Combinatorial Pattern Matching

27th Annual Symposium on Combinatorial Pattern Matching,

June 27-29, 2016, Tel Aviv, Israel

Edited by
Roberto Grossi
Moshe Lewenstein

\\v LIPICS

LIPlcs — Vol. 54 - CPM’16

www.dagstuhl.de/lipics

Editors

Roberto Grossi Moshe Lewenstein

Dipartimento di Informatica Department of Computer Science
Universita di Pisa Bar llan University
grossi@di.unipi.it moshe@cs.biu.ac.il

ACM Classification 1998

E.1 Data Structures, E.2 Data Storage Representations, E.4 Coding and Information Theory,
F. Theory of Computation G.2 Discrete Mathematics, H. Information Systems,

1.7 Document and Text Processing

ISBN 978-3-95977-012-5

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-012-5.

Publication date
June 2016

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPlcs.CPM.2016.0

ISBN 978-3-95977-012-5 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-012-5
http://www.dagstuhl.de/dagpub/978-3-95977-012-5
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.CPM.2016.0
http://www.dagstuhl.de/dagpub/978-3-95977-012-5
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

O:iii

LIPlcs — Leibniz International Proceedings in Informatics

LIPlcs is a series of high-quality conference proceedings across all fields in informatics. LIPlcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (TU Miinchen)

Chris Hankin (Imperial College London)

Deepak Kapur (University of New Mexico)

Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Catuscia Palamidessi (INRIA)

Wolfgang Thomas (Chair, RWTH Aachen)

Pascal Weil (CNRS and University Bordeaux)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http: //www.dagstuhl.de/lipics

CPM 2016

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Preface
Roberto Grossi and Moshe Lewenstein i 0:vii

Deterministic Sub-Linear Space LCE Data Structures With Efficient Construction
Yuka Tanimura, Tomohiro I, Hideo Bannai, Shunsuke Inenaga,

Simon J. Puglisi, and Masayuki Takeda i, 1:1-1:10
Space-Efficient Dictionaries for Parameterized and Order-Preserving Pattern
Matching

Arnab Ganguly, Wing-Kai Hon, Kunihiko Sadakane, Rahul Shah,

Sharma V. Thankachan, and Yilin Yango it .. 2:1-2:12

Encoding Two-Dimensional Range Top-k Queries
Seungbum Jo, Rahul Lingala, and Srinivasa Rao Satti 3:1-3:11

Efficient Index for Weighted Sequences
Carl Barton, Tomasz Kociumaka, Solon P. Pissis, and Jakub Radoszewski 4:1-4:13

Faster Longest Common Extension Queries in Strings over General Alphabets
Pawel Gawrychowski, Tomasz Kociumaka, Wojciech Rytter, and Tomasz Waleri .. 5:1-5:13

Succinct Online Dictionary Matching with Improved Worst-Case Guarantees
Tsvi Kopelowitz, Ely Porat, and Yaron Rozen it 6:1-6:13

Graph Motif Problems Parameterized by Dual
Guillaume Fertin and Christian Komusiewicz 7:1-7:12

Truly Subquadratic-Time Extension Queries and Periodicity Detection in Strings
with Uncertainties
Costas S. Iliopoulos and Jakub Radoszewskic.cuiiiiiiiiiiiieannnn.. 8:1-8:12

Estimating Statistics on Words Using Ambiguous Descriptions
Cyril Nicaudo 9:1-9:12

Reconstruction of Trees from Jumbled and Weighted Subtrees
Dénes Bartha, Péter Burcsi, and Zsuzsanna Liptdk 10:1-10:13

A 7/2-Approximation Algorithm for the Maximum Duo-Preservation String
Mapping Problem
Nicolas Boria, Gianpiero Cabodi, Paolo Camurati, Marco Palena,
Paolo Pasini, and Stefano Quer 11:1-11:8

Fast Compatibility Testing for Rooted Phylogenetic Trees
Yun Deng and David Ferndndez-Bacaouuiiiuiiiiiiiiiieanann.. 12:1-12:12

Hardness of RNA Folding Problem With Four Symbols
Yi-Jun Chang ... 13:1-13:12

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:vi

Contents

Efficient Non-Binary Gene Tree Resolution with Weighted Reconciliation Cost
Manuel Lafond, Emmanuel Noutahi, and Nadia El-Mabrouk

Genomic Scaffold Filling Revisited
Haitao Jiang, Chenglin Fan, Boting Yang,
Farong Zhong, Daming Zhu, and Binhai ZRhuo oo,

A Linear-Time Algorithm for the Copy Number Transformation Problem
Ron Shamir, Meirav Zehavi, and Rom Zeiracouiuueeiiiiiieeniiiennnn.

On Almost Monge All Scores Matrices
Amir Carmel, Dekel Tsur, and Michal Ziv-Ukelsoncccoio...

Tight Tradeoffs for Real-Time Approximation of Longest Palindromes in Streams
Pawel Gawrychowski, Oleg Merkurev, Arseny M. Shur, and Przemystaw Uznariski

Finding Maximal 2-Dimensional Palindromes
Sara H. Geizhals and Dina Sokol i

Boxed Permutation Pattern Matching
Mika Amit, Philip Bille, Patrick Hagge Cording,
Inge Li Gortz, and Hjalte Wedel Vildhgjo

Longest Common Substring with Approximately & Mismatches
Tatiana StarikovUSKQYQ

Fully-online Construction of Suffix Trees for Multiple Texts
Takuya Takagi, Shunsuke Inenaga, and Hiroki Arimura

Linear-time Suffix Sorting — A New Approach for Suffix Array Construction
Uwe BaTeT ... e

Color-Distance Oracles and Snippets
Tsvi Kopelowitz and Robert Krauthgamerccooiiiiiiiiiaiiininnn..

The Nearest Colored Node in a Tree
Pawel Gawrychowski, Gad M. Landau, Shay Mozes, and Oren Weimann

On the Benefit of Merging Suffix Array Intervals for Parallel Pattern Matching
Johannes Fischer, Dominik Koppl, and Florian Kurpicz oo,

Factorizing a String into Squares in Linear Time
Yoshiaki Matsuoka, Shunsuke Inenaga, Hideo Banna,
Masayuki Takeda, and Florin Maneao oo,

Minimal Suffix and Rotation of a Substring in Optimal Time
Tomasz Kociumaka e

Optimal Prefix Free Codes with Partial Sorting
JETEMY Barbay

14:1-14:12

15:1-15:13

16:1-16:13

17:1-17:12

18:1-18:13

19:1-19:12

20:1-20:11

21:1-21:11

22:1-22:13

23:1-23:12

24:1-24:10

25:1-25:12

26:1-26:11

27:1-27:12

28:1-28:12

29:1-29:13

Preface

The objective of the Annual Symposium on Combinatorial Pattern Matching is to provide an
international forum for research in combinatorial pattern matching and related applications.
It addresses issues of searching and matching strings and more complicated patterns such as
trees, regular expressions, graphs, point sets, and arrays. The goal is to derive combinatorial
properties of such structures and to exploit these properties in order to achieve a superior
performance for the corresponding computational problems. The meeting also deals with
problems in bioinformatics and computational biology, coding and data compression, com-
binatorics on words, data mining, information retrieval, natural language processing, pattern
discovery, string algorithms, string processing in databases, symbolic computing, and text
searching.

This volume contains the papers presented at the 27th Annual Symposium on Combinat-
orial Pattern Matching (CPM 2016) held during June 27-29, 2016, in Tel Aviv, Israel

The conference program included 29 contributed papers and three invited talks by
Gregory Kucherov, University Paris-Est Marne-la-Vallée, France, on “Stringology in action:
bioinformatics examples”, Moni Naor, Weizmann Institute, Israel, on “How to share a secret,
infinitely”, and Yoram Louzon, Bar-Ilan University, Israel, on “Node classification based on
local and global sub-graph patterns”.

The contributed papers were selected out of 52 submissions, corresponding to an ac-
ceptance ratio of 55.8%. Each submission received at least three reviews. We thank the
members of the Program Committee and all the additional external reviewers for their hard
and invaluable work that resulted in an excellent scientific program.

The Annual Symposium on Combinatorial Pattern Matching started in 1990, and has
since taken place every year. Previous CPM meetings were held in Paris, London (UK),
Tucson, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus, Piscataway, Warwick, Montreal,
Jerusalem, Fukuoka, Morelia, Istanbul, Jeju Island, Barcelona, London (Ontario, Canada),
Pisa, Lille, New York, Palermo, Helsinki, Bad Herrenalb, Moscow, and Ischia. From the 3rd
to the 26th meeting, proceedings of all meetings have been published in the LNCS series,
as volumes 644, 684, 807, 937, 1075, 1264, 1448, 1645, 1848, 2089, 2373, 2676, 3109, 3537,
4009, 4580, 5029, 5577, 6129, 6661, 7354, 7922, 8486, and 9133, respectively. From the curent
meeting, the proceedings will appear in the LIPIcs (Leibniz International Proceedings in
Informatics) series.

Selected papers from the 1st meeting appeared in vol. 92 of Theoretical Computer Science,
from the 11th meeting in vol. 2 of the Journal of Discrete Algorithms, from the 12th meeting
in vol. 146 of Discrete Applied Mathematics, from the 14th meeting in vol. 3 of the Journal
of Discrete Algorithms, from the 15th meeting in vol. 368 of Theoretical Computer Science,
from the 16th meeting in vol. 5 of the Journal of Discrete Algorithms, from the 19th meeting
in vol. 410 of Theoretical Computer Science, from the 20th meeting in vol. 9 of the Journal
of Discrete Algorithms, from the 21st meeting in vol. 213 of Information and Computation,
from the 22nd meeting in vol. 483 of Theoretical Computer Science, and from the 23rd
meeting in vol. 25 of the Journal of Discrete Algorithms. Selected papers from this meeting
will appear in a special issue of Algorithmica.

The whole submission and review process was carried out with the help of the EasyChair
conference system. We thank the CPM Steering Committee for supporting Tel Aviv as the
site for CPM 2016, and for their advice and help in different issues. We thank Shay Golan,
Avivit Levy, Noa Lewenstein and Ely Porat for the local arrangements. The conference was

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:viii Preface

sponsored by the I-CORE Program of the planning and budgeting committee and The Israel
Science Foundation (grant number 4/11), Shenkar College of Engineering and Design, and
Bar Ilan University. We thank them for their financial support.

List of Authors

Amit, Mika (20)

Arimura, Hiroki (22)

Baier, Uwe (23)

Bannai, Hideo (1, 27)
Barbay, Jérémy (29)
Bartha, Dénes (10)

Barton, Carl (4)

Bille, Philip (20)

Boria, Nicolas (11)

Burcsi, Péter (10)

Cabodi, Gianpiero (11)
Camurati, Paolo (11)
Carmel, Amir (17)

Chang, Yi-Jun (13)
Cording, Patrick Hagge (20)
Deng, Yun (12)
El-Mabrouk, Nadia (14)
Fan, Chenglin (15)
Fernandez-Baca, David (12)
Fertin, Guillaume (7)
Fischer, Johannes (26)
Ganguly, Arnab (2)
Gawrychowski, Pawel (5, 18, 25)
Geizhals, Sara H (19)
Gortz, Inge Li (20)

Hon, Wing-Kai (2)

I, Tomobhiro (1)

Iliopoulos, Costas (8)
Inenaga, Shunsuke (1, 22 ,27)
Jiang, Haitao (15)

Jo, Seungbum (3)

Kociumaka, Tomasz (4, 5, 28)
Komusiewicz, Christian (7)
Kopelowitz, Tsvi (6, 24)
Krauthgamer, Robert (24)
Kurpicz, Florian (26)
Koppl, Dominik (26)
Lafond, Manuel (14)
Landau, Gad M. (25)
Lingala, Rahul (3)
Liptdk, Zsuzsanna (10)
Manea, Florin (27)
Matsuoka, Yoshiaki (27)
Merkurev, Oleg (18)
Mozes, Shay (25)

Nicaud, Cyril (9)
Noutahi, Emmanuel (14)
Palena, Marco (11)
Pasini, Paolo (11)

Pissis, Solon (4)

Porat, Ely (6)

Puglisi, Simon (1)

Quer, Stefano (11)
Radoszewski, Jakub (4, 8)
Rozen, Yaron (6)

Rytter, Wojciech (5)
Sadakane, Kunihiko (2)
Satti, Srinivasa Rao (3)
Shah, Rahul (2)

Shamir, Ron (16)

Shur, Arseny M. (18)
Sokol, Dina (19)

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).

Editors: Roberto Grossi and Moshe Lewenstein

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Authors

Starikovskaya, Tatiana (21)
Takagi, Takuya (22)
Takeda, Masayuki (1, 27)
Tanimura, Yuka (1)
Thankachan, Sharma V. (2)
Tsur, Dekel (17)

Uznanski, Przemystaw (18)
Vildhgj, Hjalte Wedel (20)
Waleti, Tomasz (5)
Weimann, Oren (25)

Yang, Boting (15)

Yang, Yilin (2)

Zehavi, Meirav (16)

Zeira, Ron (16)

Zhong, Farong (15)

Zhu, Binhai (15)

Zhu, Daming (15)
Ziv-Ukelson, Michal (17)

Deterministic Sub-Linear Space LCE Data
Structures With Efficient Construction®

Yuka Tanimura'!, Tomohiro I?, Hideo Bannai®, Shunsuke Inenaga?,
Simon J. Puglisi®, and Masayuki Takeda®

1 Department of Informatics, Kyushu University, Japan
yuka.tanimura@inf.kyushu-u.ac. jp

2 Kyushu Institute of Technology, Japan
tomohiro@ai.kyutech.ac. jp

3 Department of Informatics, Kyushu University, Japan
bannai@inf.kyushu-u.ac.jp

4 Department of Informatics, Kyushu University, Japan
inenaga@inf.kyushu-u.ac. jp

5 Department of Computer Science, University of Helsinki, Finland
puglisi@cs.helsinki.fi

6 Department of Informatics, Kyushu University, Japan
takeda@inf.kyushu-u.ac. jp

—— Abstract

Given a string S of n symbols, a longest common extension query LCE(z, j) asks for the length
of the longest common prefix of the ith and jth suffixes of S. LCE queries have several import-
ant applications in string processing, perhaps most notably to suffix sorting. Recently, Bille et
al. (J. Discrete Algorithms 25:42-50, 2014, Proc. CPM 2015:65-76) described several data struc-
tures for answering LCE queries that offers a trade-off between data structure size and query time.
In particular, for a parameter 1 < 7 < n, their best deterministic solution is a data structure of
size O(2) which allows LCE queries to be answered in O(r) time. However, the construction time
for all deterministic versions of their data structure is quadratic in n. In this paper, we propose a
deterministic solution that achieves a similar space-time trade-off of O(7 min{log 7,log 2}) query
time using O(%) space, but we significantly improve the construction time to O(nr).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
Keywords and phrases longest common extension, longest common prefix, sparse suffix array

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.1

1 Introduction

Given a string S of n symbols, a longest common extension query LCE(4, j) asks for the
length of the longest common prefix of the ith and jth suffixes of S.

The ability to efficiently answer LCE queries allows optimal solutions to many string
processing problems. Gusfield’s book [4], for example, lists several applications of LCEs to
basic pattern matching and discovery problems, including: pattern matching with wildcards,
mismatches and errors; the detection of various types of palindromes (maximal, complimented,
separated, approximate); and the detection of repetitions and approximate repetitions.

* HB, SI, MT were supported by JSPS KAKENHI Grant Numbers 25280086, 26280003, 25240003.

© Yuka Tanimura, Tomohiro I, Hideo Bannai, Shunsuke Inenaga, Simon J. Puglisi,
5v and Masayuki Takeda;
licensed under Creative Commons License CC-BY
27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 1; pp. 1:1-1:10

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Deterministic Sub-Linear Space LCE Data Structures With Efficient Construction

Table 1 Deterministic solutions to LCE.

Data Structure Preprocess.ing Trade-off range | Reference
Space Query Space Time
1 n 1 1 - naive computation
n 1 n n - suffix array + RMQ
. r . v 1<r<vn | 3]
z log? 2 = n? 1<7<n [2], Section 2
z T 2 n?te 1<7<n [2], Section 4
= 7log? b b nT +nlog 2 1<7<n This work, Theorem 9
= TlogT = nrT 1<7< logn This work, Theorem 10
z 7min{log 7,log Z} = nrT 1<7<n This work, Corollary 12

Lempel-Ziv parsing [6] and suffix sorting [7, 5] are two more fundamental string processing
problems to which LCEs are key.

Without preprocessing, answering an arbitrary query LCE(%, j) requires O(n) time: we
simply compare the suffixes starting at positions ¢ and j character by character until we find
a mismatch. To answer queries faster we could build the suffix tree and preprocess it for
lowest-common-ancestor queries. This well-known solution answers queries in O(1) time and
the data structure is of O(n) size and takes O(n) time to construct.

In recent years, motivated by scenarios where O(n) space is prohibitive, several authors
have sought data structures that achieve a trade-off between data structure size and query
time [13, 3, 2]. The best trade-off to date is due to Bille et al. [2], where they describe a data
structure of size O(n/7) which allow LCE queries to be answered in O(7) time.

However, as described in [2], their deterministic data structure requires O(n?) time to
construct if only O(n/7) working space is allowed. This is a major drawback, because it does
not allow the space-query time trade-off to be passed on to applications—indeed, construction
of the data structure would become a time bottleneck in all the applications listed above.
We note that Bille et al. [2] also proposed randomized solutions which achieve the same
space-query time trade-off with subquadratic preprocessing time. In this paper, we focus on
determinstic solutions.

The main contributions of this article are as follows:

1. We describe a new data structure for LCEs that has size O(Z), query time O(7logT),
and, critically, can be constructed in O(n7) time.

2. We show how to combine the new data structure with one of Bille et al. to derive a
structure that has O(7 min{log 7,log }) query time and the same space and construction
bounds as the new structure. As a side result, we also show how this particular structure
of Bille et al. can be constructed efficiently.

Table 1 summarizes our results and previous work on the deterministic version of the problem.

In the next section we lay down notation and some basic algorithmic and data structural
tools. Then, in Section 3, we introduce our new LCE data structures, beginning with a a
slightly modified version of one of Bille et al’s data structures, followed by the new and
combined data structures. Section 4 deals with efficient construction. We finish, in Section 5,
by noting that our new structures lead directly to improved (deterministic) bounds for the
sparse suffix sorting problem.

Y. Tanimura, T. I, H. Bannai, S. Inenaga, S. J. Puglisi, and M. Takeda

2 Preliminaries

Let ¥ = {1,...,0} denote the alphabet, and ¥* the set of strings. If w = xyz for some

strings w, z, ¥y, z, then x,y, and z are respectively called a prefiz, substring, and suffiz of w.

For any string w, let |w| denote the length of w, and for any 0 < i < |w|, let w[é] denote the

ith character of w, i.e., w = w[0] - -- w[|w| — 1]. For convenience, let w[i] = 0 when i > |w|.
For any 0 < < j, let w[i..j] = w[i] - - - w[j], and for any 0 < i < |w|, let w[i..] = w[i..|w| — 1].

We denote = < y if a string z is lexicographically smaller than a string y.

For any string w, let Icp,,(i,7) denote the length of the longest common prefix of w]i..]
and wlj..]. We will write lcp(é, j) when w is clear from the context. Since lcp,,(i,i) = |w| — i,
we will only consider the case when i # j. Note that answering an LCE query LCE(i, j) is
equivalent to computing lcp,, (¢, 7).

For any integers i < j, let [i..j] denote the set of integers from ¢ to j (including ¢ and j),
and for 0 <p <7, let [i..j]) = {k | k € [i..j], k mod T = p}.

For any string w of length n and 0 < p < 7, let @, , denote a string of length [(|w| — p)/7]

over the alphabet {1,...,07} such that &, ,[i] = wp + 7i..p+ 7(i + 1) — 1] for any i > 0.

We call @, the meta-string of w wrt. sampling rate 7 and offset p, and each character of
Wr p is called a meta-character.

In the rest of the paper, we assume a polynomially bounded integer alphabet, i.e., for
some constant ¢ > 0, o = O(n®) for any input string w of length n.

» Definition 1 ([12]). The suffix array SA,, of a string w of length n is an array of size n
containing a permutation of [0..n — 1] that represents the lexicographic order of the suffixes
of w, i.e., w[SA[0]..] < --- < w[SAy[n — 1]..]. The inverse suffix array ISA,, is an array of
size n such that ISA,[SA,[i]] =i for all 0 < i < n. The LCP array LCP,, of a string w of
length n is an array of size n such that LCP,,[0] = 0 and LCP,,[i] = lcp,, (SAw[i — 1], SA,[i])
for 0 <i < n.

» Lemma 2 ([9, 10, 11, 7]). For any string w of length n, the arrays SA,,I1SA,, LCP,, can
be computed in O(n) time and space.

For any array A and 0 < i < j < |A], let rmq,4(i,7) denote a Range Minimum Query
(RMQ), i.e., rmq4(i,7) = argmingep;. ;{A[k]}. It is well known that A can be preprocessed in
linear time and space so that rmq 4 (¢, j), for any 0 < i < j < |A[, can be answered in constant
time [1]. Since lcp,, (7, j) = LCPy[rmqycp, (¢ + 1,5")] where i’ = min{ISA,, (i), ISA,(j)} and
j" = max{ISA (i), 1SA,(4)}, it follows that a string of length n can be preprocessed in O(n)
time and space so that for any 0 < ¢,j < n, lcp,,(4,j) can be computed in O(1) time.

Our algorithm relies on sparse suffix arrays. For a string w of length n and any set P C
[0..n— 1] of positions, let SSAp[0..|P| —1] be an array consisting of entries of SA that are in P,
ie., forany 0 < i < |P|,SSApli] € P,and w[SSAp[0]..] < --- < w[SSAp[|P|—1]..]. The sparse

LCP array SLCPp[0..|P| — 1] is defined analogously, SLCPp[i] = lcp,,(SSAp[i — 1], SSAp|i]).

Let 1 < 7 < n be a parameter called the sampling rate. When, P = [0..n — 1];, for some
0<p< 7 <n,SSAp is called the evenly space sparse suffix array with sampling rate 7 and
offset p. Given an evenly spaced sparse suffix array SSAp, we can compute in O(Z) time,
a representation of the sparse inverse suffix array ISAp as an array X of size O(2) where
X[|SSAp[i]/7]] =i, i.e., ISAp[i] = X[|i/7]] for all ¢ € P. By directly applying the algorithm
of Kasai et al. [9], SLCPp can be computed from SSAp and (the representation of) ISAp in
O(n) time and O(Z2) space.

1:3

CPM 2016

1:4

Deterministic Sub-Linear Space LCE Data Structures With Efficient Construction

3 Data structure and query computation

Our algorithms are based on the same observation as used in [2].

» Observation 3 ([2]). For any positions i,j,k € [0..n — 1] if lcp(j, k) > lep(i,5) then,
lep(é,) = min{lep(i, k), lep(j, k) }-

The observation allows us to reduce the computation of lcp values between a pair of
positions, to the computation of lcp values between another pair of values, both from a
specific subset of positions. For each specific position i, called a sampled position, and for
each such subset .S, a position 7(i,.5) = arg max; cg{lcp(i,i’)} is precomputed. The idea is
that the size of S gets smaller after each reduction, therefore giving a bound on the query
time.

» Corollary 4. For any pair of positions i € S C [0.n — 1] and j € [0.n — 1], lcp(4,j) =
min{lep(i, 7(j, 5)), lep(j, 7 (5, 5))}-

3.1 Bille et al.s data structure

We first introduce a slightly modified version of the deterministic data structure by Bille et
al. [2] that uses O(Z) space and allows queries in O(r log? 2) time, where 7 is a parameter
in the range 1 < 7 < n. We note that the modifications do not affect the asymptotic
complexities.

Let t =7 [log 2], p = (n — 1) mod ¢ and let P = [0..n — 1]}, be the set of positions called
sampled positions. The data structure of [2] to compute lcp(é,j) for any 0 < i < j < n
consists of two main parts, one for when j — i > ¢, and the other for when j — i < ¢. Since
we will use the latter part as is, we will only describe the former. The query time, space,
and preprocessing time of the latter part are respectively, O(7log), O(%), and O(n) (see
Section 2 of [2]).

Consider a full binary tree where the root corresponds to the interval [0..n — 1], and for
any node, the left and right children split their parent interval almost evenly, but assuring
that the right-most position in the left child is a sampled position. Thus, there will be [n/t]
leaves corresponding to intervals of size ¢ (except perhaps for the leftmost interval which may
be smaller), and the height of the tree is O(log %). For any internal node v in the tree, let I,
denote its corresponding interval, and £(v),r(v) respectively the left and right children of v.
For all sampled positions i € I,y NP, a position (4, Iy(,)) = argmaxier,,, {lcp(i, i)} and
a value L(i, Iy()) = lep(i, m(7, Iy())) are computed and stored. The size of the data structure
is therefore O(} log %) = O(Z).

Assume w.l.o.g. that j > i. A query for lcp(i,7) with j — 4 > ¢ is computed as follows.
First, compare up to d < ¢ characters of w[i..] and w[j..] until we encounter a mismatch,
in which case we obtain an answer, or j + § is a sampled position. Let I, be the interval
such that i +d € Iy, and j + 6 € I,(,). From the preprocessing, we obtain a position
7(J + 0, Lo(v)) € Iy, which, from Corollary 4, satisfies:

lep(i,5) = d+lcp(i+ 6,5+ 9)
o+ mln{lcp(l + 57 7T(] =+ 57 IZ(v)))v |Cp(_] + 63 ﬂ-(] + 57 Il(v)»}
= 9 + min{le(i + 67 W(] + 67 I@(v)))’ L(.j + 67 Ié(v))}
Thus, the problem can be reduced to computing lcp(i 4 d,7(j + J, Iy())), where both

i+ 0, 7(j + 0, Iy(v)) € Ly(), and we apply the algorithm recursively. Note that if j € I,(,)
we have, from the definition of the intervals, that j +d € I,.(,), so each recursion takes us

Y. Tanimura, T. I, H. Bannai, S. Inenaga, S. J. Puglisi, and M. Takeda

1 3 14 15 16 17 18 19 20 21 22 23 24

s sl s s s | s

t

Figure 1 Sets Sk, with & = 1,2, 3, for the sampled positions specified by black dots.

further down the tree. When an interval corresponding to a leaf node is reached, we have
that j —i < ¢ and use the other data structure (for a description of which we refer the
reader to [2]). Since we compare up to ¢t characters at each level, the total query time is
O(tlog %) = O(t log? 2).

3.2 New data structure

Let t = 7 [log], p = (n — 1) mod ¢, and let P = [0..n — 1]}, be the set of sampled positions.
Instead of considering a hierarchy of intervals of positions, we classify the positions according
to their distance to the closest sampled position to their right. Define Sy, = {i | (i+d) mod ¢t =
p,d e (2F1.28 —1]n[1..t = 1))} for k=1,...,[logt] (see also Figure 1).

The preprocessing computes and stores for each sampled position ¢ € P and each Sy,
a position (i, Sk) = argmax;egs, {lep(i,i')}, and a value L(i, S;) = lep(i, 7(¢, Sk)). Also,
SLCPp is computed and preprocessed for range minimum queries so that for any 4,5 € P,
lep(i, j) can be computed in constant time. Thus, the space required for the data structure
is O(%logt) = O(%).

A value lep(i, j) is computed as follows. First, compare up to ¢ characters of w[i..] and
wlj..] until we encounter a mismatch, in which case we obtain an answer, or, either i44§ or j+4¢
is a sampled position. If both i+6 and j+§ are sampled positions, lcp(i, j) = d+lcp(i+9, j+96)
can be answered in constant time. Assume w.l.o.g. that only j + J is a sampled position,
and let k& be such that i + § € Sg. Then, from Corollary 4 and the preprocessing, we have

lep(i,5) = d+lep(i+ 0,5 +9)
5+ min{lep(i + 8, 7(j + 6, Sk)), lcp(j + 6, 7(j + 6, Sk))}
= d+min{lep(i + 8, 7(j + 6, 5%)), L(j + 6, Sk)}

and the problem has been reduced to computing lcp(i + 6, 7(j + 9, Si)) where both i+ 4§, 7(j +
8,Sk) € Sk, and the processes are repeated. Notice that in the next step, at least 2¢~!
characters are compared until one of the two positions becomes a sampled position. This
implies that the remaining distance to the closest sampled position of the other position will
be at most 2°~1 — 1, and thus the position will be in S for some k' < k — 1. Therefore,
the process will only be repeated at most [logt] times. Because the number of characters
compared in each step is bounded by t and is at least halved every step, the total number of
character comparisons, and thus the query time, is O(t) = O(7 log 7).

3.3 Combining the structures

We can combine the structures described in Sections 3.1 and 3.2, to achieve O(7log %) query
time using O(%) space for 1 < 7 < n. Furthermore, we can achieve O(7 min{log 7,log 2 })
query time by choosing the better structure depending on 7. More precisely, when 7 < 2
(i.e., 7 < y/n), we simply use the structure of Section 3.2, and when 7 > 2 (i.e., 7 > /n),
we use the combined structure. Thus, we assume below that 7 > 2.

1:5

CPM 2016

1:6

Deterministic Sub-Linear Space LCE Data Structures With Efficient Construction

Let t = 7 [log 2], p = (n— 1) mod ¢ and let P = [0..n — 1]} be the set of positions
called sampled positions. We consider both the structures described in Section 3.1 and
Section 3.2, with the following modifications. Let d; = 2/'°® f-Tlog 4] — O(%) For Bille
et al’s data structure, we make two modifications. First, for each node I, and sampled
position i € I, NP, we only consider points that are at most d; from the closest sampled
position to the right, i.e., instead of (i, I;)) and L(i, I;)), we compute and store a
position 7 (i, [,y N D) = argmaxier,,,npilcp(i, i)} and a value L(i, Iy N D), where
D={/|({#+d) modt=p0<d<d} Inaddition to this, we compute and store for all
sampled position i € Iy,y NP, a position (4, I,y N D) = argmax;er, ,,np{lcp(i,i’)} and
L(i, I.(vy N D) = lep(4, 7 (i, Iy (»y N D)). This will only double the total size of the structure
and thus the space usage remains O(2). For the new data structure, we keep the definitions
of m(i,Sk) and L(i,Sk), but store these values only for k = [logt] — [log 2] ,..., [logt].
Thus, although the value of ¢ has changed, the total size of the data structure is still
O(21og %) = O(2).

Queries Icp(i,j) are answered as follows: First use the new data structure recursively
using the original algorithm until the problem is reduced to a query between a sampled
position and another position not in any Sy, (k € [[logt] — [log 2] .. [logt]]). This means
that the distance from either of the query positions to the closest sampled position is at
most d;. The total number of character comparisons conducted is O(t) = O(7log %). Then,
we switch to Bille et al’s structure using the original algorithm with the exception that we
continue until either i+d or j+ 9§ (instead of just j+¢) is a sampled position when comparing
up to 0 characters of wli..] and w[j..]. Since the distance to the closest sampling position is at
most O(%) and by definition of 7 (i, Iy, N D) and (3, I,y N D), we have that this condition
holds for all following recursive calls. Thus, at most O(%) character comparisons will be
conducted at each level, for a total of O(% log) = O(t(%)tlog 2) = O(t) = O(rlog 2).

4 Building the structures

Bille et al. [2] describe a preprocessing that runs in O(n?) time' and O(2) space. Here, we
show that this can be reduced to O(rn + nlog %) time using the same space. While the
algorithm of [2] builds the sparse suffix array containing only the suffixes starting at sampled
positions and applies pattern matching, our trick is to build a sparse suffix array and sparse
LCP array that includes other suffixes as well, in several (namely 7) rounds, so that the
suffixes with maximum LCP with respect to each sampled position can be found by scans of
the suffix array.

For integer alphabets, sparse suffix arrays and sparse LCP arrays can be constructed in
O(n) time if O(n) space is allowed, simply by first building the (normal) suffix array and
LCP array and removing the unwanted elements. For constant size alphabets, the evenly
spaced sparse suffix array and sparse LCP array with sampling rate 7 can be constructed in
O(n) time and O(2) space [8]. However, when the alphabet size o is not constant, this is
O(nlogo) time and O(2) space, since the computation is based on character comparisons.
(Notice that simple application of linear time algorithms for computing the suffix array for

! However, we believe the analysis in Section 2.5 of [2] is not entirely correct; although the size of |I] is
halved at each level, their numbers double, and so the time complexity should be O(n-n+n-(n/2) -
2.+ n-(n/t)-t) = O(n’log %) time. Also, they assume that the evenly spaced sparse suffix array
can be constructed in O(n) time and O(Z) space for the integer alphabet. However, the paper they cite
assumes a constant size alphabet and to the best of our knowledge, we do not know of an algorithm
achieving such space-time trade-off.

Y. Tanimura, T. I, H. Bannai, S. Inenaga, S. J. Puglisi, and M. Takeda

the meta string will not achieve O(n) time and O(%) space, since the use of radix sort implies
Q(o) space for the buckets.) Repeated 7 times, this results in O(n7logo) time using O(2)
space.

We first describe a technique to compute the sparse suffix array and the corresponding LCP
array that contains two sets of evenly spaced suffixes, namely for offsets p and ¢, and to repeat
this 7 times, namely for offsets p = (n — 1) mod 7 and ¢ = (n — 1) mod 7,...,(n — 7) mod 7,
so that the total time for their construction is O(n7) time using O(%) space. Then, we
describe the construction of the data structures of Section 3 using this technique.

4.1 Common tools

For any string (or meta-string) w and 0 < i < |w|, let CA,, denote an array containing a
permutation of [0..|w| — 1] such that w[CA,[i]] < w[CA,[j]] for any 0 < i < j < |w|, i.e.,
CA,, is an array of positions sorted according to the character at each position. (Note that
CA,, is not necessarily unique.)

» Lemma 5. For any string w and 0 < p <7, CAy_, can be computed in O(nlogT) time
using O(2) space.

Proof. Since each character of w can be represented in O(logn) bits, the length of each
meta-character of W, , is O(7logn) bits. We simply use LSD radix sort with a bucket size of
2, i.e., we bucket sort using log(n/7) bits at a time. Thus, O(lggl(‘;g/i)
nlogn o n(log T+log(n/7))\ __ .
eaarry) = 0550) = O(nlog) time
giving the result. |

) rounds of bucket sort

is conducted on 2 items, resulting in O(

» Lemma 6. For any string w and 0 < p < 7, CAy,_, can be computed from CA@T,I’,, where
p' = (p+1)modr, in O(2logT) time and O(%) space.

logn

Proof. We simply continue the LSD radix sort, and do an extra O() rounds of bucket

log(n/7)
sort for the preceding character of each meta-character, which results in O(% - logzi 77)) =
O - PEERAEIT) = O(% log) time.)

» Lemma 7. For any string w, 0 <p,q <7, let P =[0.n — 1]} and Q = [0.n — 1]7. Given

CAy. , and CAy_ ., SSApuq and SLCPpyq can be computed in O(n) time using O(%) space.
Proof. We first compute CA,,s for meta-string w’ = @ ,0w, 4. This can be done in O(n) time
and O(%) space by merging CAy_, and CAy_, (and adding | ,0] to entries in CAy_) since
each comparison of meta characters can be done in O(7) time. Using CA,,, we then rename
the characters of w’ and create a string w* such that w*[i] = [{w'[j] | w'[j] < w'[i],0 < j <
|w'|}[41, in O(n) time and O(%) space. Since w* consists of integers bounded by its length,
we can apply any linear-time suffix sorting algorithm and compute SA,« and LCP,~ in O(2)
time and space. As the lexicographic order of suffixes of w* (except for SSA,«[0] = |¥r)
corresponds to the lexicographic order of suffixes of w that start at positions in P U @, we
can obtain SSApyg from SA,- by appropriately translating the indices. More precisely, for
1 <i<|w|,let SSA,«[i] = 7. It 0 < j < |aibr |, then SSApyugli — 1] = jT + p, and otherwise
(if | ,0] < j < |w']), then SSApugli —1] = (j — |i-,,0])7 +¢g. We can also obtain SLCP pyg
from LCP,,« by multiplying a factor of 7 and doing up to 7 character comparisons per pair
of adjacent suffixes in the suffix array, in a total of O(n) time. |

» Corollary 8. For any string w, let p = nmod 7. The arrays SSApug and SLCPpyug
can be computed successively for each ¢ = p,(p — 1) mod 7,...,(p — 7 + 1) mod 7, where

P =1[0.n—1]] and Q = [0.n — 1]7, in O(nT) time using O(%) space.

1:7

CPM 2016

1:8

Deterministic Sub-Linear Space LCE Data Structures With Efficient Construction

Proof. For p = ¢, we first compute CA;_, = CAy,_ using Lemma 5. By applying Lemma 6,

we can successively compute CAy_ for ¢ = (p — 1) mod 7,...,(p — 7+ 1) mod 7. Thus,
with Lemma 7, we can successively compute SSApyg and SLCPpg in O(n7) total time and
O(2) space. <

4.2 Faster construction of Bille et al.s data structure

We show that Bille et al’s data structure can be constructed in O(n7 + nlog %) time using
O(2) space. Let p = (n — 1) mod 7. Using Corollary 8, we successively compute SSApyq
and SLCPpyq for each ¢ = p,(p — 1) mod 7,...,(p — 7+ 1) mod 7, where P = [0..n — 1]7
and @ = [0..n — 1]7. This can be done in a total of O(n7) time, and O(Z) space. Recall that
t=r1[logZ], and P =[0.n — 1]¢,, where p’ = (n — 1) mod t. Since t is a multiple of 7, we
have P C P.

For each ¢ we do the following: SLCPpyq is preprocessed in O(%) time and space to
answer RMQ in constant time, thus allowing us to compute lcp(i, j) for any 4,7 € PUQ in
constant time. For any interval I,, C [0..n — 1] corresponding to a node in the binary tree let
I1 =1,N(PUQ). Note that for loor = [0..n — 1], SSAjs = SSApyq. Now, for any node I,
assume that SSA;q is already computed. By simple linear time scans on SSA;q, we can obtain,
for each sampled position i = SSAja[z] € I¥,) NP, the two suffixes SSA;a[j~], SSA[j7] €
Ig(v) N Q which are lexicographically closest to i, i.e., j~ = max{j < z | SSAs[j] € IZ(U) NQ},
Jt =min{j > x| SSA«[j] € Ig(v) N Q}, if they exist. Then, the larger of lcp(i, SSA s[5 7])
and lcp(i, SSA 4[5 7)) gives 7 (i, Ig(v) NQ) = arg maxi,elg(v)mQ{lcp(i, i)} and L(, IZ(U) nQ) =
lep(4, (4, Ig(v) NQ)). Since 4,SSA4[j*],SSAa[j7] € P UQ, these values can be computed
in constant time, which is O(|I?]) total time for all sampled positions ¢ € If(v) NP. Next,
for the child intervals, SSAIE(U) and SSAlg(v) can be computed in O(|I¢]) time by a simple
scan on SSA ¢, and the computation is performed recursively for each child. Since the union
of If N Q over all ¢ is I,,, we have 7(i, [y(.,)) = 7(i, Ig(v)) and L(4, Iy) = L(i, Ig(v)), where
G = arg maxo<q <, {lcp(i, (3, Ig(/v) NQ))}, so we can obtain (i, [y(,)) and L(4, Iy(,)) for each
sampled position ¢ and interval I, by repeating the above process for each q.

Since the processing at each node is linear in the size of the arrays whose total size at a
given level is O(2), the total time for the recursion is O(% log 2) for each ¢g. Thus in total,
the preprocessing can be done in O(n7 +nlog 2) time.

» Theorem 9. For any string of length n and integer 1 < 7 < n, a data structure of size O(2)
can be constructed in O(nt 4 nlog 2) time using O(%) space, such that for any 0 <i,j < n,
lep(i, 7) can be answered in O(t log? %) time.

4.3 Fast construction of new data structure

Let p = (n — 1) mod 7. Using Corollary 8, we successively compute SSApyg and SLCPpg
for each ¢ = p, (p—1) mod 7,..., (p—7+1) mod 7, where P = [0..n—1]7 and Q = [0..n—1]].
This can be done in a total of O(n7) time, and O(2) space. Recall that ¢t = 7 [log 7], and
P =[0..n = 1]}, where p’ = (n — 1) mod t. Since ¢ is a multiple of 7, we have P C P.

For each ¢ we do the following: SLCPpyq is preprocessed in O(%) time and space to
answer RMQ in constant time, thus allowing us to compute lcp(z, j) for ¢, € PUQ in constant
time. Let S} = Sp NQ for any 1 < k < [logt]. Next, we conduct for each k =1,..., [logt],
linear time scans on SSApyq so that for each sampled position i = SSApyg[z] € P, the two
suffixes SSApug[i~],SSApuglit] € S} which are lexicographically closest to 4, i.e., j= =
max{j < z | SSApuglj] € St}, 77 =min{j > = | SSApuglj] € St}, if they exist. Then, the

Y. Tanimura, T. I, H. Bannai, S. Inenaga, S. J. Puglisi, and M. Takeda

larger of lcp(i, SSApu[ji~]) and lep(i, SSApugljT]) gives (i, S{) = arg max; e ge{lep(i, ')}
Since i, SSApuQ[i1], SSApLg[iT] € P UQ, these values can be computed in constant time,
resulting in a total of O(% log 7) time for all 7 and k. Since the union of S} over all g is S, we
have (i, S) = 7(i, ST) and L(i, Sy) = L(i, S1), where § = arg maxo<y <+ {lcp(i, 7(i, ST))},
so we can obtain 7 (i, Sg) and L(i, Si) for each sampled position ¢ and Sy by repeating the
above process for each ¢, taking O(nlog7) time. Thus, the total time for preprocessing,
dominated by Corollary 8, is O(nT).

» Theorem 10. For any string of length n and integer 1 < 7 < &, a data structure of
size O(2) can be constructed in O(nt) time using O(2) space, such that for any 0 <i,j < n,
lcp(i,) can be answered in O(TlogT) time.

4.4 Fast construction of combined data structure

The construction of the combined data structure is done using the same algorithms as
described in Sections 4.2 and 4.3, with only minor modifications. For Bille et al’s data
structure, we only need to consider in addition to sampled positions, the positions in
D={/| @ +dmodt = p,0 < d < d;} due to the modification introduced for the
combination. This reduces the array sizes (and thus the computation time) needed for the
computation of 7 (i, Iy(,)) and 7 (i, I,(,)) (and L(i, Iy,) and L(i, I) to O(% + % - % 1y =
o%+1)= O(;pg= +log 1) for a total of O(3 + log®) = O(2) for all levels, and for all
q, we get O(n) time.TThus, the total time for preprocessing is now dominated by Corollary 8,
and is O(nT).

» Theorem 11. For any string of length n and integer 1 < 7 < n, a data structure of size
O(2) can be constructed in O(nt) time using O(%) space, such that for any 0 < i,j < n,
lep(i, j) can be answered in O(Tlog %) time.

As noted previously, since 7 < 2 when 7 < \/n, and 7 > £ when 7 > \/n, we get the
following by simply choosing the data structure of Theorems 10 and 11, depending on the
value of 7.

» Corollary 12. For any string of length n and integer 1 < 7 < n, a data structure of size
n

O(2) can be constructed in O(nt) time using O(%) space, such that for any 0 <i,j < n,
lep(i, j) can be answered in O(7 min{log7,log 2}) time.

5 Applications

Using the proposed data structure, the lexicographic order between two arbitrary suffixes can
be computed in O(7 min{log 7,log 2 }) time using O(2) space. Thus, using any O(nlogn)
comparison based sorting algorithm, we can compute the suffix array of a string of length
n in O(min{log 7,log 2 }n7logn) time using O(2) working space, excluding the input and
output. The best known deterministic space/time trade-off is O(n7?) time (for 1 < 7 < ¥/n)
using the same space [7], and our algorithm is better when 7 = Q(log ™ n) for any € > 0.

Acknowledgements. The authors thank the anonymous reviewers for careful reading of
the paper and for helpful comments.

1:9

CPM 2016

1:10

Deterministic Sub-Linear Space LCE Data Structures With Efficient Construction

—— References

1

10

11

12

13

Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Proc.
Latin’00, pages 88-94, 2000.

Philip Bille, Inge Li Gortz, Mathias Baek Tejs Knudsen, Moshe Lewenstein, and
Hjalte Wedel Vildhgj. Longest common extensions in sublinear space. In Proc. CPM
2015, pages 65-76, 2015.

Philip Bille, Inge Li Ggrtz, Benjamin Sach, and Hjalte Wedel Vildhgj. Time-space trade-offs
for longest common extensions. J. Discrete Algorithms, 25:42-50, 2014.

Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press,
1997.

Juha Kérkkdinen. Fast BWT in small space by blockwise suffix sorting. Theor. Comput.
Sei., 387(3):249-257, 2007.

Juha Kérkkéinen, Dominik Kempa, and Simon J. Puglisi. Linear time Lempel-Ziv factor-
ization: Simple, fast, small. In Proc. CPM’13, volume 7922 of Lecture Notes in Computer
Science, pages 189-200. Springer, 2013.

Juha Kérkkéinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construc-
tion. J. ACM, 53(6):918-936, 2006.

Juha Kérkkéainen and Esko Ukkonen. Sparse suffix trees. In Proc. COCOON’96, pages
219-230, 1996.

Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-time
longest-common-prefix computation in suffix arrays and its applications. In Proc. CPM’01,
pages 181-192; 2001.

Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park. Linear-time construction
of suffix arrays. In Proc. CPM’03, pages 186-199, 2003.

Pang Ko and Srinivas Aluru. Space efficient linear time construction of suffix arrays. In
Proc. CPM’03, pages 200-210, 2003.

Udi Manber and Gene Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935-948, 1993.

Simon J. Puglisi and Andrew Turpin. Space-time tradeoffs for longest-common-prefix array
computation. In Proc. ISAAC’08, volume 5369 of Lecture Notes in Computer Science, pages
124-135. Springer, 2008.

Space-Efficient Dictionaries for Parameterized and
Order-Preserving Pattern Matching

Arnab Ganguly*!, Wing-Kai Hon'?, Kunihiko Sadakane?,
Rahul Shah*, Sharma V. Thankachan®, and Yilin Yang®

1 School of Electrical Engineering and Computer Science, Louisiana State
University, USA
agangu4@lsu.edu

2 Department of Computer Science, National Tsing Hua University, Taiwan
wkhon@cs.nthu.edu.tw

3 Department of Mathematical Informatics, University of Tokyo, Japan
sada@mist.i.u-tokyo.ac.jp

4 School of Electrical Engineering and Computer Science, Louisiana State
University, USA; and
National Science Foundation, USA
rahul@csc.1lsu.edu, rahul@nsf.gov

5 School of Computational Science and Engineering, Georgia Institute of
Technology, USA
sharma.thankachan@gatech.edu

2 Department of Computer Science, National Tsing Hua University, Taiwan
yilinyang@cs.nthu.edu.tw

—— Abstract

Let S and S’ be two strings, having the same length, over a totally-ordered alphabet. We consider
the following two variants of string matching.
Parameterized Matching: The characters of S and S’ are partitioned into static characters
and parameterized characters. The strings are a parameterized match iff the static charac-
ters match exactly, and there exists a one-to-one function which renames the parameterized
characters in S to those in S’
Order-Preserving Matching: The strings are an order-preserving match iff for any two integers
i, € [1,]5]], Si] < Slj] < S'[i] < S’[j], where < denotes the precedence order of the
alphabet.
Let P be a collection of d patterns {Py, Pa,..., P4} of total length n characters, which are chosen
from a totally-ordered alphabet Y. Given a text T', also over ¥, we consider the dictionary
indexing problem under the above definitions of string matching. Specifically, the task is to
index P, such that we can report all positions j (called occurrences) where at least one of the
patterns P; € P is a parameterized match (resp. an order-preserving match) with the same-
length substring of T starting at j. Previous best-known indexes occupy O(nlogn) bits, and can
report all oce occurrences in O(|T|log |X| 4 occ) time. We present space-efficient indexes that
occupy O(n log |X[+dlogn) bits, and reports all occ occurrences in O(|T'|(log || +logs n) +occ)
time for parameterized matching, and in O(|T'|logn + occ) time for order-preserving matching.

1998 ACM Subject Classification F.2.2 Pattern Matching

* The work of Arnab Ganguly was supported by National Science Foundation Grants CCF-1017623 and
CCF-1218904.

T The work of Wing-Kai Hon was supported by National Science Council Grants 102-2221-E-007-068-MY3
and 105-2918-1-007-006.

© Arnab Ganguly, Wing-Kai Hon, Kunihiko Sadakane, Rahul Shah, Sharma V. Thankachan,
5v and Yilin Yang;
licensed under Creative Commons License CC-BY
27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 2; pp. 2:1-2:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2

Compact Parameterized and Order-Preserving Dictionaries

Keywords and phrases Parameterized Matching, Order-preserving Matching, Dictionary Index-
ing, Aho-Corasick Automaton, Sparsification

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.2

1 Introduction

Designing succinct data-structures for the classical pattern matching problem of finding all
occurrences of a pattern P in a fixed text T can be traced back to the seminal work of Grossi
and Vitter [14], Ferragina and Manzini [8], and Sadakane [26]. This established an active
research area of designing succinct data structures. (See [25] for a comprehensive survey.)
The focus was now on either improving these initial breakthroughs [5, 9, 10, 11, 13, 22, 23, 27],
or on designing succinct data structures for other variants [4, 6, 12, 17, 24, 30]. Dictionary
matching, a typical example of these variants, is a classical problem in string matching and
is defined as follows. Let P be a collection of d patterns {Pq,Pa,..., P4} of total length n
characters which are chosen from a totally-ordered alphabet ¥ of size 0. Given a text T,
also over ¥, the task is to report all positions j (called occurrences) such that at least one of
the patterns P; € P exactly matches an equal-length substring of 7" that starts at j. The
classical solution for this problem is the Aho-Corasick (AC) automaton [1] which occupies
O (mlogm) bits of space, where m < n + 1 is the number of states in the automaton, and
finds all oce occurrences in time O(|T'| log o + occ). The query complexity can be improved
to optimal O(|T| + occ) using perfect-hashing techniques. To the best of our knowledge,
the first two succinct indexes for the problem are by Hon et al. [16] and Tam et al. [29].
Later, Belazzougui [4] presented an mlogo + O(m) + O(dlog(n/d)) bit index with optimal
O(|T| + occ) query time.

The first problem that we consider is popularly known as the Parameterized Pattern
Matching problem. The problem has significant attention [2, 15, 18, 19, 21] since its inception
by Baker in 1993 [3]. The alphabet X is partitioned into two disjoint sets: X, containing
static-characters (s-characters) and ¥, containing parameterized characters (p-characters).
Two strings S and S’, both over X, are a parameterized match (p-match) iff |S| = |S’| and
there is a one-to-one function f such that S[i] = f(5’[i]). For any s-character ¢ € 35, we
have f(¢) = ¢. Thus, for £, = {A,B,C} and ¥, = {w, z,y, 2}, the strings AzBxCy and
AzBzCx are a p-match, but AzBxCy and AzBwC'x are not. We consider the Parameterized
Dictionary Matching problem which was introduced by Idury and Schiffer [18]. This is
similar to the standard dictionary problem, just that ¥ is partitioned into X and X, and
we consider the p-matches of a pattern with the text. Idury and Schéffer presented an
AC-automaton like solution which occupies O(mlogm) = O(nlogn) bits and reports all occ
occurrences in O(|T|log o + occ) time. The following theorem summarizes our contribution.

» Theorem 1. By maintaining an indezx of P in O(nlogo + dlogn) bits, all occ occurrences
where a pattern in P and T are a p-match can be reported in O(|T|(logo + log, n) + occ)
time.

The second problem we consider is a variant of the recently introduced Order-Preserving
Pattern Matching problem [7, 20]. Two strings S and S’ are an order-preserving match
(o-match) iff |S| = |S’| and for any two integers i,j € [1,]S]], we have S[i] < S[j] <
S'[i] < S'[§]. Thus, for the alphabet {4, B,C, D} with the total-order A < B < C < D,
the string ABC' is an o-match with BCD, but not with CDB. Likewise, AAB matches
CCD, but does not match ABC. We consider the Order-Preserving Dictionary Matching
problem introduced by Kim et al. [20]. As with the p-dictionary matching problem, the

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.2

A. Ganguly, W.-K. Hon, K. Sadakane, R. Shah, S. V. Thankachan, and Y. Yang

match in this case is defined according to order-preserving matching. Kim et al. presented
an AC-automaton like approach which occupies O(nlogn) bits and reports all occurrences
in O(|T|log o + occ) time. The following theorem summarizes our contribution.

» Theorem 2. By maintaining an indezx of P in O(nlogo + dlogn) bits, all occ occurrences
where a pattern in P and T are an o-match can be reported in O(|T|logn + occ) time.

1.1 Map

Our techniques are largely based on the sparsification technique of Hon et al. [16] for the
classical dictionary matching problem. For a parameter A, this technique condenses every A
characters of each pattern separately and then creates an AC-automaton for the condensed
patterns. Likewise, the text is also condensed starting at a position 7. Now the condensed text
is matched in the AC-automaton, and all occurrences are reported. The occurrences reported
in this run lie in the set {i,7 + A i+ 2A,...}. All occurrences are reported by repeating
the process for i = 1,2,3,...,A. By properly choosing A, different trade-offs for index
sizes and query time can be obtained. Broadly speaking, we use this technique to sparsify
the AC-automaton based approaches of Idury and Schéiffer [18] for p-dictionary matching
and of Kim et al. [20] for o-dictionary matching. However, the sparsification technique
does not immediately extend to the case of parameterized matching and order-preserving
matching. For example, it is not clear whether a condensed alphabet has to be treated as a
p-character or an s-character. Also, how do we define the one-to-one mapping? Similarly,
how do we impose the total-order on the condensed alphabet in the case of order-preserving
matching? A more serious issue is how to handle truncating of characters at the beginning
of a currently matched text, which is essential for the AC-automaton based approaches of
Idury and Schéffer and of Kim et al.

In Section 2, we first address the p-dictionary problem, and prove Theorem 1. In Section 3,
using similar techniques, we arrive at Theorem 2.

2 Parameterized Dictionary Matching

We assume that the p-characters in P; € P are from the set {0,1,...,|X,| — 1}. Also, the
s-characters are disjoint from the set of integers. (The latter assumption can be easily
removed by mapping the s-characters onto the set {|X,|,|X,| +1,...,0 — 1} such that the
kth smallest s-character has value |X,| 4+ k — 1.) The patterns can be initially processed in
O(nlogo) time to ensure that these conditions hold.

2.1 Encoding Scheme

[3] introduced the following encoding scheme to enable matching of parameterized strings.
Given a string .S, obtain a string prev(S) by replacing the first occurrence of every p-character
in S by 0 and any other occurrence by the difference in position from its previous occurrence.
Thus, prev(A1B2A1C0) = A0OB0A4CO0. Baker [3] showed that two strings S and S’ are a
p-match iff prev(S) = prev(S’). Although this scheme makes p-matching of strings easier to
handle, for our purposes, it suffers from a drawback. Specifically, prev(.S) is a string over an
alphabet of size ©(n) in the worst case, whereas the original alphabet size o may be much
smaller in comparison.

In order to alleviate this, we introduce the following encoding scheme, which is still simple
and does not suffer from this drawback. Given a string S over X, let cg,cq, ..., ci be the
order in which every ¢; € ¥, appears in S. We obtain a string pEncode(S) by replacing every

2:3

CPM 2016

2:4

Compact Parameterized and Order-Preserving Dictionaries

occurrence of ¢; by 7 in S. Thus, pEncode(A1B2A41C0) = AOB1A0C2. By maintaining an
integer-array of length |%,|, we can compute pEncode(S) in O(|S|) time!. The following
observations are immediate.

» Observation 3. Two strings S and S’ are a p-match iff pEncode(S) = pEncode(S’). A4
string S matches another string S" at a position i iff pEncode(S) = pEncode(S'[i, i + |S| —1]).

» Observation 4. For a string S, assume that the parameterized characters in pEncode(S) be-
long to the set {0,1,2,...,|3,| —1}. Then, pEncode(S(¢, |S|]) = pEncode(pEncode(S)]s, |S|]).

2.2 Overview

We design our index by classifying the patterns into long and short based on a parameter
A = [log, n]|. The patterns are encoded and maintained explicitly occupying nlogo bits
in total. For short patterns (having length less than A), we create a trie and use a rather
brute-force approach to find all occurrences. On the other hand, reporting the occurrences of
long patterns (having length at least A) requires sophisticated (and more involved) indexing
and querying techniques. Moving forward, when we refer to an occurrence, we imply both
the position in the text where a pattern occurs and also the pattern itself. Also, we report
all patterns that occur at a particular position. (The query process can be easily adapted
to the case when only the position is to be reported.) Then, the set of occurrences of long
patterns and short patterns are mutually disjoint and are handled separately. Specifically,
we prove the following lemmas of which Theorem 1 is an immediate consequence.

» Lemma 5. Let P be a dictionary consisting of d patterns, each having length at least
[log, n|. By indexing P in a data-structure occupying O(nlogo +dlogn) bits, we can report
all occ occurrences of the patterns in O(|T|(log o + log, n) + occ) time.

» Lemma 6. Let P be a dictionary consisting of d patterns, each having length less than
[log, n]. By indexing P in a data-structure occupying nlogo + O(dlogn) bits, we can report
all occ occurrences of the patterns in O(|T|(log o + log, n) + occ) time.

We assume that no two patterns P; and P; exist such that pEncode(P;) = pEncode(P;). For
such patterns, we can keep only one pattern in the dictionary, and it is trivial to handle
reporting of all patterns for an occurrence in the claimed space-time bounds. We also
assume that the p-characters in T are from {0,1,...,|3,| — 1} and the s-characters are
either disjoint from the set of integers or belong to the set {|X,],|X,| +1,...,0 —1}. An
initial pre-processing of the text in O(|T'|log o) time ensures that these conditions hold. The
O(|T|log o) factor in the query complexity of Lemmas 5 and 6 and Theorem 1 is due to this
pre-processing.

2.3 Long Patterns (Proof of Lemma 5)

We consider the patterns which are of length at least A, where A = [log,n]. For a
string S and A, we use tail(S) to denote the largest suffix of S whose length is a multiple
of A and head(S) is the remaining (possibly empty) prefix of S. We begin by obtaining

! TInitialize a counter C' = 0 and an integer array A such that Afc] = —1 for every ¢ € . Traverse the
string S from left to right. If S[i] € £, (i.e., S[i] < |Zp|) check A[S[i]]; otherwise, pEncode(S)[i] = S[i].
If A[S[i]] = —1 then assign pEncode(S)[i] = A[S[i]] = C, increment C' by one and proceed. Otherwise,
assign pEncode(S)[i] = A[S[i]] and proceed. Note that s-characters remain unchanged.

A. Ganguly, W.-K. Hon, K. Sadakane, R. Shah, S. V. Thankachan, and Y. Yang

pEncode(tail(P;)) for every P; € P, and maintain the encoded tails explicitly. Now, we encode
head(P;) from right to left using the same encoding that was used for its tail. More specifically,
form the string P} by concatenating tail(P;) with the reverse of head(P;). Then, the desired
encoding of the jth character in the reversed head is given by pEncode(P})[|tail(P;)| + j]. The
following observation is due to the definition of p-match and Observation 3.

» Observation 7. Let S and S’ be two strings having equal length. Then S and S’ are a
p-match iff both the conditions are satisfied: (i) the p-encoded tails of both S and S" are
equal, and (ii) the p-encoded heads (as described above) of both S and S’ are equal.

The space needed for maintaining the encoded heads and tails of all patterns combined is
nlog o bits.

2.3.1 Creating the Index

We create a tree 7,,; with d nodes where node v; corresponds to the pattern P;. A node
v; is the parent of a node v; iff P; is the longest pattern such that it is a p-match with a
proper-suffix of P;. In other words, v; is the parent of a node v; iff P; is the longest pattern
such that |P;| < |P;| and pEncode(P;) = pEncode(P;[|P;| — |P;| + 1, |P;|]). This output tree
will be useful for reporting occurrences of a pattern and is analogous to the report links
in the AC-automaton [1]. Specifically, let k be a position in the text T such that P, is the
longest pattern which has an occurrence ending at k. Then all patterns whose occurrence
ends at k can be found out by following the parent pointers starting at node v;. Clearly,
the start position of all such occurrences can be easily found. Space occupied by the tree is
O(dlogn) bits.

Let ¥/ be an alphabet such that each character in X’ corresponds to a A-length string over
the alphabet . Thus, ¥’ contains at most o characters, and each character can be represen-
ted in Alogo bits. Starting from left, we group every A characters of pEncode(tail(P;)), and
replace it by the corresponding character from Y’. In order to efficiently map this A-length
string over ¥ to its corresponding character in ¥, we maintain a perfect hash-table H. Note
that the number of A-length strings to be stored is at most [n/A]. The space occupied by
His O(n/A x Alogo) = O(nlogo) bits. Create a trie Tzq; for all the condensed encoded
pattern tails of P. Specifically, if the pattern length is not a multiple of A, then we ignore
its head while creating the trie. Note that T,y has at most [n/A] nodes. Each edge in
Tiair corresponds to a A-length substring of some pEncode(P;). We maintain a pointer to
the start location of this substring in pEncode(P;). (Given an edge, this allows us to find
any jth character of the corresponding A-length substring of pEncode(P;) in O(1) time. The
purpose of this will become clear when we discuss how to query the trie.) The space needed
to store this information is O((n/A)logn) = O(nlogo) bits.

For any node u in T4, we use path(u) to denote the string obtained by concatenating
the edge labels (which are characters from ¥') one the path from root to the node u, and
path,(u) to denote the expanded string for path(u) i.e., the string obtained by mapping
each character of path(u) to its corresponding A-length string over 3. For each node u, we
maintain the following information.

a goto link as in the case of the AC-automaton for navigating the trie: given a node u
and a character ¢ € X', we can find its child v where the edge (u,v) is (conceptually)
labeled by ¢, or report that no such child exists. (This is facilitated by the hash-table H,
whereby we read A characters from T, encode it, and use it to find the corresponding
character from ¥'.)

2:5

CPM 2016

2:6

Compact Parameterized and Order-Preserving Dictionaries

a failure link as in the case of the AC-automaton: Let S be the largest proper suffix of
path(u) for which there exists a node v, such that path,(v) is same as the string obtained
by expanding S, re-encoding it according to Observation 4, and then compressing it back.
Then, the failure link of u points to v.

an output link from u to the node v; in T, such that P; is the longest pattern satisfying
pEncode(P;) = pEncode(path, (u)[|path,(u)| — |P;| 4+ 1, [path,(u)|]), where the re-encoding
is according to Observation 4.

alphaDepth(u) i.e., the number of distinct integers less than |X,| in path,(u). (Conceptu-
ally, this is the number of distinct p-characters.)

The space required to maintain goto links, failure links, output links, and alphabet depth
over all nodes is O([n/A](Alogo +logn +logo)) = O(nlog o) bits.

Lastly, we maintain a succinct representation of 7;4;; using the techniques of Sadakane
and Navarro [28]. Using this, in O(1) time, we can find (i) node-depth of a node, and (ii)
levelAncestor(u, D) = the node (if any) on the path from root to u that has node-depth D.
(The root has depth zero.) The space needed is 2[n/A] + o(n/A) = O(n/A) bits.

In summary, T;q4 occupies O(nlogo +n/A + dlogn) = O(nlogo + dlogn) bits.

Now, we focus on the head of each pattern. Consider a pattern P;. First, we reverse
head(P;), then encode it (as described in the beginning of this section). Create two copies
of the resultant head, each of which is obtained by appending two special s-characters $;
and #;, neither of which belongs to ¥. Locate the (distinct) node u such that path,(u) is
same as pEncode(tail(P;)). Note that w is defined and we call it the locus of P;. Consider all
patterns which have the same locus u. Create a compacted trie for the modified heads of
all those patterns, and let u be the root of that trie. We call this the head-trie of v and is
denoted by Theqa(u). The parent of each leaf in Tpeqq(u) corresponds to a pattern, say P;, in
the dictionary. We mark all such nodes in 7Tjeqq(u) and label them with the corresponding
pattern index j. Furthermore, for each node in Tpeqq(u), we maintain a pointer to its nearest
marked ancestor. The space occupied by each node for marking and labeling is O(logn) bits.
Each edge in Theqa(u) is labeled by a substring (of length less than A) of the encoded head
of some pattern P;. We maintain a pointer to the start point of the corresponding substring
of pEncode(P;), and also its length. This occupies O(logn) bits for each edge. We also equip
Thead(u) to allow constant time navigation operation from a node to the edge where the
next character of an encoded head matches. This can be facilitated using perfect hashing
based on the (unique) first character of the edge to its children, and occupies O(log o) bits
for each transition (edge). Since there are d patterns, the number of nodes and edges in all
such tries combined is O(d). Thus, the total space occupied for maintaining all head-tries is
O(dlogn + dlogo) = O(dlogn) bits.

In summary, the total space occupied by the resultant trie (denoted as Tiong), all encoded
patterns, and the hash-table H is O(nlogo + dlogn) bits.

2.3.2 Finding Occurrences

Starting from position j = 1, we obtain pEncode(T[j, A]) and use its corresponding character
from ¥’ to traverse the trie Tjony from the root. We repeat this process for the next A
characters from 7', and so on. More specifically, suppose we have reached a node u in Theqq
such that path,(u) = pEncode(T[4, j + |path,(u)| — 1]). At this point, we have the following
cases to consider.
There is an output link associated with u, implying the existence of a pattern which is a
p-match with a suffix of T" ending at j + |path,(u)| — 1. All such patterns and starting
locations can be found out in O(1) time per output by using the output link and Tq;.

A. Ganguly, W.-K. Hon, K. Sadakane, R. Shah, S. V. Thankachan, and Y. Yang

Thead(w) is non-empty implying that there is a pattern P; such that the encoded tail
of P; is same as path,(u). To report all possible occurrences of such patterns ending
at (j + |path.(v)| — 1), we use the encoded characters corresponding to T[j — 1], T[j —
2),...,T[j — A + 1] to traverse Tpeqq(u) until no more traversal is possible. Suppose the
last encountered node in this trie is v. We report all patterns with an occurrence ending
at j by following the marked ancestor linkage from v.

There is a child v of u such that the edge label of (u,v) is same as the character from %’
corresponding to the last A characters of pEncode(T[j,j + |path,(v)| — 1]). In this case,
we traverse to v, and continue the process. Otherwise, follow the failure link of w.

Note that following the output link results in occurrence of at least one pattern. Each
occurrence (i.e., the index and the corresponding pattern) can be reported in O(1) time.
Moving forward we show how to deal with the head-trie, failure links, and goto links.

For our purposes, we maintain an array A of length |X,| such that for any ¢ € ,,, Alc]
equals the last position at which ¢ appeared in T that has been read so far. (Initially each
entry in the array A is empty.) We also maintain an array B of length |X,| such that for any
¢ € ¥,, Blc] gives us the desired encoding.

First, we show how to appropriately encode the incoming characters T'[j — 1],T[j —
2],...,T[j — A 4+ 1] when we traverse Theqqa(u). Initialize the array B to be empty. Note
that it suffices to find the encoding for the first occurrence of every p-character starting from
7 — 1 as the encoding for all future occurrences remains the same and can be obtained using
B. Let ¢ be a p-character. If B[c] is not empty then use it to obtain the desired encoding.
Otherwise, find the last occurrence of ¢ using Alc]. We use the state of the array A at node
u, and do not modify it while traversing the head-trie. We have the following two cases.

c appears in T'[j, j + |path_(u)| — 1]: Assume that the last occurrence is the Ath char-
acter starting from j and (v, v’) be the edge on which this occurrence lies i.e., |path(u)| <
A/A < |path(v')|. We locate v’ = levelAncestor(u, D) and «' = levelAncestor(u, D — 1),
where D = |path(v')| = [A/A] is the node-depth of v’. The encoding corresponding to
c is exactly the (A — A - |path(u’)|)th character of the label on this edge, and can be
found using the pointer from the edge to the start of the corresponding substring of
some encoded pattern tail. Set B[c| to the encoded value. The time needed is O(1) per
character.

c does not appear in T'[j,j + |path,_(u)| — 1]: We maintain a counter C' initialized
to alphaDepth(u). Whenever we encounter such a ¢, the encoding is given by the value
of C. Set BJc] to the value of the counter. Following this, we increment C by one. The
time needed is O(1) per character.

Thus, the time required to traverse each head-trie is O(A) and each occurrence in the
head-trie is reported in O(1) time by following the marked ancestor linkage.

Now, we concentrate on the failure link from u to v and show how to re-encode the text
when we truncate characters from position j. Assume that k is the number of edges on the
path from root to u (i.e., k is the node-depth of «) and that the failure link truncates &’A
characters starting from j. Clearly, 1 < k' < k. Therefore, we are now trying to find a match
for the positions starting from 7' = 7 + k’A and we need to re-encode the text T starting
from j’. Since it is ensured that pEncode(T[j’, 5 + (k — k')A — 1]) is same as path_(v), we
are required to find the encoding of every p-character starting from j” = j' 4+ (k — k') A.

Initialize the array B to be empty. Note that it suffices to find the encoding for the first
occurrence of every p-character starting from j”, as the encoding for all future occurrences
remains the same and can be obtained using the array B. Let ¢ be a p-character. If B[] is

2:7

CPM 2016

2:8

Compact Parameterized and Order-Preserving Dictionaries

non-empty, then use it to obtain the desired encoding. Otherwise, find the last occurrence
of ¢ using A[c|. Note that we need the state of the array A at node w, which can be easily
obtained by maintaining a copy of it whenever a new edge is traversed. (We delete the
old copy when a new edge is traversed as it will not be required any more.) We have the
following two cases.

c appears in T'[j’,j7” — 1]: As described previously using levelAncestor(-, -) queries, we

locate the position on the edge of the last occurrence. Then using the pointer from the

edge we find the desired encoding and set B[c|. The time needed is O(1) per character.

c does not appear in T'[j’, 7”/—1]: We maintain a counter C initialized to alphaDepth(v).
Whenever we encounter such a ¢, the encoding is given by the value of C'. Following this,
we increment C' by one. The time needed is O(1) per character.

The goto transition is achieved easily as follows. We read the next A characters from the
text, encode them, and use the hash table H to traverse to the desired node. Since encoding
each character can be performed in O(1) time (using the arrays A and B as described
previously), each goto operation takes O(A) time.

Now, we bound the query complexity. Initially, encoding the string 7" starting from j =1
can be performed in O(|T]) time. Recall that on following a failure link, we truncate at
least A characters starting from j. We read A characters on the failed edge (i.e., the one
which was read unsuccessfully immediately before following the failure link). Thus, we can
charge the characters on the failed edge to the first truncated A characters. This gives us
an amortized complexity of O(1) per character. The number of failure link operations is at
most [|T|/A]. Thus, the number of nodes and edges traversed in the tail-trie is O(|T|/A).
For each edge, we read A characters and encoding the p-characters can be performed in O(1)
time per character. For each node in the tail-trie, we will examine less than A characters in
the head-trie; each of these characters can be appropriately encoded in O(1) time. Thus, the
time required to traverse Tjong (Without reporting occurrences) is O((|T'|/A) - A) = O(|T).
Each occurrence in the head-trie or the output tree is reported in O(1) time.

At the end of this process, for j = 1, we have reported occurrences of all patterns which
end at a position of the form j,j + A, j + 2A,.... The time required is O(|T| + occ;). By
repeating the process for j = 2,3,..., A, all occy occurrences of long patterns are reported in
O(|T|A + oceg) = O(|T'| log,, n + ocey) time.

Summarizing the discussions in this section, we obtain Lemma 5.

2.4 Short Patterns (Proof of Lemma 6)

Processing short patterns (having length less than A) is similar to that for head-tries. For
all short patterns P;, we create a compacted trie Tsport for the strings pEncode(P;) o $; and
pEncode(P;) o #;, where o denotes concatenation. The number of nodes in the trie is O(d).
As in case of tail tries, we maintain a pointer from each edge to the start of the corresponding
substring labeling the edge, and the length of the substring. We also equip each edge of
Tshort tO support constant time navigation. Mark all nodes u if there is an encoded pattern
which is the same as that obtained by concatenating the edge labels from root to u. The
total space is bounded by O(dlogn) bits.

To find occurrences of short patterns, we use a rather brute force approach. Starting
from j = 1, simply encode the next A characters of T', and use it to traverse the trie Tsport
until no more traversal is possible. Report j if at least one marked node is encountered
in this traversal, and in that case, also report the patterns corresponding to these marked
nodes. We repeat the process for j =2, 3,...,|T|. Since for each j at most 2A characters are

A. Ganguly, W.-K. Hon, K. Sadakane, R. Shah, S. V. Thankachan, and Y. Yang

checked, the time required to report all occs occurrences of short patterns is O(|T|A+occs) =
O(|T|log, n + occs).
Summarizing the discussions in this section, we obtain Lemma 6.

3 Order-Preserving Dictionary Matching

As in the case of parameterized matching, we assume that the patterns are over an alphabet
¥ ={1,2,...,0}, where the total-order on ¥ is the natural order of integers. By initially
pre-processing the patterns in O(nlog o) time this condition is ensured. We use the following
encoding scheme to convert a string S over ¥ to a string oEncode(S). For every character

S1i], oEncode(S)[7] is the number of distinct characters in S[1,4] having value at most S[i].
For example, consider the string S = 5452316, where each character is a single-digit integer.

Then, oEncode(S) = 1121216. The following is due to Kim et al. [20].

» Observation 8. Two strings S and S’ are an o-match iff oEncode(S) = oEncode(S’). A
string S matches another string S’ at a position i iff oEncode(S) = oEncode(S’[¢, i+ |S| —1]).

3.1 Creating the Index

As in case of p-patterns, we categorize o-patterns into long and small w.r.t the same parameter
A = [log, n]. We also define the head and tail of the pattern similar to that in case of
p-patterns. The tails are encoded using oEncode(-) and are maintained explicitly. The
encoding for the head of a pattern P; is obtained as follows. Create a string P} first by
reversing head(P;), then appending it at the end of tail(P;). Then, the encoding of the
jth character in the reversed head is given by oEncode(P})[|tail(P;)| 4+ j]. The following
observation is due to the definition of o-match and Fact 8.

» Observation 9. Let S and S’ two be strings having equal length. Then S and S’ are an
o-match iff both the conditions are satisfied: (i) the o-encoded tails of both S and S’ are equal
and (i) the o-encoded heads (as described above) of both S and S’ are equal.

For long patterns, the index is similar to that for p-patterns, except that we use the
above encoding scheme. Also, we do not pre-process the resultant trie 7T;,;; for answering
levelAncestor (-, -)-queries. For short patterns, the index is same except that for the encoding
scheme. Thus, space is bounded by O(nlogo + dlogn) bits.

3.2 Finding Occurrences

We assume that the characters in |T'| are from {1,2,..., 0} with the total order being same as
in that of the patterns. An initial pre-processing of the text in O(|T|log o) time ensures that

this condition holds. Note that this does not affect the final query complexity of Theorem 2.

The querying process remains exactly similar to that for p-matching. Obviously, we use
oEncode(-) for encoding T, computing which requires a different technique. We maintain an
array A of length o such that A[c] equals the position of last occurrence (if any) of ¢ € X
in the text read so far. Initially, for each ¢ € ¥, we assign A[c] = —1. Also, we maintain a
balanced binary search tree (BST) Tpin, which is initially empty. Suppose we are at position
k in the text. If A[T[k]] = —1, we add T[k] to Tpin. We find the number of characters in Ty,
that are at most T'[k], which gives us the desired encoding. Then, we update A[T[k]] = k
and proceed. Note that the size of Ty, is O(c), which implies every deletion, insertion, and
search operation requires O(log o) time.

2:9

CPM 2016

2:10

Compact Parameterized and Order-Preserving Dictionaries

The difficulty comes when we follow a failure link or when we traverse a head-trie. We
first discuss the case of a failure link in which we may have to remove several characters from
Toin- Suppose, after following a failure link, we are trying to find an occurrence for position 5’
and we are processing characters of the text starting from j”. (See Section 2.3.2 for detailed
definitions of 5/ and j”.) Clearly, we have to remove those characters ¢ from Ty, for which
Alc] < j'. The total number of such deletions is at most |T|, each requiring O(logo) time
yielding an amortized time complexity of O(log o) per character. To find these characters
Note
that the size of 7, is O(c¢), which implies every insertion, update, and search operation

efficiently, we maintain the characters ¢’ € ¥ keyed by A[¢/] in another BST T,..
requires O(log o) time. Using 7., we can find the desired characters to be removed in
O(log o + outputy) time, where outputy, is the number of characters to be deleted from Ty;y,
when we follow the kth failure link. Note that), output;, < |T|. Therefore, maintaining

win and finding the desired characters to be removed on following a failure link have an
amortized time complexity of O(log o) per character.

Traversing a head-trie is achieved similarly. Suppose, we are considering the string
T[4,5" — 1]. Then, we have to encode characters T'[j — 1], T[j — 2],...,T[j — A + 1] based on
T[j,j" —1]. With the aid of 7};,,, we maintain another BST that contains only the characters
in the interval [4, 7" — 1]. The desired encoding of each character can be obtained in O(log o)
amortized time.

Thus, the jth running of the algorithm requires O(|T| log o + occ;) time for long patterns.
Reporting all oce, occurrences of long patterns requires O(|T|Alog o + occg) = O(|T|logn +
occy) time. For short patterns, since we follow the same brute-force strategy, it is easy to see
that time required to report all oces occurrences is O(|T|logn + occs).

This completes the proof of Theorem 2.

—— References

1 Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to bibliographic
search. Commun. ACM, 18(6):333-340, 1975. doi:10.1145/360825.360855.

2 Amihood Amir, Martin Farach, and S. Muthukrishnan. Alphabet dependence in paramet-
erized matching. Inf. Process. Lett., 49(3):111-115, 1994. doi:10.1016/0020-0190(94)
90086-8.

3 Brenda S. Baker. A theory of parameterized pattern matching: algorithms and applications.
In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May
16-18, 1993, San Diego, CA, USA, pages 71-80, 1993. doi:10.1145/167088.167115.

4 Djamal Belazzougui. Succinct dictionary matching with no slowdown. In Combinatorial
Pattern Matching, 21st Annual Symposium, CPM 2010, New York, NY, USA, June 21-23,
2010. Proceedings, pages 88-100, 2010. doi:10.1007/978-3-642-13509-5_9.

5 Djamal Belazzougui and Gonzalo Navarro. Alphabet-independent compressed text indexing.
ACM Transactions on Algorithms, 10(4):23:1-23:19, 2014. doi:10.1145/2635816.

6 Sudip Biswas, Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. Forbidden ex-
tension queries. In 85th IARCS Annual Conference on Foundation of Software Technology
and Theoretical Computer Science, FSTTCS 2015, December 16-18, 2015, Bangalore, In-
dia, pages 320-335, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.320.

7 Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Marcin Kubica, Alessio
Langiu, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Order-
preserving incomplete suffix trees and order-preserving indexes. In String Processing and
Information Retrieval — 20th International Symposium, SPIRE 2013, Jerusalem, Israel,
October 7-9, 2013, Proceedings, pages 84-95, 2013. doi:10.1007/978-3-319-02432-5_13.

http://dx.doi.org/10.1145/360825.360855
http://dx.doi.org/10.1016/0020-0190(94)90086-8
http://dx.doi.org/10.1016/0020-0190(94)90086-8
http://dx.doi.org/10.1145/167088.167115
http://dx.doi.org/10.1007/978-3-642-13509-5_9
http://dx.doi.org/10.1145/2635816
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.320
http://dx.doi.org/10.1007/978-3-319-02432-5_13

A. Ganguly, W.-K. Hon, K. Sadakane, R. Shah, S. V. Thankachan, and Y. Yang

10

11

12

13

14

15

16

17

18

19

20

21

Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November
2000, Redondo Beach, California, USA, pages 390-398, 2000. doi:10.1109/SFCS.2000.
892127.

Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552-581,
2005. doi:10.1145/1082036.1082039.

Paolo Ferragina, Giovanni Manzini, Veli Mékinen, and Gonzalo Navarro. An alphabet-
friendly fm-index. In String Processing and Information Retrieval, 11th International Con-
ference, SPIRE 2004, Padova, Italy, October 5-8, 2004, Proceedings, pages 150-160, 2004.
doi:10.1007/978-3-540-30213-1_23.

Paolo Ferragina, Giovanni Manzini, Veli Mékinen, and Gonzalo Navarro. Compressed
representations of sequences and full-text indexes. ACM Transactions on Algorithms, 3(2),
2007. doi:10.1145/1240233.1240243.

Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. Succinct non-overlapping
indexing. In Combinatorial Pattern Matching — 26th Annual Symposium, CPM 2015,
Ischia Island, Italy, June 29 — July 1, 2015, Proceedings, pages 185-195, 2015. doi:
10.1007/978-3-319-19929-0_16.

Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed
text indexes. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, January 12-14, 2003, Baltimore, Maryland, USA., pages 841-850, 2003. URL:
http://dl.acm.org/citation.cfm?id=644108.644250.

Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching (extended abstract). In Proceedings of
the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000,
Portland, OR, USA, pages 397406, 2000. doi:10.1145/335305.335351.

Carmit Hazay, Moshe Lewenstein, and Dina Sokol. Approximate parameterized matching.
In Algorithms — ESA 2004, 12th Annual European Symposium, Bergen, Norway, September
14-17, 2004, Proceedings, pages 414-425, 2004. doi:10.1007/978-3-540-30140-0_38.
Wing-Kai Hon, Tak Wah Lam, Rahul Shah, Siu-Lung Tam, and Jeffrey Scott Vitter. Com-
pressed index for dictionary matching. In 2008 Data Compression Conference (DCC 2008),
25-27 March 2008, Snowbird, UT, USA, pages 23-32, 2008. doi:10.1109/DCC.2008.62.
Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott Vitter. Space-
efficient frameworks for top-k string retrieval. J. ACM, 61(2):9:1-9:36, 2014. doi:10.
1145/2590774.

Ramana M. Idury and Alejandro A. Schiffer. Multiple matching of parameterized pat-
terns. In Combinatorial Pattern Matching, 5th Annual Symposium, CPM 94, Asilo-
mar, California, USA, June 5-8, 1994, Proceedings, pages 226-239, 1994. doi:10.1007/
3-540-58094-8_20.

Markus Jalsenius, Benny Porat, and Benjamin Sach. Parameterized matching in the
streaming model. In 30th International Symposium on Theoretical Aspects of Computer
Science, STACS 2013, February 27 — March 2, 2013, Kiel, Germany, pages 400-411, 2013.
doi:10.4230/LIPIcs.STACS.2013.400.

Jinil Kim, Peter Eades, Rudolf Fleischer, Seok-Hee Hong, Costas S. Iliopoulos, Kunsoo
Park, Simon J. Puglisi, and Takeshi Tokuyama. Order-preserving matching. Theor. Comput.
Seci., 525:68-79, 2014. doi:10.1016/j.tcs.2013.10.006.

S. Rao Kosaraju. Faster algorithms for the construction of parameterized suffix trees (pre-
liminary version). In 36th Annual Symposium on Foundations of Computer Science, Mil-
waukee, Wisconsin, 23-25 October 1995, pages 631-637, 1995. doi:10.1109/SFCS.1995.
492664.

2:11

CPM 2016

http://dx.doi.org/10.1109/SFCS.2000.892127
http://dx.doi.org/10.1109/SFCS.2000.892127
http://dx.doi.org/10.1145/1082036.1082039
http://dx.doi.org/10.1007/978-3-540-30213-1_23
http://dx.doi.org/10.1145/1240233.1240243
http://dx.doi.org/10.1007/978-3-319-19929-0_16
http://dx.doi.org/10.1007/978-3-319-19929-0_16
http://dl.acm.org/citation.cfm?id=644108.644250
http://dx.doi.org/10.1145/335305.335351
http://dx.doi.org/10.1007/978-3-540-30140-0_38
http://dx.doi.org/10.1109/DCC.2008.62
http://dx.doi.org/10.1145/2590774
http://dx.doi.org/10.1145/2590774
http://dx.doi.org/10.1007/3-540-58094-8_20
http://dx.doi.org/10.1007/3-540-58094-8_20
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.400
http://dx.doi.org/10.1016/j.tcs.2013.10.006
http://dx.doi.org/10.1109/SFCS.1995.492664
http://dx.doi.org/10.1109/SFCS.1995.492664

2:12

Compact Parameterized and Order-Preserving Dictionaries

22

23

24

25

26

27

28

29

30

Veli Mékinen and Gonzalo Navarro. Compressed compact suffix arrays. In Combinatorial
Pattern Matching, 15th Annual Symposium, CPM 2004, Istanbul, Turkey, July 5-7, 2004,
Proceedings, pages 420-433, 2004. doi:10.1007/978-3-540-27801-6_32.

Veli Mikinen and Gonzalo Navarro. Succinct suffix arrays based on run-length encoding. In
Combinatorial Pattern Matching, 16th Annual Symposium, CPM 2005, Jeju Island, Korea,
June 19-22, 2005, Proceedings, pages 45-56, 2005. doi:10.1007/11496656_5.

J. Tan Munro, Gonzalo Navarro, Jesper Sindahl Nielsen, Rahul Shah, and Sharma V.
Thankachan. Top- k term-proximity in succinct space. In Algorithms and Computation —
25th International Symposium, ISAAC 2014, Jeonju, Korea, December 15-17, 2014, Pro-
ceedings, pages 169-180, 2014. doi:10.1007/978-3-319-13075-0_14.

Gonzalo Navarro and Veli Médkinen. Compressed full-text indexes. ACM Comput. Surv.,
39(1), 2007. doi:10.1145/1216370.1216372.

Kunihiko Sadakane. Compressed text databases with efficient query algorithms based on
the compressed suffix array. In Algorithms and Computation, 11th International Conference,
ISAAC 2000, Taipei, Taiwan, December 18-20, 2000, Proceedings, pages 410-421, 2000.
doi:10.1007/3-540-40996-3_35.

Kunihiko Sadakane. New text indexing functionalities of the compressed suffix arrays. J.
Algorithms, 48(2):294-313, 2003. doi:10.1016/S0196-6774(03)00087-7.

Kunihiko Sadakane and Gonzalo Navarro. Fully-functional succinct trees. In Proceed-
ings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2010, Austin, Texas, USA, January 17-19, 2010, pages 134-149, 2010. doi:10.1137/1.
9781611973075.13.

Alan Tam, Edward Wu, Tak Wah Lam, and Siu-Ming Yiu. Succinct text indexing with
wildcards. In String Processing and Information Retrieval, 16th International Symposium,
SPIRE 2009, Saariselkd, Finland, August 25-27, 2009, Proceedings, pages 39-50, 2009.
doi:10.1007/978-3-642-03784-9_5.

Dekel Tsur. Top-k document retrieval in optimal space. Inf. Process. Lett., 113(12):440-443,
2013. doi:10.1016/j.ipl.2013.03.012.

http://dx.doi.org/10.1007/978-3-540-27801-6_32
http://dx.doi.org/10.1007/11496656_5
http://dx.doi.org/10.1007/978-3-319-13075-0_14
http://dx.doi.org/10.1145/1216370.1216372
http://dx.doi.org/10.1007/3-540-40996-3_35
http://dx.doi.org/10.1016/S0196-6774(03)00087-7
http://dx.doi.org/10.1137/1.9781611973075.13
http://dx.doi.org/10.1137/1.9781611973075.13
http://dx.doi.org/10.1007/978-3-642-03784-9_5
http://dx.doi.org/10.1016/j.ipl.2013.03.012

Encoding Two-Dimensional Range Top-k Queries

Seungbum Jo!, Rahul Lingala?, and Srinivasa Rao Satti®

1 Seoul National University, Korea
sbcho@tcs.snu.ac.kr

2 IIT Bombay, India
lingalarahul7@gmail.com

3 Seoul National University, Korea
ssrao@cse.snu.ac.kr

—— Abstract
We consider various encodings that support range Top-k queries on a two-dimensional array
containing elements from a total order. For an m x n array, with m < n, we first propose an
almost optimal encoding for answering one-sided Top-k queries, whose query range is restricted to
[1...m][1...qa], for 1 < a <n. Next, we propose an encoding for the general Top-k queries that
takes m?1g ((ktll)") + mlgm + o(n) bits. This generalizes the one-dimensional Top-k encoding
of Gawrychowski and Nicholson [ICALP, 2015]. Finally, for a 2 X n array, we obtain a 21g (37?) +
3n 4 o(n)-bit encoding for answering Top-2 queries.

1998 ACM Subject Classification E.1 Data Structures
Keywords and phrases Encoding model, top-k query, range minimum query

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.3

1 Introduction

Given a one-dimensional (1D) array A[l...n] from a total order and 1 < k < n, the Range
Top-k query on A (Top-k(i,j,A),1 < i,j < n) returns the positions of k largest values
in Afi...j]. We can extend this query to the two-dimensional (2D) array case. Given a
2D array A[l...m][l...n], from a total order and 1 < k < mn, the Top-k query on A
(Top-k(i, j,a,b,A),1 <i,j <m,1 < a,b < n) returns the positions of k largest values in
Ali...j][a...b]. Without loss of generality, we assume that all elements in A are distinct by
ordering equal elements in the lexicographic order of their positions, and also assume that
m < n. If the k positions of a Top-k query are reported in sorted order of the corresponding
values, we refer to the query as sorted Top-k query; and refer to it as unsorted Top-k query,
otherwise. For 1 < 1,7 <m and 1 < a,b <n, we can also classify Top-k queries on 2D array
by its range as follows.

1-sided query: The query range is [1...m][1...}].

4-sided query: The query range is [i...j][a...b].

We can also consider 2-sided and 3-sided queries which correspond to the ranges
[1...4][1...a]and [1...j][a...D] respectively. We consider how to support the Top-k queries
in the encoding model in which we do not have access to the original input array A at query
time. The minimum size of an encoding is also referred to as the effective entropy of the
input data (with respect to the queries) [7].

In the rest of the paper, we assume that for Top-k encodings, k is at most the size of the
array (either 1D or 2D). Also, unless otherwise mentioned, we assume that all Top-k queries
are sorted Top-k queries.

© Seungbum Jo, Rahul Lingala, and Srinivasa R. Satti;

licensed under Creative Commons License CC-BY
27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 3; pp. 3:1-3:11

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2

Encoding Two-Dimensional Range Top-k Queries

Table 1 The summary of our results for Top-k queries on m x n 2D array. The value T' is given
by the formula 7' = Y10 (™) g1 () ().

k3 k3

Array size ‘ Query range ‘ Space ‘ Query time
mxn one-sided n[lg T bits -
2xmn four-sided, k£ < 2 2lg (3:) + 3n + o(n) bits -
mxn four-sided O(mnlgn) bits O(k)
mXmn four-sided m?lg ((kt})n) + mlgm + o(n) bits -

1.1 Previous Work

Encoding Top-k queries on 1D array has been widely studied in the recent years. For a 1D
array A[l...n], Chan and Wilkinson [4] proposed a data structure that uses ©(n) words
and answers selection queries (i.e., selecting the k-th largest element) in O(lgk/lglgn)
time!. Grossi et al. [8] considered the Top-k encoding problem, and obtained an O(nlg)-bit
encoding which can answer the Top-k queries for any k < x in O(k) time or alternately, using
O(nlg? k) bits with O(k) query time. (They also considered one-sided Top-k query, they
proposed nlg k + O(n)-bit encoding with O(k) query time.) The space usage of this encoding
was improved to O(nlgk) bits, maintaining the O(k) query time, by Navarro et al. [10].
Recently, Gawrychowski and Nicholson [6] proposed an (k + 1)nH (1/(k + 1)) + o(n)-bit?
encoding for Top-k queries and showed that at least (k + 1)nH(1/(k + 1))(1 — o(1)) bits are
required to encode Top-k queries.

To the best of our knowledge, there are no results on range Top-k queries for 2D array
with general k. For k = 1, the Top-k query is same as the Range Mazimum Query (RMQ),
which has been well-studied for 1D as well as for 2D arrays. For a 2D m x n array, Brodal
et al. [1] proposed an O(nm min (m,lgn))-bit encoding which answers RMQ queries in O(1)
time. Brodal et al. [2] improved the space bound to the optimal O(nmlgm) bits, although
this encoding does not support the queries efficiently.

1.2 Our Results

For an m x n 2D array A, we first obtain an n[lgT|-bit encoding for answering one-sided
Top-k queries, where T' = Zzn:lg (mak) 41 (T) (’Z) We then show that any encoding that supports
Top-k queries on A must use at least nlgT bits.

Next, we observe that one can obtain an O(mnlgn)-bit data structure which answers
4-sided Top-k queries on A in O(k) time, by combining the results of [3] and [1]. We then
propose an m21g ((kt})”) + mlgm + o(n)-bit encoding for 4-sided Top-k queries on A, by
extending the Top-k encoding of Gawrychowski and Nicholson for 1D arrays [6].

When k = 2 and m = 2, the above encoding takes 41g (*") + o(n) ~ 11.02n bits. For this
case, we propose an alternative encoding which uses 21g (*") + 3n + o(n) ~ 8.51n bits (and
can answer the 4-sided Top-2 queries on A). All these results are summarized in Table 1.

We assume the standard word-RAM model [9] with word size ©(1gn).

2 Encoding one-sided range Top-k queries on two dimensional array
In this section, we consider the encoding of one-sided Top-k queries on a 2D array A[l...m)]

[1...n]. We first introduce the encoding by simply extending the encoding of one-sided Top-k

L We use Ign to denote log, n
? H(z) =xlg(1/z) + (1 - 2)lg(1/(1 - 2))

S. Jo, R. Lingala, and S. R. Satti

queries for 1D array proposed by Grossi et al. [8]. Next we propose an optimal encoding for
one-sided Top-k queries on A.

For a 1D array A’[1...n], one can define another 1D array X[1...n] such that X[i] =
for 1 <i < kand for k < i <n, X[i] = X[¢'] if there exist a posmon i’ < i such that A’[q] is

larger than A’[¢'] which is the k-th largest value in A’[1...7¢ — 1], and X[i] = k + 1 otherwise.

One can answer the Top-k(1,i, A’) by finding the rightmost occurrence of every element
1...kin X[1...4]. By representing X (along with some additional auxiliary structures)
using nlgk + O(n) bits, Grossi et al. [8] obtained an encoding which supports 1-sided Top-k
queries on A’ in O(k) time.

For a 2D array A, one can encode A to support one-sided Top-k queries by writing down
the values of A in column-major order into a 1D array, and using the encoding described
above — resulting in the following encoding.

» Proposition 1. A 2D array A[l...m][1...n] can be encoded using mnlgk + O(n) bits to
support one-sided Top-k queries in O(k) time.

Now we describe an optimal encoding of A which supports one-sided Top-k queries. For
1D array A’[1...n], we can define another 1D array B’[1...n] such that for 1 < i < n,

B'[i] = lif A’[i] is the I-th largest element in A'[1...4] with [< k, and B’[{] = k+1 otherwise.

Then we answer the Top-k(1,4, A’) query as follows. We first find the rightmost position

p1 < i such that B'[p;] < k. Then we find the positions ps > p3--- > pi such that for

2 <j <k, p; is the rightmost position in A’[1...p;_1 — 1] with B’[p;] < k — j + 1. Finally,

we return the positions py,pe, ..., pr. Therefore by storing B’ using n[lg (k + 1)] bits, we

can answer the one-sided Top-k queries on A’. Also we can sort A’[p1],..., A’[px] using the
property that for 1 < b < a < k, A'[pa] < A’[ps] if and only if one of the following two
conditions hold: (i) B’[pa] > B’[ps), or (ii) B’[pa] < B’[ps) and there exist ¢ = B'[py] — B'[pa)
positions j1, j2, . . ., jq such that p, < j1 < -+ < j; < pp and B'[j,] < B'[p,] for 1 <r <gq.
We can extend this encoding for the one-sided Top-k queries on a 2D array A. For

1 < j < n, we first define the elements of j-th column in A as ay;...am,;. Then we

define the sequence S; = s1;...5m,; such that for 1 < i < m, s;; = [if a;; is the [-th

largest element in A[1...m][1...j] with ! <k and s;; = k + 1 otherwise. Since there exist

T= me m,k) (")()z' possible S; sequences (T is the total number of ways in which we

can choose ¢ out of the m rows for new entries into the Top-k positions, summed over all

possible values of i), we can store S4 = S; ... S, using n[lgT] bits and we can answer the
one-sided Top-k(1,m,1,5) queries on A by the following procedure.

1. Find the rightmost column g, for some ¢ < j, such that S, has £ > 0 elements sy, 4, ..., 5p,q
where sp, ¢ < -+ < Sp,q < k+ 1. If { =k, we return the positions of A[p1][q]... Alpk][q]
as the answers of the query, and stop. Otherwise (if £ < k), we return the positions of
Alpillq] - . - Alpel[q], and

2. Repeat Step 1 by setting k& to k — ¢, and j to ¢ — 1.

We can return the positions in the sorted order of their corresponding values similar to

the 1D array case as described above. This encoding takes less space than the encoding

in the Proposition 1 since mnlgk = nlg(l+ (k —1))™ = nlg> " (7)(k —1)" > nlgT.

The following theorem shows that the space usage of this encoding is essentially optimal for
answering one-sided Top-k queries on A.

» Theorem 2. Any encoding of a 2D array A[l...m][L...
queries requires nlgT bits, where T = me (m.) z!(’”) (’f)

Proof. Suppose there are two distinct sequences S4 = Sy ...S; and S4° = S} ... S! which
give one-sided Top-k encodings of 2D arrays A and A’, respectively. For 1 <b <n, if S, # S}

n| that supports one-sided Top-k

3:3

CPM 2016

3:4

Encoding Two-Dimensional Range Top-k Queries

then Top-k(1,m, 1,b, A) # Top-k(1,m,1,b, A’) by the definition of S4 and SA". Since for an
m X n array, there are T™ distinct sequences S41 ... SA47" it is enough to prove that for
1<q<T", each SAa = S‘f ...5% has an array A such that SA = §4q,

Without loss of generality, suppose that all elements in A come from the set L =
{1,...,mn}. Then we can reconstruct A from the rightmost column using S“4 as follows.
If 57, <k, for 1 < j < m, we assign the sj,-th largest element in L to A[j][n]. After we
assign all values in the rightmost column with s?-n < k, we discard all assigned values from
L, move to (n — 1)-th column and repeat the procedure. After we assign all values in A
whose corresponding values in S“4¢ are smaller than k + 1, we assign the remaining values in
L to remaining positions in A, which are not assigned yet. Thus for any 1 < b < n, if S
has ¢ > 0 elements sp,p,. .., Sp,s Where 5,5 < --- < 55,5 < k + 1, then the b-th column in
A contains ¢-largest elements in A[1...m][1...b] by the above procedure. This shows that
SA = §4a, <

3 Encoding range Top-k queries on two dimensional array

In this section, we give an encoding which supports general Top-k queries on 2D array. For
an m x n 2D array, we first introduce an O(mnlgn)-bit encoding which supports Top-k
query in O(k) time by using the RMQ encoding of Brodal et al. [2].

» Proposition 3. A 2D array A[l...m]|[1...n] can be encoded using O(mnlgn) bits to
support unsorted Top-k(i,j,a,b, A) in O(k) time for 1 <a,b <m and 1 <1i,j <n.

Proof. We use a data structure similar to the one outlined in [3] (based on Frederikson’s
heap selection algorithm [5]) for answering unsorted Top-k queries in 1D array®. First encode
A using O(mnlgn) bits to support RMQ (range maximum) queries in constant time for any
rectangular range in A. This encoding also supports finding the rank (i.e., the position in
sorted order) of any element in A in O(1) time [1]. Next, let x = A[z1][x2] be the maximum
value in Afi...j][a...b], which can be found using an RMQ query on A. Then consider the 4-
ary heap obtained by the following procedure. The root of the heap is x, and its four subtrees
are formed by recursively constructing the 4-ary heap on the sub-arrays Afi...zq —1][a...b],
Alz1+1...jlla...b], Alz1]a...xe —1] and A[zq][xe +1...b], respectively. Now, we can find
the k largest elements in the above 4-ary heap in O(k) time using the algorithm proposed
by Frederickson [5] (note that this algorithm only builds a heap with O(k) nodes which is a
connected subgraph of the above 4-ary heap). <

We now introduce another encoding to support Top-k queries on an m x n 2D array
A. This encoding extends the optimal Top-k encoding of Gawrychowski and Nicholson [6]
for a 1D array. This encoding does not support the queries efficiently. Compared to the
encoding of Proposition 3, this encoding uses less space when n = Q(k™). We first review
the Gawrychowski and Nicholson [6]’s optimal Top-k encoding for 1D array, and show how
to extend this encoding to the 2D array case.

For a given 1D array A’[1...n], we define the sequence of arrays S4 = 2" ... 54" where
forl1<j<nandl1<i<j, Sf/ is an array of size j defined as follows.

SA'[j] = p if there are p (< k) elements larger than A'[i] in A'[i +1... j]
J |k otherwise

3 Brodal et al. [3] also give another structure to answer sorted Top-k queries, with the same time and
space bounds.

S. Jo, R. Lingala, and S. R. Satti

Ay | 37| 8 |2

Ay | 6|4 |10| 3|52
st o sz | o
st l1lo S22 01010
Sgr 2110 S22 l1]1]o0
sttta2l1lofo Szl 1 010
sfl2]210 0 S22 112010
sgvl2l2(o0f2)0]o0 St l1]2]0(1 0
Il<1,2) 1 11(2,1) 0
57 1210 PV 11 o
92 1211 12110
Y T2 l1][1]1 PV T2]1]o]o
I 1211 12 1220 0
2 2111 olo] [1&P]2]2]0]2]0]0

Figure 1 Top-k encoding of the 2D array A when k = 2.

See Figure 1 for an example.
If Sf/ [i] < k, we call Afi] in A[1...j] as active, otherwise A[i] is inactive in A[1...j].
Gawrychowski and Nicholson [6] show that for 1 < 4, j < n, Top-k(i, j, A’) can be answered
using S}-“/ [i...j]. They obtained a lg ((ktll)”) + o(n)-bit encoding of SA" by representing
6 .64 | (where 61 = ;: Sﬁl[l] - Z§:1 SA'[1]) in unary, and compressing the sequence
using the following lemma.

» Lemma 4 ([11]). Let S be a string of length n over the alphabet ¥ = {1,0} containing m
1s. One can encode S using lg (:1) + o(n) bits to access any position in S in constant time.

Since Z?:ll 6;4/ < kn, the unary sequence has kn zeros and n ones. The following lemma

states their result for 1D arrays.

» Lemma 5 ([6]). Given a 1D array A[l...n], there is an encoding of A using lg ((ktll)”) +
o(n) bits which supports Top-k queries.

We now describe how to extend this encoding to a 2D m x n array A. For 1 <i < m,
let A;[1...n] be the array of the i-th row in A. We construct Top-k encodings for the rows
A; ... A, using Lemma 5, and this takes mlg (¥TD") 4 o(n) bits. In addition, for every
1 <i+#j < m, we define the sequence of arrays, I(7) = Il(i’j) I8 to represent S? with
i)

respect to the elements in A;. For 1 <r <mn, Ir(i’] is an array of size r defined as follows.

P if i > j and there are p (< k) elements which are
larger than A;[s] in A;[s+1...7]
I8 =< ¢ ifi < j and there are ¢ (< k) elements which are
larger than A;[s] in Aj[s...7]
k otherwise (if there are > k elements, in the above two cases)

See Figure 1 for an example.
We can answer the Top-k(i,j,a,b, A) queries as follows. We first define the 1D array
B[1...b(j—i41)] by writing down the values of A[i...j][1...b] in column-major order. Then

we observe that Top-k(, j, a, b, A) can be answered using Sf(j_iﬂ) [a(j—i+1)+1...b(j—i+1)].

3:5

CPM 2016

3:6

Encoding Two-Dimensional Range Top-k Queries

The following lemma shows that we can compute the values in S2 P

and all the arrays Ié), for1<c#d<m.

(—it1) using §41 ... §4m

» Lemma 6. Given a 2D array A[l...m][1l...n], for 1 <i < j<mandl1l <b < n,
let B[1...q] be the 1D array of size ¢ = (j — i + 1)b obtained by writing the elements of
Ali...j][L...0] in column-major order. Also, for any 1 < s < q, let (Srow,Scot) be the
position corresponding B[s] in A (which can be computed using sqop = [s/(j —i+ 1)] and
Srow =8 — (Scor — 1) - (j —i+ 1)+ (i —1)). Then

. Asrow Srowt
S’f [s] = min (k, (S, [Scot] + Z IZS)[scol])).

1<U<J b FE S row

Proof. It is enough to count the number of elements in B (i.e., in Afi...j][a...b]) which are
larger than B[s] (i.e., A[Srow][Scot]) in B[s+ 1...¢] (i.e., the corresponding elements in A).
Let L be the set of these elements. If |[L| > k, then SP[s] = k. In the following, we describe
how to compute SZ[s] when |L| < k.

From the definition of S;‘ srow it follows that the number of elements in L which are in
TOW Spow 1S S;‘ST”“’ [Scot].- Also, for any row £ # Spou, Iés“””’z) [Scot] is the number of elements
in L that belong to row £. From all these values, we can compute |L|. |

By Lemma 6, we can answer the Top-k queries on A using the Top-k encodings of all the rows

Ay, ..., A, together with all the arrays I(»7) for all 1 < i # j < m. Since we can recover

the order of all active elements in the prefix of i-th row using S4¢ [6], we can decode Il() -9)

using I(3 and Y=Y) - st I(z “1)[1] by the following procedure, for p > 1.

1. Append 0 to I(i’j) Let this array be JIEZ_’Jl).

(1 J)

2. Find the positions of ~ smallest active values in A;[1...p] using S, and increase

P
the values of prl) in these positions by 1
Therefore, using I(m) and 'y(w) e ,'y,(l ") we can encode I1(+9). Since the sum Z(, 9 Ve (i-0)

is at most kn, we can encode all the arrays (") (for all possible i # j) using m(m —
1lg ((ktll)") + o(n) bits (by converting 'yé 75 into unary, as in the encoding of Lemma 5).

Also, to encode Il(i’j) for ¢ < j (note that if i > j, Il(i’j) is always 0), we need to store the
ordering of all elements in the first column, which takes mlgm bits. This gives a proof of
the following theorem.

» Theorem 7. Given a 2D array A[l...m][l...n], there is an encoding of A using
m?lg ((kt})") +mlgm+ o(n) bits which can answer the Top-k queries.

4 Encoding range Top-2 queries on 2 X mn array

In this section, we consider a special case of Top-k encodings for 2D arrays when the array
has only two rows, and k£ = 2. Note that for these parameter values, Theorem 7 gives an
encoding of size 41g () + o(n) = 11.02n bits. We describe an alternative approach which
results in an encoding of size 21g (") + 3n + o(n) ~ 8.51n bits.

For i € {1,2}, let A; be the array [a;1,. .., ain] of size n constituting the i-th row of A.
We maintain Top-k encodings for A; and As, which enable us to support the Top-k queries
on the individual rows. To support queries that span both the rows, we store an auxiliary
structure of size at most 3n bits.

We construct a weighted DAG, D4, such that each node in D4 is labeled with a range
[a,b], where 1 < a < b < n, and has a weight w([a,b]) € {1,2}. In the rest of this section, we

S. Jo, R. Lingala, and S. R. Satti

Ay |11 21 | 17|12 |20 |3 |15 | 11| 10
Ay |6] 5 |16 |14 |19 |2 |18 | 4 7

Figure 2 2 x n array A and the DAG D4. Nodes with weight 2 are colored red, while those with
weight 1 are not colored.

use the notation Top-2([a, b]) to refer to the query Top-2(1,2,a,b, A). We also use (i,a) to

denote the position in the i-th row and a-th column in A. Now we define D 4 as follows.

1. The root of Dy is labeled with the range [1,n], and w([1,n]) = 2.

2. If a = b, then [a,b] is a leaf node in D4, with weight w([a,b]) = 1.

3. Suppose there exists a non-leaf node [a,b] in D4, such that the answers to the query
Top-2([a, b)) are (i,a’) and (4,b"), for some 1 < 4,5 <2 and a <a’ < <b. Then the at
most two children of the node [a, b] are [a,b — 1]and [a’ + 1,].

Case 1. If o/ =¥V and a < V' — 1, w([a, b’ —1]) = 2.
Case 2. Ifd’ =¥ and ' + 1 < b, w([a’ + 1,b]) = 2.
Case 3. In all other cases, w([a,t' —1]) = w([a’ + 1,0]) = 1.

See Figure 2 for an example. Note that a node can have at most two parents since each end

point of the interval corresponding to a node can be shared by exactly one of its children. If

the two parents of a node belong to two different cases, then the weight of the child node is
set to be the smaller of the weights set in the two cases. For example, in Figure 2, the node

[3,4] belongs to Case 3 through the parent node [1,4], and belongs to Case 1 through the

parent [3,9]. Hence, its weight is set to 1. Also, not all intervals of the form [a, a] need to

appear as leaves in Dy (eg., [3,3] in Figure 2).

From the construction of D4, one can observe that if there is a node [a, b] in D4, with

1 < a <b < n, then the columns a — 1 and b+ 1 both contain at least one element that

is larger than the second largest elements in the sub-array A[l...2][a...b]. From this

observation, it follows that given any two distinct nodes x and y in D 4, the answers to the

queries Top-2(z) and Top-2(y) are distinct (if there are two distinct nodes [a, b] and [a’, V']

with b < b such that Top-2([a,b]) = Top-2([a’,V']), then Top-2([a,b + 1]) = Top-2([d’,V']),

contradicting the fact that Top-2([a, b]) # Top-2([a, b+ 1]). The case when b > ', a > a’ or

a < a' is analogous). In addition, we use the following property of D4 in proving lemmas in

this section.

3:7

CPM 2016

3:8

Encoding Two-Dimensional Range Top-k Queries

» Proposition 8. Let A be a 2 X n array and D 4 be its corresponding weighted DAG. For
any distinct two nodes p and q in D, p C q if and only if p is descendant of q.

Proof. From the construction of Dy, it is the case that if p is a descendant of ¢, then
p C g. Now, suppose p C ¢ and p = [ap, b, is not descendant of g. Then there exists a
node ¢’ which is a descendant of g such that p C ¢/, but no child of ¢’ contains p. Since
neither of the children of ¢’ contain p, both column positions of Top-2(¢’) must belong to p
(otherwise, at least one of the children of ¢’ would contain p). But this would imply that
Top-2(¢’) = Top-2(p), which leads to a contradiction since every node in D4 has distinct
Top-2 answers. |

Furthermore, the following lemma shows that D4 contains all distinct answers for
Top-2([a, b)), for 1 < a < b < n (in other words, the answers to any Top-2([a, b]) query on A
are same as the answers to the Top-2 query on some node in the DAG).

» Lemma 9. Let A be a 2 X n array. For 1 < a <b<mn, for any interval [a,b], there exist
a node p in D4 such that Top-2([a,b]) = Top-2(p).

Proof. We first show that there exists a unique p such that p contains the interval [a,b] and
none of the children of p (fully) contain [a, b]. We then show that the Top-2([a, b]) = Top-2(p).

Since the root in D4 contains all columns in A, it is easy to see that there exists at least
one node p = [ay, b,] in D4 such that [a,b] C p but no child of p contains [a,b]. Suppose
that there exists another node p’ = [ay,, b;,] such that [a,b] C p’ but no child of p" contains
[a,b]. From Proposition 8, it follows that p ¢ p’ and p’ ¢ p (otherwise, one of them would
be a descendant of the other, contradicting the conditions on p and p’). Now, suppose that
ap < ay, < b, < b, (the case when a;, < a, < b}, < b, is analogous). Then there exists a
column ¢ < a;, such that p has a child node [c, b,] which contains [a,b] by the property of
D4 (note that a;, < a < b < by), contradicting the fact that p does not have such a child.
This shows that there is a unique such p in D 4.

Now we claim that Top-2([a,b]) = Top-2(p). Suppose that there exist a ¢ ¢ [a,b] in p
such that column ¢ contains at least one of the answers to Top-2(p). Also without loss of
generality, we assume that ¢ < a (the case when ¢ > b can be handled in a similar way).
Then by the property of D4, p has a child [¢+ 1,b,] which still contains [a, b], contradicting
the fact that p does not have such a child. |

The following lemma shows that for any node p = [a,b] in D 4, we can answer the query
Top-2(p) using w(p) additional bits if we know the answers to the Top-2 query on the parent
node of p, and also the answers to the queries Top-2(a, b, A1) and Top-2(a, b, As).

» Lemma 10. Let A be a 2 X n array. Given a non-root node p = [ap,by] in Da, and its
parent node ¢ = [aq, by, if we know the answers to the query Top-2(q), then using the Top-2
encodings of Ay and Ay along with w(p) additional bits, we can answer the query Top-2(p).

Proof. If p is a leaf node (i.e., if a, = b,), we need w(p) = 1 extra bit to compare A;[a,] and
Aslap]. If not, let (i1,71) and (i, j2), with j1 < ja, be the answers to the query Top-2(q).
Also, for i € {1,2}, let f; and s; be the positions of the first and the second maxima,
respectively, in the i-th row, A;[a, ...bpy]. Then we can answer the query Top-2(p) as follows.
Without loss of generality, assume that a, < a,.

Case 1. j; < j2: In this case, the interval p contains f;, = j2, and this is the position of
the maximum value in p. If iy = 1 (iy = 2), we can find the second maximum in p by
comparing the values A;[s1] and As[fa] (Az2[s2] and A1[f1]); the result of this comparison
can be stored with w(p) = 1 extra bit.

S. Jo, R. Lingala, and S. R. Satti

Case 2. j; = j2: In this case, the interval p does not contain j; (= ja). Therefore, to find
the maximum element in p, we store the comparison between the values A;[f1] and As[fs]
using 1 bit. To find the second maximum element, if A;[f1] > Aa[f2] (A1[f1] < A2[f2]),
then we store the comparison the values As[fs] and Aq[s1] (A1[f1] and As[ss]) using 1
extra bit. Thus the number of required extra bits is w(p) = 2. <

The following lemma bounds the total weight of all the nodes in D 4, which in turn bounds

the extra space used by the Top-2 encoding of A in addition to the Top-2 encodings of the

individual rows.

» Lemma 11. For a 2 x n array A, the sum of the weights of all nodes in D4 is at most 3n.

Proof. Let f(p) = (rg,cg) and s(p) = (r,,c,) be the positions of the first and the second
largest elements in Top-2(p), respectively. Also, for each column 1 < j < n, let f; and s;
be the positions of the first and the second maxima in A, respectively, in the j-th column.
We traverse D 4 in level order. Whenever we visit a node p = [a,b] in Dy, if w(p) = 2, then
we pick the two positions f(p) and s(p), and otherwise (if w(p) = 1), we pick the position
s(p). We now claim that for all 1 < j < n, f; is picked at most twice, and s; is picked at
most once, during the level-order traversal of all the nodes in D 4. It is easy to show that
statement of the lemma follows from this claim.

Case 1. Visiting a node p with w(p) = 1: We first show that any s; is picked at most
once. For 1 < j <n, suppose that node p is the first node (in level order) which picks s;.
Since the only case in which this happens is when Top-2(p) = {f;,s;}, it follows that p is
the unique node in D4 that picks s; (as mentioned earlier, distinct nodes have distinct
Top-2 answers, and s; cannot be a position in the answers for a Top-2 query unless f; is
also an answer to the same query).

We now show that any f; is picked at most twice. Suppose we pick f; when we visit a
node p = [a1,b1]. We need to prove that there can be at most one other node that can
pick f;. Assume, on the contrary, that there are two more distinct nodes ps = [as, ba],
p3 = [as, bs] such that we pick f; when we visit these nodes. Since w(ps) = w(p3) =1
(note that if the weight of a node is 2, then f; can be picked at most once — see Case 2 in
this proof), only f; is picked as the second largest element when we visit po and p3. Also,
by the construction of D4, f; is not picked if we pick f; in any ancestor or descendant of
p. Therefore, po and p3 are neither ancestor nor descendant of p, and by Proposition 8,
for any two distinct q,7 € {p,p2,ps}, ¢ Z r and g N7 # 0.

Now without loss of generality, suppose that 1 < a; < as < az < j <by < by <bs <n.
Note that if f(p) exists between as-th and b;-th column, Top-2(p) = Top-2(p2) =
Top-2(p3) = {f(p), f;} since s(p) = s(p2) = s(p3) = fj. This leads to a contradiction
since distinct nodes should have distinct Top-2 answers (for the same reason, f(p2),
and f(p3) cannot exist between az-th and bi-th column). Therefore, a; < cg < asg
and b < c£3 < b3. Now suppose that b; < czf; < bs (the case when as < CZ]; < ag is
analogous). Then f; cannot be picked when we visit the node p3 since the value in f; is
smaller than the values in both f(ps) and f(p3). This leads to a contradiction, proving
that there can be at most two nodes whose weight is 1 which pick f; during the traversal.

Case 2. Visiting a node p with w(p) = 2: In this case, we prove that neither f(p) nor
s(p) are picked by any node other than p. (Thus, in this case, both f(p) and s(p) are
picked only once.) By the construction of D 4, neither f(p) nor s(p) can be picked in any
ancestor of p. Also, since neither f(p) nor s(p) can be the second largest elements in any
of the descendants of p, we can’t pick either of them after visiting the node p. We now
claim that there is no node ¢ such that pNq# 0, p ¢ q and q ¢ p. By Proposition 8, if

3:9

CPM 2016

3:10

Encoding Two-Dimensional Range Top-k Queries

the claim is true, p has an intersection only with its ancestors or descendants, which do
not pick both f(p) and s(p) during the traversal.

We assume, contrary to the above claim, that for the node p = [a, b], there exists a node
q = [aq, bg] such that pN g # 0, p ¢ ¢ and ¢ ¢ p. Also without loss of generality, suppose
that 1 < aq < a < by < b <n. Now consider the node r, which is an element in the
lowest common ancestor (LCA)* of the nodes p and ¢. If any answer of the Top-2(r)
query does not exist in [aq, b], one of 7’s child is a common ancestor of the nodes p and g,
contradicting the fact that r is the LCA of p and ¢. Therefore, both answers of Top-2(r)
exist in c-th and d-th column where a, < ¢ < d <b. Also, both nodes p and ¢ can exist
only if a; < ¢ < a and by < d < b, in which case, f([c + 1,b]) exists in d-th column.
Furthermore, by the construction of Dy, ¢/ = d for any node s in the path from node
[c + 1, b] to node p. Therefore for any parent node of p, both answers of Top-2 exist in
the d-th column since w(p) = 2, contradicting the fact that by < d < b. This leads to a
contradiction that such ¢ exists. |

» Theorem 12. A 2 x n array A can be encoded using 21g (3:) + 3n+ o(n) bits, to answer
Top-2 queries.

Proof. We first encode the first and the second rows in A using 2lg (377) + o(n) bits, to
answer Top-2 queries on each row, using the encoding in Lemma 5. For each node p in
D, in level order, we write down a w(p)-length bit-string which contains the additional
bits needed to answer the query Top-2(p) (as mentioned in Lemma 10). The resulting
bit-string, dp ,, has length at most 3n, by Lemma 11. A Top-2(1,2,a,b, A) query can be
answered as follows. We find the last node ¢ = [a4, b,] in level order such that a; < a and
b < b, using the Top-2 encodings for each row and the bit string dp,. Since Top-2(q) is
same as the Top-2(1,2,a,b, A) by the Lemma 9, we can answer Top-2(1,2,a,b, A) by finding
Top-2(aq, by, A1) and Top-2(ag, by, A2), and reading the appropriate w(q) bits in dp, to pick
the first and the second largest elements among these four candidates. |

5 Conclusion

In this paper, we obtained space-efficient encodings which answer Top-k queries on 2D arrays.
In particular, for an m x n 2D array, we proposed an optimal encoding when the query is
one-sided. We also proposed two different encodings that answer the general (four-sided)
queries. Also when k = 2 and m = 2, we obtain an encoding which uses less space than the
general encoding. We end with following open problems:

Can we support the queries efficiently on our proposed encodings of Theorem 2, Theorem 7,
and Theorem 127

For 2 and 3-sided queries, can we obtain encodings which use less space than the encoding
for the 4-sided Top-k queries on 2D array?

Is the effective entropy of unsorted Top-k queries smaller than the effective entropy of
sorted Top-k queries on 2D arrays?

4 For nodes p and ¢ in DAG D, we define a LCA of p and q as the set of nodes whose out-degree is zero
in the subgraph of D induced by the common ancestors of p and gq.

S. Jo, R. Lingala, and S. R. Satti

—— References

1

10

11

Gerth S. Brodal, Pooya Davoodi, and S. Srinivasa Rao. On space efficient two di-
mensional range minimum data structures. Algorithmica, 63(4):815-830, 2012. doi:
10.1007/s00453-011-9499-0.

Gerth Stelting Brodal, Andrej Brodnik, and Pooya Davoodi. The encoding complexity of
two dimensional range minimum data structures. In ESA 2013, 2013. Proceedings, pages
229-240, 2013.

Gerth Stglting Brodal, Rolf Fagerberg, Mark Greve, and Alejandro Lopez-Ortiz. Online
sorted range reporting. In ISAAC 2009, Proceedings, pages 173-182, 2009. doi:10.1007/
978-3-642-10631-6_19.

Timothy M. Chan and Bryan T. Wilkinson. Adaptive and approximate orthogonal range
counting. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2013,20183, pages 241-251, 2013.

Greg N. Frederickson. An optimal algorithm for selection in a min-heap. Inf. Comput.,
104(2):197-214, 1993.

Pawel Gawrychowski and Patrick K. Nicholson. Optimal encodings for range top- k k ,
selection, and min-max. In ICALP 2015, Proceedings, Part I, pages 593—604, 2015. doi:
10.1007/978-3-662-47672-7_48.

Mordecai J. Golin, John Tacono, Danny Krizanc, Rajeev Raman, and S. Srinivasa Rao.
Encoding 2d range maximum queries. In ISAAC, pages 180-189, 2011. doi:10.1007/
978-3-642-25591-5_20.

Roberto Grossi, John Iacono, Gonzalo Navarro, Rajeev Raman, and Srinivasa Rao Satti.
Encodings for range selection and top-k queries. In ESA 2013, pages 553-564, 2013.

P. B. Miltersen. Cell probe complexity — a survey. FSTTCS, 1999.

Gonzalo Navarro, Rajeev Raman, and Srinivasa Rao Satti. Asymptotically optimal en-
codings for range selection. In 34th International Conference on Foundation of Software
Technology and Theoretical Computer Science, FSTTCS 2014,2014, pages 291-301, 2014.
Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets. ACM Transactions
on Algorithms, 3(4):Article 43, 2007.

3:11

CPM 2016

http://dx.doi.org/10.1007/s00453-011-9499-0
http://dx.doi.org/10.1007/s00453-011-9499-0
http://dx.doi.org/10.1007/978-3-642-10631-6_19
http://dx.doi.org/10.1007/978-3-642-10631-6_19
http://dx.doi.org/10.1007/978-3-662-47672-7_48
http://dx.doi.org/10.1007/978-3-662-47672-7_48
http://dx.doi.org/10.1007/978-3-642-25591-5_20
http://dx.doi.org/10.1007/978-3-642-25591-5_20

Efficient Index for Weighted Sequences

Carl Barton!, Tomasz Kociumaka*?, Solon P. Pissis®, and
Jakub Radoszewski*

1 The Blizard Institute, Barts and The London School of Medicine and
Dentistry, Queen Mary University of London, UK
c.barton@gmul.ac.uk

2 Institute of Informatics, University of Warsaw, Warsaw, Poland
kociumaka@mimuw.edu.pl

3 Department of Informatics, King’s College London, London, UK
solon.pissis@kcl.ac.uk

4 Institute of Informatics, University of Warsaw, Warsaw, Poland; and
Department of Informatics, King’s College London, London, UK
jrad@mimuw.edu.pl

—— Abstract

The problem of finding factors of a text string which are identical or similar to a given pattern
string is a central problem in computer science. A generalised version of this problem consists in
implementing an index over the text to support efficient on-line pattern queries. We study this
problem in the case where the text is weighted: for every position of the text and every letter
of the alphabet a probability of occurrence of this letter at this position is given. Sequences
of this type, also called position weight matrices, are commonly used to represent imprecise or
uncertain data. A weighted sequence may represent many different strings, each with probability
of occurrence equal to the product of probabilities of its letters at subsequent positions. Given
a probability threshold %, we say that a pattern string P matches a weighted text at starting
position 7 if the product of probabilities of the letters of P at positions 4,...,7+ |P| — 1 in the
text is at least 1. In this article, we present an O(nz)-time construction of an O(nz)-sized index
that can answer pattern matching queries in a weighted text over a constant-sized alphabet in
optimal time. This improves upon the state of the art by a factor of zlog z in construction time
and space. Other applications of this data structure include an O(nz)-time construction of the
weighted prefix table and an O(nz)-time computation of all covers of a weighted sequence, which
improve upon the time complexity of the state of the art by the same factor.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
Keywords and phrases weighted sequence, position weight matrix, indexing, weighted suffix tree

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.4

1 Introduction

Finding factors of a text resembling a pattern constitutes a classical problem in computer
science. Apart from its theoretical interest, it is the core computation of many applications [14]
such as search engines, bioinformatics, natural language processing and database search.

* Supported by the Polish Ministry of Science and Higher Education under the “Iuventus Plus” program
in 2015-2016 grant no 0392/1P3/2015/73.

T The author is a Newton International Fellow. Supported by the Polish Ministry of Science and Higher
Education under the “Tuventus Plus” program in 2015-2016 grant no 0392/IP3/2015/73.

© Carl Barton, Tomasz Kociumaka, Solon P. Pissis, and Jakub Radoszewski;
37 licensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).

Editors: Roberto Grossi and Moshe Lewenstein; Article No. 4; pp. 4:1-4:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2

Efficient Index for Weighted Sequences

In many situations the text can be considered as fixed and the patterns may arrive later.
The algorithmic challenge is then to provide fast and direct access to all the factors of the
text via the implementation of an indexr. The most widely used data structures for this
purpose are the suffiz tree and the suffiz array [7]. These data structures can be constructed
in O(n) time for a text of length n. Then all locations of a pattern of length m can be found
in the optimal time O(m + Occ), where Occ is the number of occurrences.

The pattern matching problem for uncertain sequences has been less explored [12]. In
this work we consider a type of uncertain sequences called weighted sequences (also known as
position weight matrices, PWM). In a weighted sequence every position contains a subset
of the alphabet and every letter is assigned a probability of occurrence such that at each
position the probabilities sum up to 1. Such sequences are common in various applications:
(i) data measurements such as imprecise sensor measurements; (ii) flexible modelling of
DNA sequences such as DNA binding profiles; (iii) when observations are private and thus
sequences of observations may have artificial uncertainty introduced deliberately.

In the weighted pattern matching (WPM) problem we are given a string of length m
called a pattern, a weighted sequence of length n called a text, both over an alphabet ¥ of
size o, and a threshold probability % The task is to find all positions in the text where the
fragment of length m represents the pattern with probability at least % Each such position
is called an occurrence of the pattern; we also say that the fragment and the pattern match.
An O(onlogm)-time solution for the WPM problem based on Fast Fourier Transform was
proposed in [6]. This problem was also considered in [1] where a reduction to property
matching in a text of size O(nz?log z) was proposed.

In this article, we are interested in the indexing version of the WPM problem, that is,
constructing an index to provide efficient procedures for answering queries related to the
content of a fixed weighted sequence. In [11], the authors presented the weighted suffix
tree allowing O(m + Occ)-time WPM queries; the construction time and size of that data
structure is O(no*1°8#). A direct application of the results in [1] reduces the construction
time and the size of that index to O(nz?log z). The index structure built in [11] consists of
a compacted trie of all of the factors with probability greater than or equal to % A similar —
though more general — indexing data structure, which assumes z = O(1), was presented in [4]
with query time O(m + m x Occ). Here we propose a tree-like data structure that is similar
to the aforementioned ones which is, however, constructed and stored much more efficiently.
Note that the proposed index is constructed and works for a predetermined parameter z, as
opposed to the one of [4] which can additionally answer queries for 2’ < z.

Our model of computations. We assume word-RAM model with word size w = Q(log(nz)).
We consider the log-probability model of representations of weighted sequences in which
probabilities can be multiplied exactly in O(1) time.

A common assumption in practice is that o = O(1) since the most commonly studied
alphabet is ¥ = {A,C, G, T}. In this case a weighted sequence of length n has a representation
of O(n) size. We describe the indexing data structure under this assumption. In the
Conclusions Section we briefly discuss the construction of the index for larger alphabets.

Our contribution. We present an O(nz)-time construction of an O(nz)-sized index that
answers weighted pattern matching queries in optimal O(m + Occ) time improving upon [1]
by a factor of zlog z. Applications of our data structure include an O(nz)-time construction
of the weighted prefix table and an O(nz)-time computation of all covers of a weighted
sequence, which improve upon [2] and [11], respectively, by the same factor in the complexity.

C. Barton, T. Kociumaka, S. P. Pissis, and J. Radoszewski

Structure of the article. In Section 2 basic notation related to weighted sequences, tries and
compacted tries is presented. In particular, we introduce an important notion of extensions
of solid prefizes, which is then used to construct an intermediate data structure that is
crucial to our index, called solid factor trie, in Section 3. The weighted index is described in
Section 4. First, in Section 4.1, we show how the main component of the index, compacted
trie of maximal solid factors, is obtained from the solid factor trie, and then, in Section 4.2,
a black-box description of the weighted index together with all the auxiliary data structures
is given. Section 5 contains two examples of applications of the weighted index. We end
with a Conclusions Section where we sketch changes to be made to the index in the case of a
superconstant-sized integer alphabet.

2 Preliminaries

Let ¥ = {s1,82,...,8,} be an alphabet. A string S over X is a finite sequence of letters
from 3. By SJi], for 1 <4 < |S|, we denote the i-th letter of S. The empty string is denoted
by €. By S[i..j] we denote the string S[i] ... S[j] called a factor of S (if ¢ > j, then the factor
is an empty string). A factor is called a prefiz if ¢ = 1 and a suffiz if j = |S|. A factor U of a
string S is called proper if U # S. By S we denote the reversal (the mirror image) of S.

» Definition 1 (Weighted sequence). A weighted sequence X = zq1xs ...z, of length | X|=n
over an alphabet 3 = {s1,s2,...,5,} is a sequence of sets of pairs of the form:

x; = {(s, fo)(sj)) jed{l,2,...,0}}.

gX). Here, m;(s;)

is the occurrence probability of the letter s; at the position ¢ € {1,...,n}. These values are
non-negative and sum up to 1 for a given 3.

If the considered weighted sequence is unambiguous, we write 7; instead of 7

The probability of matching of a string P with a weighted sequence X, both having the
same length, equals

We say that a string P matches a weighted sequence X with probability at least %, denoted
by P ~1 X, it P(P,X) > % By X|i..j] we denote a weighted sequence called a factor of
X and equal to z;...x; (if ¢ > j, then the factor is an empty weighted sequence). We then
say that a string P occurs in X at position ¢ if P matches the factor X[i..i + |P| — 1]. We
also say that P is a solid factor of X (starting, occurring) at position i. By Occi (P, X) we
denote the set of all positions where P occurs in X. The main problem considered in the
article can be formulated as follows.

» Problem (Weighted Indexing).

Input: A weighted sequence X of length n over an alphabet ¥ of size o and a threshold
probability %

Queries: For a given pattern string P of length m, check if Occi (P, X) # 0, compute
|Occ% (P, X)], or report all elements of Occ1(P,X). ’

We say that P is a (right-)mazimal solid factor of X at position 4 if P is a solid factor of
X at position 7 and no string P’ = Ps, for s € X, is a solid factor of X at this position.

4:3

CPM 2016

4:4

Efficient Index for Weighted Sequences

» Fact 2 (Amir et al. [1]). A weighted sequence has at most z different mazimal solid factors
starting at a given position.

For each position of a weighted sequence X we define the heaviest letter as the letter
with the maximum probability (breaking ties arbitrarily). By X we denote a string obtained
from X by choosing at each position the heaviest letter. We call X the heavy string of X.

2.1 Extensions of solid factors

Let us fix a weighted sequence X of length n. If F' is a solid factor of X starting at position
i and ending at position j, j > ¢ — 1, then the string FX[j + 1..n] is called the extension of
the solid factor F. By £ we denote the set of extensions of all solid factors of X.

» Observation 3. £ is exactly the set of extensions of all maximal solid factors of X.

Proof. Let FX[j+1..n] € £ be an extension of a solid factor F starting at position ¢ and let
k € {j,...,n} be the maximum index such that FX[j + 1..k] is a solid factor of X starting
at position ¢. Then M = FX[j 4 1..k] is a maximal solid factor, as it cannot be extended by
the most probable letter X[k + 1], and FX[j + 1..n] = MX[k + 1..n] is its extension. <

The following observation shows that £ is closed under suffixes.
» Observation 4. If S € £, S # ¢, then the longest proper suffix S’ of S also belongs to .

Proof. Assume that S is an extension of a solid factor F'. If |F'| > 1, then S’ is an extension
of the longest proper suffix of F. Otherwise, S’ is an extension of an empty factor. |

2.2 Tries

We consider rooted labeled trees with labels on edges, called t¢ries. The labels are letters from
Y; edges going down from a single node have distinct labels. The root is denoted by root.

If T is a trie and u, v are its two nodes such that v is an ancestor of u, then by str(u,v)
we denote the string spelled by the edge labels on the path from u to v. We say that
{str(u,root) : u € T} are the suffizes of the trie T. As usual by Ica(z,y) we denote the
lowest common ancestor of the nodes x and y. By L; for ¢ > 0 we denote the i-th level of T'
that consists of nodes at depth i in the trie.

A compacted trie is a trie in which maximal paths whose inner nodes have degree 2 are
represented as single edges with string labels. Usually such labels are not stored explicitly, but
as pointers to a base string (or base strings); only the first letters are stored. The remaining
nodes are called explicit, whereas the nodes that are removed due to compactification are
called implicit. A well-known example of a compacted trie is a suffix tree of a string [7].

A suffiz tree of a trie T, denoted by S(T), is a compacted trie of the strings str(u, root)
for u € T; see [5, 15, 16]. The explicit nodes of S(T) that correspond to str(u, root) for u € T
are called terminal nodes. The string labels of the edges of S(T') are not stored explicitly,
but correspond to upward paths in the trie 7. For a node v of S(T'), by str(v) we denote the
concatenation of labels of the edges from the root of S(T) to v.

» Fact 5 (Shibuya [16]). The suffiz tree of a trie with N nodes has size O(N) and can be
constructed in O(N) time.

C. Barton, T. Kociumaka, S. P. Pissis, and J. Radoszewski

3 Solid factor trie

For a weighted sequence X of length n, a solid factor trie of X, denoted by T, is a trie
having as suffixes the reversals of the strings from £. By this definition:

» Observation 6. If S is a solid factor of X, then there exist nodes u, v in T such that
str(u,v) = S.

It turns out that the solid factor trie represents all maximal solid factors of X much more
efficiently than if each of them was stored separately.

» Lemma 7. The solid factor trie T has at most z nodes at each level.

Proof. By Observation 4, each node at the level ¢ in 7 comes from a string of length 7 in £.

By Observation 3 and Fact 2, there are at most z strings of length ¢ in . <

We proceed with a construction of the solid factor trie in time linear in the size of the trie.

For this, we need to equip the data structure with additional values; these enhancements
will also turn out useful in the construction of the weighted index.

For each edge of the trie we store, in addition to its letter label, its probability defined
as the probability of this letter at the respective position in X. If v is an ancestor of w,

then by m(u,v) we denote the product of probabilities of edges on the path from wu to v.
Let H be the heavy path in 7 that corresponds to X and let h be the leaf on this path.

For each node v of T we retain the node back(v) defined as Ica(v,h) and the probability
m-back(v) = m(v, back(v)). We also denote str-back(v) = str(v, back(v)) (those values are
not stored).

» Theorem 8. The solid factor trie T of a weighted sequence X of length n can be constructed
in O(nz) time.

Proof. The trie is constructed by the algorithm Construct-7 (X, n). We add new nodes to
T level by level. First we extend the heavy path. A node v at level i — 1 receives a child with
an edge labeled by a letter s if and only if s str-back(v) is a solid factor at position n —i + 1;
this condition is checked using the w-back(v) values. Then we assign the child its values of
back and w-back. The correctness of the algorithm follows from the claim below.

» Claim. After the i-th step of the outmost loop of the algorithm Construct-7 (X, n), the
trie’s suffixes are the reversals of the strings from &£ of length at most <.

Proof. The proof goes by induction on i. The case of i = 0 is trivial. Let us assume that
the claim holds for ¢ — 1 and prove that it then also holds for i. We need to show that if a
node u is created by the algorithm at the i-th level, then str(u, root) € £ and, conversely,
if S € & is a string of length ¢, then a node u such that str(u, root) = S is created by the
algorithm at the i-th level. We prove the two implications separately.

(=) If the node u is created for some letter s, then, by the inductive hypothesis and the
condition checked in the algorithm, s str-back(v) is a solid factor of X starting at position
n —i+ 1. Let j be the level of the node back(v). Then:

str(u, root) = s str-back(v) X[n —j+ 1..n] € £.

4:5

CPM 2016

4:6

Efficient Index for Weighted Sequences

Algorithm Construct-7 (X, n)

ho := root; Lo :={ho};
for i :=1to n do
Create a new node h; being a child of h;,_; with the letter X[n —i + 1];
back(h;) := hy;
m-back(h;) = 1;
Li = {hi};
foreach v € L;_; do
foreach s € ¥ in order of non-increasing wfl)i)i+1(s) do
if v="h,_1 and s = X[n — ¢ + 1] then continue;
if 777(1)2“(8) - m-back(v) > 1 then
Create a new node u being a child of v with the letter s;
back(u) := back(v);
m-back(u) := wfff)iﬂ(s) - w-back(v);
L;:=L;U{u};
else break;

(<) Let S’ be the longest proper suffix of S. Then S’ € £ due to Observation 4. By the
inductive hypothesis, there exists a node v in L;_;1 such that str(v, root) = S’. Then S is an
extension of the solid factor s str-back(v), so indeed wfl)i3;+1(s) - m-back(v) > 1 and the node
u corresponding to S will be created. |

Let us proceed with the complexity analysis. In each step of the innermost foreach-loop
(apart from the step involving a node of the heavy path), either a new node is created or
the execution of the loop is interrupted. For a given ¢, the former takes place |L;| times in
total and the latter takes place at most |L;_1| times in total. The whole algorithm works in
O o |Li]) = O(nz) time due to Lemma 7. <

Let us introduce additional values to T that enable recovering the maximal solid factors
of X. For a node u € L;, by end(u) we denote its ancestor v such that str(u,v) is a maximal
solid factor at position n — ¢ + 1 in X. Moreover, by len(u) we denote |str(u,v)].

» Lemma 9. The values end(u) and len(u) for all nodes uw of T can be computed in O(nz)
time.

Proof. Clearly, it suffices to focus on the end-pointers, as the len-values can be computed
from these pointers in linear time if only we store for each node its level in the trie.

For each node u, end(u) is an ancestor of back(u) (possibly equal to back(u)), therefore
it is located on the heavy path H. For each node v € H from the leaf h up to the root we
will set the end-pointers for all nodes u such that end(u) = v. In the computation we use
the following property of the pointers:

» Observation 10. If x is an ancestor of y, then end(x) is an ancestor of end(y).

A node will be called active if it is a descendant of v such that its end-pointer has not
been computed yet but its children’s end-pointers have all been computed. After a node
v € H has been considered, a set A containing all the active nodes u together with the values
m(u,v) is stored. Initially the set is empty.

C. Barton, T. Kociumaka, S. P. Pissis, and J. Radoszewski

For the next node v € H we first update the set A. If v = h, then we simply insert v to
A with the probability 1. Otherwise, we iterate through all the nodes u in the set A and
multiply their probabilities by the probability of the edge m(v’,v) where v’ is the child of v
on the heavy path. Then we insert to A all the leaves in the subtrees of 7 corresponding to
children of v other than v’; their probabilities in A are the values of w-back.

Next, we try to set the end-pointers for the elements of A and their ancestors. If v is

the root, we simply set the pointers to the root to all the elements of A and their ancestors.

Otherwise, let w € H be the parent of v. We iterate through all the elements v € A and for
each of them check if 7(u, w) = 7(u, v)m(v,w) is at least L. If so, we simply leave u in A
for the next iterations. Otherwise, we set end(u) = v. If u was the last child of its parent
for which we computed the end-pointer, we add the parent of u to A. In order to efficiently

check this condition, each node counts its children whose end-pointer is yet to be determined.

The correctness of the algorithm follows from Observation 10. The running time is
proportional to the total number of times a node from A is visited. When a node v € H
is considered, for each node u € A either its end-pointer is set, which obviously happens
at most |T| = O(nz) times in total, or str(u,v) corresponds to a left-maximal solid factor
ending at position corresponding to the level of v in 7, which can happen at most z times
by Fact 2. This implies O(nz) time complexity of the whole algorithm. <

» Example 11. The figure below shows an example of 7 for z = 4 and
X =(a,0.5), (b,0.5)]babl(a, 0.5), (b,0.5)][(a,0.5), (b, 0.5)]aaba.

Among a few heavy strings of X, we can select X = ababaaaaba.

root

4 Construction of the weighted index

Our index for a weighted sequence X is based on a compacted trie of all maximal solid factors
of X. We first show how this compacted trie can be constructed from the suffix tree S(7T)
of the solid factor trie 7. Next, we describe in detail all the components of the resulting
weighted index.

4:7

CPM 2016

4:8

Efficient Index for Weighted Sequences

4.1 Compacted trie of maximal solid factors

First of all, from Fact 5 and Lemma 7 we obtain an efficient construction of S(7):
» Lemma 12. The suffiz tree of the solid factor trie can be constructed in O(nz) time.

The trie T represents more than the (maximal) solid factors of X, and so does S(T). However,
the len-values that we computed in 7 let us delimit the maximal solid factors. Using them
we can transform S(7) into a compacted trie 77 of all maximal solid factors of X. Assume
that in S(7) each terminal node stores, as its label, the starting position in X of the string
from & that it represents (i.e., its depth). Then in 7" a terminal’s label is a list of starting
positions in X of occurrences of the corresponding maximal solid factor.

» Theorem 13. A compacted trie T' of all mazimal solid factors of a weighted sequence X
of length n can be constructed in O(nz) time.

Proof. We start by constructing the solid factor trie T of X, together with the len-values,
and its suffix tree S(T). By Theorem 8 and Lemmas 9 and 12, these steps take O(nz) time.
Now it suffices to properly trim S(7). For a terminal node v in S(T) corresponding to
str(u, root) in T, as len(v) we store len(u). Then we need to “lift” such a terminal node to
depth len(v) in S(T). In practice we proceed as follows.

For an (explicit or implicit) node u of S(7), by maxlen(u) we denote the maximum value
of len(v) for a descendant terminal node v. As a result of trimming we leave only those
(explicit or implicit) nodes u for which maxlen(u) is at least as big as their depth in the trie;
we call such nodes relevant nodes and the remaining nodes irrelevant nodes.

This procedure can be implemented in linear time. Indeed, the maxlen-values for all
explicit nodes can be computed with a single bottom-up traversal. In another bottom-up
traversal, we consider all irrelevant explicit nodes. Let w be such a node and let v be its
explicit parent. Assume that v is located at depth d. If maxlen(w) < d, w is removed from
S(T) and its label is appended to its parent’s label. Otherwise, we cut the edge connecting
v and w at depth maxlen(w) and move the irrelevant node w there, making it relevant. <

4.2 The weighted index

As already mentioned, our weighted index is based on the compacted trie 7' of all maximal
solid factors of X. We also need to store the solid factor trie 7 which lets us access the
string labels of the edges of the compacted trie. For convenience we extend each maximal
solid factor in 7' by a symbol $ & X. As a result, each maximal solid factor corresponds to a
leaf in 7”7 which is labeled with a list of starting positions of its occurrences in X.

We assume left-to-right orientation of the children of each node (e.g., lexicographic). A
global occurrence list OL is stored being a concatenation of the lists of occurrences in all the
leaves of the trie 7' in pre-order. Each node v stores, as OL(v), the occurrence list of leaves
in its subtree represented as a pair of pointers to elements of the global list OL. We enhance
the occurrence list OL by a data structure for the following colored range listing problem.

» Problem (Colored range listing). Preprocess a sequence A[1..N] of elements from [1..5] so
that, given a range A[i..j], one can list all the distinct elements in that range.

» Fact 14 (Muthukrishnan [13]). A data structure for the colored range listing problem of
O(N) size can be constructed in O(N + S) time and answers queries in O(k + 1) time where
k is the number of distinct elements reported.

C. Barton, T. Kociumaka, S. P. Pissis, and J. Radoszewski

For all nodes of 77 we also compute the following values (for the purpose of this computation
we replace each leaf v with |OL(v)| bogus leaves with single occurrences).

» Fact 15 (Color set size, Hui [10]). Given a rooted tree of size N with L leaves colored from
[1..5], in O(N + S) time one can find for each node u the number of distinct leaf colors in
the subtree of u.

We denote the resulting data structure as 7.

» Theorem 16. The index I for a weighted sequence X can be constructed in O(nz) time. It
answers decision and counting variants of weighted pattern matching queries in O(m) time,
and, if required, reports all occurrences of the pattern in O(m + |Occ1 (P, X)|) time.

Proof. The compacted trie 7’ can answer queries if Occi (P, X) # 0 in O(m) time. We
can use Fact 15 to equip each explicit node with the number of positions where the string

represented by the node occurs. This way, |Occ1 (P, X)| can also be determined in O(m) time.

With the aid of the data structure for colored range listing, we can also report Occi (P, X)
in time proportional to the number of reported elements. |

» Example 17. The figure below shows the trie 77 constituting the weighted index for the
solid factor trie 7 shown in Example 11.

a o b
(O O
%’ %) > b
@. @ (7 O
o o
ol \% > 8 Ry 8 ,U%
0@ ¢ 2.0 ¢ ® & (@)
g g s A S/I\% g
2 7 (] & <g,ru % v 3 @ el
0 o
QO 20@e®@¢, .0 & o
g/\g o F/\g 5 I/\% F/\S w/\co
5/ \% «/ \& 9 % @/ \o @ S 9 % @ @
S @ O @ O @
eP o) o
99. @O 00000 @
s ®

5 Applications of the weighted index

In this section we present two non-trivial applications of the weighted index. In both cases
we improve the time complexity of the previously known results by a factor of zlog z.

5.1 Weighted longest common prefixes and weighted prefix table

For a weighted sequence X of length n and a pair of indices ¢, 7, 1 <i,5 < n, by wlep(i,)

we denote the length of the longest solid factor that occurs in X at both positions ¢ and j.

After some preprocessing our weighted index allows to answer such queries in O(z) time.

4:9

CPM 2016

4:10

Efficient Index for Weighted Sequences

» Theorem 18. Given a weighted sequence X of length n, after O(nz)-time preprocessing
we can answer wlep(i, j) queries for any 1 < i,j < n in O(z) time.

Proof. For each position ¢ in X we precompute the list of leaves L(7) of the weighted index
7T that contain ¢ in their occurrence lists. Prior to that, all leaves are numbered in pre-order,
and the elements of L(i) are stored in this order. By Fact 2, |L()| < z for each i.

Observe that wlcp(i, j) is the maximum depth of a lowest common ancestor (Ica) of a
leaf in L(¢) and a leaf in L(j). To determine this value, we merge the lists L(i) and L(j)
according to the pre-order. The claim below (Lemma 4.6 in [7]) implies that, computing
wlep(i, 7), it suffices to consider pairs of leaves that are adjacent in the resulting list.

» Claim. If [;, I and I3 are three leaves of a (compacted) trie such that Iy follows I; and I3
follows ls in pre-order, then depth(lca(ly,l3)) = min(depth(lca(ly,l3)), depth(lca(la,13))).

Merging two sorted lists, each of length at most z, takes O(z) time. Finally let us recall that
lca-queries in a tree can be answered in O(1) time after linear-time preprocessing [3, 9]. <«

The weighted prefix table WPT[1..n] of X is defined as WPTi] = wicp(1,4); see [2]. As
a consequence of Theorem 18 we obtain an O(nz)-time algorithm for computing this table.
It outperforms the algorithm of [2], which works in O(nz?log z) time.

» Theorem 19. The weighted prefix table WPT of a given weighted sequence of length n

can be computed in O(nz) time.

5.2 Efficient computation of covers

A cover of a weighted sequence X is a string P whose occurrences as solid factors of X
cover all positions in X; see [11]. More formally, if we define maxgap of an ordered set
A={a,...,a;} (with a1 < ... < ay) as

maxgap(A) = max{a; —a;—1 : i =2,...,k},
then P is a cover of X if and only if
1€ Occi(P,X) and maxgap(Occi(P,X)U{n+1}) < |P|.

Note that the former condition means exactly that P is a solid prefix of X. An O(n)-time
algorithm computing a representation of all the covers of a weighted sequence under the
assumption that z = O(1) was presented in [11]. Here we show an algorithm that works in

O(nz) time.
The algorithm of [11] uses a data structure (which we denote here by D) to store a
multiset of elements A from the set {2,...,n} allowing three operations:

1. initialisation with a given multiset of elements A;
2. computing maxgap(D) = maxgap(A U {1,n + 1}) for the currently stored multiset A;
3. removing a specified element from the currently stored multiset A.
The data structure has O(n) size, executes operation 1. in O(|A| + n) time and supports
operations 2. and 3. in constant time. It consists of: (1) an array C[1..n + 1] that counts the
multiplicity of each element; (2) a list L that stores all distinct elements of AU {1,n + 1} in
ascending order and retains its maxgap; and (3) an array P[l..n + 1] that stores, for each
distinct element of AU {1,n + 1}, a pointer to its occurrence in L.

The algorithm of [11], formulated in terms of our index Z, works as follows. For a node v
let D(v) be the D-data structure storing the multiset OL(v) \ {1}. The path from the root

C. Barton, T. Kociumaka, S. P. Pissis, and J. Radoszewski

to each terminal node that represents a mazimal solid prefix of X is traversed, and at each
explicit node v the data structure D(v) is computed. To this end, when we move from a node
v to its child w on the path, from D(v) we remove all elements from OL(w’) for w’ being
children of v other than w. Afterwards for the node w we perform the following check, which
we call cover-check(w): if maxgap(D(w)) < depth(w), report the covers being prefixes of
str(w) of length [max(maxgap(D(w)), depth(v) + 1)..depth(w)]. The whole procedure works
in O(nz?) time, as a single traversal works in linear time w.r.t. the size of the index and
there are at most z maximal solid prefixes of X (Fact 2).

Let us show how this algorithm can be implemented to run in O(nz) time. We will call
an explicit node of Z a prefiz node if it corresponds to a solid prefix of X. To implement
the solution, it suffices for each prefix node to compute the D-data structure and apply the
cover-check routine. A prefix node will be called branching if it has more than one child
being a prefix node, and starting if it is the root or its parent is branching. A maximal
path going down the trie from a starting prefix node and passing only through non-starting
prefix nodes will be called a covering path. Considering the prefix node subtree of Z, which
contains at most z leaves and, consequently, at most z — 1 branching nodes, we make the
following easy but important observation.

» Observation 20. There are O(z) covering paths and each prefix node belongs to exactly
one of them.

In the algorithm we compute the D-data structures for all starting prefix nodes (by first
computing the C-arrays) and then update the data structure efficiently along each covering
path. The proofs of the following two lemmas are deferred to the full version of the article.

» Lemma 21. D(v) for all starting prefiz nodes v can be computed in O(nz) time.
» Lemma 22. The values maxgap(D(v)) for all prefix nodes can be computed in O(nz) time.

» Theorem 23. A representation of size O(nz) of all covers of a weighted sequence X of
length n can be computed in O(nz) time. In particular, all shortest covers of X can be
determined in O(nz) time.

Proof. To annotate all the covers on the edges of the index, we compute the maxgaps for all
the prefix nodes using Lemma 22 and then apply the constant-time cover-check routine for
each of the nodes. As for the shortest covers, there are at most z of them (as there are at
most z different solid prefixes of X of a specified length, each with probability of occurrence
at least %), so they can all be listed explicitly in O(nz) time and space. <

6 Conclusions

We have presented an index for weighted pattern matching queries which for a constant-sized
alphabet has O(nz) size and admits O(nz) construction time. It answers queries in optimal
O(m + Occ) time. We have also mentioned two applications of the weighted index. Our
index outperforms the previously existing solutions by a factor of zlogz in the complexity.

Generalization to integer alphabets. Let us briefly discuss how to adapt our index to a
general integer alphabet. The size of the input is then the total length R of the lists in the
representation of the weighted sequence. In the construction of the solid factor trie we need
the list at each position to be ordered according to the probabilities of letters. As the size
of each list to be sorted is min(z, o) (at most z letters can have probability at least 1), the

4:11

CPM 2016

4:12

Efficient Index for Weighted Sequences

sorting requires O(Rlogmin(c, z)) time. The construction of a suffix tree of a tree of [16]
works for any integer alphabet. Finally, our weighted index is a compacted trie with children
of a node being indexed by the letter of the alphabet. Hence, to avoid an increase of the
complexity of a query for a particular child of a node, for a general alphabet one requires to

store a hash table of children. With perfect hashing [8] the complexity does not increase but
becomes randomized (Las Vegas, running time w.h.p.).

An open question is whether our weighted index, constructed for a predetermined z, can

be adapted to answer weighted pattern matching queries for 2’ < z, as it is in the case of [4].

—— References

1

10

11

12

Amihood Amir, Eran Chencinski, Costas S. Iliopoulos, Tsvi Kopelowitz, and Hui Zhang.
Property matching and weighted matching. Theor. Comput. Sci., 395(2-3):298-310, April
2008. doi:10.1016/j.tcs.2008.01.006.

Carl Barton and Solon P. Pissis. Linear-time computation of prefix table for weighted
strings. In Florin Manea and Dirk Nowotka, editors, Combinatorics on Words,
WORDS 2015, volume 9304 of LNCS, pages 73-84. Springer, 2015. doi:10.1007/
978-3-319-23660-5.

Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Gaston H.
Gonnet, Daniel Panario, and Alfredo Viola, editors, Latin American Symposium on The-
oretical Informatics, LATIN 2000, volume 1776 of LNCS, pages 88-94. Springer Berlin
Heidelberg, 2000. doi:10.1007/10719839_9.

Sudip Biswas, Manish Patil, Sharma V. Thankachan, and Rahul Shah. Probabilistic
threshold indexing for uncertain strings. In Evaggelia Pitoura, Sofian Maabout, Georgia
Koutrika, Amélie Marian, Letizia Tanca, Ioana Manolescu, and Kostas Stefanidis, edit-
ors, 19th International Conference on Extending Database Technology, EDBT 2016, pages
401-412. OpenProceedings.org, 2016. doi:10.5441/002/edbt.2016.37.

Dany Breslauer. The suffix tree of a tree and minimizing sequential transducers. Theor.
Comput. Sci., 191(1-2):131-144, 1998. doi:10.1016/50304-3975(96)00319-2.

Manolis Christodoulakis, Costas S. Iliopoulos, Laurent Mouchard, and Kostas Tsichlas.
Pattern matching on weighted sequences. In Algorithms and Computational Methods for
Biochemical and Evolutionary Networks, CompBioNets 2004, KCL publications, 2004.
Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on Strings.
Cambridge University Press, New York, NY, USA, 2007.

Michael L. Fredman, Janos Komlds, and Endre Szemerédi. Storing a sparse table with O(1)
worst case access time. J. ACM, 31(3):538-544, 1984. doi:10.1145/828.1884.

Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338-355, 1984. doi:10.1137/0213024.

Lucas Chi Kwong Hui. Color set size problem with application to string matching. In
Alberto Apostolico, Maxime Crochemore, Zvi Galil, and Udi Manber, editors, Combinat-
orial Pattern Matching, CPM 1992, volume 644 of LNCS, pages 230-243. Springer, 1992.
doi:10.1007/3-540-56024-6_19.

Costas S. Iliopoulos, Christos Makris, Yannis Panagis, Katerina Perdikuri, Evangelos
Theodoridis, and Athanasios K. Tsakalidis. The weighted suffix tree: An efficient
data structure for handling molecular weighted sequences and its applications. Fun-
dam. Inform., 71(2-3):259-277, 2006. URL: http://content.iospress.com/articles/
fundamenta-informaticae/fi71-2-3-07.

Yuxuan Li, James Bailey, Lars Kulik, and Jian Pei. Efficient matching of substrings
in uncertain sequences. In Mohammed Javeed Zaki, Zoran Obradovic, Pang-Ning Tan,

http://dx.doi.org/10.1016/j.tcs.2008.01.006
http://dx.doi.org/10.1007/978-3-319-23660-5
http://dx.doi.org/10.1007/978-3-319-23660-5
http://dx.doi.org/10.1007/10719839_9
http://dx.doi.org/10.5441/002/edbt.2016.37
http://dx.doi.org/10.1016/S0304-3975(96)00319-2
http://dx.doi.org/10.1145/828.1884
http://dx.doi.org/10.1137/0213024
http://dx.doi.org/10.1007/3-540-56024-6_19
http://content.iospress.com/articles/fundamenta-informaticae/fi71-2-3-07
http://content.iospress.com/articles/fundamenta-informaticae/fi71-2-3-07

C. Barton, T. Kociumaka, S. P. Pissis, and J. Radoszewski

13

14

15

16

Arindam Banerjee, Chandrika Kamath, and Srinivasan Parthasarathy, editors, STAM In-
ternational Conference on Data Mining, SDM 2014, pages 767-775. STAM, 2014. doi:
10.1137/1.9781611973440.88.

S. Muthukrishnan. Efficient algorithms for document retrieval problems. In David Eppstein,
editor, 13th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2002, pages
657-666. ACM/STAM, 2002. URL: http://dl.acm.org/citation.cfm?id=545381.
Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput. Surv.,
33(1):31-88, 2001. doi:10.1145/375360.375365.

Tetsuo Shibuya. Constructing the suffix tree of a tree with a large alphabet. In Alok Ag-
garwal and C. Pandu Rangan, editors, Algorithms and Computation, ISAAC 1999, volume
1741 of LNCS, pages 225-236. Springer, 1999. doi:10.1007/3-540-46632-0_24.

Tetsuo Shibuya. Constructing the suffix tree of a tree with a large alphabet. [EICE
Transactions on Fundamentals of FElectronics, Communications and Computer Sciences,
E86-A(5):1061-1066, 2003.

4:13

CPM 2016

http://dx.doi.org/10.1137/1.9781611973440.88
http://dx.doi.org/10.1137/1.9781611973440.88
http://dl.acm.org/citation.cfm?id=545381
http://dx.doi.org/10.1145/375360.375365
http://dx.doi.org/10.1007/3-540-46632-0_24

Faster Longest Common Extension Queries in
Strings over General Alphabets

Pawel Gawrychowski*!, Tomasz Kociumaka'?, Wojciech Rytter*3,
and Tomasz Walen$*

1 Institute of Informatics, University of Warsaw, ul. Stefana Banacha 2, 02-097
Warsaw, Poland
gawry@mimuw.edu.pl

2 Institute of Informatics, University of Warsaw, ul. Stefana Banacha 2, 02-097
Warsaw, Poland
kociumaka@mimuw.edu.pl

3 Institute of Informatics, University of Warsaw, ul. Stefana Banacha 2, 02-097
Warsaw, Poland
rytter@mimuw.edu.pl

4 Institute of Informatics, University of Warsaw, ul. Stefana Banacha 2, 02-097
Warsaw, Poland
walen@mimuw.edu.pl

—— Abstract

Longest common extension queries (often called longest common prefix queries) constitute a fun-
damental building block in multiple string algorithms, for example computing runs and approx-
imate pattern matching. We show that a sequence of ¢ LCE queries for a string of size n over a
general ordered alphabet can be realized in O(qloglogn + nlog* n) time making only O(q + n)
symbol comparisons. Consequently, all runs in a string over a general ordered alphabet can be
computed in O(nloglogn) time making O(n) symbol comparisons. Our results improve upon
a solution by Kosolobov (Information Processing Letters, 2016), who gave an algorithm with
O(nlog?? n) running time and conjectured that O(n) time is possible. We make a significant
progress towards resolving this conjecture. Our techniques extend to the case of general un-
ordered alphabets, when the time increases to O(qlogn+nlog™n). The main tools are difference
covers and the disjoint-sets data structure.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases longest common extension, longest common prefix, maximal repetitions,
difference cover

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.5

1 Introduction

While many text algorithms are designed under the assumption of integer alphabet sortable
in linear time, in some cases it is enough to assume general alphabet. A general alphabet

* Work done while the author held a post-doctoral position at Warsaw Center of Mathematics and
Computer Science.

T Supported by Polish budget funds for science in 2013-2017 as a research project under the “Diamond
Grant” program.

t Supported by the grant NCN2014/13/B/ST6,/00770 of the Polish Science Center.

§ Supported by the grant NCN2014/13/B/ST6/00770 of the Polish Science Center.

© Pawel Gawrychowski, Tomasz Kociumaka, Wojciech Rytter, and Tomasz Waler;
37 licensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).

Editors: Roberto Grossi and Moshe Lewenstein; Article No. 5; pp. 5:1-5:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2

Faster Longest Common Extension Queries in Strings over General Alphabets

can be either ordered, meaning that one can check if one symbol is less than another, or
unordered, meaning that only equality of two symbols can be checked. Many classical
linear-time string-matching algorithms (e.g. Knuth-Morris-Pratt, Boyer-Moore) work for any
unordered general alphabet. Recently, a linear-time algorithm for computing the leftmost
critical factorization in such model was given [11]. On the other hand, algorithms related
to detecting repetitions usually need Q(nlogn) equality tests [18], and an on-line algorithm
matching this bound is known [13].

In this paper we consider the longest common extension problem (LCE, in short) in case of
general ordered and unordered alphabets. The goal is to preprocess a given word w of length
n for queries LCE(4, j) returning the length of the longest common factor starting at position
1 and j in w. Such queries are often a basic building block in more complicated algorithms,
for example in computing runs [1, 2] as well as in approximate string matching [15].

For integer alphabets of polynomial size, one can preprocess a given string in linear time
and space to answer any LCE query in constant time. Preprocessing space can be traded for
query time [4, 5] and generalizations to trees [3] and grammar-compressed strings [9, 10, 16, 19]
are known. The situation is more complicated for general alphabets. If the alphabet is
ordered, then of course we can reduce it to [1..n] by sorting the characters in O(nlogn)
time and preprocess the obtained string in linear time and space to answer any LCE query
in constant time. However this increases the total preprocessing time to O(nlogn). For
unordered alphabet the situation is even worse, because the reduction would take O(n?)
time. A natural question is hence how efficiently we can answer a collection of such queries
given one by one (on-line), where we measure the preprocessing time plus the total time
taken by all the queries.

It is known that if we can perform on-line O(n) LCE queries for a given word of length n in
total time T'(n) making O(n) symbol comparisons, then we can compute all runs in O(n+7'(n))
time making only O(n) symbol comparisons. An algorithm with T'(n) = O(nlog®/® n) time
was recently presented by Kosolobov [14], who posed the existence of a linear-time algorithm
as an open question. Much earlier, Breslauer [6] asked in his PhD thesis whether an easier
task of square detection (equivalently, checking if a word has at least one run) is possible in
linear time in the comparison model. In this paper we make a significant progress towards
answering both questions by giving a faster algorithm with T'(n) = O(nloglogn).

Our result. For a given string of length n over a general ordered alphabet, we can answer
on-line a sequence of ¢ LCE queries in O(qloglogn + nlog™ n) time making O(q+ n) symbol
comparisons. In particular, a sequence of O(n) queries can be answered in O(nloglogn)
time. Consequently, all runs in a string over a general ordered alphabet can be computed in
O(nloglogn) time making O(n) symbol comparisons. For a general unordered alphabet we
answer ¢ LCE queries in O(glogn+nlog* n) time, still making O(q+n) symbol comparisons.

Overview of the methods. At a very high level, our approach is similar to the one used by
Kosolobov. We first show how to calculate min(LCE(i, j),t) efficiently, where ¢t = polylog n.
Then we use a difference cover to sample some positions in the text. Using “short” queries,
we can efficiently construct a sparse suffix array for these sampled positions, which in turn
allows us to calculate an arbitrary LCE(i, j) efficiently. The key difference is that instead of
calculating min(LCE(4, 7),t) naively, we use a recursive approach. The main tool there is an
efficient Union-Find structure. This is enough to answer O(n) short queries in O(n loglogn -
a(nloglogn,nloglogn)) total time. We can remove the a(nloglogn,nloglogn) factor
introducing another difference cover and carefully analyzing the running time of the Union-

P. Gawrychowski, T. Kociumaka, W. Rytter, and T. Walen

6 6 6 6

12 3 45 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24

h(3,10) =5 h(3,10) =5

Figure 1 An example of a 6-cover S(6) = {2,3,5,8,9, 11,14, 15, 19, 20, 21,23} (for D = {2,3,5}),
with the elements marked as black circles. For example, we have h(3,10) = 5, since 345, 10+5 € S(6).

Find data structure. Finally, we modify the algorithm to work faster when the number of
queries ¢ is smaller than n. The main insight allowing us to obtain O(gqloglogn + nlog” n)
total time is introducing multiple levels of difference covers with some additional properties.
Such family of difference covers was implicitly provided in [8].

2 Preliminaries

A difference cover is a number-theoretic tool used throughout the paper. A set D C [0..t — 1]
is said to be a t-difference-coverif [0.t —1] = {(xr —y) modt : z,y € D }.

» Lemma 1 (Maekawa [17]). For every integer t there is t-difference-cover of size O(\/t),
which can be constructed in O(v/t) time.

A subset X of [1..n] is t-periodic if for each ¢ € [l.n —¢] we have: i € X & i+t € X.

A set S C [1..n] is called a t-cover of [1..n] if S is ¢-periodic and there is a constant-
time computable function h such that for 1 < 4,5 < n —¢ we have 0 < h(i,j) < ¢ and
i+h(i,j),5 +h(i,7) € S(t) (see Figure 1).

A t-cover can be obtained by taking a t-difference-cover D and setting S(¢t) = {i € [1..n] :
imod t € D}. This is a well-known construction implicitly used in [7], for example.

» Lemma 2. For each t < n there is a t-cover S(t) of size O(
in O(%) time.

) which can be constructed

<

Our another tool is a disjoint-sets data structure. In this problem we maintain a family of
disjoint subsets of [1..n], initially consisting of singleton sets. We perform Find queries asking
for a subset containing a given element, and Union operations which merge two subsets.

Note that the extremely fast-growing Ackermann function [21] is defined for ¢, € Z~¢ as

27 ifi =1,
A(i,j) =S A(i —1,2) ifi>1andj=1,
A —1,A3i,j—1)) ifi>1andj> 1

Moreover, for n,m € Zso (m > n) one defines a(m,n) = min{i > 1: A(i, | 2]) > logn}.

» Lemma 3 (Tarjan [20]). A sequence of up to n Union and m Find operations on an
n-element set can be executed on-line in O(n + m - a(m + n,n)) total time.

The proof of the following lemma is deferred to the full version of the paper:

» Lemma 4. For every n,m € Z~q, we have n+m-a(m+n,n) = O(m + nlog*n).

5:3

CPM 2016

5:4 Faster Longest Common Extension Queries in Strings over General Alphabets

A A
7 <> j >
t t
/’\72\/'\ Q?Q CoarseLCE
—_— — —_— — ShortLCE
61 63 61 63 o

Figure 2 Illustration of Algorithm 1 for the case ¢1 > A.

3 Generic LCE algorithm for general ordered alphabets

We define t-short LCE queries by restricting the answer to at most ¢:
ShortLCE;(i,5) = min(LCE(1, j), t).

We define a t-block as a fragment of the input text w which starts in S(t) and has length ¢.
If a position in S(t) lies near the end of w, we form a ¢-block from a suffix of w and enough
dummy symbols to reach length ¢. We also introduce t-coarse LCE queries, which are LCE
queries restricted to positions from S(t) returning the number of matching ¢-blocks:

|[LCE(i,5)/t] if i,5 € S(t),

CoarseLCE,(i,j) =
(6,9) {J_ otherwise.

We now describe how to use ShortLCE and CoarseLCE queries for general LCE queries.

» Lemma 5. If every sequence of q ShortLCE; queries and CoarseLCE; queries can be
executed on-line in total time T'(n,q), then every sequence of ¢ LCE queries can be executed
on-line in total time T'(n, O(q)) + O(n + q).

Proof. To calculate LCE(3, j) we first check if LCE(¢, j) < t by calling ShortLCE, (4,). If so,
we are done. Otherwise, we can reduce computing LCE(¢, j) to computing LCE(i + A, j + A)
for any A < t. In particular, we can choose A = h(i,7) so that i + A, j + A € S(¢). Then
we call CoarseLCE;(i + A, j + A) which gives us the value [1(LCE(4, j) — A)]. Computing
the exact value of LCE(4, j) requires another ShortLCE; query; see Algorithm 1. The whole
process is illustrated in Figure 2. |

Algorithm 1: GenericLCE(%, j)
¢y = ShortLCE(i, 5)
if /1 <t then return /¢,
A = h(i,5) >i+Aj+AeS(t)
by = t-CoarseLCE;(i + A, j + A)
€3 ShOI‘tLCEt(i + A + Eg,j + A + 42)
return A + (5 + (3

4 ShortLCE, queries in O(logt) amortized time

In this section we show how to implement fast on-line ShortLCE; queries. We assume
that t = 2% and set ' = O(logt) to be a smaller power of two. The amortized running
time is O(logt + /Iogtlog* n), which in particular is O(logt) for t = log”" n. The key
components are Union-Find structures and t'-covers. We start with a simpler (and slightly
slower) algorithm without ¢'-covers.

P. Gawrychowski, T. Kociumaka, W. Rytter, and T. Walen

4.1 ShortLCE, queries in O(logt - a((n + q) logt,nlogt)) amortized
time

» Lemma 6. A sequence of ¢ ShortLCEqx (i,) queries can be executed on-line in total time
O((g+n)k - a((q + n)k,nk)).

Proof. We compute ShortLCE,« (7, j) using a recursive procedure; see Algorithm 2. The
procedure first checks if w(i..i +2¥ — 1] is already known to be equal to w[j..j + 2* — 1] using
a Union-Find structure. If so, we are done. Otherwise, if k = 0, we simply compare w[i] and
w[j]. If k > 0, we recursively calculate ShortLCEqx-1 (i, j) and, if the call returns 2¥~1, also
ShortLCEy«-1(i, 7). Finally, if both calls return 2~!, we update the Union-Find structure
to store that w[i..i + 2% — 1] = w[j..j + 2% — 1].

Algorithm 2: ShortLCEox (i, §): compute LCE(7,5) up to length 2%
if Find(i) = Findg(j) then return 2%

if k =0 then
if w[i] = w[j] then / =1else £ =0
else

¢ = ShortLCEqx-1(i, j)
if £ =21 then
0 =21 4 ShortLCEqr—1 (i + 281 5 + 2k 1)

if ¢ = 2% then Uniony (4, j)

return ¢

To analyze the complexity of the procedure, we first observe that the total number of calls
to Union is O(nk), because each such call discovers that w[i..i + 2F — 1] = w[j..5 + 2F — 1]
(which was not known before). Moreover, these calls contribute O(nk) to the total running
time. We argue that the number of executed Find queries and the running time of the
remaining operations performed by ShortLCEsx (4,) is proportional to O(k + 1) plus the
number of Union calls, which implies the lemma. For the sake of conciseness, #union denotes
the number of calls to Union triggered by the considered call to ShortLCE (including itself).

We inductively bound the number of recursive calls triggered by ShortLCEqx (7,):

2k + 1 + 2# union if wli.i 4 2% — 1] £ wlj..j + 2% — 1],
1 4 2#tunion if wi.i 4+ 2% — 1] = w[j..j + 2~ - 1].

ShortLCE; terminates immediately, so this holds for kK = 0. For k& > 0 we have four cases.

1. w[i.i + 2F — 1] is already known to be equal to w[j..j + 2¥ — 1]. Then we terminate
immediately.

2. wli.i+ 281 — 1] # w[j..j + 281 — 1]. Then the number of recursive calls triggered
by ShortLCEyk-1(i, j) is 2k — 1 4 2#£union so the number of recursive calls triggered by
ShortLCEy« (4, §) is 2k + 2#union.

3. wlivi+28 =1 = w[j..j+28 1 —1] but wli + 2571+ 28 — 1] £ wlj+ 2L+ 2k —1].
The number of recursive calls triggered by ShortLCEgr-1(i,) and ShortLCEgr-1(i +
2k=1 5 4 2F=1) is 1 4+ 2#union and 2k — 1 4 2#union, respectively. The total number of
triggered recursive calls is hence 2k + 1 4 2#*union.

4, wlii+2Ft =1 =wlj..j+2F 1 —1] and wi + 28~ 1i+2F — 1] = w[j + 287154+ 2~ —1].
The number of recursive calls triggered by both ShortLCEgx-1 (7, j) and ShortLCEqx-1(i+

5:5

CPM 2016

Faster Longest Common Extension Queries in Strings over General Alphabets

Find

/ \
Union Find
Union Find Find
Find Union Union Find
\ AN
Find/NaiVC, and Naivc' and Find Naive
Union Union

Figure 3 A recursion tree of SparseShortLCE, ,, (4, j) for some example parameters such that
t = 2*'. The calls terminating with Union, Find and naive tests (in a segment of size t') are shown
as nodes in the figure. The naive tests are only at the bottom of the tree and they are accompanied
by Unions (except the last one).

2F=1 4 4 2k=1) is 1 4 2#union. However, w(i..i + 2* — 1] was not known to be equal to
w[j..j + 2% — 1], so we then execute Uniong(i,). Hence the total number of recursive
calls is 1 + 2#union (rather than of 3 + 2#union).

Consequently, the total running time follows from Lemma 3. |

4.2 Faster ShortLCE; queries

Assume t = 2% = Q(logn). We show how to reduce the factor a(gk + nk,nk) introducing a
t'-cover, for ¢ = 2¥'. We define a sparse version of ShortLCE queries, which are ShortLCE
queries restricted to positions from S(t'):

SparseShortLCE, , (i,j) =

ShortLCE (i, §) ifi,5 € S(t')
il otherwise

We slightly modify Algorithm 2 to obtain Algorithm 3, which computes min(LCE(4, j), 2%)
for positions i, € S(t').

» Lemma 7. A sequence of q SparseShortLCEy, o1 queries can be executed on-line in total

time O(q(k + 28) + nV2F + \};’% log* n).

Algorithm 3: SparseShortLCE,. o (4, j): compute min(LCE(3, j), 2F) for i,j € S(Qk/)

if Findy (i) = Find.(j) then return 2%
if k =k then

Compute naively ¢ = ShortLCEqw (4, j)
else

¢ = SparseShortLCEy.—1 ou (i,)

if £ =2%"! then

0=2k"14 SparseShortLCEy.—1 gu (i + 2k=1 5 4 2k 1)

if £ = 2% then Uniony (4,)

return ¢

P. Gawrychowski, T. Kociumaka, W. Rytter, and T. Walen

Proof. The analysis is similar to the proof of Lemma 6. The total number of calls to Union
is now only (9(2,?%) because we always have that 4, j € S(2¥). Hence, excluding the cost of
computing ¢ = ShortLCE, (4, j), the total time complexity is O(gk + 2,?% log* n) by the
same reasoning as in Lemma 6, except that we additionally apply Lemma 4 to bound the
running time of the Union-Find data structure (stated in Lemma 3).

Now we analyze the cost of computing ¢ = ShortLCEo (¢, j). First, observe that for
every original call to SparseShortLCEqy. o/ (,7) we have at most one such computation with
¢ <2V (because it means that we have found a mismatch and no further recursive calls are
necessary). On the other hand, if £ = 25, then we call Union (i, 7), which may happen
at most Qk% times. Therefore, the total complexity of all these naive computations is

On2kK'/2 4 q- 2. <

Algorithm 4: FasterShortLCE,x o (4, j)

Compute naively ¢ = ShortLCE, (4, j)

if ¢ < 2% then return I

A= h’2k' (17.])

¢ = A + SparseShort LCE,. o1 (i + A, j + A)
return min(¢, 2%)

The next lemma is a direct consequence of Lemma 7 and Algorithm 4 with 2% = O(k).

» Lemma 8. A sequence of ¢ ShortLCEqx queries can be executed on-line in total time
O(gk 4+ nvklog* n).

5 CoarseLCE; queries

Let t = Q(log? n). Recall that we defined a ¢-block of w as a factor of size ¢ starting in S(t).

We want to show how to preprocess w in O(nloglogn) time, so that any CoarseLCE; query

can be answered in constant time. To this end we proceed as follows:

1. sort all ¢-blocks in lexicographic order and remove duplicates,

2. encode every t-block with its rank on the sorted list,

3. construct a new string code(w) of length O(n) over alphabet [1..n], such that any
CoarseLCE; query can be reduced to an LCE query on code(w),

4. preprocess code(w) for LCE queries.

» Lemma 9. Fort = Q(log?n) we can lexicographically sort all t-blocks of w in O(nlogt)
time.

Proof. Two t-blocks can be lexicographically compared with a ShortLCE; query. We have
O(%) such blocks, hence one of the classical sorting algorithms they can be all sorted using
O(% logn) = O(n) queries. By Lemma 8, the total time to execute these queries and sort
all t-blocks is therefore O(nlogt). <

We can use the lexicographic order of t-blocks to assign ranks to all ¢-blocks. Then we
reduce CoarseL.CE queries to LCE queries in a word code(w) over an integer alphabet; see
Figure 4.

5:7

CPM 2016

5:8

Faster Longest Common Extension Queries in Strings over General Alphabets

2 3 5 89 11 1415 17 2021 23
w ‘blala blb a alblb ala a blbla alb b alala blb b‘* * k%
a | 1 \ 8 \ 6 [2 |
B \ 3 [5 [1 [Z \
v \ 6 [1 [8 [7 |
code(w) : (186 2[$[351 4[#]6 1 8 7[&]
@ B ol

Figure 4 6-blocks of w are lexicographically sorted (using ShortLCE;) and ranked. Then
CoarseLCEg(2,11) in w is reduced to LCE(1,12) in code(w).

» Lemma 10. For t = Q(log®n) we can preprocess w in O(nlogt) time so that any
CoarseLCE; query can be answered in constant time.

Proof. Using Lemma 9, we assign a number to each t-block, so that two ¢t-blocks are identical
if and only if their numbers are equal. The number assigned to the block starting at
position p € S(t) is denoted rank(p). These numbers are ranks on a sorted list of length
IS(t)|, so rank(p) € [1..|S(¢)|]. Then we construct a new string code(w) as follows. Let
{i1,42,...1x } = [1,t] N S(¢) and z; be the word obtained from w by concatenating the
numbers assigned to all t-blocks starting at positions i, s + ¢, 45 + 2t,95 + 3t,. . .:

zs = rank(is)rank(is + ¢)rank(is + 2¢)rank(is + 3t)
Finally, we introduce k new distinct letters #1, #2,...,#s and construct code(w):
code(w) = zy #1220 Fo- 23 H#3- 2k - Hr.

Next, code(w) is preprocessed to answer LCE queries in constant time. A CoarseLCE,(p, q)
query for positions p,q € S(t) is answered by first computing positions p’, ¢’ corresponding
to p,q in code(w). Formally, if p = i; mod t, then p’ = |21 #120H2 ... 2s—1F#s—1| + % +1;
¢’ is computed similarly. Then an LCE(p/,¢") query on code(w) returns CoarseL.CE;(p, q).
The positions p’ and ¢’ can be computed in constant time, so the total query time is constant.
Preprocessing code(w) requires constructing its suffix array, which takes linear time for
integer alphabets of polynomial size, and preprocessing it for range minimum queries, which
also takes linear time. Hence the total preprocessing time is O(nlogt). <

» Theorem 11. A sequence of O(n) LCE queries for a string over a general ordered alphabet
can be executed on-line in total time O(nloglogn) making only O(n) symbol comparisons.

Proof. We set t = O(log? n) and reduce each LCE query to constant number of CoarseLCE;
queries and ShortLCE; queries as described in Lemma 5. Thus together with Lemma 8
and Lemma 10 we obtain that any sequence of ¢ LCE queries for a string over a general
ordered alphabet can be realized in O(nloglogn) time. However, the total number of symbol
comparisons used by the algorithm might be Q(nloglogn). This can be decreased to O(n)
with yet another Union-Find data structure, where we maintain sets of positions already
known to store the same letter. This is essentially the idea used in Lemma 7 of [12]. <

P. Gawrychowski, T. Kociumaka, W. Rytter, and T. Walen

6 Faster solution for sublinear number of queries

The algorithm presented in the previous section is not efficient when the number of queries
q is significantly smaller than the length of the string n. In this section we show that this
can be avoided, and we present an O(qloglogn + nlog* n)-time algorithm. This requires
some nontrivial changes in our approach. In particular, we need a stronger notion of t-covers,
which form a monotone family.
S(4%),S(41),S(4?),... C [1,n] is a monotone family of covers if the following conditions
hold for every k:
1. S(4*) is a 4*-cover (except that hyr is computable in O(k) instead of constant time).
2. S(4Ft1) C S(4k).
3. For any i,j € S(4%) we have that hges+1 (i,) € {0,4% 24} and furthermore for such
arguments hyx+1 can be evaluated in constant time.
4. S(45)] < (2)n,

The existence of such a family is not completely trivial, in particular plugging in the

standard construction of S(4%) from Lemma 1 does not guarantee that S(4**1) C S(4%).

The following lemma, implicitly shown in [8], provides an efficient construction.

» Lemma 12 (Gawrychowski et al. [8], Section 4.1). Let S(4%) be the set of non-negative
integers i € [1,n] such that none of the k least significant digits of the base-4 representation
of i is zero. Then S(4°),S(4'),S(4?),... is a monotone family of covers, which can be
constructed in O(n) total time.

6.1 ShortLCE; queries with monotone family of covers

Similarly as in the proof of Lemma 8, we reduce ShortLCE queries to SparseShortLCE
queries. However, now we slightly change the definition of SparseShortLCE queries so that
there is only one parameter as follows:

ShortLCE, (%, j) if i,5 € S(t)

SparseShortLCE, (i, j) =
P (6:9) {J_ otherwise

» Lemma 13. Consider a sequence of q SparseShortLCE x, queries for i € {1,...,q}. The
queries can be answered online in O((n+s)-a(n+ s,n)) time where s =Y 1_, T; with T; = 1
if the i-th query returns 4% and T; = k; + 1 otherwise.

Proof. We maintain a separate Union-Find structure for S(4%) at every level k € {0,..., K}
where K = max]_, k;. To answer a query for SparseShortLCE,x, we check if Findy (i) =
Findy(j) and if so, return 4*. Otherwise, we calculate the answer with at most four calls to

SparseShortLCE,x—:. This is possible because S(4%) C S(4¥~1) and S(4%~1) is 4*~Lperiodic.

Finally, we call Uniong (i, j) if the answer is 4%; see Algorithm 5.

We again analyze the number of recursive calls to SparseShortLCE . counting Union
operations. The total number of unions at level k is [S(4*)| < (2)¥, and in total this sums
up to O(n). The amortized number of Find queries executed by a call to SparseShortLCE ,x
is constant if LOE(4, j) = 4% and O(k + 1) otherwise. These values also bound the running
time of the remaining operations. Hence, by Lemma 3, the total time is as claimed. |

» Lemma 14. A sequence of q queries ShortLCE 4, fori € {1,...,q} can be answered online
in total time O((n+ s) - a(n+ s,n)) = O(nlog" n+ s) where s = >.7_, (k; + 1).

5:9

CPM 2016

5:10

Faster Longest Common Extension Queries in Strings over General Alphabets

K SparseShortLCE calls

0 SparseShortLCE,0(101304,001014) — A = 000014

1 SparseShortLCE,1(101314,001024) — A = 000114

1 SparseShortLCE,: (102014,001124) — A = 000214

3 SparseShortLCE,5(102114,001224) — A = 010214
return call SparseShortLCE,4(112114,011224)

Figure 5 An execution of ShortLCE,4 (i = (10130)4,5 = (00101)4) (assuming LCE(i, j) > 4%).
The numbers are given in base-4 representation. Note that there is no SparseShortLCE,» call.

Proof. We calculate ShortLCE4x (i, j) using O(k) SparseShortLCE queries; see Algorithm 6.
We iterate through &' = 0,1,...,k — 1 maintaining A such that 0 < A < LCE(4,j) and
i+A,j+A € S(4F). Before incrementing &, we keep increasing A by 4% until i+ A, j+A €
S(4*") or A > LCE(i, j). The latter condition is checked by calling SparseShort LCE i (i +
A,j+ A) and terminating if it returns less than 4¥" | The while loop iterates at most twice,
because b1 € {0, 4’“/, 2- 4’“,}. Eventually, we either terminate having found the answer, or
we can obtain it with a single call to SparseShortLCE,x (i + A, j + A).

Let us analyze the total time complexity. Each call to ShortLCE,x performs up to k
SparseShortLCE,, queries, but we terminate as soon as we obtain an answer other than 4,
In Lemma 13, the last of these queries contributes O(k’ + 1) = O(k + 1) to s, while the
remaining queries contribute one each. The total contribution of all SparseShortLCE,/
queries called by a single ShortLCE 4« query is therefore O(k + 1). Hence, the total running
time consumed by all SparseShortLCE,. queries is O((n + s) - a(n + s,n)) where s =
O("% (ki 4+ 1)). It is not hard to see that the remaining time consumed by a single
ShortLCE . query is O(k + 1). This is partly because checking whether i + A and j + A
belong to S(4%*+1) takes constant time, since we know that these indices are in S(4F").
Over all queries this sums up to O(s), which is dominated by the running time of the
SparseShortLCE, queries. The O(nlog” n + s) upper bound follows from Lemma 4. <

6.2 Final algorithm

We first modify the implementation details for CoarseLCE to reduce the preprocessing time.

Algorithm 5: SparseShortLCE . (4, j): compute min(LCE(3, 5),4%) for 4,5 € S(4%)
if Find(i) = Findg(j) then return 4%

if £k =0 then

if wli] = w[j] then {=1else { =0
else

=0

for p=0to 3 do
¢ = { + SparseShort LCE u_1 (i +p - 471, j +p - 4F71)
if £ < (p+1)-45! then break

if £ = 4% then Uniony (4, §)

return ¢

P. Gawrychowski, T. Kociumaka, W. Rytter, and T. Walen

Algorithm 6: ShortLCEyx (i, j)
(=A=0
for ¥ =0to k—1do
while i + A & S(4¥+1) or j + A ¢ S(4¥+1) do

¢ = ¢ + SparseShortLCE . (i + A, j + A) b4 A j+AeSH)
A=A +4¥
if £ < A then return min(4*,¢)

return min (4%, A + SparseShortLCE,x (i + A, j + A)) >+ A, j+ A€ S4F)

» Lemma 15. For t = Q(log® n) we can preprocess a string of length n in O(nlog* n) time,
so that each CoarseLCE; query can be answered in constant time.

Proof. Weset k = [% log t—| and lexicographically sort all 4%-blocks using ShortLCE,« queries.

The number of blocks is at most (%)kn < josweors < joz- By Lemma 14, the sorting time is:

@] (to%lognlogt +nlog” n) =0 (nw +nlog* n) = O(nlog* n).

10g1.2 n
Then we proceed as in the proof of Lemma 10. <
By combining Lemma 15 and Lemma 14, we obtain the final theorem.

» Theorem 16. A sequence of ¢ LCE queries for a string over a general ordered alphabet can
be executed on-line in total time O(qloglogn+mnlog® n) making O(q+n) symbol comparisons.

7 Final remarks

We gave an O(nloglogn)-time algorithm for answering on-line O(n) LCE queries for general
ordered alphabet. It is known (see [14]) that the runs of the string can be computed in
O(T(n)) time, where T'(n) is the time to execute on-line O(n) LCE queries. Hence our
algorithm implies the following result:

» Corollary 17. The runs of a string over general ordered alphabet can be computed in
O(nloglogn) time.

Our algorithm is a major step towards a positive answer for a question posed by Koso-
lobov [14], who asked if O(n) time algorithm is possible.

It is also natural to consider general unordered alphabets, that is, strings where the only
allowed operation is checking equality of two characters.

» Theorem 18. A sequence of ¢ LCE queries for a string over a general unordered alphabet
can be executed in O(qlogn + nlog* n) time making O(n + q) symbol equality-tests.

Proof. We can use the faster ShortLCE,x algorithm described in Section 6.1 with & =
f% logn]. Observe that in this approach we did not use the order of the characters, and thus
it still works for unordered alphabets. <

Note that for unordered alphabets the reduction by Kosolobov [14] (see also [2]) from
computing runs to LCE queries no longer works. Actually, deciding whether a given string is
square-free already requires Q(nlogn) comparisons, as shown by Main and Lorentz [18]. On
the other hand for O(n) LCE queries O(n) equality tests always suffice.

5:11

CPM 2016

5:12

Faster Longest Common Extension Queries in Strings over General Alphabets

—— References

1

10

11

12

13

14

15

Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and
Kazuya Tsuruta. A new characterization of maximal repetitions by Lyndon trees. In Piotr
Indyk, editor, 26th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015,
pages 562-571. SIAM, 2015. doi:10.1137/1.9781611973730.38.

Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and
Kazuya Tsuruta. The “runs” theorem, 2015. arXiv:1406.0263v7.

Philip Bille, Pawel Gawrychowski, Inge Li Ggrtz, Gad M. Landau, and Oren Weimann.
Longest common extensions in trees. Theor. Comput. Sci., 2015. In press. doi:10.1016/
j-tcs.2015.08.009.

Philip Bille, Inge Li Gogrtz, Mathias Bak Tejs Knudsen, Moshe Lewenstein, and
Hjalte Wedel Vildhgj. Longest common extensions in sublinear space. In Ferdinando
Cicalese, Ely Porat, and Ugo Vaccaro, editors, Combinatorial Pattern Matching, CPM 2015,
volume 9133 of LNCS, pages 65-76. Springer, 2015. doi:10.1007/978-3-319-19929-0_6.
Philip Bille, Inge Li Ggrtz, Benjamin Sach, and Hjalte Wedel Vildhgj. Time-space trade-
offs for longest common extensions. J. Discrete Algorithms, 25:42-50, 2014. doi:10.1016/
j.jda.2013.06.003.

Dany Breslauer. Efficient String Algorithmics. PhD thesis, Columbia University, 1992.
URL: http://www.cs.columbia.edu/~library/theses/breslauer.ps.gz.

Stefan Burkhardt and Juha Kérkkédinen. Fast lightweight suffix array construction and
checking. In Ricardo A. Baeza-Yates, Edgar Chavez, and Maxime Crochemore, editors,
Combinatorial Pattern Matching, CPM 2003, volume 2676 of LNCS, pages 55—69. Springer,
2003. doi:10.1007/3-540-44888-8_5.

Pawel Gawrychowski, Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and To-
masz Walenl. Universal reconstruction of a string. In Frank Dehne, Jorg-Riidiger Sack, and
Ulrike Stege, editors, Algorithms and Data Structures, WADS 2015, volume 9214 of LNCS,
pages 386-397. Springer, 2015. doi:10.1007/978-3-319-21840-3_32.

Shunsuke Inenaga. A faster longest common extension algorithm on compressed strings
and its applications. In Jan Holub and Jan Zd4rek, editors, Prague Stringology Conference
2015, pages 1-4. Department of Theoretical Computer Science, Faculty of Information
Technology, Czech Technical University in Prague, 2015. URL: http://www.stringology.
org/event/2015/p01.html.

Marek Karpinski, Wojciech Rytter, and Ayumi Shinohara. An efficient pattern-matching
algorithm for strings with short descriptions. Nord. J. Comput., 4(2):172-186, 1997.
Dmitry Kosolobov. Finding the leftmost critical factorization on unordered alphabet, 2015.
arXiv:1509.01018.

Dmitry Kosolobov. Lempel-Ziv factorization may be harder than computing all runs. In
Ernst W. Mayr and Nicolas Ollinger, editors, Theoretical Aspects of Computer Science,
STACS 2015, volume 30 of LIPIcs, pages 582-593. Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik, 2015. doi:10.4230/LIPIcs.STACS.2015.582.

Dmitry Kosolobov. Online detection of repetitions with backtracking. In Ferdinando
Cicalese, Ely Porat, and Ugo Vaccaro, editors, Combinatorial Pattern Matching, CPM 2015,
volume 9133 of LNCS, pages 295-306. Springer, 2015. doi:10.1007/978-3-319-19929-0_
25.

Dmitry Kosolobov. Computing runs on a general alphabet. Information Processing Letters,
116(3):241-244, 2016. doi:10.1016/j.1ip1.2015.11.016.

Gad M. Landau and Uzi Vishkin. Fast parallel and serial approximate string matching. J.
Algorithms, 10(2):157-169, 1989. doi:10.1016/0196-6774(89)90010-2.

http://dx.doi.org/10.1137/1.9781611973730.38
http://arxiv.org/abs/1406.0263v7
http://dx.doi.org/10.1016/j.tcs.2015.08.009
http://dx.doi.org/10.1016/j.tcs.2015.08.009
http://dx.doi.org/10.1007/978-3-319-19929-0_6
http://dx.doi.org/10.1016/j.jda.2013.06.003
http://dx.doi.org/10.1016/j.jda.2013.06.003
http://www.cs.columbia.edu/~library/theses/breslauer.ps.gz
http://dx.doi.org/10.1007/3-540-44888-8_5
http://dx.doi.org/10.1007/978-3-319-21840-3_32
http://www.stringology.org/event/2015/p01.html
http://www.stringology.org/event/2015/p01.html
http://arxiv.org/abs/1509.01018
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.582
http://dx.doi.org/10.1007/978-3-319-19929-0_25
http://dx.doi.org/10.1007/978-3-319-19929-0_25
http://dx.doi.org/10.1016/j.ipl.2015.11.016
http://dx.doi.org/10.1016/0196-6774(89)90010-2

P. Gawrychowski, T. Kociumaka, W. Rytter, and T. Walen

16

17

18

19

20

21

Yury Lifshits. Processing compressed texts: A tractability border. In Bin Ma and Kaizhong
Zhang, editors, Combinatorial Pattern Matching, CPM 2007, volume 4580 of LNCS, pages
228-240. Springer, 2007. doi:10.1007/978-3-540-73437-6_24.

Mamoru Maekawa. A y/n algorithm for mutual exclusion in decentralized systems. ACM
Trans. Comput. Syst., 3(2):145-159, May 1985. doi:10.1145/214438.214445.

Michael G. Main and Richard J. Lorentz. An O(nlogn) algorithm for finding all repetitions
in a string. J. Algorithms, 5(3):422-432, 1984. doi:10.1016/0196-6774(84)90021~X.
Masamichi Miyazaki, Ayumi Shinohara, and Masayuki Takeda. An improved pattern match-
ing algorithm for strings in terms of straight-line programs. In Alberto Apostolico and Jotun
Hein, editors, Combinatorial Pattern Matching, CPM 1997, volume 1264 of LNCS, pages
1-11. Springer, 1997. doi:10.1007/3-540-63220-4_45.

Robert E. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM,
22(2):215-225, April 1975. doi:10.1145/321879.321884.

Robert E. Tarjan and Jan van Leeuwen. Worst-case analysis of set union algorithms. .J.
ACM, 31(2):245-281, 1984. doi:10.1145/62.2160.

5:13

CPM 2016

http://dx.doi.org/10.1007/978-3-540-73437-6_24
http://dx.doi.org/10.1145/214438.214445
http://dx.doi.org/10.1016/0196-6774(84)90021-X
http://dx.doi.org/10.1007/3-540-63220-4_45
http://dx.doi.org/10.1145/321879.321884
http://dx.doi.org/10.1145/62.2160

Succinct Online Dictionary Matching with
Improved Worst-Case Guarantees

Tsvi Kopelowitz*!, Ely Porat?, and Yaron Rozen3

1 University of Michigan, Ann Arbor, Michigan, USA
kopelot@gmail.com

2 Bar Ilan University, Ramat Gan, Israel
porately@cs.biu.ac.il

3 Bar Ilan University, Ramat Gan, Israel
yaron1828@gmail.com

—— Abstract

In the online dictionary matching problem the goal is to preprocess a set of patterns D =
{Pi,..., Ps} over alphabet X, so that given an online text (one character at a time) we report all
of the occurrences of patterns that are a suffix of the current text before the following character
arrives. We introduce a succinct Aho-Corasick like data structure for the online dictionary
matching problem. Our solution uses a new succinct representation for multi-labeled trees, in
which each node has a set of labels from a universe of size A\. We consider lowest labeled ancestor
(LLA) queries on multi-labeled trees, where given a node and a label we return the lowest proper
ancestor of the node that has the queried label.

In this paper we introduce a succinct representation of multi-labeled trees for A = w(1) that
support LLA queries in O(loglog A) time. Using this representation of multi-labeled trees, we
introduce a succinct data structure for the online dictionary matching problem when o = w(1).
In this solution the worst case cost per character is O(loglog o 4 occ) time, where occ is the size
of the current output. Moreover, the amortized cost per character is O(1 + occ) time.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
Keywords and phrases Succinct indexing, dictionary matching, Aho-Corasick, labeled trees

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.6

1 Introduction

One of the crucial components of Network Intrusion Detection Systems (NIDS) is the ability
to detect the presence of viruses and malware in streaming data. This task is typically
executed by searching for occurrences of special digital signatures which indicate the presence
of harmful intent. While searching for one such signature is often a fairly simple task, NIDS
has to deal with the task of searching for many signatures in parallel. In such settings it
is required that both the time spent on each packet of data and the total space usage are
extremely small. Currently, the task of finding these signatures dominates the performance
of such security tools [32], and several practical approaches have been suggested [9, 10]. The
theoretical model for this problem is known as the (online) dictionary matching problem,
which is a well studied problem [1, 2, 3, 4, 11, 13, 14] and is defined next.

* Work supported in part by NSF grants CCF-1217338, CNS-1318294, and CCF-1514383.

© Tsvi Kopelowitz, Ely Porat, and Yaron Rozen;

37 licensed under Creative Commons License CC-BY
27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 6; pp. 6:1-6:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2

Succinct Online Dictionary Matching with Improved Worst-Case Guarantees

Dictionary matching. 1In the dictionary matching problem the input is a dictionary D =
{Py, Py, ..., P;} of patterns and a text T' = t1t5...ty, all over alphabet X, where o = |X|.
The goal is to list all pairs (4,7) such that t;_|p,|11..t; = P;. Let n = Zle |P;|, and let
Nmaz = Maxpep{|P|}. For a dictionary D the prefiz set of D, denoted by P(D), is the set
of all prefixes of patterns in D. Let m = |P(D)| and notice that m < n + 1. We assume
Y is an integer alphabet ¥ = {1,2,...,0}, and that 0 < m. The Aho-Corasick (AC) data
structure [1] solves the dictionary matching problem using O(mlogm) bits of space and in
O(|T'| + occ) time, where occ is the size of the output.

Online dictionary matching. In the online dictionary matching problem the input is the
same as in the dictionary matching problem, but here the text T arrives online (character
by character) and the goal is to report all of the occurrences of patterns from D as soon as
they appear (before the next character arrives). For a dictionary D and text T let S; be
the longest suffix of ¢1¢2...¢; such that S; € P(D). The AC data structure works in the
online model by repeatedly finding S;11 from S; and ¢;11 (and then also reporting all of the
patterns from D that are suffixes of S;11). The amortized cost for this process, ignoring
the work for reporting the output, is constant. However, the worst-case time per character
in the AC data structure can be as large at ©(n,,4,). This may be too large for real-time
applications, such as those that occur in NIDS.

One naive way of tackling this problem is by using an automata with a state for each prefix
in P(D), where each state has o outgoing transitions. However, this approach introduces a
blow up in space, which in practice means that the entire data structure cannot fit in fast
memory. Moreover, even the O(mlogm) bit implementation of the AC data structure may
be too large. Thus, a large body of recent work has focused on succinct representations of
the AC data structure.

Succinct data structures. Given a combinatorial object a representation of the object is
succinct if it uses z + o(z) bits of space where z is the information theoretic lower bound
for the number of bits representing the object. The main challenge when using a succinct
representation is supporting the algorithmic operations with costs that are as efficient as in
the non-succinct representation.

A growing trend in recent years has focused on developing succinct representations for
the dictionary matching problem; see Table 1. The information theoretic lower bound for
a dictionary of size n over alphabet ¢ is nlogo bits which is significantly less than the
O(mlogm) bits used by the AC data structure, when o << n. However, much like in the
AC data structure, current succinct representations also pay ©(n,qz) time per character in
the worst-case. We emphasize that Hon et al. [21] presented a solution using O(mlog o) bits
(which is not succinct) and the worst-case cost per character is O(loglogm) time.

1.1 Our Results

In this paper we introduce a new succinct representation of the AC data structure with an
implementation that supports low time cost per character in the worst-case. Such a solution
addresses the type of constraints that show up in practical settings, such as in NIDS, where
the space usage is limited and the worst-case time per character needs to remain low. Our
succinct representation is summarized as follows.

» Theorem 1. For o = w(1) there exists a succinct data structure for the online dictionary
matching problem using m(Hy (D) +540(1)) +20 4 O(dlog 5) bits of space where the worst-

T. Kopelowitz, E. Porat, and Y. Rozen

Table 1 Comparison of the results.

Algorithm Space Worst-case Time | Total Time
per Character

AC (NFA) [1] O(mlogm) O(Nmax) O(|T| + occ)

AC (DFA) [1] O(molog (mo)) o(1) O(|T| + occ)

Chan et al. [12] | O(mo) O(log? m) O((|T| + occ) log? m)
Hon et al. [21] O(mlogo) O(loglogm) O(|T'|log log m + occ)
Belazzougui [7] | m(Ho(D) + 3.443 4 o(1)) + O(dlog %) O(Nmax) O(|T| + occ)

Hon et al. [22] m(Hy(D) + 54 0(1)) + O(dlog 5) O(Nmaz) O(|T'| + occ)

New (0 = w(1)) | m(Hg(D)+5+0(1)) +20 4+ O(dlog %) | O(loglogo) O(|T| + occ)

case time per character is O(loglogo), and the total time for a text query T is O(|T| + occ)
where occ is the size of the output.

Our main technique is a succinct representation of multi-labeled trees of size n, where
each node in the tree has a set of labels drawn from a set £ where A = |£|. The operations
of interest on multi-labeled trees are label dependent. In particular we will be interested in
lowest labeled ancestor (LLA) queries where given a node u and a label £ we need to report
the lowest proper ancestor of u that has label /. We show in Sections 4 and 5 how to support
such operations for general trees. Strikingly, the type of trees in our implementation of the
AC data structure exhibit some special combinatorial properties. Their properties allow an
even more succinct representation for these trees which efficiently support LLA queries and
other label dependent operations.

In this paper we propose a representation of multi-labeled trees that is succinct when
A =w(1). Although we mainly consider the LLA operation, our representation supports many
other operations as well and is succinct for more cases. Moreover, we find our implementation
of the LLA operation to be simpler than previous approaches (see below).

1.2 Related Work

The notion of succinct data structures was introduced by Jacobson [24] with succinct data
structures for bit-arrays, trees and graphs. Many succinct representations for combinatorial
objects have since been developed, including succinct representations of sets [24, 26, 30],
strings [28, 8], and trees [27, 17].

The first solution for the dictionary matching problem using less than O(mlogm) bits
was introduced by Chan et al. in [12]. Their solution also solves the dynamic variant of the
problem. Other solutions are based on using suffix trees [23, 21] and are slower than the AC
algorithm.

The first representation for the dictionary matching problem in succinct space without a

query slowdown was introduced by Belazzougui [7] which was slightly improved by Hon et al.

[22]. Succinct representations have also been developed for some variations of the dictionary
matching problem, such as dynamic dictionary matching [21, 15], 2D dictionary matching
[29], and approximate dictionary matching [21].

Labeled and multi-labeled trees.

considered by Geary, Raman and Raman [17]. However, their solution is succinct only for

_ loglogn
A= O(logloglogn

the XML Burrows—Wheeler transform. However, their representation does not support LLA
queries. Barbay et al. [5, 6] introduced a representation for labeled trees and multi-labeled

The problem of representing labeled trees was first

). Ferragina et al. [16] proposed a representation of labeled trees based on

6:3

CPM 2016

6:4

Succinct Online Dictionary Matching with Improved Worst-Case Guarantees

trees supporting a restricted set of operations which does not include LLA queries. Moreover,
their representation is succinct only when % = XD,

The only known representation of labeled trees which supports LLA queries using succinct
space are the solutions of He et al. [20] and Tsur [31]. Although these solutions are for
the labeled case, they can be extended for multi-labeled trees using the same techniques of
Barbay et al. [5], but then they would only be succinct when % = Mo,

2 Preliminaries

2.1 The Aho-Corasick data structure

The Aho-Corasick (AC) data structure [1] is a multi-pattern extension of the KMP data
structure [25]. Since the AC data structure is in the core of this paper, we present its internals
in some more detail.

The AC data structure is built upon a trie storing the patterns in D. The trie edges have
the properties that each edge is labeled by a character o € ¥, and any two edges leaving the
same node have different labels. Thus, there is a bijection between nodes in the trie and
prefixes in P(D). For a prefix u € P(D) let state(u) be the node in the trie corresponding
to u. Then u is the concatenation of the edge labels on the path from the root of the trie to
state(u). When it is clear from context, we sometimes abuse notation and refer to state(u)
as u itself.

The edges of the trie are termed as forward links. In addition to the forward links, there
are also failure links and report links. For u,v € P(D) there is a failure link from node u to
node v if and only if v is the longest string in P(D) that is a proper suffix of u. Similarly,
for uw € P(D) and v € D there is a report link from node u to node v if and only if v is the
longest string in D that is a proper suffix of w.

In order to solve the online prefix matching problem, we will move from a node u in the
AC structure that corresponds to S; to the node v that corresponds to S;11. To do this,
the AC algorithm first tries to use a forward link from u with the character ¢;4;. If no such
forward link exists, then the algorithm recursively follows failure links until either no failure
links are found (in which case v is the root of the trie) or until we reach a node that has
a forward link with the character ¢;41. One can show that the cost per character of this
process is O(1) amortized time. Once v is found we use report links to report the current
occurrences.

2.2 Succinct Representation of Trees

Representing ordinal trees. An ordinal tree 7 with n nodes is a rooted tree where the
children of each node are ordered. Each node is given a unique id from 1,...,n. We use
succinct representations of ordinal trees, where each node is given a unique id (the actual
tree is not stored). The id is the rank of the node in the pre-order traversal of 7.

We use the Balanced Parentheses (BP) representation introduced by Jacobson [24]. In
this representation we use parentheses to represent a pre-order traversal of the tree where
the first time we visit a node is represented with an open parentheses and the last time we
visit a node is represented with a close parentheses. This creates an array of 2n bits. For a
node u let open(u) and close(u) denote the open and close parentheses of w.

Base set of operations. Munro and Raman [27] showed how to support the following
operations in constant time using another o(n) bits on top of the BP representation, for a

T. Kopelowitz, E. Porat, and Y. Rozen

total of 2n + o(n) bits. By supporting this base set of operations on the BP representation
one can also support many other common operations in constant time.
findclose(l) — Given an index I = open(u) for some node u, return close(u).
findopen(r) — Given an index r = close(u) for some node u, return open(u).
enclose(i) — Return the pair of indices (I, 7) such that: (1) ! and r correspond to the same
node, (2) [<i <r, and (3) r — is minimized.
pre__rank(i)/post__rank(i) — Return the number of open/close parentheses in the the first
1 parentheses.
pre__select(i)/post__select(i) — Return the index of the i’th open/close parenthesis.
It is important to notice that given an interval [I, r] that corresponds to a node v, the id of v

is pre_rank(l). Similarly, given the id ¢ of v we have [= pre__select(i) and r = findclose(l).

To simplify these operations we use the notion v = node([l, r]) and [l,r] = interval(v). Our
algorithms will also make use of the following two properties of the BP representation.

» Property 2.1. Let 7 be an ordinal tree. Let u be a node in 7 whose rank in the pre-order
(post-order) on T is ¢ (). Then the open (close) parenthesis in the BP representation of 7
is i (j).

» Property 2.2. Let 7 be an ordinal tree and let [a,b] and [e, d] be two subintervals in the
BP representation of 7 that correspond to two different nodes. Then either one subinterval
is completely contained in the other or both subintervals are disjoint.

We emphasize that the 2n + o(n) bit representation of Geary, Raman and Raman [17]
subsumes the representation of Munro and Raman [27], and in particular supports the base
set of operations on the BP representation in constant time.

2.3 Labeled Trees and Multi-Labeled Trees

A labeled tree is an ordinal tree where each node has a label drawn from a set £ of size A = |L].

A multi-labeled tree is an ordinal tree where each node is associated with a (possibly empty)

subset of £. For multi-labeled trees we denote the sum of the sizes of the label subsets by .

We assume without loss of generality that A < ¢. Notice that the information-theoretic lower
bound for representing a multi-labeled tree is log (”t)‘) + log (27:‘) + o(n).

Our algorithms will make use of lowest labeled ancestor (LLA) queries on multi-labeled
trees, where given a node id u and a label ¢ we can quickly return a node id v that is the
lowest proper ancestor of u which has the label ¢, or report that no such node exists. This
operation is denoted by v = LLA(¢,u). For succinctness sake, from now on we refer to a
node id as the node itself.

Representations supporting same label operations. In order to support fast LLA queries
in succinct space we will make use of succinct representations of trees that allow us to
compute in constant time some specific operations. These operations are on a label £
and a node u where v is also labeled by ¢. The same label operations that we require
are LLA, pre_ranky and post_ranks queries. We will also want to support pre_ selectr
and post__select7 queries in constant time. For sake of simplicity we refer to all of these
operations as same label operations (although the select operations do not have any node as
input). See Table 2 for the list of these operations.
In Section 4 we prove the following theorem.

» Theorem 2. Assume there is a representation for a multi-labeled tree T using f(T) bits
that supports the same-label operations and the base set operations on the BP representation

6:5

CPM 2016

6:6

Succinct Online Dictionary Matching with Improved Worst-Case Guarantees

Table 2 Same label operations for multi-labeled trees.

Operation Description

LLA(¢,u) The closest proper ancestor of u labeled by ¢

pre__rank,(¢,u) The rank of u (by the preorder of T) in the set of nodes labeled by ¢
post__ranky(¢,u) | The rank of u (by the postorder of 7) in the set of nodes labeled by £
pre_select(¢,7) | The i’th node with label £ in the preorder of T°

post__select(¢,4) | The i’th node with label £ in the postorder of T

in O(1) time each. Then there exists a representation of T that for any A = w(1) uses
f(T) 4+ o(n+t) bits and answers any LLA query in O(loglog \) time.

We are also able to represent any tree so it can support same-label LLA queries, as long
as the label universe is an integer universe £ = {1,2,..., A}. This is discussed in Section 5,
where combined with Theorem 2 we prove the following theorem.

» Theorem 3. For any multi-labeled tree T with a label set £ ={1,2,..., A} with A = w(1),
there exists a representation of T that uses [log ("?)l +2(n+t+ A +o(n+t+) bits and
supports LLA queries in O(loglog \) time.

3 Dictionary Matching and Same Label Operations

The c-extended prefiz subset of D, denoted by P.(D), is the subset of P(D) which contains
all uw € P(D) such that uc € P(D) (the concatenation of u and c).

For each u € P(D) let u’® be the the string u in reverse order, and let P(D)% be the set of
all reversed prefixes of D. The suffiz-lexicographic order of P(D) is an ordering of the elements
in P(D) where the order is determined by the lexicographic order of the corresponding
elements in P(D)®. Thus, for u € P(D), the rank of u in the suffix-lexicographic order of
P(D), denoted by rank(u), is the lexicographic rank of uf* in P(D)f. Since each prefix
in w € P(D) has a unique node state(u) in the AC data structure, let rank(u) be the
unique id of state(u). Unless specified otherwise we will abuse notation and assume that
state(u) = rank(u).

Belazzougui's data structure. Belazzougui in [7] showed how one can leverage the suffix-
lexicographic order of P(D) in order to implement the AC data structure with n(Hy(D) +
3.443 4+ o(1)) + O(dlog %) bits. Our solution replaces only one particular component of
Belazzougui’s data structure which is called the failure tree, denoted by Tf.y. This tree
is defined by the failure links in the AC data structure, so that for two nodes state(u)
and state(v) we have fail(state(u)) = state(v) if and only if parentr, (state(u)) = state(v).
An important property of T is that the pre-order traversal of Trq is exactly the suffix-
lexicographic order of P(D). Thus, Belazzougui’s data structure uses succinct representations
of ordinal trees for representing 7, that support parent operations in constant time, thereby
simulating the failure links.

3.1 Final-Failure Links

As discussed above, given some S; € P(D) and ¢ € ¥ such that S;c ¢ P(D) the time for
finding S;4+1 in the AC algorithm is © (7,4,). This expensive runtime occurs since the AC
algorithm may traverse many failure links. However, the traversal stops when the algorithm

T. Kopelowitz, E. Porat, and Y. Rozen

reaches a node for which there exists a forward link labeled by c. If such a node exists then
this node is the final node in the traversal. We call this node the final-failure node for S;
and ¢, denoted by ff(c,S;). Notice that ff(c,u) = state(v) where v is the longest suffix of
u for which v € P.(D). If no such node exists then we say that ff(c,u) =L. The key idea
for improving the time cost per character of the AC algorithm is to find the final-failure
node directly instead of traversing all of the failure links. We emphasize that the rest of
Belazzougui’s data structure remains the same. The only thing we change is the component
for finding the final-failure.

In order to support locating the final-failure node we extend the definition of the failure
tree. Instead of representing T as an unlabeled ordinal tree, we represent 7y, as a
multi-labeled tree. For each node state(u) € Ty we say that state(u) is labeled by ¢ if and
only if u € P.(D). Notice that a node may have many labels, or no labels at all (which is why
we use a multi-labeled tree). Now the process of finding the final-failure node for state(u)
and character c reduces to finding LLA(c, state(u)) in the multi-labeled version of Tq.

Same label operations on Tf,;. We will now show how the properties of the AC structure
and the implementations we consider allow us to support the same label operations in Table 2
on Tp,y in constant time. This will allow us to use Theorem 2.

» Lemma 4. There exists an implementation of T that supports the parent operation,
same-label operations and the base set operations on the BP representation in O(1) time
using m(Hy(D) + 5+ o(1)) + 20 + O(dlog %) bits.

Proof. Our implementation of Tz, contains two components. The first component is an
implementation of the forward links of the AC data structure which is another part of
the data structure of Belazzougui [7]. For u € P.(D), the forward link from state(u) with
character ¢ € ¥ is implicitly represented by the ordered pair (¢, state(u)). Using Belazzougui’s
implementation we can move from (c, state(u)) to state(uc) or backwards in constant time.

The second component is a representation of a slightly modified version of Trq:. A key
observation with regard to the structure of T,y is that for any child of the root of Tia, all
of the nodes in the subtree of this child correspond to prefixes of the form uc for some ¢ € 3
and u € P.(D). However, it is possible that suffixes of the form uc are partitioned among
several subtrees of children of the root. For purposes that will be clear later, it is helpful to
have all of the nodes corresponding to prefixes ending with character ¢ in one unique subtree
of a child of the root. To support this, we add o new dummy nodes, one for each character in
3. These nodes will be the only children of the root. The i’th dummy has in its subtree all of
the nodes of the form vi for each P;(D) (recall that ¥ = {1,2,...,0}). This is guaranteed by
having each old child of the root become a child of the appropriate new dummy node. Notice
that the pre-order and post-order of the nodes in 7y, excluding the dummy nodes, do not
change with this modification. Rather, the i’th dummy node is inserted between the nodes
corresponding to prefixes ending with ¢ — 1 and the nodes corresponding to prefixes ending

with i in the pre-order. Thus, for ui we have pre_ranks,,(ui) = pre_ranksy,,(ui) — .

Similarly, the i’th dummy node is inserted between the nodes corresponding to prefixes

ending with 7 and the nodes corresponding to prefixes ending with 7 + 1 in the post-order.

For the rest of this proof we refer to this slightly modified tree as 7 jq;. Notice that T ju
has m + o nodes.

We represent 77, with the data structure of Geary, Raman and Raman [17] using
2m + 20 + o(m) bits. Recall that this implementation supports the base set operations on
the BP representation in constant time. The particular constant time operations we use with
this representation on 7" fq; are:

6:7

CPM 2016

6:8

Succinct Online Dictionary Matching with Improved Worst-Case Guarantees

parenty, . (u) = parent(u): Given the id of a node u € 7" fou return the id of the parent
of win T 4.

childr,,, (u,i) = child(u,i): Given the id of a node u € T,y and a positive integer i,
return the id of the ¢’th child of w in T fq4.

pre_ranks, (u) = pre_rank(u): Given the id of a node u € T, return its location in

fail
the pre-order traversal of T jq.

post_ranky. . (u) = post_rank(u): Given the id of a node u € T fz5 return its location
in the post-order traversal of 7’ fail-

pre_selecty, (i) = pre_select(i): Given an integer 1 < < m + o return the id of the
i’th node in the pre-order traversal of T~ fq;.

post_selecty (i) = post_select(i): Given an integer 1 <i < m + o return the id of the
i’th node in the post-order traversal of T” 4.
We use the parent operations on 7,4 to simulate parent operations on 7y, as follows. Due
to the dummy nodes, when invoking the parent operation on uw we check if the parent of u is
a child of the root (by invoking another call to the parent operation), and if so we treat the
root as the parent of u. Otherwise, the parent of w in 77y, is also the parent of w in Tp,.

Same label LLA. For u,v € P.(D) we have that LLA(c, state(u)) = state(v) if and only if
parentr,, (state(uc)) = state(vc). This gives lead to supporting same label LLA queries in
constant time. To do this, we first move from state(u) to state(uc) in constant time with the
forward links structure, then we move from state(uc) to parentr,, (state(uc)) = state(vc) in
constant time using parent operations on 7”1, and then we move from state(vc) to state(v)
using the forward links structure (going backwards) in constant time. The transition from
state(ve) to state(v) is executed by first finding the pair ¢, state(v) via a select operation
on state(v,c). This pair is represented using logm + log o bits. Extracting the logm bits
representing state(v) completes the transition.

Pre-order and post-order rank/select queries. We focus on the details for implementing
pre_rankr,,(c,u) for some u € P.(D) as the rest of the operations are implemented using
similar ideas (and the implementations are mostly technical). Recall that by definition,
for u € P.(D), pre_rankr,,(c,u) is exactly the rank of uc in the pre-order T4y, minus
> er<e |Per(D)]. Recall that pre_ranks,,, (uc) = pre_ranky,,,(uc)—c, so the rank of v in the
pre-order of Tz, among the nodes labeled by ¢ can be computed in constant time by invoking
pre_ranky,,,(uc). Next, let b = pre_rank(child(r,c)) where r is the root of 7" s,5. Since the
c’th child of r is the dummy corresponding to ¢, then its rank in the pre-order of 77 4,5 is exactly
> erce|Per(D)] + (¢ —1). So we can compute pre_ranky,,(c,u) = pre_ranky,,(uc) — b in
constant time.

Space usage. Our data structure uses the same space as Belazzougui’s data structure, with
the exception that instead of using 2m + o(m) bits for representing the failure tree, we use
2m + 20 + o(m) bits via the representation of Geary, Raman and Raman [17] (which also
supports base set of operations on the BP representation). Thus the total space used is
m(logo + 22 + 3.443 + o(1)) 4+ O(dlog %) bits. We further reduce the space usage using the
technique of Hon et al. [22] to compress the forward links component into its k’th order
entropy, thereby achieving a representation that uses m(Hy(D) + 5+ o(1)) + 20 4 O(dlog %)
bits. <

T. Kopelowitz, E. Porat, and Y. Rozen

3.2 Proof of Theorem 1

By combining Lemma 4 and Theorem 2 we obtain a succinct representation of 7T,y which
supports finding failure links in worst-case constant time and finding a final-failure in
worst-case O(loglog o) time, while using m(Hy(D) 45+ o(1)) 4 20 + O(dlog %) bits.

For the text processing, each time a new character arrives we traverse at most loglog o
failure links. By Lemma 4, each such traversal takes constant time via a parent operation on
Ttast- 1f one of these links leads to the final failure, then we are done. Otherwise, we invoke
the final failure procedure, which costs another O(loglog o) time. Thus, the runtime is never
worse than the runtime of the AC algorithm, and so the worst-case cost per character is
O(loglog o) (ignoring the cost of reporting the output) and the total cost for the entire text
is O(|T| + occ).

4 Solving General LLA With Same Label Operations

In this section we prove Theorem 2.

Successor Search. Recall that by the assumption of Theorem 2, the base set of operations
on the BP representation of 7 are supported in constant time. For each label £ let Iy open
and Iy ¢j0se be the set of indices in the BP representation of the open and close parentheses,
respectively, that correspond to nodes with label /.

Let M be a subset of an ordered universe U. For an element z € U the successor of x in M
is succy(z) = argmin, ¢\ {y > x}. For sake of completeness we say that if x > max,er{y}
then suceps(z) = 0o. In the following we show how successor operations on the sets Iy open
and Iy ciose are used for answering LLA queries.

» Lemma 5. Let T be a multi-labeled tree over label set L. For a node uw € T and
a label £ € L let | = succy,,,, (close(u)) and r = succy, . (close(w)). If r < I then
LLA(¢,u) = v where v = node([findopen(r),r]). If r > 1 then LLA({,u) = LLA(¢,w) where
w = node([l, findclose(l)]). If r =1 then there is no node LLA(¢,).

Proof. Our proof has three cases. In the first case r < [, and so by Property 2.2 it
must be that open(u) > findopen(r). Therefore, the interval [findopen(r),r] contains the
interval [open(u), close(u)] implying that v is an ancestor of u. Since v is labeled with ¢ and
r = close(v) = succy, ., (close(u)) there is no node on the internal path from v to u in T
that is labeled with £. Thus, v = LLA(¢, u).

In the second case | < r. We first show that LLA(¢,u) is necessarily an ancestor of
LLA(¢,][I, findclose(l)]) and then show that LLA(Y, [I, findclose(l)]) is necessarily an ancestor
of LLA(¢,u). Thus, the two must be the same.

Recall that the interval defined by enclose(LLA(¢,u)) contains the interval [open(u),
close(u)]. Moreover, since I < r there is no closing parentheses of a node with label ¢
at the indices strictly between close(u) and I. Therefore, the interval corresponding to
LLA(¢,u) must contain the index I. Combining this with Property 2.2 it must be that
the interval corresponding to LLA(¢,u) contains the interval [open(u), findclose(l)] and so
LLA(¢,u) is necessarily an ancestor of LLA(Y, [, findclose(l)]). For the other direction, by
Property 2.2 the interval corresponding to LLA(, [I, findclose(l)]) must contain the interval
[l, findclose(l)]. Since there is no index in Iy oper, between close(u) and [, the interval
corresponding to LLA(, [l, findclose(l)]) must contain the index close(u). Combining with
Property 2.2 the interval corresponding to LLA(Y, [I, findclose(l)]) must contain the interval
[open(u), findclose(l)], and so LLA(Y,]I, findclose(l)]) must be an ancestor of LLA(¢, u).

6:9

CPM 2016

6:10

Succinct Online Dictionary Matching with Improved Worst-Case Guarantees

In the third case » = [. Then it must be that » = [= oo since otherwise we have a single
index for both an open and close parentheses. Thus, there is no index of close parentheses
in the range [close(u) + 1,2n] that corresponds to a node labeled with ¢. If « has a proper
ancestor v that is labeled with ¢, then by Property 2.2 close(v) > close(u). Therefore, there
is no such ancestor, and LLA(¢,u) does not exist. <

By Lemma 5, once we perform two successor operations and a constant number of base
set operations, we either find a node v = LLA(¢,u) or we find a node w that is labeled with
¢ such that LLA(¢,u) = LLA(¢,w). Computing LLA(¢,w) in the second case takes O(1)
time since w is labeled with ¢ (and so this is a same label LLA query). What remains to be
shown is how to execute the two successor queries on the sets of indices.

Successor queries on subsets of indices. Let R be a binary matrix of size [a] x [b]. For
integers 1 <z < aand 1 <y <blet rank.q(y,z) be the number of 1s in the first x entries
of the y’th column of R. For integers 1 < j < a and 1 <y < blet select.oi(y,) be the index
of the j’th 1 in the y’th column of R.

We focus on Iy open as the treatment of Iy cjosc is the same. Consider the binary matrix
Ropen of size [n] x [A], where Ropen[i][f] = 1 if and only if i € Iy ppen. Given a node u in T
we can find the row that corresponds to u in Rpep in constant time by executing a single
pre_rank(u) operation (which is a base set operation). Using the encoding of Barbay et
al. [b] on Rypen, we can answer rankc, and selectq, queries in O(loglog A) and O(1) time
respectively. However, this encoding makes use of O(tlog) bits (since there are ¢ non zero
values in the matrix). We reduce this space usage using indirection as follows.

Let 7 = log2 A. For each set of indices Iy open let feyopen C Iy open be the indices whose
rank in Iy open is a multiple of 7. Notice that if Iy open| < 7 then fg,open = (). The treatment
of such cases is discussed after explaining the more challenging case. Consider the binary
matrix]%Open of size [n] x [A], where Ropen [i][¢] =1 if and only if ¢ € I ¢,0pen- Notice that the
number of non-zero entries in }A%Open ist = O(ﬁ) We further reduce the matrix }?open by
removing all of the rows that have only zeros, and use another rank and select data structure
to move between the row indices of these matrices. This uses another ¢’ log 7 + O(t') + o(n)
bits [30], which is o(n + t) bits!.

Thus, we answer rank and select queries on the rows of I?Open using the encoding of
Barbay et al. [5] with O(¢' log A\) = o(t) bits. Given an index ¢ for which we wish to compute
s = succy, ,,,, (i) we first find § = succj, = (i) using the data structure on Ropen after

finding the appropriate row in the matrix ﬁopen with a single rank.,; operation in O(loglog \)
time. If we have successfully found 3 it must be that |ranky, ., (s) —ranky, .. (3)] < 7.
Thus, with O(log 7) executions of pre__select(¢,1) (each costing O(1) time since it is a same
label operation), we perform a binary search to find s in O(log) time.

Finally, if we were not successful in finding § (either I, t.0pen. = (0 or © > max I, ¢,0pen) then
there are at most 7 possible elements to consider (the last 7 elements) and a binary or
exponential search with pre_ select(¢,1) operations finds s in O(log 7) time. This completes
the proof of Theorem 2

" If t < n then let t = n/z for some x. Then t'log % = 2 logzT = o(n). If t > n then t'log % =

t t —
Zlog 2T < ZlogT = o(t).

T. Kopelowitz, E. Porat, and Y. Rozen

5 Same Label Operations for General Multi-labeled Trees

In this section we prove Theorem 3. The representation of 7 uses two main components.
The first component is a label-ordered tree, which functions in a way that is similar to the
modified failure tree in the dictionary matching data structure. The second component is
an implementation of a transition operator which functions in a way that is similar to the
forward links in the dictionary matching data structure.

Label-ordered tree. The encoding technique for the label-ordered tree is similar to the
tree extraction technique used in [18, 19, 20]. For each ¢ € L let F; be the induced forest
obtained by inducing 7 on the nodes with label £. By an inducing we mean that for two
nodes u,v € Fy, u is the parent of v if and only if both v and v are labeled with ¢, and
u = LLA(¢,v). Notice that the sum of the sizes of all of the forests is exactly ¢t. For each
such forest we create a dummy node and make it the parent of all of the roots of trees in the
forest. This adds another A\ nodes. Finally, we add a special new root whose children are the
dummy nodes, ordered by their labels, thereby creating the label-ordered tree. We denote
this tree by 7. The size of T is t + A + 1. We use the data structure of Geary, Raman and
Raman [17] to represent 7~ with 2t + 2\ + o(t + \) bits, while supporting the base set of
operations on the BP representation of 7 in constant time.

Transition operator. The transition operator translates in constant time between the rank
of a node u in 7 and a label ¢, and the rank of the copy of u in 7 which is associated
with £. This translation works in both directions. To do so, for each u € T and for each
label ¢ of u, the transition operator creates the ordered pair (¢,pre_ranks(u)). Notice
that rank((¢,pre_ranky(u))) = pre_rank;(uf) — £ — 1, where the rank is taken over all
ordered pairs. Similarly, one can use a select query to translate from pre_rank;(uf) to
pre_ranks(u). We use a data structure that supports rank and select queries in constant
time [30] using [log ("t)‘)] + o(t) + O(loglog (nX)) bits.

Same label LLA. Using the above representations, we support same label LLA queries
exactly like we do in the proof of Lemma 4. Since we used a representation for supporting the
base set of operations on the BP representation of 7 in constant time, again using the ideas
in the proof of Lemma 4 we support same label operations and the base set of operations
on the BP representation of 7 in constant time. Thus, together with Theorem 2 we have
completed the proof of Theorem 3.

—— References

1 Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to bibliographic
search. Commun. ACM, 18(6):333-340, 1975.

2 Amihood Amir, Martin Farach, Ramana M. Idury, Johannes A. La Poutré, and Alejandro A.
Schéffer. Improved dynamic dictionary matching. Inf. Comput., 119(2):258-282, 1995.

3 Amihood Amir, Dmitry Keselman, Gad M. Landau, Moshe Lewenstein, Noa Lewenstein,
and Michael Rodeh. Text indexing and dictionary matching with one error. J. Algorithms,
37(2):309-325, 2000.

4 Amihood Amir, Tsvi Kopelowitz, Avivit Levy, Seth Pettie, Ely Porat, and B. Riva Shalom.
Mind the gap. CoRR, abs/1503.07563, 2015.

6:11

CPM 2016

6:12

Succinct Online Dictionary Matching with Improved Worst-Case Guarantees

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Jérémy Barbay, Alexander Golynski, J. Jan Munro, and S. Srinivasa Rao. Adaptive search-
ing in succinctly encoded binary relations and tree-structured documents. Theor. Comput.
Sci., 387(3):284-297, 2007.

Jérémy Barbay, Meng He, J. Ian Munro, and Srinivasa Rao Satti. Succinct indexes for
strings, binary relations and multilabeled trees. ACM Trans. on Algorithms, 7(4):52, 2011.
Djamal Belazzougui. Succinct dictionary matching with no slowdown. In Combinatorial
Pattern Matching, CPM, pages 88-100, 2010.

Djamal Belazzougui and Gonzalo Navarro. Alphabet-independent compressed text indexing.
ACM Transactions on Algorithms, 10(4):23:1-23:19, 2014.

Anat Bremler-Barr, David Hay, and Yaron Koral. Compactdfa: Generic state machine
compression for scalable pattern matching. In INFOCOM, pages 659-667. IEEE, 2010.

Anat Bremler-Barr, David Hay, and Yaron Koral. Compactdfa: Scalable pattern matching
using longest prefix match solutions. IEEE/ACM Trans. Netw., 22(2):415-428, 2014.
Gerth Stglting Brodal and Leszek Gasieniec. Approximate dictionary queries. In Combin-
atorial Pattern Matching, CPM, pages 6574, 1996.

Ho-Leung Chan, Wing-Kai Hon, Tak-Wah Lam, and Kunihiko Sadakane. Dynamic diction-
ary matching and compressed suffix trees. In Symposium on Discrete Algorithms, (SODA),
pages 13-22, 2005.

Raphagl Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana A. Starikovskaya.
Dictionary matching in a stream. In Europ. Symp. Algorithms, (ESA), pages 361-372, 2015.
Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary matching and indexing
with errors and don’t cares. In STOC, pages 91-100, 2004.

Guy Feigenblat, Ely Porat, and Ariel Shiftan. An improved query time for succinct dynamic
dictionary matching. In Combinatorial Pattern Matching, CPM, pages 120-129, 2014.
Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S. Muthukrishnan. Compressing
and indexing labeled trees, with applications. J. ACM, 57(1), 2009.

Richard F. Geary, Rajeev Raman, and Venkatesh Raman. Succinct ordinal trees with
level-ancestor queries. ACM Transactions on Algorithms, 2(4):510-534, 2006.

Meng He, J. Tan Munro, and Gelin Zhou. Path queries in weighted trees. In International
Symposium on Algorithms and Computation, (ISAAC), pages 140-149, 2011.

Meng He, J. Ian Munro, and Gelin Zhou. Succinct data structures for path queries. In
European Symposium on Algorithms, (ESA), pages 575-586, 2012.

Meng He, J. Ian Munro, and Gelin Zhou. A framework for succinct labeled ordinal trees
over large alphabets. Algorithmica, 70(4):696-717, 2014.

Wing-Kai Hon, Tsung-Han Ku, Tak Wah Lam, Rahul Shah, Siu-Lung Tam, Sharma V.
Thankachan, and Jeffrey Scott Vitter. Compressing dictionary matching index via sparsi-
fication technique. Algorithmica, 72(2):515-538, 2015.

Wing-Kai Hon, Tsung-Han Ku, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott
Vitter. Faster compressed dictionary matching. In String Processing and Information
Retrieval, (SPIRE), pages 191-200, 2010.

Wing-Kai Hon, Tak Wah Lam, Rahul Shah, Siu-Lung Tam, and Jeffrey Scott Vitter. Com-
pressed index for dictionary matching. In Data Compression Conference (DCC), pages
23-32, 2008.

Guy Jacobson. Space-efficient static trees and graphs. In Symposium on Foundations of
Computer Science, (FOCS), pages 549-554, 1989.

Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323-350, 1977.

T. Kopelowitz, E. Porat, and Y. Rozen

26

27

28

29

30

31
32

J. Tan Munro. Tables. In Vijay Chandru and V. Vinay, editors, Foundations of Software
Technology and Theoretical Computer Science, 16th Conference, Hyderabad, India, Decem-
ber 18-20, 1996, Proceedings, volume 1180 of Lecture Notes in Computer Science, pages
37-42. Springer, 1996.

J. Tan Munro and Venkatesh Raman. Succinct representation of balanced parentheses and
static trees. SIAM J. Comput., 31(3):762-776, 2001.

Gonzalo Navarro and Veli Mékinen. Compressed full-text indexes. ACM Comput. Surv.,
39(1), 2007.

Shoshana Neuburger and Dina Sokol. Succinct 2d dictionary matching with no slowdown.
In Algorithms and Data Structures Symposium, (WADS), pages 619-630, 2011.

Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets. ACM Transactions
on Algorithms, 3(4), 2007.

Dekel Tsur. Succinct representation of labeled trees. TCS, 562:320-329, 2015.

Nathan Tuck, Timothy Sherwood, Brad Calder, and George Varghese. Deterministic
memory-efficient string matching algorithms for intrusion detection. In INFOCOM, 2004.

6:13

CPM 2016

Graph Motif Problems Parameterized by Dual

Guillaume Fertin! and Christian Komusiewicz*?

1 Laboratoire d’Informatique de Nantes-Atlantique, UMR CNRS 6241,
Université de Nantes, 2 rue de la Houssiniére, 44322 Nantes Cedex 3, France
guillaume.fertin@univ-nantes.fr

2 Institut fiir Informatik, Friedrich-Schiller-Universitiat Jena, Germany
christian.komusiewicz@uni-jena.de

—— Abstract

Let G = (V, E) be a vertex-colored graph, where C' is the set of colors used to color V. The
GRAPH MOTIF (or GM) problem takes as input G, a multiset M of colors built from C, and asks
whether there is a subset S C V such that (i) G[S] is connected and (ii) the multiset of colors
obtained from S equals M. The COLORFUL GRAPH MOTIF (or CGM) problem is the special
case of GM in which M is a set, and the LisT-COLORED GRAPH MOTIF (or LGM) problem is
the extension of GM in which each vertex v of V' may choose its color from a list £(v) of colors.

We study the three problems GM, CGM, and LGM, parameterized by ¢ := |V| — |[M|. In
particular, for general graphs, we show that, assuming the strong exponential time hypothesis,
CGM has no (2—¢)’-|V|9M_time algorithm, which implies that a previous algorithm, running in
O(2°-|E|) time is optimal [2]. We also prove that LGM is W[1]-hard even if we restrict ourselves
to lists of at most two colors. If we constrain the input graph to be a tree, then we show that
GM can be solved in O(4¢-|V]) time but admits no polynomial-size problem kernel, while CGM

can be solved in O(\/il + |V]) time and admits a polynomial-size problem kernel.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Combi-
natorics, G.2.2 Graph Theory

Keywords and phrases NP-hard problem, subgraph problem, fixed-parameter algorithm, lower
bounds, kernelization

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.7

1 Introduction

The SUBGRAPH ISOMORPHISM problem is the following pattern matching problem in graphs:
given a (typically large) host graph G and a (small) query graph H, return one (or all)
occurrence(s) of H in G, where the term occurrence denotes here a subset S of V(G) such
that G[S], the subgraph of G induced by S, is isomorphic to H. This type of graph mining
problem has numerous applications, notably in biology [20]. SUBGRAPH ISOMORPHISM is
a structural graph pattern matching problem, where one looks for similar graph structures
between H and G. In some biological contexts, however, additional information is provided
to the vertices of the graphs, for example their biological function. This can be modeled
by labeling each vertex of the graph, for example by giving it one or several colors, each
corresponding to an identified function. In the presence of such functional annotation, the
structure of a given induced subgraph may be of less importance than the functions it

* Christian Komusiewicz was supported by the DFG, project “Multivariate algorithmics for graph and
string problems in bioinformatics” (KO 3669/4-1).

© Guillaume Fertin and Christian Komusiewicz;

37 licensed under Creative Commons License CC-BY
27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 7; pp. 7:1-7:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2

Graph Motif Problems Parameterized by Dual

corresponds to. Thus, a new set of functional graph pattern matching problems has emerged,
starting with the GRAPH MOTIF problem [15], which was introduced in the context of the
analysis of metabolic networks. Here, what is primarily sought in the host graph is a multiset
M of colors that represents the functions of interest.

GRrAPH MoTIF (GM)

Input: A multiset M built on a set C of colors, an undirected graph G = (V, E), and
a coloring x : V — C.

Question: Is there a set S C V such that G[S] is connected and there is a one-to-one
mapping f from S to M?

Many variants of the GM problem have been introduced and studied. In particular,
L1sT-COLORED GRAPH MOTIF (or LGM) is a generalization of GM that is used to identify
protein complexes in protein interaction networks that are similar to a given protein complex
from a different species [7]. In LGM, a list-coloring £ : V' — 2¢ is assigned to each vertex
of G, and the question asked is the existence of S C V such that (i) G[S] is connected and
(ii) the one-to-one mapping f from S to M we look for satisfies Vv € S : f(v) € L(v). The
special case of GM in which M is a set is called COLORFUL GRAPH MOTIF (or CGM). Many
optimization problems related to GM have received interest, including some that are related
to tandem mass spectrometry and where the input graph is directed [19]. All these problem
variants have given rise to a very abundant literature. CGM, GM, and LGM are NP-hard
even in very restricted cases [10]. Consequently, many of the above-mentioned studies have
focused on (dis)proving fixed-parameter tractability of the problems (see e.g. [21] for the
most recent survey on the topic). In such cases, very often the parameter k := |M| = |5] is
considered.

In this paper, we study the parameterized complexity of GM, CGM, and LGM, but we
differ from the usual viewpoint by focusing on the dual parameter ¢ := |V| — |S|, that is, ¢
is the number of vertices to be deleted from G to obtain a solution. Although the choice
of £ may be disputable because it may a priori be too large to expect a good behavior in
practice, there are several arguments for choosing such a parameter: First, after some initial
data reduction, the input may be divided into smaller connected components, where /¢ is not
much larger than k. Second, the algorithms for parameter k rely on algebraic techniques
or dynamic programming, and in both cases, the worst-case running time is equivalent to
the actual running time. In contrast, for example for CGM, the algorithm for parameter ¢
is a search tree algorithm [2], and search tree algorithms can be accelerated substantially
via pruning rules. Finally, there are subgraph mining problems where the dual parameter ¢
is usually bigger than the parameter k but leads to the current-best algorithm (in terms of
performance on real-world instances) [13]. Hence, parameterization by ¢ may be useful even
if £ is bigger than k, and thus deserves to be studied.

Related work and our contribution. GM is NP-hard, even when M is composed of two
colors [10]. Concerning the parameterized complexity for parameter k := | M|, the current-
best randomized algorithm has a running time of 2% - n©() [3, 18] where n := |V, and there
is some evidence that this cannot be improved to a running time of (2 — €)¥ - n®™) [3]. The
current-best running time for a deterministic algorithm is 5.22% - n©() [17]. GM on trees
can be solved in n?(®) time where ¢ is the number of colors in M [10], but it is W[1]-hard
with respect to ¢ [10]. Other parameters, essentially related to the structure of the input
graph G, have been studied by Bonnet and Sikora [6]. Finally, concerning parameter £, GM
has been shown to be W[1]-hard, even when M is composed of two colors [2].

Guillaume Fertin and Christian Komusiewicz

Table 1 Overview of new and previous results with respect to the dual parameter ¢ :=n — k,
where n := |V|, m := |E|, k := |M|, and A := max,cv |£(v)| denotes the maximum list size in G.
The lower bound result for CGM assumes the strong exponential time hypothesis (SETH) [14].

General graphs Trees
LGM W[1]-hard [2] ?
LGM, A =2 W][1]-hard (Cor. 4) ?
GM W(1]-hard [2] O(4* - n) (Thm. 5)

no poly. kernel (Thm. 8)

CGM 0(2*-m) [2], O(v2' +n) (Thm. 13),
no (2 —¢€)-n°® (Thm. 1)
no poly. kernel (Thm. 2) (2¢ + 1)-vertex kernel (Thm. 10)

Since CGM is a special case of GM, any above-mentioned positive result for GM also
holds for CGM. Besides, CGM is NP-hard, even for trees of maximum degree 3 [10], and
does not admit a polynomial-size problem kernel with respect to k£ even if G has diameter
two or if G is a comb graph (a special type of tree with maximum degree 3) [1]. Finally,
CGM can be solved in O(2¢-m) time [2]. The LGM problem is an extension of GM and
thus any negative result for GM propagates to LGM. Moreover, LGM is known to be
fixed-parameter tractable with respect to k, the current-best algorithm runs in 2% - @M
time [18]. Concerning parameter ¢, LGM has been shown to be W[1]-hard even when M is
a set [2].

As mentioned above, we study GM, LGM and CGM with respect to the dual parame-
ter £ :=n — k. Since many results in general graphs turn out to be negative, we also chose
to focus on the special case where the input graph G is a tree. Our results are summarized
in Table 1. In a nutshell, we strengthen previous hardness results for the general case and
show that the O(2¢ - m)-time algorithm for CGM is essentially optimal. Then, we show that
for GM on trees a fixed-parameter algorithm can be achieved, and that, for CGM on trees, a
polynomial problem kernel and better running times than for general graphs can be achieved.

Preliminaries. Throughout the paper, the input graph for our three problems is G = (V, E),
and we let n := |V| (resp. m := |E|) denote its number of vertices (resp. edges). We
use [n] :={1,...,n} to denote the set of the integers from 1 through n. The set S of vertices
sought for in the three problems is called an occurrence of M. If G is vertex-colored, we call
a vertex set S colorful if |S| = |[M| and all vertices in S have pairwise different colors. A
vertex v is called unique if it is assigned a color ¢ that is assigned to no other vertex in V.

We briefly recall the relevant notions of parameterized algorithmics [8]. A reduction to a
problem kernel, or kernelization, is an algorithm that takes as input an instance (I, k) of a
parameterized problem and produces in polynomial time an equivalent instance (I, k") (that
is, having the same solution) such that (i) |I'| < g(k), and (ii) ¥’ < k. The instance (I, k')
is called problem kernel and g is called the size of the problem kernel. If g is a polynomial
function, then the problem admits a polynomial-size problem kernelization. The class W[1] is
a basic class of presumed fixed-parameter intractability [8], that is, if a problem is W[1]-hard
for parameter k, then we assume that it cannot be solved in f(k)-n®(M) time [8]. The strong
exponential time hypothesis (SETH) assumes that CNF-SAT with n variables cannot be
solved in time (2 — €)™ for any € > 0 [14].

This work is structured as follows. In Section 2, we present lower bounds for LGM
and CGM on general graphs. These negative results motivate our study of the case when G

7:3

CPM 2016

7:4

Graph Motif Problems Parameterized by Dual

is a tree; our results for GM on trees and CGM on trees will be presented in Section 3
and Section 4, respectively. Due to lack of space, some proofs are deferred to a full version of
the article.

2 Parameterization by Dual in General Graphs: Tight Lower Bounds

CGM can be solved in O(2¢ - m) time [2]. We show here that this running time bound is
essentially optimal.

» Theorem 1. COLORFUL GRAPH MOTIF cannot be solved in (2 — €) - n°M) time unless
the strong exponential time hypothesis fails.

Proof. We present a polynomial-time reduction from CNF-SAT:

Input: A boolean formula ¢ in conjunctive normal form with clauses Cy,...,Cq over
variable set X = {x1,...,2,}.
Question: Is there an assignment § to X that satisfies ®7

The reduction works as follows. First, for each variable x; € X introduce two wariable
vertices vf and vzf and color each of the two vertices with color x7. The idea is that (with
the final occurrence) we must select exactly one vertex for this color. This selection will
correspond to a truth assignment to X. Now, introduce for each clause C; a clause vertex u;,
color u; with a unique color x¢ and make u; adjacent to vertex v;‘- if ; occurs nonnegated
in C; and to vertex v{ if z; occurs negated in C;. Finally, introduce one further vertex v* with
a unique color x*, make v* adjacent to all variable vertices and let M be the set containing
each of the introduced colors exactly once. Note that there are exactly | X| colors that appear
twice in G and that all other colors appear exactly once. Hence, ¢ = | X|. We next show the
correctness of the reduction. Let I denote the constructed instance of CGM.

First, assume that & is satisfiable and let § be a satisfying assignment of X. For the
CGM instance consider the vertex set S C V' that contains all clause vertices, vertex v*, and
for each variable x; the vertex v! if 3 sets z; to ’true’ and v{ otherwise. Clearly, |S| = |M|
and no two vertices of S have the same color. To show that I is a yes-instance of CGM it
remains to show that G[S] is connected. First, the subgraph induced by the variable vertices
in S plus v* is a star and thus it is connected. Second, since f is a satisfying assignment
each clause vertex in S has at least one neighbor in S (which is by construction a variable
vertex). Hence, G[S] is connected.

Conversely, assume that I is a yes-instance of CGM, and let S be a colorful vertex set
with |S| = |M]| such that G[S] is connected. Since S is colorful, the variable vertices in S
correspond to a truth assignment of X. This assignment satisfies X: Indeed, since G[5] is
connected, there is a path in G[S] between each clause vertex u; and v*, and thus there is a
neighbor of u; that is in S. If this neighbor is v}

J
‘true’ (resp. false’) to x; and thus C; is satisfied.

(resp. vjf), then by construction, /3 assigns

Thus, the two instances are equivalent. Now observe that since ¢ = |X| = r and
n=2r4+q+1, any (2—¢)’-n°M-time algorithm implies a (2 —¢€)" - (r + ¢)°M-time algorithm
for CNF-SAT. This directly contradicts the SETH. |

The above reduction also makes the existence of a polynomial-size problem kernel
for parameter ¢ unlikely. This is implied by the following two facts. First, CNF-SAT
parameterized by the number of variables does not admit a polynomial-size problem kernel
unless NP C coNP/poly [9]. Second, the reduction presented in proof of Theorem 1 is a
polynomial parameter transformation [5] from CNF-SAT parameterized by the number of

Guillaume Fertin and Christian Komusiewicz

variables to CGM parameterized by £. More precisely, given an input CNF-SAT formula &

on variable set X, the reduction produces an instance I = (M, G, x) of CGM with £ = | X|.

Now, any polynomial-size problem kernelization applied to I produces in polynomial time an
equivalent CGM instance I’ of size /©(1) = | X|9(), Since CNF-SAT is NP-hard, we can now
transform this CGM instance in polynomial time into an equivalent CNF-SAT instance that
has size £91) = | X|9(). Hence, a polynomial-size problem kernel for CGM parameterized
by ¢ implies a polynomial-size problem kernel for CNF-SAT parameterized by |X|. This
implies NP C coNP/poly [9] (which in turn implies a collapse of the polynomial hierarchy).

» Theorem 2. COLORFUL GRAPH MOTIF parameterized by £ does not admit a polynomial-
size problem kernel unless NP C coNP/poly.

We have thus resolved the parameterized complexity of CGM parameterized by ¢ on general
graphs and now turn to the more general LGM which is W[1]-hard with respect to ¢ [2].
Here, it would be desirable to obtain fixed-parameter algorithms for the parameter ¢ at least
for some restricted inputs. In other words, we would like to further exploit the structure of
real-world instances to obtain tractability results. A very natural approach here is to consider
the size and structure of the list-colorings £(v) as additional parameter. Unfortunately, the
problem remains W[1]-hard even for the following very restricted case of list-colorings. Herein,
the vertex-color graph is the graph with vertex set V' U C and edge set {{v,c} | ¢ € L(v)}.

» Theorem 3. LisT-COLORED GRAPH MOTIF is W/1]-hard with respect to { even if the
vertex-color graph is a disjoint union of paths.

We immediately obtain the following.

» Corollary 4. LisT-COLORED GRAPH MOTIF is W/[I]-hard with respect to £ even if |L(v)| <
2 for every vertezr in G.

3 Graph Motif on Trees

Motivated by these negative results on general graphs, we now study the special case where
the input graph is a tree. For LGM, we were not able to resolve the parameterized complexity
with respect to ¢ for this case. Hence, we focus on the more restricted GM problem. We
show that GM is fixed-parameter tractable with respect to /¢ if the input graph is a tree.
Recall that for general graphs, GM is W[1]-hard for ¢ even if the motif M contains only two
colors [2]. Hence, the tree structure helps significantly when parameterizing by £.

3.1 A Dynamic Programming Algorithm

Call a color of M abundant if it occurs more often in G than in M. The abundant colors are
exactly the ones that have to be “deleted” to obtain a solution S. Let ci,...,c; denote the
abundant colors of M, and let ¢; denote the difference between the number of vertices in V' that
have color ¢; and the multiplicity of ¢; in M. This implies in particular that >, <i<j l; =4.
The algorithm is a dynamic programming algorithm that works on a rooted representation
of G. Thus, obtain a rooted tree T" by rooting G at an arbitrary vertex r € V. As usual for
dynamic programming on trees, the idea is to combine partial solutions of subtrees. Our
algorithm is somewhat similar to a previous dynamic programming algorithm for GM on
graphs of bounded treewidth [10] but the analysis and concrete table setup is different.

» Theorem 5. GRAPH MOTIF can be solved in O(4° - n) time if G is a tree.

7:5

CPM 2016

7:6

Graph Motif Problems Parameterized by Dual

The fixed-parameter tractability of GM on trees also implies the following result for LGM.

» Corollary 6. LGM can be solved in O(4° - n) time if G is a tree and the vertex-color
graph H = (VUC,{{v,c} | c € L(v)}}) is a disjoint union of paths.

Proof. We describe a reduction of this special case of LGM on trees to GM on trees. Here,
we call the vertices of H that are from V' the V-vertices of H and those that are from C
the C-vertices. Observe that without loss of generality, we can assume that all colors in the
lists are contained in M. First, if H has a connected component that contains more C-vertices
than V-vertices, then the instance (M, G, £) is a no-instance and can be immediately rejected.
Second, for any connected component H' of H that contains at least two C-vertices ¢; and ¢y
that have multiplicity two in M, then the instance is also a no-instance: In H’, the number
of V-vertices exceeds the number of C-vertices by at most one. Hence, if four or more
V-vertices are assigned only to c; or co, then there is some other C-vertex in H' that is
assigned to none of the V-vertices. A similar argument applies if H' contains a C-vertex
that has multiplicity at least three in M.

If the instances are not rejected because any of the cases described above applies, then
each connected component H' of H has at most one C-vertex that has multiplicity two in M
and all other C-vertices have multiplicity at most one. We show that in both cases, the
constraints of £ for H' can be replaced by simple coloring constraints.

Case 1: Every C-vertex of H’ has multiplicity one in M. If H' has the same number
of V-vertices as C-vertices (equivalently, H' has an even number of vertices), then every
occurrence S of M contains all V-vertices from H’. Otherwise, if H' has more V-vertices
than C-vertices (equivalently, H' has an odd number of vertices), then every occurrence S
of M contains all except one V-vertex from H’. In both cases, we can replace the constraints
as follows. Introduce a color cy-, color all V-vertices in H’ with color cg. and replace in M
every C-vertex of H' by cp. In the first case, the number of vertices with color cg- is exactly
the multiplicity of ¢y in M, in the second case it is the multiplicity of ¢y in M plus one.

Case 2: One C-vertex c of H’ has multiplicity two in M. If H' has the same number of
V-vertices as C-vertices (equivalently, H' has an even number of vertices), then the instance
is a no-instance and can be rejected immediately: any assignment of colors to the V-vertices
either fails to assign one of the C-vertices or assigns at most one V-vertex to c¢. Otherwise,
if H' has an odd number of vertices, every occurrence S of M contains all V-vertices of H'.
The constraints posed by H’ may thus be replaced as follows: Introduce a color cg/, color
all V-vertices in H' with color ¢y, and replace in M every C-vertex of H' by cy/ (replace ¢
twice). Then the multiplicity of ¢y in M is exactly the number of V-vertices in H'.
Applying these replacements exhaustively then results in an equivalent instance of GM
on trees which can be solved in the claimed running time due to Theorem 5. |

3.2 A Kernelization Lower Bound

We now show that GM does not admit a polynomial-size problem kernel with respect to ¢
even if G is a tree. The proof is based on a cross-composition [4] from the W[1]-hard
MULTICOLORED CLIQUE problem [11].

MULTICOLORED CLIQUE

Input: A graph H = (W, F') and a vertex-coloring x : W — {1,...,k}.

Question: Is there a vertex set S C W such that S is colorful, that is, |S| = k and
the vertices in .S have pairwise different colors, and H[S] is a clique?

Guillaume Fertin and Christian Komusiewicz

To avoid confusion between the colors of the MULTICOLORED CLIQUE instance and the GM
instance, we refer to the colors of the MULTICOLORED CLIQUE instance as labels in the
following. Informally, cross-compositions are reductions that combine many instances of
one problem into one instance of another problem. The existence of a cross-composition
from an NP-hard problem to a parameterized problem) implies that) does not admit a
polynomial-size problem kernel (unless NP C coNP/poly) [4].

» Definition 7 ([4]). Let L C ¥* be a language, let R be a polynomial equivalence relation
on X* and let @ C ¥* x N be a parameterized problem. An or-cross-composition of L into @
(with respect to R) is an algorithm that, given ¢ instances x1,xa,...,x; € ¥* of L belonging
to the same equivalence class of R, takes time polynomial in Zle |z;| + k and outputs an
instance (y, k) € ©* x N of @ such that

the parameter value k is polynomially bounded in max!_; |z;| 4+ log ¢, and

the instance (y, k) is a yes-instance for @ if and only if at least one instance z; is a

yes-instance for L .

We present an or-cross composition of MULTICOLORED CLIQUE into GM on trees
parameterized by £. The polynomial equivalence relation R will be simply to assume that all
the MULTICOLORED CLIQUE instances have the same number of vertices n. The main trick is
to encode vertex identities in the graph of the MULTICOLORED CLIQUE instance by numbers
of colored vertices in the GM instance; note that this approach was also followed in previous
works on GM [10, 6]. Given ¢ instances (H; = (W1, F1),x1), Ho = Wa, F3),x2),..., Hy =
(W, Fy), xt) of MULTICOLORED CLIQUE such that |W;| = n for all i € [¢], we reduce to an
instance of GM where the input graph is a tree as follows. Herein, we assume without loss
of generality that ¢ = 2° for some integer s.

The first construction step is to add one vertex r that connects the different parts of
the instance and which will be contained in every occurrence of the motif. The vertex r
thus receives a unique color that may not be deleted. To this vertex r we attach subtrees
corresponding to edges of the input instances. Deleting vertices of such a subtree then
corresponds to selecting the endpoints of the corresponding edge.

Instance selection gadget. The technical difficulty in the construction is to ensure that the
solution deletes only vertices in subtrees corresponding to edges of the same graph. To achieve
this, we introduce k- (k — 1) -log ¢ instance selection colors ¢[p, ¢, 7] where p € [k], ¢ € [k]\{p},
and 7 € [logt], and demand that the solution deletes exactly one vertex of each instance
selection color. To ensure that exactly one instance is selected, we use two further colors ¢ ™
and ¢~. For each MULTICOLORED CLIQUE instance (Hj,x;), attach an instance selection
path P; to r that is constructed based on the number . Let b(i) denote the binary expansion
of ¢ and let b.(7), 7 € [logt], denote the Tth digit of b(:). Construct a path P; containing
first a vertex with color ™, then in arbitrary order exactly one vertex of each color in the
color set I; := {t[p,q,7] : b,(i) = 1}, and then a vertex with color ¢:~. Attach the path P,
to r by making the vertex with color ¢+ a neighbor of r.

The idea of the construction is that exactly one instance selection path P; is deleted
completely and that this will force any solution to delete paths that “complement” P; (that
is, paths which contain all ¢[p, ¢, 7] such that b, (i) = 0) in the rest of the graph.

Edge selection gadget. To force deletion of subtrees corresponding to exactly (g) edges
with different labels, we introduce 2k(k — 1) label selection colors A[p,¢]™ and A[p,q]~
where p € [k] and ¢ € [k] \ {p}. These colors will ensure that for each pair of labels p and ¢
the solution deletes exactly one path corresponding to the ordered pair (p,q) and one path
corresponding to the pair (¢, p).

77

CPM 2016

7:8

Graph Motif Problems Parameterized by Dual

There are two further sets of colors. One set is used for ensuring vertex consistency of the
chosen edges, that is, to make sure that all the selected edges with label pair (p, -) correspond
to the same vertex with label p. More precisely, we introduce a color w(p, g| for each p € [k]
and each ¢ € [k] \ {p}, except for the biggest ¢ € [k] \ {p}.

The final color set is used to check that the edges selected for label pair (p, q) and for
label pair (g, p) are the same. To this end, we introduce a set of colors ¢[p, q] for each p € [k]
and each g € [k] \ {p} such that ¢ > p. To perform the checks of vertex and edge consistency,
we encode the identities of vertices and edges into path lengths. More precisely, we assign
each vertex v € W; a unique (with respect to the vertices of W;) number #(v) € [n].

Now, for each label pair (p,q) and each instance i, attach one path P;(u,v) to r for each
edge {u,v} where u has color p and v has color ¢ # p. The path P;(u,v)

starts with a vertex with color A[p, ¢]* that is made adjacent to r,

then contains exactly one vertex of each color in {¢[p,q, 7] : t[p, ¢, 7] ¢ L.},

then contains #(u) vertices of color €[p, q] if p < ¢ and n — #(v) vertices of color ¢[q, p]

if p>gq,

then, if ¢ is not the biggest label in [k] \ p, contains #(u) vertices with color w[p, q],

then, if ¢ is not the smallest label in [k] \ p, contains n — #(u) vertices with color wip, ¢'],

where ¢’ is the next-smaller label in [k]\p (if p = ¢—1, then ¢’ = ¢—2; otherwise ¢’ = ¢—1),
and

ends with a vertex with color A[p, ¢q]~.

Let C denote the multiset containing all the vertex colors of all vertices added during the
construction with their respective multiplicities. In the correctness proof it will be easier to
argue about the colors that are not contained in M. Hence, the construction is completed by
setting the multiset D of colors to “delete” to contain each color with multiplicity one except

the color of » which is not contained in D,

the vertex consistency colors w[p, q] each of which is contained with multiplicity n, and

the edge selection colors ¢[p, g] each of which is contained with multiplicity n.

The motif M is defined as M :=C\ D. It remains to show the correctness.

» Theorem 8. GRAPH MOTIF does not admit a polynomial-size problem kernel with respect
to £ even if G is a tree.

4 Colorful Graph Motif on Trees

For the combination of vertex-colored trees as input graphs and motifs that are sets, the
problem becomes considerably easier. First, we show that CGM admits a linear-vertex
problem kernel in this case. Moreover, we show that this problem kernel can be computed
in linear time. The idea for the problem kernelization is based on two simple observations.
First, in all graphs, not only in trees, the number of vertices that are not unique is bounded.

» Observation 9. Let (M,G,x) be an instance of COLORFUL GRAPH MOTIF. Then at
most 20 vertices in G are not unique.

Proof. Let C* denote the set of colors that occur more than once in G and let occ(c) denote
the number of occurrences of a color ¢ in G. We denote ¢t := [CT|, nt := 3 . occ(c),
and n~ the number of unique vertices in GG. By definition, no color is repeated in M, thus
M| = ct +n~ ; moreover, |V| =nt +n~. Hence, the number ¢ = |V| — | M| of vertices to
delete satisfies £ = n* —cT. By definition n* > 2¢T, and thus we conclude that £ > n* /2. <«

Guillaume Fertin and Christian Komusiewicz

r r T
u v
Figure 1 The two phases of the kernelization. Left: The input instance, where r, u, and v have
unique colors. The pendant non-unique subtrees are highlighted by the grey background. Middle:

after Phase I, all vertices on paths between unique vertices are contracted into r. Right: In Phase II,
all vertices with a color that was removed in Phase I are removed together with their descendants.

Second, if there are two vertices that are unique, then the uniquely determined path between
these vertices is contained in every occurrence of the motif. The kernelization accordingly
removes all the vertices that lie on these paths. More precisely, these vertices are “contracted”
into the root r. Afterwards, in a second phase some further vertices are removed because
their colors have been used during the contraction. Eventually, this results in an instance
which has at most one unique vertex and thus, by Observation 9, bounded size. For an
example of the kernelization, see Figure 1. Below, we give a more detailed description.

» Theorem 10. COLORFUL GRAPH MOTIF on trees admits a problem kernel with at
most 20 + 1 vertices that can be computed in O(n) time.

Proof. We first describe the kernelization algorithm, then we show its correctness and finally
bound its running time. By Observation 9, the size bound holds if the instance has no unique
vertex. Thus, we assume that there is a unique vertex in the following.

Given an instance (G, M, x) of CGM, first root the input tree G at an arbitrary unique
vertex r. Now call a subtree with root v pendant if it contains all descendants of v in G.
Then, compute in a bottom-up fashion maximal pendant subtrees such that no vertex in this
subtree is unique. Call these subtrees the pendant non-unique subtrees. By Observation 9,
the total number of vertices in pendant non-unique subtrees is at most 2¢. Now the algorithm
removes vertices in two phases.

Phase I. Remove from G all vertices except r that are not contained in a pendant non-
unique subtree. Remove all colors of removed vertices from M. If there is a color ¢ such that
two vertices with color ¢ are removed in this step, then return “no”. Make r adjacent to the
root of each pendant non-unique subtree.

Phase Il. In the first step of this phase, for each color ¢ where at least one vertex has been
removed in Phase I, remove all vertices from G that have color ¢. In the second step of this
phase, remove all descendants of these vertices. Finally, let M’ denote the set of colors that
are contained in the remaining instance. This completes the kernelization algorithm; the
resulting instance has at most 2¢ + 1 vertices since all vertices except r are unique. To show
correctness, we first observe the following.

Claim: Every occurrence of M in G contains no vertex v that is removed during Phase 1|
of the kernelization. This can be seen as follows. First, every occurrence of M in G contains
all vertices removed during Phase I: these vertices are either unique or lie on the uniquely
determined path between two unique vertices. Now consider a vertex v removed during
Phase II. If v is removed in the first step of Phase II, then v has the same color ¢ as a vertex u

7:9

CPM 2016

7:10

Graph Motif Problems Parameterized by Dual

removed during Phase I. Consequently, v is not contained in an occurrence of M: By the
above, the occurrence contains v and it contains no other vertex with color ¢. Otherwise, v
is removed in the second step of Phase II, because v is not connected to r. Since every
occurrence of M contains r, it thus cannot contain v.

We now show the correctness of the kernelization, that is, the equivalence of the original
instance (M, G, x) and the resulting instance (M’,G’, x"). First, assume that (M, G, x) is
a yes-instance. Let St be an occurrence of M in G, and let T' denote G[St]; by the above
claim, T contains only vertices that are removed during Phase I or that are contained in G’.
Consider the subtree T” of G that contains all vertices of T that are not removed during the
kernelization. We show that T" is connected in G’ and contains all colors of M’. Connectivity
can be seen as follows. First, observe that 7' and T’ contain r. Second, any vertex v # r
of T is contained in some pendant non-unique subtree of G. Thus, v is in T connected to r
via a path that first visits only vertices of 7", including the root of the pendant non-unique
subtree. The root of the pendant non-unique subtree is in G’ adjacent to r. Thus, each
vertex v # r has in T” a path to r which implies that 7" is connected. It remains to prove
that T’ contains all colors of M’. Consider a color ¢ € M’. Since ¢ € M’, none of the vertices
with color ¢ are removed in Phase I of the kernelization. Moreover, since no vertex of T'
is removed in Phase II of the kernelization, we have that the vertex of T' with color ¢ is
contained in 7”. Thus, T” contains each color of M’. Finally, 7" contains each color at most
once since 1" does.

Now assume that (M’ G’, x’) is a yes-instance and let St/ be an occurrence of M’ in G'.
Let T denote G[Sts U V;], where V; is the set of vertices removed during Phase I of the
kernelization. We show that T is connected and contains every color of G exactly once. To
see that T is connected observe the following: Clearly, G[{r} U V1] is connected. Moreover,
each vertex v # r of T’ has in T" a path to r. This path contains a subpath from v to the
root 7’ of the pendant non-unique subtree containing v. In G, v’ is adjacent to some vertex
of {r} UVy. Therefore, " is connected to in T" and thus T is connected. It remains to show
that T contains every color of G exactly once. Clearly, T’ contains at least one vertex of each
color ¢ € M'. Moreover, it also contains at least one vertex of each color ¢ € M \ M’ since it
contains all vertices of V7. Besides, it contains each color only once: The vertices of 7" have
pairwise different colors and different colors than those of the vertices of V;. Finally, the
vertices of V; have different pairwise colors since the kernelization did not return “no”.

The running time can be seen as follows. Determining the pendant non-unique subtrees
can be done by a standard bottom-up procedure in linear time. Removing all vertices during
Phase I can also be achieved in linear time. After removing a vertex with color ¢ in Phase I,
we label ¢ as occupied. When we remove a vertex with an occupied color during Phase I, we
immediately return “no”. After the removal of vertices during Phase I, we can construct M’
from M in linear time by removing each occupied color. Finally, we can in linear time add
an edge between r and each root of the pendant non-unique subtrees and then remove all
remaining vertices that have an occupied color. The final graph G’ is obtained by performing
a depth-first search from r, in order to include only those vertices still reachable from r. <«

Now, let us turn to developing fast(er) FPT algorithms for CGM. It can be seen that
it is possible to solve CGM in trees in time 1.62¢ - n®(1) by *branching on colors with the
most occurrences’ until every color appears at most twice. More precisely, for a color ¢ that
appears at least three times and some vertex v with color ¢, we can branch into the two
cases to either delete v or to delete the at least two other vertices that have color c¢. The
branching vector! for this branching rule is (1,2) or better. Now, if every color appears at

! For an introduction to the analysis of branching vectors, refer to 8, 12].

Guillaume Fertin and Christian Komusiewicz

most twice, then CGM on trees can be solved in polynomial time [10, Lemma 2]. However,
by a different branching approach, the above running time can be further reduced.

» Branching Rule 11. If there is a color ¢ such that there are two vertices u and v with
color ¢ that are both not leaves of the tree G, then branch into the case to delete from G
either
the maximal subtree containing u and all vertices w such that the path from v to w
contains u, or
the maximal subtree containing v and all vertices w such that the path from u to w
contains v.

Proof of correctness. No occurrence may contain vertices of both subtrees, since in this
case it contains u and v which have the same color. <

If the rule does not apply, then one can solve the problem in linear time; here, let occ(c)
denote the number of occurrences of a color ¢ in G.

» Lemma 12. Let (M, G, x) be an instance of COLORFUL GRAPH MOTIF such that G is a
tree and for each color ¢ with occ(c) > 1 at least occ(c) — 1 occurrences of ¢ are leaves of G,
then (M, G, x) can be solved in O(n) time.

Proof. For each color ¢ with occ(c) > 1, the algorithm simply deletes occ(c) — 1 leaves with
color ¢. This can be done in linear time by visiting all leaves via depth-first search, checking
for each leaf in O(1) time whether occ(c) > 1 and deleting the leaf in O(1) time if this is the
case. The resulting graph contains each color exactly once, and it is connected since a tree
cannot be made disconnected by deleting leaves. |

Altogether, we arrive at the following running time.

» Theorem 13. COLORFUL GRAPH MOTIF can be solved in O(\@Z +n) time if G is a tree.

Proof. The algorithm is as follows. First, reduce the input instance in O(n) time to an
equivalent one with O(f) vertices using the kernelization of Theorem 10. Now, apply
Branching Rule 11. If this rule is no longer applicable, then solve the instance in O(¥)
time (by applying the algorithm behind Lemma 12). Since the graph has O({) vertices,
applicability of Branching Rule 11 can be tested in O(¢) time. Thus, the overall running time
is O(¢) times the number of search tree nodes. Since each application of Branching Rule 11
creates two branches and reduces £ by at least two in each branch, the search tree has
size O(24/?) = O(\/ie). The resulting running time is O(\@Z -¢+mn). Furthermore, the factor
of £ in the running time can be removed by interleaving search tree and kernelization [16],
that is, by applying the kernelization algorithm of Theorem 10 in each search tree node. <«

—— References

1 Abhimanyu M. Ambalath, Radheshyam Balasundaram, Chintan Rao H., Venkata Kop-
pula, Neeldhara Misra, Geevarghese Philip, and M. S. Ramanujan. On the kernelization
complexity of colorful motifs. In Proc. of the 5th Int’l Symp. on Parameterized and Exact
Computation (IPEC’10), volume 6478 of LNCS, pages 14-25. Springer, 2010.

2 Nadja Betzler, René van Bevern, Christian Komusiewicz, Michael R. Fellows, and Rolf

Niedermeier. Parameterized algorithmics for finding connected motifs in biological networks.
IEEE/ACM Trans. on Computational Biology and Bioinformatics, 8(5):1296-1308, 2011.

3 Andreas Bjorklund, Petteri Kaski, and Lukasz Kowalik. Constrained multilinear detection
and generalized graph motifs. Algorithmica, 74(2):947-967, 2016.

7:11

CPM 2016

7:12

Graph Motif Problems Parameterized by Dual

10

11

12

13

14

15

16

17

18

19

20

21

Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds
by cross-composition. SIAM Journal on Discrete Mathematics, 28(1):277-305, 2014.

Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles
and disjoint paths. Theoretical Computer Science, 412(35):4570-4578, 2011.

Edouard Bonnet and Florian Sikora. The graph motif problem parameterized by the struc-
ture of the input graph. In Proceedings of the 10th International Symposium on Parame-
terized and Exact Computation (IPEC’15), volume 43 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 319-330, 2015.

Sharon Bruckner, Falk Hiiffner, Richard M. Karp, Ron Shamir, and Roded Sharan.
Topology-free querying of protein interaction networks. Journal of Computational Biol-
ogy, 17(3):237-252, 2010. doi:10.1089/cmb.2009.0170.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Déniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification
unless the polynomial-time hierarchy collapses. In Proceedings of the 42nd ACM Symposium
on Theory of Computing (STOC’10), pages 251-260. ACM, 2010.

Michael R. Fellows, Guillaume Fertin, Danny Hermelin, and Stéphane Vialette. Upper and
lower bounds for finding connected motifs in vertex-colored graphs. Journal of Computer
and System Sciences, 77(4):799-811, 2011.

Michael R. Fellows, Danny Hermelin, Frances Rosamond, and Stéphane Vialette. On
the parameterized complexity of multiple-interval graph problems. Theoretical Computer
Science, 410(1):53-61, 2009.

Fedor V. Fomin and Dieter Kratsch. Fzact Ezponential Algorithms. Springer-Verlag, 1st
edition, 2010.

Sepp Hartung, Christian Komusiewicz, and André Nichterlein. Parameterized algorith-
mics and computational experiments for finding 2-clubs. Journal of Graph Algorithms and
Applications, 19(1):155-190, 2015.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512-530, 2001.
Vincent Lacroix, Cristina G. Fernandes, and Marie-France Sagot. Motif search in graphs:
Application to metabolic networks. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 3(4):360-368, 2006.

Rolf Niedermeier and Peter Rossmanith. A general method to speed up fixed-parameter-
tractable algorithms. Information Processing Letters, 73(3-4):125-129, 2000.

Ron Y. Pinter, Hadas Shachnai, and Meirav Zehavi. Deterministic parameterized algo-
rithms for the graph motif problem. In Proceedings of the 39th International Symposium on
Mathematical Foundations of Computer Science (MFCS’1}), volume 8635 of Lecture Notes
in Computer Science, pages 589-600. Springer, 2014. doi:10.1007/978-3-662-44465-8.
Ron Y. Pinter and Meirav Zehavi. Algorithms for topology-free and alignment network
queries. J. of Discrete Algorithms, 27:29-53, 2014. doi:10.1016/j.jda.2014.03.002.
Imran Rauf, Florian Rasche, Francois Nicolas, and Sebastian Bocker. Finding maximum
colorful subtrees in practice. Journal of Computational Biology, 20(4):311-321, 2013.
Roded Sharan and Trey Ideker. Modeling cellular machinery through biological network
comparison. Nature Biotechnology, 24(4):427-433, 2006.

Florian Sikora. An (almost complete) state of the art around the graph motif problem.
Technical report, LIGM Université Paris-Est, March 2012. URL: http://www.lamsade.
dauphine.fr/~sikora/pub/GraphMotif-Resume.pdf.

http://dx.doi.org/10.1089/cmb.2009.0170
http://dx.doi.org/10.1007/978-3-662-44465-8
http://dx.doi.org/10.1016/j.jda.2014.03.002
http://www.lamsade.dauphine.fr/~sikora/pub/GraphMotif-Resume.pdf
http://www.lamsade.dauphine.fr/~sikora/pub/GraphMotif-Resume.pdf

Truly Subquadratic-Time Extension Queries and
Periodicity Detection in Strings with Uncertainties

Costas S. Iliopoulos! and Jakub Radoszewski*?

1 Department of Informatics, King’s College London, London, UK
csi@kcl.ac.uk

2 Department of Informatics, King’s College London, London, UK; and
Institute of Informatics, University of Warsaw, Warsaw, Poland
jrad@mimuw.edu.pl

—— Abstract

Strings with don’t care symbols, also called partial words, and more general indeterminate strings
are a natural representation of strings containing uncertain symbols. A considerable effort has
been made to obtain efficient algorithms for pattern matching and periodicity detection in such
strings. Among those, a number of algorithms have been proposed that behave well on random
data, but still their worst-case running time is ©(n?). We present the first truly subquadratic-
time solutions for a number of such problems on partial words. We show that n longest common
compatible prefix queries (which correspond to longest common extension queries in regular
strings) can be answered on-line in O(ny/nlogn) time after O(ny/nlogn)-time preprocessing. We
also present O(n+/nlogn)-time algorithms for computing the prefix array and two types of border
array of a partial word. We show how our solutions can be adapted to indeterminate strings over
a constant-sized alphabet and prove that, unless the Strong Exponential Time Hypothesis is false,
the considered problems cannot be solved efficiently over a general alphabet.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases string with don’t cares, partial word, indeterminate string, longest com-
mon conservative prefix queries, prefix array

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.8

1 Introduction

In this work we deal with different representations of sequential data with uncertainty and
imprecision. An (ideal) text is a sequence of symbols from an alphabet X. The symbols at
some positions may be unknown; in this case they are represented by a don’t care symbol
(sometimes called a hole and denoted as ¢) and the resulting sequence is called a partial word.
In a more general variant, for some positions, instead of a single character from ¥ or a hole,
a subset of ¥ is specified, thus representing a symbol which can be decoded in a number of
ways. The presence of such generalised symbols results in a so-called indeterminate string
(also called a degenerate string).

Our main goal here is to develop worst-case efficient algorithms for different variants
of pattern matching problem and periodicities detection in the context of strings with
uncertainty. The classical pattern matching problem consists in finding all fragments of a
given text that match a given pattern. In the presence of uncertainty one needs to specify

* The author is a Newton International Fellow. Supported by the Polish Ministry of Science and Higher
Education under the “Tuventus Plus” program in 2015-2016 grant no 0392/IP3/2015/73.

© Costas S. Iliopoulos and Jakub Radoszewski;

37 licensed under Creative Commons License CC-BY
27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 8; pp. 8:1-8:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2

Extensions and Periodicity Detection in Strings with Uncertainties

the relation of matching (denoted by =2): a don’t care symbol matches every other symbol,
and a generalised symbol matches every symbol that belongs to the set represented by it
(in particular, two generalised symbols match if their sets have a common element). The
pattern matching problem is well-studied in the case of partial words [14, 21, 22, 9, 8]. Also
if the pattern is an indeterminate string and the text is a regular string, then worst-case
efficient [2] or practically efficient [26, 17, 24] algorithms are known.

One of the variants of the pattern matching problem in strings with uncertainty are
longest common compatible prefix queries (lecp-queries), being a natural generalisation of
longest common prefix queries in a regular string. Here we are to preprocess a text of length
n with uncertain symbols so that the queries for longest matching prefix of any two suffixes
of the text can be answered efficiently. They were first defined in [6], where a solution for
partial words was presented with O(n?) preprocessing time and O(1) query time for the case
of a constant-sized alphabet. A solution with the same complexity for a linearly-sortable
alphabet, which works more efficiently in the case that the number of blocks of don’t cares in
the text is bounded, was shown in [11]. A connected notion is that of a prefiz array, which
stores the answers to the longest common compatible prefix queries between the whole text
and all its suffixes. Its O(n?) worst-case time (and O(n) average time) computation for
partial words was shown in [18] and for indeterminate strings in [23]. Further combinatorial
insights on the prefix array of an indeterminate string have been recently presented in [3, 7].

The basic array of periodicity on strings is the border array. It stores, for every prefix of
a string, the length of its longest proper border. Its importance stems from applications in
pattern matching algorithms and connections with the set of periods of a string; see [10, 13].
There are two different definitions of border on strings with uncertainty; see [16, 23]. A
quantum border of an uncertain string X is its prefix that matches its suffix. The main
weakness of this definition is that if X has a quantum border of length b, there does not
necessarily need to exist a solid string S matching X and having a border of length b. For
example, this is the case for X = a ¢ b which has a quantum border of length 2: a¢ ~ ¢b;
however, none of the strings aab, abb has a border of this length. Therefore, one could be
interested in so-called deterministic borders: a deterministic border of an uncertain text is
defined as a border of some regular string that matches this text. As in the case of regular
strings, quantum and deterministic borders correspond to quantum and deterministic periods
of uncertain texts (the definitions are deferred until Section 2) and thus allow periodicity
detection. Quantum periods are also called weak periods and deterministic periods are
also called strong periods [5]. Both variants of the border array for a partial word or an
indeterminate string can be computed in O(n?) worst-case time and O(n) average time;
see [18, 16].

Our Results. In Section 3 we show that, for a partial word of length n, for any ¢ € {1,...,n}
one can compute in O(n?logn/q) time a data structure for answering lecp-queries in O(q)
time. In particular, one can answer n such queries in a partial word in O(n+/nlogn) time.
In Section 4 we present a construction of the prefix array and both types of a border array —
hence, the corresponding types of period array — in the same time complexity. Finally in
Section 5 we show that all these results (apart from the deterministic border/period array
computation) extend to indeterminate strings over a constant-sized alphabet. Under the
word-RAM model the complexities improve by a factor of v/logn. We also argue that, under
the Strong Exponential Time Hypothesis, none of the considered problems can be solved on
indeterminate strings in O(n?>~¢c®W)) time over an alphabet of size o, for € > 0.

C.S. lliopoulos and J. Radoszewski

2 Preliminaries

A string S of length n = |S] is a sequence of n letters over a finite alphabet X. The letter
at the position ¢, for 1 < i < n, is denoted as S[i]. The size of the alphabet is denoted by
o = |X|. By S[i..j] we denote a factor of S equal to S[i]...S[j] (if i > j then it is the empty
string €). The factor is called a prefiz if i = 1 and a suffiz if j = n. The length of the longest
common prefix of S[i..n] and S[j..n] is denoted as lep(i, 7).

If S[1..b] = S[n—b+ 1..n] then the string S[1..D] is called a border of S. A positive integer
p < n is called a period of S if S[i] = S[i+ p] for alli=1,...,n — p. It is known that S has
a period p if and only if it has a border of length n — p [10, 13].

For a string S we define the following arrays of length n:

prefix array m, such that «[i] = lep(1,4) for i > 2;

border array B, such that BJi] is the length of the longest border of S[1..i];

period array P, such that P[i] is the shortest period of S[1..7].

A partial word X of length n = | X| is a sequence of elements X[1],..., X [n] from U {¢}.

Here ¢ € 3 is a special character called a don’t care symbol. Two characters a,b € ¥ U {¢}
are said to match (denoted as a = b) if a = b or a = ¢, or b = o. The ~-relation is extended
to partial words position by position. Note that = is not transitive; for instance, a ~ ¢ and
o~ b, but a % b.

We define a factor of X as a partial word X[i..j] = X[d]... X[j] (if ¢ > j then it is the
empty partial word). A factor is called a prefiz if i = 1 and a suffiz if j = n. The length
of the longest common conservative prefix at positions i and j, denoted as lccp(s, j), is the
greatest integer k such that X[i..i + k — 1] = X[j..j + k — 1]. Then the prefix array 7[2..n] of
X is defined as 7[i] = lcep(1,).

A quantum border of a partial word X is an integer b € {0,...,n} such that X[1..b] ~
X[n—b+1..n]. A quantum period of X is an integer p € {0,...,n} such that X[i] = X[i + p)
foralli =1,...,n — p. Those two notions correspond, i.e., if X has quantum period p then
it has a quantum border n — p and vice versa; see [23]. A deterministic border (deterministic
period) of X is an integer b (p, respectively) such that there exists a string S such that
S~ X and S has a border of length b (a period p, respectively). Here, obviously, we have
that if p is a deterministic period of X, then n — p is a deterministic border of X and wice
versa. Up to the length 5 quantum and deterministic borders of a partial word are the
same [16]. However, as we have mentioned before, this does not apply to greater lengths.
For partial words we have the following alternative definition of a deterministic period.

» Observation 1. A positive integer p is a deterministic period of a partial word X if and
only if X[i] = X|[j] whenever p|i— j.

» Example 2. The partial word
abac¢ocacvaa

has six quantum periods: 2, 3, 4, 6, 9, 10. For example, 2 is a quantum period because
abracor oo~ ao~raa.

However, this partial word has only four deterministic periods 3, 6, 9, 10, all corresponding
to the solid string

aba abaabaa.

8:3

CPM 2016

8:4

Extensions and Periodicity Detection in Strings with Uncertainties

As in the case of regular strings, we introduce the border arrays and the period arrays for
partial words. By QBJi], QP]i], DBJi], and DPJi] we denote the longest quantum border,
shortest quantum period, longest deterministic border, and shortest deterministic period
of X[1..7]. As we have already mentioned, for every ¢ it holds that QP[i] = ¢ — QBJi] and
DP[i] =i — DBIJi].

» Example 3. The following table presents the prefix array and the border arrays of two
types of an example partial word.

Xli] |[a © a o b a b b b o
i |- 4 2 5 0 2 0 0 0 1
QB |0 1 2 3 4 3 4 5 0 1
DBi]|0 1 2 3 2 3 2 0 0 1

We say that a pattern P occurs in a text T, both being partial words, at position %
it P =~ T[i.i+ |P|—1]. Pattern matching on partial words can be done efficiently via
convolutions. A line of research lead through alphabet-dependent algorithms and randomized
algorithms [14, 21, 22] eventually to an efficient deterministic algorithm; see [9, 8].

» Fact 4. Given two partial words P and T of length m and n, respectively, one can find all

occurrences of P in T in O(nlogm) time.

3 Longest Common Compatible Prefix Queries

Let X be a partial word of length n. In this section we show how to answer lccp-queries for X
in O(q) time after O(n?logn/q)-time preprocessing, for any ¢ € {1,...,n}. In the solution
we use a dynamic programming approach combined with pattern matching in partial words.

Let us define a family of partial words X; = X[(i — 1)g+ 1..iq] for i =1,...,[n/q|. Let
the array Afi,jlfori=1,...,|n/ql and j =1,...,n— g+ 1 be defined as follows: A[i,j] =1
if X; = X[j..j +q— 1], and A[i, j] = 0 otherwise.

» Observation 5. The array A can be computed in (’)("2{%) time.

Proof. Computation of the array is equivalent to pattern matching of each X; in X. The
time complexity follows from Fact 4. |

Let the array L for i =1,...,|n/q] and j =1,...,n — g+ 1 be defined as follows:
Lii,j] =max{k >0 : X;... X151 =~ X[j..7 + kg —1]}.
» Lemma 6. The array L can be computed from the array A in (’)("72) time.

Proof. We compute L[i, j] for decreasing values of ¢ and j using a dynamic programming

approach. Assume that if ¢ > [n/q| or j >n—q+ 1, then L[i,j] =0. For i = |n/q],...,1
and j =n—q+1,...,1,if A[i,j] = 1, then L[i,j] = L[i + 1,7 + ¢] + 1, and otherwise
L[i,j] = 0. <

We answer lccp-queries using the array L. In the query algorithm we use a simple bounded
Iccp routine (denoted as blcep) that for a pair of indices i, j and a length parameter ¢ returns
min(lecp(i, 5), £).

» Observation 7. blccp(i, j,£) for any i,j,¢ can be computed in O(£) time.

C.S. lliopoulos and J. Radoszewski

function lccp(s, 5)

k:=|i/ql; ¢:=kq—i+1;

x := bleep(i, 4, £);

if < ¢ then return z;
y:=Lk+1,j+z] g

z:=blecp(i +z+y,j+ 7 +v,q);
return z +y + z2;

Figure 1 Function lccp(i, 7).

<L>
kq
X } ’ } } } } }
x Y z
J
X

Figure 2 A schematic illustration of the algorithm answering an lccp(i, j)-query. For simplicity
the partial word X is depicted twice; the upper copy is divided into fragments of length ¢q. The
result of the query is shown in bold.

» Lemma 8. Knowing the array L for the partial word X, one can compute lccp(i, j) for
any i,j € {1,...,n} in O(q) time.

Proof. The lccp(i, j) query is answered by the algorithm from the pseudocode in Figure 1.

First, we find the smallest ¢ such that i+ ¢ =1 (mod ¢). We start with an lccp-query from @
and j bounded by ¢ (part z). If the bound is attained, we read the remaining lccp length
up to a multiple of ¢ from the array L (part y). The remainder of the result modulo ¢ is
computed using a final blccp query (part z); see also Figure 2.

The only non-constant-time operations are two blccp-queries, which can be answered in
O(q) time each by Observation 7. <

» Theorem 9. Let X be a partial word of length n and q € {1,...,n} be an integer. After
O(n?logn/q)-time and O(n?/q)-space preprocessing one can answer lccp-queries for X in
O(q) time.

Proof. We use Observation 5 and Lemma 6 for the construction of the data structure and
the algorithm of Lemma 8 for answering lccp-queries. <

4 Computing Periodicity Arrays

The prefix array of a partial word can be computed via n lccp-queries. By selecting ¢ =
|v/nlogn| in Theorem 9, we obtain O(n+/nlogn)-time computation of the array. The space
usage of this algorithm is O(n+/n/logn). However, we can obtain better space complexity if
we refrain from storing the whole array L.

8:5

CPM 2016

8:6

Extensions and Periodicity Detection in Strings with Uncertainties

» Corollary 10. The prefiz array of a partial word of length n can be computed in O(n+/nlogn)
time and O(n) space.

Proof. Consider the array L from the algorithm of Theorem 9. To compute the array =, it
suffices to store the values ¢; = L[1, j] for j = 2,...,n (assuming L1, j] = 0 for j > n—g+1).
Then

7(-[]] = éj - q + blCCp(1+€J q7]+‘€j g, q)v

which can be computed in O(q) time.

The values £; can be computed with only linear space. Probably the simplest approach is
to perform subsequent matching in X of |n/q| partial word patterns of the form X; ... X;
fori=1,...,[n/q|. Then as £; we store the greatest index ¢ such that X;...X; occurs at
the position j in X.

By Fact 4, the aforementioned computation of £;-values takes O(n? logn/q) time. Knowing
those values, we can compute all 7[j] in O(ng) time. We select ¢ = v/nlogn and obtain an
O(n+/nlogn)-time algorithm. It requires only linear space. <

In the case of solid strings one can compute the border array from the prefix array in
linear time; see [10, 13]. For partial words we can apply a similar approach to compute the
quantum border array. Assume 7[n + 1] = 0. We use the following combinatorial observation.

» Observation 11. p is a quantum period of X[1..i] if and only if p <i <p+w[p+1].

Proof.
(=) Assume that p is a quantum period of X[1..i]. Then ¢ — p is a quantum border of
X[1..d], X[1..i — p] = X[p + 1..i]. Hence, n[p+ 1] > i —p, i.e., i <p+ w[p+ 1]. Obviously,
p <.

(<) Wehave X[1.op+1]]= X[p+1l.p+1+np+1]-1]. Asp<i<p+n[p+1] =
p+ 1+ m[p+ 1] — 1, this concludes that X[1..i — p] = X[p+ 1..i]. Hence, i — p is a quantum
border of X[1..7], so p is a quantum period of X|[1..7].)

» Lemma 12. The quantum border array and the quantum period array of a partial word of
length n can be computed in O(n) time given its prefix array.

Proof. We focus on computing the array QP[i]; the array QB[i] can then be computed in
O(n) time. The algorithm is shown in Figure 3.

In the algorithm we store the last index [for which QP[] has been computed. For every
p € {1,...,n} we set the value of the quantum period to p for positions determined by
Observation 11, taking care not to override the previously computed values. As each position
in QP is set at most once, the algorithm runs in linear time. |

Let us proceed to the computation of deterministic border and period arrays. We will
use the following characterisation of a deterministic period of a partial word in terms of its
quantum periods, which is a consequence of Observation 1.

» Observation 13. A partial word X has a deterministic period p if and only if it has all
quantum periods jp for 1 < j < %.

Let us define

Ii(p) = [kp, (k+ 1)p), Mi(p) = j:rrlLi_%}7k(jp + 7ljp + 1]).

We combine Observation 11 with Observation 13 to obtain the following criterion.

C.S. lliopoulos and J. Radoszewski

function Compute-QP(X,n)

{ Assume w[n+1] =0 }
[:=0;
for p:=1tondo
for i := max(p,l +1) to p+n[p+ 1] do

QP[] := p;
1 :=max(l, p+ 7[p+1]);
return QP;

Figure 3 Algorithm computing the quantum period array.

» Observation 14. If i € I;(p), then X[1..i] has a deterministic period p if and only if
i < Mi(p).

Using Observation 14 we obtain the following result.

» Lemma 15. The deterministic border array and the deterministic period array of a partial
word X can be computed in O(nlogn) time and O(n) space given its prefiz array.

Proof. First we compute, for every p € {1,...,n}, an interval I(p) such that ¢« € I(p) if
and only if X[1..7] has a deterministic period p. For this, notice that the intervals Iy (p) for

k=1,...,| 2| are pairwise disjoint, their left endpoints are monotonically increasing, whereas
p
the values My (p) for k=1,..., % are monotonically non-increasing. By Observation 14,

we have I(p) C I(p) as long as My(p) > (k+ 1)p — 1. The last interval included in I(p)
is I (p) N [1, My (p)] for the smallest k such that My (p) < (k+ 1)p — 1, if such a value of

k exists. The computation of I(p) takes O($) time, which gives O (ZZ:I %) = O(nlogn)
time in total.

The final step consists in computing the smallest deterministic period of each X[1..7].

This is equivalent to the min-variant of the Manhattan skyline problem: for a family of
intervals I(p) with heights p we are to compute, for every i, the smallest height of an interval
that covers it. Using the linear-time nested union/find data structure [15] this problem can
be solved in O(n) time (see also Section 5.1 in [12]). <

We plug Corollary 10 into Lemmas 12 and 15 to arrive at the following final result.

» Theorem 16. The prefiz array, the quantum border array, the quantum period array, the
deterministic border array, and the deterministic period array of a partial word of length n

can all be computed in O(n/nlogn) time and O(n) space.

» Remark. In [18] it is mentioned that all quantum periods/borders of the whole partial word
can be computed via a single run of pattern matching, i.e., in O(nlogn) time. Therefore, by
Observation 13, all deterministic periods (hence, borders) of the whole partial word can also

be computed in O (Zzzl %) = O(nlogn) time (and linear space).

5 The Case of Constant Alphabet and Indeterminate Strings

An indeterminate string X of length | X| = n over an alphabet X of size ¢ is a sequence
of nonempty sets X[1],..., X[n] with X[i] C . Two subsets A, B of X are said to match

8:7

CPM 2016

8:8

Extensions and Periodicity Detection in Strings with Uncertainties

(denoted as A = B) if they contain at least one letter in common. Under this matching
relation one can transfer all notions of pattern matching and periodicity from partial words
to indeterminate strings [16, 23]. In this section we show that the majority of the results from
the previous sections extend to indeterminate strings over a constant-sized alphabet. Due
to large constants hidden in the time complexities, the resulting algorithms are plausible in
practice only for a small o. The most common alphabet over which indeterminate strings are
considered is ¥ = {A,C,G, T}. Such indeterminate strings occur, e.g., in the FASTA format.

In the data structure of Section 3 we used an efficient pattern matching routine on partial
words. The state-of-the-art algorithm for pattern matching on indeterminate strings works in
O(onlogn) time or in O(ny/nlogn) time [2], however, only if the text is a reqular string. If
both the pattern and the text are indeterminate, we obtain an efficient solution for o = O(1).

» Lemma 17. Given two indeterminate strings P and T of length m and n, respectively,
over a constant-sized alphabet, one can find all occurrences of P in T in O(nlogm) time.

Proof. For every A C X we perform the following procedure. Construct a binary string P’ of
length m such that P’[¢] = 1 if and only if P[i] = A. Construct a binary string 7’ of length
n such that T'[¢] = 1 if and only if the sets T[¢] and A are disjoint. Use an FFT convolution
to count, for every alignment of P’ and 7”, the number of common 1s at the corresponding
positions of P’ and a factor of T".

In the end we report all alignments for which no common 1 was found in any of the steps.
The algorithm works in 27 steps, each taking O(nlogm) time. <

Another building block of the lccp data structure are the blccp queries. For indeterminate
strings with o = O(1) they can be implemented in O(¢) time just as in Observation 7. We
can also answer them slightly faster using standard properties of the word-RAM model.

» Fact 18. For an indeterminate string X of length n over an alphabet of size o = O(1),
after O(n)-time and space preprocessing one can compute blccp(i, j,€) in O(¢/logn) time.

Proof. Consider any € > 0. Let ¢ = (2 + €)o and L = max ({loinJ ,1). The number of
indeterminate strings of length L over the alphabet of size o is:

ologn 1

L — _—
27L < 9@Far = nTHe < +/n,

so each of them can be assigned an integer identifier between 1 and |y/n|. For every pair of
indeterminate strings of length L we precompute their lccp. There are 227 such pairs, and
the result for each of them can be computed in O(L) time. All the results can be stored in
an array of size 225, In total this precomputation takes

0227 L) = O(nTF 7 logn) = o(n)

time.

For every factor of X of length L we then compute its integer identifier. This can be
done in O(n) time if the identifiers are determined by Rabin-Karp-style polynomials with
the rolling property; see [13]. Finally a blccp(i, j, £) query is answered by cutting the factors
of length ¢ into factors of length L and using the precomputed answers. |

» Remark. For a partial word over a constant-sized alphabet a much better constant
¢ = (2+¢€)log(o + 1) would suffice.

Using Lemma 17 and Fact 18 we obtain an implementation of lccp-queries on indeterminate
strings.

C.S. lliopoulos and J. Radoszewski

» Theorem 19. Let X be an indeterminate string of length n over a constant-sized alphabet
and g € {1,...,|n/logn|} be an integer. After O(n?/q)-time preprocessing one can answer
lccp-queries for X in O(q) time.

Now the computation of the prefix array and quantum border/period array is the same
as in partial words. However, the computation of the deterministic border and period array
does not generalise, since Observation 1, and consequently Observation 13, does not hold
for indeterminate strings. For example, consider an indeterminate string X of length 3 over
Y. ={a,b,c} such that X[1] = {a,b}, X[2] = {a,c}, X[3] = {b,c}. It has a quantum period
1 and X[1] = X[2] ~ X[3] ~ X[1]. However, it does not have a deterministic period 1 since
there is no s € ¥ that would match X[1], X[2], and X[3] simultaneously. Therefore we obtain
only the following result for indeterminate strings.

» Corollary 20. The prefix array, the quantum border array, and the quantum period array
of an indeterminate string of length n over a constant-sized alphabet can be computed in
O(n+/n) time and O(n) space.

The time complexities of the algorithms of Corollary 20 have exponential dependency on
the alphabet size 0. We will now show that, under some well-known hypotheses, no truly
subquadratic algorithms with polynomial dependency on o exist for any of the considered
problems.

The Orthogonal Vectors Problem is defined as follows: given two sets A and B containing
N vectors from {0,1}¢ each, does there exist a pair of vectors & € A and 8 € B that is
orthogonal, i.e., ZZ=1 afh]B[h] = 0?7 The following conjecture is known to be implied (see
[25]) by the Strong Exponential Time Hypothesis (SETH), see [19, 20], which asserts that for
any € > 0 there is an integer k > 3 such that k-SAT cannot be solved in 2(1=9" time. This

conjecture has already been applied to prove hardness results of stringology problems [1, 4].

» Conjecture 21. There is no € > 0 and an algorithm that solves the Orthogonal Vectors
Problem in O(N?~¢.d°W) time.

We will show that, under this conjecture, pattern matching on indeterminate strings
of length n and 2n, respectively, both over an alphabet of size o, cannot be solved in
O(n?=<- M) time.

» Theorem 22. The Orthogonal Vectors Problem can be reduced to pattern matching of an
indeterminate pattern of length n in an indeterminate text of length 2n, where n = N, over
an alphabet of size o0 = d.

Proof. Let A = {ay,...,ay} and B = {B,...,8n} be the two sets of vectors in {0, 1}<.

Consider an alphabet ¥ = {1,...,0}. For a vector a € {0,1}¢, by f(a) we denote the
subset of 3 defined as: s € f(a) < afs] = 1. Under this mapping, two vectors o and § are
orthogonal if and only if the sets f(«) and f(3) are disjoint, i.e., the indeterminate symbols
f(a) and f(8) do not match.

We construct an indeterminate pattern P = f(«aq) ... f(ay) and an indeterminate text
T=f(B1)..-f(BN)f(B1)-..f(Bn). Then the Orthogonal Vectors Problem for the sets A
and B has a positive answer if and only if P does not occur in T at any of the positions
1,...,n. <

Let P and T be the indeterminate pattern and text of Theorem 22 and S be the
concatenation of P and T. As the pattern matching can be solved by computing the prefix
array of S or any of the border arrays of S, or answering n lccp-queries in S, we obtain the
following conditional lower bound.

8:9

CPM 2016

8:10

Extensions and Periodicity Detection in Strings with Uncertainties

» Corollary 23. The prefiz array and any of the border arrays of an indeterminate string of
length n cannot be computed in O(n>~¢ - oW time unless SETH fails. Also the problem
of answering n lccp-queries in an indeterminate string of length n cannot be solved in
On?=<- W) time unless SETH fails.

6 Conclusions and Final Remarks

We have presented a worst-case efficient framework for answering longest common compatible
prefix queries in a partial word. We have then shown how we can compute the prefix array
and two types of border/period arrays of a partial word basically as fast as answering n
lccp-queries. In some cases lccp-queries can be answered faster than using our approach —
e.g., if the number of don’t care symbols is small or the number of groups of consecutive
don’t care symbols is small, see [11] — which automatically yields more efficient algorithms
for computing the aforementioned arrays.

Then we have presented extensions of all the results apart from the construction of the
deterministic border and period array to indeterminate strings over a constant-sized alphabet.
We have also argued that, for general alphabets, efficient solutions to any of the considered
problems for indeterminate strings would violate the Strong Exponential Time Hypothesis.
This, in particular, justifies the usage of heuristic approaches for these problems. As an open
question we leave the computation of deterministic periods of an indeterminate string over a
constant-sized alphabet in O(n?~¢) time.

Acknowledgements. The authors thank an anonymous referee for a number of helpful
suggestions.

—— References

1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results
for LCS and other sequence similarity measures. In Venkatesan Guruswami, editor, I[EEE
56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA,
USA, 17-20 October, 2015, pages 59-78. IEEE Computer Society, 2015. doi:10.1109/
FO0CS.2015.14.

2 Karl R. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039-1051,
1987. doi:10.1137/0216067.

3 Ali Alatabbi, M. Sohel Rahman, and William F. Smyth. Inferring an indeterminate string
from a prefix graph. J. Discrete Algorithms, 32:6-13, 2015. doi:10.1016/j.jda.2014.12.
006.

4 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). In Rocco A. Servedio and Ronitt Rubinfeld,
editors, Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Com-
puting, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 51-58. ACM, 2015.
doi:10.1145/2746539.2746612.

5 Francine Blanchet-Sadri and Robert A. Hegstrom. Partial words and a theorem of
Fine and Wilf revisited. Theor. Comput. Sci., 270(1-2):401-419, 2002. doi:10.1016/
50304-3975(00)00407-2.

6 Francine Blanchet-Sadri and Justin Lazarow. Suffix trees for partial words and the
longest common compatible prefix problem. In Adrian Horia Dediu, Carlos Martin-
Vide, and Bianca Truthe, editors, Language and Automata Theory and Applications

http://dx.doi.org/10.1109/FOCS.2015.14
http://dx.doi.org/10.1109/FOCS.2015.14
http://dx.doi.org/10.1137/0216067
http://dx.doi.org/10.1016/j.jda.2014.12.006
http://dx.doi.org/10.1016/j.jda.2014.12.006
http://dx.doi.org/10.1145/2746539.2746612
http://dx.doi.org/10.1016/S0304-3975(00)00407-2
http://dx.doi.org/10.1016/S0304-3975(00)00407-2

C.S. lliopoulos and J. Radoszewski

10

11

12

13
14

15

16

17

18

19

20

21

22

23

— 7th International Conference, LATA 2018, Bilbao, Spain, April 2-5, 2013. Proceed-
ings, volume 7810 of Lecture Notes in Computer Science, pages 165-176. Springer, 2013.
doi:10.1007/978-3-642-37064-9_16

Manolis Christodoulakis, P. J. Ryan, William F. Smyth, and Shu Wang. Indeterminate
strings, prefix arrays & undirected graphs. Theor. Comput. Sci., 600:34-48, 2015. doi:
10.1016/j.tcs.2015.06.056

Peter Clifford and Raphaél Clifford. Simple deterministic wildcard matching. Inf. Process.
Lett., 101(2):53-54, 2007. doi:10.1016/j.ipl.2006.08.002.

Richard Cole and Ramesh Hariharan. Verifying candidate matches in sparse and wildcard
matching. In John H. Reif, editor, Proceedings on 34th Annual ACM Symposium on Theory
of Computing, May 19-21, 2002, Monitréal, Québec, Canada, pages 592-601. ACM, 2002.
doi:10.1145/509907.509992

Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on Strings.
Cambridge University Press, 2007.

Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Marcin Kubica, Alessio
Langiu, Jakub Radoszewski, Wojciech Rytter, Bartosz Szreder, and Tomasz Waleir. A note
on the longest common compatible prefix problem for partial words. J. Discrete Algorithms,
34:49-53, 2015. doi:10.1016/3.jda.2015.05.003.

Maxime Crochemore, Costas S. Iliopoulos, Marcin Kubica, Jakub Radoszewski, Wojciech
Rytter, and Tomasz Walen. Extracting powers and periods in a word from its runs structure.
Theor. Comput. Sci., 521:29-41, 2014. doi:10.1016/j.tcs.2013.11.018.

Maxime Crochemore and Wojciech Rytter. Jewels of Stringology. World Scientific, 2003.
Michael J. Fischer and Michael S. Paterson. String matching and other products. In Richard
Karp, editor, Proceedings of the 7th SIAM-AMS Complexity of Computation, pages 113—
125, 1974. d0i:10.1007/978-3-540-89097-3_14.

Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special case of dis-
joint set union. J. Comput. Syst. Sci., 30(2):209-221, 1985. doi:10.1016/0022-0000(85)
90014-5.

Jan Holub and William F. Smyth. Algorithms on indeterminate strings. In Proceedings of
14th Australasian Workshop on Combinatorial Algorithms, pages 36-45, 2003.

Jan Holub, William F. Smyth, and Shu Wang. Fast pattern-matching on indeterminate
strings. J. Discrete Algorithms, 6(1):37-50, 2008. doi:10.1016/j.jda.2006.10.003.
Costas S. Iliopoulos, Manal Mohamed, Laurent Mouchard, Katerina Perdikuri, William F.
Smyth, and Athanasios K. Tsakalidis. String regularities with don’t cares. Nord. J. Comput.,
10(1):40-51, 2003.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput.
Syst. Sci., 62(2):367-375, 2001. doi:10.1006/jcss.2000.1727.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly

exponential complexity? J. Comput. Syst. Sci., 63(4):512-530, 2001. doi:10.1006/jcss.

2001.1774.

Piotr Indyk. Faster algorithms for string matching problems: Matching the convolution
bound. In 89th Annual Symposium on Foundations of Computer Science, FOCS’98, Novem-
ber 8-11, 1998, Palo Alto, California, USA, pages 166-173. IEEE Computer Society, 1998.
doi:10.1109/SFCS.1998.743440.

Adam Kalai. Efficient pattern-matching with don’t cares. In David Eppstein, editor,
Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
January 6-8, 2002, San Francisco, CA, USA, pages 655-656. ACM/SIAM, 2002. URL:
http://dl.acm.org/citation.cfm?id=545381.545468.

William F. Smyth and Shu Wang. New perspectives on the prefix array. In Amihood Amir,
Andrew Turpin, and Alistair Moffat, editors, String Processing and Information Retrieval,

8:11

CPM 2016

http://dx.doi.org/10.1007/978-3-642-37064-9_16
http://dx.doi.org/10.1016/j.tcs.2015.06.056
http://dx.doi.org/10.1016/j.tcs.2015.06.056
http://dx.doi.org/10.1016/j.ipl.2006.08.002
http://dx.doi.org/10.1145/509907.509992
http://dx.doi.org/10.1016/j.jda.2015.05.003
http://dx.doi.org/10.1016/j.tcs.2013.11.018
http://dx.doi.org/10.1007/978-3-540-89097-3_14
http://dx.doi.org/10.1016/0022-0000(85)90014-5
http://dx.doi.org/10.1016/0022-0000(85)90014-5
http://dx.doi.org/10.1016/j.jda.2006.10.003
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1109/SFCS.1998.743440
http://dl.acm.org/citation.cfm?id=545381.545468

8:12 Extensions and Periodicity Detection in Strings with Uncertainties

15th International Symposium, SPIRE 2008, Melbourne, Australia, November 10-12, 2008.
Proceedings, volume 5280 of Lecture Notes in Computer Science, pages 133-143. Springer,
2008. doi:10.1007/978-3-540-89097-3_14.

24 William F. Smyth and Shu Wang. An adaptive hybrid pattern-matching algorithm on
indeterminate strings. Int. J. Found. Comput. Sci., 20(6):985-1004, 2009. doi:10.1142/
S0129054109007005.

25 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357-365, 2005. doi:10.1016/j.tcs.2005.09.023.

26 Sun Wu and Udi Manber. Agrep — a fast approximate pattern-matching tool. In Proceedings
USENIX Winter 1992 Technical Conference, page 153-162, 1992. URL: https://www.
usenix.org/legacy/publications/library/proceedings/wu.pdf.

http://dx.doi.org/10.1007/978-3-540-89097-3_14
http://dx.doi.org/10.1142/S0129054109007005
http://dx.doi.org/10.1142/S0129054109007005
http://dx.doi.org/10.1016/j.tcs.2005.09.023
https://www.usenix.org/legacy/publications/library/proceedings/wu.pdf
https://www.usenix.org/legacy/publications/library/proceedings/wu.pdf

Estimating Statistics on Words Using Ambiguous
Descriptions

Cyril Nicaud

Université Paris-Est, LIGM (UMR 8049), F77454 Marne-la-Vallée, France
cyril.nicaud@u-pem.fr

—— Abstract

In this article we propose an alternative way to prove some recent results on statistics on words,

such as the expected number of runs or the expected sum of the run exponents. Our approach
consists in designing a general framework, based on the symbolic method developed in analytic
combinatorics. The descriptions obtained in this framework are built in such a way that the
degree of ambiguity of an object O (i.e., the number of different descriptions corresponding to
0) is exactly the value of the statistic under study for O. The asymptotic estimation of the
expectation is then done using classical techniques from analytic combinatorics. To show the
generality of our method, we not only apply it to obtain new proofs of known results, but also
extend them from the uniform distribution to any memoryless distribution.

1998 ACM Subject Classification G.2.1 Combinatorics.
Keywords and phrases random words, runs, symbolic method, analytic combinatorics.

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.9

1 Introduction

In this article we propose an alternative way to prove some recent results on statistics on
words, such as the expected number of runs or the expected sum of the run exponents.
Studying statistics on words is a classical topic in discrete probabilities, which has many
fundamental applications in computer science, for instance in the fields of bioinformatics,
information theory and average case analysis of algorithms.

We specially focus on statistics related to the runs in a random word (see Section 2.1 for
the definition). Bounding the maximal number of runs in a word is a fundamental question
in combinatorics of words, with consequences in text algorithms. Kolpakov and Kucherov
proved that it is in O(n) in their seminal paper [12], and they conjectured that it is at most
n. Banai and his coauthors proved this conjecture very recently [1]. Several other statistics,
such as the total run length or the sum of exponents, have also been studied in the literature.
Besides tightening lower and upper bounds in the worst case [4, 5, 8, 14, 16, 17, 18, 1],
works have been done on the expected values of those statistics, for uniform distributions on
words [15, 13, 11, 3]. Tt is the kind of questions we propose to study in this article.

Our main contribution is to provide a general framework, which proves quite useful to
obtain asymptotic equivalents to the expectations of statistics related to runs. We follow and
adapt the main ideas developed in the field of analytic combinatorics (see the textbook of
Flajolet and Sedgewick [6]): First we explain how to build the formal power series L, (z) that
corresponds to the statistic x directly from a combinatorial specification on sets of words.
Then, we use the techniques of complex analysis to estimate the expectation E,[x] of x for
uniform random words of length n. The main difference with the classical framework is that
the combinatorial specifications we use are ambiguous. Usually, unambiguity is mandatory for
this combinatorial method to apply. However, if the degree of ambiguity of the specification

© Cyril Nicaud;
37 licensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No.9; pp.9:1-9:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2

Estimating Statistics on Words Using Ambiguous Descriptions

for a word w, i.e. the number of ways to produce w, is exactly x(w), then we can directly
get an expression of L,(z), or an equation it satisfies.

The net gain of this method is that once L, (z) is known, no tedious computations are
needed to get the asymptotic equivalent of E,,[x]. The tools from analytic combinatorics
apply and directly yield the result. Moreover, this framework can be used to go beyond
uniform distributions, since it can easily be extended to memoryless distributions, where
each letter is chosen independently with some fixed probability on the alphabet.

The technique we propose is quite natural, and there are hints of its use, for instance,
in [6, A.7.] and also in the study of hidden words [7]. However, it lacks a general framework,
which is what we propose and illustrate in this article. This introduction is continued in
Section 3, where we present the method on three basic examples, after the required notations
given in Section 2. This is done in an informal way, but it should gives a fair picture of our
method. The formalism of weighted sets is then introduced in Section 4. In Section 5, we
propose alternative proofs to some results of the literature. Finally, we explain in Section 6
how to generalize them to memoryless distributions.

2 Preliminaries

For any two nonnegative integers i, j, let [i,j] denote the integer interval {i,...,j}. By
convention, [¢,j] = 0 if j < 4. Let also [¢] denote the integer interval [1,4].

The mobius function p: Z>1 — {—1,0,1} is defined as follows. If n = pi"* --- pp* is the
decomposition of a positive n into prime numbers, then p(n) = (—1)* if all the a;’s are equal
to 1, and p(n) = 0 otherwise. The main property of this function is that f and g are two
functions from Zx; such that f(n) = 32, 9(d), then g(n) = 34, 1 (%) f(d), where d|n
means that d ranges over the divisors of n.

2.1 Words and Probabilities on Words

In the sequel we consider words on a finite alphabet A, of cardinality £ > 2. We assume the
reader is familiar with the classical definitions on words, such as prefixes, suffixes, factors,
subwords ...For w € A* of length n and i € [n], let w; (or w[i]) denote the i-th letter of w,
with the convention that positions start at 1. The last letter of w is therefore wy,,. Let also
w(i, j] = w; - - - w; denote the factor of w that starts at position ¢ and ends at position j.

Recall that a word w is not primitive when there exists a word v and an integer k > 2
such that w = v”*, and that it is primitive otherwise. Let P denote the set of all primitive
words. A word w of length n is periodic with period p > 1 when wli] = w[i + p], for every
i € [n — p]. The period of a word is its smallest period. If w is periodic with period p, then
its exponent is lwl
ababa is 5/2. A run of period p in a word w is a factor w[i, j] of w with least period p, such
that p > 2 and w[i — 1, j] and wli, j + 1], when they exist, are not of period p (the factor
wli, j] is “maximal” for the period p). We identify such a run by the triplet (7, j,p). Let
RUNS(v) denote the set of all runs in the word v.

. The exponent is not necessarily an integer: for instance the exponent of

The uniform distribution on a finite set F is the probability p defined for all e € FE by
p(e) = ﬁ By a slight abuse of notation, we will speak of the uniform distribution on A* to
denote the sequence (py,)n>o of uniform distributions on A™. For instance, if A = {a,b,c},
then each element of A™ has probability 37" under this distribution.

Another very classical distribution on A™ is the memoryless distribution of probability p,
where p is a probability on the alphabet A. Under this distribution, the probability of a word

C. Nicaud

w=wy- - wy, € A" is P,(w) = p(w1) - - - p(wy,). This distribution consists in generating each
letter of the word independently, following p.

2.2 Elements of Analytic Combinatorics

We only present the parts of this well-established theory that will be needed in the sequel.
For more information, the reader is referred to the book of Flajolet and Sedgewick [6].

A set £ with a size function s : £ — Nis a combinatorial set if for every n € N, &, 1= s71(n)
is finite. The generating series E(z) of £ is defined by E(z) :=) ¢ 25 =3 s enz",
with e, =|&,|. We will also use the notation [2"|E(z) := e, to denote the n-th coefficient
E(z). If £ and F are two combinatorial sets of size functions s and ¢, £ x F is also a
combinatorial set for the size function r((e, f)) = s(e) + t(f), for every e € £ and f € F.
This construction extends naturally to £ x --- x & and to ¥, for every k > 2.

The symbolic method consists in a dictionary to directly translate unambiguous combina-
torial specifications into equations on generating series. In particular:

» Theorem 1 ([6]). For £ and F two combinatorial sets of generating series E(z) and F(z):

If € and F are two disjoint sets, then G = EUF implies that G(z) = E(z) + F(2).

If G =& X F, then G(z) = E(2)F(z).

IfE =0 and G = E* := Up>oEF, then G(z) = ﬁ(z)

There are other basic constructions, but we will not need them in this article. However,
there is a more advanced tool that is particularly useful for us: If & = (), a tuple of elements
of £ is primitive when, it is primitive as a word on the alphabet £. From [6, A.4] we get that
if F is the set of primitive tuples of elements of £, then

- p(k) B(F)

F(z) 1= B(#)

(1)

k>1

As an illustration, observe that the generating series of the alphabet is A(z) = ¢z, as there
are ¢ letters, each of size 1. Since a word is a tuple of letters, the generating series of all

words! is ﬁ%ﬂ = ﬁ. Moreover, by Equation 1, the generating series P(z) of the set P
of primitive words on A is
u(k) £2*
P(z) = —_ 2
() =3 B)
E>1

The second part of the theory consists in considering generating series as analytic functions
from C to C, and then in using the powerful techniques of this field. We referred the reader
to [6] for the classical definitions of the theory of analytic functions. In the sequel, we
will only use the following theorem, which is a simplified version of the classical Transfer
Theorem [6, p.393]. The full version is much more powerful, but it requires some analytic
conditions that are too long to introduce for this extended abstract.

» Theorem 2 (Simplified Transfer Theorem [6]). Let r be a positive real number. Let f be a
function from C to C, which is analytic at 0, with radius of convergence greater than r. For
any k € Z>1, we have the following asymptotic equivalent as n tends to infinity,

[z f)nt

= E ~ — e

! This elementary result can of course be obtained directly.

9:3

CPM 2016

9:4

Estimating Statistics on Words Using Ambiguous Descriptions

We will also use Theorem 2 the following way in the sequel: if f1, ..., fr are analytic at 0
and of radius of convergence greater than r, then applying the theorem to each term yields

(D 4 B0 BO)) ee 5
1—z/r (1—2z/r)? (1—2z/r)k (k—1)trm
since the other terms are negligible when n tends to infinity.

Extracting the n-th coefficient of Equation (2) yields the well known fact that if P,
denote the number of primitive words, then P, = Zd|n /e ~ g7, Hence, P(z) is analytic at
0 and its radius of convergence is 1/¢. This simple fact will be quite useful in the sequel.

If x is a statistic on a combinatorial set &, i.e. a mapping from £ to R, the cumulative
generating series of x is the formal power series Ly (2) = > ¢ x(e)z!°l. Observe that the
expectation of x for uniform random elements of &, is given by E,[x| = [2"|L,(2)/[z"]E(z).
Since we focus on statistics on words in this article, we will always have [2"]E(z) = £™, the
number of words of length n, except in Section 6 where we directly work with probabilities.

[z

3 Three Introductory Examples

In this section we study three basic examples, to illustrate how some statistics on random
words can be estimated using ambiguous specifications. We will not be fully formal, the
rigorous framework will be presented in the next section.

We start with the classical question of estimating the expected number occurrences of
a fixed pattern v of length m in a uniform random word w of length n. Occurrences may
overlap: aaa has two occurrences of aa in our settings. Let «, be the random variable
that counts the number of occurrences of v in w. The classical probabilistic analysis of the
expectation E,[a,,] of oy, for the uniform distribution on A™ is the following: for any i € [n]
let X; be the random variable that values 1 if there is an occurrence of v in w starting
at position ¢ and that values 0 otherwise. Then we have a, = Z?:l X;. The X;’s are
not independent, but since the expectation is linear, we have E,[a,] = > i | E[X;]. As a
consequence, E[Z,] = (n —m + 1){7™ ~nl~™, as v is fixed in our settings.

As we are working with the uniform distribution, the probabilistic proof can also be
established in a purely combinatorial manner: We just count the number of words of length n
having an occurrence of v at position i, and get exactly the same computations.

There is another, more advanced, way to obtain this result using combinatorics. The
symbolic method described in Section 2.2 works when one starts with an unambiguous
combinatorial specification. If the regular expression is ambiguous, then applying blindly
the rules of transformation does not produce the correct generating series. Nonetheless, the
resulting series L(z) can still be useful: roughly speaking, if x(w) denote the number of
different ways that the word w can be parsed in the expression (we call this quantity the
degree of ambiguity of w), then L(z) =", k(w)z!"!. We can take advantage of this property,
provided we can design an ambiguous expression such that for every word, the value of the
statistic is equal to its degree of ambiguity. Back to our example, it is not difficult to see that
for the ambiguous expression £ = A*vA*, each word w can be parsed in a number of ways
equal to the number of occurrences of v in w. Hence, using the dictionary of the symbolic
method, we get that L, (z) = % From this expression we obtain:
|Z ay(w) =z]m:[z]m:(n—m—&-l)ﬁ .
w|=n

We just have to divide by £" to get the expectation of .. Instead, we can use the Simplified
Z’VTL

Transfer Theorem directly on %7z to obtain that E, [ay] ~ n€~™. Tt is probably too

C. Nicaud

complicated to use analytic combinatorics here, but in many situations, we will not want
to find an exact expression for the n-th coefficient, if it can be avoided. Using the Transfer
Theorem, we can find asymptotic equivalents without first computing the coefficients.

Let us consider another simple example. Assume that we are now interested in the number
Bu(w) of occurrences of v as a subword of w. The expectation of 3, for random words of
length n can be established using probabilities and the linearity of the expectation as for
«,. However, we want to illustrate the use of analytic tools once more. It is not difficult
to verify that the ambiguous expression £ = A*v; A* v A* - -+ A*v,, A* corresponds to our
needs. Its associated generating series is L(z) = %, which satisfies the conditions

of the Simplified Transfer Theorem. This yields that [z"]L(z) ~ [”77;:!"7". As there are (™
words of length n, the expected number of occurrences of v as a subword of a random word
of length n is asymptotically equivalent to # See [7] for more information on statistics
related to subwords.

We conclude this section with a last elementary example. Let w(w) denote the length of
the largest word v such that w € vA*U, where T denote the reverse (or mirror) of v. The
description £ = U, ¢ 4+vA*D is ambiguous, but a word w is in exactly 7(w) sets of this union,
since the number of nonempty prefixes of a word is equal to its length. The specification £

can be rewritten £ x A*, where £ is the set of pairs (v,7) for nonempty v. The generating

series of € is E(z) = %, and the symbolic method yields that L(z) = % As E(z) is

analytic at 0 with radius of convergence % > %, the Simplified Transfer Theorem applies

and yields that [z"]L(z) ~ E({~1)¢" = /A(". Hence, the expected value of 7 tends to ;2.

In the sequel, we define a framework on sets of weighted words to formalize what we did
for our three introductory examples. It is directly inspired from the simple remarks we just
made, on how ambiguity can be used to estimate statistics. However, this is done in a more
sophisticate way. We will be able, for instance, to handle non-integer degrees of ambiguity,
which will prove useful in Section 5.

4 Combinatorics of Sets of Weighted Words

In this section we introduce the framework that will be used throughout this article. The
idea is to formalize the notion of “number of time an ambiguous expression is parsed”, and
to do it in a way similar to the symbolic method. For this purpose, we have to introduce
some formalism on sets of weighted words. The definitions we propose are natural extensions
of the classical ones on sets.

Consider the two sets of words & = {a,ab,aa} and F = {e,a,b}. We interpret them as
“each word of £ has weight 1”7, and the same for F. Since a is in both £ and F, we would
like a to have weight two in £ U F. Similarly, since ab = a -b = ab - ¢, we would like ab to
have weight two in &€ - F. Finally, since aaa =a-a-a =a-aa = aa - a, we would like aaa to
have weight three in £*. A relevant way to handle this is to use multisets, that is, sets where
an element may appear more than once. We will need a bit more in the sequel, and thus
allow the weights to take any real positive value in the definitions below.

Formally, if £ be a nonempty set, a weighted set*> on & is a mapping M from € to Rxg.
For e € £, we say that e is in M (written e € M) if M(e) # 0, and we write e ¢ M otherwise.

A set M is viewed as a weighted set where every element of e has weight 1: for every e € &£,
M(e) =1if e € M and M(e) = 0 otherwise.

2 We use the terminology “weighted set on £” for “set of weighted elements of £”, as a weighted graph is
a graph of weighted vertices.

9:5

CPM 2016

9:6

Estimating Statistics on Words Using Ambiguous Descriptions

If £ is a combinatorial set of size function s, we define the generating series M(z) of
a weighted set M on € by M(z) = Y ..¢ M(e)2*(¢). Observe that if M is a set, then the
generating series of M viewed as a weighted set or as a set coincide.

From now on, we only work on weighted sets of words on A. To simplify the notations,
we will sometimes write M = {a — %, ba — 3,baba — 11} for the weighted set defined by
M(a) = 5, M(ba) = 3, M(baba) = 11, and M(z) = 0 for every = ¢ {a, ba, baba}.

If M and M’ are two weighted sets of words, the sum M @& M’ is the weighted set A/
defined by N (w) = M(w) + M'(w), for every w € A*. The concatenation M © M’ of the
weighted sets M and M’ is defined by

MoM = {w — MM ()}
vEM
v'eM’
That is, every pair (v,v’) contributes additively to M (v)M(v") to the weight of the word vv’.
For instance, if M = {a — 1/2,ab+ 3} and M’ = {& — 5,b+— T}, then their concatenation
isMOM ={awr 5/2,ab+ 37/2,abb — 21}.

If ¢ ¢ M, the star M* is defined by M* = @59 M"*, where M° = {¢ — 1} and
MFFHL = MF © M for every k > 0. Observe that if € € M, then this operation is not well
defined, as ¢ is in every M* and therefore has infinite weight in M?*.

The following proposition extends the symbolic method to weighted sets of words.

» Proposition 3. If M and M’ are two weighted sets of words, then

N=MaoM M (z) + M'(z),
N=MoM = N(z) = M(2)M'(z),
1

U
=
&

I

N=M" = N = (ife ¢ M).

1—M(z)’

In the sequel, we will implicitly use the following lemma, which was already presented
informally in Section 3.

» Lemma 4. Let a,(w) denote the number of occurrences of v as a factor of w. The
generating series of the weighted set A* ® {v — 1} ® A* (the weighted set version of A*vA*)
is equal to Ly, (z), the cumulative generating series of the statistic c,.

Proof. As A*v is a unambiguous expression, every element of A* ® {v — 1} has weight
1, and the same holds for A*. Thus, by definition, if N’ = (A* ® {v — 1}) ® A*, then
N(w) = |{(w1,wz) € A* x A* : w = wyv - wa}|, which is exactly a,(w), as announced. <

5 Application to Run Statistics

5.1 The Expected Number of Runs

For any given word v, let p(v) denote its number of runs. In [15], Puglisi and Simpson
established the following result.

» Theorem 5 ([15]). The expected number of runs in a word of length n on an alphabet of
size £ satisfies asymptotically

-1 p(k)
Enlo] ~ 1 Z P

k>1

C. Nicaud 9:7

To prove Theorem 5, they proceed as follows. For every given p, they compute the total
number of runs of period p in the set of all words of length n. Then, they sum these values for
all possible p. Finally, they obtain an asymptotic equivalent of this quantity using elementary,
but technical, computations.

In this section, we propose an alternative proof of Theorem 5 using our framework. Recall
that P is the set of all primitive words and that P(z) is its associated generating series. Let
C={wwr—1:weP}andlet D= {aww+— 1:w € P and the last letter of w # a}.

> Lemma 6. The generating series of the weighted set (C © A*) & (A* © D ® A*) is the
cumulative generating series of the statistic p.

Proof. For the weighted set M =C ©® A* = @yep{ww — 1} @ A*, M(w) is the number of
prefixes of the form ww for w € P, that is, M counts the number of runs at the beginning of
the word. Similarly, for N'= A* © D ©® A* = Dyep azw|u)A* © {aww — 1} © A%, N(w) is
the number of runs of w that does not start at the first position, since each run is identified
by the factor aww. Hence, M @& N counts the number of runs, concluding the proof. |

The generating series of C and D are C(z) = P(2?) and D(z) = (¢ — 1)2P(2?), respectively.
Hence, the cumulative generating series L,(z) of the number of runs can be obtained using
Proposition 3:

_ P(z%) | (0—1)zP(2?)
Lplz) = 1—¢z + (1—1¢2)?

Since the radius of convergence of P(z?) is % > ¢, we are in the settings of Equation (3)
and the Simplified Transfer Theorem yields that [2"]L,(z) ~ n‘2 P(¢=2)¢". Dividing by "
gives another expression for the result of Theorem 5:

E,[p] ~ 5_71 P (;2) n. (4)

In particular, the infinite sum of Theorem 5 is just P(¢~2). Indeed, by Equation (2) we have
b1 ek
02 1—£-f=2k"
k>1

Multiplying the numerator and denominator by ¢2¢—1

yields the formula of Theorem 5.

5.2 The Expected Total Run Length

The total run length of a word is the sum of the lengths of its runs. We denote by 7(w) the
total run length of w. In [11], Glen and Simpson proved the following result.

» Theorem 7 ([11]). The expected total run length of a uniform random word of length n
asymptotically satisfies

2k(0—1)+1
Enlr] ~ | D P — | ™
E>1

where Py is the number of primitive words of length k.

CPM 2016

9:8

Estimating Statistics on Words Using Ambiguous Descriptions

Their techniques follows the steps of the proof of Theorem 5 given in Section 5.1.

In order to prove Theorem 7 with our framework, we first focus on another statistic. For
any word w, let d(w) denote the sum of the periods of the runs of w. We are interested
in the expected value of § for uniform random words of length n. Consider the weighted
set C = {ww ~— |w| : w € P}, where the weight of each ww is the length of w. A
direct computation yields that the generating series of C is C(z) = 22 P’(2?). Similarly the
generating series of the weighted set D = {aww ~ |w| : w € P and the last letter of w # a}
is D(z) = (£ — 1)23P'(2?).

We can now reuse the ambiguous specification of Lemma 6, with C and D instead of C
and D, and get that the cumulative generating series of ¢ is

22! (52 —1)23P (22
Ls(z) = 1P_(£Z> (¢ (1115)2(),withp/(z):ip(z).

dz
By Equation 3, from this expression of Ls(z) we directly get the following proposition.

» Proposition 8. The expected sum of the periods of the runs in a uniform random word of
length n asymptotically satisfies E,,[0] ~ %P’(Z‘Z) n.

We can now proceed with our proof of Theorem 7. Consider the ambiguous specification
L = UpepA*wwA*. Observe that a run r = (7, j,p) in a word v matches the expression of
L exactly once for every w = v[k,k+p — 1], with k € {4,...,5 — 2p+ 1}. That is, the pair
(v, r) matches the specification exactly |r| — 2p + 1 times. In other words, the generating
series of the weighted set A* © C ® A* is the cumulative generating series of the statistic
7 — 20 4 p (recall that 7 is the total run length, ¢ is the sum of periods and p is the number
of runs). Thus, Proposition 3 directly yields:
P(2?)

P(2?)
S L;(2) —2Ls(2) + Ly(2) = L, (2) = a_ny +2Ls(2) — Ly(2).

Theorem 2 applies and we obtain that

Balr] = 1) ~ (2P () + 47 (3)))

which is another formulation of Theorem 7. Indeed, since P(z) =3, P2k, we have

1 (1\ 1P <« P

‘ <£2):£ @2k T L 2RAT

k>1 k>1

Moreover, P'(z) =} 1, kPyz*~1, and thus

2(6—1)P,(1>_2(€—1) kPy =ZPk2W_1)-

03 2] g3 (2k—2 2k+1
k>1 k>1

Summing the two terms yields the formula of Theorem 7.

5.3 The Expected Sum of Exponents

For any word v € A*, let v(v) denote the sum of the exponents of the runs of v. In [13],
Kusano, Matsubara, Ishino and Shinohara proved the following result.

C. Nicaud

» Theorem 9 ([13]). The expected sum of the exponents of runs for uniform random words
of length n satisfies asymptotically:

200-1) 1 02k
Enly] ~ Zﬂ(k) (oy T Qlog (W n.
E>1

We follow the analysis of the previous section: A run r = (4,4, p) in a word v matches
the expression £ = Uyep A*wwA* exactly |r| — 2p + 1 times. Since we want to compute the
statistic 7, we have to divide the contribution of each run (i, j, p) by p.
~ Let C = {ww — Tl w € P} and let D = {aww ﬁ:wepandww # a}. Let
C(z) and D(z) denote their generating series. By Proposition 3, the generating series of
L

= A*0CO A" is L(z) = %. Moreover, it satisfies:

20l

Z Z |7°—2p+1‘vl L (2)— 2L, Z Z

vEA* rERUNS(v) vEA* rERUNS(v)
r=(1,5,p) r=(i,4,p)

Let £(v) be the sum of % for every (i,7,p) € RUNS(v). Using exactly the same idea as in

Section 5.1, its cumulative series is L¢(z) = C(Z) + (ID(ZZ))Q. Hence, Equation (6) rewrites

Qz

() =D(z) C(2)
(1—02)2 1—10z

L,(z) =2L,(z)+

Since the radius of convergence of both C(z) and D(z) is 1/v/¢, the Simplified Transfer
Theorem applies. We obtain that the expected value of v asymptotically satisfies

- (10 (1) o))

where the function Q(z) = [P(t)t~'dt naturally appears when simplifying C'(¢~1) — D(¢71).

One can check that Equation (7) is just another formulation of Theorem 9. Indeed, we
have

l— 1 2(6—-1) 200 — 1
2] P(gz)zz'“(k)g(gzk T_ Z'“ gzk :
k>1 E>1
And since everything is normally convergent,

1 1/42 . 1/6% (k) 01k 1/6% k-1
()= pora= [S 10 = ZM’“)/O el

k>1 k>1

Observe that the derivative of ¢ +—+ —log(1 — £*) is ¢ — 1 “k . Thus
1 (k) pu(k 2
Q (p) = Z k log gl 2k Z 10g 2k _p°

E>1

This gives the announced result.

9:9

CPM 2016

9:10

Estimating Statistics on Words Using Ambiguous Descriptions

6 Generalization to Memoryless Sources

In this section, we show how our formalism can be used to generalize the results to memoryless
sources (see Section 2.1 for the definition). From now on, the alphabet is A = {a1,...,as}
and we have a probability function p on A that charges at least two letters:3 p(a;) < 1 for
every i € [{]. Let p be the vector p'= (p(ai1),...,plar)).

6.1 Multivariate Generating Series and Memoryless Sources

For v € A* and i € [{], let |v|; denote the number of occurrences of the letter a; in v. In our

settings, multivariate generating series are formal power series on the formal variables z, uq,

..., ug. When needed, we will use the vector @ = (uq,...,up) to simplify the notations. For

any positive integer k, let @* denote the vector (u¥,...,uf), and let Ny (@) = uf + ... + uf.
The multivariate generating series L(z, @) of a language L is defined by

¢
L(z,@) := Z P Huiv‘i = Z Ln,ky, ... ke)z"ubt - ube,
i=1

vEA* n,k1,...,ke>0

where L(n, ki, ..., k¢) is the number of words of length n of £ with exactly k; occurrences of
a;, for every i € [£].

Multivariate generating series are widely use in combinatorics and analytic combinatorics.
In particular, when the parameters controlled by the u;’s are additive, the symbolic method
can be extended, giving efficient techniques to build the series. We refer the interested reader
to [6, Ch. III] for more information on this topic. Interestingly, we can also extend our
framework to multivariate generating series, when the u;’s are associated with the number of
occurrences of the letters. First, the definition is extended to a weighted set M by weighting
each word: M (z, @) =3, 4= M(v) 21"/ Hle ulz.1)‘i. Proposition 3 is then directly generalized:
if M and A\ are two weighted sets then the multivariate series of M@ N is M (z, @) + N(z, @),
the one of M ® N is M(z,@)N(z, @), and the one of M* is #(zﬁ)

The main reason to consider multivariate series is the following: if L(z, @) is the series
of a language £, then if we instantiate every formal variable u; with the value p(a;),
which we simply write L(z,p), then we obtain a univariate series such that [2"]L(z,p) is
exactly the probability that a word of length n belongs to £, for the memoryless model
of probability p. Similarly, if the generating series M (z) of the weighted set M is the
cumulative generating series of a statistic y (for the uniform distribution), then E,[x] =
[2"]M (2, p) for the memoryless distribution of probability p. The proofs of these facts are
completely straightforward. However, together with the symbolic method, this provides a
useful framework to deal with statistics on random words for memoryless distributions.

As an example, let us consider our first introductory statistic, the number of occurrences
of the pattern v in a word. We use the weighted set description A* ® {v — 1} ® A*. The

multivariate series of A* , since it is the weighted star of A, whose multivariate

IS T
series is A(z,4) = w1z + ... + ugz = Ni(@)z. The multivariate series of {v — 1} is
Viz, @) = z'”‘ullv‘1 = ~u|;‘2. Hence, the multivariate series of the number of occurrences of v is
%. For 4 = p, we have N1(p) = 1, since p is a probability, and V(z,p) = Pp(v)z|”‘,
by definition of a memoryless model. Hence, the multivariate series for ¥ = p’is equal to
(IE': (:))2. The Simplified Transfer Theorem yields that the expected number of occurrences of

v in a word of length n is asymptotically Py,(v)n, for this memoryless distribution.

3 Everything is trivial if p(a;) = 1 for some 4, as the only word of A™ with positive probability is al.

C. Nicaud

6.2 Expected Number of Runs for Memoryless Sources

We start as in Section 5.1, and use the weighted set (C ® A*) @ (A* @ D ® A*) to count the
number of runs, with ¢ = {ww +— 1:w € P} and D = {aww 1: w € P and wy,| # a}.
The associated multivariate series is therefore L(z, @) = 1_C]£,z1’(?)z + (1_%56352)2 , where C(z, @)
and D(z,u) are the multivariate series of C and D.

At this point we have to compute the multivariate generalization P(z,u) of P(z), the

series of primitive words. We will also need to compute P;(z, %), the multivariate series of

the primitive words that ends by a;. This is done using Equation (1), which readily extends
to multivariate series in our case, yielding
(k)2 Ny (@)

. w(k)zF ulb
d Pi(z,u) = —
1 — 2k Ny(0) and Fy(z, @) 1 — zF Ny (a)

k>1

P(z,1) =
k>1

Moreover, C(z, %) = P(z?,4?) and it is easy to compute from P;(z, @) that

S vulk
D(z, 1) = Z 20 Py(2%,0@%) = Zu(k)szJr1 =l T with vy = Z Uj.

= k>1 L= Nog ()22 jel
J#i
This formula looks complicated, but it simplifies when evaluating it at z = 1, the dominant
singularity, and at @ = p. In particular, if @ = P, then v; = 1 — p(a;) and Zf:l viuf =
Ni(p) — Ni41(pP). Hence, applying the Simplified Transfer Theorem to the expression of
L(z,p) yields the following result.

» Theorem 10. For the memoryless distribution of probability p, the expected number of
runs in a random word of length n satisfies asymptotically

Nog(p) — Nog+1(p)
1-— Ngk(ﬁ)

Ealp] ~ D(L,) = (3 ulh)

k>1

7 Conclusions

As illustrated throughout this article, the framework we propose is quite useful to study
some statistics on random words. We choose to focus on presenting the technique itself in
this extended abstract, to try to convince the reader that it is a precious tool to estimate the
expectation of various parameters on words.

Due to the lack of space, we only generalized the result on the expected number of runs
to memoryless distributions, but the other theorems of Section 5 can also be extended in
a similar way. Some other kinds of generalizations can also be obtained. For instance, the
expected number of cubic-runs (runs of exponent at least 3) is asymptotically equivalent to
E_TlP(f_?’)n, which can be obtained as in Section 5.1. More generally, all results can readily
be generalized to k-runs. Other known statistics can be studied using this method: as a last
example, the expected number of squares x in a word, i.e. the number of factors of the form
v for nonempty v was studied in [3]. In our framework, this corresponds to the weighted set
BveatrA* © {vv = 1} @ A*, thus L, (z) = % and E,[x] ~ 7%

A natural extension of this work would be to provide similar tools to deal with higher
moments, in particular with the variance. However, what we did in this article is related to
the linearity of the expectation, and the variance is not linear. To compute higher moments,
we have to handle dependencies between runs in a word, which is much more complicated. It
would also be interesting to revisit some other probabilistic studies of the literature, such
as [9, 2, 10], to see if they can be included in the framework of sets of weighted words.

9:11

CPM 2016

9:12

Estimating Statistics on Words Using Ambiguous Descriptions

—— References

1

10

11

12

13

14

15

16

17

18

Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and
Kazuya Tsuruta. The "Runs" Theorem. CoRR, abs/1406.0263, 2014.

Manolis Christodoulakis, Michalis Christou, Maxime Crochemore, and Costas S. Iliopoulos.
Abelian borders in binary words. Discrete Applied Mathematics, 171:141-146, 2014.
Manolis Christodoulakis, Michalis Christou, Maxime Crochemore, and Costas S. Iliopoulos.
On the average number of regularities in a word. Theoretical Computer Science, 525:3-9,
2014.

Maxime Crochemore and Lucian Ilie. Maximal repetitions in strings. Journal of Computer
and Systems Sciences, 74(5):796-807, 2008.

Maxime Crochemore, Lucian Ilie, and Liviu Tinta. The "runs" conjecture. Theoretical
Computer Science, 412(27):2931-2941, 2011.

Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University
Press, 2008.

Philippe Flajolet, Wojciech Szpankowski, and Brigitte Vallée. Hidden word statistics. Jour-
nal of the ACM, 53(1):147-183, 2006.

Frantisek Franek and Qian Yang. An asymptotic lower bound for the maximal number of
runs in a string. Intern. Journal of Foundations Computer Science, 19(1):195-203, 2008.
Kimmo Fredriksson and Szymon Grabowski. Average-optimal string matching. Journal of
Discrete Algorithms, 7(4):579-594, 2009.

Pawel Gawrychowski, Gregory Kucherov, Benjamin Sach, and Tatiana A. Starikovskaya.
Computing the longest unbordered substring. In Costas S. Iliopoulos, Simon J. Puglisi, and
Emine Yilmaz, editors, String Processing and Information Retrieval — 22nd International
Symposium, SPIRE 2015, London, UK, September 1-4, 2015, Proceedings, volume 9309 of
Lecture Notes in Computer Science, pages 246-257. Springer, 2015.

Amy Glen and Jamie Simpson. The total run length of a word. Theoretical Computer
Science, 501:41-48, 2013.

Roman Kolpakov and Gregory Kucherov. Finding maximal repetitions in a word in lin-
ear time. In Proceedings of the 1999 Symposium on Foundations of Computer Science
(FOCS’99), New York (USA), pages 596-604, New-York, October 17-19 1999. IEEE Com-
puter Society.

Kazuhiko Kusano, Wataru Matsubara, Akira Ishino, and Ayumi Shinohara. Average value
of sum of exponents of runs in a string. Intern. Journal of Foundations of Computer Science,
20(06):1135-1146, 2009.

Wataru Matsubara, Kazuhiko Kusano, Akira Ishino, Hideo Bannai, and Ayumi Shinohara.
New lower bounds for the maximum number of runs in a string. In Jan Holub and Jan
Zdérek, editors, Proceedings of the Prague Stringology Conference 2008, Prague, Czech
Republic, September 1-3, 2008, pages 140-145, 2008.

Simon J. Puglisi and Jamie Simpson. The expected number of runs in a word. Australasian
Journal of Combinatorics, 42:45-54, 2008.

Simon J. Puglisi, Jamie Simpson, and William F. Smyth. How many runs can a string
contain? Theoretical Computer Science, 401(1-3):165-171, 2008.

Wojciech Rytter. The number of runs in a string. Information and Computation,
205(9):1459-1469, 2007.

Jamie Simpson. Modified Padovan words and the maximum number of runs in a word.
Australasian Journal of Combinatorics, 46:129-145, 2010.

Reconstruction of Trees from Jumbled and
Weighted Subtrees

Dénes Bartha'!, Péter Burcsi?, and Zsuzsanna Liptak3

1 Dept. of Computer Algebra, E6tvos Lorand University, Budapest, Hungary
denesb@gmail.com

2 Dept. of Computer Algebra, E6tvos Lorand University, Budapest, Hungary
bupe@compalg.inf.elte.hu

3 Dip. di Informatica, University of Verona, Italy
zsuzsanna.liptak@univr.it

—— Abstract

Let T be an edge-labeled graph, where the labels are from a finite alphabet 3. For a subtree U of
T, the Parikh vector of U is a vector of length |X| which specifies the multiplicity of each label in
U. We ask when T can be reconstructed from the multiset of Parikh vectors of all of its subtrees,
or all of its paths, or all of its maximal paths. We consider the analogous problems for weighted
trees. We show how several well-known reconstruction problems on labeled strings, weighted
strings and point sets on a line can be included in this framework. We present reconstruction
algorithms and non-reconstructibility results, and extend the polynomial method, previously
applied to jumbled strings [Acharya et al, SITAM J on Discr. Math, 2015] and weighted strings
[Bansal et al, CPM 2004], to deal with general trees and special tree classes.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Computations
on discrete structures, G.2.2 [Graph Theory] Graph labeling, Trees

Keywords and phrases trees, paths, Parikh vectors, reconstruction problems, homometric sets,
polynomial method, jumbled strings, weighted strings

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.10

1 Introduction

Let T be an unrooted tree T with labeled edges, where the labels come from a finite ordered
alphabet . For a subtree U of T, the Parikh vector of U is a vector of length || which
specifies the multiplicity of each label in U. If the labels are positive reals or integers, we
refer to them as weights, and define the weight of U as the sum of weights of the edges in
U. (It is common to refer to a subtree as jumbled if only its Parikh vector is known, and as
weighted if only its weight is known.) Given a subtree property .4, we refer to the multiset of
Parikh vectors of all subtrees with property A as M P4(T), and to the multiset of weights of
all subtrees with property A as MW 4(T'). For example, MWy (T) is the multiset of path
weights in a weighted tree T

Consider the two edge-labeled trees in Fig. 1, with labels from the alphabet ¥ = {a, b}.
The two trees are non-isomorphic, but the multisets of Parikh vectors of their subtrees are
the same, M Psyprree(T1) = M Pyuprres(T32), as can be easily checked. At the same time, the
multisets of Parikh vectors of their paths are not the same, M Pory(T1) # M Popru(T5), since,
for instance, Ty has a path with Parikh vector (1,3) and 7} does not.

These multisets can be described with the help of polynomials. Let variable x represent
label a, and variable y label b. Then the polynomial describing the subtrees of both T7 and T3

© Dénes Bartha, Péter Burcsi, and Zsuzsanna Lipték;
oy

licensed under Creative Commons License CC-BY
27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 10; pp. 10:1-10:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2

Reconstruction of Trees from Jumbled and Weighted Subtrees

T1 T2
bAa a/.\b
a/ b>\b b/ b>\a
'd s e 4 e e

Figure 1 Two M Psyprres-equivalent trees.

is 22 + 3y + 4y + y? + 2%y + 3zy? + 22%y% + 2y + 22y3, where the interpretation e.g. of the

term 3zy? is that there are 3 (the coefficient) subtrees that contain 1 letter a and 2 letters b

(the exponents). In a similar way, polynomials can be used to describe the multisets of paths

or of maximal paths. Moreover, they can be used to describe the weights of certain subtrees

when the edges are labeled with positive integers. We will give more precise definitions later.
In this paper, we are interested in the following questions:

Computation: How can we compute the polynomials describing the jumbled or weighted

subtrees, paths, or maximal paths?

Reconstruction: Can trees be uniquely reconstructed from the multiset of jumbled or

weighted subtrees, paths, or maximal paths? I.e. are there non-isomorphic trees with the

same multisets? — We split this problem into two sub-problems:

1. Large Unjumble: Is the unlabeled tree (i.e., its topology) uniquely determined by the
multiset of jumbled or weighted subtrees, paths, or maximal paths?

2. Small Unjumble: Given the topology of the tree, is the labeling uniquely determined
by the multiset of jumbled or weighted subtrees, paths, or maximal paths?

The method of using polynomials to describe multisets of Parikh vectors or of weights has
been successfully applied in the past to strings. In [8] polynomials were used for representing
the multiset of weights of substrings (there called submasses) of a weighted string, i.e. where
each character is assigned a positive integer weight. Fast Fourier Transform was employed to
compute this polynomial, and several algorithms were proposed for finding substrings with a
given query weight, using this polynomial.

In [2] the authors describe a similar polynomial representation of the multiset of Parikh
vectors of substrings, and study the class of strings having the same multiset (there called
confusable), using algebraic methods based on this polynomial. The method was originally
employed in [28] for the related turnpike problem: Given n unknown points on a line,
reconstruct the positions of these points from the multiset of interpoint distances. Indeed,
in [1], an algorithm was given for reconstruction of all confusable strings from the multiset
of Parikh vectors of substrings, an adaptation of an algorithm given in [28]. Note that the
turnpike problem itself can be viewed as a problem on an edge-weighted tree (a path), where
the vertices are the points, the edges are weighted by the distances between consecutive
points, and the input is the multiset of path weights.

In this paper, we show how the polynomial method can be extended to trees. But
generalizing the substructure of substring to trees can result either in subtrees, or in paths.
We show that the method works for both types of substructures, as well as for mazimal paths
(i.e. paths between leaves). Note that equivalence w.r.t. one does not imply equivalence w.r.t.
the other.

In the case of strings, both for jumbled and for weighted substrings, the polynomial can
be computed via convolution from a very easily computable polynomial with 0/1 coefficients

D. Bartha, P. Burcsi, and Zs. Liptak

(called generating polynomial in [2] and prefix polynomial in [8]), essentially using the fact
that the Parikh vector (resp. weight) of a substring is the difference of the Parikh vectors
(resp. weights) of two prefixes. We show how to compute the polynomials for trees in a
similar manner, recursively from the polynomials of subtrees, but using both multiplication
and addition of polynomials. Since strings can be represented as edge-labeled paths, our
framework encompasses the known results on strings. Of course, if the tree T is a path, then
the multisets of subtrees and of paths coincide.

The related problem of jumbled pattern matching, finding one or all occurrences of
substructures with a given Parikh vector, has been studied recently extensively on strings,
most recently in [13, 5, 25, 4, 15, 22, 24, 7, 21, 27, 29, 12, 11]; and also on vertex-colored
graphs and trees [20, 14, 17]. On graphs, the problem is also called motif search, and it is
NP-hard to decide whether a match exists, even when G is a tree [26]. When the number of
colors is constant, the problem is fixed-parameter tractable w.r.t. treewidth [20].

Note that the variant of our problem where the subtrees are restricted to maximal paths
is closely related to the problem of distance-based phylogenetic reconstruction, see e.g. [16],
where a distance matrix between the leaves of a tree is given, and the task is to reconstruct
the tree. The problem there is well-understood: such a tree exists if the input matrix has a
certain property (called additivity), and an efficient algorithm exists for reconstructing the
tree [30], which runs in cubic time in the number of leaves. The difference here is that we
are given the input numbers without assignment to the pairs of leaves.

Following [28], we call two weighted trees 77 and To homometric if the multisets of
pairwise distances between vertices is the same for both trees, or equivalently in our terms,
MWesru(T1) = MWpau(T2). We note that even though trees, and more generally, graphs,
do appear in the literature on homometric sets [19, 6], those papers consider homometric
vertex sets within one tree rather than homometric pairs of trees, while the papers [18, 3]
treat quite different problems from the present ones.

Most proofs are omitted due to space limitations, and will be included in the full version.

2 The polynomial representation of Parikh multisets and weight

multisets
Let X be a finite alphabet with elements a,as,...,a,. Consider the polynomial ring over
the integers in o indeterminates, i.e. Z[x1, 2, ...,2s]. When the alphabet is binary, we will

denote the indeterminates by x and y.

If we interpret a Parikh vector (ki, ks, ..., k,) as a multidegree, we can assign to it the
monomial 2% 252 ... £k Note that the total degree of the polynomial equals the sum of
entries of the Parikh vector. A multiset of Parikh vectors can then be represented as the
sum of the monomials of its elements; multiplicities become coefficients. The power of
this viewpoint is that disjoint union of (multi)sets corresponds to the product of the two
monomials associated to the sets.

If we work with weights rather than arbitrary labels, then a single indeterminate suffices:
to a weighted edge e with weight w(e), we associate the polynomial (€ If we have a set
U of edges and take the product of the monomials corresponding to the elements, then we
get xzeeU w(©) The primary focus of the present paper are Parikh multisets and weight
multisets of a tree T' obtained by taking Parikh vectors or weights of subtrees of T satisfying
some condition.

» Definition 1. Let T be a tree and A be a property of subtrees. Let the edges of T' be
labeled by an o-element alphabet . The M P4-polynomial of T, denoted by fa(T) is

10:3

CPM 2016

10:4

Reconstruction of Trees from Jumbled and Weighted Subtrees

the o-variable polynomial associated to the multiset of Parikh vectors of all subtrees of T'
satisfying condition A.

» Definition 2. Let T be a tree and A be a property of subtrees. Let the edges of T' be
weighted by positive integers. The MW 4-polynomial of T', denoted by g4 (T') is the 1-variable
polynomial associated to the multiset of weights of all subtrees of T' satisfying condition .A.

The main reason for using polynomials to represent multisets is that we have additional
algebraic structure, while all information about the multiset is still preserved. This is a
crucial property used throughout (sometimes implicitly), so we state it as an observation.

» Observation 3. Let T1,T5 be trees and A a subtree property. Then MPA(Ty) = MPa(T5)
if and only if fa(Th) = fa(T2). Similarly MW 4(T1) = MW 4(T5) if and only if ga(Th) =
ga(Tz).

The following observation is also straightforward and means that M P4(T) contains all
the information for computing MW 4(T).

» Observation 4. If the letters of the alphabets are positive integers, then they can be
interpreted as weights. Then the MW 4-polynomial of a tree can be calculated from the
M P 4-polynomial by substituting x® into the variable x;.

» Example 1. Let A= PATH. Let ¥ = {a,b} and let the indeterminate x correspond to a,
andy tob. The tree Ty in Figure 1 has the M Peyry-polynomial 2z +3y+4xy+1y% + 22y +2xy% +
2222, while the M Pyypy-polynomial of Ty is 2x+3y+4xy+y? +ay+2xy? +22y? +ay. If we
let a =3 and b =2, then the MWouy-polynomial of Ty is 3t? + 213 4+ t* + 45 + 2t7 + 18 +2¢10,
This is obtained from its M Ppry-polynomial by letting x = t3 and y = t2. (We used a new
letter t to avoid confusion.)

In what follows, we discuss how M P4-polynomials and MW 4-polynomials of a tree can
be computed. We will restrict our attention to the case of A = SUBTREE, where all subtrees
are considered, A = PATH, where only paths between pairs of vertices are considered and
A = MAXPATH, where only maximal paths are considered. The theorems will be stated for
M P 4-polynomials, but are valid in the same form for MW 4-polynomials.

Unless otherwise specified, the labels or weights are always on the edges rather than
the vertices. The computation methods for vertex labeled and vertex weighted graphs are
obtained by adapting the computations, which we will not state as separate theorems. Our
examples of M P -equivalent families are proved using the polynomial method. We present
recursive computation methods for the three kinds of subtree properties in the following
sections (the base cases for the recursion are left to the reader).

To conclude this section, we propose a new algorithmic application of M P 4-polynomials
(resp. MW 4-polynomials) for randomized testing of M P 4-equivalence (resp. MW 4-equivalence)
of trees. The method is based on randomized equality testing for polynomials using the
Schwartz-Zippel lemma [32, 34]. The computation methods presented later all allow an
efficient substitution into the polynomials, even in the case when we consider subtrees, where
the size of the M Pyyprres-set and thus the number of coefficients of the polynomial can be
exponential in the input. For the substitution we do not need the sequence of coefficients,
we can use the recursive methods for evaluating the polynomial. Finally note that using
modular arithmetic, calculations can be further sped up.

D. Bartha, P. Burcsi, and Zs. Liptak

3 Subtrees

3.1 Computation of fsusrrer(T)

We first consider the case when all subtrees are considered in the Parikh multiset or the
weight multiset. Although we work on free trees (i.e. unrooted trees), for the computations
it is convenient to consider rooted trees. We root the tree 7" in an arbitrary vertex v and
define an auxiliary polynomial r(T,v), called the rooted M P-polynomial of T with root v,
as the polynomial representing the Parikh multiset of all subtrees containing v. We have the
following theorem.

» Theorem 5. Let T be a rooted tree with root v. Let vi,vs,...,v be the children of v.
Denote the subtrees rooted at v; by T; fori=1,...,k. Denote the index in X of the label on
the edge connecting v and v; by l;. We have the following equations.

E k
r(To0) = [+, - r(Tj,0)) and f(T) = r(T,0) + Y f(T5)
j=1 j=1
Note that Theorem 5 generalizes the computation of M P-polynomials or M W-polynomials
of strings presented in e.g. [8, 28, 2] since a string can be interpreted as an edge-labeled path.
The theorem also generalizes the subtree size multiset presented in [9].

3.2 Reconstructibility — Large Unjumble

For a general labeled tree T, one can ask if the unlabeled version of the tree (the topology)
can be uniquely reconstructed from M Pyyprres(T') or M Wsyprres(T'). This is already impos-
sible from M Pyypraes(T") for a trivial (i.e. one-element) alphabet, which also implies that
MWsugrree(T') does not determine the isomorphism class of the unlabeled tree either.

If one puts the same label (resp. weight) on each edge, then the Parikh vector (resp.
weight) of a subtree simply counts the number of edges in that subtree. It was proved in [9]
that knowing the number of subtrees with k£ edges for all k, that is, in our terms, knowing
M Pyyprrer(T) for one-letter alphabets is not generally enough for unique reconstruction of
the tree up to isomorphism.

» Proposition 6 ([9]). Let ¥ = {1}. There exist infinitely many pairs of trees Ty, Tz, such
that if we label each edge with the only element of ¥, then M Pyyprres(T1) = M Psyprres(T2)
and M Wsgyprreg (Tl) = MWSUBTREE(T2)-

In the positive direction, we mention the following reconstructibility result from the same
paper. A spider is a tree with one vertex of degree at least 3 and all others with degree at
most 2 (called star-like trees in that paper).

» Theorem 7 ([9]). Let |3| =1, and Ty, T be two edge-labeled spiders with labels from X.
If M Pyygrres(T1) = M Pyygrree(T2), then Ty and Ts are isomorphic.

3.3 Reconstructibility — Small Unjumble

When the alphabet is non-trivial, there are several non-isomorphic labelings of a typical tree.
We consider reconstructibility of the labels for a fixed unlabeled tree. Note that the problem
of reconstructing a string from its substring compositions [2] is a special case: a string can
be represented as a path of equal length where the edge labels correspond to individual
characters in the string.

10:5

CPM 2016

10:6 Reconstruction of Trees from Jumbled and Weighted Subtrees

The problem of reconstructing a 1-dimensional point set from interpoint distances consid-
ered in [28] is also a special case of the reconstruction of a tree from MW (T): the weights
are the distances between neighboring points on a line. Since every subtree of a path is
a (sub)path, this remark also applies for reconstructibility from path Parikh vectors (resp
weights), addressed in the following section. The above two problems can also be reduced to
the case of vertex labeled paths.

We give non-reconstructibility examples for trees that are not a path. The smallest pair
of non-isomorphic M Pyygsrres-equivalent edge labeled trees are on six vertices.

» Example 2. Let P be a path of length 4, whose vertices are called vy,vs,...,vs5 and the
edges v1vVa, . .. are labeled with a,b,a,b. Construct Ty by attaching a 6th vertex vg to vq with
an edge labeled by b. Construct Ty from P by attaching a 6th vertex to vo with an edge labeled
by b. See the example in Fig. 1.

It is also possible to attach a larger tree instead of the sixth vertex, which gives larger
examples of M Pyyprrer-equivalent pairs. We remark that the smallest such example for
vertex labeled trees is on 7 vertices. We also give a construction that yields an infinite family
of M Pyuprrer-equivalent examples (similar constructions work for vertex labeled trees).

» Proposition 8. Let s1 and so be two M Pyyprres-equivalent strings of length k over a binary
alphabet 1. Create two M Pyyprres-equivalent edge-labeled paths Py, Py by using characters
of the strings as labels. Let U be an edge labeled rooted tree with labels from a disjoint alphabet
Yy. Create T; (j =1,2) from P; by joining k+1 copies of U to each vertex of P;, identifying
the vertex on the path and the root of U. Then Ty and Ty are not isomorphic as labeled trees,
but MPSUBTREE (Tl) = MPSUBTREE (TZ)'

Finally, we present a result stating that, unsurprisingly, M P-equivalence does not generally
follow from M W-equivalence, already for 2-letter alphabets. We have an infinite family
already for paths.

» Proposition 9. Let k < n an integer, ¥ = {1,2}. Let Py be a path of length 14 + 5k, edge
labeled with elements of the sequence s; = 21211112222122(12122)%. Let Py be a path of
length 14, edge labeled with elements of the sequence sy = 22111121222212(12212)%. Then
MPSUBTREE(PI) 7é MPSUBTREE(P2)7 but MWSUBTREE(PI) = MWSUBTREE(PQ)'

4 Paths

4.1 Computation of fparua(T)

Let f(T) = fraru(T) be the M Ppyry-polynomial of T. Root T is an arbitrary vertex v. We
denote by r(T,v) the polynomial corresponding to all paths at least one of whose endpoints
is v. We include 0O-length paths in the computation, since it makes the formulae simpler, this
adds a constant n (the number of vertices) to the polynomial.

» Theorem 10. Let T be a rooted tree with root v. Let v1,vs,... v be the children of v in
T. Denote the subtrees rooted at v1 (resp. v etc.) by Ty (resp. Ty etc.). Denote the index
in ¥ of the label on the edge connecting v and v; by l;. We have the following equalities:

k

r(To0) =14y (2, - 1(T3,0)), f(T) = r(T0) + Y f(T) + Y (wayr(Ti0)r(T),0)

=1 1<i<j<k

D. Bartha, P. Burcsi, and Zs. Liptak

Proof. For the statement on r note that a path starting in v either stops there immediately,
or contains exactly one of the v; and thus a path from v; to a vertex of T as a subpath.
To understand the identity for f, observe that a path in T either contains v as one of its
endpoints or is entirely contained in one of the T}, or else it is the union of two paths which
both have v as one endpoint and their respective other endpoints in distinct T; and T;. <«

4.2 Reconstructibility — Large Unjumble

For a general labeled tree T, one can ask if the unlabeled version of the tree can be uniquely
reconstructed from M Py (T) or MWearu(T). We show that this is already impossible
from M Pyury(T) for a one-element alphabet, which also implies that MWy (T) does not
determine the isomorphism class of the unlabeled tree either.

In the following, we give infinitely many examples of pairs of unlabeled trees that are
homometric. This can be considered as a special case of M Py ry-equivalence (resp. M Weary-
equivalence) when |X| = 1 (resp. we use the same weight everywhere).

» Proposition 11. For n > 11 and odd, let Ty be a tree constructed from a 5-star by adding
respectively 1,1, (n — 5)/2 and (n — 9)/2 new vertices joined to the star’s leaves, obtaining
a tree on n vertices. Construct Ty similarly, by adding 0, 2, (n —7)/2 and (n —7)/2 new
vertices adjacent to the star’s leaves. Then Ty and Ty are homometric but are not isomorphic.

For n > 12 and even, let T be a tree constructed from a 6-star by adding respectively
1,1,1, (n —6)/2 and (n — 10)/2 new vertices to the star’s leaves, obtaining a tree on n
vertices. Construct Ty similarly, but add 0,1,2, (n — 8)/2 and (n — 8)/2 new vertices. Then
Ty and Ty are homometric but are not isomorphic.

We remark that all one has to do is check the number of paths of length 1,2,3 and 4
since the constructed trees have diameter 4. The calculation is straightforward, and the idea
behind it is that if we add k1, ko, k3 and k4 vertices to the 5-star as above, then the number
of 1-paths (resp. 2-paths, 3-paths and 4-paths) is already determined by their sum and the
sum of their squares, and these values are identical for the two trees. One can compose such
trees by solving instances of the Prouhet-Tarry-Escott problem, see e.g. [10], Chap. 11.

4.3 Reconstructibility — Small Unjumble

We now turn to the problem of unique reconstructibility of the labeling, once the unlabeled
version of the tree is known. Again, if we take the viewpoint of strings being (either edge
or vertex) labeled graphs, then this problem contains as a special case the problem of
string reconstructibility from MWp,my or M Ppyry. We thus focus on reconstructibilty for
other trees. First remark that the contruction in Proposition 8 also yields infinitely many
M Py yrp-equivalent pairs of non-isomorphic trees.

We now give a family of pairs that are vertex labeled PM-equivalent trees.

» Proposition 12. Let k > 1 an integer. Let Pygse be a path of length 3 with alternating
vertex labels 0,1,0,1, and Py_1 be a path on k wvertices, al labeled by 0. Construct Ty by
attaching two copies of Px_1 to Ppyse with two edges: one is attached to the leaf with 0 label,
and the other to the neighboring vertex on Ppuse. We get a tree on 2k + 4 vertices. The
construction of Ty is similar, but Ppgse is reversed. Then Ty and Ty are two different labelings
of the same tree, and M Popyru(T1) = M Popru(T5).

10:7

CPM 2016

10:8

Reconstruction of Trees from Jumbled and Weighted Subtrees

Class sizes for MP-equivalence. For paths, the size of an equivalence class of M Wpapy-
equivalent paths (resp. M Pyay-equivalent paths) is always a power of 2, as it was proved in
[28] (resp. [2]). This result no longer holds for other classes of trees, as illustrated by the
example below.

» Example 3. Let T be a spider on 11 vertices with 5 legs of length 2. Then the following 3
weightings of T form an M Ppyry-equivalence class of size 3 (we give the weighting as 5-tuples
of weight pairs on the legs from the center outwards). Ty : [1,3],[2,3],[3,5],[4,1],[6,1],
Ty :[1,3],[2,5],13,1],[5,1],[5, 3], T3 : [1,5],[2,1], 4, 1], [4, 3], [5, 3].

Finally note that Proposition 9 also applies for A = PATH.

5 Maximal paths

5.1 Computation of fyaxpara(T)

Let f(T) = fmaxpatu(T) be the M Pysxparu-polynomial of T'. Let r(T',v) denote the M P-
polynomial corresponding to all paths with one endpoint in v and another one in a leaf.
Finally, let ¢(T,v) be the M P-polynomial for all maximal paths that have v as one of their
endpoints. Note that ¢(7,v) = 0 if v is not a leaf in T.

» Theorem 13. Let T be a rooted tree with root v, and let vi,vs,...vx be the children of v
in T. Denote the subtrees rooted at vy (resp. va etc.) by Ty (resp. Ty etc.). Denote the index
in ¥ of the label on the edge connecting v and v; by l;. We have the following equalities:

T(T’U) = Z(xlj'r(Tj’vj))

F(T) = HT0)+ > (F(T) = 6(Ty,05)) + > (w,z0,7(Tvi)r(Ty, v5))

j=1 i<j

t(T,v)

|
—N
=
~—
~
<
S~—
<
i
~

5.2 Reconstructibility — Small Unjumble

We only consider reconstructibility for weighted graphs. Let us fix the topology of T" as an
n-star. We have the following reconstructibility result for edge-weighted n-stars.

» Theorem 14. Let Ty and Ty be two n stars s.t. n — 1 is not a power of 2. Then
MWhiaxearn (T1) = MWyaxparu (T2) implies that Ty and Ty are isomorphic as edge weighted
trees. If n = 2F + 1 for some k < 0, then there are non-isomorphic edge labeled n-stars that
are MWy axparn-equivalent.

The theorem is an easy consequence of Theorem 1 and Theorem 2 from [33], about
the reconstructibility of numbers from the multiset of their pairwise distances. These two
theorems are also proved in [23, 31] using the polynomial representation of sumsets, which
is more in the spirit of the present paper. To see how it follows, simply observe that the
weights of maximal paths are the pairwise sums of edge labels.

6 Reconstruction Algorithms

In this section, we treat reconstruction of edge-labeled trees from weighted paths, where the
topology of the tree is given (Small Unjumble). Note that we assume that S is given sorted.

D. Bartha, P. Burcsi, and Zs. Liptak

First let us note that for the case where T is a star, a simple greedy algorithm will solve
the problem exactly in time loglinear in the input size |S| = (}). Denote by X the multiset
of weights of the edges, then MWy, (T) = X U (X + X)) (where by X + X we denote the
multiset of sums of two elements from the multiset X'). Clearly, the two smallest numbers in
S are necessarily in X, which means that their sum is necessarily in X + X. The algorithm
starts with an empty X, iteratively chooses the smallest remaining number in S, adds it to
X, and eliminates it and its sums with those already in X from S. We touch each of the (g)
input numbers exactly once; getting the next smallest one takes constant time, while finding
the corresponding elements from X + X takes logn time each.

» Example 4. Let T be a G-star, i.e. |V(T)| = 6 with one vertex of degree 5 and 5 leaves, and
let $ ={2,3,5,5,7,8,9,10,11,12,12,13,14,15,19}. Necessarily 2,3 € X, and this eliminates
also 5 = 2 4 3 from the input set. The next remaining smallest number is 5: this must
again be an edge label, thus 5 € X, eliminating 7 =15+ 2 and 8 =5+ 3 from our input set.
Continuing, we get that 9 € X, eliminating 11,12,14, and finally, that 10 € X, eliminating
12,13,15,19. So we see that the 5 edges are labeled with 2,3,5,9, and 10 respectively.

In particular, if T is a star, then if there is a solution, it is necessarily unique. Thus we
have proved the following:

» Proposition 15. If T is a star, then the Greedy Algorithm correctly reconstructs its labeling
from MWyupu(T) in time O(n?logn). Moreover, for any instance S, either S is uniquely
reconstructable, or there is no solution.

Now let’s turn to a general tree topology. In the following we will generalize the algorithm
given in [28] for the turnpike problem to any tree. To this end, we define the path poset
of a tree T as the set of all paths in T, together with the inclusion order. We give an
example below (Ex. 5). Note that the input MWy, (T) consists precisely of the weights of

all elements of the path poset. So the task is to fill in the values from & into the path poset.

The following is immediate:

» Lemma 16. For any tree T, the path poset of T is exactly the union of the path posets of
its mazimal paths.

» Example 5. Let T be as in Fig. 2, input S = {1,2,2,3,3,4,5,5,5,6,6,7,8,9,11}. In the
same figure, we show the three pyramids with the unique solution (up to exchanging the labels
of d and e).

Following [28], we will refer to the above representation of the values of the path poset of
a maximal path as a pyramid. If 7 = (v1,...,vs) is a maximal path in 7', then in its pyramid
A, row k will hold all values of subpaths of 7 of length k. Let us refer to d;; as the sum of
the weights on the path from v; to v;. As was shown in [28], the following relationships hold
within one pyramid:

» Lemma 17 ([28]). dij + dpe = dig + dij for 1 <i <k <0<,

This property is then used in [28] for a backtracking algorithm which takes the next
largest remaining value, guesses its position in the pyramid, and fills in all other values which
are implied by it. When a choice implies a value not present in the input, the algorithm
backtracks. We, however, need to fill in all pyramids concurrently. For this, the following
lemma will be useful. We omit the proof for lack of space.

10:9

CPM 2016

10:10 Reconstruction of Trees from Jumbled and Weighted Subtrees

abed abce
5 N
abc bed bee
SN TN
ab be cd ce
e
SINSN LT
a c e
8 11
7 6 7 9 5
5 5 3 5 5 6 4
2 3 1 2 3 d e
b c a b

Figure 2 Example 5: A tree, its path poset, and the path posets of its three maximal paths (in
the latter we omit the edges for clarity), with the values of the input set filled in.

» Lemma 18. Let 7 = (v1,...,v,) and @ = (uy,...,um) be two mazimal paths in T with
non-empty intersection p. Let A be the pyramid for m, with entries d;;, and A’ the pyramid for
', with entries d;j. If p= (viy...,Vige) = (Ui, ..., Uir0), then the following relationships

hold between A and A’:
1. fork <i k' <i': diys — d;,,m_s =dpitt — d;c’,i’-i—t for all 0 < s,t </, and
2. fork > i+ 0K >0 +0: digsy — d;/+s7k, =diye — d;,+t7k, for all 0 < s,t < 4.

Our algorithm proceeds as follows. In each step, it takes the next largest value still in S
and places it in one of the maximal free places, i.e. in a free place that has no larger free
place in any of the pyramids. It then fills in all implied positions according to Lemma 17
and 18. If at some point it encounters a value not present among the yet unused values, it
backtracks. For example, in Example 5, for the first value 11 there are three possible choices,
namely the tops of the three pyramids. Say we have already placed values 11 and 9 in their
respective places as in the final solution. Now placing 8 on the top of the first pyramid will
force the difference for all values on the right sides of the first and second pyramids to be 3,
an application of Lemma 17.

» Lemma 19. Fvery mazimal free place is either on top of a pyramid, or on the side of a
pyramid.

» Theorem 20. There is a O((20)TT™n?logn) algorithm for finding all possible labelings
of a given tree T from the multiset of (g) path weights, where n is the number of vertices of
T, and T" the number of maximal paths in T'.

Although the algorithm has exponential running time, it compares well to the simple
exhaustive search if the number of leaves is small, since trying all possible labelings of the
edges would give O(n?"/2") running time. Note that parameter I is quadratic in the number
of leaves. So essentially the algorithm performs well on trees which are close to strings, and
badly on trees that are close to stars, i.e. have many leaves. Indeed, as can be seen, the
Greedy algorithm for stars applies the opposite strategy, namely filling in the path poset from
below; this makes sense when the higher levels are more populous than the lower levels, while
starting from above is appropriate when the form is pyramid-like. Moreover, the analysis
is very pessimistic and does not so far take advantage of the improvements given by the

D. Bartha, P. Burcsi, and Zs. Liptak

pruning due to Lemmas 17 and 18. In practice, we expect that many branches will be pruned
by these implications. For the special case of the turnpike problem, if we consider random
instances then incorrect branches are pruned almost immediately, see [28].

7 Conclusion and Open Problems

Our reconstruction algorithm is purely combinatorial, and it seems a challenging problem to
find a reconstruction algorithm based on M P-polynomials, similar to the ones presented in
[28, 2]. We would also be interested in proving further results about unique reconstructibility
with algebraic techniques.

Another intriguing task is connecting the Large Unjumble Problem for weighted maximal
paths to the distance-based phylogeny problem: Note that if we had an assignment of the
input numbers to the I' leaf pairs, then a reconstruction, if it exists, is unique, and can be
found in O(I"*/?) e.g. using the Neighbor Joining algorithm [30] (or it can be shown that no
such reconstruction exists).

Further open problems include the complexity status of the reconstruction problems
introduced, in particular in which of the cases Large Unjumble is computationally hard.

—— References

1 Jayadev Acharya, Hirakendu Das, Olgica Milenkovic, Alon Orlitsky, and Shengjun Pan.
Quadratic-backtracking algorithm for string reconstruction from substring compositions.
In 2014 IEEE Int. Symp. on Information Theory (ISIT 2014), pages 1296-1300, 2014.
doi:10.1109/ISIT.2014.6875042.

2 Jayadev Acharya, Hirakendu Das, Olgica Milenkovic, Alon Orlitsky, and Shengjun Pan.
String reconstruction from substring compositions. SIAM J. Discrete Math., 29(3):1340—
1371, 2015. doi:10.1137/140962486.

3 Tatsuya Akutsu, Daiji Fukagawa, Jesper Jansson, and Kunihiko Sadakane. Inferring a
graph from path frequency. Discrete Applied Mathematics, 160(10-11):1416-1428, 2012.
doi:10.1016/j.dam.2012.02.002.

4 Amihood Amir, Ayelet Butman, and Ely Porat. On the relationship between histogram
indexing and block-mass indexing. Philosophical Transactions of The Royal Society A:
Mathematical Physical and Engineering Sciences, 372(2016), 2014. doi:10.1098/rsta.
2013.0132.

5 Amihood Amir, Timothy M. Chan, Moshe Lewenstein, and Noa Lewenstein. On hardness
of jumbled indexing. In 4 1st Int. Coll. on Automata, Languages, and Programming (ICALP
2014), volume 8572 of Lecture Notes in Computer Science, pages 114-125. Springer, 2014.
doi:10.1007/978-3-662-43948-7_10.

6 Maria Axenovich and Lale Ozkahya. On homometric sets in graphs. Electronic Notes in
Discrete Mathematics, 38:83-86, 2011. doi:10.1016/j.endm.2011.09.014.

7 Golnaz Badkobeh, Gabriele Fici, Steve Kroon, and Zsuzsanna Liptak. Binary Jumbled
String Matching for Highly Run-Length Compressible Texts. Information Processing Let-
ters, 113:604-608, 2013. doi:10.1016/j.ipl.2013.05.007.

8 Nikhil Bansal, Mark Cieliebak, and Zsuzsanna Liptédk. Efficient algorithms for finding
submasses in weighted strings. In Proc. of the 15th Ann. Symp. on Combinatorial Pattern
Matching (CPM 2004), volume 3109 of Lecture Notes in Computer Science, pages 194-204.
Springer, 2004. doi:10.1007/978-3-540-27801-6_14.

9 Dénes Bartha and Péter Burcsi. Reconstructibility of trees from subtree size frequencies.
Stud. Univ. Babes-Bolyai Math., 59:435-442, 2014.

10:11

CPM 2016

http://dx.doi.org/10.1109/ISIT.2014.6875042
http://dx.doi.org/10.1137/140962486
http://dx.doi.org/10.1016/j.dam.2012.02.002
http://dx.doi.org/10.1098/rsta.2013.0132
http://dx.doi.org/10.1098/rsta.2013.0132
http://dx.doi.org/10.1007/978-3-662-43948-7_10
http://dx.doi.org/10.1016/j.endm.2011.09.014
http://dx.doi.org/10.1016/j.ipl.2013.05.007
http://dx.doi.org/10.1007/978-3-540-27801-6_14

10:12

Reconstruction of Trees from Jumbled and Weighted Subtrees

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Peter B. Borwein. Computational excursions in analysis and number theory. CMS books
in mathematics. Springer, New York, Berlin, Heidelberg, 2002.

Péter Burcsi, Ferdinando Cicalese, Gabriele Fici, and Zsuzsanna Liptdk. Algorithms for
Jumbled Pattern Matching in Strings. Int. Journal of Foundations of Computer Science,
23:357-374, 2012. doi:10.1142/50129054112400175.

Péter Burcsi, Ferdinando Cicalese, Gabriele Fici, and Zsuzsanna Liptdk. On Approximate
Jumbled Pattern Matching in Strings. Theory of Computing Systems, 50:35-51, 2012.
doi:10.1007/s00224-011-9344-5.

Timothy M. Chan and Moshe Lewenstein. Clustered integer 3SUM via additive combina-
torics. In Proc. of 47th Annual ACM Symposium on Theory of Computing (STOC 2015),
pages 31-40, 2015. doi:10.1145/2746539.2746568.

Ferdinando Cicalese, Travis Gagie, Emanuele Giaquinta, Eduardo Sany Laber, Zsuzsanna
Liptak, Romeo Rizzi, and Alexandru I. Tomescu. Indexes for jumbled pattern matching
in strings, trees and graphs. In 20th Int. Symp. on String Processing and Information
Retrieval (SPIRE 2013), volume 8214 of Lecture Notes in Computer Science, pages 56-63.
Springer, 2013. doi:10.1007/978-3-319-02432-5_10.

Ferdinando Cicalese, Eduardo Sany Laber, Oren Weimann, and Raphael Yuster. Approxi-
mating the maximum consecutive subsums of a sequence. Theoret. Comput. Sci., 525:130—
137, 2014. doi:10.1016/j.tcs.2013.05.032.

Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme J. Mitchison. Biological Se-
quence Analysis: Probabilistic Models of Proteins and Nucleic Acids. CUP, 1998.

Stephane Durocher, Robert Fraser, Travis Gagie, Debajyoti Mondal, Matthew Skala,
and Sharma V. Thankachan. Indexed geometric jumbled pattern matching. In Proc.
of the 25th Annual Symposium on Combinatorial Pattern Matching (CPM 2014), vol-
ume 8486 of Lecture Notes in Computer Science, pages 110-119. Springer, 2014. doi:
10.1007/978-3-319-07566-2_12.

Tomés Feder and Rajeev Motwani. On the graph turnpike problem. Inf. Process. Lett.,
109(14):774-776, 2009. doi:10.1016/j.ipl.2009.03.024.

Radoslav Fulek and Slobodan Mitrovic. Homometric sets in trees. Fur. J. Comb., 35:256—
263, 2014. doi:10.1016/j.ejc.2013.06.008.

Travis Gagie, Danny Hermelin, Gad M. Landau, and Oren Weimann. Binary jumbled
pattern matching on trees and tree-like structures. Algorithmica, 73(3):571-588, 2015.
doi:10.1007/s00453-014-9957-6.

Emanuele Giaquinta and Szymon Grabowski. New algorithms for binary jumbled pattern
matching. Inf. Process. Lett., 113(14-16):538-542, 2013. doi:10.1016/j.ipl.2013.04.
013.

Danny Hermelin, Gad M. Landau, Yuri Rabinovich, and Oren Weimann. Binary jumbled
pattern matching via all-pairs shortest paths. CoRR, abs/1401.2065, 2014. URL: http:
//arxiv.org/abs/1401.2065.

Ross Honsberger. In Polya’s Footsteps: Miscellaneous Problems and Essays (Dolciani
Mathematical Expositions). The Mathematical Association of America, October 1997.

Tomasz Kociumaka, Jakub Radoszewski, and Wojciech Rytter. Efficient indexes for jum-
bled pattern matching with constant-sized alphabet. In 21st Annual European Symposium
on Algorithms (ESA 2013), volume 8125 of Lecture Notes in Computer Science, pages
625-636. Springer, 2013. doi:10.1007/978-3-642-40450-4_53.

Eduardo Laber, Wilfredo Bardales, and Ferdinando Cicalese. On lower bounds for the
maximum consecutive subsums problem and the (min,+)-convolution. In Proceedings of
the 2013 IEEE Int. Symp. on Information Theory (ISIT 2013). IEEE, 2014.

http://dx.doi.org/10.1142/S0129054112400175
http://dx.doi.org/10.1007/s00224-011-9344-5
http://dx.doi.org/10.1145/2746539.2746568
http://dx.doi.org/10.1007/978-3-319-02432-5_10
http://dx.doi.org/10.1016/j.tcs.2013.05.032
http://dx.doi.org/10.1007/978-3-319-07566-2_12
http://dx.doi.org/10.1007/978-3-319-07566-2_12
http://dx.doi.org/10.1016/j.ipl.2009.03.024
http://dx.doi.org/10.1016/j.ejc.2013.06.008
http://dx.doi.org/10.1007/s00453-014-9957-6
http://dx.doi.org/10.1016/j.ipl.2013.04.013
http://dx.doi.org/10.1016/j.ipl.2013.04.013
http://arxiv.org/abs/1401.2065
http://arxiv.org/abs/1401.2065
http://dx.doi.org/10.1007/978-3-642-40450-4_53

D. Bartha, P. Burcsi, and Zs. Liptak

26

27

28

29

30

31

32

33

34

Vincent Lacroix, Cristina G. Fernandes, and Marie-France Sagot. Motif search in graphs:
Application to metabolic networks. IEEE/ACM Trans. Comput. Biology Bioinform.,
3(4):360-368, 2006. doi:10.1109/TCBB.2006.55.

Lap-Kei Lee, Moshe Lewenstein, and Qin Zhang. Parikh matching in the streaming model.
In 19th Int. Symp. on String Processing and Information Retrieval (SPIRE 2012), volume
7608 of Lecture Notes in Computer Science, pages 336-341. Springer, 2012. doi:10.1007/
978-3-642-34109-0_35.

Paul Lemke, Steven S. Skiena, and Warren D. Smith. Discrete and Computational
Geometry: The Goodman-Pollack Festschrift, chapter Reconstructing Sets From Inter-
point Distances, pages 597-631. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.
doi:10.1007/978-3-642-55566-4_27.

Tanaeem M. Moosa and M. Sohel Rahman. Sub-quadratic time and linear space data
structures for permutation matching in binary strings. J. Discr. Algorithms, 10:5-9, 2012.
doi:10.1016/j.jda.2011.08.003.

N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Mol Biol Evol, 4(4):406-425, 1987.

Svetoslav Savchev and Titu Andreescu. Mathematical Miniatures, volume 43 of Anneli Lax
New Mathematical Library. The Mathematical Association of America, 2003.

Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701-717, 1980. doi:10.1145/322217.322225.

J. L. Selfridge and E. G. Straus. On the determination of numbers by their sums of a fixed
order. Pacific J. Math., 8(4):847-856, 1958.

Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proc. of Symbolic and
Algebraic Computation (EUROSAM’79), volume 72 of Lecture Notes in Computer Science,
pages 216-226. Springer, 1979.

10:13

CPM 2016

http://dx.doi.org/10.1109/TCBB.2006.55
http://dx.doi.org/10.1007/978-3-642-34109-0_35
http://dx.doi.org/10.1007/978-3-642-34109-0_35
http://dx.doi.org/10.1007/978-3-642-55566-4_27
http://dx.doi.org/10.1016/j.jda.2011.08.003
http://dx.doi.org/10.1145/322217.322225

A 7/2-Approximation Algorithm for the Maximum
Duo-Preservation String Mapping Problem

Nicolas Boria!, Gianpiero Cabodi?, Paolo Camurati?,
Marco Palena*, Paolo Pasini®, and Stefano Quer®

1 Dipartimento di Automatica e Informatica, Politecnico di Torino, Turin, Italy,
nicolas.boria@polito.it

2 Dipartimento di Automatica e Informatica, Politecnico di Torino, Turin, Italy,
gianpiero.cabodi@polito.it

3 Dipartimento di Automatica e Informatica, Politecnico di Torino, Turin, Italy,
paolo.camurati@polito.it

4 Dipartimento di Automatica e Informatica, Politecnico di Torino, Turin, Italy,
marco.palena@polito.it

5 Dipartimento di Automatica e Informatica, Politecnico di Torino, Turin, Italy,
paolo.pasini@polito.it

6 Dipartimento di Automatica e Informatica, Politecnico di Torino, Turin, Italy,
stefano.quer@polito.it

—— Abstract

This paper presents a simple 7/2-approximation algorithm for the MAX DUO-PRESERVATION
STRING MAPPING (MPSM) problem. This problem is complementary to the classical and well
studied MIN COMMON STRING PARTITION problem (MCSP), that computes the minimal edit
distance between two strings when the only operation allowed is to shift blocks of characters.
The algorithm improves on the previously best known 4-approximation algorithm by computing
a simple local optimum.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Polynomial approximation, Max Duo-Preservation String Mapping Prob-
lem, Min Common String Partition Problem, Local Search

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.11

1 Introduction

Within the field of stringology, string comparison is one of the central problems, as its
applications range from data compression to bioinformatics. There are various ways to
measure the similarity of two strings, however the most common measure is the so called edit
distance that counts the minimum number of edit operations that must be performed in order
to transform one string into the other. In the specific field of biology, the edit-distance may
provide some measure of the kinship between different species based on the similarities of their
DNA, as each edit operation can be considered as a single mutation. In data compression, it
may help to store efficiently a set of similar yet different data (e.g., different versions of the
same object). Indeed, when a set of elements all have a short edit-distance towards a single
“base element”, an efficient way to compress the whole set of data might be to store only the
“base” element of the set, and then record all the other elements as series of edit operations.

Obviously, the concept of edit distance changes definition based on the set of edit
operations that are allowed. We tackle the classical case where the only edit operation that

© Nicolas Boria, Gianpiero Cabodi, Paolo Camurati, Marco Palena, Paolo Pasini, and Stefano Quer;
37 licensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).

Editors: Roberto Grossi and Moshe Lewenstein; Article No. 11; pp.11:1-11:8

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2

7/2-Approximation for MPSM

Figure 1 A mapping 7 that preserves 2 duos.

is allowed is to shift a block of characters, that is, to change the order of the characters in
the string by modifying the position of some substring. In this case, the edit distance can be
measured by solving the MIN COMMON STRING PARTITION (MCPS).

The MCSP is a fundamental and widely studied problem in the field of string comparison,
which applications in the field of bioinformatics are described in [7, 13]. Given a string A
let P4 denote a partition of A, that is, a set of substrings whose concatenation results in
A. Consider two strings A and B, both with n characters, such that B is a permutation
of A. The MCSP Problem introduced in [13] and [18] asks for two partitions P4 of A and
Pp of B of minimum cardinalities such that P4 is a permutation of Pg. The k—MCSP
denotes a natural restriction of the problem where each character of the alphabet has
at most k occurrences in each string. In [13], it is shown that this problem is NP-Hard
and even APX-Hard. This holds also when the number of occurrences of each character
is at most 2, and the result follows from a reduction to MAX INDEPENDENT SET (note
that the problem is trivial when the maximal number of occurrences of each character is
at most one). Since its introduction in [13], the problem has been intensively studied in
various frameworks, such as polynomial approximation [7, 8, 9, 13, 15, 16] and parametric
computation [3, 4, 10, 14]. Regarding polynomial approximation, the best results known so
far are an O(lognlog® n)-approximation algorithm for the general version of the problem
[9], and an O(k)-approximation for k—MCSP [16]. Regarding parametric computation, the
problem was proved to be Fixed Parameter Tractable (FPT), first with respect to both &
and the cardinality ¢ of an optimal partition [3, 10, 14], and more recently, with respect to
¢ only [4].

In [6], the symmetrical (maximization) version of the problem is introduced and denoted
by MAX DUO-PRESERVATION STRING MAPPING (MPSM). A duo is defined as a couple of
consecutive characters in a given string. It is clear that when a couple of partitions (P, Pg)
are a solution for a given instance of MIN COMMON STRING PARTITION that partition A
and B into ¢ substrings, this solution is equivalent to a mapping 7 from characters of A to
characters of B that preserves exactly n — ¢ duos. A duo is considered preserved when its
two consecutive characters are mapped to two consecutive characters in the other string.
Hence, given two strings A and B, the MPSM problem asks for a mapping 7 from A to B
that preserves a maximum number of duos. An example of mapping that preserves 2 duos is
provided in Figure 1.

Reminding that MCSP is NP-Hard [13], its maximization version MPSM is also NP-Hard.
However, it is likely that these two problems have different behaviours in terms of ap-

N. Boria, G. Cabodi, P. Camurati, M. Palena, P. Pasini, and S. Quer

proximation, inapproximability, and parameterized complexity. Among many others, MAX
INDEPENDENT SET and MIN VERTEX COVER provide a perfect example of two symmetrical
problems having different characteristics: on the one hand, MIN VERTEX COVER is easily
2-approximable in polynomial time by taking all endpoints of a maximal matching [12], and
is FPT [5], while on the other hand MAX INDEPENDENT SET is inapproximable within ratio
n®~! for a given € € (0,1) unless P = NP [17], and is W[1]-Hard [11].

In [6], some approximation results are presented for MPSM with the following method. A
graph problem called CONSTRAINED MAXIMUM INDUCED SUBGRAPH (CMIS) is defined and
proved to be a generalization of MPSM. Using a solution to the linear relaxation of CMIS,
it is then shown that a randomized rounding provides a k% expected approximation ratio
for k-CMIS (and thus for k-MPSM), and a 2 expected approximation ratio for 2-CMIS (and
thus for 2-MPSM). In [2], these results were improved by introducing and analysing two
simple approximation algorithms: the first guarantees a 4-approximation ratio (regardless of
the value of k), while the second ensures an approximation ratio 8/5 when k = 2 and ratio 3
when k = 3. Moreover, the problem is shown to be APX-Hard. Very recently, the problem
was shown to be FPT with respect to the number of duos preserved [1].

In what follows, we present further improvements on the latter results, namely a polyno-
mial 7/2-approximation algorithm based on a local search technique. In Section 2, we present
briefly a graph generalization of MPSM called MAX CONSECUTIVE BIPARTITE MATCHING.
Then, we describe our local search algorithm in Section 3 for which we provide complexity
analysis (Section 4) and bound on the approximation ratio (Section 5). We finally provide
some perspective for future works and possible further improvements on the approximation
guarantee in Section 6.

2 Graph translation of the Problem

We are interested in improving on the best known approximation algorithm for MAX DUO-
PRESERVATION STRING MAPPING problem, that has approximation ratio 4. In [2], the problem
is shown to be a particular case of the following graph problem, which we denote as MAX
CONSECUTIVE BIPARTITE MATCHING. Given a bipartite graph where vertices on both sides
are ordered : A = (aq,...,a,), B = (b1,...,by), the MAX CONSECUTIVE BIPARTITE MATCHING
problem asks for the maximum matching M such that if (a;,b;) € M, then a;4+1 can only be
matched to b;41, and b1 can only be matched to a;y;. In other words, sets of matched
consecutive vertices on one side must be matched to consecutive vertices on the other side.

Let us recall briefly why MAX DUO-PRESERVATION STRING MAPPING is a particular case
of MAX CONSECUTIVE BIPARTITE MATCHING. Strings A and B of any instance of MAX
DUO-PRESERVATION STRING MAPPING can be translated as ordered duo sets D4 and D?
(for example, if A = “abc” and B = “bac”, then D? = ((ab), (bc)), and DB = ((ba), (ac))).

Consider the bipartite graph G(I) built in the following way (an example is provided in
Figure 2):

each vertex on the left-hand side represents a duo of the set D4, and each vertex on the

right-hand side represents a duo of DB.

edges exist between two vertices if and only if they represent the same duo (same couple

of characters in the same order)

It is shown in [2] that any feasible solution M for MAX CONSECUTIVE BIPARTITE MATCHING
in the graph G(I) yields a mapping m between strings A and B that preserves at least | M|
duos (and exactly | M| duos if M is inclusion-wise maximal).

11:3

CPM 2016

11:4

7/2-Approximation for MPSM

Figure 2 Graph G(I) when I consists of A = “abcacba” and B = “beabaca’.

Indeed, such a matching can be seen as a partial mapping, and the number of edges
in the matching is equal to the number of duos that the mapping preserves. The partial
mapping can then be completed in an arbitrary way, since the set of non-mapped characters
in A is a permutation of non-mapped vertices in B.

In the rest of the paper, we will refer only to the MAX CONSECUTIVE BIPARTITE MATCHING
problem, bearing in mind that any approximation result that holds for MAX CONSECUTIVE
BIPARTITE MATCHING also holds MAX DUO-PRESERVATION STRING MAPPING.

We call two edges conflicting if they cannot be both part of the same solution, either
because they share a common endpoint or because their endpoints are consecutive on one
side of the graph but not on the other.

In the following, we present an algorithm that produces such a partial mapping based on
local search technique.

3 Local search algorithm

Local search algorithms produce solutions that are defined as local optima. A local optimum
of an optimization problem is a solution that is optimal (either maximal or minimal) within
a neighbouring set of candidate solutions. Starting from any feasible solution, the algorithm
searches an improving solution in the neighbouring set, and repeatedly moves to an improving
neighbouring solution as long as such a solution exists. When no improving neighbouring
solution can be found, then the current solution is by definition a local optimum.

The quality of the local optimum obviously depends on the definition of the neighbouring
set.

We devise a local search algorithm denoted LOCAL, which is based on a neighbourhood
structure A/. Given a matching M that is a feasible solution for the problem, the neighbour-
hood of M, called N (M), contains all feasible solutions M’ such that [M \ M'| < 1. In
other words M’ must contain all edges of M apart from possibly one.

While searching for an improving solution in the neighbouring set, the algorithm LOCAL
will first try to improve the solution without removing any edge from the current solution
M. On the one hand, if M is not inclusion-wise maximal, then there is an edge that can be
added to the current solution M without having to remove any edge from it. If on the other
hand M is inclusion-wise maximal, then the algorithm scans every matching M \ {v} (for
each v € M) and checks if at least two edges can be added to one of these matchings. The
pseudocode of algorithm LOCAL is provided in Section 4.

N. Boria, G. Cabodi, P. Camurati, M. Palena, P. Pasini, and S. Quer

Algorithm 1 ALGORITHM LOCAL
Input: G = (V,E)

Output: M
1. M= @, M =0
2: if Jv € F then
3 M+ {v}
4: end if
5. while M # M’ do
6: M «— M
7. for each v € FE do
8: if M U {v} is feasible then
9: M+ MU {v}
10: continue
11: end if
12: end for
13: for each v € M do
14: for each (u,w) € E x E do
15: if M\ {v}U {u,w} is feasible then
16: M+ M\ {v} U{u,w}
17: break
18: end if
19: end for

20: end for
21: end while
22: return M

4 Complexity analysis

We prove that the algorithm runs indeed in polynomial time. First of all, even starting from
an empty solution, the algorithm will increment the value of its solution by at least one at
each step, so that it will conclude after at most |SOL| < n steps.

At each step, the algorithm first scans all edges that are not in SOL and checks if one
of them does not conflict with any edge of SOL. This is done in O(n?) time. If such an
edge is found, the current step is finished. Otherwise, for each edge u of SOL, the algorithm
considers all sets of at most 6 non-solution edges conflicting with u, and checks if they can
be added to the matching SOL \ {u} without generating any conflict. This is done in O(n®)
time for each edge u of the current solution: each edge of the solution conflicts with O(n)
non-solution edges, so that there are O(n°) candidate combinations of at most 6 non-solution
edges to consider. Considering that, at each step, the current solution has O(n) edges, the
complexity of a single step is O(n").

In all, the algorithm finishes after at most n steps, each step running in O(n") time, so
that the overall complexity is O(n®).

The complexity of LOCAL can actually been brought down to O(n*) thanks to the following
observation. If an improvement incrementing the cardinality of the solution by at least one
can be made at some step (by removing an edge u of SOL and adding a set X of at least two
non conflicting edges to SOL), then an improvement incrementing this value by exactly one
is also possible (by removing the same edge u of SOL and adding exactly any couple of edges
of the set X). Thus, instead of scanning all sets of at most 6 non-solution edges conflicting

11:5

CPM 2016

11:6

7/2-Approximation for MPSM

Figure 3 Conflicts among SOL and OPT edges.

with each edge u, it suffices that the algorithm scans only every couple of non-solution edges
conflicting with u. If no improving couple can be found, then no improvement of any kind
can be made, and the current solution is a local optimum.

5 Approximation analysis

We now prove that, indeed, LOCAL improves on the best known 4-approximate algorithm for
MAX CONSECUTIVE BIPARTITE MATCHING:

» Theorem 1. The algorithm LOCAL yields a 3.5 approzimation ratio for MAX CONSECUTIVE
BIPARTITE MATCHING problem.

Consider that the algorithm LOCAL runs on an instance I of MAX CONSECUTIVE BIPARTITE
MATCHING and outputs a solution SOL.

The proof is based on counting the conflicts between edges of SOL and edges of an
unknown optimal matching OPT. We denote such number of conflicts by C.

On the one hand, a single edge of SOL cannot be conflicting with more than 6 edges of
OPT (the worst case is shown in Figure 3). Indeed, on the one hand, any edge u can be in
conflict only with edges that share an endpoint with u, or that have an endpoint that is
consecutive to an endpoint of u (immediately after or immediately before), which results
in no more than 6 possible endpoints for edges conflicting with u (the two endpoints of u,
and the four consecutive vertices). On the other hand, any feasible solution including the
optimal one can pick at most one edge per vertex of the graph. This gives us the following
upper bound on the value of C":

C' < 6/SOL. (1)

We recall that, by definition, there is no solution SOL’ in the neighbourhood A (SOL)
of SOL that has more edges than SOL. Hence, given any edge v of SOL the following fact
holds:

N. Boria, G. Cabodi, P. Camurati, M. Palena, P. Pasini, and S. Quer 11:7

» Fact 2. Let v be an edge of solution SOL generated by LOCAL, and OPT be an optimal
solution for the problem. There is at most one edge u of OPT that conflicts only with v in
SOL.

The fact is rather straightforward: suppose that there exist two edges u and ¢ in a solution
OPT that both conflict with a single edge v in SOL. The solution SOL \ {v} U {u,t} is an
admissible matching in the neighbourhood of SOL and it contains more edges. Hence, LOCAL
should have picked it instead of SOL.

Let us denote by k1 the number of edges in OPT that conflict with one edge of SOL only.
Fact 2 yields naturally the following bound:

ky < |SOLJ. 2)

In OPT the remaining |OPT| — k; edges conflict with at least 2 edges of SOL, which
gives us the following lower bound on the number of conflicts C":

C > ky + 2(|OPT| — ky) > 2|OPT| — k; > 2|OPT| — |SOLJ. (3)
@

Combining equations (1) and (3), we can easily get the following bound on the approxim-
ation ratio of LOCAL, which concludes the proof:

<

orT _ 7
SOL — 2°

6 Conclusion and perspectives

We showed that a simple local optimization technique provides a better approximation
guarantee than the previously best known algorithm for MPSM. The analysis of more
complex local optimums that rely on broader (yet polynomial) definitions of neighbourhood
did not lead to immediate further improvements of the approximation guarantee. However,
there are strong hints that, in such optimums, the number of edges that conflict with 6
edges of a global optimum is somehow linked to the number of edges of the global optimum
conflicting with few edges of the local optimum. Namely, if many edges of the local optimum
conflict with 6 edges of the global optimum, then few edges of the global optimum are
expected to conflict few edges of the global optimum, resulting in a tighter version of equation
3, bounding for example the value C(t) where ¢ is the number of edges of the local optimum
that conflict with 6 edges of the global optimum. Analysing such a bound might eventually
lead to further improvements on the approximation ratio.

—— References

1 S. Beretta, M. Castelli, and R. Dondi. Parameterized Tractability of the Maximum-Duo Pre-
servation String Mapping Problem. ArXiv e-prints, December 2015. arXiv:1512.03220.

2 N. Boria, A. Kurpisz, S. Leppénen, and M. Mastrolilli. Improved approximation for the max-
imum duo-preservation string mapping problem. In Dan Brown and Burkhard Morgenstern,
editors, Algorithms in Bioinformatics, volume 8701 of Lecture Notes in Computer Science,
pages 14-25. Springer Berlin Heidelberg, 2014. doi:10.1007/978-3-662-44753-6_2.

3 L. Bulteau, G. Fertin, C. Komusiewicz, and I. Rusu. A Fixed-Parameter Algorithm for
Minimum Common String Partition with Few Duplications. In WABI, pages 244-258,
2013. doi:10.1007/978-3-642-40453-5_19.

CPM 2016

http://arxiv.org/abs/1512.03220
http://dx.doi.org/10.1007/978-3-662-44753-6_2
http://dx.doi.org/10.1007/978-3-642-40453-5_19

11:8

7/2-Approximation for MPSM

10

11

12

13

14

15

16

17

18

L. Bulteau and C. Komusiewicz. Minimum common string partition parameterized by
partition size is fixed-parameter tractable. In SODA, pages 102-121, 2014. doi:10.1137/
1.9781611973402.8.

J. Chen, I.LA. Kanj, and W. Jia. Vertex Cover: Further Observations and Further
Improvements. In Peter Widmayer, Gabriele Neyer, and Stephan Eidenbenz, editors,
WG, volume 1665 of Lecture Notes in Computer Science, pages 313-324. Springer, 1999.
doi:10.1007/3-540-46784-X_30.

W. Chen, Z. Chen, N. F. Samatova, L. Peng, J. Wang, and M. Tang. Solving the maximum
duo-preservation string mapping problem with linear programming. Theoretical Computer
Science, 530(0):1-11, 2014. doi:10.1016/j.tcs.2014.02.017.

X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang. Assignment of
Orthologous Genes via Genome Rearrangement. Transactions on Computational Biology
and Bioinformatics, 2(4):302-315, 2005. doi:10.1145/1100863.1100950.

M. Chrobak, P. Kolman, and J. Sgall. The Greedy Algorithm for the Minimum Common
String Partition Problem. In Klaus Jansen, Sanjeev Khanna, José D. P. Rolim, and Dana
Ron, editors, APPROX-RANDOM, volume 3122 of Lecture Notes in Computer Science,
pages 84-95. Springer, 2004. doi:10.1007/978-3-540-27821-4_8.

G. Cormode and S. Muthukrishnan. The string edit distance matching problem with moves.
ACM Transactions on Algorithms, 3(1), 2007. doi:10.1145/1219944.1219947.

P. Damaschke. Minimum Common String Partition Parameterized. In Keith A. Crandall
and Jens Lagergren, editors, WABI, volume 5251 of Lecture Notes in Computer Science,
pages 87-98. Springer, 2008. doi:10.1007/978-3-540-87361-7_8.

R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer-Verlag, 1999. 530
pp-

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Co., San Francisco, CA, 1979.

A. Goldstein, P. Kolman, and J. Zheng. Minimum Common String Partition Problem:
Hardness and Approximations. In Rudolf Fleischer and Gerhard Trippen, editors, ISAAC,
volume 3341 of Lecture Notes in Computer Science, pages 484-495. Springer, 2004.

H. Jiang, B. Zhu, D. Zhu, and H. Zhu. Minimum common string partition revisited. Journal
of Combinatorial Optimization, 23(4):519-527, 2012. doi:10.1007/s10878-010-9370-2.
P. Kolman and T. Walen. Approximating reversal distance for strings with bounded number
of duplicates. Discrete Applied Mathematics, 155(3):327-336, 2007. doi:10.1016/j.dam.
2006.05.011.

P. Kolman and T. Walen. Reversal Distance for Strings with Duplicates: Linear Time
Approximation using Hitting Set. Electronic Journal of Combinatorics, 14(1), 2007. URL:
http://www.combinatorics.org/Volume_14/Abstracts/v14i1r50.html.

C. Lund and M. Yannakakis. The Approximation of Maximum Subgraph Problems. In An-
drzej Lingas, Rolf G. Karlsson, and Svante Carlsson, editors, ICALP, volume 700 of Lecture
Notes in Computer Science, pages 40-51. Springer, 1993. doi:10.1007/3-540-56939-1_
60.

K.M. Swenson, M. Marron, J.V. Earnest-DeYoung, and B.M.E. Moret. Approximating
the true evolutionary distance between two genomes. ACM Journal of Experimental Al-
gorithmics, 12, 2008. doi:10.1145/1227161.1402297.

http://dx.doi.org/10.1137/1.9781611973402.8
http://dx.doi.org/10.1137/1.9781611973402.8
http://dx.doi.org/10.1007/3-540-46784-X_30
http://dx.doi.org/10.1016/j.tcs.2014.02.017
http://dx.doi.org/10.1145/1100863.1100950
http://dx.doi.org/10.1007/978-3-540-27821-4_8
http://dx.doi.org/10.1145/1219944.1219947
http://dx.doi.org/10.1007/978-3-540-87361-7_8
http://dx.doi.org/10.1007/s10878-010-9370-2
http://dx.doi.org/10.1016/j.dam.2006.05.011
http://dx.doi.org/10.1016/j.dam.2006.05.011
http://www.combinatorics.org/Volume_14/Abstracts/v14i1r50.html
http://dx.doi.org/10.1007/3-540-56939-1_60
http://dx.doi.org/10.1007/3-540-56939-1_60
http://dx.doi.org/10.1145/1227161.1402297

Fast Compatibility Testing for Rooted
Phylogenetic Trees”

Yun Deng! and David Fernindez-Baca?

1 Department of Computer Science, lowa State University, Ames, IA 50011,
USA
yundeng@Qiastate.edu
2 Department of Computer Science, Iowa State University, Ames, IA 50011,
USA
fernande@iastate.edu

—— Abstract

We consider the following basic problem in phylogenetic tree construction. Let P = {T1,..., Ty}
be a collection of rooted phylogenetic trees over various subsets of a set of species. The tree
compatibility problem asks whether there is a tree T' with the following property: for each
i €{1,...,k}, T; can be obtained from the restriction of T" to the species set of T; by contracting
zero or more edges. If such a tree T exists, we say that P is compatible.

We give a O(Mp) algorithm for the tree compatibility problem, where Mp is the total number
of nodes and edges in P. Unlike previous algorithms for this problem, the running time of our
method does not depend on the degrees of the nodes in the input trees. Thus, it is equally fast
on highly resolved and highly unresolved trees

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory, J.3 Life and Medical Sciences

Keywords and phrases Algorithms, computational biology, phylogenetics

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.12

1 Introduction

Building a phylogenetic tree that encompasses all living species is one of the central challenges
of computational biology. Two obstacles to achieving this goal are lack of data and conflict
among the data that is available. The data shortage is tied to the vast disparity in the
amount of information at our disposal for different families of species and the limited amount
of comparable data across families [16]. One approach to overcoming this obstacle begins by
identifying subsets of species for which enough data is available, and building phylogenies for
each subset. The resulting trees are then synthesized into a single phylogeny — a supertree —
for the combined set of species. This approach, proposed in the early 90s [2, 15], has been
used successfully to build large-scale phylogenies (see, e.g., [3, 10]).

Any attempt at synthesizing phylogenetic information from multiple input trees must
deal with the potential for conflict among these trees. Conflict may arise due to errors,
or due to phenomena such as gene duplication and loss, and horizontal gene transfer. A
fundamental question is whether conflict exists at all; that is, does there exist a supertree
that exhibits the evolutionary relationships implicit in each input tree? We can formalize

* Supported in part by the National Science Foundation under grants CCF-1017189 and CCF-1422134.

© Yun Deng and David Ferndndez-Baca;

oY licensed under Creative Commons License CC-BY
27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 12; pp. 12:1-12:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2

Compatibility Testing for Rooted Phylogenetic Trees

this question as follows. Let P = {T,...,T}} be a collection of rooted phylogenetic trees,
where, for each i € {1,...,k}, T; is a phylogenetic tree for a set of species L(T;). The tree
compatibility problem asks whether there exists a phylogenetic supertree T for the set of
species Ule L(T;) such that, for each ¢ € {1,...,k}, T; can be obtained from T'|L(T;) — the
minimal subtree of T" spanning L(T;) — by zero or more contractions of internal edges. If the
answer is “yes”, then P is said to be compatible; otherwise, P is incompatible.

Here we present an algorithm that solves the compatibility problem for rooted trees in
O(Mp log? Mp) time, where Mp is the total number of vertices and edges in the trees in P.
This running time is independent of the degrees of the internal nodes of the input trees.

1.1 Previous Work

Aho et al. [1] gave the first polynomial-time algorithm for the rooted tree compatibility
problem. Their motivation was not phylogenetics, but relational databases. Steel [18] was
perhaps the first to note the relevance of Aho et al’s algorithm to supertree construction.
His version of the Aho et al. algorithm, which he called the Build algorithm, has been a
major influence in later work, including the present paper.

Henzinger et al. [9] showed that one can check the compatibility of a collection R of rooted
triples — that is, phylogenetic trees on three species — in O(|R|log? |R|) time. (The time
bound stated in [9] is higher, but can be improved using a faster dynamic graph connectivity
data structure [11].) Any collection of trees P can be encoded by a collection of rooted triples
R(P), obtained by enumerating the restriction of each input tree to every three-element
subset of its species set (see Section 2). If n denotes the total number of distinct species in P,
then we get a trivial upper bound of |R(P)| = O(n®k). We can improve on this by finding a
minimal set R* of rooted triples that define the input trees. If the trees are binary — fully
resolved, in the language of phylogenetics —, then O(n) triples suffice for each tree, giving
us |R*| = O(nk). If input trees admit non-binary — that is, unresolved — nodes, however,
the number of triples needed per input tree is roughly proportional to n? (the precise bound
depends on the sum of the products of the degrees of internal nodes and the degrees of their
children [8]), giving us |R*| = O(n2k). Of course, the extra step of finding R* adds to the
complexity of the algorithm.

The tree compatibility problem is related to the incomplete directed perfect phylogeny
problem (IDPP). Indeed, any collection of k phylogenetic trees on n distinct species can be
encoded as a problem of testing the compatibility of a collection of O(Mp) “directed partial
characters” on n species!. Intuitively, each such character encodes the species in the subtree
rooted at some node in an input tree. There is a O(nm) algorithm to test the compatibility
of m incomplete characters [14], which can be adapted to yield a O(nMp) algorithm for tree
compatibility.

When the input trees are unrooted, the tree compatibility problem becomes NP-hard
[18]. Nevertheless, the decision version is polynomial-time solvable if k is fixed [4]; that is,
the problem is fixed-parameter tractable in k. The proof of fixed-parameter tractability in
[4] relies on Courcelle’s Theorem [6], and thus is an existence proof, rather than a practical
algorithm.

Finally, we note that there are linear-time algorithms for testing the compatibility of a
collection of trees that all have exactly the same leaf label set. One such algorithm can be
obtained using recent results on computing “loose” and “strict” consensus trees [13]. Both

1 For a precise definition of partial characters and IDPP, we refer the reader to Pe’er et al. (14].

Y. Deng and D. Fernandez-Baca 12:3

types of consensus trees can be found in O(nk) time, which is O(Mp) when all leaf label
sets are identical. (We thank J. Jansson for pointing this out.)

1.2 Qur Contributions

At a high level, our algorithm resembles Build [18, 17]. There are, however, important
differences. Build relies on the triplet graph, whose nodes are the species and where there is
an edge between two species if they are involved in a triplet (see Section 2). Our algorithm
relies instead on intersection graphs of sets of species associated with certain nodes of the
input trees. Our graphs allow a more compact representation of the triplets induced by the
trees in P (see Section 3). The key to the correctness of our approach is the close relationship
between the triplet graph and our intersection graph (see Lemma 5 of Section 3). We remark
that intersection graphs have a long history of use in testing compatibility, beginning with
the work of Buneman [5].

We also take ideas from other sources. From Pe’er et al’s IDPP algorithm [14], we adapt
the idea of a semi-universal node. Although the graphs used to solve IDPP and rooted
compatibility are different, semi-universal nodes play similar roles in each case: they capture
the notion of sets of nodes in the input trees that map to the same node in a supertree, if a
supertree exists. The relationship between our algorithm and Pe’er et al’s goes deeper. Our
approach can be viewed as an algorithm for IDPP that takes advantage of the fact that our
particular set of incomplete characters arises from a collection of trees.

Intersection graphs are a convenient tool to prove the correctness for our algorithm. They
are less convenient for an implementation, because they are hard to maintain dynamically,
as our algorithm requires. The difficulty lies in recomputing set intersections whenever the
graphs are updated. We avoid this by using display graphs, an idea that we borrow from the
proof of the fixed-parameter tractability of unrooted compatibility [4]. The display graph of
a collection P is obtained by identifying leaves in the input trees that have the same label.
Display graphs provide all the connectivity information we need for our intersection graphs
(see Lemma 8 of Section 4), but are easier to maintain.

Through our techniques, we achieve what, to our knowledge, is the first algorithm for
rooted compatibility to achieve near-linear time under all input conditions, regardless of the
degrees of the nodes in the input trees. This is an essential quality for dealing with large
datasets.

1.3 Contents

Section 2 reviews basic concepts in phylogenetics, defines compatibility formally, and intro-
duces triplets and the triplet graph. Section 3 presents our intersection graph approach to
testing tree compatibility. Section 4 describes the implementation details needed to achieve
the O(Mp log? Mp) time bound. Section 5 contains some final remarks.

2 Preliminaries

For each positive integer r, [r] denotes the set {1,...,7}.

2.1 Phylogenetic Trees

Let T be a rooted tree. We use V(T'), E(T), and r(T) to denote the nodes, edges, and the
root of T, respectively. For each x € V(T), we use Ch(z) and T'(x) to denote the set of

CPM 2016

12:4

Compatibility Testing for Rooted Phylogenetic Trees
T
T T2 T3 m
a b ¢ b ¢ d c d e a b ¢ d e
Figure 1 A profile P = {T1,7>,75} and a tree T that displays P.

children of z and the subtree of T rooted at x, respectively. Suppose u,v € V(T'). Then, u
is a descendant of v if v lies on the path from u to 7(7") in 7. Note that v is a descendant of
itself. T is binary, or fully resolved, if each of its internal nodes has two children.

A (rooted) phylogenetic tree is a rooted tree T where every internal node has at least two
children, along with a bijection A that maps each leaf of T to an element of a set of species,
denoted by L(T). For each x € V(T'), L(z) denotes the set of species mapped to the leaves
of T'(z); that is, L(xz) = {A\(v) : vis aleafin T'(x)}. L(x) is called the cluster at x. Note
that L(r(T)) = L(T). The set of all clusters in T is CI(T) = {L(z) : x € V(T)}.

The following lemma, adapted from [17, p. 52], is part of the folklore of phylogenetics.

» Lemma 1. Let H be a collection of non-empty subsets of a set of species X that includes
all singleton subsets of X as well as X itself. If there exists a phylogenetic tree T such that
ClT) = H, then, up to isomorphism, T is unique.

Let T be a phylogenetic tree and A be a set of species. The restriction of T to A,
denoted T|A is the phylogenetic tree with species set A where Cl(T|A) = {CNA:C €
ClT) and CN A # 0}. Let T” be a phylogenetic tree. T displays T" if C1(T") C CI(T|L(T")).

A rooted triple is a binary phylogenetic tree on three leaves. A rooted triple with leaves
a, b, and c is denoted ab|c if the path from a to b does not intersect the path from c¢ to the
root. We treat ab|c and ba|c as equivalent.

When restricted to the three-element subsets of its species set, a phylogenetic tree
T induces a set R(T) of rooted triples, defined as R(T) = {T|X : X C L(T),|X| =
3 and T|X is binary}.

» Lemma 2 ([17, p. 119]). Let T and T’ be two phylogenetic trees. Then T displays T' if
and only if R(T") C R(T).

2.2 Profiles and Compatibility

Throughout the rest of this paper P = {T1,...,Tr} denotes a set where, for each i € [k],
T; is a phylogenetic tree. We refer to P as a profile, and write L(P) to denote |J;¢ () L(T3),
the species set of P. We write V(P) for U, ¢y V(Ti), E(P) for Uy E(T3), and R(P) for
Uiepr R(T3). Given a subset A of L(P), P|A denotes the profile {T1|A, ..., Ti[A}. The size
of P is Mp =|V(P)| + |E(P)|. Note that Mp = O(nk).

Profile P is compatible if there exists a phylogenetic tree T" such that, for each i € [k], T
displays T;. If such a tree T exists, we say that T displays P. See Figure 1.

2.3 The Triplet Graph

The triplet graph of a profile P, denoted T'(P), is the graph whose vertex set is L(P) and
where there is an edge between species a and b if and only if there exists a ¢ € L(P) such
that ablc € R(P). The following observation concerning singleton profiles will be useful.

Y. Deng and D. Fernandez-Baca

» Observation 1. Let T be a phylogenetic tree with |L(T)| > 2. Let uq,...,u, be the
children of 7(T"). Then, the connected components of I'({T'}) are L(u1),...,L(u,), where
p=2.

3 Testing Compatibility

Here we describe our compatibility algorithm and prove its correctness. We begin with some
definitions.

Let U be a subset of V(P) and let L(U) denote |J,c;; L(u). Then, Gp(U) denotes the
graph with vertex set U and where u, v € U are joined by an edge if and only if L(u)NL(v) # 0.
That is, Gp(U) is the intersection graph of the clusters associated with the nodes in U. For
each i € [k], let U(i) = U N V(T;). We say that U is valid if, for each i € [k],

V1 if |U(4)] > 2, then there exists a node v € V(T;) such that U(#) C Ch(v) and
V2 L(U®1) = L(T;) N L(U).

Observe that the set Ui,;; defined as follows is valid.
Uinit = {r(T3) : i € [k]} (1)

Note that L(Uinit) = L(P). From this point forward, we assume that Gp(Uinit) is connected.
No generality is lost by doing so. To see why, observe that if Gp(Uinit) is not connected,
then P can be partitioned into a collection of species-disjoint profiles P, ..., P, such that P
is compatible if and only if P; is compatible for all j € [r].

The next observation follows from the definition of a valid set.

» Observation 2. If U is a valid subset of V(P), then, for each i € [k], Cl(T;|L(U)) =
{L(U(%))} U{L(v) : v is a descendant of a node in U(7)}.

Together with Lemma 1, Observation 2 shows that 7;|L(U) is completely determined by
the descendants of U (7).

A valid subset U of V(P) is compatible if there exists a phylogenetic tree T with L(T') =
L(U) that displays T;|L(U) for every i € [k]. If such a tree T exists, we say that T' displays
U.

» Lemma 3. Profile P is compatible if and only if every valid subset of V(P) is compatible.

Proof.

(<) If every valid subset of V(P) is compatible, then, in particular, so is the set Uiy of
Equation (1). Let T be a tree that displays Uipit. Then, L(T) = L(Uinit) = L(P). Thus, for
every i € [k], T;|L(T) = T;, and thus T displays T;. Hence, P is compatible.

(=) Suppose P is compatible, but there is a valid subset U of V(P) that is not compatible.
Let T be a tree that displays P. But then T|U displays U, a contradiction. <

BuildST (Algorithm 1), which is closely related to Semple and Steel’s Build algorithm [17],
determines whether a valid set U C V(P) is compatible. The key difference between BuildST
and Build is that the latter uses the triplet graph T'(P), while BuildST uses the graph
Gp(U), for different subsets U of V(P). As we show in Lemma 5, the two graphs are closely
related. Nevertheless, Gp(U) offers some computational advantages over the triplet graph.
Intuitively, this is because Gp(U) is a more compact representation of the triplets in R(P).

BuildST(U) attempts to build a tree Ty for U. Step 1 initializes the root of Ty. If L(U)
consists of one or two species, then U is trivially compatible; Steps 2-5 handle these cases.

12:5

CPM 2016

12:6 Compatibility Testing for Rooted Phylogenetic Trees

Algorithm 1: BuildST(U)

Input: A valid set U C V(P) such that Gp(U) is connected.
Output: A tree Ty that displays U, if U is compatible; incompatible otherwise.

1 Create a node ry

2 if |[L(U)| =1 then

3 ‘ return the tree consisting of node r, labeled by the single species in L(U)

4 if |L(U)| = 2 then

5 return the tree consisting of node ry and two children, each labeled by a different
species in L(U)

6 foreach i € [k] such that |[U(i)] =1 do

7 Let v be the single element in U ()

8 U= (U\{v})UCh(v)

9 Let Wy, Wy, ..., W, be the connected components of Gp(U)

10 if p=1 then

11 ‘ return incompatible
12 foreach j € [p] do

13 Let t; = BuildST(WW;)

14 if ¢; is a tree then

15 ‘ Add t; to the set of subtrees of ry
16 else

17 ‘ return incompatible

18 return the tree with root ry

The loop in lines 6-8 identifies the indices 7 € [k] such that U(i) is a singleton. For each such
i, it removes the single element v in U(7) and replaces v by its children in T;. Note that if v
is a leaf in T}, then U(i) = 0 after this step. As we argue in the proof of Theorem 7, when P
is compatible, all such nodes v — provided they are not leaves — map to the same node w
in the tree T that displays P, in the sense that L(w) is the smallest cluster in T such that
L(v) C L(w)?. In Theorem 7, we also show that, if Gp(U) remains connected after steps 6-8,
then U is incompatible. This case is handled in Line 11. Otherwise, Lines 12-17 recursively
process each connected component of Gp(U). If the recursive calls succeed in finding trees
for all components, these trees are assembled into a phylogeny for U by joining them to the
root created in Step 1. If any recursive call determines that a component is incompatible,
then U is declared to be incompatible.

The correctness of BuildST relies on two lemmas, the first of which can be proved using
induction.

» Lemma 4. If, given a valid set U C V(P), BuildST(U) returns a tree Ty, then Ty is a
phylogenetic tree such that L(Ty) = L(U).

The next lemma is central to the correctness proof of BuildST.

» Lemma 5. Let W1, ..., W, be the connected components of Gp(U) at step 9 of BuildST(U),
for some valid set U C V(P). Then,

(i) for each j € [p], W; is a valid set, and

(ii) the connected components of I'(P|L(U)) are precisely L(Wh), ..., L(W,).

2 Thus, v plays the role of a semi-universal node, in the sense of Pe’er et al. [14].

Y.

Deng and D. Fernandez-Baca

Proof.

()

(ii)

Let Uper and U,ge denote the values of U before and after executing steps 6-8. Each
element of U,g is either an element of Uye¢ or a child of some v € Upes. In the latter
case, every child of v is in Uug. By assumption, Uy is valid, and for every non-leaf
node v, L(v) = Uy,ecn(e) L(w); therefore, Uag must also be valid. Part (i) follows.

We can show that the following holds after steps 6-8.

» Claim 6. Let a and b be any two species in L(U). Then, (a,b) is an edge in T'(P|L(U))
if and only if there exists a node v € U such that a,b € L(v).

Observe that both II; = {A : A is a connected component of I'(P|L(U))} and Tl =
{L(W) : W is a connected component of Gp(U)} are partitions of L(U). We prove that
IT; = II; by showing that (a) for each connected component A of I'(P|L(U)) there exists
a connected component W of Gp(U) such that A C L(W), and (b) for each connected
component W of Gp(U) there exists a connected component A of I'(P|L(U)) such that
L(W) C A.

(a) Let A be any connected component of T'(P|L(U)). We argue that any two species a, b
in A must be in the same connected component of Gp(U). Let U, = {v € U : a € L(v)}
and U, = {v € U : b € L(v)}. Then, each of U, and U, is a clique in Gp(U). It thus
suffices to show that there is a path between some node in U, and some node in Uy.
By the definition of A, there exists a path between a and b in T'(P|L(U)). Suppose this
path is p = {(a1,...,am), where a; = a and a,,, = b. By Claim 6, for each [€ [m — 1],
there exists a node w; € U such that {a;,a;41} € L(w;). For each I € [m — 2],
L(w)) N L(wy11) # 0, so, either w; = w11 or there is a edge between w; and w;41 in
Gp(U). Let m# = (wy,...,wm—1). Then, we can extract from 7 a subsequence that is a
path from w; to w,,—1 in Gp(U). By the definition of p, a € L(wy) and b € L(wy,—1),
so wy € U, and w; € Up. This completes the proof of part (a).

(b) Let W be any connected component of Gp(U). If |[L(W)| = 1, the statement holds
trivially, so assume that |L(W)| > 1. We argue that any two species a,b in L(W) are in
the same connected component of I'(P|L(U)). Let v, and v, be nodes in W such that
a € L(v,) and b € L(vp). If v, = vy, then, by Claim 6, (a,b) is an edge of I'(P|L(0)),
and we are done. So, suppose instead that v, # vp.

Let us call a path 7 from v, to vy good if |L(w)| > 1 for every node w in 7. We claim
that there exists a good path from v, to v,. To prove this claim, we first argue that we
can choose v, and v, such that |L(v,)|, |L(vp)| > 1. Indeed, consider the case of species
a (the case for b is analogous). If |L(v)| = 1 for every node v € W such that a € L(v),
then we would have |L(W)| = 1, contradicting our assumption that |L(1W)| > 1. Now,
suppose the path 7 from v, to v, has a node w ¢ {v,, vy} such that |L(w)| = 1. Let w’
and w” be the predecessor and successor of w in 7. Then, L(w’) N L(w") = L(w) # 0,
so there is an edge between w’ and w”. Thus, we can delete w from 7 and the resulting
sequence remains a path between v, and vy.

Let m = (wy,...,w;), where w; = v, and w; = v, be a good path from v, to v, in
Gp(U). Choose a sequence of species p = (c1,...,¢41), where ¢; = a, ¢;+1 = b and, for

each j € [l], ¢;,¢j41 € L(w;) and ¢; # ¢j+1. Note that such a choice is always possible.

Then, by Claim 6, (¢j,c;+1) is an edge of I'(P|L(U)). Hence, p is a path from a to b in
T(P|L(U)). <

We are now ready to prove the correctness of BuildST.

» Theorem 7. Let Uiyt be the set defined in Equation (1). Then, BuildST(Uinit) either (i)
returns a tree T that displays P, if P is compatible, or (ii) returns incompatible otherwise.

12:7

CPM 2016

12:8

Compatibility Testing for Rooted Phylogenetic Trees

Proof. We first argue that if Bui1ldST(Ujyit) outputs incompatible, P is indeed incompatible.
Assume, on the contrary, that P is compatible. Then, there must be a call BuildST(U)
for some valid subset U such that |[L(U)| > 2, in which the graph G(U) of step 9 has a
single connected component, W7 = U. By Lemma 3, U must be compatible, so there exists
a phylogeny Ty that displays U. By Observation 1, I'({Ty}) has at least two connected
components A and B. By Lemma 5(ii), however, I'(P|L(U)) is connected, so there exist
species a € A and b € B such that ablc € R(P|U). But ablc ¢ R(T), and, by Lemma 2,
T does not display some tree in P|L(U), a contradiction. Thus, G(U) has at least two
components.

Now, suppose that BuildST(Uiuit) returns a tree 7. We prove that T displays P by
arguing that for each i € [k] there is an injective mapping ¢; : V(T;) — V(T') that maps
every node v € V(T;) to a distinct node ¢;(v) € V(T') such that L(v) C L(¢;(v)).

By Lemma 4, each recursive call BuildST(U) returns a phylogenetic tree Ty for L(U).
Let ry denote the root of Ty;. We have two cases.

Case (i): |L(U)| < 2. For each i € [k], we must have |U(7)| € {0,1,2}; we only need
to consider |U(7)| € {1,2}. Suppose first that |U(i)] = 1, and let v be the single node in
U(i). Note that L(v) C L(ry). Thus, we make ¢;(v) = ry. If |[L(U(4))| = 1, we are done.
Otherwise, |L(U(4))| = 2. Then, v has two children, v; and ve, both leaves, labeled with, say,
species s1 and so, respectively. Node ry also has two children, r; and ry. Assume, without
loss of generality, that these children are labeled with species s; and ss, respectively. Then,
L(vj) = L(r;) for j € {1,2}. Therefore, we make ¢;(v;) = r; for each j € {1,2}. Now,
suppose that |U(#)| = 2. Then, |L(U(4))| = 2, and each node in U(%) is a leaf in T;. As in
the previous case, we map each node of U(%) to the corresponding child of ry.

Case (ii): |L(U)| > 2. Let Uper be the value of U before entering the loop of lines
68, and let U,s be the value of U at line 9, after the loop of lines 6—8 terminates. Let
Urem = {v € Ubet : v € Upet(i) for some i € [k] such that |Unet(¢)| = 1}. Then Uug =
(Upet \ Urem) U{u € Ch(v) : v € Upem }. Assume inductively that every descendant of a node
in Us,g is mapped to an appropriate node in Ty. It therefore suffices to establish mappings
for the nodes in Uyem. Now, for every v € Usem, L(v) C L(ry). Thus, we make ¢(v) = ry
for every v € Uem- <

4 Implementation

We now explain how to implement BuildST in order to solve the tree compatibility problem

in O(Mp log? Mp) time. Consider a call to BuildST(U). Recall that we can assume that

Gp(U) is connected. BuildST(U) requires the following three pieces of information.

(G1) The value of |[L(U)|. This number is needed in Lines 2 and 4 of BuildST.

(G2) The set J(U) of all i € [k] such that |[U(i)] = 1. Set J(U) contains the indices 4
considered in Lines 6-8 of BuildST.

(G3) The set U(i) =UNV(T;) for each i € [k]. For each ¢ € J(U), U(i) contains precisely
the element v used in Lines 7 and 8 of BuildST.

It is straightforward to obtain (G1), (G2), and (G3) for the valid set Uiyt of Equation (1):

|L(Uinit)| = n, J(Uinit) = [k], and, for every ¢ € [k], Uit (i) = {r(T;)}. Now assume that we

have (G1), (G2), and (G3) at the beginning of some call to BuildST(U). Steps 6-8 modify

U and, therefore, Gp(U). Suppose that, at Line 9, Gp(U) has more than one connected

component. We need to compute (G1), (G2), and (G3) for each connected component, in

order to pass this information to the recursive calls in Line 13. That is, if p > 1, for each

J € [p], we need to compute |L(W;)|, J(W;), and W;(i) = W; N V(T;), for each i € [k].

Y. Deng and D. Fernandez-Baca

%

Figure 2 The graph Hp(Uinit) for the profile P of Figure 1. Nodes of Uinit are drawn as squares.

Nodes in the set {zs : s € L(P)} are labeled with the corresponding species. Species labeling the
leaves of trees in P are omitted.

We use the dynamic graph connectivity data structure by Holm et al. [11]. We refer to
this data structure as HDT. HDT allows us to maintain the list of nodes in each component,
as well as the number of these nodes so that, if we start with no edges in a graph with
N vertices, the amortized cost of each update is O(log2 N). For efficiency, however, we do
not use HDT directly on Gp(U). The reason is that the edges of Gp(U) are defined via
intersections of sets of species, which could make it costly to determine the new nodes and
edges created as a result of Step 8. To avoid this problem, we proceed indirectly, through
an auxiliary graph Hp(U), defined below. As we shall see, Hp(U) offers another advantage
over Gp(U): maintaining Hp(U) only requires handling deletions, but maintaining G (U)
additionally requires handling insertions.

We define Hp(U) as a subgraph of the graph Hp constructed as follows. For each species
s € L(P), create a new node z; ¢ V(P), and let Xp = {z,: s € L(P)}. Then, Hp is the
graph whose vertex set is V(P) U Xp and whose edge set is E(P) U {(u,xs) : u is a leaf in
T;, for some i € [k], such that A(u) = s}. Note that Hp has O(Mp) nodes and edges, and
can be constructed from P in O(Mp) time. Hp is essentially the display graph for P [4].
The display graph is the result of glueing together leaves in P labeled by the same species.
Contrast this with Hp, which connects leaves with a common label through nodes in Xp.
This minor difference with respect to the display graph serves to simplify our presentation.

Given a valid subset U of V(P), we define Hp(U) as the subgraph of Hp induced by {v : v
is a descendant of some node u € U} U {z, € Xp : s € L(U)}. Note that Hp(Uinit) = Hp.
See Figure 2.

The next result states the basic properties of Hp(U). Due to space limitations, we omit
its proof.

» Lemma 8. The following statements hold for any valid subset U of V(P).

(i) Let v be a node in U. If U' = (U \ {v}) UCh(v), then Hp(U') is obtained from Hp(U)
by deleting v and every edge (v,u) such that u € Ch(v).

(i) Any two nodes in U are in the same connected component in Gp(U) if and only if they
are in the same connected component of Hp(U).

By Lemma 8(ii), the connected components Wi,...,W, of Gp(U) can be put into a
one-to-one correspondence with the connected components Y1,...,Y, of Hp(U) so that
W,; =Y, NU for each j € [p].

We represent Hp(U) using the aforementioned HDT data structure. For each connected
component Y of Hp(U), we maintain three fields:

(H1) Y.count, the cardinality of Y N Xp,

(H2) Y.singleton, a doubly-linked list that contains all indices ¢ € [k] such that |U(i)| = 1,
and

(H3) Y.List, an array where, for each 7 € [k], Y.List][i] is a doubly-linked list consisting of
the elements of Y N U (i).

12:9

CPM 2016

12:10

Compatibility Testing for Rooted Phylogenetic Trees

Recall that we assume that Gp(U) is connected at the beginning of a call to BuildST(U).
Thus, by Lemma 8, Hp(U) has a single connected component, Y. Then, |L(U)| = Y.count,
J(U) = Y.singleton, and Y.List[i| contains the elements of U(7), for each i € [k]. Thus,
the three fields of Y provide BuildST(U) with the information that it needs — that is, (G1),
(G2), and (G3). In particular, they allow us to easily find each node v considered in Line 7 of
BuildST(U). Line 8 is then performed as a series of edge deletions, one for each edge (v, u)
such that u € Ch(v), followed by the deletion of v (we provide further details below). By
Lemma 8(i), this correctly updates Hp(U). The deletions break up Hp(U) into a collection of
connected components Y7, . ..,Y,. For each j € [p], Y; corresponds to a connected component
W, of Gp(U) that (if p > 1) is processed in a recursive call in Line 13. We need to compute
Y;.count, Y;.singleton, Y;.List for each j € [p], in order to provide this information to the
recursive calls.

The total number of edge and node deletions executed by BuildST(Uiyit) — including all
deletions conducted by the recursive calls — cannot exceed the total number of edges and
nodes in Hp, which is O(Mp). The HDT data structure allows us to maintain connectivity
information throughout the entire algorithm in O(Mp log? Mp). In the remainder of this
section, we show that we can maintain the count, singleton, and List fields throughout
the entire algorithm in total time O(Mp log? Mp). We also argue that all the required
information for Hp(Uinit) can be initialized in O(Mp) time.

Let Yinit = V(P) U Xp be the vertex set of Hp(Uypit). Then, Yini is the single connected
component of Hp(Uypnis). We initialize the data fields of Y, as follows: (1) Yini.count =
|L(P)|, (2) Yinit-singleton is the set [k], and (3) for each i € [k], Yinit.List[i] consists of
r(T;). Thus, we can initialize all data fields in O(Mp) time.

We assume that every node v in Hp(U) is either marked, if v € U, or unmarked, if v ¢ U.
Initially, each node v € Uyt is marked, and every node v € Yipit \ Uinit is unmarked. We
also assume that for each node v in Hp(U), we maintain sufficient information to determine
in O(1) time whether v € Xp or v € V(P), and that, in the latter case, we have O(1)-time
access to the index i € [k] such that v € V(T}). For each i such that Y.List[i] contains
exactly one element, we maintain a pointer from Y.List[i] to the entry for 7 in Y.singleton.
This allows us to update Y.singleton in O(1) time when U(¢) is no longer a singleton. For
each marked node v € Y (so v € U), we maintain a pointer from v to the element in Y.List][i]
that contains v. This allows us to update Y.List[i] in O(1) time when v becomes unmarked.

Consider a call to BuildST(U) for some valid set U. Step 1 takes O(1) time. Since Hp(U)
initially consists of a single connected component, say Y, and we have Y.count, Steps 2-5
also take O(1) time. Let H = Hp(U). We implement the loop in lines 6-8 as follows. First,
we enumerate the indices in J = J(U) in O(|J]) time by listing the elements of Y.singleton.
For each i € J, we retrieve and remove the single element v; of U(i) from Y.List[i], and
then delete ¢ from Y.singleton. This takes O(1) time. We unmark v;, and for every node
u € Ch(v;) we mark v and add it to Y.List[i]. This takes O(1) time per edge. We then
successively delete each edge (v;,u) such that u € Ch(v;), updating (H1)—-(H3) for each
newly-created component along the way. Once these edges are deleted, we delete v; itself.
By Lemma 8(i), the result is the graph Hp(U) for the new set U. Let us focus on how to
handle the deletion of a single edge e = (v;, u).

Let Y’ be the connected component of H that currently contains v;. We query the HDT
data structure to determine, in O(log? Mp) amortized time, whether deleting (v;, u) splits
Y’ into two components. If Y/ remains connected, no updates are needed. Otherwise, Y’ is
split into two parts Y7 and Y,. To fill in the count, singleton, and List fields of Y7 and Y3,
we use the well-known technique of scanning the smaller component [7]. We query the HDT

Y. Deng and D. Fernandez-Baca

data structure to determine, in O(1) time, which of Y7 and Y> has fewer nodes. Suppose
without loss of generality that |Yi| < |Y2|. We initialize Y5.count and Y5.List to Y’.count
and Y'.List, respectively. We initialize Y7.count to 0 and Y;.List[¢] to null for each i € [k].
We then scan each node v in Y7, and do the following. If v € Xp, we decrement Y5.count
and increment Y;.count. Otherwise v € V(P); assume that v € V(T;). If v is marked, we
remove v from Y3.List[i] and add v to Y7.List[i]; each such move takes O(1) time. This
operation requires at most one update in each of Y;.singleton and Y;.singleton; each
update takes O(1) time.

We claim that any node v is scanned O(log Mp) times over the entire execution of
BuildST(Uinit). To verify this, let N(v) be the number of nodes in the connected component
containing v. Suppose that, initially, N(v) = N. Then, the rth time we scan v, N(v) < N/2".
Thus, v is scanned O(log N) times. The claim follows, since N = O(Mp). Therefore, the
total number of updates over all nodes is O(Mp log Mp), and the work per update is O(1).

To summarize, the work done by BuildST counsists of three parts: (i) initialization, (ii)
maintaining connected components, and (iii) maintaining the count, singleton, and List
fields for each connected component. Part (i) takes O(Mp) time. Part (ii) involves O(Mp)
edge and node deletions on the HDT data structure, at an amortized cost of O(log* Mp) per
deletion. Part (iii) involves scanning the nodes of our graph every time a deletion creates a
new component, for a total of O(Mp log Mp) scans, at O(1) cost per scan, over the entire
execution of BuildST. This yields our main result.

» Theorem 9. Let Uinit be the set defined in Equation (1). Then, there exists and imple-
mentation of BuildST such that BuildST(Uni) runs in O(Mp log® Mp) time.

5 Discussion

A trivial lower bound for the tree compatibility problem is Q(Mp), the time to read the
input. Thus, our result leaves us a polylogarithmic factor away from an optimal algorithm
for compatibility. Is it possible to reduce or even eliminate this gap? The bottleneck is the
time to maintain the information associated with the various components of Hp(U). It is
conceivable that the special structure of this graph and the way the deletions are performed
could be used to our advantage. A second question is how well our algorithm performs in
practice. To investigate this, it should be possible to leverage existing knowledge on the
empirical behavior of dynamic connectivity data structures [12].

—— References

1 Alfred V. Aho, Yehoshua Sagiv, Thomas G. Szymanski, and Jeffrey D. Ullman. Inferring
a tree from lowest common ancestors with an application to the optimization of relational
expressions. STAM J. Comput., 10(3):405-421, 1981.

2 Bernard R. Baum. Combining trees as a way of combining data sets for phylogenetic
inference, and the desirability of combining gene trees. Tazon, 41:3-10, 1992.

3 Olaf R. P. Bininda-Emonds, Marcel Cardillo, Kate E. Jones, Ross D. E. MacPhee, Robin
M. D. Beck, Richard Grenyer, Samantha A. Price, Rutger A. Vos, John L. Gittleman, and
Andy Purvis. The delayed rise of present-day mammals. Nature, 446:507-512, 2007.

4 David Bryant and Jens Lagergren. Compatibility of unrooted phylogenetic trees is FPT.
Theoretical Computer Science, 351:296-302, 2006.

5 Peter Buneman. A characterisation of rigid circuit graphs. Discrete Math., 9:205-212, 1974.

6 Bruno Courcelle. The monadic second-order logic of graphs I. Recognizable sets of finite
graphs. Inf. Comput., 85(1):12-75, 1990.

12:11

CPM 2016

12:12

Compatibility Testing for Rooted Phylogenetic Trees

10

11

12

13

14

15

16

17

18

Shimon Even and Yossi Shiloach. An on-line edge-deletion problem. J. ACM, 28(1):1-
4, January 1981. URL: http://doi.acm.org/10.1145/322234.322235, doi:10.1145/
322234 .322235.

Stefan Grinewald, Mike Steel, and M. Shel Swenson. Closure operations in phylogenetics.
Mathematical Biosciences, 208:521-537, 2007.

Monika Rauch Henzinger, Valerie King, and Tandy Warnow. Constructing a tree from
homeomorphic subtrees, with applications to computational evolutionary biology. Algorith-
mica, 24:1-13, 1999.

Cody E. Hinchliff, Stephen A. Smith, James F. Allman, J. Gordon Burleigh, Ruchi Chaud-
hary, Lyndon M. Coghill, Keith A. Crandall, Jiabin Deng, Bryan T. Drew, Romina Gazis,
Karl Gude, David S. Hibbett, Laura A. Katz, H. Dail Laughinghouse IV, Emily Jane
McTavish, Peter E. Midford, Christopher L. Owen, Richard H. Reed, Jonathan A. Reesk,
Douglas E. Soltis, Tiffani Williams, and Karen A. Cranston. Synthesis of phylogeny and
taxonomy into a comprehensive tree of life. Proceedings of the National Academy of Sci-
ences, 2015. In press. doi:10.1073/pnas.1423041112.

Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectiv-
ity. J. ACM, 48(4):723-760, July 2001. URL: http://doi.acm.org/10.1145/502090.
502095, doi:10.1145/502090.502095.

Raj Iyer, David Karger, Hariharan Rahul, and Mikkel Thorup. An experimental study of
polylogarithmic, fully dynamic, connectivity algorithms. J. Ezp. Algorithmics, 6, Decem-
ber 2001. URL: http://doi.acm.org/10.1145/945394.945398, doi:10.1145/945394.
945398.

Jesper Jansson, Chuangi Shen, and Wing-Kin Sung. Improved algorithms for construct-
ing consensus trees. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8,
20183, pages 1800-1813, 2013. URL: http://dx.doi.org/10.1137/1.9781611973105.129,
d0i:10.1137/1.9781611973105.129.

Itsik Pe’er, Tal Pupko, Ron Shamir, and Roded Sharan. Incomplete directed perfect
phylogeny. STAM J. Comput., 33(3):590-607, 2004. URL: http://dx.doi.org/10.1137/
S0097539702406510, doi:10.1137/S0097539702406510.

Mark A. Ragan. Phylogenetic inference based on matrix representation of trees. Molecular
Phylogenetics and Evolution, 1:53-58, 1992.

Michael J. Sanderson. Phylogenetic signal in the eukaryotic tree of life. Science,
321(5885):121-123, 2008.

Charles Semple and Mike Steel. Phylogenetics. Oxford Lecture Series in Mathematics.
Oxford University Press, Oxford, 2003.

Mike A. Steel. The complexity of reconstructing trees from qualitative characters and
subtrees. J. Classification, 9:91-116, 1992.

http://doi.acm.org/10.1145/322234.322235
http://dx.doi.org/10.1145/322234.322235
http://dx.doi.org/10.1145/322234.322235
http://dx.doi.org/10.1073/pnas.1423041112
http://doi.acm.org/10.1145/502090.502095
http://doi.acm.org/10.1145/502090.502095
http://dx.doi.org/10.1145/502090.502095
http://doi.acm.org/10.1145/945394.945398
http://dx.doi.org/10.1145/945394.945398
http://dx.doi.org/10.1145/945394.945398
http://dx.doi.org/10.1137/1.9781611973105.129
http://dx.doi.org/10.1137/1.9781611973105.129
http://dx.doi.org/10.1137/S0097539702406510
http://dx.doi.org/10.1137/S0097539702406510
http://dx.doi.org/10.1137/S0097539702406510

Hardness of RNA Folding Problem With Four
Symbols*
Yi-Jun Chang

Department of EECS, University of Michigan, Ann Arbor, MI, USA
cyijun@umich.edu

—— Abstract

An RNA sequence is a string composed of four types of nucleotides, A, C, G, and U. Given an
RNA sequence, the goal of the RNA folding problem is to find a maximum cardinality set of
crossing-free pairs of the form {A,U} or {C,G}. The problem is central in bioinformatics and
has received much attention over the years. Whether the RNA folding problem can be solved in
O(n®7¢) time remains an open problem. Recently, Abboud, Backurs, and Williams (FOCS’15)
made the first progress by showing a conditional lower bound for a generalized version of the
RNA folding problem based on a conjectured hardness of the k-clique problem. However, their
proof requires alphabet size > 36 to work, making the result biologically irrelevant. In this pa-
per, by constructing the gadgets using a lemma of Bringmann and Kiinnemann (FOCS’15) and
surrounding them with some carefully designed sequences, we improve upon the framework of
Abboud et al. to handle the case of alphabet size 4, yielding a conditional lower bound for the
RNA folding problem. We also investigate the Dyck edit distance problem. We demonstrate a
reduction from RNA folding problem to Dyck edit distance problem of alphabet size 10, estab-
lishing a connection between the two fundamental string problems. This leads to a much simpler
proof of the conditional lower bound for Dyck edit distance problem given by Abboud et al. and
lowers the required alphabet size for the lower bound to work.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases RNA folding, Dyck edit distance, longest common subsequence, condi-
tional lower bound, clique

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.13

1 Introduction

An RNA sequence is a string composed of four types of nucleotides, A, C, G, and U. Given
an RNA sequence, the goal of the RNA folding problem is to find a maximum cardinality
set of crossing-free pairs of nucleotides, where all the pairs are either {A,U} or {C,G}. The
problem is central in bioinformatics and has found applications in many areas of molecular
biology. For a comprehensive exposition of the topic, the reader is referred to e.g. [18].

It is well-known that the problem can be solved in cubic time by a simple dynamic
programming method [9]. Due to the importance of RNA folding in practice, there has been
a long line of research on improving the time complexity (See e.g. [3, 11, 12, 13, 18, 21]).
Currently the best upper bound is O (%) [13, 18], which can be obtained by four-Russian

method or fast min-plus multiplication (based on ideas from Valiant’s CFG parser [19]).

* A more detailed version of the paper: http://arxiv.org/abs/1511.04731. Supported by NSF grants
CCF-1217338, CNS-1318294, and CCF-1514383.

© Yi-Jun Chang;
37 licensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 13; pp. 13:1-13:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.13
http://arxiv.org/abs/1511.04731
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2

Hardness of RNA Folding Problem With Four Symbols

Whether the RNA folding problem can be solved in O(n3~¢) time for some € > 0 is still
a major open problem. Other than attempting to improve the upper bound, we should also
approach the problem in the opposite direction, i.e. arguing why the problem is hard.

Conditional lower bounds

A popular way to show hardness of a problem is to demonstrate a lower bound conditioned
on some widely accepted hypothesis.

» Conjecture 1 (Strongly Exponential Time Hypothesis (SETH)). There exists no €, kg > 0
such that k-SAT with n variables can be solved in time O(20=™) for all k > k.

» Conjecture 2. There exists no €, kg > 0 such that k-clique on graphs with n nodes can
be solved in time O (n(“”e)k/?’) for all k > kg, where w < 2.373 is the matriz multiplication
exponent.

For instance, assuming that SETH (Conjecture 1) holds, the following bounds are
unattainable for any € > 0:

an O(n*~¢) algorithm for k-dominating set problem [14],

an O(n?7¢) algorithm for dynamic time warping, longest common subsequence, and edit

distance [2, 6, 7],

an O(m?2~¢) algorithm for (3/2 — ¢)-approximating the diameter of a graph with m edges

[15].

We note that such negative results allow us to have a better picture of the structure of
polynomial time complexity, and identify the main obstacles to obtaining faster algorithms
for various fundamental problems.

As remarked in [1], it is easy to reduce the longest common subsequence problem on
binary strings to the RNA folding problem as following: Given two binary strings X,Y, we
let X € {A,C}‘Xl be the string such that X[i] = A if X[i] = 0, X[i] = C if X[i] = 1, and we
let Y € {G, U}‘Y| be the string such that Y[i] = U if Y[i] = 0, Y[i] = G if Y[i] = 1. Then
we have a 1-1 correspondence between RNA foldings of X o Y'® (i.e. concatenation of X and
the reversal of ¥) and common subsequences of X and Y. It has been shown in [7] that
there is no O(n?~¢) algorithm for longest common subsequence problem on binary strings
conditioned on SETH, and we immediately get the same conditional lower bound for RNA
folding from the simple reduction!

Very recently, based on a conjectured hardness of k-clique problem (Conjecture 2), a
higher conditional lower bound was proved for a generalized version of the RNA folding
problem (which coincides with the RNA folding problem when the alphabet size is 4) [1]:

» Theorem 1 ([1]). If the generalized RNA folding problem on sequences of length n with
alphabet size 36 can be solved in T'(n) time, then 3k-clique on graphs with |V| = n can be
solved in O (T (nF2log(n))) time.

Therefore, a O(n*~¢) time algorithm for the generalized RNA folding with alphabet
size at least 36 will disprove Conjecture 2, yielding a breakthrough to the parameterized
complexity of clique problem.

However, the above theorem is irrelevant to the RNA folding problem in real life (which
has alphabet size 4). It is unknown whether the generalized RNA folding for alphabet size 4
admits a faster algorithm than the case for alphabet size > 4. In fact, there are examples of
string algorithms whose running time scales with alphabet size (e.g. string matching with

Y.-J. Chang

mismatched [5] and jumbled indexing [4, 8]). We also note that when the alphabet size is 2,
the generalized RNA folding can be trivially solved in linear time.

In this paper, we improve upon Theorem 1 by showing the same conditional lower bound
for the RNA folding problem:

» Theorem 2. If the RNA folding problem on sequences in {A,C,G,U}" can be solved in
T(n) time, then 3k-clique on graphs with |V| =n can be solved in O (T (n*Tlog(n))) time.

Note that we also get an O(n) factor improvement inside T'(+), though it does not affect
the conditional lower bound.

In the proof of Theorem 1 in [1], given a graph G = (V,E), a sequence of length
O(n¥*2log(n)) is constructed in such a way that we can decide whether G has a 3k-
clique according to the number of pairs in an optimal generalized RNA folding of S. The
construction requires a large alphabet size to build various “walls” which prevent undesired
pairings between different parts of the sequence. Extending their approach to handle the
case with alphabet size 4 may not be easy without aid from other techniques and ideas.

Overview of our approach

At a high level, our reduction (from 3k-clique problem to RNA folding problem) follows the
approach in [1]: We enumerate all k-cliques, and each of them is encoded as some gadgets.
All the gadgets are then put together to form an RNA sequence. The goal is to ensure that
an optimal RNA folding corresponds to choosing three k-cliques that form a 3k-clique, given
that the underlying graph admits a 3k-clique.

To achieve this result using 4 symbols, we implement the above construction using more
efficient gadgets based on a key lemma in [7], whose original purpose is to prove that longest
common subsequence and other edit distance problems are SETH-hard even on binary strings.
We will treat it as a black box and apply it multiple times.

In the final RNA sequence, all clique gadgets are well-separated by some carefully designed
sequences whose purpose is to “trap” all the clique gadgets except three of them. We will see
that only these three clique gadgets can influence the number of matched pairs in an optimal
RNA folding, and the number of matched pairs is maximized when these three clique gadgets
correspond to a 3k-clique. Therefore, we can infer whether the graph has a 3k-clique from
the optimal RNA folding of the RNA sequence.

Dyck Edit Distance

One other way to formulate the RNA folding problem is as follows: deleting the minimum
number of letters in a given string to transform the string into a string in the language
defined by the grammar S — SS, ASU,USA, CSG,GSC, e (empty string). The Dyck edit
distance problem [16, 17], which asks for the minimum number of edits to transform a given
string to a well-balanced parentheses of s different types, has a similar formulation. Due
to the similarity, the same conditional lower bound as Theorem 1 was also shown for the
Dyck edit distance problem (with alphabet size > 48) in [1]. In this paper, we improve and
simplify their result by demonstrating a simple reduction from RNA folding to Dyck edit
distance problem:

» Theorem 3. If Dyck edit distance problem on sequences of length n with alphabet size 10
can be solved in T(n) time, then the RNA folding problem on sequences in {A,C,G,U}" can
be solved in O(T(n)) time.

13:3

CPM 2016

13:4

Hardness of RNA Folding Problem With Four Symbols

» Corollary 4. If the Dyck edit distance problem on sequences of length n with alphabet
size 10 can be solved in T'(n) time, then 3k-clique on graphs with |V| =n can be solved in
O (T (n**'log(n))) time.

Interpretations of our results

The current state-of-art algorithm for k—clique, which takes O (n‘*’k/ 3) time, requires the
use of fast matrix multiplication [10] which does not perform very efficiently in practice.

For combinatorial, non-algebraic algorithm for k—clique, the current state-of-art has time
k

complexity O (W) [20], which is only slightly better than the trivial approach.
Therefore, despite the current gap between the n® upper bound and the n* lower bound
(neglecting polylog factors) for RNA folding and Dyck edit distance, it is unlikely to have
an n37¢ time “efficient” algorithm for these problems, unless there is a breakthrough in
combinatorial algorithms for k-clique. As a result, our reductions (and the ones in [1])
imply that very likely the use of approximation or heuristic is necessary if one needs a faster

algorithm.

2 Preliminaries

Given a set of letters 3, the set ¥ is defined as {z'|z € ¥}. We require that X N%’ = @), and
Ve,y € X, (x £ y) — (' #y'). Therefore, we have |¥/| = |X| and |Z U Y| = 2[X].

For any X = (21,...,2) € ¥¥, we write p(X) to denote (2, ...,2}) (the letter p stands
for the prime symbol). We denote the reversal of the sequence X as X. The concatenation
of two sequences X,Y is denoted as X oY (or simply XY'). We write substring to denote a
contiguous subsequence. Two pairs of indices (i1, 71), (i2,J2), with i; < j; and is < ja, form
a crossing pair it ({i1,71} N {ia, g2} £ 0) V (i1 < iz < J1 < j2) V (i2 < i1 < j2 < J1)-

Generalized RNA Folding

Given S € (X UX)™, the goal of the generalized RNA folding problem is to find a maximum
cardinality set A C {(i,7)|1 <i < j < n} among all sets meeting the following conditions:
A does not contain any crossing pair.
For any (i,7) € A, either (i) S[i] € ¥ and S[j] = S[¢]’ or (ii) S[j] € ¥ and S[i] = S[j]’ is
true.

We write RNA(S) = |A].

Any set meeting the above conditions is called an RNA folding of S. If its cardinality
equals RNA(S), then it is said to be optimal.

In the paper we will only focus on the generalized RNA folding problem with four types
of letters, i.e. ¥ ={0,1},%" = {0,1'}, which coincides with the RNA folding problem for
alphabet {A,C,G,U}.

With a slight abuse of notation, sometimes we will write (S[i], S[j]) to denote a pair
(i,7) € A. The notation {-,-} is used to indicate an unordered pair.

Longest Common Subsequence (LCS)

Given X € X" and Y € ™, we define d1,0s(X,Y) = n + m — 2k, where k = the length of
the longest common subsequence of X and Y. It is easy to observe that RNA(X o p(Y£))
equals the length of LCS = (n 4+ m — dLcs(X,Y))/2. In this sense, we can conceive of an
LCS problem as an RNA folding problem with some structural constraint on the sequence.

Y.-J. Chang

In [7], a conditional lower bound for the LCS problem with |X| = 2 based on SETH was
presented. A key technique in their approach is a function that transforms an instance of an
alignment problem between two sets of sequences to an instance of the LCS problem, which
is described below.

Alignments of two sets of sequences

Let X = (X1,...,X,) and Y = (Y7,...,Y},,) be two linearly ordered sets of sequences
of alphabet ¥. We assume that n > m. An alignment is a set A = {(i1,j1), (i2,72)s - - -
(’L'|A‘,j|A|)} with 1 < i1 < i < ... < ija] < n and 1 < j; < jo < ... < Jlap < m. An
alignment A is called structural iff |A| = m and 4,, = i1 + m — 1. That is, all sequences in Y
are matched, and the matched positions in X are contiguous. The set of all alignments is
denoted as A, ,, and the set of all structural alignments is denoted as Sy, .

The cost of an alignment A (with respect to X and Y) is defined as:

6(A) = D7 Gros(Xi,Y5) + (m —] maxros(X;, V).
(i,§)eA ’

That is, unaligned parts of Y are penalized by max; ; dr.cs(X;, Yj).

Given a sequence X, the type of X is defined as (|X|,> , X[i]), where each letter is
assumed to be a number. Note that when the alphabet is simply {0,1}, >, X[i] is simply
the number of occurrences of 1 in X.

The following key lemma was proved in [7] (Lemma 4.3 of [7]):

» Lemma 5 ([7]). Let X = (X31,...,X,) and Y = (Y1,...,Y,,) be two linearly ordered
sets of binary strings such that n > m, all X; are of type Tx = ({x,sx), and all Y; are
of type Ty = (by,sy). There are two binary strings Sx = GA;?’TY (X1,...,Xn), Sy =
GA?TX (Y1,...,Y,) and an integer C' meeting the following requirements:

IninAE.An,m (5(A) § 5LCS(SX7 Sy) -C S minAEsn)m 5(A)

The types of Sx, Sy and the integer C' only depend on n,m,Tx, Ty .

Sx, Sy, and C can be calculated in time O((n+m)({x + {y)). Hence |Sx| and |Sy| are
both O((n+m)(lx + Ly)).

Note that the term GA comes from the word gadget.

Intuitively, computing an optimal alignment (or an optimal structural alignment) of two
sets of sequences is at least as hard as computing a longest common subsequence. The above
lemma gives a reduction from the computation of a number s with minac 4, ,, 6(A4) <s <
minges, ,, 0(A) (which can be regarded as an approximation of optimal alignments) to a
single LCS instance.

In the next section, we will use the above lemma as a black box to devise two encodings,
the clique node gadget CNG(t) and the clique list gadget CLG(¢), for a k-clique ¢ in a graph
in such a way that we can decide whether two k-cliques t1,ts form a 2k-clique according the
value of d1,c5(CNG(t1), CLG(t2)).

When invoking the lemma, X, Y are designed in such a way that we can test whether
a condition is met (e.g. whether two given k-cliques form a 2k-clique) by the value of
mingeca4, ,, 0(A). We will show that minge4, ,, 6(A) = minaes, ,, 6(A) for the case we are
interested in. Therefore, we can infer whether the condition we are interested in is met from
the value of d1,cg (Sx, Sy).

13:5

CPM 2016

13:6

Hardness of RNA Folding Problem With Four Symbols

3 From Cliques to RNA Folding

The goal of this section is to prove Theorem 2.

Let G = (V, E) be a graph, and let n = |V|. We write Ci, to denote the set of k-cliques in
G. We fix ¥ = {0,1}. As in [1], we will construct a sequence Sg € (XU ¥')* such that we
can decide whether G has a 3k-clique according to the value of RNA(S¢).

As our framework of the construction of S¢ is similar to the one in [1], we will give the
building blocks for constructing S the same names as their analogues in [1], despite that
they have different lower-level implementations.

3.1 Testing 2k-cliques via LCS

We associate each vertex v € V a distinct integer in {0,1,... n — 1}. Let s, be the binary
encoding of such integer with |s,| = [log(n)]. We define ¥ to be the binary string resulted
by replacing each 0 in s, with 01 and replacing each 1 in s, with 10. It is clear that for each
v €V, vis of type To = (2[log(n)], [log(n)]), and drcs(u,v) = 0 iff u = v.
Our goal is to devise two encodings CNG(t), CLG(¢) for a k-clique ¢ such that we can
infer whether two k-cliques ¢;, t5 form a 2k-clique from the value of d1,cs(CNG(¢t1), CLG(t2)).
For each v € V, the list gadget LG(v) and the node gadget NG(v) are defined as following:
LG(v) = GAY ™ (i1y, i, .., 1y oy, L1EQM0x(T, 1Mo llox()1) where N (v) —
{u,uz, ..., un() }, and the number of occurrences of 118 1gMes(™)1 i n — [N (v)|.
NG(v) = GALT (3).

» Lemma 6. There is a constant cy, depending only on n, such that for any vy,ve €'V, we
have {vy,v2} € E iff §cs(LG(v1), NG(va)) = ¢o = min,; . ev drcs(LG(vY), NG(v)).

Proof. We let N(vi) = {u1,u2, ..., Un(v)|}-

Let X = (U1, U2, ..., U|N(vy)|> 1[teg(m)1qlog(m)1 - 1Meg(m)1llog(m)1) '\where the number of
occurrences of 1M°8(m1gMee™)1 is 5 — | N(vy)|, and let Y = (7).
(S(A) < 6LCS(LG(01)7 NG(’UQ)) -C < minAeg 5(14), for
some C whose value depends on |X|,|Y], and Ty. As these parameters depend solely on n,
the number C' only depends on n.

In view of Lemma 5, min e 4

n,1 n,1

Since |Y| = 1, any non-empty alignment between X and Y is structural. This implies
that dpcs(LG(v1), NG(v2)) — C = mingec 4, , 6(A) = minges, , 6(A).

When {v1,v2} € E, since v, is contained in X, clearly minges, ,, 6(A) = 0. When
{v1,v2} & E, U does not appear in X, so minaes, ,, 6(A) > 0. Note that 1/lee(mTgleem)]
v, for any v € V.

Hence {v1,v2} € E iff orcs(LG(v1), NG(v2)) = C = miny ey dnos(LG(v7), NG(v3)).
Therefore, it suffices to set ¢cg = C. <

We let Tx be the type of the list gadgets, and we let Ty be the type of the node gadgets.
For each k-clique t = {u1,us,...,ux}, we define the clique node gadget CNG(t) and the
clique list gadget CLG(t) as following:

CLG(t) = GAI)f’TY(LG(ul),...,LG(ul),LG(ug),...,LG(ug),...,LG(uk),...,LG(uk)),

where the number of occurrences of each LG(u;) is k.

ONG(t) = GAX X (NG(u1), NG(ua), . . ., NG(ug), NG(u1), NG(us), . .., NG(u), . . .,

NG(uq), NG(ua),. .., NG(uy)), where the number of occurrences of each NG(u;) is k.

We are ready to prove the main lemma in the subsection:

Y.-J. Chang

» Lemma 7. There is a constant ¢y, depending only on n, k, such that for any ty,ts € Cy,
t1 Utz ds a 2k-clique iff S cs(CLG(t1), CNG(t2)) = ¢1 = miny, g ec, drcs(CLG(t]), ONG(t3)).

Proof. Let t; = {uy,ua,...,ur}, and let to = {v1,va,..., v}

Let X = (LG(uy1), ..., LG(u1), LG(uz), ..., LG(uz),...,LG(ug), . .., LG(u)), where each
LG(u;) appears k times, and let Y = (NG(v1),NG(v2),...,NG(vk),NG(v1), NG(v2), ...,
NG(vg), ..., NG(v1), NG(va), ..., NG(vg)), where each NG(v;) appears k times.

In view of Lemma 6, we have min,, u,ev oLcs(LG(w1), NG(ws)) > ¢o, so we can lower
bound minaea,, ,, 6(4) by k2cq.

If max; j épcs (X, Y;) = co, any alignment has cost k%co. When max; ; dr,cs(X;, Y;) > co,
it is easy to observe that in order to achieve §(A) = k?cy, all sequences in 'Y must be aligned
(as the cost for any unaligned sequence in Y is now > ¢g). Therefore, any alignment A
with §(A) = k%co must be A = {(i,i)|i € {1,2,...,k*}} with drcs(X;,Y:) = co, for all
ie€{l,2,...,k*}.

In view of the above, minea,, §(A) = k?c iff SLos (X, Y;) = co foralli € {1,2,...,k?}.

Since A = {(i,4)]i € {1,2,...,k?*}} is structural, minaea,, ,, 6(A) = k2cy iff minges
§(A) = k?cy. Therefore, in view of Lemma 5, there exists a constant C' such that:

If minAEAk27k2 0(A) = kQCQ, then 61,cs(CLG(t1), CNG(t2)) = k2co + C.

If minAeAkQ,kQ 5(14) > k’2CO, then 6Lcs(CLG(t1), CNG(tQ)) > k200 +C.

k2,k2

Moreover, the value of C' depends only on |X|, Y], 7x, Ty. As these parameters depend
solely on n, k, the number C' only depends on n, k.

When t; Uty is a 2k-clique, all vertices in t; are adjacent to all vertices in t5. In
view of Lemma 6, V; jorcs(X;,Y;) = co. Hence mingecqg §(A) = k?cp, implying that
dLcs(CLG(t1), CNG(t2)) = k2%co + C.

When t; Uty is not a 2k-clique, there exist u; € ti,v; € tp such that {u;,v;} ¢ E.
According to our definition of X and Y, we have X, ;1) = LG(us), Yj1p@—1) = NG(v;),
and hence drcs(X;r(i—1), Yj4k(i—1)) > co. This implies that mingcA,, 5(A) > k?cy,
which leads to dr,cs(CLG(t1), CNG(ts)) > k%co + C.

As aresult, t1 Uty is a 2k-clique iff 6,05 (CLG(t1), CNG(t2)) = k%co+C = ming y ec, dres(
CLG(#}), CNG(th)). Setting ¢; = k2c + C suffices. <

k2 K2

» Lemma 8. There exist four integers Lone.o, Lone., Lonco, Lona1 € O(k*nlog(n)), such
that for any t € Cy,

lLongp = the number of occurrences of b in CNG(t), b € {0,1}.

Lorep = the number of occurrences of b in CLG(t), b € {0,1}.

Proof. As a consequence of Lemma 5, all CNG(t) have the same type, and all CLG(t) have
the same type. Therefore, the existence of these four integers is guaranteed.

In view of Lemma 5, for all v € V, both LG(v) and NG(v) have length at most (n+ 1) -
(2[log(n)] + 2[log(n)]) = O(nlog(n)). Applying Lemma 5 again, the length of both CNG(t)
and CLG(t) for all t € Cy, is (k? + k?)(O(nlog(n)) + O(nlog(n))) = O(k*nlog(n)).

As a result, the four integers can be bounded by O(k?nlog(n)). <

3.2 The RNA sequence S¢

In this subsection, we define the RNA sequence Sg and show that we can decide whether G
has a 3k-clique according to RNA(Sg).

Based on the parameters in Lemma 8, we define £y = {cng,0 +fong,1 +fcua,0 +HlcLg,1 =
O(k?nlog(n)); for i € {1,2,3}, we set £; = 100¢;,_1; and £, = 100|Cx|¢3 = O(k*n**1log(n)).

13:7

CPM 2016

13:8

Hardness of RNA Folding Problem With Four Symbols

0:€3 0,?3 0y€3 0,&’3 0,&’3 0,{’3

0:{’3

0?4 ..|07%3 0%+|07%2]...

0%[02| .. |0"%%| CGy (ta) CGg(tg) 0'|cG, (t,)

0" Otec,, (CGo(£)0"%) 0% Oree, (CGp(£)0"%3) 0" Oree, (€Gy (£)0")

Figure 1 The three selected clique gadgets and the matchings between 0% and 0%.

The RNA sequence Sg is then defined as below:

Sg = 0 {0"3 O (CGa(t)O’ZS)] 0t [0'43 O (CGg(t)OIZB)]OL‘ [0'53 O (CGv(t)O’ZS)],

teCy teCy, teCy,

where

CGa(t) = 1*2p(CLG(H))0 120 CNG (1)1,
CGa(t) = 1"?p(CLG(H))0 1220 p(CNG (1)1,
CG.,(t) = 12 CLG(t) 011204 CNG (1) 1%,

For any t € C, x € {a, 3,7}, the string CG,(t) is called a clique gadget.
Note that CG,(t) € (ZUX)", CGa(t) € X", and CG,(t) € X*.
It is obvious that |Sg| = O(|Ck|lo) = O(k*nF*1log(n)).

» Lemma 9. RNA(S¢) = f(n,k) — ¢, for @ = miny, 1,1 ec,(Srcs(CLG(ta), CNG(tg))
+0rcs(CLG(ta), CNG(t,)) + dres(CLG(tg), CNG(ty))), and f(n, k) = 605 + 31 + 5o +
3(ICk| + 1)l3 + (|Ck| — 1)(261 + 202 + min(Lopa,1, Lonva) +Lerao + Loneo)-

Proof (Sketch). Due to the page limit, we only demonstrate an example of an RNA folding
matching this bound, omitting the proof of optimality:
= We link all 0/ in all 0’** to some 0 in some 0% in such a way that all clique gadgets are
“blocked” (a clique gadget is blocked if its letters can only link to letters in the same
clique gadget or some 0 in some 0%) except CGq(ta), CGa(ts), and CG,(t,). This gives
us 3(|Ck| + 1)¢5 amount of pairs. See Fig. 1.
= For a clique gadget that is “blocked”, our design of S¢ ensures that the optimal number
of pairs involving letters in the clique gadget is irrelevant to its corresponding k-clique:
- For a blocked CG,(t), since {5 is significantly larger than ¢1, £y, an optimal way
to pair up the letters is to match as many {1’,1} as possible. This gives us 2/ +
min(YcrLa.1,cNG,1) Pairs.
= For a blocked CGg(t), since we do not have any 1 here, the best we can do is to match
all 0 to some 0%. This gives us 2¢1 + fcra.0 + fong,o Pairs.
- For a blocked CG,(t), no matching can be made.
The total amount of pairs involving blocked clique gadgets is (|Cx| — 1)(2¢1 + 265 +
min(fCLGJ,KCNGJ) + chG’O + ZCNG,O)~ See Fig. 2 for an illustration.
= For the three clique gadgets that are not blocked, the matching described in Fig. 3 has car-
dinality 6€2+3€1—|—% (bo — drcs(CLG(tq), CNG(tg)))%—% (o — 5Lcs(CLG(to¢), CNG(t,y)))—F
% (4o — dLcs(CLG(tg), CNG(ty))). Recall that %(ﬁo — Lcs(CLG(t;), CNG(ty))) is the
length of the LCS between CLG(t,) and CNG(t,). <

Y.-J. Chang

0% 0% 0%
}1'"2 p(CLG(E)R) [0'2[122|071 CNG(6)|1%2|[| 12| p(CLG(£)®)| 0"2[1722] 0%| p(CNG()) [1'*2 [[1%2 |CLG()F 0% [1%] 04 CNG () %Nz
CGq () CGg(t) CG, (t)
p 2 P hX

Figure 2 The matchings between a blocked clique gadget and 0%.

By Lemma 7, there exists a number ¢; such that:

the number ¢; depends only on n, k, and @ > 3¢;.

If @ = 3cy, then there exist t,,t5,ty € C such that t, Utg , to Uty, tg Ut, are three
2k-cliques. This implies that ¢, Utg Uty is a 3k-clique.

If @ > 3¢, then the graph has no 3k-clique.

Hence we can decide whether G has a 3k-clique according to RNA(S¢), which can be
calculated in time T (O (k*n*log(n))) = O (T (n***log(n))) (k is a constant, and T(-) is
the time complexity of computing optimal RNA folding). Theorem 2 is concluded.

4 Hardness of Dyck Edit Distance Problem

In this section, we shift our focus to the Dyck edit distance problem. We will present a
simple reduction from RNA folding problem (with alphabet size 4) to Dyck edit distance
problem (with alphabet size 10). This leads to a much simplified and improved proof for a

conditional lower bound of Dyck edit distance based on the conjectured hardness k-clique.

Recall that the previous proof in [1] requires 48 symbols.

Given S € (X UX)™, the goal of the Dyck edit distance problem is to find a minimum
number of edit operations (insertion, deletion, and substitution) that transform S into a
string in the Dyck context free language defined by the grammar: S — SS, Vz € ¥, S — xSz,
and S — € (empty string).

An alternative definition of the Dyck edit distance problem is described as follows: Given
a sequence S € (X UY)", find a minimum cost set A C {(,7)|1 <i < j < n} satisfying the
following conditions:

A = Ap; W Ag has no crossing pair.

Aps contains only pairs of the form (z,2'), x € ¥ (i.e. for all (4,7) € Apn, we have

S[i] = x, S[j] = ', for some x €). Aps corresponds to the set of matched pairs.

Ag does not contain any pair of the form (v, z), x,y € ¥ (i.e. for all (i,5) € Ag we have

either S[i] € ¥ or S[j] € ¥’). Ag corresponds to the set of pairs that can be fixed by one

substitution operation per each pair.

Let D be the set of letters in S that do not belong to any pair in A. Each letter in D

requires one deletion/insertion operation to fix.

The cost of A is then defined as |Ag| 4+ |D|, and the Dyck edit distance of the string S is
the cost of a minimum cost set meeting the above conditions.

13:9

CPM 2016

13:10

Hardness of RNA Folding Problem With Four Symbols

SN NN

1722 p(CLG(ta)™) | 04172 |0% | CNG(t) 12| 17 (CLG(56)") 0 1272 (0™ [(CNG(t)) 12| | 1%2|CLG (5,)" [0% 12| 03[NG (e,) |12¢2

CGq(ta) CGg(tp) CG,(t,)

¥ X ¥ X

Figure 3 The matchings within the three selected clique gadgets.

We can view Dyck edit distance problem as an asymmetric version of RNA folding (both
(z,2") and (2,) are legit aligned pairs in RNA folding) that also handles substitution (in
addition to deletion and insertion). Intuitively, Dyck edit distance is more complicated than
RNA folding. Indeed, the same conditional lower bound as Theorem 1 for Dyck edit distance
problem shown in [1] requires a bigger alphabet size (48 instead of 36) and a longer proof. In
the next, we prove Theorem 3 by showing a simple reduction from RNA folding to Dyck edit
distance with alphabet size 10. This improves upon the hardness result in [1], and justifies
the intuition that Dyck edit distance is a harder problem than RNA folding.

Proof of Theorem 3. For notational simplicity, we let the alphabet for the RNA folding
problem be X UY = {0,0',1,1'} (instead of {A,C,G,U}). Let S be any string in (X U X')".
We define the string Spyck as the result of applying the following operations on S:

= Replace each letter 0 with the sequence Sy = aeb’aeb’.

= Replace each letter 0’ with the sequence Sy = bba’a’.

= Replace each letter 1 with the sequence S; = ced’ced’.

= Replace each letter 1’ with the sequence Sy, = ddc'c’.

It is clear that Spyck is a sequence of length at most 6n on the alphabet {a,b,¢c,d, e} U
{d',V,c,d' e}, though the letter ¢’ is not used. We claim that the Dyck edit distance of
Spyex is 22l _ 9RNA(S).

First, we show that the Dyck edit distance of Spyck is at most ISDigd“ — 2RNA(S).
Given an optimal RNA folding of S, we construct a crossing-free matching A with cost

[Spyel _ 9RNA(S) as follows:
= For matched pairs in the RNA folding of S:
= For each matched pair (0,0’) in the RNA folding of S, we add two pairs (a,d’), (a,a’)
to Apr, and add three pairs (e, b'), (e,b'), (b,b) to Ag in its corresponding pair of
substrings (So = a(eb’)a(ed’), Sy = (bb)a’a’) in Spyck.
= For each matched pair (0/,0) in the RNA folding of S, we add two pairs (b,V'), (b,V')
to Ay, and add three pairs (a’,d’), (a,e), (a,e) to Ag in its corresponding pair of
substrings (So = bb(d’a’), Sy = (ae)b’(ae)b’) in Spyek.
- Similarly, for each matched pair (1,1’),(1’,1) in the RNA folding of S, we can add
two pairs to Ays and three pairs to Ag.
= For unmatched letters in S:
- For each unmatched letter 0 in S, we add three pairs (a,b’), (e,V'), (a,€) to Ag in its
corresponding substring Sy = (a(eb’)(ae)b’). Similarly, for each unmatched letter 1,
we can add three pairs to Ag.

Y.-J. Chang

For each unmatched letter 0’ in S, we add two pairs (b,b), (a’,a’) to Ag in its corres-
ponding substring Sy = (bb)(a’a’). Similarly, for each unmatched letter 1’, we can add
two pairs to Ag.

The set Aps has size 2RNA(S), the set Ag has size w, and D is an empty
set. Therefore, the cost of A is ‘SDW‘“_;RNA(S) = |SD2y°k| — 2RNA(S).

Second, we show that the Dyck edit distance of Spyck is at least % — 2RNA(S).
Given a crossing-free matching A (on the string Spyck) of cost C, we recover an RNA folding
of S that has > % — % number of matched pairs.

We build a multi-graph G = (V, E) such that V is the set of all substrings Sy, Sor, S1, S1/
that constitute Spyck, and the number of edges between two substrings in V' is the number
of pairs in Ay linking letters between these two substrings. Note that |V| = n,|E| = Aj.

. Soyad—21B| . Spyex|—2]A4 Spyad —2|E
It is clear that C' > %, since |Ag| + |D| > | Dyk‘Q Al _ |Spy k2| IEL Therefore,

[Spyek| _ C
4 2"

we are done if we can recover an RNA folding of size > @7 since @ >
We observe the following:
G has degree at most 2 (due to our definition of Sy, So, 51,51/, at most two letters in
such a substring can participate in pairings of the form (z,z'), « € {a, b, ¢, d}, without
crossing).
In the graph G, any edge must either links an Sy with an Sy or links an S7 with an Sy,
(due to our definition of Sy, So, S1, 51/, any pairing of the form (z,z’), = € {a,b,¢,d},
must be made between Sy, So or between S7,51/).
G does not contain any cycle of odd length (due to the above observation).

In view of the above second observation, a (graph-theoretic) matching M C E of G
naturally corresponds to a (size |M|) RNA folding of S: for each edge (a pair of substrings
in Spyck) in M, we add its corresponding pair of letters in .S to the RNA folding. Since a

|E|

maximum matching has size > 5+ in a graph of maximum degree 2 without odd cycles, we

conclude the proof. <

We note that for the case substitution is not allowed, the letter e in the above proof is
not needed, and this lowers the required alphabet size to 8.

Acknowledgements. The author thanks Seth Pettie and anonymous reviewers for helpful
comments.

—— References

1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique
algorithms are optimal, so is Valiant’s parser. In Proceedings of 56th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), pages 98-117, 2015.

2 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results
for LCS and other sequence similarity measures. In Proceedings of 56th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 59-78, 2015.

3 Tatsuya Akutsu. Approximation and exact algorithms for RNA secondary structure pre-
diction and recognition of stochastic context-free languages. Journal of Combinatorial
Optimization, 3(2):321-336, 1999.

4 Amihood Amir, Timothy M. Chan, Moshe Lewenstein, and Noa Lewenstein. On hardness
of jumbled indexing. In Proceedings of 41st International Colloguium Automata, Languages,
and Programming (ICALP), pages 114-125, 2014.

13:11

CPM 2016

13:12

Hardness of RNA Folding Problem With Four Symbols

10

11

12

13

14

15

16

17

18

19

20

21

Amihood Amir and Gad M. Landau. Fast parallel and serial multidimensional approximate
array matching. Theoretical Computer Science, 81(1):97-115, 1991.

Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquad-
ratic time (unless SETH is false). In Proceedings of 47th Annual ACM Symposium on
Theory of Computing (STOC), pages 51-58, 2015.

Karl Bringmann and Marvin Kiinnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Proceedings of 56th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 79-97, 2015.

Timothy M. Chan and Moshe Lewenstein. Clustered integer 3SUM via additive combinat-
orics. In Proceedings of 47th Annual ACM Symposium on Theory of Computing (STOC),
pages 31-40, 2015.

Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme J. Mitchison. Biological Se-
quence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University
Press, 1998.

Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique
and dominating set. Theoretical Computer Science, 326(1):57-67, 2004.

Yelena Frid and Dan Gusfield. A simple, practical and complete O(%)—time algorithm for
RNA folding using the Four-Russians speedup. Algorithms for Molecular Biology, 5(1):1-8,
2010.

Tamar Pinhas, Dekel Tsur, Shay Zakov, and Michal Ziv-Ukelson. Edit distance with du-
plications and contractions revisited. In Proceedings of 22nd Annual Symposium on Com-
binatorial Pattern Matching (CPM), pages 441-454. Springer Berlin Heidelberg, 2011.
Tamar Pinhas, Shay Zakov, Dekel Tsur, and Michal Ziv-Ukelson. Efficient edit distance
with duplications and contractions. Algorithms for Molecular Biology, 8(1):1-28, 2013.
Mihai Patragcu and Ryan Williams. On the possibility of faster SAT algorithms. In
Proceedings of 21st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1065—
1075, 2010.

Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the
diameter and radius of sparse graphs. In Proceedings of 45th ACM Symposium on Theory
of Computing (STOC), pages 515-524, 2013.

Barna Saha. The Dyck language edit distance problem in near-linear time. In Proceedings
of 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
611-620, 2014.

Barna Saha. Language edit distance and maximum likelihood parsing of stochastic gram-
mars: Faster algorithms and connection to fundamental graph problems. In Proceedings
of 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
118-135, 2015.

Yinglei Song. Time and space efficient algorithms for RNA folding with the Four-Russians
technique. Technical Report arXiv:1503.05670, 2015.

Leslie G. Valiant. General context-free recognition in less than cubic time. Journal of
Computer and System Sciences, 10(2):308-315, 1975.

Virginia Vassilevska. Efficient algorithms for clique problems. Information Processing
Letters, 109(4):254-257, 2009.

Balaji Venkatachalam, Dan Gusfield, and Yelena Frid. Faster algorithms for RNA-folding
using the Four-Russians method. Algorithms for Molecular Biology, 9(1):1-12, 2014.

Efficient Non-Binary Gene Tree Resolution with
Weighted Reconciliation Cost

Manuel Lafond!, Emmanuel Noutahi?, and Nadia El-Mabrouk3

1 DIRO, Université de Montréal, H3C 3J7, Canada
lafonman@iro.umontreal.ca

2 DIRO, Université de Montréal, H3C 3J7, Canada
noutahie@iro.umontreal.ca

3 DIRO, Université de Montréal, H3C 3J7, Canada
mabrouk@iro.umontreal.ca

—— Abstract

Polytomies in gene trees are multifurcated nodes corresponding to unresolved parts of the tree,
usually due to insufficient differentiation between sequences. Resolving a multifurcated tree has
been considered by many authors, the objective function often being the number of duplications
and losses reflected by the reconciliation of the resolved gene tree with a given species tree.
Here, we present PolytomySolver, an algorithm accounting for a more general model allowing for
costs that can vary depending on the operation, but also on the considered genome. The time
complexity of PolytomySolver is linear for the unit cost and is quadratic for the general cost,
which outperforms the best known solutions so far by a linear factor. We show, on simulated
trees, that the gain in theoretical complexity has a real practical impact on running times.

1998 ACM Subject Classification Biology and genetics
Keywords and phrases gene tree, polytomy, reconciliation, resolution, weighted cost, phylogeny

Digital Object ldentifier 10.4230/LIPIcs.CPM.2016.14

1 Introduction

Reconstructing gene trees is a fundamental task in bioinformatics and a prerequisite for
most biological studies on gene function. Consequently, a plethora of phylogenetic methods
have been developed, most of them integrating measures of statistical support (e.g. by
bootstrapping or jackknifing), reflecting the confidence we have on the prediction. Some of
them, such as bayesian methods [9, 11] lead to non-binary trees. Moreover, weakly supported
branches are often contracted and also lead to non-binary trees. Thus, although unresolved
nodes in a tree may reflect a true (or hard [12]) simultaneous speciation or duplication
event leading to more than two gene copies, they are usually artifacts (called soft), due to
methodological reasons or to a lack of resolution between sequences.

Information for the full resolution of a gene tree may rely on the weakly exploited link
between gene and species evolution. The question of resolving a non-binary gene tree by
minimizing the number of duplications and losses resulting from the reconciliation of the
gene tree with the species tree has first been considered in NOTUNG [2] and later by Chang
and Eulenstein [1]. In 2012 [8], we developed the first linear-time algorithm for resolving a
polytomy (a single unresolved node), leading to a quadratic-time algorithm for a whole tree.
Recently, algorithmic results extending linearity to a whole gene tree have been obtained by
Zheng and Zhang [15]. These linearity results are however restricted to the case of a unit
cost for duplications and losses. On the other hand, an algorithm allowing different costs for

© Manuel Lafond and Emmanuel Noutahi, and Nadia El-Mabrouk;
37 licensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).

Editors: Roberto Grossi and Moshe Lewenstein; Article No. 14; pp. 14:1-14:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2

Efficient Non-Binary Gene Tree Resolution with Weighted Reconciliation Cost

Table 1 Time-complexity results for reporting a single optimal resolution of a whole gene tree G
of size |G| with a species tree S of size |S|, where A is the largest degree of a node in G, ¢ is the cost
of a duplication and A the cost of a loss. The last column refers to the case in which each species s
has its own duplication cost ds and loss cost As.

S=A=1 | (6, \) €Rso xRso | {(ds,2s)}scv(s)
NOTUNG]6] 0(]S]|G|A?) 0(]9]|G|A?)
Lafond(8] O(|S|G]) O(|S]|G|A)
Zheng & Zhang[15] O(|G]) O(|G|A?)
PolytomySolver el{lel) o(|G|Aa) O(|G||S|A)

duplications and losses has been considered in NOTUNG [6], and further improved by Zheng
and Zhang [15], using a compressed species tree idea.

In this paper, we present a new algorithm called PolytomySolver, which handles unit costs
in linear time and improves the best complexity to date for more general duplication and
loss cost model by a linear factor (complexity results are given in Table 1). Additionally,
PolytomySolver is the first algorithm enabling to account for various evolutionary rates across
the branches of a species tree, as it allows assigning each taxa its specific duplication and
loss cost. This functionality may be used to reduce the effect of missing data by assigning a
lower loss cost to species that are more likely to be concerned by such loss of information. It
is also of practical use when biological evidence supports some particularly low or high gene
duplication or loss rates in some species of interest [10]. In particular, fractionation following
whole genome duplication (WGD) results in an excess of gene losses. In Section 6, we give
an example showing that assigning appropriate costs to post-WGD genomes is important for
an accurate inference.

The paper is subdivided as follows. First, in Section 3, we show how the linear-time
algorithm developed previously by our group [8] for resolving a polytomy with unit duplication
and loss cost can be extended to arbitrary costs, depending on the operation and on the
genome affected by the operation. This extension is however not linear anymore but
rather leads to a cubic-time algorithm. We then, in Section 4, show how using the ideas
introduced by Zheng and Zhang [15] allows to reduce this time complexity to quadratic,
which is the best obtained to date for the same problem. We also show how unit costs
can be handled in linear time, and how PolytomySolver can be used to output all optimal
resolutions, which is an advantage compared to Zheng and Zhang’s algorithms. In Section 5,
comparing our new algorithm with NOTUNG and Zheng and Zhang’s algorithm, we show
that the obtained gain in theoretical complexity actually leads to a significant gain in
running times. For space reason, all proofs are given in Appendix, which is available online
at http://www-ens.iro.umontreal.ca/~lafonman/en/publications.php.

2 Preliminary

All trees are considered to be rooted. Given a set X, a tree T' for X has its leafset £(T) in
bijection with X. Denote by V(T') its set of nodes, r(T') its root, and write |T'| = |V(T)|.
Given two nodes = and y of T', x is a descendant of y, and y is an ancestor of z, if y is on
the (inclusive) path between x and r(T"). The degree deg(x) of a node x is the number of
edges incident to . The maximum degree of T is A(T") = max,ey (1) deg(v) (or just A when
T is clear from the context). Given a set L of leaves, the lowest common ancestor of L in

http://www-ens.iro.umontreal.ca/~lafonman/en/publications.php

M. Lafond, E. Noutahi, and N. El-Mabrouk

g g R(G,S):
S: G:
e f q,
a b ¢ d a a b ¢ 3 a b b a d c

Figure 1 S is a species tree over ¥ = {a, b, ¢,d}; G is a gene tree on the gene family I" with two
copies in genome a, one in genome b and one in genome ¢; R(G,S) is a reconciliation of G with S
with two duplications and four losses. Each node z of G and R(G, S) is labeled by s(z).

T, denoted lcar(L), is the common ancestor of L in T that is farthest from the root. A
polytomy (or star tree) over a set L is a tree with a single internal node, which is of degree
|L|, adjacent to each leaf of L. Finally, if x is a node of T', denote by T, the subtree of T
rooted at z, and by T'(z) the polytomy obtained by keeping only = and its children in 7.

2.1 Gene Tree, Species Tree and Reconciliation

A species tree S for a set ¥ = {07, ,0:} of species represents an ordered set of speciation
events that have led to X. Inside the species’ genomes, genes undergo speciations when
the species to which they belong do, but also duplications and losses (other events such as
transfers can happen, but we ignore them here). A gene family is a set T of genes where
each gene z belongs to a given species s(z) of ¥. The evolutionary history of T' can be
represented as a gene tree G where £(G) is in bijection with T, and each internal node refers
to an ancestral gene at the moment of an event (either speciation or duplication) belonging
to the species s(z) = lcas({s(y) : y € L(G:)}). We denote S(G) = {s(y) : y € L(G)} the set
of species represented by G.

In this paper, we make no distinction between paralogous gene copies. In other words, a
gene x is simply identified by the genome s(z) it belongs to. A gene tree is therefore a tree
where each leaf is labeled by an element of ¥, with possibly repeated leaf labels (Figure 1).

A reconciliation is an extension of the gene tree, obtained by adding lost branches,
reflecting a history of duplications and losses in agreement with the species tree. Formally,
an extension of G is a tree obtained from G by a sequence of graftings, where a grafting
consists in subdividing an edge uv of GG, thereby creating a new node w between u and v,
then adding a leaf with parent w. The new leaf x is mapped to a species s(z) which is a
node of S (internal or leaf). A formal definition follows (see Figure 1 for an example).

» Definition 1 (Reconciled gene tree). Let G be a binary gene tree and S be a binary species
tree. A reconciliation R(G,S) of G with S is an extension of G verifying: for each internal
node z of R(G,S) with two children z; and x,., either s(z;) = s(x,) = s(x), or s(x;) and
s(x,) are the two children of s(z). The node z is a duplication in s(z) in the former case,
and a speciation node in s(x) in the latter case. A grafted leaf x corresponds to a loss in

Define §; as the duplication cost and A, as the loss cost assigned to a given species s.

Then, the reconciliation cost of R(G,S) is the sum of costs of the induced duplications and
losses.
2.2 Problem statement

We consider a binary species tree S and a non-binary gene tree G. The goal is to find a
binary refinement of G, as defined below.

14:3

CPM 2016

14:4

Efficient Non-Binary Gene Tree Resolution with Weighted Reconciliation Cost

®

Figure 2 From left to right: a gene tree G; a species tree S; the species tree Sg linked to G is
the tree illustrated by plain lines, and the augmented species tree Sg linked to G is illustrated by
plain and dotted lines; the compressed tree S¢ linked to G as defined in Section 4. The leaf u' of
S¢ has a special loss cost A,» = 3, as it results from the contraction of a path of length 3.

» Definition 2 (binary refinement). A binary refinement B = B(G) of G is a binary tree
such that V(G) C V(B) and for every x € V(G), L(G5) = L(By).

The objective function taken for choosing among all possible binary refinements is the
reconciliation cost.

» Definition 3 (Resolution). A resolution of G with respect to S is a reconciliation R(B,S)
between a binary refinement B of G and S. The set of all possible resolutions of a tree G is
denoted R(G).

We are now ready to state our optimization problem.

Minimum Resolution Problem

Input: A binary species tree S and a non-binary gene tree G.

Output: A Minimum Resolution of G with respect to S (or simply Minimum Res-
olution of G), e.g. a resolution of G of minimum reconciliation cost with respect
to S.

It has been previously shown [1] that each polytomy of G can be considered independently.
In particular, a minimum resolution of G can be obtained by a depth-first procedure that
solves each polytomy G(x) iteratively, for each internal node 2 of G. Thus, in the following,
we focus on a single polytomy G = G(x).

Some parts of the species tree can be ignored in the process of refining G. Define the
species tree linked to G, denoted by Sg, as the tree obtained from the subtree of S rooted
at the lowest common ancestor of S(G), by removing all nodes that have no descendant
in S(G) (Figure 2). The algorithms with the best known complexity results (Table 1) are
obtained by using a compressed version S¢, of this tree, which is defined in Section 4. We
first begin, in Section 3, by describing the refinement strategy by using an augmented species
tree linked to G, denoted Sg, obtained from S by adding to every node of degree two its
missing child in S. It is known (c.f. [8, 15]) that resolving G with either S or SZ leads to
the same reconciliation cost. Intuitively, Sg contains every node of S that may appear in a
resolution of G, whether as a loss, a duplication or a speciation.

3 A dynamic programming approach

We present a dynamic programming approach for the MINIMUM RESOLUTION PROBLEM
for a single polytomy G. It is a generalization of that presented in [8]. While the previous
algorithm was developed for a unit cost of duplications and losses, the one we present here

M. Lafond, E. Noutahi, and N. El-Mabrouk

s R (M 1]2] 3] 4 VI
}A a 012 I\;a(° Cy, =M, M, ; My,1=M, >+6

a b C b|2/1 0
G: c(0 1 2
%\ 4 211

e.23

Figure 3 A polytomy G and a species tree S. The corresponding table M is obtained for
0s = As = 1 for all species. Squares on trees illustrate duplications. To the right of table M, the
forests corresponding to an (a, 1) and (a, 3)-resolution are given, where the circled a illustrates a
singleton loss. We illustrate the (d, 1)-resolution, rooted at a speciation node, corresponding to
Cq,1 = 3 (obtained from the vertical arrow in table M), and an optimal (d, 1)-resolution, obtained
from a (d, 2)-resolution (horizontal arrow in M).

Mis=A a abb a b 3

aa@

AN W -

holds for a more general reconciliation cost, where each s € ¥ has its own duplication cost d
and loss cost A;. In this section, we assume that S = Sg.

The recursion is made on the subtrees of S. Define the multiplicity m(s) of s € V(5)
in G as the number of times it appears in G, i.e. m(s) = |{x € L(G) : s(z) = s}|. An
(s, k)-resolution of G is a forest of k reconciled gene trees 7 = {T1,...,T)} such that, for
each 1 < i <k, s(r(T;)) = s, and each leaf x of G with s(z) being a descendant of s is
present as a leaf of some tree of T (see Figure 3 for an example). All leaves of trees in T
that are not in £(G) represent losses. Also, some trees of 7 may be restricted to a single
node which is either a child = of r(G) with s(z) = s, or a singleton loss in s. The cost of
T, denoted ¢(7), is the sum of reconciliation costs of all T;s. Notice that since S = Sg, a
resolution of G is an (r(S5), 1)-resolution.

Denote by M, j the minimum cost of an (s, k)-resolution for a given node s of S and
a given integer k > 1 (and M, = oo for k < 1). The final cost of a minimum resolution
of G is given by M, (g) 1. The table M is computed, line by line, for all nodes of S, in a
bottom-up traversal. For now, k is unlimited, but we show in the complexity section that
there is no need to consider more than |G| — 1 columns.

The following lemma gives the base case for the leaves of S. It follows from the fact that,
if £ is larger than the number of available leaves, then additional leaves have to be added
(called singleton losses); otherwise leaves have to be joined under duplication nodes. As an
illustration, in Figure 3, this lemma is used to compute the three first lines of M.

» Lemma 4 (Base case). For a leaf node s of S, if k > m(s) then My = As - (k — m(s));
otherwise My) = 65 - (m(s) — k).

The rest of this section focuses on the computation of a line M, of M for an internal node
s of S, from the lines M, and M, where s; and s, are the two children of s in S. We require
an intermediate cost table Cf , defined for internal nodes of S, accounting only for speciation
events. That is, Cj j represents the minimum cost of an (s, k)-resolution in which every tree
is rooted at a speciation node with two children (these two children may both be losses), or
consists of a singleton node that is a child of r(G) already mapped to s. For k > m(s), such
an (s, k)-resolution of cost Cs ; can only be obtained from an (s;, k — m(s))-resolution and an
(sr, k —m(s))-resolution by creating k — m(s) speciation nodes, each joining a pair of (s;, s,.)
trees, then adding the m(s) singleton trees mapped to s. No other scenarios are possible,
since (s, k)-resolutions are reconciled trees, and each non-singleton root is a speciation in s

14:5

CPM 2016

14:6

Efficient Non-Binary Gene Tree Resolution with Weighted Reconciliation Cost

that must have genes mapped to s; and s, as children. See for example the (d, 1)-resolution
corresponding to Cy 1 in Figure 3. Note that if instead & < m(s), such an (s, k)-resolution
cannot exist, since m(s) trees are required for the children of 7(G) mapped to s, plus at least
another tree containing the genes in a descendant of s. Thus we define:

Cok = My, k—m(s) + My, jp—m(s) if K >m(s) and C; p = 400 otherwise (1)
It is readily seen that M, < Cs k. A recurrence for computing M j, follows.
» Lemma 5. For an internal node s of S, My = min(M, 1 + As, M g1 + 65, Cs 1).

This recurrence cannot be used as such to compute C' and M, as it induces both a
left and right dependency. That is, M, depends on M ;1 and vice-versa, leading to
a chicken-and-egg problem as to which value should be computed first. In the case of a
unit cost s = Ay = 1 for all s, we have shown in [8] that this dependency can be avoided
by considering a strong property on lines of M. Indeed, each line M, is characterized by
two values ki and kg such that, for any k1 < k < kg, M, is minimum, for any k£ < ky,
Mg -1 = My + 1, and for any k > kg, M, 41 = M, + 1. In other words, M, has a slope
of —1 until k;, a slope of 0 until ko, then a slope of 1. In particular, My can be treated as a
convex function fully determined by ki, k2 and its minimum value . We then say M, has a
minimum plateau between ki and ko. For example, line My in Figure 3 is fully determined
by k1 = 2 and ko = 3.

Here, we extend these results by first showing, in Lemma 7, that both C' and M are still
convex, albeit having less predictable changes in the slopes. Nevertheless, this allows to first
compute the bounds k; and ko of the functions’ minimum plateau, and then extend to the
left and to the right from this plateau.

We first recall the formal definition of a discrete convex function, then state the convexity
result for C' and M and finally give the recurrences of the dynamic programming algorithm
in Theorem 8.

» Definition 6 (Convex function). A discrete function f is convex if and only if, for any
integer n > 1, the two following statements, which are equivalent, are true.

fn+1) + f(n—1) — 2f(n) > 0;

for any integers €1, €3 > 0 and any integer n > €1, f(n —€1) + f(n+e) — 2f(n) > 0.

» Lemma 7. Both M, and C are convex.

» Theorem 8 (Recurrence 2). Let k1 and ko be the smallest and largest values, respectively,
such that Cs i, = Cs i, = ming Cs . Then,

Cs i ifk1 <k<k
M&k = min(CS_,k, Ms,k+1 + (55) ifk <k
min(Cs,k,Ms,k,l +)\3) if k> ko

Theorem 8 provides the way for computing a row M for an internal node s of S: for each
k, compute C; j, using recurrence (1) and keep the two columns k; and ks, setting the bounds
of the convex function’s plateau. Extend to the left of &k using M, ,, = min(Cy g, My g4+1+9s),
and to the right of ko using M, ,, = min(Cj i, My x—1 + As). These recurrences, with the base
case for S leaves given in Lemma 4, describe the dynamic programming algorithm, that we
call PolytomySolver, for computing the cost M, (g) 1 of a minimum resolution of the polytomy
G with respect to S. We refer the reader to [8] for the reconstruction of a solution from M
in linear time, which is accomplished using a standard backtracking procedure.

M. Lafond, E. Noutahi, and N. El-Mabrouk

Complexity

The following lemma states that there is no reason to explore more gene copies of a given
species than the size of the polytomy, in other words, the size of a line of M can be bounded
by |G|. This fact may seem obvious to the accustomed, but in [6] it was equally “obvious" that
only m* = max,ey (g)m(s) columns needed to be considered, which turns out to be wrong L
In fact, this Lemma requires a surprising amount of care in the details (see Appendix).

» Lemma 9. Only the values of M and C for columns k between 1 and |G| — 1 need to be
computed.

It follows from Lemma 4, Theorem 8 and Lemma 9 that each row of C' and M can be
computed in time O(|G|), and the whole table in time O(|S||G]).

Now suppose that H is a general tree with p polytomies, where A is the largest degree
of a polytomy. According to the depth-first procedure described at the end of Section 2,
G can be resolved in time O(p|S|A), which is less than O(|H||S|A). In the next section,
we improve this to O(|H|A) in the case of distinct costs § and A that are shared across all
species, and O(|H|) in the case of equal costs § = A.

4 A faster algorithm using species tree compression

Assume that all species have the same duplication cost § and the same loss cost A. We call it
unit cost if § = A, and general cost otherwise. Again we assume that G is a polytomy.

In the previous section, results have been obtained using the augmented linked species
tree Sg . As observed by Zheng and Zhang [15], Sg contains many “useless" nodes that
do not provide any meaningful information with regards to the resolution of G. This idea
allowed them to optimize their refinement algorithm for the unit cost, leading to a linear-time
algorithm. However, their algorithm does not apply to the general cost. For such a cost, their

optimisation idea was rather applied to the NOTUNG’s algorithm, which is less efficient.

Here, we use a similar idea to optimize PolytomySolver. More precisely, we show how a
compressed version of the linked species tree Sg can be used to reduce the complexity for
refining a general tree G to O(|G|A) for the general cost, and to O(|G|) for the unit cost.

We first need some definitions. Let T be a tree. Call P a path in T if P is a sequence of
non-root adjacent vertices of degree two in T'. Contracting P in T consists in replacing P
by a single node p = p(P). Now, let U be the set of non-root vertices of degree two of S
that are not in S(G). We call U the set of “useless nodes" of Sg. Notice that Sg[U], the
graph obtained from Sg by keeping only nodes of U and edges with both endpoints in U,
corresponds to a set of disjoint paths in Sg. The compressed tree S¢ is the tree obtained
from S¢ by contracting every path P of Sg[U] to = p(P), then adding a leaf child ' to
every such p (see Figure 2 for an example). Moreover, we set a special loss cost A,y = A|P|
to u' (and duplication cost ¢ as every other node). This special loss cost ensures that a loss
in p' is counted as a loss in every node in P. Notice that some internal nodes of S¢ that are
included in S(G) may still have only one child. Thus S§ is finally obtained by adding to
each remaining node having only one child a new leaf child (duplication of cost § and loss
cost A). The following Theorem ensures that Sg does not change the solution space.

1 The complexity reported in Table 1 is not the one reported by NOTUNG, as dependency is not given
on A but instead on m”*. However, it can be shown that considering m™ columns is not enough on some
examples.

14:7

CPM 2016

14:8

Efficient Non-Binary Gene Tree Resolution with Weighted Reconciliation Cost

» Theorem 10. Let T be a binary refinement of G. Then the reconciliation cost of T is the
same whether we reconcile it with Szg or S& and their corresponding duplication/loss costs.

Thus, using Sg or S leads to the same minimum resolution for G. We show that using
S¢& leads to reduction in time complexity of the algorithm.

» Theorem 11. Given a gene tree H, PolytomySolver can run in time O(A|H).

4.1 The case of a unit cost

In [8], we showed how, in the case of a unit cost § = A, each line My of M can be computed
in constant time. However, in order to take advantage of the compressed species tree S = S¢,
we need to account for special leaves ' with loss cost A, > 1, since they make the cost
not unitary anymore. The following theorem allows us to extend the result to this specific
case. It leads to the computation of M in time O(|S&]) = O(|G|) for a polytomy G. The
complexity for a gene tree H is thus reduced to O(]H|), which results in a reduction of the
previous complexity by a factor of A.

» Theorem 12. Suppose S = S¢. Then for s € V(S5),

1. if s is a leaf with loss cost A =1, then M = |k — m(s)|;

2. if s is a leaf with loss cost As > 1, then My =k - Xs;

3. if s is an internal node, there exist 3 integers ki, ko and s such that

Vs ifk1 <k <k
Msk=7v+k—k ifk<k
etk —ks if k> ks

Moreover, ki, ko and ~vs can be computed in constant time.

4.2 Constructing all minimum resolutions

After computing table M, it remains to compute (r(.5), 1)-resolutions, i.e. all resolutions of
minimum cost. Without any increase in the theoretical time complexity of the algorithm, a
simple pass through table M leads to one minimum resolution (see [8] for the details). Here
we rather show how to recover all minimum resolution.

Denote by Ps 1 the set of all minimum (s, k)-resolutions of a polytomy G. By setting
s = r(S) and k = 1, we exhibit the following recursive algorithm that finds P,(gy;. To
do so, we define three intermediate solution sets Pilff , PLo%* and PJ¢, which respectively
correspond to (s, k)-resolutions containing a duplication root, a singleton loss and only
speciation roots (it turns out that these three cases are disjoint).

We show in the Appendix that this algorithm eventually terminates, and does find every
solution. The essential reason that this algorithm finishes is because of the convexity of Mj,
which allows avoiding circular dependencies between say Ps i and Py p.

It can be shown that this algorithm takes time O(|S|-|Py(g),1|), which may be exponential.
Methods for outputting solutions iteratively, each in polynomial time, seem possible, but are
not immediately obvious. Notice that Zheng and Zhang’s algorithms [15] can only output a
subset of P,.(g),1. As for NOTUNG, it takes time O(|S|A - (|Py(s),1| +A)) to construct every
optimal solution [2].

M. Lafond, E. Noutahi, and N. El-Mabrouk

procedure COMPUTE P; i,

if s is a leaf and m(s) = k then
return £ singleton trees mapped to s

Let PLy =0, Pl = 0, PR =0

if M) = M,)11+ 0, then
Compute Ps 11
for every forest T in Ps 41, and for every pair of distinct trees 77,75 € T do

Add to ’Pi?cp the (s, k)-resolution obtained by joining r(71) and r(T%)

if Mgy = M;r—1+ A then
Compute P 1
for every forest T in P ;1 do
Add to Pﬁ?,fs the (s, k)-resolution obtained adding a singleton loss in s in T

if s is an internal node with children s1, 3 and My x = M, k_m(s) + Moy k—m(s)
then
Compute Py, k—m(s) and P, x—m(s)
for each pair (71,72) in Py, k—m(s) X Ps,,k—m(s), and for every bijection f :
T1 — T2 do
Add to P the (s, k)-resolution T obtained by joining r(71) with r(f(T1))
for every
Ty € T1, then adding the m(s) children of G mapped to s as singleton trees
Let Py = Pglp U 'Péf’,ﬁs U P, and return Py j,
end procedure

5 Results on simulated data

We compare the running time of our algorithm to Zheng and Zhang’s algorithms [15] and
NOTUNG, on simulated datasets for both cases of unit and general costs. We implemented
PolytomySolver and Zheng and Zhang’s algorithms in python and used the latest stable
version (v2.6)? of NOTUNG. Our implementations are available at https://github.com/
UdeM-LBIT/profileNJ. Run times are reported for single outputs of the algorithms.

We first simulated species trees with n leaves using a birth-death process. For each
species tree, gene trees of fixed size (1.5 x n) and branch support picked from a standard
uniform distribution, were simulated using a simple Yule process [13]. In order to mimic a
gene family history with a high number of events (duplications and losses), we labeled each
leaf of the gene tree with a uniformly chosen species from the set of leaves of the species
tree. Non-Binary gene trees were then obtained by contracting edges of the gene trees with
support lower than a fixed threshold r (0.2, 0.4, 0.6 and 0.8).

For each species tree and each algorithm, we measured the average running time on 40
non-binary trees (10 simulated gene trees for each contraction rate). All software were run
on the same computer and with the same costs for duplications and losses.

We first considered the unit cost (A = ¢ = 1), for which both PolytomySolver and Zheng
and Zhang’s algorithm (LZZ) are linear. Figure 4a shows the results for values of n ranging
from 500 to 10000, and Figure 4b shows results for n between 10000 and 100000. As expected,
the two linear algorithms exhibit very similar run time in all cases, and are significantly

2 Notice that an improved version of NOTUNG v2.8 became available after these tests were performed.

14:9

CPM 2016

https://github.com/UdeM-LBIT/profileNJ
https://github.com/UdeM-LBIT/profileNJ

14:10

Efficient Non-Binary Gene Tree Resolution with Weighted Reconciliation Cost

—o— PolytomySolver . —o— PolytomySolver —o— Dyn. Zheng8Zhang
—o— Lin. Zheng&Zhang o 1401 —0—Lin. Zheng&Zhang & . 160f| —o—Notung

50 —o— Notung B R H —o— PolytomySolver

runtime (s)
®
3

2000 4000 6000 8000 10000 2 4 6 8 10 2000 4000 6000 8000 10000
species tree size species tree size x10° species tree size

(a (b) (c)

Figure 4 Running times comparisons between all algorithms for species trees of increasing size n
and gene trees of size 1.5 X n. a Running times of PolytomySolver, LZZ (linear Zheng and Zhang’s
algorithm) and NOTUNG, using unit cost, for species trees of increasing size ranging from 500 to
10000. b Running times of PolytomySolver and LZZ for unit cost on larger species trees (n in the
range of 10000 to 100000). ¢ Running times of PolytomySolver, DZZ (Dynamic Zheng and Zhang’s
algorithm) and NOTUNG using 6 = 3 and A\ = 2.

faster than NOTUNG, which could not be included in Figure 4b. Indeed, on those trees,
NOTUNG took a considerable amount of time, and in some cases we could not get a result
after many hours.

We then considered a non-unit cost, using § = 3 and A = 2. Recall that PolytomySolver is
quadratic in this case. As for the algorithm proposed by Zheng and Zhang for these costs,
that we refer to by DZZ (for Dynamic Zheng and Zhang’s algorithm), it is (essentially)
cubic (see Table 1). Figure 4c gives the results for species trees of size ranging between 500
and 10000. As expected, PolytomySolver is faster than DZZ and NOTUNG. Surprisingly,
NOTUNG turns out to be faster than DZZ, which rather expected to improve over NOTUNG
as it uses the species tree compression idea. This could be due to the fact that NOTUNG is
a well optimized program. Moreover, the error in NOTUNG of using m* instead of A (see

footnote in this Section 3), may accelerate the process, as m* is usually much smaller than
A.

6 A practical use of PolytomySolver

As handling species specific costs is one of the major contribution of this paper, we conclude
our presentation by providing a biological example for which taking advantage of this
flexibility of PolytomySolver leads to better accuracy.

We first downloaded the orthogroup of the yeast gene REG1, a regulatory subunit of type
1 protein phosphatase Glc7p, involved in negative regulation of glucose-repressible genes, from
the Fungal Orthogroups Repository (http://www.broadinstitute.org/regev/orthogroups/).
We then reconstructed the gene tree with PolytomySolver, using the same species tree as [14]
and a unit cost for both A and 0. Two equally parsimonious solutions with a reconciliation
cost of 2 were obtained (Figures 5B, 5C).

It has been shown that the yeast Saccharomyces cerevisiae arose from an ancient whole-
genome duplication (WGD) [4, 5, 7]. This WGD was immediately followed by a massive
gene loss period, during which most of the duplicated gene copies were lost [7]. There is
also evidence of lineage-specific loss of paralogous genes. In particular, C. glabrata and S.
castellii appear to have lost several hundred paralogs [3, 5]. This is reflected in their total
gene count, which are the lowest among the post-WGD genomes [14].

Whereas the solution shown in Figure 5C is in agreement with this WGD event, the
alternative gene family history in Figure 5B places the duplication much lower in the tree, with

M. Lafond, E. Noutahi, and N. El-Mabrouk

cas | Scas661.18

Spar | sparl34-g2.1

Scer | YDR028C Spar | sparl34-g2.1

mik | smik1278-g1.1 Scer | YDR028C

Sbay | sbayc660-g5.1 Smik | smik1278-g1.1

Spar | spar198-g6.1 Sbay | sbayc660-g5.1
Scer | YBRO50C Spar | spar198-g6.1
mik | smik151-g5.1 Scer | YBRO50C
Sbay | sbayc678-9160.1 Smik | smik151-g5.1

Cgla | CAGLOK11814g Sbay | sbayc678-g160.1

Scas | Scas661.18 gla | CAGLOK11814g

Scas | Scas718.54 cas | Scas718.54

klu | SAKLOD03762g Sklu | SAKLOD03762g
Klac | KLLAOF04345g Klac | KLLAOF04345g
-Agos | ABLO95W Agos | ABLO95W
Kwal | Kwal56.23018 Kwal | Kwal56.23018

Figure 5 A. Phylogeny of ten Hemiascomycota fungi, including S. cerevisiae (Scer), S. paradozus
(Spar), S. mikatae (Smik), S. bayanus (Sbay), C. glabrata (Cgla), S. castellii (Scas), K. waltii (Kwal),
K. lactis (Klac), S. kluyver:i (Sklu) and A. gossypii (Agos). The whole-genome duplication (WGD)
event in yeast is indicated. The species that did not went through the WGD are shadowed in
light blue. B. and C. Two minimally resolved gene trees of the phosphatase Glc7p gene family.
Duplication nodes are depicted by a red square and lost genes are shown in orange.

and additional duplication in S. castellii instead. By assigning to C. glabrata and S. castellii
a loss cost lower than for all other species, the only solution returned by PolytomySolver
is the one shown in Figure 5C. Using appropriate species dependant costs might therefore
allow to filter the solution space with additional relevant information.

7 Conclusion

PolytomySolver is the most efficient algorithm to date for refining an unresolved gene tree. In
contrast to previous methods, this algorithm is flexible enough to handle general reconciliation
costs, allowing for instance to account for different costs over the branches of a species tree.
Moreover, all topologies of optimal trees can be output by PolytomySolver. Notice that
here we made no distinction between paralogous genes, which are simply referred to by
their genome of origin. If we rather consider the specificity of each gene copy then, for a
given topology obtained by PolytomySolver, an appropriate method shall be considered to
distribute gene copies on leaves. We are presently investigating the possibility of introducing
a Neighbor-Joining principle in the resolution process.

The gain in running time attained with PolytomySolver allows to perform exhaustive
corrections of all trees contained in a large gene tree dataset such as Ensembl. Moreover,
compared with NOTUNG, running time is independent upon the largest degree of a node,
which makes the algorithm efficient enough to resolve highly unresolved trees. The next step
will be to perform such a large scale gene tree dataset correction.

—— References

1 W.C. Chang and O. Eulenstein. Reconciling gene trees with apparent polytomies. In
D.Z. Chen and D. T. Lee, editors, Proceedings of the 12th Conference on Computing and
Combinatorics (COCOON), volume 4112 of Lecture Notes in Computer Science, pages 235—
244, 2006.

2 K. Chen, D. Durand, and M. Farach-Colton. Notung: Dating gene duplications using gene
family trees. Journal of Computational Biology, 7:429-447, 2000.

14:11

CPM 2016

14:12

Efficient Non-Binary Gene Tree Resolution with Weighted Reconciliation Cost

10

11

12

13

14

15

Paul F Cliften, Robert S Fulton, Richard K Wilson, and Mark Johnston. After the du-
plication: gene loss and adaptation in saccharomyces genomes. Genetics, 172(2):863-872,
2006.

Fred S Dietrich, Sylvia Voegeli, Sophie Brachat, Anita Lerch, Krista Gates, Sabine Steiner,
Christine Mohr, Rainer Péhlmann, Philippe Luedi, Sangdun Choi, et al. The ashbya
gossypii genome as a tool for mapping the ancient saccharomyces cerevisiae genome. Sci-
ence, 304(5668):304-307, 2004.

Bernard Dujon, David Sherman, Gilles Fischer, Pascal Durrens, Serge Casaregola, Ingrid
Lafontaine, Jacky De Montigny, Christian Marck, Cécile Neuvéglise, Emmanuel Talla, et al.
Genome evolution in yeasts. Nature, 430(6995):35-44, 2004.

D. Durand, B.V. Haldérsson, and B. Vernot. A hybrid micro-macroevolutionary approach
to gene tree reconstruction. Journal of Computational Biology, 13:320-335, 2006.

Manolis Kellis, Bruce W Birren, and Eric S Lander. Proof and evolutionary analysis of
ancient genome duplication in the yeast saccharomyces cerevisiae. Nature, 428(6983):617—
624, 2004.

M. Lafond, K.M. Swenson, and N. El-Mabrouk. An optimal reconciliation algorithm for
gene trees with polytomies. In LNCS, volume 7534 of WABI, pages 106-122, 2012.
Nicolas Lartillot and Hervé Philippe. A bayesian mixture model for across-site het-
erogeneities in the amino-acid replacement process. Molecular Biology and Evolution,
21(6):1095-1109, Jun 2004. doi:10.1093/molbev/msh112.

Michael Lynch and John S Conery. The evolutionary demography of duplicate genes. Jour-
nal of structural and functional genomics, 3(1-4):35-44, 2003.

F. Ronquist and J.P. Huelsenbeck. MrBayes3: Bayesian phylogenetic inference under mixed
models. Bioinformatics, 19:1572- 1574, 2003.

J.B. Slowinski. Molecular polytomies. Molecular Phylogenetics and Evolution, 19(1):114-
120, 2001.

Mike Steel and Andy McKenzie. Properties of phylogenetic trees generated by yule-type
speciation models. Mathematical biosciences, 170(1):91-112, 2001.

Tlan Wapinski, Avi Pfeffer, Nir Friedman, and Aviv Regev. Natural history and evolutionary
principles of gene duplication in fungi. Nature, 449(7158):54-61, 2007.

Y. Zheng and L. Zhang. Reconciliation with non-binary gene trees revisited. In Lecture
Notes in Computer Science, volume 8394, pages 418-432, 2014. Proceedings of RECOMB.

http://dx.doi.org/10.1093/molbev/msh112

Genomic Scaffold Filling Revisited

Haitao Jiang!, Chenglin Fan?, Boting Yang®, Farong Zhong?,
Daming Zhu®, and Binhai Zhu®

1 School of Computer Science and Technology, Shandong University, Jinan,
Shandong, China
htjiang@sdu.edu.cn

2 Department of Computer Science, Montana State University, Bozeman, MT
59717, USA
chenglin.fan@msu.montana.edu

3 Department of Computer Science, University of Regina, Regina, Saskatchewan
S4S 0A2, Canada
boting.yang@uregina.ca

4 College of Math, Physics and Information Technology, Zhejiang Normal
University, Jinhua, Zhejiang, China
zfr@zjnu.cn

5 School of Computer Science and Technology, Shandong University, Jinan,
Shandong, China
dmzhu@sdu.edu.cn

6 Department of Computer Science, Montana State University, Bozeman, MT
59717, USA
bhzO@montana.edu

—— Abstract

The genomic scaffold filling problem has attracted a lot of attention recently. The problem
is on filling an incomplete sequence (scaffold) I into I’, with respect to a complete reference
genome G, such that the number of adjacencies between G and I’ is maximized. The problem
is NP-complete and APX-hard, and admits a 1.2-approximation. However, the sequence input
I is not quite practical and does not fit most of the real datasets (where a scaffold is more
often given as a list of contigs). In this paper, we revisit the genomic scaffold filling problem by
considering this important case when, (1) a scaffold S is given, the missing genes X = ¢(G) —c¢(S)
can only be inserted in between the contigs, and the objective is to maximize the number of
adjacencies between G and the filled S’, and (2) a scaffold S is given, a subset of the missing
genes X' C X = ¢(G) — ¢(S) can only be inserted in between the contigs, and the objective
is still to maximize the number of adjacencies between G and the filled S”. For problem (1),
we present a simple NP-completeness proof, we then present a factor-2 greedy approximation
algorithm, and finally we show that the problem is FPT when each gene appears at most d times
in G. For problem (2), we prove that the problem is W[1]-hard and then we present a factor-2
FPT-approximation for the case when each gene appears at most d times in G.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Computational biology, Approximation algorithms, FPT algorithms, NP-
completeness

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.15

© Haitao Jiang, Chenglin Fan, Boting Yang, Farong Zhong, Daming Zhu, and Binhai Zhu;
oY licensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).

Editors: Roberto Grossi and Moshe Lewenstein; Article No. 15; pp. 15:1-15:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2

Genomic Scaffold Filling Revisited

1 Introduction

The cost of sequencing a genome has been reduced significantly in the last decade, with the
current cost being around $1k. This results in a lot of genomes being sequenced, usually
not completely finished (we call them draft genomes). On the other hand, the cost to finish
these genomes completely has not been decreased as much compared with a decade ago [9].
The result is that we are having more and more draft genomes. On the other hand, for many
tools to analyze the genomic data we do need complete genomes. For instance, to compute
the reversal distance between two genomes we do need two complete genomes. Hence, there
is a need to turn a draft genome into a complete one.

To make the result biologically interesting, Munoz et al. first proposed the following
scaffold filling problem (on multichromosomal genomes with no gene repetition) as follows
[28]. Given a complete (permutation) genome R and an incomplete scaffold S, fill the missing
genes in R — S into S to have S’ such that the genomic distance (or DCJ distance [30])
between R and S’ is minimized. It was shown that this problem can be solved in polynomial
time. In [22], Jiang et al. considered the case for singleton genomes without gene repetition
(i.e., permutations), using the simplest breakpoint distance as the similarity measure. It was
shown that this problem is solvable in polynomial time; in fact, even for the two-sided case
when both the input scaffolds, being a reference to each other, are incomplete permutations.

When the genomes and scaffolds contain gene repetitions, the problem becomes harder.
(That should not be considered as a surprise as even computing certain similarity measure
between two complete genomes is NP-complete, for instance, with the exemplar breakpoint
distance [11, 13, 2, 5, 24], exemplar adjacency number [12, 14], or the minimum common
string partition [15].) The similarity measure adopted for the scaffold filling problem is
the number of common (string) adjacencies, which can be computed in polynomial time
[2, 21, 22]. In [21, 22], it was shown by Jiang et al. that scaffold filling to maximize the
number of common string adjacencies (SF-MNSA) is NP-hard. (Formally, the problem
is to fill an incomplete sequence scaffold I into I’, with respect to a complete reference
genome G, such that the missing letters in G — I are inserted back to I and the number
of common adjacencies between G and I’ is maximized.) A factor-1.33 approximation was
designed in [21, 22], and this bound has been improved to 1.25 [25], and to 1.20 [23]. For
the corresponding two-sided case, i.e., when two scaffolds are references to each other, the
problem admits a factor-1.5 approximation with the number of common adjacencies between
the filled scaffolds being maximized [26]. Using the number of common adjacencies as a
parameter, it was shown that this problem is also fixed-parameter tractable (FPT) — this only
handles that case when G and I’ are not very similar so it is only of a theoretical meaning
[7].

The motivation of this paper is two-fold. Firstly, the ‘scaffold’ used in most of these
papers is an incomplete sequence, i.e., a missing gene can be inserted anywhere in such a
‘scaffold’. In practice, most of the real datasets are not in this format; in fact, a scaffold in a
real dataset is usually composed of a sequence of contigs, where a contig is usually computed
with mature tools like BLAST [1], hence should not be arbitrarily altered. This case was
considered briefly in [28, 22], all other research on scaffold filling used an incomplete sequence
as a scaffold. Secondly, take a complete reference genome G and a scaffold S, there is no
guarantee that the filled scaffold S’ is of the same length as that of G; in fact, sometimes
we could know roughly the length of the target genome S* (S’ should be as close to S* as
possible). Then, we might only need to insert a subset of letters in G — S into S (to obtain
S.

H. Jiang, C. Fan, B. Yang, F. Zhong, D. Zhu, and B. Zhu

The main contribution of this paper is to present some research results along these two
lines. We formally call the two problems as One-sided Scaffold Filling (One-sided-SF-max),
and One-sided Subset Scaffold Filling (One-sided-SF-max(C)). (For the important practical
case when a gene can only appear at most d times in G, we call the corresponding problems
One-sided-SF-max(d) and One-sided-SF-max(C, d) respectively.) The objective function in
both cases are to maximize the number of common adjacencies between the reference and the
filled scaffold. For One-sided-SF-max, we present a simple reduction from the Hamiltonian
Path problem hence showing it to be NP-hard, we then present a factor-2 approximation.
Then we show that One-sided-SF-max(d) is FPT. For One-sided-SF-max(C), we prove a
stronger negative result by showing that, parameterized by the number of missing genes
inserted, the problem is W[1]-hard. We then present a factor-2 FPT-approximation for the
special case One-sided-SF-max(C,d). As far as we know, this is the first W[1]-hardness result
on the research of scaffold filling.

The paper is organized as follows. In Section 2, we give the preliminaries. In Section
3, we present the approximation results for One-sided-SF-max. In Section 4, we present
the FPT algorithm for One-sided-SF-max(d). In Section 5, we present the results for
One-sided-SF-max(C). We conclude the paper in Section 6.

2 Preliminaries

Throughout this paper we focus only on singleton genomes (i.e., each is a sequence). But
the results can be easily generalized to multichromosomal or circular genomes, with minor
changes.

At first, we review some necessary definitions, which are also defined in [22, 31]. We
assume that all genes and genomes are unsigned, and it is straightforward to generalize
the result to signed genomes. Given a gene set X, a string P is called permutation if each
element in ¥ appears exactly once in P. We use ¢(P) to denote the set of elements in
permutation P. A string A is called sequence if some genes appear more than once in A, and
¢(A) denotes genes of A, which is a multi-set of elements in . For example, ¥ = {a, b, ¢,
d}, A = abcdacd, c¢(A) = {a, a, b, ¢, ¢, d, d}. A sequence scaffold is an incomplete sequence,
typically obtained by some sequencing and assembling process. A substring with m genes
(in a sequence) is called an m-substring, and a 2-substring is also called a pair; as the genes
are unsigned, the relative order of the two genes of a pair does not matter, i.e., the pair xy is
equal to the pair yz. Given an incomplete sequence (or sequence scaffold) A=ajasas - - - an,
let Py = {ajaz,az2as,...,a,—1a,} be the set of pairs in A.

» Definition 1. Given two sequence scaffolds A=ajas - --a, and B=biby--- by, if a;a;41
= bjbjy1 (or a;a;11=bj41b;), where a;a,11 € Py and b;b; 1 € Pp, we say that a;a;41 and
bjb;+1 are matched to each other. In a maximum matching of pairs in P4 and Pp, a matched
pair is called an adjacency, and an unmatched pair is called a breakpoint in A and B
respectively.

It follows from the definition that sequence scaffolds A and B contain the same set of
adjacencies but distinct breakpoints. The maximum matched pairs in B (or equally, in A)
form the (common) adjacency set between A and B, denoted as a(A, B). We use by (A, B)
and bp(A, B) to denote the set of breakpoints in A and B respectively. We illustrate the
above definitions in Fig. 1.

For a sequence A and a multi-set of elements X, let A + X be the set of all possible
resulting sequences after filling all the elements in X into A. We define a contig as a string

15:3

CPM 2016

15:4

Genomic Scaffold Filling Revisited

sequence scaffold A = {(cbcedaba)
sequence scaffold B = {(ababdc)
Py = {cb,be,ce,ed,da,ab,ba}
Pg = {ab,ba,ab,bd,dc}
matched pairs : (ab <> ba), (ba <> ab)
a(A,B) = {ab,ba}
ba(A,B) = {cb,bc,ce,ed,da}
bp(A,B) = {ab,bd,dc)

Figure 1 An example for adjacency and breakpoint definitions.

over a gene set X whose contents should not be altered. A scaffold S is simply a sequence of
contigs (Cy, ..., Cpy). We define ¢(S) = ¢(C1) U --- U e(Cy,). Now, we define the problems on
scaffolds formally.

» Definition 2. One-Sided-SF-max.

Input: a complete genome G and a scaffold S = (Cy,Cy, ..., C,,) where G and the contig
C;’s are over a gene set X, a multiset X = ¢(G) — ¢(S) # 0.

Question: Find S* € S+ X such that |a(S*, G)| is maximized.

One-Sided-SF-max(C) is exactly the same as One-Sided-SF-max except that only a subset
X' C X need to be inserted into S. When a gene can appear at most d times in G, the two
versions of problems are abbreviated as One-Sided-SF-max(d) and One-Sided-SF-max(C, d)
respectively.

We first present a simple reduction from Hamiltonian Path to One-Sided-SF-max.

» Theorem 3. The decision version of One-Sided-SF-max is NP-complete.

Proof. It is obvious that the decision version of One-Sided-SF-max is in NP, so we just
focus on the reduction from Hamiltonian Path. Given a connected graph H = (V, E), with
V ={v1,v9, - ,v,} and €; = (v;,1,0;2), for e; € E, let e, = v; 1v; 2, for i = 1..m. Let deg(v)
be the degree of vertex v (assuming deg(v) > 1 for all v). G and S are constructed as follows.

G = #e Feh# - - Fel, # o FoH#s#T,
and
S = (C1,Ca),

with Cy = (#20?89(01)71#1 . -vigg(v")fl#l#) and Cy = (#™+#3). Here o is a connector
and X = ¢(G) — ¢(S) = V. As there are only three places to insert elements in X back to S,
moreover, the only possible adjacencies are between two vertices forming an edge in H and
between a vertex and a #, it is obvious that to maximize the number of adjacencies we need
to insert the sequence of vertices forming a Hamiltonian Path in between C7, Cs.

We make the following claim: H has a Hamiltonian path iff n» missing genes can be
inserted into S to obtain n 4 1 adjacencies. We only show the “only if* part here as the other
direction is trivial. If n missing genes can be inserted into S to obtain n 4 1 adjacencies, say
they are inserted between Cy and Cy as v{vy - - v;, (where v; = v;), then n — 1 adjacencies
must be v}v},; and the other two are #v; and v, #. Then each v}v’,; corresponds to an

H. Jiang, C. Fan, B. Yang, F. Zhong, D. Zhu, and B. Zhu

vl

el

v3

Figure 2 A simple graph H for the reduction.

edge in H and vjv} - v}, corresponds to a Hamiltonian path in H. It is obvious that this
reduction take O(n?) time. <

We show a simple example for the reduction. The graph H is given in Fig. 2. We have
G = #u103F 01027 V204 #H V2V H VAV H V2V HH 2 A 3 F 1 H 1 F F
S = (#avi#t1vavavashrvsthrvaghrvsthi #), (FHHA A).

After inserting genes in V into S, we obtain

S = ’ FHoV1F1 V202V F1 V3 FF 1 VaFF1 Vs FE 1 FF ‘U1U30204U5 HHAFHHFHH3 |,

It is easy to verify that we have n + 1 = 6 common adjacencies between G and S*: #uv,
V1V3, V3V, UV2V4, V4V5 and 1)5#.

We note that the reduction for the unbounded case SF-MNSA (from X3C in [21, 22]) in
fact also works for One-Sided-SF-max — just making each letter in I a contig. (Of course, this
would make the contigs too artificial.) But it is obvious that the above proof is simpler and
more straightforward. We next present an approximation algorithm for One-sided-SF-max.

3 An Approximation Algorithm for One-Sided-SF-max

Before presenting our algorithm, we make the following definitions.
Let «;,5; be the first and last letter of C;,i = 1..m, respectively. Then (f;, a;11)

constitutes a region where missing genes can inserted between g; and a;y1, for i = 1.m.

Here, we also have two open regions on the two ends of S. We denote them as (—oo, ;) and
(B, +00) respectively.

We define a type-1 substring s of length £ > 1, over X, as one which can be inserted in
(Bi, atir1), for 1 <i < m—1, to generate £+ 1 new common adjacencies. We call (5;, a;11) a
type-1 slot for s. (Throughout this paper, once a type-1 slot is inserted with a corresponding
substring we do not allow the insertion of any other letter.) It is easy to see that we could
have at most m — 1 type-1 slots.

Then, we define a type-2 substring s of length ¢ > 1, over X, as one which can be inserted
in (B, ajy1), for 0 < i < m, to generate £ common adjacencies. (We write Sy = —oo and
Qmy1 = +00. Clearly the two open slots can be type-2 or type-3.) Note that in this case, in
(Bi, atir1), we could have two type-2 slots, i.e., right after 8; (written as S8;0) or right before
a1 (written as oa;y1). By definition, for a fixed (f;, c;y1), it cannot be type-1 and type-2
at the same time. It is easy to see that we could have at most 2(m — 1) + 2 = 2m type-2
slots.

Note that if 8;c;41 is already a common adjacency with respect to G, then it is possible
that s is inserted in the slot to generate |s| + 1 common adjacencies (while destroying the
common adjacency B;;11). In this case, s really increases the total number of common
adjacencies by |s|. Hence, s is considered as type-2. For convenience, we simply say that

15:5

CPM 2016

15:6

Genomic Scaffold Filling Revisited

in this case s generates |s| new common adjacencies. In fact, with a simple example we
could show that such an existing adjacency in a slot must be destroyed to obtain an optimal
solution. Example: G = (1,1,5,4,3,5,3,7,7), S = <’ 1,7,3,5 ‘, 3,1,5,7), the missing gene 4
must be inserted between ’ 1,7,3,5 H 3,1,5,7‘ to obtain the optimal solution.

Finally, we define a type-3 substring s of length ¢ > 1, over X, as one which can be
inserted in the slot (f;, aj+1), for some i, to generate £ — 1 common adjacencies. Note that a
type-3 substring can only form adjacencies internally, hence it does not matter where we

insert s — provided that it does not destroy any existing adjacencies.
We show an example as follows:

G=(1,2,3,4,5,6,1,2,3,4,5,6),

s - ([EEE D,
We have ay = 1,81 =5, ag = 3,8, = 6, ag = 2,83 = 4. Then, X = {1,2,3,4,5,6} are
missing from S. One of the optimal solution is

S = (1,27,6,,5,4,37).

In this case, (5,4, 3) is type-1, 6 and (1,2) are type-2.

We comment that in general a type-j substring, 7 = 1, 2, 3, does not have to be a substring
of G. If a type-j substring is composed of i letters, we call it an i-type-j substring.

Let the number of common adjacencies between G and S be kg, and the number of
newly increased common adjacencies be ki (after all genes in X have been inserted into
S). To approximate kg + ki, it suffices to approximate k;. This is because if we have an
approximation solution A; for &y, i.e., |A1] > ki/p, then ko + |A1]| > (ko + k1)/p (for p > 1).
From now on, we will only discuss the approximation for the newly increased common
adjacencies.

Our Algorithm 1 is a simple greedy one:

1. Scan through all slots, if an 1-string (i.e., a letter) x or a 2-string zy in X can be inserted
in such a slot ¢ to obtain two adjacencies or three adjacencies, insert x or xy into ¢, lock
t. Update X <~ X — {a} or X < X — {x,y} accordingly.

2. For all the remaining (type-2) slots, if a letter € X could be inserted to obtain one
adjacency, then insert x into the slot and update the the slot as follows. If z is inserted
at the slot yo (resp. oy) then update the slot as xo (resp. ox).

3. For all the letters in X after Step 1 (including those already inserted at Step 2), compute
a multigraph @ with the vertices being these letters in X (after Step 1), and if zy is a
potential adjacency in G (ignoring those already matched with the ones computed at Step
1 and 2), then there is an edge between all z € X and all y € X. Compute a maximum
matching M in). For all the pairs xy in M with one end = being a letter inserted at
Step 3, insert y before or after x accordingly. For the remaining pairs in M, insert them
arbitrarily in any unlocked slot in S, provided no existing adjacency is destroyed.

4. Insert the remaining letters in X arbitrarily in any unlocked slot in S, provided no existing
adjacency is destroyed.

Let b;; denote the number of j-type-i substrings in some optimal solution. Then the
optimal solution value

Opt= > (G+Dby+ Y jbo+ > (G—1)bs
j=1l..p j=1l..q j=2..r

for some p,q,r. Let b;j denote the number of j-type-i substrings in the approximation
solution. We show the properties of the greedy algorithm as follows.

H. Jiang, C. Fan, B. Yang, F. Zhong, D. Zhu, and B. Zhu

> Lemma 4. After Step 1, 26}, + 3bj, > 1(2b11 + 3b12).
Proof. By the greedy choice, we have b}, + b]5 > b11 + b12. Then,

2, + 30, > 20, + 201,
>2b11 + 2b12
1
= 5(4()11 =+ 4b12)

> —(2b11 + 3b12). <

DN =

» Lemma 5. After Step 2, by, > boy.

Proof. If a slot ¢ could be either inserted with an i-type-1 substring s; for i = 1,2, then a
1-type-2 substring (letter) = could not be inserted at the slot ¢ in an optimal solution. The
reason is as follows. (1) Suppose that ¢ can be inserted with an 1-type-1 substring s;. If ¢ in
the optimal solution is inserted with x to generate one adjacency, then we could swap x with
s1 to generate at least two adjacencies. This contradicts with the optimality of the assumed
optimal solution. (2) Suppose that ¢ can be inserted with an 2-type-1 substring so. If ¢ in the
optimal solution is inserted with = to generate one adjacency, then, again, we could swap «
with so to generate at least three adjacencies. This implies that there is an optimal solution

where all 2-type-1 substrings are always inserted before any 1-type-2 substring is processed.

Then following the greedy choice at Step 2, we have b}, > boy. |

Hence, we could have the following theorem.
» Theorem 6. One-Sided-SF-max can be approximated within a factor of 2.

Proof. By definition, the optimal solution value O PT satisfies

Opt = (j+Dby+ > jboj+ > (5 —)by,

j=1l..p j=1l..q j=2..r
for some p, q,r. At Step 3, the size of the maximum matching, |M|, satisfies
1) ,)
M= S [D G+ Db+ D dba+ D (- Dby
J=3.p i=2..q j=2.r

The right-hand side of the above inequality represents the optimal internal adjacencies
among the corresponding type-1, type-2, and type-3 substrings in the optimal solution. The
approximation solution value, App, satisfies

App = (2b}; + 3by) + b5y + | M|

1
2 5(21)11 + 3b12) + b/21 + |M| (by Lemma 4)
1
> 5(21711 + 3b12) + bo1 + |M| (by Lemma 5)
1
> —Opt.
= p |

15:7

CPM 2016

15:8

Genomic Scaffold Filling Revisited

4 An FPT Algorithm for One-Sided-SF-max(d)

In this section, we present an FPT algorithm for One-Sided-SF-max(d), parameterized by
the optimal number of common adjacencies k. Whether One-Sided-SF-max is FPT is still
open, but One-Sided-SF-max(d) represents the important practical version where each gene
appears in a genome at most d times. We first review Fized-Parameter Tractable (FPT)
algorithms.

4.1 Definition of FPT Algorithms

Let ¥ be the alphabet, and Q@ C X* be a classic decision problem. A parameterized problem
is a pair (@, k) where x : ¥* — N is a polynomial computable function. An instance of (Q, k)
is a pair (z, k(x)) consisting of a string x € ¥* and an integer x(x).

» Definition 7. Let (Q, k) be a parameterized problem. We say (@,) is Fixed-Parameter
Tractable (FPT) if for each instance (x, xk(x)), there is an algorithm A which decides whether
x € Qin f(k(z)) - |z| time, where f is an arbitrary computable function and ¢ is a constant.

As a convention now, we write O(f(k(z))n®) = O*(f(k)). FPT algorithms are efficient
tools for handling some NP-complete problems, especially when k = x(x) is small in some
practical datasets [16, 18, 29].

4.2 The FPT Algorithm

We now present an FPT algorithm for One-Sided-SF-max(d), parameterized by the optimal
number of common adjacencies k. (Here k includes the existing number of common adjacencies
between S and G, though it is obvious that our algorithm also works by looking at newly
created common adjacencies.) As the running time of the algorithm is high and the result is
mostly for theoretical purpose.

Our idea is as follows. We use the color-coding method to find a potential ¢-type-i
substring for ¢ = 1,2. Then we use the property that each gene appears at most d times
to search for a slot to put this string in a right slot. After this process are repeated for all
potential type-1 and type-2 substrings, type-3 substrings can then be inserted arbitrarily, as
long as they do not destroy the existing adjacencies.

Note that a 1-type-3 substring cannot contribute any common adjacency with respect to
G, so it is useless. All other inserted letters are useful. We first show the following lemma
regarding the number of useful letters in an optimal solution.

» Lemma 8. Let X* C X be the set of genes in X that contribute in generating some new
common adjacencies. If the optimal number of common adjacencies between G and S* is k,
then | X*| < 2k.

Proof. From the previous discussions, a ¢-type-1 substring creates ¢ + 1 common adjacencies,
a l-type-2 substring creates £ common adjacencies, and a f-type-3 substring creates ¢ — 1
common adjacencies. Hence, in the worst case, the kK common adjacencies are created by
2k type-3 substrings, each of length 2 (creating one common adjacency). In this case, these
genes form the set of optimal active genes X*, with | X*| < 2k. <

We then make use of the color-coding method [3, 4], summarized as the following lemma.
For a positive integer n, let [n] = {1,2,...,n}.

H. Jiang, C. Fan, B. Yang, F. Zhong, D. Zhu, and B. Zhu

> Lemma 9 ([3, 4]). Let 1 < ¢ < k. For every n,{ there is a family A, s of polynomial time
computable functions from [n] to [k] such that for every (-element subset Y of [n], there is an
h € Ay ¢ such that h is injective on Y. Moreover, A, ; can be computed in time 20(k) . pO()

The following lemma is similar to that for solving the k-path problem using color-coding
3, 4].

» Lemma 10. Given a fized slot, a p-type-j substring, j = 1,2, can be computed in FPT
time.

Proof. A p-type-j substring is formed by the 2-substrings (or, at most n — 1 possible
adjacencies) in G. We use the color-coding technique. For the ease of description, we focus
on j = 1. We give each 2-substring in G one of the p+ 1 random colors. A p-type-1 substring
for a given slot is determined by p + 1 2-substrings in G. The probability that we could find
such a colorful p-type-1 substring is at least

(p+1)! \2r(p+1) - (l)pﬂ

(p+1)ptt eptl e

where p! ~ /2mp(£)P, following Stirling’s formula. To guarantee that we could obtain a
valid solution, we simply run this algorithm eP*! times. This process can be derandomized
with standard techniques [16, 18, 4]. The total running time of this algorithm is then
bounded by O*(eP*1). For constructing the corresponding p-type-2 and p-type-3 substrings
(over the unused /unmatched 2-substrings in G), the running times are O*(e?) and O*(eP~1)
respectively. Note that type-3 substrings are not relevant to any specific slot. |

» Theorem 11. One-Sided-SF-max(d) is FPT.

Proof. The general idea is a combination of bounded-degree search and color-coding. Fol-
lowing Lemma 9 and 10, the algorithm generates a proper p-type-j substring s, where
p<k—1,7=10rp<k,j=2 for a potential slot (5;,a;+1). As §; and ;41 can each
appear d times, we could have 2d possible slots to put s. We then delete the letters in s
from X and repeat the process until no type-1 or type-2 substring can be inserted in S. If
the number of common adjacencies is at least k, we stop and insert the remaining letters in
X arbitrarily, not to destroy any existing adjacency. If the number of common adjacencies
is still less than k, we use Lemma 10 to generate some p-type-3 substring and insert it
arbitrarily into S (not to destroy any existing adjacency). By Lemma 8, the search stops
when a total of at most 2k useful letters have been inserted. (The remaining letters can be
inserted arbitrarily, provided that they do not destroy any existing common adjacency). We
can then check and report a solution with at least kK common adjacencies, or report that such
a solution does not exist.
The total running time of this algorithm is

O*((2d - e*)F) = O* (27 d"e?F).
Hence we have the theorem. <

In the next section, we discuss the One-sided Subset Scaffold Filling (One-sided-SF-max(C))
problem.

15:9

CPM 2016

15:10

Genomic Scaffold Filling Revisited

5 Results for One-Sided-SF-max(C)

In this section, we present some results for One-Sided-SF-max(C). We prove that if the
parameter is the number of genes inserted, then the problem is W[1]-hard. This implies
that the problem cannot be solved with an FPT algorithm, unless FPT=W][1] [16, 18, 29].
We then present a simple FPT-approximation for the problem, with a factor of 2, for
One-Sided-SF-max(C, d).

5.1 W[1]-Hardness Result

The main theorem is stated as follows.

» Theorem 12. One-Sided-SF-max(C) parameterized by the number of genes inserted is
W/[1]-hard.

Proof. Throughout this proof, assume that k& < (n — 1)/2. We show that Independent
Set can be reduced to One-Sided-SF-max(C) via a linear FPT reduction. Given a graph
Q = (V, E), if the maximum vertex degree is A, then for each vertex u; € V with degree
deg(u;) < A, we create A — deg(u;) new nodes and connect them only to u;. In the resulting
graph Q' = (V’, E'), all the original vertices in V have degree A. It can be easily seen that
QQ has an independent set of size k iff k vertices in Q' can be selected to cover exactly kA
edges. This part of the proof is adapted from [20].

Now we arrange the graph Q' = (V/, E’) as a genome G as follows. WLOG, still assume
that |V’'| = n,|E’| = m throughout this proof. For each v; € V', construct E; as the list
of edges incident to v; (ordered by their indices). Then we use separators #’s and #;, for
j =1..5. The set of genes are {e;|i = 1.m} U {#;|j = 1..5} U {#}. Finally we arrange G as
follows.

G = #™ o #1#tott st o #attsHott o #sEr1#sFEotts - #5En#s.

Note that o is used as a connector, each e; (i = 1..m),#; (j = 1..4) appears twice in G, #
appears m+1 times and #5 appears n+1 times in GG. S is constructed such that it is composed
of exactly k + 1 contigs C1, ..., Cry1, each C; starts and ends with #5. For C, between the
two #5’s, we arrange all the genes #’s and e;’s such that Cy = #5#eiH#ex# - - - Hem#HHs.
We construct Cy = #5#s#H1F4#2 0 g72k71 o #oFt 417 375. The remaining contigs are
constructed as C; = #5#5 fori =3,....k + 1.

It is clear that in S we have missed a copy of e; for each ¢« = 1..m. Due to the construction
of G, e; cannot form any common adjacency with # or #; for j = 1..4, the only possible
common adjacencies are from e; and e;’s (i.e., in some sequences of E,’s, each of length A)
and between e; and #5’s. To maximize the common adjacencies obtained, these missing
genes can only be inserted in k slots, after C; and before C;;1 for i = 1..k. Then, it is safe
for us to claim, with some easy details omitted, that Q has an independent set of size k iff
kA missing genes can be inserted into the k slots in S to obtain a maximum of k(A + 1)
adjacencies with respect to the reference genome G. This is obviously an FPT-reduction. <«

With the above W[1]-hardness result, it is easy to obtain the following corollary (part of
it is similar to the corollary in [27]).

» Corollary 13. The optimization version of One-Sided-SF-max(C) does not admit an
EPTAS (resp. FPTAS) unless FPT=W/[1].

H. Jiang, C. Fan, B. Yang, F. Zhong, D. Zhu, and B. Zhu

Proof. Assume that there is an EPTAS (resp. FPTAS) which runs in time O((%)O(%)nc) (resp.

O((%)**n2)), for some constant ¢ (resp. ¢; and cz); moreover, it achieves an approximation
factor of 1 + ¢, for any € > 0. Then, if k* is the optimal solution value and APP is the
approximation solution value, we have

k*
APP > .
1+e€
Setting € = 52—, we have APP > = = k* — 1, which further implies APP = k*. In

this case, the running time of the algorithm becomes O((k*)?*)ne) (resp. O((k*)O(c1)nc2));
i.e., the problem would admit an FPT algorithm. A contradiction to Theorem 12, unless
FPT=W]1]. <

5.2 FPT-Approximation for One-Sided-SF-max(C,d)

For W[1]-hard problems, a natural way to handle them is to use FPT-approximations. Here we
briefly review the Fixed-Parameter Tractable Approximation Algorithm (FPT-approximation
for short), which was first proposed in 2006 [10, 17, 8] (but the development has been slow.)

» Definition 14. A Fixed-Parameter Tractable p-approximation for a minimization (resp.

maximization) parameterized problem (Q, k) is an FPT algorithm which, given any instance
(z,k) € (Q, k), returns a solution of cost at most p(k) - k (resp. at least k/p(k)) if a solution
of cost at most (resp. at least) k exists.

Our FPT-approximation algorithm for One-Sided-SF-max(C, d), parameterized by the
number of inserted genes, is as follows.

1. As in Theorem 11, use bounded-degree search and color-coding to insert £ (0 < ¢ < k)
type-1 and type-2 substrings into the ¢ slots, which can be done in FPT time.

2. If these ¢ substrings have a total length at least k, then the problem can be solved
optimally in FPT time.

3. If these £ substrings have a total length k; with ky < k, then we insert enough type-3
substrings (of a total length k — k1) as follows.

4. We use a maximum matching method to insert k — k; letters. For all the remaining genes
to be inserted into G, form a graph D such that there is an edge connecting two such
genes if they could potentially form a common adjacency with respect to G. Then simply
compute a maximum matching in D and insert all the pairs in the matching arbitrarily
into D (provided that they do not destroy any existing common adjacency).

» Theorem 15. One-Sided-SF-max(C,d) parameterized by the number of genes inserted
admits a factor-2 FPT-approximation.

Proof. The analysis of the first two steps of the FPT algorithm is the same as in Theorem
11, hence omitted.
Let ki letters inserted at Step 1 generate k] common adjacencies. The k — ki genes

forming type-3 substrings could generate at most ks < k — k1 — 1 common adjacencies.

By the maximum matching algorithm at step 4, we could generate at least ks /2 common
adjacencies. (For any connected component in D, if it contains a path of length k3 < ko then
the maximum matching algorithm could return at least k3/2 common adjacencies.) Then

OPT:]{JT—F]CQ,

15:11

CPM 2016

15:12

Genomic Scaffold Filling Revisited

and

PT
APP > ki + ko /2 > OT.

The whole algorithm obviously takes FPT time. |

6 Concluding Remarks

In this paper, we revisit the genomic scaffold filling problem by considering each scaffold
as a sequence of contigs (instead of as an incomplete sequence as in most of the previous
research). We obtain a list of algorithmic results, some of which could eventually lead to the
practical processing of genomic datasets. However, as in [7], the parameter k (i.e., number of
common adjacencies) in reality should be relatively large, so the FPT algorithms we obtained
here are only theoretically meaningful. Further research is needed along this line. On the
other hand, theoretically, it is interesting to decide whether One-Sided-SF-max is FPT and
whether One-Sided-SF-max(C) admits an FPT-approximation.

Acknowledgments This research is partially supported by the Open Fund of Top Key
Discipline of Computer Software and Theory in Zhejiang Provincial Colleges at Zhejiang
Normal University. We also thank anonymous reviewers for several useful comments.

—— References

1 S. Altschul, W. Gish, W. Miller, E. Myers and D. Lipman. Basic local alignment search
tool. J. Molecular Biology, 215(3):403-410, 1990.

2 S. Angibaud, G. Fertin, I. Rusu, A. Thevenin and S. Vialette. On the approximability of
comparing genomes with duplicates. J. Graph Algorithms and Applications, 13(1):19-53,
2009.

3 N. Alon, R. Yuster and U. Zwick. Color-coding. J. ACM, 42(4):844-856, 1995.

4 N. Alon, R. Yuster and U. Zwick. Finding and counting given length cycles. Algorithmica,
17(3):209-218, 1997.

5 G. Blin, G. Fertin, F. Sikora and S. Vialette. The exemplar breakpoint distance for non-
trivial genomes cannot be approximated. Proc. 3nd Workshop on Algorithm and Computa-
tion (WALCOM’2009), LNCS 5431, pp. 357-368, 2009.

6 H. Bodlaender, R. Downey, M. Fellows and D. Hermelin. On problems without polynomial
kernels. J. Comput. Syst. Sci., 75(8):423-434, 2009.

7 L. Bulteau, A.P. Carrieri and R. Dondi. Fixed-parameter algorithms for scaffold filling.
Theoretical Computer Science, 568: 72-83, 2015.

8 L. Cai and X. Huang. Fixed-parameter approximation: conceptual framework and approx-
imability results. Algorithmica, 57(2):398-412, 2010.

9 P.S. Chain, D.V. Gratham, R.S. Fulton, et al. Genome project standards in a new era of
sequencing. Science, 326:236-237, 2009.

10 Y. Chen, M. Grohe and M. Grueber. On parameterized approximability. Proc. 2nd Intl.
Workshop on Parameterized and Ezact Computation (IWPEC’06), LNCS 4169, pp. 109-
120, 2006.

11 Z. Chen, B. Fu and B. Zhu. The approximability of the exemplar breakpoint distance
problem. Proc. 2nd Intl. Conf. on Algorithmic Aspects in Information and Management
(AAIM’06), LNCS 4041, pp. 291-302, 2006.

12 Z. Chen, B. Fu, B. Yang, J. Xu, Z. Zhao, and B. Zhu. Non-breaking similarity of genomes
with gene repetitions. In Proceedings of the 18th Annual Symposium on Combinatorial
Pattern Matching (CPM’07), LNCS 4580, pp. 119-130, 2007.

H. Jiang, C. Fan, B. Yang, F. Zhong, D. Zhu, and B. Zhu

13

14

15

16
17

18
19

20

21

22

23

24

25

26

27

28

29
30

31

Z. Chen, B. Fu, R. Fowler and B. Zhu. On the inapproximability of the exemplar conserved
interval distance problem of genomes. J. Combinatorial Optimization, 15(2):201-221, 2008.
Z. Chen, B. Fu, R. Goebel, G. Lin, W. Tong, J. Xu, B. Yang, Z. Zhao and B. Zhu. On
the approximability of the exemplar adjacency number problem of genomes with gene
repetitions. Theoretical Computer Science, 550:59-65, 2014.

G. Cormode and S. Muthukrishnan. The string edit distance matching problem with moves.
Proc. 13th ACM-SIAM Symp. on Discrete Algorithms (SODA’02), pp. 667-676, 2002.

R. Downey and M. Fellows. Parameterized Complexity, Springer-Verlag. 1999.

R. Downey, M. Fellows, C. McCartin and F. Rosamond. Parameterized approximation of
dominating set problems. Info. Process. Lett., 109(1): 68-70, 2008.

J. Flum and M. Grohe. Parameterized Complezity Theory, Springer-Verlag. 2006.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman. 1979.

J. Guo, R. Niedermeier and S. Wernicke. Parameterized complexity of vertex cover variants.
Theory Comput. Syst., 41(3):501-520. 2007.

H. Jiang, F. Zhong and B. Zhu. Filling scaffolds with gene repetitions: maximizing the
number of adjacencies. Proc. 22nd Annual Combinatorial Pattern Matching Symposium
(CPM’11), LNCS 6661, pp. 55-64, Palermo, Italy, June 27-29, 2011.

H. Jiang, C. Zheng, D. Sankoff, and B. Zhu. Scaffold filling under the breakpoint and
related distances. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
9(4):1220-1229, July/August, 2012.

H. Jiang, J. Ma, J. Luan and D. Zhu. Approximation and nonapproximability for the
one-sided scaffold filling problem. Proc. 21st Intl. Ann. Comput. and Combinatorics (CO-
COON’15), LNCS 9198, pp. 251-263, 2015,

M. Jiang. The zero exemplar distance problem. Proc. of the 2010 International RECOMB-
CG Workshop (RECOMB-CG’10), LNBI 6398, pp. 74-82, 2010.

N. Liu, H. Jiang, D. Zhu, and B. Zhu. An improved approximation algorithm for scaffold
filling to maximize the common adjacencies. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 10(4):905-913, July/August, 2013.

N. Liu, D. Zhu, H. Jiang and B. Zhu. A 1.5-approximation algorithm for two-sided scaffold
filling. Algorithmica, 74(1):91-116, 2016.

D. Marx. Parameterized complexity and approximation algorithms. Computer Journal,
51(1):60-78, 2008.

A. Muhoz, C. Zheng, Q. Zhu, V. Albert, S. Rounsley and D. Sankoff. Scaffold filling, contig
fusion and gene order comparison. BMC' Bioinformatics, 11:304, 2010.

R. Niedermeier. Invitation to Fized-Parameter Algorithms, Oxford Univ. Press. 2006.

S. Yancopoulos, O. Attie and R. Friedberg. Efficient sorting of genomic permutations by
translocation, inversion and block interchange. Bioinformatics, 21:3340-3346, 2005.

B. Zhu. A retrospective on genomic preprocessing for comparative genomics. In Chauve et
al., eds., Models and Algorithms for Genome Evolution, pages 183-206. Springer, 2013.

15:13

