants.
In the light of Lemma 7, we observe that our framework works for the connected variants
too, as long as we can bound the cost of connecting facilities opened in each Voronoi cell to
the center it belongs to.

We begin with the case where all facilities have infinite capacities (denoted by C-LBFL).
We let (x, y, z) and OPTLP be the optimal solution and the optimum cost of the LP relaxation
for this case, respectively.

Let λ > η > 1 be constant parameters. Following the same general ideas of that for
LBFL and using our observation described in Lemma 7, we present our algorithm for
C-LBFL which has three stages and works as follows.

Algorithm 4: C-LBFL rounding

Step 1: Construct a Voronoi clustering (C,P, δ) by running Algorithm 1 with the given x,
y, λ.

SWAT 2016

1:12 Approximating Connected Facility Location with Lower and Upper Bounds

Step 2: Open facilities I = {i(j) : j ∈ C} and assign clients to them as described in Step 2
of Algorithm 2. Connect each facility i(j) ∈ I to the center it belongs to via core cables.

Step 3: Compute a core Steiner tree over centers C as described in Lemma 7.
One can simply adapt the proof of Lemma 7 to bound the extra cost of connecting each

center j to the facility i(j) by losing a constant factor. Apart from this the proof of the
following theorem is analogous to that for Theorem 8.

I Theorem 12. Algorithm 4 computes in polynomial time a solution to C-LBFL with the
following properties:
(i) The solution cost is at most max{4(η + 1), 2η

η−1 ,
2·(λ+η)η

(λ−η)(η−1)} ·OPTLP .
(ii) Each open facility i ∈ I is serving at least bη−1

2η Lic clients.

We now consider the C-LUFL problem. First we show that one can convert an optimum
solution of C-LUFL to an approximate solution in which each open facility (say) i is assigned
a sufficiently large number of clients comparable not only to U and Li but also to M (core
cable cost per unit length). This property of a near optimal solution will help use to compute
approximate solutions to C-LUFL. Let ∆ = min{M,U}. Let OPTC-LU be the cost of an
optimal solution to C-LUFL. Observe that when the number of clients is less than ∆

2 ,
selecting only the cheapest facility to be opened and then assigning all clients to that open
facility returns the optimal solution. We hence assume that the number of clients is at least
∆
2 . The proof of the following theorem is omitted due to lack of space.

I Theorem 13. There is a feasible solution of cost at most 3OPTC-LU to C-LUFL in which
each open facility i is assigned at least max{∆

2 , Li} units of demand.

In what follows (instead of approximating C-LUFL) we approximate the near optimal
solution described above whose property is needed for our analysis to work. We write a
modification of LP-C-LUFL to model the approximate solution described above.

min
∑
i∈F

µiyi +
∑
j∈D

∑
i∈F

cijxij +M
∑
e∈E

ceze

(2)-(4), (6)-(7)

∆yi ≤ 2
∑
j∈D

xij ∀i ∈ F (14)

xij , yi,ze ≥ 0

We let (x, y, z) be the optimal solution of this LP relaxation. Let λ > η > 1 be constant
parameters. Following the algorithm for LBFL and using Lemma 7, we extend the algorithm
for C-LBFL to work for the more general case where each facility has a capacity U and
M = O(U). Our algorithm has three steps and works as follows.

Algorithm 5: C-LUFL rounding

Step 1: Construct a Voronoi clustering (C,P, δ) by running Algorithm 1 with the given x,
y, λ.

Step 2: Open facilities I = ∪j∈CIj and assign clients to them as described in Step 3 of
Algorithm 3. Then, connect each facility i ∈ I to the center of the cell it belongs to using
core cables.

Step 3: Compute a core Steiner tree over centers C as described in Lemma 7.

Z. Friggstad, M. Rezapour, and M.R. Salavatipour 1:13

I Theorem 3 (restated). Algorithm 5 computes in polynomial time a
(
O(1),max{ζ, 2η

η−1},
ζ+1
ζ

)
-

bicriteria approximation for instances of C-LUFL with uniform capacities (and non-uniform
lower bounds) and with M = O(U).

Due to lack of space, the proof is deferred to the full version.

5 Conclusion

It would be nice to extend our approximations for C-LUFL to include the case M = ω(U).
As M gets larger, the cost of connecting core cables becomes so large that an optimum
solution would open the fewest possible facilities, namely k := d|D|/Ue. This case resembles
the well-studied k-MST problem where it is well-known that even getting a constant-factor
bicriteria approximation is not possible using the natural cut-based relaxation. So, this case
poses additional difficulties.

Also open is the problem of getting constant-factor biceriteria approximations for
LUFL when both lower and upper bounds are not necessarily uniform.

References
1 Zoë Abrams, Adam Meyerson, Kamesh Munagala, and Serge Plotkin. The integrality

gap of capacitated facility location. Technical Report CMU-CS-02-199, Carnegie Mellon
University, 2002.

2 Ankit Aggarwal, Anand Louis, Manisha Bansal, Naveen Garg, Neelima Gupta, Shubham
Gupta, and Surabhi Jain. A 3-approximation algorithm for the facility location problem
with uniform capacities. Mathematical Programming, 141, 2013.

3 Sara Ahmadian and Chaitanya Swamy. Improved approximation guarantees for lower-
bounded facility location. In proceedings of WAOA 2012, pages 257–271, 2012.

4 Hyung-Chan An, Monika Singh, and Ola Svensson. LP-based algorithms for capacitated
facility location. In proceedings of FOCS 2014, pages 256–265, 2014.

5 Manisha Bansal, Naveen Garg, and Neelima Gupta. A 5-approximation for capacitated
facility location. In proceedings of ESA 2012, pages 133–144, 2012.

6 Fabián A Chudak and David P Williamson. Improved approximation algorithms for capa-
citated facility location problems. Mathematical programming, 102, 2005.

7 Friedrich Eisenbrand, Fabrizio Grandoni, Thomas Rothvoß, and Guido Schäfer. Connected
facility location via random facility sampling and core detouring. Journal of Computer and
System Sciences, 76(8):709–726, 2010.

8 Fabrizio Grandoni and Thomas Rothvoß. Approximation algorithms for single and multi-
commodity connected facility location. In proceedings of IPCO 2011, pages 248–260, 2011.

9 Sudipto Guha, Adam Meyerson, and Kamesh Munagala. Hierarchical placement and net-
work design problems. In proceedings of FOCS 2000, pages 603–612, 2000.

10 Anupam Gupta, Jon Kleinberg, Amit Kumar, Rajeev Rastogi, and Bulent Yener. Provi-
sioning a virtual private network: a network design problem for multicommodity flow. In
proceedings of STOC 2001, pages 389–398, 2001.

11 Hyunwoo Jung, Mohammad Khairul Hasan, and Kyung-Yong Chwa. A 6.55 factor primal-
dual approximation algorithm for the connected facility location problem. Journal of com-
binatorial optimization, 18(3):258–271, 2009.

12 DR Karget and Maria Minkoff. Building steiner trees with incomplete global knowledge.
In proceedings of FOCS 2000, pages 613–623, 2000.

13 Madhukar R Korupolu, C Greg Plaxton, and Rajmohan Rajaraman. Analysis of a local
search heuristic for facility location problems. Journal of algorithms, 2000.

SWAT 2016

1:14 Approximating Connected Facility Location with Lower and Upper Bounds

14 Retsef Levi, David B Shmoys, and Chaitanya Swamy. LP-based approximation algorithms
for capacitated facility location. Mathematical programming, 131, 2012.

15 Shi Li. On uniform capacitated k-median beyond the natural lp relaxation. In proceedings
of SODA 2015, pages 696–707, 2015.

16 Shi Li. Approximating capacitated k-median with (1 + ε)k open facilities. In proceedings
of SODA 2016, 2016.

17 Martin Pal, Eva Tardos, and TomWexler. Facility location with nonuniform hard capacities.
In proceedings of FOCS 2001, pages 329–338, 2001.

18 David B Shmoys, Éva Tardos, and Karen Aardal. Approximation algorithms for facility
location problems. In proceedings of STOC 1997, pages 265–274, 1997.

19 Zoya Svitkina. Lower-bounded facility location. ACM Transactions on Algorithms (TALG),
6(4):69, 2010.

20 Chaitanya Swamy and Amit Kumar. Primal–dual algorithms for connected facility location
problems. Algorithmica, 40(4):245–269, 2004.

Approximation Algorithms for Node-Weighted
Prize-Collecting Steiner Tree Problems on Planar
Graphs∗

Jarosław Byrka1, Mateusz Lewandowski2, and
Carsten Moldenhauer3

1 University of Wrocław, Wrocław, Poland
2 University of Wrocław, Wrocław, Poland
3 EPFL, Lausanne, Switzerland

Abstract
We study the prize-collecting version of the node-weighted Steiner tree problem (NWPCST)
restricted to planar graphs. We give a new primal-dual Lagrangian-multiplier-preserving (LMP)
3-approximation algorithm for planar NWPCST. We then show a 2.88-approximation which
establishes a new best approximation guarantee for planar NWPCST. This is done by combining
our LMP algorithm with a threshold rounding technique and utilizing the 2.4-approximation
of Berman and Yaroslavtsev [6] for the version without penalties. We also give a primal-dual
4-approximation algorithm for the more general forest version using techniques introduced by
Hajiaghay and Jain [17].

1998 ACM Subject Classification G.2.2 [Graph Theory] Graph algorithms

Keywords and phrases approximation algorithms, Node-Weighted Steiner Tree, primal-dual al-
gorithm, LMP, planar graphs

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.2

1 Introduction

In Steiner problems we aim at connecting certain specified vertices (called terminals) by
buying edges or nodes of the given graph. The classic edge-weighted setting is well known to
have many applications in areas like electronic circuits, computer networking, and telecom-
munication. The expressive power of the node weighted variants is used to model various
settings common to bioinformatics [11], maintenance of electric power networks [16], and
computational sustainability [10].

The node weighted setting is a generalization of the edge weighted case. In particular,
one may cast the Set Cover problem as an instance of the Node-weighted Steiner Tree
problem, which proves hardness of approximation of the general node-weighted setting. In
this paper we study a natural special case, namely planar graphs, for which constant factor
approximation algorithms are possible.

In the prize-collecting (penalty-avoiding) setting we are given an option not to satisfy
a certain connectivity requirement, but to pay a fixed penalty instead. The main focus of
this work is to develop efficient primal-dual approximation algorithms for prize-collecting
versions of the node-weighted Steiner problems.

∗ Supported by NCN 2015/18/E/ST6/00456 grant.

© Jarosław Byrka, Mateusz Lewandowski, and Carsten Moldenhauer;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 2; pp. 2:1–2:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 Approximation Algorithms for NW PC Steiner Tree Problems on Planar Graphs

Table 1 Summary of best known approximation ratios for Steiner problems. Results of this
paper are highlighted.

edge-weighted node-weighted
tree forest tree forest

general 1.39 [7] 2 [15] O(log k) [5] O(log k) [5]
planar PTAS [4] PTAS [4] 2.4 [6] 2.4 [6]

general 2 − ε [2] 3
2.54 (LP) [17] O(log k) [5, 19] O(log k) [5]

prize-collecting
planar PTAS [3] APX-HARD [3] 3

2.88 (LP) 4

1.1 Previous work

The Steiner tree problem is NP-hard even in planar graphs [12]. The most studied version
is the standard edge-weighted Steiner tree, for which the best known approximation ratio
1.39 is obtained via a randomized iterative rounding technique [7]. By contrast, the best
approximation algorithms for Steiner forest have the so far unbreakable ratio of 2 [1, 18].

For the prize-collecting Steiner tree problem there exists a primal-dual 2-approximation
algorithm [15]. It can be shown that it is also Lagrangian-preserving, i.e., that it achieves a
1-approximation on the penalty term. This property was used by Archer et al. to design the
currently best 2− ε approximation algorithm for PCST [2].

For the prize-collecting Steiner forest problem there is a 3 approximation primal-dual
algorithm [17], which introduces a general technique to handle prize-collecting problems. In
the same paper the authors use a threshold rounding technique with randomized analysis to
obtain a ≈ 2.54 approximation.

There are optimal (up to a constant factor) algorithms for node-weighted Steiner problems.
One example is the recent O(lnn) approximation algorithm for NWPCSF by Bateni et al [5].
Könemann et al [19] gave a Lagrangian-multiplier-preserving (LMP) approximation that
achieves the same guarantee. Establishing the LMP property is of crucial importance for
the construction of approximation algorithms for quota and budgeted versions of the NWST
problem.

Planarity helps significantly in both the edge and node weighted setting. Both ST and
SF admit PTAS in planar graphs [4]. Planar PCST can be also approximated with any
constant, but PCSF is APX-HARD already on planar graphs [3].

In the case of the node-weighted setting, planarity helps to achieve constant factor
approximations. The NWSF can be expressed as the Hitting Set problem for some uncrossing
family of cycles and hence solved as a feedback problem. This was exploited by Berman and
Yaroslavtsev in [6] where they obtained a 2.4 approximation for NWSF and other problems
on planar graphs.

In [21] it was observed that using a threshold rounding technique together with the 2.4-
approximation of Berman and Yaroslavtsev [6] for the version without penalties gives a 2.93-
approximation algorithm for NWPCST on planar graphs. This was the best approximation
guarantee up to date. However, such an algorithm requires solving an LP.

We summarize the current best known results in Table 1.

J. Byrka, M. Lewandowski, and C. Moldenhauer 2:3

1.2 Our contribution

We propose a new LMP 3-approximation algorithm for NWPCST on planar graphs. The
algorithm is an adaptation of the original technique developed by Goemans and Williamson
in [15] for PCST to the node-weighted version. However, we change the pruning phase of the
algorithm. This enables us to analyze the connection and penalty costs separately which is
the key ingredient. In particular, we can directly charge the penalty costs to a part of the
dual solution yielding Langrangian-multiplier-preservation. Further, the connection costs
can be bounded using a slightly adapted analysis from [20] for NWSF. The approximation
ratio of 3 is slightly higher than the previously best approximation ratio but the primal-dual
algorithm does not require solving an LP.

Next, we establish a new best approximation ratio by exploiting the asymmetry of our
primal-dual algorithm. A combination of the new LMP algorithm with a threshold rounding
technique with the underlying 2.4-approximation from [6] yields a 2.88-approximation for
NWPCST on planar graphs.

Furthermore, we obtain an efficient, direct primal-dual 4-approximation algorithm for
NWPCSF on planar graphs building up on ideas for edge-weighted PCSF from [17]. This
approach was previously indicated by Demaine et al. [9], but we give a better constant.

2 The LMP primal-dual 3-approximation algorithm

Consider an undirected graph G = (V,E) with non-negative cost function and penalties
on the vertices denoted by w : V → Q+ and π : V → Q+, respectively. In the NWPCST
problem we are allowed to purchase a connected subgraph F of G that connects vertices to a
prespecified root r ∈ V . Every bought vertex induces a cost according to w. Every vertex
that is not included induces a penalty according to π. The objective is to minimize the sum
of the purchase and penalty costs, i.e.,

∑
v∈F wv +

∑
v/∈F πv.

By a standard transformation we can assume that for every vertex v either its cost or its
penalty is zero. To see this consider a single vertex v with both strictly positive cost and
penalty. Add an additional vertex v′, set its cost to zero and penalty to πv, add an edge
from v′ to v and set the penalty of v to zero. Now, any solution in the original graph can be
transformed to a solution of the same cost in the modified graph and vice-versa.

In the sequel, we call a vertex with a positive penalty a terminal. Terminals and the
root can be purchased for free. Other vertices do not have a penalty and we call them
non-terminals or Steiner vertices.

Let Γ(S) denote the set of neighbors of S, i.e., the set of vertices in V \ S incident to
vertices from S ⊆ V . Let also Π(X) =

∑
v∈X πv. Thus, NWPCST is the following problem:

min
∑
v∈V

wvxv +
∑

X⊆V \{r}

Π(X)zX (IPPCST)

s.t. ∑
v∈Γ(S)

xv +
∑

X:S⊆X
zX ≥ 1 ∀S ⊆ V \ {r}

xv ∈ {0, 1} ∀v ∈ V
zX ∈ {0, 1} ∀X ⊆ V \ {r}

By relaxing the integrality constraints to non-negativity constraints we obtain the standard

SWAT 2016

2:4 Approximation Algorithms for NW PC Steiner Tree Problems on Planar Graphs

linear relaxation. The dual of this relaxation is

max
∑

S⊆V \{r}

yS (DLPPCST)

s.t. ∑
S:v∈Γ(S)

yS ≤ wv ∀v ∈ V (1)

∑
S⊆X

yS ≤ Π(X) ∀X ⊆ V \ {r} (2)

yS ≥ 0 ∀S ⊆ V \ {r}

2.1 Algorithm

Now we shortly describe our primal-dual algorithm which is an adaptation of the generic
moat-growing approach of Goemans and Williamson [15]. In each iteration i we maintain
a set of already bought nodes F . We say that some vertex was bought at time i if it was
bought in iteration i1. At the beginning F contains all terminals (including the root). We
maintain also the set of connected components C of subgraph G[F] induced by the vertices
bought so far. We call each of these connected components a moat. Moats can be active or
inactive. The moat containing root r is always inactive. In each iteration we increase (grow)
dual variables corresponding to all active moats uniformly until one of the following two
events happen:

a vertex v goes tight (constraint (1) becomes equality), or
a set X goes tight (constraint (2) becomes equality).

In the first case we buy vertex v and possibly merge moats incident to v. If we merge to a
moat containing the root r, this moat becomes inactive, otherwise it is declared active.

In the second case, we declare the moat corresponding to set X inactive. Moreover, we
mark all unmarked terminals inside X with the current time.

The growth phase terminates when there are no more active moats. After that, we have a
pruning phase. In the pruning phase we restrict to the connected component of F containing
the root and discard everything else. Let F (r) denote this component. Then, we consider
vertices in F (r) in the reverse order of purchase. We delete vertex v (bought at time t) if it
does not disconnect from r any terminal which was unmarked at time t. When we delete v,
we further discard all vertices that become disconnected from r. As a result we output the
set of bought vertices F ′ that survived pruning.

Our algorithm can be implemented with a notion of so-called potentials. Let P (X) =
Π(X) −

∑
S⊆X yS be the potential of set X. Intuitively, we pay for the growth of moats

(increase of dual variables) with potentials of these moats. If the potential of a moat goes
to zero, the corresponding constraint becomes tight, so we have to make this moat inactive.
When we merge moats to a new moat S by buying a vertex, we compute the potential of S
by summing the potentials of the old moats.

1 When we refer to time we always have in mind the number of the current iteration. Note that it implies
that the speed of the uniform growth of dual budgets is not constant across iterations, but it does not
affect our description of the algorithm.

J. Byrka, M. Lewandowski, and C. Moldenhauer 2:5

2.2 Analysis

I Theorem 1 (Lagrangian Multiplier Preservation). Let G be planar. The algorithm described
in the previous section outputs a set of vertices F ′ such that∑

v∈F ′
wv + 3Π(V \ F ′) ≤ 3

∑
S⊆V \{r}

yS ≤ 3 OPT .

In the proof we want to use the obtained dual solution y to account for the connection
costs and penalties of the primal solution F ′. We will partition the yS into two sets. The
first set will yield a bound on the connection costs and the second a bound on the penalties.

The key ingredient in the analysis is the partition that is based on the following lemma.
Consider any iteration i and the active moats Ai before this iteration. Let S ∈ Ai be an
active moat that was not included in the final solution, i.e., S ∩ F ′ = ∅. Then, the dual
variable of S did not contribute to buying any vertex in F ′. This means that yS does not
contribute to the left-hand-side of the constraints (1) for any v ∈ F ′. More formally, this
means that S does not have a neighbor in F ′.

I Lemma 2. Let S ∈ Ai be such that S ⊆ V \ F ′. Then, the moat S does not have any
neighbor in the solution, i.e. F ′ ∩ Γ(S) = ∅ .

Proof of Lemma 2. Note that S ∈ Ai means that S is active in iteration i and therefore
there is an unmarked (before time i) terminal in S. Now, assume for a contradiction that
F ′ ∩ Γ(S) 6= ∅ and let U ⊆ S be the set of vertices having a neighbor in F ′. Note that
all vertices in U were bought before iteration i because S is a connected component of the
vertices bought before iteration i and U ⊆ S. Since S is not part of F ′, all the vertices in U
must have been deleted in the pruning phase. A contradiction, since this would disconnect
the unmarked (before time i) terminal in S. J

Following Lemma 2, we can partition all dual variables into the variables that contributed
to buying the vertices of F ′ and the dual variables that account for the penalties induced
by F ′. Let CC be the set of all moats S ⊆ V \ {r} that include a vertex of F ′ or have a
neighbor in F ′, i.e., (S ∪ Γ(S)) ∩ F ′ 6= ∅ and yS > 0. Let PC be the set of all other moats,
i.e., sets S with yS > 0 but S 6∈ CC. We will show that∑

v∈F ′
wv ≤ 3

∑
S∈CC

yS and Π(V \ F ′) =
∑
S∈PC

yS

which yields Theorem 1.
To show the bound on the connection cost we make a degree counting argument. Here, we

can leverage the analysis of the primal-dual algorithm for node-weighted Steiner forest given
in [20]. Recall that our algorithm can also deactivate moats due to the penalty constraints.
However, this fact does not generate problems. Intuitively, deactivating a moat corresponds
to satisfying a demand pair in the forest problem. The proof of the following lemma only
requires a minor change to the analysis.

I Lemma 3 (Analog of Analysis in [20]). Let F ′ be the output of the algorithm and Ai be the
set of active moats before running iteration i. Then,∑

S∈Ai∩CC
|F ′ ∩ Γ(S)| ≤ 3|Ai ∩ CC|.

SWAT 2016

2:6 Approximation Algorithms for NW PC Steiner Tree Problems on Planar Graphs

Proof. We outline the proof of Lemma 3. As indicated this proof is, except for a minor
change, analogous to the proof used in [20] to show that the generic primal-dual algorithm
for node-weighted Steiner forest on planar graphs has an approximation guarantee of 3.

Let F ′ be the output of the algorithm and Ai be the set of active moats before running
iteration i. We want to show that∑

S∈Ai∩CC
|F ′ ∩ Γ(S)| ≤ 3|Ai ∩ CC|. (3)

In (3) we count the adjacencies between active moats at iteration i and vertices from F ′.
Let Fi be the set of vertices bought by the algorithm before iteration i. Consider a graph G′
obtained from G in the following way:
1. take the subgraph of G induced by vertices from Fi ∪ F ′
2. keep only the connected component containing root r
3. contract each inactive moat (at iteration i) in this subgraph with a neighboring vertex

(excluding the moat containing root)
4. contract each active moat in this component
5. contract the moat containing the root
Next, color the vertices of G′ with three colors:

white color for vertices obtained from contracting active moats
blue color for the single vertex representing the moat containing the root
black color for all other vertices, i.e. F ′ \ Fi

Observe now that deleting a black vertex in G′ disconnects some white vertex from the blue
vertex, because otherwise it would be deleted in the pruning phase. G′ remains planar, since
deletions and contractions preserve planarity. Moreover, it is easy to see that the number of
adjacencies

∑
S∈Ai

|F ′ ∩ Γ(S)| in G is the same as the number of edges between white and
black vertices in G′.

To bound this number we will use the following result that is implicit in [20].

I Lemma 4. Consider a simple connected planar graph H = (V,E) in which vertices are
colored with two colors: black and white, i.e. V = B ∪W . If for this graph the two following
conditions hold

there is no edge between any two white vertices
removing any black vertex disconnects the graph

then the number of edges between black and white vertices (|E′|) is at most 3 times greater
than the number of white vertices, i.e., |E′| ≤ 3(|W | − 1)

Before we prove Lemma 4, let us remark how it yields the claim. Consider for a moment
the color of the blue vertex in G′ to be white (resulting in graph H). Now removing a black
vertex clearly splits the graph into multiple components, since it disconnects at least two
white vertices (one of them is this recolored blue vertex). All other conditions of the lemma
are satisfied. Applying Lemma 4 finishes the proof of Lemma 3, since |Ai| = |W | − 1. J

Proof of the Lemma 4. We follow the proof given in [21]. Consider the following operation
on the graph H. Take any edge e = (u, v) between two black vertices u and v in H.

If u and v share a common white neighbor, then delete edge e.
Otherwise contract u and v.

Observe that this operation preserves conditions of the lemma. Moreover it does not change
the number of adjacencies between black and white vertices. Consider now the graph H ′
obtained by performing as many above operations as possible. The H ′ is bipartite since we
contracted or deleted all edges between any two black vertices. The goal is now to bound

J. Byrka, M. Lewandowski, and C. Moldenhauer 2:7

the number of edges in H ′. The idea is to use the Euler’s formula for planar graphs. But
first we have to show a few claims about H ′.

Let W and B denote the set of white and black vertices of H ′, respectively.

I Fact 5. |B| ≤ |W | − 1.

Proof. Consider a breadth-first search tree T in H ′ rooted at any white vertex rw. Since
removing a black vertex splits the graph, all leaves of T are white. Recall that H ′ is bipartite.
Thus each black vertex has at least one unique white child in T . Furthermore, rw is the only
white vertex that does not have a parent. This concludes the proof of Fact 5. J

Now, using Fact 5 instead of Claim 1.4 of [21] in the proof of Lemma 1.3 of [21] yields
Lemma 4 J

To conclude the upper bound on the connection costs, note that constraint (1) is tight
for all vertices v ∈ F ′. This gives∑

v∈F ′
wv =

∑
v∈F ′

∑
S:v∈Γ(S)

yS =
∑

S⊆V \{r}

|F ′ ∩ Γ(S)| yS =
∑
S∈CC

|F ′ ∩ Γ(S)| yS .

We will show that
∑
S∈CC |F ′ ∩ Γ(S)| yS ≤ 3

∑
S∈CC yS by induction on the number of

iterations. At the beginning all dual variables are equal to 0 and the inequality holds. In
iteration i we grow each active moat from Ai ∩CC by εi. This increases the left-hand side by
εi
∑
S∈Ai∩CC |F

′ ∩Γ(S)| and the right-hand side by 3εi|Ai ∩CC|. Then, Lemma 3 concludes
the proof of the bound on the connection costs.

In order to prove the bound on the penalties we employ the following lemma.

I Lemma 6. Let F ′ and yS be the primal and dual solution constructed by the algorithm.
The set of vertices X = V \ F ′ not spanned by the final solution can be partitioned into sets
X1, X2, . . . Xl such that the potential of each set is 0, i.e., P (Xk) = 0 for each k.

Proof. Observe that there are two ways for a vertex v to be in X: either it was never a part
of the root component (v ∈ V \ F (r)) or it was deleted in the pruning phase (v ∈ F (r)). It
is easy to see that P (V \ F (r)) = 0. Each vertex in V \ F (r) was at the end a part of some
inactive component not containing the root and hence the potentials of these components
were 0. Or, it was never in any moat.

It remains to show that the set S of vertices disconnected from F ′ by pruning a vertex v
can be partitioned into sets Xk for which P (Xk) = 0. Let t be the time when v was bought.
Observe that every vertex u in the neighborhood Γ(S) of S has been bought after time t or
was not bought at all. Now, S contains only marked terminals at time t, otherwise v would
not have been pruned. Hence, S is a union of inactive moats at time t. This gives the desired
partition. J

Observe that PC is the set of all S ⊆ Xi with yS > 0. To conclude the bound on the
penalties note that since all Xk have zero potential we have

Π(V \ F ′) =
l∑

k=1
Π(Xk) =

l∑
k=1

∑
S⊆Xk

yS =
∑
S∈PC

yS .

SWAT 2016

2:8 Approximation Algorithms for NW PC Steiner Tree Problems on Planar Graphs

3 Combination with threshold rounding

A standard technique to generalize primal-dual algorithms from Steiner tree problems to their
price-collecting variations is to use threshold rounding (see Section 5.7 of [22] or [13]). Here,
in the first step an LP formulation for the price-collecting version is solved over fractional
variables. Then, we pick a threshold α and consider the vertices that are bought with value
at least α to be terminals. In the second step, the primal-dual algorithm for the original
Steiner tree problem is run on this set of terminals to obtain the final solution. We note that
the resulting algorithm is deterministic because we can try all possible thresholds (at most
one for every vertex). However, the analysis uses a randomization argument.

We observed in [21] that using threshold rounding in combination with the primal-dual
2.4-approximation for node-weighted Steiner forest by Berman and Yaroslavtsev [6] yields a
2.93-approximation for NWPCST on planar graphs.

In this section, we combine the previous LMP algorithm with the threshold rounding
technique to gain an improved approximation factor of 2.88. Our approach is inspired by
an idea of Goemans [14]. Intuitively, such an improvement is possible because the LMP
approximation improves over the factor of 3 if the optimal solution induces a high penalty
cost. In contrast, if the penalties are only a small part of the optimal solution’s cost,
threshold rounding can leverage the robustness of the underlying 2.4-approximation. Thus,
by combining the two algorithms we can hedge their weaknesses.

3.1 Threshold rounding

We use the standard threshold rounding technique (cf. [22]). Consider the following LP

min
∑
v∈V

wvxv +
∑

u∈V \{r}

πuyu (LPthr)

s.t. ∑
v∈Γ(S)

xv + yu ≥ 1 ∀S ⊆ V \ {r}, u ∈ S

xv ≥ 0 ∀v ∈ V yu ≥ 0 ∀u ∈ V

This LP is equivalent to the LP used in the construction of the primal-dual LMP 3-
approximation from Section 2. This was shown by Williamson for the edge-weighted variant
(see section 7.4.1 of [23]), however arguments are identical in our case. This is due to the
fact, that the mapping between feasible solutions leaves variables related to connection costs
unchanged and constructs variables z based solely on y and vice-versa.

In the sequel, let (x∗, y∗) be the optimum solution to LPthr with objective value OPTLP .
Further, if T is a solution to NWPCST, let w(T) be the total connection and π(V \ T) be
the total penalties of T . We also use this notation for (fractional) solutions: w(x), π(z) and
π(y).

Let β ∈ (0, 1) be a constant to be determined later. For every possible value α of y∗ that
is at most β, let Q = {u : y∗u ≤ α}. Consider the instance INWSTQ

of the NWST problem
which is derived from INWPCST by keeping only terminals from Q. Let LPNWSTQ

be the

J. Byrka, M. Lewandowski, and C. Moldenhauer 2:9

following linear program

min
∑
v∈V

wvxv (LPNWSTQ
)∑

v∈Γ(S)

xv ≥ 1 ∀S ⊆ V \ {r}, Q ∩ S 6= ∅

xv ≥ 0 ∀v ∈ V

Let OPTLPQ
be the optimum objective function value of LPNWSTQ

. We run the 2.4-
approximation algorithm for INWSTQ

by Berman and Yaroslavtsev [6] which returns a
solution F such that its cost is no greater than 2.4 ·OPTLPQ

. Finally, return the best of all
obtained solutions F (due to different values of α).

Though the algorithm is deterministic its analysis is based on a randomized argument.
Instead of trying all possible values of α, consider α to be chosen uniformly at random from
[0, β]. Consider x′ = 1

1−αx
∗. It follows that x′ is a feasible solution to LPNWSTQ

. We bound
the expected connection and penalty costs of F .

E

[∑
v∈F

wv

]
≤ E

[
2.4 ·OPTLPQ

]
≤ E

[
2.4
∑
v∈V

x′v · wv

]
≤ E

[
2.4

1− α

]∑
v∈V

x∗v · wv

=
(∫ β

0

1
β
· 2.4

1− αdα
)
w(x∗)

= 2.4
β

ln
(

1
1− β

)
w(x∗)

E

∑
u/∈Q

πu

 = E

 ∑
u:y∗u>α

πu

 ≤∑
u

πuPr [y∗u ≥ α] ≤
∑
u

πu

∫ y∗u

0

1
β
dα

=
∑
u

πu
1
β
y∗u = 1

β
π(y∗)

3.2 Combining the two algorithms

To combine the LMP approximation with threshold rounding we require a slight modification
of the instance submitted to the LMP approximation.

Recall that for an instance I the LMP 3-approximation returns a solution T such that
w(T) + 3π(V \ T) ≤ 3OPTLP . Consider now instance I ′ with has its penalties scaled by
1/3, i.e., π′v = 1

3πv. Run the LMP approximation on I ′ to obtain a solution T ′ satisfying
w(T ′) + π(V \ T ′) = w(T ′) + 3π′(V \ T ′) ≤ 3OPT ′LP , where OPT ′LP is the value of the
optimum solution to program LP ′ derived from LPthr by taking scaled penalties π′. Observe
that (x∗, y∗) is also feasible to LP ′, because this program differs only in the objective function.
Hence we have that

w(T ′) + π(V \ T ′) ≤ 3OPT ′LP ≤ 3 (w(x∗) + π′(y∗)) = 3w(x∗) + π(y∗)

Now, our final algorithm returns the best solution among T ′ and the solution produced by
the threshold rounding technique in the previous section. Note that this is a deterministic
procedure. However, the analysis uses a randomized argument inspired by Goemans [14]:

SWAT 2016

2:10 Approximation Algorithms for NW PC Steiner Tree Problems on Planar Graphs

pick one solution with probability p and the other with probability 1− p. Let SOL be the
returned solution.

E [SOL] ≤
[
3p+ (1− p)2.4

β
ln
(

1
1− β

)]
w(x∗) +

[
p+ (1− p) 1

β

]
π(y∗)

≤
[(

3p+(1−p)2.4
β

ln
(

1
1−β

))
w(x∗)+

(
p+(1−p) 1

β

)
π(y∗)

]
Finally, optimizing constants we obtain for β = 1 − e− 5

36 and p = 1
4−3e−5/36 the claimed

result

E [SOL] ≤ 4
4− 3e−5/36 (w(x∗) + π(y∗))

≤ 4
4− 3e−5/36 OPT ≈ 2.8797 ·OPT

4 The primal-dual 4-approximation for forest

In this section we use a general combinatorial approach for solving prize-collecting problems
introduced by Hajiaghayi and Jain [17]. In their work they obtained the primal-dual 3-
approximation algorithm for edge-weighted prize-collecting Steiner forest problem. We adapt
their argumentation to the planar node-weighted setting resulting in the 4-approximation
algorithm. We provide here only a sketch - the more detailed description and proofs can be
found in the full version of the paper [8].

Consider a graph G = (V,E) with a non-negative cost function on nodes w : V → Q+, a
set of pairs of vertices (demands) D = (s1, t1), (s2, t2), . . . , (sk, tk) and a non-negative penalty
function π : D → Q+. In the node-weighted prize-collecting Steiner forest problem we are
asked to find a set of vertices F ⊆ V which minimizes the sum of costs of vertices in F plus
penalties for pairs of vertices which are not connected in a subgraph of G induced by F .

Note that we can give an equivalent definition of demands and penalties by specifying
penalties for each unordered pair of vertices. Simply set penalties for pairs of vertices which
are not in D to 0. From now on we will use values πij to denote penalties. Let also Γ(S)
denote the set of vertices in V \ S incident to vertices from S ⊆ V and let S � (i, j) means
that |(i, j) ∩ S| = 1 (i.e., S separates vertices i and j) Using this notation, we can formulate
our problem with the following integer program

min
∑
v∈V

wvxv +
∑

(i,j)∈V×V

πijzij (IPSF)

s.t. ∑
v∈Γ(S)

xv + zi,j ≥ 1 ∀S ⊆ V, ∀(i, j) ∈ V × V : S � (i, j)

xv ∈ {0, 1} ∀v ∈ V
zi,j ∈ {0, 1} ∀(i, j) ∈ S × S

Setting xv = 1 corresponds to buying a vertex v (including v into solution F) and setting
zi,j = 1 corresponds to paying a penalty instead of connecting vertices i and j.

Unfortunately, the dual of the linear relaxation of IPSF is not suitable for obtaining a
primal-dual algorithm. However, following the framework in [17], we can replace it with the

J. Byrka, M. Lewandowski, and C. Moldenhauer 2:11

following LP:

max
∑
S⊂V

yS (DLPSF4)

s.t. ∑
S:v∈Γ(S)

yS ≤ wv ∀v ∈ V (4)

∑
S∈S

yS ≤
∑

(i,j)∈V×V,S�(i,j)

πi,j ∀S ∈ 22V

(5)

yS ≥ 0 ∀S ⊂ V

where S � (i, j) denotes that there exists S ∈ S such that S � (i, j) (we say that family S
separates vertices i and j if and only if there exists at least one set S ∈ S which separates
vertices i and j).

This new formulation allows us to obtain a natural primal-dual algorithm which is
described below.

The algorithm starts with an initial solution F in which there are all vertices of cost 0
(hence all terminals). In each iteration the algorithm maintains moats which are the connected
components of graph G induced by the vertices of the current solution F . Demands can be
marked (meaning that we decide to pay a penalty for them) or unmarked. At the beginning
all demands are unmarked. Once demand is marked, it stays marked forever. A moat
(denoted by the corresponding set S ⊆ V) is active in the current iteration if and only if
there is at least one unmarked demand (i, j) such that S � (i, j). Now in each iteration we
simultaneously grow each active moat until one of the following two events occur:

a vertex v goes tight (constraint (4) becomes equality), or
a family S goes tight (constraint (5) becomes equality).

In the first case we simply add v to our solution F (which may make some moats inactive)
and continue to the next iteration.

In the second case, we mark each demand (i, j) such that S� (i, j). Hence in the following
iterations all moats from S will be inactive, and we will not violate any constraint during the
growth process. We repeat this process until all moats become inactive.

After that we have an additional pruning phase in which we process all vertices of F in
the reverse order of buying. We remove a vertex v from F if after its removal from F , all
unmarked demands are still connected in the graph induced by F . We output this pruned
set of vertices as F ′ which is our final solution.

Obtaining ε1 and a tight vertex in line 7 is straightforward. On the other hand obtaining
ε2 in line 8 and a tight family S seems to be much harder, since the number of corresponding
constraint is doubly exponential. Fortunately Hajiaghayi and Jain in section 4 of [17] gave a
polynomial time algorithm for computing ε2 and the corresponding tight family S.

Since the algorithm terminates after at most 2|V | − 1 iterations (in each iteration the
number of active moats or the number of connected components decreases), the running
time of this algorithm is polynomial.

We can combine proofs from [20] and [17] in order to obtain the following result.

I Theorem 7. The algorithm outputs a set of vertices F ′ and a set of demands Q′ which
are not connected via F ′ such that∑

v∈F ′
wv +

∑
(i,j)∈Q′

πij ≤ 4
∑
S⊆V

yS ≤ 4 OPT .

SWAT 2016

2:12 Approximation Algorithms for NW PC Steiner Tree Problems on Planar Graphs

Input :A planar graph G = (V,E) with non-negative weights wi on the nodes and
non-negative penalties πij between each pair of vertices such that if πij > 0
then wi = 0 and wj = 0

Output :A set of vertices F ′ representing a forest and a set of pairs Q′ representing not
connected demands

1 begin
2 F ← {vi ∈ V : wi = 0};
3 Q← ∅ // set all demands unmarked
4 yS ← 0 // implicitly

5 AM ←
{
S ⊆ V : S ∈ SCC (G[F]) ∧ ∃

(i,j)∈V×V−Q
πij > 0 ∧ S � (i, j)

}
;

// identify active moats as components of subgraph of G induced by
vertices F for which there is at least one unmarked demand (i, j)
which is separated by the corresponding set

6 while AM 6= ∅ do
7 find minimum ε1 s.t if we increase yS for each S ∈ AM by ε1 we get a new tight

vertex v;
8 find minimum ε2 s.t if we increase yS for each S ∈ AM by ε2 we get a new tight

family S;
9 ε← min(ε1, ε2);

10 yS ← yS + ε for all S ∈ AM ;
11 if ε = ε1 then
12 F ← F ∪ {v};
13 else
14 Q← Q ∪ {(i, j) ∈ V × V : S� (i, j)}
15 end

16 AM ←
{
S ⊆ V : S ∈ SCC (G[F]) ∧ ∃

(i,j)∈V×V−Q
πij > 0 ∧ S � (i, j)

}
;

17 end
// pruning phase

18 Derive F ′ from F by removing vertices in reverse order of purchase so that every
unmarked demand is connected in F ′.

19 Let Q′ be all demands not connected via F ′

20 end
Algorithm 1: Primal-dual algorithm for NWPCSF on planar graphs.

J. Byrka, M. Lewandowski, and C. Moldenhauer 2:13

We need to show that:∑
v∈F ′

wv ≤ 3
∑
S⊆V

yS and
∑

(i,j)∈Q′
πij ≤

∑
S⊆V

yS

The bound on the connection cost is shown in a similar way as in the tree version, i.e., using
a degree counting argument for each iteration. This is captured by the lemma below.

For a set of nodes F and the set of unmarked demands R = D − Q define a minimal
feasible augmentation Faug of F with respect to R to be a set of vertices Faug containing F
as a subset such that every pair of vertices from R is connected in the subgraph of G induced
by Faug and such that removal of any v ∈ Faug \ F from Faug disconnects some pair from R.

I Lemma 8 (Analog of Analysis in [20]). Let G be planar, R be the set of unmarked demands
after running the above algorithm, Fj be the set of bought vertices before running iteration j
and Faug be a minimal feasible augmentation of Fj with respect to R. Let also Aj be the set
of active moats before running iteration j. Then∑

S∈Aj

|Faug ∩ Γ(S)| ≤ 3|Aj | .

The proof of this lemma is conducted in a similar way as the proof of Lemma 3 and the
analysis is essentially the same as in [20].

In turn, the bound on penalties is shown exactly in the same way as in the edge-weighted
version [17]. When we mark a pair it belongs to a tight family. It is observed that the union
of those tight families is also tight, hence the corresponding constraint gives the bound.

The more detailed proofs of these bounds can be found in in the full version of the
paper [8].

Note that we cannot separate dual variables like in the tree version, hence we obtain a
factor of 4 instead of 3 as in Section 2. This is essentially due to the same difficulty as in the
standard edge-weighted variant for the prize-collecting Steiner forest problem.

References

1 Ajit Agrawal, Philip N. Klein, and R. Ravi. When trees collide: An approximation al-
gorithm for the generalized steiner problem on networks. SIAM J. Comput., 24(3):440–456,
1995.

2 Aaron Archer, MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Howard J.
Karloff. Improved approximation algorithms for prize-collecting steiner tree and TSP.
SIAM J. Comput., 40(2):309–332, 2011.

3 MohammadHossein Bateni, Chandra Chekuri, Alina Ene, Mohammad Taghi Hajiaghayi,
Nitish Korula, and Dániel Marx. Prize-collecting steiner problems on planar graphs. In
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 1028–1049, 2011.

4 MohammadHossein Bateni, Mohammad Taghi Hajiaghayi, and Dániel Marx. Approxima-
tion schemes for steiner forest on planar graphs and graphs of bounded treewidth. J. ACM,
58(5):21, 2011.

5 MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Vahid Liaghat. Improved
approximation algorithms for (budgeted) node-weighted steiner problems. In Automata,
Languages, and Programming – 40th International Colloquium, ICALP 2013, Riga, Latvia,
July 8-12, 2013, Proceedings, Part I, pages 81–92, 2013.

SWAT 2016

2:14 Approximation Algorithms for NW PC Steiner Tree Problems on Planar Graphs

6 Piotr Berman and Grigory Yaroslavtsev. Primal-dual approximation algorithms for node-
weighted network design in planar graphs. In Approximation, Randomization, and Combin-
atorial Optimization. Algorithms and Techniques – 15th International Workshop, APPROX
2012, and 16th International Workshop, RANDOM 2012, Cambridge, MA, USA, August
15-17, 2012. Proceedings, pages 50–60, 2012.

7 Jarosław Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. An improved
lp-based approximation for steiner tree. In Proceedings of the 42nd ACM Symposium on
Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages
583–592, 2010.

8 Jarosław Byrka, Mateusz Lewandowski, and Carsten Moldenhauer. Approximation al-
gorithms for node-weighted prize-collecting steiner tree problems on planar graphs. CoRR,
abs/1601.02481, 2016.

9 Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Philip N. Klein. Node-weighted steiner
tree and group steiner tree in planar graphs. ACM Trans. Algorithms, 10(3):13:1–13:20,
2014.

10 Bistra N. Dilkina and Carla P. Gomes. Solving connected subgraph problems in wildlife
conservation. In Integration of AI and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems, 7th International Conference, CPAIOR 2010, Bologna,
Italy, June 14-18, 2010. Proceedings, pages 102–116, 2010.

11 Karoline Faust, Pierre Dupont, Jérôme Callut, and Jacques van Helden. Pathway discovery
in metabolic networks by subgraph extraction. Bioinformatics, 26(9):1211–1218, 2010.

12 M. R. Garey and David S. Johnson. The rectilinear steiner tree problem in NP complete.
SIAM Journal of Applied Mathematics, 32:826–834, 1977.

13 Joseph Geunes, Retsef Levi, H. Edwin Romeijn, and David B. Shmoys. Approximation
algorithms for supply chain planning and logistics problems with market choice. Math.
Program., 130(1):85–106, 2011.

14 Michel X. Goemans. Combining approximation algorithms for the prize-collecting TSP.
CoRR, abs/0910.0553, 2009.

15 Michel X. Goemans and David P. Williamson. A general approximation technique for
constrained forest problems. SIAM J. Comput., 24(2):296–317, 1995.

16 Sudipto Guha, Anna Moss, Joseph Naor, and Baruch Schieber. Efficient recovery from
power outage (extended abstract). In Proc. of the 31st Annual ACM Symposium on Theory
of Computing, May 1-4, 1999, Atlanta, Georgia, USA, pages 574–582, 1999.

17 Mohammad Taghi Hajiaghayi and Kamal Jain. The prize-collecting generalized steiner tree
problem via a new approach of primal-dual schema. In Proc. of the 7th Annual ACM-SIAM
Symp. on Discrete Algorithms, SODA’06, pages 631–640, 2006.

18 Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network prob-
lem. Combinatorica, 21(1):39–60, 2001.

19 Jochen Könemann, Sina Sadeghian Sadeghabad, and Laura Sanità. An LMP o(log n)-
approximation algorithm for node weighted prize collecting steiner tree. In 54th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013,
Berkeley, CA, USA, pages 568–577, 2013.

20 Carsten Moldenhauer. Primal-dual approximation algorithms for node-weighted steiner
forest on planar graphs. Inf. Comput., 222:293–306, 2013.

21 Carsten Moldenhauer. Node-weighted network design and maximum sub-determinants. PhD
thesis, EPFL, 2014.

22 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011.

23 David Paul Williamson. On the design of approximation algorithms for a class of graph
problems. PhD thesis, MIT, Cambridge, MA, September 1993.

A Logarithmic Integrality Gap Bound for Directed
Steiner Tree in Quasi-bipartite Graphs∗

Zachary Friggstad1, Jochen Könemann2, and
Mohammad Shadravan3

1 Department of Computing Science, University of Alberta, Edmonton, Canada
zacharyf@ualberta.ca

2 Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, Canada
jochen@uwaterloo.ca

3 Department of Industrial Engineering and Operations Research, Columbia
University, New York, USA
ms4961@columbia.edu

Abstract
We demonstrate that the integrality gap of the natural cut-based LP relaxation for the directed
Steiner tree problem is O(log k) in quasi-bipartite graphs with k terminals. Such instances can
be seen to generalize set cover, so the integrality gap analysis is tight up to a constant factor. A
novel aspect of our approach is that we use the primal-dual method; a technique that is rarely
used in designing approximation algorithms for network design problems in directed graphs.

1998 ACM Subject Classification G.1.6 Optimization, G.2.2 Graph Theory, I.1.2 Artificial In-
telligence

Keywords and phrases Approximation algorithm, Primal-Dual algorithm, Directed Steiner tree

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.3

1 Introduction

In an instance of the directed Steiner tree (DST) problem, we are given a directed graph
G = (V,E), non-negative costs ce for all e ∈ E, terminal nodes X ⊆ V , and a root r ∈ V .
The remaining nodes in V − (X ∪{r}) are the Steiner nodes. The goal is to find the cheapest
collection of edges F ⊆ E such that for every terminal t ∈ X there is an r, t-path using only
edges in F . Throughout, we let n denote |V | and k denote |X|.

If X ∪ {r} = V , then the problem is simply the minimum-cost arborescence problem
which can be solved efficiently [5]. However, the general case is well-known to be NP-hard.
In fact, the problem can be seen to generalize the set-cover and group Steiner tree problems.
The latter cannot be approximated within O(log2−ε(n)) for any constant ε > 0 unless
NP ⊆ DTIME(npolylog(n)) [11].

For a DST instance G, let OPTG denote the value of the optimum solution for this
instance Say that an instance G = (V,E) of DST with terminals X is `-layered if V can
be partitioned as V0, V1, . . . , V` where V0 = {r}, V` = X and every edge uv ∈ E has u ∈ Vi

∗ This work was in part completed while the first author was a postdoctoral fellow and the third author
was a graduate student at the University of Waterloo. The work of all three authors is supported by
NSERC’s Discovery grant program. The second author greatfully acknowledges the support of the
Hausdorff Institute and the Institute for Discrete Mathematics in Bonn, Germany.

© Zachary Friggstad, Jochen Könemann, and Mohammad Shadravan;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 3; pp. 3:1–3:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 A Logarithmic Integrality Gap Bound for Directed Steiner Tree in QB Graphs

and v ∈ Vi+1 for some 0 ≤ i < `. Zelikovsky showed for any DST instance G and integer
` ≥ 1 that we can compute an `-layered DST instance H in poly(n, `) time such that
OPTG ≤ OPTH ≤ ` · k1/` ·OPTG and that a DST solution in H can be efficiently mapped
to a DST solution in G with the same cost [2, 17].

Charikar et al. [3] exploited this fact and presented an O(`2 · k1/` · log k)-approximation
with running time poly(n, k`) for any integer ` ≥ 1. In particular, this can be used to
obtain an O(log3 k)-approximation in quasi-polynomial time and a polynomial-time O(kε)-
approximation for any constant ε > 0. Finding a polynomial-time polylogarithmic approxim-
ation remains an important open problem.

For a set of nodes S, we let δin(S) = {uv ∈ V : u 6∈ S and v ∈ S} be the set of edges
entering S. The following is a natural linear programming (LP) relaxation for directed
Steiner tree.

min
∑
e∈E

cexe (DST-Primal)

s.t. x(δin(S)) ≥ 1 ∀ S ⊆ V − r, S ∩X 6= ∅ (1)
xe ≥ 0 ∀e ∈ E

This LP is called a relaxation because of the natural correspondence between feasible solutions
to a DST instance G and feasible {0, 1}-integer solutions to the corresponding LP (DST-
Primal). Thus, if we let OPTLP denote the value of an optimum (possibly fractional)
solution to LP (DST-Primal) then we have OPTLP ≤ OPTG. For a particular instance
G we say the integrality gap is OPTG/OPTLP ; we are interested in placing the smallest
possible upper bound on this quantity.

Interestingly, if |X| = 1 (the shortest path problem) or X ∪ {r} = V (the minimum-cost
arborescence problem), the extreme points of (DST-Primal) are integral so the integrality
gap is 1 ([13] and [5], respectively). However, in the general case Zosin and Khuller showed that
(DST-Primal) is not useful for finding polylog(k)-approximation algorithms for DST [18].
The authors showed that the integrality gap of (DST-Primal) relaxation can, unfortunately,
be as bad as Ω(

√
k), even in instances where G is a 4-layered graph. In their examples, the

number of nodes n is exponential in k so the integrality gap may still be O(logc n) for some
constant c.

On the other hand, Rothvoss recently showed that applying O(l) rounds of the semidefinite
programming Lasserre hierarchy to (the flow-based extended formulation of) (DST-Primal)
yields an SDP with integrality gap O(` · log k) for `-layered instances [15]. Subsequently,
Friggstad et al. [7] showed similar results for the weaker Sherali-Adams and Lovász-Schrijver
linear programming hierarchies.

In this paper we consider the class of quasi-bipartite DST instances. An instance of
DST is quasi-bipartite if the Steiner nodes V \ (X ∪ {r}) form an independent set (i.e., no
directed edge has both endpoints in V \ (X ∪ {r})). Such instances still capture the set
cover problem, and thus do not admit an (1− ε) ln k-approximation for any constant ε > 0
unless P = NP [4, 6]. Furthermore, it is straightforward to adapt known integrality gap
constructions for set cover (e.g. [16]) to show that the integrality gap of (DST-Primal)
can be as bad as (1 − o(1)) · ln k in some instances. Hibi and Fujito [12] give an O(log k)-
approximation for quasi-bipartite instances of DST, but do not provide any integrality gap
bounds.

Quasi-bipartite instances have been well-studied in the context of undirected Steiner trees.
The class of graphs was first introduced by Rajagopalan and Vazirani [14] who studied the
integrality gap of (DST-Primal) for the bidirected map of the given undirected Steiner

Z. Friggstad, J. Könemann, and M. Shadravan 3:3

tree instances. Currently, the best approximation for quasi-bipartite instances of undirected
Steiner tree is 73

60 by Goemans et al. [8] who also bound the integrality gap of the bidirected
cut relaxation by the same quantity. This is the same LP relaxation as (DST-Primal),
applied to the directed graph obtained by replacing each undirected edge {u, v} with the two
directed edges uv and vu. This is a slight improvement over a prior (73

60 + ε)-approximation
for any constant ε > 0 by Byrka et al. [1].

The best approximation for general instances of undirected Steiner tree is ln(4) + ε for
any constant ε > 0 [1]. However, the best known upper bound on the integrality gap of the
bidirected cut relaxation for non-quasi-bipartite instances is only 2; it is an open problem to
determine if this integrality gap is a constant-factor better than 2.

1.1 Our contributions

Our main result is the following. Let Hn =
∑n
i=1 1/i = O(logn) be the nth harmonic

number.

I Theorem 1. The integrality gap of LP (DST-Primal) is at most 2Hk = O(log k) in
quasi-bipartite graphs with k terminals. Furthermore, a Steiner tree with cost at most
2Hk ·OPTLP can be constructed in polynomial time.

As noted above, Theorem 1 is asymptotically tight since any of the well-known Ω(log k)
integrality gap constructions for set cover instances with k items translate directly to an
integrality gap lower bound for (DST-Primal), using the usual reduction from set cover to
2-layered quasi-bipartite instances of directed Steiner tree.

This integrality gap bound asymptotically matches the approximation guarantee proven
by Hibi and Fujito for quasi-bipartite DST instaces [12]. We remark that their approach is
unlikely to give any integrality gap bounds for (DST-Primal) because they iteratively choose
low-density full Steiner trees in the same spirit as [3] and give an O(` · log k)-approximation
for finding the optimum DST solution T that does not contain a path with ≥ ` Steiner nodes
V \ (X ∪ {r}). In particular, their approach will also find an O(log k)-approximation to the
optimum DST solution in 4-layered graphs and we know the integrality gap in some 4-layered
instances is Ω(

√
k) [18].

We prove Theorem 1 by constructing a directed Steiner tree in an iterative manner.
An iteration starts with a partial Steiner tree (see Definition 2 below), which consists of
multiple directed components containing the terminals in X. Then a set of arcs are purchased
to augment this partial solution to one with fewer directed components. These arcs are
discovered through a primal-dual moat growing procedure; a feasible solution for the dual
(DST-Primal) is constructed and the cost of the purchased arcs can be bounded using this
dual solution.

While the primal-dual technique has been very successful for undirected network design
problems (e.g., see [9]), far fewer success stories are known in directed domains. Examples
include a primal-dual interpretation of Dijkstra’s shortest path algorithm (e.g., see Chapter
5.4 of [13]), and Edmonds’ [5] algorithm for minimum-cost arborescences. In both cases, the
special structure of the problem is instrumental in the primal-dual construction. One issue
arising in the implementation of primal-dual approaches for directed network design problems
appears to be a certain overlap in the moat structure maintained by these algorithms. We are
able to handle this difficulty here by exploiting the quasi-bipartite nature of our instances.

SWAT 2016

3:4 A Logarithmic Integrality Gap Bound for Directed Steiner Tree in QB Graphs

2 The integrality gap bound

2.1 Preliminaries and definitions
We now present an algorithmic proof of Theorem 1. As we will follow a primal-dual strategy,
we first present the LP dual of (DST-Primal).

max
∑
S

yS (DST-Dual)

s.t.
∑

S:e∈δin(S)

yS ≤ ce ∀e ∈ E (2)

y ≥0

In (DST-Dual), the sums range only over sets of nodes S such that S ⊆ V −r and S∩X 6= ∅.
Our algorithm builds up partial solutions, which are defined as follows.

I Definition 2. A partial Steiner tree is a tuple T = ({Bi, hi, Fi}`i=0, B̄) where, for each
0 ≤ i ≤ `, Bi is a subset of nodes, hi ∈ Bi, and Fi is a subset of edges with endpoints only
in Bi such that the following hold.

The sets B0, B1, . . . , B`, B̄ form a partition V .
B̄ ⊆ V −X − r (i.e. B̄ is a subset of Steiner nodes).
h0 = r and hi ∈ X for each 1 ≤ i ≤ `.
For every 0 ≤ i ≤ ` and every v ∈ Bi, Fi contains an hi, v-path.

We say that B̄ is the set of free Steiner nodes in T and that hi is the head of Bi for each
0 ≤ i ≤ `. The edges of T , denoted by E(T), are simply ∪`i=0Fi. We say that B0, . . . , B`
are the components of T where B0 is the root component and B1, . . . , B` are the non-root
components.

Figure 1 illustrates a partial Steiner tree. Note that if T is a partial Steiner tree with ` = 0
non-root components, then E(T) is in fact a feasible DST solution.

Finally, for a subset of edges F we let cost(F) =
∑
e∈F ce.

2.2 High-level approach
Our algorithm builds up partial Steiner trees in an iterative manner while ensuring that the
cost does not increase by a significant amount between iterations. Specifically, we prove the
following lemma in Section 3. Recall that OPTLP refers to the optimum solution value for
(DST-Primal).

I Lemma 3. Given a partial Steiner tree T with ` ≥ 1 non-root components, there is a
polynomial-time algorithm that finds a partial Steiner tree T ′ with `′ < ` non-root components
such that

cost(E(T ′)) ≤ cost(E(T)) + 2 ·OPTLP ·
`− `′

`
.

Theorem 1 follows from Lemma 3 in a standard way.

Proof of Theorem 1. Initialize a partial Steiner tree Tk with k non-root components as
follows. Let B̄ be the set of all Steiner nodes, B0 = {r}, and F0 = ∅. Furthermore, label the
terminals as t1, . . . , tk ∈ X and for each 1 ≤ i ≤ k let Bi = {ti}, hi = ti and Fi = ∅. Note
that cost(E(Tk)) = 0.

Z. Friggstad, J. Könemann, and M. Shadravan 3:5

r

Figure 1 A partial Steiner tree with ` = 3 non-root components (the root is pictured at the top).
The only edges shown are those in some Fi. The white circles are the heads of the various sets Bi

and the black circles are terminals that are not heads of any components. The squares outside of
the components are the free Steiner nodes B̄. Note, in particular, that each head can reach every
node in its respective component. We do not require each Fi to be a minimal set of edges with this
property.

Iterate Lemma 3 to obtain a sequence of partial Steiner trees T`0 , T`1 , T`2 , . . . , T`a where
T`i

has `i non-root components such that k = `0 > `1 > . . . > `a = 0 and

cost(E(Ti+1)) ≤ cost(E(Ti)) + 2 ·OPTLP ·
`i − `i+1

`i

for each 0 ≤ i < a. Return E(T`a
) as the final Steiner tree.

That E(Ta) can be found efficiently follows simply because we are iterating the efficient
algorithm from Lemma 3 at most k times. The cost of this Steiner tree can be bounded as
follows.

cost(E(Ta)) ≤ 2 ·OPTLP ·
a−1∑
i=0

`i − `i+1

`i
= 2 ·OPTLP ·

a−1∑
i=0

`i∑
j=`i+1+1

1
`i

≤ 2 ·OPTLP ·
a−1∑
i=0

`i∑
j=`i+1+1

1
j

= 2 ·OPTLP ·
k∑
j=1

1
k

= 2 ·OPTLP ·Hk. J

SWAT 2016

3:6 A Logarithmic Integrality Gap Bound for Directed Steiner Tree in QB Graphs

The idea presented above resembles one proposed by Guha et al. [10] for bounding
the integrality gap of a natural relaxation for undirected node-weighted Steiner tree by
O(log k) [10]. Like our approach, Guha et al. also build a solution incrementally. In each
phase of the algorithm, the authors reduce the number of connected components of a partial
solution by adding vertices whose cost is charged carefully to the value of a dual LP solution
that the algorithm constructs simultaneously.

3 A primal-dual proof of Lemma 3

Consider a given partial Steiner tree T = ({Bi, hi, Fi}`i=0, B̄) with ` ≥ 1 non-root compon-
ents. Lemma 3 promises a partial Steiner tree T ′ with `′ < ` non-root components with
cost(E(T ′)) ≤ cost(E(T)) + 2 ·OPTLP · `−`

′

` . In this section we will present an algorithm
that augments forest T in the sense that it computes a set of edges to add to T . The proof
presented here is constructive: we will design a primal-dual algorithm that maintains a
feasible dual solution for (DST-Dual), and uses the structure of this solution to guide the
process of adding edges to T .

3.1 The algorithm
For any two nodes u, v ∈ V , let d(u, v) be the cost of the cheapest u, v-path in G. More
generally, for a subset ∅ (S ⊆ V and a node v ∈ V we let d(S, v) = minu∈S d(u, v). We will
assume that for every 0 ≤ i ≤ ` and 1 ≤ j ≤ `, j 6= i that d(Bi, hj) > 0 as otherwise, we
could merge Bi and Bj by adding the 0-cost Bi, hj-path to T .

The usual conventions of primal-dual algorithms will be adopted. We think of such an
algorithm as a continuous process that increases the value of some dual variables over time.
At time t = 0, all dual variables are initialized to a value of 0. At any point in time, exactly
` dual variables will be raised at a rate of one unit per time unit. We will use ∆ for the time
at which the algorithm terminates. As is customary, we will say that an edge e goes tight
if the dual constraint for e becomes tight as the dual variables are being increased. When
an edge goes tight, we will perform some updates to the various sets being maintained by
the algorithm. Again, the standard convention applies that if multiple edges go tight at the
same time, then we process them in any order.

Algorithm 1 describes the main subroutine that augments the partial Steiner tree T to
one with fewer components. It maintains a collection of moats Mi ⊆ V − {r} and edges F ′i
for each 1 ≤ i ≤ `, while ensuring that the dual solution y it grows remains feasible. Mainly
to aid notation, our algorithm will maintain a so called virtual body βi for all 0 ≤ i ≤ ` such
that Bi ⊆ βi ⊆ Bi ∪ B̄. We will ensure that each v ∈ B̄ ∩ βi has a mate u ∈ Bi such that
the edge uv has cost no more than ∆. For notational convenience, we will let β0 = B0 be
the virtual body of the root component. The algorithm will not grow a moat around the
root since dual variables do not exist for sets containing the root.

Our algorithm will ensure that moats are pairwise terminal-disjoint. In fact, we ensure
that any two moats may only intersect in B̄. Terminal-disjointness together with the quasi-
bipartite structure of the input graph will allow us to charge the cost of arcs added in the
augmentation process to the duals grown.

An intuitive overview of our process is the following. At any time t ≥ 0, the moats Mi

will consist of all nodes v with d(v, hi) ≤ t. The moats Mi will be grown until, at some time
∆, for at least one pair i, j with i 6= j, there is a tight path connecting βj to hi. At this
point the algorithm stops, and adds a carefully chosen collection of tight arcs to the partial
Steiner tree that merges Bj and Bi (and potentially other components). Crucially, the cost

Z. Friggstad, J. Könemann, and M. Shadravan 3:7

Figure 2 The moats around the two partial Steiner trees are depicted by the gray circles. The
dashed edges are those bought by the first moat and the solid edges are those bought by the second
moat. Note the moats only intersect in B (in particular, v is the only lying in both moats). Also, u

lies in the virtual body for the left partial Steiner tree and the dashed arc entering u is coming from
its mate. The edges Fi from the original partial Steiner trees are not shown.
Observe that if any edge entering v goes tight then it must be from either r or some terminal
(because G is quasi-bipartite). This would allow us to merge at least one partial Steiner tree into
the body of another.

of the added arcs will be charged to the value of the dual solution grown around the merged
components.

Due the structure of quasi-bipartite graphs, we are able to ensure that in each step of the
algorithm the active moats pay for at most one arc that is ultimately bought to form T ′.
Also, if T ′ has `′ < ` non-root components then each arc was paid for by moats around at
most `− `′ + 1 ≤ 2(`− `′) different heads. So, the total cost of all purchased arcs is at most
2(`− `′) ·∆. Finally, the total dual grown is ` ·∆, which is ≤ OPTLP due to feasibility, so
the cost of the edges bought can be bounded by 2 `−`

′

` ·OPTLP .

3.2 Algorithm and invariants
Now we will be more precise. The primal-dual procedure is presented in Algorithm 1. The
following invariants will be maintained at any time 0 ≤ t ≤ ∆ during the execution of
Algorithm 1.

1. For each 1 ≤ i ≤ `, hi ∈Mi and Mi ⊆ V − {r} (so there is a variable yMi
in the dual).

2. For each 1 ≤ i ≤ `, Mi = {v ∈ V : d(v, hi) < t} ∪ S where S ⊆ {v ∈ V : d(v, hi) = t}.
3. Mi ∩Mj ⊆ B̄ and both βi ∩ βj = Mi ∩ βj = ∅ for distinct 0 ≤ i, j ≤ `.
4. For each 1 ≤ i ≤ ` we have Bi ⊆ βi ⊆ Bi ∪ B̄. Furthermore, for each each v ∈ βi − Bi

there is a mate u ∈ Bi such that uv ∈ E and cuv ≤ t.
5. y is feasible for LP (DST-Dual) with value exactly ` · t.

These concepts are illustrated in Figure 2.

3.3 Invariant analysis
I Lemma 4. Invariants 1–5 are maintained by Algorithm 1 until the condition in the if
statement in Step (5) is true. Furthermore, the algorithm terminates in O(n · k) iterations.

SWAT 2016

3:8 A Logarithmic Integrality Gap Bound for Directed Steiner Tree in QB Graphs

Algorithm 1 Dual Growing Procedure
1: Mi ← {v ∈ V : d(v, hi) = 0}, 1 ≤ i ≤ `
2: βi ← Bi for 0 ≤ i ≤ `
3: y ← 0
4: Raise yMi′ uniformly for each moat Mi′ until some edge uv goes tight
5: if u ∈ βj for some 0 ≤ j ≤ ` and v ∈Mi′ for some i′ 6= j then
6: return the partial Steiner tree T ′ described in Lemma 6.
7: else
8: Let Mi be the unique moat with uv ∈ δin(Mi) . cf. Proposition 5
9: Mi ←Mi ∪ {u}

10: if u ∈ βi then
11: βi ← βi ∪ {v}
12: go to Step (4)

Proof. Clearly the invariants are true after the initialization steps (at time t = 0), given that
d(Bi, hj) > 0 for any i 6= j. To see why Algorithm 1 terminates in a polynomial number of
iterations, note that each iteration increases the size some moat by 1 and does not decrease
the size of any moats. So after at most kn iterations some moat will grow to include the
virtual body of another moat, at which point the algorithm stops.

Assume now that the invariants are true at some point just before Step (4) is executed and
that the condition in Step (5) is false after Step (4) finishes. We will show that the invariants
continue to hold just before the next iteration starts. We let uv denote the edge that went
tight that is considered in Step (4). We also let t denote the total time the algorithm has
executed (i.e. grown moats) up to this point.

Before proceeding with our proof, we exhibit the following useful fact. In what follows,
let M t′

j be the moat around hj at any time t′ ≤ t during the algorithm. This proposition
demonstrates how we control the overlap of the moats by exploiting the quasi-bipartite
structure.

I Proposition 5. If uv ∈ δin(Mi), then uv 6∈ δin(M t′

j) for any j 6= i, and for any t′ ≤ t.

Proof. Suppose, for the sake of contradiction, that uv ∈ δin(M t′

j) for some j 6= i and t′ ≤ t.
Since M t′

j is a subset of Mj , the moat containing hj at time t, we must have v ∈Mj ∩Mi.
Invariant 3 now implies that v ∈ B̄. Since G is quasi-bipartite, then u ∈ X. Therefore
u ∈ Bj′ for some j′. Since j′ 6= i or j′ 6= j, then the terminating condition in Step (5) would
have been satisfied as u ∈ βj′ . A contradiction. J

Following Proposition 5, we let i be the unique index such that uv ∈ δin(Mi) as in
Step (8).

Invariant 1

First note that Mi never loses vertices during the algorithm’s execution, and it therefore
always contains head vertex hi. Also, vertex u is not part of B0 as otherwise the algorithm
would have terminated in Step (5). Hence Mi ∪ {u} also does not contain the root node r.

Z. Friggstad, J. Könemann, and M. Shadravan 3:9

Invariant 2

This is just a reinterpretation of Dijkstra’s algorithm in the primal-dual framework (e.g. Chapter
5.4 of [13]), coupled with the fact that no edge considered in Step (4) in some iteration
crosses more than one moat at any given time (Proposition 5).

Invariant 3

Suppose (Mi∪{u})∩Mj 6⊆ B̄ for some i 6= j. This implies u ∈Mj \B̄, and hence u ∈ Bj ⊆ βj .
Thus, the termination condition in Step (5) was satisfied and the algorithm should have
terminated; contradiction.

If v is not added to βi, and thus βi remains unchanged, βi ∩ βj = Mj ∩ βi = ∅ continues
to hold for j 6= i. We also must have that (Mi ∪ {u}) ∩ βj = ∅ for i 6= j, as otherwise u ∈ βj
and this would violate the termination condition in Step (5).

Now suppose that v is added to βi. Then for j 6= i we still have (βi ∪ {v}) ∩ βj = ∅ as
otherwise v ∈ βj which contradicts v ∈Mi and the fact that Invariant 3 holds at the start of
this iteration. We also have that Mj ∩ (βi ∪ {v}) = ∅ as otherwise v ∈Mj . But this would
mean that u ∈Mj as well by Proposition 5. We established above that (Mi ∪{u})∩Mj ⊆ B.
However, {u, v} ⊆ (Mi ∪ {u}) ∩Mj ⊆ B contradicts the fact that G is quasi-bipartite.

Invariant 4

That Bi ⊆ βi is clear simply because we only add nodes to the sets βi. Suppose now that v is
added to βi. In this case, v 6∈ Bi as Bi ⊆ βi from the start. We claim that v can also not be
part of Bj for some j 6= i, since otherwise ∅ 6= Bj ∩Mi ⊆ βj ∩Mi, contradicting Invariant 3.
Hence v ∈ B̄. Note that the quasi-bipartiteness of G implies that u ∈ X, and hence u ∈ Bi.
Proposition 5 finally implies that only the moats crossed by uv are moats around i, so since
the algorithm only grows one moat around i at any time we have cuv ≤ t, and this completes
the proof of Invariant 4.

Invariant 5

The Step (4) stops the first time a constraint becomes tight, so feasibility is maintained.
In each step, the algorithm grows precisely ` moats simultaneously. Because the objective
function of (DST-Dual) is simply the sum of the dual variables, then the value of the dual
is just ` times the total time spent growing dual variables. J

3.4 Augmenting T
To complete the final detail in the description of the algorithm, we now show how to construct
the partial Steiner tree after Step (5) has been reached. Lemma 4 shows that Invariants 1
through 5 hold just before Step (4) in the final iteration. Say the final iteration executes for
δ time units and that uv is the edge that goes tight and was considered in Step (5).

I Lemma 6. When Step (6) is reached in Algorithm 1, we can efficiently find a partial Steiner
tree T ′ with `′ < ` non-root components such that cost(E(T ′)) ≤ cost(E(pt))+2 `−`

′

` ·OPTLP .

Proof. Let j be the unique index such that u ∈ βj at time ∆. There is exactly one such j
because βi ∩ βj = ∅ for i 6= j is ensured by the invariants. Next, let J = {i′ 6= j : v ∈Mi′}
and note that J consists of all indices i′ (except, perhaps, j) such that uv ∈ δin(Mi′). By
the termination condition, J 6= ∅. Vertex u lies in βj by definition. If u 6∈ Bj then we let w
be the mate of u as defined in Invariant 4. Otherwise, if w ∈ Bj , we let w = u.

SWAT 2016

3:10 A Logarithmic Integrality Gap Bound for Directed Steiner Tree in QB Graphs

For notational convenience, we let Pj be the path consisting of the single edge wu (or just
the trivial path with no edges if w = u). In either case, say cost of Pj is ∆− εj where εj ≥ 0
(cf. Invariant 4). For each i′ ∈ J , let Pi′ be a shortest v, hi′ -path. Invariant 2 implies that

c(Pi′) = ∆− εi′ , (3)

for some εi′ ≥ 0. Observe also that the tightness of uv at time ∆ and the definition of J
imply that∑

i′∈J∪{j}

εi′ ≥ cuv. (4)

In fact, precisely a εi′ -value of the dual variables for i′ 6= j contribute to cuv; the contribution
of j’s variables to cuv is at most εi′ .

Construct a partial Steiner tree T ′ obtained from T and Algorithm 1 as follows.
The sets Bj′ , Fj′ and head hj′ are unchanged for all j′ 6∈ J ∪ {j}.
Replace the components {Bi′}i′∈J∪{j} with a component B :=

⋃
i′∈J∪{j} (Bi′ ∪ V (Pi′))

having head h := hj . The edges of this component in T ′ are F :=
⋃
i′∈J∪{j}(Fi′ ∪

E(Pi′)) ∪ {uv}.
The free Steiner nodes B̄′ of T ′ are the Steiner nodes not contained in any of these
components.

Namely, B̄′ consists of those nodes in B̄ that are not contained on any path Pi′ , i′ ∈ J ∪ {j}.
We show that Steiner tree T ′ as constructed above satisfies the conditions stated in

Lemma 3. We first verify that T ′ as constructed above is indeed a valid partial Steiner tree.
Clearly the new sets B̄′, {Bi}i6∈J+j and B partition V and B̄′ is a subset of Steiner nodes.

Note that if 0 ∈ J ∪ {j} in the above construction, then j = 0 because no moat contains
r. Thus, if B0 is replaced when B is constructed, then r is the head of this new component.

Next, consider any b ∈ B. If b ∈ Bj then there is an hj , b-path in Fj ⊆ F . If b ∈ Bi′ , i′ 6= j

then it can be reached from hj in (B,F) as follows. Follow the hj , w-path in Fj , then the
w, u path Pj , cross the edge uv, follow Pi′ to reach hi′ , and finally follow the hi′ , b-path in
Fi′ . Finally, if b 6∈ Bi′ for any i′ ∈ J + j then b lies on some path Pi′ , in which case it can be
reached in a similar way.

It is also clear that E(T) ⊆ E(T ′) and that the number of non-root components in T ′ is
`− |J | < `. Also, cost(E(T ′))− cost(E(T)) is at most the cost of the the paths {Pi′}i′∈J+i
plus cuv.

It now easily follows from (3) and (4) that∑
i′∈J∪{j}

cost(E(Pi′)) + cuv ≤
∑

i′∈J∪{j}

(∆− εi′) + cuv ≤ (|J |+ 1)∆ ≤ |J |+ 1
`

·OPTLP .

The last bound follows because the feasible dual we have grown has value ` ·∆ ≤ OPTLP .
Let `′ = ` − |J | be the number of nonroot components in T ′. Conclude by observing
|J |+ 1 = `− `′ + 1 ≤ 2(`− `′). J

To wrap things up, executing Algorithm 1 and constructing the partial Steiner tree as in
Lemma 6 yields the partial Steiner tree that is promised by Lemma 3.

4 Conclusion

We have shown that the integrality gap of LP relaxation (DST-Primal) is O(log k) in
quasi-bipartite instances of directed Steiner tree. The gap is known to be Ω(

√
k) in 4-layered

Z. Friggstad, J. Könemann, and M. Shadravan 3:11

instances [18] and O(log k) in 3-layered instances [7]. Since quasi-bipartite graphs are a
generalization 2-layered instances, it is natural to ask if there is a generalization of 3-layered
instances which has an O(log k) or even o(

√
k) integrality gap.

One possible generalization of 3-layered graphs would be when the subgraph of G induced
by the Steiner nodes does not have a node with both positive indegree and positive outdegree.
None of the known results on directed Steiner tree suggest such instances have a bad gap.

Even when restricted to 3-layered graphs, a straightforward adaptation of our algorithm
that grow moats around the partial Steiner tree heads until some partial Steiner trees
absorbs another fails to grow a sufficiently large dual to pay for the augmentation within any
reasonable factor. A new idea is needed.

References
1 J. Byrka, F. Grandoni, T. Rothvoss, , and L. Sanita. Steiner tree approximation via

iterative randomized rounding. Journal of the ACM, 60(1), 2013.
2 G. Calinescu and G. Zelikovsky. The polymatroid steiner problems. J. Combinatorial

Optimization, 9(3):281–294, 2005.
3 M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, , and M. Li. Approximation

algorithms for directed steiner problems. J. Algorithms, 33(1):73–91, 1999.
4 I. Dinur and D. Steurer. Analytic approach to parallel repetition. In In proceedings of

STOC, 2014.
5 J. Edmonds. Optimum branchings. J. Res. Natl. Bur. Stand., 71:233–240, 1967.
6 U. Feige. A threshold of lnn for approximating set-cover. Journal of the ACM, 45(4):634–

652, 1998.
7 Z. Friggstad, A. Louis, Y. K. Ko, J. Könemann, M. Shadravan, and M. Tulsiani. Linear

programming hierarchies suffice for directed steiner tree. In In proceedings of IPCO, 2014.
8 M. X. Goemans, N. Olver, T. Rothvoss, and R. Zenklusen. Matroids and integrality gaps

for hypergraphic steiner tree relaxations. In In proceedings of STOC, 2012.
9 M. X. Goemans and D. P. Williamson. A general approximation technique for constrained

forest problems. SIAM Journal on Computing, 24(2):296–317, 1995.
10 S. Guha, A. Moss, J. Naor, and B. Scheiber. Efficient recover from power outage. In In

proceedings of STOC, 1999.
11 E. Halperin and R. Krauthgamer. Polylogarithmic inapproximability. In In proceedings of

STOC, 2003.
12 T. Hibi and T. Fujito. Multi-rooted greedy approximation of directed steiner trees with

applications. In In proceedings of WG, 2012.
13 C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Com-

plexity. Prentice-Hall, 1982.
14 S. Rajagopalan and V. V. Vazirani. On the bidirected cut relaxation for the metric steiner

tree problem. In In proceedings of SODA, 1999.
15 T. Rothvoss. Directed steiner tree and the lasserre hierarchy. Technical report, CORR

abs/1111.5473, 2011.
16 V. V. Vazirani. Approximation Algorithms. Springer-Verlag, 2003.
17 A. Zelikovsky. A series of approximation algorthms for the acyclic directed steiner tree

problem. Algorithmica, 18:99–110, 1997.
18 L. Zosin and S. Khuller. On directed steiner trees. In In proceedings of SODA, 2002.

SWAT 2016

A Linear Kernel for Finding Square Roots of
Almost Planar Graphs∗

Petr A. Golovach1, Dieter Kratsch2, Daniël Paulusma3, and
Anthony Stewart4

1 Department of Informatics, University of Bergen, Bergen, Norway
petr.golovach@ii.uib.no

2 Laboratoire d’Informatique Théorique et Appliquée, Université de Lorraine,
Metz, France
dieter.kratsch@univ-lorraine.fr

3 School of Engineering and Computing Sciences, Durham University, Durham,
United Kingdom
daniel.paulusma@durham.ac.uk

4 School of Engineering and Computing Sciences, Durham University, Durham,
United Kingdom
a.g.stewart@durham.ac.uk

Abstract
A graph H is a square root of a graph G if G can be obtained from H by the addition of
edges between any two vertices in H that are of distance 2 from each other. The Square Root
problem is that of deciding whether a given graph admits a square root. We consider this problem
for planar graphs in the context of the “distance from triviality” framework. For an integer k, a
planar+kv graph is a graph that can be made planar by the removal of at most k vertices. We
prove that a generalization of Square Root, in which some edges are prescribed to be either
in or out of any solution, has a kernel of size O(k) for planar+kv graphs, when parameterized
by k. Our result is based on a new edge reduction rule which, as we shall also show, has a wider
applicability for the Square Root problem.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases planar graphs, square roots, linear kernel

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.4

1 Introduction

Squares and square roots are well-known concepts in graph theory with a long history. The
square G = H2 of a graph H = (VH , EH) is the graph with vertex set VG = VH , such that
any two distinct vertices u, v ∈ VH are adjacent in G if and only if u and v are of distance at
most 2 in H. A graph H is a square root of G if G = H2. It is easy to check that there exist
graphs with no square root, graphs with a unique square root as well as graphs with many
square roots. The corresponding recognition problem, which asks whether a given graph
admits a square root, is called the Square Root problem. Motwani and Sudan [21] showed
that Square Root is NP-complete.

∗ This paper received support from EPSRC (EP/G043434/1), ERC (267959) and ANR project AGAPE.

© Petr A. Golovach, Dieter Kratsch, Daniël Paulusma, and Anthony Stewart;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 4; pp. 4:1–4:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 A Linear Kernel for Finding Square Roots of Almost Planar Graphs

1.1 Existing Results
In 1967, Mukhopadhyay [22] characterized the graphs that have a square root. In line with
the aforementioned NP-completeness result of Motwani and Sudan, which appeared in 1994,
this characterization does not lead to a polynomial-time algorithm for Square Root. Later
results focussed on the following two recognition questions (G denotes some fixed graph
class):

How hard is it to recognize squares of graphs of G?
How hard is it to recognize graphs of G that have a square root?

Note that the second question corresponds to the Square Root problem restricted to
graphs in G, whereas the first question is the same as asking whether a given graph has a
square root in G.

Ross and Harary [24] characterized squares of a tree and proved that if a connected graph
has a tree square root, then this root is unique up to isomorphism. Lin and Skiena [18] gave
a linear-time algorithm for recognizing squares of trees; they also proved that Square Root
can be solved in linear time for planar graphs. Le and Tuy [16] generalized the above results
for trees [18, 24] to block graphs. Nestoridis and Thilikos [23] proved that Square Root
is not only polynomial-time solvable for the class of planar graphs but for any non-trivial
minor-closed graph class, that is, for any graph class that does not contain all graphs and
that is closed under taking vertex deletions, edge deletions and edge contractions.

Lau [12] gave a polynomial-time algorithm for recognizing squares of bipartite graphs;
note that Square Root is trivial for bipartite graphs, and even for K4-free graphs, or
equivalently, graphs of clique number at most 3, as square roots of K4-free graphs must have
maximum degree at most 2. Milanic, Oversberg and Schaudt [19] proved that line graphs
can only have bipartite graphs as a square root. The same authors also gave a linear-time
algorithm for Square Root restricted to line graphs.

Lau and Corneil [13] gave a polynomial-time algorithm for recognizing squares of proper
interval graphs and showed that the problems of recognizing squares of chordal graphs
and squares of split graphs are both NP-complete. The same authors also proved that
Square Root is NP-complete even for chordal graphs. Le and Tuy [17] gave a quadratic-
time algorithm for recognizing squares of strongly chordal split graphs. Le, Oversberg
and Schaudt [14] gave polynomial algorithms for recognizing squares of ptolemaic graphs
and 3-sun-free split graphs. In a more recent paper [15], the same authors extended the
latter result by giving polynomial-time results for recognizing squares of a number of other
subclasses of split graphs. Milanic and Schaudt [20] proved that Square Root can be
solved in linear time for trivially perfect graphs and threshold graphs. They posed the
complexity of Square Root restricted to split graphs and cographs as open problems.
Recently, we proved that Square Root is linear-time solvable for 3-degenerate graphs and
for (Kr, Pt)-free graphs for any two positive integers r and t [8].

Adamaszek and Adamaszek [1] proved that if a graph has a square root of girth at least
6, then this square root is unique up to isomorphism. Farzad, Lau, Le and Tuy [7] showed
that recognizing graphs with a square root of girth at least g is polynomial-time solvable if
g ≥ 6 and NP-complete if g = 4. The missing case g = 5 was shown to be NP-complete by
Farzad and Karimi [6].

In a previous paper [2] we proved that Square Root is polynomial-time solvable for
graphs of maximum degree 6. We also considered square roots under the framework of
parameterized complexity [3, 2]. We proved that the following two problems are fixed-
parameter tractable with parameter k: testing whether a connected n-vertex graph with m

edges has a square root with at most n− 1 + k edges and testing whether such a graph has a

P.A. Golovach, D. Kratsch, D. Paulusma, and A. Stewart 4:3

square root with at least m− k edges. In particular, the first result implies that the problem
of recognizing squares of tree+ke graphs, that is, graphs that can be modified into trees by
removing at most k edges, is fixed-parameter tractable when parameterized by k.

1.2 Our Focus
We are interested in developing techniques that lead to new polynomial-time or parameterized
algorithms for Square Root for special graph classes. In particular, there are currently
very few results on the parameterized complexity, which is the main focus of our paper.

The graph classes that we consider fall under the “distance from triviality” framework,
introduced by Guo, Hüffner and Niedermeier [10]. For a graph class G and an integer p we
define four classes of “almost G” graphs, that is, graphs that are editing distance k apart
from G. To be more precise, the classes G + ke, G − ke, G + kv and G − kv consist of all
graphs that can be modified into a graph of G by deleting at most k edges, adding at most k

edges, deleting at most k vertices and adding at most k vertices, respectively. Taking k as
the natural parameter, these graph classes have been well studied from a parameterized point
of view for a number of problems. In particular this is true for the vertex coloring problem
restricted to (subclasses of) almost perfect graphs (due to the result of Grötschel, Lovász, and
Schrijver [9], who proved that vertex coloring is polynomial-time solvable on perfect graphs).
We consider G to be the class of planar graphs. As planar graphs are closed under taking
edge and vertex deletions, classes of planar−kv graphs and planar−ke graphs coincide with
planar graphs. Hence, we only need to consider planar+kv graphs and planar+ke graphs,
that is, graphs that can be made planar by at most k vertex deletions or at most k edge
deletions, respectively.

1.3 Our Results
Our main contribution is showing a linear kernel result for Square Root. In fact, we
consider a more general version of Square Root, called Square Root with Labels, that
takes as input a graph G with two subsets R and B of prespecified edges: the edges of R need
to be included in a solution (square root) and the edges of B are forbidden in the solution.
We prove that Square Root with Labels has a kernel of size O(k) for planar+kv graphs,
when parameterized by k. Note that this immediately implies the same result for planar+ke

graphs. Square Root with Labels was introduced in a previous paper [3], but in this
paper we introduce a new reduction rule, which we call the edge reduction rule.

The edge reduction rule is used to recognize, in polynomial time, a certain local sub-
structure that graphs with square roots must have. As such, our rule can be added to
the list of known and similar polynomial-time reduction rules for recognizing square roots.
To give a few examples, the reduction rule of Lin and Skiena [18] is based on recognizing
pendant edges and bridges of square roots of planar graphs, whereas the reduction rule of
Farzad, Le and Tuy [7] is based on the fact that squares of graphs with large girth can be
recognized to have a unique root. In contrast, our edge reduction rule, which is based on
detecting so-called recognizable edges whose neighbourhoods have some special property (see
Section 3 for a formal description) is tailored for graphs with no unique square root, just as
we did in [3]; in fact our new rule, which we explain in detail in Section 4, can be seen as
an improved and more powerful variant of the rule used in [3]. For squares with no unique
square root, not all the root edges can be recognized in polynomial time. Hence, removing
certain local substructures, thereby reducing the graph to a smaller graph, and keeping track
of the compulsory edges (the recognized edges) and forbidden edges is the best we can do.

SWAT 2016

4:4 A Linear Kernel for Finding Square Roots of Almost Planar Graphs

However, after the reduction, the connected components of the remaining graph might be
dealt with further by exploiting the properties of the graph class under consideration. This
is exactly what we do for planar+kv graphs to obtain the linear kernel in Section 5.

In Section 6 we show, besides giving some directions for future work, that the edge rule
can also be used to obtain other polynomial-time results for Square Root, namely for
graphs of maximum average degree smaller than 46

11 .

2 Preliminaries

We only consider finite undirected graphs without loops or multiple edges. We refer to the
textbook by Diestel [5] for any undefined graph terminology.

We denote the vertex set of a graph G by VG and the edge set by EG. The subgraph of G

induced by a subset U ⊆ VG is denoted by G[U]. The graph G−U is the graph obtained from
G after removing the vertices of U . If U = {u}, we also write G− u. Similarly, we denote
the graph obtained from G after deleting an edge e by G− e. A vertex u is a cut vertex of a
connected graph G with at least two vertices if G− u is disconnected. An inclusion-maximal
subgraph of G that has no cut vertices is called a block. A bridge of a connected graph G is
an edge e such that G− e is disconnected.

In the remainder of this section let G be a graph. We say that G is planar+kv if G

can be made planar by removing at most k vertices. The distance distG(u, v) between
a pair of vertices u and v of G is the number of edges of a shortest path between them.
The diameter diam(G) of G is the maximum distance between any two vertices of G. The
distance between a vertex u ∈ VG and a subset X ⊆ VG is denoted by distG(u, X) =
min{distG(u, v) | v ∈ X}. The distance between two subsets X and Y of VG is denoted
by distG(X, Y) = min{distG(u, v) | u ∈ X, v ∈ Y }. Whenever we speak about the distance
between a vertex set X and a subgraph H of G, we mean the distance between X and VH .

The open neighbourhood of a vertex u ∈ VG is defined as NG(u) = {v | uv ∈ EG} and
its closed neighbourhood is defined as NG[u] = NG(u) ∪ {u}. For X ⊆ VG, let NG(X) =⋃

u∈X NG(u) \X. Two (adjacent) vertices u, v are said to be true twins if NG[u] = NG[v].
The degree of a vertex u ∈ VG is defined as dG(u) = |NG(u)|. The maximum degree of G is
∆(G) = max{dG(v) | v ∈ VG}. A vertex of degree 1 is said to be a pendant vertex. If v is a
pendant vertex, then we say the unique edge incident to u is a pendant edge.

The framework of parameterized complexity allows us to study the computational com-
plexity of a discrete optimization problem in two dimensions. One dimension is the input
size n and the other one is a parameter k. We refer to the recent textbook of Cygan et
al. [4] for further details and only give the definitions for those notions relevant for our paper
here. A parameterized problem is fixed parameter tractable (FPT) if it can be solved in time
f(k) ·nO(1) for some computable function f . A kernelization of a parameterized problem Π is
a polynomial-time algorithm that maps each instance (x, k) with input x and parameter k to
an instance (x′, k′), such that (i) (x, k) is a yes-instance if and only if (x′, k′) is a yes-instance
of Π, and (ii) |x′| + k′ is bounded by f(k) for some computable function f . The output
(x′, k′) is called a kernel for Π. The function f is said to be a size of the kernel. It is well
known that a decidable parameterized problem is FPT if and only if it has a kernel. A logical
next step is then to try to reduce the size of the kernel. We say that (x′, k′) is a linear kernel
if f is linear.

P.A. Golovach, D. Kratsch, D. Paulusma, and A. Stewart 4:5

i)
X Y

u v

ii)
X Y

u v

Figure 1 (i) An example of a graph G with a recognizable edge uv and a corresponding (u, v)-
partition (X, Y). (ii) A square root of G. In this figure, the edges of the square root are shown by
thick lines and the edges of G not belonging to the square root are shown by dashed lines. Edges
which may or may not belong to the square root are shown by neither thick nor dashed lines.

3 Recognizable Edges

In this section we introduce the definition of a recognizable edge, which plays a crucial role in
our paper, together with the corresponding notion of a (u, v)-partition. We also prove some
important lemmas about this type of edges. See Fig. 1(i) for an example of a recognizable
edge and a corresponding (u, v)-partition (X, Y).

I Definition 1. An edge uv of a graph G is said to be recognizable if the following four
conditions are satisfied:
(a) NG(u) ∩ NG(v) has a partition (X, Y) where X = {x1, . . . , xp} and Y = {y1, . . . , yq},

p, q ≥ 1, are (disjoint) cliques in G;
(b) xiyj /∈ EG for i ∈ {1, . . . , p} and j ∈ {1, . . . , q};
(c) for any w ∈ NG(u) \ NG[v], wyj /∈ EG for j ∈ {1, . . . , q}, and symmetrically, for any

w ∈ NG(v) \NG[u], wxi /∈ EG for i ∈ {1, . . . , p};
(d) for any w ∈ NG(u) \ NG[v], there is an i ∈ {1, . . . , p} such that wxi ∈ EG, and

symmetrically, for any w ∈ NG(v) \NG[u], there is a j ∈ {1, . . . , q} such that wyj ∈ EG.
We also call such a partition (X, Y) a (u, v)-partition of NG(u) ∩NG(v).

Notice that due to (c) and (d), (X, Y) is an ordered pair defined for an ordered pair (u, v); if
NG(u) \NG(v) 6= ∅ or NG(v) \NG(u) 6= ∅ then (Y, X) is not a (u, v)-partition, as condition
(c) is violated (and in some instances, condition (d) as well).

In the next lemma we give a necessary condition of an edge of a square root H of a
graph G to be recognizable in G. In particular, this lemma implies that any non-pendant
bridge of H is a recognizable edge of G.

I Lemma 2. Let H be a square root of a graph G. Let uv be an edge of H that is not
pendant and such that any cycle in H containing uv has length at least 7. Then uv is a
recognizable edge of G and (NH(u) \ {v}, NH(v) \ {u}) is a (u, v)-partition in G.

Proof. Let H be a square root of a graph G and let uv be an edge of H such that uv

is not a pendant edge of H and any cycle in H containing uv has length at least 7. Let
X = {x1, . . . , xp} = NH(u) \ {v} and Y = {y1, . . . , yq} = NH(v) \ {u}. Because uv is not
a pendant edge and any cycle in H that contains uv has length at least 7, it follows that
X 6= ∅, Y 6= ∅ and X ∩ Y = ∅. We show that (X, Y) is a (u, v)-partition of NG(u) ∩NG(v)
in G by proving that conditions (a)–(d) of Definition 1 are fulfilled.

First we prove (a). Let z ∈ NG(u) ∩NG(v). We will show that z ∈ X ∪ Y . If uz ∈ EH

then z ∈ X, and if vz ∈ EH then z ∈ Y . Suppose that z /∈ X and z /∈ Y . Since uz ∈ EG,

SWAT 2016

4:6 A Linear Kernel for Finding Square Roots of Almost Planar Graphs

there is a vertex w ∈ VG such that uw, wz ∈ EH . Since vz /∈ EH it follows that w 6= v. It
follows due to symmetry that there exists w′ ∈ VG such that vw′, w′z ∈ EH and w′ 6= u.
Then either wuvw′ is a cycle in H if w = w′, otherwise, zwuvw′z is a cycle of H. In both
cases we have a contradiction since any cycle in H containing uv has length at least 7. This
proves that z ∈ X∪Y and therefore, NG(u)∩NG(v) ⊆ X∪Y . Since vxi ∈ EG and uyj ∈ EG

for all i ∈ {1, . . . , p} and j ∈ {1, . . . , q}, we see that X ∪ Y ⊆ NG(u) ∩ NG(v). Because
X, Y 6= ∅ and X ∩ Y = ∅, (X, Y) is a partition of NG(u)∪NG(v). It remains to observe that
X and Y are cliques in G because any two vertices of X and any two vertices of Y have u or
v, respectively, as common neighbour in H.

To prove (b), assume that there are i ∈ {1, . . . , p} and j ∈ {1, . . . , q} such that xiyj ∈ EG.
Because H has no cycle of length 4 containing uv, xiyj /∈ EH . Hence, there is z ∈ VH

such that xiz, zyj ∈ EH . Because H has no cycles of length 3 containing uv, we find that
z /∈ {u, v}. We conclude that zxiuvyjz is a cycle of length 5 in H that contains uv; a
contradiction.

To prove (c), it suffices to show that for any w ∈ NG(u) \ NG[v], wyj /∈ EG for j ∈
{1, . . . , q}, as the second part is symmetric. To obtain a contradiction, assume that there are
vertices w ∈ NG(u)\NG[v] and yj for some j ∈ {1, . . . , q} such that wyj ∈ EG. By (a), (X, Y)
is a partition of NG(u)∩NG(v). Hence, w /∈ X and w /∈ Y . Because w /∈ X and w ∈ NG(u),
there is x ∈ VG such that ux, xw ∈ EH . As ux ∈ EH , we have x ∈ X. If wyj ∈ EH , then
the cycle uxwyjvu containing uv has length 5; a contradiction. Hence, wyj /∈ EH . Because
wyj ∈ EG, there is a vertex z ∈ VH such that wz, zyj ∈ EH . Since w ∈ NG(u) \NG[v], we
have w /∈ {u, v}. If x = z, then uvyjxu is a cycle of length 4 containing uv, a contradiction.
If x 6= z, then uvyjzwxu is a cycle of length 6 containing uv, another contradiction.

To prove (d) we consider some w ∈ NG(u)\NG[v]. We note that since X ⊆ NG(u)∩NG(v),
w /∈ X and thus uw /∈ EH . Since uw ∈ EG by definition, there must be some x ∈ VG such
that ux, xw ∈ EH . Because w is not adjacent to v, we find that x 6= v. Since ux ∈ EH

and X = NH(u) \ {v}, this means that x ∈ X. The second condition in (d) follows by
symmetry. J

The following corollary follows immediately from Lemma 2.

I Corollary 3. Let H be a square root of a graph with no recognizable edges. Then every
non-pendant edge of H lies on a cycle of length at most 6.

In Lemma 4 we show that recognizable edges in a graph G can be used to identify some
edges of a square root of G and also some edges that are not included in any square root of
G; see Fig. 1(ii) for an illustration of this lemma.

I Lemma 4. Let G be a graph with a square root H. Additionally let uv be a recognizable
edge of G with a (u, v)-partition (X, Y) where X = {x1, . . . , xp} and Y = {y1, . . . , yq}.
Then:
(i) uv ∈ EH ;
(ii) for every w ∈ NG(u) \NG[v], wu /∈ EH , and for every w ∈ NG(v) \NG[u], wv /∈ EH .
(iii) if u, v are true twins in G, then either ux1, . . . , uxp ∈ EH , vy1, . . . , vyq ∈ EH and

uy1, . . . , uyq /∈ EH , vx1, . . . , vxp /∈ EH or ux1, . . . , uxp /∈ EH , vy1, . . . , vyq /∈ EH and
uy1, . . . , uyq ∈ EH , vx1, . . . , vxp ∈ EH ;

(iv) if u, v are not true twins in G, then ux1, . . . , uxp ∈ EH , vy1, . . . , vyq ∈ EH and
uy1, . . . , uyq /∈ EH , vx1, . . . , vxp /∈ EH .

Proof. The proof uses conditions (a)–(d) of Definition 1.

P.A. Golovach, D. Kratsch, D. Paulusma, and A. Stewart 4:7

To prove (i), suppose that uv /∈ EH . Then there is a vertex z ∈ NG(u) ∩ NG(v) such
that zu, zv ∈ EH . Assume without loss of generality that z ∈ X. Because of (b), zy1 /∈ EG,
which implies, together with zv ∈ EH , that vy1 /∈ EH . Because vy1 ∈ EG, this means that
there is a vertex w with vw, wy1 ∈ EH . Because we assume uv /∈ EH , we observe that w 6= u.
By (b), w /∈ X and, therefore, w ∈ NG(v) \NG(u). As zv, vw ∈ EH , we obtain wz ∈ EG.
However, as z ∈ X, this contradicts (c). We conclude that uv ∈ EH .

To prove (ii), it suffices to consider the case in which w ∈ NG(u) \NG[v], as the other
case is symmetric. If wu ∈ EH , then because uv ∈ EH , we have wv ∈ EG contradicting
w /∈ NG(v).

We now prove (iii) and (iv). First suppose that there exist vertices xi and xj (with
possibly i = j) for some i, j ∈ {1, . . . , p} such that xiu, xjv ∈ EH . Then, as xiy1, xjy1 /∈ EG

by (b), we find that y1u, y1v /∈ EH . As y1u ∈ EG, the fact that y1u /∈ EH means that there
exists a vertex w ∈ VH \ {u} such that wu, wy1 ∈ EH . As y1v /∈ EH , we find that w 6= v, so
w ∈ VH \ {u, v}. As xiu, uw ∈ EH , we find that xiw ∈ EG, consequently w /∈ Y due to (b).
Because wy1 ∈ EH we obtain w /∈ X, again due to (b). Hence, w /∈ X ∪ Y = NG(u)∩NG(v).
Therefore, as uw ∈ EG and w 6= v, we have w ∈ NG(u) \ NG[v], but as wy1 ∈ EG this
contradicts (c). Hence, this situation cannot occur.

Suppose that there a vertex xi for some i ∈ {1, . . . , p} such that xiu, xiv /∈ EH . Then, as
xiv ∈ EG, there exists a vertex w ∈ VH \ {u, v}, such that wv, wxi ∈ EH . By (b), w /∈ Y .
As uv ∈ EH due to statement (i) and vw ∈ EH , we find that uw ∈ EG. Hence, as w /∈ Y ,
we obtain w ∈ X. As xiu ∈ EG \ EH and xiv /∈ EH , there is a vertex z ∈ VH \ {u, v} such
that zu, zxi ∈ EH . As uv ∈ EH due to statement (i), this implies that zv ∈ EG. Hence,
z ∈ X ∪ Y . As zxi ∈ EH , we find that z /∈ Y due to (b). Consequently, z ∈ X. This means
that we have vertices w, z ∈ X (possibly w = z) and edges zu, wv ∈ EH . However, we
already proved above that this is not possible.

We obtain that either ux1, . . . , uxp ∈ EH and vx1, . . . , vxp /∈ EH , or ux1, . . . , uxp /∈ EH

and vx1, . . . , vxp ∈ EH . Symmetrically, either uy1, . . . , uyq ∈ EH and vy1, . . . , vyq /∈ EH , or
uy1, . . . , uyq /∈ EH and vy1, . . . , vyq ∈ EH . By (b), it cannot happen that ux1, uy1 ∈ EH

or vx1, vy1 ∈ EH . Hence, either ux1, . . . , uxp ∈ EH , vy1, . . . , vyq ∈ EH and uy1, . . . , uyq /∈
EH , vx1, . . . , vxp /∈ EH or ux1, . . . , uxp /∈ EH , vy1, . . . , vyq /∈ EH and uy1, . . . , uyq ∈ EH ,
vx1, . . . , vxp ∈ EH . In particular, this implies (iii).

To prove iv), assume without loss of generality that NG(u)\NG[v] 6= ∅. For contradiction,
let ux1, . . . , uxp /∈ EH , vy1, . . . , vyq /∈ EH and uy1, . . . , uyq ∈ EH , vx1, . . . , vxp ∈ EH . Let
w ∈ NG(u) \NG[v]. By (d), there is a vertex xi for some i ∈ {1, . . . , p} such that wxi ∈ EG.
Then wxi /∈ EH , as otherwise our assumption that vxi ∈ EH will imply that w ∈ NG(v),
which is not possible. Since wxi ∈ EG \ EH , there exists a vertex z ∈ VH , such that
zw, zxi ∈ EH . Because xiu /∈ EH , we find that z 6= u, and because w /∈ NG(v), we find that
z 6= v. Because zxi, xiv ∈ EH , we obtain zv ∈ EG. As w /∈ NG(v) and vxj ∈ EH for all
j ∈ {1, . . . , p}, we have wxj /∈ EH for all j ∈ {1, . . . , p}. Hence, as zw ∈ EH , we find that
z /∈ X. As zxi ∈ EH , we find that z /∈ Y due to (b). Hence, z /∈ X ∪ Y = NG(u) ∩NG(v).
As zv ∈ EG, this implies that z ∈ NG(v) \NG[u] (recall that z 6= u). Because zxi ∈ EG, this
is in contradiction with (c). J

I Remark 1. If the vertices u and v of the recognizable edge of the square G in Lemma 4
are true twins, then by statement (iii) of this lemma and the fact that the vertices u and
v are interchangeable, G has at least two isomorphic square roots: one root containing
ux1, . . . , uxp, vy1, . . . , vyq and excluding uy1, . . . , uyq, vx1, . . . , vxp, and another one con-
taining ux1, . . . , uxp, vy1, . . . , vyq and excluding uy1, . . . , uyq, vx1, . . . , vxp.

SWAT 2016

4:8 A Linear Kernel for Finding Square Roots of Almost Planar Graphs

4 The Edge Reduction Rule

In this section we present our edge reduction rule. As mentioned in Section 1.3, we solve a
more general problem than Square Root. Before discussing the edge reduction rule, we
first formally define this problem.

Square Root with Labels
Input: a graph G and two sets of edges R, B ⊆ EG.
Question: is there a graph H with H2 = G, R ⊆ EH and B ∩ EH = ∅?
Note that Square Root is indeed a special case of Square Root with Labels: choose
R = B = ∅.

We say that a graph H is a solution for an instance (G, R, B) of Square Root with
Labels if H satisfies the following three conditions:
(i) H2 = G;
(ii) R ⊆ EH ; and
(iii) B ∩ EH = ∅.

We use Lemmas 2 and 4 to preprocess instances of Square Root with Labels. Our edge
reduction algorithm takes as input an instance (G, R, B) of Square Root with Labels
and either returns an equivalent instance with no recognizable edges or answers no.

Edge Reduction

1. Find a recognizable edge uv together with corresponding (u, v)-partition (X, Y), X =
{x1, . . . , xp} and Y = {y1, . . . , yq}. If such an edge uv does not exist, then return the
obtained instance of Square Root with Labels and stop.

2. If uv ∈ B then return no and stop. Otherwise let B1 = {wu | w ∈ NG(u) \ NG[v]} ∪
{wv | w ∈ NG(v) \NG[u]}. If R ∩B1 6= ∅, then return no and stop.

3. If u and v are not true twins then set R2 = {ux1, . . . , uxp} ∪ {vy1, . . . , vyq} and B2 =
{uy1, . . . , uyq} ∪ {vx1, . . . , vxp}. If R2 ∩B 6= ∅ or B2 ∩R 6= ∅, then return no and stop.

4. If u and v are true twins then do as follows:
a. If ({uy1, . . . , uyq} ∪ {vx1, . . . , vxp}) ∩ R 6= ∅ or ({ux1, . . . , uxp} ∪ {vy1, . . . , vyq}) ∩

B 6= ∅ then set R2 = {uy1, . . . , uyq} ∪ {vx1, . . . , vxp} and B2 = {ux1, . . . , uxp} ∪
{vy1, . . . , vyq}. If R2 ∩B 6= ∅ or B2 ∩R 6= ∅, then return no and stop.

b. If ({uy1, . . . , uyq} ∪ {vx1, . . . , vxp}) ∩ R = ∅ and ({ux1, . . . , uxp} ∪ {vy1, . . . , vyq}) ∩
B = ∅ then set R2 = {ux1, . . . , uxp} ∪ {vy1, . . . , vuq} and B2 = {uy1, . . . , uyq} ∪
{vx1, . . . , vxp}. (Note that R2 ∩B = ∅ and B2 ∩R = ∅.)

5. Delete the edge uv and the edges of B1 from G, set R := (R \ {uv}) ∪ R2 and B :=
(B \B1) ∪B2, and return to Step 1.

I Lemma 5. For an instance (G, R, B) of Square Root with Labels where G has n

vertices and m edges, Edge Reduction in time O(n2m2) either correctly answers no or
returns an equivalent instance (G′, R′, B′) with the following property: for any square root H

of G′, every edge of H is either a pendant edge of H or is included in a cycle of length at
most 6 in H. Moreover, (G′, R′, B′) has a solution H if and only if (G, R, B) has a solution
that can be obtained from H by restoring all recognizable edges.

Proof. It suffices to consider one iteration of the algorithm to prove its correctness. If we
stop at Step 1 and return the obtained instance of Minimum Square Root with Labels,
then by Lemma 2, for any square root H of G′, every non-pendant edge of H is included in
a cycle of length at most 6 in H.

P.A. Golovach, D. Kratsch, D. Paulusma, and A. Stewart 4:9

To show the correctness of Step 2, we note that by Lemma 4(i), uv is included in any
square root and the edges of B1 are not included in any square root. Hence, if what we do in
Step 2 is not consistent with R and B, there is no square root of G that includes the edges
of R and excludes the edges of B, thus returning output no is correct.

To show the correctness of Step 3, suppose u and v are not true twins. Then by
Lemma 4 iv) it follows that ux1, . . . , uxp ∈ EH , vy1, . . . , vyq ∈ EH , uy1, . . . , uyq /∈ EH and
vx1, . . . , vxp /∈ EH for any square root H. Hence, we must define R2 and B2 according to
this lemma. If afterwards we find that R2 ∩ B 6= ∅ or B2 ∩ R 6= ∅, then R2 or B2 is not
consistent with R or B, respectively, and thus, retuning no if this case happens is correct.

To show the correctness of Step 4, suppose that u and v are true twins. Then by
Lemma 4 iv) we have two options. First, if ({uy1, . . . , uyq} ∪ {vx1, . . . , vxp}) ∩ R 6= ∅ or
({ux1, . . . , uxp} ∪ {vy1, . . . , vyq}) ∩B 6= ∅, then we are forced to go for the option as defined
in Step 4(a). If afterwards R2 ∩ B 6= ∅ or B2 ∩ R 6= ∅, then we still need to return no
as in Step 3. Second, if ({uy1, . . . , uyq} ∪ {vx1, . . . , vxp}) ∩ R = ∅ and ({ux1, . . . , uxp} ∪
{vy1, . . . , vyq}) ∩ B = ∅, then we may set without loss of generality (cf. Remark 1) that
R2 = {ux1, . . . , uxp} ∪ {vy1, . . . , vuq} and B2 = {uy1, . . . , uyq} ∪ {vx1, . . . , vxp}. Note that
in this case R2 ∩B = ∅ and B2 ∩R = ∅.

Finally, to show the correctness of Step 5, let G′ be the graph obtained from G after
deleting the edge uv and the edges of B1. Let R′ = (R \ {uv}) ∪R2 and B′ = (B \B1) ∪B2.
Then the instances (G, R, B) and (G′, R′, B′) are equivalent: a graph H is readily seen to be
a solution for (G, R, B) if and only if H − uv is a solution for (G′, R′, B′). This completes
the correctness proof of our algorithm.

It remains to evaluate the running time. We can find a recognizable edge uv together
with the corresponding (u, v)-partition (X, Y) in time O(mn2). This can be seen as follows.
For each edge uv, we find Z = NG(u) ∩ NG(v). Then we check conditions (a) and (b) of
Definition 1, that is, we check whether Z is the union of two disjoint cliques with no edges
between them. Finally, we check conditions (c) and (d) of Definition 1. For a given uv, this
can all be done in time O(n2). As we need to check at most m edges, one iteration takes
time O(mn2). As the total number of iterations is at most m, the whole algorithm runs in
time O(n2m2). J

5 The Linear Kernel

For proving that Square Root with Labels restricted to planar+kv graphs has a linear
kernel when parameterized by k, we will use the following result of Harary, Karp and Tutte
as a lemma.

I Lemma 6 ([11]). A graph H has a planar square if and only if
(i) every vertex v ∈ VH has degree at most 3,
(ii) every block of H with more than four vertices is a cycle of even length, and
(iii) H has no three mutually adjacent cut vertices.

We need the following additional terminology. A block is trivial if it has exactly one
vertex; note that this vertex must have degree 0. A block is small if it has exactly two
vertices and big otherwise. We say that a block is pendant if it is a small block with a vertex
of degree 1.

We need two more structural lemmas. We first show the effect of applying our Edge
Reduction Rule on the number of vertices in a connected component of a planar graph.

SWAT 2016

4:10 A Linear Kernel for Finding Square Roots of Almost Planar Graphs

X

F

Y

Figure 2 An example of a planar+2v graph G = H2 (left side) and a square root H of G (right
side). The thick edges in H denote the edges of A.

I Lemma 7. Let G be a planar graph with a square root. If G has no recognizable edges,
then every connected component of G has at most 12 vertices.

Proof. Let G be a planar square with no recognizable edges. We may assume without loss
of generality that G is connected and |VG| ≥ 2. Let H be a square root of G. Recall that H

is a connected spanning subgraph of G. Hence, it suffices to prove that H has at most 12
vertices.

First suppose that H does not have a big block, in which case every edge of H is a bridge.
As G has no recognizable edges, Corollary 3 implies that every block of H is pendant. By
Lemma 6, every vertex of H degree at most 3. Hence, H has at most four vertices.

Now suppose that H has a big block F . If F contains no cut vertices of H, then H = F

has at most six vertices due to Corollary 3 and Lemma 6. Assume that F contains a cut
vertex v of H. Lemma 6 tells us that dH(v) ≤ 3; therefore v is a vertex of exactly two blocks,
namely F and some other block S. Because F is big, v has two neighbours in F . Hence, v can
only have one neighbour in S, thus S is small. As G has no recongizable edges, Corollary 3
implies that S is a pendant block. Hence, we find that |VG| ≤ 2|VF | (with equality if and
only if each vertex of F is a cut vertex).

If F has at least seven vertices, then it follows from Lemma 6 that F is a cycle of even
length at least 8, which is not possible due to Corollary 3. We conclude that |VF | ≤ 6 and
find that |VG| = |VH | ≤ 2|VF | ≤ 12. J

We now prove our second structural lemma.

I Lemma 8. Let G be a planar+kv graph with no recognizable edges, such that every
connected component of G has at least 13 vertices. If G has a square root, then |VG| ≤ 137k.

P.A. Golovach, D. Kratsch, D. Paulusma, and A. Stewart 4:11

Proof. Let H be a square root of G. By Lemma 7, G cannot have any planar connected
components (as these would have at most 12 vertices). Hence, every connected component of
G is non-planar.

Since G is planar+kv, there exists a subset X ⊆ VG of size at most k such that G−X

is planar. Let F = H −X. Note that F is a spanning subgraph of G−X and that F 2 is
a (spanning) subgraph of G−X; hence F 2 is planar. Let Y be the set that consists of all
those vertices of F that are a neighbour of X in H, that is Y = NH(X) ∩ VF . Since every
connected component of G−X is non-planar, every connected component of F contains at
least one vertex of Y . Let A be the set that consists of all edges between X and Y in H,
that is, A = {uv ∈ E(H) | u ∈ X, v ∈ Y }. See Figure 2 for an example.

Consider a vertex v ∈ X. By Kuratowski’s Theorem, the (planar) graph G−X has no
clique of size 5. Since NH(v)∩(VG\X) is a clique in G−X, we find that |NH(v)∩(VG\X)| ≤ 4.
Hence, |Y | ≤ 4|X| ≤ 4k.

We now prove three claims about the structure of blocks of F .

I Claim A. If R is a block of F that is not a pendant block of H, then VR is at distance at
most 1 from Y in F .

Proof. We prove Claim A as follows. Let R be a block of F that is not a pendant block of
H. To obtain a contradiction, assume that VR is at distance at least 2 from Y in F . Let u

be a vertex of R such that distF (u, Y) = min{distF (u, v) | v ∈ VR}, so u is a cut vertex of F

that is of distance at least 2 from Y in F . Note that R is not a trivial block of F , since all
trivial blocks are isolated vertices of F that are vertices of Y .

First suppose that R is a small block of F and let v be the second vertex of R. Then the
edge uv is a bridge of F . Since R is not pendant, it follows from Corollary 3 that uv is in
a cycle of length C at most 6 in H. Observe that C must contain at least two edges of A,
which implies that u or v is at distance at most 1 from Y . This is a contradiction.

Now suppose that R is a big block of G. Let v be the neighbour of u in a shortest path
between u and Y in F . By Lemma 6, u has degree at most 3 in F . As R is big, u has at
least two neighbours in F . Hence, uv is a bridge of F . As v has at least two neighbours in
F as well, uv is not a pendant edge of H. Then it follows from Corollary 3 that uv is in a
cycle C of length at most 6 in H. Observe that C must contain at least two edges of A and
at least one edge uw of R for some vertex w 6= u in R. Hence, w is at distance at most 1
from Y , which is a contradiction. This completes the proof of Claim A. J

By Lemma 6, every vertex of F has degree at most 3 in F . Hence the following holds:

I Claim B. For every u ∈ Y , F has at most three big blocks at distance at most 1 from u.

Let Z be the set of vertices of F at distance at most 3 from X in H.

I Claim C. If R is a block of F with VR \ Z 6= ∅, then |VR| ≤ 6.

Proof. We prove Claim C as follows. Suppose R is a block of F with VR \ Z 6= ∅. For
contradiction, assume that |VR| ≥ 7. Then, by Lemma 6, R is a cycle of F of even size. As
VR \ Z 6= ∅ and R is connected, there exists an edge uv of F with u /∈ Z. By Corollary 3,
we find that uv is in a cycle C of H of length at most 6. Since u is at distance at least 4
from X in H, we find that C contains no vertex of X and therefore, C is a cycle of F . Then
R = C must hold, which is a contradiction as |VR| ≥ 7 > 6 ≥ |VC |. This completes the proof
of Claim C. J

SWAT 2016

4:12 A Linear Kernel for Finding Square Roots of Almost Planar Graphs

We will now show that the diameter of F is bounded. We start with proving the following
claim.

I Claim D. Every vertex of every block R of F that is non-pendant in H is at distance at
most 5 from X in H. Moreover,
(i) if R has a vertex at distance at least 4 from X in H, then R is a big block,
(ii) R has at most three vertices at distance at least 4 and at most one vertex at distance 5

from X in H.

Proof. We prove Claim D as follows. Let R be a block of F that is non-pendant in H.
Claim A tells us that VR is at distance at most 1 from Y in F .

If R is a small block, then every vertex of R is at distance at most 2 from Y . Hence,
every vertex of R is at distance at most 3 from X in H and the claim holds for R.

Let R be a big block. If R has at most four vertices, then the vertices of R are at distance
at most 3 from Y in F and at most one vertex of R is at distance exactly 3. Hence, the
vertices of R are at distance at most 4 from X in H and at most one vertex of R is at
distance exactly 4. Assume that |VR| > 4. Then either VR ⊆ Z, that is, all the vertices are
at distance at most 3 from X in H, or, by Lemma 6 and Claim C, we find that R has at
most six vertices. As |VR| > 4, we find that R is a cycle on six vertices by Lemma 6. Hence,
in the latter case every vertex of R is at distance at most 4 from Y , that is, at distance
at most 5 from X in H. Moreover, at most three vertices are at distance at least 4 and at
most one vertex is at distance 5 from X in H as R is a cycle. This completes the proof of
Claim D. J

By combining Claim B with the fact that |Y | ≤ 4k, we find that F has at most 12k big blocks
at distance at most 1 from Y . By Claims A and D, this implies that H has at most 36k

vertices of non-pendant blocks at distance at least 4 from X in H and at most 12k vertices at
distance at least 5 from X in H. Let v be a vertex H of degree 1 in H. If v is at distance at
least 5 from X, then v is adjacent to a vertex u of a non-pendant block and u is at distance
at least 4 from X in H. Notice that v is a unique vertex of degree 1 adjacent to u, because by
Claim D, u is in a big block and dF (u) ≤ 3 by Lemma 6. Since H has at most 36k vertices
of non-pendant blocks at distance at least 4 from X in H, the total number of vertices of
degree 1 at distance at least 5 from X in H is at most 36k. Taking into account that there
are at most 12k vertices at distance at least 5 from X in H in non-pendant blocks, we see
that there are at most 48k vertices in H at distance at least 5 from X and all other vertices
in F are at distance at most 4 from X. Using the facts that |Y | ≤ 4k and that dF (v) ≤ 3 for
v ∈ VF by Lemma 6, we observe that H has at most k + 4k + 12k + 24k + 48k = 89k vertices
at distance at most 4 from X. It then follows that |VG| = |VH | ≤ 48k + 89k = 137k. J

We are now ready to prove our main result.

I Theorem 9. Square Root with Labels has a kernel of size O(k) for planar+kv graphs
when parameterized by k.

Proof. Let (G, R, B) be an instance of Square Root with Labels. First we apply Edge
Reduction, which takes polynomial time due to Lemma 5. By the same lemma we either
solve the problem in polynomial time or obtain an equivalent instance (G′, R′, B′) with the
following property: for any square root H of G′, every edge of H is either a pendant edge of
H or is included in a cycle of length at most 6 in H. In the latter case we apply the following
reduction rule exhaustively, which takes polynomial time as well.

P.A. Golovach, D. Kratsch, D. Paulusma, and A. Stewart 4:13

Component Reduction. If G′ has a connected component F with |VF | ≤ 12, then use
brute force to solve Square Root with Labels for (F, R ∩ VF , B ∩ VF). If this yields
a no-answer, then return no and stop. Otherwise, return (G′ − VF , R′ \ VF , B′ \ VF) or if
G′ = F , return yes and stop.

It is readily seen that this rule either solves the problem correctly or returns an equivalent
instance. Assume we obtain an instance (G′′, R′′, B′′). Our reduction rules do not increase
the deletion distance, that is, G′′ is a planar+kv graph. Then by Lemma 8, if G′′ has more
than 137k vertices then G′′, and thus G, has no square root. Hence, if |V ′′

G | > 137k, we have
a no-instance, in which case we return a no-answer and stop. Otherwise, we return the kernel
(G′′, R′′, B′′). J

6 Conclusions

We proved a linear kernel for Square Root with Labels, which generalizes the Square
Root problem, for planar+kv graphs using a new edge reduction rule. It would be interesting
to research whether our edge reduction rule can be used to obtain other results for Square
Root. We could prove that this rule can be used to show the known result [2] that Square
Root is polynomial-time solvable for graphs of maximum degree at most 6. We conclude
our paper by showing that there exists at least one other application.

The average degree of a graph G is ad(G) = 1
|VG|

∑
v∈VG

dG(v) = 2|EG|
|VG| . Then the

maximum average degree of G is defined as mad(G) = max{ad(H) | H is a subgraph of G}.
We use our rule Edge Reduction to prove the following result (proof omitted).

I Theorem 10. Square Root can be solved in time O(n4) for n-vertex graphs G with
mad(G) < 46

11 .

We pose the problem as to whether Theorem 10 can be strengthened to hold for graphs
of higher maximum average degree as an open problem.

References
1 Anna Adamaszek and Michal Adamaszek. Uniqueness of graph square roots of girth six.

Electronic Journal of Combinatorics, 18, 2011.
2 Manfred Cochefert, Jean-François Couturier, Petr A. Golovach, Dieter Kratsch, and Dan-

iël Paulusma. Sparse square roots. In Andreas Brandstädt, Klaus Jansen, and Rüdiger
Reischuk, editors, Graph-Theoretic Concepts in Computer Science – 39th International
Workshop, WG 2013, Lübeck, Germany, June 19-21, 2013, Revised Papers, volume 8165 of
Lecture Notes in Computer Science, pages 177–188. Springer, 2013.

3 Manfred Cochefert, Jean-François Couturier, Petr A. Golovach, Dieter Kratsch, and Daniël
Paulusma. Parameterized algorithms for finding square roots. Algorithmica, 74:602–629,
2016.

4 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

5 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 ofGraduate Texts in Mathematics.
Springer, 2012.

6 Babak Farzad and Majid Karimi. Square-root finding problem in graphs, a complete dicho-
tomy theorem. CoRR, abs/1210.7684, 2012.

7 Babak Farzad, Lap Chi Lau, Van Bang Le, and Nguyen Ngoc Tuy. Complexity of finding
graph roots with girth conditions. Algorithmica, 62:38–53, 2012.

SWAT 2016

4:14 A Linear Kernel for Finding Square Roots of Almost Planar Graphs

8 Petr A. Golovach, Dieter Kratsch, Daniël Paulusma, and Anthony Stewart. Squares of low
clique number. In 14th Cologne Twente Workshop 2016 (CTW 2016), Gargnano, Italy,
June 6-8, 2016, Electronic Notes in Discrete Mathematics, to appear, 2016.

9 Martin Grötschel, László Lovász, and Alexander Schrijver. Polynomial algorithms for per-
fect graphs. Annals of Discrete Mathematics, 21:325–356, 1984.

10 Jiong Guo, Falk Hüffner, and Rolf Niedermeier. A structural view on parameterizing
problems: distance from triviality. In Rodney G. Downey, Michael R. Fellows, and Frank K.
H. A. Dehne, editors, Parameterized and Exact Computation, First International Workshop,
IWPEC 2004, Bergen, Norway, September 14-17, 2004, Proceedings, volume 3162 of Lecture
Notes in Computer Science, pages 162–173. Springer, 2004.

11 Frank Harary, Richard M. Karp, and William T. Tutte. A criterion for planarity of the
square of a graph. Journal of Combinatorial Theory, 2:395–405, 1967.

12 Lap Chi Lau. Bipartite roots of graphs. ACM Transactions on Algorithms, 2:178–208,
2006.

13 Lap Chi Lau and Derek G. Corneil. Recognizing powers of proper interval, split, and
chordal graphs. SIAM Journal on Discrete Mathematics, 18:83–102, 2004.

14 Van Bang Le, Andrea Oversberg, and Oliver Schaudt. Polynomial time recognition of
squares of ptolemaic graphs and 3-sun-free split graphs. Theoretical Computer Science,
602:39–49, 2015.

15 Van Bang Le, Andrea Oversberg, and Oliver Schaudt. A unified approach for recognizing
squares of split graphs. Manuscript, 2015.

16 Van Bang Le and Nguyen Ngoc Tuy. The square of a block graph. Discrete Mathematics,
310:734–741, 2010.

17 Van Bang Le and Nguyen Ngoc Tuy. A good characterization of squares of strongly chordal
split graphs. Information Processing Letters, 111:120–123, 2011.

18 Yaw-Ling Lin and Steven Skiena. Algorithms for square roots of graphs. SIAM Journal on
Discrete Mathematics, 8:99–118, 1995.

19 Martin Milanic, Andrea Oversberg, and Oliver Schaudt. A characterization of line graphs
that are squares of graphs. Discrete Applied Mathematics, 173:83–91, 2014.

20 Martin Milanic and Oliver Schaudt. Computing square roots of trivially perfect and
threshold graphs. Discrete Applied Mathematics, 161:1538–1545, 2013.

21 Rajeev Motwani and Madhu Sudan. Computing roots of graphs is hard. Discrete Applied
Mathematics, 54:81–88, 1994.

22 A. Mukhopadhyay. The square root of a graph. Journal of Combinatorial Theory, 2:290–
295, 1967.

23 Nestor V. Nestoridis and Dimitrios M. Thilikos. Square roots of minor closed graph classes.
Discrete Applied Mathematics, 168:34–39, 2014.

24 Ian C. Ross and Frank Harary. The square of a tree. Bell System Technical Journal,
39:641–647, 1960.

Linear-Time Recognition of Map Graphs with
Outerplanar Witness∗

Matthias Mnich†1, Ignaz Rutter2, and Jens M. Schmidt3

1 University of Bonn, Bonn, Germany
mmnich@uni-bonn.de

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
ignaz.rutter@kit.edu

3 TU Ilmenau, Ilmenau, Germany
jens.schmidt@tu-ilmenau.de

Abstract
Map graphs generalize planar graphs and were introduced by Chen, Grigni and Papadimitriou
[STOC 1998, J.ACM 2002]. They showed that the problem of recognizing map graphs is in NP
by proving the existence of a planar witness graph W . Shortly after, Thorup [FOCS 1998]
published a polynomial-time recognition algorithm for map graphs. However, the run time of
this algorithm is estimated to be Ω(n120) for n-vertex graphs, and a full description of its details
remains unpublished.

We give a new and purely combinatorial algorithm that decides whether a graph G is a map
graph having an outerplanar witness W . This is a step towards a first combinatorial recognition
algorithm for general map graphs. The algorithm runs in time and space O(n + m). In contrast
to Thorup’s approach, it computes the witness graph W in the affirmative case.

1998 ACM Subject Classification G.2.2 Graph algorithms

Keywords and phrases Algorithms and data structures, map graphs, recognition, planar graphs

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.5

1 Introduction

Consider the adjacency graph of the states of the USA, where two states are adjacent if their
borders intersect. Since Arizona, Colorado, New Mexico and Utah meet pairwise at a single
common point, the adjacency graph will not be planar; however, it will be a map graph. In
(much) more detail, a map of a graph G = (V, E) is a functionM that maps each vertex
v ∈ V to a disc homeomorphM(v) on the sphere (the states) such that, for any two distinct
vertices v, w ∈ V , the interiors ofM(v) andM(w) are disjoint, and v and w are adjacent
in G if and only if the boundaries ofM(v) andM(w) intersect. A graph G is a map graph
if a map of G exists.

By definition, map graphs contain and exceed the class of planar graphs. They have
applications in graph drawing, circuit board design and topological inference problems [4].
Chen, Grigni and Papadimitriou [2] characterized map graphs as the half-squares of sufficiently
small planar bipartite graphs called witnesses (we give precise definitions for both terms in
the next section). This result allows, similar to Kuratowski’s Theorem for planar graphs,
to use purely combinatorial arguments for an object that has been originally defined by

∗ The authors thank Alexander Wolff from the University of Würzburg for hosting them.
† This research was partially supported by ERC Starting Grant 306465 (BeyondWorstCase).

© Matthias Mnich, Ignaz Rutter, and Jens M. Schmidt;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 5; pp. 5:1–5:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 Linear-Time Recognition of Map Graphs with Outerplanar Witness

topological properties. Since such witnesses can always be chosen small in size (O(n) vertices
for map graphs on n vertices), the recognition problem for map graphs is in NP. In 1998,
Chen et al. therefore raised the question whether recognizing map graphs is in P.

This problem was resolved shortly after by Thorup [18], whose solution is based on a
carefully designed topological treatment. However, a full version of the extended abstract [18]
has, to the best of our knowledge, not yet appeared. The algorithm is complicated; its
run time is not given explicitly, but estimated to be at least Ω(n120). Moreover, driven by
topological arguments, the algorithm does not produce a witness if the graph is indeed a
map graph, although a combinatorial description of this witness is at hand. In this view,
an important question left open is whether there is a polynomial-time certifying algorithm
in the sense of McConnell et al. [16], where a good candidate for a certificate would be the
witness mentioned above.

Our Contribution. We give a purely combinatorial recognition algorithm for map graphs
that have an outerplanar witness (rather than a planar witness). Map graphs with an
outerplanar witness are general enough that they can have unbounded treewidth; in particular,
cliques of any size may belong to this class of graphs. Our algorithm runs in time and
space O(n + m) and is certifying. This is the first non-trivial step towards a combinatorial
and efficient recognition algorithm for general map graphs. Although the restriction to
outerplanar witnesses is somewhat specific compared to the general case of planar witnesses,
we will show structural properties for certain classes beyond (e.g. for K2,k-free witnesses, and
for graphs with small separators), that might be important for solving the general case.

We remark that the main algorithmic task is to compute a witness W , or to decide that
none exists. Creating a map from W is a simple task that can be accomplished in linear
time [2]. The crucial part of computing a witness W is that we know only a subset of the
vertices of W ; we need to do non-trivial algorithmic work in order to compute the remaining
vertices of W . This is the reason why recognizing graphs that are half-squares of planar
graphs is more challenging than recognizing graphs that are squares of planar graphs [15].

Related Work. By definition, planar graphs are an important subclass of map graphs,
and planar graphs have been known since the 1970s to be recognizable in time O(n) [12].
Nowadays, several other linear-time algorithms for planar graph recognition exist , and so it
is natural to ask whether they can be generalized to the much wider class of map graphs.
Let a d-map graph be a map graph that has a witness in which every intersection point has
at most d neighbors (states). The planar graphs are exactly the map graphs for which at
most three states meet at each single point; thus, by the well-known linear-time recognition
algorithms for planar graphs, 3-map graphs can be recognized in O(n) time.

An intricate cubic-time recognition algorithm for a subclass of 4-map graphs was given by
Chen et al. [3]; here, the 4-map graphs are required to be hole-free, meaning that there is at
most one connected region of the plane that is not covered by states or borders. However, even
efficiently recognizing general 4-map graphs in polynomial time remains an open problem;
Thorup’s algorithm does not necessarily give an embedding minimizing the maximum degree
of the intersection points, so it cannot be used to recognize 4-map graphs.

Another motivation for d-map graphs is the study of 1-planar graphs, which are the
graphs that can be embedded in the plane such that each edge crosses at most one other
edge. Recognizing 1-planar graphs is NP-complete [10, 14]. Brandenburg [1] characterizes
“fully triangulated” 1-planar graphs as hole-free 4-map graphs, which by Chen et al.’s
algorithm [3] are hence efficiently recognizable. It would be interesting to know where exactly
the recognition problem becomes NP-complete between these two graph classes.

M. Mnich, I. Rutter, and J.M. Schmidt 5:3

Further interest stems from the parameterized complexity community: Generalizing
earlier algorithms for problems on planar graphs, Demaine et al. [5] gave fixed-parameter
algorithms for combinatorial optimization problems such as minimum dominating set in map
graphs. Fomin et al. [9] gave PTAS’s for optimization problems on map graphs; they later
improved these to EPTAS’s [8].

2 Preliminaries

All graphs considered in this paper are finite, simple, and undirected. For a graph G, let V (G)
and E(G) denote its vertex set and edge set, and let n := |V (G)| and m := |E(G)|. For a
vertex v ∈ V (G), let NG(v) be the set of neighbors of v in G. For a subset V ′ ⊆ V (G), let
G[V ′] denote the subgraph of G induced by V ′. For a graph G, its square G2 is the graph
on vertex set V (G) in which two vertices are adjacent if their distance in G is at most two.

Witnesses. A witness of a map graph G = (V, E) is a bipartite planar graph W =
(V] I, EW) with EW ⊆ V × I such that W 2[V] = G. The graph W 2[V] is also called the
half-square of W , as it is the square of W restricted to the side V of the bipartition. The
vertices in I are called intersection points, the vertices in V real vertices. We say that a
witness W is a tree witness if it is a tree; analogously, outerplanar witnesses are outerplanar
and the usual witnesses, which are planar, are sometimes called planar witnesses.

I Proposition 1 ([2]). A graph G is a map graph if and only if it has a witness. If so, there
is a witness with at most 3n− 6 intersection points.

A direct consequence of this result is that the recognition problem for map graphs is in NP.
Let G be a map graph with witness W = (V] I, EW). Throughout this paper, we assume,
without loss of generality, that every intersection point in I has degree at least two.

Let G be a map graph with witness W and let P = v1, v2, . . . , vk be a path in G. A
path PW in W corresponds to P if PW = v1, x1, v2, x2, . . . , xk−1, vk such that xi is an
intersection point that is adjacent to vi and vi+1, for i = 1, . . . , k − 1. Observe that any
path P in G has some corresponding path in W , and any induced path P in G has a
corresponding induced path P ′ in W , as every chord of P ′ in the bipartite witness W would
join an intersection point with a real vertex and therefore generate a chord of P . More
generally, for a subgraph of G that is induced by some vertex subset V ′ ⊆ V (G), we specify
the corresponding part in a witness of G:

I Definition 2. Let G be a map graph with witness W and let U ⊆ V (G). A vertex w ∈W

is touched by U if either w ∈ U or w is an intersection point with at least two neighbors
in U . The touched set T (U) of U is the set of all vertices in W touched by U . The touched
subgraph of U is W [T (U)].

By using half-squares, we can get back from an induced subgraph W [U] of W for some
U ⊆ V (G) ∪ I to the original subgraph W 2[U ∩ V (G)] in G. Clearly, W [U] witnesses
W 2[U ∩ V]. We will often use the following observation.

I Observation 3. For every U ⊆ V , W [T (U)] is a witness of G[U]. Moreover, G[U] is
connected if and only if W [T (U)] is connected.

Outerplanar Graphs. The following characterizations of planar and outerplanar graphs in
terms of forbidden minors are well-known.

SWAT 2016

5:4 Linear-Time Recognition of Map Graphs with Outerplanar Witness

I Proposition 4 (Wagner [19]). A graph is planar if and only if it neither contains a
K5-minor nor a K3,3-minor.

I Proposition 5. A graph is outerplanar if and only if it neither contains a K4-minor nor a
K2,3-minor.

I Proposition 6 (Sysło [17]). A triangle-free graph is outerplanar if and only if it does not
contain a K2,3-minor.

Connectivity and SPQR trees. A graph is connected if every two of its vertices are connected
by a path; the maximal connected subgraphs of G are called components of G. A separator S

of a graph G is a subset of V such that G− S has more components than G. For an integer
c ∈ N, a connected graph is c-connected if it either has at most c vertices or removing any
set of less than c vertices leaves a connected subgraph. A 2-connected resp. 3-connected
graph is sometimes called biconnected resp. triconnected.

For a graph G, an SPQR tree [6, 7] is a tree T for which each node x ∈ V (T) has an
associated multigraph Gx, called skeleton of x, and one of the following four types:

S-node: then Gx is a cycle on at least three vertices.
P -node: then Gx is a multigraph with two vertices and at least three edges.
Q-node: then Gx is a multigraph with two vertices and two parallel edges.
R-node: then Gx is a 3-connected graph.

Each edge xy between two nodes of T is associated with two directed virtual edges, one
in Gx and one in Gy. Each edge in Gx can be virtual for at most one edge of T . All edges of
S-, P- and R-nodes are virtual for some edge of T , and we simply call them virtual edges.
An edge that is not virtual for any edge of T is real. Only skeletons of Q-nodes contain real
edges and every Q-node skeleton contains exactly one real edge.

An SPQR tree T represents a biconnected graph GT , formed as follows. Whenever an
edge xy ∈ E(T) associates the virtual edge of Gx with the virtual edge of Gy, form a larger
graph as the 2-clique-sum of Gx and Gy: We identify the endpoints of the virtual edge of Gx

with that of Gy, and then delete the resulting edge. Applying this step to each edge of T (in
any order) produces the graph GT .

We assume throughout that T is minimal, which implies that its S- and P -nodes are
pairwise non-adjacent. Under this assumption, T is uniquely determined from G. The
graphs Gx associated with the nodes of T are called the triconnected components of G.

While the above definition coincides with the classical definition of SPQR trees, it is
often more convenient to omit the Q-nodes from the tree as they carry little information. To
this end, we simply remove each Q-node and replace the corresponding virtual edge in the
skeleton of the neighboring node by a real edge. In the following we will use this modified
version of SPQR trees.

3 Reduction along Small Separators

Clearly, every separator S of W that contains only vertices of V (G) and for which at least
two components of W − S contain vertices in V (G) is also a separator in G, as no edge that
is generated by the half-square can cross S.

I Lemma 7. Let G be a map graph with witness W and let S ⊆ V (G). Then C 7→W [T (C)]
is a bijection from the vertex sets C of the components of G− S to the components of W − S

that contain a vertex of V (G). In particular, every separator S of G is a separator of W and,

M. Mnich, I. Rutter, and J.M. Schmidt 5:5

conversely, every separator S ⊆ V (G) of W such that each component of W − S contains a
vertex of V is a separator of G.

Proof. If S is not a separator of G or of W , the statement follows from Observation 3. Hence,
assume that S separates both G and W . Let A and B be the vertex sets of two arbitrary
components of G − S. By Observation 3, the touched subgraphs W [T (A)] and W [T (B)]
are connected in W − S. Assume to the contrary that some vertices a ∈ A and b ∈ B are
contained in the same component of W − S. Then W − S contains a shortest path from a

to b, whose original subgraph in G must be a path from a to b on the same real vertices, i.e.,
disjoint from S. This contradicts that A and B are different components of G− S; hence,
the components of G− S partition V in exactly the same way as the components of W − S.
In order to show that every W [T (C)] is a component of W − S, it remains to prove that no
intersection point is contained in two touched subgraphs W [T (A)] and W [T (B)]. However,
in that case, A and B would be connected in G− S. J

I Lemma 8. A map graph G has a planar (outerplanar, tree) witness if and only if all of
its biconnected components have planar (outerplanar, tree) witnesses, respectively.

Proof of Lemma 8. Assume G has a planar (outerplanar, tree) witness and let C be the
vertex set of any biconnected component of G. Then W [T (U)] is a planar (outerplanar, tree)
witness for G[C] by Observation 3, as trees, planar and outerplanar graphs are closed under
taking induced connected subgraphs.

If, on the other hand, each biconnected component of G has a planar (outerplanar,
tree) witness, we can identify these witnesses along the cutvertices of G, obtaining a planar
(outerplanar, tree) witness of G. J

We will thus assume that G is biconnected throughout the paper. Lemma 8 can be
generalized to separators of size two as follows (a similar generalization exists for separators
of size three). Consider a separator S = {u, v} of size two in a biconnected graph. An
S-bridge is either the edge uv, or the graph that is obtained from a component C of G− S

by adding the edges of G that join C with S, as well as their endpoints.

I Lemma 9. Let G be a biconnected map graph that is not triconnected, and let S = {u, v}
be a separator of G. If uv is an edge of G, let G′ = G[C ∪S] for some component C of G−S,
otherwise let G′ = (V ′, E′) be the graph obtained from G by contracting some S-bridge B

of G to a single edge. Then G′ is a map graph, and any witness of G contains some witness
of G′ as a minor.

Proof. If uv is an edge of G, then G′ is an induced subgraph of G, and is therefore a map
graph. Hence, any witness of G′ is an induced subgraph of some witness of G, and so in this
case the statement of the lemma holds.

Now assume that G does not contain the edge S. Then there exists a shortest path P

in B connecting u and v. Obtain the graph G′′ = G− (V (B)\V (P)). Then G′′ is an induced
subgraph of G and hence is a map graph. Hence, any witness of G′′ is an induced subgraph
of some witness of G. Now contract the path P (whose interior vertices have degree 2) to a
single edge, and call the resulting graph G′. Then any witness of G′′ contains a path P ′′

realizing the path P . The internal vertices of P ′′ all have degree 2, and so contracting this
path P ′′ to a path of length 2 yields a corresponding witness for G′. Hence any witness of G

contains as a minor a witness of G′′, which in turn contains as a minor a witness of G′. J

Lemma 9 will allow us to reduce along separators of size two.

SWAT 2016

5:6 Linear-Time Recognition of Map Graphs with Outerplanar Witness

4 Map Graphs with a Tree Witness

We characterize the map graphs that admit a tree witness. The characterization implies
immediately a linear-time recognition algorithm for such graphs.

I Lemma 10. A biconnected map graph has a tree witness if and only if it is a clique.

Proof. Clearly a clique has a tree witness (the star). Conversely, assume that G is a
biconnected graph with tree witness W and assume that G is not a clique. Then W is not
a star, and it hence has two adjacent non-leaf vertices u and v. Since intersection points
are pairwise non-adjacent, one of them, without loss of generality v, is not an intersection
point. Then v is a cutvertex in W and, by Lemma 7, a cutvertex in G. This contradicts the
assumption that G is biconnected. J

Lemma 8 and Lemma 10 immediately imply the following characterization of map graphs
with a tree witness.

I Theorem 11. A map graph has a tree witness if and only if each of its biconnected
components is a clique.

I Corollary 12. Map graphs with a tree witness can be recognized in O(n + m) time.

5 Map Graphs with an Outerplanar Witness

In this section we study the problem of recognizing map graphs with an outerplanar witness.
Due to Lemma 8, we can assume that the input graph G is biconnected. As bipartite planar
graphs are triangle-free, we know with Proposition 6 that G has an outerplanar witness
if and only if G has a K2,3-minor free witness. Thus, all of the following proofs work for
recognizing map graphs admitting witnesses that are K2,3-minor free.

The next result states that triconnected map graphs G have witnesses with a very simple
structure. For k ≥ 2, a set of paths Π1, . . . , Πk in a witness W = (V (G) ∪ I, EW) of G is
internally V (G)-disjoint if no two paths Πi and Πj share an internal vertex in V (G).

I Lemma 13. For k ≥ 3, a k-connected map graph G has a K2,k-minor free witness if and
only if it is a clique.

Proof. If G is a clique, it has a tree witness that is a star whose center is an intersection
point, and this witness is K2,k-minor free. If G is not a clique, two vertices, say u, v ∈ V (G),
are not adjacent; let W be a witness of G. Since G is k-connected, G contains k internally
vertex-disjoint paths from u to v. Let P1, . . . , Pk denote such internally vertex-disjoint
uv-paths of minimum total length; in particular, each of the Pi is an induced path. Denote
by ui the neighbor of u in Pi for i = 1, . . . , k; see Fig. 1a for an example for k = 3. Let Πi

denote a path in W corresponding to Pi for i = 1, . . . , k. Clearly the Πi are internally
V (G)-disjoint and each of them is an induced path. For a path Π containing vertices a and b,
let Π[a, b] denote the subpath of Π from a to b. Let A =

⋃k
i=1 V (Πi[u, ui]) \ {u1, . . . , uk} and

B =
⋃k

i=1 V (Πi[ui, v]) \ {u1, . . . , uk}; see Fig. 1b. Note that A consists exactly of u and the
neighbors of u on the paths Πi.

We claim that
(i) W [A] and W [B] are connected,
(ii) A ∩B = ∅, and
(iii) each vertex ui has a neighbor in A and a neighbor in B.

M. Mnich, I. Rutter, and J.M. Schmidt 5:7

u v

u1

u2

u3

P1

P2

P3

(a)

u v

u1

u2

u3

A

Π1

Π2

Π3

B

(b)

Figure 1 Illustration for the proof of Lemma 13 for k = 3. Vertices of G are empty disks,
intersection points are small black squares.

v0 v1
v2x1

x2

x0

(a)

v0 v1
v2x1

x2

x0

v

(b)

v0 v1
v2x1

x2

x0

(c)

v0 v1
v2x1

x2

x0

v
x

(d)

Figure 2 Illustration of the cases in the proof of Lemma 14.

Assume the claim holds and consider the graph W ′ := W [A ∪B ∪ {u1, . . . , uk}]. Since
W [A] ⊆ W ′ and W [B′] ⊆ W ′ are connected (Claim (i)) and disjoint (Claim (ii)), we can
contract these subgraphs into distinct vertices vA and vB, respectively. By Claim (iii), it
follows that each of the ui is adjacent to both vA and vB. Omitting a possible edge vAvB

yields a K2,k-minor in W .
We now prove the claim. Statements (i) and (iii) follow immediately from the definitions

of A and B via the paths Πi. For (ii), assume that A ∩ B 6= ∅ and let x ∈ A ∩ B. Since
the paths Π1, . . . , Πk are internally V (G)-disjoint and each of them is induced, x must be
an intersection point. Since x ∈ A, x is adjacent to u. Since x ∈ B, it follows that x is
adjacent to a vertex w ∈ V (Pi) ∩ B for some i ∈ {1, . . . , k}, say without loss of generality
w ∈ V (P1) ∩B. Since x is adjacent to u and w, G contains the edge uw. Moreover, w 6= u1,
since u1 /∈ B. But then replacing the subpath from u to w in P1, which contains u1 in its
interior, by the edge uw yields a shorter k-tuple of internally vertex-disjoint uv-paths in G.
This contradicts the minimality of P1, . . . , Pk. J

In particular, a triconnected map graph with outerplanar witness, which is K2,3-minor
free, must be a clique. Hence, it suffices to investigate separators of size 2 in G.

In general map graphs, every two adjacent vertices have at least one neighboring inter-
section point in the witness, according to the definition of half-squares. Let G be a map
graph with an outerplanar witness H. The intuition for the next lemma is that then every
three vertices of a clique in G have a common neighboring intersection point in H. Note
that this property is not true for arbitrary planar witnesses, as each of the pizza with crust,
hamantash and riceball [2] contains three nations without any common intersection.

I Lemma 14. Let G be a map graph with an outerplanar witness W and let v0, v1, v2
be vertices of a clique of size at least 4. Then some intersection point in W is adjacent
to v0, v1, v2.

Proof. Assume the contrary. Then there exist distinct intersection points x0, x1, x2 such
that xi is adjacent to vi+1, vi+2 but not to vi, where indices are taken modulo 3; see Fig. 2a.

Now consider a vertex v of the clique that is distinct from the vi. There is a path of
length two from v to each of the vi in W . If v is adjacent to two (or more) of the xi, we

SWAT 2016

5:8 Linear-Time Recognition of Map Graphs with Outerplanar Witness

v1

v2
v3

x v0

y

z

(a)

v0 v1
v2x1

x2

x0

u2

(b)

Figure 3 Illustration of the proofs of Lemma 16(a) and Lemma 17(b).

immediately have a K2,3-minor (Fig. 2b with branch vertices {x1, x2}); likewise, if there is
an intersection point distinct from the xi adjacent to two of the vi ({v0, v2} in Fig. 2c). It
follows that v must reach one of the vi, without loss of generality v0, via an intersection
point x distinct from the xi, and xi is not adjacent to v1 and v2 (Fig. 2d). But now, to
reach v1 and v2, v either has to be adjacent to x0, or it must use a new intersection point y

adjacent to v1 or v2. In both cases, we obtain a K2,3-minor. J

The proof of Lemma 14 shows that the bound “4” on the clique size is as small as possible.

I Definition 15. A clique C in a map graph G with witness W is represented by an
intersection point if W contains at least one intersection point whose neighborhood is V (C).

Cliques that are represented by exactly one intersection point are called “pizzas” by Chen
et al. [2]. We now show that in outerplanar witnesses all cliques of size at least 4 must be
represented in this way, thus significantly reducing the possible representations.

I Lemma 16. Let G be a map graph with outerplanar witness W . Each maximal clique C

of size at least 4 is represented by an intersection point.

Proof. We first show that W contains an intersection point x that is adjacent to all vertices
of C. This readily implies that x has no other neighbor, as any such neighbor would contradict
the maximality of C. Let x be an intersection point in W with a maximum number of
neighbors in C and assume to the contrary that C contains a vertex v0 that is not adjacent
to x. By Lemma 14, x has at least three neighbors v1, v2, v3 in C. Let V ′ = {v0, v1, v2, v3}.

If there were a single intersection point y 6= x adjacent to {v1, v2, v3}, this would result in
a K2,3 with branch vertices x and y. This implies that any intersection point different from x

can be adjacent to at most three of the vertices in V ′ (omitting at least one of {v1, v2, v3}).
On the other hand, by Lemma 14, for any such subset a corresponding intersection point
exists. Thus, there exist intersection points y 6= x and z 6= x with N(y) ∩ V ′ = {v0, v1, v2}
and N(z) ∩ V ′ = {v0, v2, v3}; see Fig. 3a. Contracting the two edges yv0 and zv0 yields a
K2,3-minor in W . This contradicts outerplanarity.

J

According to the definition of witnesses, maximal cliques of size 2 must also be represented
by intersection points. Thus, the only cliques for which the representation is unclear are
maximal cliques of size 3. In the following we show that cliques that cannot be represented by
an intersection point in an outerplanar witness induce a special structure. Namely, any two
of its vertices form a separator, and we further describe the way in which these separators
decompose the graph.

I Lemma 17. Let G be a map graph with outerplanar witness and let W be an outerplanar
witness of G that maximizes the number of maximal cliques of size 3 that are represented by

M. Mnich, I. Rutter, and J.M. Schmidt 5:9

v1

c c′v2

v3

(a)

u

v
w w′

c c′

(b)

u

v

v1 v2
c1

c12

c22

P1 P2

(c)

Figure 4 Illustration for the proof of Lemma 18. The wiggly line in (b) indicates an arbitrary
path from w to w′ avoiding u and v. The paths P1 and P2 are drawn bold (and blue) in (c).

intersection points. Let v0 and v1 be any two vertices of a maximal clique C = {v0, v1, v2}
that is not represented by an intersection point. Then {v0, v1} is a separator in G that
separates v2 from every other maximal clique of G containing v0 and v1.

Proof. Since C is not represented by an intersection point, there exist witness points x0, x1, x2
such that xi is adjacent to vi+1 and vi+2 but not to vi (indices modulo 3). The cycle containing
the xi and vi does not contain any vertex inside because of outerplanarity of W ; in addition,
any interior edge would contradict that C is not represented by an intersection point. Thus
the xi and vi form the boundary of a face of W ; see Fig. 3b.

If some xi has degree 2, we can add the edge xivi, which would result in an intersection
point for the clique, contradicting the maximality of W . It follows that each xi is adjacent to
some ui ∈ V (G)− C. We claim that {v0, v1} separates u2 from v2 in W . Otherwise, there
exists a path from u2 to v2 in W − v0 − v1. Together with the cycle formed by the vi and xi,
this yields a K2,3-minor, contradicting the outerplanarity. Thus, {v0, v1} is also a separator
in G that separates u2 and v2. J

I Lemma 18. For a map graph G with outerplanar witness, the following statements
hold.
(i) Any two maximal cliques of G share at most two vertices.
(ii) Any two vertices that are shared by two maximal cliques of G form a separator of G

separating these cliques.
(iii) Any two vertices are shared by at most two maximal cliques.

Proof. For (i), assume that C, C ′ are maximal cliques sharing vertices v1, v2, v3. Since C, C ′

are distinct, they have size at least 4. By Lemma 16, they are represented by distinct
intersection points c, c′; see Fig. 4a. Then v1, v2, v3, c, c′ induce a K2,3; a contradiction.

For (ii), let {u, v} be two vertices that are shared by two maximal cliques C and C ′.
Consider an outerplanar witness W of G that maximizes the number of cliques of size 3 that
are represented by intersection points. If C and C ′ are realized by intersection points c and c′,
respectively, consider w and w′ in C \C ′ and C ′ \C, respectively. A path between these two
vertices avoiding u and v yields a K2,3-minor with branch vertices c and c′, contradicting
outerplanarity; see Fig. 4b. Hence, assume that one of the cliques is not realized as an
intersection point. With Lemma 16, this clique has at most three vertices and the statement
follows from Lemma 17.

For (iii), assume that two vertices u and v are shared by at least three maximal
cliques C0, C1 and C2. Note that each Ci has size at least three, as otherwise the Ci

would not be distinct. According to (ii), every Ci contains a vertex vi that is not in
Ci+1 ∪ Ci+2 (indices taken modulo 3). If Ci is represented by an intersection point ci, then
let Pi denote the path uciv in W (path P1 in Fig. 4c). If Ci is not represented by an

SWAT 2016

5:10 Linear-Time Recognition of Map Graphs with Outerplanar Witness

intersection point, then Ci has size 3, and W contains a path uc1
i , vi, c2

i , v, where c1
i and c2

i

are intersection points. We define Pi to be this path (path P2 in Fig. 4c). Paths Pi and Pj

for i 6= j are internally disjoint by the definition of the vi, and so three internally disjoint
paths from u to v in W yield a K2,3-minor. This contradicts the outerplanarity of W . J

I Lemma 19. Let G be a biconnected map graph with an outerplanar witness W . Every
separator S = {u, v} of G of size two separates exactly two components.

Proof. Assume to the contrary that G− S contains at least three components Ci, 1 ≤ i ≤ 3.
By Lemma 7, the touched subgraphs W [T (V (Ci))] are different components of W − S. For
every i, there is a path Pi in G from u to v that contains a vertex of Ci as inner vertex, since S

is minimal in G. In W , each Pi corresponds to a path from u to v that contains a vertex
of W [T (V (Ci))] as inner vertex (this may be either an intersection point or a real vertex).
Since each Pi has length at least two, W contains a K2,3-minor with branch vertices u, v. J

5.1 Structural Properties of Map Graphs with Outerplanar Witness
To obtain an efficient recognition algorithm for map graphs with outerplanar witness, two
things remain to be done. First, we need to better understand the structure of those maximal
cliques for which the representation in the witness is not already decided by the previous
results. Second, we need to find a way to quickly enumerate all the relevant cliques in order
to decide upon their representation in the witness.

As we have seen, the maximal cliques for which the representation cannot be an intersection
point induce separating pairs in the input graph. This, together with the fact that certainly
all cliques of size at least 4 belong to a single triconnected component of the input graph
motivates the study of the triconnected components of the input graph. Essentially, we show:
1. Every maximal clique of size at least three shows up as a triconnected component of G.
2. A description of the maximal cliques of size three that cannot be represented by an

intersection point.

The first item allows us to quickly compute all maximal cliques by exploiting the SPQR
tree, which can be computed in linear time [11], rather then by a maximal clique enumeration
algorithm, which might be much slower. The second item is used to determine the correct
intersection points for all maximal cliques.

The following corollary follows immediately from applying Lemma 9 along the recursive
definition of SPQR trees. Afterwards we derive further structural results on the triconnected
components of a map graphs with outerplanar witnesses.

I Corollary 20. Let G be a biconnected map graph with an outerplanar witness. Then each
skeleton of the SPQR tree of G is a map graph with an outerplanar witness.

I Lemma 21. Let G be a biconnected map graph with an outerplanar witness. Then the
SPQR tree of G satisfies the following properties:
(i) Every P-node skeleton consists of three parallel edges of which one is a real edge.
(ii) Every R-node skeleton is a clique.

Proof. For (i), observe that, according to Lemma 19, there are exactly two components in
G− S for every separator S = {u, v} of G of size two. Thus, every parallel P -node in the
SPQR tree has at most three parallel edges (and at least three by definition of SPQR trees):
two virtual ones and one edge from G.

M. Mnich, I. Rutter, and J.M. Schmidt 5:11

For (ii), observe that the skeleton of an R-node is a triconnected graph. According to
Corollary 20, this skeleton is a map graph with an outerplanar witness. Applying Lemma 13
with k = 3 implies that the skeleton is a clique. J

In fact, not only is every R-node skeleton a clique, but any such clique is a subgraph of G.

I Lemma 22. Let G be a map graph with outerplanar witness. Then every R-node skeleton
is a maximal clique that is a subgraph of G.

Proof of Lemma 22. Consider an R-node skeleton S, which is a clique by Lemma 21(ii),
and let uv be an edge of S that is not in G (thus, a virtual edge). Let G′ be the graph that
is obtained from G by contracting the subgraph corresponding to each remaining virtual
edge into a single edge. Let G′′ be the subgraph obtained from G′ by removing all vertices
in the subgraph that corresponds to the virtual edge uv, except for u, v and a shortest
path between them. The graph G′ is a map graph with outerplanar witness by Lemma 9,
and G′′ is a map graph with outerplanar witness by Observation 3, as G′′ is an induced
subgraph of G′. Thus, G′′ contains the two cliques with vertex sets V1 = V (S)− {u} and
V2 = V (S) − {v}, which are maximal, as uv is not in G′′. But then |V1 ∩ V2| ≥ 2, since
|V (S)| ≥ 4 and |V1 ∩ V2| ≤ 2 by Lemma 18(i). Hence |V1 ∩ V2| = 2, |S| = 4 and thus, G′′ is
the graph obtained from K4 by replacing an edge with a path of length at least two. This
contradicts that, according to Lemma 18(ii), V1 ∩ V2 is a separator of G′′. J

I Lemma 23. Let G be a biconnected map graph with outerplanar witness and let C =
{u, v, w} be a maximal clique in G. Then there is an S-node skeleton with vertex set {u, v, w}.

Proof. By definition, the induced subgraph G[C] is triconnected, hence there is a skeleton
of a node q in the SPQR tree of G that contains all three vertices of C. However, q cannot
be a P-node (as it contains only two vertices) and it cannot be an R-node, whose skeletons
are well-known to contain at least four vertices. Hence, it must be an S-node. The skeleton
of q cannot contain any other vertex than those in C, as it then would not be a cycle. J

It follows from Lemma 22 and Lemma 23 that we find all maximal cliques by considering
the skeletons of the SPQR tree. In particular, this allows us to enumerate all maximal cliques
in linear time. Recall that by Lemma 16 each maximal clique of size at least 4, which are
precisely the cliques corresponding to R-nodes, must be represented by an intersection point.
It remains to understand which maximal cliques of size three may not be represented by an
intersection point.

I Lemma 24. Let G be a biconnected map graph with outerplanar witness, let C = {u, v, w}
be a maximal clique in G, and let W be a witness that maximizes the number of cliques of
size 3 represented by an intersection point. Then C is not represented by an intersection
point in W if and only if the skeleton of the S-node corresponding to C has 3 virtual edges.

Proof. Let S be the skeleton of the S-node on vertex set {u, v, w}, which exists by Lemma 23.
Suppose, for the sake of contradiction, that C is not represented by an intersection point
but one of the edges of S, say uv, is not virtual. Then the edges of C are represented by
three distinct intersection points x1, x2, x3, which form a cycle K together with the vertices
of {u, v, w} in W (cf. Fig. 2a). Assume, without loss of generality, that x1 is adjacent to u

and v. Since the edge uv is not virtual, the separator {u, v} has exactly two split components
of which one is an edge. As the other split-component is the one containing w, it follows
that C is the only maximal clique that contains uv. Hence, x1 has degree two in W .

SWAT 2016

5:12 Linear-Time Recognition of Map Graphs with Outerplanar Witness

We claim that K bounds a face of W in any outerplanar embedding of W . To justify the
claim, observe that there cannot be a vertex embedded inside K due to W being outerplanar,
and an edge embedded inside K would contradict the assumption that C is not represented
by an intersection point. Thus, the claim holds, and the interior of K is empty.

We can then insert the edge x1w to W , resulting in an outerplanar witness of G where C

is represented by an intersection point. This, however, contradicts the maximality of W .
For proving sufficiency, assume to the contrary that C is represented by an intersection

point c, but all edges of S are virtual. Then, the witness W contains for each virtual edge ab

a path from a to b that avoids c and all inner vertices from each subgraph corresponding to
a virtual edge different from ab. Thus, we obtain three internally disjoint paths connecting u

to v, v to w and w to u, respectively. These three paths are all vertex-disjoint from {c}, and
thus gives a K4-minor in W with branching vertices {c, u, v, w}. This, however, contradicts
the outerplanarity of W . J

5.2 Recognition Algorithm

Based on our structural observations, we give a linear-time algorithm for recognizing map
graphs that admit an outerplanar witness, Algorithm 1.

Algorithm 1 Linear-Time Recognition Algorithm for Map Graphs with Outerplanar Witness
Input: A graph G.
Output: An outerplanar witness W of G if G is a map graph, “no” otherwise.
1: Create a candidate bipartite graph W ; let V be one side of the bipartition of W .
2: for each biconnected component Hi of G do
3: Compute an SPQR tree Ti of Hi.
4: for each R-node R of Ti do
5: if the skeleton of R is not a clique of non-virtual edges return “no”
6: Add an intersection point pR with neighborhood V (R) to W .
7: for each S-node S of Ti whose skeleton is a clique of size 3 with some real edge do
8: Add an intersection point pS with neighborhood V (S) to W .
9: for each edge e = uv in G that is not yet represented by an intersection point do

10: Add an intersection point puv of degree 2 with neighborhood {u, v} to W .
11: Test outerplanarity of W : if “yes”, return W , else return “no”.

The algorithm takes as input an arbitrary graph G. First, it decomposes G into its
biconnected components H1, . . . , Ht. We know that G is a map graph with outerplanar
witness if and only if each Hi is a map graph with outerplanar witness (see Lemma 8).

We seek to construct a bipartite witness candidate W of G as follows. Let the vertices
of G be one side of the bipartition of W . For each Hi, compute the decomposition into its
triconnected components, i.e., its SPQR tree Ti in linear time [11, 13]. For each R-node
of Ti, check whether it is a clique of non-virtual edges. If not, then reject the graph Hi (and
hence G) as not being a map graph with outerplanar witness. Otherwise, add an intersection
point to W that represents that clique.

For each S-node of Ti that forms a clique of size 3 and that has a non-virtual edge, add
an intersection point to W representing the clique.

Finally, for each edge of G that is not yet represented by one of the previously constructed
intersection points, add a separate intersection point of degree 2 to W representing exactly
this edge. Let W be the resulting candidate witness graph. Test whether W is outerplanar.

M. Mnich, I. Rutter, and J.M. Schmidt 5:13

If W is outerplanar, then output the outerplanar witness W , otherwise reject the input
graph G as not being a map graph with outerplanar witness.

I Theorem 25. Map graphs with outerplanar witness can be recognized in O(n + m) time.

Proof. It is not hard to see that the above algorithm can be implemented to run in O(n + m)
time. In the following we prove the correctness.

First, assume that the algorithm outputs a witness W in the end. We show that W

is a witness of the input graph G. Note that all intersection points we create represent
either cliques of various sizes of G, or they only represent a single edge (if they are added
in the last step). Thus, W 2[V (G)] ⊆ G. On the other hand, the last step ensures that
W 2[V (G)] ⊇ G, and thus we have W 2[V (G)] = G, which shows that indeed G is a map
graph with outerplanar witness W .

Conversely, assume that the algorithm rejects G, although G is a map graph with
outerplanar witness. Let W ∗ be an outerplanar witness that minimizes the number of cliques
of size 3 that are not represented by an intersection point.

The are only two steps in the algorithm where G may be rejected. First, when an R-node
skeleton is not a clique that is subgraph of G. But in this case, G is not a map graph with
outerplanar witness by Lemma 22. Second, G may be rejected when W is found not to
be outerplanar. In this case, we will give an isomorphism from W to an induced subgraph
of W ∗ whose restriction to V is the identity. This contradicts that W ∗ is outerplanar.

It suffices to give the mapping for intersection points only, as every witness contains an
identical set V of real vertices. Let w ∈ W be an intersection point of degree at least 4.
Then N(w) is a clique of size at least 4 in G. The intersection point w was added due to
an R-node clique of that size, and hence N(w) is a maximal clique of size at least 4. By
Lemma 16, any outerplanar witness contains an intersection point representing that clique;
we thus find an image for w in W ∗. Note that a second vertex with the same neighborhood
is not created; this would imply the existence of a second R-node skeleton with the same
vertex set, which is impossible since any two skeletons share at most two vertices.

Let w ∈ W be an intersection point of degree 3. Then N(w) is a maximal clique of
size 3, and w was created due to an S-node skeleton that contained a non-virtual edge. By
Lemma 24, N(w) is represented by an intersection point in W ∗ as well, and we thus find an
image of w in W ∗. Again, any intersection point mapped to the same image would imply
the existence of a second S-node skeleton with the same vertex set, which is not possible.

Finally, let w ∈ W be an intersection point of degree 2, which must have been added
in the last step, and let N(w) = {u, v}. Clearly, W ∗ must contain an intersection point x

adjacent to u and v. If x has degree at least 4, then N(x) is a clique of size at least 4, which
must show up as an R-node of the SPQR tree. But then the edge uv was already represented
in W by an intersection point corresponding to x and the algorithm would not have added w.
Similarly, if x has degree 3, then N(x) is a maximal 3-clique. Since it is represented by the
intersection point x, it follows that the corresponding S-node contains a virtual edge by
Lemma 24. But then, again, the algorithm would have added an intersection point to W

that corresponds to x. Thus, the degree of x must be 2, and we can choose it as an image
for w. Since all degree-2 intersection points inserted in the last step represent distinct edges
of G, no two degree-2 intersection points of W are mapped to the same intersection point
of W ∗. Hence, we have found an isomorphism from W to a subgraph of W ∗. J

The correctness proof shows that the algorithm computes a smallest (with respect to
subgraph inclusion) outerplanar witness, and that this witness is unique up to isomorphism.

SWAT 2016

5:14 Linear-Time Recognition of Map Graphs with Outerplanar Witness

6 Discussion

We gave an O(n+m) time and space recognition algorithm for map graphs with an outerplanar
witness. The algorithm is certifying. This result is a first step towards improving Thorup’s
recognition algorithm for map graphs with planar witness that requires time about Ω(n120).

For map graphs with outerplanar witness, Lemma 18 shows that any two maximal cliques
of G intersect in at most two vertices. However, this property does not generalize, as for
arbitrary map graphs any k ≥ 2 maximal cliques can have intersections of unbounded size:
namely, one can show that for every pair k, ` ∈ N there exist map graphs Gk,` with exactly k

maximal cliques such that these cliques intersect in exactly ` vertices.

References
1 F. J. Brandenburg. On 4-map graphs and 1-planar graphs and their recognition problem.

Technical report, ArXiv, 2015. URL: http://arxiv.org/abs/1509.03447.
2 Z.-Z. Chen, M. Grigni, and C. H. Papadimitriou. Map graphs. J. ACM, 49(2):127–138,

2002.
3 Z.-Z. Chen, M. Grigni, and C. H. Papadimitriou. Recognizing hole-free 4-map graphs in

cubic time. Algorithmica, 45(2):227–262, 2006.
4 Z.-Z. Chen, X. He, and M.-Y. Kao. Nonplanar topological inference and political-map

graphs. In Proc. SODA 1999, pages 195–204, 1999.
5 E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos. Fixed-parameter al-

gorithms for (k, r)-center in planar graphs and map graphs. ACM Trans. Algorithms,
1(1):33–47, 2005.

6 G. Di Battista and R. Tamassia. On-Line Maintenance of Triconnected Components with
SPQR-Trees. Algorithmica, 15(4):302–318, 1996.

7 G. Di Battista and R. Tamassia. On-Line Planarity Testing. SIAM J. Comput., 25(5):956–
997, 1996.

8 F. V. Fomin, D. Lokshtanov, N. Misra, and S. Saurabh. Planar F-deletion: Approximation,
kernelization and optimal FPT algorithms. Proc. FOCS 2012, pages 470–479, 2012.

9 F. V. Fomin, D. Lokshtanov, and S. Saurabh. Bidimensionality and geometric graphs. In
Proc. SODA 2012, pages 1563–1575, 2012.

10 A. Grigoriev and H. L. Bodlaender. Algorithms for graphs embeddable with few crossings
per edge. Algorithmica, 49(1):1–11, 2007. doi:10.1007/s00453-007-0010-x.

11 C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees. In Proc. GD
2000, volume 1984 of Lecture Notes Comput. Sci., pages 77–90, 2001.

12 J. Hopcroft and R. Tarjan. Efficient planarity testing. J. ACM, 21(4):549–568, 1974.
13 J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. SIAM

J. Comput., 2(3):135–158, 1973.
14 V. P. Korzhik and B. Mohar. Minimal obstructions for 1-immersions and hardness of

1-planarity testing. J. Graph Theory, 72(1):30–71, 2013.
15 Y. L. Lin and S. S. Skiena. Algorithms for square roots of graphs. SIAM J. Discrete Math.,

8(1):99–118, 1995.
16 R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying algorithms. Com-

put. Sci. Review, 5(2):119–161, 2011.
17 M. M. Sysło. Characterizations of outerplanar graphs. Discrete Math., 26(1):47–53, 1979.
18 M. Thorup. Map graphs in polynomial time. In Proc. FOCS 1998, pages 396–405, 1998.
19 K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Math. Ann., 114(1):570–590,

1937.

http://arxiv.org/abs/1509.03447
http://dx.doi.org/10.1007/s00453-007-0010-x

The p-Center Problem in Tree Networks Revisited
Aritra Banik1, Binay Bhattacharya2, Sandip Das3,
Tsunehiko Kameda4, and Zhao Song5

1 Advanced Computing and Microelectronics Unit, Indian Statistical Inst.,
Kolkata, India
aritrabanik@gmail.com

2 School of Computing Science, Simon Fraser University, Vancouver, Canada
binay@sfu.ca

3 Advanced Computing and Microelectronics Unit, Indian Statistical Inst.,
Kolkata, India
sandipdas@isical.ac.in

4 School of Computing Science, Simon Fraser University, Vancouver, Canada
tikokameda@gmail.com

5 Department of Computer Science, University of Texas, Austin, USA
zhaos@utexas.edu

Abstract
We present two improved algorithms for weighted discrete p-center problem for tree networks
with n vertices. One of our proposed algorithms runs in O(n logn+ p log2 n log(n/p)) time. For
all values of p, our algorithm thus runs as fast as or faster than the most efficient O(n log2 n) time
algorithm obtained by applying Cole’s speed-up technique [10] to the algorithm due to Megiddo
and Tamir [20], which has remained unchallenged for nearly 30 years.

Our other algorithm, which is more practical, runs in O(n logn + p2 log2(n/p)) time, and
when p = O(

√
n) it is faster than Megiddo and Tamir’s O(n log2 n log logn) time algorithm [20].

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Facility location, p-center, parametric search, tree network, sorting net-
work

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.6

1 Introduction

Deciding where to locate facilities to minimize the communication or travel costs is known
as the facility location problem. It has attracted much research interest since the publication
of the seminal paper on this topic by Hakimi [14]. For a good review of this subject, the
reader is referred to [15]. It can be applied to locate fire stations, distribution centers, etc.

In the p-center problem, p centers are to be located in a network G(V,E), so that the
maximum (weighted) distance from any demand point to its nearest center is minimized.
The simplest version of the problem (V/V/p) allows centers to be located only on vertices
(V), and restricts demand points to be vertices. Other variations allow points on edges to be
demand points (V/E/p), or points on edges (E) to be centers (E/V/p), or both (E/E/p).
The vertices of a network could be weighted, i.e., the vertex weights can be different, or
unweighted. In this paper we refer to weighted E/V/p as the weighted discrete p-center
problem (WDpC). The p-center problem in a general network is NP-hard [17]. In this paper,
we focus on the tree networks, on which there has been very little progress (for arbitrary p)
since the mid-1980s.

© Aritra Banik, Binay Bhattacharya, Sandip Das, Tsunehiko Kameda, and Zhao Song;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 6; pp. 6:1–6:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 The p-Center Problem in Tree Networks Revisited

1.1 Previous work
Megiddo [19] solved E/V/1 for the tree networks in O(n) time, where n is the number of
vertices. Megiddo and Tamir also studied this problem [20]. Kariv and Hakimi [17] presented
an O(mpn2p−1 logn/(p−1)!) time algorithm for WDpC in a general network, where m is the
number of edges. Tamir [25] improved the above bound to O(mpnp lognα′(n)), where α′(n)
is the inverse of Ackerman’s function. Recently, Bhattacharya and Shi [7] improved it to
O(mpnp/22log∗ n logn) for p ≥ 3, where log∗ n denotes the iterated logarithm of n. A recent
result on Klee’s measure due to Chan [8] implies that this bound can be further improved to
O(mpnp/2 logn).

Frederickson [11, 12] solved the unweighted V/V/p, E/V/p and V/E/p problems in O(n)
time, independently of p. For the weighted tree networks, linear time algorithms have been
proposed in the case where p is a constant [3, 24]. For arbitrary p, Kariv and Hakimi [17] gave
an exhaustive O(n2 logn) time algorithm. Megiddo’s linear time feasibility test [21] can be
parameterized to solve the problem in O(n2) time, using the idea introduced in [21]. Megiddo
and Tamir [20] then provided an O(n log2 n log logn) time algorithm, which can be made to
run in O(n log2 n) time using the AKS or similar n×O(logn) sorting networks [1, 13, 23],
together with Cole’s improvement [10]. The O(pn logn) time algorithm due to Jeger and
Kariv [16] is faster than all others if p = o(logn).

The running time of the algorithm of Megiddo and Tamir [20] is dominated by the time
for computing the distance queries in their binary-search based algorithm. Frederickson
[11, 12] used parametric search to design optimal algorithms for the unweighted p-center
problem in tree networks. In parametric search, one first designs an α-feasibility test to see
if p centers can be placed in such a way that every vertex is within cost (=distance weighted
by the weight of the vertex) α from some center. In general, a set of candidate values for
α is explicitly or implicitly tested as the algorithm progresses. Eventually, the search will
settle on the smallest α value, α∗. The ideas presented in [11, 12] are for the unweighted
case only, and therefore cannot be extended easily to WDpC. The question of whether an
algorithm which runs faster than O(n log2 n) time is possible for the tree networks has been
open for a long time since.

To present our basic approach clearly, we first solve WDpC for balanced binary tree
networks. We then generalize it to general (unbalanced) tree networks based on spine tree
decomposition [4, 5].

1.2 Our contributions
Our major contributions in this paper are (i) an O(p log(n/p)) time algorithm for testing α-
feasibility for an arbitrary α, with preprocessing that requires O(n logn) time, (ii) a practical
O(n logn+ p2 log2(n/p)) time WDpC algorithm, which outperforms the O(n log2 n log logn)
time algorithm proposed in [20] when p = O(

√
n), and iii) an O(n logn+ p log2 n log(n/p))

time WDpC algorithm based on AKS-like sorting networks [1, 13, 23], which improves upon
the currently best O(n log2 n) time algorithm [10, 20].

The rest of the paper is organized as follows. In Section 2 we first define the terms
that are used throughout the paper. We then give a rough sketch of our parametric search
approach to solving WDpC on balanced tree networks. We also propose our location policy
that guides the placement of the centers. Section 3 describes preprocessing that we perform,
in particular, the computation of upper envelopes and a preparation for fractional cascading.
We then present in Section 4 the details of the feasibility test part of parametric search for
balanced tree networks. The optimization part of parametric search is discussed in detail in

A. Banik, B. Bhattacharya, S. Das, T. Kameda, and Z. Song 6:3

Section 5 for balanced tree networks. At the end of the section, we present our results for
the general (unbalanced) tree networks.

2 Preliminaries

2.1 Definitions
Let T =(V,E) denote a tree network, where each vertex v ∈ V has weight w(v) (≥ 0) and
each edge e ∈ E has a non-negative length. We write x ∈ T , if point x lies anywhere in T ,
be it on an edge or at a vertex. For a, b ∈ T , let π(a, b) denote the unique path from a to b,
and d(a, b) its length. If a or b is on an edge, its prorated length is used. If T is a binary
rooted with root vertex r, for any vertex v ∈ V , the subtree rooted at v is denoted by T (v),
and the parent of v (6= r) is denoted by p(v).

For a non-leaf vertex v ∈ V , let vl (resp. vr) denote its left (resp. right) child vertex, and
define the left (resp. right) branch of v by B(vl) = T (vl)∪(vl, v) (resp. B(vr) = T (vr)∪(vr, v)).
We thus have T (v) = B(vl) ∪B(vr), and the root of B(vl) (resp. B(vr)) is v with degree 1
in B(vl) (resp. B(vr)).

Let V ′ ⊆ V and x ∈ T . We define the distance between a point x and V ′ by d(x, V ′) ,
minv∈V ′{d(x, v)}. The cost of a vertex v at point x is given by d(v, x)w(v). We say that
point x ∈ T α-covers V ′ (⊆ V) if maxv∈V ′{d(x, v)w(v)} ≤ α. If α is clear from the context,
we may simply say that x covers V ′. A problem instance is said to be α-feasible if there
exists p centers such that every vertex is α-covered by at least one of the centers. Those
p centers are said to form a p-center [17]. For a vertex v ∈ V and points x ∈ T \T (v), we
define the upper envelope

Ev(x) = max
u∈T (v)

{d(x, u)w(u)}. (1)

If Ev(x) = d(u, x)w(u) = α, then vertex u is said to be an α-critical vertex in T (v) with
respect to x ∈ T \T (v), and is denoted by u = cv(x, T (v)). If α is clear from the context, we
may call it just a critical vertex

2.2 Spine tree decomposition and upper envelopes
We give a brief review of spine tree decomposition [4, 5]. The materials in this subsection is
not needed until Sec. 5.2. We can assume that given T is a binary tree; otherwise we can
introduce O(n) vertices of 0 weight and O(n) edges of 0 length to make it binary. Thus
each vertex has degree at most 3. Let r be the root of T , which can be chosen arbitrarily.
Traverse T , starting on an edge incident to r. At each vertex visited, move to the branch
that contains the largest number of leaf vertices, breaking a tie arbitrarily. When a leaf
vertex, u, is reached, the path π(v, u) is generated, and it is called the top spine, denoted by
σ1. We then repeat a similar traversal from each vertex on the generated spine, to generate
other spines, until every vertex of T belongs to some spine.

Let STD(T) denote the tree constructed by the spine tree decomposition of tree T ,
together with the search tree τσl

for each spine σl, whose root is denoted by ρl [4, 5]. Fig. 1
illustrates a typical structure of spine σl and its search tree τσl

. The horizontal line represents
spine σl, and we name the vertices on it v1, v2, . . . from left to right.

The triangles represent subtrees hanging from σl. If a hanging subtree t is connected to
vertex vi ∈ σl, then we call the subgraph consisting of t, vi, and the edge connecting them
a branch of σl and denote it by Bi. Since we assume that the vertices of T have degree at
most 3, there is at most one branch hanging from any vertex on the spine.

SWAT 2016

6:4 The p-Center Problem in Tree Networks Revisited

u
EL(x, u)ER(x, u)

σl

σl−1

va vb

Rootρl

Figure 1 Search tree τσl for spine σl. va = vL(u) and vb = vR(u).

For a node1 u in τσl
, let vL(u) (resp. vR(u)) denotes the leftmost (resp. rightmost)2

vertex on σl that belongs to the subtree τσl
(u). We introduce upper envelope EL(x, u) (resp.

ER(x, u)) for the costs of the vertices in the branches of σl that belong to τσl
(u), for point x

that lies to the right (resp. left) of vertex vR(u) (resp. vL(u)). See Fig. 1. Since EL(x, u)
and ER(x, u) are upper envelopes of linear functions, they are piecewise linear. For each
node u of STD(T) we compute EL(x, u) and ER(x, u), and store them at u as sequences
of bending points (their x and y coordinates). These upper envelopes can be computed in
O(n logn) time by the following lemma.

I Lemma 1 ([4, 5]). The path from any leaf to the root of STD(T) has O(logn) nodes on it.

2.3 Our approach
Except in the last subsection of the paper, we assume that the given tree T is balanced with
respect to its root r, so that its height is O(logn). If not, we can use spine tree decomposition
that transforms T in linear time to a structure that has most of the properties of a balanced
binary tree. Working on a balanced binary tree network also helps us to explain the essence
of our approach, without getting bogged down in details. Our algorithms consist of a lower
part and an upper part. In the lower part, we test α-feasibility for a given cost α, and in
the upper part we carry out Megiddo’s parametric search [18]. To perform a feasibility test,
we first identify the α-peripheral centers, below which no center needs be placed. Once all
the q (< p) α-peripheral centers are identified, we place p− q additional centers to α-cover
the vertices that are not covered by the α-peripheral centers. If no more than p centers
are used to α-cover the entire tree T , then the α-feasibility test is successful. Theorem 8
shows that, using fractional cascading, α-feasibility can be tested in O(p log(n/p)) time after
preprocessing, which takes O(n logn) time.

The second part of parametric search finds the smallest α value, α∗. We work on T

bottom-up, doing essentially the same thing as in the first part. Whenever α is used in
the first part, we need to invoke an α-feasibility test [18]. At each level of T , we need to
invoke α-feasibility tests O(l) times at level l. Therefore the total number of invocations is
O(log2 n), and the total time is O(p log2 n log(n/p)) after preprocessing, yielding one of our
main results stated in Theorem 10.

2.4 Center location policy
Suppose that we want to place a center ci in a tree network T to α-cover a subset Vi of
vertices that are connected. We propose the following location policy.

1 A ‘node’ is more general than a vertex of T . A vertex is also a node, because it belongs to τσl , but not
every node is a vertex.

2 Right (resp. left) means towards (resp. away from) the parent spine σl−1 of σl.

A. Banik, B. Bhattacharya, S. Das, T. Kameda, and Z. Song 6:5

Root-centric policy: Place ci at the point that α-covers all the vertices in Vi and is closest
to root r of T .

It is easy to prove the following lemmas.

I Lemma 2. If a set of p centers α-covers all the vertices in V , then there is a partition of
vertex set {Vi | i = 1, . . . , p}, where each Vi is the vertex set of a connected part of T , such
that the root-centric location policy locates each center ci that α-covers Vi.

I Lemma 3. Let {ci | i = 1, . . . , p} be p centers obeying the root-centric policy that together
α-cover V . For each center ci, find a vertex v ∈ Vi with maximum cost d(v, ci)w(v) that is
the farthest from the root, and name it gi. Then it satisfies ci ∈ π(gi, r).

Proof. If ci /∈ π(gi, r), then ci could move closer to r, a contradiction. J

3 Preprocessing

3.1 Upper envelopes
According to our definition of upper envelope Ev(x) for subtree T (v) (see (1)), if v is a leaf
vertex, we have

Ev(x) = d(x, v)w(v), (2)

for any x ∈ T . Let vl (resp. vr) be the left (resp. right) child vertex of a non-leaf vertex
v ∈ V . Then for any x ∈ T \ T (v), we have

Ev(x) = max{Evl
(x), Evr

(x), d(x, v)w(v)}. (3)

Function Ev(x) is piecewise linear in x ∈ π(v, r) and can be represented by a sequence of
bending points. In the sequence representing Ev(x), in addition to the values of Ev(x) at
the bending points, we insert the values of Ev(x) evaluated at all the O(logn) vertices on
π(v, r).3

I Lemma 4. If T is balanced, then {Ev(x) | v ∈ V, x ∈ π(v, r)} can be computed bottom-up
in O(n logn) time and O(n logn) space.

In the rest of this paper we assume that the given tree T is a balanced binary tree. If
not we can use spine tree decomposition [4, 5, 6], which shares many useful properties of a
balanced tree.

3.2 Fractional cascading
From now on we assume that we have the bending points of {Ev(x) | v ∈ V, x ∈ π(v, r)} at
our disposal. The second task of preprocessing is to merge the bending points of {Ev(x) |
v ∈ V, x ∈ π(v, r)} to prepare for fractional cascading [9]. Again we do this bottom up,
merge-sorting the two sequences of bending points into one at each vertex. Since each vertex
causes at most O(logn) bending points in {Ev(x) | v ∈ V, x ∈ π(v, r)}, the total number of
bending points is O(n logn).

3 We mix those values among the bending points, so that we know on which edges the bending points lie.

SWAT 2016

6:6 The p-Center Problem in Tree Networks Revisited

k

logn−k

p

p/2

Figure 2 Illustration for the proof of Lemma 5.

4 α-Feasibility

4.1 Peripheral centers

As a result of preprocessing, we have the upper envelopes {Ev(x) | v ∈ V, x ∈ π(v, r)}. To
find the peripheral centers, α-peripheral we carry out truncated pre-order DFS (depth-first-
search), looking for the vertex-point pairs (v, x) satisfying Ev(x) = α, which means v is an
α-critical vertex in T (v) with respect to x.

I Procedure 1. Find-Peripheral-Centers (α)
Perform pre-order DFS, modified as follows, where v is the vertex being visited.

1. If ∃x ∈ (v, p(v)) such that Ev(x) = α, return x as an α-peripheral center,4 and backtrack.
2. If p+1 α-peripheral centers have been found, then return Infeasible and stop. J

To carry out Step 1 efficiently, we perform binary search with key α in the merged sequence
of bending points (of the upper envelopes) stored at the root r, and follow the relevant
pointers based on fractional cascading.

I Lemma 5. Procedure Find-Peripheral-Centers(α) visits O(p log(n/p)) vertices.

Proof. The number of vertices that Procedure Find-Peripheral-Centers(α) visits is the
largest when the α-peripheral centers are as low as possible and they separate from each
other as high as possible. This extreme case is illustrated in Fig. 2, where p = 2k − 1 for
some integer k.

The total number of edges that are traversed is given by

O(p(logn− k) + p) = O(p(logn− log p) + p) = O(p log(n/p)),

where the second term, p, is an upper bound on the number of vertices at depth k or
shallower. J

I Lemma 6. If {Ev(x) | v ∈ V } are available, all the α-peripheral centers can be found in
O(p log(n/p)) time.

Proof. If fractional cascading is used in Step 1 of Procedure 1, it runs in amortized constant
time per vertex. The rest follows from Lemma 5. J

4 We assume that the trivial case, where one center at root r α-covers the entire tree, is dealt with
specially, which is straightforward.

A. Banik, B. Bhattacharya, S. Das, T. Kameda, and Z. Song 6:7

v

cl

p(v)

cr
⊕

⊕δα+(vl)

δα+(vr)

δα+(v)vl
vr

vl vr

v

c

δα−(vl)
⊙− ⊙−

δα−(vr)

p(v)

v

cl

p(v)

vr
⊕

δα+(vl) ⊙−vl

δα−(vr)

Figure 3 (Left) cl ∈ B(vl) and cr ∈ B(vr); (Middle) A center is needed within δα−(u) from u;
(Right) cl ∈ B(vl).

4.2 α-Feasibility test

Given an α value, suppose that we have found q (< p) α-peripheral centers, following the
root-centric location policy. We replace each α-peripheral center by a dummy vertex, and
define the trimmed tree T ′α = (V ′α, E′α). Its vertex set V ′α consists of two types of vertices:
the first type is a vertex that lies on the path between a dummy vertex and root r, inclusive.
If any such vertex has only one child vertex among them, then the other child vertex of T
(called a vertex of the second type) is kept in T ′ to represent the α-critical vertex in the
subtree of T rooted at that vertex. In what follows, we use T ′ instead of T ′α for simplicity,
since the implied α will be clear from the context. It is easy to see that tree T ′ contains
O(q logn) vertices. Without loss of generality, we consider each vertex of the second type as
the right child of its parent.

Let u be a vertex of the second type. Then we must have visited u during the execution
of Find-Peripheral-Centers(α), and no α-peripheral center was placed in subtree T (u).
At the time of this visit, we identified the α-critical vertex in T (u), which implies that we
can store this α-critical vertex at u as a by-product of Find-Peripheral-Centers(α) at no
extra cost.

Later, we will be introducing more centers, in addition to α-peripheral centers, working
on the trimmed tree T ′ bottom up. For each vertex in T ′, its subtrees can be one of the
following types:

	-subtree: The centers in it, if any, do not α-cover all the vertices in the subtree.

⊕-subtree: The centers in it α-cover all the vertices in the subtree, and possibly outside
it.

If T ′(v) is a ⊕-subtree, let δα+(v) denote the distance from v to the highest center in T ′(v)
at or below v. See the leftmost figure of Fig. 3, where vl (resp. vr) is the left (resp. right)
child vertex of v, and cl (resp. cr) is the highest center placed in T ′(vl) (resp. T ′(vr)).

If T ′(v) is a 	-subtree, on the other hand, let δα−(v) denote the minimum distance from
v to a point above T ′(v) within which a center must be placed to α-cover the uncovered
vertices in T ′(v). See the middle figure in Fig. 3.

Let us discuss how to process the trimmed tree T ′, to introduce additional centers closer
to the root in order to α-cover more vertices. We perform post-order DFS on T ′, always
visiting the left child of a vertex first. Assume that we explored T ′(vl) first and then T ′(vr),
and we are just back to v, and that δα−(vl) or δα+(vl) (resp. δα−(vr) or δα+(vr)) are available at
vertex vl (resp. vr). For each dummy leaf vertex v of T ′, we have δα+(v) = 0. At each vertex
v visited, we have one of the following three cases.

SWAT 2016

6:8 The p-Center Problem in Tree Networks Revisited

(a) [Both are ⊕-subtrees]. In the leftmost figure of Fig. 3, cl (resp. cr) is the highest
center in T ′(vl) (resp. T ′(vr)). We compute

δ = min{δα+(vl) + d(v, vl), δα+(vr) + d(v, vr)}, (4)

which is the distance from v to the nearest center in T ′(v). If δ ·w(v) ≤ α, then v is α-covered
by cl or cr. Otherwise (i.e., even the center in T ′(v) that is nearer to v cannot α-cover v) v
must be covered by a center placed above v, and T ′(v) (= {v}) now becomes a 	-subtree of
p(v).

(b) [Both are 	-subtrees]. See the middle figure of Fig. 3. If δα−(vl) < d(v, vl), for example,
we need to place a center cl on the edge (v, vl), and T ′(v) now becomes a ⊕-subtree, provided v
is α-covered by cl. If both cl and cr are placed this way, we set δα+(v) = min{d(cl, v), d(cr, v)},
provided one of them α-covers v. If no center needs to be placed on (v, vl) or (v, vr), then
we compute

δ = min{δα−(vl)− d(v, vl), δα−(vr)− d(v, vr)}. (5)

We need a center within min{δ, α/w(v)} above v. These are some of the typical cases, which
illustrate kinds of necessary operations. Procedure Merge(v;α, T), given below, deals with
the other cases as well, not mentioned here, exhaustively.

(c) [One is a 	-subtree and the other is a ⊕-subtree]. We assume without loss of
generality that the left (resp. right) subtree is a ⊕-subtree (resp. 	-subtree), as shown in
the rightmost figure of Fig. 3, and cl is the highest center in T ′(vl). As in Case (b), we first
test if δα−(vr) < d(v, vr), and if so place a center cr on edge (v, vr). Then we have case (a).
Otherwise, we need to test if cl α-covers the uncovered vertices in T ′(vr) as well as v. If not,
they must be covered by a new center above v.

We now present a formal procedure that deals with all possible cases. We will use it for
T = T ′.

I Procedure 2. Merge(v;α, T)

Case (a): [T (vl)=⊕, T (vr)=⊕] Compute δ using (4). If δ · w(v) ≤ α, then set δα+(v) = δ.
Otherwise, make T (v) a 	-subtree of p(v) with δα−(v) = α/w(v).

Case (b): [T (vl)=	, T (vr)=] If δα−(vl) < d(v, vl) (resp. δα−(vr) < d(v, vr)), place a center
cl (resp. cr) on the edge (v, vl), (resp. (v, vr)) at distance δα−(vl) from vl (resp. δα−(vr) from
vr). If cl and/or cr α-covers v, then make T (v) a ⊕-subtree of p(v) with δα+(v) = min{d(cl, v),
d(cr, v)}, where d(cl, v) = 0 (resp. d(cr, v) = 0) if cl (resp. cr) is not introduced. If neither
of them covers v, then make T (v) a 	-subtree of p(v) with δα−(v) = α/w(v). If neither
cl nor cr is introduced, then compute δ using (5) and make T (v) a 	-subtree of p(v) with
δα−(v) = min{δ, α/w(v)}.

Case (c): [T (vl)=⊕, T (vr)=]5 If δα−(vr) < d(v, vr), then place a center cr on edge (v, vr)
at distance δα−(vr) from vr, set δα+(cr) = d(v, cr) = d(v, vr) − δα−(vr), and go to Case (a).
Otherwise,

5 The case [T (vl)=	, T (vr)=⊕] is symmetric.

A. Banik, B. Bhattacharya, S. Das, T. Kameda, and Z. Song 6:9

(i) If cl covers v (i.e., {δα+(vl) + d(vl, v))}w(v) ≤ α), and cl also covers T (vr) (i.e., δα+(vl) +
d(vl, vr) ≤ δα−(vr)), then let δα+(v) = δα+(vl) + d(vl, v).

(ii) In all the remaining cases, set δα−(v) = min{δα−(vr)− d(v, vr), α/w(v)}. J

It is easy to show that

I Lemma 7. After preprocessing, Merge-I(v;α, T) runs in constant time.

We now formally state our algorithm for testing α-feasibility.

I Algorithm 1. Feasibility-Test (α, T)
1. Call Find-Peripheral-Centers(α).
2. Construct the trimmed tree T ′, consisting of the vertices of the first type and those of the

second type and the edges connecting them. For each vertex u of the second type, compute
the α-critical vertex for T ′(u).

3. Perform a post-order depth-first traversal on T ′, invoking Merge(v;α, T ′) on each vertex
v visited.

4. If a set of no more than p centers covering T has been found, then return Feasible and
stop. If the p centers found so far do not totally cover T , then return Infeasible and
stop. J

I Theorem 8. For a balanced tree network, Feasibility-Test(α, T) runs in O(p log(n/p))
time, excluding the preprocessing time.

Proof. Step 1 runs in O(p log(n/p)) time by Lemma 6. Step 2 can be carried out at the same
time as Step 1 in O(p log(n/p)) time. Step 3 also runs in O(p log(n/p)) time by Lemma 7.
Lastly, Step 4 takes constant time. J

5 Optimization

We will employ Megiddo’s parametric search [18], using the α-feasibility test we developed in
Sec. 4.2. We maintain a lower bound α and an upper bound α on α∗, where α < α∗ ≤ α.
Eventually we will end up with α∗ = α. If we succeed (resp. fail) in an α-feasibility test,
then it means that α ≥ α∗ (resp. α < α∗), so we update α (resp, α) to α.

5.1 Balanced tree networks
Based on Theorem 8, the main theorem in [18] implies:

I Theorem 9. WDpC for the balanced tree networks with n vertices can be solved in
O(n logn+ p2 log2(n/p)) time.

We propose another algorithm which performs better than the first algorithm referred to
in the above theorem for some range of values of p. For this algorithm we will show later
that we need to test feasibility O(log2 n) times. This fact, together with Theorem 8, leads to
the following theorem.

I Theorem 10. WDpC for the balanced tree networks with n vertices can also be solved in
O(n logn+ p log2 n log(n/p)) time.

In the rest of this subsection we prove Theorem 10. Let l = 1, 2, . . . , k be the levels of T
from top to bottom, where the root r is at level 1 and the leaves are at level k = dlogne =
O(logn). At each vertex, we need to perform a few feasibility tests. Since there are 2l−1

SWAT 2016

6:10 The p-Center Problem in Tree Networks Revisited

vertices at level l of T , using prune and search, we can know the results of the feasibility tests
at all the vertices of level l after actually performing only O(log(2l−1)) = O(l) feasibility
tests. The total for all levels is thus O(

∑logn
l=1 l) = O(log2 n), as claimed above.

It is easy to prove the following lemma.

I Lemma 11. Let va, vb ∈ V .
(a) [17] Vertices va and vb have the equal cost

α(va, vb) = d(va, vb)w(va)w(vb)
w(va) + w(vb)

(6)

at a point c(va, vb) ∈ π(va, vb).
(b) Let va, vb ∈ T (v), and suppose that w(va) 6= w(vb), and let w(va) < w(vb) without loss

of generality. If d(va, v)w(va) ≥ d(vb, v)w(vb) holds, then vertices va and vb have the
equal cost

α′(va, vb) = {d(va, v)− d(vb, v)}w(va)w(vb)
w(vb)− w(va) , (7)

at a point c′(va, vb) ∈ π(v, r). If d(va, v)w(va) < d(vb, v)w(vb), then vertex vb has a
higher cost than va at all points on π(v, r).6

If we let vb = v in Case (b) in the above lemma, va and v have the equal cost

α′(va, v) = d(va, v)w(va)w(v)
w(v)− w(va) , (8)

at a point c′(va, vb) ∈ π(v, r).
We now need to modify the definition of the critical vertex given in Sec. 2.1. With respect

to x ∈ T \ T (v), we are interested in the vertex u ∈ T (v), such that α(x, u) is maximum, We
call such a u the critical vertex with respect to x and denote it by γv. The main difference of
the optimization part from the feasibility test part is that we cannot find the exact locations
of the centers until the very end. However, making use of critical vertices, it is possible
to identify the component of T that is to be α∗-covered by each new center. So, we will
isolate/detach them one by one from T , and repeat the process.

Let vl and vr be the two child vertices of a vertex v at level l. When we visit v, moving up
T , we need to either isolate a subtree to be covered by a center that lies below v, or determine
the critical vertex in T (v) to be carried higher. Whenever the result of an α-feasibility test
shows that α ≥ α∗, we update α and assume that α > α∗ holds, and introduce a new center
(without an exact location), as necessary. This assumption will be justified if α is updated
later. If α is never updated thereafter,7 it implies that α = α∗. See Lemma 12.

Based on (6), if

α(v, γvl
) ≥ α∗ (resp. α(v, γvr

) ≥ α∗), (9)

we assume that α(v, γvl
) > α∗ (resp. α(v, γvr

) > α∗), and cut the edge (v, vl) (resp. (v, vr))
to detach a new component below v to be covered by the new center placed in it.8 We need

6 In this case, the equal cost point lies on π(v, vb).
7 α may be updated.
8 Note that if α(v, γvl) = α∗, for example, we cannot isolate a component.

A. Banik, B. Bhattacharya, S. Das, T. Kameda, and Z. Song 6:11

vγvl γvr

α∗

q u r

Cost

d(x, u)w(u)

d(γvl, x)w(γvl)

d(γvr, x)w(γvr)

Root

αq

vγvl γvr

α∗

q u r

Cost

d(x, u)w(u)

d(γvl, x)w(γvl)

d(γvr, x)w(γvr)

Root r

αq

Figure 4 The cost lines of γvl ∈ B(vl) and γvr ∈ B(vr) intersect at q above v: (Left) Cost αq at
intersection q is higher than α∗ (αq > α∗); (Right) αq < α∗.

not know the exact position of the new center. If two new centers are introduced this way,
vertex v must be α∗-covered by a center placed above v, and v becomes a (tentative) critical
vertex for T (v) with respect to x above v. If only one of the inequalities in (9) holds and
only (v, vl) (resp. (v, vr)) is cut, then either v or γvr

(resp. γvl
) becomes a critical vertex for

T (v), based on the outcome of α′(va, v)-feasibility test. See (8).
Consider the remaining case, where neither inequality in (9) holds. We need to determine

a critical vertex in T (v) with respect to x above v.
To this end, we first find the intersection q = c′(γvl

, γvr
) ∈ π[v, r] of the two cost lines

d(γvl
, x)w(γvl

) and d(γvr
, x)w(γvr

), and its cost αq = α′(γvl
, γvr

), assuming the condition
for (7) is met. We then test αq-feasibility. If αq ≥ α∗, as in the left figure of Fig. 4, then
we set γ′v = γvl

(resp. γv = γvr
) if w(γvl

) ≤ w(γvr
) (resp. w(γvl

) > w(γvr
)). If αq < α∗,

on the other hand, as in the right figure of Fig. 4, then we set γ′v = γvr (resp. γv = γvl
) if

w(γvl
) ≤ w(γvr

) (resp. w(γvr
) < w(γvl

)). In order to find the true critical vertex γv in place
of γ′v, we need to take v into consideration as well. This time we use α′(va, v) of (8) instead
of (7). In the future we will be testing vertices u /∈ T (v) to see if the cost of the intersection
between d(x, u)w(u) and d(γv, x)w(γv) is lower than α∗ or not. We must choose the critical
vertex that gives the highest cost near α∗, which is indicated by a thick line segment in
Fig. 4.

In any case, we need to perform a constant number of feasibility tests per vertex visited.
Whenever an α-feasibility test in (9) succeeds (resp. fails), we update α (resp. α) to α.

I Lemma 12. The optimal cost α∗ equals α at the end of the above steps.

Proof. It was shown by Kariv and Hakimi [17] that α∗ has the value d(u, v)/(1/w(u)+1/w(v))
for some pair of vertices u and v. See Lemma 11(a). Assume that α∗ < α and there is
a pair of vertices u and v in the same partition Vi ⊂ V (Lemma 2) such that α∗ =
d(u, v)/(1/w(u) + 1/w(v)), but we haven’t tested them, a contradiction. J

5.2 General tree networks
We use spine tree decomposition (STD), reviewed in Sec. 2.2, for general (unbalanced) tree
networks. The counterparts to Theorems 8 and 9 hold with the same complexities.

I Theorem 13.
(a) We can test α-feasibility in O(p log(n/p)) time, excluding the preprocessing, which takes

O(n logn) time.
(b) WDpC for general tree networks with n vertices can be solved in O(n logn+p2 log2(n/p))

time.

Proof. Part (a) can be proved in essentially the same way as we proved Theorem 8 in Sec. 4.2.
Instead of working directly on the given tree T , we first construct STD(T) and compute
upper envelopes at its nodes. The concepts of the 	-subtree and ⊕-subtree can be carried

SWAT 2016

6:12 The p-Center Problem in Tree Networks Revisited

vi vk

αi,k
α∗

σl
γHvk

d(x, γHvk)w(γ
H
vk
)

d(x, γLvi)w(γ
L
vi
)

xi,kγLvi xi xk

Figure 5 Bi and Bk are each a 	-branch.

vi vj

αi,j
α

σl

d(x, γHvj)w(γ
H
vj
)

d(x, γLvi)w(γ
L
vi
)

xi,j (onBj)

y

γHvjγLvi
xi xj

Figure 6 Point xj is the mapped image onto σl of the highest center in Bj .

over to STD(T). One complication is that we need to work on a group of 	-branches, instead
of single 	-subtrees, but we can process them in the same order of time as in the balanced
tree case. Part (b) is implied by part (a) by the main theorem in Megiddo [18]. J

As for the counterpart to Theorem 10, we need to use AKS-like sorting networks [1, 13,
22, 23], as in [10].

I Theorem 14. WDpC for the general tree networks with n vertices can be solved in
O(n logn+ p log2 n log(n/p)) time.

Proof (Informal). Let us first analyze how many times we need to perform feasibility tests
when STD(T) is used for a non-balanced tree network. Let nl be the number of vertices in
the spines at level l, so that we have

∑λ
l=1 nl = n, where λ is the number of levels in STD(T).

We now consider one particular spine σl at level l. Let vi and vk be two vertices on σl, from
which branches Bi and Bk hang. Assume first that both Bi and Bk are 	-branches, and let
γvi (resp. γvk

) be the α∗-critical vertices in Bi (resp. Bk). If γvi is at distance di from vi,
then we map it onto σl at distance di from vi.

There can be up to two such positions on σl (or its extension if it is not long enough),
and we call the lower (resp. higher)9 one γLvi

(resp. γHvi
). Fig. 5 illustrates γLvi

and γHvk
. In

this figure each cost function d(x, γLvi
)w(γLvi

) is represented by a solid and a dashed line,
where the solid (resp. dashed) part shows its value on σl (in Bi). Similarly for the cost
function d(x, γHvk

)w(γHvk
). In this figure, they meet at xi,k on σl, and at this point the cost is

αi,k > α∗. This implies that xi ≺ xk, where xi (resp. xk) is the point on σl where the cost
of γLvi

(resp. γHvk
) is α∗. This in turn means that a single center cannot α∗-cover both γLvi

and γHvk
. If we had αi,k ≤ α∗, then a center would cover both of them.

Consider next the case where Bi is a 	-branch and Bj is a ⊕-branch, as shown in Fig. 6.
In this case, the dashed part of the cost function d(x, γHvj

)w(γHvj
) takes the value α∗ at

xj ∈ Bj , which means that Bj is a ⊕-branch. The two cost functions d(x, γLvi
)w(γLvi

) and
d(x, γHvj

)w(γHvj
) intersect at xi,j in their dashed parts, which implies that they meet in Bj .

Since the corresponding cost αi,j is larger than α∗ in this figure, a center at xj ∈ Bj cannot
α∗-cover γvi

.

9 Lower (resp. higher) means farther (resp. nearer) from/to the root.

A. Banik, B. Bhattacharya, S. Das, T. Kameda, and Z. Song 6:13

The above discussion implies that whether the cost at the intersection of two cost lines is
higher or lower than α∗, which can be tested by a feasibility test, determines if an additional
center needs to be introduced or not. Each feasibility test determines the relative order
of xi, xj , xk, etc., for all vertices on spine σl. This is tantamount to sorting xi, xj , xk, etc.,
which we can do by a sorting network, such as the AKS sorter. By examining the sorted
sequence, and scanning σl from its lower end, we can determine the number of centers needed
on σl.

Finally, we need to find the α∗-critical vertex that represents the part of spine σl not
covered by the centers introduced so far, or the center that could cover additional vertices
in the next higher spine. Namely, spine σl may become a 	-branch or a ⊕-branch vis-à-vis
the next higher spine. If it becomes a 	-branch, there may be several candidates for the
α∗-critical vertex. The situation is somewhat to that depicted in the left figure in Fig. 4,
where γvl

and γvr are the two candidates. The α∗-critical vertex is whichever candidate
whose cost line reaches α∗ first, i.e., at the lowest position.

If σl becomes a ⊕-branch in the next higher spine, we want to find the α∗-critical vertex
in σl that can cover the “farthest” vertex in the next higher spine. Therefore, among the
candidate critical vertices we pick the one whose cost line reaches α∗ last, i.e., at the highest
position..

Following Megiddo [20], for each spine we employ an AKS sorting network. The number
of inputs to the AKS sorting networks employed at level l is thus 2nl. Each such AKS sorting
network has O(lognl) layers of comparators, and their sorted outputs can be computed
with O(lognl) calls to a feasibility test with Cole’s speed up [10]. The total number
of calls at all levels l = 1, 2, . . . , λ with Cole’s speed up is thus O(

∑λ
l=1 lognl). Since∑λ

l=1 nl = O(n), we have
∑λ
l=1 lognl ≤ λ log(n/λ) = O(log2 n). Since each feasibility

test takes O(p log(n/p)) by Theorem 8 (extended to STD(T)), the total time spent by the
feasibility tests is O(p log2 log(n/p)). In addition, we need time to compute the median at
each layer of the AKS networks, which is O(nl) per layer and O(nl lognl) at level l. Summing
this for all levels, we get O(

∑λ
l=1 nl lognl) = O(n logn). J

6 Conclusion and Discussion

We have presented an algorithm for the weighted discrete p-center problem for tree networks
with n vertices, which runs in O(n logn+ p log2 n log(n/p)) time. This improves upon the
previously best O(n log2 n) time algorithm [10]. The main contributors to this speed up are
spine tree decomposition, which enabled us to limit the tree height to O(logn), and the
root-centric location policy, which made locating centers simple. Fractional cascading helped
to shave a factor of O(logn) off the time complexity in Theorem 8. The O(n log2 n) time
algorithm [10] and ours both make use of the AKS sorting network [1], which is impractically
large. However, recently AKS-like sorting networks with orders of magnitude reduced sizes
have been discovered [13, 23], and further size reduction in the not-so-distant future may make
the above algorithms more practical. We also presented a practical O(n logn+ p2 log2(n/p))
time WDpC algorithm, which improves upon the O(n log2 n log logn) time algorithm [20]
when p = O(

√
n).

In Lemma 4 we showed that it takes O(n logn) time and space to compute the set of
bending point sequences for the upper envelopes at all the vertices. Suppose that the weight
of a vertex is increased arbitrarily, which could influence the locations of some centers, if the
vertex becomes critical for a center. We can test this situation without updating the upper
envelopes, and thus without increasing the time requirement. Therefore, every p-center query

SWAT 2016

6:14 The p-Center Problem in Tree Networks Revisited

with the weight of one vertex arbitrarily increased can be answered in O(p log(n/p) logn)
time. This result realizes a sub-quadratic algorithm for the minmax regret p-center problem
in tree networks [2].

References
1 M. Ajtai, J. Komlós, and E. Szemerédi. An O(n logn) sorting network. In Proc. 15th ACM

Symp. on Theory of Comput. (STOC), pages 1–9, 1983.
2 I. Averbakh and O. Berman. Minimax regret p-center location on a network with demand

uncertainty. Location Science, 5:247–254, 1997.
3 Boaz Ben-Moshe, Binay Bhattacharya, and Qiaosheng Shi. An optimal algorithm for the

continuous/discrete weighted 2-center problem in trees. In Proc. LATIN 2006, volume
LNCS 3887, pages 166–177, 2006.

4 R. Benkoczi. Cardinality constrained facility location problems in trees. PhD thesis, School
of Computing Science, Simon Fraser University, Canada, 2004.

5 R. Benkoczi, B. Bhattacharya, M. Chrobak, L. Larmore, and W. Rytter. Faster algorithms
for k-median problems in trees. Mathematical Foundations of Computer Science, Springer-
Verlag, LNCS 2747:218–227, 2003.

6 Binay Bhattacharya, Tsunehiko Kameda, and Zhao Song. Minmax regret 1-center on a
path/cycle/tree. In Proc. 6th Int’l Conf. on Advanced Engineering Computing and Appli-
cations in Sciences (ADVCOMP), pages 108–113, 2012.

7 Binay Bhattacharya and Qiaosheng Shi. Improved algorithms to network p-center location
problems. Computational Geometry, 47:307–315, 2014.

8 Timothy M. Chan. Klee’s measure problem made easy. In Proc. Symp. on Foundation of
Computer Science (FOCS), pages 410–419, 2013.

9 Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: I. A data structuring
technique. Algorithmica, 1:133–162, 1986.

10 R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. ACM,
34:200–208, 1987.

11 G.N. Frederickson. Optimal algorithms for partitioning trees and locating p centers in trees.
Technical Report CSD-TR-1029, Purdue University, 1990.

12 G.N. Frederickson. Parametric search and locating supply centers in trees. In Proc. Work-
shop on Algorithms and Data Structures (WADS), Springer-Verlag, volume LNCS 519,
pages 299–319, 1991.

13 Michael T. Goodrich. Zig-zag sort: A simple deterministic data-oblivious sorting algorithm
running in O(n logn) time. arXiv:1403,2777v1 [cs.DS] 11 Mar2014, 2014.

14 S.L. Hakimi. Optimum locations of switching centers and the absolute centers and medians
of a graph. Operations Research, 12:450–459, 1964.

15 Trevor S. Hale and Christopher R. Moberg. Location science research: A review. Annals
of Operations Research, 123:21–35, 2003.

16 M. Jeger and O. Kariv. Algorithms for finding p-centers on a weighted tree (for relatively
small p). Networks, 15:381–389, 1985.

17 O. Kariv and S.L. Hakimi. An algorithmic approach to network location problems, part 1:
The p-centers. SIAM J. Appl. Math., 37:513–538, 1979.

18 N. Megiddo. Combinatorial optimization with rational objective functions. Math. Oper.
Res., 4:414–424, 1979.

19 N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms.
J. ACM, 30:852–865, 1983.

20 N. Megiddo and A. Tamir. New results on the complexity of p-center problems. SIAM J.
Comput., 12:751–758, 1983.

A. Banik, B. Bhattacharya, S. Das, T. Kameda, and Z. Song 6:15

21 N. Megiddo, A. Tamir, E. Zemel, and R. Chandrasekaran. An O(n log2 n) algorithm for
the kth longest path in a tree with applications to location problems. SIAM J. Comput.,
10:328–337, 1981.

22 M.S. Paterson. Improved sorting networks with O(logn) depth. Algorithmica, 5:75–92,
1990.

23 Joel Seiferas. Sorting networks of logarithmic depth, further simplified. Algorithmica,
53:374–384, 2009.

24 Q. Shi. Efficient algorithms for network center/covering location optimization problems.
PhD thesis, School of Computing Science, Simon Fraser University, Canada, 2008.

25 A. Tamir. Improved complexity bounds for center location problems on networks by using
dynamic structures. SIAM J. Discrete Mathematics, 1:377–396, 1988.

SWAT 2016

A Simple Mergeable Dictionary∗

Adam Karczmarz

Insitute of Informatics, University of Warsaw, Poland
a.karczmarz@mimuw.edu.pl

Abstract
A mergeable dictionary is a data structure storing a dynamic subset S of a totally ordered set U
and supporting predecessor searches in S. Apart from insertions and deletions to S, we can both
merge two arbitrarily interleaved dictionaries and split a given dictionary around some pivot
x ∈ U . We present an implementation of a mergeable dictionary matching the optimal amortized
logarithmic bounds of Iacono and Özkan [11]. However, our solution is significantly simpler. The
proposed data structure can also be generalized to the case when the universe U is dynamic or
infinite, thus addressing one issue of [11].

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, E.1 Data
Structures

Keywords and phrases dictionary, mergeable, data structure, merge, split

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.7

1 Introduction

Let U be some totally ordered set. An ordered dictionary is a data structure maintaining a
set S ⊆ U and supporting the following operations:

S ←Make-Set(): create an empty set S.
Insert(S, x): add an element x ∈ U to the set S.
Delete(S, x): remove an element x ∈ U from the set S.
y ← Search(S, x): find the largest y ∈ S such that y ≤ x (if such y exists).

Typically, such dictionaries also allow traversing the stored sets in order in linear time.
We call a data structure a mergeable dictionary if it supports two additional operations:
C ←Merge(A,B): create a set C = A ∪B. The sets A and B are destroyed.
(A,B)← Split(C, x): create two sets A = {y ∈ C : y ≤ x} and B = C \A, where x ∈ U .
The set C is destroyed.

Note that the operation Merge does not pose any conditions on its arguments. It should
not be confused with the commonly used operation Join(A,B) which merges its arguments
under the assumption that all the elements of A are no larger than the smallest element of B.

The ordered dictionary problem is well understood and various optimal solutions have
been developed, including balanced binary search trees such as AVL trees or red-black trees [9],
and skip-lists [14]. Each of these data structures performs the operations Insert, Delete,
Search on a set S in O(log |S|) worst-case time. Most ordered dictionaries can be easily
extended to support the operations Join and Split within the same time bounds. Clearly,
it is not possible to achieve o(|A|+ |B|) worst-case bound for the Merge(A,B) operation,
as that would lead to a o(n logn) comparison-based sorting algorithm. Nevertheless, it is
interesting to study the amortized upper bounds of the mergeable dictionary operations.

∗ Supported by the grant NCN2014/13/B/ST6/01811 of the Polish Science Center.

© Adam Karczmarz;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 7; pp. 7:1–7:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 A Simple Mergeable Dictionary

Iacono and Özkan [11] developed the only data structure to date which provably supports
all the mergeable dictionary operations in amortized logarithmic time. It is worth noting
that their definition of a mergeable dictionary is a bit different: they define it to be a data
structure maintaining a partition of a finite universe U of size n. The set of operations they
support is Merge, Split, Search and Find, where Find(x) returns the unique element
of the partition containing x ∈ U . We find it more appropriate to call a data structure
supporting such an interface an ordered union-split-find data structure instead. This small
difference in the definition does not influence the core of the problem. The amortized lower
bound of Ω(logn) for at least one of the operations Merge, Split and Find is an easy
consequence of the lower bounds for partial sums and dynamic connectivity [15].1

However, the data structure of Iacono and Özkan has two drawbacks. First, both the
methods they used and the analysis are quite involved. Specifically, in order to achieve the
goal, they used a highly non-trivial potential function for analysis, extended the biased skip
list of [2] to support various finger-search-related operations. They also developed an element
weighting scheme that allows Merge to be performed in time proportional to the decrease of
the potential. Second, their weighting scheme depends heavily on the differences of ranks 2

of individual elements in U and as a result it is not clear how to generalize the data structure
to work with potentially infinite universes, such as R, in an online fashion. The subtlety of
handling such universes lies in the fact that one can always insert a new element between
consecutive elements of a stored set.

In this paper we show a very simple data structure that addresses the former issue in
the case of a finite universe U . We then generalize our approach and obtain a slightly more
involved data structure supporting infinite/dynamic universes.

Techniques. We map the universe U into a set of O(log |U|)-bit labels and implement the
mergeable dictionary S as a compressed trie with leaves corresponding to the elements of S.
This resembles the approach used by Willard [18] to obtain an efficient dynamic predecessor
search data structure called the x-fast trie. However, as we aim at performing the operations
in amortized O(log |U|) time, the additional components that make up the x-fast-trie are
unnecessary. The tight structure of tries allows us to use a fine-grained potential function
for analyzing the amortized cost of mergeable dictionary operations. As a result, both the
implementation and the analysis are surprisingly simple. In order to obtain linear space, the
paths consisting of trie nodes with a single child are replaced with edges labeled with bit
strings. As we work in the word-RAM model, each such label can be stored in O(1) machine
words.

In order to allow dynamic (or potentially infinite) universes, we look at the used tries
from a somewhat different perspective: each trie can be seen as a subtree of a single tree
T representing the entire universe. Our method is to maintain such a tree T representing
the part of the universe that contains all the elements of the stored sets. We implement T
with a weight-balanced B-tree of [1] and represent the individual sets as compressed subtrees
of T . This in turn enables us to control the behavior of our potential function when inserting
previously unseen elements of U .

Related Work. Ordered dictionaries supporting arbitrary merges but no splits have also
been studied, although somewhat implicitly. Brown and Tarjan [4] showed how to merge two

1 See also [13]. For a detailed reduction in the case of the mergerable dictionary operations, see Section 2.2.
2 The rank of x in U is defined as the size of the set {y ∈ U : y ≤ x}.

A. Karczmarz 7:3

AVL trees of sizes n and m, n ≤ m, in O(n log (m/n)) worst-case time, which they further
proved to be optimal. They also showed that using their merging method, any sequence of
merges on a set of n singleton sets can be performed in O(n logn) time. Hence, assuming
no Split operations, each of the operations Insert, Delete, Merge can be performed in
amortized O(logn) time.

An alternative method to handle the case of no splits, called segment merging, follows
as an easy application of finger search trees [10]. A finger search tree is capable of joining
two ordered dictionaries of sizes n and m in O(log min(n,m)) time, as well as splitting an
ordered dictionary into parts of sizes n, m in O(log min(n,m)) time. In order to merge two
arbitrarily interleaved ordered dictionaries A and B, where |A| ≤ |B|, we can partition the
set A∪B into a minimal number of segments {C1, . . . , Cl} such that for each i we have either
Ci ⊆ A or Ci ⊆ B and max{Ci} ≤ min{Ci+1}. The finger search tree allows to sequentially
extract the segments Ci from either A or B in O(log |Ci|) time. The segments are then
joined in O

(∑l
i log |Ci|

)
time. As l ≤ |A|, from the concavity of a logarithmic function it

follows that this merging algorithm runs in O
(
|A| log |B||A|

)
time, which is no worse than the

algorithm of Brown and Tarjan.
The ordered dictionaries supporting both arbitrary merges and splits have been first

considered explicitly by Iacono and Özkan [11]. However, as they point out, the need for a
data structure supporting a similar set of operations emerged in several prior works, e.g.,
the union-split-find problem [13], the first non-trivial algorithm for pattern matching in a
LZ77-compressed text [6], and the data structure for mergeable trees [8]. In particular, Farach
and Thorup [6] used a potential function argument to prove (somewhat implicitly) that
when using the segment merging strategy, any sequence of Merge and Split operations
performed on a collection of subsets with n distinct elements has amortized O(logn) segments
per merge. 3 Hence, segment merging can be used to obtain a mergeable dictionary with
O(log2 n) amortized bounds, even if one uses an ordinary balanced binary search tree in
place of a finger search tree.

On the other hand, Lai [13] proved that if we store individual sets as finger search trees
and use the segment merging strategy as discussed above, there exist a sequence of merges
and splits that leads to Ω(log2 n) amortized time per Merge. This implies that even if we
use an optimal merging algorithm, splits may cause the merges to run asymptotically slower.

As we later show, an optimal solution to the ordered union-split-find problem can be
easily obtained by extending our simple data structure for a finite universe. However, in
the case of mergeable trees and the compressed pattern matching algorithm of Farach and
Thorup, an optimal mergeable dictionary does not immediately lead to a better solution.
The mergeable trees [8] generalize mergeable dictionaries in a way analogous to how dynamic
trees [16] generalize dynamic paths. Thus, employing the main idea of [16], i.e., decomposing
a tree into a set of paths and representing each path with a mergeable dictionary, would lead
to amortized O(log2 n) time per Merge, a bound already achieved by the data structure of
Georgiadis et al. [8]. Obtaining a more efficient data structure for mergeable trees would
probably require developing some kind of biased version of a mergeable dictionary.

In the algorithm of Farach and Thorup, a somewhat more powerful variant of a mergeable
dictionary is needed. For U = {0, . . . , N} one also needs to support efficient shifting of all the
elements of a set S ⊆ U by a constant. Even though the data structure of Iacono and Özkan

3 In fact, the very same potential function was used by Iacono and Özkan [11] to analyze their mergeable
dictionary data structure.

SWAT 2016

7:4 A Simple Mergeable Dictionary

can be easily augmented to support such shifts, in our data structure, the representation of
a set might dramatically change after such a shift. Nevertheless, the algorithm of Farach
and Thorup has another bottleneck and it is not clear how to remove it, even equipped with
a mergeable dictionary supporting efficient shifts. It is worth noting that a more efficient
solution to LZ77-compressed pattern matching was developed recently, using very different
methods [7].

Organization of the Paper. In Section 2 we develop a simple solution for finite universes.
We generalize the used methods to obtain a data structure for infinite universes in Section 3.
In Section 4 we make some concluding remarks and discuss a few further interesting questions
concerning the mergeable dictionaries.

2 A Data Structure for a Finite Universe

In this section we assume that |U| = n and that the entire universe (along with the order of
the elements) is known beforehand: in particular, U is allowed to be preprocessed during the
initialization. We treat n as a measure of the problem size and consequently assume that we
operate in the word-RAM model, where arithmetic and bitwise operations on dlog2 ne-bit
integers are performed in constant time.

Representation. Let D be the smallest integer such that 2D ≥ n. Each x ∈ U is assigned
a bit string bits(x) of length D such that for y ∈ U , x ≤ y, bits(x) is lexicographically not
greater than bits(y).

Recall that a trie T storing a set of strings W is a rooted tree with single-character labels
on edges. T has a unique node vp for each distinct prefix p of some of the strings of W . If sz
is a prefix of some word of W and z is a character, then cz(vs) = vsz is a child of vs and
the edge vs − vsz is labeled z. If sz is not a prefix of any word of W , we set cz(vs) = nil. If
some node v ∈ T corresponds to a prefix p, then we call p = `(v) a label of the node v. Note
that `(v) is the string composed of the subsequent characters on the root-to-v path in T .
A subtree of T rooted at v, denoted by Tv, can also be seen as a trie, but storing strings (in
fact, some suffixes of the words in W) that are |`(v)| characters shorter. If W = ∅, we set
the corresponding trie to an empty trie, also denoted by nil.

Each set S ⊆ U is represented as a trie T (S) storing the strings B(S) = {bits(s) : s ∈ S}.
Note that all the stored strings are of the same length and thus the leaves of T (S) are at
the same depth and correspond to individual elements of B(S). The tries we use are binary,
i.e., each node v ∈ T (S) has at most two children c0(v) and c1(v). We sometimes call c0(v)
(c1(v)) the left (right respectively) child of v and we call the subtrees T (S)c0(v), T (S)c1(v)
the left and right subtrees of v, correspondingly. Each leaf v stores the value q(v) ∈ U such
that bits(q(v)) = `(v). See Figure 1 for an example.

Implementing the Operations. We now show how to implement the operations. The
operation Make-Set returns nil.

To insert an element x into S, we descend down the tree T (S) to the deepest node
v corresponding to a prefix of bits(x) (if T (S) = nil, we first create the root node). We
then create D − |`(v)| new nodes so that the created leaf has label bits(x). The operation
Delete(S, x) is basically a reverse of Insert(S, x): we locate the leaf v with label bits(x)
and sequentially remove its ancestors until we reach a node w with label being a prefix of
some string of B(S \ {x}). Both Delete and Insert take O(D) = O(logn) time.

A. Karczmarz 7:5

0 2

0

0

1

0

3 7 9

1

0

0

1

1 0

11 0

1 1

0 2

0

0

1

0

3 7 9

1

111
00

1001

Figure 1 In the left, we have the representation T (S) (left) of the set S = {0, 2, 3, 7, 9}. In this
example U = {0, . . . , 15} and thus D = 4. We assume that for each u ∈ U , bits(u) is the 4-bit binary
representation of u. In the right, a compressed version T ∗(S) of T (S) is depicted.

0 2

0

0

1

0

3 7 9

1

0

0

1

1 0

11 0

1 1

0 2

0

0

1

0

0

0

3 7 9

1

1 0

1 0

1 1

0

0

1

1

Figure 2 The effect of the call (A, B)← Split(S, 2), where S = {0, 2, 3, 7, 9}. The larger blue
nodes denote the only nodes that had to be copied.

To perform Search(S, x), we again descend to the deepest node v such that `(v) is a
prefix of bits(x). If v is a leaf, then x ∈ S and we return x. Otherwise, we climb up the
tree until we reach a node w such that c0(w) 6= nil and `(w)1 is a prefix of bits(x). If no
such w exists, we return nil. Otherwise, we descend to the rightmost leaf wR in the subtree
T (S)c0(w) and return the corresponding element q(wR). One can easily perform these steps
in O(D) = O(logn) worst-case time.

To split the set S around a pivot x, we need to construct two tries T − and T + such
that T − stores the strings B− = {s ∈ B(S) : s ≤ bits(x)} and T + stores the strings
B+ = B(S) \ B−. Both T − and T + can be obtained by removing some subtrees of T (S). If
B− = ∅, then T − = nil and T + = T (S). The case when B+ = ∅ is analogous. Now, let vl be
the leaf of T (S) such that `(vl) = max{B−} and let r be the leaf such that `(vr) = min{B+}.
T − (T +) is exactly the part of T weakly to the left (to the right, resp.) of the path from the
root to vl (vr resp.). These paths have at most D common nodes in T (S) – let us call the set
of common nodes C. In order to obtain T −, we remove all the right subtrees of nodes in C,
whereas to construct T +, a copy of each node of C is made with the left subtree removed
(Figure 2). Therefore, the operation Split can be implemented in O(logn) worst-case time.

The implementation of Merge(A,B) is very simple. We use a recursive function merge
returning a union of two (possibly empty) tries T1, T2. Unless some of the tries T1, T2 are
non-empty, the tries are required to have equal heights in the interval [0, D]. merge uses
parts of T1 and T2 to assemble a trie storing exactly the strings that are stored in T1 or in

SWAT 2016

7:6 A Simple Mergeable Dictionary

T2. For i = 1, 2, denote by T L
i and T R

i the left and right subtrees of the root node root(Ti)
of Ti. We have

merge(T1,nil) = T1, (1)
merge(nil, T2) = T2, (2)
merge(T1, T2) = trie(root(T1), merge(T L

1 , T L
2), merge(T R

1 , T R
2)). (3)

Here, we use assume that the call trie(v, T L, T R) creates a trie rooted at v with the left and
right subtrees T L and T R respectively, without copying the subtrees. Clearly, after we call
merge(T (A), T (B)), in each recursive step merge(T1, T2) such that T1 6= nil and T2 6= nil,
the labels `(root(T1)) in T (A) and `(root(T2)) in T (B) are equal. The correctness of this
trie merging procedure can be proved in a bottom-up manner with the following simple
structural induction argument. The correctness in cases (1) and (2) is trivial. Consider the
case (3) and let h be the height of both T1 and T2. Then, either one of the tries T L

1 and
T L

2 is empty, or both T L
1 and T L

2 have height h − 1. Thus, by the inductive assumption,
merge(T L

1 , T L
2) returns the union of T L

1 and T L
2 . Symmetrically, merge(T R

1 , T R
2) returns

the union of T R
1 and T R

2 . In the final step, the unions of respective subtries are made the
new children of root(T1).

Note that each time the case (3) arises, the node root(T2) is destroyed.

The Amortized Cost of the Operations. Let S = {S1, S2, . . . , } be the collection of subsets
of U maintained by our data structure. We define the potential φ(S) to be the sum of sizes of
the tries representing individual sets, i.e., φ(S) =

∑
S∈S |T (S)|. It is clear that each operation

Make-Set, Insert and Split increases φ(S) by at most D = O(logn). The operations
Delete and Merge can only decrease the potential. We now show that the worst-case
running time of the operation C ←Merge(A,B) is O(|T (A)|+ |T (B)| − |T (A ∪B)|+ 1),
i.e., it is proportional to the decrease of the potential. Indeed, consider the call merge(T1, T2)
which is not the topmost call merge(T (A), T (B)). If T1 6= nil and T2 6= nil, we can charge
the cost of this call (not including the recursive calls) to the destroyed root of T2. Otherwise,
the parent invocation merge(∗, ∗) was of type (3) and thus we can charge this call to the
destroyed parent of T2. Consequently, for each destroyed node, at most 3 calls to merge are
charged to that node. The total number of destroyed nodes after calling merge(T (A), T (B))
is |T (A)|+ |T (B)| − |T (A ∪B)|.

The amortized cost of an operation is defined as its actual cost plus the increase of the
potential. Hence, both amortized and worst-case costs of the operations Insert, Delete
and Split on S are O(logn), whereas the amortized cost of Merge is O(1).

I Theorem 1. Let |U| = n. There exists a data structure supporting Insert, Delete
and Split in O(logn) amortized and worst-case time. The operation Merge takes O(1)
amortized time. The operation Search can be performed in O(logn) worst-case time.

The Ordered Union-Split-Find Data Structure. One can easily extend our approach to
implement the ordered union-split-find data structure. Assume that the collection S forms a
partition of U , i.e., the elements of S are disjoint and

⋃
S = U . For each u ∈ U we store

a pointer to the leaf of a unique trie T (S) such that u ∈ S. Additionally, each trie node is
accompanied with a parent pointer.

When performing a Split operation, we update the parent pointers of all the newly
created (copied) nodes and their children. During Merge, parent pointers are updated each
time a node is assigned new children (case (3) of the merge procedure). Insert and Delete

A. Karczmarz 7:7

can also be easily extended to update the appropriate parent pointers. The maintenance of
parent pointers does not influence the asymptotic worst-case and amortized time bounds of
the operations.

Answering a Find(u) query boils down to climbing up the appropriate trie using the
parent pointers and returning the root of T (S), where u ∈ S.

2.1 Obtaining Linear Space
The above construction might incur Ω(logn)-space overhead per each stored element, e.g.,
if every set of the collection is a singleton. This can be easily avoided by dissolving all the
non-root non-leaf trie nodes having a single child. Now, each edge can be labeled with at most
D bits (stored in a single word), whereas the total length of the labels on any root-to-leaf
path remains D. As this results in all the nodes having either 0 or 2 children, a compressed
trie with t leaves has now at most 2t− 1 nodes in total. Thus, any set S can be stored in
O(|S|) machine words. The compressed version of T (S) obtained this way is denoted by
T ∗(S). See Figure 1 for an example.

All the discussed operations can be implemented by introducing a layer of abstraction
over T ∗(S), so that we are allowed to operate on T (S) instead. Each time we access a node
v ∈ T ∗(S), we can “decompress” its outgoing edges by creating at most two additional nodes
c0, c1 and make them the children of v, so that the labels of the edges (v, c0) and (v, c1) have
single-bit labels. All nodes of T (S) “touched” by an operation are processed bottom-up after
the operation completes and the non-root nodes of T (S) with a single child are dissolved
back.

2.2 Lower Bound
For completeness, we prove the following lemma, which establishes the optimality of our
data structure, as far as the cost of the most expensive operation is concerned.

I Lemma 2. Let |U| = Ω(n2). At least one of the mergeable dictionary operations Split,
Merge and Search requires Ω(logn2) = Ω(logn) time.

Proof. Let U = {(x, y) : x ∈ {0, . . . , n}, y ∈ {1, . . . , n}} and suppose the order of U is such
that (x1, y1) ≤ (x2, y2) if and only if x1 < x2 or x1 = x2 ∧ y1 ≤ y2.

Pătraşcu and Demaine [15] considered the following dynamic permutation composition
problem. Let π1, . . . , πn be the permutations of the set {1, . . . , n}. Initially πi = id for all i.
We are to support two operations:

Update(i, π′): set πi ← π′,
Verify(i, π′): check if πi ◦ πi−1 ◦ . . . ◦ π1 = π′.

I Lemma 3 ([15]). Any data structure requires Ω(n2 logn) expected time to support a
sequence of n Update operations and n Verify operations.

We show how to reduce this problem to maintaining a certain partition of U . In our
reduction we maintain n sets S1, . . . , Sn so that after each Update operation, for each
j = 1, 2, . . . , n we have

Sj = {(0, j), (1, π1(j)), (2, π2(π1(j))), . . . , (n, πn(. . . (π1(j))))}. (4)

Clearly, Si ⊆ U . Note that for each k ∈ [0, n] and j ∈ [1, n] we can find πk(. . . (π1(j))) with
a single Search(Sj , (k, n)) query. Thus, Verify(i, π′) can be implemented with n Search
operations: for each j = 1, . . . , n we check whether Search(Sj , (i, n)) = (i, π′(j)).

SWAT 2016

7:8 A Simple Mergeable Dictionary

In order to implement Update(i, π′), we first execute (Aj , Bj) ← Split(Sj , (i − 1, n))
for each j = 1, 2, . . . , n. Note that Aj 6= ∅ and Bj 6= ∅. The last element (i− 1, aj) of each
Aj can be found with a single Search operation. Similarly, the first element (i, bj) of each
Bj can be found with a single Search. The values aj are distinct and so are the values bj .
The last step is to create each set Sj by merging Aj with a unique Bk satisfying bk = π′(aj).
It is easy to see that Sj = Merge(Aj , Bk) satisfies (4) with πi = π′.

To conclude, n Update and Verify can be implemented with O(n2) Search, Split
and Merge operations on a mergeable dictionary. Being able to execute each of these
mergeable dictionary in o(logn) amortized time would contradict Lemma 3. J

3 Handling Dynamic and Infinite Universes

Overview. In the previous section we have only supported subsets of a finite universe U .
The critical idea was that we could assign a O(log |U|)-bit label bits(x) to each x ∈ U so that
x ≤ y implied bits(x) ≤ bits(y). This allowed us to store the sets in trees of small depth
and predictable structure, which was consistent among the representations of different sets.
If the universe can grow or is infinite, e.g. U = R, it is not clear how to assign such labels
beforehand, during the initialization.

In this section we aim at achieving amortized O(logN) bounds for all mergeable dictionary
operations on the collection S = {S1, S2, . . . , }, where N =

∑
S∈S |S|. At any time, N is no

more than the number of Insert operations performed.
Imagine a perfect binary tree T̄ with 2B leaves such that each edge to the left child

is labeled with 0 and each edge to the right child is labeled with 1. The (uncompressed)
tries used in the previous section can be seen as subtrees of T̄ . More formally, T (S) can be
obtained from T̄ by removing all the subtrees T̄v of T̄ such that T̄v does not contain any leaf
corresponding to an element of S.

Our strategy is to maintain a similar “global” tree T , so that the representations of
individual sets constitute subtrees of T . We incrementally store all the elements of

⋃
S in

the leaves of a weight-balanced B-tree T [1]. As opposed to T̄ , T is not binary. However, it
still allows us to keep all the elements as leaves at the same depth of order O(logN) and
add new elements in logarithmic time. One crucial property of a weight-balanced B-tree
allows us to still represent the sets S ∈ S as compressed subtrees T (S) of T , even though T
undergoes updates. The potential function φ we use to analyze the amortized performance
of the operations is exactly the same as previously, i.e., φ(S) =

∑
S∈S |T (S)|.

The weight-balanced trees have been previously used in the context of the monotonic list
labeling problem, which typically asks to maintain a totally ordered set Q and O(log |Q|)-bit
labels of the elements of Q subject to insertions of a new element y to Q between two
existing elements x < z, x, z ∈ Q. Several optimal data structures exist for this problem
(e.g. [3, 5, 12]): each supports inserting a new element in O(log |Q|) amortized time and
guarantees that such insertion incurs amortized logarithmic number of relabels of existing
elements in Q. In particular, Kopelowitz [12] used the weight-balanced B-tree to obtain
optimal worst-case bounds for this problem. However, it is not clear how to use a monotonic
list labeling data structure as a black-box in our case. Instead of keeping the number of
relabels small, we rather need to keep the potential increase per insertion small.

We again assume that we work in the word-RAM model, so that the operations on
O(logN)-bit integers take O(1) time and the space is measured in the number of words.

A. Karczmarz 7:9

The Weight-Balanced B-tree. A weight-balanced B-tree T with a (constant) branching
parameter a ≥ 4 stores its elements in leaves. For an internal node v ∈ T , we define its
weight w(v) to be the number of leaves among the descendants of v. The following are the
key invariants that define a weight-balanced B-tree:
1. All the leaves of T are at the same depth.
2. Let height of a node v ∈ T be the number of edges on the path from v to any leaf. An

internal node v of height h has weight less than 2ah.
3. Except for the root, an internal node of height h has weight greater than 1

2a
h.

I Lemma 4 ([1]). Assume T is a weight-balanced B-tree with branching parameter a.
All internal nodes of T have at most 4a children.
Except for the root, all internal nodes of T have at least a/4 children.
If T contains n elements, then the height of T is O(loga n).

For each internal node v and its two children v1, v2 such that v1 is to the left of v2, the
elements in the subtree of v1 are no larger than any of the elements in the subtree of v2.
Each internal node stores the minimum and maximum elements stored in its subtree. This
information allows us to drive the searches down the tree.

To insert an element e into T , we first descend down T to find an appropriate position for
the new leaf corresponding to e. The insertion of a new leaf may result in some nodes getting
out of balance. Let v ∈ T be the deepest node such that w(v) = 2ah at that point, where h
is the height of v. As each child of v has weight less than 2ah−1, one can split the children
of v into two groups of consecutive children C−, C+ so that the total weight of nodes in any
group is in the interval (ah − 2ah−1, ah + 2ah−1). We have ah − 2ah−1 = ah(1− 2/a) ≥ 1

2a
h

and similarly ah + 2ah−1 ≤ 3
2a

h. v is split into two nodes v− and v+ so that the elements of
C− become the children of v− and the elements of C+ become the children of v+. We have
w(v−), w(v+) ∈ (1

2a
h, 3

2a
h), so both v− and v+ satisfy the balance constraints. If v is not

the root before the split, nodes v−, v+ are made the children of the parent of v in place of v.
Otherwise, a new root with children v−, v+ is created. The process is repeated until all the
nodes are balanced and thus the insertion takes O(logn) time, where n is the number of
elements stored in T .

To delete an element from a weight-balanced B-tree, we mark the corresponding leaf as
deleted, which takes O(logn) time. Once more than a half of the stored elements are marked
as deleted, the entire tree is rebuilt (the elements marked as deleted are skipped) in O(n)
time. This can be charged to the deletions that left the marked leaves. Thus, the amortized
time complexity of a deletion is O(logn) as well.

The main advantage of a weight-balanced B-tree is the fact that for any newly created
node v of height h, at least Ω(ah) leaves have to be inserted into the subtree of v to cause the
split of v. Therefore, when the node v is split, we can afford to spend O(ah) time for instance
for traversing all the leaf descendants of v or updating some secondary data structure that
accompanies v. This work can be charged to Ω(ah) insertions into the subtree of v that
take place between the creation of v and its split. The total amortized time spent on the
“additional maintenance” per insertion is thus proportional to the depth of T , i.e., O(logn).

Labeling the Tree T . Each time an operation Insert(S, u) (for u /∈ S) is issued, u is stored
as a leaf at an appropriate position of the weight-balanced B-tree T . We stress that there is
a separate leaf for each (u, S) pair, where u ∈ S, i.e., multiple leaves may correspond to a
single u ∈ S. Such a design decision is explained later on (see Remark 1).

We introduce the labels `(v) of the vertices of T such that for any v1, v2 ∈ T , where v1 is
an ancestor of v2, the path v1 → v2 in T (i.e., the indices of children of subsequent nodes to

SWAT 2016

7:10 A Simple Mergeable Dictionary

be entered when following the path v1 → v2 in T) can be computed based only on `(v1) and
`(v2). As the trees T (S) are stored in a compressed way, the labels will help navigate T (S)
while performing the operations on S. We now define the labels `(v) formally.

Let H be the height of T . The label `(v) of a node v of height h consists of H blocks
of dlog2 (4a+ 1)e = O(1) bits. Clearly, `(v) can be stored in a constant number of machine
words. We number the blocks with integers 0, . . . ,H − 1 starting at the block containing
the least significant bits. Let vH → . . . → vh = v be the root-to-v path in T . We define
z(vi) to be the (0-based) position of vi among the children of vi+1 in the left-to-right order.
At any time (even immediately before the split) vi+1 has at most 4a + 1 children. Thus,
dlog2 (4a+ 1)e bits suffice to store z(vi). For i ∈ [h,H − 1], we define the the bits of the i-th
block of `(v) to contain exactly the value z(vi). The blocks h − 1, . . . , 0 of `(v) are filled
with zeros. Note that the label `(v) can be computed in O(1) time based on the label of its
parent in T using standard bitwise operations.

Storing the Individual Sets. Let S ∈ S. Denote by L(S) the set of leaves of T that
correspond to the elements of S. Recall that each T (S) is in fact the tree T with subtrees
containing no leaves of L(S) removed. Again, in the compressed version T ∗(S) we only keep
the nodes v of T (S) such that either v is the root of T (S), v ∈ L(S), or for at least two
children c1, c2 of v, the subtree rooted at ci (i = 1, 2) contains at least one leaf of L(S). An
example tree T along with the compressed and uncompressed representation of a set S ∈ S
is presented in Figure 3.

Each node v of T ∗(S) is a copy of the corresponding node of T and v stores a pointer
to the original node of T . Every node of T also maintains a list of its copies used in the
representations T ∗(S) of the sets of S ∈ S. The pointers between T ∗(S) and T along with
the labels `(∗) allow to temporarily decompress the relevant parts of T ∗(S) when performing
the operations Insert, Delete, Merge and Split, analogously as in Section 2.1.

Differences in the Implementation of Operations. In comparison to the data structure
of Section 2, the implementations of operations Insert, Delete, Split do not generally
change. We basically replace values bits(∗) with labels `(v). Each operation Insert(S, x)
first inserts a leaf into T and thus the new element is given a label before we modify T ∗(S).

When the operation Search(S, x) is performed, we first find in O(logN) worst-case
time a leaf in T that corresponds to a maximum value y ∈

⋃
S such that y ≤ x. Note that

Search(S, y) computes the same value as Search(S, x), but now y corresponds to some
leaf of T and it has a label, so we can proceed analogously as in Section 2.

Handling the Splits of the Nodes of T . Suppose a new leaf is added to T at an appropriate
position among the children of some height-1 node v. The labels of all the children of the
node v might have to be recomputed.

The insertion may also cause the splits of some internal nodes, as described previously.
Let v be an internal non-root node of height h that is split into two nodes v−, v+. Denote
by p the parent of v. After the split, both the values z(∗) of the children of p and the values
z(∗) of the children of v−, v+ may change. This implies that for each v of the O(ah) nodes
of the subtree rooted at p, the contents of at most two blocks (namely, the blocks h and
h− 1) of `(v) may change. As discussed above, we can afford going through all these nodes
without sacrificing our amortized O(logn) insertion bound.

The split also requires to repair some of the representations T ∗(S). First assume that S
is such that there is no copy of v included in T ∗(S). Then, either there is no copy of v in

A. Karczmarz 7:11

0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3 1,4 2,0 2,1 2,2 2,3

0 1 2

r

0 ∈ S1 1 ∈ S1 1 ∈ S2 1 ∈ S3 2 ∈ S3 3 ∈ S2 3 ∈ S1 4 ∈ S3 5 ∈ S2 6 ∈ S3 7 ∈ S2 8 ∈ S3 9 ∈ S1

0,0 0,1 1,2 2,3

0 1 2

r

0,0 0,1 1,2 2,3

0

r

Figure 3 Let S = {S1, S2, S3}, where S1 = {0, 1, 3, 9}, S2 = {1, 3, 5, 7} and S3 = {1, 2, 4, 6, 8}. A
weight-balanced B-tree T (with branching factor a = 4) that could arise when constructing S is
depicted at the top. The values in the nodes are their labels `(∗). The trie T (S1) can be seen in the
bottom left. The compressed version T ∗(S1) is illustrated in the bottom-right.

T (S) and thus T (S) contains no leaves of the subtree of T rooted at v, and we are done, or
a copy vS is a node of T (S). Then, vS has a single child c in T (S) and therefore, after the
split vS should be replaced with a copy of either v− or v+. However, as v− or v+ would have
been dissolved in T ∗(S), we actually do not need to update T ∗(S) at all. Moreover, in this
case the size |T (S)| does not change and neither does the potential φ.

Let us now suppose that a copy vS of v is a node of T ∗(S) and denote by q the parent
of vS in T ∗(S). If all the children of vS in T (S) are contained in the subtree of v− of T after
the split, it suffices to replace v in T ∗(S) with a copy of v− and update the pointers between
T ∗(S) and T . The case when all the children of v in T (S) are contained in the subtree of v+
of T is similar. Both this cases required O(1) time to process, but φ does not change. The
last case is when some two children c−, c+ of v in T (S) are contained in the subtrees of v−
and v+, respectively. Then, copies of both v− and v+ have to be introduced in T (S) in place
of v. Thus, the potential φ increases by 1 in this case. As far as the compact representation
T ∗(S) is concerned, a copy of p has to be included in T ∗(S), if it is not already there. The
copies of v− and v+ are created in T ∗(S) only if they would not be dissolved afterwards. We
skip the description of the case when v is the root, as it is analogous.

We conclude that it takes O(1) time to repair T ∗(S) in any case and the potential φ
increases by at most 1 per repair. The number of repairs incurred by the split of v is not more
than the number of leaves of the subtree rooted in v, i.e., O(ah), as for each representation
of S that actually needs to be repaired, T ∗(S) has to contain (a copy of) some leaf of the
subtree Tv. Finally, note that a single leaf of Tv has a copy in at most one representation
T ∗(S).

Thus, the repairs made during the maintenance of the tree T increase the potential by
amortized O(logN) per Insert operation.

SWAT 2016

7:12 A Simple Mergeable Dictionary

I Remark 1. Imagine the tree T was allowed to contain only a single leaf for each element
u ∈

⋃
S. Suppose that for each Si ∈ S = {S1, . . . , Sm}, Si = {u}, for some u ∈ U . Each

split of an ancestor of the leaf corresponding to u in T would cause a repair of m set
representations. Let x0 ∈ U be such that x0 > u. Now suppose the adversary sequentially
performs Insert(Si, xi), where u < xi < xi−1 for i = 1, . . . ,m. Ω(m) of such operations
would lead to a split of some ancestor of the leaf u, and the total running time of these
sequence could be as much as Ω(m2).

The weight-balanced B-tree does only guarantees that the total size of split subtrees
after m insertions is O(m logm). However, as the above example shows, the total number of
times when some particular leaf is contained in a subtree undergoing a split might be Ω(m2).
That is why we decided to store duplicate leaves per single value u ∈ U , if u is a frequent
element in the stored sets.

The Amortized Analysis of the Operations. Each of the operations Insert, Delete,
Split runs in amortized O(logN) time, as discussed above. Also it is clear that the
(amortized) potential increase per each of this operations is O(logN).

The operation Merge is implemented almost identically as in Section 2. We only need
to make sure that the modified recursive procedure merge is always fed two copies of the
same node v ∈ T as arguments. As each node has O(1) children, we can charge a constant
amount of work to the nodes of T (∗) destroyed during the merging process. Consequently,
Merge runs in time proportional to the decrease of the potential φ.

I Theorem 5. There exists a data structure supporting all the mergeable dictionary operations
on a collection S of subsets of U in amortized O(logN) time, where N =

∑
S∈S |S|.

4 Conclusions and Open Problems

In this paper we developed a simpler solution for the mergeable dictionary problem. We also
addressed the issue of supporting dynamic/infinite universes raised in [11].

We can see two interesting further questions about mergeable dictionaries. First, in
the finite universe case, the amortized cost of all the operations was logarithmic in the
size of the universe. On the other hand, for the infinite case, we only managed to obtain
amortized O

(
log
∑

S∈S |S|
)

= O (log |S|+ log |
⋃
S|) bounds. We can think of the size of

the “used universe” to be |
⋃
S|. Thus, in the infinite universe case, our time bounds are also

logarithmic in the number of stored sets, which might be of order much larger than |
⋃
S|. It

would be interesting to know if one could remove this dependence.
Second, our solution for infinite universes involves maintaining a “common infrastruc-

ture” T in order to limit the potential growth. Is there a way to implement a mergeable
dictionary in a dynamic/infinite universe regime without any common infrastructure, so that
the representation of a set does not depend on the shapes of other stored sets? In particular,
is the splay tree [17] a mergeable dictionary with such a property?

Acknowledgments. We thank the anonymous reviewers for their helpful comments.

References
1 Lars Arge and Jeffrey Scott Vitter. Optimal external memory interval management. SIAM

J. Comput., 32(6):1488–1508, 2003. doi:10.1137/S009753970240481X.

http://dx.doi.org/10.1137/S009753970240481X

A. Karczmarz 7:13

2 Amitabha Bagchi, Adam L. Buchsbaum, and Michael T. Goodrich. Biased skip lists. Al-
gorithmica, 42(1):31–48, 2005. doi:10.1007/s00453-004-1138-6.

3 Michael A. Bender, Richard Cole, Erik D. Demaine, Martin Farach-Colton, and Jack Zito.
Two simplified algorithms for maintaining order in a list. In Algorithms – ESA 2002, 10th
Annual European Symposium, Rome, Italy, September 17-21, 2002, Proceedings, pages 152–
164, 2002. doi:10.1007/3-540-45749-6_17.

4 Mark R. Brown and Robert Endre Tarjan. A fast merging algorithm. J. ACM, 26(2):211–
226, 1979. doi:10.1145/322123.322127.

5 Paul F. Dietz and Daniel Dominic Sleator. Two algorithms for maintaining order in a list.
In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New
York, New York, USA, pages 365–372, 1987. doi:10.1145/28395.28434.

6 Martin Farach and Mikkel Thorup. String matching in lempel-ziv compressed strings.
Algorithmica, 20(4):388–404, 1998. doi:10.1007/PL00009202.

7 Paweł Gawrychowski. Pattern matching in lempel-ziv compressed strings: Fast, sim-
ple, and deterministic. In Algorithms – ESA 2011 – 19th Annual European Sympo-
sium, Saarbrücken, Germany, September 5-9, 2011. Proceedings, pages 421–432, 2011.
doi:10.1007/978-3-642-23719-5_36.

8 Loukas Georgiadis, Haim Kaplan, Nira Shafrir, Robert Endre Tarjan, and Renato Fon-
seca F. Werneck. Data structures for mergeable trees. ACM Transactions on Algorithms,
7(2):14, 2011. doi:10.1145/1921659.1921660.

9 Leonidas J. Guibas and Robert Sedgewick. A dichromatic framework for balanced trees.
In 19th Annual Symposium on Foundations of Computer Science, Ann Arbor, Michigan,
USA, 16-18 October 1978, pages 8–21, 1978. doi:10.1109/SFCS.1978.3.

10 Scott Huddleston and Kurt Mehlhorn. A new data structure for representing sorted lists.
Acta Inf., 17:157–184, 1982. doi:10.1007/BF00288968.

11 John Iacono and Özgür Özkan. Mergeable dictionaries. In Proceedings of the 37th Interna-
tional Colloquium Conference on Automata, Languages and Programming, ICALP’10, pages
164–175, Berlin, Heidelberg, 2010. Springer-Verlag. doi:10.1007/978-3-642-14165-2_
15.

12 Tsvi Kopelowitz. On-line indexing for general alphabets via predecessor queries on subsets
of an ordered list. In 53rd Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 283–292, 2012. doi:
10.1109/FOCS.2012.79.

13 Katherine Jane Lai. Complexity of union-split-find problems. Master’s thesis, Mas-
sachusetts Institute of Technology, 2008. URL: http://erikdemaine.org/theses/klai.
pdf.

14 William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun. ACM,
33(6):668–676, 1990. doi:10.1145/78973.78977.

15 Mihai Pătraşcu and Erik D. Demaine. Lower bounds for dynamic connectivity. In Pro-
ceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA,
June 13-16, 2004, pages 546–553, 2004. doi:10.1145/1007352.1007435.

16 Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J. Comput.
Syst. Sci., 26(3):362–391, June 1983. doi:10.1016/0022-0000(83)90006-5.

17 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary trees. In Pro-
ceedings of the 15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983,
Boston, Massachusetts, USA, pages 235–245, 1983. doi:10.1145/800061.808752.

18 Dan E. Willard. Log-logarithmic worst-case range queries are possible in space theta(n).
Inf. Process. Lett., 17(2):81–84, 1983. doi:10.1016/0020-0190(83)90075-3.

SWAT 2016

http://dx.doi.org/10.1007/s00453-004-1138-6
http://dx.doi.org/10.1007/3-540-45749-6_17
http://dx.doi.org/10.1145/322123.322127
http://dx.doi.org/10.1145/28395.28434
http://dx.doi.org/10.1007/PL00009202
http://dx.doi.org/10.1007/978-3-642-23719-5_36
http://dx.doi.org/10.1145/1921659.1921660
http://dx.doi.org/10.1109/SFCS.1978.3
http://dx.doi.org/10.1007/BF00288968
http://dx.doi.org/10.1007/978-3-642-14165-2_15
http://dx.doi.org/10.1007/978-3-642-14165-2_15
http://dx.doi.org/10.1109/FOCS.2012.79
http://dx.doi.org/10.1109/FOCS.2012.79
http://erikdemaine.org/theses/klai.pdf
http://erikdemaine.org/theses/klai.pdf
http://dx.doi.org/10.1145/78973.78977
http://dx.doi.org/10.1145/1007352.1007435
http://dx.doi.org/10.1016/0022-0000(83)90006-5
http://dx.doi.org/10.1145/800061.808752
http://dx.doi.org/10.1016/0020-0190(83)90075-3

Cuckoo Filter: Simplification and Analysis
David Eppstein∗

Computer Science Department, University of California, Irvine, USA

Abstract
The cuckoo filter data structure of Fan, Andersen, Kaminsky, and Mitzenmacher (CoNEXT 2014)
performs the same approximate set operations as a Bloom filter in less memory, with better
locality of reference, and adds the ability to delete elements as well as to insert them. However,
until now it has lacked theoretical guarantees on its performance. We describe a simplified version
of the cuckoo filter using fewer hash function calls per query. With this simplification, we provide
the first theoretical performance guarantees on cuckoo filters, showing that they succeed with
high probability whenever their fingerprint length is large enough.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases approximate set, Bloom filter, cuckoo filter, cuckoo hashing

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.8

1 Introduction

Bloom filters [2] are a very widely used data structure for approximately representing sets
using low space. At the cost of O(1) bits per element, they can represent any set, with
constant-time membership testing, no false negatives, and an arbitrarily low false positive rate
controlled by the bits per element. Recently, Fan, Andersen, Kaminsky, and Mitzenmacher [8]
proposed an alternative data structure for the same purpose, the cuckoo filter. They show
experimentally that cuckoo filters are better than Bloom filters in several important ways:
they use (up to lower-order terms) 30% less space for the same false positive rate, matching
the information-theoretic lower bound. They have better locality of reference, accessing only
two contiguous blocks of memory per query rather than the larger numbers of a typical Bloom
filter. And, unlike a Bloom filter, they can handle element deletions as well as insertions
and queries without any increase in storage. These good features have already led to the
use of cuckoo filters in several applications [11, 10]. (For a different and more theoretical
replacement for Bloom filters with similar advantages, see Pagh, Pagh, and Rao [13].)

A cuckoo filter uses a hash table to store a small fingerprint for each element, and answers
queries by testing whether the fingerprint of the queried element is present. Each element
has two hash table cells where its fingerprints might be stored, determined by a combination
of a hash of the element and a second hash of the fingerprint. As in cuckoo hashing [14],
fingerprints already stored in the table may be moved to their second location to make room
for a newly inserted fingerprint. The performance of a cuckoo filter is controlled by the
number n of elements in the set it represents, together with three design parameters: the
table size N (number of cells), block size b (fingerprints that can be stored in a single cell),
and fingerprint size f (bits per fingerprint). A good choice of these parameters allows the
fingerprints for all elements in the given set to be stored in the table, giving a data structure
whose false positive rate ε (the probability that an element not in the set is falsely reported

∗ Supported in part by NSF grant 1228639. The author would like to thank Michael Mitzenmacher for
introducing him to cuckoo filters, and for helpful discussions on this work.

© David Eppstein;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 8; pp. 8:1–8:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Cuckoo Filter: Simplification and Analysis

to be in the set) can easily be bounded by ε ≤ 2b/(2f − 1). For bad choices of parameters,
or unlucky choices of hash function, the data structure may fail, being unable to store all its
elements’ fingerprints. Therefore, it is important to analyze the likelihood of a failure, and
to understand which combinations of parameters have a guaranteed low failure probability.

We may define the load factor n
bN to be the ratio of the number of stored fingerprints to

the number that could be stored. As this number will be close to one, it is convenient to
represent its difference from one as a parameter δ, with 1 − δ = n

bN . The experiments of Fan
et al. [8], show that the load factor can be made arbitrarily close to one while keeping the
failure rate low, by a large enough choice of the block size b. With this choice and a small
false positive rate ε, the storage cost is

(
1 + o(1)

)
log(1/ε) bits per element, matching the

information-theoretic lower bound on any approximate set data structure. However, this
combination of low storage costs and low failure rate has been observed only in experiments.
The only theoretical analysis so far, also by Fan et al. [8], is a lower bound showing that f must
be Ω((logn)/b) to have a low failure probability. They did not provide any matching upper
bound showing that some combination of parameters can ensure a low failure probability.

In this paper we provide the first theoretical guarantees on the performance of cuckoo
filters. To do so, we describe a simplified version of cuckoo filters, in which we determine
the two cells for an element by using its fingerprint directly rather than by using a hash
of its fingerprint. This simplification had previously been considered by Fan et al. [8], but
they discarded it without publishing any experimental test results for it. Like Fan et al.,
we do not expect this simplification to be a practical improvement, but it makes the data
structure more amenable to analysis. Under this simplification, we show that the cuckoo
filter has (up to lower-order terms, for the same choice of block size, with polynomially small
failure probability) nearly the same maximum load rate as the blocked cuckoo hash table of
Dietzfelbinger and Weidling [5], as long as a constraint that f = Ω((logn)/b) is also satisfied.
In particular, this analysis allows for the load factor to be arbitrarily close to one, controlled
by the block size b. Thus, f = Ω((logn)/b) is both a necessary and a sufficient condition
for the high-probability success of cuckoo filters. We also describe how to add a stash to
the simplified cuckoo filter, allowing the cuckoo filter to take advantage of the improved
reliability of cuckoo filtering with a stash [12] without any change in the false positive rate.

Our analysis uses the unrealistic assumption of a uniformly random hash function.
However, it uses only two properties of this function: that blocked cuckoo hashing using it
succeeds with high probability, and that with high probability it balances the load of a set of
balls distributed into a significantly smaller number of bins. Therefore, it is likely that, if the
analysis of cuckoo hashing with realistic hash functions [15, 1] is extended to blocked cuckoo
hashing, the same analysis can also be extended to cuckoo filters. It also seems likely that
the original version of cuckoo filters behaves at least as well as the simplified version, but
we leave the problem of proving this as open for future research. Our algorithm for cuckoo
filtering with a stash depends in an essential way on the structure of the simplified cuckoo
filter, so extending it to the original cuckoo filter also remains open.

2 Preliminaries

We begin by briefly reviewing the Bloom filter, whose operations the cuckoo filter emulates,
and the cuckoo hash table on which the organization of a cuckoo filter is based. We then
describe the cuckoo filter itself, in the original version given by Fan et al.

As a notational convenience, we use log without a base to refer to the binary logarithm
log2. We will also use the natural logarithm, denoted by ln.

D. Eppstein 8:3

2.1 Bloom filter
A Bloom filter represents a set of n elements by an array of N cells (N > n), each containing
a single bit of information, together with a hash function mapping the potential elements
of the set to k-tuples of cells (for a chosen constant parameter value k). A cell contains a
nonzero bit if at least one of the elements is mapped to it by the hash function, and a zero
bit otherwise. To insert an element into the set, the hash function is used to find its cells,
and all of these cells are set to nonzero. To query whether an element belongs to a set, all
of its cells are examined, and the result of the query is positive if and only if they are all
nonzero. There is no deletion operation.

A false positive occurs if an element that is not part of the given set coincidentally has all
of its cells nonzero. For a given choice of N , and a given set size n, the optimal false positive
rate is achieved by setting k ≈ N ln 2

n , so that with high probability approximately half of the
cells in the table are nonzero. With these choices, the false positive rate is approximately
2−k. Inverting this calculation, the Bloom filter data structure achieves a false positive rate
of ε using approximately 1

ln 2 log(1/ε) ≈ 1.44 log(1/ε) bits of storage per element [8].
Many extensions of Bloom filters have been studied. For instance, a counting Bloom

filter [9] stores a counter instead of a bit per cell; it can handle deletions, and can also be
used (with a smaller number of cells) as a count-min sketch to estimate the frequency of
items in a data stream [3]. An invertible Bloom filter adds even more information per cell
in order to be able to recover the identities of the set elements stored in it, when there are
few enough elements; it also allows deletions, and can be used to find stragglers in a data
stream [6], or as a sketch to communicate the symmetric difference of two similar sets using
an amount of communication proportional to the difference [7]. However, these methods blow
up the size of the data structure by a nonconstant factor, and so are less suitable for the
original task of the Bloom filter, of representing approximate sets using very little memory.

2.2 Cuckoo hashing
Cuckoo filters are based on cuckoo hashing, one of many hashing based techniques for
maintaining a collection of key–value pairs and looking up the value associated with a query
key [14]. Cuckoo hashing is a form of open addressing, a family of hashing techniques in
which each cell of a hash table stores a single key–value pair. In cuckoo hashing, each key has
only two locations in which it may be stored, which are determined by a hash function. Thus,
answering a query is simple: look in those two cells and test whether either cell contains the
query key.

Inserting a key into a cuckoo hash table is more complicated. If one of the two cells for
the key is empty, it can be inserted there. But otherwise, one of the other keys occupying
one of these two cells must be kicked out, to make way for the new key. The kicked-out key
must then be re-inserted into its second location, possibly kicking out another key there,
and so on. This process will either eventually terminate with all keys stored in one of their
two cells, or it may fail and force the data structure to be rebuilt. A failure may occur, for
instance, when some set of q keys is mapped to fewer than q cells, so there is not enough
room to store all of these keys in their cells.

In analyzing this structure, we make the standard assumption that the two cells for
each key are chosen uniformly at random, independently from each other and from all
the other keys. However, there has also been much research on practical hash function
algorithms that do not obey this assumption but nevertheless can be made to work with
cuckoo hashing [4, 15].

SWAT 2016

8:4 Cuckoo Filter: Simplification and Analysis

Two of the shortcomings of this basic version of cuckoo hashing are that the failure
probability is only moderately small (proportional to 1/n2 per insertion, for a hash table
with a constant load factor, rather than being adjustable to arbitrary inverse polynomials)
and that the load factor it can tolerate while achieving this failure probability is also
bounded away from 1 (in fact, bounded below 1/2). Because of these issues, researchers have
investigated modifications of cuckoo hashing that can tolerate higher loads with improved
failure probabilities. For the results that we report on in this paper, we need to understand
two such modifications, blocked cuckoo hashing [5] and cuckoo hashing with a stash [12].

2.3 Blocked cuckoo hashing
Blocked cuckoo hashing was initially developed by Dietzfelbinger and Weidling [5]; we follow
here its description by Kirsch et al. [12]. In blocked cuckoo hashing, each cell of the hash
table stores a block of up to b different key–value pairs, for a parameter b chosen as part of
the implementation or initialization of the data structure. A query may examine all of the
pairs in the two cells that it searches; however, the locality of reference of the query is still
as good as in the original version of cuckoo hashing.

When a key is inserted, and one of its two cells is not full (has fewer than b keys already
stored in it) it may be placed directly in that cell. However, when both of its cells are full,
one of the keys already placed in one of those cells must be kicked out, and moved to its
other location. As with standard cuckoo hashing, this move may cause another key to move,
possibly creating a chain of dislocations. This sequence of moves can alternatively be viewed
as an augmenting path in a graph whose vertices are table cells and whose edges are the
pairs of cells that each key maps to. Kirsch et al. write that, for the analysis of the failure
probability of this algorithm, it is unimportant how the augmenting path is found, but that
an analysis of Dietzfelbinger and Weidling [5] shows constant expected time (in the event of
no failures) for a breadth-first algorithm for finding these augmenting paths.

In order to achieve a load factor of 1 − δ, blocked cuckoo hashing may be used with any
block size b ≥ 1 + ln(1/δ)

1−ln 2 . Thus, for constant δ, the block size is also a constant. With this
block size and load factor, the failure probability per insertion is O(1/nb) [12].

2.4 Cuckoo hashing with a stash
A stash is a small collection of key–value pairs that have not been included in a cuckoo
hash table. In cuckoo hashing with a stash, the stash is used to store key–value pairs whose
insertion would otherwise cause the hash table to fail. To perform a query in a cuckoo
hash table with a stash (in either the original or blocked form of cuckoo hashing) one first
checks the two cells that can contain the query key. Then, if the key is not found in either
of those two locations, and both locations are full, the stash is also searched. This causes
an additional sequence of memory accesses for unsuccessful searches (or for searches of keys
already in the stash), but does not slow down most searches, and in many cases greatly
improves the reliability of this structure [12].

To apply this technique to cuckoo filtering, we need an analysis of blocked filtering
with a stash. Kirsch et al. [12] claimed that, for blocked cuckoo hashing with block size
b and a stash that can hold σ key–value pairs, the failure probability per insertion is
O(1/n(σ+1)(b−1)+1). Unfortunately, this multiplicative improvement in the exponent of
failure probability, compared to the version without the stash, is incorrect. As Martin
Dietzfelbinger and Michael Rink observed, a failure mode in which σ + 2b+ 1 keys all map
to the same pair of cells already causes the failure probability to be much larger than this

D. Eppstein 8:5

bound.1 Therefore, any improvement to the reliability of blocked cuckoo hashing, obtained
by adding a stash, should be considered conjectural.

2.5 Cuckoo filter
A cuckoo filter [8] modifies the blocked cuckoo hash table by storing a small fingerprint for
each element in a set, instead of storing a key–value pair. As in the blocked cuckoo hash
table, each cell of the table can store a small number b of (fingerprints of) elements. For
each element there are two cells at which its fingerprint could be stored. To test whether an
element belongs to the filter, we examine these two cells and report yes when a matching
fingerprint is found in one of them.

In order to pack its fingerprints into these cells, the cuckoo filter (like a cuckoo hash table)
may sometimes move them to the other location for their key. However, when it does this, it
will not know the key from which the fingerprint was generated. Therefore, it must determine
the other location for a fingerprint from the fingerprint alone. This limitation means that
the two locations for the fingerprint of a key can no longer be chosen independently of each
other, complicating the analysis of this data structure.

To keep things simple, we will assume that the number of cells N in the cuckoo filter is a
power of two.2 Thus, if x and y are indices into the table (numbers in the range from 0 to
N − 1 inclusive), we can combine them by a bitwise exclusive or operation giving a number
x⊕ y that is also an index into the table. Cuckoo filtering depends on three hash functions,
φ, h1, and h2, assumed (for purposes of analysis) to be independent random functions:

Function φ maps each potential set element to its fingerprint, an f -bit binary number. It
is convenient to restrict φ to have nonzero values so that a zero fingerprint can be used to
mark an unused cell of the cuckoo filter; this has no significant effect on the asymptotic
behavior of the structure.
Function h1 maps each potential set element to a number from 0 to N − 1. This gives
the location of one of the two hash table cells into which the fingerprint for that element
can be placed.
Function h2 maps fingerprints to numbers in the range from 1 to N − 1 (inclusive). This
is not the index of a hash table cell, but rather the difference (or more precisely the
bitwise exclusive or) of any pair of locations at which that fingerprint should be stored.

Thus, using these functions, the fingerprint φ(x) for any element x of the given set will be
stored either in cell h1(x) or cell h1(x) ⊕ h2(φ(x)) of the hash table. If some subset of two
or more elements all have the same fingerprint and are all mapped by h1 to the same cell,
then each of the fingerprints for these elements will be stored separately in one of the two
cells for these elements, even when that would cause two copies of the same fingerprint to
be stored in the same cell. That is, in order to make deletions possible, we do not allow
different elements to share a copy of a stored fingerprint.

To query whether a value x is a member of the set represented by a cuckoo filter, we
examine the 2b fingerprints stored at cells h1(x) and h1(x) ⊕ h2(φ(x)), and check whether
any of them equal φ(x); if so we report that x is indeed a member. Thus, this check always
answers correctly when x belongs to the set, and may give a false positive with probability
at most 2b/2f−1 when x does not belong to the set. This query may be performed using a

1 Michael Mitzenmacher, personal communication, February 7, 2016.
2 It is tempting to try modular addition in place of exclusive ors to extend this method to other choices

of N , but this fails because exclusive or is an involution and modular addition isn’t. However, the
simplified cuckoo filter that we describe later can have a number of subtables that is not a power of two.

SWAT 2016

8:6 Cuckoo Filter: Simplification and Analysis

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

Figure 1 The graph of cuckoo filter cells, and pairs of cells that can be the two locations of any
fingerprint, for a cuckoo filter with 16 cells and two-bit fingerprints. The edges for each fingerprint
are colored green for fingerprint 01, blue for fingerprint 10, and red for fingerprint 11. Left: the
original cuckoo filter, with h2(01) = 0111, h2(10) = 1001, and h2(11) = 1000. Right: the simplified
cuckoo filter without h2.

number of binary word operations (including multiplication of binary numbers) proportional
to the number of words needed to store the two cells, rather than being proportional to the
larger number of fingerprints stored in these cells; see section 6 for details.

To insert a value x into the set, we compute its fingerprint and place this fingerprint
into one of the two cells associated with x, possibly relocating other fingerprints along an
augmenting path in the graph of cells and pairs of cells associated with the elements of the
set. The second location for each fingerprint can be calculated from its first location and
the fingerprint itself, without needing to know the element from which the fingerprint is
generated; otherwise, the insertion operation proceeds exactly as in the blocked cuckoo hash
table. Following Kirsch et al. [12], we do not specify precisely how the augmenting path is to
be found, except to note that one possible choice for finding it is to use a breadth first search.

To remove a value x from the set, we find a matching fingerprint for x, and remove it
from its cell. If there are multiple matching fingerprints, we remove only one copy; it does
not matter whether that copy is the one created when x was inserted.

3 The simplification and its graph

In the simplified version of cuckoo filters that we analyze here, we omit the second hash
function, h2. Thus, given any set element x, the two locations in which we may store the
fingerprint φ(x) are the cells with index h1(x) and h1(x) ⊕ φ(x). Other than this change,
the operation of the simplified cuckoo filter remains the same as in the original version.

The effect of this simplification may be visualized using a graph whose vertices are the
cells of the hash table, and whose edges connect the possible pairs of locations of a single
fingerprint (Figure 1). In the original cuckoo filter, the endpoints of each edge differ (in
their exclusive or) by one of the values of the hash function h2. The resulting graph is
regular, as each vertex has one incident edge for each possible hash function value, and has
the symmetries of a hypercube. When 2f > logn, the graph has probability Ω(1) of being
connected, in which case it is a Cayley graph of the group generated by exclusive ors of the
values of h2. For smaller values of f , with probability Ω(1) the hashes of all the fingerprints
will be independent vectors over the two-element field, and if so the graph will be a disjoint
union of N/22f−1 hypercube subgraphs with 22f−1 vertices per hypercube. However, when
the second hash function h2 is omitted, the corresponding graph of cell pairs is much less

D. Eppstein 8:7

well-connected: it is a disjoint union of N/2f subgraphs, each of which is a clique. The graph
of the simplified cuckoo filter is not connected unless f > logn, a much stronger requirement
than is needed for the likely connectivity of the graph of the original cuckoo filter.

This simplification had previously been considered by Fan et al. [8]. However, they
discarded it without publishing any test results for it. They write:

“If the alternate location were calculated . . . without hashing the fingerprint, the
items kicked out from nearby buckets would land close to each other in the table . . .
Hashing the fingerprints ensures that these items can be relocated to buckets in an
entirely different part of the hash table, hence reducing hash collisions and improving
the table utilization.”

Although we agree with this criticism, the simplification has the advantage that it makes
the method more amenable to analysis. In particular, we can bound the failure probability
of the simplified cuckoo filter by treating each connected component of the graph described
above as an independent cuckoo hash table. Within each component, all pairs of table cells
are equally likely to be chosen by any element that maps to that component, so the previous
analysis of cuckoo hash tables may be applied directly. Although we expect the failure
probability for the original cuckoo filter to be at least as good as for the simplified version,
we do not know how to extend our analysis to it.

We remark that, instead of randomly choosing a function h2, and constructing a graph of
cells and fingerprint-edges based on it, it would be possible to develop a generalized version
of cuckoo filtering whose graph is any desired (2f − 1)-regular graph on the cells of the
cuckoo filter. If this graph is also (2f − 1)-edge-colorable, this may be done by associating
each fingerprint with an edge color, and making the two cells that can store the fingerprint
of an element x be h1(x) and the neighbor of h1(x) along the edge with color φ(x). In the
more general case, in which the graph is not (2f − 1)-edge-colorable, this may be done by
choosing a one-to-one correspondence between fingerprints and outgoing locations at each
cell, and either storing φ(x) in h1(x) or storing ϕ(x) in the neighbor of h1(x) associated with
fingerprint φ(x), where ϕ(x) is the fingerprint associated with the edge back to h1(x). In this
way, for instance, it would be possible to make the graph connected even when 2f ≤ logn,
something that is not possible for the original cuckoo filter.

4 Analysis

We have seen by the graphical analysis in the previous section that, in the simplified
version of cuckoo filtering that we study here, the table of cells can be partitioned into
connected components of the fingerprint-edge graph, each of which is a clique. A single
connected component consists of 2f cells. Each two cells within a connected component
have locations that differ only within their least significant f bits. We call each of these
connected components a subtable. Essentially, each subtable is itself a cuckoo filter, on a
subset of the input data. We analyze two different failure modes of the global filter: either
it can fail to uniformly distribute the set elements to its subtables, or the cuckoo filtering
within a subtable can fail.

4.1 Even distribution into subtables
We assume a cuckoo filter representing n elements, with b fingerprints per cell and N =
(n/b)/(1 − δ− δ2) cells where δ and b are related as b ≥ 1 + ln(1/δ)

1−ln 2 , the same relation used by
Kirsch et al. (Prop. 4.1) for blocked cuckoo hashing [12]. We also assume that the fingerprints

SWAT 2016

8:8 Cuckoo Filter: Simplification and Analysis

of the cuckoo filter have f bits each, so that the cuckoo filter may be partitioned into N/2f
subtables of 2f cells per subtable.

The subtable into which an element x is mapped is given by the most significant −f+logN
bits of h1(x). Assuming that h1 is a random hash function, the probability that each element
falls into a particular subtable S is 2f (1/N), and the events that elements fall into a subtable
(for different elements) are mutually independent. Thus, the number of elements that are
mapped into subtable S is the sum of n i.i.d. Bernoulli random variables with probability
p = 2f (1/N) of being 1 and probability 1 − p of being 0. The expected number µ of elements
that are mapped into subtable S is 2f (n/N) = 2fb(1 − δ − δ2).

We will say that a subtable is overfull when the number of elements mapped to it exceeds
µ(1 − δ)/(1 − δ − δ2) = µ(1 + δ2 + o(δ2)), giving it a load factor greater than 1 − δ. By a
standard form of the multiplicative Chernoff bound, for δ sufficiently smaller than 1, the
probability that S is overfull is at most exp

(
−δ4µ/3

)
. To achieve probability 1/ns of avoiding

any overfull subtable, it suffices (by the union bound) to achieve probability 1/ns+1 that one
table S is overfull. Plugging µ ≥ 2fb into the probability that S is overfull and solving for f
gives that no table is overfull, with high probability ≥ 1 − 1/ns, whenever

f ≥ log
(

3(s+ 1) lnn
δ4b

)
= log

(
logn
b

)
+O(1).

where the simplification on the right hand side is based on the assumption that δ and s are
constants. This Ω

(
log((logn)/b)

)
constraint on f will be insignificant in comparison with

the Ω
(
(logn)/b

)
constraint coming from the failure probability within each subtable.

We summarize the results of this subsection as a lemma:

I Lemma 4.1. Let n, N , b, f , and δ be as above. Suppose also that f = log
(
(logn)/b

)
+Ω(1).

Then the probability that a simplified cuckoo filter with these parameters has any overfull
subtables is polynomially small, with an exponent that can be made arbitrarily large by using
a larger constant factor in the Ω-notation of the bound for f .

4.2 Failure probability within each subtable
Let S be a subtable that is not overfull; that is, at most 2fb/(1 + δ) elements of the given
n-element set are mapped into it, where again f is the fingerprint length, b is the number
of fingerprints per cell, and δ is a constant that is yet to be determined. If an element x is
mapped to subtable S, then the location within S to which it is mapped (the low-order bits of
h1(x)) are independent of the information causing it to be mapped to S (the high-order bits
of h1(x)), so these locations are uniformly distributed within S. Additionally, the fingerprint
φ(x) is uniformly distributed among all of the valid fingerprints, and the set of locations
given by the bitwise exclusive or of these fingerprints with h1(x) is exactly the set of all
remaining locations within S. Therefore, we may analyze each subtable independently, as
a data structure containing at most 2fb/(1 + δ) fingerprints, each of which is mapped to
a uniformly random pair of distinct locations within the subtable. That is, limiting our
attention to a single subtable has eliminated the dependence between the pairs of locations
used by each element of the cuckoo filter.

Such a data structure behaves exactly the same as a blocked cuckoo hash table with the
same elements. Thus, we can apply the previously known analysis of a blocked cuckoo hash
table directly. However we must keep in mind the fact that, because we are studying events
that hold with high (inverse-polynomial) probability, the reduced size of a subtable (relative
to an n-element cuckoo hash table) translates into weaker bounds on the failure probability.

D. Eppstein 8:9

Choose b and δ so that b ≥ 1 + ln(1/δ)
1−ln 2 , the same constraints on b and δ made in the

analysis of blocked cuckoo hash tables. With these choices, δ may be made arbitrarily small
by choosing b large enough, and in particular the factor (1 + δ)2 appearing in the analysis of
how evenly the subtables are distributed may also be made arbitrarily close to one. Then
by the previous analysis of blocked cuckoo hash tables, the failure probability per insertion,
for a subtable containing Θ(b2f) elements, is O

(
(b2f)−b

)
, inversely proportional to the bth

power of the number of elements.
We desire the data structure to succeed with high probability; that is, for an arbitrarily

chosen constant s, we should be able to achieve failure probability O(1/ns). This will be true
when (b2f)b = Ω(ns) or, taking logarithms of both sides, when b(f + log b) > s logn+O(1).
The b log b term can be assumed to cancel the O(1), giving f > (s logn)/b as a sufficient
condition for high-probability success. This matches the f = Ω

(
(s logn)/b

)
necessary

condition of Fan et al. [8] (based on a calculation of the probability that more than 2b
elements hash to the same location/fingerprint pair), which also applies to this version of
cuckoo filters.

We summarize the results of this subsection as a lemma:

I Lemma 4.2. Let b be any sufficiently large constant, and let s also be constant. Let n,
N , δ, and f be as defined above, and suppose that f > (s logn)/b. Then the probability of
failure for an insertion of an element into a simplified cuckoo filter with these parameters
and without any overfull subtables is at most 1/ns.

4.3 Overall failure probability
Combining our results on the two failure modes of cuckoo filters, we have the following result.

I Theorem 4.3. Let n and b be given, and let the maximum load factor for high-probability-
of-success blocked cuckoo hashing with block size b be 1 − δ, where b ≥ 1 + ln(1/δ)

1−ln 2 . Then
creating a cuckoo filter for n elements with block size b and fingerprint size f succeeds with
high probability for load factor 1 − δ− δ2 when f = Ω

(
(logn)/b

)
. More specifically, to achieve

probability O(1/ns) of failure it is sufficient for b to be a sufficiently large constant and for f
to obey the inequality f > (s+ 1)(logn)/b.

The 1 + o(1) factor by which the load factor 1 − δ of blocked cuckoo hashing differs from
the load factor 1 − δ − δ2 of this result is caused by the fact that, when n elements are
filtered into subtables, some subtables will likely be larger than their expected size. The
term δ2 could be replaced here by any fixed power of δ. One way of avoiding this change in
load factor altogether would be to redo the analysis of blocked cuckoo hashing based on the
assumption that the input is chosen by including elements independently at random at a
fixed rate, rather than that the set of input elements has a fixed size. With this modified
input model, the same model with the same rate would automatically apply to each subtable,
without need of Chernoff bounds. However, this refinement would make little difference to
our overall results.

5 Cuckoo filter with a stash

The extra structure of the subtables in the simplified cuckoo filter that we analyze here also
makes it easier to add a stash to this structure, to amplify its success probability. Specifically,
we add a separate stash for each subtable of the filter. Each stash will store a collection of
(location,fingerprint) pairs, for fingerprints that were not able to be stored within its subtable.

SWAT 2016

8:10 Cuckoo Filter: Simplification and Analysis

Because the stash is specific to the subtable, the location part of the stash need only store
the low-order f bits of the location, specifying one of the two cells within the subtable that
its fingerprint could have been stored in.

Recall that, in the simplified cuckoo filter, Each fingerprint φ(x) can be stored in two
locations, h1(x) and h1(x) ⊕ φ(x). However, after storing the fingerprint in the filter, we
no longer know which of its two locations is h1. Therefore, in the pair that we store in
the stash, we use the location with the smaller index, given by (the low-order f bits of)
min(h1(x), h1(x) ⊕ φ(x)).

To query whether an element x belongs to the set represented by a cuckoo filter with a
stash, we test whether either of the two locations for x in the filter contains the fingerprint
for x. If not, we determine the minimum of those two locations, and search for the resulting
(location,fingerprint) pair in the stash for the subtable of x. To insert an element x into the
filter, we attempt to insert it into the cuckoo filter as before, and if this fails we add it to
the stash. And to delete an element x, we perform a query to determine which of the two
locations for x contains its fingerprint, or whether the fingerprint is located in the stash, and
remove one copy of this fingerprint from one of its locations.

The same analysis as for the cuckoo filter without a stash goes through in the same way
as before, replacing the failure probability of a blocked cuckoo hash table (used to prove
Theorem 4.2) with any improved failure probability (currently only conjectural) that can be
proved for a blocked cuckoo hash table with a stash.

The failure probability can also be boosted, with theoretical guarantees rather than
conjectures on the improvement, by increasing the block size b rather than adding a stash.
Adding a stash to each subtable would increase the memory requirements of the data structure
by only a lower-order term, but increasing the block size could actually decrease the memory
requirements (assuming the fingerprint size f is kept constant) by allowing a load factor
closer to 1 to be used. So, given that stashes are not an improvement over increased block
sizes in the guarantees they provide, in the reliability that can be obtained with them, or
in the storage space they use, why would one ever use a stash? The answer lies in another
feature of their analysis, their effect on the false positive rate of the data structure.

Recall that, in a cuckoo filter with block size b and fingerprint size f , the false positive
rate is at most 2b/(2f − 1): each query examines at most 2b fingerprints, each of which has a
1/(2f − 1) chance of colliding with a given query of an element that does not belong to the
set. The probability is at most 2b/(2f − 1) rather than exactly 2b/(2f − 1) for two reasons:
a block of cells may not be full, or it may have more than one copy of the same fingerprint.
However, for typical choices of parameters, neither of these reasons gives a large effect on
the false positive rate. Based on this calculation, increasing the block size from b to b′ would
also increase the false positive rate by the same b′/b factor. Naively, a stash of size σ would
again increase the false positive rate to (2b+ σ)/(2f − 1), since now there are potentially σ
additional fingerprints that could collide with any given query. However, as we now prove,
the stash does not actually change the false positive rate at all. The analysis below also gives
a tighter analysis on the false positive rate for cuckoo hashes even without a stash, taking
into account the possibility of under-full blocks.

I Theorem 5.1. The false positive rate of a cuckoo filter with b blocks, n elements, N hash
table cells, fingerprint size f , and load factor 1 − δ = n/Nb, regardless of whether it uses a
stash or not, is at most 2n

N(2f−1) = 2b(1−δ)
2f−1 .

Proof. There are n elements in the set represented by the filter, each of which independently
selects a hash table location and fingerprint. A query collides with an element if and only if
it has the same fingerprint and is mapped to one of the same two locations. Based on this

D. Eppstein 8:11

choice, any single element has a 2/N(2f − 1) probability of colliding with the given query;
the factor of 2 in the numerator comes from the fact that two different choices of hash table
location give rise to the same pair of cells in which the fingerprint can be stored. The result
follows by the union bound. J

Based on this result, and assuming that adding a stash to a blocked cuckoo hash table
can be proved to improve its reliability, the same improvement to reliability can be obtained
in a cuckoo filter with a stash, without sacrificing the failure rate or compensating for it by
increasing the fingerprint size.

6 Bit-parallel querying

A query in a cuckoo filter involves testing whether a given fingerprint φ(x) is stored in one of
two cells of the filter. However, a fingerprint may have many fewer bits than a word in the
machine architecture on which the filter is implemented; therefore, it may be necessary to
test whether the same fingerprint appears at each of several positions in a machine word.
We describe here how to perform this task in constant time (independent of the number of
positions to be tested) using only bitwise binary operations and arithmetic operations on
binary numbers. This analysis shows that cuckoo filter queries can take constant time even
for non-constant block sizes, as long as the fingerprint length multiplied by the block size is
O(logn), machine words store Ω(logn)-bit words, and multiplication takes constant time.

Suppose that each fingerprint has f bits, and that b fingerprints are packed into a word
w of bf bits. We perform the following steps:

Let F =
∑b−1
i=0 2if , a word in which b fingerprints are packed, all equal to the number 1.

This step can be done when the filter is created, so its calculation does not figure into
the time complexity of the query algorithm.
Compute q = w ⊕ (φ(x) ⊕ (2f − 1))F . The subexpression φ(x) ⊕ (2f − 1) creates a
fingerprint complementary to φ(x), and the subexpression (φ(x) ⊕ (2f − 1))F packs b
copies of this complementary fingerprint into a single word. Thus, the whole expression,
which combines w with these complementary fingerprints by a bitwise exclusive or, gives
a word packed with b fingerprints which are all-ones when they match φ(x), and which
have at least one zero in their binary representations when they do not match.
Compute r = ((q + F) ⊕ q ⊕ F) & 2fF . Here the & operator represents bitwise Boolean
and. The expression q + F produces a carry above each matching fingerprint, and no
carry above the fingerprints that do not match. The expression q⊕F has, in the positions
of each of these carry bits, a binary value representing what would be in that position if
no carry occurred. The exclusive or of these two subexpressions gives the carry bits that
differ from their non-carry values. Masking with 2fF keeps only the bits in the carry
positions of this computation, setting the other bits to zero.
If r is zero, there is no match. Otherwise, there is a match at the position given by
shifting the least significant nonzero bit of r right by f positions. This least significant
nonzero can be calculated as r & ∼(r − 1), where ∼ is the bitwise complement operator.

Once a value with a nonzero bit at the position of the first match has been obtained, it is
straightforward to perform other operations such as removing the fingerprint at that position;
we omit the details. We summarize the results here as a theorem:

I Theorem 6.1. Suppose that a cuckoo filter with block size b packs each block of b fingerprints
into B machine words, in a model of computation in which bitwise Boolean operations and
binary number arithmetic (including multiplication) take constant time per operation. Then
each query in the filter may be performed in time O(B).

SWAT 2016

8:12 Cuckoo Filter: Simplification and Analysis

References
1 Martin Aumüller, Martin Dietzfelbinger, and Philipp Woelfel. Explicit and efficient hash

families suffice for cuckoo hashing with a stash. Algorithmica, 70(3):428–456, 2014. doi:
10.1007/s00453-013-9840-x.

2 Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422–426, 1970. doi:10.1145/362686.362692.

3 Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-
min sketch and its applications. J. Algorithms, 55(1):58–75, 2005. doi:10.1016/j.jalgor.
2003.12.001.

4 Martin Dietzfelbinger and Ulf Schellbach. On risks of using cuckoo hashing with simple
universal hash classes. In Proc. 20th ACM–SIAM Symp. Discrete Algorithms (SODA’09),
pages 795–804, 2009.

5 Martin Dietzfelbinger and Christoph Weidling. Balanced allocation and dictionaries with
tightly packed constant size bins. Theoret. Comput. Sci., 380(1-2):47–68, 2007. doi:10.
1016/j.tcs.2007.02.054.

6 David Eppstein and Michael T. Goodrich. Straggler identification in round-trip data
streams via Newton’s identities and invertible Bloom filters. IEEE Trans. Knowledge and
Data Engineering, 23(2):297–306, 2011. arXiv:0704.3313, doi:10.1109/TKDE.2010.132.

7 David Eppstein, Michael T. Goodrich, Frank Uyeda, and George Varghese. What’s the
difference? Efficient set reconciliation without prior context. In Proc. ACM SIGCOMM
2011, pages 218–229, 2011. doi:10.1145/2018436.2018462.

8 Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher. Cuckoo
filter: Practically better than Bloom. In Proc. 10th ACM Int. Conf. Emerging Networking
Experiments and Technologies (CoNEXT’14), pages 75–88, 2014. doi:10.1145/2674005.
2674994.

9 Li Fan, Pei Cao, Jussara Almeida, and Andrei Broder. Summary cache: A scalable wide-
area web cache sharing protocol. IEEE/ACM Trans. Networking, 8(3):281–293, 2000. doi:
10.1109/90.851975.

10 M. Grissa, A.A. Yavuz, and B. Hamdaoui. Cuckoo filter-based location-privacy preservation
in database-driven cognitive radio networks. In Proc. World Symp. Computer Networks and
Information Security (WSCNIS 2015), pages 1–7. IEEE, 2015. doi:10.1109/WSCNIS.2015.
7368280.

11 Vikas Gupta and Frank Breitinger. How cuckoo filter can improve existing approximate
matching techniques. In Joshua I. James and Frank Breitinger, editors, Proc. 7th Int. Conf.
Digital Forensics and Cyber Crime (ICDF2C 2015), volume 157 of Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommunications Engineering,
pages 39–52. Springer, 2015. doi:10.1007/978-3-319-25512-5_4.

12 Adam Kirsch, Michael D. Mitzenmacher, and Udi Wieder. More robust hashing: cuckoo
hashing with a stash. SIAM J. Comput., 39(4):1543–1561, 2010. doi:10.1137/080728743.

13 Anna Pagh, Rasmus Pagh, and S. Srinivasa Rao. An optimal Bloom filter replacement.
In Proc. 16th ACM–SIAM Symposium on Discrete Algorithms (SODA’05), pages 823–829.
ACM, New York, 2005.

14 Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144,
2004. doi:10.1016/j.jalgor.2003.12.002.

15 Mihai Pătraşcu and Mikkel Thorup. The power of simple tabulation hashing. J. ACM,
59(3):A14, 2012. doi:10.1145/2220357.2220361.

http://dx.doi.org/10.1007/s00453-013-9840-x
http://dx.doi.org/10.1007/s00453-013-9840-x
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1016/j.jalgor.2003.12.001
http://dx.doi.org/10.1016/j.jalgor.2003.12.001
http://dx.doi.org/10.1016/j.tcs.2007.02.054
http://dx.doi.org/10.1016/j.tcs.2007.02.054
http://arxiv.org/abs/0704.3313
http://dx.doi.org/10.1109/TKDE.2010.132
http://dx.doi.org/10.1145/2018436.2018462
http://dx.doi.org/10.1145/2674005.2674994
http://dx.doi.org/10.1145/2674005.2674994
http://dx.doi.org/10.1109/90.851975
http://dx.doi.org/10.1109/90.851975
http://dx.doi.org/10.1109/WSCNIS.2015.7368280
http://dx.doi.org/10.1109/WSCNIS.2015.7368280
http://dx.doi.org/10.1007/978-3-319-25512-5_4
http://dx.doi.org/10.1137/080728743
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
http://dx.doi.org/10.1145/2220357.2220361

Randomized Algorithms for Finding a Majority
Element
Paweł Gawrychowski1, Jukka Suomela2, and
Przemysław Uznański3

1 Institute of Informatics, University of Warsaw, Warsaw, Poland
2 Helsinki Institute for Information Technology HIIT, Department of

Computer Science, Aalto University, Aalto, Finland
3 Department of Computer Science, ETH Zürich, Zurich, Switzerland

Abstract
Given n colored balls, we want to detect if more than bn/2c of them have the same color, and if so
find one ball with such majority color. We are only allowed to choose two balls and compare their
colors, and the goal is to minimize the total number of such operations. A well-known exercise
is to show how to find such a ball with only 2n comparisons while using only a logarithmic
number of bits for bookkeeping. The resulting algorithm is called the Boyer–Moore majority
vote algorithm. It is known that any deterministic method needs d3n/2e − 2 comparisons in the
worst case, and this is tight. However, it is not clear what is the required number of comparisons
if we allow randomization. We construct a randomized algorithm which always correctly finds
a ball of the majority color (or detects that there is none) using, with high probability, only
7n/6 + o(n) comparisons. We also prove that the expected number of comparisons used by any
such randomized method is at least 1.019n.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases majority, randomized algorithms, lower bounds

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.9

1 Introduction

A classic exercise in undergraduate algorithms courses is to construct a linear-time constant-
space algorithm for finding the majority in a sequence of n numbers a1, a2, . . . , an, that is, a
number x such that more than bn/2c numbers ai are equal to x, or detect that there is no
such x. The solution is to sweep the sequence from left to right while maintaining a candidate
and a counter. Whenever the next number is the same as the candidate, we increase the
counter; otherwise we decrease the counter and, if it drops down to zero, set the candidate
to be the next number. It is not difficult to see that if the majority exists, then it is equal to
the candidate after the whole sweep, therefore we only need to count how many times the
candidate occurs in the sequence. This simple yet beautiful solution was first discovered by
Boyer and Moore in 1980; see [4] for the history of the problem.

The only operation on the input numbers used by the Boyer–Moore algorithm is testing
two numbers for equality, and furthermore at most 2n such checks are ever being made.
This suggests that the natural way to think about the algorithm is that the input consists
of n colored balls and the only possible operation is comparing the colors of any two balls.
Now the obvious question is how many such comparisons are necessary and sufficient in the
worst possible case. Fischer and Salzberg [11] proved that the answer is d3n/2e − 2. Their
algorithm is a clever modification of the original Boyer–Moore algorithm that reuses the

© Paweł Gawrychowski, Jukka Suomela, and Przemysław Uznański;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 9; pp. 9:1–9:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Randomized Algorithms for Finding a Majority Element

results of some previously made comparisons during the verification phase. They also show
that no better solution exists by an adversary-based argument. However, this argument
assumes that the strategy is deterministic, so the next step is to allow randomization.

Surprisingly, not much seems to be known about randomized algorithms for computing
the majority in the general case. For the special case of only two colors, Christofides [5]
gives a randomized algorithm that uses 2

3 (1− ε
3)n comparisons in expectation and returns

the correct answer with probability 1− ε, and he also proves that this is essentially tight;
this improves on a previous lower bound of Ω(n) by De Marco and Pelc [15]. Note that in
the two-color case any deterministic algorithm needs precisely n−B(n) comparisons, where
B(n) is the number of 1s in the binary expansion of n, and this is tight [17, 2, 19]. For
a random input, with each ball declared to be red or blue uniformly at random, roughly
2n/3 comparisons are sufficient and necessary in expectation to find the majority color [3].
However, to the best of our knowledge upper and lower bounds on the expected number of
comparisons without any restrictions on the number of colors have not been studied before.

Related work include oblivious algorithms studied by Chung et al. [6], that is, algorithms
in which subsequent comparisons do not depend on the previous answers, and finding majority
with larger queries [14, 9, 18]. Another generalization is finding a ball of plurality color, that
is, the color that occurs more often than any other [1, 12, 13].

We consider minimizing the number of comparisons mostly as an academic exercise, and
believe that a problem with such a simple formulation deserves to be thoroughly studied.
However, it is possible that a single comparison is so expensive that their number is the
bottleneck. Such a line of thought motivated a large body of work studying the related
questions of the smallest number of comparisons required to find the median element;
see [7, 8, 16] and the references therein. Of course, the simplest Boyer–Moore algorithm has
the advantage of using only two sequential scans over the input and a logarithmic number of
bits, while our algorithm needs more space and random access to the input.

Given that the original motivation of Boyer and Moore was fault-tolerant computing, we
find it natural to consider Las Vegas algorithms, that is, the number of comparisons depends
on the random choices of the algorithm but the answer is always correct. This way the result
will be correct even if the source of random bits is compromised; an adversary that is able to
control the random number generator can only influence the running time.

Model. We identify balls with numbers 1, 2, . . . , n. We write cmp(i, j) for the result of
comparing the colors of balls i and j (true for equality, false for inequality). We consider
randomized algorithm that, after performing a number of such comparisons, either finds
a ball of the majority color or detects that there is no such color. A majority color is a
color with the property that more than bn/2c balls are of such color. The algorithm should
always be correct, irrespectively of the random choices made during the execution. However,
the colors of the balls are assumed to be fixed in advance, and therefore the number of
comparisons is a random variable. We are interested in minimizing its expectation.

Contributions. We construct a randomized algorithm, which always correctly determines a
ball of the majority color or detects that there is none, using 7n/6 + o(n) comparisons with
high probability (in particular, in expectation). We also show that the expected number of
comparisons used by any such algorithm must be at least 1.019n. Therefore, randomization
allows us to circumvent the lower bound of Fischer and Salzberg and construct a substantially
better algorithm. Most probably our lower bound can be slightly strengthened, but achieving
7n/6, which we conjecture to be the answer, seems to require a different approach.

P. Gawrychowski, J. Suomela, and P. Uznański 9:3

2 Preliminaries

We denote the set of balls (items) by M = {1, 2, . . . , n}. We write color(x) for the color of
ball x, and cmp(x, y) returns true if the colors of balls x and y are identical.

An event occurs with very high probability (w.v.h.p.) if it happens with probability at
least 1 − exp(−Ω(log2 n)). Observe that the intersection of polynomially many very high
probability events also happens with very high probability.

I Lemma 1 (Symmetric Chernoff Bound). The number of successes for n independent coin
flips is w.v.h.p. at most n

2 +O(
√
n logn).

I Lemma 2 (Sampling). Let X ⊆M such that |X| = m. Let m′ denote the number of hits
on elements from X if we sample uniformly at random k ≤ n elements from M without
replacement. Then w.v.h.p. |m′/k −m/n| = O(k−1/2 logn).

Now we consider a process of pairing the items without replacement (choosing a random
perfect matching on M ; if n is odd then one item remains unpaired). For any X ⊆M , let
uXX be a random variable counting the pairs with both elements belonging to X when
choosing uniformly at random n

2 pairs of elements from M without replacement. Of course
E[uXX] = |X|(|X|−1)

2(n−1) .

I Lemma 3 (Concentration for Pairs). For any X ⊆M w.v.h.p.∣∣∣∣uXX − |X|22n

∣∣∣∣ = O
(√
|X| logn

)
.

I Lemma 4 (Pairs in Partition). Let F = {X1, . . . , Xm} be a partition of M . Then w.v.h.p.∣∣∣∣∣∑
X∈F

uXX −
∑
X∈F

|X|2

2n

∣∣∣∣∣ = O(n2/3 logn).

I Lemma 5. Let X ⊆M such that |X| = m. Let k(m′,m, n) denote the number of draws
without replacement until we hit m′ elements from X. Then w.v.h.p.

k(m′,m, n) ≤ n

m
m′ +O

(n√
m
· logn

)
.

3 Algorithm

In this section we describe a randomized algorithm for finding majority. Recall that the
algorithm is required to always either correctly determine a ball of the majority color or
decide that there is no such color, and the majority color is a color of more than bn/2c balls.
For simplicity we will assume for the time being that n is even, as the algorithm can be
adjusted for odd n in a straightforward manner without any change to the asymptotic cost.
Hence to prove that there is a majority color, it is sufficient to find n/2 + 1 balls with the
same color. In such case our algorithm will actually calculate the multiplicity of the majority
color. To prove that there is no majority color, it is sufficient to partition the input into n/2
pairs of balls with different colors.

The algorithm consists of three parts. Intuitively, by choosing a small random sample we
can approximate the color frequencies and choose the right strategy: (i) There is one color
with a large frequency. We use algorithm heavy. In essence, we have only one candidate
for the majority, and we compute the frequency of the candidate in a naive manner. If the

SWAT 2016

9:4 Randomized Algorithms for Finding a Majority Element

frequency is too small, we need to form sufficiently many pairs of balls with different colors
among the balls that are not of the candidate color. This can be done by virtually pairing the
non-candidate color elements, and testing these pairs until we find enough of them that have
distinct colors. Additionally, we show that one sweep through the pairs is enough. (ii) There
are two colors with frequencies close to 0.5. Now we use algorithm balanced. In essence,
we can now reduce the size of the input by a pairing process, and then find the majority
recursively. If the recursion finds the majority, the necessary verification step is speeded up
by reusing the results of the comparisons used to form the pairs. (iii) All frequencies are
small. We use light which, as balanced, applies pairing and recursion. However, if the
recursive call reports the majority, we construct enough pairs with different colors: whenever
we find a pair of elements with both colors different than the majority color found by the
recursive call, we pair them with elements of the majority color. Here we speeded up the
process by reusing the results of the comparisons used to form the pairs as well.

We start with presenting the main procedure of the algorithm; see Algorithm 1. The
parameters are chosen by setting α = 1

3 , ε = n−1/10 and β = 0.45. In fact we could chose any
β ∈ (β1, β2), where β1 = 1− 1√

3 ≈ 0.4226 and β2 ≈ 0.47580 is a root to p3−19p2−8p+8 = 0.

Algorithm 1: majority(M)
1 if |M | = 1 then return M [1] is the majority with multiplicity 1 in M
2 sample M ′ ⊆M such that |M ′| = nα

3 let v1, v2, . . . , vk be the representatives of the colors in M ′
4 let qi|M ′| be the frequency of color(vi) in M ′, where q1 ≥ q2 ≥ . . . ≥ qk
5 if q1, q2 ∈ [1

2 − 4ε, 1
2 + 4ε] then

6 return balanced(M)
7 else if q1 ≥ β and q2

1 ≥ q2
2 + . . .+ q2

k + 2ε then
8 return heavy(M,v1)
9 else

10 return light(M)

Before we proceed to describe the subprocedures, we elaborate on the sampling performed
in line 4. Intuitively, we would like to compute the frequencies of all colors in M . This
would be too expensive, so we select a small sample M ′ and claim that the frequencies
of all colors in M ′ are not too far from the frequencies of all colors in M . Formally, let
p1, p2, p3, . . . , p` be the frequencies of all colors in M , that is there are pi · n balls of color
i in M and let qi be the frequency of color i in the sample M ′. By Lemma 2, w.v.h.p.
|pi − qi| = O(n−α/2 logn) = o(ε). We argue that

∑
i q

2
i is a good estimation of

∑
i p

2
i .

I Lemma 6. Let pi be the frequency of color i in M and qi be its frequency in M ′, where
M ′ ⊆M a random sample without replacement of size nα. Then w.v.h.p.∣∣∣∣∣∑

i

p2
i −

∑
i

q2
i

∣∣∣∣∣ = O(n−α/3 logn) = o(ε).

Proof. Let m = nα. We analyze the following two sampling methods.

1. Partition the elements of M into n
2 disjoint pairs uniformly at random. Select m

2 of
these pairs uniformly at random. Denote by A1 and A2 the pairs with both elements of
the same colors in the first and the second pairing, respectively. By Lemma 4, w.v.h.p.

P. Gawrychowski, J. Suomela, and P. Uznański 9:5

∣∣|A1| − n
2
∑
i p

2
i

∣∣ = O(n2/3 logn). Observe that by Lemma 2 w.v.h.p.
∣∣|A2| − m

n |A1|
∣∣ =

O(m1/2 logn). Thus, by the triangle inequality, w.v.h.p.∣∣∣∣∣ |A2|
m/2 −

∑
i

p2
i

∣∣∣∣∣ = O(n−1/3 logn) +O(m−1/2 logn).

2. Partition the elements of M ′ into m
2 disjoint pairs uniformly at random, and denote by B

all pairs with both elements of the same color. By Lemma 4, w.v.h.p.
∣∣|B| − m

2
∑
i q

2
i

∣∣ =
O(m2/3 logn), or equivalently

∣∣∣ |B|m/2 −
∑
i q

2
i

∣∣∣ = O(m−1/3 logn).

Now, because A2 and B have identical distributions, by the triangle inequality we have∣∣∣∣∣∑
i

p2
i −

∑
i

q2
i

∣∣∣∣∣ = O(n−1/3 logn) +O(m−1/2 logn) +O(m−1/3 logn) = O(m−1/3 logn).J

Now we present the subprocedures; see Algorithms 2–4.
Algorithm 2: heavy(M,v)
1 cnt← 0, X ← []
2 for i = 1 to |M | do
3 if cmp(v,M [i]) then
4 cnt← cnt + 1
5 else
6 append M [i] to X
7 if cnt > |M |/2 then return color(v) is the majority with multiplicity k in M
8 k ← |M |/2− cnt
9 randomly shuffle X

10 for i = 1 to |X|/2 do
11 if ¬cmp(X[2i− 1], X[2i]) then k ← k − 1
12 if k = 0 then return no majority in M
13 return Boyer–Moore(M) . fallback, 2n comparisons

Algorithm 3: light(M)
1 randomly shuffle M
2 X ← [], Y ← []
3 for i = 1 to |M |/2 do
4 if cmp(M [2i− 1],M [2i]) then
5 append M [2i] to X
6 else
7 append M [2i− 1] and M [2i] to Y
8 run majority(X)
9 if there is no majority in X then return no majority in M

10 let color(v) be the majority with multiplicity k in X
11 cnt← 2k − |X|
12 for i = 1 to |Y | do
13 if ¬cmp(v, Y [2i− 1]) then
14 if ¬cmp(v, Y [2i]) then
15 cnt← cnt− 1
16 if cnt = 0 then return no majority in M
17 return color(v) is the majority with multiplicity (|M |/2 + cnt) in M

SWAT 2016

9:6 Randomized Algorithms for Finding a Majority Element

Algorithm 4: balanced(M)
1 randomly shuffle M
2 X ← [], Y ← []
3 for i = 1 to |M |/2 do
4 if cmp(M [2i− 1],M [2i]) then
5 append M [2i] to X
6 else
7 append M [2i− 1] and M [2i] to Y
8 run majority(X)
9 if there is no majority in X then return no majority in M

10 let color(v) be the majority with multiplicity k in X
11 cnt← 2k
12 for i = 1 to |Y |/2 do
13 if cmp(v, Y [2i− 1]) then
14 cnt← cnt + 1
15 else if cmp(v, Y [2i]) then
16 cnt← cnt + 1
17 if cnt ≤ |M |/2 then
18 return no majority in M
19 else
20 return color(v) is the majority with multiplicity k in X

I Lemma 7. Algorithm 1 always returns the correct answer.

Proof. We analyze separately every subprocedure.
balanced(M). If the majority exists then removing two elements with different colors

preserves it. Hence if the recursive call returns that there is no majority in X then indeed
there is no majority in M , and otherwise color(v) is the only possible candidate for the
majority in M . The remaining part of the subprocedure simply verifies it.

heavy(M,v). The subprocedure first checks if color(v) is the majority. Hence it is enough
to analyze what happens if color(v) is not the majority. Then X contains all elements with
other colors. We partition the elements in X into pairs and check which of these pairs
consists of elements with different colors. If the number of elements in all the remaining
pairs is smaller than the number of elements of color color(v), then clearly we can partition
all elements in M into disjoint pairs of elements with different colors, hence indeed there is
no majority. Otherwise, we revert to the simple 2n algorithm, which is always correct.

light(M). Again, if the majority exists then removing two elements with different color
preserves it. Hence we can assume that color(v) is the only possible candidate for the majority.
Then, Y consists of pairs of two elements with different colors. From the recursive call we
also know what is the frequency of color(v) in M \ Y . We iterate through the elements of
Y and check if their color is color(v). However, if the color of the first element in a pair is
color(v), then the second element has a different color. So the subprocedure either correctly
determines the frequency of the majority color(v), or find sufficiently many elements with
different colors to conclude that color(v) is not the majority. J

I Theorem 8. Algorithm 1 w.v.h.p. uses at most 7
6n + o(n) comparisons on an input of

size n. The expected number of comparisons is also at most 7
6n+ o(n).

P. Gawrychowski, J. Suomela, and P. Uznański 9:7

Proof. Let T (n) be a random variable counting the comparisons on the given input of size n.
We will inductively prove that T (n) ≤ 7

6n+C ·n9/10 for a fixed constant C that is sufficiently
large. In the analysis we will repeatedly invoke Lemmas 2, 3, 4, 5, 6 and Chernoff bound to
bound different quantities. We will assume that each such the application succeeds. Since
there will be a polynomial number of applications, each on a polynomial number of elements,
this happens w.v.h.p. with respect to the size of the input. We also assume that n is large
enough. Algorithm 1 uses at most O(n2α) = O(n2/3) comparisons in the sampling stage. We
bound the number of subsequent comparisons used by each subprocedure as follows.

balanced(M). We have that p1, p2 = 1
2±O(ε). Thus also

∑
i p

2
i = 1

2±O(ε). By Lemma 4,
|X| = (n2

∑
i p

2
i)±O(n2/3 logn), thus |X| = (1

4 ±O(ε))n. Also |Y | = n−2|X| = (1
2 ±O(ε))n.

List Y consists of pairs of elements with different colors. Because at most O(εn) of all
elements are not of color 1 or 2, there are at most O(εn) pairs not of the form {1, 2}. Since
the relative order of elements Y [2i− 1] and Y [2i] is random, for each pair {1, 2} we pay 1
with probability 1/2 and pay 2 with probability 1/2, and for any other pair we pay always 2.
Thus the total cost incurred by the loop in line 12 is (by Chernoff bound) at most

O(εn) · 2 + 3
2 |Y |/2 +O(

√
|Y | logn) ≤ 3

8n±O(εn).

Thus the total cost is

T (n) ≤ T
(
(1

4 + ε)n
)

+ 1
2n+ 3

8n+O(εn) ≤ 7
6n+O(n9/10) + C ·

(1
3n
)9/10

and 7
6n+O(n9/10) + C · (1

3)9/10 · n9/10 ≤ 7
6n+ C · n9/10 for a large enough C.

heavy(M,v). If p1 >
1
2 , then we terminate in line 7 after n comparisons. Thus we can

assume that p1 ∈ [0.45− ε, 1
2]. Because by Lemmas 2 and 6 both p2

1 and
∑
i p

2
i are estimated

within an absolute error of o(ε), we have that p2
1 −

∑
i≥2 p

2
i ≥ 2ε− 2o(ε) ≥ ε.

We argue that the loop in line 10 will eventually find sufficiently many pairs of elements
with different colors, and thus return without falling back to the 2n algorithm. By definition,
|X| = (1− p1)n and initially k = (1/2− p1)n. By Lemma 4, after the random shuffle the
number D of pairs of elements (X[2i− 1], X[2i]) with different colors, can be bounded by

D ≥ |X|2 −
∑
j≥2(pjn)2

2|X| − O
(
|X|2/3 log |X|

)
≥

≥ 1− p1

2 n− p2
1 − ε

2(1− p1)n− o(εn) ≥ 1− 2p1

2(1− p1)n+ ε

2n− o(εn) ≥
(1

2 − p1
)
n;

thus indeed there are sufficiently many pairs. Hence, because the pairs are being considered
in a random order, the total cost can be bounded using Lemma 5 by

T (n) ≤ n+ |X|
D

(
1
2 − p1

)
n+O

(
|X|√
D

log |X|
)
≤

≤ n+ (1− p1)2

2 n+O
(
n/

√
ε

3n logn
)
≤

≤ (1 + 0.552/2)n+O(εn) +O
(√

n

ε
logn

)
= 1.15125n+O(n9/10),

where we used D ≥ ε
2 − o(εn) ≥ ε

3n for a large enough n.

SWAT 2016

9:8 Randomized Algorithms for Finding a Majority Element

light(M). We start by bounding |X| and |Y |. By Lemma 4, |X| = n
2
∑
i p

2
i ±O(n2/3 logn),

and by Lemma 3 there are n
2 p

2
1 ± O(n1/2 logn) elements from A1 in X, thus there are

n(p1 − p2
1)±O(n1/2 logn) of elements from A1 in Y (each paired with a non-A1 element).

We know that either p1 ≤ 0.45 + ε or p2
1 −

∑
i≥2(p2

i) ≤ ε. If there is no majority in X,
then p1 ≤ 1

2 and the total cost is bounded by

T (n) ≤ n

2 + T (|X|) ≤ n

2 + 7
6 |X|+ C · |X|9/10,

which, because |X| ≤ n
4 +O(n2/3 logn), is less than 19

24n+ o(n). Hence we can assume that
there is a majority in X. In such case, cnt is set to

c = n

2

(
p2

1 −
∑
i≥2

p2
i

)
±O(n2/3 logn).

We denote by I the total number of iterations of the loop in line 12. By Lemma 5

I ≤
1
2 |Y |

1
2 |Y | − |A1 ∩ Y |

· c+O(E),

where E = |Y |/
√

1
2 |Y | − |A1 ∩ Y |. Substituting S =

∑
i≥2 p

2
i , by Lemma 4 we have

|Y | =
(
1− p2

1 − S ±O(n−1/3 logn)
)
n,

|Y | − 2|A1 ∩ Y | =
(
(1− p1)2 − S ±O(n−1/3 logn)

)
n,

c = 1
2
(
p2

1 − S ±O(n−1/3 logn)
)
n.

Since p1 ≤ 1
2 and p2 ≤ 1

2 − 3ε (as for a larger p2 the sampled q2 would be sufficiently large
for other subprocedure to be used), we have

(1− p1)2 − S − o(ε) ≥
(1

2
)2 −

(1
2 − 3ε

)2 − (3ε)2 − o(ε) = 3ε− 18ε2 − o(ε) ≥ 2ε.

Thus E ≤
√

n
2ε . Now, since |Y | = Θ(n) we can bound I from above by

I ≤ |Y |
|Y | − 2|A1 ∩ Y |

· 1
2(p2

1 − S)n+O(1/ε) · O(n2/3 logn) +O(E) ≤

≤ 1
2

1− p2
1 − S +O(n−1/3 logn)

(1− p1)2 − S −O(n−1/3 logn)
(p2

1 − S)n+O
(
n2/3 logn

ε

)
+O

(√
n

4ε

)
≤

≤ 1
2

1− p2
1 − S

(1− p1)2 − S −O(n−1/3 logn)
(p2

1 − S)n+ O(n2/3 logn)
2ε +O(n23/30 logn),

which, because (1− p1)2 − S is sufficiently large, can be bounded by

I ≤ 1
2

1− p2
1 − S

(1− p1)2 − S
(p2

1 − S)n ·
(

1 + O(n−1/3 logn)
(1− p1)2 − S

)
+O(n23/30 logn) ≤

≤ 1
2

1− p2
1 − S

(1− p1)2 − S
(p2

1 − S)n ·
(

1 + O(n−1/3 logn)
2ε

)
+O(n23/30 logn) ≤

≤ 1
2(1− p2

1 − S) p2
1 − S

(1− p1)2 − S
n+O(n26/30 logn).

P. Gawrychowski, J. Suomela, and P. Uznański 9:9

For each of c iterations we pay 2, and for each of the remaining I − c iterations we pay
only 3

2 in expectation (for each iteration independently). Thus, by Chernoff bound the total
cost is

T (n) ≤ 1
2n+ T (|X|) + 3

2(I − c) +O(
√
I − c log(I − c)) + 2c ≤

= n

2

(
1 + 19

6 p
2
1 −

5
6S + 3(p2

1 − S) p1 − p2
1

(1− p1)2 − S

)
+O(n9/10).

We reason that, for a fixed p1, the quantity

1 + 19
6 p

2
1 −

5
6S + 3(p2

1 − S) p1(1− p1)
(1− p1)2 − S

is a decreasing function of S, since p2
1 ≤ (1 − p1)2. If p2

1 − S ≤ ε then simplifying with
either p2

1 − S ≤ 0 or, since (1 − p1)2 − S ≥ 2ε, with 0 ≤ p2
1−S

(1−p1)2−S ≤
1
2 , we obtain that

T (n) ≤ 47
48n + o(n). Otherwise, p1 ≤ 0.45 + ε and substituting S = 0 (since the cost is

decreasing in S) we obtain T (n) ≤ 1.06915n+O(n9/10).

Wrapping up. We see that in each subprocedure, the number of comparisons is bounded
by 7

6n+ C · n9/10. Each subprocedure makes at most one recursive call, where the size of
the input is reduced by at least a factor of 2. Thus the worst-case number of comparison
is always bounded by O(n). Recall that the bound on the number of comparisons used
by every recursive call holds w.v.h.p. with respected to the size of the input to the call.
Eventually, the size of the input might become very small, and then w.v.h.p. with respect
to the size of the input is no longer w.v.h.p. with respect to the original n. However, as
soon as this size decreases to, say, n0.1, the number of comparisons is O(n) irrespectively
of the random choices made by the algorithm. Thus w.v.h.p. the number of comparisons
is at most 7

6n + O(n9/10), and the expected number of comparisons is also bounded by
7
6n+O(n9/10). J

4 Lower bound

We consider Las Vegas algorithms. That is, the algorithm must always correctly determine
whether a majority element exists. We will prove that the expected number of comparisons
used by such an algorithm is at least c · n − o(n), for some constant c > 1. By Yao’s
principle, it is sufficient to construct a distribution on the inputs, such that the expected
number of comparisons used by any deterministic algorithms run on an input chosen from
the distribution is at least c · n− o(n). The distribution is that with probability 1

n every ball
has a color chosen uniformly at random from a set of n colors. With probability 1− 1

n every
ball is black or white, with both possibilities equally probable. We fix a correct deterministic
algorithm A and analyze its behavior on an input chosen from the distribution. As a warm-up,
we first prove that A needs n− o(n) comparisons in expectation on such input.

4.1 A lower bound of n − o(n)
In every step A compares two balls, thus we can describe its current knowledge by defining
an appropriate graph as follows. Every node corresponds to a ball. Two nodes are connected
with a negative edge if the corresponding balls have been compared and found out to have
different colors. Two nodes are connected with a positive edge if the corresponding balls

SWAT 2016

9:10 Randomized Algorithms for Finding a Majority Element

are known to have the same colors under the assumption that every ball is either black or
white (either because they have been directly compared and found to have the same color, or
because such knowledge has been indirectly inferred from the assumption). After every step of
the algorithm the graph consists of a number of components C1, C2, Every components is
partitioned into two parts Ci = Ai ·∪Bi, such that both Ai and Bi are connected components
in the graph containing only positive edges and there is at least one (possibly more than one)
negative edge between Ai and Bi. There are no other edges in the graph. Now we describe
how the graph changes after A compares two balls x ∈ Ci and y ∈ Cj assuming that every
ball is either black or white. If i = j then the result of the comparison is already determined
by the previous comparisons and the graph does not change. Otherwise, i 6= j and assume
by symmetry that x ∈ Ai, y ∈ Aj . The following two possibilities are equally probable:
1. color(x) = color(y), then we merge both components into a new component C = A ·∪B,

where A = Ai ·∪Aj and B = Bi ·∪Bj by creating new positive edges (x, y) and (x′, y′) for
some x′ ∈ Bi, y′ ∈ Bj (if Bi, Bj 6= ∅).

2. color(x) 6= color(y), then we merge both components into a new component C = A ·∪B,
where A = Ai ·∪ Bj and B = Bi ·∪ Aj by creating new positive edges (x, y′) for some
y′ ∈ Bj (if Bj 6= ∅) and (x′, y) for some x′ ∈ Bi (if Bi 6= ∅). We also create a new negative
edge (x, y). Here we crucially use the assumption that every ball is either black or white.

The graph exactly captures the knowledge of A about a binary input.
Any binary input contains a majority and A must report so. However, because with very

small probability the input is arbitrary, this requires some work due to the following lemma.
I Lemma 9. If A reports that a binary input contains a majority element, then the graph
contains a component C = A ·∪B such that |A| > n

2 or |B| > n
2 .

Proof. Assume otherwise, that is, A reports that a binary input contains a majority element
even though both parts of every component are of size less than n

2 . Construct another
input by choosing, for every component C = A ·∪B, two fresh colors cA and cB and setting
color(x) = cA for every x ∈ A, color(y) = cB for every y ∈ B. Every comparison performed
by A is an edge of the graph, so its behavior on the new input is exactly the same as on the
original binary input. Hence A reports that there is a majority element, while the frequency
of every color in the new input is less than n

2 , which is a contradiction. J

From now on we consider only binary inputs. If we can prove that the expected number of
comparisons used by A on such input is n− o(n), then the expected number of comparisons
on an input chosen from our distribution is also n−o(n). Because every comparison decreases
the number of components by one, it is sufficient to argue that the expected size of some
component when A reports that there is a majority is n− o(n). We already know that there
must exist a component C = A ·∪ B such that (by symmetry) |A| > n/2. We will argue
that |B| must also be large. To this end, define balance of a component Ci = Ai ·∪ Bi as
balance(Ci) = (|Ai| − |Bi|)2, and the total balance as

∑
i balance(Ci). By considering the

situation before and after a single comparison, we obtain the following.
I Lemma 10. The expected total balance at termination of algorithm A is n.

Total balance when A reports a majority is a random variable with expected value n. By
Markov’s inequality, with probability 1− 1/n1/3 its value is at most n4/3, which implies that
for any component Ci = Ai ·∪ Bi, we have balance(Ci) ≤ n4/3. If we apply this inequality
to the component C = A ·∪ B with |A| > n/2, we obtain |B| ≥ n/2 − n2/3. Hence with
probability 1− 1/n1/3 there is a component with at least n− n2/3 nodes, which means that
the algorithm must have performed at least n−n2/3−1 comparisons. Therefore the expected
number of comparisons is at least (1− 1/n1/3)(n− n2/3 − 1) = n− o(n).

P. Gawrychowski, J. Suomela, and P. Uznański 9:11

4.2 A stronger lower bound
To obtain a stronger lower bound, we extend the definition of the graph that captures the
current knowledge of A. Now a positive edge can be verified or non-verified. A verified positive
edge (x, y) is created only after comparing two balls x and y such that color(x) = color(y).
All other positive edges are non-verified. The algorithm can also turn a non-verified positive
edge (x, y) into a verified positive edge by comparing x and y. By the same reasoning as in
Lemma 9 we obtain the following.

I Lemma 11. If A reports that a binary input contains a majority element, then the graph
consisting of all verified positive edges contains a connected component with at least n

2 nodes.

Now the goal is to construct a large component in the graph that consists of all verified
positive edges, so it makes sense for A to compare two balls from the same component.
However, without loss of generality, such comparisons are executed after having identified a
large component in the graph consisting of all positive edges. Then, A asks sufficiently many
queries of the form (x, y), where (x, y) is a non-verified edge from the identified component.
In other words, A first isolates a candidate for a majority, and then makes sure that all
inferred equalities really hold, which is necessary because with very small probability the
input is not binary. This allows us to bound the total number of comparisons from below as
follows. We define that a majority edge is an edge between two nodes of the majority color.

I Lemma 12. The expected number of comparisons used by A on a binary input is at least
n− o(n) plus the expected number of non-verified majority edges.

Proof. Recall that if there exists a component C = A ·∪B with |A| > n/2 then with probability
1 − 1/n1/3 we also have |B| ≥ n/2 − n2/3. Set A consists of nodes of the majority color,
although possibly not all nodes of the majority color are there. However, because B is large,
there are at most n2/3 nodes of the majority color outside of A. Also, because we consider
binary inputs chosen uniformly at random, by Chernoff bound |A| ≤ n/2 +O(

√
n logn) with

probability 1− 1/n.
The expected number of comparisons used by A to construct a component C = A ·∪B

such that |A| > n/2 is at least n − n2/3 − 1. Then, A needs to verify sufficiently many
non-verified edges inside A to obtain a connected component of size n/2 in the graph that
consists of verified positive edges. By construction, there are no cycles in the graph that
consists of positive edges. Hence with probability 1− 1/n1/3 − 1/n there will be no more
than n2/3 + O(

√
n logn) non-verified positive edges between nodes outside of B when A

reports a majority. Consequently, the additional verification cost is the expected number of
non-verified majority edges minus n2/3 +O(

√
n logn) = o(n). J

In the remaining part of this section we analyze the expected number of non-verified
majority edges constructed during the execution of the algorithm. We show that this is at
least (c− 1)n− o(n) for some c > 1. Then, Lemma 12 implies the claimed lower bound.

A component C = A ·∪B is called monochromatic when A = ∅ or B = ∅ (by symmetry,
we will assume the latter) and dichromatic otherwise. With probability 1− 1/n1/3, when A
reports a majority there is one large dichromatic component with at least n− n2/3 nodes,
and hence the total number of components is at most n2/3 + 1. It is convenient to interpret
the execution of A as a process of eliminating components by merging two components into
one. Each such merge might create a new non-verified edge. We define that the cost of such a
non-verified edge is the probability that it is a majority edge. We want to argue that because
all but n2/3 components will be eventually eliminated, the total cost of all non-verified edges
that we create is (c− 1)n− o(n).

SWAT 2016

9:12 Randomized Algorithms for Finding a Majority Element

We analyze in more detail the merging process in terms of mono- and dichromatic
components. Let predictk be the random variable denoting the probability that, after k steps
of A, a node from the larger part of a component is of the majority color. It is rather difficult
to calculate predictk exactly, so we will use a crude upper bound instead. An important
property of the upper bound will be that it is nondecreasing in k. When A compares two
balls x ∈ Ci and y ∈ Cj with i 6= j to obtain a new component C = A ·∪B there are three
possible cases:
1. Ci and Cj are monochromatic. Then with probability 1

2 the new component C is also
monochromatic, and with probability 1

2 it is dichromatic.
2. Ci is dichromatic and Cj is monochromatic. The new component is dichromatic. With

probability 1
2 we have a new non-verified edge, and with probability at least 1

2 (1−predictk)
we have a new non-verified majority edge.

3. Ci and Cj are dichromatic. Then with probability 1
2 we create a new non-verified edge

inside both A and B, and one of them is a majority edge.

We analyze the expected total cost of all non-verified edges when only one component
remains. When A reports a majority up to n2/3 components might remain, but this changes
only the lower order terms of the bound.

I Lemma 13. The expected total cost of all non-verified edges when only one component
remains is at least

∑2n/3
k=1 E

[
min

(1
6 ,

1
2 (1− predictk)

)]
.

Proof. We start with n components and need to eliminate all but at most one of them. To
each component we associate credit, 1

2 to each dichromatic and 1
6 to each monochromatic

one. The algorithm can collect the credit from both of the components it merges, but it has
to pay for credit of newly created one. Additionally algorithm has to pay for any non-verified
majority edge created by merging.

In every step we have three possibilities:
1. Merge two monochromatic components into one. With probability 1

2 the new component
is dichromatic, and with probability 1

2 the new component is monochromatic. Thus the
expected amortized cost for this step is 0.

2. Merge a monochromatic components with a dichromatic component. Then the total
number of monochromatic components decreases by 1 and we add with probability at
least 1

2 (1− predictk) a non-verified majority edge. The expected amortized cost for this
step is 1

2 (1− predictk)− 1
6 .

3. Merge two dichromatic components while adding with probability 1
2 a non-verified majority

edge. The expected amortized cost for this step is 0.
In total algorithm has to pay for initial credits and for each step, making the total expected
cost at least

n

6 +
n−1∑
k=1

E
[
min

(
0, 1

2 (1− predictk)− 1
6
)]
≥

2/3n∑
k=1

E
[
min

(1
6 ,

1
2 (1− predictk)

)]
. J

We note that by truncating the sum at 2
3n we do not lose any cost estimation, as for k ≥ 2

3n

our estimation for predictk gives 1.
Now we focus deriving an upper bound for the expression obtained in Lemma 13. To

bound predictk we use an approach due to Christofides [5]. At any given step k we will look at
all components with a nonzero balance. Specifically, we introduce two new random variables:
Mk being the largest balance of a component, and Nk being the number of components with

P. Gawrychowski, J. Suomela, and P. Uznański 9:13

a nonzero balance. Since at each step, Nk is decreased in expectation at most by 3
2 , we have

E[Nk] ≥ n− 3
2 (k − 1), and w.v.h.p., by Chernoff bound Nk ≥ n− 3

2k −O(
√
k logn).

Since by Lemma 10 the expected sum of balances is n, and each nonzero component
contributes at least 1 to the sum, we have E[Mk] ≤ n− E[Nk − 1] = 3

2k −
1
2 .

Now to proceed, for a component Ci = Ai ·∪ Bi we define δi = ||Ai| − |Bi||, a positive
value such that δ2

i = balance(Ci). Thus, at any given step k, the algorithm observes the
nonzero values δ1, δ2, . . . , δNk

. Without loss of generality we can narrow our focus on a
component C1. We are interested in bounding the probability

Pr(A1 in majority) = Pr(δ1+ε2δ2 . . .+εNk
δNk
≥ 0) = 1

2 + 1
2 Pr(ε2δ2 . . .+εNk

δNk
∈ [−δ1, δ1]),

where ε2, ε3, . . . , εNk
∈ {−1, 1} are drawn independently and uniformly at random. By a

result of Erdős [10], if δ2, . . . , δNk
≥ 1 then the above is maximized for δ2 = . . . = δNk

= 1.
We now approximate binomial distribution using the symmetric case of de Moivre–Laplace

Theorem. Recall that

Φ(x) = 1√
2π

∫ x

−∞
e−t

2/2 dt

is the cumulative distribution function of the normal distribution.

I Theorem 14 (De Moivre–Laplace). Let Sn be the number of successes in n independent
coin flips. Then

Pr
(n

2 + x1
√
n ≤ Sn ≤

n

2 + x2
√
n
)
∼ Φ(2x2)− Φ(2x1).

In our case we are interested in Nk − 1 coin flips and the number of successes in the range
[(Nk − 1)/2 − δ1/2, (Nk − 1)/2 + δ1/2]. Thus probability that 1 is the majority can be
bounded from above by

Pr(A1 is the majority) ≤ 1
2

(
Φ
(

δ1√
Nk − 1

)
− Φ

(
− δ1√

Nk − 1

))
+ 1

2 = Φ
(

δ1√
Nk − 1

)
.

Because Mk is the largest balance of a component, δ1, δ2, . . . , δNk
are bounded from above

by
√
Mk. Additionally, w.v.h.p. Nk ≥ n− 3

2k −O(
√
n logn), thus

predictk ≤ Φ
(√

Mk

n− 3
2k −O(

√
n logn)

)
.

Since Φ(
√
x/const) is a concave function, we can apply expected value, and get

E[predictk] ≤ Φ
(√

E[Mk]
n− 3

2k −O(
√
n logn)

)
∼ Φ

(√
3
2k

n− 3
2k

)
.

Now we are ready to bound the sum from Lemma 13. Using the linearity of expectation
and inequality min(1

6 ,
1
2x) ≥ 1

6x for x ∈ [0, 1] we obtain:

E

2n/3∑
k=1

min
(

1
6 ,

1
2(1− predictk)

) =
2n/3∑
k=1

E
[

min
(

1
6 ,

1
2(1− predictk)

)]
≥

≥
2n/3∑
k=1

1
6(1− E[predictk]) ≥ n ·

∫ 2/3

0

1
6

(
1− Φ

(√
3
2x

1− 3
2x

))
dx− o(n).

SWAT 2016

9:14 Randomized Algorithms for Finding a Majority Element

Finally, we calculate

1 +
∫ 2/3

0

1
6

(
1− Φ

(√
3
2x

1− 3
2x

))
dx ≈ 1.0191289.

I Theorem 15. Any algorithm that reports majority exactly requires in expectation at least
1.019n comparisons.

References
1 Martin Aigner, Gianluca De Marco, and Manuela Montangero. The plurality problem with

three colors and more. Theor. Comput. Sci., 337(1-3):319–330, 2005.
2 Laurent Alonso, Edward M. Reingold, and René Schott. Determining the majority. Inf.

Process. Lett., 47(5):253–255, 1993.
3 Laurent Alonso, Edward M. Reingold, and René Schott. The average-case complexity of

determining the majority. SIAM J. Comput., 26(1):1–14, 1997.
4 Robert S. Boyer and J. Strother Moore. MJRTY: A fast majority vote algorithm. In

Automated Reasoning: Essays in Honor of Woody Bledsoe, pages 105–118, 1991.
5 Demetres Christofides. On randomized algorithms for the majority problem. Discrete

Applied Mathematics, 157(7):1481–1485, 2009.
6 Fan R. K. Chung, Ronald L. Graham, Jia Mao, and Andrew Chi-Chih Yao. Oblivious and

adaptive strategies for the majority and plurality problems. Algorithmica, 48(2):147–157,
2007.

7 Dorit Dor and Uri Zwick. Selecting the median. SIAM J. Comput., 28(5):1722–1758, 1999.
8 Dorit Dor and Uri Zwick. Median selection requires (2+ε)n comparisons. SIAM J. Discrete

Math., 14(3):312–325, 2001.
9 David Eppstein and Daniel S. Hirschberg. From discrepancy to majority. In LATIN, volume

9644 of Lecture Notes in Computer Science, pages 390–402. Springer, 2016.
10 P. Erdős. On a lemma of Littlewood and Offord. Bull. Amer. Math. Soc., 51(12):898–902,

12 1945.
11 M. Fischer and S. Salzberg. Finding a majority among n votes: solution to problem 81-5.

Journal of Algorithms, 1982.
12 Dániel Gerbner, Gyula O. H. Katona, Dömötör Pálvölgyi, and Balázs Patkós. Majority

and plurality problems. Discrete Applied Mathematics, 161(6):813–818, 2013.
13 Daniel Král, Jirí Sgall, and Tomás Tichý. Randomized strategies for the plurality problem.

Discrete Applied Mathematics, 156(17):3305–3311, 2008.
14 Gianluca De Marco and Evangelos Kranakis. Searching for majority with k-tuple queries.

Discrete Math., Alg. and Appl., 7(2), 2015.
15 Gianluca De Marco and Andrzej Pelc. Randomized algorithms for determining the majority

on graphs. Combinatorics, Probability & Computing, 15(6):823–834, 2006.
16 Mike Paterson. Progress in selection. In Algorithm Theory–SWAT’96, pages 368–379.

Springer, 1996.
17 Michael E. Saks and Michael Werman. On computing majority by comparisons. Combin-

atorica, 11(4):383–387, 1991.
18 Máté Vizer, Dániel Gerbner, Balázs Keszegh, Dömötör Pálvölgyi, Balázs Patkós, and Gábor

Wiener. Finding a majority ball with majority answers. Electronic Notes in Discrete
Mathematics, 49:345–351, 2015.

19 Gábor Wiener. Search for a majority element. Journal of Statistical Planning and Inference,
100(2):313–318, 2002.

A Framework for Dynamic Parameterized
Dictionary Matching∗

Arnab Ganguly1, Wing-Kai Hon2, and Rahul Shah3

1 School of Electrical Engineering and Computer Science, Louisiana State
University, Baton Rouge, USA
agangu4@lsu.edu,rahul@csc.lsu.edu

2 Department of Computer Science, National Tsing Hua University, Hsinchu
City, Taiwan
wkhon@cs.nthu.edu.tw

3 School of Electrical Engineering and Computer Science, Louisiana State
University, Baton Rouge, USA; and
National Science Foundation, Arlington, USA
rahul@nsf.gov

Abstract
Two equal-length strings S and S′ are a parameterized-match (p-match) iff there exists a one-to-
one function that renames the characters in S to those in S′. Let P be a collection of d patterns
of total length n characters that are chosen from an alphabet Σ of cardinality σ. The task is to
index P such that we can support the following operations:

search(T): given a text T , report all occurrences 〈j, Pi〉 such that there exists a pattern Pi ∈ P
that is a p-match with the substring T [j, j + |Pi| − 1].
insert(Pi)/delete(Pi): modify the index when a pattern Pi is inserted/deleted.

We present a linear-space index that occupies O(n logn) bits and supports (i) search(T) in worst-
case O(|T | log2 n+ occ) time, where occ is the number of occurrences reported, and (ii) insert(Pi)
and delete(Pi) in amortized O(|Pi|polylog(n)) time. Then, we present a succinct index that
occupies (1+o(1))n log σ+O(d logn) bits and supports (i) search(T) in worst-case O(|T | log2 n+
occ) time, and (ii) insert(Pi) and delete(Pi) in amortized O(|Pi|polylog(n)) time. We also present
results related to the semi-dynamic variant of the problem, where deletion is not allowed.

1998 ACM Subject Classification F.2.2 Pattern Matching

Keywords and phrases Parameterized Dictionary Indexing, Generalized Suffix Tree, Succinct
Data Structures, Sparsification

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.10

1 Introduction

Designing succinct data structures for the classical pattern matching problem of finding all
occurrences of a pattern P in a fixed text T can be traced back to the seminal work of Grossi
and Vitter [16], Ferragina and Manzini [13], and Sadakane [29]. This established an active
research area of designing succinct data structures. The focus was now on either improving
these initial breakthroughs (see [26] for a comprehensive survey), or designing succinct data

∗ The work of Arnab Ganguly was supported by National Science Foundation Grants CCF–1017623
and CCF–1218904. The work of Wing-Kai Hon was supported by National Science Council Grants
102-2221-E-007-068-MY3 and 105-2918-I-007-006.

© Arnab Ganguly, Wing-Kai Hon, and Rahul Shah;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 10; pp. 10:1–10:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 A Framework for Dynamic Parameterized Dictionary Matching

structures for other variants [6, 8, 14, 25, 30]. Dictionary Matching, a typical example of
these variants, is defined as follows. Let P be a collection of d patterns {P1, P2, . . . , Pd} of
total length n characters which are chosen from a totally-ordered alphabet Σ of cardinality
σ. Given a text T , also over Σ, the task is to report all positions j such that at least
one of the patterns Pi ∈ P exactly matches an equal-length substring of T that starts at
j. Typically, the patterns which occur at j are also reported. In the Dictionary Indexing
problem, the patterns are provided upfront (and remain fixed) and the text comes as a
query. The classical solution for this problem is the Aho-Corasick (AC) automaton [1] which
occupies O(m logm) bits of space, where m ≤ n+1 is the number of states in the automaton,
and finds all occ occurrences in optimal time O(|T |+ occ). To the best of our knowledge, the
first succinct index for this problem is by Hon et al. [17]. Later, Belazzougui [6] presented an
m log σ +O(m+ d log(n/d)) bit index with optimal O(|T |+ occ) query time.

Arguably, the most natural variant of the dictionary indexing problem is the Dynamic
Dictionary Indexing problem in which we are allowed to insert a new pattern or delete an
existing one. The challenge is to modify the index under such updates without having to
rebuild it from scratch. Of course, the index should still be able to answer text queries in
a reasonably efficient time. The first non-trivial solution was provided by Amir et al. [3].
As opposed to the AC-automaton, their technique comprised of the generalized suffix tree
GST of all the patterns. Later, this was improved by Amir et al. [4] and again by Alstrup
et al. [2]. Each of these indexes occupies O(n logn) bits of space. The natural question to
ask is "Does there exist a succinct index for dynamic dictionary matching?". Chan et al. [9]
answered this by presenting an O(nσ)-bit index which is (nearly) succinct only for σ = O(1).
Moreover, their query time suffers from an O(log2 n) multiplicative slowdown (compared
to the AC-automaton) due to the use of complicated dynamic versions of FM-Index [13]
and Compressed Suffix Tree [16] as the underlying main ingredient. Updating the index
for a pattern Pi required O(|Pi| log2 n) time. Hon et al. [18] improved this to a more space
efficient (1 + o(1))n log σ +O(d logn) bit index with a faster O(|T | logn+ occ) query time
and O(|Pi| log σ + logn) update time. Recently, Feigenblat et al. [12] improved the query
time to O(|T |(log logn)2 + occ) for σ = O(polylog(n)).

Parameterized Pattern Matching has received significant attention (see [22] for a survey)
since its inception by Baker [5]. The alphabet Σ is partitioned into two disjoint sets: Σs

containing static-characters (s-characters) and Σp containing parameterized characters (p-
characters). Two strings S and S′, both over Σ, are a parameterized-match (p-match) iff
|S| = |S′|, and there is a one-to-one function f such that S[i] = f(S′[i]). For any s-character
c ∈ Σs, we have f(c) = c. Thus, for Σs = {A,B,C} and Σp = {w, x, y, z}, the strings
AxBxCy and AzBzCx are p-match, but AxBxCy and AzBwCx are not. We consider the
Parameterized Dictionary Matching problem which was introduced by Idury and Schäffer [19].
This is similar to the standard dictionary problem, just that the alphabet Σ is partitioned
into Σs and Σp, and we consider p-matches of a pattern to the text. Idury and Schäffer
presented an AC-automaton like solution which occupies O(m logm) = O(n logn) bits, and
reports all occ occurrences in O(|T | log σ + occ) time. Our main focus lies on the dynamic
version of this problem. Specifically, we present the following results.

I Theorem 1. By maintaining a linear-space index occupying O(n logn) bits, we can answer:
search(T) in worst-case O(|T | log2 n+ occ) time.
insert(Pi) in amortized O(|Pi| logn) time.
delete(Pi) in amortized O(|Pi| log2 n) time.

A. Ganguly, W.-K. Hon, and R. Shah 10:3

I Theorem 2. By maintaining a succinct-space index occupying (1+o(1))n log σ+O(d logn)
bits, we can answer:

search(T) in worst-case O(|T | log2 n+ occ) time.
insert(Pi) in amortized O(|Pi| logn) time.
delete(Pi) in amortized O(|Pi| log σ + log d) time.

1.1 Roadmap
We show that if the patterns are appropriately encoded [5], then the problem can be solved
using a generalized suffix tree GST of all the encoded patterns. Although the techniques
are similar to that of Amir et al. [3] and Hon et al. [18], we need much more machinery
to deal with parameterized patterns. This is because a crucial property, known as suffix
links, of traditional suffix trees does not apply directly for parameterized strings. This makes
navigating in the GST more tricky, and we have to augment the tree with additional data
structures. Furthermore, it is difficult to maintain the analogous version of suffix links in
the GST explicitly as they are more fragile to the deletion of patterns. Hence, we need an
implicit representation. Also, following suffix links in the GST is trickier as the text and
patterns have to be re-encoded. Moreover, maintaining the encoded patterns explicitly causes
the space to increase to n logn bits as opposed to the n log σ bits occupied by the patterns.

The succinct solution is largely based on the sparsification technique [17, 18] for the
(dynamic) dictionary matching problem. Broadly speaking, for a parameter ∆, the idea
is to sample suffixes at an interval of ∆, and then maintain a GST for these sampled
suffixes. Likewise, the text is also sampled. Now the sampled text starting from i = 1 is
matched, and all occurrences are reported. The occurrences reported in this run lie in the set
{i, i+ ∆, i+ 2∆, . . . }. All occurrences are subsequently reported by repeating the process for
i = 1, 2, 3, . . . ,∆. The sparsification technique, however, does not immediately extend to the
case of parameterized matching. For one, handling and maintaining suffix links is trickier.
Another issue is how to handle truncating of characters at the beginning of a currently
matched text, which is essential for the approaches in [3, 17, 18].

In Section 2, we first present a linear space index and prove Theorem 1. This index
forms the backbone of the succinct index (Theorem 2); the details are provided in Section 3.
Section 4 discusses results on the semi-dynamic variant of the problem.

2 Linear Space Index

We assume that the alphabet Σ is disjoint from the set of integers. Any string S over Σ can
be initially processed in O(|S| log σ) time to ensure that this condition holds.

2.1 Parameterized Suffix Tree
Baker [5] introduced the following encoding scheme to enable matching of parameterized
strings. Given a string S, obtain a string prev(S) by replacing the first occurrence of every
p-character in S by 0, and any other occurrence by the difference in position from its
previous occurrence. Thus, prev(AxByAxCz) = A0B0A4C0, where {A,B,C} ∈ Σs and
{x, y, z} ∈ Σp. It is easy to see that prev(S) can be computed in O(|S| log σ) time.1 Baker
showed that two strings S and S′ are a p-match iff prev(S) = prev(S′). They introduced

1 Read S from left to right, and use a balanced binary search tree (BST) to maintain the position of the
latest occurrence of each p-character.

SWAT 2016

10:4 A Framework for Dynamic Parameterized Dictionary Matching

the Parameterized Suffix Tree (PST) of a string S, which is a compacted trie of the strings
prev(S[i, |S|]), 1 ≤ i ≤ |S|. At each node u in PST, maintain strDepth(u) i.e., the length of
the string formed by concatenating the edge labels from root to u. The label of an edge
e = (u, v) is derived dynamically as follows. We maintain two pointers from e to the start
position sp and end position ep of the label in S. (Note that the encoding of the edge is
not necessarily prev(S)[sp, ep].) Suppose we want to find the encoding of the jth character
on e, where strDepth(u) = D. Then we find the encoding x = prev(S)[sp+ j − 1] using the
pointers. If x is an s-character, then x is itself the desired encoding. Otherwise, if x ≥ D + j

then the encoding is 0, else it is x. If prev(S) has been pre-computed and stored explicitly,
then all operations require constant time per character. Suppose Su is the string obtained by
concatenating the labels (over S) of the edges from root to a node u. Then, the suffix link
of u points to the location in the PST which is represented by prev(Su[2, |Su|]). If |Su| ≤ 1,
then the suffix link points at the root. Baker showed that unlike in suffix trees, a suffix link
in PST can point to inside an edge.

Although Baker’s encoding makes p-matching easier to handle, for our purposes, it suffers
from a drawback. Specifically, prev(S) is a string over an alphabet of size Θ(n) in the worst
case, whereas the original alphabet size σ may be much smaller in comparison. In order to
alleviate this, our objective is to maintain S in |S| log σ bits so that we can still use the PST.
In the above discussion, note that in order to find the prev-encoding of a p-character at the
jth position, it suffices to find the last position (if any) in the interval [sp−D, sp+ j − 2]
where the character S[sp+ j−1] occurs. To facilitate this, instead of maintaining S explicitly,
we build a Wavelet Tree [15] over it. Using this, we can easily find the desired encoding
as follows (see Fact 3). Let x = rank(sp+ j − 1, access(sp+ j − 1)). If x = 1, the required
encoding is 0. Otherwise, let y = select(x − 1, access(sp + j − 1)). If y ≥ sp −D then the
encoding is (sp+ j − 1− y) and is 0, otherwise.

I Fact 3 ([15]). Let S be a string of length m over an alphabet Σ of size σ. We can build
a data structure in O(m log σ) time that occupies m log σ + o(m log σ) bits and supports the
following operations in O(log σ) time:

access(i) = S[i].
rank(i, c) = the number of occurrences of c ∈ Σ in the substring S[1, i].
select(j, c) = the smallest position i such that rank(i, c) = j.

Suppose we are trying to find all p-matches of a string S′ with S using the PST of S. Given
a node v, in O(1) time, we can find the correct outgoing edge of v that matches the next
(encoded) character of prev(S′) by using a perfect hash function at each node. Specifically,
the hash function maps the (encoded) first character of an edge to the edge itself. Every
other p-character on an edge can be appropriately encoded as described above in O(log σ)
time. Therefore, the time to find all occ p-matches is O(|S′| log σ + occ).

2.2 The Index
We assume that no two patterns Pi and Pj exist such that prev(Pi) = prev(Pj). Recall that
maintaining the patterns in their prev-encoded form requires Θ(n logn) bits in the worst case.
Although this will not affect our overall space (for the linear space index), we will use the
following scheme, which would be carried forward to our succinct index. For every pattern
Pi ∈ P , we maintain a wavelet tree WT over Pi. Then we create a generalized parameterized
suffix tree GST out of all the prev-encoded suffixes of Pi$i and Pi#i, where $i and #i are
two special s-characters neither of which belongs to Σs. Note that each leaf corresponds
to the prev-encoded suffix of Pi$i or Pi#i for some pattern Pi. We maintain a link from

A. Ganguly, W.-K. Hon, and R. Shah 10:5

the leaf corresponding to the string prev(Pi[j, |Pi|])$i to the leaf corresponding to the string
prev(Pi[j + 1, |Pi|])$i. Likewise, for the leaf corresponding to prev(Pi[j, |Pi|])#i. This will
help us in recognizing the suffix link of a node v implicitly.

For any node u, with slight abuse of notation, denote by prev(u) the string obtained
by concatenating the encoded edge labels from root to u. As described in Section 2.1, (i)
at each node u in the GST we maintain strDepth(u) = |prev(u)| explicitly, and (ii) each
edge is labeled by two pointers to the start and end positions of its label in a particular
pattern. Using these and the WTs over the patterns, we can find the desired encoding of any
character on an edge in O(log σ) time (see Section 2.1). Furthermore, at each node we use
the Dynamic Perfect Hashing technique of Dietzfelbinger et al. [11] such that given the next
(encoded) character of the text, we can navigate to the appropriate edge (if any) in constant
time. Moreover, we can update (both insert and delete) the hash table in amortized O(1)
time. The total space needed to maintain the hash tables over all nodes is O(n logn) bits.

Using the data structure of Sadakane and Navarro [27], we maintain a dynamic succinct
representation of the GST (see Fact 4). The weight (for the purpose of wla queries) of a node
u is strDepth(u) ≤ n. Clearly, the GST satisfies the min-heap property.

I Fact 4 ([27]). Given a dynamic tree with m weighted nodes, where a node’s weight is
greater than that of its parent. By encoding the tree topology in 2m + o(m) bits, we can
support the following operations in O(logm) time:

Inserting or deleting a node.
Lowest common ancestor (LCA) of two nodes.
For any node, find its (i) pre-order rank, (ii) node-depth, (iii) parent, (iv) number of
children, (v) ith leftmost child, (vi) number of sibling to its left, (vii) number of leaves in
its subtree, and (viii) ith leftmost leaf in its subtree.
levelAncestor(v,D) i.e., the node on the root to v path having node-depth D.

Using this, in O(log2m) time, we can find wla(u,W) i.e., the lowest ancestor (if any) of a
node u that has weight at most W . This is facilitated by O(logm) binary searches on the
node-weights using levelAncestor queries.

For each pattern Pi, we locate the node u (which necessarily exists) such that prev(u) =
prev(Pi). We mark all such nodes with the corresponding pattern, and process the GST with
dynamic nearest marked ancestor queries (see Fact 5). Consider a tree with m nodes, k of
which are marked. Hon et al. [18] argued that by maintaining the order-maintenance data
structure of Dietz and Sleator [10], the relative pre-order rank of two nodes can be compared
in O(1) time. Furthermore, a node can be inserted into the data structure in O(1) time
given either the predecessor or the successor (in pre-order) of the node; the node can also be
deleted in O(1) time. Hon et al. used this to maintain the marked nodes in an interval tree.
A marked node v is an ancestor of a node u iff the pre-order rank of u lies in the interval
[rv, rv′], where rv and rv′ are the pre-order ranks of v and of the last visited node in the
subtree of v. The desired location where a new interval has to be inserted (or an existing one
has to be deleted), can found in O(log k) time using the interval tree. Likewise, the smallest
interval which contains a node can be found in O(log k) time; all subsequent intervals that
encloses this smallest interval can be found in O(1) time per interval. The intervals in this
tree are "elastic" in the sense that the pre-order ranks are compared in O(1) time "on the
fly" using the order-maintenance data structure. Note that the pre-order rank of a node’s
successor/predecessor is found using Fact 4 in O(logm) time.2 Summarizing,

2 The predecessor of each node is defined apart from the root. Given a non-root node u, its predecessor is

SWAT 2016

10:6 A Framework for Dynamic Parameterized Dictionary Matching

I Fact 5 ([10, 18]). Given a dynamic tree with m nodes and k ≤ m marked nodes. We can
build an O(m logm)-bit data structure to support the following operations:

Inserting or deleting a marked node in O(logm) time.
Report the K marked ancestors (if any) of a node in O(log k +K) time. J

2.3 Reporting Occurrences
A pattern Pi occurs at a position j in the text iff prev(Pi) is a prefix of prev(T [j, |T |]). To
find all patterns (if any) occurring at position j, we first find the deepest node v (called
locus) such that prev(v) is a prefix of prev(T [j, |T |]). Starting from v, we report all K marked
ancestors of v using Fact 5 in O(log d+K) time.

The task, therefore, is to find the locus of prev(T [j, |T |]) for every j ∈ [1, |T |] starting
with j = 1. First we compute prev(T) in O(|T | log σ) time. We use the WT and the edge
pointers to traverse the GST starting from the root as follows. If we are at a node x, we use
prev(T)[strDepth(x) + 1] to select the correct edge in O(1) time. If we are inside an edge,
then we use the next character of edge, say c, and verify it with the next character of prev(T).
If c is static then it is easy. Otherwise, c needs to be encoded (as in Section 2.1) requiring
O(log σ) time. We continue this process until we hit a position (k + 1) in the text such that
the (encoded) character does not match. Let the corresponding edge be (u, v), where u is the
locus of prev(T). Now, we need to find the locus of prev(T [j, |T |]), where j = 2. We differ
from the strategy of Amir et al. [3] in that we follow the suffix link of v instead of u.3 (If
strDepth(u) = k, then follow the suffix link of u.) Recall that we do not explicitly maintain
suffix links (other than in leaves). The following two cases are to be considered.

T [j − 1] = T [1] is an s-character: In this case, the suffix link necessarily points to a
node w and prev

(
T [j, |T |]

)
= prev

(
T [j − 1, |T |]

)
[j, |T |]. Our task is to locate the prefix of

prev(w) which equals prev(T [j, k]) (in this case, j = 2). Note that this prefix necessarily
exists. We first locate a leaf ` in the subtree of v. Follow the pointer from ` to the leaf
`′ depicting the starting position of the immediate next suffix as that of `. We use the
query wla(`′, k− j+ 1) to locate a node w′. If strDepth(w′) = k− j+ 1, then we are done.
Otherwise, we use the character prev(T [j, |T |])[strDepth(w′)] to select the proper edge.
The desired location is given by (k − j + 1− strDepth(w′)) on this edge. Finally, we start
matching from T [k + 1] as defined previously until we hit a mismatch, resulting in the
desired locus of prev(T [2, |T |]).
T [j − 1] = T [1] is a p-character: The suffix link of v may point to the middle of an
edge, say (x, y). Also, in this case as the encoding of T has to be modified. Specifically,
prev(T [j, |T |]) and prev(T [j − 1, |T |])[j, |T |] may no longer be the same. Observe that for
any j′, if prev(T)[j′] points to a location before j, then the desired encoding at j′ is 0.
Thus, we can easily update the encoding in O(1) time as characters are read. The correct
position to start matching from T [k + 1] can be found as described in the previous case
by initially choosing a leaf in the subtree of v.

Summarizing, every time we locate the locus of prev(T [j, |T |]), we truncate the character
T [j] by following the suffix link, obtain the encoding of prev(T [j + 1, |T |]) if required, and

its parent v if u is the leftmost child of v; otherwise, the predecessor is the rightmost leaf in the subtree
of its immediate left sibling. For the root node, its successor is its leftmost child.

3 This is because if the first character of the current suffix (in this case, T [1]) is parameterized, then the
suffix link from u can point to the middle of an edge (u′, v′). Suppose, after reading the next characters
we found a mismatch on the edge itself. Taking the suffix link from u′ will push back us further and we
may end up comparing too many characters.

A. Ganguly, W.-K. Hon, and R. Shah 10:7

then use the next characters of the text to find the locus of prev(T [j + 1, |T |]). By repeating
the process, we will have located the locus of prev(T [j, |T |]) for every j ∈ [1, |T |].

The space occupied by the index is clearly O(n logn) bits. Choosing the correct outgoing
edge (if any) at any node takes O(1) time. Finding the leaf for an implicit suffix link operation
takes O(logn) time. Each weighted level ancestor query takes O(log2 n) time and WT query
takes O(log σ) time. Therefore, the time to find the loci is O(|T | log2 n), and the total time
to report all occurrences is O(|T | log2 n+ occ).

2.4 Handling Updates

We assume the pattern Pi that is to be inserted is not present in the dictionary. Likewise, for
deletion, the pattern is present in the dictionary. Both can be easily verified in O(|Pi| log σ)
time by traversing the GST.

Insertion: To modify the GST, we use the algorithm of Kosaraju [21] which constructs
the parameterized suffix tree PST of a string S in O(|S| log σ) time. The algorithm, an
adaptation of the McCreight’s construction algorithm [24] for the traditional suffix tree,
creates the PST by successively inserting the suffixes at positions 1, 2, . . . , |S|. Suffix links in
the case of PST may point to the middle of an edge. These are termed as bad suffix links
while the others (pointing to a node) are termed as good suffix links. Contrary to McCreight’s
algorithm, it no longer holds that every node other than the last entered leaf and its parent
have good suffix links defined. For a node v, if prev(v) starts with an s-character then the
suffix link of v is necessarily good. This allows insertion of suffixes starting with s-characters
to remain the same as in case of McCreight’s algorithm. Baker [5] showed that bad nodes
(i.e., nodes with bad suffix links) have an outgoing edge labeled by a 0 and also form a chain
in the PST. The number of bad nodes in this chain is at most |Σp|. Baker used this crucial
observation to locate the desired bad suffix link to be followed for entering the next suffix,
culminating in an O(|S|(|Σp|+ log σ)) construction algorithm.

Kosaraju showed that by maintaining two pointers low and high to the lowest and highest
nodes in the chain, the construction algorithm of Baker can be improved to O(|S| log σ) when
Σs is a constant-sized alphabet. Basically, the low and high pointers allow us to binary search
on the chain of bad nodes to locate the proper position, rather than searching the entire
chain. This improves the |Σp| term to log |Σp|. Kosaraju first created two separate suffix
trees: (i) T1 for S with all p-characters replaced by 0 and (ii) T2 for S with all s-characters
replaced by a single s-character. The first tree T1 can be constructed using Baker’s algorithm
and T2 using Kosaraju’s algorithm for the constant-sized static alphabet. Using these trees,
the final suffix tree is created. The trees are pre-processed with the data structure in [7] to
support constant time LCA and strDepth queries for efficiently finding longest common prefix
(LCP) information. For each suffix insertion, the number of such queries is O(log |Σp|).

We show how to update the index for inserting a pattern Pi using the techniques above.
The location to insert the first suffix i.e., prev(Pi) can be found by traversing the GST in
O(|Pi| log σ) time. Each suffix insertion in the GST will incur a cost of O(log σ) for the
O(log |Σp|) number of LCA queries in T1 and T2, and O(logn) time for inserting a constant
number of nodes in the dynamic representation of the GST. Whenever a new node is to be
inserted in the GST, we update the hash table in amortized O(1) time. The data structure
of Fact 5 is modified once (insertion of a marked node corresponding to Pi in GST) and
requires O(logn) time. Finally, when the GST is constructed we will maintain the good
suffix links (constructed by Kosaraju’s algorithm) for each leaf corresponding to each suffix

SWAT 2016

10:8 A Framework for Dynamic Parameterized Dictionary Matching

of Pi. The WT for Pi can be constructed in O(|Pi| log σ) time (see Fact 3). Thus, a pattern
Pi can be inserted into the index in amortized O(|Pi| logn) time.

Deletion: First, we find the locus u of prev(Pi) and unmark u. The time required is
O(|Pi| log σ + logn). Then, we locate the loci of prev(Pi[j, |Pi|]), 1 < j ≤ |Pi|. Let u be any
such locus. Note that there are two edges out of u labeled by $i and #i. Delete these edges
and the corresponding children of u. There are two cases to be considered.

u is a leaf: Remove u and its edge to its parent v. If v has more than one child, then
modify the hash table at v. Otherwise, v is a node with a single child x. Let y be the
parent of v. Add an edge from y to x with the label as the concatenated label of the
edges from y to v and v to x (achieved by assigning the edge pointers appropriately).
Modify the hash table at y. Remove the node v along with its edges.4
u is an internal node: Modify u by treating it as node v in the above case.

Recall that the edge labels are maintained via two pointers to the start and end positions in
a particular pattern. Upon pattern deletion, we may still have existing edges in the GST
which have pointers to the deleted pattern Pi. (This happens as Pi may share a common
prev-encoded prefix with many other patterns.) Relabeling of these edges is achieved as
follows. Each edge can be found while locating the loci of each prev-encoded suffix of Pi.
Consider such an edge (x, y). After deletion, we find a leaf in the subtree of y which is labeled
with a pattern Pi′ and the starting position j′ of the particular suffix. Then the pointers of
the edge are modified easily in O(1) time using Pi′ , j′, strDepth(x), and strDepth(y).

Locating the loci requires O(|Pi| log2 n) time. For each locus, we perform a constant
number of operations, each requiring amortized O(logn) time (for modifying the data
structure of Fact 4 and the hash table). Also, we relabel each edge correctly in O(logn) time.
The number of such edges is bounded by O(|Pi|). Finally, the WT corresponding to Pi can
be easily deleted in O(1) time. Thus, the total time is bounded by O(|Pi| log2 n).

3 Succinct Index

We maintain a WT over each pattern. This occupies n log σ+ o(n log σ) bits (refer to Fact 3).
We design our index by classifying the patterns into long and short based on a parameter ∆
to be defined later. For short patterns (having length less than ∆), we create a compacted
trie and use a rather brute-force approach. On the other hand, reporting the occurrences
of long patterns (having length at least ∆) requires more sophisticated techniques. The set
of occurrences of long patterns and short patterns are mutually disjoint, and are handled
separately as indicated in the following lemmas.

I Lemma 6. Let P be a dictionary consisting of d long patterns. By maintaining each
pattern in a WT and a data structure occupying O(n∆ logn) bits, we can report all occ`
occurrences in O(|T |(∆ log σ+ log2 n) + occ`) time. Also, a long pattern Pi can be inserted in
amortized O(|Pi|

∆ (∆ logn+ log2 n)) time and deleted in amortized O(|Pi|
∆ (∆ log σ + log2 n))

time.

I Lemma 7. Let P be a dictionary consisting of d short patterns. By maintaining each
pattern in a WT and a data structure occupying O(d logn) bits, we can report all occs

4 Observe that there might still be a suffix link from a node v′ pointing to the position corresponding to v
on this new edge because truncating the first character of prev(v′) may lead to merging of two outgoing
edges of v′. Our motivation for implicit representation of suffix links is due to this property of PST.

A. Ganguly, W.-K. Hon, and R. Shah 10:9

occurrences in O(|T |(∆ log σ + log d) + occs) time. Also, a short pattern Pi can be inserted
or deleted, both in amortized O(|Pi| log σ + log d) time.

Theorem 2 is immediate by choosing ∆ = dlogn logσ ne, where ε > 0 is an arbitrarily small
constant. We proceed to prove the above two lemmas.

In what follows, we will assume the total length n of the patterns remains reasonably
stable. This assumption is natural as we can use the following strategy of Overmars [28],
or its subsequent improvement by Mäkinen and Navarro [23]. Roughly speaking, apart
from maintaining the wavelet trees over the patterns, we will maintain three copies of the
remaining component of the data structures in Lemmas 6 and 7. Specifically, apart from
the data structures due to the choice of ∆ above, we will keep two more copies, one for
∆ = ∆−1, and the other for ∆ = ∆1, where ∆k = dlog(2kn) logσ(2kn)e. Whenever the total
length of the pattern doubles, we discard the structure for ∆−1, and start building another
structure by considering ∆ = ∆2. Likewise, when the total length halves, we discard the
structure for ∆1, and start building a structure by considering ∆ = ∆−2. Amortized per
operation cost is O(1). Whenever, a pattern is inserted or deleted, we will modify all three
copies simultaneously; a search query can be answered using any one of the copies. Clearly,
the space-and-time bounds claimed in Lemmas 6 and 7 are not affected.

3.1 Long Patterns (Proof of Lemma 6)
For a string S and ∆, we use head(S) to denote the largest prefix of S whose length is
a multiple of ∆ and tail(S) is the remaining (possibly empty) suffix of S. We begin by
obtaining prev(head(Pi)) for every Pi ∈ P. We encode tail(Pi) from left to right using the
same encoding that was used for head(Pi). More specifically, the desired encoding of the jth
character in the tail is given by prev(Pi)[|head(Pi)| + j]. Then two equal-length strings S
and S′ are a p-match iff (i) prev(head(S)) = prev(head(S′)), and (ii) the encoded tails (as
described here) of both S and S′ are equal.

The Index: Note that in this case the number of patterns d ≤ n/∆. We begin by sampling
suffixes of each pattern head with sampling factor ∆. Specifically, for each pattern Pi, we
obtain prev(Pi[k, |head(Pi)|]) for the suffixes starting at k = 1, 1 + ∆, 1 + 2∆, Starting
from left, we group every ∆ characters of these encoded suffixes. Let Σ′ be an alphabet such
that each character in Σ′ corresponds to such a ∆-length substring. Replace the ∆-length
substring by the corresponding character from Σ′. Create a generalized suffix tree Thead for all
these suffixes of all the patterns. (If the pattern length is not a multiple of ∆, then we ignore
its tail.) As in Section 2, we will append each condensed suffix with the special characters $i
and #i. Note that Thead has O(n/∆) nodes. Therefore,

∑
u δ(u) = O(n/∆), where δ(u) is

the number of outgoing edges of a node u. At each node u, we maintain strDepth(u), which
is necessarily a multiple of ∆. Also, for each leaf `, we maintain the pointers which will be
used to find suffix links implicitly. The total space required is O((n/∆) logn) bits.

Now, let us concentrate on how to navigate to a particular child of a node u. Consider all
the outgoing edges of u. Create a compacted trie Thead(u) by treating the labels of these edges
mapped to their corresponding ∆-length string. Note that each leaf in Thead(u) corresponds
to a child of u in Thead. Also, each edge in Thead(u) is labeled by a prev-encoded substring of
a pattern Pi, and each outgoing edge of a node begins with a unique character from such
a substring. As in the case of the linear space index, (i) at each edge of Thead(u) maintain
the start and end pointers, and (ii) at each node maintain a dynamic perfect hashtable for
navigating to the correct child based on the first (encoded) character of the edge. Since

SWAT 2016

10:10 A Framework for Dynamic Parameterized Dictionary Matching

the number of nodes in Thead(u) is at most 2δ(u), the total space needed to maintain this
information over all nodes in Thead is O(

∑
u δ(u) logn) = O((n/∆) logn) bits.

Now, we focus on the tail of each pattern. Consider a pattern Pi. First, we obtain the
encoded tail of Pi (as described in the beginning of this section). Create two copies of the
resultant tail, each of which is obtained by appending the s-characters $i and #i. Locate the
(distinct) node u in Thead such that prev(u) is same as prev(head(Pi)). Note that u is defined,
and we call it the head-node of Pi. Consider all patterns which have the same head-node u.
Create a compacted trie for the encoded tails of all those patterns, and let u be the root of
that trie. We call this the tail-trie of u, and denote it by Ttail(u). The parent of each leaf
in Ttail(u) corresponds to a pattern, say Pj , in the dictionary. We mark all such nodes in
Ttail(u), and label them with the corresponding pattern index j. If there is a pattern Pj with
an empty tail, then the corresponding tail-trie contains the head-node u, which is marked,
and two leaves labeled by $j and #j . The space occupied by each node for marking and
labeling is O(logn) bits. Each edge in Ttail(u) is labeled by a substring (of length less than
∆) of the encoded tail of a pattern. As in case of head tries, we maintain the two pointers
on the edge to the corresponding pattern, and a perfect dynamic hash table to navigate to
the correct child based on the first (encoded) character of the edge. This occupies O(logn)
bits for each node and edge. Since there are d patterns, the number of nodes and edges in
all tail-tries combined is O(d). Since d ≤ n/∆, the total space occupied for maintaining all
tail-tries is O((n/∆) logn) bits.

Denote the resultant trie by Tlong. We pre-process the head-trie with the data structure
of Fact 4. Likewise, each tail-trie is pre-processed with the data structures of Facts 4 and 5.
In summary, the total space occupied by Tlong is O((n/∆) logn) bits.

Reporting Occurrences: Starting from the position j = 1, we obtain prev(T [j, |T |]) in
O(|T | log σ) time. Use it to traverse the trie Tlong from the root. Each p-character labeling
the edge of Tlong can be properly encoded in O(log σ) time as described in Section 2.1.
Suppose, we have traversed up to node u in Thead and the character j′ in prev(T)[j, |T |],
where j′ − j + 1 = 0 mod ∆. If Ttail(u) is not empty, then use the less than ∆ characters of
prev(T [j, |T |) starting from j′ + 1 to traverse the tail trie, until we find a mismatch or reach
a leaf. The time required is O(∆ log σ). Now, we use the marked ancestor data structure
to report all occurrences starting at j corresponding to those patterns having head-node u.
The time required is O(log d + occj,u) time. After this, by using the first ∆-characters of
prev(T [j, |T |) starting from j′ + 1, we have to select an edge (u, v) in Thead. This is easily
achieved in O(∆ log σ) time by using the navigation trie Thead(u) as follows. If we are at a
node in Thead(u), then use the next character to find the correct edge using the hash table;
otherwise, simply use the edge pointers to encode the next character of the edge, and match
it with the next encoded character of T . In case we were no longer able to reach a leaf in
Thead(u), then we have the following two scenarios. If no match was found with the first ∆
characters starting from u, then we take the suffix link of u. Otherwise, we are necessarily
on an edge to a leaf in Thead(u); in this case, take the suffix link of the node v in Thead
corresponding to this leaf. In either case, we truncate ∆ characters of prev(T) starting from
j. As described in Section 2, the suffix link is simulated by the implicit suffix link i.e., by
finding a leaf under u or v in the head-trie, and then using the leaf pointer and a wla query.
Following this, the correct position to start matching is located in O(∆ log σ) time using the
navigation trie of the node returned by the wla query. As before, locating a leaf requires
O(logn) time and a wla query takes O(log2 n) time. The number of times we have to select
a proper edge, traverse a tail trie, or follow a suffix link, are all bounded by O(|T |/∆).

A. Ganguly, W.-K. Hon, and R. Shah 10:11

At the end of this process, for j = 1, we have reported occurrences of all patterns which
start at a position of the form j, j + ∆, j + 2∆, The time required to find the loci and
traversing the tail tries is O(|T | log σ + |T |

∆ (∆ log σ + log2 n)). The time required to report
the occurrences is O(|T |∆ log d+ occj). By repeating with j = 2, 3, . . . ,∆, all occ` occurrences
of long patterns are reported in O(|T |(∆ log σ + log2 n) + occ`) time.

Handling Updates: First we construct the head-trie when a pattern Pi is inserted. We
begin by using Kosaraju’s algorithm to construct a PST for Pi, and then find the locus
of prev(Pi) in Thead; this will take O(|Pi| log σ) time. Now, we will create actual nodes in
Thead only for those suffixes which start at a location of the form k = 1, 1 + ∆, 1 + 2∆,
For other suffixes, we will create dummy nodes in Thead so as to perform the suffix link
operations correctly. Specifically, suppose we have inserted an actual leaf `j for the suffix
starting at 1 + j∆. Subsequently, we will construct dummy leaves for the suffixes starting
at j′ ∈ [2 + j∆, (j + 1)∆]. Once, the actual leaf `j+1 for the suffix starting 1 + (j + 1)∆
is inserted, we will add the suffix link from `j to `j+1, and delete the intermediate dummy
nodes. However, now we need to find the correct location of a (possibly new) node u in Thead
such that prev(u) is the LCP of the suffixes corresponding to `j and `j+1, which is divisible
by ∆. This can be found in O(log2 n) time using wla-queries on Thead by first finding the
LCP using the PST of Pi. Each actual node insertion will take O(∆ log σ) amortized time
for updating the structure of the navigation trie and the associated hash table, O(log2 n)
time for wla-queries, and O(logn) time for updating the data structure of Fact 4; the number
of these operations is O(|Pi|/∆). We will make O(|Pi|) accesses for updating and querying
the data structure of Fact 4 for inserting and deleting dummy nodes, each requiring O(logn)
time. Thus, the time needed to update Thead is O(|Pi| logn+ |Pi|

∆ log2 n).
Modifying the tail-trie is much simpler. We traverse it with the encoded tail(Pi) starting

from the head node of Pi until no more traversal is possible. Then, simply add the desired
nodes and edges. Modify the data structures of Facts 4 and 5 accordingly (the latter for
including a new marked node). Also, modify the hash table in O(1) amortized time per
update. The time required is O(∆ log σ + log d).

Since |Pi| ≥ ∆, inserting Pi needs amortized O(|Pi| logn+ |Pi|
∆ log2 n) time.

In case of deletion, first we find the head-node of the pattern Pi. Then, use the encoded
tail(Pi) to traverse the tail trie, unmark the node labeled by Pi, and delete its two children
(leaves) labeled with $i and #i. Also, the parent u of these leaves are deleted in case u is
a leaf. The parent v of u is modified (if it has a single child) as in the case of linear index.
If u is not a leaf, then it is treated in the same way if it has a single child, or else is left
unmodified. To modify the edge pointers, find the lowest edge e that was traversed, but was
not deleted. Then all the desired edges above e on the traversed path can be renamed by
using any leaf corresponding to a pattern Pi′ under e. The hash table entries are deleted
accordingly. The time required is O(|Pi| log σ + log d).

Deletion in the head trie is achieved by first locating the loci of all the condensed heads
in time O(|Pi|

∆ (∆ log σ + log2 n)). Then, modify the edge labels in the navigation trie, and
the adjoining hash table entries. Also, collapse nodes with a single child into an edge. The
number of such operations is O(|Pi|

∆), each requiring O(∆ log σ + logn) time.
Since |Pi| ≥ ∆, deleting Pi needs amortized O(|Pi|

∆ (∆ log σ + log2 n)) time.

3.2 Short Patterns (Proof of Lemma 7)
Processing short patterns is similar to that for tail-tries. We create a compacted trie Tshort for
the strings prev(Pi)$i and prev(Pi)#i. As in case of tail tries, we maintain the two pointers

SWAT 2016

10:12 A Framework for Dynamic Parameterized Dictionary Matching

for each edge, and also maintain the first (encoded) character of the edge in a dynamic perfect
hashtable. Mark a node u if there is a pattern Pi such that prev(v) = prev(Pi). Finally, we
process the trie with the data structures of Facts 4 and 5. Since the number of patterns is at
most d, the number of nodes in the trie is O(d), and the total space is O(d logn) bits.

To find the occurrences of short patterns, first obtain prev(T) inO(|T | log σ) time. Starting
from j = 1, use prev(T)[j,∆− 1] to traverse the trie Tshort until no more traversal is possible.
The time required is O(∆ log σ). Now, starting the from the last encountered node, we report
all occj occurrences starting at j in O(log d + occj) time. We repeat the process for j =
2, 3, . . . , |T |. The time required to report all occs occurrences is O(|T |(∆ log σ+log d) +occs).

Insertion and deletion is similar as in the case of tail tries. Specifically, use prev(Pi) to
traverse Tshort, and then insert/delete nodes accordingly. The hash table for navigation and
the edge labels are also updated. Summarizing, both insertion and deletion needs amortized
O(|Pi| log σ + log d) time.

4 Semi-Dynamic Dictionary

From the discussions in the previous section, closely observe that the (log2 n)-factor in the
query complexity is due to the wla queries. To improve this, we present Fact 8.

I Fact 8 ([20]). Given a min-heap with m weighted nodes, with weights in [1,m]. We can
build an O(m logm)-bit data structure in O(m) time to support the following operations.

insert a weighted node maintaining the heap property in amortized O(log logm) time.
report wla(u,W) in worst-case O(log logm) time.

In conjunction with the techniques previously presented, for the semi-dynamic case, where
only search and insert operations are supported, we obtain the following couple of corollaries
to Theorems 1 and 2. The bound in Corollary 10 is attained by choosing ∆ = dlogε n logσ ne
in Lemmas 6 and 7, where ε > 0 is an arbitrarily small constant.

I Corollary 9. By maintaining an O(n logn)-bit index, we can answer search(T) in O(|T | logn
+ occ) time, and insert(Pi) in amortized O(|Pi| logn) time.

I Corollary 10. By maintaining an (1 + o(1))n log σ +O(d logn)-bit index, we can answer
search(T) in O(|T | log1+ε n+ occ) time, and insert(Pi) in amortized O(|Pi| logn) time.

References
1 Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to bibliographic

search. Commun. ACM, 18(6):333–340, 1975. doi:10.1145/360825.360855.
2 Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked ancestor problems. In 39th

Annual Symposium on Foundations of Computer Science, FOCS’98, November 8-11, 1998,
Palo Alto, California, USA, pages 534–544, 1998. doi:10.1109/SFCS.1998.743504.

3 Amihood Amir, Martin Farach, Zvi Galil, Raffaele Giancarlo, and Kunsoo Park. Dy-
namic dictionary matching. J. Comput. Syst. Sci., 49(2):208–222, 1994. doi:10.1016/
S0022-0000(05)80047-9.

4 Amihood Amir, Martin Farach, Ramana M. Idury, Johannes A. La Poutré, and Alejandro A.
Schäffer. Improved dynamic dictionary matching. Inf. Comput., 119(2):258–282, 1995.
doi:10.1006/inco.1995.1090.

5 Brenda S. Baker. A theory of parameterized pattern matching: algorithms and applications.
In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May
16-18, 1993, San Diego, CA, USA, pages 71–80, 1993. doi:10.1145/167088.167115.

http://dx.doi.org/10.1145/360825.360855
http://dx.doi.org/10.1109/SFCS.1998.743504
http://dx.doi.org/10.1016/S0022-0000(05)80047-9
http://dx.doi.org/10.1016/S0022-0000(05)80047-9
http://dx.doi.org/10.1006/inco.1995.1090
http://dx.doi.org/10.1145/167088.167115

A. Ganguly, W.-K. Hon, and R. Shah 10:13

6 Djamal Belazzougui. Succinct dictionary matching with no slowdown. In Combinatorial
Pattern Matching, 21st Annual Symposium, CPM 2010, New York, NY, USA, June 21-23,
2010. Proceedings, pages 88–100, 2010. doi:10.1007/978-3-642-13509-5_9.

7 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In LATIN
2000: Theoretical Informatics, 4th Latin American Symposium, Punta del Este, Uruguay,
April 10-14, 2000, Proceedings, pages 88–94, 2000. doi:10.1007/10719839_9.

8 Sudip Biswas, Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. Forbidden ex-
tension queries. In 35th IARCS Annual Conference on Foundation of Software Technology
and Theoretical Computer Science, FSTTCS 2015, December 16-18, 2015, Bangalore, In-
dia, pages 320–335, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.320.

9 Ho-Leung Chan, Wing-Kai Hon, Tak Wah Lam, and Kunihiko Sadakane. Dynamic dic-
tionary matching and compressed suffix trees. In Proceedings of the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver, British Columbia,
Canada, January 23-25, 2005, pages 13–22, 2005. URL: http://dl.acm.org/citation.
cfm?id=1070432.1070436.

10 Paul F. Dietz and Daniel Dominic Sleator. Two algorithms for maintaining order in a list.
In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New
York, New York, USA, pages 365–372, 1987. doi:10.1145/28395.28434.

11 Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide,
Hans Rohnert, and Robert Endre Tarjan. Dynamic perfect hashing: Upper and lower
bounds. SIAM J. Comput., 23(4):738–761, 1994. doi:10.1137/S0097539791194094.

12 Guy Feigenblat, Ely Porat, and Ariel Shiftan. An improved query time for succinct dynamic
dictionary matching. In Combinatorial Pattern Matching – 25th Annual Symposium, CPM
2014, Moscow, Russia, June 16-18, 2014. Proceedings, pages 120–129, 2014. doi:10.1007/
978-3-319-07566-2_13.

13 Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November
2000, Redondo Beach, California, USA, pages 390–398, 2000. doi:10.1109/SFCS.2000.
892127.

14 Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. Succinct non-overlapping
indexing. In Combinatorial Pattern Matching – 26th Annual Symposium, CPM 2015,
Ischia Island, Italy, June 29 – July 1, 2015, Proceedings, pages 185–195, 2015. doi:
10.1007/978-3-319-19929-0_16.

15 Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed
text indexes. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, January 12-14, 2003, Baltimore, Maryland, USA., pages 841–850, 2003. URL:
http://dl.acm.org/citation.cfm?id=644108.644250.

16 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching (extended abstract). In Proceedings of
the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000,
Portland, OR, USA, pages 397–406, 2000. doi:10.1145/335305.335351.

17 Wing-Kai Hon, Tak Wah Lam, Rahul Shah, Siu-Lung Tam, and Jeffrey Scott Vitter. Com-
pressed index for dictionary matching. In 2008 Data Compression Conference (DCC 2008),
25-27 March 2008, Snowbird, UT, USA, pages 23–32, 2008. doi:10.1109/DCC.2008.62.

18 Wing-Kai Hon, Tak Wah Lam, Rahul Shah, Siu-Lung Tam, and Jeffrey Scott Vitter.
Succinct index for dynamic dictionary matching. In Algorithms and Computation, 20th
International Symposium, ISAAC 2009, Honolulu, Hawaii, USA, December 16-18, 2009.
Proceedings, pages 1034–1043, 2009. doi:10.1007/978-3-642-10631-6_104.

19 Ramana M. Idury and Alejandro A. Schäffer. Multiple matching of parameterized pat-
terns. In Combinatorial Pattern Matching, 5th Annual Symposium, CPM 94, Asilo-

SWAT 2016

http://dx.doi.org/10.1007/978-3-642-13509-5_9
http://dx.doi.org/10.1007/10719839_9
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.320
http://dl.acm.org/citation.cfm?id=1070432.1070436
http://dl.acm.org/citation.cfm?id=1070432.1070436
http://dx.doi.org/10.1145/28395.28434
http://dx.doi.org/10.1137/S0097539791194094
http://dx.doi.org/10.1007/978-3-319-07566-2_13
http://dx.doi.org/10.1007/978-3-319-07566-2_13
http://dx.doi.org/10.1109/SFCS.2000.892127
http://dx.doi.org/10.1109/SFCS.2000.892127
http://dx.doi.org/10.1007/978-3-319-19929-0_16
http://dx.doi.org/10.1007/978-3-319-19929-0_16
http://dl.acm.org/citation.cfm?id=644108.644250
http://dx.doi.org/10.1145/335305.335351
http://dx.doi.org/10.1109/DCC.2008.62
http://dx.doi.org/10.1007/978-3-642-10631-6_104

10:14 A Framework for Dynamic Parameterized Dictionary Matching

mar, California, USA, June 5-8, 1994, Proceedings, pages 226–239, 1994. doi:10.1007/
3-540-58094-8_20.

20 Tsvi Kopelowitz and Moshe Lewenstein. Dynamic weighted ancestors. In Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New
Orleans, Louisiana, USA, January 7-9, 2007, pages 565–574, 2007. URL: http://dl.acm.
org/citation.cfm?id=1283383.1283444.

21 S. Rao Kosaraju. Faster algorithms for the construction of parameterized suffix trees (pre-
liminary version). In 36th Annual Symposium on Foundations of Computer Science, Mil-
waukee, Wisconsin, 23-25 October 1995, pages 631–637, 1995. doi:10.1109/SFCS.1995.
492664.

22 Moshe Lewenstein. Parameterized pattern matching. In Encyclopedia of Algorithms, 2015.
doi:10.1007/978-3-642-27848-8_282-2.

23 Veli Mäkinen and Gonzalo Navarro. Dynamic entropy-compressed sequences and full-text
indexes. ACM Transactions on Algorithms, 4(3), 2008. doi:10.1145/1367064.1367072.

24 Edward M. McCreight. A space-economical suffix tree construction algorithm. J. ACM,
23(2):262–272, 1976. doi:10.1145/321941.321946.

25 J. Ian Munro, Gonzalo Navarro, Jesper Sindahl Nielsen, Rahul Shah, and Sharma V.
Thankachan. Top- k term-proximity in succinct space. In Algorithms and Computation –
25th International Symposium, ISAAC 2014, Jeonju, Korea, December 15-17, 2014, Pro-
ceedings, pages 169–180, 2014. doi:10.1007/978-3-319-13075-0_14.

26 Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Comput. Surv.,
39(1), 2007. doi:10.1145/1216370.1216372.

27 Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct
trees. ACM Trans. Algorithms, 10(3):16:1–16:39, 2014. doi:10.1145/2601073.

28 Mark H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture Notes
in Computer Science. Springer, 1983. doi:10.1007/BFb0014927.

29 Kunihiko Sadakane. Compressed text databases with efficient query algorithms based on
the compressed suffix array. In Algorithms and Computation, 11th International Conference,
ISAAC 2000, Taipei, Taiwan, December 18-20, 2000, Proceedings, pages 410–421, 2000.
doi:10.1007/3-540-40996-3_35.

30 Dekel Tsur. Top-k document retrieval in optimal space. Inf. Process. Lett., 113(12):440–443,
2013. doi:10.1016/j.ipl.2013.03.012.

http://dx.doi.org/10.1007/3-540-58094-8_20
http://dx.doi.org/10.1007/3-540-58094-8_20
http://dl.acm.org/citation.cfm?id=1283383.1283444
http://dl.acm.org/citation.cfm?id=1283383.1283444
http://dx.doi.org/10.1109/SFCS.1995.492664
http://dx.doi.org/10.1109/SFCS.1995.492664
http://dx.doi.org/10.1007/978-3-642-27848-8_282-2
http://dx.doi.org/10.1145/1367064.1367072
http://dx.doi.org/10.1145/321941.321946
http://dx.doi.org/10.1007/978-3-319-13075-0_14
http://dx.doi.org/10.1145/1216370.1216372
http://dx.doi.org/10.1145/2601073
http://dx.doi.org/10.1007/BFb0014927
http://dx.doi.org/10.1007/3-540-40996-3_35
http://dx.doi.org/10.1016/j.ipl.2013.03.012

Efficient Summing over Sliding Windows
Ran Ben Basat1, Gil Einziger2, Roy Friedman3, and
Yaron Kassner4

1 Department of Computer Science, Technion, Haifa, Israel
sran@cs.technion.ac.il

2 Department of Computer Science, Technion, Haifa, Israel
gilga@cs.technion.ac.il

3 Department of Computer Science, Technion, Haifa, Israel
roy@cs.technion.ac.il

4 Department of Computer Science, Technion, Haifa, Israel
kassnery@cs.technion.ac.il

Abstract
This paper considers the problem of maintaining statistic aggregates over the last W elements of
a data stream. First, the problem of counting the number of 1’s in the last W bits of a binary
stream is considered. A lower bound of Ω(1

ε+logW) memory bits forWε-additive approximations
is derived. This is followed by an algorithm whose memory consumption is O(1

ε + logW) bits,
indicating that the algorithm is optimal and that the bound is tight. Next, the more general
problem of maintaining a sum of the last W integers, each in the range of {0, 1, . . . , R}, is
addressed. The paper shows that approximating the sum within an additive error of RWε can
also be done using Θ(1

ε + logW) bits for ε = Ω
(1
W

)
. For ε = o

(1
W

)
, we present a succinct

algorithm which uses B · (1 + o(1)) bits, where B = Θ
(
W log

(1
Wε

))
is the derived lower bound.

We show that all lower bounds generalize to randomized algorithms as well. All algorithms
process new elements and answer queries in O(1) worst-case time.

1998 ACM Subject Classification E.1 [Data Structures] Lists, stacks, and queues

Keywords and phrases Streaming, Statistics, Lower Bounds

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.11

1 Introduction

Background
The ability to process and maintain statistics about large streams of data is useful in many
domains, such as security, networking, sensor networks, economics, business intelligence, etc.
Since the data may change considerably over time, there is often a need to keep the statistics
only with respect to some window of the lastW elements at any given point. A naive solution
to this problem is to keep the W most recent elements, add an element to the statistic when
it arrives, and subtract it when it leaves the window. Yet, when the window of interest is
large, which is often the case when data arrive at high rate, the required memory overhead
may become a performance bottleneck.

Though it may be tempting to think that RAM memory is cheap, a closer look indicates
that there are still performance benefits in maintaining small data structures. For example,
hardware devices such as network switches prefer to store important data in the faster and
scarcely available SRAM than in DRAM. This is in order to keep up with the ever increasing
line-speed of modern networks. Similarly, on a CPU, caches provide much faster performance

© Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 11; pp. 11:1–11:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Efficient Summing over Sliding Windows

than DRAM memory. Thus, small data structures that fit inside a single cache line and can
possibly be pinned there are likely to result in much faster performance than a solution that
spans multiple lines that are less likely to be constantly maintained in the cache.

A well known method to conserve space is to approximate the statistics. Basic-Counting
is one of the most basic textbook examples of such approximated stream processing prob-
lems [12]. In this problem, one is required to keep track of the number of 1’s in a stream
of binary bits. A (1 + ε)-multiplicative approximation algorithm for this problem using
O
(1
ε log2 Wε

)
bits was shown in [12]. This solution works with amortized O(1) time, but its

worst case time complexity is O(logW).
A more practical related problem is Basic-Summing, in which the goal is to maintain

the sum of the last W elements. When all elements are non-negative integers in the range
[R+ 1] = {0, 1, . . . , R}, the work in [12] naturally extends to provide a (1 + ε)-multiplicative
approximation of this problem using O

(1
ε ·
(
log2 W + logR · (logW + log logR)

))
bits. The

amortized time complexity becomes O(logR
logW) and the worst case is O(logW + logR).

Our Contributions
In this paper, we explore the benefits of changing the approximation guarantee from mul-
tiplicative to additive. With a multiplicative approximation, the result returned can be
different from the correct one by at most a multiplicative factor, e.g., 5%. On the other
hand, in an additive approximation, the absolute error is bounded, e.g., a deviation of up to
±5. When the expected number of ones in a stream is small, multiplicative approximation is
more appealing, since its absolute error is small. However, in this case, an accurate (sparse)
representation can be even more space efficient than the multiplicative approximation. On
the other hand, when many ones are expected, additive approximation gives similar outcomes
to multiplicative approximation. Furthermore, the potential space saving becomes significant
in this case, motivating our exploration.

Our initial contribution is a formally proved memory lower bound of Ω(1
ε + logW) for

Wε-additive approximations for the Basic-Counting problem.
Our second contribution is a space optimal algorithm providing a Wε-additive approx-

imation for the Basic-Counting problem. It consumes O(1
ε + logW) memory bits with a

worst case time complexity of O(1), matching the lower bound.
Next, we explore the more general Basic-Summing problem. Here, the results are

split based on the value of ε. Specifically, our third contribution is an (asymptotically)
space optimal algorithm providing an RWε-additive approximation for the Basic-Summing
problem when ε−1 ≤ 2W

(
1− 1

logW

)
.1 It uses O(1

ε + logW) memory bits and has O(1)
worst case time complexity. For other values of ε, we show a lower bound of Ω(W log

(1
Wε

)
)

and a corresponding algorithm requiring O
(
W log

(1
2Wε + 1

))
memory bits with O(1) worst

case time complexity. Furthermore, we show that this algorithm is succinct for ε = o(W−1),
i.e. its space requirement is only (1+o(1)) times the lower bound.

To get a feel for the applicability of these results, consider for example an algorithmic
trader that makes transactions based on a moving average of the gold price. He samples the
spot price once every millisecond, and wishes to approximate the average price for the last
hour, i.e., W = 3.6 · 106 samples. The current price is around $1200, and with a standard
deviation of $10, he safely assumes the price is bounded by R , 1500. The trader is willing
to withstand an error of 0.1%, which is approximately $1.2. Our algorithm provides a

1 In this paper, the logarithms are of base 2 and the o(1) notation is for W →∞.

R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner 11:3

WRεA (the ‘A’ stands for Additive) additive-approximation using
(

1
2εA

+ 2 logW
)

(1 + o(1))
memory bits, while the algorithm by Datar et al. [12] computes a multiplicative (1 + εM)
(the ‘M ’ stands for Multiplicative) approximation using

⌈
1

2εM
+ 1
⌉
dlog (2WRεM + 1) + 1e

buckets of size dlogW + log (logW + logR)e bits each. Using our algorithm, the trader sets
εA = R−1 = 1

1500 , which guarantees that as long as the price of gold stays above $1000,
the error remains lower than required. The multiplicative approximation algorithm requires
setting εM = 0.1%, and uses 501 · dlog (1080001) + 1e = 12525 buckets of size 27 bits each
and about 41KB overall. In comparison, our algorithm with the parameters above requires
only about 100 bytes.

Another useful application for our algorithm is counting within a fixed additive error.
The straight-forward algorithm for solving Basic-Counting uses a W -bits array which
stores the entire window, replacing the oldest recorded bit with a new one whenever such
arrives. Assume a ±5 error is allowed. Using the multiplicative-approximation algorithms,
one has to set εM = 5

W , which requires more than W bits, worse than exact counting. In
contrast, setting εA = 5

W for our algorithm reduces the memory consumption of the exact
solution by nearly 90%.

In summary, we show that additive approximations offer significant space reduction
opportunities. They can be obtained with a constant worst case time complexity, which is
important in real-time and time sensitive applications.

2 Related Work

In [12], Datar et al. first presented the problem of counting the number of 1’s in a sliding
window of size W over a binary stream, and its generalization to summing a window over a
stream of integers in the range {0, 1, . . . , R}. They have introduced a data structure called
exponential histogram (EH). EH is a time-stamp based structure that partitions the stream
into buckets, saving the time elapsed since the last 1 in the bucket was seen. Using EH ,
they have derived a space-optimal algorithm for approximating Basic-Summing within a
multiplicative-factor of (1+ ε), which uses O

(1
ε log2 W + logR · (logW + log logR)

)
memory

bits. The structure allows estimating a class of aggregate functions such as counting, summing
and computing the `1 and `2 norms of a sliding window in a stream containing integers. The
exponential histogram technique was later expanded [3] to support computation of additional
functions such as k-median and variance. Gibbons and Tirthapura [13] presented a different
structure called waves, which improved the worst-case runtime of processing a new element
to a constant, keeping space requirement comparable when R = poly(W). Braverman and
Ostrowsky [7] defined smooth histogram, a generalization of the exponential histogram, which
allowed estimation of a wider class of aggregate functions and improved previous results for
several functions such as lp norms and frequency moments. Lee and Ting [15] presented
an improved algorithm, requiring less space if a (1 + ε) approximation is guaranteed only
when the ones consist of a significant fraction of the window. They also presented the λ
counter [16] that counts bits over a sliding window as part of a frequent items algorithm. Our
design is more space efficient as it requires O(1

ε + log(n)) bits instead of O(1
ε · log(n)) bits.

In [8], Cohen and Strauss considered a generalization of the bit-counting problem on a
sliding window for computing a weighted sum for some decay function, such that the more
recent bits have higher weights. Cormode and Yi [9] solved bit counting in a distributed
setting with optimal communication between nodes. Table 1 and Table 2 summarize previous
works on the Basic-Counting and Basic-Summing problems and compare them to our
own algorithms.

SWAT 2016

11:4 Efficient Summing over Sliding Windows

Basic-
Counting

Approximation Guarantee Memory
Requirement

Amortized
Addition
Time

Worst-
Case
Addition
Time

Maximal
Additive
Error

Datar et
al. [12]

(1 + ε)-Multiplicative O

(
1
ε

log2 Wε

)
O(1) O(logW) Wε

Gibbons and
Tirthapura [13]

(1 + ε)-Multiplicative O

(
1
ε

log2 Wε

)
O(1) O(1) Wε

Lee and
Ting [15]

(1 + ε)-Multiplicative,
whenever there are at least
θW 1-bits

O

(
1
ε

log2 1
θ

+ logWθε

) O(1) O(1) Wε

This Paper Wε-Additive O

(
1
ε

+logWε

)
O(1) O(1) Wε

Table 1 Comparison of Basic-Counting Algorithms.

Basic-
Summing

Approximation
Guarantee

Memory Requirement Amortized
Addition
Time

Worst-Case
Addition
Time

Maximal
Additive
Error

Datar et
al. [12]

(1 + ε)-
Multiplicative

O
(1
ε

(
log2 W

+ logR logW

+ logR log logR
)) O

(logR
logW

) O(logW
+ logR)

RWε

Gibbons and
Tirthapura [13]

(1 + ε)-
Multiplicative

O
(

1
ε

(logW + logR)2) O(1) O(1) RWε

This Paper

RWε-Additive
for ε ≥ 1

2W O
(

1
ε

+ logW
)

O(1) O(1) RWεRWε-Additive
for ε ≤ 1

2W O
(
W · log

(
1
Wε

))
Table 2 Comparison of Basic-Summing Algorithms.

Extensive studies were conducted on many other streaming problems over sliding windows
such as Top-K [18, 20], Top-K tuples [22], Quantiles [2], heavy hitters [5, 6, 14], distinct
items [24], duplicates [21], Longest Increasing Subsequences [7, 1], Bloom filters [17, 19],
graph problems [10, 11] and more.

3 Basic-Counting Problem

I Definition 1 (Approximation). Given a value V and a constant ε, we say that V̂ is an
ε-multiplicative approximation of V if |V − V̂ | < εV . We say that V̂ is an ε-additive
approximation of V if |V − V̂ | < ε.

I Definition 2 (Basic-Counting). Given a stream of bits and a parameter W , maintain
the number of 1’s in the last W bits of the stream. Denote this number by CW .

3.1 Lower Bound
We now show lower bounds for the memory requirement for approximating Basic-Counting.

R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner 11:5

I Lemma 3. For any ε and W , any deterministic algorithm that provides a Wε-additive
approximation for Basic-Counting requires at least

⌊
W

b2Wε+1c

⌋
≥
⌊

1
2ε+W−1

⌋
bits.

Proof. Denote z ,
⌊

W
b2Wε+1c

⌋
. We prove the lemma by showing 2z arrangements that must

lead to different configurations. Consider the language of all concatenations of z blocks of
size b2Wε+ 1c, such that each block consists of only ones or only zeros:

LW,ε = {w0w1 · · ·wz−1 | ∀j ∈ [z] : wj = 0b2Wε+1c ∨ wj = 1b2Wε+1c}

Assume, by way of contradiction, that two different words

s1 = w1
0w

1
1 · · ·w1

z−1, s
2 = w2

0w
2
1 · · ·w2

z−1 ∈ LW,ε

lead the algorithm to the same configuration. Denote the index of the last block that differs
between s1 and s2 by t , max{τ | w1

τ 6= w2
τ}. Next, consider the sequences s1 · 0(t−1)b2Wε+1c

and s2 · 0(t−1)b2Wε+1c. The algorithm must reach the same configuration after processing
these sequences, even though the number of ones differs by b2Wε+ 1c > 2Wε. Therefore, the
algorithm’s error must be greater than Wε at least for one of the sequences, in contradiction
to the assumption. We have shown 2z words that lead to different configurations and therefore
any deterministic algorithm that provides ε− additive approximation to Basic-Counting
must have at least z bits of state. J

An immediate corollary of Lemma 3 is that any exact algorithm for Basic-Counting
requires at least W bits, i.e., the naive solution is optimal. We next establish a second lower
bound, which is useful for proving that our algorithm, presented below, is space optimal up
to a constant factor.

I Lemma 4. Fix some ε ≤ 1
4 . Any deterministic algorithm that provides a Wε-additive

approximation for the Basic-Counting problem requires at least blogW c bits.

Proof. Assume that some algorithm A gives a Wε-additive approximation using m memory
bits. Consider A’s run on the sequence s = 0W · 12m . Since A is using m bits, it reaches some
memory configuration c at least twice after processing the zeros in the sequence. Assume
that A first reached c after seeing 0W · 1y (where y < 2m). This means that A must output
some number ac ≤ y + Wε if queried. Now assume A returns to configuration c after
reading z additional ones. This means A will return to c after every additional sequence
of z ones. Therefore, for every integer q, after processing the sequence 0W · 1y+qz, A will
reach configuration c. We can then pick a large q (such that y + qz ≥W), which means that
the query answer for configuration c, ac, has to be at least W (1− ε), as the window is now
all-ones. We get W (1− ε) ≤ ac ≤ y+Wε and thus 2m > y ≥W (1− 2ε). Putting everything
together, we conclude that m > log (W (1− 2ε)) = logW + log (1− 2ε) ≥ logW − 1, for
ε ≤ 1

4 . Finally, since m is an integer, this implies m ≥ blogW c. J

I Theorem 5. Let ε ≤ 1
4 . Any deterministic algorithm that provides a Wε-additive approx-

imation for the Basic-Counting problem requires at least
⌊
max

{
logW, 1

2ε+W−1

}⌋
bits.

Proof. Immediate from lemmas 3 and 4. J

Finally, we extend our lower bounds to randomized algorithms.

SWAT 2016

11:6 Efficient Summing over Sliding Windows

I Theorem 6. Let ε ≤ 1
4 . Any randomized Las Vegas algorithm that provides a Wε-additive

approximation for the Basic-Counting problem requires at least
⌊
max

{
logW, 1

2ε+W−1

}⌋
bits. Further, for any fixed δ ∈ (0, 1/2), any Monte Carlo algorithm that with probability at
least 1 − δ approximates Basic-Counting within Wε error at any time instant, requires
Ω(1

ε + logW) bits.

Proof. We say that algorithm A is ε-correct on a input instance S if it is able to approximate
the number of 1’s in the last W bits, at every time instant while reading S, to within an
additive error of Wε.

We remind the reader that in our case, a Las Vegas (LV) algorithm for the Basic-
Counting approximation problem is a randomized algorithm which is always ε-correct.
In contrast, a Monte Carlo (MC) algorithm is a randomized procedure that is allowed to
provide approximation with error larger than Wε, with probability at most δ.

The Yao Minimax principle [23] implies that the amount of memory required for a
deterministic algorithm to approximate a random input chosen according to a distribution p
is a lower bound on the expected space consumption of a Las Vegas algorithm for the worst
input. To prove a

⌊
1

2ε+W−1

⌋
lower bound, we consider padding the language LW,ε which is

defined in Lemma 3. Specifically, we define p as the uniform distribution over all inputs in
the language

LLV = LW,ε ·
{

0W
}
.

That is, the input consist of all bit sequences in LW,ε, followed by a sequence of W zeros.
The trailing 0’s are used to force the algorithm to reach distinct configurations after reading
the first W input bits. As implied by the lemma, any deterministic algorithm which is always
correct for a random instance requires at least

⌊
1

2ε+W−1

⌋
bits, as it has to arrive to a distinct

state for each input s ∈ LW,ε. The argument for a lower bound of blogW c bits is similar.
Next, we use the Minimax principle analogue for Monte Carlo algorithms [23], which

states that for any input distribution p and δ ∈ [0, 1/2], any randomized algorithm that is
always (for any input) ε-correct with probability at least 1− δ uses in expectation at least
half as much memory as the optimal deterministic algorithm that errs (i.e., is not ε-correct)
with probability at most 2δ on a random instance drawn according to p. Once again, we
consider p to be the uniform distribution over

LMC = LW,ε ·
{

0W
}
.

Since the distribution is uniform, any deterministic algorithm, which is ε-correct with
probability at least 1− 2δ on a random instance drawn according to p, is actually ε-correct
on 1− 2δ fraction of the inputs. Similar to the LV case, the argument in Lemma 3 implies
that the algorithm must reach a distinct configuration after reading the first W bits of each
of the (1 − 2δ) · |LMC | inputs it is ε-correct on. Consequently, the algorithm must use at
least log ((1− 2δ) · |LMC |) bits of memory. Applying the Minimax principle, the derived
lower bound BMC for any MC algorithm is:

BMC ≥
1
2 log ((1− 2δ) · |LMC |) ≥

1
2

⌊
1

2ε+W−1

⌋
+ 1

2 log (1− 2δ) = Ω
(

1
ε

)
Once again, the case for a Ω(logW) lower bound is based on Lemma 4 and follows from
similar arguments. J

R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner 11:7

3.2 Upper Bound
We now present an algorithm for Basic-Counting that provides a Wε-additive approx-
imation ĈW for CW over a binary stream with near-optimal memory. Denote k , 1

2ε . For
simplicity, we assume that W

k and k are integers. Intuitively, our algorithm partitions the
stream into k blocks of size W

k , representing each using a single bit. A set bit corresponds to
a count of Wk in the input stream, while a clear bit corresponds to a count of 0. We then
use an “optimistic” approach to reduce the error – the number of ones in the input stream
not counted using the bit array is propagated to the next block; this means a block might
be represented with 1, even if it contains only a single set bit. Surprisingly, we show that
this approach allows us to keep the error bounded and that the errors do not accumulate.
We keep a counter y for the number of 1s. At the end of a block, if y is larger than W

k , we
mark the current block and subtract W

k from y, propagating the remainder to the next block.
Our algorithm answers queries by multiplying the number of marked blocks in the current
window by W

k , making corrections to reduce the error. We maintain the following variables:
y – a counter for the number of ones.
b – a bit-array of size k.
i – the index of the “oldest” block in b.
B – the sum of all bits in b.
m – a counter for the current offset within the block.
Every arriving bit is handled as follows: We increment m, and if the bit is set we also
increment y. At the end of a block, we check if y exceeds W

k . If so, we subtract W
k from y

and set the bit bi. This way, the reduction in y is compensated for by the newly set bit in b.
The previous value of bi, holding information about 1s that just left the window, is forgotten.

To answer a query the algorithm returns the number of set bits in b multiplied by the
block size W

k . We then add the value of y, which represents the number of ones not yet
recorded in b, and subtract m · bi, as m bits of the oldest recorded block have already left the
window. Finally, we remove any bias from the estimation by subtracting W

2k (half a block).
In order to answer queries without iterating over b, we maintain another variable B,

which keeps track of the number of ones in b. The entire pseudo-code is given in Algorithm 1.
I Theorem 7. Algorithm 1 provides a Wε-additive approximation of Basic-Counting.
Proof. First, let us introduce some notations used in the proof. Assume that the index of
the last bit is W +m, where xW is the last bit of a block and m < W

k . bi is considered after
W +m bits have been processed. We denote yj the value of y after adding bit j.

The setting for the proof is given in Figure 1. We aim to approximate

CW ,
W+m∑
j=m+1

xj . (1)

Our algorithm uses the following approximation:

ĈW = W

k
·B + yW+m −

W

2k −m · bi = W

k
·B + yW +

W+m∑
j=W+1

xj −
W

2k −m · bi. (2)

At times 1, 2, . . . ,W , y is incremented once for every set bit in the input stream. At the end
of block j, if y is reduced by W

k , then bj is set and will not be cleared before time W +m.
Therefore, Wk ·B + yW = y0 +

∑W
j=1 xj . Substituting

W
k ·B + yW in (2), we get

ĈW = y0 +
W∑
j=1

xj +
W+m∑
j=W+1

xj −
W

2k −m · bi = y0 +
m∑
j=1

xj +
W+m∑
j=m+1

xj −
W

2k −m · bi.

SWAT 2016

11:8 Efficient Summing over Sliding Windows

Algorithm 1 Additive Approximation of Basic Counting
1: Initialization: y = 0, b = 0,m = 0, i = 0.
2: function add(Bit x)
3: if m = W

k − 1 then
4: B = B − bi
5: if y + x ≥ W

k then
6: bi = 1
7: y = y − W

k + x

8: else
9: bi = 0
10: y = y + x

11: B = B + bi
12: m = 0
13: i = i+ 1 mod k

14: else
15: y = y + x

16: m = m+ 1
17: function Query
18: return W

k ·B + y − W
2k −m · bi

Figure 1 The setting for the proof of Theorem 7. b is cyclic – bi represents the oldest block and
bi−1 the newest completed block.

Plugging the definition of CW , we get ĈW = y0 +
∑m
j=1 xj +CW − W

2k −m · bi. Therefore,
the error is

ĈW − CW = y0 +
m∑
j=1

xj −m · bi −
W

2k .

We consider two cases:
bi = 1 : This means that y had crossed the threshold by time W

k , i.e. y0 +
∑W

k
j=1 xj ≥ W

k

and equivalently y0 +
∑m
j=1 xj ≥

W
k −

∑W
k
j=m+1 xj . Thus, on one side

ĈW − CW = y0 +
m∑
j=1

xj −m−
W

2k ≥
W

k
−

W
k∑

j=m+1
xj −m−

W

2k

≥ W

k
−

 W
k∑

j=m+1
1

−m− W

2k ≥ −
W

2k = −Wε.

To bound the error from above we use the fact that the value of y at the end of a block
never exceeds W

k . This can be shown by induction, as y is incremented at most W
k

R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner 11:9

times during one block, and then reduced by W
k if it exceeds the block size. Therefore,

ĈW − CW = y0 +
∑m
j=1 xj −m−

W
2k ≤ y0 − W

2k ≤
W
k −

W
2k = Wε.

bi = 0: Similarly, this means that y was lower than the threshold at the end of block i, hence
y0 +

∑W
k
j=1 xj ≤ W

k − 1 or equivalently, y0 +
∑m
j=1 xj ≤

W
k −

∑W
k
j=m+1 xj − 1. Thus, our

error is bounded from below by ĈW −CW = y0 +
∑m
j=1 xj−

W
2k ≥ y0− W

2k ≥ −
W
2k = −Wε

and from above by

ĈW − CW = y0 +
m∑
j=1

xj −
W

2k ≤
W

k
−

W
k∑

j=m+1
xj −

W

2k − 1 ≤ W

2k − 1 = Wε− 1.

We have established that in all cases the absolute error is at most Wε as required. J

We next prove that the memory requirement of Algorithm 1 is nearly optimal.

I Theorem 8. Algorithm 1 requires 1
2ε + 2 logW +O(1) bits of memory.

Proof. We represent y using d2 + log(Wε)e bits, m using d1 + log(Wε)e bits and b using
k bits. Additionally, i requires dlog ke bits, and B another dlog(k + 1)e bits. Overall, the
number of bits required is k + d2 + log(Wε)e+ d1 + log(Wε)e+ dlog ke+ dlog(k + 1)e
≤ k + 2 log(Wε)− 2 log(2ε) + 8 = 1

2ε + 2 log(W) + 6 = 1
2ε + 2 logW +O(1). J

Theorem 5 shows that our algorithm uses at most twice as much memory as required
by the lower bound (up to a constant number of bits) for every constant ε ≤ 1

4 . When ε is
not constant, our memory requirement is at most 3 times the lower bound, as shown in the
following lemma.

I Corollary 9. For any ε ≤ 1
4 , the ratio between the memory consumption of Algorithm 1

and the lower bound for additive approximations for Basic-Counting is
1
2ε + 2 logW +O(1)

max
{

logW, 1
2ε+W−1

} = 3 + o(1).

Since the proof is very technical, and due to lack of space, it is left for the full version [4].

4 Basic-Summing Problem

We now consider an extension of Basic-Counting where elements are non-negative integers:

I Definition 10 (Basic-Summing). Given a stream of elements comprising of integers in
the range [R+ 1] = {0, 1, . . . , R}, maintain the sum S of the last W elements.

4.1 Lower Bound
We now show that approximating Basic-Summing to within an additive error of RWε

requires Ω(1
ε + logW) bits for ε ≥ 1

2W and Ω(W log
(1
Wε

)
) bits for ε ≤ 1

2W .

I Lemma 11. For any ε ≤ 1
4 , approximating Basic-Summing to within an additive error

of RWε requires
⌊
max

{
logW, 1

2ε+W−1

}⌋
memory bits.

Proof. The proof of the lemma is very similar to the proof of Theorem 5 and is obtained by
replacing every set bit with the integer R in Lemma 3 and Lemma 4. J

SWAT 2016

11:10 Efficient Summing over Sliding Windows

Next, we show a lower bound for smaller values of ε.

I Lemma 12. For any ε, approximating Basic-Summing to within an additive error of
RWε requires at least W log

⌊ 1
4Wε + 1

⌋
memory bits.

Proof. Denote x , b2RWε+ 1c and C ,
{
n · x | n ∈

{
0, 1, . . . ,

⌊
1

2Wε+R−1

⌋}}
. Let L be

the language of all W length strings over the number in C, i.e.,

LR,W,ε = {σ0σ1 · · ·σW−1|∀j ∈ [W] : σj ∈ C} .

We show that every two distinct sequences in L must lead the algorithm into distinct
configurations implying a lower bound of

dlog |L|e ≥W log |C| = W log
⌊

1
2Wε+R−1 + 1

⌋
≥W log

⌊
1

4Wε
+ 1
⌋

bits, where the last inequality follows from the fact that any ε < 1
2RW implies exact summing.

Assume, by way of contradiction, that two different words

s1 = σ1
0σ

1
1 · · ·σ1

W−1, s
2 = σ2

0σ
2
1 · · ·σ2

W−1 ∈ L

lead the algorithm to the same configuration. Denote the index of the last letter that differs
between s1 and s2 by t , max{τ | σ1

τ 6= σ2
τ}. Next, consider the sequences s1 · 0t−1 and

s2 · 0t−1. The algorithm must reach the same configuration after processing these sequences,
even though the sum of the last W elements differ by at least x = b2RWε+ 1c > 2RWε.
Therefore, the algorithm’s error must be greater than RWε at least for one of the sequences,
in contradiction to the assumption. J

I Theorem 13. Approximating Basic-Summing to within an additive error of RWε requires
Ω(1

ε + logW) bits for 1
2W ≤ ε ≤

1
4 and Ω(W log

(1
Wε

)
) bits for ε ≤ 1

2W .

Proof. Lemma 11 shows that approximating Basic-Summing within RWε requires

max
{

logW, 1
2ε+W−1

}
bits for 1

2W ≤ ε ≤ 1
4 . The same argument used in Lemma 9 shows that this implies

Ω
(1
ε + logW

)
bits lower bound for any ε ≥ 1

2W . For ε < 1
2W such that ε = Θ(W−1), ap-

proximating Basic-Summing within RWε implies a R
2 -additive approximation and therefore

the Ω
(1
ε + logW

)
bound holds. For ε = o

(1
W

)
, we use Lemma 12, which implies a lower

bound of W log
⌊ 1

4Wε + 1
⌋

= Ω
(
W log

(1
Wε

))
memory bits. J

An immediate corollary of Theorem 13 is that any exact algorithm for Basic-Summing
requires at least Ω(W logR) bits, i.e., the naive solution of maintaining a W -sized array of
the elements in the window, encoding each using dlog (R+ 1)e bits, is optimal (for exact
Basic-Summing). Finally, we extend the results to randomized algorithms, where the proof
is left for the full version [4] due to lack of space.

I Theorem 14. For any fixed δ ∈ [0, 1/2), any randomized Monte Carlo algorithm that
gives a Wε approximation to Basic-Summing with a probability of at least 1− δ requires
Ω(1

ε + logW) bits for 1
2W ≤ ε ≤

1
4 and Ω(W log

(1
Wε

)
) bits for ε ≤ 1

2W . Notice that the δ = 0
case applies to Las Vegas algorithms.

R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner 11:11

4.2 Upper Bound
We show that our Basic-Counting algorithm can be adapted to this problem with only a
small memory overhead such that the algorithm’s state size remains independent of R. We
first present the extension of the algorithm for the ε−1 ≤ 2W

(
1− 1

logW

)
case. In Section 4.3

we complete the picture by giving an alternative algorithm for smaller values of ε. Intuitively,
we “scale” the algorithm by dividing each added element by R and rounding the result. In
order to keep the sum of elements not yet accounted for in b, y is now maintained as a
fixed-point variable rather than an integer. Ideally, the fractional value of the remainder y
should allow exact representation of {0, 1/R, . . . , 1− 1/R}, and therefore requires logR bits.
When the range R is “large”, or more precisely R = ω(ε−1), we save space by storing the
fractional value of y using less than logR bits, which inflicts a rounding error. That is, we
keep y using

⌈
log
(
2Wk

)⌉
+ υ bits. Similarly to our Basic-Counting algorithm,

⌈
log
(
2Wk

)⌉
bits are used to store the integral part of y. The additional υ bits are used for the fractional
value of y. The value of υ is determined later.

In order to keep the total error bounded, we compensate for the rounding error by using
smaller block sizes, which are derived from the number of blocks k, determined in (3). Our
algorithm keeps the following variables:
b – a bit-array of size k.
y – a counter for the sum of elements which is not yet accounted for in b.
i – the index of the “oldest” block in b.
B – the sum of all bits in b.
m – a counter for the current offset within the block.
Our Basic-Summing algorithm is presented in Algorithm 2. We use Roundυ(z) for some
z ∈ [0, 1] to denote rounding of z to the nearest value z̃ such that 2υ z̃ is an integer.

Algorithm 2 Additive Approximation for Basic-Summing
1: Initialization: y = 0, b = 0, B = 0, i = 0,m = 0.
2: function Add(element x)
3: x′ = Roundυ(xR)
4: if m = W

k − 1 then
5: B = B − bi
6: if y + x′ ≥ W

k then
7: bi = 1
8: y = y − W

k + x′

9: else
10: bi = 0
11: y = y + x′

12: B = B + bi
13: m = 0
14: i = i+ 1 mod k

15: else
16: y = y + x′

17: m = m+ 1
18: function Query()
19: return R ·

(
W
k ·B + y − W

2k −m · bi
)

SWAT 2016

11:12 Efficient Summing over Sliding Windows

Algorithm 3 Additive Approximation for Basic-Summing with Small Error
1: Initialization: y = 0, b = 0, B = 0, i = 0.
2: function Add(element x)
3: x′ = Roundυ(xR)
4: B = B − bi
5: bi =

⌊
y+x′
W/k

⌋
6: y = y + x′ − bi · Wk
7: B = B + bi
8: i = i+ 1 mod W

9: function Query()
10: return R ·

(
W
k ·B + y − W

2k
)

I Theorem 15. For any ε−1 ≤ 2W
(

1− 1
logW

)
, Algorithm 2 provides an RWε-additive

approximation for Basic-Summing.

Theorem 15 shows that for any ε−1 ≤ 2W
(

1− 1
logW

)
, by choosing υ ,

⌈
log
(
ε−1 logW

)⌉
and the number of blocks to be

k ,

⌈
1

2ε− 2−υ

⌉
, (3)

our algorithm estimates S with an additive error of RWε. Due to lack of space, the proof of
Theorem 15 can be found in the full version [4]. The following theorem analyzes the memory
requirements of our algorithm.

I Theorem 16. For any ε−1 ≤ 2W
(

1− 1
logW

)
, Algorithm 2 requires

(
2 logW + 1

2ε
)

(1+o(1))
memory bits.

The proof is similar to the proof of Theorem 8 and therefore appears in the full version [4].

4.3 Summing with Small Error

Algorithm 2 only works for ε−1 ≤ 2W
(

1− 1
logW

)
that satisfies W

k ≥ 1; otherwise, k cannot
represent the number of blocks, as blocks cannot be empty. To complete the picture, we
present Algorithm 3 that works for smaller errors. Intuitively, we keep an array b of size W ,
such that every cell represents the number of integer multiples of RWk in an arriving item.
Similarly to the above algorithms, we reduce the error by tracking the remainder in a variable
y, propagating uncounted fractions to the following item. In this case as well, the optimistic
approach reduces the error compared with keeping a W -sized array of rounded values for
approximating the sum. Each cell in b needs to represent a value in

{
0, 1, . . . ,

⌊
1 + k

W

⌋}
; the

remainder y is now a fractional number, represented using υ bits. When a new item is added,
we scale it, add the result to y, and update both bi and the remainder.

I Theorem 17. Algorithm 3 provides an RWε-additive approximation for Basic-Summing.

The proof appears in the full version [4]. It considers the rounding error generated by
representing x′ using υ bits, and shows that the remainder propagation (Line 6) limits error
accumulation.

I Theorem 18. For any ε−1 > 2W
(

1− 1
logW

)
= 2W (1 − o(1)), Algorithm 3 requires

W log
(1

2Wε + 1
)
· (1 + o(1)) ≤ 1

2ε · (1 + o(1)) memory bits.

The proof is similar to the proof of Theorem 8 and therefore appears in the full version [4].

R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner 11:13

We conclude the section by showing that our algorithm is succinct, requiring only (1+o(1))
times as much memory as the lower bound proved in Theorem 13.

I Theorem 19. Let ε = o(W−1), and denote B , W log
⌊ 1

4Wε + 1
⌋
. Algorithm 3 provides

RWε additive approximation to Basic-Summing using B · (1 + o(1)) memory bits.

Proof. Theorem 18 shows that the number of bits our algorithm requires for ε = o(W−1) is
W log

(1
2Wε + 1

)
· (1 + o(1)) ≤ B(1 + 2W

B) · (1 + o(1)) = B · (1 + o(1)). J

5 Discussion

In this paper, we have investigated additive approximations for the Basic-Counting and
Basic-Summing problems. For both cases, we have provided space efficient algorithms.
Further, we have proved the first lower bound for additive approximations for the Basic-
Counting problem, and showed that our algorithm achieves this bound, and is hence
optimal. In the case of Basic-Summing, whenever ε−1 ≤ 2W

(
1− 1

logW

)
, the same lower

bound as in the Basic-Counting problems still holds and so our approximation algorithm
for this domain is optimal up to a small factor. For other values of ε, we have shown an
improved lower bound and a corresponding succinct approximation algorithm.

In the future, we would like to study lower and upper bounds for additive approximations
for several related problems. These include, e.g., approximating the sliding window sum of
weights for each item in a stream of (item, weight) tuples. Further, we intend to explore
applying additive approximations in the case of multiple streams. Obviously, one can allocate
a separate counter for each stream, thereby multiplying the space complexity by the number
of concurrent streams. However, it was shown in [13] that for the case of multiplicative
approximations, there is a more space efficient solution. We hope to show a similar result for
additive approximations.

Acknowledgments. We thank Dror Rawitz for helpful comments. This work was partially
funded by MOST grant #3-10886 and the Technion-HPI research school.

References
1 Michael H Albert, Alexander Golynski, Angèle M Hamel, Alejandro López-Ortiz,

S Srinivasa Rao, and Mohammad Ali Safari. Longest increasing subsequences in sliding
windows. Theoretical Computer Science, 321(2):405–414, 2004.

2 Arvind Arasu and Gurmeet Singh Manku. Approximate counts and quantiles over sliding
windows. In Proc. of the 23rd ACM SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems, PODS 2004. Association for Computing Machinery, Inc., June 2004.

3 Brian Babcock, Mayur Datar, Rajeev Motwani, and Liadan O’Callaghan. Maintaining
variance and k-medians over data stream windows. In Frank Neven, Catriel Beeri, and
Tova Milo, editors, Proceedings of the Twenty-Second ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, June 9-12, 2003, San Diego, CA, USA,
pages 234–243. ACM, 2003.

4 Ran Ben Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Efficient summing
over sliding windows. CoRR, abs/1604.02450, 2016. URL: http://arxiv.org/abs/1604.
02450.

5 Ran Ben Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Heavy hitters in streams
and sliding windows. In INFOCOM, 2016 Proceedings IEEE, pages 307–315, April 2016.

6 Vladimir Braverman, Ran Gelles, and Rafail Ostrovsky. How to catch l2-heavy-hitters on
sliding windows. Theoretical Computer Science, 554:82–94, 2014.

SWAT 2016

http://arxiv.org/abs/1604.02450
http://arxiv.org/abs/1604.02450

11:14 Efficient Summing over Sliding Windows

7 Vladimir Braverman and Rafail Ostrovsky. Smooth histograms for sliding windows. In
Foundations of Computer Science, 2007. FOCS’07. 48th Annual IEEE Symposium on,
pages 283–293. IEEE, 2007.

8 Edith Cohen and Martin J. Strauss. Maintaining time-decaying stream aggregates. J.
Algorithms, 59(1):19–36, 2006.

9 Graham Cormode and Ke Yi. Tracking distributed aggregates over time-based sliding
windows. In Scientific and Statistical Database Management, pages 416–430. Springer,
2012.

10 Michael Crouch and Daniel S. Stubbs. Improved streaming algorithms for weighted match-
ing, via unweighted matching. In Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, APPROX/RANDOM 2014, September 4-6, 2014,
Barcelona, Spain, pages 96–104, 2014. doi:10.4230/LIPIcs.APPROX-RANDOM.2014.96.

11 Michael S Crouch, Andrew McGregor, and Daniel Stubbs. Dynamic graphs in the sliding-
window model. In Algorithms–ESA 2013, pages 337–348. Springer, 2013.

12 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream
statistics over sliding windows. SIAM J. Comput., 31(6):1794–1813, 2002.

13 Phillip B. Gibbons and Srikanta Tirthapura. Distributed streams algorithms for sliding
windows. In SPAA, pages 63–72, 2002.

14 RegantY.S. Hung and H.F. Ting. Finding heavy hitters over the sliding window of a
weighted data stream. In E. Laber, C. Bornstein, L. Nogueira, and L. Faria, editors,
LATIN 2008: Theoretical Informatics, volume 4957 of LNCS, pages 699–710. Springer,
2008. doi:10.1007/978-3-540-78773-0_60.

15 Lap-Kei Lee and H. F. Ting. Maintaining significant stream statistics over sliding windows.
In Proceedings of the Seventeenth Annual Symposium on Discrete Algorithms, SODA, pages
724–732. ACM Press, 2006.

16 Lap-Kei Lee and HF Ting. A simpler and more efficient deterministic scheme for finding fre-
quent items over sliding windows. In Proc. of the SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 290–297. ACM, 2006.

17 Yang Liu, Wenji Chen, and Yong Guan. Near-optimal approximate membership query over
time-decaying windows. In INFOCOM, Proceedings IEEE, pages 1447–1455, April 2013.

18 Kyriakos Mouratidis, Spiridon Bakiras, and Dimitris Papadias. Continuous monitoring of
top-k queries over sliding windows. In Proc. of the International Conference on Management
of Data, SIGMOD, pages 635–646, New York, NY, USA, 2006. ACM.

19 Moni Naor and Eylon Yogev. Sliding bloom filters. In Leizhen Cai, Siu-Wing Cheng,
and Tak-Wah Lam, editors, Algorithms and Computation, volume 8283 of Lecture Notes
in Computer Science, pages 513–523. Springer Berlin Heidelberg, 2013. doi:10.1007/
978-3-642-45030-3_48.

20 Krešimir Pripužić, Ivana Podnar Žarko, and Karl Aberer. Time- and space-efficient sliding
window top-k query processing. ACM Trans. Database Syst., 40(1):1:1–1:44, March 2015.

21 Hong Shen and Yu Zhang. Improved approximate detection of duplicates for data streams
over sliding windows. Journal of Computer Science and Technology, 23(6):973–987, 2008.

22 Zhitao Shen, M.A. Cheema, Xuemin Lin, Wenjie Zhang, and Haixun Wang. Efficiently
monitoring top-k pairs over sliding windows. In Data Engineering (ICDE), 2012 IEEE
28th International Conference on, pages 798–809, April 2012.

23 Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity.
In 18th Annual Symp. on Foundations of Computer Science, pages 222–227. IEEE, 1977.

24 Wenjie Zhang, Ying Zhang, Muhammad Aamir Cheema, and Xuemin Lin. Counting dis-
tinct objects over sliding windows. In Proceedings of the Twenty-First Australasian Con-
ference on Database Technologies – Volume 104, ADC’10, pages 75–84, Darlinghurst, Aus-
tralia, Australia, 2010. Australian Computer Society, Inc.

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96
http://dx.doi.org/10.1007/978-3-540-78773-0_60
http://dx.doi.org/10.1007/978-3-642-45030-3_48
http://dx.doi.org/10.1007/978-3-642-45030-3_48

Lower Bounds for Approximation Schemes for
Closest String∗

Marek Cygan1, Daniel Lokshtanov2, Marcin Pilipczuk3,
Michał Pilipczuk4, and Saket Saurabh5

1 Institute of Informatics, University of Warsaw, Warsaw, Poland
cygan@mimuw.edu.pl

2 Department of Informatics, University of Bergen, Bergen, Norway
daniello@ii.uib.no

3 Institute of Informatics, University of Warsaw, Warsaw, Poland
malcin@mimuw.edu.pl

4 Institute of Informatics, University of Warsaw, Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

5 Department of Informatics, University of Bergen, Bergen, Norway; and
Institute of Mathematical Sciences, Chennai, India
saket.saurabh@ii.uib.no, saket@imsc.res.in

Abstract
In the Closest String problem one is given a family S of equal-length strings over some fixed
alphabet, and the task is to find a string y that minimizes the maximum Hamming distance
between y and a string from S. While polynomial-time approximation schemes (PTASes) for
this problem are known for a long time [Li et al.; J. ACM’02], no efficient polynomial-time
approximation scheme (EPTAS) has been proposed so far. In this paper, we prove that the
existence of an EPTAS for Closest String is in fact unlikely, as it would imply that FPT =
W[1], a highly unexpected collapse in the hierarchy of parameterized complexity classes. Our
proof also shows that the existence of a PTAS for Closest String with running time f(ε)·no(1/ε),
for any computable function f , would contradict the Exponential Time Hypothesis.

1998 ACM Subject Classification F.2.2 Nonnumerical algorithms and problems

Keywords and phrases closest string, PTAS, efficient PTAS

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.12

1 Introduction

Closest String and Closest Substring are two computational problems motivated by
questions in molecular biology connected to identifying functionally similar regions of DNA
or RNA sequences, as well as by applications in coding theory. In Closest String we
are given a family S of strings over some fixed alphabet Σ, each of length L. The task is
to find one string y ∈ ΣL for which maxx∈S H(x, y) is minimum possible, where H(x, y) is

∗ M. Cygan and Ma. Pilipczuk have been supported by Polish National Science Centre grant DEC-
2012/05/D/ST6/03214. Mi. Pilipczuk has been supported by Polish National Science Centre grant DEC-
2013/11/D/ST6/03073 and by the Foundation for Polish Science via the START stipend programme.
During the work on these results, Mi. Pilipczuk held a post-doc position at Warsaw Center of Mathematics
and Computer Science. D. Lokshtanov is supported by the BeHard grant under the recruitment
programme of the of Bergen Research Foundation. S. Saurabh is supported by PARAPPROX, ERC
starting grant no. 306992.

© Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 12; pp. 12:1–12:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Lower Bounds for Approximation Schemes for Closest String

the Hamming distance between x and y, that is, the number of positions on which x and y
have different letters. We will consider both the optimization variant of the problem where
the said distance is to be minimized, and the decision variant where an upper bound d is
given on the input, and the algorithm needs to decide whether there exists a string y with
maxx∈S H(x, y) ≤ d. Closest Substring is a more general problem where the strings from
the input family S all have length m ≥ L, and we look for a string y ∈ ΣL that minimizes
maxx∈S minx′ substring of xH(x′, y). In other words, we look for y that can be fit as close as
possible to a substring of length L of each of the input strings from S.

Both Closest String and Closest Substring, as well as numerous variations on
these problems, have been studied extensively from the point of view of approximation
algorithms. Most importantly for us, for both of these problems there are classic results
providing polynomial-time approximation schemes (PTASes): for every ε > 0, it is possible
to approximate in polynomial time the optimum distance within a multiplicative factor of
(1 + ε). The first PTASes for these problems were given by Li et al. [9], and they had running
time bounded by nO(1/ε4). This was later improved by Andoni et al. [1] to nO(log 1/ε

ε2), and
then by Ma and Sun [11] to nO(1/ε2), which constitutes the current frontier of knowledge.
We refer to the works [3, 8, 7, 9, 11, 12] for a broad introduction to biological applications
of Closest String, Closest Substring, and related problems, as well as pointers to
relevant literature.

One of the immediate questions stemming from the works of Li et al. [9], Andoni et
al. [1], and Ma and Sun [11], is whether either for Closest String or Closest Substring
one can also give an efficient polynomial-time approximation scheme (EPTAS), i.e., an
approximation scheme that for every ε > 0 gives a (1 + ε)-approximation algorithm with
running time f(ε) · nO(1), for some computable function f . In other words, the degree of
the polynomial should be independent of ε, whereas the exponential blow-up (inevitable due
to NP-completeness) should happen only in the multiplicative constant standing in front of
the running time. EPTASes are desirable from the point of view of applications, since they
provide approximation algorithms that can be useful in practice already for relatively small
values of ε, whereas running times of general PTASes are usually prohibitive.

For the more general Closest Substring problem, this question was answered negatively
by Marx [12] using the techniques from parameterized complexity. More precisely, Marx
considered various parameterizations of Closest Substring, and showed that when param-
eterized by d and |S|, the problem remains W[1]-hard even for the binary alphabet. This
means that the existence of a fixed-parameter algorithm with running time f(d, |S|) · nO(1),
where n is the total size of the input, would imply that FPT = W[1], a highly unexpected
collapse in the parameterized complexity. This result shows that, under FPT 6= W[1], also an
EPTAS for Closest Substring can be excluded. Indeed, if such an EPTAS existed, then by
setting any ε < 1

d one could in time f(d) · nO(1) distinguish instances with optimum distance
value d from the ones with optimum distance value d+ 1, thus solving the decision variant in
fixed-parameter tractable (FPT) time. Using more precise results about the parameterized
hardness of the Clique problem, Marx [12] showed that, under the assumption of Expo-
nential Time Hypothesis (ETH), which states that 3-SAT cannot be solved in time O(2δn)
for some δ > 0, one even cannot expect PTASes for Closest Substring with running
time f(ε) · no(log(1/ε)) for any computable function f . We refer to a survey of Marx [13] for
more examples of links between parameterized complexity and the design of approximation
schemes.

The methodology used by Marx [12], which is the classic connection between parameterized
complexity and EPTASes that dates back to the work of Bazgan [2] and of Cesati and

M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh 12:3

Trevisan [4], completely breaks down when applied to Closest String. This is because
this problem actually does admit an FPT algorithm when parameterized by d. An algorithm
with running time dd · nO(1) was proposed by Gramm et al. [7]. Later, Ma and Sun [11] gave
an algorithm with running time 2O(d) · |Σ|d · nO(1), which is more efficient for constant-size
alphabets. Both the algorithms of Gramm et al. and of Ma and Sun are known to be
essentially optimal under ETH [10], and nowadays they constitute textbook examples of
advanced branching techniques in parameterized complexity [5]. Therefore, in order to settle
the question about the existence of an EPTAS for Closest String, one should look for a
substantial refinement of the currently known techniques.

An approach for overcoming this issue was recently used by Boucher et al. [3], who attribute
the original idea to Marx [13]. Boucher et al. considered a problem called Consensus
Patterns, which is a variation of Closest Substring where the goal function is the total
sum of Hamming distances between the center string and best-fitting substrings of the input
strings, instead of the maximum among these distances. The problem admits a PTAS due to
Li et al. [8], and was shown by Marx [12] to be fixed-parameter tractable when parameterized
by the target distance d. Despite the latter result, Boucher et al. [3] managed to prove that
the existence of an EPTAS for Consensus Patterns would imply that FPT = W[1]. The
main idea is to provide a reduction from a W[1]-hard problem, such as Clique, where the
output target distance d is not bounded by a function of the input parameter k (indeed,
the existence of such a reduction would prove that FPT = W[1]), but the multiplicative
gap between the optimum distances yielded for yes- and no-instances is 1 + 1

g(k) , for some
computable function g. Even though the output parameter is unbounded in terms of k, an
EPTAS for the problem could be still used to distinguish between output instances obtained
from yes- and no-instances of Clique in FPT time, thus proving that FPT = W[1].

Our contribution

In this paper we provide a negative answer to the question about the existence of an EPTAS
for Closest String by proving the following theorem.

I Theorem 1.1. The following assertions hold:
Unless FPT = W[1], there is no EPTAS for Closest String over binary alphabet.
Unless ETH fails, there is no PTAS for Closest String over binary alphabet with
running time f(ε) · no(1/ε), for any computable function f .

Thus, one should not expect an EPTAS for Closest String, whereas for PTASes there
is still a room for improvement between the running time of nO(1/ε2) given by Ma and
Sun [11] and the lower bound of Theorem 1.1. It is worth noting that our f(ε) · no(1/ε) time
lower bound for (1 + ε)-approximating Closest String also holds for the more general
Closest Substring problem. This yields a significantly stronger lower bound than the
previous f(ε) · no(log(1/ε)) lower bound of Marx [12].

Our proof of Theorem 1.1 follows the methodology proposed Marx [13] and used by
Boucher et al. [3] for Consensus Patterns. The following theorem, which is the main
technical contribution of this work, states formally the properties of our reduction.

I Theorem 1.2. There is an integer c and an algorithm that, given an instance (G, k) of
Clique, works in time 2k · nO(1) and outputs an instance (S, L, d) of Closest String over
alphabet {0, 1} with the following properties:

If G contains a clique on k vertices, then there is a string w ∈ {0, 1}L such that
H(w, x) ≤ d for each x ∈ S.

SWAT 2016

12:4 Lower Bounds for Approximation Schemes for Closest String

If G does not contain a clique on k vertices, then for each string w ∈ {0, 1}L there is
x ∈ S such that H(w, x) > (1 + 1

ck) · d.

The statement of Theorem 1.2 is similar to the core of the hardness proof of Boucher
et al. [3]. However, our reduction is completely different from the reduction of Boucher et
al., because the causes of the computational hardness of Closest String and Consensus
Patterns are quite orthogonal to each other. In Consensus Patterns the difficulty lies
in picking the right substrings of the input strings. Once these substrings are known the
center string is easily computed in polynomial time, since we are minimizing the sum of the
Hamming distances. In Closest String there are no substrings to pick, we just have to
find a center string for the given input strings. This is a computationally hard task because
we are minimizing the maximum of the Hamming distances to the center, rather than the
sum.

Theorem 1.1 follows immediately by combining Theorem 1.2 with the known parameterized
hardness results for Clique, gathered in the following theorem, and setting ε = 1

ck .

I Theorem 1.3 (cf. Theorem 13.25 and Corollary 14.23 of [5]). The following assertions hold:
Unless FPT = W[1], Clique cannot be solved in time f(k) · nO(1) for any computable
function f .
Unless ETH fails, Clique cannot be solved in time f(k) · no(k) for any computable
function f .

The main idea of the proof of Theorem 1.2 is to encode the n vertices of the given graph
G as an “almost orthogonal” family T of strings from {0, 1}`, for some ` = O(logn). Strings
from T are used as identifiers of vertices of G, and the fact that they are almost orthogonal
means that the identifiers of two distinct vertices of G differ on approximately `/2 positions.
On the other hand ` = O(logn), so the whole space of strings into which V (G) is embedded
has size polynomial in n. Using these properties, the reduction promised in Theorem 1.2 is
designed by a careful construction.

Notation

By log p we denote the base-2 logarithm of p. For a positive integer n, we denote [n] =
{1, 2, . . . , n}. The length of a string x is denoted by |x|. For an alphabet Σ and two
equal-length strings x, y over Σ, the Hamming distance between x and y, denoted H(x, y),
is the number of positions on which x and y have different letters. If Σ = {0, 1} is the
binary alphabet, then the Hamming weight of a string x over Σ, denoted H(x), is the
number of 1s in it. The complement of a string x over a binary alphabet, denoted x, is
obtained from x by replacing all 0s with 1s and vice versa. Note that if |x| = |y| = n, then
H(x, y) = n−H(x, y) = n−H(x, y) = H(x, y).

2 Selection gadget

For the rest of this paper, we fix the following constants: ρ = 1/100, α = 1/10, β = 1/20.
Instead of giving a set of constraints for ρ, α, and β which are satisfied by a range or
assignments we decided to use this particular numerical examples to make the proof easier
to follow.

In the proof we will set ` = C · dlogne for some large integer C divisible by 100; this
will ensure that ρ`, α`, and β` are all integers. First, we prove that among binary strings
of logarithmic length one can find a linearly-sized family of “almost orthogonal” strings of

M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh 12:5

balanced Hamming weight, which will be later used in the reduction to represent vertices of
a Clique instance. The proof is by a simple greedy argument.

I Lemma 2.1. There exist positive integers C and N , where C is divisible by 100, with the
following property. Let n > N be any integer, and let us denote ` = C · dlogne. Then there
exists a set T ⊆ {0, 1}` with the following properties:
1. |T | = n,
2. H(x) = `/2 for each x ∈ T , and
3. (1/2− ρ)` < H(x, y) < (1/2 + ρ)` for each distinct x, y ∈ T .
Moreover, given n, T can be constructed in time polynomial in n.

Proof. Let H2(·) denote the binary entropy, i.e., H2(p) = −p log p − (1 − p) log(1 − p) for
p ∈ (0, 1). Since ` is some positive integer divisible by 100. Then it is well known that

k∑
i=0

(
`

i

)
≤ 2`·H2(k/`) (1)

for all integers k with 0 < k ≤ `/2; cf. [6, Lemma 16.19]. Let us denote

A =
(1/2−ρ)`∑
i=0

(
`

i

)
+

∑̀
i=(1/2+ρ)`

(
`

i

)
.

Then from (1) it follows that

A ≤ 2 · 2σ`,

where σ = H2(1/2− ρ) < 1.
Suppose now that ` = C · dlogne for some positive integers C and n > 1, where C is

divisible by 100. Then

n(`+ 1) ·A ≤ 2n · (Cdlogne+ 1) · 2σ·Cdlogne

≤ 2 · (2C + 1) · 2σC · n logn · 2σ·C logn

≤ (4C + 2) · 2σC · nσC+2.

Since σ < 1, we can choose C to be an integer divisible by 100 so that σC + 2 < C. Then,
we can choose N large enough so that

(4C + 2) · 2σC · nσC+2 ≤ nC

for all integers n > N . Hence,

nA ≤ nC

`+ 1 . (2)

We now verify that this choice of C,N satisfies the required properties.
Consider the following greedy procedure performed on {0, 1}`. Start with T = ∅ and all

strings of {0, 1}` marked as unused. In consecutive rounds perform the following:
1. Pick any x ∈ {0, 1}` with H(x) = `/2 that was not yet marked as used, and add x to T .
2. Mark every y ∈ {0, 1}` with H(x, y) ≤ (1/2− ρ)` or H(x, y) ≥ (1/2 + ρ)` as used.
It is clear that at each step of the procedure, the constructed family T satisfies properties (2)
and (3) from the lemma statement. Hence, it suffices to prove that the procedure can be
performed for at least n rounds.

SWAT 2016

12:6 Lower Bounds for Approximation Schemes for Closest String

Note that the number of strings marked as used at each round is at most A. On the other
hand, if D is the set of strings from {0, 1}` that have Hamming weight exactly `/2, then

|D| ≥ |{0, 1}
`|

`+ 1 = 2Cdlogne

`+ 1 ≥ nC

`+ 1 .

From (2) we infer that |D| ≥ nA. This means that the algorithm will be able to find an
unmarked x ∈ D for at least n rounds, and hence to construct the family T with |T | = n. It
is easy to implement the algorithm in polynomial time using the fact that the size of {0, 1}`
is polynomial in n. J

From now on, we adopt the constants C,N given by Lemma 2.1 to the notation. Let us
also fix n > N ; then let ` = C · dlogne and T be the set of strings given by Lemma 2.1, which
we shall call selection strings. We define the set of forbidden strings F = F(T) as follows:

F = {y : y ∈ {0, 1}` and H(x, y) ≤ (1− α)` for all x ∈ T }.

In other words, F comprises all the strings that are not almost diametrically opposite to
some string from T . The following lemma asserts the properties of T and F that we shall
need later on.

I Lemma 2.2. Suppose u ∈ {0, 1}`. Then the following assertions hold:
1. If u ∈ T , then H(u, y) ≤ (1− α)` for each y ∈ F .
2. If H(x, u) ≥ β` for all x ∈ T , then there exists y ∈ F such that H(u, y) ≥ (1− β)`.

Proof. Property (1) follows directly from the definition of F , so we proceed to the proof
of (2).

Suppose H(u, x) ≥ β` for all x ∈ T . If u ∈ F , then we could take y = u, so suppose that
u /∈ F . This means that there exists x0 ∈ T , for which H(x0, u) > (1 − α)`; equivalently,
H(x0, u) < α`. On the other hand, we have that H(x0, u) ≥ β`, so also H(x0, u) ≥ β`.
Construct y from u by taking any set of positions X of size β` on which u and x0 have
the same letters, and flipping the letters on these positions (replacing 0s with 1s and vice
versa). Such a set of positions always exists because α + β < 1. Then we have that
H(x0, y) = H(x0, u) + β`, which implies that

α` = β`+ β` ≤ H(x0, y) < (α+ β)`.

We claim that y ∈ F ; suppose otherwise. Since H(x0, y) ≥ α`, then also H(x0, y) ≤
(1− α)`. As y /∈ F , there must exist some x1 ∈ T , x0 6= x1, such that H(x1, y) > (1− α)`;
equivalently H(x1, y) < α`. Hence, from the triangle inequality we infer that

H(x0, x1) = H(x0, x1) ≤ H(x0, y) +H(y, x1) < (2α+ β)`.

This is a contradiction with the assumption that H(x0, x1) ≥ (1/2− ρ)`, which is implied by
x0, x1 ∈ T . Indeed, we have that 2α+ β = 1

4 <
49

100 = 1/2− ρ.
Hence y ∈ F . By definition we have that H(u, y) = β`, which implies that H(u, y) =

(1− β)`. Thus, y satisfies the required properties. J

3 Main construction

In this section we provide the proof of Theorem 1.2. Let (G, k) be the input instance of
Clique, let n = |V (G)|, and without loss of generality assume k ≤ n. Let C,N be the

M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh 12:7

constants given by Lemma 2.1. We can assume that n > N , because otherwise the instance
(G, k) can be solved in constant time. Let ` = Cdlogne. We run the polynomial-time
algorithm given by Lemma 2.1 that computes the set T ⊆ {0, 1}` of selection strings. Let
F = F(T) be the set of forbidden strings, as defined in Section 2. Note that F can be
computed in polynomial time directly from the definition, due to |{0, 1}`| = nO(1).

We now present the construction of the output instance (S, L, d) of Closest String.
Set L = k`+ γ`, where γ = ρ+ α = 11

100 , and partition the set [L] of positions in strings of
length L into k + 1 blocks:

k blocks Bi for i ∈ [k] of length ` each, where Bi = {(i− 1)`+ 1, (i− 1)`+ 2, . . . , i`};
special balancing block Γ of length γ`, where Γ = {k`+ 1, k`+ 2, . . . , L}.

For w ∈ {0, 1}L and a contiguous subset of positions X, by w[X] we denote the substring of
w formed by positions from X.

Let us first discuss the intuition. The choice the solution string makes on consecutive
blocks Bi will encode a selection of a k-tuple of vertices in G. Vertices of G will be mapped
one-to-one to strings from T . The family of constraint strings S will consist of two subfamilies
Ssel and Sadj with the following roles:

Strings from Ssel ensure that on each block Bi, the solution picks a substring that is close
to some element of T . The selection of this element encodes the choice of the ith vertex
from the k-tuple.
Strings from Sadj verify that vertices of the chosen k-tuple are pairwise different and
adjacent, and hence they form a clique.

A small technical caveat is that for strings from Ssel and from Sadj, the intended Hamming
distance from the solution string will be slightly different. The role of the balancing block Γ
is to equalize this distance by a simple additional construction.

We proceed to the formal description. Since |V (G)| = |T |, let ι : V (G) → T be an
arbitrary bijection.

The family Ssel consists of strings a(i, y, φ, z), for all i ∈ [k], y ∈ F , φ being a function
from [k] \ {i} to {0, 1}, and z being a binary string of length γ`. String a(i, y, φ, z) is
constructed as follows:

On block Bi put the string y.
For each j ∈ [k] \ {i}, on block Bj put a string consisting of ` zeroes if φ(j) = 0, and a
string consisting of ` ones if φ(j) = 1.
On balancing block Γ put the string z.

Thus, |Ssel| = k · |F| · 2k−1 · 2γ` ≤ 2k · nO(1); here and in some later estimates we use that
k ≤ n. Also, Ssel can be constructed in time 2k · nO(1) directly from the definition.

The family Sadj consists of strings b(i, j, (u, v), ψ), for all i, j ∈ [k] with i < j, (u, v) being
an ordered pair of vertices of G that are either equal or non-adjacent, and ψ being a function
from [k] \ {i, j} to {0, 1}. String b(i, j, (u, v), ψ) is constructed as follows:

On block Bi put the string ι(u).
On block Bj put the string ι(v).
On block Bq, for q ∈ [k] \ {i, j}, put a string consisting of ` zeroes if ψ(q) = 0, and a
string consisting of ` ones if ψ(q) = 1.
On balancing block Γ put a string consisting of γ` zeroes.

Thus, |Sadj| ≤
(
k
2
)
· n2 · 2k−2 ≤ 2k · nO(1). Again, Sadj can be constructed in time 2k · nO(1)

directly from the definition.
Set S = Ssel ∪ Sadj and d = (k/2 + 1/2 + ρ) · `. This concludes the construction. Its

correctness will be verified in two lemmas that mirror the properties listed in Theorem 1.2.

SWAT 2016

12:8 Lower Bounds for Approximation Schemes for Closest String

I Lemma 3.1. If G contains a clique on k vertices, then there exists a string w ∈ {0, 1}L
such that H(w, x) ≤ d for each x ∈ S.

Proof. Let {c1, c2, . . . , ck} be a k-clique in G. Construct w by putting ι(ci) on block Bi, for
each i ∈ [k], and zeroes on all the positions of the balancing block Γ.

First, take any string a = a(i, y, φ, z) ∈ Ssel. Since ι(ci) ∈ T and y ∈ F , by Lemma 2.2(1)
we infer that H(w[Bi], a[Bi]) = H(ι(ci), y) ≤ (1 − α)`. For each j ∈ [k] \ {i}, since
H(ι(cj)) = `/2 due to ι(cj) ∈ T , we have that H(w[Bj], a[Bj]) = H(ι(cj), a[Bj]) = `/2,
regardless of the value of φ(j). Finally, obviously H(w[Γ], a[Γ]) ≤ |Γ| = γ`. Hence

H(w, a) ≤ (1− α)`+ (k − 1)`/2 + γ` = d.

Second, take any string b = b(i, j, (u, v), ψ) ∈ Sadj. Since ci and cj are different and
adjacent, whereas u and v are either equal or non-adjacent, we have (ci, cj) 6= (u, v).
Without loss of generality suppose that ci 6= u; the second case will be symmetric. Then
H(w[Bi], b[Bi]) = H(ι(ci), ι(u)) ≤ (1/2 + ρ)`, due to property (3) of Lemma 2.1. Obviously,
H(w[Bj], b[Bj]) ≤ |Bj | ≤ `. Finally, for every q ∈ [k] \ {i, j} we have that H(ι(cq)) = `/2,
and hence H(w[Bq], b[Bq]) = H(ι(cq), b[Bq]) = `/2, regardless of the value of ψ(q). Strings w
and b match on positions of Γ, so H(w[Γ], b[Γ]) = 0. Summarizing,

H(w, b) ≤ (1/2 + ρ)`+ `+ (k − 2)`/2 = d. J

I Lemma 3.2. If there is a string w ∈ {0, 1}L such that H(w, x) < d+ β` for each x ∈ S,
then G contains a clique on k vertices.

Proof. We first prove that on each block Bi, w is close to selecting an element of T .

I Claim 3.3. For each i ∈ [k] there exists a unique xi ∈ T such that H(w[Bi], xi) < β`.

Proof. Uniqueness follows directly from property (3) of Lemma 2.1 and the triangle inequality,
so it suffices to prove existence.

Let u = w[Bi]. For the sake of contradiction, suppose H(u, x) ≥ β` for each x ∈ T . From
Lemma 2.2(2) we infer that there exists y ∈ F such that H(u, y) ≥ (1 − β)`. Let us take
φ : [k]\{i} → {0, 1} defined as follows: φ(j) = 0 if in w the majority of positions of Bj contain
a one, and φ(j) = 1 otherwise. Also, define z = w[Γ]. Consider string a = a(i, y, φ, z) ∈ Ssel.
Then, it follows that
H(w[Bi], a[Bi]) = H(u, y) ≥ (1− β)`;
H(w[Bj], a[Bj]) ≥ `/2 for each j ∈ [k] \ {i};
H(w[Γ], a[Γ]) = H(w[Γ], w[Γ]) = |Γ| = γ`.

Consequently,

H(w, a) ≥ (1− β)`+ (k − 1)`/2 + γ` = d+ β`.

This is a contradiction with the assumption that H(w, x) < d+ β` for each x ∈ S. J

For each i ∈ [k], let ci = ι−1(xi).

I Claim 3.4. For all i, j ∈ [k] with i < j, vertices ci and cj are different and adjacent.

Proof. For the sake of contradiction, suppose ci and cj are either equal or non-adjacent.
Define ψ : [k] \ {i, j} → {0, 1} as follows: ψ(q) = 0 if in w the majority of positions of
Bq contain a one, and ψ(q) = 1 otherwise. Then, for (ci, cj) we have constructed string
b = b(i, j, (ci, cj), ψ) ∈ Sadj. Observe now that

M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh 12:9

H(w[Bi], b[Bi]) = H(w[Bi], xi) > (1− β)`, since H(w[Bi], xi) < β`;
Similarly, H(w[Bj], b[Bj]) > (1− β)`;
H(w[Bq], b[Bq]) ≥ `/2 for each q ∈ [k] \ {i, j};
H(w[Γ], b[Γ]) ≥ 0.

Consequently,

H(w, b) ≥ 2(1− β)`+ (k − 2)`/2 = (k/2 + 1− 2β)` > d+ β`.

This is a contradiction with the assumption that H(w, x) < d+ β` for each x ∈ S. J

Claim 3.4 asserts that, indeed, {c1, c2, . . . , ck} is a k-clique in G. J

Lemmas 3.1 and 3.2 conclude the proof of Theorem 1.2, where c can be taken to be any
constant larger than d

β`·k ≤
2
β = 40.

4 Conclusions

In this paper we have proved that Closest String does not have an EPTAS under the
assumption of FPT 6= W[1]. Moreover, under the stronger assumption of the Exponential
Time Hypothesis, one can also exclude PTASes with running time f(ε) · no(1/ε), for any
computable function f . However, the fastest currently known approximation scheme for
Closest String has running time nO(1/ε2) [11]. This leaves a significant gap between the
known upper and lower bounds. Despite efforts, we were unable to close this gap, and hence
we leave it as an open problem.

References
1 Alexandr Andoni, Piotr Indyk, and Mihai Pătraşcu. On the optimality of the dimensionality

reduction method. In 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages 449–458.
IEEE Computer Society, 2006.

2 Cristina Bazgan. Schémas d’approximation et complexité paramétrée. PhD thesis, Univer-
sité Paris Sud, 1995. In French.

3 Christina Boucher, Christine Lo, and Daniel Lokshtanov. Consensus Patterns (probably)
has no EPTAS. In Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras,
Greece, September 14-16, 2015, Proceedings, volume 9294 of Lecture Notes in Computer
Science, pages 239–250. Springer, 2015. Full version available at http://www.ii.uib.no/
~daniello/papers/ConsensusPatterns.pdf.

4 Marco Cesati and Luca Trevisan. On the efficiency of polynomial time approximation
schemes. Inf. Process. Lett., 64(4):165–171, 1997.

5 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015. URL: http://dx.doi.org/10.1007/978-3-319-21275-3, doi:10.1007/
978-3-319-21275-3.

6 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer-Verlag, Berlin, 2006.

7 Jens Gramm, Rolf Niedermeier, and Peter Rossmanith. Fixed-parameter algorithms for
Closest String and related problems. Algorithmica, 37(1):25–42, 2003.

8 Ming Li, Bin Ma, and Lusheng Wang. Finding similar regions in many sequences. J.
Comput. Syst. Sci., 65(1):73–96, 2002.

SWAT 2016

http://www.ii.uib.no/~daniello/papers/ConsensusPatterns.pdf
http://www.ii.uib.no/~daniello/papers/ConsensusPatterns.pdf
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-319-21275-3

12:10 Lower Bounds for Approximation Schemes for Closest String

9 Ming Li, Bin Ma, and Lusheng Wang. On the Closest String and Substring problems. J.
ACM, 49(2):157–171, 2002.

10 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parame-
terized problems. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011,
pages 760–776. SIAM, 2011.

11 Bin Ma and Xiaoming Sun. More efficient algorithms for Closest String and Substring
problems. SIAM J. Comput., 39(4):1432–1443, 2009.

12 Dániel Marx. Closest substring problems with small distances. SIAM J. Comput.,
38(4):1382–1410, 2008.

13 Dániel Marx. Parameterized complexity and approximation algorithms. Comput. J.,
51(1):60–78, 2008.

Coloring Graphs Having Few Colorings Over Path
Decompositions∗

Andreas Björklund

Department of Computer Science, Lund University, Lund, Sweden
andreas.bjorklund@yahoo.se

Abstract
Lokshtanov, Marx, and Saurabh SODA 2011 proved that there is no (k − ε)pw(G) poly(n) time
algorithm for deciding if an n-vertex graph G with pathwidth pw(G) admits a proper vertex
coloring with k colors unless the Strong Exponential Time Hypothesis (SETH) is false, for any
constant ε > 0. We show here that nevertheless, when k > b∆/2c+ 1, where ∆ is the maximum
degree in the graph G, there is a better algorithm, at least when there are few colorings. We
present a Monte Carlo algorithm that given a graph G along with a path decomposition of G with
pathwidth pw(G) runs in (b∆/2c+ 1)pw(G) poly(n)s time, that distinguishes between k-colorable
graphs having at most s proper k-colorings and non-k-colorable graphs. We also show how to
obtain a k-coloring in the same asymptotic running time. Our algorithm avoids violating SETH
for one since high degree vertices still cost too much and the mentioned hardness construction
uses a lot of them.

We exploit a new variation of the famous Alon–Tarsi theorem that has an algorithmic advant-
age over the original form. The original theorem shows a graph has an orientation with outdegree
less than k at every vertex, with a different number of odd and even Eulerian subgraphs only if
the graph is k-colorable, but there is no known way of efficiently finding such an orientation. Our
new form shows that if we instead count another difference of even and odd subgraphs meeting
modular degree constraints at every vertex picked uniformly at random, we have a fair chance
of getting a non-zero value if the graph has few k-colorings. Yet every non-k-colorable graph
gives a zero difference, so a random set of constraints stands a good chance of being useful for
separating the two cases.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Graph vertex coloring, path decomposition, Alon–Tarsi theorem

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.13

1 Introduction

One of the classical NP-hard problems on graphs is proper vertex k-coloring [14]: can you
color the vertices from a palette of k colors such that each pair of vertices connected by an
edge are colored differently? The problem has numerous applications in both theory and
practice, for instance to model resource allocation.

A well-known algorithmic technique to attack such a challenging task for many graphs is
to use dynamic programming over a graph decomposition. In this paper we consider one of
the most common ones, namely the path decomposition introduced in the seminal work on
graph minors by Robertson and Seymour [17]. Lokshtanov, Marx, and Saurabh [15] proved

∗ This research was supported in part by the Swedish Research Council grant VR 2012-4730 Exact
Exponential–Time Algorithms.

© Andreas Björklund;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 13; pp. 13:1–13:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 Coloring Graphs Having Few Colorings Over Path Decompositions

that there cannot exist a (k − ε)pw(G) poly(n) time algorithm for deciding if an n-vertex
graph G with pathwidth pw(G) admits a proper vertex k-coloring for any ε > 0 unless the
Strong Exponential Time Hypothesis is false. Actually, they state their result in terms of
the more general concept treewidth, but the result holds as well for pathwidth as pointed
out in their Theorem 6.1 1. The Strong Exponential Time Hypothesis (SETH) [12] says that
s∞ = 1, where sk is the infimum of all real values r for which there exists a O(2rn) time
algorithm that solves any n-variate k-SAT given in conjunctive normal form. In recent years
many problems have been proven having known algorithms that are optimal under SETH,
see e.g. [1, 3, 8, 15].

Indeed, for k-coloring nothing better than the natural kpw(G) poly(n) time algorithm
that explicitly keeps track of all ways to color the presently active vertices is known for
general graphs. However, the hardness construction from the result mentioned above uses
many vertices of high degree and it would be interesting to understand to what extent
this is necessary to enforce such strong lower bounds. To be precise, we believe that the
conditional lower bound is strong evidence that there are no general k-coloring algorithm
running significantly faster than the natural algorithm. Still, given that graph coloring is
such an important topic that there are whole books devoted to the subject, e.g. [13], even
small algorithmic improvements where none were found for decades may be worth noting.

To this end we consider coloring bounded degree graphs with many colors. If the maximum
degree in the graph is ∆, it is trivial to find a (∆ + 1)-coloring by just coloring the vertices
greedily in an arbitrary order. By Brook’s theorem [6], one can also decide if there is a
∆-coloring in polynomial time. Reed [16] goes even further and shows that for large enough
∆, whenever there is no ∆-clique, there is a (∆ − 1)-coloring. In general though, this is
already a difficult coloring problem as it is NP-hard to 3-color a graph of maximum degree 4
(follows from taking the line graph of the construction in [11]).

We present in this paper an algorithm that is faster than the natural one when the
number of colors k ≥ b∆/2c+ 1. However, we also need that the number of k-colorings isn’t
too large as our algorithm gets slower the more solutions there are. This counterintuitive
behavior is symptomatic for the type of algorithm we use: we indirectly compute a fixed
linear combination of all solutions and see if the result is non-zero. As the number of
solutions increases, the number of ways that the solutions can annihilate each other also
grows. Another example of such an algorithm (for directed Hamiltonian cycles) was recently
given in [5].

Still, already the class of uniquely k-colorable graphs is a rich and interesting one [18].
One might suspect that it could be easier to find unique solutions. However, there are
parsimonious reductions from Satisfiability to 3-coloring [4] (up to permutations of the
colors), and we know that unique Satisfiability isn’t easier than the general case [7], so it
cannot be too much easier. In particular, we still should expect it to take exponential time.

[10] uses ideas related to the present work to algebraically classify uniquely colorable
graphs. The proposed means to solve for them though involve computations of Gröbner bases,
which are known to be very slow in the worst case, and the paper does not discuss worst
case computational efficiency. Our contribution here is to find a variation of the Alon-Tarsi
theorem [2], reusing the idea from [10] to look at the graph polynomial in points of powers
of a primitive k:th root of unity, to get an efficient algorithm for solving a promise few
k-coloring problem in bounded degree graphs. Our main theorem says:

1 The Theorem says (3 − ε)pw(G) but it is a misprint, it should be (q − ε)pw(G) in their notation.

A. Björklund 13:3

I Theorem 1. For every undirected graph G, and path decomposition of G of pathwidth
pw(G), there is a (b∆/2c+ 1)pw(G) poly(n)s time Monte Carlo algorithm that outputs Yes
with constant non-zero probability if G is k-colorable but has at most s proper k-colorings,
and always outputs No if G is non-k-colorable.

This means that for k > b∆/2c + 1 and small s we improve exponentially over the
natural kpw(G) poly(n) time algorithm. Still it does not violate the Strong Exponential Time
Hypothesis lower bound from [15], since that construction uses Ω(n/ log k) vertices of degree
much larger than 2k.

By a simple self-reduction argument, we can also obtain a witness coloring for the
k-colorable graphs:

I Corollary 2. For every k-colorable graph G with s proper k-colorings, and a path decom-
position of G of pathwidth pw(G), we can find a k-coloring in (b∆/2c + 1)pw(G) poly(n)s
time, with constant non-zero probability.

1.1 The Alon–Tarsi theorem
Let G = (V,E) be an undirected graph, and let k be a positive integer. An orientation
of G is a directed graph D = (V,A) in which each edge uv ∈ E is given an orientation,
i.e. either uv or vu is in A but not both. Denote by δ+(A, v) and δ−(A, v) the out- and
indegree of the vertex v, respectively. A Eulerian subgraph of D is a subset A′ ⊆ A such
that δ+(A′, v) = δ−(A′, v) for all v ∈ V . Note that the notion of Eulerian here is somewhat
non-standard as it does not require the subgraph to be connected. The subgraph is even if
|A′| is even and odd otherwise. The theorem of Alon and Tarsi says

I Theorem 3 ([2]). If there is an orientation D = (V,A) of a graph G such that δ+(A, v) < k

for all vertices v ∈ V for some integer k, and the number of even and odd Eulerian subgraphs
of D differ, then G is k-colorable.

The theorem gives no promise in the other direction though, but Hefetz [9] proved that if G
is uniquely k-colorable with a minimal number of edges then there also exist orientations
meeting the criteria of the theorem. However, there are as far as we know no known ways
of efficiently finding such an orientation for a general uniquely k-colorable graph and hence
any successful algorithm for k-coloring based on computing the difference of the number of
even and odd Eulerian subgraphs for a fixed orientation seems aloof. Still, this is what our
algorithm does, albeit after relaxing Eulerian subgraphs to something broader.

1.2 Our Approach
We denote by [k] the set {0, 1, · · · , k − 1}. Let δ(A′, v) = δ+(A′, v)− δ−(A′, v), i.e. be equal
to the number of arcs in A′ outgoing from v minus the arcs incoming to v. For a vector
w ∈ [k]n, which we also think of as a function V → [k], a w-mod-k subgraph is a subgraph
with arc set A′ ⊆ A such that for all vertices v ∈ V , δ(A′, v) ≡ w(v)(mod k).

Our algorithm is centered around a quantity κk,w(A) that we define as the difference of
the number of even w-mod-k subgraphs and the number of odd ones.

Our main technical lemma that may be of independent combinatorial interest says:

I Lemma 4. Let an n-vertex graph G and positive integer k be given. If G has s proper
k-colorings, then for any fixed orientation A of the edges and a vector w ∈ [k]n chosen
uniformly at random, it holds that:

SWAT 2016

13:4 Coloring Graphs Having Few Colorings Over Path Decompositions

1. P(κk,w(A) 6= 0) = 0 if s = 0,
2. P(κk,w(A) 6= 0) ≥ s−1 if s > 0.

Note that in this broad form the poor dependency on s is best possible: the empty
n-vertex graph has s = kn proper k-colorings but κk,w(∅) 6= 0 only for w = 0. Also note that
for a uniquely k-colorable graph s = k!, so this is the smallest non-zero s we can get.

We will prove the Lemma in Section 2. It immediately suggests an algorithm for separating
k-colorable graphs with few colorings from non-k-colorable graphs that we will use to prove
Theorem 1. The proof is in Section 3. The algorithm is:

Decide-k-Colorable
1. Pick any orientation A of the edges.
2. Repeat p(n, k)s times
3. Pick a vector w ∈ [k]n uniformly at random.
4. Compute κk,w(A).
5. Output yes if κk,w(A) 6= 0 for any w, otherwise output no.

The function p(n, k) depends on wether we just want to decide k-colorability or we also
want to use the algorithm as a subroutine to find a k-coloring. The values of the function are
set in Sec. 3.2 and 3.3, respectively. In step 4 we compute κk,w(A) over a path decomposition.
The key insight that makes this a faster algorithm than the natural one, is that we need to
keep a much smaller state space when we count the w-mod-k subgraphs than if we were to
keep track of all colors explicitly. For a fixed orientation and decomposition, the edges are
considered in a certain predetermined order during the execution of a path decomposition
dynamic programming. Hence we only need to store states that we know will stand the chance
to result in a w-mod-k subgraph. To exemplify, say we are to count w-mod-5 subgraphs and
a certain vertex v has w(v) = 1 and three incoming arcs and three outgoing arcs, and they
are considered in order + +−+−−, where + indicates an outgoing arc and − an incoming.
Now, when we have processed the first four of these, we only need to remember the partial
solutions A′ ⊆ A that has δ(A′, v) ∈ {1, 2, 3}. It is possible to form partial solutions with
δ(A′, v) ∈ {−1, 0} as well, but the remaining two incoming arcs could never compensate for
this imbalance to end up in a δ(A′′, v) ≡ 1(mod 5) final state for some A′′ ⊇ A′.

2 The Proof of Lemma 4

Let ω be a primitive k:th root of unity over the complex numbers. Consider an undirected
graph G = (V,E) on n vertices. For any directed graph D = (V,B) where uv ∈ E implies at
least one of uv and vu to be in B, and uv ∈ B implies uv ∈ E, we define a graph function
on any vertex coloring c : V → [k] as

fB(c) =
∏
uv∈B

(1− ωc(u)−c(v)).

Note that fB(c) 6= 0 if and only if c is a proper k-coloring of G. Our previously defined
difference κk,w(B) of w-mod-k subgraphs are related to fB through

I Lemma 5.

κk,w(B) = 1
kn

∑
c∈[k]n

(∏
v∈V

ω−w(v)c(v)

)
fB(c). (1)

A. Björklund 13:5

Proof. We first observe that the right side of Eq. 1 can be rewritten as a summation over
subgraphs by expanding the inner product, i.e.

1
kn

∑
c:V→[k]

∏
v∈V

ω−w(v)c(v)
∏
uv∈B

(1−ωc(u)−c(v)) = 1
kn

∑
B′⊆B

(−1)|B
′|
∑

c:V→[k]

∏
v∈V

ω(δ(B′,v)−w(v))c(v).

Consider a fixed subgraph B′ ⊆ B. It contributes the term

1
kn

(−1)|B
′|
∑

c:V→[k]

∏
v∈V

ω(δ(B′,v)−w(v))c(v).

First observe that if there is a u such that k6 |(δ(B′, u)− w(u)), then we can factor out u
from the expression to get

1
kn

(−1)|B
′|
∑
cu∈[k]

ω(δ(B′,u)−w(u))cu

∑
c:V \{u}→[k]

∏
v∈V \{u}

ω(δ(B′,v)−w(v))c(v).

Let l = δ(B′, u) − w(u) and note that (
∑
cu∈[k] ω

lcu)(1 − ωl) = (1 − ωlk) = 0. Since ω is
primitive and k6 |l we have that (1− ωl) is non-zero. We conclude that

∑
cu∈[k] ω

lcu = 0 and
that such B′ contributes zero to the right hand expression of Eq. 1.

Second when k|(δ(B′, v) − w(v)) for all v ∈ V , then the term
∏
v∈V ω

(δ(B′,v)−w(v))c(v)

equals 1 regardless of c since ω is a k:th root of unity. Hence such subgraphs B′ contributes
the value (−1)|B′| after the division by the factor kn to the right hand expression of Eq. 1.
We are left with

∑
w -mod- k subgraphB′⊆B(−1)|B′| as claimed. J

In particular it follows from the above lemma that if G is non-k-colorable, κk,w(B) = 0
for every w ∈ [k]n because fB(c) ≡ 0 in this case. Hence with B = A we have proved item a
in Lemma 4.

To prove item b of the Lemma, we will associate three directed graphs on n vertices with
G. First, let A be the fixed orientation of the edges in E in the formulation of the Lemma.
Second, let A be the reversal of A, i.e. for each arc uv ∈ A, vu ∈ A. Finally, let C = A ∪A.

I Lemma 6.

κk,0(C) =
∑

w∈[k]n

κk,w(A)2.

Proof. We first note that

κk,0(C) =
∑

w∈[k]n

κk,w(A)κk,−w(A).

This is true because any even 0-mod-k graph in C is either composed of an even w-mod-k
subgraph in A and an even (−w)-mod-k subgraph in A for some w, or is composed by two
odd ones. Similarly, an odd 0-mod-k subgraph in C is composed by an even-odd or odd-even
pair in A and A respectively for some w. Summing over all w we count all subgraphs. Next
we note that κk,w(A) = κk,−w(A) because δ(A, v) ≡ −δ(A, v)(mod k) for all v ∈ V . J

We will next use Lemma 5 to bound |κk,0(C)| and |κk,w(A)|. We have

I Lemma 7.

κk,0(C) = 1
kn

∑
c∈[k]n

|fA(c)|2.

SWAT 2016

13:6 Coloring Graphs Having Few Colorings Over Path Decompositions

Proof. From Lemma 5 we have

κk,0(C) = 1
kn

∑
c∈[k]n

fC(c).

Since fC(c) = fA(c)fA(c) and fA(c) = fA(c), we have that fC(c) = |fA(c)|2 and the Lemma
follows. J

I Lemma 8.

|κk,w(A)| ≤ 1
kn

∑
c∈[k]n

|fA(c)|.

Proof. From Lemma 5 we have

|κk,w(A)| = 1
kn

∣∣∣∣∣∣
∑
c∈[k]n

(∏
v∈V

ω−w(v)c(v)

)
fA(c)

∣∣∣∣∣∣ .
Since∣∣∣∣∣∣

∑
c∈[k]n

(∏
v∈V

ω−w(v)c(v)

)
fA(c)

∣∣∣∣∣∣ ≤
∑
c∈[k]n

(∏
v∈V
|ω−w(v)c(v)|

)
|fA(c)|,

and |ω−w(v)c(v)| = 1 for every w(v), c(v), the Lemma follows. J

Combining Lemmas 6, 7, and 8, we get

1
kn

∑
c∈S
|fA(c)|2 ≤

∑
w∈T

(
1
kn

∑
c∈S
|fA(c)|

)2

.

Here S ⊆ [k]n is the set of proper k-colorings and T ⊆ [k]n is the set of good w’s, i.e. w ∈ T
if and only if κk,w(A) 6= 0. By assuming that s > 0 we can rewrite the above inequality as

|T | ≥
1
kn

∑
c∈S |fA(c)|2

1
k2n (

∑
c∈S |fA(c)|)2 ≥

kn

|S|
,

where the last inequality follows from Jensen’s inequality, ψ(
∑t
i=1 xi/t) ≤

∑t
i=1 ψ(xi)/t for

a convex function ψ. Dividing |T | by kn gives the claimed probability bound in item b of
Lemma 4. This concludes the proof of our main Lemma.

3 Details of the Algorithm

We will prove Theorem 1. We will first describe an algorithm that computes κk,w(A) efficiently
over a path decomposition and argue its correctness. Then we will prove Corollary 2 by
showing how one with polynomial overhead can obtain a witness k-coloring.

3.1 The Path Decomposition Algorithm
Given a directed graph H = (V,A) a path decomposition of H is a path graph P = (U,F)
where the vertices U = {u1, . . . , up} represent subsets of V called bags, and the edges F
simply connect ui with ui+1 for every i < p. Every vertex v ∈ V is associated with an

A. Björklund 13:7

interval Iv on {1, . . . , p} such that v ∈ ui iff i ∈ Iv. Furthermore, for each arc ab ∈ A, there
exists an i such that {a, b} ⊆ ui. We set r(ab) = i for the smallest such i. The pathwidth,
denoted pw(H), is the minimum over all path decompositions of G of maxi(|ui| − 1). In a
nice path decomposition, either a new vertex is added to ui to form ui+1, in which case we
call ui+1 an introduce bag, or a vertex is removed, in which case we call ui+1 a forget bag.
We can assume w.l.o.g. that we have a nice path decomposition since it is straightforward to
make any path decomposition nice by simply extending the path with enough bags.

We will see how one can compute κk,w(A) for a fixed orientation A over a path decompos-
ition in step 4 in the algorithm Decide-k-Colorable. We impose an ordering of the m arcs,
such that arc ai precedes ai+1 if r(ai) < r(ai+1) or r(ai) = r(ai+1) and ai is lexicographically
before ai+1. We will loop over the arcs in the above order, virtually moving over the bags
from u1 to up monotonically as necessary. For arc ai, we let Di,v for every vertex v ∈ ur(ai)
denote every possible modular degree difference δ(A′, v) mod k a vertex v can have in a
subgraph A′ ⊆ {aj : j ≤ i} such that there still are enough arcs in {aj : j > i} to form a
subgraph A′′, A ⊇ A′′ ⊇ A′ with k|(δ(A′′, v)−w(v)). In particular, every w-mod-k subgraph
A∗ must have δ(A∗ ∩ {aj : j ≤ i}, v) ∈ Di,v for every v ∈ ur(ai) and i.

I Lemma 9. For all i and v ∈ ur(ai),

|Di,v| ≤ b∆/2c+ 1.

Proof. Let Dbefore
i,v be the set of possible modular difference degrees δ(A′, v) mod k for

any A′ ⊆ {aj : j ≤ i}, and let Dafter
i,v be the set of possible negated difference degrees

(w(v)− δ(A′′, v)) mod k for any A′′ ⊆ {aj : j > i}. Observe that Di,v = Dbefore
i,v ∩Dafter

i,v . If
the number of arcs incident to v in {aj : j ≤ i} is dbefore

v , and the ones in {aj : j > i} is dafter
v ,

we have that |Dbefore
i,v | ≤ dbefore + 1 and |Dafter

i,v | ≤ dafter + 1 . Since ∆ ≥ dbefore
v + dafter

v , the
bound follows. J

Our algorithm tabulates for each possible modular degree difference in Di,v for each
v ∈ ur(ai), the difference of the number of even and odd subgraphs in {aj : j ≤ i} matching
the degree constraints on those vertices, while having modular degree difference equal to w(v)
on every vertex v that are forgotten by the algorithm, i.e. vertices v that were abandoned
in a forget bag uj for j < r(ai). That is, the complete state is described by a function
si : Di,v1 × · · · ×Di,vl

→ Z, where {v1, . . . , vl} = ur(ai), and where si for a specific difference
degree vector holds the above difference of the number of even and odd subgraphs. It is
easy to compute si+1 from si, since each point in si+1 depends on at most two points of si
(either we use the arc ai+1 in our partial w-mod-k subgraph, or we do not). To compute
the new value we just subtract the two old in reversed order, i.e. with an abuse of notation
si+1(d) = si(d) − si(d − ai+1). We initialize s0 to all-zero except for s0(0) = 1 since the
empty subgraph is an even 0-mod-k subgraph. We store si in an array sorted after the
lexicographically order on the (Cartesian product) keys which allows for quick access when
we construct si+1. We only need to precompute Di,v for all i and v which is easily done in
polynomial time, in order to see what modular degree differences to consider for si+1 and
what is stored in the previous function table si. Once we have computed sm, we can read off
κk,w(A) from sm(w).

3.2 Runtime and Correctness Analysis
We finish the proof of Theorem 1. It follows from the bound in Lemma 9 that step 4 of the
algorithm takes (b∆/2c+ 1)pw(G) poly(n) time. It is executed p(n, k)s times so that we in

SWAT 2016

13:8 Coloring Graphs Having Few Colorings Over Path Decompositions

expectation sample p(n, k) good w’s for which κk,w(A) 6= 0 for k-colorable graphs having at
most s proper k-colorings, as seen from item b in Lemma 4. From Markov’s inequality, the
probability of false negatives is at most 1

p(n,k) . Thus already p(n, k) = 2 will do. From item
a in Lemma 4 the probability of false positives is zero.

3.3 Coloring a Graph
We proceed with the proof of Corollary 2. The idea for recovering a witness k-coloring is to
use self-reduction, i.e. to use algorithm Decide-k-Colorable many times for several graphs
obtained by modifying G so as to gradually learn more and more of the vertices’ colors. We
will learn a coloring one color a time. That is, we will find a maximal subset of the vertices
that can be colored in one color so that the remaining graph can be colored by the remaining
k − 1 colors.

For every subset S ⊆ V of the vertices that form an independent set in G, we let GS be
the graph obtained by collapsing all vertices in S into a single supervertex vS that retain all
edges that goes to S in the original graph. Note that the number of colorings cannot increase
by the contraction, and the degree is only increased for the newly formed vertex vS , the rest
of the graph is intact. Also note that the path width increases by at most one, since removing
vS from the graph leaves a subgraph of G. We use algorithm Decide-k-Colorable on GS
as a subroutine and note that the runtime is at most a factor k larger than it was on G due
to the supervertex vS that now may be in all bags and we need to keep track of all modular
degree differences for this vertex. Our algorithm for extracting a color class is:

Find-Maximal-Color-Class
1. Let S = v1.
2. For every vertex u ∈ V \ v1,
3. If S ∪ u is an independent set and Decide-k-Colorable(GS∪{u}) returns Yes,
4. Let S = S ∪ {u}.
5. Return S.

With p(n, k) = 2nk we get the true verdict on all queried graphs with probability at
least 1 − 1

2k . Once we have found a maximal color class S, we can continue coloring the
induced subgraph G[V \ S] which is (k − 1)-colorable by extracting a second color class and
so on. We note that neither the maximum degree, pathwidth, or number of proper colorings
can increase in an induced subgraph. In particular, a path decomposition for G[V \ S] of
pathwidth at most pw(G) can be readily obtained from the given path decomposition for G
by just omitting the removed vertices and edges. By the union bound, with probability at
least 1

2 we correctly extract all k color classes.

4 Improvements and Limitations

The striking dependence on s in Theorem 1 is at least in part due to the poor uniform
sampling employed. For many w’s κk,w(A) is zero for a trivial reason, namely that there are
no w-mod-k subgraphs at all. A better idea would be to try to sample uniformly over all w’s
that has at least one w-mod-k-subgraph. We don’t know how to do that, but it is probably
still better to sample non-uniformly over this subset of good w’s by uniformly picking a
subgraph of G, and letting w be given by the degree differences of that subgraph. However,
we can give an example of graphs where even a uniform sampling over the attainable w’s will
require running time that grows with s. Our construction is very simple, we just consider the

A. Björklund 13:9

graph consisting of n/3 disjoint triangles. Let A be an orientation such that each vertex has
one incoming and one outgoing arc. Then, the number of attainable w’s is 7n/3 since every
non-empty subset of the three arcs in a triangle gives a unique modular degree difference. The
number of w’s that give a non-zero κ3,w(A) is just 6n/3 which can be seen by inspecting each
of the 7 attainable w’s for a triangle, and noting that κk,w(A′ ∪ A”) = κk,w′(A′)κk,w”(A”)
for vertex-disjoint arc subsets A′ and A”. The number of 3-colorings s is also 6n/3, so with
probability s−0.086 we pick a w that has κ3,w(A) 6= 0. While being a great improvement over
s−1, it still demonstrates a severe limitation of the technique presented in this paper when
there are many solutions.

Acknowledgments. I thank several anonymous reviewers for comments on the paper.

References
1 A. Abboud and V. Vassilevska Williams. Popular conjectures imply strong lower bounds

for dynamic problems. In Proceedings of the IEEE FOCS, pages 434–443, 2014.
2 N. Alon and M. Tarsi. Colorings and orientations of graphs. Combinatorica, 12:125–134,

1992.
3 A. Backurs and P. Indyk. Edit distance cannot be computed in strongly subquadratic time

(unless seth is false). In Proceedings of the ACM STOC, pages 51–58, 2015.
4 R. Barbanchon. On unique graph 3-colorability and parsimonious reductions in the plane.

Theoretical Computer Science, 319:455–482, 2004.
5 A. Björklund, H. Dell, and T. Husfeldt. The parity of set systems under random restrictions

with applications to exponential time problems. In Proceedings of ICALP, pages 231–242,
2015.

6 R. L. Brooks. On colouring the nodes of a network. Proc. Cambridge Philosophical Society,
Math. Phys. Sci, 37:194–197, 1941.

7 C. Calabro, R. Impagliazzo, V. Kabanets, and R. Paturi. The complexity of unique k-sat:
An isolation lemma for k-cnfs. Journal of Computer and System Sciences, 74:386–393,
2008.

8 M. Cygan, S. Kratsch, and J. Nederlof. Fast hamiltonicity checking via bases of perfect
matchings. In Proceedings of the ACM STOC, pages 301–310, 2013.

9 D. Hefetz. On two generalizations of the alon–tarsi polynomial method. Journal of Com-
binatorial Theory Series B, 101:403–414, 2011.

10 C. Hillar and T. Windfeldt. An algebraic characterization of uniquely vertex colorable
graphs. Journal of Combinatorial Theory Series B, 98:400–414, 2008.

11 I. Holyer. The np-completeness of edge-coloring. SIAM J. Comput., 10:718–720, 1981.
12 R. Impagliazzo and R. Paturi. The complexity of k-sat. In Proceedings of the IEEE

Computational Complexity Conference, pages 237–240, 1999.
13 T. B. Jensen and B. Toft. Graph Coloring Problems. Wiley-Interscience, 1st edition, 1994.
14 R. M. Karp. Reducibility among combinatorial problems. Complexity of Computer Com-

putations, pages 85–103, 1972.
15 D. Lokshtanov, D. Marx, and S. Saurabh. Known algorithms on graphs of bounded

treewidth are probably optimal. In Proceedings of ACM-SIAM SODA, pages 777–789,
2011.

16 B. Reed. A strengthening of brook’s theorem. Journal of Combinatorial Theory Series B,
76:136–149, 1999.

17 N. Robertson and P. Seymour. Graph minors. i. excluding a forest. Journal of Combinat-
orial Theory Series B, 35:39–61, 1983.

18 S. Xu. The size of uniquely colorable graphs. Journal of Combinatorial Theory Series B,
50:319–320, 1990.

SWAT 2016

Parameterized Algorithms for Recognizing
Monopolar and 2-Subcolorable Graphs∗

Iyad Kanj1, Christian Komusiewicz2, Manuel Sorge3, and
Erik Jan van Leeuwen4

1 School of Computing, DePaul University, Chicago, USA
ikanj@cs.depaul.edu

2 Institut für Informatik, Friedrich-Schiller-Universität, Jena, Germany
christian.komusiewicz@uni-jena.de

3 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Berlin,
Germany
manuel.sorge@tu-berlin.de

4 Max-Planck-Institut für Informatik, Saarbrücken, Germany
erikjan@mpi-inf.mpg.de

Abstract
We consider the recognition problem for two graph classes that generalize split and unipolar
graphs, respectively. First, we consider the recognizability of graphs that admit a monopolar
partition: a partition of the vertex set into sets A,B such that G[A] is a disjoint union of cliques
and G[B] an independent set. If in such a partition G[A] is a single clique, then G is a split
graph. We show that in O(2k · k3 · (|V (G)| + |E(G)|)) time we can decide whether G admits a
monopolar partition (A,B) where G[A] has at most k cliques. This generalizes the linear-time
algorithm for recognizing split graphs corresponding to the case when k = 1.

Second, we consider the recognizability of graphs that admit a 2-subcoloring: a partition
of the vertex set into sets A,B such that each of G[A] and G[B] is a disjoint union of cliques.
If in such a partition G[A] is a single clique, then G is a unipolar graph. We show that in
O(k2k+2 · (|V (G)|2 + |V (G)| · |E(G)|)) time we can decide whether G admits a 2-subcoloring
(A,B) where G[A] has at most k cliques. This generalizes the polynomial-time algorithm for
recognizing unipolar graphs corresponding to the case when k = 1.

We also show that in O∗(4k) time we can decide whether G admits a 2-subcoloring (A,B)
where G[A] and G[B] have at most k cliques in total.

To obtain the first two results above, we formalize a technique, which we dub inductive
recognition, that can be viewed as an adaptation of iterative compression to recognition problems.
We believe that the formalization of this technique will prove useful in general for designing
parameterized algorithms for recognition problems. Finally, we show that, unless the Exponential
Time Hypothesis fails, no subexponential-time algorithms for the above recognition problems
exist, and that, unless P=NP, no generic fixed-parameter algorithm exists for the recognizability
of graphs whose vertex set can be bipartitioned such that one part is a disjoint union of k cliques.

1998 ACM Subject Classification F.2.0 Analysis of Algorithms and Problem Complexity, G.2.2
Graph Theory

Keywords and phrases vertex-partition problems, monopolar graphs, subcolorings, split graphs,
unipolar graphs, fixed-parameter algorithms

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.14

∗ Iyad Kanj, Christian Komusiewicz, and Manuel Sorge gratefully acknowledge the support by the DFG,
projects DAPA, NI 369/12 and MAGZ, KO 3669/4-1.

© Iyad Kanj, Christian Komusiewicz, Manuel Sorge, and Erik Jan van Leeuwen;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 14; pp. 14:1–14:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Parameterized Algorithms for Recognizing Monopolar and 2-Subcolorable Graphs

1 Introduction

A (ΠA,ΠB)-graph, for graph properties ΠA,ΠB , is a graph G = (V,E) for which V admits a
partition into two sets A,B such that G[A] satisfies ΠA and G[B] satisfies ΠB . There is an
abundance of (ΠA,ΠB)-graph classes, and important ones include, in addition to bipartite
graphs (i.e., 2-colorable graphs), well-known graph classes such as split graphs (which admit
a bipartition into a clique and an independent set), and unipolar graphs (which admit a
bipartition into a clique and a cluster graph). Here a cluster graph is a disjoint union of
cliques.

The problem of recognizing whether a given graph belongs to a particular class of (ΠA,ΠB)-
graphs is called (ΠA,ΠB)-Recognition, and is known as a vertex-partition problem. In
general, most recognition problems for (ΠA,ΠB)-graphs are NP-hard [11], but bipartite, split,
and unipolar graphs can all be recognized in polynomial time [17, 13, 16, 10, 20]. With the
aim of generalizing these polynomial-time algorithms, we study the complexity of recognizing
two classes of (ΠA,ΠB)-graphs that generalize split and unipolar graphs.

First, we consider monopolar graphs; these are graphs in which the vertex set admits a
bipartition into a cluster graph and an independent set, and thus generalize split graphs.
Monopolar graphs have applications in the analysis of protein-interaction networks [3]. The
recognition problem of monopolar graphs can be formulated as follows:

Monopolar Recognition
Input: A graph G = (V,E).
Question: Does G have a monopolar partition (A,B), that is, can V be partitioned
into sets A and B such that G[A] is a cluster graph and G[B] is an independent set?

Second, we study 2-subcolorable graphs; these are graphs in which the vertex set admits a
bipartition into two cluster graphs [2], and thus generalize unipolar graphs. The recognition
problem of 2-subcolorable graphs can be formulated as follows:

2-Subcoloring
Input: A graph G = (V,E).
Question: Does G have a 2-subcoloring (A,B), that is, can V be partitioned into sets
A and B such that each of G[A] and G[B] is a cluster graph?

Monopolar Recognition and 2-Subcoloring are both NP-hard [1, 11]. This is a stark
contrast to the variants of both problems where G[A] is required to consist of a single
cluster, which correspond to the recognition of split graphs and unipolar graphs, respectively,
and admit polynomial-time algorithms [13, 16, 10, 20]. This has left the complexity of
Monopolar Recognition and 2-Subcoloring parameterized by the number of clusters
in G[A] as intriguing open questions.

Our Results. We show that both Monopolar Recognition and 2-Subcoloring are
fixed-parameter tractable parameterized by the number of clusters in G[A]. More formally,
let G = (V,E) be a graph and k a nonnegative integer. We prove the following:

I Theorem 1.1. In O(2k ·k3 ·(|V |+ |E|)) time, we can decide whether G admits a monopolar
partition (A,B) such that G[A] is a cluster graph with at most k clusters.

Observe that the algorithm runs in linear time for any fixed k. In particular, the algorithm
recognizes split graphs (the case k = 1) in linear time, matching the running time of the
existing algorithm for this problem [13].

I. Kanj, C. Komusiewicz, M. Sorge, and E. J. van Leeuwen 14:3

I Theorem 1.2. In O(k2k+2 · (|V |2 + |V | · |E|)) time, we can decide whether G admits a
2-subcoloring (A,B) such that G[A] is a cluster graph with at most k clusters.

For both problems, one faces various technical difficulties when designing recognition algo-
rithms due to the following: First, we parameterize by the number of clusters in G[A] and
not by the number of vertices. Second, the number of clusters or vertices of G[B] can be
arbitrary. In particular, 2-Subcoloring does not seem to yield to standard approaches in
parameterized algorithms. To overcome these difficulties, we propose a technique, which
we dub inductive recognition, that is an adaptation of iterative compression to recognition
problems. We believe that the applications of this technique extend beyond the problems
under consideration in this paper, and will have general use for designing parameterized
algorithms for recognition problems.

Inductive recognition on a graph G = (V,E) works as follows. Start with an empty
graph G0 that trivially belongs to the graph class. In iteration i, we recognize whether
the subgraph Gi of G induced by the first i vertices of V still belongs to the graph class,
given that Gi−1 belongs to the graph class. This technique is very similar to the well-known
iterative compression technique [18]. The crucial difference, however, is that in iterative
compression we can always add the i-th vertex vi to the solution from the previous iteration
to obtain a new solution (which we compress if it is too large). However, in our problems,
we cannot simply add vi to one part and witness that Gi is still a member of the graph class
with possibly too many clusters. For example, if we consider vi with respect to a monopolar
partition (A,B) of Gi−1, then potentially vi could neighbor a vertex in B and vertices of
two clusters in G[A]. Therefore, we cannot add vi to A or B to obtain another monopolar
partition, even if Gi is monopolar, and hence, we also cannot perform a “compression step”.
Instead, we must “repair” the solution by rearranging vertices. This idea is formalized in the
inductive recognition framework in Section 3.

In the case of 2-Subcoloring, we also consider the weaker parameter of the total number
of clusters in G[A] and G[B]. This parameterization makes the problem amenable to a
branching strategy that branches on the placement of the endpoints of suitably-chosen edges
and nonedges of the graph. This way, we create partial 2-subcolorings (A′, B′) where each
vertex in V \ (A′ ∪B′) is adjacent to the vertices of exactly two partial clusters, one in each
of G[A′] and G[B′]. Then we show that whether such a partial 2-subcoloring extends to an
actual 2-subcoloring of G can be tested in polynomial time via a reduction to 2-CNF-Sat.

I Theorem 1.3 (?1). In O∗(4k) time, we can decide whether G admits a 2-subcoloring (A,B)
such that G[A] and G[B] are cluster graphs with at most k clusters in total.

Finally, we consider the parameter consisting of the total number of vertices in G[A]. We
observe that a straightforward branching strategy yields a generic fixed-parameter algorithm
for many (ΠA,ΠB)-Recognition problems.

I Proposition 1.4 (?). Let ΠA and ΠB be two graph properties such that membership of ΠA

can be decided in polynomial time and ΠB can be characterized by a finite set of forbidden
induced subgraphs. Then we can decide in O∗(2O(k)) time whether V can be partitioned into
sets A and B such that G[A] ∈ ΠA, G[B] ∈ ΠB, and |A| ≤ k.

We observe that several possible improvements or generalizations of our results are
unlikely. First, we notice that subexponential-time fixed-parameter algorithms for both
Monopolar Recognition and 2-Subcoloring are unlikely.

1 The proofs of the results marked with a “?” are omitted due to the lack of space.

SWAT 2016

14:4 Parameterized Algorithms for Recognizing Monopolar and 2-Subcolorable Graphs

I Proposition 1.5 (?). Monopolar Recognition parameterized by the number k of
clusters in G[A] and 2-Subcoloring parameterized by the total number k of clusters in
G[A] and G[B] cannot be solved in O∗(2o(k)) time, unless the Exponential Time Hypothesis
fails.

Second, observe that Theorems 1.1 and 1.2 give fixed-parameter algorithms for two (ΠA,ΠB)-
Recognition problems, in both of which ΠA defines the set of all cluster graphs, parameter-
ized by the number of clusters in G[A]. Hence, one might hope for a generic fixed-parameter
algorithm for such problems, irrespective of ΠB. However, polar graphs stand in our way.
A graph G = (V,E) has a polar partition if V can be partitioned into sets A and B such
that G[A] is a cluster graph and G[B] is the complement of a cluster graph [21].

I Proposition 1.6 (?). It is NP-hard to decide whether G has a polar partition (A,B) such
that G[A] is a cluster graph with one cluster or G[B] is a co-cluster graph with one co-cluster.

Related Work. To the best of the authors’ knowledge, the parameterized complexity of
Monopolar Recognition and 2-Subcoloring has not been studied before. The known
algorithms for both problems are not parameterized, and assume that the input graph
belongs to a structured graph class; see [4, 5, 9, 15] and [2, 12, 19], respectively. Recently,
Kolay and Panolan [14] considered the problem of deleting k vertices or edges to obtain an
(r, `)-graph. For integers r, `, a graph G = (V,E) is an (r, `)-graph if V can be partitioned
into r independent sets and ` cliques. For example, (2, 0)-graphs are precisely bipartite
graphs and (1, 1)-graphs are precisely split graphs. However, observe that (1, ·)-graphs are
not monopolar graphs, because monopolar graphs do not allow edges between the cliques (as
G[A] is a cluster graph), whereas such edges are allowed in (1, ·)-graphs. These differences
lead to substantially different algorithmic techniques. For example, since Kolay and Panolan
consider the deletion problem, they can use iterative compression in their work. Moreover,
they consider r, ` < 3, which makes even nf(r,`)-time algorithms polynomial. Neither of these
ideas works for the problems in this paper. We were, however, inspired by their Observation 2,
which we adapt to our setting to help bound the running time of our algorithms.

2 Preliminaries

For the relevant notions from parameterized algorithms, we refer to the literature [8, 6]. We
follow standard graph-theoretic notation [7]. Let G be a graph. By V (G) and E(G) we
denote the vertex-set and the edge-set of G, respectively. For X ⊆ V (G), G[X] denotes
the subgraph of G induced by X. For a vertex v ∈ G, N(v) and N [v] denote the open
neighborhood and the closed neighborhood of v, respectively. For X ⊆ V (G), we define
N(X) := (

⋃
v∈X N(v)) \X and N [X] :=

⋃
v∈X N [v]. We say that a vertex v is adjacent to a

subset X ⊆ V (G) of vertices if v is adjacent to at least one vertex in X. A P3 is a path on 3
vertices. We repeatedly use the following well-known characterization of cluster graphs:

I Fact 2.1. A graph is a cluster graph if and only if it contains no P3 as an induced subgraph.

The asymptotic notation O∗() suppresses a polynomial factor in the input length. For
` ∈ N, by [`] we denote the set {1, . . . , `}.

3 Foundations for Inductive Recognition

We describe the foundations of the general technique that we use to recognize monopolar and
2-subcolorable graphs. The technique works in a similar way to the iterative compression

I. Kanj, C. Komusiewicz, M. Sorge, and E. J. van Leeuwen 14:5

technique by Reed et al. [18]. Let G be an arbitrary hereditary graph class (i.e. if G ∈ G, then
G′ ∈ G for every induced subgraph G′ of G). We call an algorithm A an inductive recognizer
for G if given a graph G = (V,E), a vertex v ∈ V such that G − v ∈ G, and a certificate
for G − v ∈ G, algorithm A correctly decides whether G ∈ G and gives a membership
certificate if G ∈ G.

I Theorem 3.1 (?). Given an inductive recognizer A for G, we can recognize whether a
given graph G = (V,E) is a member of G in time O(|V |+ |E|) +

∑|V |
i=1 T (i), where T (i) > 0

is the worst-case running time of A on a graph of size at most i.

For the purpose of this paper, we consider parameterized inductive recognizers. In addition
to G and v, these recognizers take a nonnegative integer k as input. The above general
theorem can then be instantiated as follows.

I Corollary 3.2 (?). Let k be a nonnegative integer, and let ΠA and ΠB be two graph
properties. Let Gk be a hereditary class of (ΠA,ΠB)-graphs with an arbitrary additional
property that may depend on k.

Given a parameterized inductive recognizer A for Gk, we can recognize whether a given
graph G = (V,E) is a member of Gk in time O(|V |+ |E|) +

∑|V |
i=1 T (i, k), where T (i, k)

is the worst-case running time of A with parameter k on a graph of size at most i.
Given a parameterized inductive recognizer A for Gk that runs in time f(k) ·∆, where ∆ is
the maximum degree of the input graph and f is an arbitrary computable function, we can
recognize whether a given graph G = (V,E) is a member of Gk in time f(k) · (|V |+ |E|).

4 An FPT algorithm for Monopolar Recognition

In this section, we give an FPT algorithm for Monopolar Recognition parameterized by
the number of clusters. Throughout, given a graph G = (V,E) and a nonnegative integer
k, we say that a monopolar partition (A,B) of G is valid if G[A] is a cluster graph with at
most k clusters. Using Corollary 3.2, it suffices to give a parameterized inductive recognizer
for graphs with a valid monopolar partition. That is, we need to solve the following problem
in time f(k) ·∆, where f is some computable function and ∆ the maximum degree of G:

Inductive Monopolar Recognition
Input: A graph G = (V,E), a vertex v ∈ V , and a valid monopolar partition (A′, B′)
of G′ = G− v.
Question: Does G have a valid monopolar partition (A,B)?

Fix an instance of Inductive Monopolar Recognition with a graph G = (V,E), a
vertex v ∈ V , and a valid monopolar partition (A′, B′) of G′ = G− v.

To find a valid monopolar partition (A,B) of G, we try the two possibilities of placing v
in A or placing v in B. More precisely, in one case, we start a search from the bipartition (A′∪
{v}, B′), and in the other case, we start a search from the bipartition (A′, B′ ∪ {v}). Neither
of these two partitions is necessarily a valid monopolar partition of G. The search strategy is
to try to “repair” a candidate partition by moving few vertices from one part of the partition
to the other part. During this process, if a vertex is moved from one part to the other, then it
will never be moved back. To formalize this approach, we introduce the notion of constraints.

I Definition 4.1. A constraint C = (AC∗ , ACP , BC∗ , BCP) is a four-partition of V such that AC∗ ⊆
A′ and BC∗ ⊆ B′. The vertices in ACP and BCP are called permanent vertices of the constraint.
A constraint C = (AC∗ , ACP , BC∗ , BCP) is fulfilled by a vertex bipartition (A,B) of G if (A,B) is
a valid monopolar partition of G such that:

SWAT 2016

14:6 Parameterized Algorithms for Recognizing Monopolar and 2-Subcolorable Graphs

1. ACP ⊆ A; and
2. BCP ⊆ B.

The permanent vertices in ACP and BCP in the above definition will correspond to those
vertices that were moved during the search from one part to the other part. Note that:

I Fact 4.2. Each valid monopolar partition (A,B) of G fulfills either (A′, {v}, B′, ∅) or
(A′, ∅, B′, {v}).

We call the two constraints in Fact 4.2 the initial constraints of the search. We solve Induc-
tive Monopolar Recognition by giving a search-tree algorithm that determines for each
of the two initial constraints whether there is a partition fulfilling it. The root of the search
tree is a dummy node that has two children, associated with the two initial constraints. Each
non-root node in the search tree is associated with a constraint C, and the algorithm searches
for a solution that fulfills C. To this end, the algorithm applies reduction and branching rules
that find vertices that in every valid monopolar partition (A,B) fulfilling C are in AC∗ ∩B or
BC∗ ∩A; that is, these vertices must “switch sides”.

Formally, a reduction rule that is applied to a constraint C associated with a node α in
the search tree associates α with a new constraint C′ or rejects C; the reduction rule is correct
either if C has a fulfilling partition if and only if C′ does, or if the rule rejects C, then no valid
monopolar partition of G fulfills C. A branching rule applied to a constraint C associated
with a node α in the search tree produces more than one child node of α, each associated
with a constraint; the branching rule is correct if C has a fulfilling partition if and only if
at least one of the child nodes of α is associated with a constraint C′ that has a fulfilling
partition.

The algorithm first performs the reduction rules exhaustively, in order, and then performs
the branching rules, in order. That is, Reduction Rule i may only be applied if Reduction
Rule i′ for all i′ < i cannot be applied. In particular, after Reduction Rule i is applied, we
start over and apply Reduction Rule 1, etc. The same principle applies to the branching
rules; moreover, branching rules are only applied if no reduction rule can be applied.

Let C = (AC∗ , ACP , BC∗ , BCP) be a constraint. We now describe the reduction rules. Bear
in mind that cluster graphs contain no P3 as an induced subgraph (Fact 2.1). The first
reduction rule identifies obvious cases in which a constraint cannot be fulfilled.

I Reduction Rule 4.3 (?). If G[ACP] is not a cluster graph with at most k clusters, or
if G[BCP] is not an independent set, then reject the current constraint.

The second reduction rule finds vertices that must be moved from BC∗ to ACP .

I Reduction Rule 4.4 (?). If there is a vertex u ∈ BC∗ that has a neighbor in BCP , then
set ACP ← ACP ∪ {u} and BC∗ ← BC∗ \ {u}; that is, replace C with the constraint (AC∗ , ACP ∪
{u}, BC∗ \ {u}, BCP).

The third reduction rule finds vertices that must be moved from AC∗ to BCP .

I Reduction Rule 4.5 (?). If there is a vertex u ∈ AC∗ and two vertices w, x ∈ ACP such
that G[{u,w, x}] is a P3, set AC∗ ← AC∗ \ {u} and BCP ← BCP ∪ {u}.

The first branching rule identifies pairs of vertices from AC∗ such that at least one of them
must be moved to BCP because they form a P3 with a vertex in ACP .

I Branching Rule 4.6 (?). If there are two vertices u,w ∈ AC∗ and a vertex x ∈ ACP such
that G[{u,w, x}] is a P3, then branch into two branches, one associated with the constraint
(AC∗ \ {u}, ACP , BC∗ , BCP ∪ {u}) and one with constraint (AC∗ \ {w}, ACP , BC∗ , BCP ∪ {w}).

I. Kanj, C. Komusiewicz, M. Sorge, and E. J. van Leeuwen 14:7

It is important to observe that if none of the previous rules applies, then (AC∗ ∪ACP , BC∗ ∪BCP)
is a monopolar partition (we prove this rigorously in Lemma 4.8). However, G[AC∗ ∪ACP] may
consist of too many clusters for this to be a valid monopolar partition. To check whether it
is possible to reduce the number of clusters in G[AC∗ ∪ACP], we apply a second branching rule
that deals with singleton clusters in G[A′].

I Branching Rule 4.7 (?). If there is a vertex u ∈ AC∗ such that {u} is a cluster in G[A′],
then branch into two branches: the first is associated with the constraint (AC∗ \ {u}, ACP ∪
{u}, BC∗ , BCP), and the second is associated with the constraint (AC∗ \ {u}, ACP , BC∗ , BCP ∪ {u}).

If no more rules apply to a constraint C, then we can determine whether C can be fulfilled:

I Lemma 4.8. Let C = (AC∗ , ACP , BC∗ , BCP) be a constraint to which Reduction Rules 4.3, 4.4,
and 4.5, and Branching Rules 4.6 and 4.7 do not apply. Then (AC∗ ∪ ACP , BC∗ ∪ BCP) is a
monopolar partition. Moreover, there is a valid monopolar partition (A,B) fulfilling C if and
only if (AC∗ ∪ACP , BC∗ ∪BCP) is valid.

Proof. First, we show that (AC∗ ∪ ACP , BC∗ ∪ BCP) is a monopolar partition. There are no
induced P3’s in G[AC∗ ∪ACP], because Reduction Rules 4.3 and 4.5 and Branching Rule 4.6 do
not apply, and because there are no induced P3’s in G containing three vertices from AC∗ ⊆ A′.
Similarly, there are no edges in G[BC∗ ∪ BCP], because Reduction Rules 4.3 and 4.4 do not
apply, and because there are no edges in G[B′] and BC∗ ⊆ B′.

To show the second statement in the lemma, observe that, if (AC∗ ∪ACP , BC∗ ∪BCP) is valid,
then C is fulfilled by (AC∗ ∪ACP , BC∗ ∪BCP). It remains to show that, if (AC∗ ∪ACP , BC∗ ∪BCP)
is not valid, then each monopolar partition (A,B) of G fulfilling C is not valid. For the
sake of contradiction, assume that this is not the case and let (A,B) be a valid monopolar
partition fulfilling C. Since (AC∗ ∪ ACP , BC∗ ∪ BCP) is a monopolar partition of G that is not
valid, there are more than k clusters in G[AC∗ ∪ACP]. Thus, there is a cluster Q in G[AC∗ ∪ACP]
such that Q ⊆ B. Note that |Q| = 1, because G[B] is an independent set and Q ⊆ B.
Because (A,B) fulfills C, Q ∩ACP = ∅ and thus Q ⊆ AC∗ . Hence, Q is a subset of a cluster Q′
of G[A′], as Q ⊆ AC∗ ⊆ A′. However, |Q′| ≥ 2, because Branching Rule 4.7 does not apply
even though Q ⊆ AC∗ . Hence, any rule that moved the vertices of Q′ \Q was not Branching
Rule 4.7. Then the description of the other rules implies that Q′ \ Q ⊆ BCP . Note that
BCP ⊆ B, because (A,B) fulfills C. Hence, Q′ ⊆ B and thus G[B] is not an independent set.
Therefore, (A,B) is not a monopolar partition, a contradiction to our choice of (A,B). J

The following lemmas will be used to upper bound the depth of the search tree, and the
number of applications of each rule along each root-leaf path in this tree. Herein a leaf of
the search tree is a node associated either with a constraint that Reduction Rule 4.3 rejects,
or with a constraint to which no rule applies.

I Lemma 4.9. Along any root-leaf path in the search tree of the algorithm, Reduction Rule 4.4
is applied at most k + 1 times.

Proof. Let C = (AC∗ , ACP , BC∗ , BCP) be a constraint obtained from an initial constraint via k+1
applications of Reduction Rule 4.4 and an arbitrary number of applications of Reduction
Rules 4.3 and 4.5, and Branching Rules 4.6 and 4.7. Each application of Reduction Rule 4.4
adds a vertex of B′ to ACP . Since G[B′] is an independent set, any monopolar partition (A,B)
with ACP ⊆ A has at least k + 1 clusters in G[A] and, therefore, is not valid. Reduction
Rule 4.3 will then be applied before any further application of Reduction Rule 4.4, and the
constraint C will be rejected. J

SWAT 2016

14:8 Parameterized Algorithms for Recognizing Monopolar and 2-Subcolorable Graphs

I Lemma 4.10. Along any root-leaf path in the search tree of the algorithm, Reduction
Rule 4.5 and Branching Rules 4.6 and 4.7 are applied at most k + 1 times in total.

Proof. Let C = (AC∗ , ACP , BC∗ , BCP) be a constraint obtained from an initial constraint via k+1
applications of Reduction Rule 4.5 and Branching Rules 4.6 and 4.7, and an arbitrary number
of applications of the other rules. Let ks denote the number of singleton clusters in G[A′].
Observe that each application of Reduction Rule 4.5 or Branching Rules 4.6 and 4.7 makes a
vertex of AC∗ ⊆ A′ permanent by placing it in ACP or BCP . By the description of all rules, a
vertex will never be made permanent twice. Hence, out of the k+ 1 applications of Reduction
Rule 4.5 and Branching Rules 4.6 and 4.7, at most ks make the vertex from a singleton
cluster of G[A′] permanent. Observe that Branching Rule 4.7 cannot make a vertex from a
non-singleton cluster in G[A′] permanent. Thus, Reduction Rule 4.5 and Branching Rule 4.6
make at least k−ks +1 vertices in the k−ks non-singleton clusters of G[A′] permanent. Since
k−ks +1 ≥ 1, this also implies that a non-singleton cluster exists. By the pigeonhole principle,
out of the k− ks + 1 vertices that are made permanent by Reduction Rule 4.5 and Branching
Rule 4.6, two are from the same non-singleton cluster in G[A′]. Since both Reduction Rule 4.5
and Branching Rule 4.6 only move vertices from AC∗ to BCP , it follows that BCP contains two
adjacent vertices. Then the constraint C will be rejected by Reduction Rule 4.3, which is
applied before any further rule is applied. J

I Theorem 4.11. Inductive Monopolar Recognition can be solved in O(2k · k3 ·∆)
time, where ∆ is the maximum degree of G.

Proof. We call a leaf of the search tree associated with a constraint to which no rule applies
an exhausted leaf. By Lemma 4.8 and the correctness of the rules, G has a valid monopolar
partition if and only if for at least one exhausted leaf node, the partition (AC∗ ∪ACP , BC∗ ∪BCP),
induced by the constraint C associated with that node, is a valid monopolar partition. Hence,
if the search tree has an exhausted leaf for which the partition (AC∗ ∪ACP , BC∗ ∪BCP), induced
by the constraint C associated with that node, is a valid monopolar partition, the algorithm
answers “yes”; otherwise, it answers “no”. Therefore, the described search-tree algorithm
correctly decides an instance of Inductive Monopolar Recognition.

To upper bound the running time, let T denote the search tree of the algorithm. By
Lemma 4.10, Branching Rules 4.6 and 4.7 are applied at most k + 1 times in total along any
root-leaf path in T . It follows that the depth of T is at most k+ 2. As each of the branching
rules is a two-way branch, T is a binary tree, and thus the number of leaves in T is O(2k).

The running time along any root-leaf path in T is dominated by the overall time taken
along the path to test the applicability of the reduction and branching rules, and to apply
them. By Lemma 4.9 and Lemma 4.10, along any root-leaf path in T the total number
of applications of Reduction Rules 4.4 and 4.5 and Branching Rules 4.6 and 4.7 is O(k).
Reduction Rule 4.3 is applied once before the application of each of the aforementioned rules.
It follows that the total number of applications of all rules along any root-leaf path in T is
O(k). Moreover, T has O(2k) leaves as argued before. Therefore, we test for the applicability
of the rules and apply them, or use the check of Lemma 4.8, at most O(2k ·k) times. We next
upper bound the time to test the applicability of the rules and to apply them by O(k2 ·∆).

Let C = (AC∗ , ACP , BC∗ , BCP) be a constraint associated with a node in T . Observe that
each cluster in G[AC∗] has size O(∆). Since G[AC∗] has at most k clusters, this implies
that |AC∗ | ≤ k ·∆. Thus, in O(k ·∆) time, we can compute a list of all clusters in G[AC∗] and
the size of each cluster. The same holds for G[A′]. Observe that we can always check in O(1)
time, for a given vertex v, whether v is contained in A′, AC∗ , ACP , BC∗ , or BCP and, in case v
is contained in A′ or AC∗ , we can find the index and the size of the cluster that contains v.

I. Kanj, C. Komusiewicz, M. Sorge, and E. J. van Leeuwen 14:9

Moreover, by Lemma 4.9 and 4.10, we can assume that |ACP | = O(k), and by Lemma 4.10,
we can assume that |BCP | = O(k).

To test the applicability of Reduction Rules 4.3 and 4.4, we check whether G[ACP] is a
cluster graph with at most k clusters, whether G[BCP] is an independent set, and whether
there is an edge with one endpoint in BCP and the other endpoint in BC∗ . This can be done
in O(k ·∆) time since |ACP | = O(k) and |BCP | = O(k).

To test the applicability of Reduction Rule 4.5, we consider each pair v, w of vertices in ACP .
If v and w are adjacent, then in O(∆) time we can check whether there is a vertex u ∈ AC∗
such that u is adjacent to exactly one of v and w. If v and w are not adjacent, then in O(∆)
time we can check whether they have a common neighbor in AC∗ . If neither condition applies
to any pair v, w, then Reduction Rule 4.5 does not apply. Overall, this test takes O(k2 ·∆)
time.

To test the applicability of Branching Rule 4.6, we can check for each vertex v of the at
most k vertices of ACP in O(∆) time whether v has neighbors in two different clusters of AC∗ ,
or whether there are two vertices u,w in the same cluster of AC∗ such that v is adjacent to u
but not adjacent to w. If one of the two cases applies to some vertex v ∈ ACP , then Branching
Rule 4.6 applies to v. Otherwise, there is no P3 containing exactly one vertex from ACP and
exactly two vertices from AC∗ , and Branching Rule 4.6 does not apply. Hence, the applicability
of Branching Rule 4.6 can be tested in O(k ·∆) time.

To test the applicability of Branching Rule 4.7, we can check in O(k) time, whether G[AC∗]
contains a singleton cluster that is also a singleton cluster of G[A′].

All rules can trivially be applied in O(1) time if they were found to be applicable. Hence,
the running time to test and apply any of the rules is O(k2 ·∆).

Finally, if none of the rules applies, then we can check in O(k · ∆) time whether the
number of clusters in G[AC∗ ∪ACP] is at most k. Hence, the algorithm runs in O(2k · k3 ·∆)
time in total. J

Given the above theorem, Corollary 3.2 immediately implies Theorem 1.1.

5 An FPT algorithm for 2-Subcoloring

In this section, we give an FPT algorithm for 2-Subcoloring parameterized by the smallest
number of clusters in the two parts. Although the general approach is similar to the approach
used for Monopolar Recognition, in that it relies on the inductive recognition technique
and the notion of constraints, the algorithm is substantially more complex. In particular,
the notion of constraints and the reduction and branching rules are more involved, mainly
due to the much more complicated structure of 2-subcolorable graphs.

Throughout, given a graph G and a nonnegative integer k, we call a 2-subcoloring (A,B)
of G valid if G[A] has at most k cliques. Using the inductive recognition approach, we need
a parameterized inductive recognizer for the following problem:

Inductive 2-Subcoloring
Input: A graph G = (V,E), a vertex v ∈ V , and a valid 2-subcoloring (A′, B′)
of G′ = G− v.
Question: Does G have a valid 2-subcoloring (A,B)?

Fix an instance of Inductive 2-Subcoloring with a graph G = (V,E), a vertex v ∈ V ,
and a valid 2-subcoloring (A′, B′) of G′ = G− v. Let n = |V |. We again apply a search-tree
algorithm that starts with initial partitions (AC∗ , BC∗) of V , derived from (A′, B′), that are

SWAT 2016

14:10 Parameterized Algorithms for Recognizing Monopolar and 2-Subcolorable Graphs

not necessarily 2-subcolorings of G. Then, we try to “repair” those partitions by moving
vertices between AC∗ and BC∗ to form a valid 2-subcoloring (A,B) of G. As before, each node
in the search tree is associated with one constraint.

I Definition 5.1. A constraint C = (AC1 , . . . , ACk , BC1 , . . . , BCn, ACP , BCP) consists of a parti-
tion (AC1 , . . . , ACk , BC1 , . . . , BCn) of V and two vertex sets ACP ⊆ AC∗ and BCP ⊆ BC∗ , where
AC∗ =

⋃k
i=1 A

C
i and BC∗ =

⋃n
i=1 B

C
i , such that for any i 6= j:

u and w are not adjacent for any u ∈ ACi \ACP and w ∈ ACj \ACP , and
u and w are not adjacent for any u ∈ BCi \BCP and w ∈ BCj \BCP .

We explicitly allow (some of) the sets of the partition (AC1 , . . . , ACk , BC1 , . . . , BCn) of V to be
empty. The vertices in ACP and BCP are called permanent vertices of the constraint.

The permanent vertices in ACP and BCP in the definition will correspond precisely to those
vertices that have switched sides during the algorithm. We refer to the sets AC1 , . . . , ACk
and BC1 , . . . , BCn as groups; during the algorithm, G[AC∗] and G[BC∗] are not necessarily cluster
graphs and, thus, we avoid using the term clusters.

We now define the notion of a valid 2-subcoloring fulfilling a constraint. Intuitively
speaking, a constraint C is fulfilled by a bipartition (A,B) if (A,B) respects the assignment
of the permanent vertices stipulated by C, and if all vertices that do not switch sides stay in
the bipartition (A,B) in the same groups they belong to in C. This notion is formalized as
follows.

I Definition 5.2. A constraint C = (AC1 , . . . , ACk , BC1 , . . . , BCn, ACP , BCP) is fulfilled by a bipar-
tition (A,B) of V if G[A] is a cluster graph with k clusters A1, . . . , Ak and G[B] is a cluster
graph with n clusters B1, . . . , Bn (some of the clusters may be empty) such that:
1. for each i ∈ [k], Ai ∩AC∗ ⊆ ACi ;
2. for each i ∈ [n], Bi ∩BC∗ ⊆ BCi ;
3. ACP ⊆ A; and
4. BCP ⊆ B.
We now need a set of initial constraints to jumpstart the search-tree algorithm.

I Lemma 5.3 (?). Let A′1, . . . , A′k denote the clusters of G′[A′] and let B′1, . . . , B′n denote
the clusters of G′[B′]. Herein, if there are less than k clusters in G[A′] or less than n clusters
in G[B′], we add an appropriate number of empty sets. By relabeling, we may assume that
only B′1, . . . , B′i contain neighbors of v, and B′i+1 = ∅. Each valid 2-subcoloring (A,B) of G
fulfills either:

(A′1, . . . , A′j ∪ {v}, . . . , A′k, B′1, . . . , B′n, {v}, ∅) for some j ∈ [k], or
(A′1, . . . , A′k, B′1, . . . , B′j ∪ {v}, . . . , B′n, ∅, {v}) for some j ∈ [i+ 1].

Now that we have identified the initial constraints, we turn to the search-tree algorithm
and its reduction and branching rules. A crucial ingredient to the rules and the analysis of
the running time is the following lemma. A consequence of the lemma is that if the number
of initial constraints is too large, then most of them should be rejected immediately.

I Lemma 5.4 (?). Let C = (AC1 , . . . , ACk , BC1 , . . . , BCn, ACP , BCP) be a constraint and let (A,B)
be any valid 2-subcoloring of G fulfilling C. If u ∈ V has neighbors in more than k+ 1 groups
among BC1 , . . . , BCn, then u ∈ A.

Lemma 5.4 implies that if v has neighbors in more than k + 1 clusters of A′, then we should
immediately reject the initial constraints generated by Lemma 5.3 that place v in BCP . Hence,
we obtain the following corollary of Lemmas 5.3 and 5.4.

I. Kanj, C. Komusiewicz, M. Sorge, and E. J. van Leeuwen 14:11

I Corollary 5.5 (?). Lemma 5.3 generates at most 2k+2 constraints that are not immediately
rejected.

As before, each non-root node of the search tree is associated with a constraint. The root
of the search tree is a dummy node with children associated with the constraints generated
by Lemma 5.3 that are not immediately rejected due to Lemma 5.4. We now give two
reduction rules, which are applied exhaustively to each search-tree node, in the order they
are presented.

Let C = (AC1 , . . . , ACk , BC1 , . . . , BCn, ACP , BCP) be a constraint. The first reduction rule
identifies some obvious cases in which the constraint cannot be fulfilled.

I Reduction Rule 5.6 (?). If G[ACP] or G[BCP] is not a cluster graph, or if there are i 6= j

such that there is an edge between ACi ∩ ACP and ACj ∩ ACP or an edge between BCi ∩ BCP
and BCj ∩BCP , then reject C.

The second reduction rule is the natural consequence of Lemma 5.4.

I Reduction Rule 5.7 (?). If there is a vertex u ∈ ACi \ ACP that has neighbors in more
than k + 1 groups of BC∗ , then set ACP ← ACP ∪ {u}.

The algorithm contains a single branching rule. This rule, called switch(u), uses branching
to fix a vertex u in one of the clusters in one of the parts of the 2-subcoloring. The vertices
to which switch() must be applied are identified by switching rules. We say that a switching
rule that calls for applying switch(u) is correct if for all valid 2-subcolorings (A,B) of G
fulfilling C, we have u ∈ AC∗ ∩B or u ∈ BC∗ ∩ A. We first describe the switching rules, and
then describe switch(u). Recall from Fact 2.1 that cluster graphs do not contain induced
P3’s.

The first switching rule identifies vertices that are not adjacent to some permanent vertices
of their group.

I Switching Rule 5.8. If there is a vertex u such that u ∈ ACi \ACP and u is not adjacent to
some vertex in ACi ∩ACP , or u ∈ BCi \BCP and u is not adjacent to some vertex in BCi ∩BCP ,
then call switch(u).

The second switching rule finds vertices that have permanent neighbors in another group.

I Switching Rule 5.9. If there is a vertex u such that u ∈ ACi \ ACP and u has a neighbor
in ACP \ACi , or u ∈ BCi \BCP and u has a neighbor in BCP \BCi , then call switch(u).

Now, we describe switch(u), which is a combination of a reduction rule and a branching rule.
There are two main scenarios that we distinguish. If u has permanent neighbors in the other
part, then there is only one choice for assigning u to a group. Otherwise, we branch into all
(up to symmetry when a group is empty) possibilities to place u into a group. It is important
to note that the switching rules never apply switch(u) to a permanent vertex.

I Branching Rule 5.10 (switch(u)).
If u ∈ ACi \ACP and u has a permanent neighbor in some BCj , then set ACi ← ACi \{u}, BCj ←
BCj ∪ {u}, BCP ← BCP ∪ {u}.
If u ∈ ACi \ACP and u has only nonpermanent neighbors in BC∗ , then, for each BCj such
that N(u)∩BCj 6= ∅ and BCj ∩BCP = ∅, and for one BCj such that BCj = ∅ (chosen arbitrarily),
branch into a branch associated with the constraint (AC1 , . . . , ACi \{u}, . . . , ACk , BC1 , . . . , BCj ∪
{u}, . . . , BCn, ACP , BCP ∪ {u}).

SWAT 2016

14:12 Parameterized Algorithms for Recognizing Monopolar and 2-Subcolorable Graphs

If u ∈ BCi \BCP and u has a permanent neighbor in some ACj , then set BCi ← BCi \{u}, ACj ←
ACj ∪ {u}, ACP ← ACP ∪ {u}.
If u ∈ BCi \ BCP and u has only nonpermanent neighbors in AC∗ , then for each ACj
with ACj ∩ ACP = ∅, branch into a branch associated with the constraint (AC1 , . . . , ACj ∪
{u}, . . . , ACk , BC1 , . . . , BCi \ {u}, . . . , BCn, ACP ∪ {u}, BCP); if no such ACj exists, reject C.

If none of the previous rules applies, then the constraint directly gives a solution:

I Lemma 5.11. Let C = (AC1 , . . . , BCn, ACP , BCP) be a constraint such that none of the rules
applies. Then (AC∗ , BC∗) is a valid 2-subcoloring.

Proof. We need to show that G[AC∗] and G[BC∗] are cluster graphs and that G[AC∗] has at
most k clusters. First, we claim that G[ACi] is a clique for every i = 1, . . . , k. Every vertex
in ACi \ ACP is adjacent to every vertex in ACi ∩ ACP ; otherwise, Switching Rule 5.8 applies.
Any two vertices in ACi \ACP are also adjacent, because they are in the same cluster of A′. It
remains to show that G[ACi ∩ ACP] is a clique. By the description of switch(u), if a vertex
x is placed into ACi and ACi ∩ ACP 6= ∅, then x is adjacent to a vertex of ACi ∩ ACP . Hence,
G[ACi ∩ ACP] is connected. Since Reduction Rule 5.6 does not apply, G[ACi ∩ ACP] does not
contain an induced P3 and, thus, it is a clique. Hence, G[ACi] is a clique, as claimed.

Second, we claim that there are no edges between ACi and ACj , where i 6= j. Suppose for
the sake of a contradiction that e is such an edge. Since Reduction Rule 5.6 does not apply, e
is incident with at least one nonpermanent vertex. Since Switching Rule 5.9 does not apply,
e is in fact incident with two nonpermanent vertices. Then e cannot exist by the definition
of a constraint. The claim follows.

The combination of the above claims shows that G[AC∗] is a cluster graph with the clusters
ACi (some of which may be empty) and, thus, has at most k clusters. Similar arguments
show that G[BC∗] is a cluster graph: in the above argument, we used only Reduction Rule 5.6
and Switching Rules 5.8 and 5.9, which apply to vertices in AC∗ and BC∗ symmetrically. J

I Theorem 5.12. Inductive 2-Subcoloring can be solved in O(k2k+2 · (|V |+ |E|)) time.

Proof. Given the valid 2-subcoloring (A′, B′) of G′, we use Lemma 5.3 to generate a set
of initial constraints, and reject those which cannot be fulfilled due to Lemma 5.4. By
Corollary 5.5, at most 2k+2 initial constraints remain, which are associated with the children
of the (dummy) root node. For each node of the search tree, we first exhaustively apply the
reduction rules on the associated constraint. Afterwards, if there exists a vertex u to which
a switching rule applies, then we apply switch(u). If switch(u) does not branch but instead
reduces to a new constraint, then we apply the reduction rules exhaustively again, etc.

A leaf of the search tree is a node associated either with a constraint that is rejected,
or with a constraint to which no rule applies. The latter is called an exhausted leaf. If the
search tree has an exhausted leaf, then the algorithm answers “yes”; otherwise, it answers
“no”. By the correctness of the reduction, branching, and switching rules, and by Lemma 5.11,
graph G has a valid 2-subcoloring if and only if the search tree has at least one exhausted
leaf node. Therefore, the described search-tree algorithm correctly decides an instance of
Inductive 2-Subcoloring.

We now bound the running time of the algorithm. Observe that each described reduction
rule and the branching rule switch() either rejects the constraint or makes a vertex permanent.
Hence, along each root-leaf path, O(n) rules are applied. Each rule can trivially be tested
for applicability and applied in polynomial time. Hence, it remains to bound the number of
leaves of the search tree.

As mentioned, at the root of the search tree, we create at most O(n) constraints, out of
which at most 2k+2 constraints do not correspond to leaf nodes by Lemma 5.3, Corollary 5.5

I. Kanj, C. Komusiewicz, M. Sorge, and E. J. van Leeuwen 14:13

and Reduction Rule 5.7. The only branches are created by a call to switch(u) for a vertex u
that has only non-permanent neighbors in the other part of the bipartition (AC∗ , BC∗). Observe
that if such a vertex u ∈ BC∗ \BCP , then in each constraint C′ constructed by switch(u) the
number of groups in AC′

∗ that have at least one permanent vertex increases by one compared
to C. Since each constraint has k groups in AC∗ , this branch can be applied at most k times
along each root-leaf path in the search tree.

Similarly, if u ∈ AC∗ \ACP , then in each constraint C′ constructed by switch(u) the number
of groups in BC∗ that have at least one permanent vertex increases by one compared to C.
We claim that, if BC∗ has k groups with a permanent vertex, then u has a neighbor in BCP .
First, each permanent vertex in BC∗ is part of A′ by the description of the rules. Moreover,
the permanent vertices of the k groups in BC∗ with a permanent vertex stem from k different
clusters in G[A′], because switch() places a vertex of AC∗ \ACP that has neighbors in BCP in
the same group as its neighbors in BCP . This implies that one of the clusters in G[A′] that
the permanent vertices stem from contains u. Hence, u is adjacent to a vertex in BCP , as
claimed. The claim implies that if BC∗ has k groups with a permanent vertex, then switch(u)
applied to a vertex u ∈ AC∗ \ ACP does not branch. Hence, also the branch of switch(u) in
which u ∈ AC∗ \ACP is performed at most k times along each root-leaf path in the search tree.

In summary, the branchings of switch(u) in which u ∈ BC∗ \BCP branch into at most k cases,
and the branchings in which u ∈ AC∗ \ACP branch into at most k + 2 cases, since Reduction
Rule 5.7 does not apply. Observe that k of the initial constraints have already one group
in AC∗ with a permanent vertex, and the other k + 1 initial constraints have one group in B
with a permanent vertex. Thus, if the initial constraint C places v in ACP , then the overall
number of constraints from C by branching is at most kk−1 ·(k+2)k. If the initial constraint C
places v in BCP , then the overall number of constraints created from C by branching is at
most kk · (k + 2)k−1. Altogether, the number of constraints created by branching is thus

(2k + 1) · kk · (k + 2)k = (2k + 1) · kk · kk · [(1 + 1/(k/2))k/2]2 = O(k2k+1)

after noting that [(1 + 1/(k/2))k/2]2 = O(1). This provides the claimed bound on the
number of leaves of the search tree. By performing an analysis similar to that in the proof
of Theorem 4.11, we can show that the time spent along each root-leaf path of the search
tree is O(k · (|V |+ |E|)), which yields an overall running time of O(k2k+2 · (|V |+ |E|)) for
Inductive 2-Subcoloring. J

Given the above theorem, Corollary 3.2 immediately implies Theorem 1.2.

References
1 Demetrios Achlioptas. The complexity of G-free colourability. Discrete Mathematics,

165–166(0):21–30, 1997.
2 Hajo Broersma, Fedor V. Fomin, Jaroslav Nešetřil, and Gerhard J. Woeginger. More about

subcolorings. Computing, 69(3):187–203, 2002.
3 Sharon Bruckner, Falk Hüffner, and Christian Komusiewicz. A graph modification ap-

proach for finding core-periphery structures in protein interaction networks. Algorithms
for Molecular Biology, 10:16, 2015.

4 Ross Churchley and Jing Huang. List monopolar partitions of claw-free graphs. Discrete
Mathematics, 312(17):2545–2549, 2012.

5 Ross Churchley and Jing Huang. Solving partition problems with colour-bipartitions.
Graphs and Combinatorics, 30(2):353–364, 2014.

6 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

SWAT 2016

14:14 Parameterized Algorithms for Recognizing Monopolar and 2-Subcolorable Graphs

7 Reinhard Diestel. Graph Theory, 4th Edition. Springer, 2012.
8 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.

Texts in Computer Science. Springer, Berlin, Heidelberg, 2013.
9 Tınaz Ekim, Pavol Hell, Juraj Stacho, and Dominique de Werra. Polarity of chordal graphs.

Discrete Applied Mathematics, 156(13):2469–2479, 2008.
10 E. M. Eschen and X. Wang. Algorithms for unipolar and generalized split graphs. Discrete

Applied Mathematics, 162:195–201, 2014.
11 Alastair Farrugia. Vertex-partitioning into fixed additive induced-hereditary properties is

NP-hard. The Electronic Journal of Combinatorics, 11(1):R46, 2004.
12 Jirí Fiala, Klaus Jansen, Van Bang Le, and Eike Seidel. Graph subcolorings: Complexity

and algorithms. SIAM Journal on Discrete Mathematics, 16(4):635–650, 2003.
13 Peter L. Hammer and Bruno Simeone. The splittance of a graph. Combinatorica, 1(3):275–

284, 1981.
14 Sudeshna Kolay and Fahad Panolan. Parameterized Algorithms for Deletion to (r, `)-

Graphs. In Proceedings of the 35th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, volume 45 of LIPIcs, pages 420–433. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015.

15 Van Bang Le and Ragnar Nevries. Complexity and algorithms for recognizing polar and
monopolar graphs. Theoretical Computer Science, 528:1–11, 2014.

16 Colin McDiarmid and Nikola Yolov. Recognition of unipolar and generalised split graphs.
Algorithms, 8(1):46–59, 2015.

17 C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
18 Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper-

erations Research Letters, 32(4):299–301, 2004.
19 Juraj Stacho. On 2-subcolourings of chordal graphs. In Proceedings of the 8th Latin Amer-

ican Theoretical Informatics Symposium, volume 4957 of LNCS, pages 544–554. Springer,
2008.

20 Regina I. Tyshkevich and Arkady A. Chernyak. Algorithms for the canonical decomposition
of a graph and recognizing polarity. Izvestia Akad. Nauk BSSR, ser. Fiz. Mat. Nauk, 6:16–
23, 1985. In Russian.

21 Regina I. Tyshkevich and Arkady A. Chernyak. Decomposition of graphs. Cybernetics and
Systems Analysis, 21(2):231–242, 1985.

On Routing Disjoint Paths in Bounded Treewidth
Graphs
Alina Ene1, Matthias Mnich∗2, Marcin Pilipczuk†3, and
Andrej Risteski4

1 Department of Computer Science and DIMAP, University of Warwick,
Warwick, United Kingdom
A.Ene@dcs.warwick.ac.uk

2 University of Bonn, Bonn, Germany
mmnich@uni-bonn.de

3 Institute of Informatics, University of Warsaw, Warsaw, Poland
malcin@mimuw.edu.pl

4 Department of Computer Science, Princeton University, Princeton, USA
risteski@princeton.edu

Abstract
We study the problem of routing on disjoint paths in bounded treewidth graphs with both edge
and node capacities. The input consists of a capacitated graph G and a collection of k source-
destination pairsM = {(s1, t1), . . . , (sk, tk)}. The goal is to maximize the number of pairs that
can be routed subject to the capacities in the graph. A routing of a subset M′ of the pairs is
a collection P of paths such that, for each pair (si, ti) ∈ M′, there is a path in P connecting
si to ti. In the Maximum Edge Disjoint Paths (MaxEDP) problem, the graph G has capacities
cap(e) on the edges and a routing P is feasible if each edge e is in at most cap(e) of the paths of
P. The Maximum Node Disjoint Paths (MaxNDP) problem is the node-capacitated counterpart
of MaxEDP.

In this paper we obtain an O(r3) approximation for MaxEDP on graphs of treewidth at most r
and a matching approximation for MaxNDP on graphs of pathwidth at most r. Our results build
on and significantly improve the work by Chekuri et al. [ICALP 2013] who obtained an O(r · 3r)
approximation for MaxEDP.

1998 ACM Subject Classification G.2.2 Graph algorithms

Keywords and phrases Algorithms and data structures, disjoint paths, treewidth

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.15

1 Introduction

In this paper, we study disjoint paths routing problems on bounded treewidth graphs. In this
setting, we are given an undirected capacitated graph G and a collection of source-destination
pairs M = {(s1, t1), (s2, t2), . . . , (sk, tk)}. The goal is to select a maximum-sized subset
M′ ⊆ M of the pairs that can be routed subject to the capacities in the graph. More
precisely, a routing ofM′ is a collection P of paths such that, for each pair (si, ti) ∈ M′,
there is a path in P connecting si to ti. In the Maximum Edge Disjoint Paths (MaxEDP)

∗ Research partially supported by ERC Starting Grant 306465 (BeyondWorstCase).
† Research done while at University of Warwick, partially supported by DIMAP and by Warwick-QMUL

Alliance in Advances in Discrete Mathematics and its Applications.

© Alina Ene, Matthias Mnich, Marcin Pilipczuk, and Andrej Risteski;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 15; pp. 15:1–15:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 On Routing Disjoint Paths in Bounded Treewidth Graphs

problem, the graph G has capacities cap(e) on the edges and a routing P is feasible if each
edge e is in at most cap(e) of the paths of P . The Maximum Node Disjoint Paths (MaxNDP)
problem is the node-capacitated counterpart of MaxEDP.

Disjoint paths problems are fundamental problems with a long history and significant
connections to optimization and structural graph theory. The decision versions of MaxEDP
and MaxNDP ask whether all of the pairs can be routed subject to the capacities. Karp [18]
showed that, when the number of pairs is part of the input, the decision problem is NP-
complete. In undirected graphs, MaxEDP and MaxNDP are solvable in polynomial time when
the number of pairs is constant; this is a deep result of Robertson and Seymour [22] that
builds on several fundamental structural results from their graph minors project.

In this paper, we consider the optimization problems MaxEDP and MaxNDP when the
number of pairs are part of the input. These problems are NP-hard and the main focus
in this paper is on approximation algorithms for these problems in bounded treewidth
graphs. Although they may appear to be quite specialized at first, MaxEDP and MaxNDP on
capacitated graphs of small treewidth capture a surprisingly rich class of problems; in fact,
as shown by Garg, Vazirani, and Yannakakis [16], these problems are quite interesting and
general even on trees.

MaxEDP and MaxNDP have received considerable attention, leading to several break-
throughs both in terms of approximation algorithms and hardness results. MaxEDP is
APX-hard even in edge-capacitated trees [16], whereas the decision problem is trivial on trees;
thus some of the hardness of the problem stems from having to select a subset of the pairs to
route. Moreover, by subdividing the edges, one can easily show that MaxNDP generalizes
MaxEDP in capacitated graphs. However, node capacities pose several additional technical
challenges and extending the results for MaxEDP to MaxNDP is far from immediate even in
restricted graph classes and our understanding of MaxNDP is more limited.

In general graphs, the best approximation for MaxEDP and MaxNDP is an O(
√
n)

approximation [4, 19], where n is the number of nodes, whereas the best hardness for
undirected graphs is only Ω((logn)1/2−ε) [2]. Bridging this gap is a fundamental open
problem that seems quite challenging at the moment. There have been several breakthrough
results on a relaxed version of these problems where congestion is allowed1. This line of
work has culminated with a polylog(n) approximation with congestion 2 for MaxEDP [14]
and congestion 51 for MaxNDP [6]. In addition to the routing results, this work has led to
several significant insights into the structure of graphs with large treewidth and to several
surprising applications [5].

Most of the results for routing on disjoint paths use a natural multi-commodity flow
relaxation as a starting point. A well-known integrality gap instance due to Garg et al. [16]
shows that this relaxation has an integrality gap of Ω(

√
n), and this is the main obstacle for

improving the O(
√
n) approximation in general graphs. The integrality gap example is an

instance on an n× n grid that exploits a topological obstruction in the plane that prevents a
large integral routing (see Fig. 2). Since an n× n grid has treewidth Θ(

√
n), it suggests the

following natural and tantalizing conjecture that was asked by Chekuri et al. [9].

I Conjecture 1 ([9]). The integrality gap of the standard multi-commodity flow relaxation
for MaxEDP/MaxNDP is Θ(r) with congestion 1, where r is the treewidth of the graph.

Recently, Chekuri et al. [10] showed that MaxEDP admits an O(r · 3r) approximation
on graphs of treewidth at most r. This is the first approximation for the problem that is

1 A collection of paths has an edge (resp. node) congestion of c if each edge (resp. node) is in at most
c · cap(e) (resp. c · cap(v)) paths.

A. Ene, M. Mnich, M. Pilipczuk, and A. Risteski 15:3

independent of n and k, and the first step towards resolving the conjecture. One of the main
questions left open by the work of Chekuri et al. [10]—that was explicitly asked by them—is
whether the exponential dependency on the treewidth is necessary. In this paper, we address
this question and we make a significant progress towards resolving Conjecture 1.

I Theorem 2. The integrality gap of the multi-commodity flow relaxation is O(r3) for
MaxEDP in edge-capacitated undirected graphs of treewidth at most r. Moreover, there
is a polynomial time algorithm that, given a tree decomposition of G of width at most r
and a fractional solution to the relaxation of value OPT, constructs an integral routing of
size Ω(OPT/r3).

As mentioned above, MaxNDP in node-capacitated graphs is more general than MaxEDP and
it poses several additional technical challenges. In this paper, we give an O(r3) approximation
for MaxNDP on graphs of pathwidth at most r with arbitrary node capacities. This is the
first approximation guarantee for MaxNDP that is independent of n and it improves the
O(r log r logn) approximation of Chekuri et al. [9].

I Theorem 3. The integrality gap of the multi-commodity flow relaxation is O(r3) for
MaxNDP in node-capacitated undirected graphs of pathwidth at most r. Moreover, there
is a polynomial time algorithm that, given a path decomposition of G of width at most r
and a fractional solution to the relaxation of value OPT, constructs an integral routing of
size Ω(OPT/r3).

The study of routing problems in bounded treewidth graphs is motivated not only by the
goal of understanding the integrality gap of the multi-commodity flow relaxation but also by
the broader goal of giving a more refined understanding of the approximability of routing
problems in undirected graphs. Andrews et al. [2] have shown that MaxEDP and MaxNDP in
general graphs cannot be approximated within a factor better than (logn)Ω(1/c) even if we
allow a constant congestion c ≥ 1. Thus in order to obtain constant factor approximations
one needs to use additional structure. However, this seems challenging with our current
techniques and there are only a handful of results in this direction.

One of the main obstacles for obtaining constant factor approximations for disjoint paths
problems is that most approaches rely on a powerful pre-processing step that reduces an
arbitrary instance of MaxEDP/MaxNDP to a much more structured instance in which the
terminals2 are well-linked. This reduction is achieved using the well-linked decomposition
technique of Chekuri, Khanna, and Shepherd [7], which necessarily leads to an Ω(logn) loss
even in very special classes of graphs such as bounded treewidth graphs. Chekuri, Khanna,
and Shepherd [8] showed that the well-linked decomposition framework can be bypassed
in planar graphs, leading to an O(1) approximation for MaxEDP with congestion 4 (the
congestion was later improved by Séguin-Charbonneau and Shepherd [24] from 4 to 2).
This result suggests that it may be possible to obtain constant factor approximations with
constant congestion for much more general classes of graphs. In particular, Chekuri et al. [10]
conjecture that this is the case for the class of all minor-free graphs.

I Conjecture 4 ([10]). Let G be any proper minor-closed family of graphs. Then the
integrality gap of the multi-commodity flow relaxation for MaxEDP is at most a constant cG
when congestion 2 is allowed.

2 The vertices participating in the pairsM are called terminals.

SWAT 2016

15:4 On Routing Disjoint Paths in Bounded Treewidth Graphs

A natural approach is to attack Conjecture 4 using the structure theorem for minor-free
graphs given by Robertson and Seymour [21, 23] that asserts that every such graph admits a
tree decomposition where the size of every adhesion (the intersection of neighboring bags)
is bounded, and after turning the adhesions into cliques, every bag induces a structurally
simpler graph: one of bounded genus, with potentially a bounded number of apices and
vortices. Thus in some sense, in order to resolve Conjecture 4, one needs to understand the
base graph class (bounded genus graphs with apices and vortices) and how to tackle bounded
width tree decompositions.

The recent work of Chekuri et al. [10] has made a significant progress toward resolving
Conjecture 4 by providing a toolbox for the latter issue, and the only ingredient that is
still missing is an algorithm for planar and bounded genus graphs with a constant number
of vortices (in the disjoint paths setting, apices are very easy to handle). However, one of
the main drawbacks of their approach is that it leads to approximation guarantees that are
exponential in the treewidth. Our work strengthens the approach of Chekuri et al. [10] and
it gives a much more graceful polynomial dependence in the approximation ratio.

I Theorem 5. Let G be a minor-closed class of graphs such that the integrality gap of the
multi-commodity flow relaxation is α with congestion β. Let G` be the class of graphs that
admit a tree decomposition where, after turning all adhesions into cliques, each bag induces a
graph from G, and each adhesion has size at most `. Then the integrality gap of the relaxation
for the class G` is O(`3) · α with congestion β + 3.

We also revisit the well-linked decomposition framework of Chekuri et al. [7] and we
ask whether the Ω(logn) loss is necessary for very structured graph classes. For bounded
treewidth graphs, we give a well-linked decomposition framework that reduces an arbitrary
instance of MaxEDP to node-disjoint instances of MaxEDP that are well-linked. The loss
in the approximation for our decomposition is only O(r3), which improves the guarantee of
O(log r logn) from Chekuri et al. [9] when r is much smaller than n.

It is straightforward to obtain the improved well-linked decomposition from our algorithm
for MaxEDP. Nevertheless, we believe it is beneficial to have such a well-linked decomposition,
given that well-linked decompositions are one of the technical tools at the heart of the
recent algorithms for routing on disjoint paths, integral concurrent flows [3], and flow
and cut sparsifiers [13]. In particular, we hope that such a well-linked decomposition
will have applications to finding flow and cut sparsifiers with Steiner nodes for bounded
treewidth graphs. A sparsifier for a graph G with k source-sink pairs is a significantly
smaller graph H containing the terminals (and potentially other vertices, called Steiner
nodes) that approximately preserves multi-commodity flows or cuts between the terminals.
Such sparsifiers have been extensively studied and several results are known both in general
graphs and in bounded treewidth graphs (see Andoni et al. [1] and references therein).

A different question one could ask for problems in bounded treewidth graphs is whether
additional computational power beyond polynomial-time running time can help with MaxEDP
or MaxNDP. It is a standard exercise to design an nO(r)-time dynamic programming algorithm
(i.e., polynomial for every constant r) for MaxNDP in uncapacitated graphs of treewidth
r, while the aforementioned results on hardness of MaxEDP in capacitated trees [16] rule
out similar results for capacitated variants. Between the world of having r as part of the
input, and having r as a fixed constant, lies the world of parameterized complexity, that asks
for algorithms (called fixed-parameter algorithms) with running time f(r) · nc, where f is
any computable function, and c is a constant independent of the parameter. It is natural to
ask whether allowing such running time can lead to better approximation algorithms. As a

A. Ene, M. Mnich, M. Pilipczuk, and A. Risteski 15:5

t′

t

β(t′)

β(t)
σ(t)

α(t){γ(t)

Figure 1 Notations used for a node t with parent t′ in a tree decomposition (T , β). The shaded
part defines α(t).

first step towards resolving this question, we show a hardness for MaxNDP parameterized by
treedepth, a much more restrictive graph parameter than treewidth (cf. [20]).

I Theorem 6. MaxNDP parameterized by the treedepth of the input graph is W [1]-hard, even
with unit capacities.

Consequently, the existence of an exact fixed-parameter algorithm is highly unlikely. We
remark that our motivation for the choice of treedepth as parameter stems from the observation
that a number of algorithms using the Sherali-Adams hierarchy to approximate a somewhat
related problem of Nonuniform Sparsest Cut in bounded treewidth graphs [12, 17] in fact
implicitly uses a rounding scheme based on treedepth rather than treewidth.

Due to space constraints, we defer the proof of Thereom 6 to the full version of this paper.

2 Preliminaries

Tree and path decompositions. In this paper all tree decompositions are rooted; that is, a
tree decomposition of a graphG is a pair (T , β) where T is a rooted tree and β : V (T)→ 2V (G)

is a mapping such that (i) for every e ∈ E(G) there is a node t ∈ V (T) with e ⊆ β(t), and
(ii) for every v ∈ V (G) the set {t | v ∈ β(t)} is non-empty and connected in T .

For a node t ∈ V (T), we call the set β(t) the bag at node t, while for an edge st ∈ E(T),
the set β(t) ∩ β(s) is called an adhesion. For a non-root node t ∈ V (T), by parent(t) we
denote the parent of t, and by σ(t) := β(t) ∩ β(parent(t)) the adhesion on the edge to the
parent of t, called henceforth the parent adhesion; for the root node t0 ∈ V (T) we put
σ(t0) = ∅. For two nodes s, t ∈ V (T), we denote by s � t if s is a descendant of t, and put
γ(t) :=

⋃
s�t β(s), α(t) := γ(t) \ σ(t), and G(t) := G[γ(t)] \ E(G[σ(t)]).

A torso at node t is a graph obtained from G[β(t)] by turning every adhesion for an edge
incident to t into a clique.

We say that (A,B) is a separation in G if A ∪ B = V (G) and there does not exist an
edge of G with an endpoint in A \B and the other endpoint in B \A. We use the following
well-known property of a tree decomposition.

I Lemma 7 ([15, Lemma 12.3.1]). Let (T , β) be a tree decomposition of a graph G. Then for
each t ∈ V (T) the pair (γ(t), V (G)\α(t)) is a separation of G, and γ(t)∩(V (G)\α(t)) = σ(t).

A path decomposition is a tree decomposition where T is a path, rooted at one of its
endpoints.

The width of a tree or path decomposition (T , β) is defined as maxt |β(t)| − 1. To ease
the notation, we will always consider decompositions of width less than r, for some integer r,
so that every bag is of size at most r.

SWAT 2016

15:6 On Routing Disjoint Paths in Bounded Treewidth Graphs

(MaxEDP-LP)

max
k∑
i=1

xi

s.t.
∑

p∈P(si,ti)

f(p) = xi ≤ 1, i ∈ [k]

∑
p: e∈p

f(p) ≤ cap(e), e ∈ E(G)

f(p) ≥ 0, p ∈ P .

s1

s2

sk

t1 t2 tk

Figure 2 The multi-commodity flow relaxation for MaxEDP. The instance on the right is the
Ω(
√
n) integrality gap example for MaxEDP with unit edge capacities [16]. Any integral routing

routes at most one pair whereas there is a multi-commodity flow that sends 1/2 units of flow for
each pair (si, ti) along the canonical path from si to ti in the grid.

Problem definitions. The input to MaxEDP is an undirected graph G with edge capacities
cap(e) ∈ Z+ and a collection M = {(s1, t1), . . . , (sk, tk)} of vertex pairs. A routing for a
subset M′ ⊆ M is a collection P of paths in G such that, for each pair (si, ti) ∈ M′, P
contains a path connecting si to ti. The routing is feasible if every edge e is in at most cap(e)
paths. In the Maximum Edge Disjoint Paths problem (MaxEDP), the goal is to maximize the
number of pairs that can be feasibly routed. The Maximum Node Disjoint Paths problem
(MaxNDP) is the node-capacitated variant of MaxEDP in which each node v has a capacity
cap(v) and in a feasible routing each node appears in at most cap(v) paths.

We refer to the vertices participating in the pairsM as terminals. It is convenient to
assume thatM form a matching on the terminals; this can be ensured by making several
copies of a terminal and attaching them as leaves.

Multicommodity flow relaxation. We use the following standard multicommodity flow
relaxation for MaxEDP (there is an analogous relaxation for MaxNDP). We use P(u, v) to
denote the set of all paths in G from u to v, for each pair (u, v) of nodes. Since the pairsM
form a matching, the sets P(si, ti) are pairwise disjoint. Let P =

⋃k
i=1 P(si, ti). The LP

has a variable f(p) for each path p ∈ P representing the amount of flow on p. For each pair
(si, ti) ∈M, the LP has a variable xi denoting the total amount of flow routed for the pair
(in the corresponding IP, xi denotes whether the pair is routed or not). The LP imposes the
constraint that there is a flow from si to ti of value xi. Additionally, the LP has capacity
constraints that ensure that the total amount of flow on paths using a given edge (resp. node
for MaxNDP) is at the capacity of the edge (resp. node).

It is well-known that the relaxation MaxEDP-LP can be solved in polynomial time, since
there is an efficient separation oracle for the dual (alternatively, one can write a compact
relaxation). Let (f,x) denote a feasible solution to MaxEDP-LP for an instance (G,M) of
MaxEDP. For each vertex v, let x(v) denote the marginal value of v in the multi-commodity
flow f ; thus, x(v) is the amount of flow routed for each terminal v.

3 Algorithm for MaxEDP in Bounded Treewidth Graphs

We give a polynomial time algorithm for MaxEDP that achieves an O(r3) approximation for
graphs with treewidth less than r. Our algorithm builds on the work of Chekuri et al. [10],

A. Ene, M. Mnich, M. Pilipczuk, and A. Risteski 15:7

and it improves their approximation guarantee from O(r · 3r) to O(r3). We use the following
routing argument as a building block.

I Proposition 8 ([11, Proposition 3.4]). Let (G,M) be an instance of MaxEDP and let (f,x)
be a feasible fractional solution for the instance. If there is a set S ⊆ V (G), a value α ≥ 1
and a flow g that for each v ∈ V (G) routes routes at least x(v)/α units of flow to some vertex
in S, then there is an integral routing of at least

(|f |
36α|S|

)
pairs.

We will later apply Proposition 8 by letting S be a subset of a bag in a tree decomposition
of G.

Our starting point is a tree decomposition (T , β) for G of width less than r and a fractional
solution (f,x) to the multicommodity flow relaxation for MaxEDP given in Section 2, that
is, the flow f routes x(v) units of flow for each vertex v ∈ V . We let |f | denote the total
amount of flow routed by f , i.e., |f | =

(1
2
)∑

v∈V x(v).
The following definitions play a key role in our algorithm.

I Definition 9 (Safe node). A node t ∈ V (T) is safe with respect to (f,x) if there is a
second multicommodity flow g in G(t) that satisfies the edge capacities of G(t) and, for each
vertex z ∈ γ(t), g routes at least

(1
4r
)
· x(z) units of flow from z to the adhesion σ(t). The

node t is unsafe if it is not safe.

I Definition 10 (Good node). A node t ∈ V (T) is good with respect to (f,x) if every flow
path in the support of f that has an endpoint in γ(t) also intersects σ(t); in other words, no
flow path is completely contained in G[α(t)]. A node is bad if it is not good.

I Remark. If a node t is good then it is also safe, as shown by the following multicommodity
flow g in G(t). For each path p in the support of f that originates in γ(t), let p′ be the
smallest prefix of p that ends at a vertex of σ(t) (since p intersects σ(t), there is such a
prefix); we set g(p′) = f(p). The resulting flow g is a feasible multicommodity flow in G(t)
that routes x(z) units of flow from z to σ(t) for each vertex z ∈ γ(t). Therefore, t is safe.

Our approach is an inductive argument based on the maximum size of a parent adhesion
that is bad or unsafe. More precisely, we prove the following:

I Theorem 11. Let (G,M) be an instance of MaxEDP and let (f,x) be a fractional solution
for (G,M), where f is a feasible multicommodity flow in G forM with marginal values x.
Let (T , β) be a tree decomposition for G of width less than r. Let `1 be the maximum size of
a parent adhesion of an unsafe node, and let `2 be the maximum size of a parent adhesion of
a bad node. There is a polynomial time algorithm that constructs an integral routing of size
at least

(1
144r3

)
·
(
1−

(1
r

))`1+`2 · |f |.

Proof. We start with a bit of preprocessing. If |f | = 0, then we return an empty routing.
Otherwise, the root node of T is always unsafe and bad, and the integers `1 and `2 are
well-defined. By considering every connected component of G independently (with inherited
tree decomposition from (T , β)), we assume that G is connected; note that in this step all
safe or good adhesions remain safe or good for every connected component. Furthermore,
we delete from (T , β) all nodes with empty bags; note that the connectivity of G ensures
that the nodes with non-empty bags induce a connected subtree of T . In this step, the root
of T may have moved to a different node (the topmost node with non-empty bag), but the
parent-children relation in the tree remains unchanged.

Once G is connected and no bag is empty, the only empty parent adhesion is the one for
the root node. We prove Theorem 11 by induction on `1 + `2 + |V (G)|.

SWAT 2016

15:8 On Routing Disjoint Paths in Bounded Treewidth Graphs

Base case. In the base case, we assume that `1 = `2 = 0. Since every parent adhesion of a
non-root node is non-empty, that implies that the only bad node is the root t0, that is, every
flow path in f passes through β(t0), which is of size at most r. By applying Proposition 8
with S = β(t0) and α = 1, we construct an integral routing of size at least 1

36r |f | ≥
1

144r3 |f |.
In the inductive step, we consider two cases, depending on if 0 ≤ `1 < `2 or 0 < `1 = `2.

Inductive step when 0 ≤ `1 < `2. Let {t1, t2, . . . , tp} be the topmost bad nodes of T
with parent adhesions of size `2, that is, it is a minimal set of such bad nodes such that
for every bad node t with parent adhesion of size `2, there exists an i ∈ {1, . . . , p} with
t � ti. For i = 1, . . . , p, let f inside

i be the subflow of f consisting of all paths that are
completely contained in G[α(ti)]. Furthermore, since `1 < `2, the node ti is safe; let gi be
the corresponding flow, i.e., a flow that routes 1

4rx(v) from every v ∈ γ(ti) to σ(ti) in G(ti).
By applying Proposition 8, there is an integral routing Pi in G(ti) that routes at least(1

144r2

)
|f inside
i | pairs. Since the subgraphs {G(ti) : 1 ≤ i ≤ p} are edge-disjoint, we get an

integral routing P :=
⋃
i Pi of size at least

(1
144r2

)∑p
i=1 |f inside

i |.
If
∑p
i=1 |f inside

i | > 1
r |f |, then we can return the routing P as the desired solution.

Otherwise, we drop the flows f inside
i , that is, consider a flow f ′ := f −

∑p
i=1 f

inside
i . Clearly,

|f ′| ≥ (1− 1
r)|f |. Furthermore, by definition of f inside

i , every node ti is good with respect to f ′.
Since deleting a flow path cannot turn a good node into a bad one nor a safe node into an
unsafe one, and all descendants of a good node are also good, we infer that every unsafe node
with respect to f ′ has parent adhesion of size at most `1, while every bad node with respect
to f ′ has parent adhesion of size less than `2. Consequently, by the induction hypothesis we
obtain an integral routing of size at least 1

144r3

(
1− 1

r

)`1+`2−1 |f ′| ≥ 1
144r3

(
1− 1

r

)`1+`2 |f |.

Inductive step when 0 < `1 = `2. In this case, we pick a node t◦ to be the lowest node
of T that is unsafe and has parent adhesion of size `1. By the definition of an unsafe node
and Menger’s theorem, there exists a set U ⊆ α(t◦) such that cap(δ(U)) < 1

4rx(U). With a
bit more care, we can extract a set U with one more property:

I Lemma 12. In polynomial time we can find a set U ⊆ α(t◦) for which (i) cap(δ(U)) <
1
4rx(U), and (ii) for every non-root node t, if σ(t) ⊆ U , then γ(t) ⊆ U .

Proof. Consider an auxiliary graph G′, obtained from G[γ(t◦)] by adding a super-source s∗,
linked for every v ∈ γ(t◦) by an arc (s∗, v) of capacity 1

4rx(v), and a super-sink t∗, linked for
every v ∈ σ(t◦) by an arc (v, t∗) of infinite capacity. Let U be such a set that δ(U ∪ {s∗})
is a minimum s∗-t∗ cut in this graph. Clearly, since U is unsafe, cap(δG′(U ∪ {s∗})) <
1
4rx(γ(t◦)) = cap(δG′(s∗)), so U 6= ∅. Also, U ⊆ α(t◦), as each node in σ(t◦) is connected
to t∗ with an infinite-capacity arc.

We claim that U satisfies the desired properties. The first property is immediate:

cap(δG(U)) = cap(δG′(U∪{s∗}))− 1
4rx(γ(t◦)\U) < 1

4r (x(γ(t◦))− x(γ(t◦) \ U)) = 1
4rx(U).

For the second property, pick a non root node t with σ(t) ⊆ U . Since σ(t) ⊆ U ⊆ α(t◦),
we have t � t◦, t 6= t◦, and γ(t) ⊆ α(t◦). Let U ′ := U ∪ γ(t). By Lemma 7, δG(U ′) ⊆ δG(U),
and hence δG′(U ′ ∪ {s∗}) ⊆ δG′(U ∪ {s∗}). However, since δG′(U ∪ {s∗}) is a minimum cut,
we have actually δG(U ′) = δG(U). Since G is connected, this implies that U = U ′, and thus
γ(t) ⊆ U . As the choice of t was arbitrary, U satisfies the second property. J

Using the cut U , we split the graph G and the flow f into two pieces as follows. Let
G1 = G[U] and G2 = G− U . Let fi be the restriction of f to Gi, i.e., the flow consisting of

A. Ene, M. Mnich, M. Pilipczuk, and A. Risteski 15:9

only flow paths that are contained in Gi. Let xi be the marginals of fi and letMi be the
subset ofM consisting of all pairs (s, t) such that {s, t} ⊆ V (Gi); note that xi(s) = xi(t) for
each pair (s, t) ∈Mi and thus (fi,xi) is a fractional routing for the instance (Gi,Mi). Let
(T , β1) and (T , β2) be the restriction of (T , β) to the vertices of G1 and G2, respectively;
we define mappings σi, γi, and αi naturally. In what follows, we consider separately two
instances Ii := 〈(Gi,Mi), (fi,xi), (T , βi)〉 for i = 1, 2.

An important observation is the following:

I Lemma 13. Every node t ∈ V (T) that is good in the original instance (i.e., as a node
of T , with respect to (f,x)) is also good in Ii with respect to (fi,xi).

Proof. Note that every flow path in fi is also present in f , and therefore intersects the parent
adhesion of f if t is a good node in the original instance. J

Consequently, every node t ∈ V (T) with |σ(t)| > `2 is good in the instance Ii, and the
maximum size of a parent adhesion of a bad node in instance Ii is at most `2. Hence,
both I1 and I2 satisfy the assumptions of Theorem 11 with not larger values of `1 and `2.
Furthermore, note that |V (Gi)| < |V (G)| for i = 1, 2.

For I2, the above reasoning allows us to simply just apply inductive step, obtaining an
integral routing P2 of size at least

|P2| ≥
(

1
144r3

)(
1−

(
1
r

))`1+`2

· |f2| . (1)

For I1, we are going to obtain a larger routing via an inductive step with better bounds.

I Lemma 14. The size of the largest parent adhesion of an unsafe node in I1 is less than `1.

Proof. Assume the contrary, let t ∈ V (T) be an unsafe adhesion with |σ1(t)| ≥ `1. If
|σ(t)| > `1, then t is good in the original instance, and by Lemma 13 it remains good in I1.
Consequently, |σ(t)| = |σ1(t)| = `1; in particular, σ(t) = σ1(t) ⊆ U .

By Lemma 12(ii) we have γ(t) ⊆ U . Consequently, t is safe in the original instance if and
only if it is safe in I1. Since t � t◦, t 6= t◦, but |σ(t)| = `2, by the choice of t◦ it holds that t
is safe in the original instance, a contradiction. J

Lemma 14 allows us to apply the inductive step to I1 and obtain an integral routing P1 of
size at least

|P1| ≥
(

1
144r3

)(
1−

(
1
r

))`1−1+`2

· |f1| . (2)

Let us now estimate the amount of flow lost by the separation into I1 and I2, i.e.,
g = f − f1 − f2. As every flow path in g passes through δ(U), we have |g| ≤ cap(δ(U)) <
1
4rx(U). Since |f1| + |g| ≥ 1

2x(U) (no flow path in f2 originates in U), we have that
|g| ≤ 1

4r · 2 · (|f1|+ |g|) . Hence,

|g| ≤ 1
2r ·

(
1− 1

2r

)−1
|f1| ≤

1
r
|f1| . (3)

By putting up together (1), (2), and (3), we obtain that

|P1|+ |P2| ≥
1

144r3

(
1− 1

r

)`1+`2
(
|f2|+

(
1− 1

r

)−1
|f1|

)

≥ 1
144r3

(
1− 1

r

)`1+`2

(|f2|+ |f1|+ |g|) = 1
144r3

(
1− 1

r

)`1+`2

|f | .

SWAT 2016

15:10 On Routing Disjoint Paths in Bounded Treewidth Graphs

This concludes the proof of Theorem 11. Since `1, `2 ≤ r, while (1− 1
r)2r = Ω(1), Theorem 11

immediately implies the promised O(r3)-approximation algorithm. J

I Remark. We conclude with observing that the improved approximation ratio of O(r3)
directly translates to the more general setting of k-sums of graph from some minor closed
family G, as discussed by Chekuri et al. [10]. That is, if we are able to α-approximate
MaxEDP with congestion β in graphs from G, we can have O(αr5)-approximation algorithm
with congestion (β + 3) in graphs admitting a tree decomposition of maximum adhesion size
at most r, and the torso of every bag being from the class G.

To see this, observe that the only place when our algorithm uses that the bags are of
bounded size (as opposed to adhesions) is the base case, where all flow paths pass through
the bag β(t0) of the root node t0. However, in this case we can proceed exactly as Chekuri et
al. [10]: using the flow paths, move the terminals to β(t0), replace connected components of
G− β(t0) with their (r2, 2)-sparsifiers, and apply the algorithm for the class G. In addition
to the O(r3) approximation factor of our algorithm, the application of the algorithm for G
incurs an approximation ratio of α and congestion of β, the use of sparsifiers adds a factor
of r2 to the approximation ratio and an additive constant +1 to the congestion, while the
terminal move adds an additional amount of 2 to the final congestion.

4 Algorithm for MaxNDP in Bounded Pathwidth Graphs

In this section we develop an O(r3)-approximation algorithm for MaxNDP in graphs of
pathwidth less than r. We follow the outline of the MaxEDP algorithm from the previous
section, with few essential changes.

Most importantly, we can no longer use Proposition 8, as it refers to edge disjoint paths,
and the proof of its main ingredient by Chekuri et al. [4] relies on a clustering technique that
stops to work for node disjoint paths. We fix this by providing in Sect. 4.1 a node-disjoint
variant of Proposition 8, using the more involved clustering approach of Chekuri et al. [7].

Then, in Sect. 4.2 we revisit step-by-step the arguments for MaxEDP, pointing out
remaining differences. We remark that the use of pathwidth instead of treewidth is only
essential in the inductive step for the case `1 < `2: if we follow the argument for MaxEDP for
bounded-treewidth graphs, the graphs G(ti) may not be node disjoint (but they are edge
disjoint), breaking the argument. Note that for bounded pathwidth graphs, there is only one
such graph considered, and the issue is nonexistent.

4.1 Routing to a small adhesion in a node-disjoint setting

I Proposition 15. Let (G,M) be an instance of MaxNDP and let (f,x) be a feasible fractional
solution for the instance. Suppose that there is also a second (feasible, i.e., respecting node
capacities) flow that routes at least x(v)/α units of flow for each v to some set S ⊆ V , where
α ≥ 1. Then there is an integral routing of Ω(|f |/(α|S|)) pairs.

Proof. Without loss of generality, we may assume that the terminals of M are pairwise
distinct and of degree and capacity one: we can always move a terminal from a vertex t to a
newly-created degree-1 capacity-1 neighbour of t.

Let g be the second flow mentioned in the statement. In what follows, we modify and
simplify the flows f and g in a number of steps. We denote by f1, f2, . . . and g1, g2, . . . flows
after subsequent modification steps; for the flow fi, by xi we denote its marginals.

A. Ene, M. Mnich, M. Pilipczuk, and A. Risteski 15:11

Symmetrizing the flow g. In the first step, we construct flows f1 and g1 with the following
property: for every terminal pair (s, t) ∈M, for every v ∈ S, g1 sends the same amount of
flow from s to v as from t to v. To obtain this goal, we first take the flow g/3, and then for
every (s, t) ∈ M redirect the flow originating at s to first go along the commodity for the
pair (s, t) in flow f/(3α) to the vertex t, and then go to S in exactly the same manner as
the flow originating at t does. It is easy to see that g1 consists of three feasible flows scaled
down by at least 1/3, thus it is feasible. Finally, we set f1 := f/3, so that g1 again sends an
amount of x1(v)/α flow from every vertex v to S. Note that |f1| = |f |/3.

Restricting to single vertex of S. To construct flows f2 and g2, pick a vertex u ∈ S that
receives the most flow in g1. Take g2 to be the flow g1, restricted only to flow paths ending
in u. Then, restrict f1 to obtain f2 as follows: for every terminal pair (s, t) ∈ M, reduce
the amount of flow from s to t to α times the total amount of flow sent from s to u by g2;
note that, by the previous step, it is also equal α times the total amount of flow sent from t

to u by g2. By this step, we maintain the invariant that g2 sends x2(v)/α flow from every
v ∈ V (G), and we have |f2| ≥ |f1|/|S| ≥ |f |/(3|S|).

Rounding to a half-integral flow. In the next step, we essentially repeat the integral
rounding procedure by Chekuri et al. [4, Section 3.2]. We use the following operation as a
basic step in the rounding.

I Lemma 16 ([4, Theorem 2.1]). Let G be a directed graph with edge capacities. Given a
flow h in G that goes from set X ⊆ V (G) to a single vertex u ∈ V (G), such that for every
v ∈ X the amount of flow originating in v is z(v), and a vertex v0 ∈ X such that z(v0) is
not an integer, one can in polynomial time compute a flow h′ in G, sending z′(v) amount of
flow from every v ∈ X to u, such that |h′| ≥ |h|, z′(v) = z(v) for every v ∈ X where z(v) is
an integer, and z′(v0) = dz(v0)e.

Since a standard reduction reduces flows in undirected node-capacitated graphs to directed
edge-capacitated ones3, Lemma 16 applies also to undirected graphs with node capacities.

Split g2 into two flows hs and ht: for every terminal pair (s, t) ∈ M, we put the flow
originating in s into hs, and the flow originating in t into ht. We perform a sequence of
modifications to the flows hs and ht, maintaining the invariant that the same amount of flow
originates in s in hs as in t in ht for every (s, t) ∈M. Along the process, both hs and ht are
feasible flows, but hs + ht may not be.

In a single step, we pick a terminal pair (s, t) ∈ M such that the amount of flow in hs
originating in s is not integral (and stop if no such pair exists). We apply Lemma 16
separately to s in hs and to t in ht, obtaining flows h′s and h′t. Finally, if for some terminal
pair (s′, t′), the amount of flow originating in s′ in h′s and in t′ in h′t differ, we restrict one
of the flows so that both route the same amount of flow (being the minimum of the flows
routed by h′s from s′ and by h′t from t′).

Since the rounding algorithm of Lemma 16 never modifies a source that already has an
integral flow, this procedure stops after at most |M| steps. Furthermore, if in one step the
flow from s has been increased from z to dze, the total loss of flow to other pairs is 2(dze− z).

3 Replace every edge with two infinite-capacity arcs in both directions, and then split every vertex into
two vertices, connected by an edge of capacity equal to the capacity of the vertex, with all in-edges
connected to the first copy, and all out-edges connected to the second copy.

SWAT 2016

15:12 On Routing Disjoint Paths in Bounded Treewidth Graphs

Therefore, if h◦s and h◦t are the final integral flows, we have |h◦s|+ |h◦t | ≥ (|hs|+ |ht|)/2 =
|g2|/2 = |f2|/α ≥ |f |/(3α|S|). We define g3 := (h◦s + h◦t)/2; note that g3 is a feasible flow.

Clustering a node-flow-linked set. Note that for every (s, t) ∈M, the flow g3 routes either
0 or 1/2 flow from both s and t to u. LetM′ be the set of pairs with flow value 1/2, and
let X ′ be the set of terminals inM′. Note that |M′| = |g3|/2 ≥ |f |/(6α|S|).

Using the flow g3, we now find a multicommodity flow that for every (a, b) ∈ X ′ ×X ′
routes 1

4|X′| amount of flow from a to b. First, we use a flow 1
2g3 to send, for every a ∈ X ′,

a tuple of |X ′| portions of 1
4|X′| flow each from a to u. Second, we use a reversed flow 1

2g3

to send, for every b ∈ X ′, a tuple of |X ′| portions of 1
4|X′| flow each from u to b. For every

(a, b) ∈ X ′ ×X ′, we combine one portion sent from a to u with one portion sent from u to b
to obtain the commodity from a to b. We obtain the desired multicommodity flow, and we
infer that X ′ is 1

4 -node-flow-linked. This allows us to apply the following clustering result:

I Lemma 17 ([7, Lemma 2.7]). If X is α-node-flow-linked in a graph G with unit node
capacities, then for any h ≥ 2 there exists a forest F in G of maximum degree O(1

α log h)
such that every tree in F spans at least h nodes from X.

Since we can assume that no capacity in G exceeds |M|, we can replace every vertex v of
capacity cap(v) with its cap(v) copies. To such unweighted graph G′ we apply Lemma 17 for
X ′, α = 1/4 and h = 3, obtaining a forest F ′; recall that the terminals X ′ are of capacity 1,
thus they are kept unmodified in G′. By standard argument we split the forest F ′ into
node-disjoint trees T ′1, T ′2, . . . , T ′p, such that every tree T ′i contains at least three, and at most
d = O(1) terminals of X ′. By projecting the trees T ′i back onto G, we obtain a sequence of
trees T1, T2, . . . , Tp, such that every vertex v ∈ V (G) is present in at most cap(v) trees Ti.
Furthermore, since terminals are of capacity one, every terminal belongs to at most one tree,
and every tree Ti contains at least three and at most d terminals.

In a greedy fashion, we chose a setM′′ ⊆M′ of size at least |M′|/d2, such that for every
tree Ti, at most one terminal pair ofM′′ has at least one terminal in Ti. A pair (s, t) ∈M′′
is local if both s and t lie in the same tree Ti, and distant otherwise. If at least half of the
pairs ofM′′ are local, we can route them along trees Ti, obtaining a desired routing of size
at least |M′′|/2 ≥ |M′|/(2d2) = Ω(|f |/(α|S|)) and terminate the algorithm. Otherwise, we
obtain a flow g4 as follows: for every terminal t in a distant pair inM′′, we take the tree Ti
it lies on, route 3/5 amount of flow along Ti equidistributed to three arbitrarily chosen
terminals t1, t2, t3 on Ti fromM′ (i.e., every terminal tj receives 1/5 amount of flow), and
then route the flow along the flow 2

5g3 to u. Since every tree Ti routes 3/5 amount of flow,
and g3 is a feasible flow, the flow g4 is a feasible flow that routes 3/5 amount of flow from
every terminal ofM′′ to u. Furthermore, since at least half terminal pairs inM′′ is distant,
we have |g4| ≥ 1

2 · 2|M
′′| = Ω(|f |/(α|S|)).

Final rounding of the flow. Let X ′′ be the set of all terminals ofM′′. Since the flow g4
routes more than 1/2 amount of flow for every terminal in X ′′, we can conclude with simple
rounding the flow g4 in the same manner as it is done by Chekuri et al. [4, Section 3].
Construct an auxiliary graph G′ by adding a super-source s∗ of infinite capacity, adjacent
to all terminals ofM′′. Extend g4 in the natural manner, by routing every flow path first
from s∗ to an appropriate terminal. The extended flow g4 is now a single source single
sink flow from s∗ to u in a graph with integer capacities, thus there exists an integral
flow g5 of no smaller size: |g5| ≥ |g4| = 3

5 |X
′′| = 6

5 |M
′′|. Hence, for at least 1/5 of the

pairs (s, t) ∈M′′, the flow g5 routes a single unit of flow both from s and from t to u. By

A. Ene, M. Mnich, M. Pilipczuk, and A. Risteski 15:13

combining these paths into a single path from s to t, we obtain an integral routing of size at
least 1

5 |M
′′| = Ω(|f |/(α|S|)). This finishes the proof of Proposition 15. J

4.2 Details of the algorithm
Equipped with Proposition 15, we can now proceed to the description of the approximation
algorithm. Assume we are given an MaxNDP instance (G,M) and a path decomposition (T , β)
of G of width less than r; recall that T rooted in one of its endpoints. Let (f,x) be a fractional
solution to the multicommodity flow relaxation for MaxNDP, as in Sect. 2.

The definitions of safe and good node, as well as the induction scheme, are analogous.

I Definition 18 (Safe node). A node t ∈ V (T) is safe with respect to (f,x) if there is a
second multicommodity flow g in G(t) that satisfies the node capacities of G(t) and, for each
vertex z ∈ γ(t), g routes at least

(1
4r
)
· x(z) units of flow from z to the adhesion σ(t). The

node t is unsafe if it is not safe.

I Definition 19 (Good node). A node t ∈ V (T) is good with respect to (f,x) if every flow
path in the support of f that has an endpoint in γ(t) also intersects σ(t); in other words, no
flow path is completely contained in G[α(t)]. A node is bad if it is not good.

I Theorem 20. Let (G,M) be an instance of MaxNDP and let (f,x) be a fractional solution
for the instance, where f is a feasible multicommodity flow in G for the pairs M with
marginals x. Let (T , β) be a path decomposition for G of width less than r. Let `1 be the
maximum size of a parent adhesion of an unsafe node, and let `2 be the maximum size of a
parent adhesion of a bad node. There is a constant c and a polynomial time algorithm that
constructs an integral routing of size at least

(1
cr3

)
·
(
1−

(1
r

))`1+`2 · |f |.

Proof. As in the case of MaxEDP, we can assume that the considered graph G is connected
and that no bag is empty, and thus the only empty adhesion is the parent adhesion of the
root.

Base case. In the base case `1 = `2 = 0 nothing changes compared to MaxEDP: all flow
paths pass through the root bag, and Proposition 15 allows to route integrally Ω(|f |/r) paths.

Inductive step when 0 ≤ `1 < `2. Since we are considering now a path decomposition
(as opposed to tree decomposition in the previous section), there exists a single topmost
bad node t◦ with parent adhesion of size `2. Let f inside be the subflow of f consisting of all
flow paths completely contained in G[α(t◦)]. Since `1 < `2, the node t◦ is safe, and the flow
witnessing it together with Proposition 15 allows to integrally route Ω(|f inside|/r2) terminal
pairs. If |f inside| > |f |/r, then we are done. Otherwise, we drop the flow f inside from f ,
making t◦ and all its descendants good (thus decreasing `2 in the constructed instance),
while losing only 1/r fraction of the flow f , and pass the instance to an inductive step.

Inductive step when 0 < `1 = `2. Here again we take t◦ to be the lowest node of T
that is unsafe and has parent adhesion of size `1. By the definition of an unsafe node and
Menger’s theorem, there exists a set U ⊆ α(t◦) such that cap(N(U)) < 1

4rx(U). Using the
same argument as in the proof of Lemma 12, we can ensure property 12, that is that if U
contains an adhesion σ(t), it contains as well the entire set γ(t).

As in the case of MaxEDP, we split into instances I1 and I2 by taking G1 = G[U] and
G2 = G−N [U], with inherited tree decompositions from (T , β). Since all nodes with parent

SWAT 2016

15:14 On Routing Disjoint Paths in Bounded Treewidth Graphs

adhesions of size larger than `1 = `2 are good, there are also good in instances Ii (i.e.,
Lemma 13 holds here as well) and we can again apply the inductive step to every connected
component of the instance I2 with the same values of `1 and `2, obtaining a routing P2 of
size as in (1) (with 144 replaced by a constant c).

We analyse the instance I1, without breaking it first into connected components. That is,
we argue that in I1 the value of `1 dropped, that is, all nodes t satisfying |σ(t)| = |σ1(t)| = `1
are safe; note that they will remain safe once we consider every connected component
separatedly. However, this fact follows from property 12 of the set U (Lemma 12): if for
some node t we have |σ(t)| = |σ1(t)|, it follows that σ(t) ⊆ U hence γ(t) ⊆ U and the notion
of safeness for t is the same in I1 and in the original instance. However, σ(t) ⊆ U ⊆ α(t◦)
implies t � t◦ and t 6= t◦, hence t is safe in the original instance.

Consequently, an application of inductive step for every connected component of I1 uses
strictly smaller value of `1, and we obtain an integral routing P1 in I1 of size as in (2) (again
with 144 replaced by a constant c). The remainder of the analysis from the previous section
does not change, concluding the proof of Theorem 20. J

References
1 Alexandr Andoni, Anupam Gupta, and Robert Krauthgamer. Towards (1+ε)-approximate

flow sparsifiers. In Proc. SODA 2014, pages 279–293, 2014.
2 Matthew Andrews, Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna, Kunal Talwar,

and Lisa Zhang. Inapproximability of edge-disjoint paths and low congestion routing on
undirected graphs. Combinatorica, 30(5):485–520, 2010.

3 Parinya Chalermsook, Julia Chuzhoy, Alina Ene, and Shi Li. Approximation algorithms
and hardness of integral concurrent flow. In Proc. STOC 2012, pages 689–708, 2012.

4 C. Chekuri, S. Khanna, and F.B. Shepherd. An O(
√
n) approximation and integrality gap

for disjoint paths and unsplittable flow. Theory Comput., 2(7):137–146, 2006.
5 Chandra Chekuri and Julia Chuzhoy. Large-treewidth graph decompositions and applica-

tions. In Proc. STOC 2013, pages 291–300, 2013.
6 Chandra Chekuri and Alina Ene. Poly-logarithmic approximation for maximum node dis-

joint paths with constant congestion. In Proc. SODA 2013, pages 326–341, 2013.
7 Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. Multicommodity flow, well-

linked terminals, and routing problems. In Proc. STOC 2005, pages 183–192, 2005.
8 Chandra Chekuri, Sanjeev Khanna, and F Bruce Shepherd. Edge-disjoint paths in planar

graphs with constant congestion. SIAM J. Comput., 39(1):281–301, 2009.
9 Chandra Chekuri, Sanjeev Khanna, and F Bruce Shepherd. A note on multiflows and

treewidth. Algorithmica, 54(3):400–412, 2009.
10 Chandra Chekuri, Guyslain Naves, and F. Bruce Shepherd. Maximum edge-disjoint paths

in k-sums of graphs. In Proc. ICALP 2013, volume 7965 of LNCS, pages 328–339, 2013.
11 Chandra Chekuri, Guyslain Naves, and F. Bruce Shepherd. Maximum edge-disjoint paths

in k-sums of graphs. Technical report, ArXiv, 2013. URL: http://arxiv.org/abs/1303.
4897.

12 Eden Chlamtac, Robert Krauthgamer, and Prasad Raghavendra. Approximating sparsest
cut in graphs of bounded treewidth. In Proc. APPROX-RANDOM 2010, volume 6302 of
LNCS, pages 124–137, 2010.

13 Julia Chuzhoy. On vertex sparsifiers with Steiner nodes. In Proc. STOC 2012, pages
673–688, 2012.

14 Julia Chuzhoy and Shi Li. A polylogarithmic approximation algorithm for edge-disjoint
paths with congestion 2. In Proc. FOCS 2012, pages 233–242, 2012.

15 Reinhard Diestel. Graph theory, volume 173. Springer, third edition, 2005.

http://arxiv.org/abs/1303.4897
http://arxiv.org/abs/1303.4897

A. Ene, M. Mnich, M. Pilipczuk, and A. Risteski 15:15

16 Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Primal-dual approximation
algorithms for integral flow and multicut in trees. Algorithmica, 18(1):3–20, 1997.

17 Anupam Gupta, Kunal Talwar, and David Witmer. Sparsest cut on bounded treewidth
graphs: algorithms and hardness results. In Proc. STOC 2013, pages 281–290, 2013.

18 R.M. Karp. On the computational complexity of combinatorial problems. Networks, 5:45–
68, 1975.

19 S.G. Kolliopoulos and C. Stein. Approximating disjoint-path problems using packing integer
programs. Math. Prog., 99(1):63–87, 2004.

20 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity – Graphs, Structures, and Algo-
rithms, volume 28 of Algorithms and combinatorics. Springer, 2012.

21 Neil Robertson and Paul D Seymour. Graph minors. V. Excluding a planar graph. J.
Combinatorial Theory, Ser. B, 41(1):92–114, 1986.

22 Neil Robertson and Paul D Seymour. Graph minors. XIII. The disjoint paths problem. J.
Combinatorial Theory, Ser. B, 63(1):65–110, 1995.

23 Neil Robertson and Paul D Seymour. Graph minors. XVI. Excluding a non-planar graph.
J. Combinatorial Theory, Ser. B, 89(1):43–76, 2003.

24 Löc Séguin-Charbonneau and F Bruce Shepherd. Maximum edge-disjoint paths in planar
graphs with congestion 2. In Proc. FOCS 2011, pages 200–209, 2011.

SWAT 2016

Colouring Diamond-free Graphs∗

Konrad K. Dabrowski1, François Dross2, and Daniël Paulusma3

1 School of Engineering and Computing Sciences, Durham University, Durham,
United Kingdom
konrad.dabrowski@durham.ac.uk

2 Université de Montpellier - Laboratoire d’Informatique, de Robotique et de
Microélectronique de Montpellier, Montpellier, France
francois.dross@ens-lyon.fr

3 School of Engineering and Computing Sciences, Durham University, Durham,
United Kingdom
daniel.paulusma@durham.ac.uk

Abstract
The Colouring problem is that of deciding, given a graph G and an integer k, whether G
admits a (proper) k-colouring. For all graphs H up to five vertices, we classify the computational
complexity of Colouring for (diamond, H)-free graphs. Our proof is based on combining known
results together with proving that the clique-width is bounded for (diamond, P1+2P2)-free graphs.
Our technique for handling this case is to reduce the graph under consideration to a k-partite
graph that has a very specific decomposition. As a by-product of this general technique we
are also able to prove boundedness of clique-width for four other new classes of (H1, H2)-free
graphs. As such, our work also continues a recent systematic study into the (un)boundedness
of clique-width of (H1, H2)-free graphs, and our five new classes of bounded clique-width reduce
the number of open cases from 13 to 8.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases colouring, clique-width, diamond-free, graph class, hereditary graph class

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.16

1 Introduction

The Colouring problem is that of testing whether a given graph can be coloured with
at most k colours for some given integer k, such that any two adjacent vertices receive
different colours. The complexity of Colouring is fully understood for general graphs: it
is NP-complete even if k = 3 [35]. Therefore it is natural to study its complexity when the
input is restricted. A classic result in this area is due to Grötschel, Lovász, and Schrijver [26],
who proved that Colouring is polynomial-time solvable for perfect graphs.

As surveyed in [14, 20, 25, 42], Colouring has been well studied for hereditary graph
classes, that is, classes that can be defined by a family H of forbidden induced subgraphs.
For a family H consisting of one single forbidden induced subgraph H, the complexity of
Colouring is completely classified: the problem is polynomial-time solvable if H is an
induced subgraph of P4 or P1 + P3 and NP-complete otherwise [34]. Hence, many papers
(e.g. [13, 18, 29, 34, 36, 39, 40, 44]) have considered the complexity of Colouring for
bigenic hereditary graph classes, that is, graph classes defined by families H consisting of

∗ First and last author supported by EPSRC (EP/K025090/1).

© Konrad K. Dabrowski, François Dross, and Daniël Paulusma;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 16; pp. 16:1–16:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 Colouring Diamond-free Graphs

two forbidden graphs H1 and H2; such classes of graphs are also called (H1, H2)-free. This
classification is far from complete (see [25] for the state of art). In fact there are still an infinite
number of open cases, including cases where both H1 and H2 are small. For instance, Lozin
and Malyshev [36] determined the computational complexity of Colouring for (H1, H2)-
free graphs for all graphs H1 and H2 up to four vertices except when H ∈ {(K1,3, 4P1),
(K1,3, 2P1 + P2), (C4, 4P1)} (we refer to Section 2 for notation and terminology).

The diamond is the graph 2P1 + P2, that is, the graph obtained from the clique on four
vertices by removing an edge. Diamond-free graphs are well studied in the literature. For
instance, Tucker [45] gave an O(kn2) time algorithm for Colouring for perfect diamond-free
graphs. It is also known that that Colouring is polynomial-time solvable for diamond-free
graphs that contain no even induced cycles [32] as well as for diamond-free graphs that contain
no induced cycle of length at least 5 [8]. Diamond-free graphs also played an important role in
proving that the class P6-free graphs contains 24 minimal obstructions for 4-Colouring [15].

1.1 Our Main Result

In this paper we focus on Colouring for (diamond, H)-free graphs where H is a graph on
at most five vertices. It is known that Colouring is NP-complete for (diamond, H)-free
graphs when H contains a cycle or a claw [34] and polynomial-time solvable for H = sP1 +P2
(s ≥ 0) [18], H = 2P1 + P3 [5], H = P1 + P4 [11], H = P2 + P3 [19] and H = P5 [1].
Hence, the only graph H on five vertices that remains is H = P1 + 2P2, for which we prove
polynomial-time solvability in this paper. This leads to the following result.

I Theorem 1. Let H be a graph on at most five vertices. Then Colouring is polynomial-
time solvable for (diamond, H)-free graphs if H is a linear forest and NP-complete otherwise.

To solve the case H = P1 + 2P2, one could try to reduce to a subclass of diamond-free
graphs, for which Colouring is polynomial-time solvable, such as the aforementioned
results of [8, 32, 45]. This would require us to deal with the presence of small cycles up
to C7, which may not be straightforward. Instead we aim to identify tractability from an
underlying property: we show that the class of (diamond, P1 + 2P2)-free graphs has bounded
clique-width. This approach has several advantages and will lead to a number of additional
results, as we will discuss in the remainder of Section 1.

Clique-width is a graph decomposition that can be constructed via vertex labels and
four specific graph operations, which ensure that vertices labelled alike will always keep
the same label and thus behave identically. The clique-width of a graph G is the minimum
number of different labels needed to construct G using these four operations (we refer to
Section 2 for a precise definition). A graph class G has bounded clique-width if there exists a
constant c such that every graph from G has clique-width at most c.

Clique-width is a well-studied graph parameter (see, for instance, the surveys [27, 31]).
An important reason for the popularity of clique-width is that a number of classes of NP-
complete problems, such as those that are definable in Monadic Second Order Logic using
quantifiers on vertices but not on edges, become polynomial-time solvable on any graph
class G of bounded clique-width (this follows combining results from [16, 23, 33, 43] with a
result from [41]). The Colouring problem is one of the best-known NP-complete problems
that is solvable in polynomial time on graph classes of bounded clique-width [33]; another
well-known example of such a problem is Hamilton Path [23].

K.K. Dabrowski, F. Dross, and D. Paulusma 16:3

1.2 Methodology
The key technique for proving that (diamond, P1 + 2P2)-free graphs have bounded clique-
width is the use of a certain graph decomposition of k-partite graphs. We obtain this
decomposition by generalizing the so-called canonical decomposition of bipartite graphs,
which decomposes a bipartite graph into two smaller bipartite graphs such that edges between
these two smaller bipartite graphs behave in a very restricted way. Fouquet, Giakoumakis
and Vanherpe [24] introduced this decomposition and characterized exactly those bipartite
graphs that can recursively be canonically decomposed into graphs isomorphic to K1. Such
bipartite graphs are said to be totally decomposable by canonical decomposition. We say
that k-partite graphs are totally k-decomposable if they can be, according to our generalized
definition, recursively k-decomposed into graphs isomorphic to K1. We show that totally
k-decomposable graphs have clique-width at most 2k.

Our goal is to transform (diamond, P1 + 2P2)-free graphs into graphs in some class
for which we already know that the clique-width is bounded. Besides the class of totally
k-decomposable graphs, we will also reduce to other known graph classes of bounded clique-
width, such as the class of (diamond, P2 + P3)-free graphs [19] and certain classes of H-free
bipartite graphs [21]. Of course, our transformations must not change the clique-width by
“too much”. We ensure this by using certain graph operations that are known to preserve
(un)boundedness of clique-width [31, 37].

1.3 Consequences for Clique-Width
There are numerous papers (as listed in, for instance, [22, 27, 31]) that determine the
(un)boundedness of the clique-width or variants of it (see e.g. [4, 28]) of special graph classes.
Due to the complex nature of clique-width, proofs of these results are often long and technical,
and there are still many open cases. In particular gaps exist in a number of dichotomies
on the (un)boundedness of clique-width for graph classes defined by one or more forbidden
induced subgraphs. As such our paper also continues a line of research [5, 6, 19, 21, 22] in
which we focus on these gaps in a systematic way. It is known [22] that the class of H-free
graphs has bounded clique-width if and only if H is an induced subgraph of P4. Over the
years many partial results [2, 7, 9, 10, 11, 12, 20, 38] on the (un)boundedness of clique-width
appeared for classes of (H1, H2)-free graphs, but until recently [22] it was not even known
whether the number of missing cases was bounded. Combining these older results with
recent progress [5, 18, 19, 22] reduced the number of open cases to 13 (up to an equivalence
relation) [22].

As a by-product of our methodology, we are able not only to settle the case (H1, H2) =
(diamond, P1 + 2P2), but in fact we solve five of the remaining 13 open cases by proving
that the class of (H1, H2)-free graphs has bounded clique-width if

1–4: H1 = K3 and H2 ∈ {P1 + 2P2, P1 + P2 + P3, P1 + P5, S1,2,2} or
5: H1 = diamond and H2 = P1 + 2P2.

The above graphs are displayed in Figure 1. Note that the (K3, P1 + 2P2) case is properly
contained in all four of the other cases. These four other newly solved cases are pairwise
incomparable.

Updating the classification (see [22]) with our five new results gives the following theorem.
Here, S is the class of graphs, each connected component of which is either a subdivided
claw or a path, and we write H ⊆i G if H is an induced subgraph of G; see Section 2 for
notation that we have not formally defined yet.

SWAT 2016

16:4 Colouring Diamond-free Graphs

K3 diamond P1 + 2P2 P1 + P2 + P3 P1 + P5 S1,2,2

Figure 1 The forbidden graphs considered in this paper.

I Theorem 2. Let G be a class of graphs defined by two forbidden induced subgraphs.
Then:
1. G has bounded clique-width if it is equivalent1 to a class of (H1, H2)-free graphs such that

one of the following holds:
(a) H1 or H2 ⊆i P4;
(b) H1 = sP1 and H2 = Kt for some s, t;
(c) H1 ⊆i P1 +P3 and H2 ⊆i K1,3 + 3P1, K1,3 +P2, P1 +P2 +P3, P1 +P5, P1 +S1,1,2,

P6, S1,2,2 or S1,1,3;
(d) H1 ⊆i 2P1 + P2 and H2 ⊆i P1 + 2P2, 2P1 + P3, 3P1 + P2 or P2 + P3;
(e) H1 ⊆i P1 + P4 and H2 ⊆i P1 + P4 or P5;
(f) H1 ⊆i 4P1 and H2 ⊆i 2P1 + P3;
(g) H1, H2 ⊆i K1,3.

8. G has unbounded clique-width if it is equivalent to a class of (H1, H2)-free graphs such
that one of the following holds:
(a) H1 6∈ S and H2 6∈ S;
(b) H1 /∈ S and H2 6∈ S;
(c) H1 ⊇i K1,3 or 2P2 and H2 ⊇i 4P1 or 2P2;
(d) H1 ⊇i 2P1 + P2 and H2 ⊇i K1,3, 5P1, P2 + P4 or P6;
(e) H1 ⊇i 3P1 and H2 ⊇i 2P1 + 2P2, 2P1 + P4, 4P1 + P2, 3P2 or 2P3;
(f) H1 ⊇i 4P1 and H2 ⊇i P1 + P4 or 3P1 + P2.

1.4 Future Work
Naturally we would like to extend Theorem 1 and solve the following open problem.

I Open Problem 1. What is the computational complexity of Colouring for (diamond, H)-
free graphs when H is a graph on at least six vertices?

Solving Open Problem 1 is highly non-trivial. It is known that 4-Colouring is NP-complete
for (C3, P22)-free graphs [30]. Hence, the polynomial-time results in Theorem 1 cannot be
extended to all linear forests. The first open case to consider would be H = P6, for which
only partial results are known. Indeed, the Colouring problem is polynomial-time solvable
for (C3, P6)-free graphs [9], but its complexity is unknown for (C3, P7)-free graphs (on a
side note, a recent result for the latter graph class is that 3-Colouring is polynomial-time
solvable [3]).

1 Given four graphs H1, H2, H3, H4, the class of (H1, H2)-free graphs and the class of (H3, H4)-free graphs
are equivalent if the unordered pair H3, H4 can be obtained from the unordered pair H1, H2 by some
combination of the operations (i) complementing both graphs in the pair and (ii) if one of the graphs in
the pair is K3, replacing it with P1 + P3 or vice versa. If two classes are equivalent, then one of them
has bounded clique-width if and only if the other one does (see [22]).

K.K. Dabrowski, F. Dross, and D. Paulusma 16:5

We observe that boundedness of the clique-width of (diamond, P1 + 2P2)-free graphs
implies boundedness of the clique-width of (2P1 + P2, P1 + 2P2)-free graphs (recall that the
diamond is the complement of the graph 2P1 +P2). Hence our results imply that Colouring
can also be solved in polynomial time for graphs in this class. In fact, Colouring has been
studied extensively for (H1, H2)-free graphs, and we refer to the survey of Golovach et al. [25]
for a summary of known results. After incorporating the consequences of our new results,
there are 13 classes of (H1, H2)-free graphs for which Colouring could potentially still be
solved in polynomial time by showing that their clique-width is bounded (see also [25]):

I Open Problem 2. Is Colouring polynomial-time solvable for (H1, H2)-free graphs
when:
1. H1 ∈ {3P1, P1 + P3} and H2 ∈ {P1 + S1,1,3, S1,2,3};
2. H1 = 2P1 + P2 and H2 ∈ {P1 + P2 + P3, P1 + P5};
3. H1 = diamond and H2 ∈ {P1 + P2 + P3, P1 + P5};
4. H1 = P1 + P4 and H2 ∈ {P1 + 2P2, P2 + P3};
5. H1 = P1 + P4 and H2 ∈ {P1 + 2P2, P2 + P3};
6. H1 = H2 = 2P1 + P3.

As mentioned in Section 1.3, after updating the list of remaining open cases for clique-width
from [22], we find that eight non-equivalent open cases remain for clique-width. These are
the following cases.

I Open Problem 3. Does the class of (H1, H2)-free graphs have bounded or unbounded
clique-width when:
1. H1 = 3P1 and H2 ∈ {P1 + S1,1,3, P2 + P4, S1,2,3};
2. H1 = 2P1 + P2 and H2 ∈ {P1 + P2 + P3, P1 + P5};
3. H1 = P1 + P4 and H2 ∈ {P1 + 2P2, P2 + P3} or
4. H1 = H2 = 2P1 + P3.

Bonomo, Grippo, Milanič and Safe [4] determined all pairs of connected graphs H1, H2
for which the class of (H1, H2)-free graphs has power-bounded clique-width. In order to
compare their result with our results for clique-width, we only need to solve the open
case (H1, H2) = (K3, S1,2,3), which is equivalent to the (open) case (H1, H2) = (3P1, S1,2,3)
mentioned in Open Problem 3, as our new result for the case (H1, H2) = (K3, S1,2,2) has
reduced the number of open cases (H1, H2) with H1, H2 both connected from two to one.

2 Preliminaries

Below we define further graph terminology used throughout our paper. The disjoint union
(V (G)∪V (H), E(G)∪E(H)) of two vertex-disjoint graphs G and H is denoted by G+H and
the disjoint union of r copies of a graph G is denoted by rG. The complement of a graph G,
denoted by G, has vertex set V (G) = V (G) and an edge between two distinct vertices if and
only if these vertices are not adjacent in G. For a subset S ⊆ V (G), we let G[S] denote the
subgraph of G induced by S, which has vertex set S and edge set {uv | u, v ∈ S, uv ∈ E(G)}.
If S = {s1, . . . , sr} then, to simplify notation, we may also write G[s1, . . . , sr] instead of
G[{s1, . . . , sr}]. We use G \ S to denote the graph obtained from G by deleting every vertex
in S, i.e. G \ S = G[V (G) \ S]. Let H be another graph. We write H ⊆i G to indicate
that H is an induced subgraph of G.

The graphs Cr,Kr,K1,r−1 and Pr denote the cycle, complete graph, star and path
on r vertices, respectively. The graph K1,3 is also called the claw. The graph Sh,i,j , for

SWAT 2016

16:6 Colouring Diamond-free Graphs

1 ≤ h ≤ i ≤ j, denotes the subdivided claw, that is, the tree that has only one vertex x
of degree 3 and exactly three leaves, which are of distance h, i and j from x, respectively.
Observe that S1,1,1 = K1,3. The graph S1,2,2 is also known as the E, since it can be drawn
like a capital letter E (see Figure 1). Recall that the graph P1 + 2P2 is known as the
diamond. The graphs K3 and P1 + 2P2 are also known as the triangle and the 5-vertex wheel,
respectively. For a set of graphs {H1, . . . ,Hp}, a graph G is (H1, . . . ,Hp)-free if it has no
induced subgraph isomorphic to a graph in {H1, . . . ,Hp}; if p = 1, we may write H1-free
instead of (H1)-free.

For a graph G = (V,E), the set N(u) = {v ∈ V | uv ∈ E} denotes the neighbourhood of
u ∈ V . A graph is k-partite if its vertex set can be partitioned into k independent sets (some
of which may be empty). A graph is bipartite if it is 2-partite. The bipartite complement of
a bipartite graph G with bipartition (X,Y) is the graph obtained from G by replacing every
edge from a vertex in X to a vertex in Y by a non-edge and vice versa. The biclique Kr,s is
the bipartite graph with sets in the partition of size r and s respectively, such that every
vertex in one set is adjacent to every vertex in the other set.

Let X be a set of vertices in a graph G = (V,E). A vertex y ∈ V \X is complete to X
if it is adjacent to every vertex of X and anti-complete to X if it is non-adjacent to every
vertex of X. Similarly, a set of vertices Y ⊆ V \X is complete (resp. anti-complete) to X if
every vertex in Y is complete (resp. anti-complete) to X. A vertex y or a set Y is trivial
to X if it is either complete or anti-complete to X. Note that if Y contains both vertices
complete to X and vertices not complete to X, we may have a situation in which every
vertex in Y is trivial to X, but Y itself is not trivial to X.

Clique-Width. The clique-width of a graph G, denoted cw(G), is the minimum number of
labels needed to construct G by using the following four operations:
1. creating a new graph consisting of a single vertex v with label i;
2. taking the disjoint union of two labelled graphs G1 and G2;
3. joining each vertex with label i to each vertex with label j (i 6= j);
4. renaming label i to j.
An algebraic term that represents such a construction of G and uses at most k labels is
said to be a k-expression of G (i.e. the clique-width of G is the minimum k for which G
has a k-expression). Recall that a class of graphs G has bounded clique-width if there is
a constant c such that the clique-width of every graph in G is at most c; otherwise the
clique-width of G is unbounded.

Let G be a graph. We define the following operations. For an induced subgraph G′ ⊆i G,
the subgraph complementation operation (acting on G with respect to G′) replaces every
edge present in G′ by a non-edge, and vice versa. Similarly, for two disjoint vertex subsets S
and T in G, the bipartite complementation operation with respect to S and T acts on G by
replacing every edge with one end-vertex in S and the other one in T by a non-edge and vice
versa.

We now state some useful facts about how the above operations (and some other ones)
influence the clique-width of a graph. We will use these facts throughout the paper. Let
k ≥ 0 be a constant and let γ be some graph operation. We say that a graph class G′ is
(k, γ)-obtained from a graph class G if the following two conditions hold:
1. every graph in G′ is obtained from a graph in G by performing γ at most k times, and
2. for every G ∈ G there exists at least one graph in G′ obtained from G by performing γ at

most k times.

K.K. Dabrowski, F. Dross, and D. Paulusma 16:7

We say that γ preserves boundedness of clique-width if for any finite constant k and any
graph class G, any graph class G′ that is (k, γ)-obtained from G has bounded clique-width if
and only if G has bounded clique-width.

Fact 1: Vertex deletion preserves boundedness of clique-width [37].
Fact 2: Subgraph complementation preserves boundedness of clique-width [31].
Fact 3: Bipartite complementation preserves boundedness of clique-width [31].
Two vertices are false twins if they have the same neighbourhood. (note that such vertices
must be non-adjacent). The following lemma follows immediately from the definition of
clique-width.

I Lemma 3. If a vertex x in a graph G has a false twin then cw(G) = cw(G \ {x}).

We will also make use of the following two results.

I Lemma 4 ([19]). The class of (diamond, P2 + P3)-free graphs has bounded clique-width.

I Lemma 5 ([21]). Let H be a graph. The class of H-free bipartite graphs has bounded
clique-width if and only if H = sP1 for some s ≥ 1; H ⊆i K1,3 + 3P1; H ⊆i K1,3 + P2;
H ⊆i P1 + S1,1,3; or H ⊆i S1,2,3.

3 Totally k-Decomposable Graphs

In this section we describe our key technique, which is based on the following notion introduced
by Fouquet, Giakoumakis and Vanherpe [24]. A bipartite graph G is totally decomposable by
canonical decomposition if it can be recursively decomposed into graphs isomorphic to K1 by
decomposition of a bipartite graph G with bipartition (V1, V2) into two non-empty graphs
G[V ′1 ∪ V ′2] and G[V ′′1 ∪ V ′′2] where V ′i and V ′′i form a partition of Vi for i ∈ {1, 2} such that
each of G[V ′1 ∪ V ′′2] and G[V ′′1 ∪ V ′2] is either an independent set or a biclique.

For our purposes we need to generalize the above notion to k-partite graphs. Let G be a
k-partite graph with a fixed vertex k-partition (V1, V2, . . . , Vk). We say that a k-decomposition
of G with respect to this partition consists of two non-empty graphs, each with their own
partition: G[V ′1 ∪ V ′2 ∪ · · · ∪ V ′k] with partition (V ′1 , V ′2 , . . . , V ′k) and G[V ′′1 ∪ V ′′2 ∪ · · · ∪ V ′′k]
with partition (V ′′1 , V

′′
2 , . . . , V

′′
k), such that the following two conditions hold:

1. for every i ∈ {1, . . . , k}, V ′i and V ′′i form a partition of Vi, and
2. for every i, j ∈ {1, . . . , k} with i 6= j, the set V ′i is either complete or anti-complete to V ′′j

in G (note that Vi is an independent set for every i ∈ {1, . . . , k}, so V ′i will automatically
be anti-complete to V ′′i).

We say that G is totally k-decomposable if it can be recursively k-decomposed into graphs
isomorphic to K1. Note that every connected bipartite graph has a unique bipartition (up to
isomorphism). If a graph is totally decomposable by canonical decomposition then this can
recursively be done component-wise. Thus the definition of total canonical decomposability
is indeed the same as total 2-decomposability. Fouquet, Giakoumakis and Vanherpe proved
the following characterization, which we will need for our proofs (see Figure 2 for pictures
of P7 and S1,2,3).

I Lemma 6 ([24]). A bipartite graph is totally decomposable by canonical decomposition if
and only if it is (P7, S1,2,3)-free.

It seems difficult to generalize Lemma 6 to give a full characterization for totally k-
decomposable graphs for k ≥ 3. However, the following lemma is sufficient for our purposes.

SWAT 2016

16:8 Colouring Diamond-free Graphs

P7 S1,2,3

Figure 2 The forbidden graphs from Lemma 6.

I Lemma 7. A 3-partite graph is totally 3-decomposable with respect to a 3-partition
(V1, V2, V3) if the following two conditions are both satisfied:

G[V1 ∪ V2], G[V1 ∪ V3] and G[V2 ∪ V3] are all (P7, S1,2,3)-free, and
for every v1 ∈ V1, every v2 ∈ V2 and every v3 ∈ V3, the graph G[v1, v2, v3] is isomorphic
neither to K3 nor to 3P1.

Proof. Let G be such a graph. Note that any induced subgraph H of G also satisfies the
hypotheses of the lemma, with partition (V (H) ∩ V1, V (H) ∩ V2, V (H) ∩ V3). It is therefore
sufficient to show that G has a 3-decomposition.

If Vi is empty for some i ∈ {1, 2, 3} then G is a (P7, S1,2,3)-free bipartite graph and is
therefore totally 2-decomposable with respect to the given partition by Lemma 6. We may
therefore assume that every set Vi is non-empty.

Now G[V1, V2] is a bipartite (P7, S1,2,3)-free graph, so by Lemma 6, G[V1 ∪ V2] is totally
2-decomposable. Since V1 and V2 are both non-empty, it follows that V1 can be partitioned
into two sets V ′1 and V ′′1 and V2 can be partitioned into two sets V ′2 and V ′′2 such that V ′1 is
either complete or anti-complete to V ′′2 and V ′2 is either complete or anti-complete to V ′′1 .
Furthermore, we may assume V ′1 ∪ V ′2 6= ∅ and V ′′1 ∪ V ′′2 6= ∅.

Since V1, V2, V
′

1∪V ′2 and V ′′1 ∪V ′′2 are non-empty, we may assume without loss of generality
that V ′1 and V ′′2 are non-empty. Assume that these sets are maximal i.e. no vertex of V ′′1
(respectively V ′2) can be moved to V ′1 (respectively V ′′2). Note that V ′′1 or V ′2 may be empty.

We will prove that we can partition V3 into sets V ′3 and V ′′3 , such that for all i, j ∈ {1, 2, 3}
with j 6= i, V ′i is complete or anti-complete to V ′′j . Note that we already know that V ′1
(respectively V ′2) is complete or anti-complete to V ′′2 (respectively V ′′1).

First suppose that V ′1 is complete to V ′′2 . If a vertex of V3 has a neighbour in both V ′1
and V ′′2 then these three vertices would form a forbidden K3, so every vertex in V3 is anti-
complete to V ′1 or V ′′2 . Let V ′3 be the set of vertices in V3 that are anti-complete to V ′′2 and
let V ′′3 = V3 \ V ′3 . Note that every vertex of V ′′3 must be anti-complete to V ′1 . Suppose, for
contradiction, that z ∈ V ′3 has a non-neighbour v ∈ V ′′1 . Since V ′1 is maximal, v must have
a non-neighbour w ∈ V ′′2 . This means that G[v, w, z] is a 3P1. This contradiction means
that V ′′1 is complete to V ′3 . Similarly, V ′2 is complete to V ′′3 . Therefore G[V ′1 ∪ V ′2 ∪ V ′3] and
G[V ′′1 ∪ V ′′2 ∪ V ′′3] form the required 3-decomposition of G.

Similarly, if V ′1 is anti-complete to V ′′2 then V3 can be partitioned into sets V ′3 and V ′′3
that are complete to V ′′2 and V ′1 , respectively. By analogous arguments, we find that V ′′1 is
anti-complete to V ′3 and V ′2 is anti-complete to V ′′3 . We then proceed as in the previous case.
This completes the proof. J

We also need the following lemma.

I Lemma 8. Let G be a k-partite graph with vertex partition (V1, . . . , Vk). If G is totally k-
decomposable with respect to this partition then the clique-width of G is at most 2k. Moreover,
there is a 2k-expression for G that assigns, for i ∈ {1, . . . , k}, label i to every vertex of Vi.

Proof. We prove the lemma by induction. Clearly, if G contains only one vertex then the
lemma holds. Suppose that the lemma is true for all such graphs on at most n vertices.

K.K. Dabrowski, F. Dross, and D. Paulusma 16:9

Let G be a totally k-decomposable graph on n+ 1 vertices with vertex partition (V1, . . . , Vk).
Since G has a k-decomposition, we can partition every set Vi into two sets V ′i and V ′′i such
that each set V ′i is either complete or anti-complete to each set V ′′j for i, j ∈ {1, . . . , k}. By
the induction hypothesis, we can find a 2k-expression that constructs the non-empty graph
G[V ′1∪V ′2∪· · ·∪V ′k] such that the vertices in each set V ′i have label i for i ∈ {1, . . . , k}. Similarly,
we can find a 2k-expression that constructs the non-empty graph G[V ′′1 ∪ V ′′2 ∪ · · · ∪ V ′′k] such
that the vertices in each set V ′′j have label k + j for j ∈ {1, . . . , k}. We take the disjoint
union of these two constructions. Next, for i, j ∈ {1, . . . , k}, we join the vertices label i to
the vertices label k + j if V ′i is complete to V ′′j in G. Finally, for i ∈ {1, . . . , k}, we relabel
the vertices with label k + i to have label i. By induction, this completes the proof of the
lemma. J

4 Bounding the Clique-Width

To prove our results on clique-width we need two more lemmas. The first lemma (we omit
the proof due to space restrictions2) implies that the four triangle-free cases in our new
results hold when the graph under consideration is C5-free. In the second lemma we state a
number of sufficient conditions for a graph class to be of bounded clique-width when C5 is
no longer a forbidden induced subgraph. While we will not use these lemmas directly in the
proof of the diamond-free case, that result also relies on these two lemmas, as it depends on
the (K3, P1 + 2P2)-free case.

I Lemma 9. The class of (K3, C5, S1,2,3)-free graphs has bounded clique-width.

I Lemma 10. A (K3, S1,2,3)-free graph has bounded clique-width if its vertices can be
partitioned into ten independent sets V1, . . . , V5,W1, . . . ,W5 such that the following conditions
hold (we interpret subscripts modulo 5):
1. for all i, Vi is anti-complete to Vi−2 ∪ Vi+2 ∪Wi−1 ∪Wi+1;
2. for all i, Wi is complete to Wi−1 ∪Wi+1;
3. for all i, each vertex of Vi is either trivial to Vi+1 or trivial to Vi−1;
4. for all i, every vertex in Vi is trivial to Wi;
5. for all i, Wi is trivial to Wi−2 and to Wi+2;
6. for all i, j, the graphs induced by Vi ∪ Vj and Vi ∪Wj are P7-free;
7. for all i, there are no three vertices v ∈ Vi, w ∈ Vi+1 and x ∈Wi+3 such that v, w and x

are pairwise non-adjacent.

Proof. Let G be a (K3, S1,2,3)-free graph with such a partition that satisfies Conditions 1–7
of the lemma. Note that for all i, every vertex v ∈ Vi is trivial to Vi+2, Vi−2,Wi−1,Wi+1,Wi

and either trivial to Vi+1 or trivial to Vi−1. Therefore a vertex v ∈ Vi can only be non-trivial
to Wi−2,Wi+2 and at most one of Vi−1 and Vi+1. Likewise, every vertex w ∈Wi is trivial to
Wi−1,Wi+1,Wi−2,Wi+2, Vi−1 and Vi+1. Therefore, a vertex w ∈Wi can only be non-trivial
to Vi, Vi−2 and Vi+2 (and every vertex in Vi is trivial to Wi).

For i ∈ {1, . . . , 5}, let W ′i be the set of elements of Wi that are non-trivial to both Vi−2
and Vi+2, let V ′i be the set of elements of Vi that are non-trivial to both Vi+1 and Wi−2 and
let V ′′i be the set of elements of Vi that are non-trivial to both Vi−1 and Wi+2. Note that
V ′i ∩ V ′′i = ∅ by Condition 3.

2 Omitted proofs can be found in the arXiv preprint of this paper [17].

SWAT 2016

16:10 Colouring Diamond-free Graphs

We say that an edge is irrelevant if one of its end-points is in a set Vi, V
′

i , V
′′

i ,Wi or W ′i ,
and its other end-point is complete to this set, otherwise we say that the edge is relevant.
We will now show that for i ∈ {1, . . . , 5}, the graph G[V ′i ∪ V ′′i+1 ∪W ′i−2] can be separated
from the rest of G by using a bounded number of bipartite complementations. To do this,
we first prove the following claim.

Claim 1. If u ∈ V ′i ∪ V ′′i+1 ∪W ′i−2 and v /∈ V ′i ∪ V ′′i+1 ∪W ′i−2 are adjacent then uv is an
irrelevant edge.
We split the proof of Claim 1 into the following cases.

Case 1: u ∈ V ′i .
Since u is in Vi, v must be in Vi−1 ∪ Vi+1 ∪Wi−2 ∪Wi+2, otherwise uv would be irrelevant
by Condition 1 or 4. We consider the possible cases for v.

Case 1a: v ∈ Vi−1.
Since u is in V ′i , it is non-trivial to Vi+1, so by Condition 3, u is trivial to Vi−1. Therefore uv
is irrelevant.

Case 1b: v ∈ Vi+1.
Suppose, for contradiction, that v is complete to Wi−2. Let w ∈ Wi−2 be a neighbour
of u (such a vertex w exists, since u is non-trivial to Wi−2). Then G[u, v, w] is a K3, a
contradiction, so v cannot be complete to Wi−2. Now suppose, for contradiction that v is
anti-complete to Wi−2. We may assume that v has a non-neighbour u′ ∈ V ′i , otherwise v
would be trivial to V ′i , in which case uv would be irrelevant. Since u′ ∈ V ′i , u′ is non-trivial
to Wi−2, so it must have a non-neighbour w ∈Wi−2. Then, since v is anti-complete to Wi−2,
it follows that G[u, v, w] is a 3P1, contradicting Condition 7. We may therefore assume that v
is non-trivial to Wi−2. We know that v /∈ V ′′i+1. Therefore v must be trivial to Vi, so uv is
irrelevant.

Case 1c: v ∈Wi−2.
Reasoning as in the previous case, we find that v cannot be complete or anti-complete to Vi+1.
Hence, as v /∈W ′i−2, v must be trivial to Vi, so uv is irrelevant.

Case 1d: v ∈Wi+2.
Since u is non-trivial toWi−2 (by definition of V ′i), there is a vertex w ∈Wi−2 that is adjacent
to u. By Condition 2, w is adjacent to v. Therefore G[u, v, w] is a K3. This contradiction
implies that v /∈Wi+2. This completes Case 1.

Now assume that u /∈ V ′i . Then, by symmetry, u /∈ V ′′i+1. This means that the following case
holds.

Case 2: u ∈W ′i−2.
We argue similarly to Case 1b. We may assume that v is non-trivial to W ′i−2, otherwise uv
would be irrelevant. By Conditions 1, 2 and 5, it follows that v ∈ Vi ∪ Vi+1. Without loss
of generality assume that v ∈ Vi. Since v /∈ V ′i and v is non-trivial to Wi−2, it follows
that v is trivial to Vi+1. If v is complete to Vi+1 then since u is non-trivial to Vi+1, there
must be a vertex w ∈ Vi+1 adjacent to u, in which case G[u, v, w] is a K3, a contradiction.
Therefore v must be anti-complete to Vi+1. Since v is non-trivial to W ′i−2, there must be a
vertex u′ ∈W ′i−2 that is non-adjacent to v. Since u′ ∈W ′i−2, u′ must have a non-neighbour
w ∈ Vi+1. Then G[u′, v, w] is a 3P1, contradicting Condition 7. This completes Case 2.

We conclude that, if u ∈ V ′i ∪ V ′′i+1 ∪W ′i−2 and v /∈ V ′i ∪ V ′′i+1 ∪W ′i−2 are adjacent, then uv
is an irrelevant edge. Hence we have proven Claim 1.

K.K. Dabrowski, F. Dross, and D. Paulusma 16:11

By Claim 1 we find that if u ∈ V ′i ∪ V ′′i+1 ∪W ′i−2 and v /∈ V ′i ∪ V ′′i+1 ∪W ′i−2 are adjacent
then u or v is complete to some set Vj , V

′
j , V

′′
j ,Wj or W ′j that contains v or u, respectively.

Applying a bounded number of bipartite complements (which we may do by Fact 3), we
can separate G[V ′i ∪ V ′′i+1 ∪W ′i−2] from the rest of G. By Conditions 6 and 7 and the fact
that G is (K3, S1,2,3)-free, Lemmas 7 and 8 imply that G[V ′i ∪ V ′′i+1 ∪W ′i−2] has clique-width
at most 6. Repeating this argument for each i, we may assume that V ′i ∪ V ′′i+1 ∪W ′i−2 = ∅
for every i.

For i ∈ {1, . . . , 5} let V ∗i be the set of vertices in Vi that are either non-trivial to Vi+1 or
non-trivial to Wi+2 and let V ∗∗i be the set of the remaining vertices in Vi. For i ∈ {1, . . . , 5},
let W ∗i be the set of vertices that are non-trivial to Vi+2 and let W ∗∗i be the set of the
remaining vertices in Wi.

We claim that every vertex in Vi that is non-trivial to Vi−1 or that is non-trivial to Wi−2
is in V ∗∗i . Indeed, if v ∈ Vi is non-trivial to Vi−1 then by Condition 3, v is trivial to Vi+1 and
since V ′′i is empty, v must be trivial to Wi+2. If v ∈ Vi is non-trivial to Wi−2 then v must
be trivial to Vi+1 since V ′i is empty. Moreover, in this case v must also be trivial to Wi+2,
otherwise, by Condition 2 the vertex v, together with a neighbour of v in each of Wi+2
and Wi−2, would induce a K3 in G. It follows that every vertex in Vi that is non-trivial
to Vi−1 or that is non-trivial to Wi−2 is indeed in V ∗∗i . Similarly, for all i, since W ′i is empty,
every vertex in Wi that is non-trivial to Vi−2 is in W ∗∗i .

We say that an edge uv is insignificant if u or v is in some set V ∗i , V ∗∗i ,W ∗i or W ∗∗i and
the other vertex is trivial to this set; all other edges are said to be significant. We prove the
following claim.

Claim 2. If u ∈ W ∗i ∪ V ∗∗i+2 ∪ V ∗i+1 ∪W ∗∗i−2 and v /∈ W ∗i ∪ V ∗∗i+2 ∪ V ∗i+1 ∪W ∗∗i−2 are adjacent
then the edge uv is insignificant.
To prove this claim suppose, for contradiction, that uv is a significant edge. We split the
proof into two cases.

Case 1: u ∈Wi.
We will show that v ∈ V ∗∗i+2 or v ∈ V ∗i−2 if u ∈W ∗i or u ∈W ∗∗i , respectively. By Conditions 1,
2, 4 and 5 we know that u is trivial to Vi−1, Vi+1, Wi−1, Wi+1, Wi−2 and Wi+2, and that
every vertex of Vi is trivial to Wi. Furthermore, u is trivial to W ∗∗i \ {u} since Wi is
independent. Therefore v ∈ Vi−2 ∪ Vi+2. Note that v is non-trivial to Wi (by choice of v).
If u ∈ W ∗i then u must be trivial to Vi−2, since W ′i is empty. Therefore v ∈ Vi+2. Now if
v ∈ V ∗i+2 then v is non-trivial to Vi−2 or non-trivial to Wi−1. In the first case v is non-trivial
to both Vi−2 and Wi, contradicting the fact that V ′i+2 is empty. In the second case v has
a neighbour w ∈ Wi−1. By Condition 2, w is adjacent to u, so G[u, v, w] is a K3. This
contradiction implies that if u ∈ W ∗i then v ∈ V ∗∗i+2, contradicting the choice of v. Now
suppose u ∈W ∗∗i . Then u is trivial to Vi+2, so v ∈ Vi−2. If v ∈ V ∗∗i−2 then v is trivial Wi (by
definition of V ∗∗i−2). Therefore if u ∈W ∗∗i then v ∈ V ∗i−2, contradicting the choice of v.

We conclude that for every i ∈ {1, . . . , 5} the vertex u is not in Wi. Similarly, we may
assume v /∈Wi. This means that the following case holds.

Case 2: u ∈ Vi, v ∈ Vj for some i, j.
Then i 6= j, since Vi is an independent set. By Condition 1, j /∈ {i− 2, i+ 2}. Without loss
of generality, we may therefore assume that j = i+ 1. If u ∈ V ∗∗i then u is trivial to Vi+1, so
we may assume that u ∈ V ∗i . If v ∈ V ∗i+1 then v is non-trivial to Vi+2, so by Condition 3 it is
trivial to Vi, contradicting the fact that uv is significant. Therefore v ∈ V ∗∗i+1, contradicting
the choice of v.

SWAT 2016

16:12 Colouring Diamond-free Graphs

We conclude that if for some i, u ∈W ∗i ∪V ∗∗i+2∪V ∗i+1∪W ∗∗i−2 and v /∈W ∗i ∪V ∗∗i+2∪V ∗i+1∪W ∗∗i−2
are adjacent then the edge uv is insignificant. Hence we have proven Claim 2.

Note that W ∗i , V ∗∗i+2, V
∗

i+1 and W ∗∗i−2 are independent sets. By Condition 1, W ∗i is anti-
complete to V ∗i+1 and V ∗∗i+2 is anti-complete to W ∗∗i−2. Therefore W ∗i ∪ V ∗i+1 and V ∗∗i+2 ∪W ∗∗i−2
are independent sets. Thus G[W ∗i ∪ V ∗∗i+2 ∪ V ∗i+1 ∪W ∗∗i−2] is an S1,2,3-free bipartite graph,
which has bounded clique-width by Lemma 5. Applying a bounded number of bipartite
complementations (which we may do by Fact 3), we can separate G[W ∗i ∪V ∗∗i+2∪V ∗i+1∪W ∗∗i−2]
from the rest of the graph. We may thus assume thatW ∗i ∪V ∗∗i+2∪V ∗i+1∪W ∗∗i−2 = ∅. Repeating
this process for each i we obtain the empty graph. This completes the proof. J

We can now give the following result, which also implies the (K3, P1 + 2P2)-free case.

I Theorem 11. For H ∈ {P1 + P5, S1,2,2, P1 + P2 + P3}, the class of (K3, H)-free graphs
has bounded clique-width.

Proof Sketch. Let H ∈ {P1 +P5, S1,2,2, P1 +P2 +P3} and consider a (K3, H)-free graph G.
We may assume that G is connected, and by Lemma 9, that G contains an induced cycle on
five vertices, say C = v1−v2−· · ·−v5−v1. Since G is K3-free, no vertex v is adjacent to two
consecutive vertices of C. Therefore every vertex x of G has at most two neighbours on C,
and if x has two neighbours, then they must be non-consecutive vertices of the cycle. We
partition the vertices of G that are not on C into a set U of vertices adjacent to no vertices
of C, sets Wi of vertices whose unique neighbour in C is vi and sets Vi of vertices adjacent
to vi−1 and vi+1. Then, what is left to show is how to modify the graph using operations
that preserve boundedness of clique-width, such that in the resulting graph the set U is
empty and the partition V1, . . . , V5,W1, . . . ,W5 satisfies Conditions 1–7 of Lemma 10. For
full proof details we refer to [17]. J

To prove our main result, we first consider the case where the graph contains a clique on
at least four vertices and show that such graphs have bounded clique-width. Theorem 11
implies that (K3, P1 + 2P2)-free graphs have bounded clique-width. It is therefore sufficient
to consider graphs in the class that contain a K3, but not a K4. We show that we can
either use operations that preserve boundedness of clique-width to modify the graph into
one known to have bounded clique-width or else the graph has a very specific structure, in
which case we can show that it has bounded clique-width directly. See [17] for details.

I Theorem 12. The class of (diamond, P1 + 2P2)-free graphs has bounded clique-width.

References
1 Claudio Arbib and Raffaele Mosca. On (P5,diamond)-free graphs. Discrete Mathematics,

250(1–3):1–22, 2002.
2 Rodica Boliac and Vadim V. Lozin. On the clique-width of graphs in hereditary classes.

Proc. ISAAC 2002, LNCS, 2518:44–54, 2002.
3 Flavia Bonomo, Maria Chudnovsky, Peter Maceli, Oliver Schaudt, Maya Stein, and

Mingxian Zhong. Three-coloring and list three-coloring of graphs without induced paths
on seven vertices. preprint, 2015.

4 Flavia Bonomo, Luciano N. Grippo, Martin Milanič, and Martín D. Safe. Graph classes
with and without powers of bounded clique-width. Discrete Applied Mathematics, 199:3–15,
2016.

5 Andreas Brandstädt, Konrad K. Dabrowski, Shenwei Huang, and Daniël Paulusma. Bound-
ing the clique-width of H-free chordal graphs. Proc. MFCS 2015 Part II, LNCS, 9235:139–
150, 2015.

K.K. Dabrowski, F. Dross, and D. Paulusma 16:13

6 Andreas Brandstädt, Konrad K. Dabrowski, Shenwei Huang, and Daniël Paulusma. Bound-
ing the clique-width of H-free split graphs. Discrete Applied Mathematics, (to appear).

7 Andreas Brandstädt, Joost Engelfriet, Hoàng-Oanh Le, and Vadim V. Lozin. Clique-width
for 4-vertex forbidden subgraphs. Theory of Computing Systems, 39(4):561–590, 2006.

8 Andreas Brandstädt, Vassilis Giakoumakis, and Frédéric Maffray. Clique separator de-
composition of hole-free and diamond-free graphs and algorithmic consequences. Discrete
Applied Mathematics, 160(4–5):471–478, 2012.

9 Andreas Brandstädt, Tilo Klembt, and Suhail Mahfud. P6- and triangle-free graphs revis-
ited: structure and bounded clique-width. Discrete Mathematics and Theoretical Computer
Science, 8(1):173–188, 2006.

10 Andreas Brandstädt, Hoàng-Oanh Le, and Raffaele Mosca. Gem- and co-gem-free graphs
have bounded clique-width. International Journal of Foundations of Computer Science,
15(1):163–185, 2004.

11 Andreas Brandstädt, Hoàng-Oanh Le, and Raffaele Mosca. Chordal co-gem-free
and (P5,gem)-free graphs have bounded clique-width. Discrete Applied Mathematics,
145(2):232–241, 2005.

12 Andreas Brandstädt and Suhail Mahfud. Maximum weight stable set on graphs without
claw and co-claw (and similar graph classes) can be solved in linear time. Information
Processing Letters, 84(5):251–259, 2002.

13 Hajo Broersma, Petr A. Golovach, Daniël Paulusma, and Jian Song. Determining the chro-
matic number of triangle-free 2P3-free graphs in polynomial time. Theoretical Computer
Science, 423:1–10, 2012.

14 Maria Chudnovsky. Coloring graphs with forbidden induced subgraphs. Proc. ICM 2014,
IV:291–302, 2014.

15 Maria Chudnovsky, Jan Goedgebeur, Oliver Schaudt, and Mingxian Zhong. Obstructions
for three-coloring graphs with one forbidden induced subgraph. Proc. SODA 2016, pages
1774–1783, 2016.

16 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150,
2000.

17 Konrad K. Dabrowski, François Dross, and Daniël Paulusma. Colouring diamond-free
graphs. arXiv, 1512.07849, 2015.

18 Konrad K. Dabrowski, Petr A. Golovach, and Daniël Paulusma. Colouring of graphs with
Ramsey-type forbidden subgraphs. Theoretical Computer Science, 522:34–43, 2014.

19 Konrad K. Dabrowski, Shenwei Huang, and Daniël Paulusma. Bounding clique-width via
perfect graphs. Proc. LATA 2015, LNCS, 8977:676–688, 2015.

20 Konrad K. Dabrowski, Vadim V. Lozin, Rajiv Raman, and Bernard Ries. Colouring vertices
of triangle-free graphs without forests. Discrete Mathematics, 312(7):1372–1385, 2012.

21 Konrad K. Dabrowski and Daniël Paulusma. Classifying the clique-width ofH-free bipartite
graphs. Discrete Applied Mathematics, 200:43–51, 2016.

22 Konrad K. Dabrowski and Daniël Paulusma. Clique-width of graph classes defined by two
forbidden induced subgraphs. The Computer Journal, (in press).

23 Wolfgang Espelage, Frank Gurski, and Egon Wanke. How to solve NP-hard graph problems
on clique-width bounded graphs in polynomial time. Proc. WG 2001, LNCS, 2204:117–128,
2001.

24 Jean-Luc Fouquet, Vassilis Giakoumakis, and Jean-Marie Vanherpe. Bipartite graphs
totally decomposable by canonical decomposition. International Journal of Foundations of
Computer Science, 10(04):513–533, 1999.

SWAT 2016

16:14 Colouring Diamond-free Graphs

25 Petr A. Golovach, Matthew Johnson, Daniël Paulusma, and Jian Song. A survey on the
computational complexity of colouring graphs with forbidden subgraphs. Journal of Graph
Thoery, (in press).

26 Martin Grötschel, László Lovász, and Alexander Schrijver. Polynomial algorithms for per-
fect graphs. Annals of Discrete Mathematics, 21:325–356, 1984.

27 Frank Gurski. Graph operations on clique-width bounded graphs. CoRR, abs/cs/0701185,
2007.

28 Pinar Heggernes, Daniel Meister, and Charis Papadopoulos. Characterising the linear
clique-width of a class of graphs by forbidden induced subgraphs. Discrete Applied Math-
ematics, 160(6):888–901, 2012.

29 Chính T. Hoàng and D. Adam Lazzarato. Polynomial-time algorithms for minimum
weighted colorings of (P5, P5)-free graphs and similar graph classes. Discrete Applied Math-
ematics, 186:106–111, 2015.

30 Shenwei Huang, Matthew Johnson, and Daniël Paulusma. Narrowing the complexity gap
for colouring (Cs, Pt)-free graphs. The Computer Journal, 58(11):3074–3088, 2015.

31 Marcin Kamiński, Vadim V. Lozin, and Martin Milanič. Recent developments on graphs
of bounded clique-width. Discrete Applied Mathematics, 157(12):2747–2761, 2009.

32 Ton Kloks, Haiko Müller, and Kristina Vušković. Even-hole-free graphs that do not contain
diamonds: A structure theorem and its consequences. Journal of Combinatorial Theory,
Series B, 99(5):733–800, 2009.

33 Daniel Kobler and Udi Rotics. Edge dominating set and colorings on graphs with fixed
clique-width. Discrete Applied Mathematics, 126(2–3):197–221, 2003.

34 Daniel Král’, Jan Kratochvíl, Zsolt Tuza, and Gerhard J. Woeginger. Complexity of coloring
graphs without forbidden induced subgraphs. Proc. WG 2001, LNCS, 2204:254–262, 2001.

35 László Lovász. Coverings and coloring of hypergraphs. Congressus Numerantium, VIII:3–12,
1973.

36 Vadim V. Lozin and Dmitriy S. Malyshev. Vertex coloring of graphs with few obstructions.
Discrete Applied Mathematics, (in press).

37 Vadim V. Lozin and Dieter Rautenbach. On the band-, tree-, and clique-width of graphs
with bounded vertex degree. SIAM Journal on Discrete Mathematics, 18(1):195–206, 2004.

38 Johann A. Makowsky and Udi Rotics. On the clique-width of graphs with few P4’s. Inter-
national Journal of Foundations of Computer Science, 10(03):329–348, 1999.

39 Dmitriy S. Malyshev. The coloring problem for classes with two small obstructions. Op-
timization Letters, 8(8):2261–2270, 2014.

40 Dmitriy S. Malyshev. Two cases of polynomial-time solvability for the coloring problem.
Journal of Combinatorial Optimization, 31(2):833–845, 2016.

41 Sang-Il Oum. Approximating rank-width and clique-width quickly. ACM Transactions on
Algorithms, 5(1):10, 2008.

42 Bert Randerath and Ingo Schiermeyer. Vertex colouring and forbidden subgraphs – a survey.
Graphs and Combinatorics, 20(1):1–40, 2004.

43 Michaël Rao. MSOL partitioning problems on graphs of bounded treewidth and clique-
width. Theoretical Computer Science, 377(1–3):260–267, 2007.

44 David Schindl. Some new hereditary classes where graph coloring remains NP-hard. Dis-
crete Mathematics, 295(1–3):197–202, 2005.

45 Alan Tucker. Coloring perfect (K4 − e)-free graphs. Journal of Combinatorial Theory,
Series B, 42(3):313–318, 1987.

Below All Subsets for Some Permutational
Counting Problems∗

Andreas Björklund

Department of Computer Science, Lund University, Lund, Sweden
andreas.bjorklund@yahoo.se

Abstract
We show that the two problems of computing the permanent of an n × n matrix of poly(n)-bit
integers and counting the number of Hamiltonian cycles in a directed n-vertex multigraph with
exp(poly(n)) edges can be reduced to relatively few smaller instances of themselves. In effect
we derive the first deterministic algorithms for these two problems that run in o(2n) time in the
worst case. Classic poly(n)2n time algorithms for the two problems have been known since the
early 1960’s. Our algorithms run in 2n−Ω(

√
n/ logn) time.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Matrix Permanent, Hamiltonian Cycles, Asymmetric TSP

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.17

1 Introduction

We show that two well-known computationally hard counting problems defined over per-
mutations, admit a strong form of self-reducibility. The problems are:

Permanent: Given an n×n matrix M with poly(n)–bit integer elements, compute
per(M) =

∑
σ∈Sn

∏
iMi,σ(i) where Sn is the set of all permutations on n elements.

HamCycles: Given an n-vertex directed multigraph, compute its number of Hamiltonian
cycles, i.e. the number of non-crossing spanning cycles.

For both problems, we show that the solution to an instance of size parameter n can
be reduced to a weighted sum of the solutions to poly(n)2n−k instances of size parameter
k < n of the same problem. Moreover, this reduction can be carried out in time polynomial
in n per generated instance. We use this new relation to derive deterministic 2n−Ω(

√
n/ logn)

time algorithms for both Permanent and HamCycles. As a direct corollary we obtain an
Mn22n−Ω(

√
n/log(Mn)) +M2n4 time algorithm for Asymmetric TSP in graphs with integer

arc weights in [0, . . . ,M].
This is as far as the author knows the first deterministic algorithms that compute these

quantities faster than explicitly inspecting at least a constant fraction of all subsets of an
n-element set. In particular, no o(2n) time algorithms were previously known.

Our techniques here are elementary and the presentation is more-or-less self-contained.
The main components are inclusion–exclusion counting, polynomial interpolation, and the
Chinese remainder theorem. The speed-up is obtained through tabulation.

The two problems have well-known poly(n)2n time algorithms: Ryser’s algorithm based on
inclusion–exclusion for the permanent [14] from 1963, and a simple variation of Bellman, Held

∗ This research was supported in part by the Swedish Research Council grant VR 2012-4730 Exact
Exponential–Time Algorithms.

© Andreas Björklund;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 17; pp. 17:1–17:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Below All Subsets for Permutational Counting Problems

and Karp’s dynamic programming algorithm for TSP [3, 9] from 1962. Later a polynomial
space inclusion–exclusion algorithm in the same spirit as Ryser’s for counting Hamiltonian
cycles with the same running time was found [12] in 1977 (and was rediscovered twice [10, 1]).

The question of existence of O((2−Ω(1))n) time algorithms for the two problems are well-
known open problems. In comparison the recent O(1.657n) time algorithm for Hamiltonian
cycle [5] is randomized, only works for undirected graphs, and cannot even approximate the
number of solutions. Recently, Cygan et al. [8] gave an algorithm for Hamiltonicity detection
in bipartite directed graphs in O(1.888n) time. [7] presented an algorithm for computing the
parity of the number of Hamiltonian cycles in O(1.619n) time, and [6] showed that one could
reduce Hamiltonicity detection in graphs with few Hamiltonian cycles to the parity problem,
and thereby obtained o(2n) time algorithms when the instance is known to have few solutions.
Still, not only have there been no deterministic algorithms running in o(2n) worst case time
for the counting problems, it was not even known how to detect a Hamiltonian cycle in a
directed n-vertex graph that fast, probabilistic algorithms included. Nor was it known how
to compute the permanent of an n× n 0− 1 matrix deterministically in o(2n) time.

Moreover, Knuth asks in exercise 4.6.4.11. [M46] in [11] if it is possible to compute a
real n× n-matrix permanent with less than 2n arithmetic operations. We note that reals
of bounded precision can be modeled by large integers, so our algorithm here works also
for them. However, a table look-up is not an arithmetic operation, so our algorithm is not
exactly what Knuth solicited.

The one general previous improvement over poly(n)2n time for any of the two exact
counting problems we are aware of is the 2n−Ω(n1/3 logn) expected time algorithm for the 0− 1
matrix version of Permanent by Bax and Franklin [2]. Their technique can be extended to
work with O(1)-bit integers, but probably not beyond that. In contrast, besides being faster
and in deterministic time, our algorithm handles poly(n)-bit integers, including negative
ones.

The two known poly(n)2n time algorithms for the problems based on the principle of
inclusion–exclusion, Ryser’s [14] and Kohn et al.’s [12] respectively, both use only polynomial
space. It is indeed very natural to ask if employing the unexploited resource of using almost
as much space as time wouldn’t lead to faster algorithms. The problem though with the
known approaches above is that there is no evident candidate for what to tabulate. They
both sum over too large and typically different combinatorial objects. In the case of Ryser’s
permanent it is an n-element vector, and in Kohn et al.’s Hamiltonian cycles it is an induced
graph on n/2 vertices on average.

The key insight here enabling a speed-up from tabulation is that the two problems admit
a mapping from the original instances down to a linear combination of not too many much
smaller ones. So small in fact that they are bound to coincide, making tabulation worthwhile.

1.1 Overview of the Technique
Consider the Permanent case, the HamCycles is similar. The speed-up is obtained in a
series of steps. First we let k = c

√
n/ logn for a constant c depending on the largest absolute

element in the input matrix. Next we employ the existence part of the Chinese remainder
theorem to bring matrix elements down to d logn bits each for some d. That is, we compute
the permanent modulo small primes p of size polynomial in n. For each such prime p, we
construct poly(n)2n−k k × k-matrices such that the permanent of the original one is equal
to the sum of weighted permanents of all the matrices constructed. This reduction is in
itself a two step procedure composed of a reduction to an inclusion–exclusion formula over
polynomial matrices, accompanied by polynomial interpolation. We count the occurrences of

A. Björklund 17:3

each of the smaller matrices in a table. Next we compute the permanent once for each of the
different smaller matrices appearing in the sum using the classic poly(k)2k time algorithm.
We note that there are at most ndk2

<< 2n different such matrices of size k× k. The original
instance permanent is then computed as a linear combination of all the tabulated matrices’
permanent values. Finally, the results for all considered primes p are assembled via the
constructive part of the Chinese remainder theorem.

1.2 Organization
In Section 2 we give a self-contained description of the self-reduction, anticipating that this
part of the results may be of independent interest. The main results, the o(2n) algorithms
for the two counting problems, are described in Section 3.

2 The Self-Reduction

The two problems Permanent and HamCycles are closely related. At a first glance it
appears that the first asks about a property of matrices and the second about graphs, but they
can be expressed in the same language. For the purpose of this paper, we will redefine both
the Permanent and the HamCycles problem in terms of arc-weighted complete directed
graphs to stress their similarity. In the remainder of this paper, the graph Gn = (V,A) will
denote the complete directed graph on n vertices V labelled 1 through n.

The set of all permutations on n elements, denoted by Sn, can naturally be partitioned
after the number of cycles the permutation describes: A permutation σ ∈ Sn can be
interpreted as a directed graph on n vertices, labeled 1 through n, with the arcs i, σ(i) for
all i. Every vertex has exactly one outgoing and one incoming arc, i.e. the graph is a set of
disjoint cycles covering the vertices. We will with S1

n denote the subset of Sn of permutations
consisting of exactly one such cycle. Hence the permanent can be viewed upon as a sum over
cycle covers of a graph, and the Hamiltonian cycles a sum over cycle covers consisting of just
one cycle.

In the following it will make sense to be explicitly clear about what ring the computation
is over. Thus we extend our problem definitions to:

I Definition 1 (R-Permanent). Given a complete directed graph Gn = (V,A) and a
function f : A → R mapping the arcs to some ring R, the permanent of (G, f) over R,
denoted per(G, f), is

∑
σ∈Sn

∏n
i=1 f(iσ(i)).

I Definition 2 (R-HamCycles). Given a complete directed graph Gn = (V,A) and a
function f : A → R mapping the arcs to some ring R, the hamcycles of (G, f) over R,
denoted hc(G, f), is

∑
σ∈S1

n

∏n
i=1 f(iσ(i)) .

In the remainder of this section we will prove the following two lemmas:

I Lemma 3. Given an instance (Gn, f) to F -Permanent with f mapping arcs to a field
F having at least (n − k)n + 1 elements, and a positive integer k < n, one can compute
m = ((n− k)n+ 1)2n−k instances Ii = (Gk, fi) to F -Permanent and constants ai ∈ F for
i = 1, . . . ,m , so that

per(Gn, f) =
m∑
i=1

ai per(Gk, fi) .

Moreover, the constructed smaller instances and constants can be produced in polynomial in
n arithmetic operations + and ∗ over F per instance.

SWAT 2016

17:4 Below All Subsets for Permutational Counting Problems

I Lemma 4. Given an instance (Gn, f) to F -HamCycles with f mapping arcs to a field
F having at least (n − k)k + 1 elements, and a positive integer k < n, one can compute
m = ((n− k)k + 1)2n−k instances Ii = (Gk, fi) to F -HamCycles and constants ai ∈ F for
i = 1, . . . ,m , so that

hc(Gn, f) =
m∑
i=1

ai hc(Gk, fi) .

Moreover, the constructed smaller instances and constants can be produced in polynomial in
n arithmetic operations + and ∗ over F per instance.

2.1 Preliminaries

In a complete directed graph Gn a walk of length l is a sequence of not necessarily distinct
vertices (v0, v1, . . . , vl). If v0 = vl we say that the walk is a closed walk. For a field F and
an indeterminate r, we denote by F [r] the polynomial ring over F of polynomials in r with
coefficients from F . For a polynomial p(r) ∈ F [r] we denote by [rn]p(r) the coefficient of the
monomial rn in p(r).

2.2 Step 1. Inclusion–exclusion

Consider an instance (Gn, f) to either F -Permanent or F -HamCycles for some field F .
We fix a subset K ⊆ V of the vertices of size |K| = k, called the kernel of the reduction.
Without loss of generality, we let K be the vertices labeled by 1, 2, . . . , k, and hence V −K
be the vertices labelled by k + 1, k + 2, . . . , n.

Our resulting instances will all be over the kernel K, i.e. embedded on the graph Gk.
The central idea is to represent the parts of a cycle cover covering the vertices V −K, by arcs
in Gk between the entry and exit points of the cycles in K. This approach of representing
parts of a cycle cover outside a small subgraph by encoding them on the arcs of the subgraph
was previously used by the author both in [4] and [5]. The novelty here, is the observation
that these reductions can be seen as a mapping to a low degree univariate polynomial, that
in step 2 in the next section will be efficiently brought back to the original field.

In this first step, we construct one instance per subset of V −K, and use the principle of
inclusion–exclusion to relate them to the original instance. The resulting instances will not
be over the original field F though. Instead the function f giving weights to the arcs will
assign polynomials in one rank indeterminate r to them.

First we define the ranked walks in a vertex subset X. The degree of the indeterminate r
counts the number of vertices visited along the walk. For any vertices u, v ∈ X ⊆ V we let
WX,k(u, v) be the ranked walks between vertices u and v visiting k vertices in X. We set

WX,k(u, v) =

∑
w∈XWX,k−1(u,w)f(w, v)r : k > 0

1 : k = 0 ∧ u = v

0 : k = 0 ∧ u 6= v.

(1)

The ranked walks will be used to make sure all vertices outside the kernel K are visited
by the cycle covers in the Permanent case and the Hamiltonian cycles in the HamCycles
case. The principle of inclusion–exclusion makes sure crossing walks are cancelled. Since the
HamCycles case is somewhat easier technically, we describe it first.

A. Björklund 17:5

2.2.1 Inclusion–exclusion for HamCycles
We will construct instances of F [r]-HamCycles defined on Gk = (K,AK). We let fX :
AK → F [r] for X ⊆ V −K be defined for all u, v ∈ K as follows

fX(uv) = f(uv) +
∑
w,z∈X

f(uw)
(
n−k−1∑
i=0

WX,i(w, z)
)
f(zv) · r. (2)

The point is that fX(uv) encodes all possible choices between either staying in K by
choosing the arc uv directly or taking a detour through V −K consisting of 1, 2, . . . , n− k
vertices starting in u and ending in v.

I Lemma 5. With Gn, f,K, k,Gk, fX as above it holds that

hc(Gn, f) = [rn−k]
∑

X⊆V−K

(−1)|V−K−X| hc(Gk, fX) .

Proof. By the definition of F -HamCycles Def. 2, we have

hc(Gk, fX) =
∑
σ∈S1

k

k∏
i=1

fX(iσ(i)) .

Expanding fX via Eq. 2, we get

hc(Gk, fX) =
∑
σ∈S1

k

k∏
i=1

f(iσ(i))+
n−k∑
l=1

rl
∑

v1,...,vl∈X
f(iv1)

l−1∏
j=1

f(vjvj+1)

 f(vlσ(i))

 .

From the formula above, we see that [rn−k]hc(Gk, fX) is a sum with terms
∏n
i=1 f(vivi+1)

for each closed walk (v1, v2, . . . , vn+1) with vn+1 = v1 where
1. Exactly n− k of v1, . . . , vn belong to X, and
2. Each vertex in K occurs exactly once in v1, . . . , vn.

In the inclusion–exclusion summation over X ⊆ V −K,

hc(Gn, f) =
∑

X⊆V−K

(−1)|V−K−X|[rn−k] hc(Gk, fX) ,

each walk that crosses itself, i.e. has vi = vj for some i < j ≤ n, will be counted an
even number of times. Moreover, exactly half of these times it will be added to the sum
and the other half it will be subtracted, thereby canceling in the sum. To see why, let
Y = {vi|vi ∈ V −K} for a crossing walk. Clearly Y ⊂ V −K since there are precisely n− k
vertices from V −K on every contributing walk, and when one occurs at least twice there
must be another one that is missing. Since among the subsets Z fulfilling Y ⊆ Z ⊆ V −K
there are as many even sized subsets as odd ones the claim follows. Contributing walks that
do not cross themselves however, i.e. are Hamiltonian cycles in G, will only be counted once,
for X = V −K. J

2.2.2 Inclusion–exclusion for Permanent
In addition to the ranked walks in V −K we also need to keep track of ranked cycles in
V −K for the Permanent. We want to sum over all cycle covers of the input graph G and
unlike the HamCycles case we may have vertices in V −K disconnected from K in a cycle

SWAT 2016

17:6 Below All Subsets for Permutational Counting Problems

cover. Remember that the vertices in V are labelled 1, 2, . . . , n and associate the natural
ordering < of them. We need to define cycles in a cycle cover so that they receive a unique
identifier to avoid double counting in our polynomial identity. To this end, we use that every
cycle has a minimum vertex under the ordering to define the ranked closed walks anchored
at s ∈ X as

CX(s) = 1 +
n−k∑
i=1

WX≥s,i(s, s) . (3)

where X≥s = {v|s ≤ v ∈ X}, i.e. all vertices in X equal to or larger than s. The cycles
anchored at s represents all cycles of length 1, 2, . . . , n− k in V −K where s is the smallest
vertex on the cycle. Note in particular that self-loops through s are also included in the
sum. The 1 is in the definition of Eq. 3 to take into account the possibility that no cycle is
anchored at s in a contributing cycle cover.

I Lemma 6. With Gn, f,K, k,Gk, fX as above it holds that

per(Gn, f) = [rn−k]
∑

X⊆V−K

(−1)|V−K−X| per(Gk, fX)
∏
s∈X

CX(s) .

Proof. By the definition of F -Permanent Def. 1, we have

per(Gk, fX)
∏
s∈X

CX(s) =
∑
σ∈Sk

k∏
j=1

fX(jσ(j))
n∏

i=k+1
CX(i) .

Expanding CX via Eq. 3 and fX via Eq. 2, we get

per(Gk, fX)
∏
s∈X

CX(s) =

∑
σ∈Sk

k∏
i=1

f(iσ(i))+
n−k∑
l=1

rl
∑

v1,...,vl∈X
f(iv1)

l−1∏
j=1

f(vjvj+1)

 f(vlσ(i))

·
n∏

i=k+1

1 +
n−k∑
l=1

rl
∑

v1,...,vl∈X≥i

i=v1

f(vlv1)
l−1∏
j=1

f(vjvj+1)

 .

Expanding the formula above into a sum–product formula by identifying terms, we see
that

[rn−k] per(Gk, fX)
∏
s∈X

CX(s) ,

is a sum over contributions
∏l
i=1
∏
uv∈Oi

f(uv) , for 1 ≤ l ≤ n closed l-long walks Oi =
(vi,1, . . . , vi,ml

, vi,ml+1) with vi,1 = vi,ml+1 and
∑l
i=1mi = n where

1. Exactly n− k of the vi,j for 1 ≤ i ≤ n, 1 ≤ j ≤ mi belong to X, and
2. Each vertex in K occurs exactly once in the closed walks Oi, 1 ≤ i ≤ l.

In the inclusion–exclusion summation over X ⊆ V −K,

per(Gn, f) =
∑

X⊆V−K

(−1)|V−K−X|[rn−k]per(Gk, fX)
∏
s∈X

CX(s) ,

A. Björklund 17:7

each set of closed walks {Oi} that crosses itself, i.e. has vi1,j1 = vi2,j2 for some i1 6= i2∨ j1 6=
j2, will be counted an even number of times. Moreover, exactly half of these times it will be
added to the sum and the other half it will be subtracted, thereby canceling in the sum. To
see why, again let Y = {vi,j |vi,j ∈ V −K} for a set of closed walks with a crossing. Clearly
Y ⊂ V −K since there are precisely n− k vertices from V −K on every contributing set of
closed walks, and when one occurs at least twice there must be another one that is missing.
Since among the subsets Z fulfilling Y ⊆ Z ⊆ V −K there are as many even sized subsets as
odd ones the claim follows. Contributing sets of closed walks that do not cross themselves,
i.e. are cycle covers in G, will only be counted once, for X = V −K. J

2.3 Step 2. Polynomial Interpolation
In the previous section we related the permanent and the Hamiltonian cycles of an arc
weighted graph to smaller graphs with weights over a polynomial ring. We want to bring the
small instances to map arcs to the original ring to complete the self-reduction. Unfortunately,
we are only able to do this if the original ring is a field, and one that has at least polynomially
many elements in the original instance size parameter. In particular, we need the following
well-known result:

I Lemma 7 (Lagrange interpolation). For any set of pairs {(ri, si)} with distinct ri’s and
ri, si ∈ F for i = 1, . . . , k + 1 where F is a field on at least k + 1 elements, there is a unique
polynomial p(r) in F [r] of degree at most k such that p(ri) = si for all i. Moreover, the
polynomial is given by

p(r) =
k+1∑
i=1

si
∏
j 6=i

r − rj
ri − rj

.

Specifically, consider an instance (G, f) to F -HamCycles. Via Lemma 5 we see that
hc(G) is related to a coefficient in a polynomial sum of many smaller instances (Gk, fX) to
F [r]-HamCycles. We use here that if we know the result in enough points over F we can
reconstruct the polynomial via interpolation.

I Lemma 8. For every polynomial term hc(Gk, fX) in the outer sum in Lemma 5, it
is possible to compute (n − k)k + 1 instances (Gk, fi) for i = 1, . . . , (n − k)k + 1 to the
F -HamCycles on k vertices, and constants ai ∈ F for i = 1, . . . , (n− k)k + 1 so that

|rn−k] hc(Gk, fX) =
(n−k)k+1∑

j=1
aj hc(Gk, fj) .

Proof. Each entry in the codomain of fX has degree n− k in r by definition of the ranked
walks and the definition of fX in Eq. 2. Since hc(Gk, fX) is a sum over the product of k arcs’
fX ’s, the degree of hc(Gk, fX) in r is (n− k)k.

Let r1, r2, . . . , rm be m distinct elements in F and let fj be equal to fX evaluated in
r = rj . By Lagrange interpolation, it is possible to compute hc(Gk, fX) and in particular
the coefficient of rn−k from the evaluated polynomial points hc(Gk, fj). J

The F -Permanent case is similar: consider an instance (Gn, f). Lemma 6 states that
per(Gn, f) is related to a coefficient in a polynomial resulting from a sum of many smaller
instances (Gk, fX) to F [r]-Permanent.

SWAT 2016

17:8 Below All Subsets for Permutational Counting Problems

I Lemma 9. For every polynomial term per(Gk, fX)
∏n
i=k+1 CX(i) in the outer sum in

Lemma 6, it is possible to compute (n− k)n+ 1 instances (Gk, fi) for i = 1, . . . , (n− k)n+ 1
to the F -Permanent on k vertices, and constants ai ∈ F for i = 1, . . . , (n− k)n+ 1 so that

|rn−k] per(Gk, fX)
n∑

i=k+1
CX(i) =

(n−k)n+1∑
j=1

aj per(Gk, fj) .

Proof. Each entry in the codomain of fX has degree n− k by definition of the ranked walks
and the definition of fX in Eq. 2. Since per(Gk, fX) is a sum over the product of k arcs fX ’s,
the degree of per(Gk, fX) in r is (n−k)k. The degree of

∏n
i=k+1 CX(i) is (n−k)(n−k) since

every CX(i) has degree n− k by the definition Eq. 3. Altogether, per(Gk, fX)
∏n
i=k+1 CX(i)

has degree (n− k)n.
Let r1, r2, . . . , rm be m distinct elements in F and let fj be equal to fX evaluated in

r = rj . Likewise, let bj be equal to
∏n
i=k+1 CX(i) evaluated in r = rj . By Lagrange

interpolation, it is possible to compute the coefficent of rn−k in per(Gk, fX)
∏n
i=k+1 CX(i)

from the evaluated polynomial points bj per(Gk, fj). J

The self-reduction for F -Permanent Lemma 3 follows from the combination of Lemma 6
and Lemma 9, after observing that each X ⊆ V − K and each r ∈ 1, . . . , (n − k)n + 1
corresponds to one small instance. Similarly, the self-reduction for F -HamCycles Lemma 4
follows from Lemma 5 and Lemma 8 with X ⊆ V −K and r ∈ 1, . . . , (n−k)k+ 1. It remains
to validate the runtime in terms of the number of arithmetic operations used. To compute a
small instance (Gk, fi) in Lemma 3 (Lemma 4 respectively), corresponding to a particular
X ⊆ V −K and r ∈ 1, . . . , (n− k)n+ 1, we see from the definitions Eqs. 2 and 3 that the
instance elements are computed as walks in X for a fixed r. We can compute the elements
through the recursive definition of the ranked walks Eq. 1 via dynamic programming in only
polynomial in n number of arithmetic operations.

3 The Algorithms

In this section we prove our main theorems:

I Theorem 10. Any single n× n matrix instance of Permanent with poly(n)-bit integer
elements can be solved deterministically in 2n−Ω(

√
n/ logn) time.

I Theorem 11. Any single n-vertex directed graph instance of HamCycles with exp(poly(n))
number of arcs can be solved deterministically in 2n−Ω(

√
n/ logn) time.

We immediately observe that the above theorem via a standard embedding of the (min,+)-
semiring on the integers, can be used to count cycles by weight through polynomial inter-
polation. In particular, the problem of finding the length of the shortest Hamiltonian cycle,
known as the Asymmetric Traveling Salesman problem can be solved by the technique.That
is, we introduce yet another indeterminate z, associate an arc of weight w with zw, and
finally solve for the smallest non-zero monomial in the resulting polynomial, see e.g. [12].
Since the evaluated polynomial is of degree at most Mn2, we get

I Corollary 12. The shortest Asymmetric Traveling Salesman Problem route in an n-vertex
graph with integer arc weights in [0, . . . ,M] can be computed inMn22n−Ω(

√
n/ log(Mn))+M2n4

time.

A. Björklund 17:9

On the top level, the idea of the algorithms is to bring the computations down to
small finite fields. We next use the self-reductions from Section 2 to transform the input
matrix/graph down to so small ones that several of them will be identical. By tabulating
which ones of them have been constructed in this process and how often, it then suffices to
compute the permanent of the small matrices/the Hamiltonian cycles of the small graphs
only once. To make this precise we first need some elementary results from number theory.

3.1 Preliminaries on Modular Arithmetic
The well-known Chinese remainder theorem has two parts, an existence and a constructive
one. The existence part states that an integer solution to a set of linear modular equations
is uniquely defined in the range between zero and the least common multiple of the moduli.
The constructive part describes how to recover the solution given the modular equations.
We state them here in a slightly modified form as we will need them

I Lemma 13 (CRT). Given m distinct primes pi, and residues 0 ≤ ai < pi, 1 ≤ i ≤ m,

Existence: There is a unique integer n in
⌊
−
∏m

i=1
pi

2

⌋
≤ n <

⌈∏m

i=1
pi

2

⌉
fulfilling n ≡

ai(mod pi), 1 ≤ i ≤ m.
Construction: The integer n can be computed by evaluating n+ =

∑m
i=1 airi where

ri =
∏
j 6=i pj

((∏
j 6=i pj

)−1
(mod pi)

)
and then setting

n = n+ if n+ <

∏m

i=1
pi

2 , and n = n+ −
∏m
i=1 p otherwise.

We also use the following bound of the prime number theorem to answer how many and
large primes we will need to break down a computation using the CRT:

I Lemma 14 (Rosser [13]). For every integer n ≥ 55 the number of primes π(n) less than
or equal to n obey n/(ln(n) + 2) < π(n) < n/(ln(n)− 4).

3.2 The Algorithm
We will first describe the algorithm for the Permanent case Thm. 10 , and then point out
the few changes needed for the HamCycles case Thm. 11. We begin by describing the
algorithm in pseudo-code below. Next we will explain the steps in more detail.

Permanent per(Gn, f)
1. Let M be the largest absolute value in the image of f .
2. Let P be the smallest set of primes > n2 such that

∏
p∈P p > 2Mnn!.

3. Let k = b
√
.99n/ log2 pmaxc where pmax = maxp∈P p.

4. For each prime p ∈ P
5. Construct a table T from all Zk×kp matrices to the positive integers,

initially set to all zeros.
6. Evaluate f(p) = f(mod p).
7. Compute m = (n−k)n2n−k instances (Gk, fj) and constants aj for j = 1, . . . ,m

to Zp-Permanent such that per(Gn, f(p)) =
∑m
j=1 ai per(Gk, fj).

8. For j = 1, . . . ,m
9. Let T (fj) = T (fj) + aj .

10. Set sum = 0.
11. For each g with non-zero table entry T (g)

SWAT 2016

17:10 Below All Subsets for Permutational Counting Problems

12. Compute per(Gk, g) using Ryser’s permanent algorithm.
13. Let sum = sum+ T (g) per(Gk, g)(mod p).
14. Store per(Gn, f(p)) = sum

15. Compute the permanent over Z using the stored per(Gn, f(p)) for all p ∈ P
using the constructive part of CRT.

The existence part of CRT Lemma 13 makes it clear that to compute an integer function
solely with the operations + and ∗ over the integers, one can just as well compute it
modulo several primes and assemble the result in the end. Both the Permanent and
the HamCycles problems are defined as sum–products, so to compute their quantities
modulo a prime p, we can replace the input integers with their residues modulo p. Steps
2–6 of the algorithm do precisely that, transform the input integer Permanent instance to
instances of Zp-Permanent for primes p. Step 7 next generates (n− k)n2n−k instances of
the Zp-Permanent problem using the constructive proof for Lemma 3. Steps 8–9 counts the
occurrences of each of the different matrices in Zk×kp by keeping track of the total coefficients
of each of the smaller matrices’ permanents in Lemma 3. Steps 10–14 computes the solution
to the n × n-matrix permanent per(Gn, f(p)), and finally step 15 assembles the modular
results using the constructive part of the CRT Lemma 13. The correctness of the algorithm
follows from Lemma 13 and the self-reduction Lemma 3, after noting that enough primes are
chosen in step 2.

To bound the runtime, the only question is how many and how large primes are required,
and indirectly, how large tables will be used? The permanent is a sum of n! products of
n elements from the input function f . In step 2 of the algorithm we measure the absolute
max over all elements used to conclude that | per(Gn, f)| ≤Mnn! < 2nc for some positive
constant c when the input entries have poly(n) bits. From Lemma 14 we see that there are
at least m = nd/(dln(n) + 2)− n2/(2ln(n)− 4) primes larger than n2 but smaller than nd
for n ≥ 55. We want the product of the first m primes larger than n2, the set of primes P
in step 4 of the algorithm, to be larger than 2 · 2nc , i.e. n2m > 2nc+1. It is straightforward
to note that a constant d depending on c will suffice, in fact using d = c+ 3 is more than
enough. Hence pmax in step 3 is bounded by nd for d constant and k is Ω(

√
n/ logn).

For each prime p ∈ P in step 4, we use a table T in step 5–13 with one entry per matrix
in Zk×kp . An upper bound on the number of matrices in Zk×kp using pmax from step 3 and k
from step 4 of the algorithm is (pmax)k2

< 20.99n. The runtime of steps 5–9 is easily seen
to be O((n − k)n2n−k) from the bound on the table T ’s size and Lemma 3. Computing
the permanent of each of the matrices is a O(k2k) time task with Ryser’s algorithm [14],
so the total runtime of steps 10–15 is o(2n−k). Altogether, the loop at steps 4–14 is run a
polynomial number of times, and step 15 is polynomial time, so we get poly(n)2n−k time in
total which is 2n−Ω(

√
n/ logn) time as claimed.

To adjust the algorithm and the proof to counting HamCycles, all we need to do is to
replace Lemma 3 for Lemma 4 in step 7 of the algorithm and the analysis, and exchange
Ryser’s algorithm for the permanent in step 12 for e.g. Bax’s [1] Hamiltonian cycle counting
algorithm.

Acknowledgments. I thank Thore Husfeldt, Alexander Golovnev, Petteri Kaski, Mikko
Koivisto, and Ryan Williams and several anonymous referees for comments on an earlier
draft of the paper and stimulating discussions on the subject.

A. Björklund 17:11

References
1 E. T. Bax. Inclusion and exclusion algorithm for the hamiltonian path problem. In-

form. Process. Lett, 47:203–207, 1993.
2 E. T. Bax and J. Franklin. A permanent algorithm with exp[ω(n1/3/2ln(n))] expected

speedup for 0-1 matrices. Algorithmica, 32:157–162, 2002.
3 R. Bellman. Dynamic programming treatment of the travelling salesman problem. J. Assoc.

Comput. Mach, 9:61–63, 1962.
4 A. Björklund. Counting perfect matchings as fast as ryser. In Proceedings of the ACM-

SIAM SODA, pages 914–921, 2012.
5 A. Björklund. Determinant sums for undirected hamiltonicity. SIAM J. Comput., 43:280–

299, 2014.
6 A. Björklund, H. Dell, and T. Husfeldt. The parity of set systems under random restrictions

with applications to exponential time problems. In Proceedings of ICALP,, pages 231–242,
2015.

7 A. Björklund and T. Husfeldt. The parity of directed hamiltonian cycles. In Proceedings
of the IEEE FOCS,, pages 724–735, 2013.

8 M. Cygan, S. Kratsch, and J. Nederlof. Fast hamiltonicity checking via bases of perfect
matchings. In Proceedings of the ACM STOC, pages 301–310, 2013.

9 M. Held and R. M. Karp. A dynamic programming approach to sequencing problems. J.
Soc. Indust. Appl. Math., 10:196–210, 1962.

10 R. M. Karp. Dynamic programming meets the principle of inclusion and exclusion.
Oper. Res. Lett., 1:49–51, 1982.

11 D. E. Knuth. The Art of Computer Programming. Vol. 2: Seminumerical Algorithms.
Addison-Wesley, third edition, 1997.

12 S. Kohn, A. Gottlieb, and M. Kohn. A generating function approach to the traveling
salesman problem. In Proceedings of the Annual Conference (ACM’77), Association for
Computing Machinery, pages 294–300, 1977.

13 B. Rosser. Explicit bounds for some functions of prime numbers. American Journal of
Mathematics, 63:211–232, 1941.

14 H. J. Ryser. Combinatorial Mathematics. The Carus mathematical monographs, The
Mathematical Association of America, 1963.

SWAT 2016

Extension Complexity, MSO Logic, and Treewidth∗

Petr Kolman1, Martin Koutecký2, and Hans Raj Tiwary3

1 Department of Applied Mathematics (KAM) & Institute of Theoretical
Computer Science (ITI), Faculty of Mathematics and Physics (MFF), Charles
University, Prague, Czech Republic
kolman@kam.mff.cuni.cz

2 Department of Applied Mathematics (KAM) & Institute of Theoretical
Computer Science (ITI), Faculty of Mathematics and Physics (MFF), Charles
University, Prague, Czech Republic
koutecky@kam.mff.cuni.cz

3 Department of Applied Mathematics (KAM) & Institute of Theoretical
Computer Science (ITI), Faculty of Mathematics and Physics (MFF), Charles
University, Prague, Czech Republic
hansraj@kam.mff.cuni.cz

Abstract
We consider the convex hull Pϕ(G) of all satisfying assignments of a given MSO2 formula ϕ on a
given graph G. We show that there exists an extended formulation of the polytope Pϕ(G) that
can be described by f(|ϕ|, τ) · n inequalities, where n is the number of vertices in G, τ is the
treewidth of G and f is a computable function depending only on ϕ and τ.

In other words, we prove that the extension complexity of Pϕ(G) is linear in the size of the
graph G, with a constant depending on the treewidth of G and the formula ϕ. This provides a
very general yet very simple meta-theorem about the extension complexity of polytopes related
to a wide class of problems and graphs.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, F.4.1 Mathe-
matical Logic, G.1.6 Optimization, G.2.1 Combinatorics, G.2.2 Graph Theory

Keywords and phrases Extension Complexity, FPT, Courcelle’s Theorem, MSO Logic

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.18

1 Introduction

In the ’70s and ’80s, it was repeatedly observed that various NP-hard problems are solvable
in polynomial time on graphs resembling trees. The graph property of resembling a tree was
eventually formalized as having bounded treewidth, and in the beginning of the ’90s, the
class of problems efficiently solvable on graphs of bounded treewidth was shown to contain
the class of problems definable by the Monadic Second Order Logic (MSO2) (Courcelle [11],
Arnborg et al. [1], Courcelle and Mosbah [13]). Using similar techniques, analogous results for
weaker logics were then proven for wider graph classes such as graphs of bounded cliquewidth
and rankwidth [12]. Results of this kind are usually referred to as Courcelle’s theorem for a
specific class of structures.

In this paper we study the class of problems definable by the MSO logic from the
perspective of extension complexity. While small extended formulations are known for
various special classes of polytopes, we are not aware of any other result in the theory of

∗ This research was partially supported by projects GA15-11559S of GA ČR and 338216 of GA UK.

© Petr Kolman, Martin Koutecký, and Hans R. Tiwary;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 18; pp. 18:1–18:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Extension Complexity, MSO Logic, and Treewidth

extended formulations that works on a wide class of polytopes the way Courcelle’s theorem
works for a wide class of problems and graphs.

Our Contribution. We prove that satisfying assignments of an MSO2 formula ϕ on a graph
of bounded treewidth can be expressed by a “small” linear program. More precisely, there
exists a computable function f such that the convex hull – Pϕ(G) – of satisfying assignments
of ϕ on a graph G on n vertices with treewidth τ can be obtained as the projection of a
polytope described by f(|ϕ|, τ) · n linear inequalities; we call Pϕ(G) the MSO polytope. All
our results can be extended to general finite structures where the restriction on treewidth
applies to the treewidth of their Gaifman graph [30].

Our proof essentially works by “merging the common wisdom” from the areas of extended
formulations and fixed parameter tractability. It is known that dynamic programming can
be turned into a compact extended formulation [32, 18], and that Courcelle’s theorem can
be seen as an instance of dynamic programming [26]; therefore one can expect the polytope
of satisfying assignments of an MSO formula of a bounded treewidth graph to be compact.

However, there are a few roadblocks in trying to merge these two folklore wisdoms. For
one, while Courcelle’s theorem being an instance of dynamic programming in some sense
may be obvious to an FPT theorist, it is far from clear to anyone else what that sentence
may even mean. On the other hand, being able to turn a dynamic program into a compact
polytope may be a theoretical possibility for an expert on extended formulations, but it
is by no means an easy statement for an outsider to comprehend. What complicates the
matters even further is that the result of Martin et al. [32] is not a result that can be used
in a black box fashion. That is, a certain condition must be satisfied to get a compact
extended formulation out of a dynamic program. This is far from a trivial task, especially
for a theorem like Courcelle’s theorem.

The rest of the article is organized as follows. In Section 2 we review some previous
work related to Courcelle’s theorem and extended formulations. In Section 3 we describe
the relevant notions related to polytopes, extended formulations, graphs, treewidth and
MSO logic. In Section 4 we prove the existence of compact extended formulations for MSO
polytopes parameterized by the length of the given MSO formula and the treewidth of the
given graph. In Section 5 we describe how to efficiently construct such a polytope given a
tree decomposition of a graph.

2 Related Work

2.1 MSO Logic vs. Treewidth
Because of the wide relevance of the treewidth parameter in many areas (cf. the survey of
Bodlaender [5]) and the large expressivity of the MSO and its extensions (cf. the survey of
Langer et al. [27]), considerable attention was given to Courcelle’s theorem by theorists from
various fields, reinterpreting it into their own setting. These reinterpretations helped uncover
several interesting connections.

The classical way of proving Courcelle’s theorem is constructing a tree automaton A in
time only dependent on ϕ and the treewidth τ , such that A accepts a tree decomposition of
a graph of treewidth τ if and only if the corresponding graph satisfies ϕ; this is the automata
theory perspective [11]. Another perspective comes from finite model theory where one can
prove that a certain equivalence on the set of graphs of treewidth at most τ has only finitely
many (depending on ϕ and τ) equivalence classes and that it behaves well [16]. Another
approach proves that a quite different equivalence on so-called extended model checking

P. Kolman, M. Koutecký, and H. R. Tiwary 18:3

games has finitely many equivalence classes [23] as well; this is the game-theoretic perspective.
It can be observed that the finiteness in either perspective stems from the same roots.

Another related result is an expressivity result: Gottlob et al. [16] prove that on bounded
treewidth graphs, a certain subset of the database query language Datalog has the same
expressive power as the MSO. This provides an interesting connection between the automata
theory and the database theory.

2.2 Extended Formulations
Sellmann, Mercier, and Leventhal [34] claimed to show compact extended formulation for
binary Constraint Satisfaction Problems (CSP) for graphs of bounded treewidth, but their
proof is not correct [33]. The first two authors of this paper gave extended formulations for
CSP that has polynomial size for instances whose constraint graph has bounded treewidth [25]
using a different technique. Bienstock and Munoz [3] prove similar results for the approximate
and exact version of the problem. In the exact case, Bienstock and Munoz’s bounds are
slightly worse than those of Kolman and Koutecký [25]. It is worth noting that CSPs are a
restricted subclass of problems that can be modeled using MSO logic. Laurent [28] provides
extended formulations for the independent set and max cut polytopes of size O(2τn) for
n-vertex graphs of treewidth τ and, independently, Buchanan and Butenko [8] provide an
extended formulation for the independent set polytope of the same size.

A lot of recent work on extended formulations has focussed on establishing lower bounds
in various settings: exact, approximate, linear vs. semidefinite, etc. (See for example
[15, 2, 6, 29]). A wide variety of tools have been developed and used for these results includ-
ing connections to nonnegative matrix factorizations [37], communication complexity [14],
information theory [7], and quantum communication [15] among others.

For proving upper bounds on extended formulations, several authors have proposed
various tools as well. Kaibel and Loos [19] describe a setting of branched polyhedral systems
which was later used by Kaibel and Pashkovich [20] to provide a way to construct polytopes
using reflection relations.

A particularly specific composition rule, which we term glued product (cf. Subsection 3.1),
was studied by Margot in his PhD thesis [31]. Margot showed that a property called the
projected face property suffices to glue two polytopes efficiently. Conforti and Pashkovich [10]
describe and strengthen Margot’s result to make the projected face property to be a necessary
and sufficient condition to describe the glued product in a particularly efficient way.

Martin et al. [32] have shown that under certain conditions, an efficient dynamic pro-
gramming based algorithm can be turned into a compact extended formulation. Kaibel [18]
summarizes this and various other methods.

3 Preliminaries

3.1 Polytopes, Extended Formulations and Extension Complexity
For background on polytopes we refer the reader to Grünbaum [17] and Ziegler [38]. To
simplify reading of the paper for the audience that is not working often in the area of
polyhedral combinatorics, we provide here a brief glossary of common polyhedral notions
that are used in this article.

A hyperplane in Rn is a closed convex set of the form {x|aᵀx = b} where a ∈ Rn, b ∈ R.
A halfspace in Rn is a closed convex set of the form {x|aᵀx 6 b} where a ∈ Rn, b ∈ R.
The inequality aᵀx 6 b is said to define the corresponding halfspace. A polytope P ⊆ Rn

SWAT 2016

18:4 Extension Complexity, MSO Logic, and Treewidth

is a bounded subset defined by intersection of finite number of halfspaces. A result of
Minkowsky-Weyl states that equivalently, every polytope is the convex hull of a finite number
of points. Let h be a halfspace defined by an inequality aᵀx 6 b; the inequality is said to
be valid for a polytope P if P = P ∩ h. Let h be a halfspace defined by a valid inequality
aᵀx 6 b; then, P ∩ {x|aᵀx = b} is said to be a face of P .

Note that, taking a to be the zero vector and b = 0 results in the face being P itself. Also,
taking a to be the zero vector and b = 1 results in the empty set. These two faces are often
called the trivial faces and they are polytopes “living in” dimensions n and −1, respectively.
Every face - that is not trivial - is itself a polytope of dimension d where 0 6 d 6 n− 1. The
zero dimensional faces of a polytope are called its vertices, and the (n− 1)-dimensional faces
are called its facets.

It is not uncommon to refer to three separate (but related) objects as a face: the actual
face as defined above, the valid inequality defining it, and the equation corresponding to the
valid inequality. While this is clearly a misuse of notation, the context usually makes it clear
as to exactly which object is being referred to.

Let P be a polytope in Rd. A polytope Q in Rd+r is called an extended formulation or
an extension of P if P is a projection of Q onto the first d coordinates. Note that for any
linear map π : Rd+r → Rd such that P = π(Q), a polytope Q′ exists such that P is obtained
by dropping all but the first d coordinates on Q′ and, moreover, Q and Q′ have the same
number of facets.

The size of a polytope is defined to be the number of its facet-defining inequalities.
Finally, the extension complexity of a polytope P , denoted by xc(P), is the size of its
smallest extended formulation. We refer the readers to the surveys [9, 35, 18, 36] for details
and background of the subject and we only state three basic propositions about extended
formulations here.

I Proposition 1. Let P be a polytope with a vertex set V = {v1, . . . , vn}. Then xc(P) 6 n.

Proof. Let P = conv ({v1, . . . , vn}) be a polytope. Then, P is the projection of

Q =
{

(x, λ)

∣∣∣∣∣x =
n∑
i=1

λivi;
n∑
i=1

λi = 1;λi > 0 for i ∈ {1, . . . , n}
}
.

It is clear that Q has at most n facets and therefore xc(P) 6 n. J

I Proposition 2. Let P be a polytope obtained by intersecting a set H of hyperplanes with a
polytope Q. Then xc(P) 6 xc(Q).

Proof. Note that any extended formulation of Q, when intersected with H, gives an extended
formulation of P . Intersecting a polytope with hyperplanes does not increase the number of
facet-defining inequalities (and only possibly reduces it). J

The (cartesian) product of two polytopes P1 and P2 is defined as

P1 × P2 = conv ({(x, y) | x ∈ P1, y ∈ P2}) .

I Proposition 3. Let P1, P2 be two polytopes. Then

xc(P1 × P2) 6 xc(P1) + xc(P2) .

P. Kolman, M. Koutecký, and H. R. Tiwary 18:5

Proof. Let Q1 and Q2 be extended formulations of P1 and P2, respectively. Then, Q1 ×Q2
is an extended formulation of P1 × P2. Now assume that Q1 = {x | Ax 6 b} and Q2 =
{y | Cy 6 d} and that these are the smallest extended formulations of P1 and P2, resp. Then

Q1 ×Q2 = {(x, y) | Ax 6 b, Cy 6 d} .

That is, we have an extended formulation of P1 × P2 of size at most xc(P1) + xc(P2). J

We are going to define the glued product of polytopes, a slight generalization of the usual
product of polytopes. We use a case where the extension complexity of the glued product
of two polytopes is upper bounded by the sum of the extension complexities of the two
polytopes, and use it in Section 4 to describe a small extended formulation for the MSO
polytope Pϕ(G) on graphs with bounded treewidth.

Let P ⊆ Rd1+k and Q ⊆ Rd2+k be 0/1-polytopes defined by m1 and m2 inequalities
and with vertex sets vert(P) and vert(Q), respectively. Let IP ⊆ {1, . . . d1 + k} be a subset
of coordinates of size k, IQ ⊆ {1, . . . d2 + k} be a subset of coordinates of size k, and let
I ′P = {1, . . . d1 + k} \ IP . For a vector x, and a subset I of coordinates, we denote by x|I the
subvector of x specified by the coordinates I. The glued product of P and Q, (glued) with
respect to the k coordinates IP and IQ, denoted by P ×k Q, is defined as

P ×k Q = conv
({

(x|I′
P
, y) ∈ Rd1+d2+k | x ∈ vert(P), y ∈ vert(Q), x|IP

= y|IQ

})
.

We adopt the following convention while discussing glued products in the rest of this
article. In the above scenario, we say that P ×k Q is obtained by gluing P and Q along the
k coordinates IP of P with the k coordinates IQ of Q. If, for example, these coordinates
are named z in P and w in Q, then we also say that P and Q have been glued along the z
and w coordinates and we refer to the coordinates z and w as the glued coordinates. In the
special case that we glue along the last k coordinates, the definition of the glued product
simplifies to

P ×k Q = conv
({

(x, y, z) ∈ Rd1+d2+k | (x, z) ∈ vert(P), (y, z) ∈ vert(Q)
})
.

This notion was studied by Margot [31] who provided a sufficient condition for being able
to write the glued product in a specific (and efficient) way from the descriptions of P and Q.
We will use this particular way in Lemma 1. The existing work [31, 10], however, is more
focused on characterizing exactly when this particular method works. We do not need the
result in its full generality and therefore we only state a very specific version of it that is
relevant for our purposes; for the sake of completeness, we also provide a proof of it.

I Lemma 1 (Gluing lemma). Let P and Q be 0/1-polytopes and let the k (glued) coordinates
in P be labeled z1, . . . , zk, and the k (glued) coordinates in Q be labeled w1, . . . , wk. Suppose
that 1ᵀz 6 1 is valid for P and 1ᵀw 6 1 is valid for Q. Then xc(P ×k Q) 6 xc(P) + xc(Q).

Proof. Let (x′, z′, y′, w′) be a point from P × Q ∩ {(x, z, y, w)|z = w}. Observe that the
point (x′, z′) is a convex combination of points (x′, 0), (x′, e1), . . . , (x′, ek) from P with
coefficients (1−

∑k
i=1 z

′
i), z′1, z′2, . . . , z′k where ei is the i-th unit vector. Similarly, the point

(y′, w′) is a convex combination of points (y′, 0), (y′, e1), . . . , (y′, ek) from Q with coefficients
(1−

∑k
i=1 w

′
i), w′1, w′2, . . . , w′k. Notice that for every j ∈ [k], (x′j , ej , y′j) is a point from the

glued product. As wi = zi for every i ∈ [k], we conclude that (x′, w′, z′) ∈ P ×k Q. Thus, by
Proposition 2 the extension complexity of P ×k Q is at most that of P ×Q which is at most
xc(P) + xc(Q) by Proposition 3. J

SWAT 2016

18:6 Extension Complexity, MSO Logic, and Treewidth

3.2 Graphs and Treewidth
For notions related to the treewidth of a graph and nice tree decomposition, in most cases
we stick to the standard terminology as given in the book by Kloks [22]; the only deviation
is in the leaf nodes of the nice tree decomposition where we assume that the bags are empty.
For a vertex v ∈ V of a graph G = (V,E), we denote by δ(v) the set of neighbors of v in G,
that is, δ(v) = {u ∈ V | {u, v} ∈ E}.

A tree decomposition of a graph G = (V,E) is a tree T in which each node a ∈ T has an
assigned set of vertices B(a) ⊆ V (called a bag) such that

⋃
a∈T B(a) = V with the following

properties:
for any {u, v} ∈ E, there exists a node a ∈ T such that u, v ∈ B(a).
if v ∈ B(a) and v ∈ B(b), then v ∈ B(c) for all nodes c on the path from a to b in T .

The treewidth tw(T) of a tree decomposition T is the size of the largest bag of T minus
one. The treewidth tw(G) of a graph G is the minimum treewidth over all possible tree
decompositions of G.

A nice tree decomposition is a tree decomposition with one special node r called the root
in which each node is one of the following types:

Leaf node: a leaf a of T with B(a) = ∅.
Introduce node: an internal node a of T with one child b for which B(a) = B(b) ∪ {v} for
some v ∈ B(a).
Forget node: an internal node a of T with one child b for which B(a) = B(b) \ {v} for
some v ∈ B(b).
Join node: an internal node a with two children b and c with B(a) = B(b) = B(c).

For a vertex v ∈ V , we denote by top(v) the topmost node of the nice tree decomposition T
that contains v in its bag. For any graph G on n vertices, a nice tree decomposition of G
with at most 8n nodes can be computed in time O(n) [4, 22].

Given a graph G = (V,E) and a subset of vertices {v1, . . . , vd} ⊆ V , we denote by
G[v1, . . . , vd] the subgraph of G induced by the vertices v1, . . . , vd. Given a tree decomposition
T and a node a ∈ V (T), we denote by Ta the subtree of T rooted in a, and by Ga the subgraph
of G induced by all vertices in bags of Ta, that is, Ga = G[

⋃
b∈V (Ta) B(b)]. Throughout

this paper we assume that for every graph, its vertex set is a subset of N. We define the
following operator σ: for any set U = {v1, v2, . . . , vl} ⊆ N, σ(U) = (vi1 , vi2 , . . . , vil) such
that vi1 < vi2 · · · < vil .

For an integer m ≥ 0, an [m]-colored graph is a pair (G, ~V) where G = (V,E) is a graph
and ~V = (V1, . . . , Vm) is an m-tuple of subsets of vertices of G called an [m]-coloring of
G. For integers m ≥ 0 and τ ≥ 0, an [m]-colored τ -boundaried graph is a triple (G, ~V , ~p)
where (G, ~V) is an [m]-colored graph and ~p = (p1, . . . , pτ) is a τ -tuple of vertices of G called
a boundary of G. If the tuples ~V and ~p are clear from the context or if their content is
not important, we simply denote an [m]-colored τ -boundaried graph by G[m],τ . For a tuple
~p = (p1, . . . , pτ), we denote by p the corresponding set, that is, p = {p1, . . . , pτ}.

Two [m]-colored τ -boundaried graphs (G1, ~V , ~p) and (G2, ~U, ~q) are compatible if the
function h : ~p → ~q, defined by h(pi) = qi for each i, is an isomorphism of the induced
subgraphs G1[p1, . . . , pτ] and G2[q1, . . . , qτ], and if for each i and j, pi ∈ Vj ⇔ qi ∈ Uj .

Given two compatible [m]-colored τ -boundaried graphs G[m],τ
1 = (G1, ~U, ~p) and G[m],τ

2 =
(G2, ~W, ~q), the join of G[m],τ

1 and G
[m],τ
2 , denoted by G

[m],τ
1 ⊕ G[m],τ

2 , is the [m]-colored
τ -boundaried graph G[m],τ = (G, ~V , ~p) where

G is the graph obtained by taking the disjoint union of G1 and G2, and for each i,
identifying the vertex pi with the vertex qi and keeping the label pi for it;
~V = (V1, . . . , Vm) with Vj = Uj ∪Wj and every qi replaced by pi, for each j;

P. Kolman, M. Koutecký, and H. R. Tiwary 18:7

~p = (p1, . . . , pτ) with pi being the node in V (G) obtained by the identification of
pi ∈ V (G1) and qi ∈ V (G2), for each i.

Because of the choice of referring to the boundary vertices by their names in G[m],τ
1 , it does

not always hold that G[m],τ
1 ⊕ G[m],τ

2 = G
[m],τ
2 ⊕ G[m],τ

1 ; however, the two structures are
isomorphic and equivalent for our purposes (see below).

3.3 Monadic Second Order Logic and Types of Graphs

In most cases, we stick to standard notation as given by Libkin [30]. A vocabulary σ is a
finite collection of constant symbols c1, c2, . . . and relation symbols P1, P2, Each relation
symbol Pi has an associated arity ri. A σ-structure is a tuple A = (A, {cAi }, {PAi }) that
consists of a universe A together with an interpretation of the constant and relation symbols:
each constant symbol ci from σ is associated with an element cAi ∈ A and each relation
symbol Pi from σ is associated with an ri-ary relation PAi ⊆ Ari .

To give an example, a graph G = (V,E) can be viewed as a σ1-structure (V, ∅, {E})
where E is a symmetric binary relation on V × V and the vocabulary σ1 contains a single
relation symbol. Alternatively, for another vocabulary σ2 containing three relation symbols,
one of arity two and two of arity one, one can view a graph G = (V,E) also as a σ2-structure
I(G) = (VI , ∅, {EI , LV , LE}), with VI = V ∪ E, EI = {{v, e} | v ∈ e, e ∈ E}, LV = V and
LE = E; we will call I(G) the incidence graph of G. In our approach we will make use of the
well known fact that the treewidths of G and I(G), viewed as a σ1- and σ2- structures as
explained above, differ by one at most [24].

The main subject of this paper are formulas for graphs in monadic second order logic
(MSO) which is an extension of first order logic that allows quantification over monadic
predicates (i.e., over sets of vertices). By MSO2 we denote the extension of MSO that allows
in addition quantification over sets of edges. As every MSO2 formula ϕ over σ1 can be
turned into an MSO formula ϕ′ over σ2 such that for every graph G, G |= ϕ if and only if
I(G) |= ϕ′ [folklore], for the sake of presentation we restrict our attention, without loss of
generality, to MSO formulae over the σ2 vocabulary. To further simplify the presentation,
without loss of generality (cf. [21]) we assume that the input formulae are given in a variant
of MSO that uses only set variables (and no element variables).

An important kind of structures that are necessary in the proofs in this paper are the [m]-
colored τ -boundaried graphs. An [m]-colored τ -boundaried graph G = (V,E) with boundary
p1, . . . , pτ colored with V1, . . . , Vm is viewed as a structure (VI , {p1, . . . , pτ}, {EI , LV , LE ,
V1, . . . , Vm}); for notational simplicity, we stick to the notation G[m],τ or (G, ~V , ~p). The
corresponding vocabulary is denoted by σm,τ .

A variable X is free in ϕ if it does not appear in any quantification in ϕ. If ~X is the tuple
of all free variables in ϕ, we write ϕ(~X). A variable X is bound in ϕ if it is not free. By qr(ϕ)
we denote the quantifier rank of ϕ which is the number of quantifiers of ϕ when transformed
into the prenex form (i.e., all quantifiers are at the beginning of the formula). We denote by
MSO[k, τ,m] the set of all MSO formulae ϕ over the vocabulary στ,m with qr(ϕ) ≤ k.

Two [m]-colored τ -boundaried graphs G[m],τ
1 and G[m],τ

2 are MSO[k]-elementarily equiva-
lent if they satisfy the same MSO[k, τ,m] formulae; this is denoted by G[m],τ

1 ≡MSO
k G

[m],τ
2 .

The main tool in the model theoretic approach to Courcelle’s theorem, that will also play a
crucial role in our approach, can be stated as the following theorem.

I Theorem 2 (follows from Proposition 7.5 and Theorem 7.7 [30]). For any fixed τ, k,m ∈ N,
the equivalence relation ≡MSO

k has a finite number of equivalence classes.

SWAT 2016

18:8 Extension Complexity, MSO Logic, and Treewidth

Let us denote the equivalence classes of the relation ≡MSO
k by C = {α1 . . . , αw}, fixing

an ordering such that α1 is the class containing the empty graph. Note that the size of
C depends only on k, m and τ , that is, |C| = f(k,m, τ) for some computable function
f . For a given MSO formula ϕ with m free variables, we define an indicator function
ρϕ : {1, . . . , |C|} → {0, 1} as follows: for every i, if there exists a graph G[m],τ ∈ αi such that
G[m],τ |= ϕ, we set ρϕ(i) = 1, and we set ρϕ(i) = 0 otherwise; note that if there exists a
graph G[m],τ ∈ αi such that G[m],τ |= ϕ, then G′[m],τ |= ϕ for every G′[m],τ ∈ αi.

For every [m]-colored τ -boundaried graph G[m],τ , its type, with respect to the relation
≡MSO
k , is the class to which G[m],τ belongs. We say that types αi and αj are compatible if

there exist two [m]-colored τ -boundaried graphs of types αi and αj that are compatible;
note that this is well defined as all [m]-colored τ -boundaried graphs of a given type are
compatible. For every i ≥ 1, we will encode the type αi naturally as a binary vector {0, 1}|C|
with exactly one 1, namely with 1 on the position i.

An important property of the types and the join operation is that the type of a join of
two [m]-colored τ -boundaried graphs depends on their types only.

I Lemma 3 (Lemma 7.11 [30] and Lemma 3.5 [16]). Let G[m],τ
a , G[m],τ

a′ , G[m],τ
b and G[m],τ

b′

be [m]-colored τ -boundaried graphs such that G[m],τ
a ≡MSO

k G
[m],τ
a′ and G[m],τ

b ≡MSO
k G

[m],τ
b′ .

Then (G[m],τ
a ⊕G[m],τ

b) ≡MSO
k (G[m],τ

a′ ⊕G[m],τ
b′).

The importance of the lemma rests in the fact that for determination of the type of a join of
two [m]-colored τ -boundaried graphs, it suffices to know only a small amount of information
about the two graphs, namely their types. The following two lemmas deal in a similar way
with the type of a graph in other situations.

I Lemma 4 (implicitly in [16]). Let (Ga, ~X, ~p), (Gb, ~Y , ~q) be [m]-colored τ -boundaried graphs
and let (Ga′ , ~X ′, ~p′), (Gb′ , ~Y ′, ~q′) be [m]-colored (τ + 1)-boundaried graphs with Ga = (V,E),
Ga′ = (V ′, E′), Gb = (W,F), Gb′ = (W ′, F ′) such that for some v 6∈ V and w 6∈W
1. (Ga, ~X, ~p) ≡MSO

k (Gb, ~Y , ~q);
2. V ′ = V ∪ {v}, δ(v) ⊆ p, ~p is a subtuple of ~p′ and (Ga′ [V], ~X ′[V], ~p′[V]) = (Ga, ~X, ~p);
3. W ′ = W ∪ {w}, δ(w) ⊆ q, ~q is a subtuple of ~q′ and (Gb′ [W], ~Y ′[W], ~q′[W]) = (Gb, ~Y , ~q);
4. (Ga′ , ~X ′, ~p′) and (Gb′ , ~Y ′, ~q′) are compatible.
Then (Ga′ , ~X ′, ~p′) ≡MSO

k (Gb′ , ~Y ′, ~q′).

I Lemma 5 (implicitly in [16]). Let (Ga, ~X, ~p), (Gb, ~Y , ~q) be [m]-colored τ -boundaried graphs
and let (Ga′ , ~X ′, ~p′), (Gb′ , ~Y ′, ~q′) be [m]-colored (τ + 1)-boundaried graphs with Ga = (V,E),
Ga′ = (V ′, E′), Gb = (W,F), Gb′ = (W ′, F ′) such that
1. (Ga′ , ~X ′, ~p′) ≡MSO

k (Gb′ , ~Y ′, ~q′);
2. V ⊆ V ′, |V ′| = |V |+ 1, ~p is a subtuple of ~p′ and (Ga′ [V], ~X ′[V], ~p′[V]) = (Ga, ~X, ~p);
3. W ⊆W ′, |W ′| = |W |+ 1, ~q is a subtuple of ~q′ and (Gb′ [W], ~Y ′[W], ~q′[W]) = (Gb, ~Y , ~q).
Then (Ga, ~X, ~p) ≡MSO

k (Gb, ~Y , ~q).

3.4 Feasible Types
Suppose that we are given an MSO formula ϕ over σ2 with m free variables and a quantifier
rank at most k, a graph G of treewidth at most τ , and a nice tree decomposition T of the
graph G.

For every node of T we are going to define certain types and tuples of types as feasible.
For a node b ∈ V (T) of any kind (leaf, introduce, forget, join) and for α ∈ C, we say that α
is a feasible type of the node b if there exist an [m]-coloring ~X = (X1, . . . , Xm) of Gb such

P. Kolman, M. Koutecký, and H. R. Tiwary 18:9

that (Gb, ~X, σ(B(b))) is of type α; we say that ~X realizes type α on the node b. We denote
the set of feasible types of the node b by F(b).

For an introduce node b ∈ V (T) with a child a ∈ V (T) (assuming that v is the new
vertex), for α ∈ F(a) and β ∈ F(b), we say that (α, β) is a feasible pair of types for b if there
exist ~X = (X1, . . . , Xm) and ~X ′ = (X ′1, . . . , X ′m) realizing types α and β on the nodes a and
b, respectively, such that for each i, either X ′i = Xi or X ′i = Xi ∪ {v}. We denote the set of
feasible pairs of types of the introduce node b by Fp(b).

For a forget node b ∈ V (T) with a child a ∈ V (T) and for β ∈ F(b) and α ∈ F(a), we
say (α, β) is a feasible pair of types for b if there exists ~X realizing β on b and α on a. We
denote the set of feasible pairs of types of the forget node b by Fp(b).

For a join node c ∈ V (T) with children a, b ∈ V (T) and for α ∈ F(c), γ1 ∈ F(a) and
γ2 ∈ F(b), we say that (γ1, γ2, α) is a feasible triple of types for c if γ1, γ2 and α are mutually
compatible and there exist ~X1, ~X2 realizing γ1 and γ2 on a and b, respectively, such that
~X = (X1

1 ∪X2
1 , . . . , X

1
m ∪X2

m) realizes α on c. We denote the set of feasible triples of types
of the join node c by Ft(c).

We define an indicator function µ : C×V (G)×{1, . . . ,m} → {0, 1} such that µ(β, v, i) = 1
if and only if there exists ~X = (X1, . . . , Xm) realizing the type β on the node top(v) ∈ V (T)
and v ∈ Xi.

4 Extension Complexity of the MSO Polytope

For a given MSO formula ϕ(~X) over σ2 with m free set variables X1, . . . , Xm, we define
a polytope of satisfying assignments on a given graph G, represented as a σ2 structure
I(G) = (VI , ∅, {EI , LV , LE}) with domain of size n, in a natural way. We encode any
assignment of elements of I(G) to the sets X1, . . . , Xm as follows. For each Xi in ϕ and each
v in VI , we introduce a binary variable yvi . We set yvi to be one if v ∈ Xi and zero otherwise.
For a given 0/1 vector y, we say that y satisfies ϕ if interpreting the coordinates of y as
described above yields a satisfying assignment for ϕ. The polytope of satisfying assignments,
also called the MSO polytope, is defined as

Pϕ(G) = conv ({y ∈ {0, 1}nm | y satisfies ϕ}) .

I Theorem 6 (Extension Complexity of the MSO Polytope). For every graph G and for every
MSO formula ϕ, xc(Pϕ(G)) = f(|ϕ|, τ) · n where f is some computable function, τ = tw(G)
and n = |VI |.

Proof. Let T be a fixed nice tree decomposition of treewidth τ of the given graph G

represented as I(G) and let k denote the quantifier rank of ϕ and m the number of free
variables of ϕ. Let C be the set of equivalence classes of the relation ≡MSO

k . For each node b
of T we introduce |C| binary variables that will represent a feasible type of the node b; we
denote the vector of them by tb (i.e., tb ∈ {0, 1}|C|). For each introduce and each forget node
b of T , we introduce additional |C| binary variables that will represent a feasible type of the
child (descendant) of b; we denote the vector of them by db (i.e., db ∈ {0, 1}|C|). Similarly,
for each join node b we introduce additional |C| binary variables, denoted by lb, that will
represent a feasible type of the left child of b, and other |C| binary variables, denoted by rb,
that will represent a feasible type of the right child of b (i.e., lb, rb ∈ {0, 1}|C|).

We are going to describe inductively a polytope in the dimension given (roughly) by all
the binary variables of all nodes of the given nice tree decomposition. Then we show that its
extension complexity is small and that a properly chosen face of it is an extension of Pϕ(G).

First, for each node b of T , depending on its type, we define a polytope Pb as follows:

SWAT 2016

18:10 Extension Complexity, MSO Logic, and Treewidth

b is a leaf. Pb consists of a single point Pb = {
|C|︷ ︸︸ ︷

100 . . . 0}.
b is an introduce or forget node. For each feasible pair of types (αi, αj) ∈ Fp(b) of the node
b, we create a vector (db, tb) ∈ {0, 1}2|C| with db[i] = tb[j] = 1 and all other coordinates
zero. Pb is defined as the convex hull of all such vectors.
b is a join node. For each feasible triple of types (αh, αi, αj) ∈ Ft(b) of the node b,
we create a vector (lb, rb, tb) ∈ {0, 1}3|C| with lb[h] = rb[i] = tb[j] = 1 and all other
coordinates zero. Pb is defined as the convex hull of all such vectors.

It is clear that for every node b in T , the polytope Pb contains at most |C|3 vertices, and,
thus, by Proposition 1 it has extension complexity at most xc(Pb) 6 |C|3. Recalling our
discussion in Section 3 about the size of C, we conclude that there exists a function f such
that for every b ∈ V (T), it holds that xc(Pb) 6 f(|ϕ|, τ).

To obtain an extended formulation for Pϕ(G), we first glue these polytopes together,
starting in the leaves of T and processing T in a bottom up fashion. We create polytopes Qb
for each node b in T recursively as follows:

If b is a leaf then Qb = Pb.
If b is an introduce or forget node, then Qb = Qa ×|C| Pb where a is the child of b and the
gluing is done along the coordinates ta in Qa and db in Pb.
If b is a join node, then we first define Rb = Qa ×|C| Pb where a is the left child of b and
the gluing is done along the coordinates ta in Qa and lb in Pb. Then Qb is obtained by
gluing Rb with Qc along the coordinates tc in Qc and rb in Rb where c is the right child
of b.

The following lemma states the key property of the polytopes Qb’s.

I Lemma 7. For every vertex y of the polytope Qb there exist an [m]-coloring ~X =
(X1, . . . , Xm) of Gb such that (Gb, ~X, σ(B(b))) is of type α where α is the unique type
such that the coordinate of y corresponding to the binary variable tb(α) is equal to one.

Proof. The proof is by induction, starting in the leaves of T and going up towards the root.
For leaves, the lemma easily follows from the definition of the polytopes Pb’s.

For the inductive step, we consider an inner node b of T and we distinguish three cases:
If b is a join node, then the claim for b follows from the inductive assumptions for the
children of b, definition of a feasible triple, definition of the polytope Pb, Lemma 3 and
the construction of the polytope Qb.
If b is an introduce node or a forget node, respectively, then, analogously, the claim for
b follows from the inductive assumption for the child of b, definition of a feasible pair,
definition of the polytope Pb, Lemma 4 or Lemma 5, respectively, and the construction of
the polytope Qb. J

Let c be the root node of the tree decomposition T . Consider the polytope Qc. From
the construction of Qc, our previous discussion and the Gluing lemma, it follows that
xc(Qc) 6

∑
b∈V (T) xc(Pb) 6 f(|ϕ|, τ) · O(n). It remains to show that a properly chosen

face of Qc is an extension of Pϕ(G). We start by observing that
∑|C|
i=1 tc[i] ≤ 1 and∑|C|

i=1 ρϕ(i)·tc[i] ≤ 1, where ρϕ is the indicator function, are valid inequalities for Qc.
Let Qϕ be the face of Qc corresponding to the valid inequality

∑|C|
i=1 ρϕ(i)·tc[i] ≤ 1.

Then, by Lemma 7, the polytope Qϕ represents those [m]-colorings of G for which ϕ holds.
The corresponding feasible assignments of ϕ on G are obtained as follows: for every vertex
v ∈ V (G) and every i ∈ {1, . . . ,m} we set yvi =

∑|C|
j=1 µ(αj , v, i)·ttop(v)[j]. The sum is 1 if

P. Kolman, M. Koutecký, and H. R. Tiwary 18:11

and only if there exists a type j such that ttop(v)[j] = 1 and at the same time µ(αj , v, i) = 1;
by the definition of the indicator function µ in Subsection 3.4, this implies that v ∈ Xi. Thus,
by applying the above projection to Qϕ we obtain Pϕ(G), as desired.

It is worth mentioning at this point that the polytope Qc depends only on the quantifier
rank k of ϕ and the number of free variables of ϕ. The dependence on the formula ϕ itself
only manifests in the choice of the face Qϕ of Qc that projects to Pϕ(G). J

I Corollary 8. The extension complexity of the convex hull of all satisfying assignments of a
given MSO2 formula ϕ on a given graph G of bounded treewidth is linear in the size of the
graph G.

5 Efficient Construction of the MSO Polytope

In the previous section we have proven that Pϕ(G) has a compact extended formulation
but our definition of feasible tuples and the indicator functions µ and ρϕ did not explicitly
provide a way how to actually obtain it efficiently. That is what we do in this section. We
also briefly mention some implications of our results for optimization versions of Courcelle’s
theorem.

As in the previous section we assume that we are given a graph G of treewidth τ and an
MSO formula ϕ with m free variables and quantifier rank k. We start by constructing a nice
tree decomposition T of G of treewidth τ in linear time.

Let C denote the set of equivalence classes of ≡MSO
k . Because C is finite and its size is

independent of the size of G (Theorem 2), for each class α ∈ C, there exists an [m]-colored
τ -boundaried graph (Gα, ~Xα, ~pα) of type α whose size is upper-bounded by a function of
k,m and τ . For each α ∈ C, we fix one such graph, denote it by W (α) and call it the witness
of α. Let W = {W (α) | α ∈ C}. The witnesses make it possible to compute the indicator
function ρϕ: for every α ∈ C, we set ρϕ(α) = 1 if and only ifW (α) |= ϕ, and we set ρϕ(α) = 0
otherwise.

I Lemma 9 (implicitly in [16] in the proof of Theorem 4.6 and Corollary 4.7). The set W and
the indicator function ρϕ can be computed in time f(k,m, τ), for some computable function f .

It will be important to have an efficient algorithmic test for MSO[k, τ]-elementary equiva-
lence. This can be done using the Ehrenfeucht-Fraïssé games:

I Lemma 10 (Theorem 7.7 [30]). Given two [m]-colored τ -boundaried graph G
[m],τ
1 and

G
[m],τ
2 , it can be decided in time f(m, k, τ, |G1|, |G2|) whether G[m],τ

1 ≡MSO
k G

[m],τ
2 , for some

computable function f .

I Corollary 11. Recognizing the type of an [m]-colored τ -boundaried graph G[m],τ can be
done in time f(m, k, τ, |G|), for some computable function f .

Now we describe a linear time construction of the sets of feasible types, pairs and triples
of types F(b), Fp(b) and Ft(b) for all relevant nodes b in T . In the initialization phase, we
construct the set W and the indicator function ρϕ using the algorithm from Lemma 9. The
rest of the construction is inductive, starting in the leaves of T and advancing in a bottom
up fashion towards the root of T . The idea is to always replace a possibly large graph G[m],τ

a

of type α by the small witness W (α) when computing the set of feasible types for the parent
of the node a.

Leaf node. For every leaf node a ∈ V (T) we set F(a) = {α1}. Obviously, this corresponds
to the definition in Section 3.

SWAT 2016

18:12 Extension Complexity, MSO Logic, and Treewidth

Introduce node. Assume that b ∈ V (T) is an introduce node with a child a ∈ V (T)
for which F(a) has already been computed, and v ∈ V (G) is the new vertex. For every
α ∈ F(a), we first produce a τ ′-boundaried graph Hτ ′ = (Hα, ~q) from W (α) = (Gα, ~Xα, ~pα)
as follows: let τ ′ = | ~pα|+ 1 and Hα be obtained from Gα by attaching to it a new vertex
in the same way as v is attached to Ga. The boundary ~q is obtained from the boundary
~pα by inserting in it the new vertex at the same position that v has in the boundary of

(Ga, σ(B(a))). For every subset I ⊆ {1, . . . ,m} we construct an [m]-coloring ~Y α,I from ~Xα

by setting Y α,Ii = Xα
i ∪ {v}, for every i ∈ I, and Y

α,I
i = Xα

i , for every i 6∈ I. Each of these
[m]-colorings ~Y α,I is used to produce an [m]-colored τ ′-boundaried graph (Hα, ~Y α,I , ~q) and
the types of all these [m]-colored τ ′-boundaried graphs are added to the set F(b) of feasible
types of b, and, similarly, the pairs (α, β) where β is a feasible type of some of the [m]-colored
τ ′-boundaried graph (Hα, ~Y α,I , ~q), are added to the set Fp(b) of all feasible pairs of types of
b. The correctness of the construction of the sets F(b) and Fp(b) for the node b of T follows
from Lemma 4.

Forget node. Assume that b ∈ V (T) is a forget node with a child a ∈ V (T) for which
F(a) has already been computed and that the d-th vertex of the boundary σ(B(a)) is
the vertex being forgotten. We proceed in a similar way as in the case of the introduce
node. For every α ∈ F(a) we produce an [m]-colored τ ′-boundaried graph (Hα, ~Y α, ~q)
from W (α) = (Gα, ~Xα, ~pα) as follows: let τ ′ = | ~pα| − 1, Hα = Gα, ~Y α = ~Xα and ~q =
(p1, . . . , pd−1, pd+1, . . . , pτ ′+1). For every α ∈ F(a), the type β of the constructed graph is
added to F(b), and, similarly, the pairs (α, β) are added to Fp(b). The correctness of the
construction of the sets F(b) and Fp(b) for the node b of T follows from Lemma 5.

Join node. Assume that c ∈ V (T) is a join node with children a, b ∈ V (T) for which F(a)
and F(b) have already been computed. For every pair of compatible types α ∈ F(a) and
β ∈ F(b), we add the type γ of W (α)⊕W (β) to F(c), and the triple (α, β, γ) to Ft(c). The
correctness of the construction of the sets F(c) and Ft(c) for the node b of T follows from
Lemma 3.

It remains to construct the indicator function µ. We do it during the construction of
the sets of feasible types as follows. We initialize µ to zero. Then, every time we process a
node b in T and we find a new feasible type β of b, for every v ∈ B(b) and for every i for
which d-th vertex in the boundary of W (β) = (Gβ , ~X, ~p) belongs to Xi, we set µ(β, v, i) = 1
where d is the order of v in the boundary of (Gb, σ(B(b)). The correctness follows from the
definition of µ and the definition of feasible types.

Concerning the time complexity of the inductive construction, we observe, exploiting
Corollary 11, that for every node b in T , the number of steps, the sizes of graphs that we
worked with when dealing with the node b, and the time needed for each of the steps, depends
on k, m and τ only. We summarize the main result of this section in the following theorem.

I Theorem 12. Under the assumptions of Theorem 6, the polytope Pϕ(G) can be constructed
in time f ′(|ϕ|, τ) · n, for some computable function f ′.

5.1 Courcelle’s Theorem and Optimization
It is worth noting that even though linear time optimization versions of Courcelle’s theorem
are known, our result provides a linear size LP for these problems out of the box. Together
with a polynomial algorithm for solving linear programming we immediately get the following:

P. Kolman, M. Koutecký, and H. R. Tiwary 18:13

I Theorem 13. Given a graph G on n vertices with treewidth τ , a formula ϕ ∈ MSO with
m free variables and real weights wiv, for every v ∈ V (G) and i ∈ {1, . . . ,m}, the problem

opt

 ∑
v∈V (G)

m∑
i=1

wiv · yiv
∣∣∣∣ y satisfies ϕ

where opt is min or max, is solvable in time polynomial in the input size.

Acknowledgements. We thank the anonymous reviewers for pointing out existing work
and shorter proof of the Glueing lemma, among various other improvements.

References
1 S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs.

Journal of Algorithms, 12(2):308–340, June 1991.
2 D. Avis and H. R. Tiwary. On the extension complexity of combinatorial polytopes. In

Proc. ICALP(1), pages 57–68, 2013.
3 D. Bienstock and G. Munoz. LP approximations to mixed-integer polynomial optimization

problems. ArXiv e-prints, January 2015. arXiv:1501.00288.
4 H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small

treewidth. In Proc. STOC, pages 226–234, 1993.
5 H. L. Bodlaender. Treewidth: characterizations, applications, and computations. In Proc.

of WG, volume 4271 of LNCS, pages 1–14. Springer, 2006.
6 G. Braun, S. Fiorini, S. Pokutta, and D. Steurer. Approximation limits of linear programs

(beyond hierarchies). Math. Oper. Res., 40(3):756–772, 2015.
7 G. Braun, R. Jain, T. Lee, and S. Pokutta. Information-theoretic approximations of the

nonnegative rank. Electronic Colloquium on Computational Complexity, 20:158, 2013.
8 A. Buchanan and S. Butenko. Tight extended formulations for independent set, 2014. Avail-

able on Optimization Online. URL: http://www.optimization-online.org/DB_HTML/
2014/09/4540.html.

9 M. Conforti, G. Cornuéjols, and G. Zambelli. Extended formulations in combinatorial
optimization. Annals of Operations Research, 204(1):97–143, 2013.

10 M. Conforti and K. Pashkovich. The projected faces property and polyhedral relations.
Mathematical Programming, pages 1–12, 2015.

11 B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite graphs.
Information and Computation, 85:12–75, 1990.

12 B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems
on graphs of bounded clique width. In Proc. of WG, volume 1517 of LNCS, pages 125–150.
Springer, 1998.

13 B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-decomposable
graphs. Theoretical Computer Science, 109(1–2):49–82, 1 March 1993.

14 Y. Faenza, S. Fiorini, R. Grappe, and H. R. Tiwary. Extended formulations, nonnegative
factorizations, and randomized com. protocols. Math. Program., 153(1):75–94, 2015.

15 S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, and Ronald de Wolf. Exponential lower
bounds for polytopes in combinatorial optimization. J. ACM, 62(2):17, 2015.

16 G. Gottlob, R. Pichler, and F. Wei. Monadic datalog over finite structures with bounded
treewidth. In Proc. PODS, pages 165–174, 2007.

17 B. Grünbaum. Convex Polytopes. Wiley Interscience Publ., London, 1967.
18 V. Kaibel. Extended formulations in combinatorial optimization. Optima, 85:2–7, 2011.

SWAT 2016

http://arxiv.org/abs/1501.00288
http://www.optimization-online.org/DB_HTML/2014/09/4540.html
http://www.optimization-online.org/DB_HTML/2014/09/4540.html

18:14 Extension Complexity, MSO Logic, and Treewidth

19 V. Kaibel and A. Loos. Branched polyhedral systems. In Proc. IPCO, volume 6080 of
LNCS, pages 177–190. Springer, 2010.

20 V. Kaibel and K. Pashkovich. Constructing extended formulations from reflection relations.
In Proc. IPCO, volume 6655 of LNCS, pages 287–300. Springer, 2011.

21 L. Kaiser, M. Lang, S. Leßenich, and Ch. Löding. A Unified Approach to Boundedness
Properties in MSO. In Proc. of CSL, volume 41 of LIPIcs, pages 441–456, 2015.

22 T. Kloks. Treewidth: Computations and Approximations, volume 842 of LNCS. Springer,
1994.

23 J. Kneis, A. Langer, and P. Rossmanith. Courcelle’s theorem – A game-theoretic approach.
Discrete Optimization, 8(4):568–594, 2011.

24 P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint satisfaction.
In Proc. PODS, 1998.

25 P. Kolman and M. Koutecký. Extended formulation for CSP that is compact for instances
of bounded treewidth. Electr. J. Comb., 22(4):P4.30, 2015.

26 S. Kreutzer. Algorithmic meta-theorems. In Proc. of IWPEC, volume 5018 of LNCS, pages
10–12. Springer, 2008.

27 A. Langer, F. Reidl, P. Rossmanith, and S. Sikdar. Practical algorithms for MSO model-
checking on tree-decomposable graphs. Computer Science Review, 13-14:39–74, 2014.

28 M. Laurent. Sums of squares, moment matrices and optimization over polynomials. In
Emerging applications of algebraic geometry, pages 157–270. Springer, 2009.

29 J. R. Lee, P. Raghavendra, and D. Steurer. Lower bounds on the size of semidefinite
programming relaxations. In Proc. STOC, pages 567–576, 2015.

30 L. Libkin. Elements of Finite Model Theory. Springer, Berlin, 2004.
31 F. Margot. Composition de polytopes combinatoires: une approche par projection. PhD

thesis, École polytechnique fédérale de Lausanne, 1994.
32 R. K. Martin, R. L. Rardin, and B. A. Campbell. Polyhedral characterization of discrete

dynamic programming. Oper. Res., 38(1):127–138, February 1990.
33 M. Sellmann. The polytope of tree-structured binary constraint satisfaction problems. In

Proc. CPAIOR, volume 5015 of LNCS, pages 367–371. Springer, 2008.
34 M. Sellmann, L. Mercier, and D. H. Leventhal. The linear programming polytope of binary

constraint problems with bounded tree-width. In Proc. CPAIOR, volume 4510 of LNCS,
pages 275–287. Springer, 2007.

35 F. Vanderbeck and L. A. Wolsey. Reformulation and decomposition of integer programs.
In 50 Years of Integer Programming 1958-2008, pages 431–502. Springer, 2010.

36 L. A. Wolsey. Using extended formulations in practice. Optima, 85:7–9, 2011.
37 M. Yannakakis. Expressing combinatorial optimization problems by linear programs. J.

Comput. Syst. Sci., 43(3):441–466, 1991.
38 G. M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics.

Springer, 1995.

Optimal Online Escape Path Against a Certificate∗

Elmar Langetepe1 and David Kübel2

1 University of Bonn, Institute of Computer Science I, Bonn, Germany
elmar.langetepe@cs.uni-bonn.de

2 University of Bonn, Institute of Computer Science I, Bonn, Germany
kuebel@cs.uni-bonn.de

Abstract
More than fifty years ago Bellman asked for the best escape path within a known fores t but for
an unknown starting position. This deterministic finite path is the shortest path that leads out
of a given environment from any starting point. There are some worst case positions where the
full path length is required. Up to now such a fixed ultimate optimal escape path for a known
shape for any starting position is only known for some special convex shapes (i.e., circles, strips
of a given width, fat convex bodies, some isosceles triangles).

Therefore, we introduce a different, simple and intuitive escape path, the so-called certificate
path which makes use of some additional information w.r.t. the starting point s. This escape
path depends on the starting position s and takes the distances from s to the outer boundary of
the environment into account. Because of this, in the above convex examples the certificate path
always (for any position s) leaves the environment earlier than the ultimate escape path.

Next we assume that neither the precise shape of the environment nor the location of the
starting point is known, we have much less information. For a class of environments (convex
shapes and shapes with kernel positions) we design an online strategy that always leaves the
environment. We show that the path length for leaving the environment is always shorter than
3.318764 the length of the corresponding certificate path. We also give a lower bound of 3.313126
which shows that for the above class of environments the factor 3.318764 is (almost) tight.

1998 ACM Subject Classification F.1.2 Modes of Computation, Online computation, F.2.2
Nonnumerical Algorithms and Problems, Geometrical problems and computations, G.1.6 Optim-
ization

Keywords and phrases Search games, online algorithms, escape path, competitive analysis, spiral
conjecture

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.19

1 Introduction

We consider the following motion planning task. Let us assume that we are given a simple
polygon P and a starting point s inside P . We would like to design a simple path starting
at s that finally hits the boundary and leaves the polygon. In the sense of a game, we can
choose a path but then an adversary can rotate the polygon P around s so that the path
will leave the polygon very late.

Since we know the distances to the boundary we apply a simple intuitive strategy for
this problem. The certificate path is the best combination of a line segment l and an arc of
length lα along the circle of radius l around the starting point. So this path simply checks an

∗ Partially supported by the National Science Foundation, NSF grant CCF 1017539; see also [17].

© Elmar Langetepe and David Kübel;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 19; pp. 19:1–19:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Optimal Online Escape Path Against a Certificate

angular portion of the environment for a distance l. For a given starting point the certificate
path is the best (shortest) such path that guarantees to hit the boundary. Altogether the
certificate path is a very simple escape path for given s and P (if an adversary can only
rotate P around s).

In turn, for any given unknown starting position s inside an unknown polygon we would
like to design an online strategy (with less information) that is never much worse than the
length of the above certificate path. In this paper we show that for a class of environments
there is a spiral strategy that leaves any such polygon and approximates the length of the
certificate path within a ratio of 3.318674. We also prove that this is an (almost) tight
bound. There is no other strategy that always attains a better ratio against the length of
the certificate path.

This optimal online approximation is restricted to the following class of environments.
We assume that in any direction from the unknown starting point only one boundary point
exists. The distance to the boundary points still remains unknown. This subsumes any
unknown convex environment (for any unknown starting position) and also unknown star-
shaped environments (for any unknown starting point inside the kernel). The motivation
of comparing an online escape path for special polygons (star-shaped) and special starting
positions (inside the kernel) with a path that is computed with some additional but not
complete information (certificate path) stems from the following observation.

For a given known polygonal shape and an unknown starting point we can also define
the ultimate optimal escape path. This path will lead out of the environment for any starting
point and any rotation of the polygon. The ultimate optimal escape path is the shortest
finite path with this property. The clue is that only the polygon is known but neither the
starting position nor the rotation around the starting position. The path is motivated by
the situation of swimming in the fog in a pool whose shape is known. Because it is foggy,
the starting point and the rotation around the starting point is not known. Unfortunately,
ultimate optimal escape paths have been found only for a few special convex shapes (circles,
strips of given width, fat convex bodies, isosceles triangles, . . .). It is unrealistic to think
that such paths will be found for more complicated convex or star-shaped environments.

Fortunately, for the few known ultimate optimal escape paths the above defined certificate
path is not only a good approximation, we can even show that the certificate path beats the
ultimate escape paths for any starting point in these examples. Therefore, we can argue that
the certificate path for any star-shaped polygon and any starting point inside the kernel can
serve as a substitute for the unknown ultimate optimal escape path.

The paper is organized as follows. In the next section we present the related work. After
introducing the certificate path in Section 3 and showing different justifications for the
measure in Section 4, we present and analyse a strategy with path length not larger than
3.318674 times the length of the certificate path in Section 5. The strategy is a logarithmic
spiral attained by keeping aware of two extremes of the certificate. Optimizing the spiral
for two extremes is also different from classical logarithmic spiral constructions where we
normally optimize against a single distance (shortest path). In Section 6 we present a general
lower bound that also proves that the given strategy is almost optimal for the restricted
cases. No other strategy will have a better ratio than 3.313126 against the length of the
certificate path. Proving lower bounds is a tedious task, the construction and the analysis
might be interesting in its own right.

E. Langetepe and D. Kübel 19:3

2 Related work

The Swimming-in-the-fog problem is a game where two players, a searcher and a hider,
compete with each other. The searcher tries to reach the boundary of a known shape from
its starting point along a single finite path, while the hider can rotate and translate the
environment so that the path of the searcher will cross the boundary as late as possible. For
a given shape the shortest finite path that always leads out of the given environment can be
denoted as an ultimate optimal escape path as mentioned before.

Search games have been studied in many variations in the last 60 years since the first
work by Koopman in 1946. The book by Gal [13] and the reissue by Alpern and Gal [1] gives
a comprehensive overview of such search game problems also for unknown environments.

The above problem goes at least back to 1956 and to Bellman [3] who similarly asked for
the shortest escape path within a known forest but for an unknown starting point. Since
then the problem has attracted a lot of attention. Unfortunately until today, the problem
could be solved only for very special convex environments (circles, strips of given width,
rectangles, fat convex bodies, isosceles triangles); see for example the monograph of Finch
and Wetzel [9].

For circles and fat convex bodies it was shown that the diameter is the ultimate optimal
escape path; see Finch and Wetzel [9]. For the strip of width l the ultimate optimal escape
path was found by Zalgaller [24, 25]. For the simple equilateral triangle of side length 1 the
Zig-Zag path of Besicovitch [4] of length ≈ 0.981981 is optimal; see also [5]. Furthermore,
in 1961 Gluss [14] introduced the problem of searching for a circle C of given radius s and
given distance r away from the start A. Two different cases can be considered, either A is
inside C or not. Interestingly, in the latter case and for s = 1 a certificate path with length
l = r and an arc of length 2π · l is the best one can do.

It is unrealistic to think that such ultimate optimal escape paths will be achieved for
more complicated environments. As an alternative in this paper for a given environment
and a given starting point s we have introduced a simple and natural certificate path that
is computed individually for any starting point and takes the distance distribution from s

to the boundary into account. Fortunately, for the cases above we are able to show that
our certificate path outperforms the corresponding ultimate escape paths for any possible
starting point. The certificate path always leaves the environment earlier. The proofs are
given in the full version of the paper; see [20].

The use of alternative comparison measures has some tradition. For example for the
problem of searching for a point in a polygon and competing against the shortest path there is
no competitive strategy. So for this case also other comparison measures have been suggested;
see Fleischer et al. [11] or Koutsoupias et al. [18]. Additionally, comparing the online strategy
to the shortest path to the boundary is often a very difficult task. For example, the spiral
conjecture for searching for a single line or a single ray against the shortest path is still open.
In this sense our result might be considered as an intermediate step.

We further assume that the precise shape of the environment and the position of the
starting point is not known. We are searching for a good online approximation that competes
with the certificate path which is computed with more information. We make use of the
competitive framework. That is, we compare the length of the online escape path from a
starting point to the boundary to the length of the certificate path to the boundary computed
for the known environment and starting point. The competitive framework was introduced
by Sleator and Tarjan [23], and used in many settings since then; see for example the survey
by Fiat and Woeginger [7] or, for the field of online robot motion planning, see the surveys
[15, 21].

SWAT 2016

19:4 Optimal Online Escape Path Against a Certificate

s
x

αx ≈ 2π

(i)

s

x

αx = 0

ii)

Figure 1 Two extreme situation for reaching the boundary with a circular arc. On the right-hand
side of the figure, the radial maximal distance from s to the boundary is almost the same in any
direction. So it suffices to move in an arbitrary direction of maximal distance, which is optimal. On
the left-hand side of the figure only the distance to some few boundary points is very small, but
much larger to most of the others. Therefore, a reasonable path checks the small distance with a
circular arc of length approximately 2π. In both cases x(1 + αx) is minimal among all such circular
strategies.

Our optimal online approximation is restricted to the following class of environments. We
assume that in any direction from the unknown starting point only one boundary point exists.
The distance to the boundary points still remains unknown. This subsumes any unknown
convex environment (for any unknown starting position) and also unknown star-shaped
environments (for any unknown starting point inside the kernel). In this sense the certificate
is also a natural extension of the discrete performance measure Kirkpatrick [16] mentioned in
the discrete case of searching for the end of a set of m given lists of unknown length. In his
setting it is sufficient to reach the end of only one list. In our configuration this means, that
we have exactly 2π directions of unknown distance and it is sufficient to reach the shoreline
in a single point. The corresponding relationship is shown in Section 4.

We will see that our solution is a specific logarithmic spiral. In general, logarithmic
spirals are natural candidates for optimal competitive search strategies, but in almost all
cases the optimality remains a conjecture; see [2, 6, 8, 10, 13]. In [19] the optimality of spiral
search was shown for searching a point in the plane with a radar. Many other conjectures
are still open. For example Finch and Zhu [10] considered the problem of searching for a
line in the plane, the relevant conjecture that the family of logarithmic spirals contains the
minimal path remains open.

3 The certificate path

Assume that you are located in an unknown environment and would like to reach its boundary.
Formally, for the environment we consider a closed Jordan curve B that subdivides the
Euclidean plane into exactly two regions. The starting point s lies inside the inner region,
say P . The task is to reach a point on the boundary B as soon as possible.

If you have some idea about the distance x from s to the boundary B but nothing more,
it is very intuitive to move along the circle of radius x around the starting point. Therefore,
a reasonable strategy moves toward this circle along a shortest path (by radius x) in some

E. Langetepe and D. Kübel 19:5

direction and then follows the circle in either clockwise or counterclockwise direction until
the boundary is met. Let us denote this behaviour a circular strategy. If we hit the boundary
after moving an arc αx along the circle, the overall path length is given by x(1 + αx).

We would like to use such a circular strategy of small path length. In the sense of a game,
the adversary can only rotate the environment around the starting point and the certificate
path guarantees to hit the boundary for any rotation.

3.1 Extreme cases and general definition
Let us first consider two somehow extreme examples of the above intuitive idea as given in
Figure 1. If the distance from s to the boundary is almost the same in any direction (similar
to a circle), a line segment with maximal distance to the boundary (roughly the radius of the
circle) will always hit the boundary and is indeed a very good escape path for any direction;
see Figure 1(ii). The movement along an arc is not necessary in this case. In other words,
αx equals 0. We check a single direction for the largest distance.

On the other hand, if the distance to the boundary is very large w.r.t. almost all directions
from s, but is relatively small (distance x) for some few directions, a segment of length x and
a circular arc of length xαx with αx ≈ 2π will hit the boundary for any starting direction
of the segment x; see Figure 1(i). The overall path length x(1 + αx) is also comparatively
small. The certificate path checks a small distance for many (almost all) directions.

Now, consider a more general environment modelled by a simple polygon P and a fixed
starting point s in P as given in Figure 2(ii). For convenience, we make use of an example,
where any boundary point b of P is visible from s, i.e. the segment sb lies fully inside P .
Or the other way round, s lies inside the kernel of P . Note, that the certificate can also be
computed for more general polygons as shown in the full version of the paper [20].

For the polygon P and for any radial direction φ ∈ [0, 2π] from s, we consider the
boundary point ps,φ on P in direction φ. This gives a radial distance function f(φ) := |s ps,φ|
as depicted in Figure 2(i).

Now, let ps,φ be a point with distance x := |s ps,φ| in direction φ. For any circle Cs(x) with
radius x around s such that Cs(x) hits the boundary of P , there will be some maximal arc
αs(x) so that the above simple circular strategy is successful. Note, that this is independent
from the starting direction for x. We are looking for the maximum circle segment of Cs(x)
that fully lies inside P .

Let Πs(x) denote the certificate path for distance x of maximal length x(1 + αs(x)). The
interpretation is that independent from the starting direction for x, this finite path will
always touch the boundary. The adversary can only rotate the environment in order to
attain a worst case length of x(1 + αx). The path Πs(x) can be found in the plot of the
radial distance function; see Figure 2(i). It consists of two segments, starting with a vertical
segment of length x and ending with a horizontal segment of length αx. For any starting
angle this path will touch the boundary of the distance function.

In turn, the overall certificate path Πs in P for a given starting point s is the shortest
certificate path Πs(x) among all distances x. That is, the certificate for P and s is:

Πs := min
x

Πs(x) = min
x
x(1 + αs(x)) .

For both extreme situations in Figure 1, the presented paths equal the overall certificate
paths for the given environments.

If parts of the boundary are not visible from s, there is more than one boundary point in
some directions. In this case we can also compute the radial distances in a continuous way

SWAT 2016

19:6 Optimal Online Escape Path Against a Certificate

Figure 2 (ii) Consider the polygon P and a starting point s. Let us assume that we radially sweep
the boundary of P (starting from point F with angle 0) in counterclockwise order and calculate
the distance from the boundary to s for any angle. (i) shows this radial distance function of the
boundary of P from s in polar coordinates for the interval [0, 2π]. The blue sub-curve corresponds
to the blue boundary part in (ii). The certificate path Πs(x) for distance x is the longest path that
successfully checks the distance x by a circular strategy. This means that it hits the boundary for
any starting direction φ of x in P . In the polar-coordinate setting in (i) this is a path with two
line segments of length x and αx that always hits the boundary of the radial distance function
independent from the starting angle φ. For the case where the boundary of P is not totally visible
an example is given in the full version of the paper [20].

and obtain a radial distance curve. The definition of the certificate path remains exactly the
same. An example is given in the full version of the paper; see [20].

4 Justification of the certificate

The certificate path is an intuitive and simple way of leaving an environment and can be
computed in polynomial time by computing a lower envelope of upper envelopes. We can
interpret the certificate as a path that balances depth-first and breadth-first search for the
starting position s in a way that the resulting path is as short as possible. That way, it
outperforms the ultimate optimal escape path at any given starting position for all known
cases as proved in the full version of this paper; see [20].

Furthermore, the certificate is closely related to a discrete cost measure that Kirkpatrick
introduces in [16]. He analyses the problem of digging for oil at m different locations si,
where |si| denotes the (unknown) distance to the source of the oil at the corresponding
location. In this scenario, no extra costs arise for switching the location. The challenge is to
find a strategy that reaches one source of oil while assuring a small overall digging effort.

At first, Kirkpatrick considers (partially informed) strategies. Those are given all distances
from the top to the sources of oil, but not the corresponding location: In case the distances
|si| have about the same length at all locations, he states that a depth-first searching strategy
is certainly effective. Thus, a single location can be chosen for digging, as Figure 3(i) indicates.
Although at the chosen location, the distance to the source might be greatest, the digging
costs are almost optimal. In case the distance to the source of a single location is significantly

E. Langetepe and D. Kübel 19:7

s1 s2 s3 s4 s5 s6 s7(i) s1 s2 s3 s4 s5 s6 s7(ii)

x x x x x x x
f1 f2 f3 f4 f5 f6 f7

fi

(iii)

i · fi

Figure 3 Online searching for the end of a segment (or digging for oil) for m = 7 segments
of unknown length. There are two extreme cases: (i) All segments have about the same length.
It is reasonable to move along an arbitrary segment up to the end, which is almost optimal. (ii)
One segment is significantly shorter than all other segments. One will find the end of a shortest
segment by checking all segments with its length. (iii) In case the length of each segment is known,
but not the corresponding number of segment. There is always an optimal strategy: Assume that
f1 ≥ f2 ≥ · · · ≥ fm is the decreasing order of the length of all segments. An optimal strategy
explores i (arbitrary) segments up to depth fi, where i is chosen so that i · fi = min1≤k≤m k · fk.

shorter than all others, a breadth-first searching strategy performs best. Figure 3(ii) shows
that digging at every location with a certain effort x still achieves a small overall effort of
x ·m in the worst case. These two extreme situations are similar to the cases outlined in
Section 3.1 and depicted in Figure 1. For the general case, Kirkpatrick suggests to use a
hybrid strategy. If f1 ≥ f2 ≥ · · · ≥ fm denotes the sorted set of distances, he suggests to
choose i so that i · fi is minimal. The hybrid strategy digs at i (arbitrarily chosen) locations
up to the same depth fi. In the worst case, this strategy reaches a source at the last location
with a final effort of i · fi; see Figure 3(iii). Among all such partially informed strategies,
this hybrid strategy is certainly optimal and achieves a maximum digging effort of λ := i · fi.
Similar to this hybrid strategy, we defined the certificate path in the previous section. The
certificate path can also be considered as a mixture of depth-first and breadth-first searching.
However, the certificate path models a motion. The effort of the digging strategy to explore a
certain depth depends on the product of the number chosen locations and the digging depth.
In contrast to this, the effort of the certificate path depends on the sum of the searching
depth and width. Consequently, the certificate path is a stronger cost measure than the
equivalent of the hybrid digging strategy in the plane.

During the further analysis, Kirkpatrick compares a totally uninformed digging strategy to
the optimal hybrid strategy. He proves that this strategy approximates the hybrid strategy in
O (λ log(min(m,λ)) and shows that this factor is tight. Similar to his approach, we compare
the certificate path to a totally uninformed spiral strategy and obtain a constant competitive
ratio. David Kirkpatrick [17] brought up the question what happens in a continuous setting.
Note, that the game is a quite different in this case, because we have to take the movements
in the plane into account and we also require a starting orientation.

5 Online approximation of the certificate path

We are searching for a reasonable escape strategy in an unknown environment. As shown
in the previous section, the certificate path and its length is a reasonable candidate for

SWAT 2016

19:8 Optimal Online Escape Path Against a Certificate

Figure 4 We apply a spiral strategy for unknown polygons and an unknown starting point s in
the kernel. The eccentricity β is chosen so that the two extreme cases have the same ratio. For both
polygons P1 and P2, the strategy passes the boundary at point p = (φ, a · eφ cot β) close to C. The
path length of the strategy for leaving the polygons is roughly the same. The certificate for P1 has
length |s C| (checking the maximal distance to the boundary of P1), whereas the certificate for P2

has length |s B|(1 + 2π) with |s C| = e2π cot β |s B| (checking the smallest distance to the boundary
of P2 with a full circle). We can construct such examples for any point p on the spiral.

comparisons. Let us assume that x(1 +αx) is the length of the certificate for some polygon P
and for an arbitrary distance x. We can assume that αx ∈ [0, 2π]. This holds since the
shortest distance ds from s to the boundary always results in a candidate ds(1 + 2π). All
other reasonable distances x are larger than ds and αx ≤ 2π holds for the optimal x.

Similar to the considerations of Kirkpatrick (see Section 4), we would like to guarantee
that we leave the polygon P if we have overrun the distance x more than αx times. This
means that the boundary should not wind arbitrarily around s. Therefore, we restrict our
consideration to a position s in the kernel of a star-shaped polygon so that there is a single
(unknown) distance to the outer boundary in any direction.

In this case we apply the following logarithmic spiral strategy. A logarithmic spiral
can be defined by polar coordinates (ϕ, a · eϕ cot(β)) for ϕ ∈ (−∞,∞), a constant a and an
eccentricity β as shown in Figure 4. For an angle φ, the path length of the spiral up to point
(φ, a · eφ cot(β)) is given by a

cos β e
φ cot(β).

For our purpose we choose β so that the two extreme cases of the certificate attain the
same ratio; see Figure 4. We can assume that the certificate of the environment is x(1 + αx)
for an arbitrary distance x and an angle αx ∈ [0, 2π]. Since the spiral strategy checks the
distances in a monotonically increasing and periodical way, there has to be some angle φ so
that x = a · e(φ−αx) cot(β) holds. This means that in the worst case, the spiral strategy will
leave the environment at point p = (φ, a · eφ cot(β)) with path length a

cos β · e
φ cot(β). Exactly

αx distances of length x have been exceeded, which means that the boundary has been
reached. (Note that, this might not hold for points outside the kernel.)

E. Langetepe and D. Kübel 19:9

Figure 5 The graph of the ratio function f of Equation (3) for the spiral strategy with eccentricity
β ≈ 1.26471. The two extreme cases 0 and 2π have the same ratio ≈ 3.318674 and all other ratios
are strictly smaller.

We would like to choose β so that the two extreme cases αx = 0 and αx = 2π have the
same ratio. Thus, we are searching for an angle β so that

a
cos β · e

φ cot β

a · eφ cot β(1 + 0) =
a

cos β · e
φ cot β

a · e(φ−2π) cot β(1 + 2π)
⇔ (1)

1 = e2π cot β

1 + 2π (2)

holds. The right-hand side of Equation (1) shows the case where x2 = a · e(φ−2π) cot(β) and
αx2 = 2π gives the certificate and the left-hand side shows the case that x1 = a · eφ cot(β) and
αx1 = 0 gives the certificate xi(1 + αxi), respectively. In both cases the spiral will detect
the boundary latest at point p = (φ, a · eφ cot(α)), because the spiral checks 2π distances
larger than or equal to x2 and at least one distance x1. Figure 4 shows the construction of
corresponding polygons P1 and P2.

The solution of Equation (2) gives β = arccot
(

ln(2π+1)
2π

)
= 1.264714 . . . and the ratio

is 1
cos β = 3.3186738 Fortunately, for all other values x = a · e(φ−γ) cot β and αx = γ for

γ ∈ (0, 2π) the ratio is smaller than these two extremes. The overall ratio function is

f(γ) =
a

cos β · e
φ cot β

a · e(φ−γ) cot β(1 + γ)
= eγ cot β

cosβ(1 + γ) for γ ∈ [0, 2π] (3)

and Figure 5 shows the plot of all possible ratios of the spiral strategy with eccentricity β.
Altogether, we have the following result.

I Theorem 1. There is a spiral strategy for any unknown starting point s inside the kernel
of an unknown environment P that always hits the boundary with path length smaller than
3.318674 times the length of the corresponding certificate for s and P .

Proof. Assume that the certificate of P and s is given by x(1 + αx). We can set γ := αx
and we will also find an angle φ so that x = a · e(φ−γ) cot β holds. At point p = (φ, a · eφ cot β)
the spiral has subsumed an arc of angle γ with distances x, so the spiral strategy will leave
P at p in the worst case. (Note that, if the start point is not inside the kernel, this might
not be true!) The ratio is given by f(γ) as in (3) and Figure 5. In the worst case for the
strategy γ is either 0 or 2π for the ratio 3.318674, respectively. J

SWAT 2016

19:10 Optimal Online Escape Path Against a Certificate

2π
n

x1,1

1

2

3

4

5

6

7

8

x2,2

x3,3

x4,4

x5,5

x6,6

x8,8

x7,7

x10,4
x12,4

s

x9,1

x11,3

x13,5P1

P2

S

p

q

x′10,4

i)

2π
n

1

2

3

4

5

6

7

8

s
x8,8 = x3

x2,2 = x1
x1,1 = x2

x11,3 = x13

x5,5 = x9

x10,4 = x8

x12,4 = x10

x13,5 = x12

x9,1 = x11

x3,3 = x4

x4,4 = x5

x6,6 = x6

x7,7 = x7

ii)

Figure 6 i) The strategy S results in a sequence S′ that represents the visits on n rays successively.
There will be a next entry xi,ji if the strategy exceeds the distance on ray ji. For two successive
extensions on the same ray only the last entry is registered in S′. For the subsequence S′13 =
(x1,1, x2,2, . . . , x13,5) there will be a last visit on each ray, a minimal distance xm = x8,8 on ray 8 and
a maximal distance xM = x11,3 on ray 3. These values gives rise to the construction of certificates for
S as sketched by the polygons P1 and P2. There are polygons P1 and P2 with certificates xM (1 + 2π

n
)

and xm(1 + 2π) and so far S has not been escaped from neither P1 nor P2. In S′13 the direct distance
between two successive points, for example x9,1 and x10,4, is shorter than the original path length
on S and we can further shorten the distance by assuming that x10,4 is on the neighbouring ray as
depicted by x′10,4.
ii) We sort the entries of S′k into a sequence Xk and visit the rays in increasing distance and periodic
order. The path length of Xk is not larger than the original path length of Sk and the corresponding
certificates for the maximal and minimal value x′M = xM and x′m > xm are not smaller. Thus, the
sum of the corresponding ratios gives a lower bound for the sum of the original ratios.

We have designed a spiral strategy for some reasonable environments. In the next section, we
give a lower bound that shows that this strategy is (almost) optimal for these environments.

Note that a spiral strategy for the online approximation of the certificate path of an
arbitrary unknown polygon and position cannot be competitive in general. The polygon
might itself wind around the spiral. The ratio against the certificate might be arbitrarily
large, consequently. In more general environments other online strategies have to be applied.
A potential strategy might be a connected sequence of circles Ci with exponentially increasing
radii ri. This online strategy should result in a constant competitive ratio. Obtaining the
optimal strategy for such cases might be complicated and gives rise to future work.

6 Lower bound construction: Online strategy against the certificate

I Theorem 2. Any strategy that escapes from an unknown environment P in unknown
position s will achieve a competitive factor of at least 3.313126 against the length of a
corresponding certificate for s and P in the worst-case.

Proof. Let us assume that a strategy S is given that attains a better ratio C in the worst
case. We consider a bunch of n rays emanating from s with equidistant angle 2π

n as depicted
in Figure 6 for n = 8.

E. Langetepe and D. Kübel 19:11

The strategy S will successively extend the distances from s also along the rays. Let the
sequence S′ = (x1,j1 , x2,j2 , x3,j3 , . . .) describe successive visits of the n rays by the strategy.
In xi,ji

the entry i stands for the order and ji stands for the ray. In S′ we only register a visit
on ray ji, if it exceeds the previous visit on the ray ji. Furthermore, if the distance at ray ji
is exceeded in two successive entries we do not register the first visit in the sequence S′.

In Figure 6(i) we have registered 13 successive visits xi,ji
. Here for example the visit of

ray 7 at point q between x9,1 and x10,4 was not registered in S′ because it does not improve
the distance of the former visit x7,7. Additionally, the visit of ray 1 at point q just before
x9,1 improved the distance x1,1 but it was further improved on x9,1 and in between no other
ray was improved. For any continuous strategy S we will find such an infinite sequence S′.
Let xi,ji

denote the visit and also the distance to the starting point s.
Let us assume that we stop the strategy S at of some ray jk where the distance was

just exceeded on ray jk, so S′ has k steps. Let Sk denote the sub-strategy of S and S′k the
corresponding subsequence. There will be at least two ratios for Sk that correspond to values
of S′k as follows. In S′k we consider the last visits on each ray which gives the corresponding
maximal visited distance to s for each ray. There will be an overall maximal distance xM
on some ray Mj and a minimal distance xm on some other ray mj . In Figure 6(i) we have
stopped the strategy S at x13,5 on ray 5 and in S′13 the minimal distance for the last round
is given by xm = x8,8 on ray 8 and the maximal distance is given by xM = x11,3 on ray 3.

We can construct polygons P1 and P2 so that xM (1 + 2π
n) is a certificate for P1 and

xm(1 + 2π) is a certificate for P2. In the first case all other rays have been visited with
depth smaller or equal to xM and we build a polygon P1 outside Sk that visits any ray at
xM − ε and ray Mj at xM . This means that a circular strategy with xM and an arc of length
xM

2π
n will be sufficient and gives the certificate for P1 (or at least an upper bound for the

certificate of P1). See for example the polygon P1 sketched in Figure 6(i) for the maximal
visit xM = x13,5. On the other hand for the minimal value xm we construct a polygon P2
that hits xm on ray mj but runs arbitrarily far away from Sk in any other direction. Thus,
xm(1 + 2π) gives the certificate (or at least an upper bound for the certificate of P2). See for
example the polygon P2 sketched in Figure 6(i) for the minimal visit xm = x8,8. We do not
expect that Sk has already detected these polygons but S finally will. So the ratio of the
path length |Sk| over xm(1 + 2π) and also the ratio of the path length |Sk| over xM (1 + 2π

n)
give lower bounds for the strategy S. Note that the half of the sum of the two ratios cannot
exceed C because otherwise at least one has to be greater than C.

For any such stop we will sort the values of S′k in a sequence Xk and we will visit the n
rays in a monotone and periodic way by sequence Xk connecting the points by line segments;
see Figure 6(ii). We can prove that the overall path length of Xk cannot be larger than |Sk|.

This can be seen as follows. Successively visiting the points of S′k in a polygonal chain is
already a short cut for Sk. This polygonal path for S′k might move between two successive
values xi,ji

to xi+1,ji+1 where ji and ji+1 are not neighbouring rays. In this case we can
further short cut the length of the chain of S′k by just counting a movement from xi,ji to the
distance xi+1,ji+1 on one of the directly neighbouring rays. For example in Figure 6(i) the
segment from x9,1 and x′10,4 improves the path length from x9,1 and x10,4 but passes ray 2
and 3. We only count the distance between x9,1 and x′10,4 on the neighbouring ray which
further improves the length. This means that for a lower bound on the overall path length
we can also consider a path that visits two neighbouring rays with angle 2π

n successively from
one to the other with the corresponding depth values xi,ji

stemming from S′k. By triangle
inequality it can be shown that the shortest path that visit all the depth of a sequence S′k on
two rays by changing from one ray to the other in any step, visits the two rays successively

SWAT 2016

19:12 Optimal Online Escape Path Against a Certificate

in an increasing order. A similar argument was applied by one author of this article in [19]
where a detailed proof of this property is given in the Appendix of [19]. Finally, we can
rearrange the path of S′k to a path that visits the rays in a periodic and monotone way.

Altogether, we have translated the strategy Sk in a discrete strategy Xk = (x1, x2, . . . , xk)
with k entries on n rays that visit the rays in a periodic order such that xi visits ray i mod n
and with overall shorter path length; see Figure 6(ii). Consider the corresponding certificates
of this new strategy in comparison to the original strategy. For the smallest value on the last
round and the largest value on the last round we will obtain a certificate path xk(1+ 2π

n) which
is the same for the previous maximal value xM = xk and a certificate path xk−n+1(1 + 2π)
which is never smaller than xm(1 + 2π) for the minimal value xm ≤ xn−k+1. The minimal
value can only increase since we sorted the values of S′k. For example in Figure 6(ii) we have
k = 13 and the minimal value in the last round is given by x6 = x6,6 which is larger than
xm = x8,8. Altogether, the sum of these two ratios in the periodic and monotone setting is
always smaller than the sum of the ratios in the original setting.

Finally, we would like to find a periodic and monotone strategy that optimizes the sum
of exactly such ratios in this discrete version. This optimal strategy will perform at least as
good as any strategy obtained by the above reconstruction. Thus, the optimal value for the
sum is a lower bound for the sum of two ratios in the original setting.

For optimizing the sum for an arbitrary strategy we use an infinite sequence of values
X = (x1, x2, . . .) and we define the following functionals

F 1
k (X) =

∑k−1
i=1

√
x2
i − 2 cos

(2π
n

)
xixi+1 + x2

i+1

xk(1 + 2π
n)

(4)

and

F 2
k (X) =

∑k−1
i=1

√
x2
i − 2 cos

(2π
n

)
xixi+1 + x2

i+1

xk−n+1(1 + 2π) (5)

that represent the ratios. We are looking for a sequence X so that

inf
Y

sup
k
F 1
k (Y) + F 2

k (Y) = D and sup
k
F 1
k (X) + F 2

k (X) = D

holds which shows that D is the best sum ratio that we can achieve.
Optimizing such discrete functionals can be done by the method proposed by Gal; see

also Gal [12, 13], Alpern and Gal [1], and an adaption of Schuierer [22]. It is shown that
under certain prerequisites there will be an optimal exponential strategy xi = ai. The main
requirement is that the functional has to fulfil a unimodality property. This means that the
piecewise sum of two strategies X and Y is never worse than one of the single strategies. This
should also hold for a scalar multiplication of a single strategy. So any linear combination of
strategies that are bounded by a constant will remain bounded by the maximal bound. The
proof of Gal shows that in this case we can always combine bounded strategies so that we
finally get arbitrarily close to an exponential strategy that has the same bound; see the full
proof of Gal in [13] Appendix 2, Theorem 1.

We can easily show that the requirements for the main Theorem of Gal are fulfilled for
both functionals F 1

k (X) and F 2
k (X). For a similar functional a detailed proof of this property

was given in the Appendix of [19].
Now let us assume that we have an optimal strategy X for the sum, say F 1

k (X) + F 2
k (X).

This means that both functionals will also be bounded by constants D1 and D2 w.r.t. X. We
make use of linear combination of X but apply them independently to the functionals F 1

k (X)

E. Langetepe and D. Kübel 19:13

and F 2
k (X). The Theorem of Gal shows that we will get arbitrarily close to an exponential

strategy xi = ai that is not worse than X for both F 1
k (X) and F 2

k (X). This means that
xi = ai is also not worse than X for the sum functional.

Altogether, it is allowed to search for the best strategy xi = ai and we have to optimize

∑k−1
i=1

√
a2i − 2 cos

(2π
n

)
a2i+1 + a2i+2

ak(1 + 2π
n)

+

∑k−1
i=1

√
a2i − 2 cos

(2π
n

)
a2i+1 + a2i+2

ak−n+1(1 + 2π) ⇐⇒

k−1∑
i=1

ai

√

1− 2 cos
(2π
n

)
a+ a2

ak(1 + 2π
n)

 +
k−1∑
i=1

ai

√

1− 2 cos
(2π
n

)
a+ a2

ak−n+1(1 + 2π)

 . (6)

For Equation (6) we resolve the geometric serie part and simplify the expression to the
minimization of

gn(a) := 1
a− 1

√

1− 2 cos
(2π
n

)
a+ a2

(1 + 2π
n)

+ an+1

a− 1

√

1− 2 cos
(2π
n

)
a+ a2

(1 + 2π)

 . (7)

We minimize Equation (6) by numerical means. For any number of rays n a minimal value
of gn(a) gives a lower bound on the sum of two ratios in the original problem. So we can
choose n as large as we want. We minimize gn(a) by numerical means using Maple. For
example for n = 28000000000 we obtain a = 1.0000000006809 . . . and g(a) = 6.62521 . . . This
means that for an arbitrary strategy of the original problem there will always be at least one
ratio larger than 6.6252

2 = 3.313126 which finishes the proof. J

7 Conclusion

We have introduced a new, simple and intuitive performance measure for the comparison
against an online escape path for an unknown environment. The measure outperforms the
(few) known ultimate optimal escape paths of convex environments and is also sort of a
generalization of a discrete list searching approach by Kirkpatrick.

For a more general class of environments, we presented an online spiral strategy that
approximates the measure within an (almost) optimal factor of ≈ 3.318674. Different to
classical results the spiral optimizes against two extremes. It was shown that the factor
is almost tight by constructing a lower bound that also holds for arbitrary environments.
Additionally, one of the very few cases where the optimality of spiral search is verified.

Future work can be done by considering randomization. Additionally, we would like to
prove the strong conjecture that the certificate path is indeed always better than the shortest
escape path for all environments (even when the optimal escape path is not known).

Acknowledgements. We would like to thank the anonymous referees for their helpful
comments and suggestions.

References
1 Steve Alpern and Shmuel Gal. The Theory of Search Games and Rendezvous. Kluwer

Academic Publications, 2003.
2 R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane. Inform. Comput.,

106:234–252, 1993.
3 Richard Bellman. Minimization problem. Bull. Amer. Math. Soc., 62(3):270, 1956.

SWAT 2016

19:14 Optimal Online Escape Path Against a Certificate

4 A. S. Besicovitch. On arcs that cannot be covered by an open equilateral triangle of side 1.
The Mathematical Gazette, 49(369):pp. 286–288, 1965.

5 P. Coulton and Y. Movshovich. Besicovitch triangles cover unit arcs. Geometriae Dedicata,
123(1):79–88, 2006. doi:10.1007/s10711-006-9107-7.

6 Andrea Eubeler, Rudolf Fleischer, Tom Kamphans, Rolf Klein, Elmar Langetepe, and
Gerhard Trippen. Competitive online searching for a ray in the plane. In Sándor Fekete,
Rudolf Fleischer, Rolf Klein, and Alejandro López-Ortiz, editors, Robot Navigation, number
06421 in Dagstuhl Seminar Proceedings, 2006.

7 Amos Fiat and Gerhard Woeginger, editors. On-line Algorithms: The State of the Art,
volume 1442 of Lecture Notes Comput. Sci. Springer-Verlag, 1998.

8 Steven R. Finch. The logarithmic spiral conjecture, 2005.
9 Steven R. Finch and John E. Wetzel. Lost in a forest. The American Mathematical Monthly,

111(8):pp. 645–654, 2004.
10 Steven R. Finch and Li-Yan Zhu. Searching for a shoreline. arXiv:math/0501123v1, 2005.
11 Rudolf Fleischer, Tom Kamphans, Rolf Klein, Elmar Langetepe, and Gerhard Trippen.

Competitive online approximation of the optimal search ratio. Siam J. Comput., pages
881–898, 2008.

12 S. Gal and D. Chazan. On the optimality of the exponential functions for some minmax
problems. SIAM J. Appl. Math., 30:324–348, 1976.

13 Shmuel Gal. Search Games, volume 149 of Mathematics in Science and Engeneering. Aca-
demic Press, New York, 1980.

14 Brian Gluss. The minimax path in a search for a circle in a plane. Naval Research Logistics
Quarterly, 8(4):357–360, 1961. doi:10.1002/nav.3800080404.

15 Christian Icking, Thomas Kamphans, Rolf Klein, and Elmar Langetepe. On the competitive
complexity of navigation tasks. In H. Bunke and et al., editors, Sensor Based Intelligent
Robots, volume 2238 of LNCS, pages 245–258. Springer, 2002.

16 David Kirkpatrick. Hyperbolic dovetailing. In Amos Fiat and Peter Sanders, editors,
Algorithms – ESA 2009, volume 5757 of Lecture Notes in Computer Science, pages 516–
527. Springer Berlin Heidelberg, 2009. doi:10.1007/978-3-642-04128-0_46.

17 David Kirkpatrick. Personal communication, 2015. Workshop on Geometric Problems on
Sensor Networks and Robots, Supported by NSF grant CCF 1017539, Organized by Peter
Brass (CCNY) and Jon Lenchner (IBM Research).

18 Elias Koutsoupias, Christos H. Papadimitriou, and Mihalis Yannakakis. Searching a fixed
graph. In Proc. 23th Internat. Colloq. Automata Lang. Program., volume 1099 of Lecture
Notes Comput. Sci., pages 280–289. Springer, 1996.

19 Elmar Langetepe. On the optimality of spiral search. In SODA 2010: Proc. 21st Annu.
ACM-SIAM Symp. Disc. Algor., pages 1–12, 2010.

20 Elmar Langetepe and David Kübel. Optimal online escape path against a certificate. Tech-
nical Report arXiv:1604.05972, University of Bonn, 2016.

21 N. S. V. Rao, S. Kareti, W. Shi, and S. S. Iyengar. Robot navigation in unknown terrains:
introductory survey of non-heuristic algorithms. Technical Report ORNL/TM-12410, Oak
Ridge National Laboratory, 1993.

22 S. Schuierer. Lower bounds in on-line geometric searching. Comput. Geom. Theory Appl.,
18:37–53, 2001.

23 D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.
Commun. ACM, 28(2):202–208, 1985.

24 Viktor A Zalgaller. How to get out of the woods. On a problem of Bellman (in Russian),
Matematicheskoe Prosveshchenie, 6:191–195, 1961.

25 Viktor A Zalgaller. A question of Bellman. Journal of Mathematical Sciences, 131(1):5286–
5306, 2005.

http://dx.doi.org/10.1007/s10711-006-9107-7
http://dx.doi.org/10.1002/nav.3800080404
http://dx.doi.org/10.1007/978-3-642-04128-0_46

Lagrangian Duality based Algorithms in Online
Energy-Efficient Scheduling
Nguyen Kim Thang∗

IBISC, Université d’Evry-Val-d’Essonne, Evry, France

Abstract
We study online scheduling problems in the general energy model of speed scaling with power
down. The latter is a combination of the two extensively studied energy models, speed scaling
and power down, toward a more realistic one. Due to the limits of the current techniques, only
few results have been known in the general energy model in contrast to the large literature of
the previous ones.

In the paper, we consider a Lagrangian duality based approach to design and analyze algo-
rithms in the general energy model. We show the applicability of the approach to problems which
are unlikely to admit a convex relaxation. Specifically, we consider the problem of minimizing
energy with a single machine in which jobs arrive online and have to be processed before their
deadlines. We present an αα-competitive algorithm (whose the analysis is tight up to a constant
factor) where the energy power function is of typical form zα + g for constants α > 2 and g ≥ 0.
Besides, we also consider the problem of minimizing the weighted flow-time plus energy. We give
an O(α/ lnα)-competitive algorithm; that matches (up to a constant factor) to the currently best
known algorithm for this problem in the restricted model of speed scaling.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Online Scheduling, Energy Minimization, Speed Scaling and Power-down,
Lagrangian Duality

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.20

1 Introduction

Energy-efficient algorithms [1] have gained considerable interest in the algorithmic community
in the last decade. Many results and techniques have been developed to reduce energy while
optimizing some objectives, especially in the domain of scheduling. There are two widely
studied models in energy-aware scheduling: power down and speed scaling. In the power down
model, a machine could be set in one of several states, which vary from low-power states
to high-power ones and there are transition costs from one state to another. Depending on
the required tasks to be performed, an algorithm has to decide when to make a transition
and to which states to switch. The goal is to minimize the total energy consumption. In
the speed scaling model, there is no state but now one can choose an appropriate speed to
process required tasks. The energy power of a machine is a convex function of its speed.
An algorithm needs to specify the machine speed and a policy to process jobs in order to
optimize some quality of service and the consumed energy. Each model captures partly (but
complementarily) a more realistic setting — the speed scaling with power down model. In
the latter, a machine could be set in different states and its speed could also be varied as a
function of required tasks.

∗ Research supported by the ANR project OATA no ANR-15-CE40-0015-01.

© Nguyen Kim Thang;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 20; pp. 20:1–20:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Lagrangian Duality based Algorithms in Online Energy-Efficient Scheduling

A power management scheduling problem in a realistic setting is an online problem [1],
meaning that at any time the scheduler is not aware of future events and the decision is
irrevocable. The standard performance measure of an algorithm is the competitive ratio,
defined as the worst ratio between the cost of the algorithm and that of the optimal solution.
As having been raised in [1], an important direction is to design efficient algorithms (in term
of competitive ratio) for online problems in the speed scaling and power down model (general
energy model for short). Attempting efficient algorithms for problems in the general energy
model, one encounters several limits of current tools. Hence there are only a few works on
the model [2, 7, 13] in contrast to a large literature of previous energy models.

Popular tools in online computation are the charging scheme and the potential function
method. The idea of the methods is to show that an algorithm behaves well in an amortized
sense. However, such methods yield little insight about the nature of problems. Recently,
different approaches based on the duality of mathematical programming to design and
analyze online scheduling have been proposed [3, 12, 17]. The approaches reveal the nature
of such the problems, hence lead to algorithms which are usually simple and competitive
[3, 12, 17, 11, 14, 15, 6, 4]. An essential starting point of those approaches (except [17]) is
to formulate a linear or convex relaxation for a given problem. However, problems in the
general energy model unlikely admit convex program and that represents the main obstacle
to design competitive algorithms. In the paper, we show an approach to bypass this difficulty.

1.1 The Model, Approaches and Contribution

Model. We are given a single machine that can be set either in the sleep state or in the
active state. In the active state, the machine can be either in working state in which some job
is currently processed or in idle state in which no job is currently executed. Each transition of
the machine from the sleep state to the active one has cost A, which represents the wake-up
cost. In the sleep state, the energy consumption of the machine is 0. In the active state,
the machine can choose an arbitrary speed s(t) to execute jobs. Hence, if s(t) > 0 then the
machine is in the working state; otherwise if s(t) = 0, the machine is idle.

The power energy consumption of the machine at time t in its active state is P (s(t)) =
s(t)α + g where α > 2 and g = P (0) ≥ 0. The consumed energy (without wake-up cost) of
the machine is

∫∞
0 P (s(t))dt where the integral is taken during the machine’s active periods.

We decompose the latter into dynamic energy
∫∞

0 s(t)αdt and static energy
∫∞

0 gdt (where
again the integrals are taken during active periods). We call the model as the general energy
model.

Jobs arrive over time and could be processed preemptively, i.e., a job could be interrupted
and resumed later. At any time, the scheduler has to determine the state and the machine
speed (if it is active) and also a policy to execute jobs. In the paper, we study the following
problems.

In the first problem, each job j has a released time rj , a deadline dj , a processing volume
pj . A job j has to be fully processed in [rj , dj]. The objective is to minimize the total energy
consumption (the static, dynamic energy and the wake-up cost).

In the second problem, each job j has released time rj , weight wj and requires pj units
of processing volume. The flow-time of a job j is Cj − rj where Cj is the completion time
of the job. The objective is to minimize the total weighted flow-time plus the total energy
(including the wake-up cost).

Nguyen K. T. 20:3

Lagrangian Duality Approach

To overcome the issues in the general energy model, we follow our duality approach presented
in [17]. The approach has been applied to non-convex relaxations for several problems in
[17]. However, such the problems admit linear relaxations with some lost factors1 and the
consideration of non-convex relaxations permits improvement on the competitive ratio. In
this paper, we study the approach for non-convex problems, i.e., the problems unlikely admit
a convex relaxation with bounded integrality gap. To the best of our knowledge, it is the
first time online algorithms have been designed based on non-convex relaxations.

We first briefly summarize the high level idea of the approach in [17]. Given a problem,
formulate a relaxation which is not necessarily convex and its Lagrangian dual. Next construct
dual variables such that the Lagrangian dual has objective value within a desired factor of
the primal one (due to some algorithm). Then by the standard Lagrangian weak duality2
in mathematical programming, the competitive ratio follows. Since the Lagrangian weak
duality also holds in the context of calculus of variations, the approach could be applied for
the unknowns which are not only variables but also functions.

Let L(x, λ) be the Lagrangian function with primal and dual variables x and λ, respectively.
Let X and Y are feasible sets of x and λ. Intuitively, the approach could be seen as a game
between an algorithm and an adversary. The algorithm chooses dual variables λ∗ ∈ Y in
such a way that whatever the choice (strategy) of the adversary, the value minx∈X L(x, λ∗)
is always within a desirable factor c of the objective due to the algorithm. We emphasize
that minx∈X L(x, λ∗) is taken over x feasible solutions of the primal.

An advantage of the approach is the flexibility of the formulation. As convexity is not
required, we can study a (non-convex) formulation of a given problem. The main core of
the approach is to determine the dual variables and to prove the desired competitive ratio.
Determining such dual variables is the crucial step in the analysis. Sometimes, the dual
variables have intuitive interpretations that inspire their construction.

It is worthy to note that in the analyses (of both problems), we consider mathematical
programs in which the machine state variable remains 0-1 (without being relaxed). An
advantage of keeping the variables integer, which is allowed due to the flexibility of the
approach, is that we can additionally use charging-scheme-liked arguments. Hence, the
analyses are carried out by benefiting properties from both mathematical programming (weak
duality) and amortized method (charging scheme).

Our Results
1. For the problem of minimizing the total consumed energy, we formulate a natural non-

convex formulation using the Dirac delta function. The Dirac function is useful to
represent the wake-up cost — an issue that causes the problems in the general energy
model to be non-convex. We present an αα-competitive algorithm and the analysis follows
the Lagrangian duality approach described above. In the construction of dual variables, a
key step of the analysis, we define these variables in such a way that they subtly capture
the marginal increase of the energy consumption. Note that the analysis is tight since our
algorithm, in the restricted speed scaling model (without static energy and wake-up cost),
turns out to be the OA algorithm, which has competitive ratio exactly αα [10]. Hence,
even the competitive ratio has been only slightly improved from max{4, αα + 2} [13]

1 factors polynomial in 1/ε in the resource augmentation model in which the machine has speed 1 + ε.
2 For completeness, the weak duality is given in the appendix.

SWAT 2016

20:4 Lagrangian Duality based Algorithms in Online Energy-Efficient Scheduling

to αα, it suggests that the duality-based approach is seemingly a right tool for online
scheduling. Besides, the formulation and the analysis give basics to study the second
problem.

2. For the problem of minimizing energy plus weighted flow-time, we derive an O(α/ lnα)-
competitive algorithm that matches the currently best known competitive ratio (up to
a constant factor) for the same problem in the restricted speed scaling model (where
the wake-up cost and the static energy cost are 0). The dual variables and the analysis
are built upon the salient ideas from the ones in the previous problem but in a more
involved manner. Informally, the dual solutions are constructed in order to balance the
weighted flow-time cost and the energy cost at any moment in the schedule (the same
idea of previous algorithms in the speed scaling model). However, in the general energy
model this cannot be guaranteed for every moment in the schedule. Hence, we introduce
an additional term to dual variables that covers the moments where the two costs are not
balanced. Intuitively, the additional term represents the loss due to the non-convexity of
the problem. It turns out that the loss in term of competitive ratio is only a constant
factor.
Due to the space constraint, the analysis is partly given. The full version can be found
on the website of the author.

1.2 Related work
Anand et al. [3] proposed studying online scheduling by linear (convex) programming and
dual fitting. By this approach, they gave simple algorithms and simple analyses with improved
performance for problems where the analyses based on potential functions are complex or
it is unclear how to design such functions. Gupta et al. [12] gave a primal-dual algorithm
for a class of scheduling problems with cost function f(z) = zα. In [17] we generalized the
approach in [3] and proposed to study online scheduling by non-convex programming and
the weak Lagrangian duality. Using that technique, [17] derive competitive algorithms for
problems related to weighted flow-time. The approaches based on duality become more and
more popular. Subsequently, many competitive algorithms have been designed for different
problems in online scheduling [3, 12, 17, 11, 14, 15, 6].

For the online problem of minimizing the energy consumption in the model of speed
scaling, Bansal et al. [10] gave a 2(α

α−1)αeα-competitive algorithm. Later on, Bansal et al.
[8] showed that no deterministic algorithm has better competitive ratio than eα/α. In the
general energy model, Irani et al. [16] were the first who studied the problem and they derived
an algorithm with competitive ratio (22α−2αα + 2α−1 + 2). Subsequently, Han et al. [13]
presented an algorithm which is max{4, αα + 2}-competitive. In offline setting, the problem
is recently showed to be NP-hard [2]. Moreover, they [2] also gave a 1.171-approximation
algorithm, which improved the 2-approximation algorithm in [16]. If the instances are
agreeable then the problem is polynomial [7]. Recently, Antoniadis et al. [5] have given a
FPTAS for the problem.

To the best of our knowledge, the objective of minimizing the total weighted flow-time plus
energy has not been studied in the speed scaling with power down energy model. However,
this objective has been widely studied in speed scaling energy model. Bansal et al. [9] gave
an O(α/ logα)-competitive algorithm for weighted flow-time plus energy in a single machine
where the energy function is sα. Based on linear programming and dual-fitting, Anand
et al. [3] proved an O(α2)-competitive algorithm for unrelated machines. Subsequently,
Nguyen [17] and Devanur and Huang [11] presented an O(α/ logα)-competitive algorithms
for unrelated machines by dual fitting and primal dual approaches, respectively. It turns out

Nguyen K. T. 20:5

that the different approaches lead to the same algorithm. To the best of our knowledge, no
competitive algorithm is known in the general energy model for this problem.

2 Minimizing Energy in Speed Scaling with Power Down Model

In this section, we study the problem of minimizing the total energy. We formulize the problem
as a mathematical program. In such a program, we need to incorporate an information about
the machine states and the transition cost from the sleep state to the active one. Here we
make use of the properties of the Heaviside step function and the Dirac delta function to
encode the machine states and the transition cost. Recall that the Heaviside step function
H(t) = 0 if t < 0 and H(t) = 1 if t ≥ 0. Then H(t) is the integral of the Dirac delta function
δ (i.e., H ′ = δ) and it holds that

∫ +∞
−∞ δ(t)dt = 1. Now let F (t) be a function indicating

whether the machine is in active state at time t, i.e., F (t) = 1 if the machine is active at t
and F (t) = 0 if it is in the sleep state. Assume that the machine initially is in the sleep state.
Then A

∫ +∞
0 |F ′(t)|dt equals twice the transition cost of the machine (a transition from the

active state to the sleep state costs 0 while by the term A
∫ +∞

0 |F ′(t)|dt, it costs A).
Let sj(t) be variable representing the speed of job j at time t. The problem could be

formulated as the following (non-convex) program.

min
∫ ∞

0
P

(∑
j

sj(t)
)
F (t)dt+ A

2

∫ +∞

0
|F ′(t)|dt (1)

subject to
∫ dj

rj

sj(t)F (t)dt ≥ pj ∀j

sj(t) ≥ 0, F (t) ∈ {0, 1} ∀j, t

Observe that each time a job is executed, the machine has to be in the active state. The
first constraint ensures that every job j must be fully processed during [rj , dj]. Note that we
do not relax the variable F (t). The objective function consists of corresponding terms to the
energy cost during the active periods and the wake-up cost. Recall that P (z) = zα + g.

2.1 Algorithm and Dual Variable Construction
Define the critical speed sc = arg mins>0 P (s)/s. It has been observed in [7] that in any
algorithm, it would better to set the machine speed at least sc whenever it executes some
job. Let 0 < β ≤ 1 be some constant to be chosen later.

Let s∗(t) and s∗j (t) be the machine speed and the speed of job j at time t by the algorithm,
respectively. In the algorithm, we maintain variables, called virtual speeds, s(t) and sj(t).
Intuitively, job j would be processed by speed sj(t) at time t (and the machine would process
jobs by speed s(t)) if the wake-up cost equals A and the parameter g = 0. However, it is not
the case so the algorithm will process jobs by different speeds but it is the function related
to the virtual speeds.

During the execution of the algorithm, we also maintain a set of active jobs. Informally,
a job is active if it has been released but has not been processed by the algorithm. Initially,
set auxiliary variables s(t) and sj(t) equal 0 for every time t and jobs j. If a job is released
then it is marked as active.

Let τ be the current moment. Set s(t) ← s∗(t) for every t ≥ τ . Consider currently
active jobs in the earliest deadline first (EDF) order. (The set of active jobs may in-
clude new released job and jobs that have been released before τ but have not been

SWAT 2016

20:6 Lagrangian Duality based Algorithms in Online Energy-Efficient Scheduling

processed.) For every active job j and τ ≤ t ≤ dj , increase continuously sj(t) for all
t ∈ arg mint′ P ′(s(t′)) and update simultaneously s(t)← s(t) + sj(t) until

∫ dj
rj
sj(t′)dt′ = pj .

Now consider different states of the machine at the current time τ . We distinguish three
different states: (1) in working state the machine is active and is executing some jobs; (2) in
idle state the machine is active but its speed equals 0; and (3) in sleep state the machine is
inactive.
In working state. If s(τ) > 0 then set the machine speed s∗(t)← max{s(t), sc} for t ≥ τ as

long as pending jobs exists. Additionally, mark all currently pending jobs as inactive.
Otherwise (if s(τ) = 0), switch the machine to the idle state.

In idle state. If s(τ) ≥ sc then switch to the working state.
If sc > s(τ) > 0. Do not execute any job; however, mark all currently pending jobs as
active. Intuitively, we delay the execution of such jobs until some moment where the
machine has to run at speed sc in order to complete these jobs (assuming that there is
no new job released).
Otherwise, if the total duration of idle state from the last wake-up equals A/g then switch
to the sleep state.

In sleep state. If s(τ) ≥ sc then switch to the working state.

Dual variables. Consider a job j and the virtual machine speed s(t, rj). If s(t, rj) > 0 for
every t ∈ [rj , dj], set λj such that λjpj/β equals the marginal increase of the dynamic energy
due to the arrival of job j. If s(t, rj) = 0 for some moment t ∈ [rj , dj], define λj such that
λjpj equals the marginal increase of the dynamic and static energy due to the arrival of job
j (assuming no new job will be released later).

2.2 Analysis
The Lagrangian dual of (1) is maxλ≥0 mins,F L(s, F, λ) where the minimum is taken over
(s, F) feasible solutions of the primal and L is the following Lagrangian function

L(s, F, λ) =
∫ ∞

0
P

(∑
j

sj(t)
)
F (t)dt+ A

2

∫ +∞

0
|F ′(t)|dt+

∑
j

λj

(
pj −

∫ dj

rj

sj(t)F (t)dt
)

≥
∑
j

λjpj −
∑
j

∫ dj

rj

sj(t)F (t)
(
λj −

P (s(t))
s(t)

)
1{s(t)>0}1{F (t)=1}dt+ A

2

∫ +∞

0
|F ′(t)|dt

(2)

where s(t) =
∑
j sj(t).

By weak duality, the optimal value of the primal is always larger than the one of the
corresponding Lagrangian dual. In the following, with the chosen values of dual variables, we
bound the Lagrangian dual value in function of the algorithm cost and show the competitive
ratio.

Let s∗(t, rj) be the machine speed at time t ≥ rj settled by the algorithm at time rj . In
other words, s∗(t, rj) would be the machine speed at time t if there is no new released job
after job j. Similarly, let s∗j (t, rj) be the speed of job j at time t settled by the algorithm at
time rj .

I Lemma 1. Let j be an arbitrary job.
1. If s∗(t, rj) > 0 for every t ∈ [rj , dj] then λj ≤ βP ′(s∗(t)) for every t ∈ [rj , dj].
2. Moreover, if s∗(t, rj) = 0 for some t ∈ [rj , dj] then λj = P (sc)/sc.

Nguyen K. T. 20:7

Proof. We prove the first claim. For any time t, speed s∗(t) is non-decreasing as long as new
jobs arrive. Hence, it is sufficient to prove the claim assuming that no other job is released
after j, i.e., λj ≤ βP ′(s∗(t, rj)). The marginal increase in the dynamic energy due to the
arrival of j could be written as

1
β
λjpj =

∫ dj

rj

[
P (s∗(t, rj))− P

(
s∗(t, rj)− s∗j (t, rj)

)]
dt ≤

∫ dj

rj

P ′(s∗(t, rj))s∗j (t)dt

= min
rj≤t≤dj

P ′(s∗(t, rj))
∫ dj

rj

s∗j (t, rj)dt = min
rj≤t≤dj

P ′(s∗(t, rj)) · pj

where minP ′(s∗(t, rj)) is taken over t ∈ [rj , dj] such that s∗j (t, rj) > 0. The inequality is due
to the convexity of P and the second equality follows the algorithm (that increase the speed
of job j at arg minP ′(s(t)) for rj ≤ t ≤ dj). So the first claim follows.

We are now showing the second claim. By the algorithm, the fact that s∗(t, rj) = 0 for
some t ∈ [rj , dj] means that job j will be processed at speed sc in some interval [a, b] ⊂ [rj , dj]
(assuming that no new job is released after rj). The marginal increase in the energy is
P (sc)(b− a) while pj could be expressed as sc(b− a). Therefore, λj = P (sc)/sc. J

I Theorem 2. The algorithm has competitive ratio at most max{4, αα} = αα for α > 2.
Proof. Let E∗1 be the dynamic energy of the algorithm schedule. Due to the definition of
λj ’s and 0 < β ≤ 1 we have E∗1 =

∫∞
0 [P (s∗(t))− P (0)]dt ≤

∑
j λjpj/β.

Let E∗2 be the static energy plus the wake-up energy of the algorithm, i.e., E∗2 =∫∞
0 P (0)F ∗(t)dt+ A

2
∫∞

0 |(F
∗)′(t)|dt where F ∗(t) is the corresponding state (active or sleep)

of the machine at time t by the algorithm. We will lower bound the Lagrangian dual objective
by E∗1 and E∗2 .

By Lemma 1 (second statement), for every job j such that s∗(t, rj) = 0 for some t ∈ [rj , dj],
λj = P (sc)

sc . By the definition of the critical speed, λj ≤ P (z)
z for any z > 0. Therefore,∑

j

∫ dj

rj

sj(t)F (t)
(
λj −

P (s(t))
s(t)

)
dt ≤ 0 (3)

where in the sum is taken over jobs j such that s∗(t, rj) = 0 for some t ∈ [rj , dj].
Define

L1(s, λ) :=
∑
j

λjpj −
∑
j

∫ dj

rj

sj(t)F (t)
(
λj −

P (s(t))
s(t)

)
1{s(t)>0}1{F (t)=1}dt

which is the right-hand side of (2) without the wake-up term.
Let s̄(t) ∈ arg maxz zβP ′(s∗(t))− P (z). We have

L1(s, λ)

≥ βE∗1 −max
s,F

∑
j

∫ dj

rj

sj(t)F (t)
[
βP ′(s∗(t))− P (s(t))

s(t)

]
1{s(t)>0}1{F (t)=1}1{s∗(t)>0}dt

≥ βE∗1 −max
s

∫ ∞
0

s(t)
[
βP ′(s∗(t))− P (s(t))

s(t)

]
1{s(t)>0}1{F (t)=1}1{s∗(t)>0}dt

≥ βE∗1 −
∫ ∞

0

[
βP ′(s∗(t))s̄(t)− P (s̄(t))

]
1{s(t)>0}1{F (t)=1}1{s∗(t)>0}dt

≥ βE∗1 −
1
2

∫ ∞
0

[
βP ′(s∗(t))s̄(t)− P (s̄(t))

]
1{s∗(t)>0}dt

− 1
2

∫ ∞
0

[
βP ′(s∗(t))s̄(t)− P (s̄(t))

]
1{F (t)=1}dt

SWAT 2016

20:8 Lagrangian Duality based Algorithms in Online Energy-Efficient Scheduling

where in the first line, the sum is taken over jobs j such that s∗(t, rj) > 0 for all t ∈ [rj , dj].
Note that if s∗(t, rj) > 0 then s∗(t) ≥ s∗(t, rj) > 0. The first inequality follows (3)
and Lemma 1 (first statement). The second inequality holds since F (t) ∈ {0, 1} and
s(t) ≥

∑
j sj(t) where again the sum is taken over jobs j such that s∗(t, rj) > 0 for all

t ∈ [rj , dj]. The third inequality is due to the first order derivative and s̄(t) maximizes
function zβP ′(s∗(t))− P (z) (so s̄(t) is the solution of equation P ′(z(t)) = βP ′(s∗(t))).

As the energy power function P (z) = zα+g where α > 2 and g ≥ 0, s̄(t)α−1 = β(s∗(t))α−1.
Therefore,

L1(s, λ) ≥ βE∗1 −
1
2

∫ ∞
0

(
βα(s∗(t))α−1s̄(t)− (s̄(t))α − g

)
1{s∗(t)>0}dt

− 1
2

∫ ∞
0

(
βα(s∗(t))α−1s̄(t)− (s̄(t))α − g

)
1{F (t)=1}dt

= βE∗1 −
∫ ∞

0
(α− 1)βα/(α−1)(s∗(t))αdt+ 1

2

∫ ∞
0

g1{s∗(t)>0}dt+ 1
2

∫ ∞
0

g1{F (t)=1}dt

=
[
β − (α− 1)βα/(α−1)

]
E∗1 + 1

2

∫ ∞
0

g1{s∗(t)>0}dt+ 1
2

∫ ∞
0

g1{F (t)=1}dt

Choose β = 1/αα−1, we have that

L(s, F, λ) ≥ 1
αα

E∗1 + 1
2

∫ ∞
0

g1{s∗(t)>0}dt+ 1
2

∫ ∞
0

g1{F (t)=1}dt+ A

2

∫ ∞
0
|F ′(t)|dt

In order to prove the theorem, we prove the following claim.

I Claim 3. Define

L2(F) := 1
2

∫ ∞
0

g1{s∗(t)>0}dt+ 1
2

∫ ∞
0

g1{F (t)=1}dt+ A

2

∫ ∞
0
|F ′(t)|dt

Then, L2(F) ≥ E∗2/4 for any feasible solution (s, F) of the relaxation.

We first show how to deduce the theorem assuming the claim. By the claim, the dual

L(s, F, λ) ≥ E∗1/αα + L2(F) ≥ E∗1/αα + E∗2/4

whereas the primal is E∗1 +E∗2 . Thus, the competitive ratio is at most max{4, αα}. In the
remaining, we prove the claim by amortized arguments.

Proof of Claim. Consider the algorithm schedule. An end-time u is a moment in the schedule
such that the machine switches from the idle state to the sleep state. Conventionally, the
first end-time in the schedule is 0. Partition the time line into phases. A phase [u, v) is a
time interval such that u, v are two consecutive end-times. Observe that in a phase, the
schedule has transition cost A and there is always a new job released in a phase (otherwise
the machines would not switch to non-sleep state). We will prove the claim on every phase.
In the following, we are interested in phase [u, v) and whenever we mention L2(F), it refers
to 1

2
∫ v
u
g1{s∗(t)>0}dt+ 1

2
∫ v
u
g1{F (t)=1}dt+ A

2
∫ v
u
|F ′(t)|dt.

By the algorithm, the static energy of the schedule during the idle time is A,
i.e.,

∫ v
u
g1{s∗(t)=0}dt = A. Let (s, F) be an arbitrary feasible primal solution.

If during [u, v), the machine according to the solution (s, F) makes a transition from
sleep state to non-sleep state (i.e., F (t′) = 0 and F (t′′) = 1 for some u ≤ t′ < t′′ < v) or

Nguyen K. T. 20:9

inversely then

L2(F) ≥ 1
2

∫ v

u

g1{s∗(t)>0}dt+ A

2

≥ 1
2

∫ v

u

g1{s∗(t)>0}dt+ 1
4

(∫ v

u

g1{s∗(t)=0}dt+A

)
≥ 1

4E
∗
2
∣∣
[u,v).

If during [u, v), the machine following solution (s, F) makes no transition (from non-sleep
static to sleep state or inversely) then F (t) = 1 during [u, v) in order to process jobs released
in the phase. Therefore,

L2(F) ≥ 1
2

∫ v

u

g1{s∗(t)>0}dt+ 1
2

∫ v

u

g1{F (t)=1}dt = 1
2

∫ v

u

g1{s∗(t)>0}dt+ 1
2

∫ v

u

gdt

≥ 1
2

∫ v

u

g1{s∗(t)>0}dt+ 1
4

∫ v

u

g1{s∗(t)=0}dt+ A

4

≥ 1
4

(∫ v

u

g1{s∗(t)>0}dt+
∫ v

u

g1{s∗(t)=0}dt+A

)
= 1

4E
∗
2
∣∣
[u,v)

where the second inequality follows the algorithm: as the machine switches to sleep state at
time v, it means that the total idle duration in [u, v) incurs a cost A. J

The proof of the claim completes the theorem proof. J

3 Minimizing Energy plus Weighted Flow-Time in Speed Scaling
with Power Down Model

In this section, we study the problem of minimizing total weighted flow-time plus energy.
Let F (t) be a function indicating whether the machine i is in active state at time t, i.e.,
F (t) = 1 if the machine is active at t and F (t) = 0 if it is in the sleep state. Let sj(t) be the
variable that represents the speed of job j at time t. Let Cj be a variable representing the
completion time of j. Similar as the previous section, the problem can be formulized as the
following (non-convex) program.

min
∫ ∞

0
2P
(∑

j

sj(t)
)
F (t)dt+ 2

∑
j

(∫ Cj

rj

sj(t)F (t)dt
)
wj
pj

(Cj − rj)

+A

∫ ∞
0
|F ′(t)|dt (4)

subject to
∫ Cj

rj

sj(t)F (t)dt = pj ∀j

sj(t) ≥ 0, F (t) ∈ {0, 1} ∀j, t

The first constraint ensures that every job j must be completed by some moment Cj which
is its completion time. In the objective function, the first and second terms represent twice
the consumed energy and the total weighted flow-time, respectively. Note that in the second
term,

∫ Cj
rj

sj(t)F (t)dt = pj by the constraints. The last term stands for twice the transition
cost.

SWAT 2016

20:10 Lagrangian Duality based Algorithms in Online Energy-Efficient Scheduling

Notations. We say that a job j is pending at time t if it has not been completed, i.e.,
rj ≤ t < Cj . At time t, denote qj(t) the remaining processing volume of job j. The total
weight of pending jobs at time t is denoted as W (t). The density of a job j is δj = wj/pj .
Recall that the critical speed sc ∈ arg minz≥0 P (z)/z. As P (z) = zα + g, by the first order
condition, sc satisfies (α− 1)(sc)α = g.

3.1 The Algorithm
We first describe intuitively the ideas of the algorithm. In the speed scaling model, all previous
algorithms explicitly or implicitly balance the weighted flow-time of jobs and the consumed
energy to process such jobs. That could be done by setting the machine speed at any time t
proportional to some function of the total weight of pending jobs (precisely, proportional to
W (t)1/α where W (t) is the total weight of pending jobs). Our algorithm follows the idea
of balancing the weighted flow-time and the energy. However, in the general energy model,
the algorithm would not be competitive if the speed is always set proportionally to W (t)1/α

since the static energy might be large due to the long active periods of the machine. Hence,
even if the total weight of pending jobs on the machine is small, in some situation the speed
is maintained larger than W (t)1/α. In fact, it will be set to be the critical speed sc.

An issue while dealing with the general model is to determine the state of the machine at
a given time (active or inactive). If the total weight of pending jobs is small and the machine
is active for a long time, then the static energy is large. Otherwise if pending jobs remain for
long time then the weighted flow-time is large. The algorithm, together with dual variables,
are constructed in order to bypass this difficulty.

Description of algorithm

At any time t, we distinguish different states of the machine: the working state (the machine
is active and currently processes some job), the idle state (the machine is active but currently
processes no job) and the sleep state. At time t, we (re)compute the total weight of pending
jobs and consider different scenarios corresponding to the current machine state.

In working state. If αW (t)(α−1)/α > P (sc)/sc then the machine speed is set as W (t)1/α.
Otherwise, the speed is set as sc. At any time, the machine processes the highest density
job among the pending ones.

In idle state. 1. If αW (t)(α−1)/α > P (sc)/sc then switch to the working state.
2. If 0 < αW (t)α−1

α ≤ P (sc)/sc then make a plan to process pending jobs with speed
(exactly) sc in non-increasing order of their density. The plan consists of a single
block (with no idle time) and the block length could be explicitly computed (given the
processing volumes of all jobs and speed sc). Hence, the total consumed energy in the
plan can be computed and it is independent of the starting time of the plan.
Choose the starting time of the plan in such a way that the total energy consumption
in the plan equals the total weighted flow-time of all jobs in the plan. There always
exists such starting time since if the plan begins immediately at the current time, the
energy is larger than the weighted flow-time; and inversely if the starting time is large
enough, the weighted flow-time dominates the energy consumption.
At the starting time of a plan, switch to the working state. (Note that the plan together
with its starting time could be changed due to the arrival of new jobs.)

3. Otherwise, if the total duration of idle state from the last wake-up equals A/g then
switch to sleep state.

In sleep state. Use the same policy as the first two steps of the idle state.

Nguyen K. T. 20:11

3.2 Analysis
The Lagrangian dual of program (4) is max mins,C,F L where L is the corresponding La-
grangian function and the maximum is taken over dual variables. We need to choose
appropriate dual variables and prove that for any feasible solution (s, C, F) of the primal,
the Lagragian dual is bounded by a desired factor from the primal.

Dual variables

Denote the dual variables corresponding to the first constraints of (4) as λj ’s. Set all dual
variables (corresponding to the primal (4)) except λj ’s equal 0. The values of dual variables
λj ’s is defined as follows.

Fix a job j. At the arrival of a job j, rename pending jobs as {1, . . . , k} in non-increasing
order of their densities, i.e., p1/w1 ≤ . . . ≤ pk/wk (note that pa/wa is the inverse of job a’s
density). Denote Wa = wa + . . .+ wk for 1 ≤ a ≤ k.

Define λj such that

λjpj = wj

j∑
a=1

qa(rj)
W

1/α
a

+Wj+1
qj(rj)
W

1/α
j

+ P (sc)qj(rj)
sc

(5)

Note that qj(rj) = pj . If job j is processed with speed larger than sc then the first term
stands for the weighted flow-time of j and the second term represents an upper bound on
the increase of the weighted flow-time of jobs with density smaller than δj due to the arrival
of j. Observe that as j arrives, the jobs with higher density than δj are completed earlier
and the ones with smaller density than δj may have higher flow-time. Here, the second term
in (5) captures the marginal change in the total weighted flow-time. The third term in (5)
is introduced in order to cover energy consumption during the execution periods of job j
if it is processed by speed sc. That term is necessary since during such periods the energy
consumption and the weighted flow-time are not balanced.

The Lagrangian function L(s, C, F, λ) with the chosen dual variables becomes

A

∫ ∞
0
|F ′(t)|dt+ 2

∫ ∞
0

P

(∑
j

sj(t)
)
F (t)dt+ 2

∑
j

δj(Cj − rj)
∫ Cj

rj

sj(t)F (t)dt

+
∑
j

λj

(
pj −

∫ Cj

rj

sj(t)F (t)dt
)

=
∑
j

λjpj +A

∫ ∞
0
|F ′(t)|dt+

∑
j

∫ Cj

rj

δj(Cj − rj)sj(t)F (t)dt

−
∑
j

∫ Cj

rj

sj(t)F (t)
(
λj − 2P (s(t))

s(t) − δj(Cj − rj)
)
dt

Notations

We denote s∗(t) the machine speed at time t by the algorithm. So by the algorithm, if
s∗(t) > 0 then s∗(t) ≥ sc. Let E∗1 and E∗2 be the total dynamic and static energy consumed
by the algorithm schedule, respectively. In other words, E∗1 =

∫∞
0 (s∗(t))αdt and E∗2 =

∫∞
0 g

where the integral is taken over all moments t where the machine is active (either in working
or in idle states). Additionally, let E∗3 be the total transition cost of the machine. Moreover,
let F∗ be the total weighted flow-time due to the algorithm.

SWAT 2016

20:12 Lagrangian Duality based Algorithms in Online Energy-Efficient Scheduling

We relate the energy cost of the algorithm schedule and the chosen values of dual variables
by the following lemma. Note that by definition of λj ’s, we have that

∑
j λjpj ≥ F∗.

I Lemma 4. It holds that 2E∗1 + 2E∗2 ≥ F∗ and
∑
j λjpj ≥ E∗1 . Consequently,

∑
j λjpj ≥

7
8E
∗
1 + 1

16F
∗ − 1

8E
∗
2 .

The following lemma is crucial in the analysis.

I Lemma 5. Let j be an arbitrary job. Then, for every t ≥ rj

λj − δj(t− rj) ≤ max
{

α

α− 1W (t)
α−1
α + P (sc)

sc
, 2P (sc)

sc

}

I Theorem 6. The algorithm is O(α/ lnα)-competitive.

Proof. Recall that the dual has value at least minL(s, C, F, λ) where the minimum is taken
over (s, C, F) feasible solution of the primal. The goal is to lower bound the Lagrangian
function.

L(s, C, F, λ) =
∑
j

λjpj +A

∫ ∞
0
|F ′(t)|dt+

∑
j

∫ Cj

rj

δj(Cj − rj)sj(t)F (t)dt

−
∑
i,j

∫ Cj

rj

sj(t)F (t)
(
λj − 2P (s(t))

s(t) − δj(Cj − rj)
)
1{s(t)>0}dt (6)

for any feasible primal solution (s, C, F).
Fix a feasible primal solution (s, C, F). Define L1(s, C, F, λ) as

∑
j

∫ Cj

rj

sj(t)F (t)
(
λj − 2P (s(t))

s(t) − δj(Cj − rj)
)
1{s(t)>0}dt

I Claim 7. Let (s, C, F) be an arbitrary feasible solution of the primal. Then,

L1(x, s, C, F, λ) ≤ 1
(α− 1)

1
α−1
F∗ − 1

2

∫ ∞
0

g1{F (t)>0}dt−
1
2

∫ ∞
0

g1{s∗(t)>0}dt

I Claim 8. Let (s, C, F) be an arbitrary feasible solution of the primal. Define

L2(F) :=
∑
j

∫ Cj

rj

δj(Cj − rj)sj(t)F (t)dt+A

∫ ∞
0
|F ′(t)|dt

+ 1
2

∫ ∞
0

g1{F (t)>0}dt+ 1
2

∫ ∞
0

g1{s∗(t)>0}dt

Then, L2(F) ≥ (E∗2 + E∗3)/4.

Nguyen K. T. 20:13

We first show how to prove the theorem assuming the claims. By (6), we have

L(s, C, F, λ) ≥
∑
j

λjpj +A

∫ ∞
0
|F ′(t)|dt+

∑
j

∫ Cj

rj

δj(Cj − rj)sj(t)F (t)dt

−
∑ 1

(α− 1)1/(α−1)F
∗ + 1

2

∫ ∞
0

g1{F (t)>0}dt+ 1
2

∫ ∞
0

g1{s∗(t)>0}dt

≥
∑
j

λjpj −
1

(α− 1)1/(α−1)F
∗ + 1

4E
∗
2 + 1

4E
∗
3

≥
(

1− 1
(α− 1)1/(α−1)

)(
7
8E
∗
1 + 1

16F
∗ − 1

8E
∗
2

)
+1

4E
∗
2 + 1

4E
∗
3

≥
(

1− 1
(α− 1)1/(α−1)

)(
7
8E
∗
1 + 1

16F
∗
)

+1
8E
∗
2 + 1

4E
∗
3

≥ ln(α− 1)
2(α− 1)

(
7
8E
∗
1 + 1

16F
∗
)

+1
8E
∗
2 + 1

4E
∗
3

where the first and second inequalities are due to Claim 7 and Claim 8, respectively. The
third inequality follows Lemma 4 and

∑
j λjpj ≥ F∗. The last inequality is due to the fact

that 2 ≥ (α− 1)
1

α−1 ≥ 1 + ln(α−1)
α−1 for every α > 2.

Besides, the primal objective is at most 2(F∗ + E∗1 + E∗2 + E∗3). Hence, the competitive
ratio is O(α/ lnα). J

I Theorem 9. The algorithm is O(α/ lnα)-competitive.

4 Conclusion

In this paper, we have shown that the Lagrangian duality approach is appropriate to
study certain problems which unlikely admit a convex formulation. For many optimization
problems, it is challenging to come up with a strong formulation in which the integral
constraint of variables is relaxed and the integrality gap is relatively small. The Lagrangian
duality approach gives the flexibility to study directly certain problems without relaxing
the integrality and without linear/convex formulation. As mentioned earlier and having
observed in the analyses, by the approach, one can benefit from techniques in mathematical
programming and amortized analysis. It would be interesting to see more work in this
direction. For concrete questions, the problems studied in the paper are open for unrelated
machine environment. One would expect the existence of algorithms with similar competitive
ratio (up to a constant factor).

Acknowledgement. We thank anonymous reviewers for their useful feedbacks that improve
the presentation of the paper.

References
1 Susanne Albers. Energy-efficient algorithms. Commun. ACM, 53(5):86–96, 2010.
2 Susanne Albers and Antonios Antoniadis. Race to idle: new algorithms for speed scaling

with a sleep state. ACM Transactions on Algorithms (TALG), 10(2):9, 2014.
3 S. Anand, Naveen Garg, and Amit Kumar. Resource augmentation for weighted flow-time

explained by dual fitting. In Proc. 23rd ACM-SIAM Symposium on Discrete Algorithms,
pages 1228–1241, 2012.

SWAT 2016

20:14 Lagrangian Duality based Algorithms in Online Energy-Efficient Scheduling

4 Spyros Angelopoulos, Giorgio Lucarelli, and Kim Thang Nguyen. Primal-dual and dual-
fitting analysis of online scheduling algorithms for generalized flow time problems. In Proc.
23rd European Symposium of Algorithms (ESA), pages 35–46. Springer, 2015.

5 Antonios Antoniadis, Chien-Chung Huang, and Sebastian Ott. A fully polynomial-time
approximation scheme for speed scaling with sleep state. In Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1102–1113. SIAM,
2015.

6 Yossi Azar, Nikhil R. Devanur, Zhiyi Huang, and Debmalya Panigrahi. Speed scaling in the
non-clairvoyant model. In Proc. 27th ACM on Symposium on Parallelism in Algorithms
and Architectures, pages 133–142, 2015.

7 Evripidis Bampis, Christoph Dürr, Fadi Kacem, and Ioannis Milis. Speed scaling with
power down scheduling for agreeable deadlines. Sustainable Computing: Informatics and
Systems, 2(4):184–189, 2012.

8 Nikhil Bansal, Ho-Leung Chan, Dmitriy Katz, and Kirk Pruhs. Improved bounds for speed
scaling in devices obeying the cube-root rule. Theory of Computing, 8(1):209–229, 2012.

9 Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Speed scaling with an arbitrary power
function. In Proc. 20th ACM-SIAM Symposium on Discrete Algorithms, pages 693–701,
2009.

10 Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to manage energy and
temperature. J. ACM, 54(1), 2007.

11 Nikhil R. Devanur and Zhiyi Huang. Primal dual gives almost optimal energy efficient
online algorithms. In Proc. 25th ACM-SIAM Symposium on Discrete Algorithms, 2014.

12 Anupam Gupta, Ravishankar Krishnaswamy, and Kirk Pruhs. Online primal-dual for
non-linear optimization with applications to speed scaling. In Proc. 10th Workshop on
Approximation and Online Algorithms, pages 173–186, 2012.

13 Xin Han, Tak Wah Lam, Lap-Kei Lee, Isaac Kar-Keung To, and Prudence W. H. Wong.
Deadline scheduling and power management for speed bounded processors. Theor. Comput.
Sci., 411(40-42):3587–3600, 2010.

14 Sungjin Im, Janardhan Kulkarni, and Kamesh Munagala. Competitive algorithms from
competitive equilibria: Non-clairvoyant scheduling under polyhedral constraints. In STOC,
2014.

15 Sungjin Im, Janardhan Kulkarni, Kamesh Munagala, and Kirk Pruhs. Selfishmigrate: A
scalable algorithm for non-clairvoyantly scheduling heterogeneous processors. In Proc. 55th
IEEE Symposium on Foundations of Computer Science, 2014.

16 Sandy Irani, Sandeep K. Shukla, and Rajesh Gupta. Algorithms for power savings. ACM
Transactions on Algorithms, 3(4), 2007.

17 Nguyen Kim Thang. Lagrangian duality in online scheduling with resource augmentation
and speed scaling. In Proc. 21st European Symposium on Algorithms, pages 755–766, 2013.

Online Dominating Set∗

Joan Boyar1, Stephan J. Eidenbenz2, Lene M. Favrholdt3,
Michal Kotrbčík4, and Kim S. Larsen5

1 University of Southern Denmark, Odense, Denmark
joan@imada.sdu.dk

2 Los Alamos National Laboratory, Los Alamos, USA
eidenben@lanl.gov

3 University of Southern Denmark, Odense, Denmark
lenem@imada.sdu.dk

4 University of Southern Denmark, Odense, Denmark
kotrbcik@imada.sdu.dk

5 University of Southern Denmark, Odense, Denmark
kslarsen@imada.sdu.dk

Abstract
This paper is devoted to the online dominating set problem and its variants on trees, bipartite,
bounded-degree, planar, and general graphs, distinguishing between connected and not necessar-
ily connected graphs. We believe this paper represents the first systematic study of the effect
of two limitations of online algorithms: making irrevocable decisions while not knowing the fu-
ture, and being incremental, i.e., having to maintain solutions to all prefixes of the input. This
is quantified through competitive analyses of online algorithms against two optimal algorithms,
both knowing the entire input, but only one having to be incremental. We also consider the
competitive ratio of the weaker of the two optimal algorithms against the other. In most cases,
we obtain tight bounds on the competitive ratios. Our results show that requiring the graphs
to be presented in a connected fashion allows the online algorithms to obtain provably better
solutions. Furthermore, we get detailed information regarding the significance of the necessary
requirement that online algorithms be incremental. In some cases, having to be incremental fully
accounts for the online algorithm’s disadvantage.

1998 ACM Subject Classification F.1.2 [Modes of Computation] Online Computation, G.2.2
[Graph Theory] Graph Algorithms, I.1.2 [Algorithms] Analysis of Algorithms

Keywords and phrases online algorithms, dominating set, competitive analysis, graph classes,
connected graphs

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.21

1 Introduction

We consider online versions of a number of NP-complete graph problems, dominating set
(DS), and variants hereof. Given an undirected graph G = (V,E) with vertex set V and
edge set E, a set D ⊆ V is a dominating set for G if for all vertices u ∈ V , either u ∈ D
(containment) or there exists an edge {u, v} ∈ E, where v ∈ D (dominance). The objective
is to find a dominating set of minimum cardinality.

In the variant connected dominating set (CDS), we add the requirement that D be
connected (if G is not connected, D should be connected for each connected component

∗ Supported in part by the Danish Council for Independent Research and the Villum Foundation.

© Joan Boyar, Stephan J. Eidenbenz, Lene M. Favrholdt, Michal Kotrbčík, and Kim S. Larsen;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 21; pp. 21:1–21:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Online Dominating Set

of G). In the variant total dominating set (TDS), every vertex must be dominated by
another, corresponding to the definition above with the “containment” option removed.
We also consider independent dominating set (IDS), where we add the requirement that
D be independent, i.e., if {u, v} ∈ E, then {u, v} 6⊆ D. In both this introduction and the
preliminaries section, when we refer to dominating set, the statements are relevant to all the
variants unless explicitly specified otherwise.

The study of dominating set and its variants dates back at least to seminal books by
König [19], Berge [3], and Ore [21]. The concept of domination readily lends itself to
modelling many conceivable practical problems. Indeed, at the onset of the field, Berge [3]
mentions a possible application of keeping all points in a network under surveillance by
a set of radar stations, and Liu [20] notes that the vertices in a dominating set can be
thought of as transmitting stations that can transmit messages to all stations in the network.
Several monographs are devoted to domination [14], total domination [15], and connected
domination [12], and we refer the reader to these for further details.

We consider online [5] versions of these problems. More specifically, we consider the
vertex-arrival model where the vertices of the graph arrive one at a time and with each
vertex, the edges connecting it to previous vertices are also given. The online algorithm must
maintain a dominating set, i.e., after each vertex has arrived, D must be a dominating set
for the subgraph given so far. In particular, this means that the first vertex must always
be included in the solution, except for the case of total dominating set. Since the graph
consisting of a single vertex does not have a total dominating set at all, we allow an online
algorithm for TDS to not include isolated vertices in the solution, unlike the other variants
of DS. If the online algorithm decides to include a vertex in the set D, this decision is
irrevocable. Note, however, that not just a new vertex but also vertices given previously
may be added to D at any time. An online algorithm must make this decision without any
knowledge about possible future vertices.

Defining the nature of the irrevocable decisions is a modelling issue, and one could
alternatively have made the decision that also the act of not including the new vertex in D
should be irrevocable, i.e., not allowing algorithms to include already given vertices in D
at a later time. The main reason for our choice of model is that it is much better suited
for applications such as routing in wireless networks for which domination is intensively
studied; see for instance [10] and the citations thereof. Indeed, when domination models a
(costly) establishment of some service, there is no reason why not establishing a service at
a given time should have any inherent costs or consequences, such as preventing one from
doing so later. Furthermore, the stricter variant of irrevocability results in a problem for
which it becomes next to impossible for an online algorithm to obtain a non-trivial result
in comparison with an optimal offline algorithm. Consider, for example, an instance where
the adversary starts by giving a vertex followed by a number of neighbors of that vertex. If
the algorithm ever rejects one of these neighbors, the remaining part of the sequence will
consist of neighbors of the rejected vertex and the neighbors must all be selected. This shows
that, using this model of irrevocability, online algorithms for DS or TDS would have to select
at least n− 1 vertices, while the optimal offline algorithm selects at most two. For CDS it
is even worse, since rejecting any vertex could result in a nonconnected dominating set. A
similar observation is made in [18] for this model; their focus is on a different model, where
the vertices are known in advance, and all edges incident to a particular vertex are presented
when that vertex arrives.

An online algorithm can be seen as having two characteristics: it maintains a feasible
solution at any time, and it has no knowledge about future requests. We also define a larger

J. Boyar, S. J. Eidenbenz, L.M. Favrholdt, M. Kotrbčík, and K. S. Larsen 21:3

class of algorithms: An incremental algorithm is an algorithm that maintains a feasible
solution at any time. It may or may not know the whole input from the beginning.

We analyze the quality of online algorithms for the dominating set problems using
competitive analysis [22, 16]. Thus, we consider the size of the dominating set an online
algorithm computes up against the result obtained by an optimal offline algorithm, Opt.

As something a little unusual in competitive analysis, we are working with two different
optimal algorithms. This is with the aim of investigating whether it is predominantly the
requirement to maintain feasible solutions or the lack of knowledge of the future which
makes the problem hard. Thus, we define Optinc to be an optimal incremental algorithm
and Optoff to be an optimal offline algorithm, i.e., it is given the entire input, and then
produces a dominating set for the whole graph. The reason for this distinction is that in
order to properly measure the impact of the knowledge of the future, it is necessary that
it is the sole difference between the algorithm and Opt. Therefore, Opt has to solve the
same problem and hence the restriction on Optinc. While such an attention to comparing
algorithms to an appropriate Opt already exists in the literature, to the best of our knowledge
the focus also on the comparison of different optimum algorithms is a novel aspect of our
work. Previous results requiring the optimal offline algorithm to solve the same problem
as the online algorithm include (1) [7] which considers fair algorithms that have to accept
a request whenever possible, and thus require Opt to be fair as well, (2) [8] which studies
k-bounded-space algorithms for bin packing that have at any time at most k open bins and
requires Opt to also adhere to this restriction, and (3) [4] which analyzes the performance of
online algorithms for a variant of bin packing against a restricted offline optimum algorithm
that knows the future, but has to process the requests in the same order as the algorithm
under consideration.

Given an input sequence I and an algorithm Alg, we let Alg(I) denote the size of the
dominating set computed by Alg on I, and we define Alg to be c-competitive if there exists
a constant α such that for all input sequences I, Alg(I) ≤ cOpt(I) + α, where Opt may
be Optinc or Optoff, depending on the context. The (asymptotic) competitive ratio of Alg
is the infimum over all such c and we denote this CRinc(Alg) and CRoff(Alg), respectively.
In some results, we use the strict competitive ratio, i.e., the inequality above holds without
an additive constant. For these results, when the strict result is linear in n, we write the
asymptotic competitive ratio in Table 2 without any additive constant.

We consider the four dominating set problem variants on various graph types, including
trees, bipartite, bounded-degree (letting ∆ denote the maximum degree), and to some extent
planar graphs. In all cases, we also consider the online variant where the adversary is
restricted to giving the vertices in such a manner that the graph given at any point in
time is connected. In this case, the graph is called always-connected. One motivation is
that graphs in applications such as routing in networks are most often connected. The
connectivity assumption allows us to obtain provably better bounds on the performance
of online algorithms, at least compared to Optoff, and these bounds are of course more
meaningful for the relevant applications.

The results for online algorithms are summarized in Tables 1 and 2. The results for
Optinc against Optoff are identical to the results of Table 2, except that for DS on trees,
CRoff(Optinc) = 2 and for DS on always-connected planar graphs, CRoff(Optinc) = dn/2e.
The results are discussed in the conclusion.

SWAT 2016

21:4 Online Dominating Set

Table 1 Bounds on the competitive ratio of any online algorithm with respect to Optinc.

Graph class DS CDS TDS IDS

Trees 2 1

1Bipartite [n/4, n/2]
Always-connected bipartite n/4
Bounded degree [∆

2 ; ∆ + 1] [∆
2 ; ∆] [∆

2 ; ∆]
Always-connected bounded degree [∆

2 ; ∆ − 1]

Table 2 Bounds on the competitive ratio of any online algorithm with respect to Optoff.

Graph class DS CDS TDS IDS

Trees [2; 3] 1 2
nBipartite n n/2

Always-connected bipartite n/2
Bounded degree [∆; ∆ + 1] ∆ + 1 [∆ − 1; ∆] ∆
Always-connected bounded degree [∆

2 ; ∆ + 1] [∆ − 2; ∆ − 1] [∆ − 1; ∆]
Planar

n n/2 n
Always-connected planar

2 Preliminaries

Since we are studying online problems, the order in which vertices are given is important.
Throughout the paper, we will assume that the indices of the vertices of G, v1, . . . , vn, indicate
the order in which they are given to the online algorithm, and we use Alg(G) to denote
the size of the dominating set computed by Alg using this ordering. When no confusion
can occur, we implicitly assume that the dominating set being constructed by an online
algorithm Alg is denoted by D. We use the phrase select a vertex to mean that the vertex
in question is added to the dominating set in question. We use Gi to denote the subgraph of
G induced by {v1, . . . , vi}. We let Di denote the dominating set constructed by Alg after
processing the first i vertices of the input. When no confusion can occur, we sometimes
implicitly identify a dominating set D and the subgraph it induces. For example, we may
say that D has k components or is connected, meaning that the subgraph of G induced by D
has k components or is connected, respectively.

Online algorithms must compute a solution for all prefixes of the input seen by the
algorithm. Given the irrevocable decisions, this can of course affect the possible final sizes of
a dominating set. When we want to emphasize that a bound is derived under this restriction,
we use the word incremental to indicate this, i.e., if we discuss the size of an incremental
dominating set D of G, this means that D1 ⊆ D2 ⊆ · · · ⊆ Dn = D and that Di is a
dominating set of Gi for each i. Note in particular that any incremental algorithm, including
Optinc, for DS, CDS, or IDS must select the first vertex.

Throughout the text, we use standard graph-theoretic notation. In particular, the path
on n vertices is denoted Pn. A star with n vertices is the complete bipartite graph K1,n−1.
A leaf is a vertex of degree 1, and an internal vertex is a vertex of degree at least 2. We use
c(G) to denote the number of components of a graph G. The size of a minimum dominating
set of a graph G is denoted by γ(G). We use indices to indicate variants, using γC(G), γT (G),
and γI(G) for connected, total, and independent dominating set, respectively. This is an

J. Boyar, S. J. Eidenbenz, L.M. Favrholdt, M. Kotrbčík, and K. S. Larsen 21:5

alternative notation for the size computed by Optoff. We also use these indices on Optinc

to indicate which variant is under consideration. We use ∆ to denote the maximum degree
of the graph under consideration. Similarly, n denotes the number of vertices in the graph.

In many of the proofs of lower bounds on the competitive ratio, when the path, Pn, is
considered, either as the entire input or as a subgraph of the input, we assume that it is given
in the standard order, the order where the first vertex given is a leaf, and each subsequent
vertex is a neighbor of the vertex given in the previous step. When the path is a subgraph of
the input graph, we often extend this standard order of the path to an adversarial order of
the input graph – a fixed ordering of the vertices that yields an input attaining the bound.

In some online settings, we are interested in connected graphs, where the vertices are given
in an order such that the subgraph induced at any point in time is connected. In this case, we
use the term always-connected, indicating that we are considering a connected graph G, and
all the partial graphs Gi are connected. We implicitly assume that trees are always-connected
and we drop the adjective. Since all the classes we consider are hereditary (that is, any
induced subgraph also belongs to the class), no further restriction of partial inputs Gi is
necessary. In particular, these conventions imply that for trees, the vertex arriving at any
step (except the first) is connected to exactly one of the vertices given previously, and since
we consider unrooted trees, we can think of that vertex as the parent of the new vertex.

3 The Cost of Being Online

In this section we focus on the comparison of algorithms bound to the same irrevocable
decisions. We do so by comparing any online algorithm with Optinc and Optoff, investigating
the role played by the (absence of) knowledge of the future. We start by using the size of a
given dominating set to bound the sizes of some connected or incremental equivalents.

I Theorem 1. Let G be always-connected, let S be a dominating set of G, and let R be an
incremental dominating set of G. Then the following hold:
1. There is a connected dominating set S′ of G such that |S′| ≤ |S|+ 2(c(S)− 1).
2. There is an incremental connected dominating set R′ of G such that |R′| ≤ |R|+ c(R)− 1.
3. If G is a tree, there is an incremental dominating set R′′ of G such that |R′′| ≤ |S|+ c(S).
Moreover, all three bounds are tight for infinitely many graphs.

Proof. The proof of 1. can be found in the full version of the paper [6].
To prove 2., we label the components of R in the order in which their first vertices arrive.

Thus, let C1, . . . , Ck be the components of R, and, for 1 ≤ i ≤ k, let vji
be the first vertex

of Ci that arrives. Assume that vji arrives before vji+1 for each i = 1, . . . , k − 1. We prove
that for each component Ci of R, there is a path of length 2 joining vji

with Ch in Gji

for some h < i, i.e., a path with only one vertex not belonging to either component. Let
P = vl1 , . . . , vlm

, vji
be a shortest path in Gji

connecting vji
and some component Ch, h < i,

and assume for the sake of contradiction that m ≥ 3. In Gji
, the vertex vl3 is not adjacent

to a vertex in any component Ch′ , where h′ < i, since in that case a shorter path would exist.
However, since vertices cannot be unselected as the online algorithm proceeds, it follows that
in Gl3 , vl3 is not dominated by any vertex, which is a contradiction. Thus, selecting just one
additional vertex at the arrival of vij

connects Ci to an earlier component, and the result
follows inductively. To see that the bound is tight, observe that the optimal incremental
connected dominating set of Pn has n− 1 vertices, while for even n, there is an incremental
dominating set of size n/2 with n/2 components.

To obtain 3., consider an algorithm Alg processing vertices greedily, while always selecting
all vertices from S. That is, v1 and all vertices of S are always selected, and when a vertex v

SWAT 2016

21:6 Online Dominating Set

not in S arrives, it is selected if and only if it is not dominated by already selected vertices,
in which case it is called a bad vertex. Clearly, Alg produces an incremental dominating set,
R′′, of G.

To prove the upper bound on |R′′|, we gradually mark components of S. For a bad vertex
vi, let v be a vertex from S dominating vi, and let C be the component of S containing v.
Mark C. To prove the claim it suffices to show that each component of S can be marked at
most once, since each bad vertex leads to some component of S being marked.

Assume for the sake of contradiction that some component, C, of S is marked twice. This
happens because a vertex v of C is adjacent to a bad vertex b, and a vertex v′ (not necessarily
different from v) of C is adjacent to some later bad vertex b′. Since G is always-connected
and b′ was bad, b and b′ are connected by a path not including v′. Furthermore, v and v′ are
connected by a path in C. Thus, the edges {b, v} and {b′, v′} imply the existence of a cycle
in G, contradicting the fact that it is a tree.

To see that the bound is tight, let v1, . . . , vm, m ≡ 2 (mod 6), be a path in the standard
order. Let G be obtained from Pm by attaching m pendant vertices (new vertices of degree 1)
to each of the vertices v2, v5, v8, . . . , vm, where the pendant vertices arrive in arbitrary
order, though respecting that G should be always-connected. Each minimum incremental
dominating set of G contains each of the vertices v2, v5, v8, . . . , vm, the vertex v1, and one of
the vertices v3i and v3i+1 for each i, and thus it has size 2(m+ 1)/3. On the other hand, the
vertices v2, v5, v8, . . . , vm form a dominating set S of G with c(S) = (m+ 1)/3. J

Theorem 1 is best possible in the sense that none of the assumptions can be omitted.
Indeed, Proposition 20 implies that it is not even possible to bound the size of an incremental
(connected) dominating set in terms of the size of a (connected) dominating set, much less
to bound the size of an incremental connected dominating set in terms of the size of a
dominating set. Therefore, 1. and 2. in Theorem 1 cannot be combined even on bipartite
planar graphs. The situation is different for trees: Corollary 10 1. essentially leverages the
fact that any connected dominating set D on a tree can be produced by an incremental
algorithm without increasing the size of D.

I Proposition 2. For any graph G, there is a unique incremental independent dominating
set.

Proof. We fix G and proceed inductively. The first vertex has to be selected due to the
online requirement. When the next vertex, vi+1, is given, if it is dominated by a vertex in Di,
it cannot be selected, since then Di+1 would not be independent. If vi+1 is not dominated by
a vertex in Di, then vi+1 or one of its neighbors must be selected. However, none of vi+1’s
neighbors can be selected, since if they were not selected already, then they are dominated,
and selecting one of them would violate the independence criteria. Thus, vi+1 must be
selected. In either case, Di+1 is uniquely defined. J

Since a correct incremental algorithm is uniquely defined by this proposition by a
forced move in every step, Optinc must behave exactly the same. This fills the column for
independent dominating set in Table 1.

We let Parent denote the following algorithm for trees. The algorithm selects the first
vertex. When a new vertex v arrives, if v is not already dominated by a previously arrived
vertex, then the parent vertex that v is adjacent to is added to the dominating set. For
connected dominating set on trees, Parent is 1-competitive, even against Optoff:

J. Boyar, S. J. Eidenbenz, L.M. Favrholdt, M. Kotrbčík, and K. S. Larsen 21:7

I Proposition 3. For any tree T , Parent(T) outputs a connected dominating set of T and

Parent(T) =
{
γC(T) + 1 if v1 is a leaf of T
γC(T) otherwise.

Proof. For trees with at least two vertices, Parent selects the internal vertices plus at most
one leaf. Clearly, the size of the minimal connected dominating set of any tree T equals the
number of its internal vertices. J

To show that for TDS on trees, Parent is 1-competitive against Optinc, we prove:

I Lemma 4. For any incremental total dominating set D for an always-connected graph G,
all Di are connected.

Proof. For the sake of a contradiction, suppose that for some i, the set Di induces a subgraph
of G with at least two components, and let i be the smallest index with this property. It
follows that the vertex vi constitutes a singleton component of the subgraph induced by Di.
Thus, vi cannot be dominated by any other vertex of Di, contradicting that the solution was
incremental. J

I Corollary 5. For any tree T on n vertices,

Optinc
T (T) = Optinc

C (T) =
{

int(T) + 1 if v1 is a leaf of T
int(T) otherwise,

where int(T) is the number of internal vertices of T . Consequently, when given in the standard
order Optinc

C (Pn) = Optinc
T (Pn) = n− 1 for every n ≥ 3.

I Proposition 6. For any n ∈ Z+ and Pn given in the standard order, Optinc(Pn) = dn/2e.

I Proposition 7. For any online algorithm Alg for DS and n > 0, there is a tree T with n
vertices such that the dominating set constructed by Alg for T has at least n− 1 vertices.

Proof. We prove that the adversary can maintain the invariant that at most one vertex is
not included in the solution of Alg. The algorithm has to select the first vertex, so the
invariant holds initially. When presenting a new vertex vi, the adversary checks whether all
vertices given so far are included in Alg’s solution. If this is the case, vi is connected to
an arbitrary vertex, and the invariant still holds. Otherwise, vi is connected to the unique
vertex not included in Di−1. Now vi is not dominated, so Alg must select an additional
vertex. J

I Proposition 8. For any always-connected bipartite graph G, the smaller partite set of G
(plus, possibly, the vertex v1) forms an incremental dominating set.

As a corollary of Proposition 7 and Proposition 8, we get the following result.

I Corollary 9. For any online algorithm Alg for DS on trees, CRinc(Alg) ≥ 2.

I Corollary 10. For trees, the following hold.
1. For DS, CRinc(Parent) = 2 and CRoff(Parent) = 3.
2. For CDS, CRinc(Parent) = CRoff(Parent) = 1.
3. For TDS, CRinc(Parent) = 1 and CRoff(Parent) = 2.

We extend the Parent algorithm for graphs that are not trees as follows. When a vertex
vi, i > 1, arrives, which is not already dominated by one of the previously presented vertices,
Parent selects any of the neighbors of vi in Gi.

SWAT 2016

21:8 Online Dominating Set

I Proposition 11. For any always-connected graph G, the set computed by Parent on G is
an incremental connected dominating set of G.

Proof. We prove the claim by induction on n. Since Parent always selects v1, the statement
holds for n = 1. Consider the graph Gi, for some i > 1, and assume that Di−1 is an
incremental connected dominating set of Gi−1. If vi is already dominated by a vertex in
Di−1, then Parent keeps D unchanged (that is, Di = Di−1) and thus Di is an incremental
connected dominating set of Gi. If vi is not dominated by Di−1, then Parent chooses a
neighbor v of vi in Gi−1. Clearly, this implies that Di is an incremental dominating set of Gi.
Since Di−1 is an incremental connected dominating set of Gi−1 and the vertex v is adjacent
to the only component of Di−1, Di is connected, which concludes the proof. J

I Proposition 12. For DS and CDS on always-connected bipartite graphs, CRoff(Parent) ≤
n/2.

I Proposition 13. Let G be a graph with n vertices and maximum degree ∆. For any graph
G, γC(G) ≥ γ(G) ≥ n/(∆ + 1) and γT (G) ≥ n/∆.

Proposition 13 implies that any algorithm computing an incremental dominating set is
no worse than (∆ + 1)-competitive.

I Corollary 14. For any algorithm Alg for DS, CRoff(Alg) ≤ ∆ + 1. Furthermore, for
any algorithm Alg for TDS, CRoff(Alg) ≤ ∆.

I Proposition 15. For any algorithm Alg for CDS, CRoff(Alg) ≤ ∆− 1.

In the next result and in Proposition 19 in Section 4 we use layers in an always-connected
graph G defined by letting L assign layer numbers to vertices in the following manner. Let
L(v1) = 0 and for i > 1, L(vi) = 1 + min {L(vj) | vj is a neighbor of vi in Gi}.

Our next aim is to show that for always-connected bipartite graphs, there is an n/4-
competitive algorithm against Optinc. This is achieved by considering the following first
parent algorithm, denoted FirstParent, which generalizes Parent. For DS and CDS,
the algorithm FirstParent always selects v1 and for each vertex vi, i > 1, if vi is not
dominated by one of the already selected vertices, it selects a neighbor of vi with the smallest
layer number. For TDS, we add the following to FirstParent, so that the dominating set
produced is total: If, when vi arrives, vi and vj (j < i) are the only vertices of a component
of size 2, then besides vj , FirstParent also selects vi.

I Theorem 16. For DS, CDS, and TDS on always-connected bipartite graphs, we have
CRinc(FirstParent) ≤ n/4 for n ≥ 4.

Proof. We consider DS and CDS first. Since FirstParent is an instantiation of Parent,
Proposition 11 implies that the incremental dominating set constructed by FirstParent is
connected. Therefore, the fact that for any graph G with at least three vertices Optinc(G) ≤
Optinc

T (G) ≤ Optinc
C (G) + 1 implies that it is sufficient to prove that FirstParent is n/4-

competitive against Optinc. Furthermore, we only need to consider the case Optinc(G) < 4,
since otherwise FirstParent is trivially n/4-competitive. Since G is bipartite, there are no
edges between vertices of a single layer. Our first aim is to bound the number of layers.
Claim: If Optinc(G) < 4, then G has at most 6 layers.

To establish the claim, we prove that if an always-connected graph G has 2k + 1 layers,
then Optinc(G) > k. For the sake of contradiction, suppose that there exist graphs G that
are always-connected with 2k+ 1 layers such that Optinc(G) ≤ k, and among all such graphs

J. Boyar, S. J. Eidenbenz, L.M. Favrholdt, M. Kotrbčík, and K. S. Larsen 21:9

choose one, G, with the smallest number of vertices. Since any dominating set contains
at least one vertex, we have k ≥ 1. Let D be an incremental dominating set of G with
|D| ≤ k and let l be the largest integer such that Gl has 2k− 1 layers. Since G is the smallest
counterexample, we have Optinc(Gl) ≥ k. Recall that Dl is defined as D ∩ Gl. The fact
that D is an incremental dominating set implies that Dl is a dominating set of Gl. We
claim that |Dl| = k, since otherwise Dl would be an incremental dominating set of Gl with
|Dl| < k, contradicting the fact that Optinc(Gl) ≥ k. The fact that |Dl| = k is equivalent to
D ⊆ V (Gl) and, in particular, L(v) ≤ 2k − 1 for each vertex v from D. Let w be a vertex of
G such that L(w) = 2k + 1, such a vertex exists since G has 2k + 1 layers. By the definition
of layers the vertex w does not have a neighbor in any of the first 2k − 1 layers and thus
is not adjacent to any vertex of D, contradicting the fact that D is a dominating set of G.
This concludes the proof of the claim.

In the rest of the proof, we distinguish several cases according to the number of layers of
G. If there are at most two layers, then FirstParent selects only the root v1 and the result
easily follows. Let li denote the size of the i-th layer and si the number of vertices selected
by FirstParent from the i-th layer. For convenience, we will ignore the terms s0 and l0,
both of which are one, which is viable since we are dealing with the asymptotic competitive
ratio. Because FirstParent can add a vertex from the i-th layer to the dominating set
only when a (non-dominated) vertex from the (i+ 1)-st layer arrives, we have

si ≤ li+1. (Ai)

Clearly,

si ≤ li. (Bi)

The letter i in equations (A) and (B) indicates the layer for which the equation is applied. If
there are precisely three layers, then Optinc(G) ≥ 2 and we must prove that s1 + s2 ≤ n/2.
However, s2 = 0, and s1/2 ≤ l1/2 by (B1) and s1/2 ≤ l2/2 by (A1). Adding the last two
inequalities yields s1 ≤ l1/2 + l2/2 = n/2, as required.

We use the same idea as for three layers also in the cases of four and five layers, albeit
the counting is slightly more complicated. First we deal separately with the case where
Optinc(G) = 2, and, consequently, there are four layers. Note that the two vertices in the
optimal solution are necessarily in layers 0 and 2, and it follows that l2 = 1. Furthermore,
(A1) implies that s1 ≤ 1 and (B2) implies that s2 ≤ 1. Since s3 = 0, FirstParent always
selects at most 3 vertices, which yields the desired result. Assume now that Optinc(G) ≥ 3
and therefore, our aim is to prove that FirstParent(G) ≤ 3n/4. Adding 1/4 times (A1),
3/4 times (B1), 1/2 times (A2), and 1/2 times (B2) yields

s1 + s2 ≤ 3l1/4 + 3l2/4 + l3/2. (1)

If there are four layers, then s3 = 0 and the right-hand side of (1) satisfies 3l1/4+3l2/4+l3/2 ≤
3(l1 + l2 + l3)/4 = 3n/4, which yields the desired result. If there are five layers, we add 3/4
times (A3) and 1/4 times (B3) to (1), which gives s1 + s2 + s3 ≤ 3(l1 + l2 + l3 + l4)/4 = 3n/4,
as required. The last remaining case is that of six layers and Optinc(G) = 3, which is
dealt with similarly to that of four layers and Optinc(G) = 2. In particular, the vertices
selected by Optinc necessarily lie in layers 0, 2, and 4, and thus l0 = l2 = l4 = 1. Now
observing that s5 = 0 and adding (Bi) for all even i to (Ai) for i = 1 and i = 3 yields that
FirstParent(G) ≤ 5, which implies the result in the always-connected case.

For TDS, the additional vertices accepted by FirstParent must by accepted by any
incremental online algorithm, so the result also holds for TDS. J

SWAT 2016

21:10 Online Dominating Set

Figure 1 A two-layer construction; the minimum connected dominating set is depicted in red
(Proposition 18).

I Proposition 17. For DS, CDS, and TDS, we have CRinc(FirstParent) ≤ n/2 for n ≥ 2.

Proof. Since for any graph, FirstParent constructs an incremental dominating set, we
need to consider only the cases where Optinc(G) ≤ 1, Optinc

C (G) ≤ 1, and Optinc
T (G) ≤ 1.

For TDS, either G has no edges, in which case the empty set of vertices is a feasible
solution constructed both by Optinc

T and FirstParent, or G contains an edge, in which
case Optinc

T (G) ≥ 2 and the bound follows. Since Optinc(G) ≤ Optinc
C (G), it is sufficient to

consider the case where Optinc(G) = 1. If, at any point, Gi has more than one component,
then Optinc(Gi) ≥ 2. Thus, if Optinc(Gi) = 1, G is a star and is always-connected. Thus,
the center vertex must arrive as either the first or second request, so FirstParent(G) ≤
2 ≤ n. J

I Proposition 18. For any online algorithm Alg for DS, CDS, or TDS on always-connected
bipartite graphs, CRinc(Alg) ≥ n/4 and CRinc(Alg) ≥ ∆/2.

Proof. We prove that for any online algorithm Alg for DS, CDS, or TDS and for any integer
∆ ≥ 2, there is a bipartite graph G with maximum degree ∆ such that Alg(G) = ∆ ≥ n/2
and Optinc(G) = Optinc

C (G) = Optinc
T (G) = 2. Consider the graph consisting of a root v,

∆ vertices u1, . . . , u∆ adjacent to the root and constituting the first layer, and an additional
∆ − 1 vertices w1, . . . , w∆−1, which will be given in that order, constituting the second
layer, with adjacencies as follows: For i = 1, . . . ,∆ − 1, the i-th vertex wi of the second
layer is adjacent to ∆ − i + 1 vertices of the first layer in such a way that we obtain the
following strict set containment of sets of neighbors of these vertices: N(wi) ⊃ N(wi+1) for
all i = 1, . . . ,∆ − 2. An example of this construction for ∆ = 4 is depicted in Figure 1.
After the entire first layer is presented to the algorithm, the vertices of the first layer are
indistinguishable to the algorithm and D∆+1 does not necessarily contain more than one
vertex. For each i = 1, . . . ,∆− 1, the neighbors of wi are chosen from the first layer in such
a way that N(wi−1) ⊃ N(wi), the degree of wi is ∆− i+ 1, and N(wi) contains as many
vertices not contained in the dominating set constructed by Alg so far as possible. Consider
the situation when the vertex wi arrives. It is easy to see that if the set N(wi) does not
contain a vertex from the dominating set constructed so far, then Alg must select at least
one additional vertex at this time. The last observation implies that Alg selects at least
∆− 1 vertices from the first and second layer, plus the root.

Since there is a vertex u in the first layer that is adjacent to all vertices in the second
layer, {u, v} is an incremental connected dominating set of G, which concludes the proof. J

4 The Cost of Being Incremental

This section is devoted to comparing the performance of incremental algorithms and Optoff.
Since Optoff performs at least as well as Optinc and Optinc performs at least as well as any
online algorithm, each lower bound in Table 2 is at least the maximum of the corresponding

J. Boyar, S. J. Eidenbenz, L.M. Favrholdt, M. Kotrbčík, and K. S. Larsen 21:11

Figure 2 A fan with ∆ = 4 (left; Proposition 24) and an alternating fan with k = 3 and ∆ = 4
(right; Proposition 25).

lower bound in Table 1 and the corresponding lower bound for CRoff(Optinc). Similarly,
each upper bound in Table 1 and corresponding upper bound for CRoff(Optinc) is at least
the corresponding upper bound in Table 2. In both cases, we mention only bounds that
cannot be obtained in this way from cases considered already.

The following result generalizes the idea of Proposition 8.

I Proposition 19. For DS on always-connected graphs, CRoff(Optinc) ≤ n/2.

Proof. For a fixed ordering of G, consider the layers L(v) assigned to vertices of G. It is
easy to see that the set of vertices in the even layers is an incremental solution for DS and
similarly for the set of vertices in odd layers plus the vertex v1. Therefore, Optinc can select
the smaller of these two sets, which necessarily has at most n/2 vertices. J

I Proposition 20. The following hold for the strict competitive ratio:
For DS on bipartite planar graphs, CRoff(Optinc) ≥ n− 1 and CRoff(Optinc) ≥ ∆.
For CDS on bipartite planar graphs, CRoff(Optinc) ≥ n.

I Proposition 21. For IDS and for the strict competitive ratio, CRoff(Optinc) ≥ ∆ and
CRoff(Optinc) ≥ n− 1.

I Proposition 22. For IDS on always-connected graphs, ∆− 1 ≤ CRoff(Optinc) ≤ ∆.

Theorem 1 3. implies the following bound on the performance of Optinc on trees.

I Corollary 23. For DS on trees, CRoff(Optinc) ≤ 2.

All of the following results are lower bounds. Specific examples of the families of graphs
used to obtain these lower bounds are depicted in the following figures; the details of the
proofs appear in the full paper [6].

A fan of degree ∆ is the graph obtained from a path P∆ by addition of a vertex v that is
adjacent to all vertices of the path, as in Figure 2. The adversarial order of a fan is defined
by the standard order of the underlying path, followed by the vertex v.

I Proposition 24. For always-connected planar graphs (and, thus, also on general planar
graphs), the following strict competitive ratio results hold.

For DS, CRoff(Optinc) ≥ n/2.
For CDS, CRoff(Optinc) ≥ n− 2.
For TDS, CRoff(Optinc) ≥ n/2− 1.

An alternating fan with k fans of degree ∆ consists of k copies of the fan of degree ∆,
where the individual copies are joined in a path-like manner by identifying some of the
vertices of degree 2, as in Figure 2. Thus, n = k(∆ + 1)− (k − 1) and k = (n− 1)/∆. The
adversarial order of an alternating fan is defined by the concatenation of the adversarial
orders of the underlying fans.

SWAT 2016

21:12 Online Dominating Set

Figure 3 A modular bridge with k = 4 and ∆ = 5 (Proposition 26).

Figure 4 A bridge with k = 4 and ∆ = 6 (Proposition 27).

I Proposition 25. For DS on always-connected graphs, CRoff(Optinc) ≥ (∆− 1)/2.

A modular bridge of degree ∆ with k sections, where k is even, is the graph obtained
from a path on k(∆ − 1) vertices, with an additional k chord vertices. There is a perfect
matching on the chord vertices u1, . . . , uk with u2i is adjacent to u2i−1 for all i = 1, . . . , k/2.
Furthermore, the i-th chord vertex is adjacent to the vertices of the i-th section; see Figure 3
for an example. The adversarial order of a modular bridge is defined by the standard order
of the path, followed by the chord vertices in any order.

I Proposition 26. For TDS on always-connected graphs, CRoff(Optinc) ≥ ∆− 1.

A bridge of degree ∆ with k sections is obtained from a modular bridge of degree ∆− 1
with k sections by joining vertices u2i and u2i+1 by an edge for each i = 1, . . . , k/2− 1; see
Figure 4 for an example. The adversarial order of a bridge is identical with the adversarial
order of the underlying modular bridge.

I Proposition 27. For CDS on always-connected graphs, CRoff(Optinc) ≥ ∆− 2.

A rotor of degree ∆, where ∆ ≥ 2 is even, is a graph obtained from a star, K1,∆, on ∆ + 1
vertices by adding the edges of a perfect matching on the pendant vertices, as in Figure 5.
The adversarial order of a rotor G of degree ∆ is any fixed order such that G2i is a graph
with a perfect matching for each i = 1, . . . ,∆/2 and the central vertex of the original star is
the last vertex to arrive.

I Proposition 28. For CDS, CRoff(Optinc) ≥ ∆ + 1, and for TDS, CRoff(Optinc) ≥ ∆/2.

For any n ≥ 2, the two-sided fan of size n is the graph obtained from a path on n− 2
vertices by attaching two additional vertices, one to the even-numbered vertices of the path
and the other to the odd-numbered vertices of the path. The adversarial order of a two-sided
fan is defined by the standard order of the path, followed by the two additional vertices. See
Figure 5 for an illustration of a two-sided fan of size 10.

I Proposition 29. For any incremental algorithm Alg for CDS or TDS on always-connected
bipartite graphs, CRoff(Alg) ≥ (n− 3)/2 holds for the strict competitive ratio.

5 Conclusion and Open Problems

Online algorithms for four variants of the dominating set problem are compared using
competitive analysis to Optinc and Optoff, two reasonable alternatives for the optimal
algorithm having knowledge of the entire input. Several graph classes are considered, and
tight results are obtained in most cases.

J. Boyar, S. J. Eidenbenz, L.M. Favrholdt, M. Kotrbčík, and K. S. Larsen 21:13

Figure 5 The rotor of degree 8 (left, Proposition 28) and two-sided fan of size 10 (right,
Proposition 29).

The difference between Optinc and Optoff is that Optinc is required to maintain an
incremental solution (as any online algorithm), while Optoff is only required to produce
an offline solution for the final graph. The algorithms are compared to both Optinc and
Optoff, and Optinc is compared to Optoff, in order to investigate why all algorithms tend
to perform poorly against Optoff. Is this due to the requirement to be incremental, or is it
because of the lack of knowledge of the future?

Inspecting the results in the tables, perhaps the most striking conclusion is that the
competitive ratios of any online algorithm and Optinc, respectively, against Optoff, are
almost identical. This indicates that the requirement to maintain an incremental dominating
set is a severe restriction, which can be offset by the full knowledge of the input only to a
very small extent. On the other hand, when we restrict our attention to online algorithms
against Optinc, it turns out that the handicap of not knowing the future still presents a
barrier, leading to competitive ratios of the order of n or ∆ in most cases.

One could reconsider the nature of the irrevocable decisions, which originally stemmed
from practical applications. Which assumptions on irrevocability are relevant for practical
applications, and which irrevocability components make the problem hard from an online
perspective? We expect that these considerations will apply to many other online problems
as well.

There is relatively little difference observed between three of the variants of dominating
set considered: dominating set, connected dominating set, and total dominating set. In
fact, the results for total dominating set generally followed directly from those for connected
dominating set as a consequence of Lemma 4. The results for independent dominating set
were significantly different from the others. It can be viewed as the minimum maximal
independent set problem since any maximal independent set is a dominating set. This
problem has been studied in the context of investigating the performance of the greedy
algorithm for the independent set problem. In fact, the unique incremental independent
dominating set is the set produced by the greedy algorithm for independent set.

In yet another orthogonal dimension, we compare the results for various graph classes.
Dominating set is a special case of set cover and is notoriously difficult in classical complexity,
being NP-hard [17], W [2]-hard [11], and not approximable within c logn for any constant
c on general graphs [13]. On the positive side, on planar graphs, the problem is FPT [1],
admits a PTAS [2], and is approximable within log ∆ on bounded degree graphs [9]. On the
other hand, the relationship between the performance of online algorithms and structural
properties of graphs is not particularly well understood. In particular, there are problems
where the absence of knowledge of the future is irrelevant; examples of such problems in this
work are CDS and TDS on trees, and IDS on any graph class. As expected, for bounded
degree graphs, the competitive ratios are of the order of ∆, but closing the gap between ∆/2
and ∆ seems to require additional ideas. On the other hand, for planar graphs, the problem,
rather surprisingly, seems to be as difficult as the general case when compared to Optoff.

SWAT 2016

21:14 Online Dominating Set

When online algorithms for planar graphs are compared to Optinc, we suspect there might
be an algorithm with constant competitive ratio. At the same time, this case is the most
notable open problem directly related to our results. Drawing inspiration from classical
complexity, one could consider more specific graph classes in the quest for understanding
exactly what structural properties make the problem solvable. From this perspective, our
consideration of planar, bipartite, and bounded degree graphs is a natural first step.

Acknowledgment. The authors would like to thank the anonymous referees for constructive
comments.

References
1 J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed parame-

ter algorithms for dominating set and related problems on planar graphs. Algorithmica,
33(4):461–493, 2002.

2 B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. Jour-
nal of the ACM, 41(1):153–180, 1994.

3 C. Berge. Theory of Graphs and its Applications. Meuthen, London, 1962.
4 M. Böhm, J. Sgall, and P. Veselý. Online colored bin packing. In E. Bampis and O. Svensson,

editors, 12th International Workshop on Approximation and Online Algorithms (WAOA),
volume 8952 of Lecture Notes in Computer Science, pages 35–46. Springer, 2015.

5 A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

6 J. Boyar, S. J. Eidenbenz, L. M. Favrholdt, M. Kotrbčík, and K. S. Larsen. Online domi-
nating set. Technical Report arXiv:1604.05172 [cs.DS], arXiv, 2016.

7 J. Boyar and K. S. Larsen. The seat reservation problem. Algorithmica, 25(4):403–417,
1999.

8 M. Chrobak, J. Sgall, and G. J. Woeginger. Two-bounded-space bin packing revisited. In
C. Demetrescu and M. M. Halldórsson, editors, 19th Annual European Symposium (ESA),
volume 6942 of Lecture Notes in Computer Science, pages 263–274. Springer, 2011.

9 V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of Operations
Research, 4(3):233–235, 1979.

10 B. Das and V. Bharghavan. Routing in ad-hoc networks using minimum connected domi-
nating sets. In IEEE International Conference on Communications (ICC), volume 1, pages
376–380, 1997.

11 R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness I: Basic
results. SIAM Journal on Computing, 24(4):873–921, 1995.

12 D.-Z. Du and P.-J. Wan. Connected Dominating Set: Theory and Applications. Springer,
New York, 2013.

13 U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM, 45(4):634–
652, 1998.

14 T. W. Haynes, S. Hedetniemi, and P. Slater. Fundamentals of Domination in Graphs.
Marcel Dekker, New York, 1998.

15 M. Henning and A. Yao. Total Domination in Graphs. Springer, New York, 2013.
16 A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive snoopy caching.

Algorithmica, 3:79–119, 1988.
17 R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.

Thatcher, editors, Complexity of Computer Computations, The IBM Research Symposia
Series, pages 85–103. Plenum Press, New York, 1972.

J. Boyar, S. J. Eidenbenz, L.M. Favrholdt, M. Kotrbčík, and K. S. Larsen 21:15

18 G.-H. King and W.-G. Tzeng. On-line algorithms for the dominating set problem. Infor-
mation Processing Letters, 61(1):11–14, 1997.

19 D. König. Theorie der Endlichen und Unendlichen Graphen. Chelsea, New York, 1950.
20 C. L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill, New York, 1968.
21 O. Ore. Theory of Graphs, volume 38 of Colloquium Publications. American Mathematical

Society, Providence, 1962.
22 D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.

Communications of the ACM, 28(2):202–208, 1985.

SWAT 2016

Sorting Under Forbidden Comparisons
Indranil Banerjee1 and Dana Richards2

1 Department Of Computer Science, George Mason University, Fairfax, USA
ibanerje@gmu.edu

2 Department Of Computer Science, George Mason University, Fairfax, USA
richards@cs.gmu.edu

Abstract
In this paper we study the problem of sorting under forbidden comparisons where some pairs of
elements may not be compared (forbidden pairs). Along with the set of elements V the input
to our problem is a graph G(V,E), whose edges represents the pairs that we can compare in
constant time. Given a graph with n vertices and m =

(
n
2
)
− q edges we propose the first non-

trivial deterministic algorithm which makes O((q+n) logn) comparisons with a total complexity
of O(n2 + qω/2), where ω is the exponent in the complexity of matrix multiplication. We also
propose a simple randomized algorithm for the problem which makes Õ(n2/

√
q + n+n√q) probes

with high probability. When the input graph is random we show that Õ(min (n3/2, pn2)) probes
suffice, where p is the edge probability.

1998 ACM Subject Classification F.2.2 Sorting and searching

Keywords and phrases Sorting, Random Graphs, Complexity

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.22

1 Introduction

Comparison based sorting algorithms is one of the most studied areas in theoretical computer
science. The majority of the efforts have been focused on the uniform comparison cost model.
Arbitrary non-uniform cost models can make trivial problems non-trivial, like finding the
minimum [10, 16] . Thus it makes sense to consider a more structured cost. For example, a
common cost model is the monotone1 cost model. As shown in [16] the best one can do is to
get an algorithm that is within a logarithmic factor of a cost optimal algorithm. However,
the 1-∞ cost model in this paper is not monotonic. This model has comparison cost of 1 or
∞. A pair with cost ∞ is considered a “forbidden pair”. The set of pairs with comparison
cost 1, defines an undirected graph, G(V,E), where V is the set of keys and E represents the
allowed comparisons. We call G the comparison graph. Define Ef to be the set of forbidden
pairs (edges). Let |V | = n and |Ef | = q.

Next we define the query model used in this paper. We don’t get charged for checking
whether an edge exists but are only charged for the comparisons made. The number of
comparisons made or rather asked to the oracle is naturally defined as the comparison
complexity or the probe complexity. No non-trivial ITB for the probe complexity is known in
the standard decision tree model. We believe that the model is too weak for this purpose.
For example, given a comparison graph G the number of different acyclic orientations of G
gives an upper bound on the number of possible answers as each correspond to a unique

1 By monotone we mean that the cost of comparing a pair is a monotone function of the values of the
pair.

© Indranil Banerjee and Dana Richards;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 22; pp. 22:1–22:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Sorting Under Forbidden Comparisons

partial order. Since identifying G (up to isomorphism by verifying edges) is free and G has
≤
∏

v∈V (dv + 1) ≤ nn[15] number of acyclic orientations we have the ITB of Ω(n logn) for
this problem. We believe this bound to be weak for this problem. The matter is further
complicated if one is also given the guarantee that the graph G is sortable. We say G is
sortable if G can be totally sorted. This restriction further reduces the number of possible
answers for graphs with small number of edges. For example if G has = n− 1 edges then
we can determine the unique total order by just making one comparison. Since any acyclic
orientation of the edges of G must give a Hamiltonian path and G has = n− 1 edges, the
edges must link consecutive vertices in the unknown order. A solitary probe is then used to
determine the direction of this ordering. In this paper we take G to be arbitrary and not
necessarily sortable. Hence by sorting G we mean determining the orientations of all the
edges of G which may only get us a partial order on the vertices.

1.1 Prior Results
The problem of sorting with forbidden pairs is still open for the most part. It is closely
related to the problem of partial sorting under a relation determining oracle. In this model
we are given a set P of elements and a oracle Or which is used to determine the relations
between pairs of elements in P . The goal is to determine all the valid relations. Number of
queries made to Or is defined as the query complexity. Since there are Ω(2n2/4)[11] labeled
posets with n elements, it immediately follows that the information theoretic bound (ITB) for
the query complexity is Ω(n2). This has been investigated for width bounded posets in [12],
where the authors show that if P has width at most w (size of the largest anti-chain) then the
ITB for the query complexity is Ω((w + logn)n). They presented a query optimal algorithm
for width bounded posets whose total complexity is O(nw2 log n

w). This algorithm can be
generalized for any poset with an additional logw factor added to the the query complexity.
Their results were the first major extension in this line of research after the seminal work
by Faigle and Turán[14] which only showed the existence of such an algorithm. Another
similar problem is the local sorting problem. In this problem V is an ordered set and for each
(u, v) ∈ E we want to determine their relative order. The problem is to determine if this can
be done without sorting the entire set V , since the ITB for this problem is Ω(n log (m+ n)/n)
in the standard comparison tree model (where m is the number of edges G). Currently no
non-trivial deterministic algorithm is known for this problem. However, there is a randomized
algorithm which makes optimal number of comparison with high probability [9]. Another
related problem is the partial order production problem, where given a set T with an unknown
total order we are interested in determining the partial order of another set S by comparing
pairs in T . The goal is do this with minimum number of comparisons. The reader is referred
to the survey by Cardinal et. al [8] which discusses some of these and other related problems
in detail.

An example of a problem that uses the probe complexity model is the nuts and bolts
problem. This is strictly not a sorting problem rather a matching one. In this problem one
is given two sets of elements, a set of nuts and a set bolts. Elements in each set have distinct
sizes and for each nut it is guaranteed that there exists a unique bolt of same size. Matching
is performed by comparing a nut with a bolt. However, pairs of nuts or pairs of bolts cannot
be compared. So in this case G = K(N,B) is a complete bipartite graph with edges from the
set of nuts N to the set of bolts B. This problem has been solved in the mid 1990s [3, 20].
The existence of a O(n logn) time deterministic algorithm was proved for it using the theory
on bipartite expanders [3]. In the context of randomized algorithms, this problem has been
studied in [17, 4]. The authors in [17] proposed a randomized algorithm that sorts G with

I. Banerjee and D. Richards 22:3

a probe complexity of Õ(n3/2) with high probability2. However their implementation uses
as a sub-routine a poly-time uniform sampling algorithm to sample points from a convex
polytope[13]. The authors did not discuss the exact bound on the total time complexity in
their paper. At each step the algorithm either finds a balancing edge3 or finds a subset of
elements that can be sorted quickly. For an arbitrary G it is not guaranteed that a balancing
edge always exists. However, when G is the complete graph there always exists a balancing
edge that reduces the number of linear extension at-least by a factor of 8/11 [19].

1.2 Our Results
In this paper we propose the first non-trivial deterministic algorithm under the probe
complexity model as well as a randomized algorithm. The results are expressed in terms of n
and q. Expressing the results in terms of the number of forbidden edges fits naturally with
the problem. First of all q and w are related, where w is the width of the poset PG found
after sorting G. We have q ≥ # of incomparable pairs in PG ≥

(
w
2
)
. Hence, w = O(√q).

Although we cannot directly compare the probe complexity used in this paper with the query
complexity in [12] it gives a better sense of the relatedness of the two models. Secondly, in
the absence of any other structural properties of the input graph G, q gives a good indication
of how difficult it is to sort G. For example, when q = O(logn), it is easy to see that one can
sort in O(n logn) total time. To do this we pick an arbitrary pair of non-adjacent vertices
and take out one of them, removing it from the graph. We do the same thing with the
remaining graph until the graph remaining is a clique. It is clear that we had to take out at
most O(logn) vertices. Then we sort this graph with O(n logn) comparisons and merge the
vertices we had remove previously by probing all the remaining undirected edges, which is at
most O(n logn). On the other extreme, if |E| =

(
n
2
)
− q = O(n) then it can be shown that

we need to make Ω(|E|) probes to determine the partial order, since the complete bipartite
graph K(A,B) with |A| � |B| has many acyclic orientations [18, 15]. So in this case one
has to probe most of the allowed edges.

The main contributions of this paper are as follows:
Given a comparison graph G we propose a deterministic algorithm that sorts G with
O((q + n) logn) probes. The total complexity of our algorithm is O(n2 + qω/2), where
ω ∈ [2, 2.38] is the exponent in the complexity of matrix multiplication. We start by
finding a set of large enough cliques in G and use its elements to determine a good pivot.
This algorithm is applied recursively to induced subgraphs of G to generate a collection
of partial orders. We then merge these partial orders in the final steps.
We propose a randomized algorithm which sorts G with O(n2/

√
n+ q + n

√
q) probes

with high probability. We use a random graph model for this purpose. The method uses
only elementary techniques and unlike in Huang, et. al[17] has a total run time of O(nω)
in the worst case.
When G is a random graph with edge probability p we show that one can sort G with
high probability using only Õ(min (n3/2, pn2)) probes.

The rest of this paper is organized as follows: in section 1.2 we introduce some definitions and
lemmas. Section 2 details the proposed deterministic algorithm. In section 3 we introduce
the randomized algorithm and its extension to random graphs.

2 By high probability we mean that the probability tends to 1 as n → ∞.
3 An edge in G revealing whose orientation is guaranteed to reduce the number of linear extensions of the

current partial order by a constant fraction. The pair of vertices incident to this edge is referred to as a
balancing pair.

SWAT 2016

22:4 Sorting Under Forbidden Comparisons

1.3 Definitions
Recall G(V,E) is the input graph on the set V of elements to be sorted. A pair of vertices
(u, v) can be compared if (u, v) ∈ E, otherwise, we say the pair is forbidden and is in Ef .
The graph G is given to us by our adversary. Let Gi be the graph after i-edges have been
oriented and Pi be the associated partial order. We denote the degree of a vertex v by d(v)
and n(v) = n − 1 − d(v) is the number of vertices that are not adjacent to v. The set of
neighbors of a vertex v is denoted by N(v). We use the notation E(A,B) we denote the set
of edges between the sets of vertices A,B ⊂ V . We also define the little-o notation to remove
any ambiguity from our exposition.

I Definition 1. If f(n) ∈ o(g(n)) then f(n) ∈ O(g(n)) but f(n) 6∈ Ω(g(n)).

The following lemmas can be easily proven, hence we omit their proofs.

I Lemma 2. Let {f1(n), f2(n), ..., fk(n)} be a finite set of non-negative monotonically
increasing functions in n such that for g(n):
1. ∀i fi(n) ∈ o(g(n))
2.
∑

i fi(n) ≤ cg(n)
If F (n) =

∑
i f

2
i (n) then F (n) ∈ o(g2(n)).

I Lemma 3. Let T (n) =
∑k

i=1 T (ni) + f(n) where
∑

i ni ≤ δn for some 0 < δ < 1 and
f(n) ∈ o(n2). Then, T (n) ∈ o(n2).

2 A Deterministic Algorithm For Restricted Sorting

First we look at a simple case where q = O(n). We will use some of the main ideas from this
algorithm to extend it to the general case. This initial algorithm will have a worse probe
complexity than the main algorithm. In this algorithm we shall do case analysis based on
whether a certain quantity is o(n) or not. We acknowledge that this is not an algorithmic
test. However, we use it in this algorithm to establish a framework for the second algorithm,
which uses a traditional test and does not affect the claims made in this paper.

2.1 A Restricted Case
Assume q ≤ cn for some constant c. Let R = {v ∈ V | n(v) > c1} for some constant c1, then
|R| ≤ (2c/c1)n. This is obvious from the fact that

∑
v n(v) ≤ 2cn. We choose c1 = 4c. Let

S = V \ R and G[S] be the induced subgraph generated by S. We have |S| ≥ n/2 and if
v ∈ S then n(v) ≤ c1.

I Claim 4. There exists a subset X ⊂ S such that |X| ≥ n
2(4c+1) and G[X] is a complete

graph.

Proof. We construct X explicitly. We start with X = {u}, where u is an arbitrary vertex
in S. We pick successive vertices from S iteratively. Let v be last vertex to be added to X.
Since v has at least |S| − c1 neighbors, whenever we pick a neighbor of v from S to add to X
we loose at most c1 + 1 vertices (including the vertex we picked). Hence if we pick neighbors
of v the size of X is at least |S|/(c1 + 1) ≥ n/2(4c+ 1). J

Clearly the above procedure runs in O(n2) time and makes no comparisons. Now we are
ready to describe our algorithm. The main algorithm is recursive and we have two levels of
recursion. We shall break up the algorithm into several steps.

I. Banerjee and D. Richards 22:5

2.1.1 Initial Sorting
Given the input graph G, let X be a clique, with |X| ≥ n/2(4c + 1) (Claim 1). Let
Y = V \ X. Note that |Y | ≤ n − n/2(4c + 1) = (8c + 1/8c + 2)n. Now we sort X using
O(n logn) comparisons as G[X] is a complete graph. We can use a standard comparison
based sorting algorithms for this purpose. Now we have two possibilities:
Case 1. If |Y | = o(n), then we probe all edges of G[Y] and G[Y,X], where G[Y,X] is the

induced bipartite graph generated by the sets Y and X. Then we take the transitive
closure of the resulting relations, which does not need any additional probes. It can be
easily seen that the number of probe made in the previous step is o(n2). For the sake
of contradiction if we assume that it is not so then |X||Y | + |Y |2/2 ≥ dn2 for some d.
Which implies |Y | ≥ dn, since |X|+ |Y |/2 ≤ n. But then, |Y | = Ω(n), which is not true
according to our earlier assumption. So, in this case we would have sorted V by making
only o(n2) probes.

Case 2. Otherwise |Y | ≥ δn, for some constant δ. In this case we recursively partition Y
based on elements from X. We call this the partition step.

2.1.2 Partition Step
We will recursively partition both X and Y . To keep track of the current partition depth we
rename X to X00 and Y to Y00. We pick m00 the median of X00 (after X00 is sorted). Since
X00 ⊂ S we have n(m00) ≤ c1. So m00 will be comparable to all but at most c1 elements of
Y00. Let,

A00 = {v ∈ Y00| v ∈ N(m00)}

and B00 = Y00 \A00. Note |B00| ≤ c1. Now let U00 be the subset of A00 whose elements are
≥ m00 and the set L00 accounts for the rest of A00 \m00. Let X10 and X11 be the elements
of X00 that are < and ≥ to m00 respectively. We recursively partition the sets U00 and L00
using the medians of X10 and X11.The B-sets are kept for later processing. We rename the
sets U00 and L00 to Y10 and Y11. So, the pairs (X10, Y10) and (X11, Y11) are processed as
above generating the sets A10, A11, B10 and B11. We continue doing this until the size of the
X-set is ≤ c2, where c2 is some constant. At this point we don’t know the size of the Y -set
paired with it. There are two cases we need to consider:
Case 1. |Y | = o(n): Then we probe all the edges of G[Y] and G[X,Y] which uses at most

c2|Y |+
(|Y |

2
)
number of comparisons.

Case 2. |Y | ≥ δn: Then we have |Y | ≥ δn for constant δ. Hence the graph G[Y] can have
at most ≤ (c/δ)|Y | missing edges. This satisfies our initial premise that the number of
missing edges in G[Y] is linear in the number of vertices. Hence we can apply our initial
strategy recursively4. That is we first find a large enough clique (which according to
Claim 1 must exist) and then use it to partition the rest of the set Y .

Let us visualize using a partial recursion tree T (see Fig.1 below). We shall call T the
partial recursion tree for reasons that will soon be clear. At the root we have the pair
(X00, Y00). It has two children node (X10, Y10) and (X11, Y11) each having two children of

4 Note that (c/δ) is an absolute constant. If the input graph has at most cn missing edges we apply the
procedure recursively to subgraphs whose number of missing edges are at most (c/δ) times the number
of vertices in the subgraph at any level of recusrion. This (c/δ) factor is not successively multiplied
within each level of recursion.

SWAT 2016

22:6 Sorting Under Forbidden Comparisons

their own and so on. Now at each level, the size of the X-set gets halved. So, the number
of levels in T is at most O(logn). However, the Y -sets need not get divided with equal
proportions. So, at the frontier (the deepest level) we will have nodes of the above two types,
depending on the size of their corresponding Y -sets. Let the collection of these frontier nodes
be partitioned in two sets Φ and Ψ corresponding to case 1 and case 2 respectively.

We can conclude that the total number of probes needed to compute all relations in Φ
is o(n2). This follows from Lemma 1. Here we can map the size of the Y -sets of the nodes
in the collection Φ to the functions fi(n). We know that the total elements in the union of
these Y -sets is ≤ |Y00| ≤ (8c+ 1/8c+ 2)n. The total number of probes will be F (n) in worst
case. What is the total number of probes on the internal nodes of T? We know that in the
internal nodes we compare the median of the X-set with the elements of the A-set, which
takes |A| probes. Since the union of these A-sets cannot exceed the total number of vertices
in G(n), at each level of T we do at most O(n) probes, totaling to O(n logn) probes over all
the internal nodes.

Unlike the nodes in Φ, the nodes in Ψ recursively call the initial strategy using the input
graph G[Y]. Let the probe complexity of our initial strategy be Q(n). Then the recursion
for Q is as follows:

Q(n) =
|Ψ|∑
i=1

Q(ni) + o(n2)

Here we assume that the nodes in Ψ are indexed according to some arbitrary order. We can
solve this recurrence using Lemma 2 giving Q(n) ∈ o(n2), since

∑|Ψ|
i=1 ni ≤ (8c+ 1/8c+ 2)n.

Note here that |Ψ| is bounded by a constant since the size of the Y -sets are Ω(n).
We call T̂ the full tree. All leaf nodes in T̂ are in Φ. It is straightforward to show that T̂

has O(log2 n) levels. Since any of the leaf nodes of T has |Y | ≤ βn (where β = (8c+1/8c+2)),
its subtree in T̂ can have at most α log βn = α logn− αβ levels, and any of its leaves having
at most α logn− 2αβ levels and so on for some constant α.

2.1.3 Merge Step

Once we have completed building T̂ we proceed with the final stage of our algorithm. Recall
that during the forward partition step we had generated many of these B-sets in the internal
nodes of T̂ . Now we start from the leaves of T̂ and proceed upwards. Each pair of leaf
nodes l, r sharing a common parent p, sends a partial order to it (computed as in case 1).
When we merge this two partial orders we know that no extra probes are needed since they
have already been split by the median of the X-set of p. What remains is to probe all
edges between the B-set in p and elements in this partial order (which constitutes the set
of elements A ∪X of the node p) as well as the edges in G[B]. Then we pass the resulting
partial order to the parent of p, and so on. Since the size of the B-sets are bounded by
c1 (at any level in T̂), total number of probes we make is then ≤ c1

∑
i(|Ai| + |Xi| + c1).

The sum is taken over all the nodes in that level. Hence this is bounded by c1n, so at each
level we do at most O(n) probes in the backward merging step. Since there are at most
O(log2 n) levels, it totals to O(n log2 n) additional probes. Adding this to the probe cost of
partitioning in the forward step does not effect the total probe complexity, which was o(n2).
The final step is to compute the transitive closure of the resulting set of relations, which can
be done without any additional probing. Since computing the transitive closure is equivalent
to boolean matrix multiplication[21] the total complexity is O(nω).

I. Banerjee and D. Richards 22:7

U10L10B10

X20 X21

m10

U11L11B11

X22 X23

m11

{ {

} {

∈ Ψ ∈ Ψ ∈ Ψ

SORT X00

T

T̂

T
T T

T
T

U00L00B00

X10 X11

m00

Figure 1 Visualizing the steps. At the bottom of T the shaded boxes represents the Φ-nodes and
the blue rectangles the Ψ-nodes. The outer dashed triangle represents the full tree T̂ . The tree T̂ is
created during the partitioning step and in the merge step we start from the deepest leaves of T̂ and
move upwards.

2.2 The General Case
We will define the sets R and S analogously to section 2.1. We have R = {v ∈ V | n(v) >
c1q/n} for some constant c1. With c1 = 4, we get |R| ≤ δ1n where δ1 ≤ 2/c1 = 1/2. Hence
|S| ≥ (1− δ1)n ≥ n/2. Now we will apply Claim 1 successively to construct a “big-enough”
set X ⊂ S which we will use to find an approximate median of V . This set X consists of
disjoint subsets Xi such that G[Xi] is a clique.

2.2.1 Constructing X
Let us define Si = S \

⋃i
j=1Xj . We construct the first clique X1 ⊂ S using the method

detailed in Claim 1. There are two cases:
Case 1. q < n: In this case we can show that |X1| ≥ (n/2)/(c1q/n+ 1) ≥ n/10. We take

the first n/10 elements and keep the rest for the second round. Now we construct the
second clique X2 from S1 which has at least 2n/25 vertices. We let X = X1 ∪X2. Hence
X has at least 9n/50 vertices.

Case 2. q ≥ n: In this case we have |X1| ≥ (n/2)/(c1q/n + 1) ≥ n2/10q. Again we take
|X1| = (1/10)n2/q discarding some vertices if necessary. Similarly we construct X2 ⊂ S1.
It can be shown that |X2| ≥ (n2/10q)(1− n/5q) and we keep (n2/10q)(1− n/5q) vertices
in X2 and the rest are discarded to be processed the next round. In general for the clique
Xr we have |Xr| ≥ (n2/10q)(1− n/5q)r−1. Now we let X =

⋃r
i=1Xi. We will show that

|X| ≥ δ2n for some constant δ2 > 0. We let r = 5q/n+ 1. Then we have

|Xr| ≥ (n2/10q)(1− n/5q)r−1 ≥ (n2/10q)(1− n/5q)5q/n > 3n2/100q

since q ≥ n. Hence, |X| =
∑r

i=1 |Xi| ≥ r|Xr| ≥ (9/50)n, giving δ2 = 9/50. Now for each
Xi (1 ≤ i ≤ r) we keep a subset Yi of size |Xr| and throw away the rest. Clearly, for
each i, the induced sub-graph G[Yi] is also a clique. Let Y =

⋃r
i=1 Yi. We also have

|Y | ≥ (9/50)n.

SWAT 2016

22:8 Sorting Under Forbidden Comparisons

2.2.2 Computing An Approximate Median Of V
We shall compute an approximate median with respect to all the vertices (the set V) and not
just the set S. We will find a median element that divides the set V in constant proportions.
This can be done easily using the set Y . For each Yi we find its median using Θ(|Yi|) probes
since G[Yi] is a complete graph. Let this median be mi and M be the set of these r medians.
Since mi ∈ S, n(mi) ≤ 4q/n. We define the upper set of m ∈M with respect to a set A ⊂ V
(m may not be a member of A) as U(m,A) = {a ∈ A | a > m}. Similarly we define the lower
set L(m,A). We want to compute the sets U(m,Y) and L(m,Y). However, m may not be
neighbors of all the elements in Y . So we compute approximate upper and lower sets by
probing all the edges in E({m}, Y \ {m}). These sets are denoted by Ũ(m,Y) and L̃(m,Y)
respectively. It is easy to see that there exists some m ∈ M which divides Y into sets of
roughly equal sizes (their sizes are a constant factor of each other). In fact the median of
M is such an element. However the elements in M may not all be neighbors of each other
hence we will approximate m using the ranks of the elements in M with respect to the set Y
(which is |L̃(m,Y)|). Next we prove that the element m∗ is an approximate median of M ,
picked using the above procedure, is also an approximate median of Y .

I Claim 5. The element m∗ picked as described above is an approximate median of Y .

Proof. First we show that the median of M is an approximate median of Y . This can be
easily verified. Let us take the elements in M in sorted order (m1, ...,mr), so the median
of M is mbr/2c. Now L(mbr/2c, Y) ≥

⋃br/2c
i=1 L(mi, Yi). Since, the sets Yi are disjoint and

L(mi, Yi) ≥ |Xr|/2, we have |L(mbr/2c, Y)| ≥ |Xr|r/4 (ignoring the floor). Similarly we can
show that |U(mbr/2c, Y)| ≥ |Xr|r/4. Hence mbr/2c is an approximate median of Y . Now we
show that | |L(m∗, Y)| − |L(mbr/2c, Y)| |< 4q/n. Consider the sorted order of elements in M
according to |L̃(m∗, Y)|. Since each element in m ∈M has at most 4q/n missing neighbors
in Y , we have | |L̃(m,Y)| − |L(m,Y)| |< 4q/n. So the rank of an element in the sorted order
is at most 4q/n less than its actual rank. Thus an element m∗ picked as the median of M
using its approximate rank |L̃(m,Y)| cannot be more than 4q/n apart from mbr/2c in the
sorted order of Y . Hence

|L(m∗, Y)| ≥ |Xr|r/4− 4q/n ≥ 9n/200− 4q/n ≥ n/40 (1)

whenever n2 ≥ 200q. In an identical manner we can show that |U(m∗, Y)| ≥ n/40. Hence,
m∗ is an approximate median of Y . When q < n we just take m∗ as the median with the
higher |L̃(·, Y)| value, which guarantees |L(m∗, Y)| ≥ n/40 whenever n2 ≥ 800q/13. So we
take n2 ≥ 200q to cover both the cases. J

It immediately follows that m∗ is also an approximate median of V with both |L(m∗, V)|
and |U(m∗, V)| lower bounded by n/40. Lastly, we note that the above process of computing
an approximate median makes Θ(q + n) probes. This follows from the fact that computing
the medians makes Θ(n) probes in total and for each of the ≤ 5q/n+ 1 medians we make
O(n) probes.

2.2.3 A Divide-And-Conquer Approach
Now that we have computed an approximate median of V we proceed with an recursive
approach. Let m∗ be the median. As in section 2.1 we partition V into three sets U , L and B.
The U and L are the upper and lower sets with respect to m∗. B is the set of vertices that do
not fall into either, that is, they are non-neighbors of m∗. Since m∗ ∈ S we have |B| ≤ 4q/n.

I. Banerjee and D. Richards 22:9

We recursively proceed to partially sort the sets U and L with the corresponding graphs
G[U] and G[L] and keep B for later processing (as we did in the merging step previously).
Like before we can imagine a recursion tree T . Let EfP

be the set forbidden edges in G[P].
We take nP = |P | and qP = |EfP

|. For each node P ∈ T there are two cases:
Case 1. When n2

P ≥ 200qP we recursively sort P . In this case we can guarantee that the
approximate median m∗P of P will satisfy equation (1). That is both |L(m∗P , P)| and
|U(m∗P , P)| is ≥ nP /40.

Case 2. Otherwise we probe all edges in G[P]. In this case P will become a leaf node in T .
It can be easily seen that the depth of the recursion tree is bounded by O(logn) since at
each internal node P of T we pass sets of constant proportions (where the size of the larger
of the two set is upper bounded by (39/40)nP) to its children nodes.

2.2.4 Merge Step
In this step we start with the leaves of T and proceed upwards. A parent node P gets two
partial orders from its left and right children respectively. Then it probes all the edges
between its B-set and these partial orders to generate a new partial order and pass it on to
its own parent. This step works exactly as the “merge step” of the previous algorithm. Only
difference is that the B-sets here may not be of constant size but of size ≤ 4q/n.

2.2.5 Probe Complexity
We can determine the probe complexity by looking at the recursion tree T . First we compute
it for the forward partition step. At each internal node of T we compute a set of medians
and pick one element from it appropriately chosen. Then we partition the set of elements
at the node by probing all edges between the selected element and rest of the elements in
the node. As mentioned before this only takes Θ(qP + nP) probes for some internal node P .
We assume that all the leaves of T are at the same depth, otherwise we can insert internal
dummy nodes and make it so. At each level of T the sum total of all the vertices in every
node is ≤ n and the sum total of the forbidden edges is ≤ q. Hence we do O(q+n) probes at
any internal level of T . So for a total of O(logn) internal levels in T the number of probes
done is ((q + n) logn) in the forward partition step. If P is a leaf node then we probe all
edges in G[P]. There are at most

(
nP

2
)
− qP edges in G[P]. Since P is a leaf node, according

equation 1, n2
P < 200qP . Hence we make

(
nP

2
)
− qP = O(qP) probes. Summing this over all

the leaves gives a total of O(q) probes. Hence the total probe complexity during the forward
step is O((q + n) logn).

Now we look at the merging step. Merging happens only at the internal nodes. Lets look
at an arbitrary internal level of T . At each node P of this level we probe all the edges in
E(BP , UP ∪LP ∪m∗P) and in G[BP]. Note that we do not have to make any probes between
U and L as they were already separated by the approximate median m∗P . Hence the total
number of probes made in this node is ≤ (|UP |+ |LP |+ |BP |+1)|BP | ≤ (nP)(4qP /nP) ≤ 4qP .
Summing over all the nodes at any given level gives us O(q) as the probe complexity per
level. So the total probe complexity in the merging stage is O(q logn). Hence, combining
the probes made during the partition step and the merge step we see that the total probes
needed to sort V is O((q + n) logn).

2.2.6 Total Complexity
Now we look at the total complexity of the previous procedure. Again the analysis is divided
into forward step and the merge step. In the forward step at each node P we perform

SWAT 2016

22:10 Sorting Under Forbidden Comparisons

O(n2
P) operations. This includes computing the degrees, finding the cliques, computing the

approximate median. So at any level of T , regardless of it being an internal level or not,
we perform O(n2) operations. Hence it totals to O(n2 logn) operations in the forward step.
However this is a conservative estimate and we can remove the logn factor as argued below:
we can define the recurrence for the forward computation as,

T (n) =
{
T (n/40) + T (39n/40) +O(n2) n2 ≥ 200q
O(q) Otherwise

(2)

This follows from the previous discussion. If we don’t recurse on a node we guarantee that
n2

P < 200qp for that node. Hence, we have T (n) = O(n2 + q) using the Akra-Bazzi method[2].
In the merge step, we only make O(qP) comparisons at any given node. We compute
transitive closures only at the leaves. However for any leaf P we have n2

P < 200qP . Hence
computing the transitive closure of G[P] takes O(qω/2

P) time. Hence, the total complexity
of the above procedure is O(n2 + qω/2). We summarize the results in this section with the
following theorem:

I Theorem 6. Given a graph G(V,E) of n vertices having q forbidden edges, one can
compute the partial order of V with O((q + n) logn) comparisons and in total O(n2 + qω/2)
time.

Proof. Follows from the discussions in this section. J

3 A Randomized Algorithm

In this section we look at a more direct way of sorting by making random probes. The
proposed method is inspired by the literature on two-step oblivious parallel sorting [1, 7]
algorithms, in particular on a series of studies by Bollobás and Brightwell showing certain
sparse graphs can be used to construct efficient sorting networks [6, 5]. It was shown that if
a graph satisfies certain properties then probing its edges and taking the transitive closure of
the results would yield large number of relations. Then we just probe the remaining edges
that are not oriented, which is guaranteed (with high probability) to be a “small” set.

The main idea is as follows: Let Hn be a collection of undirected graphs on n vertices
having certain properties. A transitive orientation of a graph H(V,E) ∈ Hn is an ordering
of V and the induced orientation of the edges of H based on that ordering. Let σ be an
ordering on V and P (H,σ) be the partial order generated by this ordering σ on H. It is
a partial order since H may not be sortable. Let P = P (H,σ) and t(P) be the number
of incomparable pairs in P. We want H to be such that t(p) is small. If that is the case
then P will have many relations and if H is sparse then we can probe all the edges of H
and afterwards we will be left with probing only a small number of pairs. These are pairs
which were not oriented during the first round of probing and after the transitive closure
computation. A graph H is useful to our purpose if every transitive orientation of H results
in many relations. We want to find a collection Hn such that every graph in it is useful with
high probability.

We extend the results in [6, 5] to show that a collection of certain conditional random
graphs are useful, with high probability. In our case this random graph will be a spanning
subgraph of the input graph G. Here we recall an important result from [6] (Theorem 7)
which we will use in our proof.

I. Banerjee and D. Richards 22:11

I Theorem 7 ([6]). If G is any graph on n vertices and G satisfies the following property:
Q1 Any two subsets A,B of vertices having size l have at least one edge between them.
Then, the number of incomparable pairs in P (G, σ) is at most O(nl log l) for any σ.

The input graph G is chosen by our adversary. However, we show that any random spanning
subgraph of G with an appropriate edge probability will satisfy Q1 with high probability.
Let Hn,p(G) be a random spanning subgraph of G, where Hn,p(G) has the same vertex set
as G and a pair of vertices in Hn,p(G) has an edge between them with probability p if they
are adjacent in G, otherwise they are also non-adjacent in Hn,p(G). All we need to prove is
that any random spanning subgraph Hn,p(G) given G with n-vertices and edge probability p
will satisfy Q1 with high probability. Since G has at most q forbidden edges any two subsets
of vertices A,B (not necessarily distinct) of size l must have at least

(
l
2
)
− q edge between

them. Let EAB be the event that the pair (A,B) is bad (they have no edges between them),
then the probability Sn,p that there exists a bad pair is:

Sn,p := P(
∑
i,j

EAiBj) ≤
∑
i,j

P(EAiBj) ≤
∑
i,j

(1− p)e(Ai,Bj) (3)

where the sum is taken over all such
(

n
l

)2 pairs of subsets, and the number of edges between
the two sets A and B in G is e(A,B) ≥

(
l
2
)
− q. So we have,

Sn,p ≤
(
n

l

)2
(1− p)(

l
2)−q ≤

(
n

l

)2
e−p((l

2)−q) Since, e−x ≥ 1− x

≤
(en
l

)2l

e−p((l
2)−q) ≤ exp(2l(log en/l)− p(

(
l

2

)
− q))

Hence Sn,p → 0 as n→∞ whenever exp(2l(log en/l)− p(
(

l
2
)
− q)) = o(1). Given q <

(
n
2
)
it

is always possible to find appropriate values for p and l as functions of q and n such that
Sn,p = o(1). Given some value for the pair (p, l), we see that in the first round we make
O(pn2) probes with high probability and in the second round O(nl log l) probes (for the
remaining unoriented edges) again with high probability. So the total probe complexity is
Õ(pn2 + nl). With some further algebra it can be shown that this is Õ(n2/

√
q + n+ n

√
q).

We summarize this section with the following theorem:

I Theorem 8. Given a graph G on n vertices and q forbidden edges one can determine the
partial order on G with high probability in two steps by probing only Õ(n2/

√
q + n+ n

√
q)

edges in total and in O(nω) time.

Proof. Follows from the preceding discussions. J

3.1 When G Is A Random Graph
The above technique can easily be extended for the case when the input graph is random.
Let Gn,p be the input graph having n-vertices and an uniform edge probability p. For such a
graph we can use equation (3) to bound Sn,p as follows:

Sn,p ≤
(
n

l

)2
(1− p)l2

≤ exp(−pl2 + 2l logn)

Hence, we can choose any l > 2 logn/p such that Sn,p → 0 as n→∞. Let l = 3 logn/p.
Using Theorem 2 we have t(Gn,p) = Õ(nl) = Õ(n/p). Since Gn,p has pn2/2 edges (with

SWAT 2016

22:12 Sorting Under Forbidden Comparisons

high probability) the critical value of p when t(Gn,p) = pn2/2 is Õ(1/
√
n). Let this be p̂.

Hence if p > p̂, we can sort by making only Õ(n3/2) comparisons. Since given Gn,p we
can construct an induced subgraph Gn,p̂ and use it as the random graph in our previous
construction. Otherwise we just probe all the edges which makes O(pn2) comparisons. Thus
we can sort Gn,p with at most Õ(min (n3/2, pn2)) comparisons with high probability. Hence,
we get an elementary technique to sort a random graph with at most Õ(n3/2) comparisons.
The algorithm in [17] has a slightly better bound of Õ(n7/5) comparisons. However, the
total runtime of the algorithm in [17] is only polynomially bounded when p is small. In our
algorithm we need compute the transitive closure only twice making it run in O(nω) total
time.

Acknowledgements. We thank the anonymous reviewers for their constructive comments,
which helped us to improve the paper.

References
1 Miklós Ajtai, János Komlós, William Steiger, and Endre Szemerédi. Almost sorting in one

round. Randomness and Computation, 5:117–125, 1989.
2 Mohamad Akra and Louay Bazzi. On the solution of linear recurrence equations.

Comp. Opt. and Appl., 10(2):195–210, 1998. URL: http://dx.doi.org/10.1023/A:
1018373005182, doi:10.1023/A:1018373005182.

3 Noga Alon, Manuel Blum, Amos Fiat, Sampath Kannan, Moni Naor, and Rafail Ostrovsky.
Matching nuts and bolts. In Proceedings of the Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms. 23-25 January 1994, Arlington, Virginia., pages 690–696, 1994. URL:
http://dl.acm.org/citation.cfm?id=314464.314673.

4 Stanislav Angelov, Keshav Kunal, and Andrew McGregor. Sorting and selection with
random costs. In LATIN 2008: Theoretical Informatics, 8th Latin American Symposium,
Búzios, Brazil, April 7-11, 2008, Proceedings, pages 48–59, 2008. URL: http://dx.doi.
org/10.1007/978-3-540-78773-0_5, doi:10.1007/978-3-540-78773-0_5.

5 Béla Bollobás and Graham Brightwell. Graphs whose every transitive orientation contains
almost every relation. Israel Journal of Mathematics, 59(1):112–128, 1987.

6 Béla Bollobás and Graham R. Brightwell. Transitive orientations of graphs. SIAM J.
Comput., 17(6):1119–1133, 1988. URL: http://dx.doi.org/10.1137/0217072, doi:10.
1137/0217072.

7 Béla Bollobás and Moshe Rosenfeld. Sorting in one round. Israel Journal of Mathematics,
38(1-2):154–160, 1981.

8 Jean Cardinal and Samuel Fiorini. On generalized comparison-based sorting problems.
In Space-Efficient Data Structures, Streams, and Algorithms - Papers in Honor of J. Ian
Munro on the Occasion of His 66th Birthday, pages 164–175, 2013. URL: http://dx.doi.
org/10.1007/978-3-642-40273-9_12, doi:10.1007/978-3-642-40273-9_12.

9 Jean Cardinal, Samuel Fiorini, Gwenaël Joret, Raphaël M. Jungers, and J. Ian Munro. An
efficient algorithm for partial order production. SIAM J. Comput., 39(7):2927–2940, 2010.
URL: http://dx.doi.org/10.1137/090759860, doi:10.1137/090759860.

10 Moses Charikar, Ronald Fagin, Venkatesan Guruswami, Jon M. Kleinberg, Prabhakar
Raghavan, and Amit Sahai. Query strategies for priced information. J. Comput. Syst.
Sci., 64(4):785–819, 2002. URL: http://dx.doi.org/10.1006/jcss.2002.1828, doi:
10.1006/jcss.2002.1828.

11 SD Chatterji. The number of topologies on n points, kent state university. NASA Technical
Report, 1966.

http://dx.doi.org/10.1023/A:1018373005182
http://dx.doi.org/10.1023/A:1018373005182
http://dx.doi.org/10.1023/A:1018373005182
http://dl.acm.org/citation.cfm?id=314464.314673
http://dx.doi.org/10.1007/978-3-540-78773-0_5
http://dx.doi.org/10.1007/978-3-540-78773-0_5
http://dx.doi.org/10.1007/978-3-540-78773-0_5
http://dx.doi.org/10.1137/0217072
http://dx.doi.org/10.1137/0217072
http://dx.doi.org/10.1137/0217072
http://dx.doi.org/10.1007/978-3-642-40273-9_12
http://dx.doi.org/10.1007/978-3-642-40273-9_12
http://dx.doi.org/10.1007/978-3-642-40273-9_12
http://dx.doi.org/10.1137/090759860
http://dx.doi.org/10.1137/090759860
http://dx.doi.org/10.1006/jcss.2002.1828
http://dx.doi.org/10.1006/jcss.2002.1828
http://dx.doi.org/10.1006/jcss.2002.1828

I. Banerjee and D. Richards 22:13

12 Constantinos Daskalakis, Richard M. Karp, Elchanan Mossel, Samantha Riesenfeld, and
Elad Verbin. Sorting and selection in posets. SIAM J. Comput., 40(3):597–622, 2011. URL:
http://dx.doi.org/10.1137/070697720, doi:10.1137/070697720.

13 Martin E. Dyer, Alan M. Frieze, and Ravi Kannan. A random polynomial time algorithm
for approximating the volume of convex bodies. J. ACM, 38(1):1–17, 1991. URL: http:
//doi.acm.org/10.1145/102782.102783, doi:10.1145/102782.102783.

14 Ulrich Faigle and György Turán. Sorting and recognition problems for ordered sets. SIAM
J. Comput., 17(1):100–113, 1988. URL: http://dx.doi.org/10.1137/0217007, doi:10.
1137/0217007.

15 Wayne Goddard, Claire Kenyon, Valerie King, and Leonard J. Schulman. Optimal random-
ized algorithms for local sorting and set-maxima. SIAM J. Comput., 22(2):272–283, 1993.
URL: http://dx.doi.org/10.1137/0222020, doi:10.1137/0222020.

16 Anupam Gupta and Amit Kumar. Sorting and selection with structured costs. In 42nd
Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001,
Las Vegas, Nevada, USA, pages 416–425, 2001. URL: http://dx.doi.org/10.1109/SFCS.
2001.959916, doi:10.1109/SFCS.2001.959916.

17 Zhiyi Huang, Sampath Kannan, and Sanjeev Khanna. Algorithms for the generalized
sorting problem. In IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 738–747, 2011. URL:
http://dx.doi.org/10.1109/FOCS.2011.54, doi:10.1109/FOCS.2011.54.

18 Nabil Kahale and Leonard J. Schulman. Bounds on the chromatic polynomial and on
the number of acyclic orientations of a graph. Combinatorica, 16(3):383–397, 1996. URL:
http://dx.doi.org/10.1007/BF01261322, doi:10.1007/BF01261322.

19 Jeff Kahn and Michael Saks. Balancing poset extensions. Order, 1(2):113–126, 1984.
20 János Komlós, Yuan Ma, and Endre Szemerédi. Matching nuts and bolts in o(n log n)

time. SIAM J. Discrete Math., 11(3):347–372, 1998. URL: http://dx.doi.org/10.1137/
S0895480196304982, doi:10.1137/S0895480196304982.

21 John E. Savage. Models of computation - exploring the power of computing. Addison-Wesley,
1998.

SWAT 2016

http://dx.doi.org/10.1137/070697720
http://dx.doi.org/10.1137/070697720
http://doi.acm.org/10.1145/102782.102783
http://doi.acm.org/10.1145/102782.102783
http://dx.doi.org/10.1145/102782.102783
http://dx.doi.org/10.1137/0217007
http://dx.doi.org/10.1137/0217007
http://dx.doi.org/10.1137/0217007
http://dx.doi.org/10.1137/0222020
http://dx.doi.org/10.1137/0222020
http://dx.doi.org/10.1109/SFCS.2001.959916
http://dx.doi.org/10.1109/SFCS.2001.959916
http://dx.doi.org/10.1109/SFCS.2001.959916
http://dx.doi.org/10.1109/FOCS.2011.54
http://dx.doi.org/10.1109/FOCS.2011.54
http://dx.doi.org/10.1007/BF01261322
http://dx.doi.org/10.1007/BF01261322
http://dx.doi.org/10.1137/S0895480196304982
http://dx.doi.org/10.1137/S0895480196304982
http://dx.doi.org/10.1137/S0895480196304982

Total Stability in Stable Matching Games
Sushmita Gupta1, Kazuo Iwama2, and Shuichi Miyazaki3

1 Institute of Informatics, University of Bergen, Bergen, Norway
sushmita.gupta@gmail.com

2 Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
iwama@kuis.kyoto-u.ac.jp

3 Academic Center for Computing and Media Studies, Kyoto University, Kyoto,
Japan
shuichi@media.kyoto-u.ac.jp

Abstract
The stable marriage problem (SMP) can be seen as a typical game, where each player wants
to obtain the best possible partner by manipulating his/her preference list. Thus the set Q of
preference lists submitted to the matching agency may differ from P, the set of true preference
lists. In this paper, we study the stability of the stated lists in Q. If Q is not Nash equilibrium,
i.e., if a player can obtain a strictly better partner (with respect to the preference order in P)
by only changing his/her list, then in the view of standard game theory, Q is vulnerable. In
the case of SMP, however, we need to consider another factor, namely that all valid matchings
should not include any “blocking pairs” with respect to P. Thus, if the above manipulation of
a player introduces blocking pairs, it would prevent this manipulation. Consequently, we say Q
is totally stable if either Q is a Nash equilibrium or if any attempt at manipulation by a single
player causes blocking pairs with respect to P. We study the complexity of testing the total
stability of a stated strategy. It is known that this question is answered in polynomial time if
the instance (P,Q) always satisfies P = Q. We extend this polynomially solvable class to the
general one, where P and Q may be arbitrarily different.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases stable matching, Gale-Shapley algorithm, manipulation, stability, Nash
equilibrium

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.23

1 Introduction

Matching under preferences is an extensively studied area of theoretical and empirical research
that has a wide range of applications in economics and social sciences. One of the most
popular and standard problems in this field is the stable marriage problem (SMP) introduced
by Gale and Shapley [4], where there are two parties; a set of men and a set of women. Each
man has a list that orders women according to his preference, and similarly each woman also
has a preference ordering for the men. The goal is to find a stable matching. A matching is
said to be stable if it does not have a blocking pair, that is, a pair of a man and a woman who
prefer each other to their current matching partners. Existence of blocking pairs poses threat
to the “stability of the marriage”. It is important to note that a matching may be stable
in terms of one set of preference lists, but not in terms of another. Hence, whenever there
is a possibility of confusion when referring to a stable matching or blocking pairs, we will
specify the corresponding preference lists, like “Q-stable” and “Q-blocking pairs” for a set Q
of preference lists. It is well-known that there may be more than one stable matching for a

© Sushmita Gupta, Kazuo Iwama, and Shuichi Miyazaki;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 23; pp. 23:1–23:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Total Stability in Stable Matching Games

given set of preference lists, where the men-optimal and women-optimal stable matchings
represent the two extremes. These matchings derive their names from the property that, in
the men-optimal (women-optimal) stable matching, every man (woman) receives the best
possible partner among all the stable matchings. It is well-known that the men-proposing
Gale-Shapley algorithm (GS-M, for short) finds the men-optimal stable matching in linear
time [4, 6]. Throughout this paper, we focus on only GS-M.

SMP can be seen as a game, in the sense that each player is selfish and wants to obtain
the best possible partner, even at the cost of stealing one from the other players. Thus,
several game-theoretic issues come into play in this scenario. These issues have been studied
mainly from the point of view of economic and market theories (see Roth and Sotomayor
[12] for detailed discussions). A fundamental axiom of the selfish game is that players cheat
to maximize their individual outcomes. There are a lot of work in this context. Dubins and
Freedman [2] showed that, when GS-M is used, no man or a subset of men can misstate their
true preference and thereby improve the outcome for all its members. On the other hand,
women can manipulate to get better partners when GS-M is used (see [6] for example). Teo
et al. [13] considered a manipulation by a single woman, and gave an O(n3) time algorithm
that computes the best matching partner of w who is attainable by applying GS-M to one of
the n! permutations of her preference list.

The above approach assumes that the stated preference lists are the same as the true
preference lists. As observed above, however, this may be true for men but not for women; a
woman w may use a list Q(w) in the game, which is different from her true preference list
P (w), in the hope of obtaining a better partner than she obtains when using P (w). This
motivates us to consider the case where there are true preferences P = (P (M), P (W)) and
stated strategy Q = (P (M), Q(W)), where P (M) and P (W) are the sets of true preference
lists of men and women, respectively, and Q(W) is the set of stated preference lists of women.
Our aim is to check if Q is Nash equilibrium. A strategy Q is said to be a Nash equilibrium
with respect to strategy P, if no single player can get a strictly better partner (in terms of the
true preference list in P) by changing his/her list in Q while all others use their respective
lists in Q.

In this case, we need to consider another factor. Suppose that a woman w, with the true
preference P (w) and the stated preference Q(w), may be able to obtain a better partner by
using Q′(w) than the one she obtains when Q(w) is used. However, if the resulting matching
(which is of course stable with respect to the used preferences) is unstable with respect to P,
the matching may be broken and w may lose a partner, so we cannot say this manipulation
successful. Therefore, for w’s manipulation to be successful, we have to add the condition
that the resulting matching is stable with respect to P.

Model. In this article, we study SMP in the following game theoretic model. Our game
consists of four elements,
(i) a true strategy P,
(ii) an arbitrary stated strategy Q, and
(iii) two different notions of stability for Q:

(a) one based on the absence of P-blocking pairs, and
(b) the other based on Nash equilibrium with respect to P.

In this paper, we incorporate all these elements in our model, making it the most general
model for stable marriage problems. Throughout this paper, we will only deal with strategies
that contain the complete and strict preference lists of every man and woman, and so the
misstated preferences can only be a permutation of the true preference list.

S. Gupta, K. Iwama, and S. Miyazaki 23:3

Men P (M) Women P (W) Q(W)
1 : a b c d a : 2 3 1 4 3 4 1 2
2 : b a c d b : 1 2 3 4 1 2 3 4
3 : b c a d c : 2 3 4 1 2 3 4 1
4 : a d b c d : 4 1 2 3 4 1 2 3

True strategy P = (P (M), P (W)) and stated strategy Q = (P (M), Q(W)).

Figure 1 The men-optimal Q-stable matching is not P-stable, has a blocking pair (2, a).

For a given a strategy Q = (P (M), Q(W)), µQ denotes its men-optimal stable matching.
Also, for a player a, we define S(Q,a) = {(Q(−a), Q′(a)) | Q′(a) is a permutation of Q(a)}
to be the family of strategies obtained by changing the list of a in Q, while all others retain
their respective lists in Q. A strategy Q with respect to the (true) strategy P is said to
be totally stable if (a) µQ is P-stable, and (b) for any woman w ∈W , if Q′ ∈ S(Q,w), then
either µQ′ is not P-stable or µQ(w) � µQ′(w) in P (w), i.e., Q′ yields no better partner for w
in terms of P. In plain words, there is no woman who can improve her outcome by changing
her list in Q, while the resulting matching is P-stable.

There is a long history of research on the stability of the first kind (discussed while
introducing our model), that is matchings that have no blocking pair with respect to a given
(fixed) strategy. This includes a beautiful mathematical structure that describes the entire
set of stable matchings (see [6], e.g.). However, this knowledge is only applicable when there
is only one strategy (i.e., P = Q, in our model). The situation is considerably different when
P 6= Q.

We illustrate the difference between the cases P = Q and P 6= Q by way of a small
example presented in Figure 1. Strategies P and Q differ only in the list of a, and the men-
optimal P-stable matching is µP = {(1, a), (2, b), (3, c), (4, d)}. Note that the men-optimal
Q-stable matching µQ ={(1, b), (2, c), (3, a), (4, d)} is preferred by a to µP, in terms of both
P and Q, since 3 � 1 in P (a) and Q(a). By definition, µQ is Q-stable, but as evidenced by
the blocking pair (2, a), it is not P-stable.

In comparison, our knowledge about the stability of the second kind, mentioned in our
model, is considerably less. As mentioned earlier, it has been known for a long time that
when GS-M is used, stating their true preferences is the best strategy for men, but a woman
may be able to obtain a better matching partner by manipulating her true list. All these
improvements are in terms of the manipulating player’s true list. The initial research into
the strategic manipulation by women primarily dealt with strategies that were obtained by
truncating a player’s true list. The possibility of manipulation by permuting the true list
(assumed to contain all n players of the opposite kind) has been known for decades (see [6,
pg 65]), but to the best of our knowledge, its time complexity was not analysed until Teo
et al. [13], who gave an O(n3) time algorithm to compute the best matching partner of a
given woman w. An immediate corollary is that we can test whether the true strategy P is
itself a Nash equilibrium in time O(n4). However, [13] does not discuss the stability of the
matching obtained by manipulation.

In our case, the situation becomes much more complicated since we have to consider
two distinct strategies P and Q, their respective stabilities, and the interaction between
them. We illustrate this scenario by way of a small example in Figure 2. The men-optimal
Q-stable matching µQ matches (1, a). The algorithm from [13] applied to a and Q yields
Q′(a) = [3, 4, 1, 2]. But, as shown in the earlier example, (2, a) is a P-blocking pair. Thus,
seeking efficient algorithms for testing the total stability of a stated strategy seems to be a

SWAT 2016

23:4 Total Stability in Stable Matching Games

Men P (M) Women P (W) Q(W)
1 : a b c d a : 2 3 1 4 3 2 1 4
2 : b a c d b : 1 2 3 4 1 2 3 4
3 : b c a d c : 2 3 4 1 2 3 4 1
4 : a d b c d : 4 1 2 3 4 1 2 3

True strategy P = (P (M), P (W)) and stated strategy Q = (P (M), Q(W))

Figure 2 Algorithm in [13] applied to Q yields a matching that is not P-stable.

nice algorithmic challenge in the field of matchings under preferences.
By combining [13] and [12, Thm 4.16], we can obtain a polynomial time algorithm to test

the total stability when P = Q. In other words our problem is polynomial time tractable for
the special case of P = Q. The main goal of this paper is to extend this tractability result
to the most general setting of P 6= Q.

1.1 Our Contribution
We show that total stability can be tested in polynomial time. As stated in the Introduction,
men do not have any incentive to misstate their true preference ([2] and [12, Theorem 4.10]);
consequently, our analysis only considers manipulations by women. Specifically, for two
strategies P = (P (M), P (W)) and Q = (P (M), Q(W)) containing complete lists for every
man and woman, with P assumed to be the true strategy, our output should be No if
there is a woman w and a strategy Q′ = (Q(−w), Q′(w)) ∈ S(Q,w) (the family of strategies
derived from Q where only w permutes her preference list) such that (a) µQ′ is P-stable,
and (b) w obtains a strictly better partner in µQ′ , in terms of P (w) (notationally expressed
as µQ′(w) � µQ(w), in P (w)). If there is no such strategy Q′ ∈ S(Q,w) for any woman w,
then the answer should be Yes.

The obvious brute-force method is to check all the n! permutations as the list Q′(w);
once Q′(w) is fixed, computing µQ′ and checking if it is P-stable can be done in O(n2) time.
For a polynomial time algorithm, we need to do the following two computations without
examining all the n! permutations for Q′(w): (i) obtaining all possible (by changing only her
list) partners of w who are better (in terms of P) than w’s partner in µQ, and (ii) for a man
m found in (i), we need to search for a permutation Q′(w) such that w is matched to m and
µQ′ is P-stable.

We wish to point out that the result in [13] is not enough for the first task, since it only
gives the best partner in terms of Q, and the matching outcome may not be P-stable in
general, as depicted by Figure 1. Note that if a is satisfied with the second best partner,
2, then she could use a list [2, 3, 4, 1] and the resulting matching, (a, 2), (b, 1), (c, 3), (d, 4),
is now P-stable. Thus it does not suffice to merely detect the best possible partner of a.
Also, note that potential partners of women other than w may be arbitrary and there can be
(exponentially) many lists for w that result in matching w to m, some of which may yield a
P-stable matching, while others may not, even if m is fixed as a target.

The basic idea of our algorithm is as follows: For task (ii), we obtain a result (Theorem 5)
which proves that if two permutations Q′1(w) and Q′2(w) are available as Q′(w) (both
matching w to m), then µQ′1 = µQ′2 . Hence, if any one list gives a P-stable outcome, then so
do the others. Thus, for algorithmic purposes, it is enough to consider any arbitrary single
permutation as Q′(w). We believe that this result is interesting in its own right, and could
be useful in other scenarios. For task (i) we can use an algorithm based on the same idea as
[13], but its correctness proof is quite different from the original one, that heavily relies on

S. Gupta, K. Iwama, and S. Miyazaki 23:5

the fact that they are only interested in the best manipulated partner of w. For our purpose,
we need to detect all attainable partners.

1.2 Related Work
In addition to [13] that we have discussed in details, there are other relevant works that we
can point to.

For a stated strategy Q, Dubins and Freedman [2] proved that there is no coalition C
of men who have a manipulation strategy P′ = (P (−C), P ′(C)), so that the outcome is
P′-stable and is strictly better than µP in terms of P, for each m ∈ C. Demange et al. [1]
extend this result to include women in the coalition C, showing that there is no P′-stable
matching µ′ such that every player a ∈ C prefers µ′(a) (in terms of P (a)) to his/her partner
in every P-stable matching.

For truncation strategies, it was shown by Gale and Sotomayor [5] that if there are at
least two P-stable matchings, then there is a woman w who has a unilateral manipulation
strategy Q′ ∈ S(Q,w) that gives a strictly better outcome than µP. If C = W , then there
is a truncation strategy P′ = (P (M), P ′(W)) such that µP′ is the women-optimal P-stable
matching. Considerable work on truncation strategies have been undertaken (see [3, 11] for
motivations and applications). In fact, up until the late 1980s, analyses of manipulation
strategies of women centred almost exclusively around truncation strategies.

Immorlica and Mahidian [7] show that with high probability, truthfulness is the best
strategy for any individual player, assuming everybody else is being truthful as well. In
their model, the men’s preference lists may have ties but the lengths are bounded by a
constant, and are drawn from an arbitrary probability distribution, while the women’s lists
are arbitrary and complete.

Kobayashi and Matsui [8] consider the possibility that a coalition C of women have a
manipulation strategy P′ = (P (M), P ′(W)) containing complete lists, such that µP′ yields
specific partnerships for the members of C. The situation manifests in two specific forms,
depending on the nature of the input. In the first case, the input consists of the complete
lists of all men, a partial matching (some agents may be unmatched) µ′, and complete lists
of the subset of women who are unmatched in µ′, denoted by W \ C. The problem is to
test whether there exists a permutation strategy for each woman in C, such that for the
combined strategy P′ = (P (−C), P ′(C)), µP′ is a perfect matching that extends µ′. In the
second case, the input consists of the lists of all men, a perfect matching µ, and lists for
women in W \ C. The problem is to test if there are permutation strategies for the women
in C such that strategy P′ = (P (−C), P ′(C)) yields µ′P = µ. They present polynomial-time
algorithms for both problems.

Pini et al. [9] show that for an arbitrary instance of SMP, there is a stable matching
mechanism for which it is NP-hard to find a manipulation strategy.

Roth [10] had shown that if a strategy Q = (P (M), Q(W)) is a Nash equilibrium with
respect to P, then the matching µQ is P-stable. The proof discussed in [12] allows women
to truncate their preference lists as a means of manipulation. This result holds even if all
players are restricted to using complete lists in their true, stated and manipulated strategies.
We use this result without a proof, as it is similar to the second approach described in [12,
pg 101].

2 Preliminaries

We will always useM to denote the set of n men {m1,m2, . . . ,mn} andW the set of n women
{w1, w2, . . . , wn}. Our matching mechanism is the men-proposing Gale-Shapley algorithm

SWAT 2016

23:6 Total Stability in Stable Matching Games

(GS-M in short), which proceeds as follows: On the men’s side, a man who is not yet matched
to a woman, proposes to the woman who is at the top of his current list, which is obtained
by removing all the women who have already rejected him. On the woman’s side, when
a woman w receives a proposal from a man m, she accepts the proposal if it is her first
proposal, or if she prefers m to her current partner m′. If w prefers her current partner m′
to m, then w rejects m. If m is rejected by w, then m will start issuing proposals, and this
process continues until there is no man left who is unmatched. For more details, see [6]. At
any stage of GS-M, if there are two or more unmatched men, then we set the convention
that in this group the man with the smallest index is the first to propose. This removes the
possibility of arbitrary tie-breaking, and thus, makes the algorithm purely deterministic.

A strategy Q is a set of preference lists (or simply lists) of all the men in M and all the
women in W . For a person x in M ∪W , Q(x) denotes the x’s list in the strategy Q. For
a given strategy Q, suppose that only w changes her list from Q(w) to Q′(w). We denote
the resulting strategy by Q′ = (Q(−w), Q′(w)), and use S(Q,w) to denote the family of all
such strategies Q′. Note that all lists considered in this article are complete, i.e., they are
permutations of n men or n women.

Let Q be a strategy. If w prefers m1 to m2 in Q(w), then we write “m1 � m2 in Q(w)”.
We use m1 � m2 if m1 � m2 or m1 = m2. Let µ be a (perfect) matching between M and W .
Then µ(p) denotes the partner of a person p. A pair (m,w) of a man and a woman is called
a Q-blocking pair if w � µ(m) in Q(m) and m � µ(w) in Q(w). We say that µ is Q-stable if
there is no Q-blocking pair.

For a strategy Q, µQ denotes the man-optimal stable matching, computed by the Gale-
Shapley algorithm. If a man m proposes to a woman w during this procedure, then we say
that m is active in Q(w) (formally speaking we should say m is active in Q(w) during the
computation of µQ, but for the sake of brevity, we will omit strategy Q when it is obvious
from the context.)

Recall that a woman w changes her list Q(w) for the purpose of manipulation. For a subset
M ′ ⊆M , let I be an ordering of men in M ′. Then, Q(I;w) denotes a permutation of Q(w),
where the men in M ′ are at the front in the order in which they appear in I. An ordered
(sub)list, such as I, is called a tuple, and for any given tuple I, we define Q(I;w) = [I,Q(w)\I].
For example, if Q(w) = [1, 2, 3, 4, 5, 6] and I = [5, 2], then Q(I;w) = [5, 2, 1, 3, 4, 6]. Now we
are ready to introduce our main concept.

We are given a strategy Q and a true strategy P. Then for a woman w ∈W , a strategy
Q′ ∈ Qw is said to be a unilateral manipulation strategy of w, if µQ′(w) � µQ(w) in P (w),
i.e., w strictly prefers the outcome of µQ′ to µQ with respect to her true preference/strategy.
If, furthermore, µQ′ is a P-stable matching, then Q′ is said to be a P-stable manipulation
strategy of w. A strategy Q is said to be totally stable if there does not exist a w ∈W who
has a P-stable manipulation strategy (Q(−w), Q′(w)) ∈ Qw. In this paper, we consider the
following problem.

Problem: Total Stability
Input: True strategy P = (P (M), P (W)) and stated strategy Q = (P (M), Q(W))
Question: Is Q totally stable?

3 Listing active men

Now our goal is to design an algorithm that, for two given strategies, a stated strategy Q and
a true strategy P, answers if Q is totally stable. To do so, we first design an algorithm that

S. Gupta, K. Iwama, and S. Miyazaki 23:7

Algorithm 1: A(Q, w) [13]
Input: Strategy Q = (P (M), Q(W)), and a woman w ∈W
Output: Sets Nw(Q) = {m ∈M | ∃ Q′ ∈ S(Q,w) that yieldsµQ′(w) = m}, and

Lw(Q) = {Q′(m;w) | m ∈ Nw(Q), Q′=(Q(−w), Q′(m;w)) yields µQ′(w) = m}

1 Let x1 be the first active man in Q(w)
2 Let N ← {x1} and L← {Q(x1;w)}
3 Explore(Q(x1;w))
4 return (N,L)

Procedure Explore(Q′(x, I;w))

1 Let A← {men who are active in Q′(x, I;w) after x}
2 foreach y ∈ A \N do
3 N ← N ∪ {y} and L← L ∪ {Q′(y, x, I;w)}
4 Explore(Q′(y, x, I;w))

outputs the set Nw(Q) of all possible partners m of a given fixed woman w such that there is
a (manipulated) strategy Q′ = (Q(−w), Q′(w)), for which the men-optimal stable matching
will match w to m. By using this algorithm n times, we can obtain Nw1(Q), . . . , Nwn(Q).
The use of this set to prove our main result is explained in the next section.

Let us consider Algorithm 1, which is basically the same as the one given by Teo et al. [13]:
Suppose that Q(w) = [1, 2, 3, 4, 5, 6, 7, 8] and the first proposal comes from man 5. Then
the algorithm adds 5 to N and calls Explore(Q(5;w)): it executes the men-proposing
Gale-Shapley algorithm (GS-M, in short) after moving 5 to the front of the list Q(w). In
general, procedure Explore takes as a parameter Q(x, I;w), a preference list of w. As per
our notation, x is at the front of this list, followed by the sublist I and then the rest of the
men, thus, defining the strategy Q′ = (Q(−w), Q(x, I;w)). Explore(Q(x, I;w)) executes
GS-M for the strategy Q′ and produces the set of men A who propose to w after x. Now
for each y ∈ A, we check if y is “new” (i.e., not yet in N). If so, we add y to N and call
Explore recursively after moving y to the top of Q(x, I;w); else, we do nothing.

Since Explore is called only once for each man in N , its time complexity is obviously
at most n × T (GS), where T (GS) is the time complexity of one execution of GS-M, thus,
overall it is O(n3). The nontrivial part is the correctness of the argument, which we shall
prove now.

I Theorem 1. For a strategy Q and a woman w ∈W , Algorithm 1 produces
N = {m ∈M | ∃Q′ ∈ Qw, s.t. µQ′(w) = m} and for each m ∈ N , a list Q(m, I;w) such
that, for some partial list I, m is active in Q(I;w).

Proof. Let Q′(w) be an arbitrary permutation of n men and Q′ the strategy (Q(−w), Q′(w)).
It is enough to prove if a man x ∈M proposes to w during the computation of µQ′ (i.e., x is
active in Q′(w)), then x is added to N during the execution of Algorithm 1.

Here we need two new definitions: Suppose that x1, x2, . . . , xt is a sequence of men
who proposed to w (in this order) during the computation of µQ′ . Then this sequence
is called an active sequence for Q′(w), denoted by AS′(w). Also define y1, y2, . . . , ys as a
maximal subsequence of AS′(w) such that y1 = x1 and for i ≥ 2, yi is the first element
after yi−1 such that yi � yi−1 in Q′(w). This is called the increasing active subsequence
for Q′(w) and is denoted by IAS′(w). As an example, let Q′(w) = [1, 2, 3, 4, 5, 6, 7, 8, 9]

SWAT 2016

23:8 Total Stability in Stable Matching Games

and AS′(w) = 5, 6, 3, 4, 2, 8. Then IAS′(w) = 5, 3, 2. Now consider a different list Q′′(w) =
[1, 2, 3, 5, 9, 8, 4, 6, 7], thus, Q′(w) 6= Q′′(w). However, we can observe that the active sequence
and the increasing active subsequence for Q′′(w) are identical to those of Q′(w), for the
following reasons. The lists in Q′ and Q′′ are the same except that of w’s, so the first
proposal for w must come from the same man regardless of w’s list. Since the man 5 is
accepted by w in both executions, the next proposal should also be from the same man 6.
Now since 5 � 6 in both Q′(w) and Q′′(w), 6 is rejected in both Q′(w) and Q′′(w) and thus,
the next proposal must also be same, and so on. This observation leads us to the following
lemma.

I Lemma 2. For strategies Q′,Q′′ ∈ Qw, let x1, x2, . . . , xp and u1, u2, . . . , uq denote the
active sequences for Q′(w) and Q′′(w) respectively, and let y1, y2, . . . , ys and v1, v2, . . . , vt

denote the corresponding increasing active subsequence. Then, the following conditions must
hold.
(a) x1 = y1 = u1 = v1.
(b) For an arbitrary l (l ≤ p and l ≤ q), we consider the prefixes of the active sequences

up to position l and the prefixes of the corresponding increasing active subsequences,
denoted by y1, ..., yj and v1, ..., vj. Then, if xi = ui for all i ≤ l and yk = vk for all
k ≤ j, then xl+1 = ul+1.

Proof. By definition, x1 = y1 and u1 = v1. Recall that all the lists in Q′ and Q′′ are the same
except those for w. Furthermore, we use a fixed tie-breaking protocol in the deterministic
GS algorithm. Hence, x1 = u1 follows directly.

To prove condition (b), let y2 = xi1+1, y3 = xi2+1, . . ., and so on. Then we can write
AS′(w) as follows, where x2, . . . , xi1 , xi1+2, . . . , xi2 , . . . may be empty.

AS′(w) = y1, x2, . . . , xi1 , y2, xi1+2, . . . , xi2 , . . . , yj , xij−1+2, . . . , xl, xl+1, . . .

Now one can see that y1 is accepted, all of x2 . . . , xi1 are rejected since they are after y1
in the list by definition. This continues as y2 is accepted, xi1+2, . . . , xi2 rejected, and so on.
Now, consider AS′′(w), depicted below.

AS′′(w) = v1, u2, . . . , ui1 , v2, ui1+2, . . . , ui2 , . . . , vj , uij−1+2, . . . , ul, ul+1, . . .

By the assumption, these two sequences are identical up to position l, so acceptance or
rejection for each proposal follows identically, as discussed above. Therefore, the configuration
(see below) of GS-M for Q′ at the moment when xl proposes to w and the configuration
for Q′′ when ul proposes to w are exactly the same. A configuration consists of (i) the lists
of all men (recall that some entries are removed when proposals are rejected), (ii) the set
of single men, and (iii) the current temporal matching partner of each woman. (Formally
this should be shown by induction, but it is straightforward and is omitted). Also the
acceptance/rejection for xl and ul is the same. Thus in either case, the execution of the
(deterministic) GS-M is exactly the same for Q′ and Q′′ until w receives proposal from xl+1
and ul+1, respectively. Hence, xl+1 and ul+1, should be equal and the lemma is proved. J

Now let us look at the execution sequence of Algorithm 1 while comparing it with the
execution sequence of GS-M on Q′. Let the active sequence and increasing active sequence
for Q′ be AS′(w) = x1, x2, . . . , xp and IAS′(w) = y1, y2, . . . , ys, respectively. By Lemma 2,
the first proposal to w is always y1, so the algorithm starts with Explore(Q(y1;w)) (we
simply say the algorithm invokes Q(y1;w)), and N = {y1}, at the very beginning.

S. Gupta, K. Iwama, and S. Miyazaki 23:9

Now we note that it is quite easy to see that the active sequence for Q(y1;w) should be
y1, x2, . . . , xi1 , . . ., i.e., it should be identical to that of Q′(w) up to the position i1, with i1
defined as in the proof of Lemma 2. The reason is as follows. We already know the first
active man is always y1 and that is also the first symbol in the increasing active sequence of
both. Thus we can use Lemma 2 to conclude that the second symbol should also be the same,
since x2 is not in IAS′(w), meaning that it is rejected, which is also the same in Q(y1;w)
since y1 is at the top of the sequence. Thus the third symbol is the same in both and so
on up to position i1. Then the next symbol in AS′(w) is y2 and it is also active in Q(y1;w),
meaning Q(y2, y1;w) is invoked by the algorithm. (The algorithm also invokes Q(x2, y1;w),
Q(x3, y1;w), . . . , Q(xi1 , y1;w), but these are not important for us at this moment.)

We again consider the active sequence for Q(y2, y1;w) and by the same argument presented
earlier, we can conclude that it is identical to AS′(w) up to position i2 and so y3 is found
to be an active man. Hence, Q(y3, y2, y1;w) is invoked if y3 was not already present in N .
Continuing like this, we note that if Q(ys, ys−1, . . . , y1;w) is invoked, then we are done since
its active sequence is identical to that of Q′(w). However, this case happens only if each yi

(2 ≤ i ≤ s), is a brand new active man found during the invocation of Q(yi−1, . . . , y1;w). If
one of them is not new then the subsequent lists are not invoked, and yet, we are assured
due to Lemma 3 that Algorithm 1 will detect all the active men in Q′(w).

Lemma 3 is rather surprising and may be of independent interest. For two lists Q′(w)
and Q′′(w), that are distinct and arbitrary orderings on men, we assume nothing about the
execution of GS-M on the two lists except that a particular man x is active in both lists. Yet,
we are able to show that a man who proposes to w when Q′(x;w) is used must also propose
when Q′′(x;w) is used. This result allows us to focus solely on active men that have been
discovered in the current invocation of Explore, thereby restricting the number of recursion
steps to O(n).

I Lemma 3. For two distinct strategies Q′ and Q′′ in S(Q,w), suppose that x is active in
both Q′(w) and Q′′(w). Then a man who is active in Q′(x;w) is also active in Q′′(x;w).

Proof. Consider the strategies Q1 = (Q′(−w), Q′(x;w)) and Q2 = (Q′′(−w), Q′′(x;w)). Let
y denote a man who is active in Q′(x;w) but not in Q′′(x;w). Then, µQ2(y) � w � µQ1(y)
in P (y).

Note that µQ1(w) = x and µQ2(w) = x. Clearly, any Q1-blocking pair in µQ2 must
involve w, as otherwise it would also be a Q2-blocking pair. However, since x is at the top of
w’s list in Q1, w cannot be in a Q1-blocking pair, implying that µQ2 is a Q1-stable matching.
Since µQ1 is the men-optimal stable matching for Q1, we have that µQ1(y) � µQ2(y) in P (y).
This contradicts the fact we have shown earlier, and hence y must be active in Q′′(x;w). J

The next lemma completes the proof. We give one more notation, where yis are men
defined in Lemma 2.

Q1(w) = Q1(y1;w), and Qj+1(w) = [yj+1, Qj(w) \ {yj}], for 1 ≤ j ≤ s− 1.

I Lemma 4. For each j (1 ≤ j ≤ s), the algorithm invokes Q(yj , I;w) for some tuple I,
and each man in

{
xij−1+2, . . . , xij , yj+1

}
is active in it.

Proof. We prove this result by induction on yi. The base case has been already proved,
since for y1, it has been shown earlier that Q(y1;w) is invoked at the beginning and every
man in {x2, . . . , xi1 , y2} is active in Q(y1;w) after y1.

Suppose that the induction hypothesis holds for yt, where t ≤ s − 2, i.e., for some
tuple I, Q(yt, I;w) is invoked, and each man in

{
xit−1+2, . . . , xit

, yt+1
}
is active in it. We

SWAT 2016

23:10 Total Stability in Stable Matching Games

will complete the proof by showing that the hypothesis holds for yt+1. If yt+1 is “new”,
i.e., it is added to N during the invocation of Q(yt, I;w), then Q(yt+1, yt, I;w) is invoked
subsequently. Using the fact that yt+1 is active in both Qt+1(w) and Q(yt, I;w), and all the
men in {xit+2, . . . , yt+2} are active in Qt+1(w) after yt+1, Lemma 3 applied to each of them
implies that they are also active in Q(yt+1, yt, I;w). Hence, for this case, the hypothesis is
proved for yt+1.

If yt+1 is already in N when Q(yt, I;w) is invoked, then for some tuple I ′, yt+1 should
have been added to N during the invocation of Q(I ′;w). Thus, Q(yt+1, I

′;w) would have
been invoked prior to Q(yt, I;w). Using the same argument (on Qt+1(w) and Q(yt+1, I

′;w))
that we used for the earlier case, we conclude that even for this case, the hypothesis holds
for yt+1. J

Thus, we have shown that all the men in AS′(w) are active somewhere during the
execution of the algorithm and thus, all are present in N at the end of the execution. This
completes the proof of Theorem 1. J

4 Algorithm to test if a strategy is totally stable

In this section, we consider the problem of deciding, for a given true strategy P and a stated
strategy Q, whether Q is totally stable. We show that this problem is solvable in time O(n4).
Algorithm 2 uses Algorithm 1 as a subroutine.

Algorithm 2: Algorithm for Total Stability.
Input: True strategy P, stated strategy Q, and the set of women W .
Output: Answers “Yes”, if Q is totally stable, else “No”.

1 foreach w ∈W do
2 Run Algorithm 1 on input (Q, w) to obtain Nw(Q) and Lw(Q)
3 Let Ñ ← {m ∈ Nw(Q) s.t. w prefers m to µQ(w), in P (w)}
4 foreach m ∈ Ñ do
5 Let Q(m, I;w) ∈ Lw(Q) be the list that yields (m,w) as a matched pair
6 Let µ be the men-optimal (Q(−w), Q(m, I;w))-stable matching
7 if µ is P-stable then
8 return “No”

9 return “Yes”

The following result is of independent interest as it implies that Algorithm 1 on the
input (Q, w) generates all matchings that can be attained by changing w’s preference list. In
particular, it answers if for any given w ∈W , there exists a strategy Q′ ∈ S(Q,w) such that
µQ′(w) � µQ(w) in P (w), and the matching µQ′ is P-stable matching. As a consequence,
using Algorithm 1 as a subroutine, Algorithm 2 is able to solve Total Stability.

I Theorem 5. For any (fixed) man m, if there exists a permutation Q′(w) of a woman w’s
list Q(w) such that the strategy Q′ = (Q(−w), Q′(w)) yields a matching that matches w to
m, then that matching is unique.

Proof. Suppose that Q′(w) (defined in the theorem) is an arbitrary strategy of w to obtain m,
and let µ′ denote the men-optimal Q′-stable matching. Algorithm 1 applied to input (Q, w)

S. Gupta, K. Iwama, and S. Miyazaki 23:11

computes a list Q(m, I;w) such that w attains m by the strategy Q∗ = (Q(−w), Q(m, I;w)).
Note that m appears at the front of the list Q∗(w) = Q(m, I;w). Let µ∗ be the men-optimal
Q∗-stable matching. Our goal is to show that µ′ = µ∗.

I Claim 6. For each m, µ∗(m) � µ′(m) in Q′(m).

Proof. We begin by showing that µ′ is Q∗-stable. We know that µ′ is Q′-stable, and Q′ and
Q∗ differ only in w’s list. Hence, if there is a Q∗-blocking pair in µ′, then it must contain w.
However, this is impossible since w is matched with m, who is at the front of the list Q∗(w).
Therefore, µ′ must be Q∗-stable

Since µ∗ is the men-optimal Q∗-stable matching and µ′ is a Q∗-stable matching, we have
that, for each man m, µ∗(m) � µ′(m) in Q∗(m). Since Q∗(m) = Q′(m) for each man m, the
claim is proved. J

I Claim 7. For each m, µ′(m) � µ∗(m) in Q′(m).

Proof. As for Claim 6, we begin by showing that µ∗ is Q′-stable. Suppose that it is not.
Then there is a Q′-blocking pair in µ∗, and it includes w for the same reason as in the proof
of Claim 6. Let (m′, w) denote a Q′-blocking pair in µ∗. Then, w � µ∗(m′) in Q′(m′), and
m′ � µ∗(w) in Q′(w).

Using Claim 6, we have w � µ′(m′) in Q′(m′), and µ∗(w) = µ′(w) = m by definition.
Hence, (m′, w) is a Q′-blocking pair in µ′, a contradiction. Again, for the same reason as in
the proof of Claim 6, we can conclude that µ′(m) � µ∗(m) in Q′(m) for each man m. J

By Claims 6 and 7, we have µ′(m) = µ∗(m) for each man m. Thus, µ′ = µ∗, completing
the proof of Theorem 5. J

I Theorem 8. Algorithm 2 solves Total Stability in O(n4) time.

Proof. Suppose that Algorithm 2 outputs “No”. Then, it implies that a P-stable manipulation
strategy was found, and therefore Q is not totally stable. For the opposite direction, suppose
that Q is not totally stable and there exists a woman w who has a manipulation strategy Q′
such that µQ′ is P-stable. Then, man µQ′(w) is added to Ñ when Algorithm 1 is executed
on the input (Q, w). By Theorem 5 the matching µQ′ is uniquely defined, i.e., there is a
unique matching resulting from a manipulation strategy of w that results in the matched
pair (w, µQ′(w)). Since µQ′ is P-stable, Algorithm 2 will output “No.” This proves the
correctness of Algorithm 2.

We claim that the time complexity of Algorithm 1 is O(n3). This is because the size
of the set N is at most n, and is computed iteratively by executing GS-M once for each
man m ∈ N . Since the running time of GS-M is O(n2), the running time of Algorithm 1 is
O(n3). Algorithm 2 executes Algorithm 1 for each woman w ∈W . Hence, the running time
of Algorithm 2 is O(n4). J

5 Conclusions

We leave the question of manipulation by a group of women as an avenue of further research.
In particular, we would like to answer in polynomial time (1) if a stated strategy Q is totally
stable against manipulations by a subset of women, and (2) if a given subset of women
W ′ ⊆ W have a manipulation strategy that yields a P-stable matching and gives each of
them a better partner than the one given by the stated strategy. In this article, we solved
both of these problems for the special case of manipulation by one woman acting on her own.

SWAT 2016

23:12 Total Stability in Stable Matching Games

Acknowledgments. The authors would like to thank the anonymous reviewers for their
valuable comments. This work was supported by JSPS KAKENHI Grant Numbers 24500013
and 25240002.

References
1 G. Demange, D. Gale, and M. Sotomayor. A further remark on the stable matching problem.

Discrete Applied Mathematics, 16:217–222, 1987.
2 L. E. Dubins and D. A. Freedman. Machiavelli and the Gale-Shapley algorithm. The

American Mathematical Monthly, 88(7):485–494, 1981.
3 L. Ehlers. Truncation strategies in matching markets. Mathematics of Operations Research,

33(2):327–335, 2008.
4 D. Gale and L. S. Shapley. College admissions and the stability of marriage. American

Mathematical Monthly, 69:9–15, 1962.
5 D. Gale and M. Sotomayor. Ms. Machiavelli and the Gale-Shapley algorithm. American

Mathematical Monthly, 92(4):261–268, 1985.
6 D. Gusfield and R. W. Irving. The Stable Marriage Problem-Structure and Algorithm. The

MIT Press, 1989.
7 N. Immorlica and M. Mahidian. Marriage, honesty and stability. In Proceedings of

SODA’05, pages 53–62, 2005.
8 H. Kobayashi and T. Matsui. Cheating strategies for the Gale-Shapley algorithm with

complete preference lists. Algorithmica, 58:151–169, 2010.
9 M. S. Piny, F. Rossi, K. B. Veneble, and T. Walsh. Manipulation complexity and gender

neutrality in in stable marriage procedures. Auton. Agent Multi-Agent Systems, 22(183–
199), 2011.

10 A. E. Roth. Misrepresentation and stability in the marriage problem. Journal of Economic
Theory, 34:383–387, 1984.

11 A. E. Roth and U. G. Rothblum. Truncation strategies in matching markets-in search of
advice for participants. Econometrica, 67(1):21–43, 1999.

12 A. E. Roth and M. Sotomayor. Two-Sided Matching: A Study in Game Theoretic Modeling
and Analysis. Cambridge Univ. Press, 1990.

13 C-P. Teo, J. Sethuraman, and W-P. Tan. Gale-Shapley stable marriage problem revisited:
Strategic issues and applications. Management Science, 47(9):1252–1267, 2001.

Estimating The Makespan of The Two-Valued
Restricted Assignment Problem
Klaus Jansen1, Kati Land∗2, and Marten Maack3

1 Institute of Computer Science, University of Kiel, Kiel, Germany
kj@informatik.uni-kiel.de

2 Institute of Computer Science, University of Kiel, Kiel, Germany
kla@informatik.uni-kiel.de

3 Institute of Computer Science, University of Kiel, Kiel, Germany
mmaa@informatik.uni-kiel.de

Abstract
We consider a special case of the scheduling problem on unrelated machines, namely the Re-
stricted Assignment Problem with two different processing times. We show that the configuration
LP has an integrality gap of at most 5

3 ≈ 1.667 for this problem. This allows us to estimate the
optimal makespan within a factor of 5

3 , improving upon the previously best known estimation
algorithm with ratio 11

6 ≈ 1.833 due to Chakrabarty, Khanna, and Li [2].

1998 ACM Subject Classification F.2.2 Sequencing and Scheduling, G.1.6 Optimization

Keywords and phrases unrelated scheduling, restricted assignment, configuration LP, integrality
gap, estimation algorithm

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.24

1 Introduction

Scheduling on unrelated machines is a problem where we are given a set J of jobs and a setM
of machines, and the processing time of job j ∈ J on machine i ∈ M is given by pij . The
task is to find an assignment σ : J →M , called the schedule, that minimizes the makespan,
i.e. the maximum load maxi∈M

∑
j∈σ−1(i) pij of a machine.

Lenstra, Shmoys, and Tardos [6] proved that it is NP-hard to approximate the makespan
with a factor less than 1.5. On the other hand, they presented an algorithm with approxi-
mation ratio 2. The algorithm uses a rounding procedure for the following, natural linear
programming formulation, which is commonly known as the assignment linear program (LP):∑

i∈M
xij = 1 for each j ∈ J (1)∑

j∈J
pijxij ≤ T for each i ∈M (2)

xij = 0 for each i ∈M, j ∈ J with pij > T (3)
xij ≥ 0 for each i ∈M, j ∈ J . (4)

Here, T is the desired makespan. We denote the above LP by ALP(T). It is clear that
there is a schedule with makespan T if and only if ALP(T) has an integral solution. Note
that equation 3 strengthens the otherwise intuitive formulation by forbidding fractional
assignments if the whole job cannot be feasibly processed on a machine.

∗ Research was supported by German Research Foundation (DFG) project JA 612/15-1.

© Klaus Jansen, Kati Land, and Marten Maack;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 24; pp. 24:1–24:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Estimating The Makespan of The Two-Valued Restricted Assignment Problem

Closing this gap between approximability and inapproximability is a major open problem in
scheduling theory. Since 1990, the approximation ratio was slightly improved to 2−1/|M | [7].
Because no substantial progress has been made for more than 20 years, the focus has
shifted towards special cases of the problem. One important special case is the so called
Restricted Assignment Problem, where for each job j ∈ J there is a number pj such that
{pij | i ∈ M} ⊆ {pj ,∞}. A natural interpretation is that for each job j there is a
set M(j) ⊆M of machines on which j may be processed, and the processing time is the same
on each of these machines. The restricted assignment case may look easier than the general
problem, but the inapproximability bound of 1.5− ε still holds, even if we further restrict
that |M(j)| ≤ 2 and pj ∈ {1, 2} for each job j [3].

A breakthrough was achieved by Svensson [9], who considered another, stronger LP
formulation, the configuration LP. To introduce it, we require some notation. For each set
J ′ ⊆ J of jobs we define p(J ′) =

∑
j∈J′ pj . We also abbreviate p(j) = p({j}) for a single

job j. A configuration for a machine i is a set C ⊆ J with
∑
j∈C pij ≤ T We denote the

set of all configurations for machine i that respect the target makespan T by C(i, T). The
configuration LP CLP(T) is defined as∑

C∈C(i,T)

xi,C ≤ 1 for each i ∈M (5)

∑
i∈M

∑
C∈C(i,T)
j∈C

xi,C ≥ 1 for each j ∈ J (6)

xi,C ≥ 0 for each i ∈M , C ∈ C(i, T). (7)

The first constraint enforces that at most one configuration is assigned to each machine,
and the second constraint ensures that each job is completely assigned. Svensson [9] proved
that the integrality gap of the configuration LP is at most 33/17 ≈ 1.941 for the Restricted
Assignment Problem.

Usually, the integrality gap of an integer linear program is defined by supI
OPT(I)

OPTLP(I) ,
where OPT(I) and OPTLP(I) denote the optimal integer and fractional solutions of the
LP. In this case however, we have a feasibility program. One therefore defines OPT(I) =
min{T | CLP(T) has a feasible integer solution} and OPTLP(I) analogously. Indeed, with
this definition, OPT(I) is equal to the makespan of an optimal schedule. We will write OPT
or OPTLP instead of OPT(I) and OPTLP(I) if the instance is clear from the context.

Even though the number of variables in CLP(T) may be exponentially large, one can find
an approximate solution it in polynomial time via its dual [1]: If we interpret CLP(T) as
maximizing a zero objective function, the dual is given by

min
∑
i∈M

yi −
∑
j∈J

zj (8)

yi ≥
∑
j∈C

zj for each i ∈M , C ∈ C(i, T) (9)

zj ≥ 0 for each j ∈ J (10)

Finding a violated constraint of the dual is equivalent to |M | knapsack problems, and we
can find an approximate solution to these knapsack problems using an FPTAS. Using this
FPTAS as separation oracle, a solution to CLP(T) can be found. This solution then may
contain configurations C with T < p(C) ≤ (1 + ε)T , where ε > 0 is the chosen precision.

Performing a binary search for the best target makespan T , we can therefore estimate
OPTLP(I) within a factor 1+ε in polynomial time for arbitrary small ε > 0. Using Svenssons

K. Jansen, K. Land, and M. Maack 24:3

Table 1 An instance with integrality gap 3/2.

Job 1 2 3 4 5 6 7

pj 1 1 1 2 1 1 1
M(j) 1 1,2 1,2 2,3 3,4 3,4 4

1 2 3 4

j1

j2

j3

j4

j5

j6

j7

(a) An optimal integral solution
1 2 3 4

j1

j2 j3

j2

j3

j4 j4

j5

j6 j5 j6

j7

(b) An optimal fractional solution

Figure 1 Solutions for the instance given in Table 1.

bound on the integrality gap then allows us to estimate the optimum makespan OPT(I)
within a factor of 33/17 + ε in polynomial time, where ε > 0 is again an arbitrary small
constant. It is a major open problem to find a polynomial rounding procedure whose
approximation guarantee matches the integrality gap.

Better results have been obtained when the instances have further restrictions. For
example, if |M(j)| ≤ 2 for each j ∈ J , there is a 1.75-approximation [3]. Recently, Huang
and Ott [4] gave improved algorithms for the case that the constraint |M(j)| ≤ 2 only applies
to big jobs.

We will in particular investigate the case of only two types of jobs: small jobs with
processing time s and big jobs with processing time b. Even in this case the integrality gap
is at least 3

2 , as the instance given in Table 1 and its solutions depicted in Figure 1 show.
Svensson [9] proved that the integrality gap of the configuration LP in this case is at

most 5
3 + s if b = OPTLP = 1. Kolliopoulos and Moysoglou [5] pointed out that this bound

also holds for OPTLP < 2b and generalizes to 5
3 + s

OPTLP
when b < OPTLP < 2b. Note that

if OPTLP ≥ 2b, the analysis of Lenstra, Shmoys, and Tardos [6] bounds the integrality gap
of the assignment LP by 1.5, and the configuration LP is at least as strong.

Kolliopoulos and Moysoglou [5] developed a (2 − s
b)-approximation for the case that

b is a multiple of s. By rounding general instanes to this form when s
b ≥ 0.2 and using

Svenssons result when s
b < 0.2, the makespan can be estimated within a factor of 1.883.

Recently, Chakrabarty, Khanna, and Li [2] found a (2− s
b)-approximation for the general

case and therefore improved the estimation ratio to 1.833. They also presented a constructive
algorithm with approximation ratio 2− δ for a very small δ > 0.

Our Contribution

In section 2, we conduct a tighter analysis of Svensson’s [9] local search algorithm that
depends on the structure of the fractional solution. In particular, we distinguish the cases
that OPTLP−b or OPTLP is a multiple of s. Note that either OPTLP−b or OPTLP must be
a multiple of s, because a configuration of length OPTLP either contains one big job, or only
small jobs. As result, we present better bounds on the integrality gap of the configuration
LP. A peculiarity of these bounds is that they are piecewise linear functions with infinitely

SWAT 2016

24:4 Estimating The Makespan of The Two-Valued Restricted Assignment Problem

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11

1.2

1.4

1.6

1.8

2

5
3

s
b

va
lu

e
of

bo
un

d
Bound from Theorem 2, OPTLP − b is a multiple of s
Bound from Theorem 1
Bound from Corollary 11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11

1.2

1.4

1.6

1.8

2

5
3

s
b

va
lu

e
of

bo
un

d

Bound from Theorem 2, OPTLP is a multiple of s

Figure 2 Comparison of bounds on the integrality gap for OPTLP = b.

many discontinuities. Our bounds are largest in the case OPTLP = b, for which they are
depicted in Figure 2.

We improve this bound further in Sections 3 and 4 and obtain our main result:

I Theorem 1. The integrality gap of the configuration LP for the Restricted Assignment
Problem with two different processing times is at most 5

3 .

This bound also allows us to estimate the optimal makespan within a factor of 5
3 ≈ 1.667,

improving upon the previously best possible ratio 1.833 [2].
The proof of Theorem 1 is split in two parts. If sb ≤

1
3 , we study the shape of the bounds

we obtained in section 2 more closely in section 3. Our idea is to modify instances for which
the bound from section 2 is larger than 5

3 by scaling one of the processing times s and b such
that we get a better bound for the modified instance. We then bound the integrality gap of
the original instance in terms of the integrality gap of the newly constructed instance.

In section 4, we present an algorithm with approximation ratio 2− s
b . The algorithm is

based on solving an augmented assignment LP and rounding the solution using a technique
due to Shmoys and Tardos [8]. As a corollary, the integrality gap of the augmented assignment
LP and the (stronger) configuration LP is bounded by 2 − s

b , which proves Theorem 1 if
s
b ≥

1
3 . We should note that the approximation ratio 2− s

b was independently obtained by
Chakrabarty, Khanna, and Li [2] using different methods, but they do not use LPs, and
therefore cannot derive any bound on the integrality gap. Moreover, our algorithm has an
additive approximation guarantee of OPTLP + b− s, which might be of independent interest.

2 Bounding the Integrality Gap by Local Search

In this section we present an improved bound on the integrality gap of the configuration
LP. Our proof requires that each configuration in the optimal fractional solution contains
at most one big job. To satisfy the first condition, it is sufficient (but not necessary) that

K. Jansen, K. Land, and M. Maack 24:5

OPTLP < 2b. The argumentation also works for a restricted variant of the problem where
only one big job per configuration is permitted. We further distinguish whether OPTLP − b
or OPTLP is a multiple of s. Note that, if OPTLP − b is not a multiple of s, then OPTLP is,
and vice-versa, so at least one of the cases always holds, and both hold exactly if b is a
multiple of s

We will show the following, see also Figure 2:

I Theorem 2. Consider an instance of the resticted assignment problem with jobs of two
sizes s < b such that each configuration in the optimal fractional solution contains at most
one big job.
1. If OPTLP − b is a multiple of s, then the integrality gap of the CLP is at most

(a) 1 + (b−s)
OPTLP

if 2
5 ≤

s
b <

1
2 and

(b) 1 + d 2
3 (bs − 1)e s

OPTLP
otherwise.

2. If OPTLP is a multiple of s and s
b ≤

2
5 , then the integrality gap of the CLP is at most

(a) 1 +
(
b− b b3s + 2

3c · s
)
· 1

OPTLP
.

An upper bound on the values given in Theorem 2 is 5
3 + 1

3
s

OPTLP
. Recall that Svenssons [9]

bound generalizes to 5
3 + s

OPTLP
for b < OPTLP < 2b [5]. To prove Theorem 2, we utilize

the local search technique due to Svensson [9], but with an improved analysis.
For simplicity, we scale the processing times such that OPTLP = 1 from now on. The

high-level overview is as follows: we use a family (AR)R>0 of algorithms, where each
member AR takes a partial schedule σ, i.e. a feasible schedule for a subset J ′ ⊂ J of the jobs,
and a currently unscheduled job jnew as parameters. It should return a feasible schedule
for J ′ ∪ {jnew}. In addition, AR maintains the invariant that the makespan is at most 1 +R.
Given an instance of the problem for that CLP(1) is feasible, iteratively applying AR to
each job, starting with an empty schedule, yields a schedule for all jobs with makespan at
most 1 + R. Note that we cannot give a polynomial bound on the running time of this
procedure, but the mere existence of the resultant schedule proves that the integrality gap is
bounded by 1 +R. The crucial point is indeed that the algorithm successfully terminates at
all, and we can prove this if R meets certain requirements. A more detailed description of
the algorithm is given in the next section.

2.1 Detailed Description of the Algorithm
The main idea is to move jobs from their current machine to another machine while main-
taining the invariant that the makespan is at most 1 +R. In the beginning, we wish to move
only the unassigned job jnew to some machine. Suppose that all machines in M(j) have too
much load, otherwise we are done. The algorithm then will try to reduce the load on some
machine i ∈ M(jnew) by moving some job j ∈ σ−1(i) away from i. If such a move is again
not immediately possible, the process repeats. Since we are trying to reduce the load on
machine i, moving more jobs to i may be unhelpful, depending on the job’s sizes. Thus the
algorithm needs to store which jobs it currently tries to move and which machines it should
not try to move jobs to, and it does so by the use of blockers. Whenever the algorithm decides
that a move has the potential to be helpful but does not immediately lead to a schedule
with makespan at most 1 + R, a blocker is created. More formally, a move is a pair (j, i),
where j is a job and i ∈ M(j) \ {σ(j)}. We distinguish three types of moves: (j, i) is a small
move if j is small, a big-to-small move if j is big and σ−1(i) contains only small jobs, and
a big-to-big move if j is big and σ−1(i) contains a big job. If assigning σ(j) = i yields a
schedule of makespan at most 1 +R, the move is called valid, otherwise it is invalid. When
a potentially helpful move (j, i) is found to be invalid, a blocker B is created. B is a tuple

SWAT 2016

24:6 Estimating The Makespan of The Two-Valued Restricted Assignment Problem

consisting of a machine m(B) = i, the set J(B) of jobs we wish to move away from m(B),
and the move mv(B) = (j, i) that caused the creation of B. If (j, i) is a big-to-big move, we
call B a big blocker and set J(B) = {jbig}, where jbig is the single big job on i. Creating this
big blocker will prevent all attempts to move another big job to i. The intuition is that the
move (j, i) only can become valid if jbig is moved away from i and no other big job replaces
it. Note that we use the fact that no two big jobs can be on one machine. If (j, i) is a small
or big-to-small move, we set J(B) = σ−1(i) and call B a small blocker. The algorithm will
not try to move any job to machine i, increasing the likelihood that (j, i) becomes valid. All
blockers are stored in a list L = B0, . . . , Bt in order of creation.

We proceed to describe when the algorithm deems a move potentially helpful. Let
J(L) = {jnew} ∪

⋃t
k=0 J(Bk) be the set of all jobs we wish to move. Define the set of

machines that are contained in a big blocker by MB(L), the set of machines that are
contained in a small blocker by MS(L), and M(L) = MS(L) ∪MB(L). Furthermore denote
the set of small jobs on machine i that cannot be moved to any other machine by Si :=
{j ∈ σ−1(i) | j is small and M(j) \ {i} ⊆Ms(L)}. We now define the potential moves. A
small move (j, i) is a potential move when j ∈ J(L) and i /∈Ms(L). A big-to-small or big-to-
big-move (j, i) is a potential move when j ∈ J(L), i /∈M(L), and p(Si) ≤ 1− b+R. In the
presence of several potential moves, the algorithm chooses one with minimum lexicographical
value, defined as

Val(j, i) =

(0, 0) if (j, i) is valid,
(1, p(σ−1(i))) if (j, i) is small move,
(2, p(σ−1(i))) if (j, i) is big-to-small move, and
(3, 0) if (j, i) is big-to-big move.

(11)

The complete procedure is summarized in Algorithm 1.

Algorithm 1: AR(σ, jnew)
1 Initialize L← empty list
2 while σ(jnew) = ⊥ do
3 Choose a potential move (j, i) of minimum lexicographic value
4 if (j, i) is valid then
5 Let Bk be the blocker in L = B0, . . . , Bt such that j ∈ J(Bk)
6 Remove Bk and all blockers added after it from L: L← B0, . . . , Bk−1

7 Update Schedule: σ(j)← i

8 else if (j, i) is small or big-to-small then
9 Create small blocker B with J(B) = σ−1(i) \ J(L), m(B) = i, mv(B) = (j, i)

10 Append B to L
11 else # then (j, i) is a big-to-big move
12 Let jbig be the big job in σ−1(i)
13 Create big blocker B with J(B) = {jbig}, m(B) = i, mv(B) = (j, i)
14 Append B to L

15 return σ

2.2 Proof of Termination
As already mentioned, the crucial step is to prove that the algorithm is successful in creating
a feasible schedule. This is of course equivalent to the termination of the algorithm. Svensson
proved the termination for the special case R = 2

3 + s.

K. Jansen, K. Land, and M. Maack 24:7

I Lemma 3 ([9]). Let b = 1. Then A 2
3 +s always terminates, unless CLP(1) is infeasible.

We provide a stronger and more general variant of Lemma 3.

I Lemma 4. Let R ≥ s and let each configuration in the optimal solution contain at
most one big job. Define k = bRs c and δ = (k + 1)s − R ∈ (0, s] and define l = bR−bs c
and ε = (l + 1)s− (R− b) ∈ (0, s].
1. If OPTLP − b is a multiple of s and there exists 0 ≤ c ≤ b such that

b+ s−R− δ ≤ c ≤ R+ δ (12)
2R+ 2δ + c+ 2(1− b)− s ≥ 2 (13)
2R+ δ − b− s ≥ 0, (14)

then AR always terminates, unless CLP(1) is infeasible.
2. If OPTLP is a multiple of s and there exists 0 ≤ c ≤ b such that

b+ s−R− ε ≤ c ≤ R+ ε (15)
2R+ 2ε+ c+ 2(1− b)− s ≥ 2 (16)
2R+ δ + ε− b− s ≥ 0, (17)

then AR always terminates, unless CLP(1) is infeasible.

Note that Lemma 3 can be derived from Lemma 4 by setting b = 1, R = 2
3 + s and c = 2

3 ,
but none of the constraints are tight for these values. The improvement is mainly due to
the introduction of ε and δ as the remainder of the division of R − b respectively R by s:
in several parts of the analysis, one can see that some multiple of s is larger than R− b or
R, so we know it is at least the next multiple of s, which we can now express as R− b+ ε

and R+ δ. Since the value of ε and δ can be anywhere in the interval (0, s], the gain varies
greatly, and causes the discontinuities in the resulting bounds. For a more detailed proof of
Lemma 4 we refer our readers to the full version of the paper.

Our second improvement is to not only consider R = 2
3 + s and c = 2

3 , but to allow
larger values for c, and subsequently, smaller values for R, depending on s and b. We have
determined values for R (and c) that satisfy the prerequisites of Lemma 4. In the case that
OPTLP − b is a multiple of s, we can prove that these values are best possible.

I Lemma 5.
1. If OPTLP − b is a multiple of s, the following are the smallest values for R that satisfy

the prerequisites of Lemma 4, case 1:
(a) R = b− s if 2

5 ≤
s
b <

1
2 and

(b) R = d 2
3 (bs − 1)es otherwise.

2. If OPTLP is a multiple of s and s
b ≤

2
5 , then R = b− b b3s + 2

3cs satisfies the prerequisites
of Lemma 4, case 2.

We here show that the claimed values for case 1 satisfy the prerequisites of Lemma 4.
We omit the proofs for case 2 and the optimality in case 1.
I Claim 1. In case (a), i.e. if OPTLP−b is a multiple of s and 2

5 ≤
s
b <

1
2 , the value R = b−s

satisfies the prerequisites of Lemma 4, case 1.

Proof. Recall that k =
⌊
R
s

⌋
and δ = (k+1)s−R. Also note that 1 < R

s ≤
3
2 since 2

5 ≤
s
b <

1
2 .

Therefore k = 1 and δ = 3s− b. Choose c = R+ δ = 2s. It is easily confirmed that 0 ≤ c < b

and conditions (12), (13), and (14) are satisfied. J

SWAT 2016

24:8 Estimating The Makespan of The Two-Valued Restricted Assignment Problem

I Claim 2. In case (b), i.e. if OPTLP − b is a multiple of s and s
b <

2
5 or s

b ≥
1
2 , the value

R = d 2
3 (bs − 1)es satisfies the prerequisites of Lemma 4, case 1.

Proof. Remember that processing times of the jobs satisfy 0 < s < b ≤ 1. Obviously, we
have k = d 2

3 (bs − 1)e and δ = s. Also note that

R =
⌈

2
3

(
b

s
− 1
)⌉

s ≥ 2
3

(
b

s
− 1
)
s = 2

3(b− s). (18)

Now set c = min{b, R+ δ}. Then condition (12) is satisfied because

b−R+ s− δ = b−R ≤ b− 2
3(b− s) = 1

3b+ 2
3s <

2
3b+ 1

3s

= 2
3(b− s) + s ≤ R+ s = R+ δ

(19)

and b−R+ s− δ = b−R ≤ 1−R < 1.
Considering condition (13) we have

2R+ 2δ + c+ 2(1− b)− s ≥ 4
3(b− s) + s+ c+ 2− 2b = −2

3b−
1
3s+ c+ 2, (20)

and the latter is at least 2 if c ≥ 2
3b + 1

3s holds. This is true since b > 2
3b + 1

3s and
R+ δ ≥ 2

3 (b− s) + s = 2
3b+ 1

3s.
To finally prove condition (14), we consider three cases. Note that (14) simplifies to

R ≥ 1
2b since δ = s.

Case 1: s
b <

1
4 . We have R ≥ 2

3 (b− s) > 2
3 (b− 1

4b) = 1
2b.

Case 2: 1
4 ≤

s
b <

2
5 . By the bounds on s

b we get k = 2, so R = 2s ≥ 2 1
4b = 1

2b.
Case 3: s

b ≥
1
2 . In this case k = 1 and R = s ≥ 1

2b. J

3 Improving the Bound by Scaling

In this section we prove our main result, Theorem 1. Remember that the result by Lenstra,
Shmoys, and Tardos [6] shows that the integrality gap is at most 3

2 if OPTLP ≥ 2b. If sb ≥
1
3 ,

we obtain that the integrality gap is at most 2− s
b ≤

5
3 from section 4. Thus we can restrict

our attention to instances I with s
b <

1
3 and OPTLP < 2b. To improve upon the bound from

Theorem 2 for the remaining instances, we use a new scaling technique that considers several
cases, depending on whether OPTLP − b or OPTLP is a multiple of s and the value of sb . We
denote the integrality gap of the configuration LP for an instance I by IG(I) throughout
this section. Remember that we scaled the processing times such that OPTLP = 1.

3.1 Case 1: OPTLP(I) − b is a multiple of s

In this case, the longest configuration of the optimal fractional solution contains a big job,
i.e. there is x ∈ Z≥0 with OPTLP(I) = b + xs. Define k = d 2

3 (bs − 1)e. Then Theorem 2
yields

IG(I) ≤ 1 + ks. (21)

We can prove another bound by scaling s. First, we describe the connection between k
and s

b . Since k ≥ 2
3 (bs − 1) we have s

b ≥
2

3k+2 . Similarly, k − 1 < 2
3 (bs − 1) and therefore

s
b <

2
3k−1 . It follows that

s
b ∈ [2

3k+2 ,
2

3k−1). This interval actually corresponds to one of the
continuous segments of our bound, see also Figure 2. The integrality gap increases as s

b

K. Jansen, K. Land, and M. Maack 24:9

approaches 2
3k−1 and jumps down again at s

b = 2
3k−1 . Therefore, if

s
b is slightly below 2

3k−1 ,
we can increase the processing time s of small jobs to s′ such that s′

b = 2
3k−1 .

Define the instance I ′ identical to I, but with small jobs having processing time s′ = 2b
3k−1 .

Since s ≤ s′, we have OPT(I) ≤ OPT(I ′). Define α = s′

s = 2b
(3k−1)s . We first prove that

OPTLP(I ′) ≤ αOPTLP(I). For this, let T = OPTLP(I) and consider a feasible solution x of
CLP(T, I). Then x is also a feasible solution of CLP(αT, I ′), since the processing time of a
configuration increases at most by factor α in the modified instance I ′. We therefore have

IG(I) = OPT(I)
OPTLP(I) ≤

OPT(I ′)
OPTLP(I ′) 1

α

≤ αIG(I ′). (22)

Define

s0 = − 1
2k +

√
1

4k2 + 2b
(3k − 1)k ·

(
1 + (k − 1)2b

3k − 1

)
. (23)

We will later show that scaling is beneficial if s ≥ s0. In order to apply Theorem 2 to I ′, we
need to prove that the prerequisites hold. In particular, we show that OPTLP(I ′)− b is a
multiple of s′:

I Lemma 6. Let I be an instance with small processing time s ≥ s0 and OPTLP(I) = b+xs.
Let I ′ be the modified instance with small processing time s′ = 2b

3k−1 . Then OPTLP(I ′) =
b+ xs′.

Proof. We first claim without proof that s0 > 2b
3k . Now consider an optimal fractional

solution to I. We show that this is a solution to I ′ with makespan at most b+ xs′. Let C
be any configuration that occurs in this solution. Denote by ` and `′ the length of C when
small jobs have length s and s′, respectively. Then ` ≤ b+ xs. If C contains a big job, we
have ` = b + ys for some y ≤ x. It follows that `′ = b + ys′ ≤ b + xs′. Otherwise, C only
contains small jobs and ` = ys for some y ∈ N. Define z = y − x ∈ Z. Since OPTLP(I) is
not a multiple of s, we have zs+ xs = ` < OPTLP(I) = b+ xs and therefore zs < b. This
implies z < b

s . Remember that s ≥ s0 >
2b
3k , so

s
b >

2
3k . This implies z < b

s <
3k
2 . Since z is

integral, we also have z ≤ 3k−1
2 . It follows that

`′ = ys′ = zs′ + xs′ ≤ 3k − 1
2

2b
3k − 1 + xs′ = b+ xs′. (24)

Therefore, OPTLP(I ′) ≤ b+ xs′.
Now assume that there is a fractional solution for I ′ with makespan less than b + xs′.

We will show that this implies that OPTLP(I) < b + xs, a contradiction. Let C be any
configuration occurring in the optimal solution and define ` and `′ as before. Then `′ < b+xs′.
If C contains a big job, we have ` = b+ ys for some y ∈ Z≥0. We have b+ ys′ = `′ < b+ xs′,
thus y < x and ` = b+ ys < b+ xs. Otherwise, C contains only small jobs and ` = ys for
some y ∈ N. Define again z = y − x ∈ Z. Then zs′ + xs′ = `′ < b+ xs′, therefore zs′ < b.
This implies ` = ys = zs+ xs < zs′ + xs < b+ xs. J

To apply Theorem 2, we also have to scale I ′ by β = 1
OPTLP(I′) ≤ 1 to obtain the

instance I ′′ with OPTLP(I ′′) = 1. In I ′′ the processing times are b′′ = b ·β and s′′ = s′ ·β ≤ s′.
One can easily see that I ′ and I ′′ have the same integrality gap:

IG(I ′) = OPT(I ′)
OPTLP(I ′) = β ·OPT(I ′)

β ·OPTLP(I ′) = OPT(I ′′)
OPTLP(I ′′) = IG(I ′′). (25)

SWAT 2016

24:10 Estimating The Makespan of The Two-Valued Restricted Assignment Problem

Also s
b <

1
3 implies k ≥ 2 and thus s′

b = 2
3k−1 ≤

2
5 . This finally allows us to apply Theorem 2.

From the definition s′ = 2b
3k−1 we can calculate k − 1 = 2

3 (bs′ − 1). Since k is integral, we
have d 2

3 (bs′ − 1)e = k − 1. The integrality gap of the original instance I is thus bounded by

IG(I) ≤ αIG(I ′)0 = αIG(I ′′) ≤ α(1 + (k − 1)s′′) ≤ α(1 + (k − 1)s′). (26)

We will determine which of the two bounds (21) and (26) is better depending on the values
of s and b.

I Lemma 7. 1 + ks ≥ α(1 + (k − 1)s′) holds if and only if s ≥ s0.

For a proof we refer our readers to the full version of our work.
It turns out that inqualities (26) and (21) can be combined if b is not too large.

I Lemma 8. If sb <
1
3 , OPTLP(I)− b is a multiple of s, and b ≤ 80

81 , the integrality gap of
the CLP is at most 5

3 .

Proof. We consider two cases.
Case 1: s ≤ s0. Then the integrality gap is at most 1 + ks ≤ 1 + ks0 by inequality (21).
Case 2: s > s0. Remember that we scaled the processing time of small jobs to s′ = αs = 2b

3k−1 .
One can easily see that the term

α(1 + (k − 1)s′) = 2b
(3k − 1)s

(
1 + (k − 1)2b

3k − 1

)
= 1
s

(
2b

3k − 1 + (k − 1)4b2

(3k − 1)2

)
(27)

is monotonically decreasing with respect to s. From Lemma 7 and α = s′

s we also know
that s′

s0
(1 + (k − 1)s′) ≤ 1 + ks0. We therefore have that the integrality gap is bounded by

α(1 + (k − 1)s′) ≤ 1 + ks0 for all s > s0.
For both cases we can compute

1 + ks0 = 1− 1
2 +

√
1
4 + 2bk

(3k − 1) ·
(

1 + (k − 1)2b
3k − 1

)
= 1

2 + 1
2(3k − 1) ·

√
(3k − 1)2 + 8bk(3k − 1 + (k − 1)2b).

(28)

The last term attains its maximum 1
4 · (2 +

√
18b+ 4) at k = 2. It is easy to verify that this

is at most 5
3 as long as b ≤ 80

81 ≈ 0.988. J

In the case that b > 80
81 , we scale the processing time of small jobs to s′ = 2b

3k−1 if s > 2b
3k .

I Lemma 9. If sb <
1
3 , OPTLP(I)− b is a multiple of s, and b > 80

81 , the integrality gap of
the CLP is at most 5

3 .

Proof. In our analysis, we again distinguish the two cases whether small jobs were rounded
or not. We use the same scaled instance I ′ from above, where we scaled s to s′ = 2b

3k−1 .
Remember that OPTLP = b+ xs for x ∈ N.
Case 1: s ≤ 2b

3k . We can directly apply Theorem 2 and obtain the bound

IG(I) ≤ 1 + ks ≤ 1 + k
2b
3k ≤

5
3 . (29)

Case 2: s > 2b
3k . We claim without proof that OPTLP(I ′) ≤ 1 + 1

79s.

K. Jansen, K. Land, and M. Maack 24:11

Similar as in inequality (22), we find that IG(I) ≤ (1 + 1
79s)IG(I ′). As above, we have

to scale I ′ to I ′′ such that OPTLP(I ′′) = 1. Applying Theorem 2 to I ′′ and using s < 2b
3k−1

and b ≤ 1, we obtain

IG(I) ≤
(

1 + 1
79s

)
IG(I ′) =

(
1 + 1

79s
)
IG(I ′′)

≤
(

1 + 1
79s

)(
1 + (k − 1) s′

OPTLP(I ′)

)
≤
(

1 + 1
79s

)
(1 + (k − 1)s′)

<

(
1 + 2

79(3k − 1)

)(
1 + 2(k − 1)

3k − 1

)
=

15k2 − 1096
79 k + 231

79
9k2 − 6k + 1 .

(30)

The last term can be seen to be monotonically increasing for k ≥ 1 and has the limit 5
3 . J

3.2 Case 2: OPTLP(I) is a multiple of s

Using Theorem 2, case (b) with OPTLP = 1 and k = b 1
3
b
s + 2

3c we have

IG(I) ≤ 1 +R = 1 + b− ks. (31)

Since k ≤ 1
3
b
s + 2

3 , we have s
b ≤

1
3k−2 . Similarly, k + 1 > 1

3
b
s + 2

3 and therefore s
b >

1
3k+1 . It

follows that s
b ∈ (1

3k+1 ,
1

3k−2].
Now assume that s

b ≥
1

3k . Then the integrality gap IG(I) is bounded by

1 + b− ks ≤ 1 + b− k b

3k = 1 + 2
3b ≤

5
3 , (32)

since b ≤ 1.
Finally, we have the case that s

b ∈ (1
3k+1 ,

1
3k). Our bound (31) increases when s

b

approaches 1
3k+1 and jumps down when it reaches that value, see also Figure 2. So we create

an instance I ′ by rounding the running time b of big jobs up to b′ = (3k + 1)s. Obviously,
OPT(I ′) ≥ OPT(I). On the other hand, the largest configuration in the fractional optimum
has the height xs for some x ∈ Z≥1, and any configuration that contains a big job has
height b + ys ≤ xs for some y ∈ Z≥0. We assume that b + ys < xs, because otherwise b
and therefore OPTLP(I) − b were also a multiples of s, and we could use the proof from
section 3.1. Then, since b ∈ (3ks, 3ks+ s), we have

xs− (y + 3k)s > b+ ys− ys− 3ks = b− 3ks > 0 (33)
and therefore xs− (y + 3k)s ≥ s. This implies

b′ + ys = (3k + 1)s+ ys = (y + 3k)s+ s ≤ xs− s+ s = xs, (34)

i.e. OPTLP(I ′) = OPTLP(I). In particular,

IG(I) = OPT(I)
OPTLP(I) ≤

OPT(I ′)
OPTLP(I ′) = IG(I ′) (35)

and OPTLP(I ′) is a multiple of s. Note that⌊
1
3
b′

s
+ 2

3

⌋
=
⌊

1
3(3k + 1) + 2

3

⌋
= bk + 1c = k + 1. (36)

SWAT 2016

24:12 Estimating The Makespan of The Two-Valued Restricted Assignment Problem

Theorem 2, case (b) now yields

IG(I) ≤ IG(I ′) ≤ 1 +R = 1 + b′ − (k + 1)s

= 1 + (3k + 1)s− (k + 1)s = 1 + 2ks < 1 + 2k b

3k = 1 + 2
3b

≤ 1 + 2
3 = 5

3 .

(37)

4 An (OPT + b − s)-Approximation

In this section we present an algorithm for the restricted assignment problem with two
different processing times, which also proves a bound on the integrality gap of the CLP. Here,
we assume that the processing times s < b are positive integers. Our algorithm depends on
a result by Shmoys and Tardos [8] for a variant of unrelated scheduling with costs. Their
algorithm is based on solving and rounding the assignment LP. Consider the assignment
LP ALP(T) for a given makespan T . For i ∈ {1, . . . ,m} and q ∈ {s, b}, let aiq =

∑
j:pij=q xij

denote the fractional number of jobs of size q scheduled on machine i. We strengthen the LP
relaxation by adding two classes of constraints

aib ≤
⌊
T

b

⌋
for each i ∈M (38)

ais ≤
⌊
T

s

⌋
−
⌊
b

s

⌋
aib for each i ∈M . (39)

In the following, OPTLP denotes the optimal makespan of the augmented ALP. Our algorithm
solves the augmented ALP and applies the rounding procedure of Shmoys and Tardos [8] to
the solution.

I Theorem 10. For the restricted assignment problem with two different processing times
s < b there is a polynomial time algorithm that produces a schedule of length at most
min{OPTLP + b, bOPTLP/scs + bOPTLP/bc(b − s)}, yielding a bound of OPTLP + (b − s)
for the case b ≤ OPTLP < 2b. Furthermore the algorithm has a multiplicative performance
guarantee of (2− s

b).

We omit the analysis of the algorithm due to space restrictions. As a corollary we can bound
the integrality gap of the configuration LP.

I Corollary 11. The described algorithm can be modified to work with the CLP yielding the
same bounds. In particular, if an instance of the restricted assignment problem has only two
different processing times s < b, the integrality gap of the CLP is at most 2− s

b .

References
1 Nikhil Bansal and Maxim Sviridenko. The santa claus problem. In Proceedings of the 38th

Annual ACM Symposium on Theory of Computing, (STOC 2006), pages 31–40, 2006.
2 Deeparnab Chakrabarty, Sanjeev Khanna, and Shi Li. On (1, epsilon)-restricted assign-

ment makespan minimization. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2015), pages 1087–1101, 2015.

3 Tomáš Ebenlendr, Marek Krčál, and Jiří Sgall. Graph balancing: A special case of schedul-
ing unrelated parallel machines. Algorithmica, 68(1):62–80, 2014.

4 Chien-Chung Huang and Sebastian Ott. A combinatorial approximation algorithm for
graph balancing with light hyper edges. CoRR, abs/1507.07396, 2015.

K. Jansen, K. Land, and M. Maack 24:13

5 Stavros G Kolliopoulos and Yannis Moysoglou. The 2-valued case of makespan minimization
with assignment constraints. Information Processing Letters, 113(1):39–43, 2013.

6 Jan Karel Lenstra, David B Shmoys, and Éva Tardos. Approximation algorithms for
scheduling unrelated parallel machines. Mathematical programming, 46(1-3):259–271, 1990.

7 Evgeny V. Shchepin and Nodari Vakhania. An optimal rounding gives a better approx-
imation for scheduling unrelated machines. Operations Research Letters, 33(2):127–133,
2005.

8 David B Shmoys and Éva Tardos. An approximation algorithm for the generalized assign-
ment problem. Mathematical Programming, 62(1-3):461–474, 1993.

9 Ola Svensson. Santa claus schedules jobs on unrelated machines. In Proceedings of the 43rd
ACM Symposium on Theory of Computing (STOC 2011), pages 617–626, 2011.

SWAT 2016

A Plane 1.88-Spanner for Points in Convex
Position∗

Mahdi Amani1, Ahmad Biniaz2, Prosenjit Bose3,
Jean-Lou De Carufel4, Anil Maheshwari5, and Michiel Smid6

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
m_amani@di.unipi.it

2 School of Computer Science, Carleton University, Ottawa, Canada
ahmad.biniaz@gmail.com

3 School of Computer Science, Carleton University, Ottawa, Canada
jit@scs.carleton.ca

4 School of Electrical Engineering and Computer Science, University of Ottawa,
Ottawa, Canada
jdecaruf@uottawa.ca

5 School of Computer Science, Carleton University, Ottawa, Canada
anil@scs.carleton.ca

6 School of Computer Science, Carleton University, Ottawa, Canada
michiel@scs.carleton.ca

Abstract
Let S be a set of n points in the plane that is in convex position. For a real number t > 1, we
say that a point p in S is t-good if for every point q of S, the shortest-path distance between
p and q along the boundary of the convex hull of S is at most t times the Euclidean distance
between p and q. We prove that any point that is part of (an approximation to) the diameter
of S is 1.88-good. Using this, we show how to compute a plane 1.88-spanner of S in O(n) time,
assuming that the points of S are given in sorted order along their convex hull. Previously, the
best known stretch factor for plane spanners was 1.998 (which, in fact, holds for any point set,
i.e., even if it is not in convex position).

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling, G.2.2
Graph Theory, F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases points in convex position, plane spanner

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.25

1 Introduction

Let S be a set of n points in the plane. A geometric graph is a graph G = (S,E) with vertex
set S and edge set E consisting of line segments connecting pairs of vertices. The length (or
weight) of any edge (p, q) in E is defined to be the Euclidean distance |pq| between p and q.
The length of any path in G is defined to be the sum of the lengths of the edges on this path.
For any two vertices p and q of S, their shortest-path in G, denoted by δ∗G(p, q), is a path
in G between p and q that has the minimum length. We denote the length of δ∗G(p, q) by
|δ∗G(p, q)|. For a real number t > 1, the graph G is a t-spanner of S if for any two points
p and q in S, |δ∗G(p, q)| ≤ t|pq|. The smallest value of t for which G is a t-spanner is called

∗ Research supported by NSERC.

© Mahdi Amani, Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel, Anil Maheshwari,
and Michiel Smid;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 25; pp. 25:1–25:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 A Plane 1.88-Spanner for Points in Convex Position

the stretch factor of G. A large number of algorithms have been proposed for constructing
t-spanners for any given point set; see the book by Narasimhan and Smid [12].

In this paper, we consider plane spanners, i.e., spanners whose edges do not cross each
other. Chew [4] was the first to prove that plane spanners exist; in fact, this was the first
publication on geometric spanners. Chew proved that the L1-Delaunay triangulation of a
finite point set has stretch factor at most

√
10 ≈ 3.16 (observe that lengths in this graph

are measured in the Euclidean metric). In the journal version [5], Chew proves that the
Delaunay triangulation based on a convex distance function defined by an equilateral triangle
is a 2-spanner.

Dobkin et al. [7] proved that the L2-Delaunay triangulation is a t-spanner for t =
π(1 +

√
5)/2 ≈ 5.08. Keil and Gutwin [10] improved the upper bound on the stretch factor

to t = 2π
3 cos(π/6) ≈ 2.42. This was subsequently improved by Cui et al. [6] to t = 2.33 for the

case when the point set is in convex position. Currently, the best result is due to Xia [13],
who proved that t is less than 1.998.

Thus, the current best upper bound on the stretch factor of plane spanners is 1.998.
Regarding lower bounds, by considering the four vertices of a square, it is obvious that a plane
t-spanner with t <

√
2 does not exist. Mulzer [11] has shown that every plane spanning graph

of the vertices of a regular 21-gon has stretch factor at least 1.41611. Recently, Dumitrescu
and Ghosh [8] improved the lower bound to 1.4308 for the vertices of a regular 23-gon.

1.1 Our Results
In this paper, we consider plane spanners for point sets that are in convex position. Currently,
it is known that the stretch factor of any such spanner is less than 1.998. Moreover, the best
lower bound is 1.4308. We improve the upper bound to 1.88. Our approach is as follows.

Let S be a finite and non-empty set of points in the plane and assume that S is in convex
position. We denote the boundary of the convex hull of S by CH(S). For any two points
p and q in S, let δcwCH(S)(p, q) and δccwCH(S)(p, q) denote the clockwise and counter-clockwise
paths from p to q along CH(S), respectively, and let δ∗CH(S)(p, q) be the shorter one. Let
t > 1 be a real number, and let p and q be two points of S. We say that p is t-good for q in
S if |δ∗CH(S)(p, q)| 6 t|pq|. Observe that if p is t-good for q, then q is t-good for p. We say
that the point p ∈ S is t-good for S if p is t-good for all points of S. Define

t∗ = inf{t : each finite and non-empty set of points in the plane
that is in convex position has at least one t-good point}.

I Theorem 1. Let S be a finite and non-empty set of points in the plane that is in convex
position, and let t > t∗ be a real number. Then, there exists a plane t-spanner of S.

Proof. Consider algorithm PlaneSpanner(S, t) and the graph G = (S,E) that is returned
by this algorithm. Initially, B = S. This graph G is obtained by iteratively cutting an ear of
CH(B). Therefore, G is a plane triangulation of CH(S).

If |B| 6 3, then E is the set of edges of the convex hull of S. Thus, G is 1-spanner.
Assume |B| > 3. Consider one iteration of the while loop. Since t > t∗, there exists a t-good
point in B; let p be such a point that is chosen in line 4 of algorithm PlaneSpanner(S, t).
Let q and r be the two neighbors of p on CH(B). We add the edge (q, r) to E, and remove
the point p from B. See Figure 1(a). Since E contains the convex hull of B, it follows that for
any point p′ in B the shortest-path distance between p and p′ in G is at most |δ∗CH(B)(p, p′)|,
which is at most t|pp′|. Therefore, the graph G is a t-spanner of S. J

In order to apply this result, we need an estimate on the value of t∗:

M. Amani, A. Biniaz, P. Bose, J.-L. De Carufel, A. Maheshwari, and M. Smid 25:3

Algorithm 1 PlaneSpanner(S, t)
Input: A finite set S of points in the plane in convex position, and a real number t > t∗.
Output: A plane t-spanner of S.

1: E ← the set of edges of CH(S)
2: B ← S

3: while |B| > 4 do
4: p← a t-good point in B
5: q, r ← the two neighbors of p on CH(B)
6: E ← E ∪ {(q, r)}
7: B ← B \ {p}
8: return G = (S,E)

p

q

r

CH(B \ {p})
t-good point

Cα

wC(α)

(a) (b)

Figure 1 (a) The point p is t-good. The bold edges belong to G. (b) wC(α) in direction α.

I Problem. Is the value of t∗ finite? If it is, determine upper and lower bounds on t∗.

Our main result is a proof that
√

3 6 t∗ 6 1.88. In Section 2, we provide some
preliminaries. In Section 3, we prove that any point of S that is an endpoint of diameter
is 1.88-good. In Section 4, we consider an approximate diametral pair of S and prove that
both points in this pair are 1.88-good. Based on this, in Section 5, we show how to construct
a plane 1.88-spanner for S in O(n) time, assuming that the points of S are given in sorted
order along CH(S). Some further results are given in Section 6. Concluding remarks and
open problems are given in Section 7.

2 Preliminaries

For any two points p and q in the plane let pq denote the line segment between p and q, and
let R(p→q) denote the ray emanating from p and passing through q. For a point p and a real
number ρ > 0, let C(p, ρ) be the closed disk of radius ρ that is centered at p. For any two
points p and q in the plane let L(p, q) denote the lune of p and q, which is the intersection of
C(p, |pq|) and C(q, |pq|).

Let S be a finite and non-empty set of points in the plane. The diameter of S is the
largest distance among the distances between all pairs of points of S. Any pair of points
whose distance is equal to the diameter is called a diametral pair. Any point of any diametral
pair of S is called a diametral point.

I Observation 2. Let S be a finite set of at least two points in the plane, and let {p, q} be
any diametral pair of S. Then, the points of S lie in L(p, q).

SWAT 2016

25:4 A Plane 1.88-Spanner for Points in Convex Position

The following theorem is a restatement of Theorem 7.11 in [1].

I Theorem 3 (See [1]). If C1 and C2 are convex polygonal regions with C1 ⊆ C2, then the
length of the boundary of C1 is at most the length of the boundary of C2.

We also restate the following two-dimensional version of Cauchy’s surface-area formula.
For a closed convex curve C in the plane let wC(α) be the width of C in direction α; see
Figure 1(b).

I Theorem 4 (Cauchy [2]). The length |C| of the boundary of a closed convex curve C in
the plane is given by

|C| =
∫ π

0
wC(α) dα.

I Lemma 5. Let S be a finite set of at least two points in the plane that is in convex position,
and whose diameter is D. Then, for any two points p and q in S, |δ∗CH(S)(p, q)| 6

Dπ
2 .

Proof. Since CH(S) is a closed convex polygonal curve and the width of CH(S) in any
direction is at most the diameter of S, i.e. D, we have, by Theorem 4,

|CH(S)| =
∫ π

0
wCH(S)(α) dα 6

∫ π

0
D dα = Dπ.

Since p and q belong to CH(S), there are two edge-disjoint paths between p and q along
CH(S). The length of the shorter one, i.e. δ∗CH(S)(p, q), is at most Dπ

2 . J

I Lemma 6. Let t > 1 be a real number and let S be a finite set of at least two points in the
plane that is in convex position and whose diameter is D. Let p and s be any pair of distinct
points of S such that |ps| > Dπ

2t . Then t > π
2 and p is t-good for s.

Proof. Since the diameter of S is D, we have |ps| 6 D. Thus Dπ
2t 6 |ps| 6 D, which implies

t > π
2 . By Lemma 5, we have |δ∗CH(S)(p, s)| 6

Dπ
2 . Thus,

|δ∗CH(S)(p, s)|
|ps|

6
Dπ/2
Dπ/2t = t,

which implies that p is t-good for s. J

I Lemma 7. Let a, b, and c be three points in the plane, let β = ∠abc, and let t > 1 be a
real number. If β > 2 arcsin(1

t), then
|ab|+|bc|
|ac| 6 t.

Proof. Refer to Figure 2(a). Consider the triangle 4abc. Let ` be the bisector of β, and let
d be the intersection point of ` and ac. Let a′ (resp. c′) be the point on ` that is closest to a
(resp. c). We have |ab| = |aa′|/ sin(β/2) and |bc| = |cc′|/ sin(β/2). Thus,

|ab|+ |bc|
|ac|

= |aa
′|+ |cc′|

|ac| sin
Ä
β
2

ä 6
|ad|+ |dc|
|ac| sin

Ä
β
2

ä = 1
sin
Ä
β
2

ä 6
1

sin
(
2 arcsin(1

t)/2
) = t. J

I Theorem 8. t∗ >
√

3.

Proof. Let S = {p, q, r, p′, q′, r′} be the set of six points in the plane and in convex position
as shown in Figure 2(b). The points p, q, and r are the vertices of an equilateral triangle of
side-length 1. The point p′ is placed in the middle of qr; q′ and r′ are placed analogously. The

M. Amani, A. Biniaz, P. Bose, J.-L. De Carufel, A. Maheshwari, and M. Smid 25:5

ab

c

d
a′

c′

β
2

`

β
2

p q

p′

r

r′

q′

(a) (b)

Figure 2 (a) Proof of Lemma 7. (b) Proof of Theorem 8.

p

q

s

D
Dπ
2t

p

q

s

D

r

α

β
D sin

(
π
9

) p′

p

q

sD

r

x

α

y

(a) (b) (c)

Figure 3 Illustration of the proof of Theorem 9.

two paths between p and p′ along CH(S) have lengths equal to 3/2. Moreover, |pp′| =
√

3/2.
Thus,

|δ∗CH(S)(p, p′)|
|pp′|

= 3/2√
3/2

=
√

3.

Therefore, for any ε > 0, p is not (
√

3 − ε)-good for p′, and vice versa. This implies that
none of p, p′, and similarly, none of q, q′, r, r′ is (

√
3− ε)-good for S. J

3 Diametral Points are Good

In this section we will prove the following theorem.

I Theorem 9. Let S be a finite set of at least two points in the plane that is in convex
position. Then any diametral point of S is 1.88-good for S.

Throughout the rest of this section, let t = 1.88. Let D be the diameter of S, and let
{p, q} be any diametral pair of S, that is, |pq| = D. We are going to show that both p and q
are t-good for S. Because of symmetry, it suffices to show that p is t-good. By Observation 2,
all points of S are in the intersection of C(p,D) and C(q,D); see Figure 3.

Let s be any point of S \ {p}. We are going to show that p is t-good for s. If s = q, then
as a consequence of Lemma 5, p is π

2 -good for s and, thus, p is t-good for s. Assume s 6= q.
Depending on |ps| we differentiate between the following three cases:
|ps| > Dπ

2t . By Lemma 6, p is t-good for s; see Figure 3(a).
|ps| < D sin

(
π
9
)
. Without loss of generality assume s is to the right of R(p→q). See

Figure 3(b). Let r be the intersection point of R(q→s) with the line that is perpendicular

SWAT 2016

25:6 A Plane 1.88-Spanner for Points in Convex Position

to pq and passes through p. Consider the path δccwCH(S)(p, s). Because of convexity, this
path is to the right of R(q→s) and to the right of R(p→s). By Theorem 3, we have
|δccwCH(S)(p, s)| 6 |pr|+ |rs|. Let α = ∠pqs and β = ∠prs = ∠prq. Let p′ be the orthogonal
projection of p onto R(q→s). Then sinα = |pp′|

|pq| 6
|ps|
|pq| = |ps|

D < sin
(
π
9
)
and, thus, α < π

9 .
This implies that β = π

2 − α >
7π
18 . Since t = 1.88, we have β > 7π

18 > 2 arcsin(1
t). Thus,

using Lemma 7, we have
|δ∗CH(S)(p, s)|

|ps|
6
|δccwCH(S)(p, s)|

|ps|
6
|pr|+ |rs|
|ps|

6 t,

which implies that p is t-good for s.
D sin

(
π
9
)
6 |ps| 6 Dπ

2t . Refer to Figure 3(c). Observe that if s is on pq, then p is
1-good for s. Without loss of generality assume s is to the right of R(p→q). Let r be the
intersection point of R(q→s) and the boundary of C(q,D). Consider the path δccwCH(S)(p, s).
Because of convexity, this path is to the right of R(q→s) and to the right of R(p→s). Note
that |δ∗CH(S)(p, s)| 6 |δccwCH(S)(p, s)|, and by Theorem 3 we have |δccwCH(S)(p, s)| 6 |rs|+ |Ùpr|,
where |Ùpr| denotes the length of the counter-clockwise arc on C(q,D) from p to r. In
order to prove that p is t-good for s it is sufficient to prove that
|rs|+ |Ùpr|
|ps|

6 t,

which is equivalent to

t|ps| − |rs| − |Ùpr| > 0. (1)

Let x = |ps|, y = |qs|, and α = ∠pqs. Notice that D sin
(
π
9
)
6 x 6 Dπ

2t , y 6 D, and
0 6 α 6 π

2 . By the law of cosines we have x2 = D2 + y2 − 2Dy cosα, which implies that

y = D cosα±
»
x2 +D2(cos2 α− 1).

For a fixed value of α, x is minimum when R(q→s) is tangent to C(p, x). This implies that
x > D sinα, and consequently α 6 arcsin

(
x
D

)
. Note that |rs| = D − y and |Ùpr| = Dα.

Thus, in view of Inequality (1) we have to show that

tx− |rs| − |Ùpr| = tx−
(
D −

(
D cosα±

»
x2 +D2(cos2 α− 1)

))
−Dα > 0, (2)

for all D sin
(
π
9
)
6 x 6 Dπ

2t and 0 6 α 6 arcsin
(
x
D

)
. Without loss of generality assume

that D = 1. Observe that in the range for x and α, the radicand in
√
x2 + cos2 α− 1 is

non-negative. Also, it is sufficient to show that Inequality (2) holds for the minus sign in
the ±. That is, it is sufficient to show that

tx− α− 1 + cosα−
√
x2 + cos2 α− 1 > 0, (3)

for all sin
(
π
9
)
6 x 6 π

2t and 0 6 α 6 arcsin(x).
In the full version of the paper we prove that Inequality (3) holds for t ≈ 1.879534 and
t < 1.88. This implies that p is 1.879534-good, and consequently 1.88-good for s. The
sketch of the proof is given in Section 4. In fact, in Section 4 we will prove a slightly
stronger result:

tx− α− (1 + 3 ∗ 10−4) + cosα−
√
x2 + cos2 α− 1 > 0

holds for t = 1.879534 and all sin
(
π
9
)
6 x 6 1.0001π

2t and 0 6 α 6 arcsin(x).
We can show that Inequality (3) holds for t = 1.879534 and 0 6 x 6 π

2t . However, we
considered x = |ps| 6 D sin

(
π
9
)
as a different case in order to unify the proof for Inequality (3)

with the proof for Inequality (4) that we will see in Section 4.

M. Amani, A. Biniaz, P. Bose, J.-L. De Carufel, A. Maheshwari, and M. Smid 25:7

4 Approximate-Diametral Points are Good

Let S be a finite set of at least two points in the plane that is in convex position. In Section 3
we proved that any diametral point of S is 1.88-good. In this section, we first present
an algorithm that computes an approximate diametral pair of S; this algorithm is due to
Janardan [9]. Then we show that the two points obtained by this algorithm are 1.88-good
for S. In Section 5, we use this algorithm to compute a plane 1.88-spanner in linear time.

Let c > 2 be an integer-valued parameter. We use a family of coordinate systems, Ci,
1 6 i 6 c, with orthogonal axes Xi and Yi, respectively, where X1 is horizontal and for
i = 2, ..., c, Xi makes an angle of π/c with Xi−1. For each i we refer to the pair of points with
minimum and maximum Xi-coordinates as the extreme pair in Ci. To find an approximate
diametral pair, we determine the Euclidean distance of the extreme pair in each Ci and report
the pair that is farthest apart. The following lower bound on the distance of the reported
extreme pair has been established by Janardan [9].

I Lemma 10 (see Janardan [9]). Let S be a finite set of at least two points in the plane that
is in convex position, and whose diameter is D. Let p and q be the pair of points obtained by
running the above algorithm on S. Then |pq| > sin

(
c−1
c

π
2
)
D.

In the rest of this section we will prove the following theorem.

I Theorem 11. Let S be a finite set of at least two points in the plane that is in convex
position. Let p and q be the pair of points obtained by running the above algorithm on S with
c = 112. Then both p and q are 1.88-good for S.

Throughout the rest of this section, let t = 1.88. Because of symmetry, we prove
Theorem 11 only for p. For each i ∈ {1, . . . , 112} and for each point s ∈ S, let Xi(s) be
the Xi-coordinate of s in the coordinate system Ci. Moreover, let li(s) be the line passing
through s that is parallel to Yi.

Let Cpq be the set of all coordinate systems in which p and q are the extreme pair. Note that
Cpq is not empty, because p and q are the pair of points reported by the algorithm, and hence
they are extreme pairs in at least one of the coordinate systems. Let Cpq = {Ci1 , . . . , Cim},
where 1 6 m 6 112. Note that for each j ∈ {i1, . . . , im} the points of S lie in the slab
between the two parallel lines lj(p) and lj(q). For each Cj , where j ∈ {i1, . . . , im}, let rj
be the point on lj(q) such that ∠prjq = π

2 , and let αj = ∠qprj ; observe that αj 6 π
2 . See

Figure 4.
Let k be an element of {i1, . . . , im} for which αk is minimum. Recall that all points of S

are in the slab between lk(p) and lk(q).

I Lemma 12. αk 6 π
112 .

Proof. The proof is by contradiction; thus, we assume that αk > π
112 . Without loss of

generality, assume lk(p), and consequently lk(q), are horizontal, p is below q, and q is to the
right of R(p→rk); see Figure 4. Let lp and lq be the lines that are perpendicular to pq and
pass through p and q, respectively. Observe that each of lp and lq makes angle αk with each
of lk(p) and lk(q). Since αk > π

112 , there is a coordinate system Ck′ ∈ {C1, . . . , C112} that is
different from Ck and for which lk′(p) (resp. lk′(q)) makes angle π

112 with lk(p) (resp. lk(q))
and angle αk − π

112 > 0 with lp (resp. lq). See Figure 4. We consider the following two cases.

All points of S \{p, q} are between lk′(p) and lk′(q). Then all points of S lie in the shaded
area in Figure 4(a). In this case p and q are the extreme pair in Ck′ . Thus Ck′ ∈ Cpq with
αk′ = αk − π

112 . This contradicts our choice of k.

SWAT 2016

25:8 A Plane 1.88-Spanner for Points in Convex Position

p

qrk

αk

lk(p)

lk(q)

lp

lq

αk

αk′

rk′
lk′(q)

lk′(p)

αk

π
112

p

qrk

αk

lk(p)

lk(q)

lp

lq

αk

αk′

rk′
lk′(q)

lk′(p)

s

s′

(a) (b)

Figure 4 Proof of Lemma 12.

There is a point of S \ {p, q} below lk′(p) or above lk′(q). Without loss of generality
assume there is a point of S \ {p, q} that is above lk′(q). See Figure 4(b). In this case
one of the extreme points of Ck′ , say s, is above lk′(q) and its other extreme point, say
s′, is on or below lk′(p). Note that s is different from q while s′ can be p. Observe that
|ss′| > |sp| > |pq|. This contradicts the algorithm’s choice of p and q as the farthest pair
among the extreme pairs of all coordinate systems C1, . . . , C112. J

Let D be the diameter of S. Recall that p and q are the pair of points that are returned
by Janardan’s algorithm. Let |pq| = d. By Lemma 10, we have

d > sin
Å111π

224

ã
D > 0.999901D,

and thus,

D < 1.0001d.

Note that all points of S are in the intersection of the two disks C(p,D) and C(q,D). See
Figure 5. Let s be any point of S. We are going to show that p is t-good for s. Depending
on |ps| we consider the following three cases:
|ps| > Dπ

2t . By Lemma 6, p is t-good for s.
|ps| < d sin

(
π
9
)
. Consider the coordinate system Ck. Recall that Ck belongs to Cpq, and

by Lemma 12 we have αk = ∠qprk 6 π
112 . Thus, q belongs to an interval [q1, q2] on lk(q)

such that ∠q1prk = ∠q2prk = π
112 and for each point q′ ∈ [q1, q2] we have ∠q′prk 6 π

112 .
Without loss of generality assume s is to the right of R(p→q). See Figure 5(a). Let r be
the intersection point of R(q→s) with lk(p). Consider the path δccwCH(S)(p, s). Because of
convexity, this path is to the right of R(q→s) and to the right of R(p→s). By Theorem 3,
we have |δccwCH(S)(p, s)| 6 |pr| + |rs|. Let α = ∠pqs and β = ∠prs = ∠prq. As in the
proof of Theorem 9, we have sinα 6 |ps|

|pq| = |ps|
d < sin

(
π
9
)
and, thus, α < π

9 . Since
∠qpr 6 π

2 + π
112 , it follows that β = π − α − ∠qpr > π − π

9 −
(
π
2 + π

112
)

= 383π
1008 . Since

t = 1.88, we have β > 2 arcsin(1
t). Thus, using Lemma 7, we have

|δ∗CH(S)(p, s)|
|ps|

6
|δccwCH(S)(p, s)|

|ps|
6
|pr|+ |rs|
|ps|

6 t,

which implies that p is t-good for s.

M. Amani, A. Biniaz, P. Bose, J.-L. De Carufel, A. Maheshwari, and M. Smid 25:9

p
lk(p)

lk(q)
q1 q2

r

s

α

β

d

q rk

p
lk(p)

lk(q)
q

p′

r
r′

s

x

α

C(p, d)

C(p,D) d

y

C(p,D)

Dπ
2t

(a) (b)

Figure 5 Proof of Theorem 11: (a) |ps| < d sin
(
π
9

)
, and (b) d sin

(
π
9

)
6 |ps| 6 Dπ

2t .

d sin
(
π
9
)
6 |ps| 6 Dπ

2t . In this case s is in the shaded region of Figure 5(b). Consider
C(q, d) and C(q,D); note that all points of S are in C(q,D). Without loss of generality
assume s is to the right of R(p→q). Let r and r′ be the intersection points of R(q→s)
with the boundaries of C(q, d) and C(q,D), respectively. Let p′ be the intersection point
of R(q→p) with the boundary of C(q,D). Consider the path δccwCH(S)(p, s). Because of
convexity, this path is to the right of R(q→s) and to the right of R(p→s). See Figure 5(b).
Thus, Theorem 3 implies that |δccwCH(S)(p, s)| 6 |pp′| + |p̃′r′| + |r′r| + |rs|, where |p̃′r′|
denotes the length of the counter-clockwise arc on C(q,D) from p′ to r′. Note that
|pp′| = |rr′| = D − d < 0.0001d. Let α = ∠pqs. Note that α is maximum when R(q→s)
is tangent to C

(
p, Dπ2t

)
. This implies that α 6 arcsin

(
Dπ
2td
)
< arcsin

(1.0001π
2t

)
< 1. Thus,

|p̃′r′| = Dα < 1.0001dα = dα+ 0.0001dα < |Ùpr|+ 0.0001d,

where |Ùpr| denotes the length of the counter-clockwise arc on C(q, d) from p to r. Therefore,
we have

|δ∗CH(S)(p, s)| 6 |δccwCH(S)(p, s)| 6 |pp′|+ |p̃′r′|+ |r′r|+ |rs| < |rs|+ |Ùpr|+ 0.0003d.

In order to prove that p is t-good for s, it is sufficient to prove that

|rs|+ |Ùpr|+ 0.0003d
|ps|

6 t,

or equivalently

t|ps| − |rs| − |Ùpr| − 0.0003d > 0,

for all d sin
(
π
9
)
6 |ps| 6 Dπ

2t . Without loss of generality assume that d = 1, and thus,
D < 1.0001. In view of the proof of Theorem 9 it turns out that we have to prove that

tx− α− (1 + 3 ∗ 10−4) + cosα−
√
x2 + cos2 α− 1 > 0, (4)

for all sin
(
π
9
)
6 x 6 1.0001π

2t and 0 6 α 6 arcsin(x).
In the full version of the paper we prove that Inequality (4) holds for t ≈ 1.879534 and
t < 1.88. This implies that p is 1.879534-good, and consequently 1.88-good for s.

SWAT 2016

25:10 A Plane 1.88-Spanner for Points in Convex Position

To prove Inequality (4) we do the following. Let ε = 10−4. The goal is to find the smallest
value of t such that

tx− α− (1 + 3ε) + cos(α)−
»
x2 + cos2(α)− 1 > 0,

for all sin
(
π
9
)
6 x 6 (1+ε)π

2t , 0 6 α 6 arcsin(x). Note that for the left-hand side of the
inequality to be well-defined, we need x2 + cos2(α) > 1. Since x 6 (1+ε)π

2t , we can re-write

the constraints on α as 0 6 α 6 arcsin
Ä

(1+ε)π
2t

ä
= arccos

Ç…
1−
Ä

(1+ε)π
2t

ä2
å
.

Let u = cos(α). This problem is equivalent to finding the smallest value of t for which

f(x, u) = tx− arccos(u)− (1 + 3ε) + u−
√
x2 + u2 − 1 > 0, (5)

for all sin
(
π
9
)
6 x 6 (1+ε)π

2t ,
…

1−
Ä

(1+ε)π
2t

ä2
6 u 6 1 and x2 + u2 > 1.

1

1

x

u

(1+ε)π
2t

x2+u2=1

sin
(
π
9

)

√

1-
(
(1+ε)π

2t

)2

Thus we want to verify the validity of Inequality (5) in the shaded region of the above
figure. In the full version of the paper we show that for t ≈ 1.879534, f(x, u) > 0 in the
region defined by the constraints on x and u.

5 Algorithms

Let S be a set of n points in the plane that is in convex position. We assume that the points
of S are given in sorted order along CH(S). In this section, we describe how to construct a
plane 1.88-spanner on S in O(n) time.

By Theorem 9, any diametral point of S is 1.88-good for S. As discussed in the proof
of Theorem 1, by running algorithm PlaneSpanner(S, 1.88), a plane 1.88-spanner for S
is obtained. Specifically, we obtain this spanner by choosing, in line 4 of the algorithm, a
diametral point of S. Since the diameter of n points in convex position can be computed in
O(n) time, the algorithm runs in O(n2) time.

Note that in each iteration of the while loop in algorithm PlaneSpanner, we remove
one point from S. Thus, any deletion-only data structure that maintains the diameter of
S can be used here. In 2010, Chan [3] showed that the diameter of a fully dynamic point
set in the plane can be maintained in O(log8 n) expected amortized time. Based on that,
algorithm PlaneSpanner can be implemented to run in O(n log8 n) expected time.

M. Amani, A. Biniaz, P. Bose, J.-L. De Carufel, A. Maheshwari, and M. Smid 25:11

Recall that in Section 4, we presented an algorithm that computes an approximate
diametral pair of S. By Theorem 11, these diametral points are 1.88-good (assuming
c = 112). Based on this algorithm, we present a deletion-only data structure that maintains
an approximate diametral pair of S. For each i, 1 6 i 6 c, we store the points of Ci in a
doubly connected linked list, Li, in increasing order of their Xi-coordinates. The list Li can
be constructed in O(n) time by merging the two convex chains of the points between the
extreme pair in Ci. The list Li allows access to the extreme pair in Ci in O(1) time, via
explicitly-maintained pointers to the leftmost and rightmost nodes. For i = 1, . . . , c− 1 and
for each point p in Li, we store a cross pointer to the occurrence of p in Li+1. Moreover,
for any point p in Lc we store a cross pointer to the occurrence of p in L1. To delete a
point p from S, we delete p from each Li, 1 6 i 6 c. If we are given a pointer to p’s
occurrence in one list Li, then p can be deleted in O(c) time by following the cross pointers.
To answer a diameter query, we determine the Euclidean distance of the extreme pair in
each Li and report the pair that is farthest apart; this takes O(c) time. We use this data
structure, with c = 112, in line 4 of algorithm PlaneSpanner. Thus, each query takes
O(1) time and gives two pointers to the approximated diametral points. Using the cross
pointers, the approximated diametral points can be deleted in O(1) time. Thus, algorithm
PlaneSpanner can be implemented to run in O(n) time. Therefore, we have proved the
following theorem.

I Theorem 13. Let S be a set of n points in the plane that is in convex position. Assume
that the points of S are given in sorted order along the boundary of the convex hull of S.
Then a plane 1.88-spanner for S can be computed in O(n) time.

6 Remarks

1. There exists a point set in the plane and in convex position such that some of its diametral
points are not 1.868-good.
The figure below shows a point set S that contains the points p, q, r, s, p′ and many points
that are uniformly distributed on each of the arcs Ùqr and Ùrs.

p′q s

r
p

α
x

The points q, r, and s are the vertices of an equilateral triangle of side length 1. The
arc Ùqr (resp. Ùrs) has radius 1 and is centered at s (resp. q). The point p′ is placed on qs
and at distance x from q. The point p is placed on Ùrs such that ∠p′qp = α. Note that
0 < x < 1 and 0 < α < π/3. We will compute the exact values of x and α later. Note
that all points of S, except p′, are diametral points. Moreover |CH(S)| ≈ 1 + 2π

3 . We are
going to place p and p′ (or equivalently, choosing α and x) such that p is not 1.868-good
for p′, and hence it is not 1.868-good for S.
We place p and p′ such that the lengths of the two paths between p and p′ on CH(S) are
equal to |δ∗CH(S)(p, p′)| ≈ 1/2+π/3 and |pp′| is minimized. In this way, |δ∗CH(S)(p, p′)|/|pp′|

SWAT 2016

25:12 A Plane 1.88-Spanner for Points in Convex Position

is maximized. The length of the path δ∗CH(S)(p, p′) that is to the left of R(p→p′) is α+1−x.
Thus, α+ 1−x = 1/2 +π/3, which implies that x = α+ 1/2−π/3. By the law of cosines
we have

|pp′| =
√

1 + x2 − 2x cosα.

The value of α that minimizes |pp′| is the solution of the equation

(6α+ 3− 2π)(1 + sinα)− 6 cosα = 0,

which is α ≈ 0.897287. Thus, we choose α = 0.897287 and x = α+ 1/2− π/3. For these
values of α and x we have |pp′| ≈ 0.828153 and hence,

|δ∗CH(S)(p, p′)|
|pp′|

≈ 1.868.

Thus, the diametral point p is not 1.868-good for p′, and hence is not 1.868-good for S.

2. There exists a point set in the plane and in convex position such that none of its diametral
points is 1.75-good.
The figure below shows a point set S that contains the points p, q, r, p′, q′, and many
points that are uniformly distributed on the arc Ùpq.

p q

r′
r

p′q′

The points p, q, and r′ are the vertices of an equilateral triangle of side-length 1; note
that r′ does not belong to S. The arc Ùpq is centered at r′ and has radius 1. The point
r is placed at distance ε > 0 vertically above r′. Thus, p and q are the only diametral
points in S. Moreover, |CH(S)| ≈ 2 + π

3 . The point p′ (resp. q′) is placed on rq (resp.
rp) and at distance π

6 from r. Thus |δ∗CH(S)(p, p′)| = |δ∗CH(S)(q, q′)| ≈ 1 + π
6 . By the law

of cosines we have |pp′| = |qq′| ≈ 1
6
√

36 + π2 − 6π. Thus,

|δ∗CH(S)(p, p′)|
|pp′|

=
|δ∗CH(S)(q, q′)|

|qq′|
≈ 1.758.

This implies that p is not 1.75-good for p′, and q is not 1.75-good for q′. Therefore, none
of the diametral points of S is 1.75-good for S.

3. Intuitively, it seems that the point on the convex hull that has the smallest internal angle
with its neighboring points is a suitable candidate to be a good point. But this is not
true; the figure below shows a point set S that contains the points p, q, r, p′, q′, r′, and
many points that are uniformly distributed on each of the arcs q̂q′ and r̂r′.

p
q

r′

r

p′q′

M. Amani, A. Biniaz, P. Bose, J.-L. De Carufel, A. Maheshwari, and M. Smid 25:13

a(14, 7)

b(9.8, 12)

c(10.4, 13.2)

d(14, 15)
e(16.1, 14.5)

f(18.2, 12)

a

b

c

d
e

f

(a) (b)

Figure 6 (a) Delaunay triangulation. (b) The graph computed by algorithm PlaneSpanner
when it removes both points of a diametral pair in each iteration.

The point p is placed vertically below the midpoint of qr, and p′ is placed on the midpoint
of q′r′. Depending on the lengths of pr and pq, and on the distance between p and the
midpoint of qr, the value of |δ∗CH(S)(p, p′)|/|pp′| can be arbitrary large. Thus, for any
t > 1, we can select S such that p is not t-good for p′, and hence it is not t-good for S.

4. There are point sets in the plane and in convex position for which the plane graph
that is computed by algorithm PlaneSpanner has smaller stretch factor than the
Delaunay triangulation of the same point set. Consider the set S = {a, b, c, d, e, f} of
six points in Figure 6. Figure 6(a) shows the Delaunay triangulation of S whose stretch
factor is (|bc| + |cd| + |de| + |ef |)/|bf | ≈ 1.284. Figure 6(b) shows the plane graph
G obtained by algorithm PlaneSpanner when it removes both points of a diametral
pair in each iteration. The points b and f are the only diametral pair in S, thus,
in the first iteration ae and ac are added to G. In the next iteration a and d are
the only diametral pairs, thus, the edge ec is added to G. The stretch factor of G is
(|ae| + |ed|)/|ad| ≈ (|bc| + |ce| + |ef |)/|bf | ≈ 1.244. Note that there are point sets for
which the Delaunay triangulation has a smaller stretch factor than the graph that is
computed by algorithm PlaneSpanner.

5. The implementation of algorithm PlaneSpanner in Theorem 1 gives a simple (and
surprising) O(n)–time algorithm for computing the closest pair in a set of n points in
convex position: As discussed in Section 5, this algorithm computes a 1.88-spanner G
in O(n) time. It is well known that in any t-spanner, for any t < 2, the closest pair is
connected by an edge. Thus, given G, the closest pair can be computed in O(n) time.

7 Conclusions and Future Work

For a point set S in the plane and in convex position, we have shown that any approximate
diametral point of S is 1.88-good. Based on this, we obtained a plane 1.88-spanner for S in
O(n) time. We have proved that

√
3 6 t∗ 6 1.88. By solving Inequality (3) directly, or by

considering more coordinate systems in the approximate-diameter algorithm, we can show
that any (approximate) diametral point of S is 1.8792-good. This implies that t∗ 6 1.8792.
A natural problem is to improve any of the provided bounds. Another natural problem is to
extend algorithm PlaneSpanner to point sets that are not in convex position.

SWAT 2016

25:14 A Plane 1.88-Spanner for Points in Convex Position

References
1 R. V. Benson. Euclidean geometry and convexity. McGraw-Hill, 1966.
2 A. L. Cauchy. Note sur divers théorèmes relatifs á la rectification des courbes et á la

quadrature des surfaces. C. R. Acad. Sci. Paris, 13:1060–1065, 1841.
3 T. M. Chan. A dynamic data structure for 3-D convex hulls and 2-D nearest neighbor

queries. J. ACM, 57(3), 2010.
4 L. P. Chew. There is a planar graph almost as good as the complete graph. In Proceedings

of the 2nd ACM Symposium on Computational Geometry, pages 169–177, 1986.
5 L. P. Chew. There are planar graphs almost as good as the complete graph. Journal of

Computer and System Sciences, 39:205–219, 1989.
6 S. Cui, I. A. Kanj, and G. Xia. On the stretch factor of Delaunay triangulations of points

in convex position. Computational Geometry: Theory and Applications, 44:104–109, 2011.
7 D. P. Dobkin, S. J. Friedman, and K. J. Supowit. Delaunay graphs are almost as good as

complete graphs. Discrete & Computational Geometry, 5:399–407, 1990.
8 A. Dumitrescu and A. Ghosh. Lower bounds on the dilation of plane spanners. In Proceed-

ings of the 2nd International Conference on Algorithms and Discrete Applied Mathematics,
CALDAM, pages 139–151, 2016.

9 R. Janardan. On maintaining the width and diameter of a planar point-set online. Int. J.
Comput. Geometry Appl., 3(3):331–344, 1993.

10 J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the complete Euclidean
graph. Discrete & Computational Geometry, 7:13–28, 1992.

11 W. Mulzer. Minimum dilation triangulations for the regular n-gon. Master’s thesis, Freie
Universität Berlin, Germany, 2004.

12 G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University Press,
Cambridge, UK, 2007.

13 G. Xia. The stretch factor of the Delaunay triangulation is less than 1.998. SIAM Journal
on Computing, 42:1620–1659, 2013.

Approximating the Integral Fréchet Distance

Anil Maheshwari1, Jörg-Rüdiger Sack2, and Christian Scheffer3

1 School of Computer Science, Carleton University, Ottawa, Canada
anil@scs.carleton.ca

2 School of Computer Science, Carleton University, Ottawa, Canada
sack@scs.carleton.ca

3 Department of Computer Science, Braunschweig University of Technology,
Braunschweig, Germany
scheffer@ibr.cs.tu-bs.de

Abstract
We present a pseudo-polynomial time (1+ε)-approximation algorithm for computing the integral
and average Fréchet distance between two given polygonal curves T1 and T2. The running time
is in O(ζ4n4/ε2) where n is the complexity of T1 and T2 and ζ is the maximal ratio of the lengths
of any pair of segments from T1 and T2.

Furthermore, we give relations between weighted shortest paths inside a single parameter
cell C and the monotone free space axis of C. As a result we present a simple construction of
weighted shortest paths inside a parameter cell. Additionally, such a shortest path provides an
optimal solution for the partial Fréchet similarity of segments for all leash lengths. These two
aspects are related to each other and are of independent interest.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity, I.3.5
Computational Geometry and Object Modeling

Keywords and phrases Fréchet distance, partial Fréchet similarity, curve matching

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.26

1 Introduction

Measuring similarity between geometric objects is a fundamental problem in many areas of
science and engineering. Applications arise e.g., when studying animal behaviour, human
movement, traffic management, surveillance and security, military and battlefield, sports
scene analysis, and movement in abstract spaces [9, 10, 11]. Due to its practical relevance,
the resulting algorithmic problem of curve matching has become one of the well-studied
problems in computational geometry. One of the prominent measures of similarities between
curves is given by the Fréchet distance and its variants.

In the well-known dog-leash metaphor, the (standard) Fréchet distance is described as
follows: suppose a person walks a dog, while both have to move from the starting point to
the ending point on their respective curves T1 and T2. Each pair of walks induces a matching
between T1 and T2. The Fréchet distance is the minimum leash length required over all
possible pairs of walks, if neither person nor dog is allowed to move backwards.

In this paper, we study the integral and average Fréchet distance originally introduced by
Buchin [4]. The integral Fréchet distance is defined as the minimal integral of the distances
between points that are matched by a pair of walks. The average Fréchet distance is defined
as the integral Fréchet distance divided by the sum of the lengths of T1 and T2.

© Anil Maheshwari, Jörg-Rüdiger Sack, and Christian Scheffer;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 26; pp. 26:1–26:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 Approximating the Integral Fréchet Distance

T1

T2

T1

T2 δ2

δ1

Figure 1 Left: A matching between T1 and T2. Right: The partial Fréchet similarity is unstable
for distance thresholds between δ1 and δ2 where δ1 ≈ δ2. In particular, for a leash length of δ1, the
partial Fréchet similarity of T1 and T2 is equal to zero, whereas for a leash length of δ2, it is close to
|T1|+ |T2|. Furthermore, the traditional Fréchet distance is significantly enlarged by the peak of T1.

1.1 Related Work
Alt and Godau [1] showed how to compute the Fréchet distance between two polygonal curves
T1 and T2 in O(n2 log(n)) time, where n is the complexity of T1 and T2. In the presence of
outliers though, the Fréchet distance may not provide an appropriate result. This is due to
the fact that the Fréchet distance measures the maximum of the matched distances. Thus,
one large "peak" may substantially increase the Fréchet distance, see Figure 1 left.

To overcome the issue of outliers, Buchin et al. [3] introduced the partial Fréchet similarity
and showed how to compute it in O(n3 log(n)) time, where distances are measured w.r.t.
the L1 or L∞ metric. The partial Fréchet similarity measures the cost of a matching as the
lengths of the parts of T1 and T2 which are made up of matched point pairs whose distance
to each other is upper-bounded by a given threshold δ ≥ 0, see Figure 1 right. De Carufel et
al. [5] showed that the partial Fréchet similarity w.r.t. to the L2 metric cannot be computed
exactly over the rational numbers. Motivated by that, they gave a (1± ε)-approximation
algorithm guaranteeing a pseudo-polynomial running time. An alternative perspective on
the partial Fréchet similarity is the partial Fréchet dissimilarity, i.e., the minimization of the
portions on T1 and T2 which are involved in distances that are larger than δ.

Unfortunately, both the partial Fréchet similarity and dissimilarity are highly dependent
on the choice of δ as provided by the user. As a function of δ, the partial Fréchet distance
is unstable, i.e., arbitrarily small changes of δ can result in arbitrarily large changes of the
partial Fréchet (dis)similarly, see Figure 1 right.

An approach related to the integral Fréchet distance is dynamic time warping (DTW),
which arose in the context of speech recognition [12]. Here, a discrete version of the integral
Fréchet distance is computed via dynamic programming. This is not suitable for general
curve matching (see [7, p. 204]). Efrat et al. [7] worked out an extension of the idea of
DTW to a continuous version. In particular, they compute shortest path distances on a
combinatorial piecewise linear 2-manifold that is constructed by taking the Minkowski sum
of T1 and T2. Furthermore, they gave two approaches dealing with that manifold. The first
one does not yield an approximation of the integral Fréchet distance. The second one does
not lead to theoretically provable guarantees.

1.2 Contributions
We present the first (pseudo-)polynomial time algorithm that approximates the integral
Fréchet Distance, FS(T1, T2), up to a multiplicative error of (1 + ε).

As a by-product, we show that a shortest weighted path πab between two points a and b
inside a parameter cell C can be computed in constant time. We also make the observation
that πab provides an optimal matching for the partial Fréchet similarity for all leash length
thresholds. This provides a natural extension of locally correct Fréchet matchings that were
first introduced by Buchin et al. [2]. They suggest to: “restrict to the locally correct matching

A. Maheshwari, J.-R. Sack, and C. Scheffer 26:3

that decreases the matched distance as quickly as possible.”[2, p. 237]. The matching induced
by πab fulfils this requirement.

2 Preliminaries

Let T1, T2 : [0, n] → R2 be two polygonal curves. We denote the first derivative of a
function f by f ′. By, || · ||p, we denote the p-norm and by dp(·, ·) its induced Lp metric.
The lengths |T1| and |T2| of T1 and T2 are defined as

∫ n
0 ||(T1)′(t)||2 dt and

∫ n
0 ||(T2)′(t)||2 dt,

respectively. To simplify the exposition, we assume that |T1| = |T2| = n and that T1
and T2 each have n segments. A reparametrization is a continuous function α : [0, n] →
[0, n] with α(0) = 0 and α(n) = n. A reparameterization α is monotone if α(t1) ≤
α(t2) holds for all 0 ≤ t1 ≤ t2 ≤ n. A (monotone) matching is a pair of (monotone)
reparametrizations (α1, α2). The Fréchet distance of T1 and T2 w.r.t. d2 is defined as
D (T1, T2) = inf(α1,α2) maxt∈[0,n] d2(T1(α1(t)), T2(α2(t))).

For a given leash length δ ≥ 0, Buchin et al. [3] define the partial Fréchet similarity
P(α1,α2)(T1, T2) w.r.t. a matching (α1, α2) as∫

d2(T1(α1(t)),T2(α2(t)))≤δ

(
|| (T1 ◦ α1)′ (t) ||2 + || (T2 ◦ α2)′ (t) ||2

)
dt

and the partial Fréchet similarity as Pδ(T1, T2) = supα1,α2 P(α1,α2)(T1, T2).
Given a monotone matching (α1, α2), the integral Fréchet distance FS,(α1,α2) (T1, T2) of

T1 and T2 w.r.t. (α1, α2) is defined as:∫ n

0
d2(T1 (α1 (t)) , T2 (α2 (t)))

(
|| (T1 ◦ α1)′ (t) ||2 + || (T2 ◦ α2)′ (t) ||2

)
dt

and the integral Fréchet distance as FS (T1, T2) = inf(α1,α2) FS,(α1,α2) (T1, T2) [4]. Note that
the derivatives of (T1 ◦ α1)(·) and (T2 ◦ α2)(·) are measured w.r.t. the L2-norm because
the lengths of T1 and T2 are measured in Euclidean space. Furthermore, (T1 ◦ α1)′(t) and
(T1◦α1)′(t) are well defined for all t ∈ [0, n] because (T1◦α1)′(·) and (T1◦α1)′(·) are piecewise
continuously differentiable. The average Fréchet distance is defined as FS(T1, T2)/(|T1| +
|T2|) [4].

The parameter space P of T1 and T2 is an axis aligned rectangle. The bottom-left corner s
and upper-right corner t correspond to (0, 0) and (n, n), respectively. We denote the x- and
the y-coordinate of a point a ∈ P by a.x and a.y, respectively. A point b ∈ P dominates a
point a ∈ P , denoted by a ≤xy b, if a.x ≤ b.x and a.y ≤ b.y hold. A path π is (xy-) monotone
if π(t1) ≤ π(t2) holds for all 0 ≤ t1 ≤ t2 ≤ n. Thus, a monotone matching corresponds to a
monotone path π with π(0) = s and π(n) = t. By inserting n+1 vertical and n+1 horizontal
parameter lines, we refine P into n rows and n columns such that the i-th row (column) has
a height (resp., width) that corresponds to the length of the i-th segment on T1 (resp., T2).
This induces a partitioning of P into cells, called parameter cells.

For a, b ∈ P with a ≤xy b, we have ||ab||1 =
∫ b.x
a.x
||(T1)′(t)||2 dt +

∫ b.y
a.y
||(T2)′(t)||2 dt.

This is equal to the sum of the lengths of the subcurves between T1(a.x) and T1(b.x) and
between T2(a.y) and T2(b.y). Thus, we define the length |π| of a path π : [0, n] → P as∫ n

0 ||(π)′(t)||1 dt. Note that for the paths inside the parameter space the 1-norm is applied,
while the lengths of the curves in the Euclidean space are measured w.r.t. the 2-norm. As
FS(T1, T2) measures the length of T1 and T2 at which each (T1(α1(t)), T2(α2(t))) is weighted
by d2(T1(α1(t)), T2(α2(t))), we consider the weighted length of π defined as follows:

Let w(·) : P → R≥0 be defined as w((x, y)) := d2(T1(x), T2(y)) for all (x, y) ∈ P . The
weighted length |π|w of a path π : [a, b]→ P is defined as

∫ b
a
w (π (t)) ||(π)′ (t) ||1dt.

SWAT 2016

26:4 Approximating the Integral Fréchet Distance

a

b

πab

C
`

Figure 2 A weighted shortest xy-monotone path πab between two points a, b ∈ C, where a ≤xy b.

I Observation 1 ([4]). Let π be a shortest weighted monotone path between s and t inside P .
Then, we have |π|w = FS (T1, T2).

Motivated by Observation 1, we approximate FS(T1, T2) by approximating the length
of a shortest weighted monotone path π ⊂ P connecting s and t. Let δ ≥ 0 be chosen
arbitrarily, but fixed. Inside each parameter cell C, the union of all points p with w(p) ≤ δ
is equal to the intersection of an ellipse E with C. Observe that E can be computed in
constant time [1]. E is characterized by two focal points F1 and F2 and a radius r such that
E = {p ∈ R2 | d2(p, F1) + d2(p, F2) ≤ r}. The two axes ` (monotone) and ~ (not monotone)
of E , called the free space axes, are defined as the line induced by F1 and F2 and the bisector
between F1 and F2. If E is a disc, ` and ~ are the lines with gradients 1 and −1 and which
cross each other in the middle of E . Note that the axes are independent of the value of δ.

To approximate |π|w efficiently we make the following observation that is of independent
interest: Let a, b be two parameter points that lie in the same parameter cell C such
that a ≤xy b. The shortest weighted monotone path πab between a and b (that induces an
optimal solution for the integral Fréchet distance) is the monotone path between a and b
that maximizes its subpaths that lie on ` (see Figure 2 and Lemma 7). Another interesting
aspect of πab is that it also provides an optimal matching for the partial Fréchet similarity
(between the corresponding (sub-)segments) for all leash lengths, as π ∩ Eδ has the maximal
length for all δ ≥ 0, where Eδ := E for a specific δ ≥ 0. Next, we discuss our algorithms.

3 An Algorithm for Approximating Integral Fréchet Distance

We approximate the length of a shortest weighted monotone path between s and t as follows:
We construct two weighted, directed, graphs G1 = (V1, E1, w1) and G2 = (V2, E2, w2) that
lie embedded in P such that s, t ∈ V1 and s, t ∈ V2. Then, in parallel, we compute for G1
and G2 the lengths of the shortest weighted paths between s and t. Finally, we output the
minimum of both values as an approximation for FS(T1, T2).

We introduce some additional terminology. A geometric graph G = (V,E) is a graph
where each v ∈ V is assigned to a point pv ∈ P , its embedding. The embedding of an edge
(u, v) ∈ E (into P) is pupv. The embedding of G (into P) is

⋃
(u,v)∈E pupv. For v ∈ V and

e ∈ E, we denote simultaneously the vertex v ∈ V , the edge e ∈ E, and the graph (V,E)
and their embeddings by v, e, and G, respectively. G is monotone (directed) if pu ≤xy pv
holds for all (u, v) ∈ E. Let R ⊆ P be an arbitrarily chosen axis aligned rectangle with
height h and width b. The grid (graph) of R with mesh size σ is the geometric graph that is
induced by the segments that are given as the intersections of R with the following lines:
Let h1, . . . , hk1 be the dhσ e+ 1 equidistant horizontal lines and let b1, . . . , bk2 be the d bσ e+ 1
equidistant vertical lines such that ∂R = R ∩ (h1 ∪ hk1 ∪ b1 ∪ bk2), where ∂R denotes the
boundary of R.

A. Maheshwari, J.-R. Sack, and C. Scheffer 26:5

3.1 Construction of G1

Let µ be the length of a smallest segment from T1 and T2. We construct G1 = (V1, E1) ⊂ P
as the monotone directed grid graph of P with a mesh size of εµ2

40000(|T1|+|T2|) . Furthermore,
we set w1((u, v)) := |uv|w for all (u, v) ∈ E1.

3.2 Construction of G2

For u ∈ P and r ≥ 0, we consider the ball Br(u) with its center at u and a radius of r w.r.t.
the L∞ metric. For the construction of G2 we need the free space axes of the parameter cells
and so called grid balls:

I Definition 2. Let u ∈ P and r ≥ 0 be chosen arbitrarily. The grid ball Gr(u) is defined as
the grid of Br(u) that has a mesh size of ε

456w(u). We say Gr(u) approximates Br(u).

We define G2 as the monotone directed graph that is induced by the arrangement that is
made up of the following components restricted to P :

(1) All monotone free space axes restricted to their corresponding parameter cell.
(2) All grid balls G62w(u)(u) for u := arg minp∈e w(u) and any parameter edge e.
(3) The segments scs and tct if the parameter cells Cs and Ct that contain s and t are
intersected by their corresponding monotone free space axes `s and `t, where cs and ct
are defined as the bottom-leftmost and top-rightmost point of `s ∩ Cs and `t ∩ Ct.

t1

t2

t3

t4

t1 t2

t4

t3

Figure 3 Exemplified construction of G2 for two given polygonal curves T1 and T2. For simplicity,
we only illustrate four grid balls (with reduced radii) and the corresponding point pairs from T1×T2.

Finally, we set w2((v1, v2)) := |v1v2|w for all (v1, v2) ∈ E2. For each edge e ∈ G2, we
choose the point u ∈ e as the center of the corresponding grid ball because the free space
axes of the parameters cells adjacent to e lie close to u.

We analyze our approach as follows: Since G1 is monotone and each edge (p1, p2) ∈ E1 is
assigned to |p1p2|w, we obtain that for each path it holds that π̃ ⊂ G1 between s and t holds
|π|w ≤ |π̃|w. The same argument applies to G2. Hence, we still have to ensure that there is
a path π̃ ⊂ G1 or π̃ ⊂ G2 such that |π̃|w ≤ (1 + ε)|π|w. We say that a path π ⊂ P is low if
w(p) ≤ µ

100 holds for all p ∈ π. For our analysis, we show the following:
Case A: There is a π̃ ⊂ G1 with |π̃|w ≤ (1 + ε)|π|w if there is a shortest path π ⊂ P that
is not low (see Section 3.3).
Case B: Otherwise, there is a π̃ ⊂ G2 with |π̃|w ≤ (1 + ε)|π|w (see Section 3.4).

3.3 Analysis of Case A
In this section, we assume that there is a shortest path π between s and t that is not low.
Furthermore, for any o, p ∈ π, we denote the subpath of π which is between o and p by πop.

SWAT 2016

26:6 Approximating the Integral Fréchet Distance

First, we prove a lower bound for |π|w (Lemma 5). This lower bound ensures that the
approximation error that we make for a path in G1 is upper-bounded by ε|π|w (Lemma 6).

A cell C of G1 is the convex hull of four vertices v1, v2, v3, v4 ∈ V1 such that C ∩ V1 =
{v1, v2, v3, v4}. As the mesh size of G1 is εµ2

40000(|T1|+|T2|) , we have d1(p1, p2) ≤ εµ2

20000(|T1|+|T2|)
for any two points p1 and p2 that lie in the same cell of G1. The following property of w(·)
is the key in the analysis of the weighted shortest path length of G1:

I Definition 3 ([8]). f : P → R≥0 is 1-Lipschitz if f(x) ≤ f(y) + d1(x, y) for all x, y ∈ P .

The requirement |f(x)− f(y)| ≤ d1(x, y) is also occasionally used to define 1-Lipschitz
continuity. Note that this alternative definition is equivalent to Definition 3.

I Lemma 4. w(·) is 1-Lipschitz.

Proof. Let (a1, a2), (b1, b2) ∈ P be chosen arbitrarily. The subcurves tT1(a1)T1(b1) ⊂ T1
between T1(a1) and T1(b1) and tT2(a2)T2(b2) ⊂ T2 between T2(a2) and T2(b2) have lengths no
larger than |a1−b2| and |a2−b2|. Thus, d2(T1(a1), T1(b1)) ≤ |a1−b1| and d2(T2(a2), T2(b2)) ≤
|a2 − b2|. Furthermore, w((a1, a2)) is equal to d2(T1(a1), T2(a2)). By triangle inequality,
it follows that w((b1, b2)) = d2 (T1(b1), T2(b2)) ≤ d2(T2(b2), T2(a2)) + d2(T2(a2), T1(a1)) +
d2(T1(a1), T1(b1)) ≤ d1((a1, a2), (b1, b2)) +w((a1, a2)), because d2(T2(b2), T2(a2)) = |b2− a2|,
d2(T2(a2), T1(a1)) = w((a1, a2)), d2(T1(a1), T1(b1)) = |b1 − a1|, and d1((a1, a2), (b1, b2)) =
|b1 − a1|+ |b2 − a2|. J

Lemma 4 allows us to prove the following lower bound for the weighted length of π.

I Lemma 5. |π|w ≥ µ2

20000 .

Proof. Let p ∈ π such that w(p) ≥ µ
100 . Let ψ := π∩B µ

100
(p). We have |ψ|w ≥ µ2

20000 because
w(·) is 1-Lipschitz. Furthermore, ψ ⊂ π implies |ψ|w ≤ |π|w which yields µ2

20000 ≤ |π|w. J

I Lemma 6. There is a path π̃ ⊂ G1 that connects s and t such that |π̃|w ≤ (1 + ε)|π|w.

Proof. Starting from s, we construct π̃ inductively as follows: If π crosses a vertical (hori-
zontal) parameter line next, π̃ goes one step to the right (top). For p ∈ π let hp be the line
with gradient −1 such that p ∈ hp (see the figure on the right). As π and π̃ are monotone,
the point p̃ := hp ∩ p̃ is unique and well defined. For all p, p and p̃ lie in the same cell
of G1 and thus, w(p̃) ≤ w(p) + εµ2

20000(|T1|+|T2|) . This implies |π̃|w ≤ (1 + ε)|π|w because
|π̃| = |π|. To be more precise, we consider π̃, π : [0, 1] → P to be parametrized such that
d1(s, π(t)) = d1(s, π̃(t)) = td1(s, t). We obtain, ||(π̃)′(t)||1 = d1(s, t) = ||(π)′(t)||1 for all
t ∈ [0, 1].

p

p̃

ππ̃

qi

qi+1

ui

ui+1

hp

A. Maheshwari, J.-R. Sack, and C. Scheffer 26:7

Furthermore, the above implies w(π̃(t)) ≤ w(π(t)) + εµ2

20000(|T1|+|T2|) (?). Thus:

|π̃|w =
∫ 1

0
w(π̃(t))||(π̃)′(t)||1 dt

(?)
≤
∫ 1

0

(
w(π(t)) + εµ2

20000(|T1|+ |T2|)

)
||(π)′(t)||1 dt

=
∫ 1

0
w(π(t))||(π)′(t)||1 dt+

εµ2 ∫ 1
0 1 ||(π)′(t)||1 dt

20000(|T1|+ |T2|)

= |π|w + εµ2

20000
Lemma 5
≤ |π|w + ε|π|w = (1 + ε)|π|w. J

The proof of Lemma 6 is omitted due to space constraints. All proofs that are omitted or
just sketched can be found in the Appendix.

3.4 Analysis of Case B
In this section, we assume that there is a shortest monotone low path π between s and t.
First, we make a key observation that is also of independent interest.

I Lemma 7. Let C be an arbitrarily chosen parameter cell and a, b ∈ C such that a ≤xy b.
Furthermore, let ` be the monotone free space axis of C and R the rectangle that is induced
by a and b. The shortest path πab ⊂ C between a and b is given as:

ac1 ∪ c1c2 ∪ c2b, if ` intersects R in c1 and c2 such that c1 <xy c2 and as
ac ∪ cb, otherwise, where c is defined as the closest point from R to `.

Proof. Let ψab ⊂ C by an arbitrary monotone path that connects a and b. In the following,
we show that |πab|w ≤ |ψab|w. For this, we prove the following: Let p ∈ C be chosen arbitrarily
and q be its orthogonal projection onto ` (see the figures right). We show w(r) ≤ w(p) for
r ∈ pq. This implies that there is an injective, continuous function ⊥ : ψab → πab with
w(⊥(p)) ≤ w(p) for all p ∈ ψ. In particular, ⊥(p) is defined as the intersection point of πab
and the line d that lies perpendicular to ` such that p ∈ d. The function ⊥(·) is well defined
and injective as both ψab and πab are monotone paths that connect a and b. Similarly, as in
the proof of Lemma 6, this implies |πab|w ≤ |ψab|w because |πab| = |ψab|.

a

b

`

R

C

ψab

πab

c1

c2 `

p

q

r
Er

C

Ep

To be more precise, consider ψ, π : [0, 1]→ C to be parametrized such that d1(a, ψ(t)) =
d1(a, π(t)) = td1(a, b). This implies ||(ψ)′(t)||1 = d1(a, b) = ||(π)′(t)||1 for all t ∈ [0, 1]. Thus:

|ψab|w =
∫ 1

0
w(ψab(t))||(ψab)′(t)||1 dt ≥

∫ 1

0
w(πab(t))||(πab)′(t)||1 dt = |πab|w.

Finally, we show: w(r) ≤ w(p), for r ∈ pq. Note that w(r) and w(p) are the leash lengths for
r and p that lie on the boundary of the white space inside C, i.e., on the boundary of the
ellipses Er and Ep, respectively. Since r ∈ pq we get Er ⊆ Ep, which implies w(r) ≤ w(p). J

We call a point p ∈ C canonical if p ∈ `. Let Co and Cp be two parameter cells that
share a parameter edge e. Furthermore, let o ∈ `o ⊂ Co and p ∈ `p ⊂ Cp be two canonical
parameter points such that o ≤xy p where `o and `p are the monotone free space axis of Co
and Cp, respectively. Let co be the top-right end point of `o and cp the bottom-left end point
of `p. The following corollary to Lemma 7 characterizes how a shortest path passes through
the parameter edges.

SWAT 2016

26:8 Approximating the Integral Fréchet Distance

e

o

p

Co

Cp

`o

`p
πopco

cp e

o

p

Co

Cp

`o

`p
πopzp

zo

zcp
co

(a) o ≤xy p (b) o �xy p

Figure 4 Configurations of Corollary 8.

a

b

B62w(u)(u)

G62w(u)(u)
π̃ab

πab

e B62w(u2)(u2)

B62w(u1)(u1)

G62w(u2)(u2)

G62w(u1)(u1)

e2

e1a

b

πab
π̃ab

a

b

B62w(u)(u)

G62w(u)(u) π̃ab

πab

e1

e2

(a) Case (1.) (b) Case (2.1.) (c) Case (2.2.)

Figure 5 Different subcases how πab is approximated by free space axes and grid balls.

I Corollary 8. If co, cp ∈ e and co ≤xy cp, πop is equal to the concatenation of the segments
oco, cocp, and cpp (see Figure 4(a) on right). Otherwise, there is a z ∈ e such that πop is
equal to the concatenation of the segments ozo, zozp, and zpp, where zo ∈ `Co and zp ∈ Cp
such that z is the orthogonal projection of zo and zp onto e (see Figure 4(b)).

3.4.1 Outline of the analysis of Case B
In the following, we apply Lemma 7 and Corollary 8 to subpaths πab of π in order to ensure
that πab is a subset of the union of a constant number of balls (that are approximated by
grid balls in our approach) and monotone free space axes. In particular, we construct a
discrete sequence of points from π which lie on the free space axes, see Section 3.4.2. For
each induced subpath πab, we ensure that πab crosses one or two perpendicular parameter
edges. For the analysis we distinguish between the two cases which we consider separately:

Case 1: πab crosses one parameter edge and
Case 2: πab crosses two parameter edges.

For Case 1, we show that, if πab crosses one edge (e) then πab is a subset of the union of the
two monotone free space axes of the parameter cells that share e and the ball B62w(u)(u) for
u := arg minp∈e w(u) (see Figure 5(a) and Section 3.4.3).

For Case 2, (see Section 3.4.4), we consider the case that πab crosses two parameter
edges e1 and e2. In particular, πab runs through three parameter cells Cq, Cr, and Cs, where
Cq and Cr share e1 and Cr and Cs share e2.

We further distinguish further between two subcases. For this, let u1 := arg minp∈e1 w(p)
and u2 := arg minp∈e2 w(p).

Case 2.1: We show that, if d1(u1, u2) ≥ 6 max{w(u1), w(u2)}, then πab is a subset of the
union of the balls B62w(u1)(u1) and B62w(u2)(u2) and the monotone free space axes of Cq,
Cr, and Cs (see Figure 5(b) and Lemma 13).
Case 2.2: We show that, if d1(u1, u2) ≤ 6 max{w(u1), w(u2)}, then πab is a subset of
the union of the ball B62w(u)(u) and the monotone free space axes of Cq and Cs for
u ∈ {u1, u2} (see Figure 5(c) and Lemma 17).

A. Maheshwari, J.-R. Sack, and C. Scheffer 26:9

t1

t2

` h̄

p
q

t1

t2

d`

dh̄

T1(q.x)

T2(q.y)

T2(p.y) T1(p.x)

t1(0)

t2(0)

Figure 6 Duality of parameter points from ` (~) and leashes that lie perpendicular to d` (d~).

For the analysis of the length of a shortest path π̃ ⊂ G2 that lies between s and t, we
construct for πab ⊂ π a path π̃ab ⊂ G2 between a and b such that |π̃ab|w ≤ (1 + ε)|πab|w.
In particular, π̃ab is a subset of the grid balls that approximate the above considered balls
and the free space axes that are involved in the individual (sub-)case for πab (see, Figure 5).
Finally, we define π̃ ⊂ G2 as the concatenation of the approximations π̃ab for all πab.

3.4.2 Separation of a shortest path
In the following, we determine a discrete sequence of canonical points s = p1, ..., pk = t ∈ π
such that πpipi+1 crosses at most two parameter lines for each i ∈ {1, ..., k − 1}. First, we
need the following supporting lemma:

I Lemma 9. For all q1, q2 ∈ π that lie in the same parameter cell with q1 ≤xy q2 we have
q2.y − q1.y − µ

50 ≤ q2.x− q1.x ≤ q2.y − q1.y + µ
50 .

Proof. By triangle inequality we obtain:
d2(T2(q2.y), T2(q1.y)) ≤ d2(T2(q2.y), T1(q2.x))+d2(T1(q2.x), T1(q1.x))+d2(T1(q1.x), T2(q1.y)).
This implies d2(T2(q2.y), T2(q1.y))− µ

50 ≤ d2(T1(q2.x), T1(q1.x)), because
d2(T2(q2.y), T1(q2.x)), d2(T1(q1.x), T2(q1.x)) ≤ µ

100 . Furthermore, d2(T2(q2.y), T2(q1.y)) =
q2.y − q1.y and d2(T1(q2.x), T1(q1.x)) = q2.x − q1.x because q1 and q2 lie in the same
cell. This implies q2.y − q1.y − µ

50 ≤ q2.x − q1.x. A corresponding argument yields that
q2.x− q1.x ≤ q2.y − q1.y + µ

50 . J

I Lemma 10. There are canonical points s = p1, . . . pk = t ∈ π such that for all i ∈
{1, . . . , k − 1} the following holds: (P1) πpipi+1 crosses at most one vertical and at most one
horizontal parameter line which are both not part of ∂P and (P2) the distance of pi to a
parameter line is lower-bounded by µ

6 for all i ∈ {2, . . . , k − 1}.

3.4.3 Analysis of subpaths that cross one parameter edge
We need to show that those parts of π that do not lie on the free space axes are covered by
the balls B62w(u). For this, we use the following geometrical interpretation of the free space
axes ` and ~ of a parameter cell C. Let t1 ∈ T1 and t2 ∈ T2 be the segments that correspond
to C. We denote the angular bisectors of t1 and t2 by d` and d~ such that the start points
t1(0) and t2(0) of t1 and t2 lie on different sides w.r.t. d`, see Figure 6 right. If t1 and t2
are parallel, then d` denotes the line between t1 and t2 and we declare d~ as undefined. We
observe:

I Observation 11. q ∈ `⇔ T1(q.x)T2(q.y)⊥d` and p ∈ ~⇔ T1(p.x)T2(p.y)⊥d~ .

From now on, let o, p ∈ π be two consecutive, canonical points that are given via Lemma 10
such that o ≤xy p. Furthermore, let `o and `p be the free space axes of the parameter cells Co
and Cp such that o ∈ `o ⊂ Co and p ∈ `p ⊂ Cp.

SWAT 2016

26:10 Approximating the Integral Fréchet Distance

t1

t2

t3

u
e

o

p

Co

Cp

`o

`p

q1

q2

co
cp

t1
t2

t3

d`p d`o

T1(q1.x)

T2(q1.y) T2(q2.y)

T1(q2.x)T1(u.x)

T2(u.y)

T2(o.y) T1(p.x)

T2(p.y)T1(o.x)

Figure 7 Configuration of the Lemmas 12 and 13: The length of the subpath of πop that does
not necessarily lie on ` ∪ ~ is related to w(u).

I Lemma 12. If πop crosses one parameter edge e, points co, cp ∈ e exist and we have
d∞(co, cp) ≤ w(u)

2 where u = arg minp∈e w(p).

Proof. W.l.o.g., we assume that e is horizontal. Let t1, t2 ∈ T1 and t3 ∈ T2 be the segments
that induce parameter cells Co and Cp. Below, we show ∠(t1, t3),∠(t2, t3) ≤ 7◦ and, then, that
d1(c0, cp) ≤ w(u). Let q1 ∈ `o and q2 ∈ `p such that q1.x = cp and q2.x = co, see Figure 7 left.
∠(t1, t3) ≤ 7◦ implies ∠(T1(u.x)T2(u.y), T1(u.x)T2(q2.y)) ≤ 3.5◦. Furthermore, cp = e ∩ `p
implies: cp corresponds to a leash lp = (T1(cp.x), T2(cp.y)) such that T1(cp.x) = T1(u.x) and
T1(cp.x), T2(cp.y)⊥d`o , see Figure 7 right. Thus, d2(T2(q2.y), T2(u.y)) is upper-bounded by
d2(T2(u.y), T2(q2.y)) ≤ d2(T1(u.x), T2(u.y)) tan(3.5◦) ≤ 0.065w(u) < w(u)

2 .
Finally, we show that ∠(t1, t3),∠(t2, t3) ≤ 7◦. We know that d2(T1(o.x), T2(o.y))

and d2(T1(u.x), T2(u.x)) are upper-bounded by µ
100 because π is low. Lemma 10 implies

d2(T1(o.x), T1(u.x)), d2(T2(o.y), T2(u.y)) ≥ µ
6 . Thus, ∠(t1, t3) ≤ arcsin 6

50 ≤ 7◦. A similar
argument implies that ∠(t2, t3) ≤ arcsin 6

50 ≤ 7◦ J

I Lemma 13. πop ⊂ `o ∪Bw(u)(u) ∪ `p (see Figure 5(a)).

Proof. We combine Corollary 8 and Lemma 12. Corollary 8 implies that πop orthogonally
crosses e at a point z that lies between co and cp such that z ∈ zozp ⊂ πop. Lemma 12
implies d1(co, cp) ≤ w(u)

2 . Thus, zozp ⊂ Bw(u)(u). Furthermore, ozo ⊂ `o and zpp ⊂ `p. This
implies πop ⊂ `o ∪Bw(u)(u) ∪ `p because πop = ozo ∪ zozp ∪ zpp. J

I Lemma 14. There is a path π̃op ⊂ G2 between o and p such that |π̃op|w ≤ (1 + ε)|πop|w.

Proof (Sketch). By Lemma 13, the following two intersection points are well defined: Let
zo be the intersection point of `o and ∂B62w(u)(u) that lies on the left or bottom edge of
∂B62w(u)(u). Analogously, let zp be the intersection point of `p and ∂B62w(u)(u) that lies on
the right or top edge of ∂B62w(u)(u). By Lemma 13, we can subdivide πop into the three
pieces ozo ⊂ `o, πzozp , and zpp ⊂ `. As ozo, zpp ⊂ G2, we just have to construct a path
π̃zozp ⊂ G2 between zo and zp such that |πzozp |w ≤ (1 + ε)|π̃zozp |w.

We construct π̃zozp by applying the same approach as used in the proof of Lemma 6 (see
Figure 5(a)). To upper-bound |π̃zozp |w by (1 + ε)|πzozp |w, we first lower-bound |πzozp |w by
1
2w

2(u). By using a similar approach as in the proof of Lemma 6, we can conclude the proof.
Further details are provided in the Appendix. Let ψ := πzozp ∩Bw(u)(u). As |ψ| ≥ w(u) and
w(·) is 1-Lipschitz, we obtain |ψ|w ≥ 1

2w
2(u). Thus, |πzozp |w ≥ 1

2w
2(u) as ψ ⊂ πzozp . J

3.4.4 Analysis of subpaths that cross two parameter edges
Let q and s be two consecutive parameter points from {p2, . . . , pk−1} such that πqs crosses
two parameter edges e1 and e2. By Lemma 10, e1 and e2 are perpendicular to each other
and are adjacent at a point c. Let Cr be the parameter cell such that e1 and e2 are part of

A. Maheshwari, J.-R. Sack, and C. Scheffer 26:11

the boundary of Cr. Furthermore, let Cq and Cs be the parameter cells such that q ∈ Cq
and s ∈ Cs. We denote the monotone free space axis of Cq, Cr, and Cs by `q, `r, and `s,
respectively. Let u1 := arg mina∈e1 w(a) and u2 := arg mina∈e2 w(a).

I Lemma 15. If d1(u1, u2) ≥ 6 max{w(u1), w(u2)}, there is another canonical parameter
point r ∈ `r such that πqs ⊂ `q ∪Bw(u1)(u1) ∪ `r ∪Bw(u2)(u2) ∪ `s.

The proof of Lemma 15 is similar to the proof of Lemma 12.

I Lemma 16. If d1(u1, u2) ≥ 6 max{w(u1), w(u2)}, then there is a path π̃qs ⊂ G2 between
q and s such that |π̃qs|w ≤ (1 + ε)|πqs|w.

Proof. Lemma 15 implies that the following constructions are unique and well defined: Let
z1 (z2) be the intersection point of ∂Bw(u1)(u1) and `q (`r) that lies on the left or bottom
(respectively, right or top) edge of ∂Bw(u1)(u1). Analogously, let z3 (z4) be the intersection
point of ∂Bw(u2)(u2) and `r (`s) that lies on the left or bottom (respectively, right or top)
edge of ∂Bw(u2)(u2). By applying the approach of Lemma 14, for πz1z2 and πz3z4 , we obtain
a path π̃z1z2 ⊂ G2 between z1 and z2 and a path π̃z3z4 ⊂ G2 between z3 and z4 such that
|π̃z1z2 |w ≤ (1 + ε)|πz1z2 |w and |π̃z3z4 |w ≤ (1 + ε)|πz3z4 |w. This concludes the proof because
qz1, z2z3, z4s ⊂ G2. J

I Lemma 17. If d1(u1, u2) ≤ 6 max{w(u1), w(u2)}, then πqs ⊂ `q ∪B62w(u)}(u) ∪ `s where
u := arg maxu∈{u1,u2}{w(u1), w(u2)}.

Lemma 17 implies that the approach taken in the proof of Lemma 14 yields that there
is a path π̃qs ⊂ G2 between q and s such that |π̃qs|w ≤ (1 + ε)|πqs|w If d1(u1, u2) <

6 max{w(u1), w(u2)}. Combining this with Lemmas 14 and 16 yields the following corollary:

I Corollary 18. Let π̃ ⊂ G2 be a shortest path. We have |π|w ≤ |π̃|w ≤ (1 + ε)|π|w.

3.5 “Bringing it all together”

In Sections 3.3 and 3.4, we proved that in Cases A and B, the minimum of the shortest path
lengths in G1 and G2 is no larger than (1 + ε)|π|w, where πw is a shortest path in P .

Next, we discuss that our algorithm has a running time of O(ζ
4n4

ε). Graph G1 is given
by the arrangement that is induced by Θ(ζ

2n2

ε) horizontal and Θ(ζ
2n2

ε) vertical lines because
the corresponding grid has a mesh of size εµ2

40000(|T1|+|T2|) . Thus, |E1| ∈ Θ(ζ
4n4

ε2). Graph G2 is
given by the arrangement that is induced by O(n2) free space axis and Θ(n2) grid balls. Each
grid ball has a complexity of Θ(1

ε). Thus, |E2| ∈ O(n
4

ε2). Applying Dijkstra’s shortest path
algorithm on G1 and G2 takes time proportional to O(|E1|) and O(|E2|). As |E1| ∈ Θ(ζ

4n4

ε2)
and |E2| ∈ O(n

4

ε2) we have to ensure that each edge of E1 ∪E2 can be computed in constant
time to guarantee an overall running time of O(ζ

4n4

ε2).

I Lemma 19. All edges of G1 and G2 can be computed in O(1) time.

This leads to our main result.

I Theorem 20. We can compute an (1 + ε)-approximation of FS (T1, T2) in O(ζ
4n4

ε2) time.

SWAT 2016

26:12 Approximating the Integral Fréchet Distance

T1

T2

T1

T2
T2

T1

T1

T2

Figure 8 First: The definition of local correctness still allowes “unnatural” matchings. Second:
A lexicographic matching. Third: A locally optimal matching that is also optimal w.r.t. integral
Fréchet distance. Fourth: The shortest path π ⊂ P (black) that corresponds to the third matching.

4 Locally optimal Fréchet matchings

In this section, we discuss an application of our observations regarding free space axes to
so-called locally correct (Fréchet) matchings (α1, α2) as introduced by Buchin et al. [2]. For
i ∈ {1, 2} and 0 ≤ a ≤ b ≤ n, we denote the subcurve between Ti(a) and Ti(b) by Ti[a, b].

I Definition 21 ([2]). (α1, α2) is locally correct if D (T1[α1(a), α2(b)], T2[α1(a), α2(b)]) =
maxt∈[α1(a),α2(b)] d2(T1(t), T2(t)), for all 0 ≤ a ≤ b ≤ n.

Buchin et al. [2] suggested to extend the definition of locally correct matchings to “locally
optimal” matchings as a future work. “The idea is to restrict to the locally correct matching
that decreases the matched distance as quickly as possible.”[2, p. 237].

Rote [13] proposed such an extension in terms of the profile of a matching. Roughly
speaking, the profile of a matching measures, for each threshold δ ≥ 0, the amount of time
that d2(T1(α1), T2(α2)) is at least δ. Based on matchings’ profiles, Rote defined an order
of matchings by applying the lexicographic order of their profiles. Without any further
restrictions, the lexicographic order of matchings does not make sense because “otherwise we
could simply traverse the two curves at a larger speed and accordingly scale down the profile
of the considered matching.”[13]. Thus, Rote assumes additionally that the “speed at which
the curves are traversed by parametrizations is bounded by 1”[13].

Rote [13] gives an algorithm to compute a lexicographic matching in O
(
n3 logn

)
time.

In contrast to [13], we do not measure time w.r.t. the integral of parameter values
but w.r.t. the length of traversed subcurves. This has the advantage that we do not
need an additional restriction to the considered matchings because the lengths of traversed
subcurves is invariant w.r.t. the speed in that they are traversed. In the following, we give a
corresponding definition of simply computable locally optimal matchings.

Let (α1, α2) be a locally correct matching. As the function f : t 7→ d2(T1(α1(t)), T2(α2(t)))
is in general not monotone, we ask for a matching that locally increases and decreases the
leash length between two maxima “as fast as possible”. In particular, we measure speed in
terms of the lengths of subcurves being traversed to achieve a required leash length.

More formally, t ∈ [0, n] is the parameter of a local maxima of f if there is a δt > 0 such
that for all 0 ≤ δ ≤ δt : f(t ± δ) ≤ f(t) and f(t + δ) < f(t) or f(t − δ) < f(t). For any
t1, t2 ∈ [0, n] and i ∈ {1, 2}, we denote the restriction of αi to [t1, t2] as αi[t1, t2].

I Definition 22. (α1, α2) is locally optimal if Pδ(T1[α1(t1), α1(t2)], T2[α2(t1), α2(t2)]) =
P(α1[t1,t2],α2[t1,t2])(T1, T2) for all δ ≥ 0 and for all parameters of local maxima t1, t2 ∈ [0, n]
such that [t1, t2] does not contain any further parameter of a local maximum.

By applying a similar approach as in the proof of Lemma 7 we obtain the following:

I Lemma 23. Let C be an arbitrarily chosen parameter cell and a, b ∈ C such that a ≤xy b
and πab the path induced by Lemma 7. Then, Pδ(T1[a.x, b.x], T2[a.y, b.y]) = |Eδ ∩ πab| for all
δ ≥ 0, where Eδ is the free space ellipse of C for the distance threshold δ.

A. Maheshwari, J.-R. Sack, and C. Scheffer 26:13

T2

T2

T1

T1

Figure 9 Left: A locally optimal matching that is also global optimal w.r.t. integral Fréchet
distance and partial Fréchet similarity for any δ ≥ 0. Right: The shortest path that corresponds to
the matching to the left. Following completely the free space axes is allowed because the end points
of the free space axes can be ordered w.r.t. xy-monotonicity.

Lemma 23 implies the following:

I Corollary 24. A locally correct matching can be transformed into a locally optimal Fréchet
matching in O(n). Generally, a locally optimal matching can be computed in O(n3 logn).

Proof. Let π ⊂ P be the path that corresponds to the locally correct matching. Furthermore,
let p1, . . . , p2n ∈ π be the intersection points of π with the parameter grid. For each
i ∈ {1, ..., 2n− 1} we substitute the subpath πpipi+1 by the path between pi and pi+1 which
is induced by Lemma 7. The algorithm from [2] computes a locally correct matching in
O(n3 logn) time. Thus, a locally optimal matching can be computed in O(n3 logn) time. J

5 Conclusion

We presented a pseudo-polynomial (1 + ε)-approximation algorithm for the integral and
average Fréchet distance which has a running time of O(ζ

4n4

ε2). In particular, in our approach
we compute two geometric graphs and their weighted shortest path lengths in parallel. It
remains open if one can reduce the complexity of G1 to polynomial with respect to the input
parameters such that using G1 ∪G2 still ensures an (1 + ε)-approximation.

As a byproduct we developed techniques to determine the local nature of an optimal
matching (α1, α2) (without any further restrictions to (α1, α2)) w.r.t. different Fréchet
measures. It remains open how these techniques can be extended such that not only local,
but global optimal matchings can be computed. See Figure 9 for an example. We are
currently investigating this extension.

References
1 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal

curves. Int. J. Comput. Geometry Appl., 5:75–91, 1995. doi:10.1142/S0218195995000064.
2 Kevin Buchin, Maike Buchin, Wouter Meulemans, and Bettina Speckmann. Locally cor-

rect Fréchet matchings. In Leah Epstein and Paolo Ferragina, editors, ESA, volume 7501
of Lecture Notes in Computer Science, pages 229–240. Springer, 2012. doi:10.1007/
978-3-642-33090-2_21.

3 Kevin Buchin, Maike Buchin, and Yusu Wang. Exact algorithms for partial curve matching
via the Fréchet distance. In Claire Mathieu, editor, SODA, pages 645–654. SIAM, 2009.
doi:10.1137/1.9781611973068.

4 Maike Buchin. On the computability of the Fréchet distance between triangulated surfaces.
Ph.D. thesis, Dept. of Comput. Sci., Freie Universität, Berlin, 2007.

SWAT 2016

http://dx.doi.org/10.1142/S0218195995000064
http://dx.doi.org/10.1007/978-3-642-33090-2_21
http://dx.doi.org/10.1007/978-3-642-33090-2_21
http://dx.doi.org/10.1137/1.9781611973068

26:14 Approximating the Integral Fréchet Distance

5 Jean-Lou De Carufel, Amin Gheibi, Anil Maheshwari, Jörg-Rüdiger Sack, and Christian
Scheffer. Similarity of polygonal curves in the presence of outliers. Comput. Geom.,
47(5):625–641, 2014.

6 Isabel F. Cruz, Craig A. Knoblock, Peer Kröger, Egemen Tanin, and Peter Widmayer, edit-
ors. SIGSPATIAL 2012 International Conference on Advances in Geographic Information
Systems (formerly known as GIS), SIGSPATIAL’12, Redondo Beach, CA, USA, November
7-9, 2012. ACM, 2012.

7 Alon Efrat, Quanfu Fan, and Suresh Venkatasubramanian. Curve matching, time warping,
and light fields: New algorithms for computing similarity between curves. Journal of Math-
ematical Imaging and Vision, 27(3):203–216, 2007. doi:10.1007/s10851-006-0647-0.

8 Stefan Funke and Edgar A. Ramos. Smooth-surface reconstruction in near-linear time.
In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
January 6-8, 2002, San Francisco, CA, USA., pages 781–790, 2002.

9 Joachim Gudmundsson, Patrick Laube, and Thomas Wolle. Movement patterns in spatio-
temporal data. In Shashi Shekhar and Hui Xiong, editors, Encyclopedia of GIS, pages
726–732. Springer, 2008. doi:10.1007/978-0-387-35973-1_823.

10 Joachim Gudmundsson and Nacho Valladares. A GPU approach to subtrajectory clustering
using the Fréchet distance. In Cruz et al. [6], pages 259–268. doi:10.1145/2424321.
2424355.

11 Joachim Gudmundsson and Thomas Wolle. Football analysis using spatio-temporal tools.
In Cruz et al. [6], pages 566–569. doi:10.1145/2424321.2424417.

12 Lawrence R. Rabiner and Biing-Hwang Juang. Fundamentals of speech recognition. Prentice
Hall Signal Processing series. Prentice Hall, 1993.

13 Günter Rote. Lexicographic fréechet matchings. In Proceedings of the 32st European Work-
shop on Computational Geometry, pages 101–104, 2014.

http://dx.doi.org/10.1007/s10851-006-0647-0
http://dx.doi.org/10.1007/978-0-387-35973-1_823
http://dx.doi.org/10.1145/2424321.2424355
http://dx.doi.org/10.1145/2424321.2424355
http://dx.doi.org/10.1145/2424321.2424417

Minimizing the Continuous Diameter when
Augmenting Paths and Cycles with Shortcuts∗

Jean-Lou De Carufel1, Carsten Grimm2, Anil Maheshwari3, and
Michiel Smid4

1 School of Electrical Engineering and Computer Science, University of Ottawa,
Ottawa, Canada

2 School of Computer Science, Carleton University, Ottawa, Canada and
Institut für Simulation und Graphik, Otto-von-Guericke-Universität
Magdeburg, Magdeburg, Germany
carsten.grimm@ovgu.de

3 School of Computer Science, Carleton University, Ottawa, Canada
4 School of Computer Science, Carleton University, Ottawa, Canada

Abstract
We seek to augment a geometric network in the Euclidean plane with shortcuts to minimize its
continuous diameter, i.e., the largest network distance between any two points on the augmented
network. Unlike in the discrete setting where a shortcut connects two vertices and the diameter
is measured between vertices, we take all points along the edges of the network into account when
placing a shortcut and when measuring distances in the augmented network.

We study this network augmentation problem for paths and cycles. For paths, we determine
an optimal shortcut in linear time. For cycles, we show that a single shortcut never decreases
the continuous diameter and that two shortcuts always suffice to reduce the continuous diameter.
Furthermore, we characterize optimal pairs of shortcuts for convex and non-convex cycles. Finally,
we develop a linear time algorithm that produces an optimal pair of shortcuts for convex cycles.
Apart from the algorithms, our results extend to rectifiable curves.

Our work reveals some of the underlying challenges that must be overcome when address-
ing the discrete version of this network augmentation problem, where we minimize the discrete
diameter of a network with shortcuts that connect only vertices.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory, I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Network Augmentation, Shortcuts, Diameter, Paths, Cycles

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.27

1 Introduction

The minimum-diameter network augmentation problem is concerned with minimizing the
largest distance between two vertices of an edge-weighted graph by introducing new edges
as shortcuts. We study this problem from a new perspective in a continuous and geometric
setting where the network is a geometric graph embedded into the Euclidean plane, the weight
of a shortcut is the Euclidean distance of its endpoints, and shortcuts can be introduced
between any two points along the network that may be vertices or points along edges.

∗ This work was partially supported by NSERC.

© Jean-Lou De Carufel, Carsten Grimm, Anil Maheshwari, and Michiel Smid;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 27; pp. 27:1–27:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 Minimizing Continuous Diameter with Shortcuts

As a sample application, consider a network of highways where we measure the distance
between two locations in terms of the travel time. An urban engineer might want to improve
the worst-case travel time along a highway or along a ring road by introducing shortcuts.
Our work advises where these shortcuts should be built. For example, we show where to find
the best shortcut for a highway and we show that a ring road requires two shortcuts.

1.1 Preliminaries
A network is an undirected graph that is embedded into the Euclidean plane and whose
edges are weighted with their Euclidean length. For our algorithms we focus on networks
with straight line edges, whereas the remaining results require rectifiable curves as edges.
We say a point p lies on a network G and write p ∈ G when there is an edge e of G such
that p is a point along the embedding of e. A point p on an edge e of length l subdivides e
into two sub-edges lengths (1 − λ) · l and λ · l for some value λ ∈ [0, 1]. We represent the
points on G in terms of their relative position (expressed by λ) along their containing edge.

The network distance between two points p and q on a network G is the length of a
weighted shortest path from p to q in G. We denote the network distance between p and q
by dG(p, q) and we omit the subscript when the network is understood. The largest network
distance between any two points on G is the continuous diameter of G, denoted by diam(G),
i.e., diam(G) = maxp,q∈G dG(p, q). The term continuous distinguishes this notion from the
discrete diameter that measures the largest network distance between any two vertices.

We denote the Euclidean distance between p and q by |pq|. A line segment pq, with
p, q ∈ G is a shortcut for G when |pq| < dG(p, q). We augment a network G with a shortcut
pq as follows. We introduce new vertices at p and at q in G, subdividing their containing
edges, and we add an edge from p to q of length |pq|. We do not introduce any vertices at
any crossings between pq and other edges of G. The resulting network is denoted by G+ pq.
We seek to minimize the continuous diameter of a network by introducing shortcuts.

When G is a path or cycle, |G| denotes its length. A cycle C is convex, when C forms a
convex polygon with non-empty interior, i.e., a convex cycle cannot be confined to a line.

1.2 Related Work
In the discrete abstract setting, we consider an abstract graph G with unit weights and
ask whether we can decrease the discrete diameter of G to at most D by adding at most k
edges. For any fixed D ≥ 2, this problem is NP-hard [2, 7, 9], has parametric complexity
W[2]-hard [4, 5], and remains NP-hard even if G is a tree [2]. For an overview of the
approximation algorithms in terms of both D and k refer, for instance, to Frati et al. [4].

In the discrete geometric setting, we consider a geometric graph, where a shortcut connects
two vertices. Große et al. [6] are the first to consider diameter minimization in this setting.
They determine a shortcut that minimizes the discrete diameter of a path with n vertices in
O(n log3 n) time. The spanning ratio of a geometric network, i.e., the largest ratio between
the network distance and the Euclidean distance of any two points, has been considered as
target function for edge augmentation, as well. For instance, Farshi et al. [3] compute a
shortcut that minimizes the spanning ratio in O(n4) time while Luo and Wulff-Nilsen [8]
compute a shortcut that maximizes the spanning ratio in O(n3) time.

1.3 Structure and Results
Our results concern networks that are paths, cycles, and convex cycles. Figures 1 and 2
illustrate examples of optimal shortcuts for paths and cycles. In Section 2, we develop an

J.-L. De Carufel, C. Grimm, A. Maheshwari, and M. Smid 27:3

Figure 1 Examples for paths with an optimal shortcut.

Figure 2 Examples for cycles with optimal pairs of shortcuts.

algorithm that produces an optimal shortcut for a path with n vertices in O(n) time. In
Section 3, we show that for cycles a single shortcut never suffices to reduce the diameter and
that two shortcuts always suffice. We characterize pairs of optimal shortcuts for convex and
non-convex cycles. Based on this characterization, we develop an algorithm in Section 4 that
determines an optimal pair of shortcuts for a convex cycle with n vertices in O(n) time.

The full version of this paper [1] contains all proofs that were omitted in this version.

2 Shortcuts for Paths

Consider a polygonal path P in the plane with n vertices. We seek a shortcut pq for a path
P that minimizes the continuous diameter of the augmented path P + pq, i.e.,

diam(P + pq) = min
a,b∈P

diam(P + ab) = min
a,b∈P

max
u,v∈P+ab

dP+ab(u, v) .

For this section, let s and e be the endpoints of P and let p be closer to s than q along P ,
i.e., d(s, p) < d(s, q), as illustrated in Figure 3. For a, b ∈ P , let P [a, b] denote the sub-path
from a to b along P , and let C(p, q) be the simple cycle in P + pq.

I Lemma 1. Let pq be a shortcut for P . Every continuous diametral path in P +pq contains
an endpoint of P , except when the shortcut connects the endpoints of P .

According to Lemma 1, we have the following three candidates for continuous diametral
paths in the augmented network P + pq, two of which are illustrated in Figure 4.
1. The path U(p, q) from s to e via the shortcut pq,
2. the path S(p, q) from s to the farthest point from s on C(p, q), and
3. the path E(p, q) from e to the farthest point from e on C(p, q).

Let p̄ be the farthest point from p on C(p, q), and let q̄ be the farthest point from q

on C(p, q). Furthermore, let δ(p, q) := d(p,q)−|pq|
2 denote the slack between p and q̄ (and

symmetrically between p̄ and q) along C(p, q). With this notation, we have

d(p, p̄) = d(q, q̄) = |C(p, q)|
2 = d(p, q) + |pq|

2 = d(p, q)− |pq|
2 + |pq| = δ(p, q) + |pq| ,

SWAT 2016

27:4 Minimizing Continuous Diameter with Shortcuts

p̄

q̄
C(p, q)

x

y

z

z

|pq|
|pq|

p

q

s

e

Figure 3 Augmenting a path P with a shortcut pq. The shortcut creates a cycle C(p, q) with the
sub-path from p to q along P . The farthest point from p on this cycle is p̄ and q̄ is farthest from q

on C(p, q). The distance d(q̄, p̄) between q̄ and p̄ along P matches the Euclidean distance between p

and q, because of the following. When we move a point g from p to q along the shortcut pq, then the
farthest point ḡ from g along C(p, q) moves from p̄ to q̄ traveling the same distance as g, i.e., |pq|.

q̄

p̄

p

q

U(p, q)

s

e

(a) The path U(p, q) from s to e.

p

p̄

q̄

q

S(p, q)

s

e

(b) The path S(p, q) from s to the cycle.

Figure 4 Two candidate diametral paths in P + pq, namely the shortest path connecting s and e

in a and a path from s via p to the farthest point from p on the cycle C(p, q) in b. For the latter,
there is a second path S′(p, q) of the same length traversing C(p, q) in the other direction.

and we can express the lengths of U(p, q), S(p, q), and E(p, q) as follows.

|U(p, q)| = d(s, p) + |pq|+ d(q, e)
|S(p, q)| = d(s, p) + d(p, p̄) = d(s, p) + |pq|+ δ(p, q)
|E(p, q)| = d(e, q) + d(q, q̄) = d(e, q) + |pq|+ δ(p, q)

The following lemma characterizes which of the paths U(p, q), S(p, q), and E(p, q) de-
termine the diameter of P + pq. Notice that these cases overlap, for instance, E(p, q) and
S(p, q) are both continuous diametral when d(s, p) = d(e, q) ≤ δ(p, q).

I Lemma 2. Let pq be a shortcut for a path P . Let x = d(s, p), y = d(e, q), and z = δ(p, q).
The path U(p, q) is continuous diametral if and only if z = min(x, y, z).
The path S(p, q) is continuous diametral if and only if y = min(x, y, z).
The path E(p, q) is continuous diametral if and only if x = min(x, y, z).

I Lemma 3. For every path P , there is an optimal shortcut pq such that S(p, q) and E(p, q)
are continuous diametral paths in P + pq, i.e., diam(P + pq) = |S(p, q)| = |E(p, q)|.

According to Lemmas 2 and 3, we can restrict our search for an optimal shortcut to those
shortcuts satisfying d(s, p) = d(e, q) ≤ δ(p, q). For x ∈ [0, |P |/2], let p(x) and q(x) be the
points on P such that x = d(s, p(x)) and x = d(e, q(x)), and let D(x) = |p(x)q(x)|. Notice

J.-L. De Carufel, C. Grimm, A. Maheshwari, and M. Smid 27:5

p(x∗)
s

q(x∗)e

p(b)

q(b)

(a) A path P with its optimal shortcut p(x∗)q(x∗).

0 x∗ |P |
2

b

(b) A plot of D(x) = |p(x)q(x)|.

Figure 5 The optimal shortcut for the path in a with the function D(x) plotted in b.

that d(p(x), q(x)) = |P | − 2x. Using this notation, we phrase our problem as

min x+ d(p(x), q(x)) + |p(x)q(x)|
2 = min x+ |P | − 2x+ |p(x)q(x)|

2 = min |P |+D(x)
2

s.t. x ≤ δ(p(x), q(x)) = d(p(x), q(x))− |p(x)q(x)|
2 = |P | − 2x−D(x)

2 ,

which simplifies to minimizing D(x) such that 4x+D(x) ≤ |P |.

I Lemma 4. The function B(x) = 4x+D(x) is strictly increasing on [0, |P |/2].

The following theorem describes an optimal shortcut and is illustrated in Figure 5.

I Theorem 5. Let P be a path and let b be the unique value in [0, |P |/2] with B(b) = |P |.
Suppose D has a global minimum in the interval [0, b] at x∗, i.e., D(x∗) = minx∈[0,b] D(x).
Then the shortcut p(x∗)q(x∗) achieves the minimum continuous diameter for P .

I Lemma 6. Let P be a path with n vertices. Then D2(x) is a continuous function whose
graph consists of at most n parabolic arcs or line segments.

I Corollary 7. Given a path P with n vertices, we can compute a shortcut for P achieving
the minimal continuous diameter in O(n) time.

Proof. Let xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(n) be the values in [0, |P |/2] where p(xπ(i)) or q(xπ(i))
coincides with the i-th vertex of P for each i = 1, 2, . . . , n.

We compute the minimum of the parabolic arc of D2 on each interval [xπ(i), xπ(i+1)]
for i = 1, 2, . . . , n until we arrive at k with B(xπ(k)) < |P | and B(xπ(k+1)) ≥ |P |. We then
compute b by solving the quadratic equation D2(b) = (|P | − 4b)2 and, finally, compute
the minimum of D2(x) on [xπ(k), b]. The lowest minima of the encountered parabolic arcs
is the global minimum of D on [0, b], which reveals the position of an optimal shortcut
according to Theorem 5. Altogether, the running time is Θ(k + 1) = O(n), since we obtain
xπ(1), xπ(2), . . . , xπ(k+1) by merging the vertices by their distances from s or from e. J

I Remark. Our result on the location of an optimal shortcut from Theorem 5 also holds
for rectifiable curves in the plane. However, obtaining an optimal shortcut for such curves
depends on our ability to calculate b and a global minimum of D(x) in the interval [0, b].

SWAT 2016

27:6 Minimizing Continuous Diameter with Shortcuts

p̄cw

q̄cw

Ccw
Cccw

p̄ccw

q̄ccw

q

p

g

ḡ

Figure 6 The unaffected regions (solid red) for a shortcut pq (dashed red) to a cycle. The point
x̄y denotes the farthest points from x along the cycle Cy for x ∈ {p, q} and y ∈ {cw, ccw}. Any point
g along the clockwise path from p̄ccw to q̄ccw has their farthest point ḡ on the clockwise path from
q̄cw to p̄cw and vice versa. The distance between g and ḡ is unaffected by the addition of pq to C.

3 Shortcuts for Cycles

Consider a polygonal cycle C in the plane that may have crossings. For any two points p
and q along C that may be vertices or points along edges of C, let dccw(p, q) and dcw(p, q)
be their counter-clockwise and clockwise distance along C, respectively. Let d(p, q) =
min(dccw(p, q), dcw(p, q)) denote the network distance between p and q along C. We seek to
minimize the continuous diameter by augmenting C with shortcuts.

I Lemma 8. Adding a single shortcut pq to a polygonal cycle C never decreases the continuous
diameter, i.e., diam(C) = diam(C + pq) for all p, q ∈ C.

Proof Sketch. Consider any shortcut pq to a cycle C. Let Cccw be the cycle consisting of
pq and the counter-clockwise path from p to q along C, as illustrated in Figure 6. Let p̄ccw
and q̄ccw be the farthest points from p and from q on Cccw, respectively. Since p̄ccw and q̄ccw
are antipodal from p and q in Cccw, we have d(q̄ccw, p̄ccw) = |pq| and d(p̄ccw, q) = d(p, q̄ccw).

Consider a point g along the clockwise path from p̄ccw to q̄ccw and let ḡ ∈ C be the
farthest point from g with respect to C. We can show that dC(g, ḡ) = dC+pq(g, ḡ). J

According to Lemma 8, some points preserve their farthest distance in C when adding a
single shortcut pq to C. The points that are unaffected by pq in this sense form the unaffected
region of pq that consists of the clockwise path from p̄ccw to q̄ccw and the clockwise path from
q̄cw to p̄cw, as illustrated in Figure 6. Conversely, every point on C outside of the unaffected
region uses pq as a shortcut to their farthest point in C + pq.

Consequently, we have to add at least two shortcuts pq and rs in order to decrease the
continuous diameter of the augmented cycle C + pq + rs. Figure 2 illustrates examples of
optimal pairs of shortcuts for cycles. We call a pair of shortcuts pq and rs useful when
diam(C) > diam(C + rs+ pq), and we call pq and rs useless, otherwise. A pair of shortcuts
pq and rs is useful if and only if their unaffected regions are disjoint.

We call a polygonal cycle C degenerate when it consists of two congruent line segments of
length |C|/2. Any number of shortcuts cannot decrease the diameter of a degenerate cycle,
since the endpoints of its line segment remain at the same distance.

I Theorem 9. For every non-degenerate cycle C, there exists a pair of shortcuts pq and rs
that decrease the continuous diameter, i.e., diam(C) > diam(C + pq + rs).

J.-L. De Carufel, C. Grimm, A. Maheshwari, and M. Smid 27:7

r

s

q

p

(a) Alternating Configuration

s

q

p

r

(b) Consecutive Configuration

Figure 7 The two cases for adding two shortcuts pq and rs to a cycle C. The endpoints of the
shortcuts appear in alternating cyclic order p, r, q, and s, as shown in a, or in consecutive cyclic
order p, q, r, and s, as shown in b. The two cases overlap when q coincides with r.

r

s

q

p

(a) The bowtie (./).

r

s

q

p

(b) The hourglass (./).

q

p

(c) The red split (�).

r

s

(d) The blue split (�).

Figure 8 The candidate diametral cycles, except C, for shortcuts in the alternating configuration.

Proof Sketch. Suppose there exist three points p, q, and s on C with d(p, q) = d(q, s) = |C|/4
such that pq and qs are shortcuts, i.e., |pq| < d(p, q) and |qs| < d(q, s). We can argue that pq
and qs are useful. Conversely, we can show that C is degenerate when at least one of pq and
qs is not a shortcut for every three points p, q, and s on C with d(p, q) = d(q, s) = |C|/4. J

3.1 Alternating vs. Consecutive
When placing two shortcuts pq and rs on a cycle C, we distinguish whether their endpoints
appear in alternating order or in consecutive order along the cycle, as illustrated in Figure 7.

We show that there is always an optimal pair of shortcuts in the alternating configuration
by studying the cycles created by the insertion of the shortcuts. A cycle in C + pq + rs

is diametral when it contains a diametral pair. Each configuration has five candidates for
diametral cycles: two that use both shortcuts, two that use one of the shortcuts, and one
(C) that does not use any shortcut. Figures 8 and 9 illustrate the candidates for diametral
cycles in each configuration, except for C itself. To distinguish the cycles using one shortcut,
we color pq red and rs blue and we refer to the longer cycle in C + pq + rs using the red
shortcut pq as the red split and we refer to the longer cycle using the blue shortcut rs as the
blue split. If C happens to be diametral in C + pq + rs, then our pair of shortcuts is useless.

I Lemma 10. Two shortcuts pq and rs in alternating configuration are useful if and only if
|pq|+ |rs| < dccw(r, q) + dccw(s, p) and |pq|+ |rs| < dccw(p, r) + dccw(q, s).

Proof. Suppose pq and rs are useless, i.e., the unaffected regions of pq and rs overlap. In
the alternating configuration, this overlap occurs along the bowtie or along the hourglass.
Since these cases are symmetric, we consider only the former in the following.

An overlap on the bowtie manifests along the clockwise path from r̄ccw to p̄cw with a
mirrored overlap along the clockwise path from s̄cw to q̄ccw, as illustrated in Figure 10. This
means the sum of the lengths of the counter-clockwise paths from r to r̄ccw and from p̄cw to p is

SWAT 2016

27:8 Minimizing Continuous Diameter with Shortcuts

s

q

p

r

(a) The handset.

s

q

p

r

(b) The base station.

q

p

(c) The red split.

s

r

(d) The blue split.

Figure 9 The candidate diametral cycles, except C, for shortcuts in the consecutive configuration,
depicted for d(q, r) ≤ d(s, p). Even though the handset a is no simple cycle, it might still contain a
diametral pair. Observe that the base station b is only listed for the sake of completeness: by the
triangle inequality, this cycle is never longer than the split cycles and, therefore, never diametral.

r

s

r̄ccw

q

p

p̄cw

q̄cw
r̄cw

s̄cw

q̄ccw

p̄ccws̄ccw

Figure 10 A pair of useless shortcuts whose unaffected regions have an overlap (purple) along
the bowtie, i.e., the points s, r̄ccw, p̄cw, and q appear clockwise in this order along the cycle.

at least the length of the counter-clockwise path from r to p, i.e., dccw(p̄cw, p)+dccw(r, r̄ccw) ≥
dccw(r, p). This is equivalent to |pq|+ |rs| ≥ dccw(r, q) + dccw(s, p), since

dccw(q, p) + |pq|+ dccw(r, s) + |rs| = 2dccw(p̄cw, p) + 2dccw(r, r̄ccw) ≥ 2dccw(r, p)
⇐⇒ |pq|+ |rs| ≥ dccw(r, p)− dccw(q, p)︸ ︷︷ ︸

=dccw(r,q)

+ dccw(r, p)− dccw(r, s)︸ ︷︷ ︸
=dccw(s,p)

.

Analogously, we derive that |pq|+ |rs| ≥ dccw(p, r) + dccw(q, s) holds if and only if there is
an overlap along the hourglass. Consequently, the shortcuts pq and rs are useful if and only
if |pq|+ |rs| < dccw(r, q) + dccw(s, p) and |pq|+ |rs| < dccw(p, r) + dccw(q, s). J

I Lemma 11. Consider two consecutive shortcuts pq and rs with dccw(q, r) ≤ dccw(s, p).
Then pq and rs are useful if and only if |pq|+ |rs| < dccw(s, p)− dccw(q, r).

I Theorem 12. Let pq and rs be a pair of shortcuts for a cycle C in consecutive configuration.
There exists a pair p′q′ and r′s′ of shortcuts in the alternating configuration that are at least
as good as pq and rs, i.e., diam(C + p′q′ + r′s′) ≤ diam(C + pq + rs).

Proof Sketch. Suppose pq and rs are useful shortcuts in the consecutive configuration.
Assume, without loss of generality, dccw(q, r) ≤ dccw(s, p) and dccw(p, q) ≤ dccw(r, s). We
consider the shortcuts p′q′ = pr and r′s′ = rs, which are illustrated in Figure 11 and lie
in the intersection of the alternating and consecutive case. We argue that pr and rs are
useful shortcuts and that each candidate diametral cycle in C + pq + rs has a one-to-one
correspondence to a candidate diametral cycle in C + pr + rs of smaller or equal length. J

J.-L. De Carufel, C. Grimm, A. Maheshwari, and M. Smid 27:9

q

p
s

r

Figure 11 Replacing consecutive shortcuts pq and rs with alternating p′q′ = pr and r′s′ = rs.

p

q

r

a

b

c

d

s

Figure 12 The sections of a cycle with a pair of alternating shortcuts.

3.2 Balancing Diametral Cycles
We show that every cycle has an optimal pair of alternating shortcuts where the bowtie
and the hourglass are both diametral and we show that every convex cycle has an optimal
pair of shortcuts where both split cycles are diametral, as well. We obtain these results by
applying a sequence of operations – some of which are shown in Figure 14 – that each slide
the shortcuts along the cycle in a way that reduces or maintains the continuous diameter and
brings the candidate diametral cycles closer to the desired balance. The last two operations
only reduce the diameter for convex cycles as the shortcuts might get stuck at reflex vertices,
which leads to our characterization of optimal shortcuts for convex and non-convex cycles.

Let pq and rs be two alternating shortcuts and let a = dccw(p, r), b = dccw(r, q), c =
dccw(q, s), and d = dccw(s, p). We assume that the red split contains s and the blue split
contains p, i.e., a+ b ≤ c+ d and b+ c ≤ a+ d, as in Figure 12. We abbreviate the lengths
of the bowtie (./), the hourglass (./), the red split (�), and the blue split (�) as follows.

./ := a+ c+ |pq|+ |rs| � := c+ d+ |pq| ./ := b+ d+ |pq|+ |rs| � := a+ d+ |rs|

I Lemma 13. For each relation ∼∈ {<,=, >}, we have

./∼ ./ ⇐⇒ a+ c ∼ b+ d � ∼ � ⇐⇒ c+ |pq| ∼ a+ |rs|
./∼ � ⇐⇒ a+ |rs| ∼ d ./ ∼ � ⇐⇒ b+ |rs| ∼ c
./∼ � ⇐⇒ c+ |pq| ∼ d ./ ∼ � ⇐⇒ b+ |pq| ∼ a

and pq and rs are useful if and only if |pq|+ |rs| < a+ c and |pq|+ |rs| < b+ d.

Proof. The claims follow from the definitions of ./, ./ , �, and �. J

SWAT 2016

27:10 Minimizing Continuous Diameter with Shortcuts

p

q

r

s

r′

Figure 13 Shrinking the blue split.

I Lemma 14. Consider a pair of useful alternating shortcuts where one of the split cycles
evenly divides the cycle. Then this split cycle must have length at most ./ or at most ./ .

Proof. Assume that we have a pair of useful shortcuts where � divides the cycle evenly,
i.e., a + b = c + d, and where ./< � and ./ < �. Then a + |rs| < d and b + |rs| < c, by
Lemma 13, which yields the contradiction |rs| < 0, as a+ |rs| < d = a+ b− c < a− |rs|. J

I Lemma 15. There exists an optimal pair of shortcuts in alternating configuration such
that none of the split cycles is the only diametral cycle.

Proof Sketch. Suppose pq and rs are useful and � is the only diametral cycle in C+pq+ rs,
i.e., ./, ./ ,

� < �. Then we have b+ |pq| < a and c+ |pq| − |rs| < a. We move r clockwise
until we arrive at some r′ where b′ + |pq| = a′ or c+ |pq| − |r′s| = a′, as in Figure 13.

Since the blue split is diametral, it cannot divide the cycle evenly, by Lemma 14. Therefore,
changing r to r′ changes the candidate diametral cycles as follows.

The blue split shrinks or remains the same, i.e., � ≥ �′.
The red split remains the same, i.e., � = �′.
The bowtie changes as the blue split, i.e., ./≥ ./′ and ./′ < �′.
The hourglass remains the same or increases, i.e., ./ ≤ ./ ′.
The hourglass increases when the blue split remains the same, i.e, �− ./ > �′ − ./ ′.

Consequently, diam(C+pq+ r′s) ≤ diam(C+pq+ rs) and �′ = ./
′ or �′ = �′, which implies

our claim, provided that pq and r′s are useful shortcuts. J

I Lemma 16. There exists a pair of optimal shortcuts with ./= ./ .

Proof Sketch. Suppose pq and rs are useful shortcuts with ./ 6= ./ . We balance ./ and ./
using the following operations, as illustrated in Figure 14. They maintain or decrease the
continuous diameter while decreasing the difference between bowtie and hourglass.

1. As long as neither split cycle divides the cycle C evenly, we shrink the larger split cycle
in a way that decreases the difference of bowtie and hourglass:
a. When ./< ./ and � ≤ �, we move s counter-clockwise.
b. When ./< ./ and � > �, we move p clockwise.
c. When ./> ./ and � ≤ �, we move r clockwise.
d. When ./> ./ and � > �, we move q counter-clockwise.

2. Once a split cycle evenly divides the cycle, we move the endpoints of the corresponding
shortcut in the direction that decreases the difference between bowtie and hourglass:

J.-L. De Carufel, C. Grimm, A. Maheshwari, and M. Smid 27:11

p

q

r

s

s′

(a) Operation 1.a.

r

s

p

q
q′

p′

(b) Operation 2.a.

Figure 14 Some of the operations that are used to balance the candidate diametral cycles.

a. When ./< ./ and � evenly divides the cycle, we move p and q clockwise.
b. When ./> ./ and � evenly divides the cycle, we move p and q counter-clockwise.
c. When ./< ./ and � evenly divides the cycle, we move s and r counter-clockwise.
d. When ./> ./ and � evenly divides the cycle, we move s and r clockwise.

For each operation, we argue that pq and rs remain useful shortcuts and that the diameter
never increases while the difference between hourglass and bowtie always decreases. J

I Corollary 17. There exists a pair of optimal shortcuts that is in the alternating configuration
such that none of the split cycles is the only diametral cycle and such that the bowtie and the
hourglass have the same length.

Proof. By Lemma 15, we have a pair of optimal shortcuts pq and rs for a cycle C where
none of the splits is the only diametral cycle. The Operations 1.a to 1.d from Lemma 16
shrink the larger split cycle at the same rate as they shrink the larger of bowtie and hourglass.
Thus, we do not create a sole diametral cycle by applying these operations. Furthermore,
the Operations 2.a to 2.d rotate an even split that cannot become diametral by Lemma 14.
By applying Lemma 16, we obtain a pair of optimal shortcuts p′q′ and r′s′ with at least two
diametral cycles and where bowtie and hourglass have the same length. J

I Theorem 18. For every non-degenerate cycle, there exists an optimal pair of shortcuts
such that the hourglass and the bowtie are both diametral.

Proof. Let C be a non-degenerate cycle. By Corollary 17, there is a pair of optimal shortcuts
pq and rs where neither split cycle is the only diametral cycle and where ./= ./ .

Suppose that ./ and ./ are not diametral. The cycle C cannot be diametral, since pq and
rs are useful. This means a split is diametral, i.e., � > ./= ./ or � > ./= ./ . Since neither
� nor � is the only diametral cycle, we have � = � > ./= ./ .

We shrink the splits by simultaneously moving p and r clockwise while moving q and s
counter-clockwise, as illustrated in Figure 15. By moving pq and rs at appropriate speeds,
we ensure that this operation maintains both the balance between the split cycles and
the balance between bowtie and hourglass, i.e., �′ = �′ and ./′ = ./

′. This decreases the
continuous diameter, provided that the line segments p′q′ and r′s′ remain useful shortcuts.

Assume, for the sake of a contradiction, that p′q′ is not a shortcut, i.e., |p′q′| = d(p′q′).
By Lemma 14 we cannot pass through an even red split during our operation. Thus, we have
d(p′, q′) = dccw(p′, q′), i.e., the line segment p′q′ contains pq contradicting the choice of pq as
shortcut. Therefore, p′q′ is a shortcut. Symmetrically, we can argue that r′s′ is a shortcut.

SWAT 2016

27:12 Minimizing Continuous Diameter with Shortcuts

p

q

r

s

q′

p′

r′

s′

Figure 15 Shifting the shortcuts to shrink the split cycles while maintaining � = � and ./= ./ .

We argue that p′q′ and r′s′ remain useful. From ./′ = ./
′ ≤ �′ = �′, we obtain

|p′q′| ≤ d′ − c′, |p′q′| ≤ a′ − b′, and |r′s′| ≤ c′ − b′, by Lemma 13. Together with b′ > 0 and
a′+c′ = b′+d′, we derive that p′q′ and r′s′ are useful, because |p′q′|+|r′s′| ≤ d′−c′+c′−b′ =
d′−b′ < d′+b′ = a′+c′. This means p′q′ and r′s′ are useful shortcuts with ./′ = ./

′ = �′ = �′
and diam(C + pq + rs) > diam(C + p′q′ + r′s′) contradicting the optimality of pq and rs.
Therefore, there are optimal shortcuts where the hourglass and the bowtie are diametral. J

I Theorem 19. For every convex cycle, there exists an optimal pair of alternating shortcuts
such that the hourglass, the bowtie, and the splits are diametral, i.e., ./= ./ = � = �.

Proof Sketch. According to Theorem 18, there are optimal shortcuts pq and rs with ./=
./ ≥ � and ./= ./ ≥ �. Suppose we have ./= ./ >

� or ./= ./ > �.
First, since C is convex we can increase each split in a way that shrinks its shortcut.

Second, we grow the smaller split until both splits are equal. Third, we grow both splits at
the same rate until they are equal to bowtie and hourglass. J

I Corollary 20. For every non-degenerate cycle, there exists an optimal pair of shortcuts
such that the hourglass and the bowtie are diametral and such that each split cycle is diametral
or the shortcut of the split has at least one endpoint at a reflex vertex.

I Corollary 21. For every convex cycle, there exists an optimal pair of shortcuts with
a+ b ≤ c+ d and b+ c ≤ a+ d such that the following holds.

d = |C|4 + |pq|+ |rs|2 = diam(C + pq + rs) a = |C|4 + |pq| − |rs|2

b = |C|4 −
|pq|+ |rs|

2 = diam(C)− diam(C + pq + rs) c = |C|4 + |rs| − |pq|2

Surprisingly, this means we can read the new continuous diameter of C + pq + rs from d and
we can read the benefit of adding the shortcuts pq and rs to C from b.

4 A Linear-Time Algorithm for Convex Cycles

For convex cycles, we restrict our search to the pairs of shortcuts satisfying ./= ./ = � = �,
due to Theorem 19. We proceed as follows. First, we pick some point p on the cycle C and
compute three points q, r, and s such that ./= ./ = � = � – regardless of whether pq and
rs are shortcuts. We show that the points q, r, and s exist and are unique for every point p
along C. Once we have balanced p, q, r, and s, we slide p along C maintaining the balance
by moving q, r, and s appropriately. We show that q, r, and s move in the same direction as

J.-L. De Carufel, C. Grimm, A. Maheshwari, and M. Smid 27:13

p̄

s̄
q

r

s

p

ab

c

d

q

r

s

p

Figure 16 Locating r and s to balanced the splits for fixed p and s.

p while preserving their order along C. Thus, each endpoint traverses each edge of the n
edges of C at most once throughout this process, which therefore takes O(n) time.

For the remainder of this section, we only focus on convex cycles with non-empty interior.
Consider a cycle C and a fixed point p on C. We say a triple of points q, r, and s is in
balanced configuration with p when the points p, r, q, and s appear counter-clockwise in this
order along C, dccw(p, q) ≤ |C|/2, dccw(r, s) ≤ |C|/2, and ./= ./ = � = �.
I Theorem 22. Consider a convex cycle C and a point p on C. There exists a unique triple
q, r, s of points on C that are in balanced configuration with p.

Proof Sketch. Suppose we place s at some position on C with |C|/4 ≤ dccw(s, p) ≤ |C|/2.
The points r and q must have fixed distance d(r, q) = |C|/2 − dccw(s, p) to ensure ./= ./ .
Suppose we slide q and r along the clockwise path from p̄ to s̄ while maintaining d(q, r) =
d(p̄, s), as in Figure 16. When q and r are close to s, we have � < � and when q and r are
close to p, we have � > �. By the intermediate value theorem, there exist positions for q
and r such that ./= ./ and � = � and these positions are unique, since C is convex.

Suppose we slide s from p̄ towards p while maintaining ./ = ./ and � = �. When
d(s, p) = |C|/2, we end up with ./= ./ <

� = � and when d(s, p) = |C|/4, we end up with
./= ./ >

� = �. By the intermediate value theorem, there exist positions for s, q, and r
such that ./= ./ = � = �. We find these positions with two nested binary searches. J

I Lemma 23. Consider a convex cycle C. Suppose p moves counter-clockwise along C.
Then any three points in balanced configuration with p are moving counter-clockwise, as well.

I Theorem 24. Consider a convex cycle C with n vertices. We can compute an optimal
pair of shortcuts for C in O(n) time.

Proof. We pick an arbitrary point p along some edge ep of C and identify the edges eq, er, and
es containing the points q, r, and s that form a balanced configuration with p, as described
in the proof sketch of Theorem 22. We find a (locally) optimal pair of shortcuts p∗q∗ and
r∗s∗ with whose endpoints lie on the edges ep, eq, er, es by minimizing d = diam(C + pq+ rs)
subject to a+ b ≤ |C|/2 and b+ c ≤ |C|/2, and the constraints stated in Corollary 21 that
ensure ./= ./ = � = �. Then, we identify the four edges that would host p, q, r, and s next,
if p were to move counter-clockwise: for each endpoint x ∈ {p, q, r, s}, we calculate how far
the other endpoints would move under the assumption that x is the first point to hit a vertex.
Theorem 22 guarantees that this calculation has a unique solution. Since all points move
in the same direction as p, an edge e will never host an endpoint x in any subsequent step,
once x has left e. Therefore, the entire process takes O(n) time. Since we encounter every
four points in balanced configuration, we also encounter an optimal pair of shortcuts. J

SWAT 2016

27:14 Minimizing Continuous Diameter with Shortcuts

5 Conclusion and Future Work

Our work reveals some of the underlying challenges that must be overcome when addressing
the discrete version of the network augmentation problem, where we minimize the discrete
diameter of a network with shortcuts that connect only vertices. We shall investigate to what
extend we can translate to the discrete setting. For instance, we would like to know when
and how well the optimal continuous shortcuts approximate the optimal discrete shortcuts.

By Corollary 20, we can determine an optimal pair of shortcuts for non-convex cycles with
r reflex vertices in O(rn3) time: we compute the best shortcuts satisfying ./= ./ = � = �
and we check all possible triples of edges that might contain the other endpoints when one
shortcut is stuck at a reflex vertex. We seek to improve this naïve approach by generalizing
our sliding-sweep algorithm for convex cycles to non-convex cycles. In addition the shortcuts
with ./= ./ = � = � (which may be non-optimal), we would have to keep track of each
locally optimal shortcuts with one endpoint at a reflex vertex. However, some properties,
such as the uniqueness of shortcuts in balance, break down for non-convex cycles.

As the next natural step after paths and cycles, we shall study minimizing the continuous
diameter of trees, uni-cyclic networks, and so forth by introducing shortcuts.

References
1 Jean-Lou De Carufel, Carsten Grimm, Anil Maheshwari, and Michiel Smid. Minimizing

the continuous diameter when augmenting paths and cycles with shortcuts. This is the full
version of this paper., 2015. arXiv:1512.02257.

2 Victor Chepoi and Yann Vaxès. Augmenting trees to meet biconnectivity and diameter
constraints. Algorithmica, 33(2):243–262, 2002. doi:10.1007/s00453-001-0113-8.

3 Mohammad Farshi, Panos Giannopoulos, and Joachim Gudmundsson. Improving the
stretch factor of a geometric network by edge augmentation. SIAM Journal on Computing,
38(1):226–240, 2008. doi:10.1137/050635675.

4 Fabrizio Frati, Serge Gaspers, Joachim Gudmundsson, and Luke Mathieson. Augment-
ing graphs to minimize the diameter. Algorithmica, 72(4):995–1010, 2015. doi:10.1007/
s00453-014-9886-4.

5 Yong Gao, Donovan R. Hare, and James Nastos. The parametric complexity of graph
diameter augmentation. Discrete Applied Mathematics, 161(10-11):1626–1631, 2013. doi:
10.1016/j.dam.2013.01.016.

6 Ulrike Große, Joachim Gudmundsson, Christian Knauer, Michiel Smid, and Fabian Stehn.
Fast algorithms for diameter-optimally augmenting paths. In 42nd International Collo-
quium on Automata, Languages, and Programming (ICALP 2015), pages 678–688, 2015.
doi:10.1007/978-3-662-47672-7_55.

7 Chung-Lun Li, S. Thomas McCormick, and David Simchi-Levi. On the minimum-
cardinality-bounded-diameter and the bounded-cardinality-minimum-diameter edge ad-
dition problems. Operations Research Letters, 11(5):303–308, 1992. doi:10.1016/
0167-6377(92)90007-P.

8 Jun Luo and Christian Wulff-Nilsen. Computing best and worst shortcuts of graphs embed-
ded in metric spaces. In 19th International Symposium on Algorithms and Computation
(ISAAC 2008), pages 764–775, 2008. doi:10.1007/978-3-540-92182-0_67.

9 Anneke A. Schoone, Hans L. Bodlaender, and Jan van Leeuwen. Diameter increase caused
by edge deletion. Journal of Graph Theory, 11(3):409–427, 1987. doi:10.1002/jgt.
3190110315.

http://arxiv.org/abs/1512.02257
http://dx.doi.org/10.1007/s00453-001-0113-8
http://dx.doi.org/10.1137/050635675
http://dx.doi.org/10.1007/s00453-014-9886-4
http://dx.doi.org/10.1007/s00453-014-9886-4
http://dx.doi.org/10.1016/j.dam.2013.01.016
http://dx.doi.org/10.1016/j.dam.2013.01.016
http://dx.doi.org/10.1007/978-3-662-47672-7_55
http://dx.doi.org/10.1016/0167-6377(92)90007-P
http://dx.doi.org/10.1016/0167-6377(92)90007-P
http://dx.doi.org/10.1007/978-3-540-92182-0_67
http://dx.doi.org/10.1002/jgt.3190110315
http://dx.doi.org/10.1002/jgt.3190110315

A Clustering-Based Approach to Kinetic Closest
Pair
Timothy M. Chan1 and Zahed Rahmati2

1 Cheriton School of Computer Science, University of Waterloo, Waterloo,
Canada
tmchan@uwaterloo.ca

2 School of Electrical and Computer Engineering, University of Tehran, Tehran,
Iran
rahmati@ece.ut.ac.ir

Abstract
Given a set P of n moving points in fixed dimension d, where the trajectory of each point is a poly-
nomial of degree bounded by some constant, we present a kinetic data structure (KDS) for main-
tenance of the closest pair on P . Assuming the closest pair distance is between 1 and ∆ over time,
our KDS uses O(n log ∆) space and processes O(n2β log ∆ logn + n2β log ∆ log log ∆)) events,
each in worst-case time O(log2 n + log2 log ∆). Here, β is an extremely slow-growing function.
The locality of the KDS is O(logn+ log log ∆). Our closest pair KDS supports insertions and de-
letions of points. An insertion or deletion takes worst-case time O(log ∆ log2 n+log ∆ log2 log ∆).

Also, we use a similar approach to provide a KDS for the all ε-nearest neighbors in Rd.
The complexities of the previous KDSs, for both closest pair and all ε-nearest neighbors,

have polylogarithmic factor, where the number of logs depends on dimension d. Assuming ∆ is
polynomial in n, our KDSs obtain improvements on the previous KDSs.

Our solutions are based on a kinetic clustering on P . Though we use ideas from the previous
clustering KDS by Hershberger, we simplify and improve his work.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Geometrical
problems and computations

Keywords and phrases Kinetic Data Structure, Clustering, Closest Pair, All Nearest Neighbors

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.28

1 Introduction

Let P be a set of of points in Rd. The closest pair problem is a fundamental, well-studied
proximity problem in computational geometry, which is to find a pair of points in P with
minimum separation distance. A decision version of the closest pair problem, called the
closest pair decision problem, is to decide whether the closest pair distance is less than or
equal to a given r. In many applications, e.g., collision detection, the closest pair decision
problem is more important than the closest pair problem. A general version of the closest
pair problem is finding the nearest neighbor in P for each point in P , which is called the all
nearest neighbors problem. The all ε-nearest neighbors problem is to find a point p ∈ P to
each point q ∈ P such that d(p, q) ≤ (1 + ε) · d(p∗, q), where p∗ ∈ P is the nearest neighbor
of q, and d(., .) denotes the Euclidean distance between two points; p is called an ε-nearest
neighbor to q.

The unit disk covering problem is to find the minimum cardinality set S of unit disks
such that each point in P is covered by some disk in S. The problem is well-motivated from

© Timothy M. Chan and Zahed Rahmati;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 28; pp. 28:1–28:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 A Clustering-Based Approach to Kinetic Closest Pair

many applications, e.g., VLSI design and facility location. The unit disk covering problem is
NP-hard in the L2 and L∞ metrics [7]. There exist polynomial time approximation solutions,
of constant factor, to the unit disk covering problem in the L2 and L∞ metrics [4, 6, 9, 11].

Consideration of the problems on a set of moving objects has been studied extensively
in different communities (e.g., computational geometry, robotics, and computer graphics);
see [12] and references therein. In this paper, we focus on the kinetic problems for a set P of
n moving points in a fixed dimension d. Next, we formally state the kinetic problems.

KDS framework

Basch, Guibas, and Hershberger [2] first introduced the kinetic data structure (KDS) frame-
work to maintain an attribute (e.g., closest pair) of a set P of moving points. In the KDS
framework, it is assumed that the trajectory of each point in P is given by a polynomial
of degree bounded by some constant s̄. A set of data structures and algorithms, namely a
kinetic data structure (KDS), is built to maintain the attribute of interest. A KDS includes
a set of certificates (boolean functions) that attests the attribute of interest is valid over
time, except at some discrete moments (failure times of the certificates); when a certificate
fails we say an event occurs. To track the next event after the current time, we define a
priority queue of the failure times of the certificates. Note that any change to the events in
the priority queue requires O(logn) for the update, and also note that the response time to
an event in the KDS does not include this update time. An important criterion in a KDS is
the locality of the KDS, which is the number of certificates associated with a particular point
at any fixed time. If the locality of a KDS is polylogarithmic in n (or maximum nearest
neighbor distance), the KDS is called local. A local KDS ensures that when a point changes
its trajectory only a small number of changes is needed in the KDS.

Statements of kinetic problems

The kinetic closest pair problem is to maintain the closest pair in P over time. The kinetic
closest pair decision problem is defined as follows: Given a parameter r, build a KDS to
determine at any time whether the closest pair distance is less than or equal to r. Maintaining
the nearest neighbor in P to each point in P is called the kinetic all nearest neighbors problem.
The kinetic all ε-nearest neighbors problem is to maintain some ε-nearest neighbor p ∈ P to
each point q ∈ P such that d(p, q) ≤ (1 + ε) · d(p∗, q), where p∗ ∈ P is the nearest neighbor
of q.

The kinetic clustering problem is to build a KDS that maintains a set S of clusters on
the moving points in P , such that each cluster can be covered by a (unit) disk, and such
that the cardinality |S| of S is within a small factor of |S|, the minimum possible by the
optimal covering S.

Related work

Basch, Guibas, and Hershberger [2] gave the first KDS for the closest pair on a set of n
moving points, where the trajectory of each point is a polynomial bounded by some constant
s̄. Let s = 2s̄+ 2. Their KDS uses O(n) space and processes O(n2βs(n) logn) events, each
in time O(log2 n); their KDS is local. Here, βs(n) is an extremely slow-growing function, i.e.,
βs(n) = λs(n)/n, where λs(n) is the maximum length of Davenport-Schinzel sequences of
order s on n symbols. Their KDS was later simplified and extended to higher dimensions d,
using multidimensional range trees, by Basch, Guibas, and Zhang [3]. The KDS of [3] uses
O(n logd−1 n) space, processes O(n2βs(n) logn) events, each in time O(logd n), and it is local.

T.M. Chan and Z. Rahmati 28:3

Table 1 The previous (and new) kinetic results for the attribute closest pair (CP). The attribute
CP(r) is to decide whether the closest pair distance is at most r.

attribute dim. space #events proc. time local
CP [2] 2 O(n) O(n2βs(n) logn) O(log2 n) /event Yes
CP [3] d O(n logd−1 n) O(n2βs(n) logn) O(logd n) /event Yes
CP [1] d O(n logd−1 n) O(n2βs(n) logn) O(logd n) /event Yes
CP [14] 2 O(n) O(n2β2

s (n) logn) O(n2β2
s (n) log2 n) No

CP [here] d O(n log ∆) O((n2βs(n log ∆) log ∆)·
(logn+ log log ∆))

O(log2 n+
log2 log ∆) /event Yes

CP(r) [here] d O(n) O(n2) O(1) /event Yes

Agarwal et al. [1] used multidimensional range trees to provide KDSs for maintenance of the
closest pair and all the nearest neighbors in Rd. Their closest pair KDS, which has the same
approach and complexity as that of [3], supports insertions and deletions of points, where each
operation takes amortized time O(logd+1 n). For maintenance of all the nearest neighbors,
they implemented multidimensional range trees by randomized search trees (treaps). Their
all nearest neighbors KDS uses O(n logd n) space and handles O(n2βs(n) logd+1 n) events,
with total processing time O(n2βs(n) logd+2 n). Each insertion or deletion in this KDS takes
expected time O(n). Rahmati et al. [14] used the kinetic semi-Yao graph (i.e., theta graph)
as a supergraph of the nearest neighbor graph to present a simple method for maintenance
of the closest pair and all nearest neighbors. Their kinetic approach, which in fact maintains
two Delaunay triangulations in R2, uses linear space and processes O(n2β2

s (n) logn) events,
with total cost O(n2β2

s (n) log2 n). By taking advantage of multidimensional range trees,
the approach of [14] was later extended to higher dimensions to maintain all the nearest
neighbors and all the ε-nearest neighbors [13]. None of the KDSs for maintenance of all the
exact nearest neighbors is local.

Tables 1 and 2 summarize the complexities of the previous KDSs for maintenance of the
closest pair, all the nearest neighbors, and all the ε-nearest neighbors. Here, “dim.", “#events",
and “proc." stand for “dimension", “number of events", and “processing", respectively. There
is also a different track, instead of maintaining an attribute over time, one would be interested
in finding a time value for which the attribute is minimized or maximized. For a set of
linearly moving points, in fixed dimension d, Chan and Rahmati [5] provided an approach to
approximate the minimum closest pair distance and minimum nearest neighbor distances
over time. For any constant ε > 0, their approach computes a (1 + ε)-factor approximation
to the minimum closest pair distance in time Õ(n5/3). The notation Õ hides polylogarithmic
factors. Assuming n ≤ m ≤ n5, their approach builds a data structure, which uses Õ(m)
preprocessing time and space, for answering queries: For any linearly moving query point q,
their structure computes in time Õ(n

m1/5) a (1 + ε)-factor approximation to the minimum
nearest neighbor distance to q over time.

Gao et al. [8] presented a randomized algorithm to maintain a clustering of moving points
in R2, where each cluster can be covered by a unit square such that the centers of the squares
are located at the points of P . The number of squares in their approach is on the order
of 106 · |S|. Their KDS uses O(n logn log logn) space, and processes O(n2 log logn) events,
each in expected time O(log3.6 n). The locality of their KDS is O(log logn). They proved
that the number of changes of the optimal covering is Θ(n3), and any approximate covering
with constant factor undergoes Ω(n2) changes.

Hershberger [10] gave a deterministic solution to the kinetic clustering problem in fixed
dimension d in the L∞ metric, where the number of axis-aligned boxes is at most 3d · |S|.

SWAT 2016

28:4 A Clustering-Based Approach to Kinetic Closest Pair

Table 2 The previous (and new) kinetic results for maintenance of all nearest neighbors (NNs)
and all ε-nearest neighbors (ε-NNs).

attribute dim. space #events proc. time local
all NNs [1] d O(n logd n) O(n2βs(n) logd+1 n) O(n2βs(n) logd+2 n) No
all NNs [14] 2 O(n) O(n2β2

s (n) logn) O(n2β2
s (n) log2 n) No

all NNs [13] d O(n logd n) O(n2β2
s (n) logn) O(n2βs(n) logd+1 n) No

all ε-NNs [13] d O(n logd n) O(n2 logd n) O(logd n log logn) /event Yes

all ε-NNs [here] d O(n log ∆′) O((n2βs(log ∆′))·
(log ∆′ log log ∆′)) O(log2 log ∆′) /event Yes

His KDS uses linear space, and processes O(n2) events, each in O(log2 n) time. The locality
of the KDS is O(logn). His approach uses a dimensional reduction technique: It partitions
the points into 1-dimensional clusters, covered by strips (of width at most one) perpendicular
to x1-axis, then partitions the points in each of these clusters into 2-dimensional clusters,
covered by strips (of width at most one) perpendicular to x2-axis, and so on. Each event at
one level of this hierarchy creates O(1) dynamic changes to the clusters at next level of the
hierarchy. Handling an event in his approach requires dynamic maintenance, which in fact
involves checking many complicated cases. For each strip at each level of the hierarchy, his
approach uses two dynamic and kinetic tournament trees to track the leftmost point and
rightmost point of the strip. He posed the problem of providing a smooth kinetic maintenance
for clustering on P without dimension reduction.

Main contributions

For a set P of n moving points, in fixed dimension d, where the trajectory of each point is
a polynomial of degree bounded by some constant s̄, we provide clustering-based solutions
to the kinetic closest pair decision problem and kinetic closest pair problem. Our kinetic
clustering approach in Rd uses the kinetic 1-dimensional clustering by Hershberger.

Given a parameter r, we present a KDS for deciding in time O(1) whether the closest
pair distance is less than or equal to r. This KDS uses O(n) space and processes O(n2)
events, each in O(1) time. The KDS can support insertions and deletions of points, where
each operation can be performed in worst-case time O(logn).

To solve the optimization problem of maintaining the closest pair, we assume the closest
pair distances is between 1 and ∆. This assumption is related to the assumption that the
ratio between the maximum closest pair distance and the minimum closest pair distance is
bounded by some parameter ∆. In many applications, the maximum closest pair distance
over time is small, which makes our assumption and results reasonable. However, we can use
our kinetic solution for the closest pair decision problem to detect if the closest pair distance
is less than 1 or greater than ∆.

Our KDS for maintenance of the closest pair in Rd uses O(n log ∆) space and processes
O(n2 log ∆ lognβs(n log ∆) + n2 log ∆ log log ∆βs(n log ∆)) events, each in time O(log2 n+
log2 log ∆). We can dynamize our closest pair KDS such that each insertion or deletion takes
worst-case time O(log ∆ log2 n+ log ∆ log2 log ∆). Note that, the space and processing time
of each event in both previous closest pair KDSs by Basch et al. [3] and Agarwal et al. [1] are
O(n logd−1 n) and O(logd n), respectively, and also each insertion or deletion in the closest
pair KDS by Agarwal et al. takes amortized time O(logd+1 n), where the number of logs is
dependent on dimension d, whereas in our KDS it does not grow with d.

In addition, assuming the nearest neighbor distance to each point is between 1 and ∆′, we
provide a KDS (similar to that of the closest pair) for maintenance of all the ε-nearest neigh-

T.M. Chan and Z. Rahmati 28:5

bors in Rd. This KDS uses O(n log ∆′) space and handles O(n2 log ∆′ log log ∆′βs(log ∆′))
events, each in worst-case time O(log2 log ∆′). The locality of the KDS is O(log log ∆′).
Our KDS for all ε-nearest neighbors supports insertions and deletions of points, where each
operation takes worst-case time O(log ∆′ logn+ log ∆′ log2 log ∆′). In the previous KDS for
maintenance of all the exact nearest neighbors by Agarwal et al. [1], an insertion or deletion
takes expected time O(n).

Tables 1 and 2 give the comparisons between our results and the previous results.
Our approach is based on a clustering on moving points. We use the 1-dimensional

clustering KDS by Hershberger to provide a d-dimensional clustering KDS. Our KDS uses
O(n) space and processes O(n2) events, each in O(1) time. Each point participates in O(1)
certificates. At any time, each cluster can be covered by a d-dimensional axis-aligned box of
maximum side-length one, and the number of boxes is |S| ≤ 3d · |S|. For the Rd case, our
approach is simpler than the approach by Hershberger: We in fact do the future work stated
in his paper; we solve the problem without dimension reduction, which is a need to his KDS.
Our KDS uses d kinetic sorted lists, but his KDS uses (order of) 2 · d · 3d · |S| dynamic and
kinetic tournament trees. Also, we obtain improvements on his KDS: Processing an event in
our KDS takes constant time, but the processing time in his KDS is O(log2 n). The locality
of our KDS is O(1), but it is O(logn) in his KDS.

2 Kinetic Clustering

Section 2.1 provides a kinetic 1-dimensional clustering for a set P of moving points in Rd,
where the trajectory of each point is a polynomial of degree bounded by some constant.
In Section 2.2, we give a simple generalization that allows us to maintain a d-dimensional
clustering, where each cluster can be covered by a d-dimensional axis-aligned box of maximum
side-length one.

2.1 The 1-d Case
Hershberger [10] provided a kinetic approach for clustering a set P of moving points by
strips, perpendicular to x-axis, of width at most one. We call an x-cluster the set of points
in P covered by some strip B. Denote by lpt(C)/rpt(C) the leftmost/rightmost point of
the x-cluster C. The diameter of an x-cluster C is x(rpt(C))− x(lpt(C)). Let lb(C)/rb(C)
denote the x-coordinate of the left/right boundary of B, the strip corresponding to C. Let
C`/Cr denote the next x-cluster on the left/right side of C.

Hershberger’s kinetic approach uses three types of x-clusters (right set, left set, and gap
set) with the following properties to obtain a smooth kinetic maintenance of x-clusters.

(lb(C), rb(C)) =

(x(lpt(C)), x(lpt(C)) + 1) when C is a right set,
(lb(Cr)− 1, lb(Cr)) when C is a left set,
(x(lpt(C)), x(rpt(C))) when C is a gap set.

His approach maintains the following invariants over time, where each of them can be
considered as a KDS certificate, called an invariant certificate. An invariant certificate fails
when the distance between two points is zero, one, or two.

(I1) If p ∈ C, then either lb(C) ≤ x(p) < rb(C), or x(p) = rb(C) and C is a gap set.
(I2) For all C, rb(C) ≤ lb(Cr).
(I3) If C is a gap (resp. left) set, then Cr is not a gap (resp. left) set.
(I4) If C is a gap set, then lb(Cr)− lb(C) < 1.
(I5) If C is a gap set, and Cr and C` are right sets, then lb(Cr)− rb(C`) < 1.

SWAT 2016

28:6 A Clustering-Based Approach to Kinetic Closest Pair

I Lemma 1 ([10]). Each point in P participates in O(1) invariant certificates. When an
invariant fails, the corresponding certificates can be updated in O(1) time, by a constant
number of x-cluster type changes, point transfers between the x-clusters, and singleton x-
cluster creations. The number of x-clusters, at any time, is within a factor of 3 of the
minimum possible by the optimal covering.

Let L be a kinetic sorted list of the points in P , in increasing order according to their
x-coordinates. For any two consecutive points in L, an ordering certificate is defined that
attests the order of the two points along the x-axis; an ordering event occurs when two
consecutive points in L exchange their order. We use the kinetic sorted list L to maintain
lpt(C) and rpt(C) of all the x-clusters C.1

I Lemma 2. Each point participates in two ordering certificates. When an ordering event
occurs, the corresponding certificates can be updated in O(1) time.

Note that, for some x-cluster C, an update to lpt(C)/rpt(C) implies O(1) updates to the
invariant certificates. Also note that updating some invariant certificate may create O(1)
changes to lpt(·)/rpt(·) of the x-clusters. From this, together with Lemmas 1 and 2, we
conclude:

I Lemma 3. There exists a KDS that maintains a set S of x-clusters, such that each
x-cluster can be covered by a strip of width at most one, where |S| ≤ 3 · |S|. The KDS uses
O(n) space and handles O(n2) events, each in O(1) time. The locality of the KDS is O(1).

2.2 The General Case: Any Fixed d

Denote the d coordinate axes by xj , j = 1, . . . , d. Hershberger’s approach uses a dimension
reduction approach: It first creates the x1-clusters, then for each x1-cluster it creates the
x2-clusters, and so on. This approach needs to extend the smooth maintenance of Lemma 1
to support insertions and deletions. The dynamic maintenance of his approach considers
many complicated cases to update the clusters; each event at one level of the hierarchy
creates dynamic changes to the clusters at next level of the hierarchy. Here, we show how
simply we can maintain a set S of d-dimensional clusters on a point set P , without the
dimension reduction and without the need of dynamic maintenance used by Hershberger.

Notation

Denote by i1, . . . , id the indices that we use to refer to the strips perpendicular to the
x1, . . . , xd-axes, respectively. Let B(ij) denote some strip perpendicular to the xj-axis, and
let C(ij) = P ∩B(ij) be the corresponding xj-cluster for B(ij). Denote by C(ij + k) (resp.
C(ij − k)) the kth xj-cluster right after (resp. before) the xj-cluster C(ij). Let B(i1, . . . , id)
denote the d-dimensional axis-aligned box which is formed by the intersection of the strips
B(i1), . . . , B(id); let C(i1, . . . , id) = P ∩B(i1, . . . , id). We denote by S the set of non-empty
clusters C(i1, . . . , id), for all i1, . . . , id. Figure 1 shows the strips of x1-clusters and x2-clusters
of a set of points in R2; the nine non-empty boxes give a covering of the point set.

By application of Lemma 3, corresponding to each xj-axis, we maintain a set of xj-
clusters. When an event associated with some xj-cluster occurs, O(1) points transfer between

1 The KDS of Hershberger uses two kinetic tournament trees to maintain lpt(C) and rpt(C) for each
cluster C. Thus his KDS includes a set of tournament certificates, where each point participates in
O(logn) such certificates.

T.M. Chan and Z. Rahmati 28:7

Figure 1 A set of 2-dimensional clusters of a point set in R2.

p

(c)

before event after event

p

(b)

before event after event

p
p

(a)

before event after event

p p

Figure 2 Updating the 2-dimensional clusters. (a) and (b) When p moves to an existing x1-cluster.
(c) When p moves to a new x1-cluster.

the xj-clusters, and O(1) singleton xj-clusters are created (from Lemma 1). Fix some
j ∈ {1, . . . , d}. Assume p is in some xj-cluster C(ij), before an event. We update the set S
of the d-dimensional clusters as follows.

If p moves to an existing xj-cluster, after the event: We delete p from the previous
d-dimensional cluster and add to an existing/new d-dimensional cluster. For example, in
Figures 2(a), we add p to an existing 2-dimensional cluster; in Figure 2(b), we create a
new singleton 2-dimensional cluster for p.
If pmoves to a new xj-cluster, after the event: We delete p from the previous d-dimensional
cluster and add to a new singleton d-dimensional cluster; see Figure 2(c).

Consider B(i1, . . . , ij , . . . , id), the axis-aligned box of C(i1, . . . , ij , . . . , id), which con-
tains p. (For simplicity, we use the notation C and B instead of C(i1, . . . , ij , . . . , id) and
B(i1, . . . , ij , . . . , id), respectively.) The left/right boundary of B along the xj-axis follows
the left/right boundary of the strip B(ij) of C(ij), where p ∈ C(ij); i.e., lb(C) = lb(C(ij))
and rb(C) = rb(C(ij)). Note that the left and right boundaries of B along other x`-axes

SWAT 2016

28:8 A Clustering-Based Approach to Kinetic Closest Pair

(` 6= j) are the same as those of the box to which p belonged before the event. Also note
that we delete a cluster C when its cardinality becomes equal to zero.

From the above discussion, there are O(1) creations of new d-dimensional clusters of
constant size in S, and O(1) point insertions into or deletions from the clusters of S. Therefore,
together with Lemma 3, we obtain:

I Theorem 4. For a set P of moving points in fixed dimension d, where the trajectory of
each point is a polynomial of degree bounded by some constant, there exists a KDS that
maintains a set S of d-dimensional clusters, such that each cluster can be covered by an
axis-aligned box of maximum side-length one, where |S| ≤ 3d · |S|. The KDS uses O(n) space
and handles O(n2) events, each in O(1) time (plus O(logn) time to update the priority
queue). The locality of the KDS is O(1).

3 KDS for Closest Pair

In Section 3.1, we first build a KDS to solve the closest pair decision problem. Then, in
Section 3.2, we solve the optimization problem maintaining the closest pair over time. Finally,
we dynamize the KDSs in Section 3.3.

3.1 Kinetic Closest Pair Decision Problem
Consider the following decision problem:

I Decision Problem 1. Given a parameter r, determine at any time whether the closest
pair distance is less than or equal to r.

By application of Theorem 4, build a kinetic data structure D(r) for maintaining a set
S of clusters on the moving points in P in Rd, such that the maximum side-length of the
axis-aligned boxes corresponding to the clusters is r/

√
d. Let C ′(ij) be some xj-cluster in the

neighborhood of the xj-cluster C(ij). We call C ′(i1, . . . , id) (or C ′ for short) a neighbor cluster
to C(i1, . . . , id) (or C for short) if C ′(ij) is between C(ij −d2

√
de− 1) and C(ij + d2

√
de+ 1)

for all j, 1 ≤ j ≤ d, i.e.,

I Condition 1. C ′(ij) ∈ {C(ij − d2
√
de − 1), . . . , C(ij + d2

√
de+ 1)}, for all j (1 ≤ j ≤ d).

If there exist two points of P in the same cluster C ∈ S, then the closest pair distance is
less than or equal to r. Otherwise, for each singleton cluster C = {p}, we need to find the
points q in the neighborhood, and check the possible candidate pairs (p, q) for the closest
pair. In other words:

I Lemma 5. The answer to Decision Problem 1 is yes iff the following disjunction is true:Ç∨
c

Ac

å
∨

Ñ∨
c,c′

Ec,c′

é
, (1)

where

Ac =
®
true if |C| ≥ 2,
false if |C| = 1, Ec,c′ =

®
true if d(p, q) ≤ r, where p ∈ C and q ∈ C ′,
false if d(p, q) > r, where p ∈ C and q ∈ C ′.

Let κ be the number of true expressions among Ac and Ec,c′ in the disjunction of (1).
We do the following updates during the changes to the clusters.

T.M. Chan and Z. Rahmati 28:9

(U1) When a new cluster C is created, that in fact contains a single point, we define a new
expression Ac with value false. Then we update the neighbors C ′′ of C ′ (neighbors of
neighbors for C) as C might violate them, and define the corresponding edges (p, q) and
expressions Ei′,i′′ between singleton clusters C ′ and C ′′. We set the value of Ei′,i′′ to
true (resp. false) if d(p, q) ≤ r (resp. d(p, q) > r), where C ′ = {p} and C ′′ = {q}.

(U2) When the cardinality of some C ∈ S becomes equal to one, we find all the singleton
clusters C ′ ∈ S which satisfy Condition 1, and define the edges (p, q) and their corres-
ponding expressions Ec,c′ with a valid value true/false, where Ci = {p} and C ′ = {q}.

(U3) When the cardinality of some cluster C becomes bigger than one, the value of Ac

becomes true, which implies that the disjunction of (1) is true.

We can easily track the value of κ over time: We increase (resp. decrease) κ by one if
the cardinality of some C ∈ S gets > 1 (resp. = 1). Also, we increase (resp. decrease) κ by
one if d(p, q) ≤ r (resp. d(p, q) > r), where C = {p} and C ′ = {q}; we can define a boolean
function for each edge (p, q) attesting its length is less than or equal to r. Note that when
|C| gets bigger than one, since we do not need to track the values of Ec,c′ for all neighbors
C ′, we delete all the expressions Ec,c′ and the edges (p, q), and decrease κ by the number of
edges (p, q) such that d(p, q) ≤ r. Now, we can conclude:

I Theorem 6. Let r be a positive real parameter. For a set P of moving points in fixed
dimension d, where the trajectory of each point is a polynomial of degree bounded by some
constant, there exists a KDS D(r) that decides in O(1) time whether the closest pair distance
is less than or equal to r. D(r) uses O(n) space and handles O(n2) events, each in O(1) time
(plus O(logn) time to update the priority queue). The locality of D(r) is O(1).

Proof. By the invariant certificates (I1)-(I5), for each xj-axis, rb(C(ij + d2
√
de + 1)) −

lb(C(ij + 1)) > r, which implies that (if exists) we can find a pair (p, q) in our KDS such
that d(p, q) ≤ r.

Condition 1 of the definition of a neighbor cluster insures that we check only a constant
number of neighbor clusters. Thus the updates (U1)-(U3) can be done in time O(1). At any
time, deciding whether κ > 1 is equivalent to deciding whether the disjunction of (1) is true.
From this together with Theorem 4, the proof obtains. J

3.2 Kinetic Closest Pair Problem
Assume the Euclidean distance between any two points in P at any time is at least 1 and at
most ∆. Let r` = 2`, 0 ≤ ` ≤ log ∆.

Fix some ` ∈ {0, . . . , log ∆}. In a similar way to that of Section 3.1, we build a kinetic
data structure D(r`). Let E` denote the set of edges (p, q) between the clusters C = {p} and
the neighbor clusters C ′ = {q} satisfying Condition 1. Let e` be the edge with minimum
length in E`. At any time, the edge with minimum length among all e`, ` = 0, . . . , log ∆, gives
the closest pair, which can be maintained over time using a dynamic and kinetic tournament
tree T over the O(n log ∆) edges in ∪`E`. Next, we summarize the main result of this section.

I Theorem 7. For a set P of moving points in fixed dimension d, where the trajectory of
each point is a polynomial of degree bounded by some constant s̄, our closest pair KDS uses
O(n log ∆) space and handles O((n2 log ∆βs(n log ∆)) · (logn + log log ∆)) events, each in
worst-case time O(log2 n + log2 log ∆). Here, s = 2s̄ + 2. The total processing time of all
events and the locality of the KDS are O((n2 log ∆βs(n log ∆)) · (log2 n + log2 log ∆)) and
O(logn+ log log ∆), respectively.

SWAT 2016

28:10 A Clustering-Based Approach to Kinetic Closest Pair

Proof. By Theorem 3.1 of [1], for a sequence ofm insertions/deletions into T whose maximum
size at any time is ñ (m ≥ ñ), T handles O(mβ2s̄+2(ñ) log ñ) events. The total processing time
for handling all the events is O(mβ2s̄+2(ñ) log2 ñ), each event can be handled in worst-case
time O(log2 ñ), and each point participates in O(log ñ) tournament certificates.

From Theorem 6, and the fact that ñ = | ∪` E`| = O(n log ∆) and the number of events
is m = O(n2 log ∆) for all the levels `, 0 ≤ ` ≤ log ∆, the proof obtains. J

3.3 Dynamizing the KDSs
Here, we present that how our KDSs in Sections 3.1 and 3.2 support insertions and deletions
of points.

Hershberger showed that the smooth kinetic maintenance of xj-clusters (Lemma 1) can
support insertions and deletions of points: When a point p is inserted into or deleted from
P , the invariant certificates (I1)-(I5) can be updated by a constant number of xj-cluster
type changes and point transfers between the xj-clusters. In Section 2.1, we use kinetic
sorted lists Lj on the point set P , in increasing order along the xj-axes, in order to track
the lpt(·)/rpt(·) of the xj-clusters. We dynamize the kinetic sorted lists Lj to support point
insertions and deletions; each operation can be handled in time O(logn). This implies that
our KDS (of Section 2.2) for maintenance of a set S of d-dimensional clusters can easily
support insertions and deletions of points.

Given the dynamic and kinetic clustering S in Rd, we can perform the updates (U1)-(U3),
after each cluster change, to decide whether the closest pair distance is less than or equal to
r; each update can be done in time O(1). This implies:

I Lemma 8. Our KDS D(r) of Theorem 6 (for deciding, at any time, whether the closest
pair distance in Rd is less than or equal to r) supports insertions and deletions of points.
Each operation can be performed in worst-case time O(logn).

Assume that the Euclidean distance between the inserted point q and any other point
p ∈ P , at any time, is at least 1 and at most ∆. When q is inserted into (resp. deleted
from) P , we insert q into (resp. delete q from) the log ∆ + 1 levels of our closest pair KDS
of Section 3.2. Since we can dynamize each D(r`), 0 ≤ ` ≤ log ∆ (by Lemma 8), and each
insertion into or deletion from T can be done in O(log2(n log ∆)), we obtain the following.

I Lemma 9. Our KDS of Theorem 7 (for maintenance of the closest pair in Rd) supports
insertions and deletions of points. Each operation can be performed in worst-case time
O(log ∆ log2 n+ log ∆ log2 log ∆)).

4 KDS for All ε-Nearest Neighbors

Here, we first consider a decision version of the all ε-nearest neighbors problem, and then
provide a KDS for maintenance of some ε-nearest neighbor to each point in P .

4.1 Kinetic All ε-Nearest Neighbors Decision Problem
Consider the following decision problem:

I Decision Problem 2. Given parameters ε and r, (for each point q ∈ P) determine at any
time whether there exists some point p ∈ P such that its distance to q is less than or equal to
(1 + ε) · r.

T.M. Chan and Z. Rahmati 28:11

In a similar way to that of Section 3.1, build a kinetic data structure D(εr) for maintaining
a set S of clusters, such that the maximum side-length of the boxes corresponding to the
clusters is εr/

√
d. For each cluster C ∈ S, we maintain some point zc in C as the representative

point of C. The distance between zc and any other point in C is at most εr.
Recall that C(ij + k) (resp. C(ij − k)) denote the kth xj-cluster after (resp. before) the

xj-cluster C(ij), along the xj-axis. Here, we define a new condition for a neighbor cluster
C ′(i1, . . . , id) to C(i1, . . . , id). We say C ′ is the neighbor cluster of C if:

I Condition 2. C ′(ij) ∈ {C(ij − d2
√
d/εe − 1), . . . , C(ij + d2

√
d/εe+ 1)}, for all xj-axes,

j = 1, . . . , d.

Fix some point q ∈ P , and assume q ∈ C. Let E(q) be the set of edges (q, zc′), where zc′

are the representative points of the neighbor clusters C ′ satisfying Condition 2.

I Lemma 10. The answer to Decision Problem 2 (for each q ∈ P) is yes iff the following
disjunction is true:

D(q) = Ac(q) ∨
(∨

c′

Ec,c′(q)
)
, (2)

where (assuming q ∈ C)

Ac(q) =
®
true if |C| ≥ 2,
false if |C| = 1, Ec,c′(q) =

®
true if d(q, zc′) ≤ (1 + ε) · r,
false if d(q, zc′) > (1 + ε) · r.

Let T (q) be a dynamic and kinetic tournament tree over the edges in E(q), which
maintains the edge e(q) with minimum length in E(q). From Lemma 10, if |C| ≥ 2, then
the value of D(q) would be true; otherwise, the value of D(q) is the answer to whether
‖e(q)‖ ≤ (1 + ε) · r. For each q ∈ P , we define T (q), and maintain the values of D(q). We do
the following updates to D(q), during the changes to the clusters in S.

(U1) When p is deleted from some C such that zc = p, we select a point v in C −{p} as the
new representative point. If after the event C = {v}, we first build T (v) to determine
the value of D(v). Then we find all the singleton neighbor clusters C ′ = {q}, and in T (q)
we replace the edge (q, p) with (q, v). Note that, if after the event C = ∅, we update the
neighbors C ′′ of neighbors C ′, for C; for the singleton neighbor clusters C ′ = {q}, we
update T (q) if the neighbors C ′′ of C ′ change.

(U2) When a point p is inserted into some C, we ignore T (p) and set the value of D(p) to
true. Note that, if before the event C is a singleton cluster (say C = {q}), we also delete
T (q) and set the value of D(q) to true.

(U3) When a new cluster C is created, that contains a single point (say C = {p}), we build
T (p). We then update the neighbors C ′′ of neighbors C ′, for C, and also for the singleton
neighbor clusters C ′ = {q}, we apply the required changes to T (q) if the neighbors of C ′′
of C ′ change.

I Lemma 11. Let ε and r be positive real parameters, and let P be a set of moving points
in fixed dimension d, where the trajectory of each point is a polynomial of degree bounded
by some constant. There exists a KDS that decides, for any point q ∈ P at any time, in
time O(1) whether there is a point p ∈ P such that d(p, q) ≤ (1 + ε) · r. The KDS uses O(n)
space and handles O(n2) events, each in O(1) time (plus O(logn) time to update the priority
queue). The locality of the KDS is O(1).

SWAT 2016

28:12 A Clustering-Based Approach to Kinetic Closest Pair

Proof. From the invariant certificates (I1)-(I5), for the xj-axis, rb(C(ij + d2
√
d/εe+ 1))−

lb(C(ij + 1)) > (1 + ε) · r. This implies that, for each q, we can find a point p in a neighbor
cluster such that d(p, q) ≤ (1 + ε) · r, if any such p exists.

Assuming ε and d are constants, Condition 2 implies that the number of neighbor clusters
for each cluster in S is O(1). Therefore, each of the updates (U1)-(U3) can be done in time
O(1). The number of changes to the representative points, which is on the order of the
number of changes to the clusters in S, is O(n2). This implies that the number of all events
for all the constant size tournament trees T (q), for all q ∈ P , is O(n2). From this, together
with the complexity of a D(εr), the proof obtains. J

4.2 Kinetic All ε-Nearest Neighbors Problem

Assume the nearest neighbor distance to any point q ∈ P is at least 1 and at most ∆′.
Let r` = 2`, 0 ≤ ` ≤ log ∆′. Fix some ` ∈ {0, . . . , log ∆′}. In a similar way to that of

Section 4.1, we build D(εr`). Let E`(q) denote the set of edges (q, zc′) between C = {q} and
its neighbor clusters C ′ satisfying Condition 2. We build a dynamic and kinetic tournament
tree over the edges in ∪`E`(q) to maintain the edge with minimum length in ∪`E`(q), which
in fact gives some ε-nearest neighbor to q.

I Theorem 12. For a set P of moving points in fixed dimension d such that the trajectory of
each point is a polynomial of degree bounded by some constant s̄, our KDS for maintenance of
all the ε-nearest neighbors uses O(n log ∆′) space and handles O(n2 log ∆′βs(log ∆′) log log ∆′)
events, each in worst-case time O(log2 log ∆′). The total processing time for all the events and
the locality of the KDS are O(n2 log ∆′βs(log ∆′) log2 log ∆′) and O(log log ∆′), respectively.
Here, s = 2s̄+ 2.

Proof. The proof is similar to the proof of Theorem 7. The dynamic and kinetic tournament
tree corresponding to the point q ∈ P handles O(mqβ2s̄+2(log ∆′) log log ∆′) events, each in
worst-case time O(log2 log ∆′). Here, mq is the number of insertions and deletions performed
on the tournament tree of q. The total processing time of the events (associated with the
tournament tree of q) and the locality are O(mqβ2s̄+2(log ∆′) log2 log ∆′) and O(log log ∆′),
respectively. Since the number of insertions/deletions to all the tournament trees, for all the
points in P , is

∑
q mq = O(n2 log ∆′), the proof obtains. J

I Remark. Our KDS of Theorem 12 (for maintenance of all the ε-nearest neighbors in Rd)
supports insertions and deletions of points. When a point q is inserted into (resp. deleted
from) the point set P , we insert q into (resp. delete q from) the log ∆′ + 1 levels of the
kinetic data structures D(εr`). At each level, there exist O(1) changes to the dynamic and
kinetic sorted lists (where each one takes time O(logn); see Section 3.3), and O(1) changes
to the dynamic and kinetic tournament trees of the points (where each one takes time
O(log2 log ∆′); see Theorem 12). Therefore, each operation can be performed in worst-case
time O(log ∆′ logn+ log ∆′ log2 log ∆′).

I Remark. Our approach of Theorem 12 works to solve the bichromatic version of the
problem. Given a set B of blue points and a set G of green points, for each green point g ∈ G,
we want to maintain some blue point b ∈ B as the bichromatic ε-nearest neighbor to g. Using
a similar approach to that of Section 4.1, for each cluster C at each level ` (0 ≤ ` ≤ log ∆′),
we maintain a blue representative point. Then, for each green point g, where g ∈ C, we track
some blue representative point in the neighbor clusters C ′ satisfying Condition 2.

T.M. Chan and Z. Rahmati 28:13

References
1 Pankaj K. Agarwal, Haim Kaplan, and Micha Sharir. Kinetic and dynamic data structures

for closest pair and all nearest neighbors. ACM Transactions on Algorithms, 5:4:1–37, 2008.
2 Julien Basch, Leonidas J. Guibas, and John Hershberger. Data structures for mobile data.

Journal of Algorithms, 31:1–19, 1999.
3 Julien Basch, Leonidas J. Guibas, and Li Zhang. Proximity problems on moving points. In

Proceedings of the 13th Annual Symposium on Computational Geometry (SoCG’97), pages
344–351, New York, NY, USA, 1997. ACM.

4 H. Brönnimann and M.T. Goodrich. Almost optimal set covers in finite VC-dimension.
Discrete & Computational Geometry, 14(1):463–479, 1995.

5 Timothy M. Chan and Zahed Rahmati. Approximating the minimum closest pair distance
and nearest neighbor distances of linearly moving points. Computational Geometry, 2016.

6 Tomás Feder and Daniel Greene. Optimal algorithms for approximate clustering. In Pro-
ceedings of the Twentieth Annual ACM Symposium on Theory of Computing (STOC’88),
pages 434–444, New York, NY, USA, 1988. ACM.

7 Robert J. Fowler, Michael S. Paterson, and Steven L. Tanimoto. Optimal packing and
covering in the plane are NP-complete. Information Processing Letters, 12(3):133–137,
1981.

8 Jie Gao, Leonidas Guibas, John Hershberger, Li Zhang, and An Zhu. Discrete mobile
centers. Discrete & Computational Geometry, 30(1):45–63, 2003.

9 Teofilo F. Gonzalez. Covering a set of points in multidimensional space. Information
Processing Letters, 40(4):181–188, 1991.

10 John Hershberger. Smooth kinetic maintenance of clusters. Computational Geometry,
31(1–2):3–30, 2005.

11 Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. J. ACM, 32(1):130–136, 1985.

12 Zahed Rahmati. Simple, Faster Kinetic Data Structures. PhD thesis, University of Victoria,
2014.

13 Zahed Rahmati, Mohammad Ali Abam, Valerie King, and Sue Whitesides. Kinetic k-semi-
Yao graph and its applications. Computational Geometry, 2016.

14 Zahed Rahmati, Mohammad Ali Abam, Valerie King, Sue Whitesides, and Alireza Zarei. A
simple, faster method for kinetic proximity problems. Computational Geometry, 48(4):342–
359, 2015.

SWAT 2016

Constrained Geodesic Centers of a Simple
Polygon∗

Eunjin Oh1, Wanbin Son2, and Hee-Kap Ahn3

1 Department of Computer Science and Engineering, POSTECH, Pohang, Korea
jin9082@postech.ac.kr

2 Center for Geometry and Its Applications (GAIA), POSTECH, Pohang, Korea
minibiny@gmail.com

3 Department of Computer Science and Engineering, POSTECH, Pohang, Korea
heekap@postech.ac.kr

Abstract
For any two points in a simple polygon P , the geodesic distance between them is the length
of the shortest path contained in P that connects them. A geodesic center of a set S of sites
(points) with respect to P is a point in P that minimizes the geodesic distance to its farthest
site. In many realistic facility location problems, however, the facilities are constrained to lie in
feasible regions. In this paper, we show how to compute the geodesic centers constrained to a
set of line segments or simple polygonal regions contained in P . Our results provide substantial
improvements over previous algorithms.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Geodesic distance, simple polygons, constrained center, facility location,
farthest-point Voronoi diagram

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.29

1 Introduction

For a simple polygon P with n vertices in the plane, the geodesic path, denoted by π(x, y),
between any two points x and y in P is the shortest path between x and y contained in P ,
and the geodesic distance between x and y, denoted by d(x, y), is the length of π(x, y), that
is, the sum of the Euclidean lengths of each segment in π(x, y).

Let S be a set of k sites (points) in P . For any point x in P , a geodesic farthest site of x,
denoted by fS(x), is a site of S that is farthest from x among all sites of S with respect to
the geodesic distance. A point x in P that minimizes d(x, fS(x)) among all points in P is
called the geodesic center of S with respect to P . The geodesic center is unique and can be
computed in O(n+ k) time if S consists of points on the boundary of P [1]. For S consisting
of arbitrary points lying in P , the geodesic center can be computed in O(n+ k(logn+ log k))
time by constructing the geodesic convex hull CHP (S) of S [13] and the geodesic center of
CHP (S).

For a subset Q of P , a geodesic center of S constrained to Q with respect to P is a point
q ∈ Q that minimizes d(q, fS(q)) among all points in Q. Such a set Q is called a constraint
or feasible region for facilities to be located in many realistic facility location problems. If
the unconstrained geodesic center c coincides with a point q ∈ Q, then the geodesic center of

∗ This work was supported by the NRF grant 2011-0030044 (SRC-GAIA) funded by the government of
Korea.

© Eunjin Oh, Wanbin Son, and Hee-Kap Ahn;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 29; pp. 29:1–29:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.29
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

29:2 Constrained Geodesic Centers of a Simple Polygon

(a) (b)

c1

c2
c3

v1

v2

(c)

cQcSc

Figure 1 (a) The point c is the unconstrained geodesic center of the polygon. (b) The points c1,
c2, and c3 are the geodesic centers of the polygon constrained to the (gray) polygonal region. Here,
f(c2) is v2 and f(c3) is v1, while c1 has two farthest sites, v1 and v2. (c) For the sites (squares)
lying in the polygon, cS is the geodesic center of the sites and cQ is the geodesic center constrained
to the (gray) polygonal region.

S constrained to Q with respect to P is unique which is q. The geodesic center c = q can
be computed in O(n+m+ k(logn+ log k)) time, where m is the complexity of Q. If the
unconstrained geodesic center c lies in P \Q, a constrained geodesic center of S is a point
q on the boundary of Q that minimizes d(q, fS(q)) among all boundary points of Q. See
Figure 1. Contrary to the unconstrained case, there might be more than one constrained
geodesic centers in Q, but the geodesic distance from any constrained geodesic center q to
its farthest point fS(q) is the same. We call the distance the radius of the geodesic centers
constrained to Q and denote it by rQ.

In this paper, we consider the problem of computing the geodesic centers of S with respect
to a simple polygon P that are constrained to a subset Q of P consisting of line segments or
simple polygonal regions.

Related works. Asano and Toussaint [3] studied the geodesic problem in which Q is the
polygon P and S is the vertex set of P , and gave the first algorithm for computing the
unconstrained geodesic center of P with n vertices which runs in O(n4 logn) time. Afterwards,
Pollack et al. [20] improved it to O(n logn) time. Finally, Ahn et al. [1] settled the problem
by presenting a linear time algorithm for the problem.

To the extent of our knowledge, there is no known result for computing the geodesic
center constrained to lie in a subset of P , except the one by Bose and Toussaint [7]. Their
algorithm computes the geodesic center of P constrained to lie in a polygonal region Q ⊂ P
with m vertices in O(n(n+ `)) time, where ` is the number of intersections of the geodesic
farthest-point Voronoi diagram of the vertices of P with Q, and therefore ` = Θ(nm) in the
worst case.

The constrained center problem has been studied extensively under the Euclidean metric
in the plane. Here P is the whole plane and S is a set of k points in the plane that
we want to enclose. This problem is known as the constrained minimum enclosing circle
problem or the constrained 1-center facility location problem. Megiddo [18] presented an
O(k)-time algorithm for the problem in which the constraint Q is a line, and Hurtado et
al. [15] presented an O(k+m)-time algorithm for the problem in which the constraint Q is a
convex m-gon. Bose and Toussaint [7] considered the problem in which the center of the
enclosing circle is constrained to lie in a simple polygon Q with m vertices and presented an
O((k+m) log k+k logm+`)-time algorithm, where ` is the number of intersections of Q with
the farthest-point Voronoi diagram of S. Later, Bose and Wang [8] removed the dependency
on ` from the running time. Bose et al. [6] showed that the minimum enclosing circle whose
center is constrained to lie on a query line segment can be reported in O(log k) time after

E. Oh, W. Son, and H.-K. Ahn 29:3

Table 1 Our results for constrained geodesic centers. T (n, k) = O(n log logn + k log(n + k))
time [19] and T (n, k) = Ω(n+ k). When S is the vertex set of P , T (n, k) = O(n log logn) [19].

Constraints Total running time

line segments O(m log(n+ k +m)) + T (n, k) or
O((m+ k) log(n+ k +m) +mk logn+ n)

disjoint line segments, disjoint polygonal regions O(m log(n+ k)) + T (n, k) or
O((m+ k) log(n+ k) +mk logn+ n)

geodesic convex polygon, disjoint geodesic pseudo
polygons

O(m) + T (n, k)

disjoint polygonal regions with vertices on ∂P O(n+m+ k log(n+ k))

computing the farthest-point Voronoi diagram of S. Barba [4] presented an algorithm that
reports the minimum enclosing circle with center on a given disk in O(log k) time after
computing the farthest-point Voronoi diagram of S. Recently, Barba et al. [5] proposed
algorithms that return the constrained center for constraint either a set of points or a set of
segments in expected Θ((k +m) log min{k,m}) time. For a constraint of a simple polygon
Q, the expected running time becomes Θ(m+ k log k).

Our results. We begin with a set of (possibly crossing) line segments as the constraint Q
and present an efficient algorithm that returns all constrained geodesic centers in O(n+ k +
m log(n+ k +m)) time after constructing the farthest-point geodesic Voronoi diagram FVD
of S with respect to P in T (n, k) = O(n log logn+ k log(n+ k)) time [19]. The algorithm
also works in O((m+ k) log(n+ k+m) +mk logn+n) time if we do not construct FVD of S.

Then we show that the running time can be improved slightly to O(n+k+m log(n+k) +
T (n, k)) if Q is a set of m disjoint line segments or disjoint polygonal regions with m vertices
in total. When S is the vertex set of P , the running time becomes O(n log logn+m logn),
which improves the O(n(n+ `))-time result by Bose and Toussaint [7]. The algorithm also
works in O((m+ k) log(n+ k) +mk logn+ n) time if we do not construct FVD of S.

Finally, we show that the running time can be further improved to linear if Q belongs
to one of a few special polygon types. If Q is a geodesic convex polygon or a set of disjoint
geodesic pseudo polygons (to be defined later) with m vertices in total, we can solve the
problem in O(n + m + k) time once FVD is computed. We can solve the problem in
O(n+m+ k log(n+ k)) time, for a set Q of disjoint polygonal regions with m vertices in
total whose vertices are on the boundary of P without computing FVD. Our results are
summarized in Table 1.

Recently we notice that the algorithm of Bose et al. [6] that computes the smallest
enclosing circle whose center is constrained to lie on a line segment in the plane can be
extended for the problem to find the geodesic centers constrained to line segments. By a
similar argument of the algorithm of Bose et al., the geodesic centers of S constrained to Q
with respect to P can be computed in O(n+ k +m log (n+ k)), once FVD of S with respect
to P is computed.

The algorithm of Bose et al. [6] relies on a property that the farthest-point Voronoi
diagram of points in the plane is a tree, so it is hard to extend the algorithm for problems
that do not satisfy this property. One representative example is the constrained weighted
minimum enclosing circle problem. If we replace P with the whole plane and assign a positive
weight for each point in S, the problem becomes the constrained weighted minimum enclosing
circle problem in the plane. In this problem, the distance between two points x ∈ P and

SWAT 2016

29:4 Constrained Geodesic Centers of a Simple Polygon

y ∈ S is w(y) · d(x, y), where w(y) is the weight of y. The algorithm of Bose et al. may not
work since the farthest-point Voronoi diagram for weighted points is not necessarily a tree
[17]. However our algorithms work for the constrained weighted minimum enclosing circle
problem since most of the properties in this paper still hold for the problem.

2 Preliminaries

For a set A of points, let ∂A and int(A) denote the boundary and the interior of A, respectively.
A subset A of a simple polygon P is geodesically convex if π(x, y) ⊆ A for any two points
x, y ∈ A. Let hub(r) be the set of points x ∈ P such that d(x, fS(x)) is at most r. Clearly,
hub(rS) with rS = minp∈P d(p, fS(p)) consists of a single point which is the geodesic center
of S with respect to P . For any r ≥ maxp∈P d(p, fS(p)), hub(r) is P itself.

I Lemma 1. The set hub(r) is geodesically convex and monotone, that is, hub(r′) ⊆ hub(r)
for any 0 ≤ r′ ≤ r.

Proof. The monotonicity follows from the definition of hub(r) directly. For 0 < r < rS ,
hub(r) = ∅. For r ≥ rS , hub(r) is the common intersection of the geodesic disks of radius
r, each centered at a site of S. Since a geodesic disk is connected and geodesically convex,
their nonempty common intersection is also geodesically convex. J

By the definition of constrained geodesic centers and Lemma 1, the lemma below holds.

I Lemma 2. Every geodesic center constrained to Q lies on the boundary of hub(rQ), where
rQ is the geodesic distance from any constrained geodesic center c to fS(c). Moreover, no
point in Q lies in the interior of hub(rQ).

2.1 The Refined Farthest-point Geodesic Voronoi diagram
The farthest-point geodesic Voronoi diagram of S with respect to P is the subdivision of P
such that each cell consists of the points with the common farthest site. Aronov et al. [2]
showed that a farthest-point geodesic Voronoi diagram has linear complexity.

We consider a refined version of the farthest-point geodesic Voronoi diagram. Let C be
a cell in the farthest-point geodesic Voronoi diagram FVD and let f ∈ S be the common
farthest site of the points in C. The shortest path map of f , which can be obtained by
extending all edges of the shortest path tree [12], subdivides C into smaller cells, which we
call refined cells of C (and of FVD). The refined farthest-point geodesic Voronoi diagram
of FVD is the set int(P) \

⋃
C∈C int(C), where C is the collection of all refined cells of FVD.

Here, a cell in the shortest path map of f contains at least one (hyperbolic or straight) arc
of the boundary of C. This implies that the complexity of a refined farthest-point geodesic
Voronoi diagram is still linear. Moreover, a refined cell has the following property, which
comes directly from its definition.

I Lemma 3. Every refined cell has exactly one boundary line segment that lies on the
boundary of P .

Given a simple polygon P with n vertices and a set S of k sites, Aronov et al. [2] gave
an O((n+ k) log(n+ k)) algorithm to compute the farthest-point geodesic Voronoi diagram
of S with respect to P . Recently, Oh et al. [19] gave an O(n log logn)-time algorithm to
compute the farthest-point geodesic Voronoi diagram for the special case that the sites are
the vertices of P . The algorithm in [19] can be generalized to the case that S is a set of

E. Oh, W. Son, and H.-K. Ahn 29:5

arbitrary points in P . To this end, we first compute the geodesic convex hull of S with
respect to P in O(n + k log(n + k)) time [13]. Then we can compute the farthest-point
geodesic Voronoi diagram inside the geodesic convex hull in O((k + n) log logn) time by [19].
For the region outside the geodesic convex hull, we can apply a technique similar to [19] and
compute the diagram in O((k + n) log logn) time. Therefore, we can compute the diagram
in total O(n log logn+ k log(n+ k)) time.

Both algorithms in [2] and [19] can compute also the refined farthest-point geodesic
Voronoi diagram without increasing their running times. In the following, we assume that
we already have the refined farthest-point geodesic Voronoi diagram of S with respect to P .

3 Overlay of FVD and Curves in Geodesic Convex Position

In this section, we consider a simple constraint, curves in geodesic convex position. We say
that curves are in geodesic convex position if the curves are contained in the boundary of
the geodesic convex hull of themselves. We give a combinatorial property of the overlay
between the farthest-point geodesic Voronoi diagram of sites with respect to P and curves in
geodesic convex position. Specifically, we will show that the overlay has complexity linear to
the number of sites and the complexity of the curves.

Since Euclidean farthest-point Voronoi diagrams have straight line segments as their arcs,
the overlay of a diagram and curves in convex position has complexity linear to sum of their
complexities - each line segment of the diagram intersects the curves at most twice and the
complexity of the Euclidean Voronoi diagram is linear to the number of sites. However, a
farthest-point geodesic Voronoi diagram defined in a simple polygon P might have hyperbolic
arcs which intersect a convex curve contained in P more than a constant number of times,
and therefore the argument for the Euclidean case does not work for the geodesic case.

To bound the complexity for the geodesic case, we consider a polygonal subdivision of P
with respect to the diagram as follows. Let S be a set of sites contained in P and C be a
refined cell of the geodesic farthest-point Voronoi diagram FVD of S. The boundary of C
consists of (possibly empty) line segments and (possibly empty) hyperbolic arcs. Every point
x ∈ C has the same farthest neighbor fS(x) and has the same combinatorial structure of
π(fS(x), x). Moreover, exactly one line segment of ∂C lies on ∂P by Lemma 3.

For a point x ∈ C, we call the last vertex that the path π(fS(x), x) from fS(x) goes
through before x the anchor of x and denote it by anchor(x). For a hyperbolic arc α bounding
C with endpoints a and b, let a′ be the first point of ∂P hit the ray from a in the direction
opposite to anchor(a) with respect to the site of C. See Figure 2(a). The point b′ is defined
analogously. We claim that the two line segments aa′ and bb′ subdivide C into at most three
disjoint regions. To show this claim, we need the following lemma, which can be proved by
the triangle inequality.

I Lemma 4 ([19]). Let x be a point in a refined cell C of a farthest-point geodesic Voronoi
diagram of P . Then the line segment connecting x and y is contained in C, where y is the
point on the boundary of P hit by the ray from anchor(x) towards x.

The above lemma implies that aa′ and bb′ intersect ∂C only at their endpoints unless
they are completely contained in ∂C; If there is another point x ∈ ∂C in the interior of aa′,
aa′ touches ∂C at x and there must be a point x′ ∈ ∂C \ {a, a′, x} such that the segment
x′y′ crosses ∂C at a point in the interior of x′y′, where y′ is the point on the boundary of P
hit by the ray from anchor(x′) towards x′. Therefore, aa′ and bb′ subdivide C into at most
three disjoint regions.

SWAT 2016

29:6 Constrained Geodesic Centers of a Simple Polygon

anchor(p) for any point p ∈ C

C

α

b

∂C ∩ ∂P
(a) (b)

a′ b′

α
a

b

H1

H2

D

p

a′ b′

anchor(p)

C

C ′

a

Figure 2 (a) A refined cell C is subdivided into at most three disjoint regions by aa′ and bb′. (b)
A hyperbolic arc α is incident to two refined cells, C and C′. If the anchor q of p lies on H2, the ray
from p in the direction opposite to q passes through α, which is a contradiction. Thus anchor(p) lies
on H1 and ab is contained in the region bounded by aa′, bb′ and α.

Let M be the subdivision of P with respect to FVD by introducing for each refined cell C
of FVD, the line segments of ∂C and three line segments aa′, bb′, and ab for every hyperbolic
arc α with endpoints a and b on ∂C. Each hyperbolic arc of ∂C is completely contained in a
cell, and each cell of M contains at most one hyperbolic arc of ∂C as shown in the following
lemma.

I Lemma 5. Let α be a hyperbolic arc of a farthest-point geodesic Voronoi diagram FVD.
The line segment connecting the two endpoints of α does not intersect in its interior any arc
of FVD or ∂P .

Proof. The arc α is incident to exactly two refined cells of FVD, say C and C ′. Without loss
of generality, we assume that α is locally convex with respect to C. Let a and b be the two
endpoints of α. Let H1 be the half plane that is bounded by the line through a and b and
contains α, and let H2 be the other half plane. In the following, we show that the anchor of
a point x in α defined by the geodesic path from the site of C to x is contained in H1, and
the anchor of x defined by the geodesic path from the site of C ′ to x is contained in H2.

There exists a disk D of sufficiently small radius such that D ⊂ C ∪ C ′ and α subdivides
D into two pieces, one contained in the region R bounded by α and the segment ab, and the
other contained in C ′. See Figure 2(b). Let p be a point lying in the interior of D ∩R. Then,
anchor(p) must be contained in H1. If anchor(p) is in H2, the ray from p in the direction
opposite to anchor(p) intersects the interior of α, and then it intersects C ′, which contradicts
to Lemma 4.

Then the region of C bounded by aa′, bb′, α, and a′b′ contains ab, where a′ (and b′) is
the first point of ∂P hit by the ray from a (and from b) in the direction opposite to anchor(a)
(and opposite to anchor(b)) with respect to the site of C. Thus no arc of FVD intersects ab
in its interior.

To show that ∂P does not intersect ab, we use Lemma 3 that exactly one line segment of
∂C lies on ∂P . If the line segment lying on ∂P ∩ ∂C intersects ab, then ∂P also intersects α.
However, α is contained in P , which is a contradiction.

Therefore, ab does not intersect in its interior any arc of FVD or ∂P . J

Clearly, the subdivisionM has complexity O(k+n) because it is constructed by overlaying
O(k + n) line segments in the plane which are pairwise-disjoint in their interiors, where k
the number of sites in S.

E. Oh, W. Son, and H.-K. Ahn 29:7

I Lemma 6. The subdivision M consists of O(n+ k) cells.

Now, consider curves on geodesic convex position with m vertices in total. Since M
consists of O(n+ k) edges (line segments), the overlay of the curves and M has complexity
O(n + m + k). Since a hyperbolic arc α is contained in exactly one cell ∆ of M and a
hyperbolic arc intersects a line segment at most twice, α intersects the curves at most 2m∆
times, where m∆ is the complexity of parts of the curves lying in ∆. Since the cells of M
are disjoint each other, the total complexity of parts of the curves lying in ∆ over all cells
of M is O(n+m+ k), which implies that the curves intersects the hyperbolic arcs of FVD
O(n+m+ k) times in total. This section is summarized as follows.

I Lemma 7. The overlay of FVD and curves in geodesic convex position with m vertices
has complexity O(n+m+ k).

4 Geodesic Centers Constrained to Line Segments

In the following, we assume that S is the vertex set of P . We will show how to handle the
general case that S is a set of arbitrary points in P at the end of this section. We use f(x) to
denote the farthest site in the vertex set of P of x. In this section, we give an algorithm to
compute the geodesic centers of P constrained to Q in the case that Q is a set of m (possibly
crossing) line segments.

Once we have the overlay of Q and the farthest-point geodesic Voronoi diagram FVD of
the vertices of P , we can compute the geodesic centers constrained to Q in time linear to
the complexity of this overlay. Indeed, each line segment of Q is partitioned into smaller
pieces in the overlay. We find the points c that minimize d(c, f(c)) in each smaller piece in
constant time since each piece is contained in a refined cell of FVD. However, the number of
these smaller pieces, that is, the complexity of the overlay might be quadratic.

Therefore, we avoid computing the overlay. Instead, we construct the cell Γ in the overlay
of Q with hub(r) for a certain value r such that Γ contains the unconstrained geodesic center
c. We will show that every geodesic center constrained to Q lies on the boundary of Γ. Once
we find Γ, we can compute all geodesic centers constrained to Q in O(n+m) time.

One might think that instead of computing a hub, considering the arrangement of Q
inside P alone without overlaying it with hub(r) makes the algorithm simpler and easier.
However, since Q is a set of line segments, the cell containing the unconstrained geodesic
center in the arrangement of Q inside P has O((n+m)α(n+m)) complexity [11], where α(n)
is the inverse Ackermann function of n. Moreover, the best known algorithm for computing
the cell takes O((n+m)α(n+m) log(n+m)) time [11]. Even worse, the cell is not necessarily
convex, so the overlay of FVD and the boundary of the cell might be still quadratic.

Algorithm. Our algorithm works as follows. In the first step, we compute the farthest-point
geodesic Voronoi diagram FVD of the vertices of P . Let QV be the set of the endpoints of the
line segments in Q. For each q ∈ QV , we find the cell of FVD containing q. We preprocess
FVD in O(n) time to support an O(logn)-time point-location query for a connected polygonal
subdivision [9, 16]. In our case, some arcs of FVD might be hyperbolic while others are
straight. To apply their point-location query structure to our case, we make use of the
subdivision M of P with respect to FVD which we defined in Section 3. The subdivision M
is a connected polygonal subdivision of O(n) complexity. (See Lemma 6.) To find the cell of
FVD containing a point q, we first find the cell of M containing q in O(logn) time. Recall
that the interior of a cell of M intersects at most two cells of FVD. Thus, the cell containing

SWAT 2016

29:8 Constrained Geodesic Centers of a Simple Polygon

hub(rV)

hub(rQ)

(a) (b)

v1

v2

v3

v4

a

b

c

Figure 3 (a) The points with squares are the geodesic centers constrained to Q. (b) The gray
region is the intersection we computed before considering ab. The last chain in the gray region
connecting v3 and v4 is intersected by ab. Dashed line segments are the line segments lying after ab.

a point q ∈ QV can be found in O(logn) time and the point-location queries can be done in
O(m logn) time for all points q ∈ QV .

Now, we have f(q) for every q ∈ QV . Let rV denote the minimum distance d(q, f(q))
among all points q of QV . Note that the combinatorial structure of π(p, f(p)) is the same
for any point p in the same refined cell of FVD. Thus, we can compute d(q, f(q)) in constant
time once we have the refined cell of FVD containing q. We compute rV in O(m) time.

By Lemma 2, hub(rV) contains no point of QV in its interior. But it contains some points
in Q on its boundary, thus we have rV ≥ rQ. Consider the case that rV = rQ. Then, the
points in Q lying on the boundary of hub(rV) are the geodesic centers of P constrained to Q
by Lemma 2. If rV > rQ, there are some line segments of Q that cross hub(rV). Moreover,
the geodesic centers constrained to Q are contained in such line segments. See Figure 3(a).

We compute hub(rV). For each refined cell of FVD, we can compute part of hub(rV)
contained in the refined cell in time linear to the complexity of the refined cell, because we
already have the farthest site and the anchor of the refined cell. This can be done in O(n)
time for all refined cells once we construct the refined cells of FVD.

Then, for each line segment of Q, we check whether it crosses hub(rV). If so, we
additionally find the circular arcs of hub(rV) crossed by the line segment. We do this for all
line segments in O(m logn) time. The detailed procedure will be described in Section 4.1.

The line segments of Q crossing hub(rV) subdivide hub(rV) into O(m2) geodesic convex
regions. Note that we do not need to construct the whole subdivision. We construct only the
cell containing the unconstrained geodesic center c of P in the subdivision. This is because
the geodesic centers constrained to Q are on the boundary of the cell containing c in this
subdivision by Lemma 1 and 2, and the fact that hub(r) contains c for any r ≥ d(c, f(c)).
We find the cell Γ containing c in O(n + m log(n + m)) time, which will be explained in
Section 4.2.

Finally, we compute the overlay of the boundary of Γ and FVD in time linear to their
total complexity. This can be done by traversing the boundary of Γ and the refined cells in
FVD. Since Γ is geodesically convex, the complexity of the overlay is linear to their total
complexity by Lemma 7. Then we can find the geodesic centers of P constrained to Q in the
overlay in the same time.

4.1 Finding the Circular Arcs Intersecting a Line Segment
We are given hub(r) for some r ∈ R and a set Q of m line segments contained in P . Let c be
the unconstrained geodesic center of P , which can be computed in O(n) time [1]. In this

E. Oh, W. Son, and H.-K. Ahn 29:9

CH

(a) (b)

a

b

(c)

a

b

pa

pa

`1

`2

pt

hub(r)

Figure 4 (a) The gray region is the geodesic convex hull of the endpoints of the circular arcs of
the hub. (b) If ab crosses the convex chain, it crosses also the boundary of the hub. (c) If ab crosses
the hub but does not cross the convex chain, then ab crosses the arc one of whose endpoint is pt,
where pt is the point where a line passing through a is tangent to the convex chain.

section, we compute the intersection points of hub(r) and line segments in Q.
The boundary of hub(r) consists of (possibly empty) circular arcs and (possibly empty)

polygonal chains which are from the boundary of P . Let ab be a line segment contained in
P . Since hub(r) is geodesically convex by Lemma 1, ab intersects at most two circular arcs
of hub(r). Moreover, one intersection point is closer to a than b, and the other one is closer
to b than a. We first show how to compute the intersection point closer to a. The other
intersection point can be computed analogously.

Let pa be the intersection point closer to a. Consider the geodesic convex hull CH of
the endpoints of circular arcs of hub(r). See Figure 4(a). Since we have the boundary of
hub(r), we can compute CH in O(n) time. We find the connected component R of P \ CH
containing a in O(logn) time [16]. The connected region R contains a convex chain H of CH
on its boundary. If the ray from a towards b hits H at some point in an edge e of H, then
pa is contained in the circular arc of hub(r) whose endpoints are the endpoints of e. See
Figure 4(b). Thus, we can compute pa in O(logn) time.

However, it is possible that pa exists but the ray from a towards b does not hit H. See
Figure 4(c). In this case, we consider the two lines `1 and `2 passing through a and tangent
to H, which can be computed in O(logn) time. The point pa lies in a circular arc of hub(r)
one of whose endpoints is a point where `1 or `2 is tangent to H. Thus, in any case, we can
compute pa in O(logn) time.

I Lemma 8. Given hub(r) with r ∈ R and a line segment ab contained in P , the circular arcs
of hub(r) intersected by ab can be computed in O(logn) time after linear-time preprocessing
for hub(r).

4.2 Finding the Cell Containing the Geodesic Center
Let Q be a set of m line segments whose endpoints lie on the boundary of hub(r). In
this section, we compute the cell Γ in the arrangement of Q inside hub(r) containing the
unconstrained geodesic center c in O(n+m log(n+m)) time.

For each line segment in Q, we extend the line segment in both directions until the two
endpoints hit the boundary of P in O(logn) time [10]. Then a line segment ` in Q partitions
P into two subpolygons one of which contains c. Let `+ be the subpolygon bounded by ` and
containing c. We first compute the intersection I of all subpolygons `+ for all line segments
` in O(m logm) time as follows.

We sort the line segments in Q by the order of their first endpoints along the boundary
of P , and then handle them one by one in order as follows. Initially we set P to I. While we

SWAT 2016

29:10 Constrained Geodesic Centers of a Simple Polygon

handle the line segments, we update I to the intersection of `+ for all line segments ` which
are handled so far. The intersection I is bounded by polygonal chains from ∂P and parts
of line segments of Q. Moreover, parts of line segments of Q lying on ∂I form a number
of convex chains. To maintain I, we store each convex chain using a binary search tree.
The first line segment ` of Q subdivides I into two subpolygons, and we update I to the
subpolygon containing c. Here, ` is the only one element stored in a binary search tree. As
we handle more line segments, we create more binary search trees. For the next line segment
`′, if both endpoints of `′ lies after the most clockwise point in the convex chain stored in the
last binary search tree, we create a new binary search tree containing only one element `′.
See Figure 3(b). Otherwise, `′ may cross ∂I \ ∂P in at most two points. To find this, it is
sufficient to check the first and the last binary search trees. Thus, this takes O(logm) time.

By definition, Γ is the intersection of I and hub(r). So, we compute the intersection of I
and hub(r) by traversing the boundary of I starting from a line segment on ∂I in clockwise
order as follows. When we reach an endpoint of some line segment, we find the endpoint next
to it. Then we connect these two endpoints by the boundary of hub(r). In this procedure,
we traverse the boundary of I and the boundary of hub(r) once. Thus, we can compute Γ in
O(n+m log(n+m)) time.

I Lemma 9. Given hub(r) and a set of m line segments crossing the hub, the cell containing
the geodesic center of P in the arrangement of hub(r) and the line segments can be computed
in O(n+m log(n+m)) time.

Until now, we assumed that S coincides with the vertex set of P . However, once the
farthest-point geodesic Voronoi diagram of S is computed, the algorithm in this section works
also for the case where the points of S are allowed to lie in the interior of P . The arguments
in this section prove the following theorem.

I Theorem 10. Let P be a simple n-gon and let Q be a set of m line segments the lie in P .
For a set S of k sites (points) in P , the geodesic centers of S constrained to Q with respect
to P can be computed in O(n+ k +m log(n+ k +m)) time, once the farthest-point geodesic
Voronoi diagram of S with respect to P is computed.

For small m and k, the running time to compute FVD dominates the time complexity
of our algorithm. The running time of our algorithm can be improved slightly for the case
by avoiding to compute FVD explicitly. Recall that our algorithm uses FVD to compute
rV , hub(rV) and the overlay of the boundary of Γ and FVD. We can compute them without
constructing FVD of S as follows. The geodesic distance between two points can be computed
in O(logn) time [13] after O(n) preprocessing, so rV can be computed in O(mk logn) time
by finding f(q) for all q ∈ QV . We compute hub(rV) in O(k) time, once the geodesic convex
hull of S is computed in O(n+k log (n+ k)) time by applying a technique similar to Theorem
6 in [19] which shows how to compute FVD of points on the boundary of a simple k-gon in
O(k) time. The overlay of the boundary of Γ and FVD can also be computed similarly.

I Theorem 11. Let P be a simple n-gon and let Q be a set of m line segments the lie in P .
For a set S of k sites (points) in P , the geodesic centers of S constrained to Q with respect
to P can be computed in O((m+ k) log(n+ k +m) + n) time.

4.3 Geodesic Centers Constrained to Disjoint Line Segments
In this section, we give an algorithm to compute the geodesic centers of S with respect to P
constrained to a set Q of m disjoint line segments. For ease of explanation, we assume that
S is the vertex set of P .

E. Oh, W. Son, and H.-K. Ahn 29:11

Recall that once FVD is computed, the algorithm for the general case of crossing line
segments takes O(n + m logn) time except the last step, which finds the cell Γ in the
arrangement of Q and hub(r) containing the unconstrained geodesic center c. We show how
to compute the cell Γ in O(n+m logn) time for the case of disjoint line segments, which
improves the running time slightly to O(n+m logn).

We have hub(r) and a set of line segments crossing the hub. Moreover, we know the
intersection points of the boundary of the hub and each line segment but they are not
sorted. Instead of sorting the intersection points along the boundary of the hub, which takes
O(m logm) time, we give an O(n+m)-time algorithm to compute the cell containing the
geodesic center of P in the arrangement of the line segments and hub(r).

For a circular arc β of the hub, we have the line segments intersecting β. Without loss of
generality, we assume that the two endpoints of β are on the x-axis. There are at most two
line segments that contribute to the boundary of Γ among the line segments intersecting β:
one is the line segment sL that is closest geodesically to c among the line segments that are
to the left of c, and the other is the line segment sR that is closest geodesically to c among
the line segments that are to the right of c. We find two line segments sL and sR, if they
exist, for every circular arc β of the hub in O(n+m) time. After doing this, we have O(n)
line segments which are sorted along the boundary of the hub, and we can compute the cell
containing the geodesic center in O(n) time.

I Lemma 12. Given hub(r) and a set of m disjoint line segments, the cell containing the
unconstrained geodesic center of P in the arrangement of the hub and the line segments can
be computed in O(n+m logn) time.

For the case that Q is a set of disjoint polygonal regions contained in P with m vertices
in total, the geodesic centers of P constrained to Q lie on the boundary of Q unless they
coincide with the unconstrained geodesic center of P . Thus we can use the algorithm in this
section to compute the geodesic centers constrained to a set of disjoint polygonal regions.

I Theorem 13. Let P be a simple n-gon and let Q be a set of m disjoint line segments
or disjoint polygonal regions with m vertices in total that lie in P . For a set S of k sites
(points) in P , the geodesic centers of S constrained to Q with respect to P can be computed
in O(n+ k +m log(n+ k)) time, once the farthest-point geodesic Voronoi diagram of S with
respect to P is computed.

The algorithm also works in O((m+ k) log(n+ k) +mk logn+ n) time without constructing
FVD of S as similar to Theorem 11.

I Theorem 14. Let P be a simple n-gon and let Q be a set of m disjoint line segments
or disjoint polygonal regions with m vertices in total that lie in P . For a set S of k sites
(points) in P , the geodesic centers of S constrained to Q with respect to P can be computed
in O((m+ k) log(n+ k) +mk logn+ n) time.

5 Geodesic Centers Constrained to a Polygon of Special Types

In this section, we consider a few special types of polygons. When Q is a geodesic convex
polygon or a set of disjoint geodesic pseudo polygons, which will be defined, we can compute
the constrained geodesic centers in linear time once we have the farthest-point geodesic
Voronoi diagram of S with respect to P . In addition, when all the vertices of Q lie on ∂P , we
can compute the constrained geodesic centers efficiently without computing a farthest point
geodesic Voronoi diagram. We assume that S is the vertex set of P unless stated otherwise.

SWAT 2016

29:12 Constrained Geodesic Centers of a Simple Polygon

5.1 Geodesic Convex Polygons and Geodesic Pseudo Polygons
In this subsection, we assume that the farthest-point geodesic Voronoi diagram FVD of S
with respect to P is already computed.

Let Q be a geodesic convex polygon. By Lemma 7, the complexity of the overlay of FVD
and Q is linear to the complexity of FVD and Q. Thus, we compute the overlay of FVD and
Q in linear time by traversing the cells of FVD and the edges of Q. Then, we choose the
points which minimize the geodesic distance to their farthest sites in linear time.

We call a polygon contained in P a geodesic pseudo polygon if its boundary consists
of (possibly empty) polygonal chains from ∂P and (possibly empty) concave chains lying
in the interior of P . Let Q be a set of disjoint geodesic pseudo polygons contained in P .
Note that the region of P lying outside of the polygons of Q may not be connected. If the
unconstrained geodesic center of P is contained in Q, then it is also the unique geodesic center
of P constrained to Q. Thus, we are done. Otherwise, we find the connected component R
of the region of P lying outside of the polygons of Q containing the unconstrained geodesic
center in linear time. Then, by Lemma 2 and the geodesic convexity of a hub, all constrained
geodesic centers lie on the boundary of the concave chains of Q shared by R. Thus, we
compute the overlay of FVD and the concave chains in linear time by Lemma 7 and return
the answer.

I Theorem 15. Let P be a simple n-gon and let Q be a geodesic convex polygon or a set of
disjoint geodesic pseudo polygons with m vertices in total. For a set S of k sites (points) in P ,
the geodesic centers of S constrained to Q with respect to P can be computed in O(n+m+ k)
time once the farthest-point geodesic Voronoi diagram of S with respect to P is computed.

5.2 Polygons with Vertices on the boundary of P

In this subsection, we consider a set Q of disjoint polygonal regions whose vertices are on the
boundary of P and show how to compute the geodesic centers constrained to Q efficiently
without computing the whole FVD.

We assume that Q does not contain the unconstrained geodesic center. As we did in the
previous case, we compute the connected component R of P \Q containing the unconstrained
geodesic center in linear time. Then, we have the set Q′ of the edges of the regions in Q that
lie on ∂R. By Lemma 2 and the geodesic convexity of a hub, all constrained geodesic centers
lie on line segments in Q′.

We compute the overlay of a line segment ` ∈ Q′ and FVD as follows. The line segment `
subdivides P into two parts exactly one of which contains R. Let R′ be the part of P which
does not contain R. Let S1 be the set of sites of S contained in R′, and S2 be the set of sites
in S whose refined cells of FVD intersect the boundary of R′ excluding `. Then we consider
the farthest-point geodesic Voronoi diagram of S1 restricted to `, which we denote by FVD1,
and the farthest-point geodesic Voronoi diagram of S2 restricted to `, which we denote by
FVD2. Once we have FVD1 and FVD2, we can compute the overlay of FVD and ` in time
linear to the total complexity of FVD1 and FVD2.

If all sites are on the boundary of P , we can compute FVD1 and FVD2 in linear time for
all line segments ` ∈ Q′ [19]. Otherwise, we compute FVD1 and FVD2 in O(n+ k log(n+ k))
time for all line segments ` ∈ Q′ combining the results by [2, 14, 19].

I Theorem 16. Let P be a simple n-gon and let Q be a set of disjoint polygonal regions
with m vertices in total whose vertices are on the boundary of P . For a set S of k sites
(points) in P , the geodesic centers of S constrained to Q with respect to P can be computed
in O(n+m+ k log(n+ k)) time.

E. Oh, W. Son, and H.-K. Ahn 29:13

References
1 Hee-Kap Ahn, Luis Barba, Prosenjit Bose, Jean-Lou De Carufel, Matias Korman, and

Eunjin Oh. A linear-time algorithm for the geodesic center of a simple polygon. In Proc.
31st Int’l Symposium on Computational Geometry (SoCG 2015), pages 209–223, 2015.

2 Boris Aronov, Steven Fortune, and Gordon Wilfong. The furthest-site geodesic Voronoi
diagram. Discrete & Computational Geometry, 9(1):217–255, 1993.

3 Tetsuo Asano and Godfried Toussaint. Computing the geodesic center of a simple polygon.
Technical Report SOCS-85.32, McGill University, 1985.

4 Luis Barba. Disk constrained 1-center queries. In Proc. 24th Canadian Conference on
Computational Geometry (CCCG 2012), pages 15–19, 2012.

5 Luis Barba, Prosenjit Bose, and Stefan Langerman. Optimal algorithms for constrained 1-
center problems. In Proc. 11th Latin American Theoretical Informatics Symposium (LATIN
2014), pages 84–95, 2014.

6 Prosenjit Bose, Stefan Langerman, and Sasanka Roy. Smallest enclosing circle centered
on a query line segment. In Proc. 20th Canadian Conference on Computational Geometry
(CCCG 2008), pages 167–170, 2008.

7 Prosenjit Bose and Godfried Toussaint. Computing the constrained Euclidean geodesic
and link center of a simple polygon with applications. In Proc. 14th Computer Graphics
International (CGI 1996), pages 102–110, 1996.

8 Prosenjit Bose and Qingda Wang. Facility location constrained to a polygonal domain. In
Proc. 5th Latin American Theoretical Informatics Symp. (LATIN’02), pages 153–164, 2002.

9 Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete & Computational
Geometry, 6(3):485–524, 1991.

10 Bernard Chazelle, Herbert Edelsbrunner, Michelangelo Grigni, Leonidas Guibas, John Her-
shberger, Micha Sharir, and Jack Snoeyink. Ray shooting in polygons using geodesic
triangulations. Algorithmica, 12(1):54–68, 1994.

11 Bernard Chazelle, Herbert Edelsbrunner, Leonidas Guibas, Micha Sharir, and Jack
Snoeyink. Computing a face in an arrangement of line segments and related problems.
SIAM Journal on Computing, 22(6):1286–1302, 1993.

12 Leonidas Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert E. Tarjan.
Linear-time algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica, 2(1):209–233, 1987.

13 Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple
polygon. Journal of Computer and System Sciences, 39(2):126–152, 1989.

14 John Hershberger and Subhash Suri. Matrix searching with the shortest-path metric. SIAM
Journal on Computing, 26(6):1612–1634, 1997.

15 Ferran Hurtado, Vera Sacristán, and Godfried Toussaint. Some constrained minimax and
maximin location problems. Studies in Locational Analysis, 15:17–35, 2000.

16 David Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing,
12(1):28–35, 1983.

17 D.T. Lee and V.B. Wu. Multiplicative weighted farthest neighbor Voronoi diagrams in the
plane. In Proc. International Workshop on Discrete Mathematics and Algorithms, pages
154–168, 1993.

18 Nimrod Megiddo. Linear-time algorithms for linear programming in R3 and related prob-
lems. SIAM Journal on Computing, 12(4):759–776, 1983.

19 Eunjin Oh, Luis Barba, and Hee-Kap Ahn. The farthest-point geodesic Voronoi diagram
of points on the boundary of a simple polygon. To appear in Proc. 32nd International
Symposium on Computational Geometry (SoCG 2016), 2016.

20 Richard Pollack, Micha Sharir, and Günter Rote. Computing the geodesic center of a
simple polygon. Discrete & Computational Geometry, 4(6):611–626, 1989.

SWAT 2016

Time-Space Trade-offs for Triangulating a Simple
Polygon∗

Boris Aronov1, Matias Korman2, Simon Pratt3,
André van Renssen4, and Marcel Roeloffzen5

1 Tandon School of Engineering, New York University, New York, USA
boris.aronov@nyu.edu

2 Tohoku University, Sendai, Japan
mati@dais.is.tohoku.ac.jp

3 Cheriton School of Computer Science, University of Waterloo, Waterloo,
Canada
Simon.Pratt@uwaterloo.ca

4 National Institute of Informatics (NII), Tokyo, Japan; and
JST, ERATO, Kawarabayashi Large Graph Project, Tokyo, Japan
andre@nii.ac.jp

5 National Institute of Informatics (NII), Tokyo, Japan; and
JST, ERATO, Kawarabayashi Large Graph Project, Tokyo, Japan
marcel@nii.ac.jp

Abstract
An s-workspace algorithm is an algorithm that has read-only access to the values of the input,
write-only access to the output, and only uses O(s) additional words of space. We give a random-
ized s-workspace algorithm for triangulating a simple polygon P of n vertices, for any s ∈ O(n).
The algorithm runs in O(n2/s + n(log s) log5(n/s)) expected time using O(s) variables, for any
s ∈ O(n). In particular, when s ∈ O(n

logn log5 logn) the algorithm runs in O(n2/s) expected time.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases simple polygon, triangulation, shortest path, time-space trade-off

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.30

1 Introduction

Triangulation of a simple polygon, often used as a preprocessing step in computer graphics,
is performed in a wide range of settings including on embedded systems like the Raspberry
Pi or mobile phones. Such systems often run read-only filesystems for security reasons and
have very limited working memory. An ideal triangulation algorithm for such an environment
would allow for a trade-off in performance in time versus working space.

Computer science and specifically the field of Algorithms generally has two optimization
goals; running time and memory size. In the 70’s there was a strong focus on algorithms
that required low memory as it was expensive. As memory became cheaper and more
widely available this focus shifted towards optimizing algorithms for their running time, with
memory mainly as a secondary constraint.

∗ Work on this paper by B.A. was supported in part by NSF Grants CCF-11-17336 and CCF-12-18791.
M.K. was supported in part by the ELC project (MEXT KAKENHI No. 12H00855 and 15H02665).
S. P. was supported in part by the Ontario Graduate Scholarship and The Natural Sciences and
Engineering Research Council of Canada.

© Boris Aronov, Matias Korman, André van Renssen, Marcel Roeloffzen, and Simon Pratt;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 30; pp. 30:1–30:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2 Time-Space Trade-offs for Triangulating a Simple Polygon

Nowadays, even though memory is cheap, there are other constraints that limit memory
usage. First, there is a vast number of embedded devices that operate on batteries and have
to remain small, which means they simply cannot contain a large memory. Second, some
data may be read-only, due to hardware constraints (i.e., DVD/CDs can be written only
once), or concurrency issues (i.e., to allow many processes to access the database at once).

These memory constraints can all be described in a simple way by the so-called constrained-
workspace model (see Section 2 for details). Our input is read-only and potentially much
larger than our working space, and the output we produce must we written to write-only
memory. More precisely, we assume we have a read-only dataset of size n and a working
space of size O(s), for some user-specified parameter s. In this model, the aim is to design
an algorithm whose running time decreases as s grows. Such algorithms are called time-space
trade-off algorithms [11].

Previous Work

Several models of computation that consider space constraints have been studied in the
past (we refer the interested reader to [9] for an overview). In the following we discuss the
results related to triangulations. The concept of memory-constrained algorithms attracted
renewed attention within the computational geometry community by the work of Asano et
al. [4]. One of the algorithms presented in [4] was for triangulating a set of n points in the
plane in O(n2) time using O(1) variables. More recently, Korman et al. [10] introduced two
different time-space trade-off algorithms for triangulating a point set: the first one computes
an arbitrary triangulation in O(n2/s+ n(logn) log s) time using O(s) variables. The second
is a randomized algorithm that computes the Delaunay triangulation of the given point set
in expected O((n2/s) log s+ n(log s) log∗ s) time within the same space bounds.

The above results address triangulating discrete point sets in the plane. The first algorithm
for triangulating simple polygons was due to Asano et al. [2] (in fact, the algorithm works
for slightly more general inputs: plane straight-line graphs). It runs in O(n2) time using
O(1) variables. The first time-space trade-off for triangulating polygons was provided by
Barba et al. [5]. In their work, they describe a general time-space trade-off algorithm that
in particular could be used to triangulate monotone polygons. An even faster algorithm
(still for monotone polygons) was afterwards found by Asano and Kirkpatrick [3]: O(n logs n)
time using O(s) variables. Despite extensive research on the problem, there was no known
time-space trade-off algorithm for general simple polygons. It is worth noting that no lower
bounds on the time-space trade-off are known for this problem either.

Results

This paper is structured as follows: In Section 2 we define our model, as well as the problems
we study. Our main result on triangulating a simple polygon P with n vertices using only
a limited amount of memory can be found in Section 3. Our algorithm achieves expected
running time of O(n2/s+n(log s) log5(n/s)) using O(s) variables, for any s ∈ Ω(logn)∩O(n).
Note that for most values of s (i.e., when s ∈ O(n

(logn) log5 logn)) the algorithm runs in O(n2/s)
expected time.

Our approach uses a recent result by Har-Peled [8] as a tool for subdividing P into smaller
pieces and solving them recursively. A similar approach can be used for other problems.
Indeed, in an extended version of this paper [1] we show how a similar approach can be
used to compute the shortest-path map or shortest-path tree from any point p ∈ P , or simply
to split P by Θ(s) pairwise disjoint diagonals into smaller subpolygons, each with Θ(n/s)
vertices.

B. Aronov, M. Korman, S. Pratt, A. van Renssen, and M. Roeloffzen 30:3

2 Preliminaries

In this paper, we utilize the s-workspace model of computation that is frequently used in the
literature (see for example [2, 5, 6, 8]). In this model the input data is given in a read-only
array or some similar structure. In our case, the input is a simple polygon P ; let v1, v2, . . . , vn
be the vertices of P in clockwise order along the boundary of P . We assume that, given an
index i, in constant time we can access the coordinates of the vertex vi. We also assume
that the usual word RAM operations (say, given i, j, k, finding the intersection point of the
line passing through vertices vi and vj and the horizontal line passing through vk) can be
performed in constant time.

In addition to the read-only data, an s-workspace algorithm can use O(s) variables during
its execution, for some parameter s determined by the user. Implicit memory consumption
(such as the stack space needed in recursive algorithms) must be taken into account when
determining the size of a workspace. We assume that each variable or pointer is stored in a
data word of Θ(logn) bits. Thus, equivalently, we can say that an s-workspace algorithm
uses O(s logn) bits of storage.

In this model we study the problem of computing a triangulation of a simple polygon P .
A triangulation of P is a maximal crossing-free straight-line graph whose vertices are the
vertices of P and whose edges lie inside P . Unless s is very large, the triangulation cannot
be stored explicitly. Thus, the goal is to report a triangulation of P in a write-only data
structure. Once an output value is reported it cannot be afterwards accessed or modified.

In other memory-constrained triangulation algorithms [2, 3] the output is reported as
a list of edges in no particular order (with no information on neighboring edges or faces).
Moreover, it is not clear how to modify these algorithms to obtain such information. Our
approach has the advantage that, in addition to the list of edges, we can report adjacency
information as well. For example, we could report the triangulation in a doubly connected
edge list (or any other similar format). More details on how we can report the triangulation
are given in Section 3.4.

A vertex of a polygon is reflex if its interior angle is larger than 180◦. Given two points
p, q ∈ P , the geodesic (or shortest path) between them is the path of minimum length that
connects p and q and that stays within P (viewing P as a closed set). The length of that
path is the geodesic distance from p to q. It is well known that, for any two points of P ,
their geodesic π always exists and is unique. Such a path is a polygonal chain whose vertices
(other than p and q) are reflex vertices of P . Thus, we often identify π with the ordered
sequence of reflex vertices traversed by the path from p to q. When that sequence is empty
(i.e., the geodesic consists of the straight segment pq) we say that p sees q (and vice versa).

Our algorithm relies in a recent result by Har-Peled [8] for computing geodesics under
memory constraints. Specifically, it computes the geodesic between any two points in a
simple polygon of n vertices in expected O(n2/s+n log s log4(n/s)) time using O(s) words of
space. Note that this path might not fit in memory, so the edges of the geodesic are reported
one by one in order.

3 Algorithm

Let π be the geodesic connecting v1 and vbn/2c. From a high-level perspective, the algorithm
uses the approach of Har-Peled [8] to compute π. We will use the computed edges to subdivide
P into smaller problems that can be solved recursively.

We start by introducing some definitions that will help in storing which portion of the
polygon has already been triangulated. Vertices v1 and vbn/2c split the boundary of P into

SWAT 2016

30:4 Time-Space Trade-offs for Triangulating a Simple Polygon

two chains. We say vi is a top vertex if 1 < i < bn/2c and a bottom vertex if bn/2c < i ≤ n.
Top/bottom is the type of a vertex and all vertices (except for v1 and vbn/2c) have exactly
one type. A diagonal c is alternating if it connects a top and a bottom vertex (or one of its
endpoints is either v1 or vbn/2c), and non-alternating otherwise.

We will use diagonals to partition P into two parts. For simplicity of the exposition,
given a diagonal d, we regard both components of P \ d as closed (i.e., the diagonal belongs
to both of them). Since any two consecutive vertices of P can see each other, the partition
an edge of P is trivial, in the sense that one subpolygon is P and the other one is a line
segment.

I Observation 1. Let c be a diagonal of P not incident to v1 or vbn/2c. Vertices v1 and
vbn/2c belong to different components of P \ c if and only if c is an alternating diagonal.

I Corollary 2. Let c be a non-alternating diagonal of P . The component of P \c that contains
neither v1 nor vbn/2c has at most dn/2e vertices.

While triangulating the polygon, an alternating diagonal ac records the part of the
polygon has already been triangulated. More specically, we maintain the following invariant:
the connected component of P \ ac not containing vbn/2c has already been triangulated.

Ideally, ac would be a segment of π (the geodesic connecting v1 and vbn/2c), but this is
not always possible. Instead, we guarantee that at least one of the endpoints of ac is a vertex
of π that has already been computed in the execution of the shortest-path algorithm.

With these definitions in place, we can give an intuitive description of our algorithm:
we start by setting ac as the degenerate diagonal from v1 to v1. We then use the shortest-
path computation approach of Har-Peled. Our aim is to walk along π until we find a new
alternating diagonal anew. At that moment we pause the execution of the shortest-path
algorithm, triangulate the subpolygons of P that have been created (and contain neither v1
nor vbn/2c) recursively, update ac to the newly found alternating diagonal, and then continue
with the execution of the shortest-path algorithm.

Although our approach is intuitively simple, there are several technical difficulties that
must be carefully considered. Ideally, the number of vertices we walked along π before finding
an alternating diagonal is small and thus they can be stored explicitly. But if we do not find
an alternating diagonal on π in just a few steps (indeed, it could even be that there is no
alternating diagonal in π), we need to use other diagonals. We also need to make sure that
the complexity of each recursive subproblem is reduced by a constant fraction, that we never
exceed space bounds, and that no part of the triangulation is reported more than once.

Let vc denote the endpoint of ac that is on π and that is closest to vbn/2c. Recall that
the subpolygon defined by ac containing v1 has already been triangulated. Let w0, . . . , wk
be the portion of π up to the next alternating diagonal. That is, path π is of the form
π = (v1, . . . , vc = w0, w1, . . . , wk, . . . , vbn/2c) where w1, . . . , wk−1 are of the same type as vc,
and wk is of different type (or wk = vbn/2c if all vertices between vc and vbn/2c are of the
same type).

Consider the partition of P induced by ac and this portion of π, see Figure 1. Let P1
be the subpolygon induced by ac that does not contain vbn/2c. Similarly, let Pbn/2c be the
subpolygon that is induced by the alternating diagonal wk−1wk and does not contain v1

1.

1 For simplicity of the exposition, the definition of P1 assumes that vbn/2c is not an endpoint of ac
(similarly, v1 not an endpoint of wk−1wk for the definition of Pbn/2c). Each of these conditions is not
satisfied once (i.e., with the first and last diagonals of π), and in those cases the polygons P1 and Pbn/2c
are not properly defined. Whenever this happens we have k = 1 and a single diagonal that splits P in

B. Aronov, M. Korman, S. Pratt, A. van Renssen, and M. Roeloffzen 30:5

v1

vbn/2c

ac

P1

Pbn/2c

Q2

R

Q0

w1 w2

Q1

vc = w0
w3

w4

Figure 1 Partitioning P into subpolygons P1, Pbn/2c, R, Q1, . . ., Qk−2. The two alternating
diagonals are marked by thick red lines.

For any i < k − 1 we define Qi as the subpolygon induced by the non-alternating diagonal
wiwi+1 that contains neither v1 nor vbn/2c. Finally, let R be the remaining component of P .
Note that some of these subpolygons may be degenerate and consist only of a line segment
(for example, when wiwi+1 is an edge of P).

I Lemma 3. Each of the subpolygons R, Q1, Q2, . . ., Qk−2 has at most dn/2e+ k vertices.
Moreover, if wk = vbn/2c, then the subpolygon Pbn/2c also has at most dn/2e vertices.

Proof. Subpolygons Qi are induced by non-alternating diagonals and cannot have more than
dn/2e vertices, by Corollary 2. The proof for R follows by definition: the boundary of R
(other than vertices w0, . . . , wk) is defined by a contiguous portion of P consisting of only
top vertices or only bottom vertices. Recall that there are at most dn/2e of them. Similarly,
if wk = vbn/2c, subpolygon Pbn/2c can only have vertices of one type (either only top or only
bottom vertices), and thus the bound holds. This completes the proof of the Lemma. J

This result allows us to treat the easy case of our algorithm. When k is small (say,
a constant number of vertices), we can pause the shortest-path computation algorithm,
explicitly store all vertices wi, recursively triangulate R as well as the subpolygons Qi (for
all i ≤ k − 2), update ac to the edge wk−1wk and continue with the shortest-path algorithm.

Handling the case of large k is more involved. Note that we do not know the value of k
until we find the next alternating diagonal, but we need not compute it directly. Given a
parameter τ related to the workspace allowed for our algorithms, we say that the path is
long when k > τ . Initially we set τ = s but the value of this parameter will change as we
descend the recursion tree. We say that the distance between two alternating diagonals is
long whenever we have computed τ vertices of π besides vc and they are all of the same type
as vc. That is, path π is of the form π = (v1, . . . , vc = w0, w1, . . . , wτ , . . . vbn/2c) and vertices
w0, w1, . . . wτ are all of the same type. In particular, the vertices w0, . . . , wτ must form a
convex chain (see Figure 1). Rather than continue walking along π, we look for a vertex u of
P that together with wτ forms an alternating diagonal. Once we have found this diagonal,
we have at most τ + 2 diagonals (ac, w0w1, w1w2, . . . , wτ−1wτ , and uwτ) partitioning P into
at most τ + 3 subpolygons once again: P1 is the part induced by ac which does not contain
vbn/2c, Pbn/2c is the part induced by uwτ which does not contain v1, Qi is the part induced
by wiwi+1, which contains neither v1 nor vbn/2c, and R is the remaining component.

two. Thus, if vbn/2c ∈ ac (and thus P1 is undefined), we simply define P1 as the complement Pbn/2c
(similarly, if v1 ∈ wk−1wk, we define Pbn/2c as complement of P1. If both subpolygons are undefined
simultaneously we assign them arbitrarily.

SWAT 2016

30:6 Time-Space Trade-offs for Triangulating a Simple Polygon

vc = w0

w1

w2

wτwτ−1

u′

vbn/2c

v1

pN
e

Figure 2 After we have walked τ steps of π we can find an alternating diagonal by shooting a ray
from wτ either towards u′ or wτ−1 (whichever is higher). The upper endpoint pN of the first edge e
hit might not be visible. But in this case the reflex vertex of smallest angle inside the triangular
zone must be visible.

I Lemma 4. We can find a vertex u that together with wτ forms an alternating diagonal in
O(n) time using O(1) space. Moreover, each of the subpolygons R, Q1, Q2, . . ., Qτ−2 has at
most dn/2e+ τ vertices.

Proof. Proofs for the size of the subpolygons are identical to those of Lemma 3. Thus, we
focus on how to compute u efficiently. Without loss of generality, we may assume that the
edge wτ−1wτ is horizontal. Recall that the chain w0, . . . , wτ is in convex position, thus all of
these vertices must lie on one side of the line `τ,τ−1 through wτ and wτ−1. Without loss of
generality, we may assume that they all lie below `τ,τ−1. Let u′ be the endpoint of ac other
than vc. If u′ also lies below `τ,τ−1, we shoot a ray from wτ towards wτ−1. Otherwise, we
shoot a ray from wτ towards u′. Let e be the first edge that is properly intersected by the
ray and let pN be the endpoint of e of highest y-coordinate. Observe that pN must be on or
above `τ,τ−1, see Figure 2.

Ideally, we would like to report pN as the vertex u. However, point pN need not be
visible even when some portion of e is. Whenever this happens we can use the visibility
properties of simple polygons: since e is partially visible, we know that the portion of P that
obstructs visibility between wτ and pN must cross the segment from wτ to pN . In particular,
there must be one or more reflex vertices in the triangle formed by wτ , pN , and the visible
point of e (shaded region of Figure 2). Among those vertices, we know that the vertex r
that maximizes the angle ∠pNwτr must be visible (see Lemma 1 of [6]). Further note that r
must be a top vertex: otherwise π would need to traverse through r to reach vbn/2c, and this
would force π to do a reflex turn, which is impossible in a geodesic.

As described in Lemma 1 of [6], in order to find such a reflex vertex we need to scan the
input polygon at most three times, each time storing a constant amount of information: once
for finding the edge e and point pN , once more to determine if pN is visible, and a third time
to find r if pN is not visible. J

At high level, our algorithm walks from v1 to vbn/2c. We stop after walking τ steps
or when we find an alternating diagonal (whichever comes first). This generates several
subproblems of smaller complexity that are solved recursively. Once the recursion is done
we update ac (to keep track of the portion of P that has been triangulated), and continue
walking along π. The walking process ends when it reaches vbn/2c. In this case, in addition
to triangulating R and the Qi subpolygons as usual, we must also triangulate Pbn/2c.

B. Aronov, M. Korman, S. Pratt, A. van Renssen, and M. Roeloffzen 30:7

The algorithm in the deeper levels of recursion is almost identical. There are only three
minor changes that need to be introduced. We need some base cases to end the recursion.
Recall that τ denotes the amount of space available to the current level of recursion. Thus,
if τ is comparable to n (say, 10τ ≥ n), then the whole polygon fits into memory and can be
triangulated in linear time [7]. Similarly, if τ is small (say τ ≤ 1, we have run out of space
and thus we triangulate P using a constant workspace algorithm [2]. In all other cases we
continue with the recursive algorithm as usual.

For ease in handling the subproblems, at each step we also indicate the vertex that fulfils
the role of v1 (i.e., one of the vertices from which the geodesic must be computed). Recall
that we have random access to the vertices of the input. Thus, once we know which vertex
plays the role of v1, we can find the vertex that satisfies the role of vbn/2c in constant time
as well.

In order to avoid exceeding the space bounds, at each level of the recursion we decrease the
value of τ by a factor of κ < 1. The exact value of κ will be determined below. Pseudocode
of the recursive algorithm can be found in the Appendix (Algorithm 1).

I Theorem 5. Let P be a simple polygon of n vertices. We can compute a triangulation of
P in O(n2/s+ n(log s) log5(n/s)) expected time using O(s) variables (for any s ∈ O(n)). In
particular, when s ∈ O(n

logn log5 logn) the algorithm runs in O(n2/s) expected time.

In the remainder of the section we prove correctness and both the time and space bounds
for our algorithm.

3.1 Correctness
The current diagonal ac properly records what portion of the polygon has already been
triangulated. Thus, we never report an edge of the triangulation more than once. Hence,
in order to show correctness of the algorithm, we must show that the recursion eventually
terminates.

During the execution of the algorithm, we invoke recursion for polygons Qi, R, and Pbn/2c
(the latter one only when we have reached vbn/2c). By Lemma 3 all of these polygons have
size at most n/2 + τ . Since we only enter this level of recursion whenever τ ≤ n/10 (see
lines 1-3 of Algorithm 1), overall the size of the problem decreases by a factor of 6/10. That
is, at each level of recursion the problem instances are reduced by a constant fraction. In
particular, after O(logn) steps the subpolygons will be of constant size and will be solved
without recursion.

At each level of recursion we use the shortest-path algorithm of Har-Peled. This algorithm
needs random access in constant time to the vertices of the polygon. Thus, we must make
sure that this property is preserved at all levels of recursion. A simple way to do so would
be to explicitly store the polygon in memory at every recursive call, but this may exceed the
space bounds of the algorithm.

Instead, we make sure that the subpolygon is described by O(τ) words. By construction,
each subpolygon consists of a single chain of contiguous input vertices of P and at most τ
additional cut vertices (vertices from the geodesics at higher levels). We can represent the
portion of P by the indices of the first and last vertex of the chain and explicitly store the
indices of all cut vertices. By an appropriate renaming of the indices within the subpolygon,
we can make the vertices of the chain appear first, followed by the cut vertices. Thus, when
we need to access the ith vertex of the subpolygon, we can check if i corresponds to a vertex
of the chain or one of the cut vertices and identify the desired vertex in constant time, in
either case.

SWAT 2016

30:8 Time-Space Trade-offs for Triangulating a Simple Polygon

v1 vbn/2c

Figure 3 At different level of recursion the subproblems are formed by a consecutive chain of the
input and a list of O(s) cut vertices. The geodesics used to split the problem at first, second and
third level are depicted in solid red, dashed green, and dotted blue, respectively.

Now, we must show that each recursive call satisfies this property. Clearly this holds
for the top level of recursion, where the input polygon is simply P and no cut vertices are
needed. At the next level of recursion each subproblem has up to τ cut vertices and a chain
of contiguous input vertices. The way we make sure that this property is satisfied at lower
levels of recursion is by a correct choice of v1 (the vertex from which we start the path): at
each level of recursion we build the next geodesic starting from either the first or last cut
vertex. This might create additional cut vertices, but their position is immediately after
or before the already existing cut vertices (see Figure 3). This way we certify that random
access to the input polygon is possible at all levels of recursion.

3.2 Time Bounds
We use a two-parameter function T (η, τ) to bound the expected running time of the algorithm
at all levels of recursion. The first parameter η represents the size of the problem. Specifically,
for a polygon of n vertices we set η = n− 2, namely, the number of triangles to be reported.
The second parameter τ gives the space bound for the algorithm. Initially, we have τ = s,
but this value decreases by a factor of κ at each level of recursion. Recall that τ is also the
workspace limit for the shortest-path algorithm of Har-Peled that we invoke as part of our
algorithm. In addition, τ is also used as the limit on the length of the geodesic we explore
looking for an alternating diagonal.

When τ becomes really small (say τ ≤ 10) we have run out of allotted space. Thus,
we triangulate the polygon using the constant workspace method of Asano et al. [2] that
runs in O(n2) time. Similarly, if the space is large when compared to the instance size (say,
10τ ≥ η) the polygon fits in the allowed workspace, hence we use Chazelle’s algorithm [7] for
triangulating it. In both cases we have T (η, τ) ≤ c∆η2/τ (for some constant c∆ > 0).

In other situations, we must partition the problem and solve it recursively. First we
bound the time needed to compute the partitions. The main tool we use is computing the
geodesic between v1 and vbn/2c. This is done by the algorithm of Har-Peled [8] which takes
O(η2/τ + η(log τ) log4(η/τ)) expected time and uses O(τ) space. Recall that we pause and
continue it often during the execution of our algorithm, but overall we only execute it once.
Thus, the total time spent in shortest-path computation at one level is unchanged.

Another operation that we execute is FindAlternatingDiagonal (i.e., Lemma 4)
which takes O(η) time and O(1) space. In the worst case, this operation is invoked once
for every τ vertices of π. Since π cannot have more than n vertices, the overall time spent
in this operation is bounded by O(η2/τ). Thus, ignoring the time spent in recursion, the
expected running time of the algorithm is cHP(η2/τ + η(log τ) log4(η/τ)) for some constant

B. Aronov, M. Korman, S. Pratt, A. van Renssen, and M. Roeloffzen 30:9

cHP, which without loss of generality we assume to be at least c∆.
That is, for any value of η and τ we never spend more than cHP(η2/τ +η(log τ) log4(η/τ))

time. To this value we must add the time spent in recursion. At each level we launch several
subproblems, giving a recurrence of the form

T (η, τ) ≤ cHP(η2/τ + η(log τ) log4(η/τ)) +
∑
j

T (ηj , κτ).

Recall that the values ηj cannot be very large when compared to η. Indeed, each subproblem
can have at most a constant fraction c of vertices of the original one (i.e., the way in
which lines 1–4 of Algorithm 1 have been set, we have c = 6/10). Thus, each ηj satisfies
ηj ≤ c(η + 2)− 2 ≤ cη. Since every edge is reported exactly once, we also have

∑
j ηj = η.

We claim that for any τ, η > 0 there exists a constant cR so that T (η, τ) ≤ cR(η2/τ +
η(log τ) log5(η/τ)). Indeed, when τ ≤ 10 or 10τ ≥ η we have T (η, τ) ≤ c∆η

2 ≤ cHPη
2.

Otherwise, we use induction and obtain

T (η, τ) ≤ cHP(η2/τ + η(log τ) log4(η/τ)) +
∑
j

T (ηj , τκ)

≤ cHP(η2/τ + η(log τ) log4(η/τ)) + cR
τκ

∑
j

η2
j + cR

∑
j

ηj(log κτ) log5(ηj
τκ

)

≤ (cHP
η2

τ
+ cR
τκ

∑
j

η2
j) + cHPη(log τ) log4(η/τ) + cR

∑
j

ηj(log τ) log5(ηj
τκ

)

≤ (cHP
η2

τ
+ cR
τκ

∑
j

η2
j) + cHPη(log τ) log4(η/τ) + cR

∑
j

ηj(log τ) log5(cη
τκ

)

≤ (cHP
η2

τ
+ cR
τκ

∑
j

η2
j) + cHPη(log τ) log4(η/τ) + cRη(log τ) log5(cη

τκ
).

The sum
∑
j η

2
j is at most n

cn (cη)2 = cη2, since ηj ≤ cη, yielding

T (η, τ) ≤ (cHP
η2

τ
+ cRc

κ

η2

τ
) + cHPη(log τ) log4(η/τ) + cRη(log τ) log5(cη

τκ
)

≤ cRη
2

τ
+ cHPη(log τ) log4(η/τ) + cRη(log τ) log5(cη

τκ
),

where the inequality cHP + c
κcR ≤ cR holds for sufficiently large values of cR and κ < 1 (say,

cR = 10cHP and κ = 9/10). Now we focus on the second term of the inequation. We upper
bound log5(cητκ) by log4(ητ) log(cητκ) = log4(ητ)(log(ητ)− log(κc)) and substitute to obtain:

T (η, τ) ≤ cRη
2

τ
+ cHPη(log τ) log4(η/τ) + cRη(log τ) log4(η

τ
)(log(η

τ
)− log(κ

c
))

≤ cRη
2

τ
+ (η(log τ) log4(η

τ
))(cHP + cR log(η

τ
)− cR log(κ

c
))

≤ cRη
2

τ
+ cR(η(log τ) log5(η

τ
)) = cR(η2/τ + η(log τ) log5(η

τ
)).

Again, the cHP−cR log(κc) ≤ 0 inequality holds for sufficiently large values of cR, that depend
on cHP, κ and c.

3.3 Space Bounds
We now show that the space bound holds. Recall that we stop recursion whenever the
problem instance fits into memory or τ ≤ 1. Since the value of τ decreases by a constant

SWAT 2016

30:10 Time-Space Trade-offs for Triangulating a Simple Polygon

factor at each level of recursion, we will never recurse for more than logκ s = O(log s) levels.
Thus, the implicit memory consumption used in recursion does not exceed the space bounds.

Now we bound the size of the workspace needed by the algorithm at level i of the recursion
(with the main algorithm invocation being level 0) by O(s · κi). Indeed, this is the threshold
of space we receive as input (recall that initially we set τ = s and that at each level we reduce
this value by a factor of κ). This threshold value is the amount of space for the shortest-path
computation algorithm invoked at the current level, as well as limit on the number of vertices
of π that are stored explicitly before invoking procedure FindAlternatingDiagional.
Once we have found the new alternating diagonal, the vertices of π that were stored explicitly
are used to generate the subproblems for the recursive calls.

The space used for storing the intermediate points can be reused after the recursive
executions are finished, so overall we conclude that at the i-th level of recursion the algorithm
never uses more than O(s · κi) space. Since we never have two simultaneously executing
recursive calls at the same level, and κ < 1, the total amount of space used in the execution
of the algorithm is bounded by

O(s) +O(s · κ) +O(s · κ2) + . . . = O(s).

3.4 Considerations on the Output
For simplicity in the explanation we assumed that in order to report the triangulation,
reporting the edges suffices. However, we note that we can also report the triangulation
in any other format, such as a list of adjacencies. That is, we can report the triangles
generated, and for each one we additionally report the three boundary edges and the three
triangles adjacent to it). Most of this is easy to do, since the triangles are reported at the
bottom level of the recursion where the subpolygons fit in memory. Thus, for each triangle
we can report their adjacencies as usual (using for example the indices of the vertices to
identify the triangles). The only difficulty arises around the edges used to split the polygon
into subpolygons. When we create the triangle on one side of such an edge we do not yet
know which triangle will be created on the other side as this triangle resides in a different
subpolygon. Hence, this triangle cannot report its adjacencies yet.

Instead we delay reporting triangles along these splitting edges until both triangles
have been constructed. For this purpose we must slightly alter the triangulation invariant
associated to ac: subpolygon P1 has been triangulated and all triangles have been reported
except the triangle whose boundary is ac. This triangle (along with its two neighbors in P1)
is stored explicitly in memory.

The algorithm proceeds, partitioning into subproblems Q1, . . . Qk−2 and R as usual.
Each subproblem Qi returns a triangle that has not been reported yet along with its two
adjacencies (or nothing if the corresponding subpolygon Qi is empty). The neighbors of
these triangles are in the subproblem R, so they are given to the recursive procedure of R.
As soon as the missing neighbor is computed, we can report the stored triangle delete it from
memory. Once R has finished we need to update ac and vc as usual. In addition, we must
now store (and do not yet report) the triangle that is adjacent to ac. The bottommost level
of recursion triangulates as usual and stores the single triangle that has not been reported so
it can be reported when processing R.

Overall, at each level of recursion we need to store as many triangles as subproblems
generated. Moreover, once R has been recursively triangulated, this information need not
be stored anymore. Recall that the number of subproblems generated is at most the space
threshold. Thus, we conclude that the storage bounds are asymptotically unaffected.

B. Aronov, M. Korman, S. Pratt, A. van Renssen, and M. Roeloffzen 30:11

Acknowledgements. The authors would like to thank Jean-François Baffier, Man-Kwun
Chiu, Wolfgang Mulzer and Takeshi Tokuyama for valuable discussion in the creation of this
paper.

References
1 B. Aronov, M. Korman, S. Pratt, A. van Renssen, and M. Roeloffzen. Time-space trade-

offs for triangulating a simple polygon. CoRR, abs/1509.07669, 2015. URL: http://arxiv.
org/abs/1509.07669.

2 T. Asano, K. Buchin, M. Buchin, M. Korman, W. Mulzer, G. Rote, and A. Schulz. Memory-
constrained algorithms for simple polygons. Computational Geometry: Theory and Applic-
ations, 46(8):959–969, 2013.

3 T. Asano and D. Kirkpatrick. Time-space tradeoffs for all-nearest-larger-neighbors prob-
lems. In Proc. 13th Int. Conf. Algorithms and Data Structures (WADS), pages 61–72,
2013.

4 T. Asano, W. Mulzer, G. Rote, and Y. Wang. Constant-work-space algorithms for geometric
problems. Journal of Computational Geometry, 2(1):46–68, 2011.

5 L. Barba, M. Korman, S. Langerman, K. Sadakane, and R. I. Silveira. Space–time
trade-offs for stack-based algorithms. Algorithmica, 72(4):1097–1129, 2015. doi:10.1007/
s00453-014-9893-5.

6 L. Barba, M. Korman, S. Langerman, and R. I. Silveira. Computing the visibility polygon
using few variables. Computational Geometry: Theory and Applications, 47(9):918–926,
2013.

7 B. Chazelle. Triangulating a simple polygon in linear time. Discrete & Computational
Geometry, 6:485–524, 1991. doi:10.1007/BF02574703.

8 S. Har-Peled. Shortest path in a polygon using sublinear space. In Proceedings of the
31st International Symposium on Compututational Geometry (SoCG), pages 111–125, 2015.
doi:10.4230/LIPIcs.SOCG.2015.111.

9 M. Korman. Memory-constrained algorithms. In Ming-Yang Kao, editor, Encyc-
lopedia of Algorithms, pages 1–7. Springer Berlin Heidelberg, 2015. doi:10.1007/
978-3-642-27848-8_586-1.

10 M. Korman, W. Mulzer, M. Roeloffzen, A. v. Renssen, P. Seiferth, and Y. Stein. Time-space
trade-offs for triangulations and voronoi diagrams. In Proc. 14th Int. Conf. Algorithms and
Data Structures (WADS), pages 482–494, 2015.

11 J. E. Savage. Models of Computation: Exploring the Power of Computing. Addison-Wesley,
1998.

SWAT 2016

http://arxiv.org/abs/1509.07669
http://arxiv.org/abs/1509.07669
http://dx.doi.org/10.1007/s00453-014-9893-5
http://dx.doi.org/10.1007/s00453-014-9893-5
http://dx.doi.org/10.1007/BF02574703
http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.111
http://dx.doi.org/10.1007/978-3-642-27848-8_586-1
http://dx.doi.org/10.1007/978-3-642-27848-8_586-1

30:12 Time-Space Trade-offs for Triangulating a Simple Polygon

A Algorithm Pseudocode

Algorithm 1: Pseudocode for Triangulate(P, v1, τ) that, given a simple polygon P , a
vertex v of P , and workspace capacity τ , computes a triangulation of P in O(n2/τ)
time using O(τ) variables.

1: if 10τ ≥ n then (* The polygon fits into memory. *)
2: Triangulate P using Chazelle’s algorithm [7]
3: else if τ ≤ 10 then (* We ran out of recursion space. *)
4: Triangulate P using the constant workspace algorithm [2]
5: else (* P is large, we will use recursion. *)
6: ac ← v1v1
7: vc ← v1
8: walked ← v1 (* Variable to keep track of how far we have walked on π. *)
9: while walked 6= vbn/2c do

10: i← 0 (* i counts the number of steps before finding an alternation edge *)
11: repeat
12: i← i+ 1
13: wi ← next vertex of π
14: until i = τ or type(vc) 6= type(wi)
15: if type(vc) 6= type(wi) then
16: u′ ← wi−1
17: anew ← wiwi−1
18: else (* We walked too much. Use Lemma 4 to partition the problem. *)
19: u′ ← FindAlternatingDiagional(P, ac, vc, w1, . . . , wτ)
20: anew ← u′wi
21: end if
22: (* Now we triangulate the subpolygons. *)
23: Triangulate(R, u′, τ · κ)
24: for j=0 to i-2 do
25: Triangulate(Qj , wj , τ · κ)
26: end for
27: ac ← anew
28: vc ← wτ
29: walked ← wτ
30: end while
31: (* We reached vbn/2c. All parts except Pbn/2c have been triangulated. *)
32: Triangulate(Pbn/2c, wi, τ · κ)
33: end if

Excluded Grid Theorem: Improved and Simplified
Julia Chuzhoy

Toyota Technological Institute, Chicago, USA
cjulia@ttic.edu

Abstract
One of the key results in Robertson and Seymour’s seminal work on graph minors is the Excluded
Grid Theorem. The theorem states that there is a function f , such that for every positive integer
g, every graph whose treewidth is at least f(g) contains the (g×g)-grid as a minor. This theorem
has found many applications in graph theory and algorithms. An important open question is
establishing tight bounds on f(g) for which the theorem holds. Robertson and Seymour showed
that f(g) ≥ Ω(g2 log g), and this remains the best current lower bound on f(g). Until recently,
the best upper bound was super-exponential in g. In this talk, we will give an overview of a recent
sequence of results, that has lead to the best current upper bound of f(g) = O(g19 poly log(g)).
We will also survey some connections to algorithms for graph routing problems.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Graph Minor Theory, Excluded Grid Theorem, Graph Routing

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.31

Category Invited Talk

© Julia Chuzhoy;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 31; pp. 31:1–31:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

The Complexity Landscape of Fixed-Parameter
Directed Steiner Network Problems
Dániel Marx

Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary
dmarx@cs.bme.hu

Abstract
Given a directed graph G and a list (s1, t1), . . . , (sk, tk) of terminal pairs, the Directed Steiner
Network problem asks for a minimum-cost subgraph of G that contains a directed si → ti path
for every 1 ≤ i ≤ k. Feldman and Ruhl presented an nO(k) time algorithm for the problem,
which shows that it is polynomial-time solvable for every fixed number k of demands. There
are special cases of the problem that can be solved much more efficiently: for example, the
special case Directed Steiner Tree (when we ask for paths from a root r to terminals t1,
. . . , tk) is known to be fixed-parameter tractable parameterized by the number of terminals,
that is, algorithms with running time of the form f(k) · nO(1) exist for the problem. On the
other hand, the special case Strongly Connected Steiner Subgraph (when we ask for a
path from every ti to every other tj) is known to be W[1]-hard parameterized by the number of
terminals, hence it is unlikely to be fixed-parameter tractable. In the talk, we survey results on
parameterized algorithms for special cases of Directed Steiner Network, including a recent
complete classification result (joint work with Andreas Feldmann) that systematically explores
the complexity landscape of directed Steiner problems to fully understand which special cases
are FPT or W[1]-hard.

1998 ACM Subject Classification F2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases Directed Steiner Tree, Directed Steiner Network, fixed-parameter tract-
ability, dichotomy

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.32

Category Invited Talk

© Dániel Marx;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 32; pp. 32:1–32:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.32
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Computation as a Scientific Weltanschauung
Christos H. Papadimitriou

University of California, Berkeley, USA
christos@berkeley.edu

Abstract
Computation as a mechanical reality is young – almost exactly seventy years of age – and yet the
spirit of computation can be traced several millennia back. Any moderately advanced civilization
depends on calculation (for inventory, taxation, navigation, land partition, among many others)
– our civilization is the first one that is conscious of this reliance.

Computation has also been central to science for centuries. This is most immediately apparent
in the case of mathematics: the idea of the algorithm as a mathematical object of some significance
was pioneered by Euclid in the 4th century BC, and advanced by Archimedes a century later.
But computation plays an important role in virtually all sciences: natural, life, or social. Implicit
algorithmic processes are present in the great objects of scientific inquiry – the cell, the universe,
the market, the brain – as well as in the models developed by scientists over the centuries for
studying them. This brings about a very recent – merely a few decades old – mode of scientific
inquiry, which is sometime referred to as the lens of computation: When students of computation
revisit central problems in science from the computational viewpoint, often unexpected progress
results. This has happened in statistical physics through the study of phase transitions in terms
of the convergence of Markov chain-Monte Carlo algorithms, and in quantum mechanics through
quantum computing.

This talk will focus on three other manifestations of this phenomenon. Almost a decade ago,
ideas and methodologies from computational complexity revealed a subtle conceptual flaw in the
solution concept of Nash equilibrium, which lies at the foundations of modern economic thought.
In the study of evolution, a new understanding of century-old questions has been achieved through
surprisingly algorithmic ideas. Finally, current work in theoretical neuroscience suggests that the
algorithmic point of view may be invaluable in the central scientific question of our era, namely
understanding how behavior and cognition emerge from the structure and activity of neurons
and synapses.

1998 ACM Subject Classification F. Theory of Computation

Keywords and phrases Lens of computation, Nash equilibrium, neuroscience

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.33

Category Invited Talk

© Christos H. Papadimitriou;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 33; pp. 33:1–33:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.33
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

	p00-frontmatter
	Preface

	p01-friggstad
	Introduction
	LP Relaxations and Starting steps
	Reduction Lemmas

	An LP-Based Approximation Algorithm for LUFL
	Lower-Bounded Facility Location
	The general case with lower and upper bounds

	An LP-Based Approximation Algorithm for C-LUFL
	Conclusion

	p02-byrka
	Introduction
	Previous work
	Our contribution

	The LMP primal-dual 3-approximation algorithm
	Algorithm
	Analysis

	Combination with threshold rounding
	Threshold rounding
	Combining the two algorithms

	The primal-dual 4-approximation for forest

	p03-friggstad
	Introduction
	Our contributions

	The integrality gap bound
	Preliminaries and definitions
	High-level approach

	A primal-dual proof of Lemma 3
	The algorithm
	Algorithm and invariants
	Invariant analysis
	Augmenting T

	Conclusion

	p03-ZZZ-Blank
	p04-golovach
	Introduction
	Existing Results
	Our Focus
	Our Results

	Preliminaries
	Recognizable Edges
	The Edge Reduction Rule
	The Linear Kernel
	Conclusions

	p05-mnich
	Introduction
	Preliminaries
	Reduction along Small Separators
	Map Graphs with a Tree Witness
	Map Graphs with an Outerplanar Witness
	Structural Properties of Map Graphs with Outerplanar Witness
	Recognition Algorithm

	Discussion

	p06-banik
	Introduction
	Previous work
	Our contributions

	Preliminaries
	Definitions
	Spine tree decomposition and upper envelopes
	Our approach
	Center location policy

	Preprocessing
	Upper envelopes
	Fractional cascading

	alpha-Feasibility
	Peripheral centers
	alpha-Feasibility test

	Optimization
	Balanced tree networks
	General tree networks

	Conclusion and Discussion

	p06-ZZZ-Blank
	p07-karczmarz
	Introduction
	A Data Structure for a Finite Universe
	Obtaining Linear Space
	Lower Bound

	Handling Dynamic and Infinite Universes
	Conclusions and Open Problems

	p07-ZZZ-Blank
	p08-eppstein
	Introduction
	Preliminaries
	Bloom filter
	Cuckoo hashing
	Blocked cuckoo hashing
	Cuckoo hashing with a stash
	Cuckoo filter

	The simplification and its graph
	Analysis
	Even distribution into subtables
	Failure probability within each subtable
	Overall failure probability

	Cuckoo filter with a stash
	Bit-parallel querying

	p09-gawrychowski
	Introduction
	Preliminaries
	Algorithm
	Lower bound
	A lower bound of n - o(n)
	A stronger lower bound

	p10-ganguly
	Introduction
	Roadmap

	Linear Space Index
	Parameterized Suffix Tree
	The Index
	Reporting Occurrences
	Handling Updates

	Succinct Index
	Long Patterns (Proof of Lemma 6)
	Short Patterns (Proof of Lemma 7)

	Semi-Dynamic Dictionary

	p11-ben-basat
	Introduction
	Related Work
	Basic-Counting Problem
	Lower Bound
	Upper Bound

	Basic-Summing Problem
	Lower Bound
	Upper Bound
	Summing with Small Error

	Discussion

	p12-cygan
	Introduction
	Selection gadget
	Main construction
	Conclusions

	p13-bjoerklund
	Introduction
	The Alon–Tarsi theorem
	Our Approach

	The Proof of Lemma 4
	Details of the Algorithm
	The Path Decomposition Algorithm
	Runtime and Correctness Analysis
	Coloring a Graph

	Improvements and Limitations

	p13-ZZZ-Blank
	p14-kanj
	Introduction
	Preliminaries
	Foundations for Inductive Recognition
	An FPT algorithm for Monopolar Recognition
	An FPT algorithm for 2-Subcoloring

	p15-ene
	Introduction
	Preliminaries
	Algorithm for MaxEDP in Bounded Treewidth Graphs
	Algorithm for MaxNDP in Bounded Pathwidth Graphs
	Routing to a small adhesion in a node-disjoint setting
	Details of the algorithm

	p15-ZZZ-Blank
	p16-dabrowski
	Introduction
	Our Main Result
	Methodology
	Consequences for Clique-Width
	Future Work

	Preliminaries
	Totally k-Decomposable Graphs
	Bounding the Clique-Width

	p17-bjoerklund
	Introduction
	Overview of the Technique
	Organization

	The Self-Reduction
	Preliminaries
	Step 1. Inclusion–exclusion
	Inclusion–exclusion for HamCycles
	Inclusion–exclusion for Permanent

	Step 2. Polynomial Interpolation

	The Algorithms
	Preliminaries on Modular Arithmetic
	The Algorithm

	p18-kolman
	Introduction
	Related Work
	MSO Logic vs. Treewidth
	Extended Formulations

	Preliminaries
	Polytopes, Extended Formulations and Extension Complexity
	Graphs and Treewidth
	Monadic Second Order Logic and Types of Graphs
	Feasible Types

	Extension Complexity of the MSO Polytope
	Efficient Construction of the MSO Polytope
	Courcelle's Theorem and Optimization

	p19-langetepe
	Introduction
	Related work
	The certificate path
	Extreme cases and general definition

	Justification of the certificate
	Online approximation of the certificate path
	Lower bound construction: Online strategy against the certificate
	Conclusion

	p20-nguyen
	Introduction
	The Model, Approaches and Contribution
	Related work

	Minimizing Energy in Speed Scaling with Power Down Model
	Algorithm and Dual Variable Construction
	Analysis

	Minimizing Energy plus Weighted Flow-Time in Speed Scaling with Power Down Model
	The Algorithm
	Analysis

	Conclusion

	p21-boyar
	Introduction
	Preliminaries
	The Cost of Being Online
	The Cost of Being Incremental
	Conclusion and Open Problems

	p21-ZZZ-Blank
	p22-banerjee
	Introduction
	Prior Results
	Our Results
	Definitions

	A Deterministic Algorithm For Restricted Sorting
	A Restricted Case
	Initial Sorting
	Partition Step
	Merge Step

	The General Case
	Constructing X
	Computing An Approximate Median Of V
	A Divide-And-Conquer Approach
	Merge Step
	Probe Complexity
	Total Complexity

	A Randomized Algorithm
	When G Is A Random Graph

	p22-ZZZ-Blank
	p23-gupta
	Introduction
	Our Contribution
	Related Work

	Preliminaries
	Listing active men
	Algorithm to test if a strategy is totally stable
	Conclusions

	p24-jansen
	Introduction
	Bounding the Integrality Gap by Local Search
	Detailed Description of the Algorithm
	Proof of Termination

	Improving the Bound by Scaling
	Case 1: OPTLP(I) - b is a multiple of s
	Case 2: OPTLP(I) is a multiple of s

	An (OPT+b-s)-Approximation

	p24-ZZZ-Blank
	p25-amani
	Introduction
	Our Results

	Preliminaries
	Diametral Points are Good
	Approximate-Diametral Points are Good
	Algorithms
	Remarks
	Conclusions and Future Work

	p26-maheshwari
	Introduction
	Related Work
	Contributions

	Preliminaries
	An Algorithm for Approximating Integral Fréchet Distance
	Construction of G1
	Construction of G2
	Analysis of Case A
	Analysis of Case B
	Outline of the analysis of Case B
	Separation of a shortest path
	Analysis of subpaths that cross one parameter edge
	Analysis of subpaths that cross two parameter edges

	``Bringing it all together''

	Locally optimal Fréchet matchings
	Conclusion

	p27-de-carufel
	Introduction
	Preliminaries
	Related Work
	Structure and Results

	Shortcuts for Paths
	Shortcuts for Cycles
	Alternating vs. Consecutive
	Balancing Diametral Cycles

	A Linear-Time Algorithm for Convex Cycles
	Conclusion and Future Work

	p28-chan
	Introduction
	Kinetic Clustering
	The 1-d Case
	The General Case: Any Fixed d

	KDS for Closest Pair
	Kinetic Closest Pair Decision Problem
	Kinetic Closest Pair Problem
	Dynamizing the KDSs

	KDS for All epsilon-Nearest Neighbors
	Kinetic All epsilon-Nearest Neighbors Decision Problem
	Kinetic All epsilon-Nearest Neighbors Problem

	p28-ZZZ-Blank
	p29-oh
	Introduction
	Preliminaries
	The Refined Farthest-point Geodesic Voronoi diagram

	Overlay of FVD and Curves in Geodesic Convex Position
	Geodesic Centers Constrained to Line Segments
	Finding the Circular Arcs Intersecting a Line Segment
	Finding the Cell Containing the Geodesic Center
	Geodesic Centers Constrained to Disjoint Line Segments

	Geodesic Centers Constrained to a Polygon of Special Types
	Geodesic Convex Polygons and Geodesic Pseudo Polygons
	Polygons with Vertices on the boundary of P

	p30-aronov
	Introduction
	Preliminaries
	Algorithm
	Correctness
	Time Bounds
	Space Bounds
	Considerations on the Output

	Algorithm Pseudocode

	p31-chuzhoy
	p31-ZZZ-Blank
	p32-marx
	p32-ZZZ-Blank
	p33-papadimitriou
	p33-ZZZ-Blank

