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Preface

The objective of the Annual Symposium on Combinatorial Pattern Matching is to provide an
international forum for research in combinatorial pattern matching and related applications.
It addresses issues of searching and matching strings and more complicated patterns such as
trees, regular expressions, graphs, point sets, and arrays. The goal is to derive combinatorial
properties of such structures and to exploit these properties in order to achieve a superior
performance for the corresponding computational problems. The meeting also deals with
problems in bioinformatics and computational biology, coding and data compression, com-
binatorics on words, data mining, information retrieval, natural language processing, pattern
discovery, string algorithms, string processing in databases, symbolic computing, and text
searching.

This volume contains the papers presented at the 27th Annual Symposium on Combinat-
orial Pattern Matching (CPM 2016) held during June 27-29, 2016, in Tel Aviv, Israel

The conference program included 29 contributed papers and three invited talks by
Gregory Kucherov, University Paris-Est Marne-la-Vallée, France, on “Stringology in action:
bioinformatics examples”, Moni Naor, Weizmann Institute, Israel, on “How to share a secret,
infinitely”, and Yoram Louzon, Bar-Ilan University, Israel, on “Node classification based on
local and global sub-graph patterns”.

The contributed papers were selected out of 52 submissions, corresponding to an ac-
ceptance ratio of 55.8%. Each submission received at least three reviews. We thank the
members of the Program Committee and all the additional external reviewers for their hard
and invaluable work that resulted in an excellent scientific program.

The Annual Symposium on Combinatorial Pattern Matching started in 1990, and has
since taken place every year. Previous CPM meetings were held in Paris, London (UK),
Tucson, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus, Piscataway, Warwick, Montreal,
Jerusalem, Fukuoka, Morelia, Istanbul, Jeju Island, Barcelona, London (Ontario, Canada),
Pisa, Lille, New York, Palermo, Helsinki, Bad Herrenalb, Moscow, and Ischia. From the 3rd
to the 26th meeting, proceedings of all meetings have been published in the LNCS series,
as volumes 644, 684, 807, 937, 1075, 1264, 1448, 1645, 1848, 2089, 2373, 2676, 3109, 3537,
4009, 4580, 5029, 5577, 6129, 6661, 7354, 7922, 8486, and 9133, respectively. From the curent
meeting, the proceedings will appear in the LIPIcs (Leibniz International Proceedings in
Informatics) series.

Selected papers from the 1st meeting appeared in vol. 92 of Theoretical Computer Science,
from the 11th meeting in vol. 2 of the Journal of Discrete Algorithms, from the 12th meeting
in vol. 146 of Discrete Applied Mathematics, from the 14th meeting in vol. 3 of the Journal
of Discrete Algorithms, from the 15th meeting in vol. 368 of Theoretical Computer Science,
from the 16th meeting in vol. 5 of the Journal of Discrete Algorithms, from the 19th meeting
in vol. 410 of Theoretical Computer Science, from the 20th meeting in vol. 9 of the Journal
of Discrete Algorithms, from the 21st meeting in vol. 213 of Information and Computation,
from the 22nd meeting in vol. 483 of Theoretical Computer Science, and from the 23rd
meeting in vol. 25 of the Journal of Discrete Algorithms. Selected papers from this meeting
will appear in a special issue of Algorithmica.

The whole submission and review process was carried out with the help of the EasyChair
conference system. We thank the CPM Steering Committee for supporting Tel Aviv as the
site for CPM 2016, and for their advice and help in different issues. We thank Shay Golan,
Avivit Levy, Noa Lewenstein and Ely Porat for the local arrangements. The conference was
27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein
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Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
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sponsored by the I-CORE Program of the planning and budgeting committee and The Israel
Science Foundation (grant number 4/11), Shenkar College of Engineering and Design, and
Bar Ilan University. We thank them for their financial support.



List of Authors

Amit, Mika (20)

Arimura, Hiroki (22)

Baier, Uwe (23)

Bannai, Hideo (1, 27)

Barbay, Jérémy (29)

Bartha, Dénes (10)

Barton, Carl (4)

Bille, Philip (20)

Boria, Nicolas (11)

Burcsi, Péter (10)

Cabodi, Gianpiero (11)

Camurati, Paolo (11)

Carmel, Amir (17)

Chang, Yi-Jun (13)

Cording, Patrick Hagge (20)

Deng, Yun (12)

El-Mabrouk, Nadia (14)

Fan, Chenglin (15)

Fernández-Baca, David (12)

Fertin, Guillaume (7)

Fischer, Johannes (26)

Ganguly, Arnab (2)

Gawrychowski, Paweł (5, 18, 25)

Geizhals, Sara H (19)

Gørtz, Inge Li (20)

Hon, Wing-Kai (2)

I, Tomohiro (1)

Iliopoulos, Costas (8)

Inenaga, Shunsuke (1, 22 ,27)

Jiang, Haitao (15)

Jo, Seungbum (3)

Kociumaka, Tomasz (4, 5, 28)

Komusiewicz, Christian (7)

Kopelowitz, Tsvi (6, 24)

Krauthgamer, Robert (24)

Kurpicz, Florian (26)

Köppl, Dominik (26)

Lafond, Manuel (14)

Landau, Gad M. (25)

Lingala, Rahul (3)

Lipták, Zsuzsanna (10)

Manea, Florin (27)

Matsuoka, Yoshiaki (27)

Merkurev, Oleg (18)

Mozes, Shay (25)

Nicaud, Cyril (9)

Noutahi, Emmanuel (14)

Palena, Marco (11)

Pasini, Paolo (11)

Pissis, Solon (4)

Porat, Ely (6)

Puglisi, Simon (1)

Quer, Stefano (11)

Radoszewski, Jakub (4, 8)

Rozen, Yaron (6)

Rytter, Wojciech (5)

Sadakane, Kunihiko (2)

Satti, Srinivasa Rao (3)

Shah, Rahul (2)

Shamir, Ron (16)

Shur, Arseny M. (18)

Sokol, Dina (19)
27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/


0:x Authors

Starikovskaya, Tatiana (21)

Takagi, Takuya (22)

Takeda, Masayuki (1, 27)

Tanimura, Yuka (1)

Thankachan, Sharma V. (2)

Tsur, Dekel (17)

Uznański, Przemysław (18)

Vildhøj, Hjalte Wedel (20)

Waleń, Tomasz (5)

Weimann, Oren (25)

Yang, Boting (15)

Yang, Yilin (2)

Zehavi, Meirav (16)

Zeira, Ron (16)

Zhong, Farong (15)

Zhu, Binhai (15)

Zhu, Daming (15)

Ziv-Ukelson, Michal (17)



Deterministic Sub-Linear Space LCE Data
Structures With Efficient Construction∗

Yuka Tanimura1, Tomohiro I2, Hideo Bannai3, Shunsuke Inenaga4,
Simon J. Puglisi5, and Masayuki Takeda6

1 Department of Informatics, Kyushu University, Japan
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2 Kyushu Institute of Technology, Japan
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5 Department of Computer Science, University of Helsinki, Finland
puglisi@cs.helsinki.fi

6 Department of Informatics, Kyushu University, Japan
takeda@inf.kyushu-u.ac.jp

Abstract
Given a string S of n symbols, a longest common extension query LCE(i, j) asks for the length
of the longest common prefix of the ith and jth suffixes of S. LCE queries have several import-
ant applications in string processing, perhaps most notably to suffix sorting. Recently, Bille et
al. (J. Discrete Algorithms 25:42–50, 2014, Proc. CPM 2015:65–76) described several data struc-
tures for answering LCE queries that offers a trade-off between data structure size and query time.
In particular, for a parameter 1 ≤ τ ≤ n, their best deterministic solution is a data structure of
size O(nτ ) which allows LCE queries to be answered in O(τ) time. However, the construction time
for all deterministic versions of their data structure is quadratic in n. In this paper, we propose a
deterministic solution that achieves a similar space-time trade-off of O(τ min{log τ, log n

τ }) query
time using O(nτ ) space, but we significantly improve the construction time to O(nτ).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases longest common extension, longest common prefix, sparse suffix array

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.1

1 Introduction

Given a string S of n symbols, a longest common extension query LCE(i, j) asks for the
length of the longest common prefix of the ith and jth suffixes of S.

The ability to efficiently answer LCE queries allows optimal solutions to many string
processing problems. Gusfield’s book [4], for example, lists several applications of LCEs to
basic pattern matching and discovery problems, including: pattern matching with wildcards,
mismatches and errors; the detection of various types of palindromes (maximal, complimented,
separated, approximate); and the detection of repetitions and approximate repetitions.

∗ HB, SI, MT were supported by JSPS KAKENHI Grant Numbers 25280086, 26280003, 25240003.

© Yuka Tanimura, Tomohiro I, Hideo Bannai, Shunsuke Inenaga, Simon J. Puglisi,
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1:2 Deterministic Sub-Linear Space LCE Data Structures With Efficient Construction

Table 1 Deterministic solutions to LCE.

Data Structure Preprocessing Trade-off range Reference
Space Query Space Time

1 n 1 1 - naïve computation
n 1 n n - suffix array + RMQ
n
τ

τ2 n
τ

n2

τ
1 ≤ τ ≤

√
n [3]

n
τ

τ log2 n
τ

n
τ

n2 1 ≤ τ ≤ n [2], Section 2
n
τ

τ n
τ

n2+ε 1 ≤ τ ≤ n [2], Section 4
n
τ

τ log2 n
τ

n
τ

nτ + n log n
τ

1 ≤ τ ≤ n This work, Theorem 9
n
τ

τ log τ n
τ

nτ 1 ≤ τ ≤ n
logn This work, Theorem 10

n
τ

τ min{log τ, log n
τ
} n

τ
nτ 1 ≤ τ ≤ n This work, Corollary 12

Lempel-Ziv parsing [6] and suffix sorting [7, 5] are two more fundamental string processing
problems to which LCEs are key.

Without preprocessing, answering an arbitrary query LCE(i, j) requires O(n) time: we
simply compare the suffixes starting at positions i and j character by character until we find
a mismatch. To answer queries faster we could build the suffix tree and preprocess it for
lowest-common-ancestor queries. This well-known solution answers queries in O(1) time and
the data structure is of O(n) size and takes O(n) time to construct.

In recent years, motivated by scenarios where O(n) space is prohibitive, several authors
have sought data structures that achieve a trade-off between data structure size and query
time [13, 3, 2]. The best trade-off to date is due to Bille et al. [2], where they describe a data
structure of size O(n/τ) which allow LCE queries to be answered in O(τ) time.

However, as described in [2], their deterministic data structure requires O(n2) time to
construct if only O(n/τ) working space is allowed. This is a major drawback, because it does
not allow the space-query time trade-off to be passed on to applications—indeed, construction
of the data structure would become a time bottleneck in all the applications listed above.
We note that Bille et al. [2] also proposed randomized solutions which achieve the same
space-query time trade-off with subquadratic preprocessing time. In this paper, we focus on
determinstic solutions.

The main contributions of this article are as follows:

1. We describe a new data structure for LCEs that has size O(nτ ), query time O(τ log τ),
and, critically, can be constructed in O(nτ) time.

2. We show how to combine the new data structure with one of Bille et al. to derive a
structure that has O(τ min{log τ, log n

τ }) query time and the same space and construction
bounds as the new structure. As a side result, we also show how this particular structure
of Bille et al. can be constructed efficiently.

Table 1 summarizes our results and previous work on the deterministic version of the problem.
In the next section we lay down notation and some basic algorithmic and data structural

tools. Then, in Section 3, we introduce our new LCE data structures, beginning with a a
slightly modified version of one of Bille et al.’s data structures, followed by the new and
combined data structures. Section 4 deals with efficient construction. We finish, in Section 5,
by noting that our new structures lead directly to improved (deterministic) bounds for the
sparse suffix sorting problem.
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2 Preliminaries

Let Σ = {1, . . . , σ} denote the alphabet, and Σ∗ the set of strings. If w = xyz for some
strings w, x, y, z, then x, y, and z are respectively called a prefix, substring, and suffix of w.
For any string w, let |w| denote the length of w, and for any 0 ≤ i < |w|, let w[i] denote the
ith character of w, i.e., w = w[0] · · ·w[|w| − 1]. For convenience, let w[i] = 0 when i ≥ |w|.
For any 0 ≤ i ≤ j, let w[i..j] = w[i] · · ·w[j], and for any 0 ≤ i < |w|, let w[i..] = w[i..|w| − 1].
We denote x ≺ y if a string x is lexicographically smaller than a string y.

For any string w, let lcpw(i, j) denote the length of the longest common prefix of w[i..]
and w[j..]. We will write lcp(i, j) when w is clear from the context. Since lcpw(i, i) = |w| − i,
we will only consider the case when i 6= j. Note that answering an LCE query LCE(i, j) is
equivalent to computing lcpw(i, j).

For any integers i ≤ j, let [i..j] denote the set of integers from i to j (including i and j),
and for 0 ≤ p < τ , let [i..j]τp = {k | k ∈ [i..j], k mod τ = p}.

For any string w of length n and 0 ≤ p < τ , let ŵτ,p denote a string of length d(|w| − p)/τe
over the alphabet {1, . . . , στ} such that ŵτ,p[i] = w[p + τi..p + τ(i + 1) − 1] for any i ≥ 0.
We call ŵτ,p the meta-string of w wrt. sampling rate τ and offset p, and each character of
ŵτ,p is called a meta-character.

In the rest of the paper, we assume a polynomially bounded integer alphabet, i.e., for
some constant c ≥ 0, σ = O(nc) for any input string w of length n.

I Definition 1 ([12]). The suffix array SAw of a string w of length n is an array of size n
containing a permutation of [0..n− 1] that represents the lexicographic order of the suffixes
of w, i.e., w[SAw[0]..] ≺ · · · ≺ w[SAw[n− 1]..]. The inverse suffix array ISAw is an array of
size n such that ISAw[SAw[i]] = i for all 0 ≤ i < n. The LCP array LCPw of a string w of
length n is an array of size n such that LCPw[0] = 0 and LCPw[i] = lcpw(SAw[i− 1], SAw[i])
for 0 < i < n.

I Lemma 2 ([9, 10, 11, 7]). For any string w of length n, the arrays SAw, ISAw, LCPw can
be computed in O(n) time and space.

For any array A and 0 ≤ i ≤ j < |A|, let rmqA(i, j) denote a Range Minimum Query
(RMQ), i.e., rmqA(i, j) = arg mink∈[i..j]{A[k]}. It is well known that A can be preprocessed in
linear time and space so that rmqA(i, j), for any 0 ≤ i ≤ j < |A|, can be answered in constant
time [1]. Since lcpw(i, j) = LCPw[rmqLCPw(i′ + 1, j′)] where i′ = min{ISAw(i), ISAw(j)} and
j′ = max{ISAw(i), ISAw(j)}, it follows that a string of length n can be preprocessed in O(n)
time and space so that for any 0 ≤ i, j < n, lcpw(i, j) can be computed in O(1) time.

Our algorithm relies on sparse suffix arrays. For a string w of length n and any set P ⊆
[0..n−1] of positions, let SSAP [0..|P |−1] be an array consisting of entries of SA that are in P ,
i.e., for any 0 ≤ i < |P |, SSAP [i] ∈ P , and w[SSAP [0]..] ≺ · · · ≺ w[SSAP [|P |−1]..]. The sparse
LCP array SLCPP [0..|P | − 1] is defined analogously, SLCPP [i] = lcpw(SSAP [i− 1], SSAP [i]).

Let 1 ≤ τ ≤ n be a parameter called the sampling rate. When, P = [0..n− 1]τp , for some
0 ≤ p < τ ≤ n, SSAP is called the evenly space sparse suffix array with sampling rate τ and
offset p. Given an evenly spaced sparse suffix array SSAP , we can compute in O(nτ ) time,
a representation of the sparse inverse suffix array ISAP as an array X of size O(nτ ) where
X[bSSAP [i]/τc] = i, i.e., ISAP [i] = X[bi/τc] for all i ∈ P . By directly applying the algorithm
of Kasai et al. [9], SLCPP can be computed from SSAP and (the representation of) ISAP in
O(n) time and O(nτ ) space.
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3 Data structure and query computation

Our algorithms are based on the same observation as used in [2].

I Observation 3 ([2]). For any positions i, j, k ∈ [0..n − 1] if lcp(j, k) ≥ lcp(i, j) then,
lcp(i, j) = min{lcp(i, k), lcp(j, k)}.

The observation allows us to reduce the computation of lcp values between a pair of
positions, to the computation of lcp values between another pair of values, both from a
specific subset of positions. For each specific position i, called a sampled position, and for
each such subset S, a position π(i, S) = arg maxi′∈S{lcp(i, i′)} is precomputed. The idea is
that the size of S gets smaller after each reduction, therefore giving a bound on the query
time.

I Corollary 4. For any pair of positions i ∈ S ⊆ [0..n − 1] and j ∈ [0..n − 1], lcp(i, j) =
min{lcp(i, π(j, S)), lcp(j, π(j, S))}.

3.1 Bille et al.’s data structure
We first introduce a slightly modified version of the deterministic data structure by Bille et
al. [2] that uses O(nτ ) space and allows queries in O(τ log2 n

τ ) time, where τ is a parameter
in the range 1 ≤ τ ≤ n. We note that the modifications do not affect the asymptotic
complexities.

Let t = τ
⌈
log n

τ

⌉
, p = (n− 1) mod t and let P = [0..n− 1]tp be the set of positions called

sampled positions. The data structure of [2] to compute lcp(i, j) for any 0 ≤ i < j < n

consists of two main parts, one for when j − i ≥ t, and the other for when j − i < t. Since
we will use the latter part as is, we will only describe the former. The query time, space,
and preprocessing time of the latter part are respectively, O(τ log n

τ ), O(nτ ), and O(n) (see
Section 2 of [2]).

Consider a full binary tree where the root corresponds to the interval [0..n− 1], and for
any node, the left and right children split their parent interval almost evenly, but assuring
that the right-most position in the left child is a sampled position. Thus, there will be dn/te
leaves corresponding to intervals of size t (except perhaps for the leftmost interval which may
be smaller), and the height of the tree is O(log n

t ). For any internal node v in the tree, let Iv
denote its corresponding interval, and `(v), r(v) respectively the left and right children of v.
For all sampled positions i ∈ Ir(v) ∩ P, a position π(i, I`(v)) = arg maxi′∈I`(v){lcp(i, i′)} and
a value L(i, I`(v)) = lcp(i, π(i, I`(v))) are computed and stored. The size of the data structure
is therefore O(nt log n

t ) = O(nτ ).
Assume w.l.o.g. that j > i. A query for lcp(i, j) with j − i ≥ t is computed as follows.

First, compare up to δ < t characters of w[i..] and w[j..] until we encounter a mismatch,
in which case we obtain an answer, or j + δ is a sampled position. Let Iv be the interval
such that i + δ ∈ I`(v) and j + δ ∈ Ir(v). From the preprocessing, we obtain a position
π(j + δ, I`(v)) ∈ I`(v), which, from Corollary 4, satisfies:

lcp(i, j) = δ + lcp(i+ δ, j + δ)
= δ + min{lcp(i+ δ, π(j + δ, I`(v))), lcp(j + δ, π(j + δ, I`(v)))}
= δ + min{lcp(i+ δ, π(j + δ, I`(v))), L(j + δ, I`(v))}

Thus, the problem can be reduced to computing lcp(i + δ, π(j + δ, I`(v))), where both
i + δ, π(j + δ, I`(v)) ∈ I`(v), and we apply the algorithm recursively. Note that if j ∈ Ir(v)
we have, from the definition of the intervals, that j + δ ∈ Ir(v), so each recursion takes us
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Figure 1 Sets Sk, with k = 1, 2, 3, for the sampled positions specified by black dots.

further down the tree. When an interval corresponding to a leaf node is reached, we have
that j − i < t and use the other data structure (for a description of which we refer the
reader to [2]). Since we compare up to t characters at each level, the total query time is
O(t log n

t ) = O(τ log2 n
τ ).

3.2 New data structure
Let t = τ dlog τe, p = (n− 1) mod t, and let P = [0..n− 1]tp be the set of sampled positions.
Instead of considering a hierarchy of intervals of positions, we classify the positions according
to their distance to the closest sampled position to their right. Define Sk = {i | (i+d) mod t =
p, d ∈ ([2k−1..2k − 1] ∩ [1..t− 1])} for k = 1, . . . , dlog te (see also Figure 1).

The preprocessing computes and stores for each sampled position i ∈ P and each Sk,
a position π(i, Sk) = arg maxi′∈Sk{lcp(i, i′)}, and a value L(i, Sk) = lcp(i, π(i, Sk)). Also,
SLCPP is computed and preprocessed for range minimum queries so that for any i, j ∈ P,
lcp(i, j) can be computed in constant time. Thus, the space required for the data structure
is O(nt log t) = O(nτ ).

A value lcp(i, j) is computed as follows. First, compare up to δ characters of w[i..] and
w[j..] until we encounter a mismatch, in which case we obtain an answer, or, either i+δ or j+δ
is a sampled position. If both i+δ and j+δ are sampled positions, lcp(i, j) = δ+lcp(i+δ, j+δ)
can be answered in constant time. Assume w.l.o.g. that only j + δ is a sampled position,
and let k be such that i+ δ ∈ Sk. Then, from Corollary 4 and the preprocessing, we have

lcp(i, j) = δ + lcp(i+ δ, j + δ)
= δ + min{lcp(i+ δ, π(j + δ, Sk)), lcp(j + δ, π(j + δ, Sk))}
= δ + min{lcp(i+ δ, π(j + δ, Sk)), L(j + δ, Sk)}

and the problem has been reduced to computing lcp(i+ δ, π(j+ δ, Sk)) where both i+ δ, π(j+
δ, Sk) ∈ Sk, and the processes are repeated. Notice that in the next step, at least 2k−1

characters are compared until one of the two positions becomes a sampled position. This
implies that the remaining distance to the closest sampled position of the other position will
be at most 2k−1 − 1, and thus the position will be in Sk′ for some k′ ≤ k − 1. Therefore,
the process will only be repeated at most dlog te times. Because the number of characters
compared in each step is bounded by t and is at least halved every step, the total number of
character comparisons, and thus the query time, is O(t) = O(τ log τ).

3.3 Combining the structures
We can combine the structures described in Sections 3.1 and 3.2, to achieve O(τ log n

τ ) query
time using O(nτ ) space for 1 ≤ τ ≤ n. Furthermore, we can achieve O(τ min{log τ, log n

τ })
query time by choosing the better structure depending on τ . More precisely, when τ ≤ n

τ

(i.e., τ ≤
√
n), we simply use the structure of Section 3.2, and when τ ≥ n

τ (i.e., τ ≥
√
n),

we use the combined structure. Thus, we assume below that τ ≥ n
τ .
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Let t = τ
⌈
log n

τ

⌉
, p = (n − 1) mod t and let P = [0..n − 1]tp be the set of positions

called sampled positions. We consider both the structures described in Section 3.1 and
Section 3.2, with the following modifications. Let dt = 2dlog te−dlog n

t e = O( t
2

n ). For Bille
et al.’s data structure, we make two modifications. First, for each node Iv and sampled
position i ∈ Ir(v) ∩ P, we only consider points that are at most dt from the closest sampled
position to the right, i.e., instead of π(i, I`(v)) and L(i, I`(v)), we compute and store a
position π(i, I`(v) ∩ D) = arg maxi′∈I`(v)∩D{lcp(i, i′)} and a value L(i, I`(v) ∩ D), where
D = {i′ | (i′ + d) mod t = p, 0 ≤ d < dt}. In addition to this, we compute and store for all
sampled position i ∈ I`(v) ∩ P, a position π(i, Ir(v) ∩D) = arg maxi′∈Ir(v)∩D{lcp(i, i′)} and
L(i, Ir(v) ∩D) = lcp(i, π(i, Ir(v) ∩D)). This will only double the total size of the structure
and thus the space usage remains O(nτ ). For the new data structure, we keep the definitions
of π(i, Sk) and L(i, Sk), but store these values only for k = dlog te −

⌈
log n

t

⌉
, . . . , dlog te.

Thus, although the value of t has changed, the total size of the data structure is still
O(nt log n

t ) = O(nτ ).
Queries lcp(i, j) are answered as follows: First use the new data structure recursively

using the original algorithm until the problem is reduced to a query between a sampled
position and another position not in any Sk (k ∈ [dlog te −

⌈
log n

t

⌉
.. dlog te]). This means

that the distance from either of the query positions to the closest sampled position is at
most dt. The total number of character comparisons conducted is O(t) = O(τ log n

τ ). Then,
we switch to Bille et al.’s structure using the original algorithm with the exception that we
continue until either i+δ or j+δ (instead of just j+δ) is a sampled position when comparing
up to δ characters of w[i..] and w[j..]. Since the distance to the closest sampling position is at
most O( t

2

n ) and by definition of π(i, I`(v)∩D) and π(i, Ir(v)∩D), we have that this condition
holds for all following recursive calls. Thus, at most O( t

2

n ) character comparisons will be
conducted at each level, for a total of O( t

2

n log n
t ) = O(t(nt )−1 log n

t ) = O(t) = O(τ log n
τ ).

4 Building the structures

Bille et al. [2] describe a preprocessing that runs in O(n2) time1 and O(nτ ) space. Here, we
show that this can be reduced to O(τn + n log n

τ ) time using the same space. While the
algorithm of [2] builds the sparse suffix array containing only the suffixes starting at sampled
positions and applies pattern matching, our trick is to build a sparse suffix array and sparse
LCP array that includes other suffixes as well, in several (namely τ) rounds, so that the
suffixes with maximum LCP with respect to each sampled position can be found by scans of
the suffix array.

For integer alphabets, sparse suffix arrays and sparse LCP arrays can be constructed in
O(n) time if O(n) space is allowed, simply by first building the (normal) suffix array and
LCP array and removing the unwanted elements. For constant size alphabets, the evenly
spaced sparse suffix array and sparse LCP array with sampling rate τ can be constructed in
O(n) time and O(nτ ) space [8]. However, when the alphabet size σ is not constant, this is
O(n log σ) time and O(nτ ) space, since the computation is based on character comparisons.
(Notice that simple application of linear time algorithms for computing the suffix array for

1 However, we believe the analysis in Section 2.5 of [2] is not entirely correct; although the size of |I| is
halved at each level, their numbers double, and so the time complexity should be O(n · n+ n · (n/2) ·
2 · · ·+ n · (n/t) · t) = O(n2 log n

t ) time. Also, they assume that the evenly spaced sparse suffix array
can be constructed in O(n) time and O(nτ ) space for the integer alphabet. However, the paper they cite
assumes a constant size alphabet and to the best of our knowledge, we do not know of an algorithm
achieving such space-time trade-off.
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the meta string will not achieve O(n) time and O(nτ ) space, since the use of radix sort implies
Ω(σ) space for the buckets.) Repeated τ times, this results in O(nτ log σ) time using O(nτ )
space.

We first describe a technique to compute the sparse suffix array and the corresponding LCP
array that contains two sets of evenly spaced suffixes, namely for offsets p and q, and to repeat
this τ times, namely for offsets p = (n− 1) mod τ and q = (n− 1) mod τ, . . . , (n− τ) mod τ ,
so that the total time for their construction is O(nτ) time using O(nτ ) space. Then, we
describe the construction of the data structures of Section 3 using this technique.

4.1 Common tools
For any string (or meta-string) w and 0 ≤ i < |w|, let CAw denote an array containing a
permutation of [0..|w| − 1] such that w[CAw[i]] ≤ w[CAw[j]] for any 0 ≤ i < j < |w|, i.e.,
CAw is an array of positions sorted according to the character at each position. (Note that
CAw is not necessarily unique.)

I Lemma 5. For any string w and 0 ≤ p < τ , CAŵτ,p can be computed in O(n log τ) time
using O(nτ ) space.

Proof. Since each character of w can be represented in O(logn) bits, the length of each
meta-character of ŵτ,p is O(τ logn) bits. We simply use LSD radix sort with a bucket size of
n
τ , i.e., we bucket sort using log(n/τ) bits at a time. Thus, O( τ logn

log(n/τ) ) rounds of bucket sort
is conducted on n

τ items, resulting in O( n logn
log(n/τ) ) = O(n(log τ+log(n/τ))

log(n/τ) ) = O(n log τ) time
giving the result. J

I Lemma 6. For any string w and 0 ≤ p < τ , CAŵτ,p can be computed from CAŵτ,p′ , where
p′ = (p+ 1) mod τ , in O(nτ log τ) time and O(nτ ) space.

Proof. We simply continue the LSD radix sort, and do an extra O( logn
log(n/τ) ) rounds of bucket

sort for the preceding character of each meta-character, which results in O(nτ ·
logn

log(n/τ) ) =
O(nτ ·

log τ+log(n/τ)
log(n/τ) ) = O(nτ log τ) time. J

I Lemma 7. For any string w, 0 ≤ p, q < τ , let P = [0..n− 1]τp and Q = [0..n− 1]τq . Given
CAŵτ,p and CAŵτ,q , SSAP∪Q and SLCPP∪Q can be computed in O(n) time using O(nτ ) space.

Proof. We first compute CAw′ for meta-string w′ = ŵτ,p0ŵτ,q. This can be done in O(n) time
and O(nτ ) space by merging CAŵτ,p and CAŵτ,q , (and adding |ŵτ,p0| to entries in CAŵτ,q ) since
each comparison of meta characters can be done in O(τ) time. Using CAw′ , we then rename
the characters of w′ and create a string w∗ such that w∗[i] = |{w′[j] | w′[j] < w′[i], 0 ≤ j <
|w′|}|+ 1, in O(n) time and O(nτ ) space. Since w∗ consists of integers bounded by its length,
we can apply any linear-time suffix sorting algorithm and compute SAw∗ and LCPw∗ in O(nτ )
time and space. As the lexicographic order of suffixes of w∗ (except for SSAw∗ [0] = |ŵτ,p|)
corresponds to the lexicographic order of suffixes of w that start at positions in P ∪Q, we
can obtain SSAP∪Q from SAw∗ by appropriately translating the indices. More precisely, for
1 ≤ i < |w′|, let SSAw∗ [i] = j. If 0 ≤ j < |ŵτ,p|, then SSAP∪Q[i− 1] = jτ + p, and otherwise
(if |ŵτ,p0| ≤ j < |w′|), then SSAP∪Q[i− 1] = (j−|ŵτ,p0|)τ + q. We can also obtain SLCPP∪Q
from LCPw∗ by multiplying a factor of τ and doing up to τ character comparisons per pair
of adjacent suffixes in the suffix array, in a total of O(n) time. J

I Corollary 8. For any string w, let p = n mod τ . The arrays SSAP∪Q and SLCPP∪Q
can be computed successively for each q = p, (p − 1) mod τ, . . . , (p − τ + 1) mod τ , where
P = [0..n− 1]τp and Q = [0..n− 1]τq , in O(nτ) time using O(nτ ) space.
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Proof. For p = q, we first compute CAŵτ,p = CAŵτ,q using Lemma 5. By applying Lemma 6,
we can successively compute CAŵτ,q for q = (p − 1) mod τ, . . . , (p − τ + 1) mod τ . Thus,
with Lemma 7, we can successively compute SSAP∪Q and SLCPP∪Q in O(nτ) total time and
O(nτ ) space. J

4.2 Faster construction of Bille et al.’s data structure
We show that Bille et al.’s data structure can be constructed in O(nτ + n log n

τ ) time using
O(nτ ) space. Let p = (n− 1) mod τ . Using Corollary 8, we successively compute SSAP∪Q
and SLCPP∪Q for each q = p, (p − 1) mod τ, . . . , (p − τ + 1) mod τ , where P = [0..n − 1]τp
and Q = [0..n− 1]τq . This can be done in a total of O(nτ) time, and O(nτ ) space. Recall that
t = τ

⌈
log n

τ

⌉
, and P = [0..n− 1]tp′ , where p′ = (n− 1) mod t. Since t is a multiple of τ , we

have P ⊆ P .
For each q we do the following: SLCPP∪Q is preprocessed in O(nτ ) time and space to

answer RMQ in constant time, thus allowing us to compute lcp(i, j) for any i, j ∈ P ∪Q in
constant time. For any interval Iv ⊆ [0..n− 1] corresponding to a node in the binary tree let
Iqv = Iv ∩ (P ∪Q). Note that for Iroot = [0..n− 1], SSAIqroot

= SSAP∪Q. Now, for any node Iv,
assume that SSAIqv is already computed. By simple linear time scans on SSAIqv , we can obtain,
for each sampled position i = SSAIqv [x] ∈ Iqr(v) ∩ P, the two suffixes SSAIqv [j−],SSAIqv [j+] ∈
Iq`(v)∩Q which are lexicographically closest to i, i.e., j− = max{j < x | SSAIqv [j] ∈ Iq`(v)∩Q},
j+ = min{j > x | SSAIqv [j] ∈ Iq`(v) ∩Q}, if they exist. Then, the larger of lcp(i,SSAIqv [j−])
and lcp(i, SSAIqv [j+]) gives π(i, Iq`(v) ∩Q) = arg maxi′∈Iq

`(v)∩Q
{lcp(i, i′)} and L(i, Iq`(v) ∩Q) =

lcp(i, π(i, Iq`(v) ∩Q)). Since i, SSAIqv [j+], SSAIqv [j−] ∈ P ∪Q, these values can be computed
in constant time, which is O(|Iqv |) total time for all sampled positions i ∈ Iqr(v) ∩ P. Next,
for the child intervals, SSAIq

`(v)
and SSAIq

r(v)
can be computed in O(|Iqv |) time by a simple

scan on SSAIqv , and the computation is performed recursively for each child. Since the union
of Iqv ∩Q over all q is Iv, we have π(i, I`(v)) = π(i, I q̂`(v)) and L(i, I`(v)) = L(i, I q̂`(v)), where
q̂ = arg max0≤q′<τ{lcp(i, π(i, Iq

′

`(v) ∩Q))}, so we can obtain π(i, I`(v)) and L(i, I`(v)) for each
sampled position i and interval Iv by repeating the above process for each q.

Since the processing at each node is linear in the size of the arrays whose total size at a
given level is O(nτ ), the total time for the recursion is O(nτ log n

τ ) for each q. Thus in total,
the preprocessing can be done in O(nτ + n log n

τ ) time.

I Theorem 9. For any string of length n and integer 1 ≤ τ ≤ n, a data structure of size O(nτ )
can be constructed in O(nτ + n log n

τ ) time using O(nτ ) space, such that for any 0 ≤ i, j < n,
lcp(i, j) can be answered in O(τ log2 n

r ) time.

4.3 Fast construction of new data structure
Let p = (n− 1) mod τ . Using Corollary 8, we successively compute SSAP∪Q and SLCPP∪Q
for each q = p, (p−1) mod τ, . . . , (p−τ +1) mod τ , where P = [0..n−1]τp and Q = [0..n−1]τq .
This can be done in a total of O(nτ) time, and O(nτ ) space. Recall that t = τ dlog τe, and
P = [0..n− 1]tp′ , where p′ = (n− 1) mod t. Since t is a multiple of τ , we have P ⊆ P .

For each q we do the following: SLCPP∪Q is preprocessed in O(nτ ) time and space to
answer RMQ in constant time, thus allowing us to compute lcp(i, j) for i, j ∈ P∪Q in constant
time. Let Sqk = Sk ∩Q for any 1 ≤ k ≤ dlog te. Next, we conduct for each k = 1, . . . , dlog te,
linear time scans on SSAP∪Q so that for each sampled position i = SSAP∪Q[x] ∈ P , the two
suffixes SSAP∪Q[j−],SSAP∪Q[j+] ∈ Sqk which are lexicographically closest to i, i.e., j− =
max{j < x | SSAP∪Q[j] ∈ Sqk}, j+ = min{j > x | SSAP∪Q[j] ∈ Sqk}, if they exist. Then, the
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larger of lcp(i, SSAP∪Q[j−]) and lcp(i,SSAP∪Q[j+]) gives π(i, Sqk) = arg maxi′∈Sq
k
{lcp(i, i′)}.

Since i, SSAP∪Q[j+], SSAP∪Q[j−] ∈ P ∪Q, these values can be computed in constant time,
resulting in a total of O(nτ log τ) time for all i and k. Since the union of Sqk over all q is Sk, we
have π(i, Sk) = π(i, S q̂k) and L(i, Sk) = L(i, S q̂k), where q̂ = arg max0≤q′<τ{lcp(i, π(i, Sq

′

k ))},
so we can obtain π(i, Sk) and L(i, Sk) for each sampled position i and Sk by repeating the
above process for each q, taking O(n log τ) time. Thus, the total time for preprocessing,
dominated by Corollary 8, is O(nτ).

I Theorem 10. For any string of length n and integer 1 ≤ τ ≤ n
logn , a data structure of

size O(nτ ) can be constructed in O(nτ) time using O(nτ ) space, such that for any 0 ≤ i, j < n,
lcp(i, j) can be answered in O(τ log τ) time.

4.4 Fast construction of combined data structure

The construction of the combined data structure is done using the same algorithms as
described in Sections 4.2 and 4.3, with only minor modifications. For Bille et al.’s data
structure, we only need to consider in addition to sampled positions, the positions in
D = {i′ | (i′ + d) mod t = p, 0 ≤ d < dt} due to the modification introduced for the
combination. This reduces the array sizes (and thus the computation time) needed for the
computation of π(i, I`(v)) and π(i, Ir(v)) (and L(i, I`(v)) and L(i, Ir(v))) to O(nt + n

t ·
t2

n ·
1
τ ) =

O(nt + t
τ ) = O( n

τ log n
τ

+ log n
τ ) for a total of O(nτ + log2 n

τ ) = O(nτ ) for all levels, and for all
q, we get O(n) time. Thus, the total time for preprocessing is now dominated by Corollary 8,
and is O(nτ).

I Theorem 11. For any string of length n and integer 1 ≤ τ ≤ n, a data structure of size
O(nτ ) can be constructed in O(nτ) time using O(nτ ) space, such that for any 0 ≤ i, j < n,
lcp(i, j) can be answered in O(τ log n

τ ) time.

As noted previously, since τ ≤ n
τ when τ ≤

√
n, and τ ≥ n

τ when τ ≥
√
n, we get the

following by simply choosing the data structure of Theorems 10 and 11, depending on the
value of τ .

I Corollary 12. For any string of length n and integer 1 ≤ τ ≤ n, a data structure of size
O(nτ ) can be constructed in O(nτ) time using O(nτ ) space, such that for any 0 ≤ i, j < n,
lcp(i, j) can be answered in O(τ min{log τ, log n

τ }) time.

5 Applications

Using the proposed data structure, the lexicographic order between two arbitrary suffixes can
be computed in O(τ min{log τ, log n

τ }) time using O(nτ ) space. Thus, using any O(n logn)
comparison based sorting algorithm, we can compute the suffix array of a string of length
n in O(min{log τ, log n

τ }nτ logn) time using O(nτ ) working space, excluding the input and
output. The best known deterministic space/time trade-off is O(nτ2) time (for 1 ≤ τ ≤ 4

√
n)

using the same space [7], and our algorithm is better when τ = Ω(log1+ε n) for any ε > 0.
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Abstract
Let S and S′ be two strings, having the same length, over a totally-ordered alphabet. We consider
the following two variants of string matching.

Parameterized Matching: The characters of S and S′ are partitioned into static characters
and parameterized characters. The strings are a parameterized match iff the static charac-
ters match exactly, and there exists a one-to-one function which renames the parameterized
characters in S to those in S′.
Order-Preserving Matching: The strings are an order-preserving match iff for any two integers
i, j ∈ [1, |S|], S[i] ≺ S[j] ⇐⇒ S′[i] ≺ S′[j], where ≺ denotes the precedence order of the
alphabet.

Let P be a collection of d patterns {P1,P2, . . . ,Pd} of total length n characters, which are chosen
from a totally-ordered alphabet Σ. Given a text T , also over Σ, we consider the dictionary
indexing problem under the above definitions of string matching. Specifically, the task is to
index P, such that we can report all positions j (called occurrences) where at least one of the
patterns Pi ∈ P is a parameterized match (resp. an order-preserving match) with the same-
length substring of T starting at j. Previous best-known indexes occupy O(n logn) bits, and can
report all occ occurrences in O(|T | log |Σ| + occ) time. We present space-efficient indexes that
occupy O(n log |Σ|+d logn) bits, and reports all occ occurrences in O(|T |(log |Σ|+log|Σ| n)+occ)
time for parameterized matching, and in O(|T | logn+ occ) time for order-preserving matching.
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2:2 Compact Parameterized and Order-Preserving Dictionaries
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1 Introduction

Designing succinct data-structures for the classical pattern matching problem of finding all
occurrences of a pattern P in a fixed text T can be traced back to the seminal work of Grossi
and Vitter [14], Ferragina and Manzini [8], and Sadakane [26]. This established an active
research area of designing succinct data structures. (See [25] for a comprehensive survey.)
The focus was now on either improving these initial breakthroughs [5, 9, 10, 11, 13, 22, 23, 27],
or on designing succinct data structures for other variants [4, 6, 12, 17, 24, 30]. Dictionary
matching, a typical example of these variants, is a classical problem in string matching and
is defined as follows. Let P be a collection of d patterns {P1,P2, . . . ,Pd} of total length n
characters which are chosen from a totally-ordered alphabet Σ of size σ. Given a text T ,
also over Σ, the task is to report all positions j (called occurrences) such that at least one of
the patterns Pi ∈ P exactly matches an equal-length substring of T that starts at j. The
classical solution for this problem is the Aho-Corasick (AC) automaton [1] which occupies
Θ(m logm) bits of space, where m ≤ n+ 1 is the number of states in the automaton, and
finds all occ occurrences in time O(|T | log σ + occ). The query complexity can be improved
to optimal O(|T | + occ) using perfect-hashing techniques. To the best of our knowledge,
the first two succinct indexes for the problem are by Hon et al. [16] and Tam et al. [29].
Later, Belazzougui [4] presented an m log σ +O(m) +O(d log(n/d)) bit index with optimal
O(|T |+ occ) query time.

The first problem that we consider is popularly known as the Parameterized Pattern
Matching problem. The problem has significant attention [2, 15, 18, 19, 21] since its inception
by Baker in 1993 [3]. The alphabet Σ is partitioned into two disjoint sets: Σs containing
static-characters (s-characters) and Σp containing parameterized characters (p-characters).
Two strings S and S′, both over Σ, are a parameterized match (p-match) iff |S| = |S′| and
there is a one-to-one function f such that S[i] = f(S′[i]). For any s-character c ∈ Σs, we
have f(c) = c. Thus, for Σs = {A,B,C} and Σp = {w, x, y, z}, the strings AxBxCy and
AzBzCx are a p-match, but AxBxCy and AzBwCx are not. We consider the Parameterized
Dictionary Matching problem which was introduced by Idury and Schäffer [18]. This is
similar to the standard dictionary problem, just that Σ is partitioned into Σs and Σp, and
we consider the p-matches of a pattern with the text. Idury and Schäffer presented an
AC-automaton like solution which occupies O(m logm) = O(n logn) bits and reports all occ
occurrences in O(|T | log σ + occ) time. The following theorem summarizes our contribution.

I Theorem 1. By maintaining an index of P in O(n log σ+ d logn) bits, all occ occurrences
where a pattern in P and T are a p-match can be reported in O(|T |(log σ + logσ n) + occ)
time.

The second problem we consider is a variant of the recently introduced Order-Preserving
Pattern Matching problem [7, 20]. Two strings S and S′ are an order-preserving match
(o-match) iff |S| = |S′| and for any two integers i, j ∈ [1, |S|], we have S[i] ≺ S[j] ⇐⇒
S′[i] ≺ S′[j]. Thus, for the alphabet {A,B,C,D} with the total-order A ≺ B ≺ C ≺ D,
the string ABC is an o-match with BCD, but not with CDB. Likewise, AAB matches
CCD, but does not match ABC. We consider the Order-Preserving Dictionary Matching
problem introduced by Kim et al. [20]. As with the p-dictionary matching problem, the
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match in this case is defined according to order-preserving matching. Kim et al. presented
an AC-automaton like approach which occupies O(n logn) bits and reports all occurrences
in O(|T | log σ + occ) time. The following theorem summarizes our contribution.

I Theorem 2. By maintaining an index of P in O(n log σ+ d logn) bits, all occ occurrences
where a pattern in P and T are an o-match can be reported in O(|T | logn+ occ) time.

1.1 Map
Our techniques are largely based on the sparsification technique of Hon et al. [16] for the
classical dictionary matching problem. For a parameter ∆, this technique condenses every ∆
characters of each pattern separately and then creates an AC-automaton for the condensed
patterns. Likewise, the text is also condensed starting at a position i. Now the condensed text
is matched in the AC-automaton, and all occurrences are reported. The occurrences reported
in this run lie in the set {i, i+ ∆, i+ 2∆, . . . }. All occurrences are reported by repeating
the process for i = 1, 2, 3, . . . ,∆. By properly choosing ∆, different trade-offs for index
sizes and query time can be obtained. Broadly speaking, we use this technique to sparsify
the AC-automaton based approaches of Idury and Schäffer [18] for p-dictionary matching
and of Kim et al. [20] for o-dictionary matching. However, the sparsification technique
does not immediately extend to the case of parameterized matching and order-preserving
matching. For example, it is not clear whether a condensed alphabet has to be treated as a
p-character or an s-character. Also, how do we define the one-to-one mapping? Similarly,
how do we impose the total-order on the condensed alphabet in the case of order-preserving
matching? A more serious issue is how to handle truncating of characters at the beginning
of a currently matched text, which is essential for the AC-automaton based approaches of
Idury and Schäffer and of Kim et al.

In Section 2, we first address the p-dictionary problem, and prove Theorem 1. In Section 3,
using similar techniques, we arrive at Theorem 2.

2 Parameterized Dictionary Matching

We assume that the p-characters in Pi ∈ P are from the set {0, 1, . . . , |Σp| − 1}. Also, the
s-characters are disjoint from the set of integers. (The latter assumption can be easily
removed by mapping the s-characters onto the set {|Σp|, |Σp|+ 1, . . . , σ − 1} such that the
kth smallest s-character has value |Σp|+ k − 1.) The patterns can be initially processed in
O(n log σ) time to ensure that these conditions hold.

2.1 Encoding Scheme
[3] introduced the following encoding scheme to enable matching of parameterized strings.
Given a string S, obtain a string prev(S) by replacing the first occurrence of every p-character
in S by 0 and any other occurrence by the difference in position from its previous occurrence.
Thus, prev(A1B2A1C0) = A0B0A4C0. Baker [3] showed that two strings S and S′ are a
p-match iff prev(S) = prev(S′). Although this scheme makes p-matching of strings easier to
handle, for our purposes, it suffers from a drawback. Specifically, prev(S) is a string over an
alphabet of size Θ(n) in the worst case, whereas the original alphabet size σ may be much
smaller in comparison.

In order to alleviate this, we introduce the following encoding scheme, which is still simple
and does not suffer from this drawback. Given a string S over Σ, let c0, c1, . . . , ck be the
order in which every ci ∈ Σp appears in S. We obtain a string pEncode(S) by replacing every

CPM 2016



2:4 Compact Parameterized and Order-Preserving Dictionaries

occurrence of ci by i in S. Thus, pEncode(A1B2A1C0) = A0B1A0C2. By maintaining an
integer-array of length |Σp|, we can compute pEncode(S) in O(|S|) time1. The following
observations are immediate.

I Observation 3. Two strings S and S′ are a p-match iff pEncode(S) = pEncode(S′). A
string S matches another string S′ at a position i iff pEncode(S) = pEncode(S′[i, i+ |S|−1]).

I Observation 4. For a string S, assume that the parameterized characters in pEncode(S) be-
long to the set {0, 1, 2, . . . , |Σp| − 1}. Then, pEncode(S[i, |S|]) = pEncode(pEncode(S)[i, |S|]).

2.2 Overview
We design our index by classifying the patterns into long and short based on a parameter
∆ = dlogσ ne. The patterns are encoded and maintained explicitly occupying n log σ bits
in total. For short patterns (having length less than ∆), we create a trie and use a rather
brute-force approach to find all occurrences. On the other hand, reporting the occurrences of
long patterns (having length at least ∆) requires sophisticated (and more involved) indexing
and querying techniques. Moving forward, when we refer to an occurrence, we imply both
the position in the text where a pattern occurs and also the pattern itself. Also, we report
all patterns that occur at a particular position. (The query process can be easily adapted
to the case when only the position is to be reported.) Then, the set of occurrences of long
patterns and short patterns are mutually disjoint and are handled separately. Specifically,
we prove the following lemmas of which Theorem 1 is an immediate consequence.

I Lemma 5. Let P be a dictionary consisting of d patterns, each having length at least
dlogσ ne. By indexing P in a data-structure occupying O(n log σ+d logn) bits, we can report
all occ occurrences of the patterns in O(|T |(log σ + logσ n) + occ) time.

I Lemma 6. Let P be a dictionary consisting of d patterns, each having length less than
dlogσ ne. By indexing P in a data-structure occupying n log σ+O(d logn) bits, we can report
all occ occurrences of the patterns in O(|T |(log σ + logσ n) + occ) time.

We assume that no two patterns Pi and Pj exist such that pEncode(Pi) = pEncode(Pj). For
such patterns, we can keep only one pattern in the dictionary, and it is trivial to handle
reporting of all patterns for an occurrence in the claimed space-time bounds. We also
assume that the p-characters in T are from {0, 1, . . . , |Σp| − 1} and the s-characters are
either disjoint from the set of integers or belong to the set {|Σp|, |Σp|+ 1, . . . , σ − 1}. An
initial pre-processing of the text in O(|T | log σ) time ensures that these conditions hold. The
O(|T | log σ) factor in the query complexity of Lemmas 5 and 6 and Theorem 1 is due to this
pre-processing.

2.3 Long Patterns (Proof of Lemma 5)
We consider the patterns which are of length at least ∆, where ∆ = dlogσ ne. For a
string S and ∆, we use tail(S) to denote the largest suffix of S whose length is a multiple
of ∆ and head(S) is the remaining (possibly empty) prefix of S. We begin by obtaining

1 Initialize a counter C = 0 and an integer array A such that A[c] = −1 for every c ∈ Σp. Traverse the
string S from left to right. If S[i] ∈ Σp (i.e., S[i] < |Σp|) check A[S[i]]; otherwise, pEncode(S)[i] = S[i].
If A[S[i]] = −1 then assign pEncode(S)[i] = A[S[i]] = C, increment C by one and proceed. Otherwise,
assign pEncode(S)[i] = A[S[i]] and proceed. Note that s-characters remain unchanged.
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pEncode(tail(Pi)) for every Pi ∈ P , and maintain the encoded tails explicitly. Now, we encode
head(Pi) from right to left using the same encoding that was used for its tail. More specifically,
form the string P′

i by concatenating tail(Pi) with the reverse of head(Pi). Then, the desired
encoding of the jth character in the reversed head is given by pEncode(P′

i)[|tail(Pi)|+ j]. The
following observation is due to the definition of p-match and Observation 3.

I Observation 7. Let S and S′ be two strings having equal length. Then S and S′ are a
p-match iff both the conditions are satisfied: (i) the p-encoded tails of both S and S′ are
equal, and (ii) the p-encoded heads (as described above) of both S and S′ are equal.

The space needed for maintaining the encoded heads and tails of all patterns combined is
n log σ bits.

2.3.1 Creating the Index
We create a tree Tout with d nodes where node vi corresponds to the pattern Pi. A node
vj is the parent of a node vi iff Pj is the longest pattern such that it is a p-match with a
proper-suffix of Pi. In other words, vj is the parent of a node vi iff Pj is the longest pattern
such that |Pj | < |Pi| and pEncode(Pj) = pEncode(Pi[|Pi| − |Pj |+ 1, |Pi|]). This output tree
will be useful for reporting occurrences of a pattern and is analogous to the report links
in the AC-automaton [1]. Specifically, let k be a position in the text T such that Pi is the
longest pattern which has an occurrence ending at k. Then all patterns whose occurrence
ends at k can be found out by following the parent pointers starting at node vi. Clearly,
the start position of all such occurrences can be easily found. Space occupied by the tree is
O(d logn) bits.

Let Σ′ be an alphabet such that each character in Σ′ corresponds to a ∆-length string over
the alphabet Σ. Thus, Σ′ contains at most σ∆ characters, and each character can be represen-
ted in ∆ log σ bits. Starting from left, we group every ∆ characters of pEncode(tail(Pi)), and
replace it by the corresponding character from Σ′. In order to efficiently map this ∆-length
string over Σ to its corresponding character in Σ′, we maintain a perfect hash-table H. Note
that the number of ∆-length strings to be stored is at most dn/∆e. The space occupied by
H is O(n/∆×∆ log σ) = O(n log σ) bits. Create a trie Ttail for all the condensed encoded
pattern tails of P. Specifically, if the pattern length is not a multiple of ∆, then we ignore
its head while creating the trie. Note that Ttail has at most dn/∆e nodes. Each edge in
Ttail corresponds to a ∆-length substring of some pEncode(Pi). We maintain a pointer to
the start location of this substring in pEncode(Pi). (Given an edge, this allows us to find
any jth character of the corresponding ∆-length substring of pEncode(Pi) in O(1) time. The
purpose of this will become clear when we discuss how to query the trie.) The space needed
to store this information is O((n/∆) logn) = O(n log σ) bits.

For any node u in Ttail, we use path(u) to denote the string obtained by concatenating
the edge labels (which are characters from Σ′) one the path from root to the node u, and
pathe(u) to denote the expanded string for path(u) i.e., the string obtained by mapping
each character of path(u) to its corresponding ∆-length string over Σ. For each node u, we
maintain the following information.

a goto link as in the case of the AC-automaton for navigating the trie: given a node u
and a character c ∈ Σ′, we can find its child v where the edge (u, v) is (conceptually)
labeled by c, or report that no such child exists. (This is facilitated by the hash-table H,
whereby we read ∆ characters from T , encode it, and use it to find the corresponding
character from Σ′.)
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a failure link as in the case of the AC-automaton: Let S be the largest proper suffix of
path(u) for which there exists a node v, such that pathe(v) is same as the string obtained
by expanding S, re-encoding it according to Observation 4, and then compressing it back.
Then, the failure link of u points to v.
an output link from u to the node vi in Tout such that Pi is the longest pattern satisfying
pEncode(Pi) = pEncode(pathe(u)[|pathe(u)| − |Pi|+ 1, |pathe(u)|]), where the re-encoding
is according to Observation 4.
alphaDepth(u) i.e., the number of distinct integers less than |Σp| in pathe(u). (Conceptu-
ally, this is the number of distinct p-characters.)

The space required to maintain goto links, failure links, output links, and alphabet depth
over all nodes is O(dn/∆e(∆ log σ + logn+ log σ)) = O(n log σ) bits.

Lastly, we maintain a succinct representation of Ttail using the techniques of Sadakane
and Navarro [28]. Using this, in O(1) time, we can find (i) node-depth of a node, and (ii)
levelAncestor(u,D) = the node (if any) on the path from root to u that has node-depth D.
(The root has depth zero.) The space needed is 2dn/∆e+ o(n/∆) = O(n/∆) bits.

In summary, Ttail occupies O(n log σ + n/∆ + d logn) = O(n log σ + d logn) bits.
Now, we focus on the head of each pattern. Consider a pattern Pi. First, we reverse

head(Pi), then encode it (as described in the beginning of this section). Create two copies
of the resultant head, each of which is obtained by appending two special s-characters $i
and #i, neither of which belongs to Σ. Locate the (distinct) node u such that pathe(u) is
same as pEncode(tail(Pi)). Note that u is defined and we call it the locus of Pi. Consider all
patterns which have the same locus u. Create a compacted trie for the modified heads of
all those patterns, and let u be the root of that trie. We call this the head-trie of u and is
denoted by Thead(u). The parent of each leaf in Thead(u) corresponds to a pattern, say Pj , in
the dictionary. We mark all such nodes in Thead(u) and label them with the corresponding
pattern index j. Furthermore, for each node in Thead(u), we maintain a pointer to its nearest
marked ancestor. The space occupied by each node for marking and labeling is O(logn) bits.
Each edge in Thead(u) is labeled by a substring (of length less than ∆) of the encoded head
of some pattern Pj . We maintain a pointer to the start point of the corresponding substring
of pEncode(Pj), and also its length. This occupies O(logn) bits for each edge. We also equip
Thead(u) to allow constant time navigation operation from a node to the edge where the
next character of an encoded head matches. This can be facilitated using perfect hashing
based on the (unique) first character of the edge to its children, and occupies O(log σ) bits
for each transition (edge). Since there are d patterns, the number of nodes and edges in all
such tries combined is O(d). Thus, the total space occupied for maintaining all head-tries is
O(d logn+ d log σ) = O(d logn) bits.

In summary, the total space occupied by the resultant trie (denoted as Tlong), all encoded
patterns, and the hash-table H is O(n log σ + d logn) bits.

2.3.2 Finding Occurrences
Starting from position j = 1, we obtain pEncode(T [j,∆]) and use its corresponding character
from Σ′ to traverse the trie Tlong from the root. We repeat this process for the next ∆
characters from T , and so on. More specifically, suppose we have reached a node u in Thead
such that pathe(u) = pEncode(T [j, j + |pathe(u)| − 1]). At this point, we have the following
cases to consider.

There is an output link associated with u, implying the existence of a pattern which is a
p-match with a suffix of T ending at j + |pathe(u)| − 1. All such patterns and starting
locations can be found out in O(1) time per output by using the output link and Tout.
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Thead(u) is non-empty implying that there is a pattern Pi such that the encoded tail
of Pi is same as pathe(u). To report all possible occurrences of such patterns ending
at (j + |pathe(v)| − 1), we use the encoded characters corresponding to T [j − 1], T [j −
2], . . . , T [j −∆ + 1] to traverse Thead(u) until no more traversal is possible. Suppose the
last encountered node in this trie is v. We report all patterns with an occurrence ending
at j by following the marked ancestor linkage from v.
There is a child v of u such that the edge label of (u, v) is same as the character from Σ′

corresponding to the last ∆ characters of pEncode(T [j, j + |pathe(v)| − 1]). In this case,
we traverse to v, and continue the process. Otherwise, follow the failure link of u.

Note that following the output link results in occurrence of at least one pattern. Each
occurrence (i.e., the index and the corresponding pattern) can be reported in O(1) time.
Moving forward we show how to deal with the head-trie, failure links, and goto links.

For our purposes, we maintain an array A of length |Σp| such that for any c ∈ Σp, A[c]
equals the last position at which c appeared in T that has been read so far. (Initially each
entry in the array A is empty.) We also maintain an array B of length |Σp| such that for any
c ∈ Σp, B[c] gives us the desired encoding.

First, we show how to appropriately encode the incoming characters T [j − 1], T [j −
2], . . . , T [j −∆ + 1] when we traverse Thead(u). Initialize the array B to be empty. Note
that it suffices to find the encoding for the first occurrence of every p-character starting from
j − 1 as the encoding for all future occurrences remains the same and can be obtained using
B. Let c be a p-character. If B[c] is not empty then use it to obtain the desired encoding.
Otherwise, find the last occurrence of c using A[c]. We use the state of the array A at node
u, and do not modify it while traversing the head-trie. We have the following two cases.

c appears in T [j, j + |pathe(u)|− 1]: Assume that the last occurrence is the λth char-
acter starting from j and (u′, v′) be the edge on which this occurrence lies i.e., |path(u′)| <
λ/∆ ≤ |path(v′)|. We locate v′ = levelAncestor(u,D) and u′ = levelAncestor(u,D − 1),
where D = |path(v′)| = dλ/∆e is the node-depth of v′. The encoding corresponding to
c is exactly the (λ − ∆ · |path(u′)|)th character of the label on this edge, and can be
found using the pointer from the edge to the start of the corresponding substring of
some encoded pattern tail. Set B[c] to the encoded value. The time needed is O(1) per
character.
c does not appear in T [j, j + |pathe(u)| − 1]: We maintain a counter C initialized
to alphaDepth(u). Whenever we encounter such a c, the encoding is given by the value
of C. Set B[c] to the value of the counter. Following this, we increment C by one. The
time needed is O(1) per character.

Thus, the time required to traverse each head-trie is O(∆) and each occurrence in the
head-trie is reported in O(1) time by following the marked ancestor linkage.

Now, we concentrate on the failure link from u to v and show how to re-encode the text
when we truncate characters from position j. Assume that k is the number of edges on the
path from root to u (i.e., k is the node-depth of u) and that the failure link truncates k′∆
characters starting from j. Clearly, 1 ≤ k′ ≤ k. Therefore, we are now trying to find a match
for the positions starting from j′ = j + k′∆ and we need to re-encode the text T starting
from j′. Since it is ensured that pEncode(T [j′, j′ + (k − k′)∆− 1]) is same as pathe(v), we
are required to find the encoding of every p-character starting from j′′ = j′ + (k − k′)∆.

Initialize the array B to be empty. Note that it suffices to find the encoding for the first
occurrence of every p-character starting from j′′, as the encoding for all future occurrences
remains the same and can be obtained using the array B. Let c be a p-character. If B[c] is
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non-empty, then use it to obtain the desired encoding. Otherwise, find the last occurrence
of c using A[c]. Note that we need the state of the array A at node u, which can be easily
obtained by maintaining a copy of it whenever a new edge is traversed. (We delete the
old copy when a new edge is traversed as it will not be required any more.) We have the
following two cases.

c appears in T [j′, j′′ − 1]: As described previously using levelAncestor(·, ·) queries, we
locate the position on the edge of the last occurrence. Then using the pointer from the
edge we find the desired encoding and set B[c]. The time needed is O(1) per character.
c does not appear in T [j′, j′′−1]: Wemaintain a counter C initialized to alphaDepth(v).
Whenever we encounter such a c, the encoding is given by the value of C. Following this,
we increment C by one. The time needed is O(1) per character.

The goto transition is achieved easily as follows. We read the next ∆ characters from the
text, encode them, and use the hash table H to traverse to the desired node. Since encoding
each character can be performed in O(1) time (using the arrays A and B as described
previously), each goto operation takes O(∆) time.

Now, we bound the query complexity. Initially, encoding the string T starting from j = 1
can be performed in O(|T |) time. Recall that on following a failure link, we truncate at
least ∆ characters starting from j. We read ∆ characters on the failed edge (i.e., the one
which was read unsuccessfully immediately before following the failure link). Thus, we can
charge the characters on the failed edge to the first truncated ∆ characters. This gives us
an amortized complexity of O(1) per character. The number of failure link operations is at
most d|T |/∆e. Thus, the number of nodes and edges traversed in the tail-trie is O(|T |/∆).
For each edge, we read ∆ characters and encoding the p-characters can be performed in O(1)
time per character. For each node in the tail-trie, we will examine less than ∆ characters in
the head-trie; each of these characters can be appropriately encoded in O(1) time. Thus, the
time required to traverse Tlong (without reporting occurrences) is O((|T |/∆) ·∆) = O(|T |).
Each occurrence in the head-trie or the output tree is reported in O(1) time.

At the end of this process, for j = 1, we have reported occurrences of all patterns which
end at a position of the form j, j + ∆, j + 2∆, . . . . The time required is O(|T |+ occj). By
repeating the process for j = 2, 3, . . . ,∆, all occ` occurrences of long patterns are reported in
O(|T |∆ + occ`) = O(|T | logσ n+ occ`) time.

Summarizing the discussions in this section, we obtain Lemma 5.

2.4 Short Patterns (Proof of Lemma 6)
Processing short patterns (having length less than ∆) is similar to that for head-tries. For
all short patterns Pi, we create a compacted trie Tshort for the strings pEncode(Pi) ◦ $i and
pEncode(Pi) ◦#i, where ◦ denotes concatenation. The number of nodes in the trie is O(d).
As in case of tail tries, we maintain a pointer from each edge to the start of the corresponding
substring labeling the edge, and the length of the substring. We also equip each edge of
Tshort to support constant time navigation. Mark all nodes u if there is an encoded pattern
which is the same as that obtained by concatenating the edge labels from root to u. The
total space is bounded by O(d logn) bits.

To find occurrences of short patterns, we use a rather brute force approach. Starting
from j = 1, simply encode the next ∆ characters of T , and use it to traverse the trie Tshort
until no more traversal is possible. Report j if at least one marked node is encountered
in this traversal, and in that case, also report the patterns corresponding to these marked
nodes. We repeat the process for j = 2, 3, . . . , |T |. Since for each j at most 2∆ characters are
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checked, the time required to report all occs occurrences of short patterns is O(|T |∆+occs) =
O(|T | logσ n+ occs).

Summarizing the discussions in this section, we obtain Lemma 6.

3 Order-Preserving Dictionary Matching

As in the case of parameterized matching, we assume that the patterns are over an alphabet
Σ = {1, 2, . . . , σ}, where the total-order on Σ is the natural order of integers. By initially
pre-processing the patterns in O(n log σ) time this condition is ensured. We use the following
encoding scheme to convert a string S over Σ to a string oEncode(S). For every character
S[i], oEncode(S)[i] is the number of distinct characters in S[1, i] having value at most S[i].
For example, consider the string S = 5452316, where each character is a single-digit integer.
Then, oEncode(S) = 1121216. The following is due to Kim et al. [20].

I Observation 8. Two strings S and S′ are an o-match iff oEncode(S) = oEncode(S′). A
string S matches another string S′ at a position i iff oEncode(S) = oEncode(S′[i, i+ |S|− 1]).

3.1 Creating the Index
As in case of p-patterns, we categorize o-patterns into long and small w.r.t the same parameter
∆ = dlogσ ne. We also define the head and tail of the pattern similar to that in case of
p-patterns. The tails are encoded using oEncode(·) and are maintained explicitly. The
encoding for the head of a pattern Pi is obtained as follows. Create a string P′

i first by
reversing head(Pi), then appending it at the end of tail(Pi). Then, the encoding of the
jth character in the reversed head is given by oEncode(P′

i)[|tail(Pi)| + j]. The following
observation is due to the definition of o-match and Fact 8.

I Observation 9. Let S and S′ two be strings having equal length. Then S and S′ are an
o-match iff both the conditions are satisfied: (i) the o-encoded tails of both S and S′ are equal
and (ii) the o-encoded heads (as described above) of both S and S′ are equal.

For long patterns, the index is similar to that for p-patterns, except that we use the
above encoding scheme. Also, we do not pre-process the resultant trie Ttail for answering
levelAncestor(·, ·)-queries. For short patterns, the index is same except that for the encoding
scheme. Thus, space is bounded by O(n log σ + d logn) bits.

3.2 Finding Occurrences
We assume that the characters in |T | are from {1, 2, . . . , σ} with the total order being same as
in that of the patterns. An initial pre-processing of the text in O(|T | log σ) time ensures that
this condition holds. Note that this does not affect the final query complexity of Theorem 2.

The querying process remains exactly similar to that for p-matching. Obviously, we use
oEncode(·) for encoding T , computing which requires a different technique. We maintain an
array A of length σ such that A[c] equals the position of last occurrence (if any) of c ∈ Σ
in the text read so far. Initially, for each c ∈ Σ, we assign A[c] = −1. Also, we maintain a
balanced binary search tree (BST) Tbin, which is initially empty. Suppose we are at position
k in the text. If A[T [k]] = −1, we add T [k] to Tbin. We find the number of characters in Tbin
that are at most T [k], which gives us the desired encoding. Then, we update A[T [k]] = k

and proceed. Note that the size of Tbin is O(σ), which implies every deletion, insertion, and
search operation requires O(log σ) time.
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The difficulty comes when we follow a failure link or when we traverse a head-trie. We
first discuss the case of a failure link in which we may have to remove several characters from
Tbin. Suppose, after following a failure link, we are trying to find an occurrence for position j′

and we are processing characters of the text starting from j′′. (See Section 2.3.2 for detailed
definitions of j′ and j′′.) Clearly, we have to remove those characters c from Tbin for which
A[c] < j′. The total number of such deletions is at most |T |, each requiring O(log σ) time
yielding an amortized time complexity of O(log σ) per character. To find these characters
efficiently, we maintain the characters c′ ∈ Σ keyed by A[c′] in another BST T ′

bin. Note
that the size of T ′

bin is O(σ), which implies every insertion, update, and search operation
requires O(log σ) time. Using T ′

bin, we can find the desired characters to be removed in
O(log σ + outputk) time, where outputk is the number of characters to be deleted from Tbin
when we follow the kth failure link. Note that

∑
k outputk ≤ |T |. Therefore, maintaining

T ′
bin and finding the desired characters to be removed on following a failure link have an

amortized time complexity of O(log σ) per character.
Traversing a head-trie is achieved similarly. Suppose, we are considering the string

T [j, j′ − 1]. Then, we have to encode characters T [j − 1], T [j − 2], . . . , T [j −∆ + 1] based on
T [j, j′− 1]. With the aid of T ′

bin, we maintain another BST that contains only the characters
in the interval [j, j′ − 1]. The desired encoding of each character can be obtained in O(log σ)
amortized time.

Thus, the jth running of the algorithm requires O(|T | log σ+ occj) time for long patterns.
Reporting all occ` occurrences of long patterns requires O(|T |∆ log σ + occ`) = O(|T | logn+
occ`) time. For short patterns, since we follow the same brute-force strategy, it is easy to see
that time required to report all occs occurrences is O(|T | logn+ occs).

This completes the proof of Theorem 2.
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Abstract
We consider various encodings that support range Top-k queries on a two-dimensional array
containing elements from a total order. For an m × n array, with m ≤ n, we first propose an
almost optimal encoding for answering one-sided Top-k queries, whose query range is restricted to
[1 . . .m][1 . . . a], for 1 ≤ a ≤ n. Next, we propose an encoding for the general Top-k queries that
takes m2 lg

((k+1)n
n

)
+ m lgm + o(n) bits. This generalizes the one-dimensional Top-k encoding

of Gawrychowski and Nicholson [ICALP, 2015]. Finally, for a 2× n array, we obtain a 2 lg
(3n

n

)
+

3n+ o(n)-bit encoding for answering Top-2 queries.
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1 Introduction

Given a one-dimensional (1D) array A[1 . . . n] from a total order and 1 ≤ k ≤ n, the Range
Top-k query on A (Top-k(i, j, A), 1 ≤ i, j ≤ n) returns the positions of k largest values
in A[i . . . j]. We can extend this query to the two-dimensional (2D) array case. Given a
2D array A[1 . . .m][1 . . . n], from a total order and 1 ≤ k ≤ mn, the Top-k query on A
(Top-k(i, j, a, b, A), 1 ≤ i, j ≤ m, 1 ≤ a, b ≤ n) returns the positions of k largest values in
A[i . . . j][a . . . b]. Without loss of generality, we assume that all elements in A are distinct by
ordering equal elements in the lexicographic order of their positions, and also assume that
m ≤ n. If the k positions of a Top-k query are reported in sorted order of the corresponding
values, we refer to the query as sorted Top-k query; and refer to it as unsorted Top-k query,
otherwise. For 1 ≤ i, j ≤ m and 1 ≤ a, b ≤ n, we can also classify Top-k queries on 2D array
by its range as follows.
1-sided query: The query range is [1 . . .m][1 . . . b].
4-sided query: The query range is [i . . . j][a . . . b].

We can also consider 2-sided and 3-sided queries which correspond to the ranges
[1 . . . j][1 . . . a] and [1 . . . j][a . . . b] respectively. We consider how to support the Top-k queries
in the encoding model in which we do not have access to the original input array A at query
time. The minimum size of an encoding is also referred to as the effective entropy of the
input data (with respect to the queries) [7].

In the rest of the paper, we assume that for Top-k encodings, k is at most the size of the
array (either 1D or 2D). Also, unless otherwise mentioned, we assume that all Top-k queries
are sorted Top-k queries.

© Seungbum Jo, Rahul Lingala, and Srinivasa R. Satti;
licensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 3; pp. 3:1–3:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


3:2 Encoding Two-Dimensional Range Top-k Queries

Table 1 The summary of our results for Top-k queries on m× n 2D array. The value T is given
by the formula T =

∑min (m,k)
i=0 i!

(
m
i

)(
k
i

)
.

Array size Query range Space Query time
m× n one-sided ndlg T e bits -
2× n four-sided, k ≤ 2 2 lg

(3n
n

)
+ 3n + o(n) bits -

m× n four-sided O(mn lg n) bits O(k)
m× n four-sided m2 lg

((k+1)n
n

)
+ m lg m + o(n) bits -

1.1 Previous Work
Encoding Top-k queries on 1D array has been widely studied in the recent years. For a 1D
array A[1 . . . n], Chan and Wilkinson [4] proposed a data structure that uses Θ(n) words
and answers selection queries (i.e., selecting the k-th largest element) in O(lg k/ lg lgn)
time1. Grossi et al. [8] considered the Top-k encoding problem, and obtained an O(n lg κ)-bit
encoding which can answer the Top-k queries for any k ≤ κ in O(κ) time or alternately, using
O(n lg2 κ) bits with O(k) query time. (They also considered one-sided Top-k query, they
proposed n lg k+O(n)-bit encoding with O(k) query time.) The space usage of this encoding
was improved to O(n lg κ) bits, maintaining the O(k) query time, by Navarro et al. [10].
Recently, Gawrychowski and Nicholson [6] proposed an (k + 1)nH(1/(k + 1)) + o(n)-bit2
encoding for Top-k queries and showed that at least (k + 1)nH(1/(k + 1))(1− o(1)) bits are
required to encode Top-k queries.

To the best of our knowledge, there are no results on range Top-k queries for 2D array
with general k. For k = 1, the Top-k query is same as the Range Maximum Query (RMQ),
which has been well-studied for 1D as well as for 2D arrays. For a 2D m× n array, Brodal
et al. [1] proposed an O(nmmin (m, lgn))-bit encoding which answers RMQ queries in O(1)
time. Brodal et al. [2] improved the space bound to the optimal O(nm lgm) bits, although
this encoding does not support the queries efficiently.

1.2 Our Results
For an m× n 2D array A, we first obtain an ndlg T e-bit encoding for answering one-sided
Top-k queries, where T =

∑min (m,k)
i=0 i!

(
m
i

)(
k
i

)
. We then show that any encoding that supports

Top-k queries on A must use at least n lg T bits.
Next, we observe that one can obtain an O(mn lgn)-bit data structure which answers

4-sided Top-k queries on A in O(k) time, by combining the results of [3] and [1]. We then
propose an m2 lg

((k+1)n
n

)
+m lgm+ o(n)-bit encoding for 4-sided Top-k queries on A, by

extending the Top-k encoding of Gawrychowski and Nicholson for 1D arrays [6].
When k = 2 and m = 2, the above encoding takes 4 lg

(3n
n

)
+ o(n) ≈ 11.02n bits. For this

case, we propose an alternative encoding which uses 2 lg
(3n

n

)
+ 3n+ o(n) ≈ 8.51n bits (and

can answer the 4-sided Top-2 queries on A). All these results are summarized in Table 1.
We assume the standard word-RAM model [9] with word size Θ(lgn).

2 Encoding one-sided range Top-k queries on two dimensional array

In this section, we consider the encoding of one-sided Top-k queries on a 2D array A[1 . . .m]
[1 . . . n]. We first introduce the encoding by simply extending the encoding of one-sided Top-k

1 We use lg n to denote log2 n
2 H(x) = x lg (1/x) + (1− x) lg (1/(1− x))
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queries for 1D array proposed by Grossi et al. [8]. Next we propose an optimal encoding for
one-sided Top-k queries on A.

For a 1D array A′[1 . . . n], one can define another 1D array X[1 . . . n] such that X[i] = i

for 1 ≤ i ≤ k and for k < i ≤ n, X[i] = X[i′] if there exist a position i′ < i such that A′[i] is
larger than A′[i′] which is the k-th largest value in A′[1 . . . i− 1], and X[i] = k + 1 otherwise.
One can answer the Top-k(1, i, A′) by finding the rightmost occurrence of every element
1 . . . k in X[1 . . . i]. By representing X (along with some additional auxiliary structures)
using n lg k +O(n) bits, Grossi et al. [8] obtained an encoding which supports 1-sided Top-k
queries on A′ in O(k) time.

For a 2D array A, one can encode A to support one-sided Top-k queries by writing down
the values of A in column-major order into a 1D array, and using the encoding described
above – resulting in the following encoding.

I Proposition 1. A 2D array A[1 . . .m][1 . . . n] can be encoded using mn lg k +O(n) bits to
support one-sided Top-k queries in O(k) time.

Now we describe an optimal encoding of A which supports one-sided Top-k queries. For
1D array A′[1 . . . n], we can define another 1D array B′[1 . . . n] such that for 1 ≤ i ≤ n,
B′[i] = l if A′[i] is the l-th largest element in A′[1 . . . i] with l ≤ k, and B′[i] = k+1 otherwise.
Then we answer the Top-k(1, i, A′) query as follows. We first find the rightmost position
p1 ≤ i such that B′[p1] ≤ k. Then we find the positions p2 > p3 · · · > pk such that for
2 ≤ j ≤ k, pj is the rightmost position in A′[1 . . . pj−1 − 1] with B′[pj ] ≤ k − j + 1. Finally,
we return the positions p1, p2, . . . , pk. Therefore by storing B′ using ndlg (k + 1)e bits, we
can answer the one-sided Top-k queries on A′. Also we can sort A′[p1], . . . , A′[pk] using the
property that for 1 ≤ b < a ≤ k, A′[pa] < A′[pb] if and only if one of the following two
conditions hold: (i) B′[pa] ≥ B′[pb], or (ii) B′[pa] < B′[pb] and there exist q = B′[pb]−B′[pa]
positions j1, j2, . . . , jq such that pa < j1 < · · · < jq < pb and B′[jr] ≤ B′[pa] for 1 ≤ r ≤ q.

We can extend this encoding for the one-sided Top-k queries on a 2D array A. For
1 ≤ j ≤ n, we first define the elements of j-th column in A as a1j . . . amj . Then we
define the sequence Sj = s1j . . . smj such that for 1 ≤ i ≤ m, sij = l if aij is the l-th
largest element in A[1 . . .m][1 . . . j] with l ≤ k and sij = k + 1 otherwise. Since there exist
T =

∑min (m,k)
i=0

(
m
i

)(
k
i

)
i! possible Si sequences (T is the total number of ways in which we

can choose i out of the m rows for new entries into the Top-k positions, summed over all
possible values of i), we can store SA = S1 . . . Sn using ndlg T e bits and we can answer the
one-sided Top-k(1,m, 1, j) queries on A by the following procedure.
1. Find the rightmost column q, for some q ≤ j, such that Sq has ` > 0 elements sp1q, . . . , sp`q

where sp1q < · · · < sp`q < k + 1. If ` = k, we return the positions of A[p1][q] . . . A[pk][q]
as the answers of the query, and stop. Otherwise (if ` < k), we return the positions of
A[p1][q] . . . A[p`][q], and

2. Repeat Step 1 by setting k to k − `, and j to q − 1.
We can return the positions in the sorted order of their corresponding values similar to
the 1D array case as described above. This encoding takes less space than the encoding
in the Proposition 1 since mn lg k = n lg(1 + (k − 1))m = n lg

∑m
i=0
(

m
i

)
(k − 1)i ≥ n lg T .

The following theorem shows that the space usage of this encoding is essentially optimal for
answering one-sided Top-k queries on A.

I Theorem 2. Any encoding of a 2D array A[1 . . .m][1 . . . n] that supports one-sided Top-k
queries requires n lg T bits, where T =

∑min (m,k)
i=0 i!

(
m
i

)(
k
i

)
.

Proof. Suppose there are two distinct sequences SA = S1 . . . Si and SA′ = S′1 . . . S
′
i which

give one-sided Top-k encodings of 2D arrays A and A′, respectively. For 1 ≤ b ≤ n, if Sb 6= S′b
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3:4 Encoding Two-Dimensional Range Top-k Queries

then Top-k(1,m, 1, b, A) 6= Top-k(1,m, 1, b, A′) by the definition of SA and SA′ . Since for an
m × n array, there are Tn distinct sequences SA1 . . . SAT n , it is enough to prove that for
1 ≤ q ≤ Tn, each SAq = Sq

1 . . . S
q
n has an array A such that SA = SAq .

Without loss of generality, suppose that all elements in A come from the set L =
{1, . . . ,mn}. Then we can reconstruct A from the rightmost column using SAq as follows.
If sq

jn ≤ k, for 1 ≤ j ≤ m, we assign the sq
jn-th largest element in L to A[j][n]. After we

assign all values in the rightmost column with sq
jn ≤ k, we discard all assigned values from

L, move to (n − 1)-th column and repeat the procedure. After we assign all values in A

whose corresponding values in SAq are smaller than k + 1, we assign the remaining values in
L to remaining positions in Aq which are not assigned yet. Thus for any 1 ≤ b ≤ n, if Sq

b

has ` > 0 elements sp1b, . . . , sp`b where sp1b < · · · < sp`b < k + 1, then the b-th column in
A contains `-largest elements in A[1 . . .m][1 . . . b] by the above procedure. This shows that
SA = SAq . J

3 Encoding range Top-k queries on two dimensional array

In this section, we give an encoding which supports general Top-k queries on 2D array. For
an m × n 2D array, we first introduce an O(mn lgn)-bit encoding which supports Top-k
query in O(k) time by using the RMQ encoding of Brodal et al. [2].

I Proposition 3. A 2D array A[1 . . .m][1 . . . n] can be encoded using O(mn lgn) bits to
support unsorted Top-k(i, j, a, b, A) in O(k) time for 1 ≤ a, b ≤ m and 1 ≤ i, j ≤ n.

Proof. We use a data structure similar to the one outlined in [3] (based on Frederikson’s
heap selection algorithm [5]) for answering unsorted Top-k queries in 1D array3. First encode
A using O(mn lgn) bits to support RMQ (range maximum) queries in constant time for any
rectangular range in A. This encoding also supports finding the rank (i.e., the position in
sorted order) of any element in A in O(1) time [1]. Next, let x = A[x1][x2] be the maximum
value in A[i . . . j][a . . . b], which can be found using an RMQ query on A. Then consider the 4-
ary heap obtained by the following procedure. The root of the heap is x, and its four subtrees
are formed by recursively constructing the 4-ary heap on the sub-arrays A[i . . . x1− 1][a . . . b],
A[x1 + 1 . . . j][a . . . b], A[x1][a . . . x2−1] and A[x1][x2 + 1 . . . b], respectively. Now, we can find
the k largest elements in the above 4-ary heap in O(k) time using the algorithm proposed
by Frederickson [5] (note that this algorithm only builds a heap with O(k) nodes which is a
connected subgraph of the above 4-ary heap). J

We now introduce another encoding to support Top-k queries on an m × n 2D array
A. This encoding extends the optimal Top-k encoding of Gawrychowski and Nicholson [6]
for a 1D array. This encoding does not support the queries efficiently. Compared to the
encoding of Proposition 3, this encoding uses less space when n = Ω(km). We first review
the Gawrychowski and Nicholson [6]’s optimal Top-k encoding for 1D array, and show how
to extend this encoding to the 2D array case.

For a given 1D array A′[1 . . . n], we define the sequence of arrays SA′ = SA′

1 . . . SA′

n , where
for 1 ≤ j ≤ n and 1 ≤ i ≤ j, SA′

j is an array of size j defined as follows.

SA′

j [i] =
{
p if there are p (< k) elements larger than A′[i] in A′[i+ 1 . . . j]
k otherwise

3 Brodal et al. [3] also give another structure to answer sorted Top-k queries, with the same time and
space bounds.
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A1 3 7 8 2 6 4
A2 6 4 10 3 5 2

SA1
1 0

SA1
2 1 0

SA1
3 2 1 0

SA1
4 2 1 0 0

SA1
5 2 2 0 1 0

SA1
6 2 2 0 2 0 0

SA2
1 0

SA2
2 0 0

SA2
3 1 1 0

SA2
4 1 1 0 0

SA2
5 1 2 0 1 0

SA2
6 1 2 0 1 0 0

I
(1,2)
1 1

I
(1,2)
2 2 0

I
(1,2)
3 2 1 1

I
(1,2)
4 2 1 1 1

I
(1,2)
5 2 1 1 2 0

I
(1,2)
6 2 1 1 2 0 0

I
(2,1)
1 0

I
(2,1)
2 1 0

I
(2,1)
3 2 1 0

I
(2,1)
4 2 1 0 0

I
(2,1)
5 2 2 0 1 0

I
(2,1)
6 2 2 0 2 0 0

Figure 1 Top-k encoding of the 2D array A when k = 2.

See Figure 1 for an example.
If SA′

j [i] < k, we call A[i] in A[1 . . . j] as active, otherwise A[i] is inactive in A[1 . . . j].
Gawrychowski and Nicholson [6] show that for 1 ≤ i, j ≤ n, Top-k(i, j, A′) can be answered

using SA′

j [i . . . j]. They obtained a lg
((k+1)n

n

)
+ o(n)-bit encoding of SA′ by representing

δA′

1 . . . δA′

n−1 (where δA′

i =
∑i+1

l=1 S
A′

i+1[l]−
∑i

l=1 S
A′

i [l]) in unary, and compressing the sequence
using the following lemma.

I Lemma 4 ([11]). Let S be a string of length n over the alphabet Σ = {1, 0} containing m
1s. One can encode S using lg

(
n
m

)
+ o(n) bits to access any position in S in constant time.

Since
∑n−1

i−1 δ
A′

i ≤ kn, the unary sequence has kn zeros and n ones. The following lemma
states their result for 1D arrays.

I Lemma 5 ([6]). Given a 1D array A[1 . . . n], there is an encoding of A using lg
((k+1)n

n

)
+

o(n) bits which supports Top-k queries.

We now describe how to extend this encoding to a 2D m× n array A. For 1 ≤ i ≤ m,
let Ai[1 . . . n] be the array of the i-th row in A. We construct Top-k encodings for the rows
A1 . . . Am using Lemma 5, and this takes m lg

((k+1)n
n

)
+ o(n) bits. In addition, for every

1 ≤ i 6= j ≤ m, we define the sequence of arrays, I(i,j) = I
(i,j)
1 . . . I

(i,j)
n to represent Si with

respect to the elements in Aj . For 1 ≤ r ≤ n, I(i,j)
r is an array of size r defined as follows.

I(i,j)
r [s] =


p if i > j and there are p (< k) elements which are

larger than Ai[s] in Aj [s+ 1 . . . r]
q if i < j and there are q (< k) elements which are

larger than Ai[s] in Aj [s . . . r]
k otherwise (if there are ≥ k elements, in the above two cases)

See Figure 1 for an example.
We can answer the Top-k(i, j, a, b, A) queries as follows. We first define the 1D array

B[1 . . . b(j−i+1)] by writing down the values of A[i . . . j][1 . . . b] in column-major order. Then
we observe that Top-k(i, j, a, b, A) can be answered using SB

b(j−i+1)[a(j−i+1)+1 . . . b(j−i+1)].
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3:6 Encoding Two-Dimensional Range Top-k Queries

The following lemma shows that we can compute the values in SB
b(j−i+1) using SA1 . . . SAm

and all the arrays I(c,d)
b , for 1 ≤ c 6= d ≤ m.

I Lemma 6. Given a 2D array A[1 . . .m][1 . . . n], for 1 ≤ i ≤ j ≤ m and 1 ≤ b ≤ n,
let B[1 . . . q] be the 1D array of size q = (j − i + 1)b obtained by writing the elements of
A[i . . . j][1 . . . b] in column-major order. Also, for any 1 ≤ s ≤ q, let (srow, scol) be the
position corresponding B[s] in A (which can be computed using scol = ds/(j − i+ 1)e and
srow = s− (scol − 1) · (j − i+ 1) + (i− 1)). Then

SB
q [s] = min (k, (SAsrow

b [scol] +
∑

i≤`≤j,` 6=srow

I
(srow,`)
b [scol])).

Proof. It is enough to count the number of elements in B (i.e., in A[i . . . j][a . . . b]) which are
larger than B[s] (i.e., A[srow][scol]) in B[s+ 1 . . . q] (i.e., the corresponding elements in A).
Let L be the set of these elements. If |L| ≥ k, then SB

q [s] = k. In the following, we describe
how to compute SB

q [s] when |L| < k.
From the definition of SAsrow

b , it follows that the number of elements in L which are in
row srow is SAsrow

b [scol].. Also, for any row ` 6= srow, I(srow,`)
b [scol] is the number of elements

in L that belong to row `. From all these values, we can compute |L|. J

By Lemma 6, we can answer the Top-k queries on A using the Top-k encodings of all the rows
A1, . . . , Am, together with all the arrays I(i,j), for all 1 ≤ i 6= j ≤ m. Since we can recover
the order of all active elements in the prefix of i-th row using SAi [6], we can decode I(i,j)

p

using I(i,j)
p−1 and γij

p =
∑p

l=1 I
(i,j)
p [l]−

∑p−1
l=1 I

(i,j)
p−1 [l] by the following procedure, for p > 1.

1. Append 0 to I(i,j)
p−1 . Let this array be J (i,j)

p−1 .
2. Find the positions of γ(i,j)

p−1 smallest active values in Ai[1 . . . p] using SAi , and increase
the values of J (i,j)

p−1 in these positions by 1.
Therefore, using I(i,j)

1 , and γ(i,j)
2 , . . . , γ

(i,j)
n , we can encode I(i,j). Since the sum

∑`=n
`=2 γ

(i,j)
`

is at most kn, we can encode all the arrays I(i,j) (for all possible i 6= j) using m(m −
1) lg

((k+1)n
n

)
+ o(n) bits (by converting γ(i,j)

` ’s into unary, as in the encoding of Lemma 5).
Also, to encode I(i,j)

1 for i < j (note that if i > j, I(i,j)
1 is always 0), we need to store the

ordering of all elements in the first column, which takes m lgm bits. This gives a proof of
the following theorem.

I Theorem 7. Given a 2D array A[1 . . .m][1 . . . n], there is an encoding of A using
m2 lg

((k+1)n
n

)
+m lgm+ o(n) bits which can answer the Top-k queries.

4 Encoding range Top-2 queries on 2 × n array

In this section, we consider a special case of Top-k encodings for 2D arrays when the array
has only two rows, and k = 2. Note that for these parameter values, Theorem 7 gives an
encoding of size 4 lg

(3n
n

)
+ o(n) ≈ 11.02n bits. We describe an alternative approach which

results in an encoding of size 2 lg
(3n

n

)
+ 3n+ o(n) ≈ 8.51n bits.

For i ∈ {1, 2}, let Ai be the array [ai1, . . . , ain] of size n constituting the i-th row of A.
We maintain Top-k encodings for A1 and A2, which enable us to support the Top-k queries
on the individual rows. To support queries that span both the rows, we store an auxiliary
structure of size at most 3n bits.

We construct a weighted DAG, DA, such that each node in DA is labeled with a range
[a, b], where 1 ≤ a ≤ b ≤ n, and has a weight w([a, b]) ∈ {1, 2}. In the rest of this section, we
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A1 1 21 17 12 20 3 15 11 10
A2 6 5 16 14 19 2 18 4 7

Figure 2 2× n array A and the DAG DA. Nodes with weight 2 are colored red, while those with
weight 1 are not colored.

use the notation Top-2([a, b]) to refer to the query Top-2(1, 2, a, b, A). We also use (i, a) to
denote the position in the i-th row and a-th column in A. Now we define DA as follows.
1. The root of DA is labeled with the range [1, n], and w([1, n]) = 2.
2. If a = b, then [a, b] is a leaf node in DA, with weight w([a, b]) = 1.
3. Suppose there exists a non-leaf node [a, b] in DA, such that the answers to the query

Top-2([a, b]) are (i, a′) and (j, b′), for some 1 ≤ i, j ≤ 2 and a ≤ a′ ≤ b′ ≤ b. Then the at
most two children of the node [a, b] are [a, b′ − 1]and [a′ + 1, b].
Case 1. If a′ = b′ and a < b′ − 1, w([a, b′ − 1]) = 2.
Case 2. If a′ = b′ and a′ + 1 < b, w([a′ + 1, b]) = 2.
Case 3. In all other cases, w([a, b′ − 1]) = w([a′ + 1, b]) = 1.

See Figure 2 for an example. Note that a node can have at most two parents since each end
point of the interval corresponding to a node can be shared by exactly one of its children. If
the two parents of a node belong to two different cases, then the weight of the child node is
set to be the smaller of the weights set in the two cases. For example, in Figure 2, the node
[3, 4] belongs to Case 3 through the parent node [1, 4], and belongs to Case 1 through the
parent [3, 9]. Hence, its weight is set to 1. Also, not all intervals of the form [a, a] need to
appear as leaves in DA (eg., [3, 3] in Figure 2).

From the construction of DA, one can observe that if there is a node [a, b] in DA, with
1 < a ≤ b < n, then the columns a − 1 and b + 1 both contain at least one element that
is larger than the second largest elements in the sub-array A[1 . . . 2][a . . . b]. From this
observation, it follows that given any two distinct nodes x and y in DA, the answers to the
queries Top-2(x) and Top-2(y) are distinct (if there are two distinct nodes [a, b] and [a′, b′]
with b < b′ such that Top-2([a, b]) = Top-2([a′, b′]), then Top-2([a, b + 1]) = Top-2([a′, b′]),
contradicting the fact that Top-2([a, b]) 6= Top-2([a, b+ 1]). The case when b > b′, a > a′ or
a < a′ is analogous). In addition, we use the following property of DA in proving lemmas in
this section.
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3:8 Encoding Two-Dimensional Range Top-k Queries

I Proposition 8. Let A be a 2× n array and DA be its corresponding weighted DAG. For
any distinct two nodes p and q in DA, p ⊂ q if and only if p is descendant of q.

Proof. From the construction of DA, it is the case that if p is a descendant of q, then
p ⊂ q. Now, suppose p ⊂ q and p = [ap, bp] is not descendant of q. Then there exists a
node q′ which is a descendant of q such that p ⊂ q′, but no child of q′ contains p. Since
neither of the children of q′ contain p, both column positions of Top-2(q′) must belong to p
(otherwise, at least one of the children of q′ would contain p). But this would imply that
Top-2(q′) = Top-2(p), which leads to a contradiction since every node in DA has distinct
Top-2 answers. J

Furthermore, the following lemma shows that DA contains all distinct answers for
Top-2([a, b]), for 1 ≤ a ≤ b ≤ n (in other words, the answers to any Top-2([a, b]) query on A
are same as the answers to the Top-2 query on some node in the DAG).

I Lemma 9. Let A be a 2× n array. For 1 ≤ a ≤ b ≤ n, for any interval [a, b], there exist
a node p in DA such that Top-2([a, b]) = Top-2(p).

Proof. We first show that there exists a unique p such that p contains the interval [a, b] and
none of the children of p (fully) contain [a, b]. We then show that the Top-2([a, b]) = Top-2(p).

Since the root in DA contains all columns in A, it is easy to see that there exists at least
one node p = [ap, bp] in DA such that [a, b] ⊂ p but no child of p contains [a, b]. Suppose
that there exists another node p′ = [a′p, b′p] such that [a, b] ⊂ p′ but no child of p′ contains
[a, b]. From Proposition 8, it follows that p 6⊂ p′ and p′ 6⊂ p (otherwise, one of them would
be a descendant of the other, contradicting the conditions on p and p′). Now, suppose that
ap < a′p < bp < b′p (the case when a′p < ap < b′p < bp is analogous). Then there exists a
column c < a′p such that p has a child node [c, bp] which contains [a, b] by the property of
DA (note that a′p ≤ a ≤ b ≤ bp), contradicting the fact that p does not have such a child.
This shows that there is a unique such p in DA.

Now we claim that Top-2([a, b]) = Top-2(p). Suppose that there exist a c /∈ [a, b] in p

such that column c contains at least one of the answers to Top-2(p). Also without loss of
generality, we assume that c < a (the case when c > b can be handled in a similar way).
Then by the property of DA, p has a child [c+ 1, bp] which still contains [a, b], contradicting
the fact that p does not have such a child. J

The following lemma shows that for any node p = [a, b] in DA, we can answer the query
Top-2(p) using w(p) additional bits if we know the answers to the Top-2 query on the parent
node of p, and also the answers to the queries Top-2(a, b, A1) and Top-2(a, b, A2).

I Lemma 10. Let A be a 2 × n array. Given a non-root node p = [ap, bp] in DA, and its
parent node q = [aq, bq], if we know the answers to the query Top-2(q), then using the Top-2
encodings of A1 and A2 along with w(p) additional bits, we can answer the query Top-2(p).

Proof. If p is a leaf node (i.e., if ap = bp), we need w(p) = 1 extra bit to compare A1[ap] and
A2[ap]. If not, let (i1, j1) and (i2, j2), with j1 ≤ j2, be the answers to the query Top-2(q).
Also, for i ∈ {1, 2}, let fi and si be the positions of the first and the second maxima,
respectively, in the i-th row, Ai[ap . . . bp]. Then we can answer the query Top-2(p) as follows.
Without loss of generality, assume that aq < ap.
Case 1. j1 < j2: In this case, the interval p contains fi2 = j2, and this is the position of

the maximum value in p. If i2 = 1 (i2 = 2), we can find the second maximum in p by
comparing the values A1[s1] and A2[f2] (A2[s2] and A1[f1]); the result of this comparison
can be stored with w(p) = 1 extra bit.
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Case 2. j1 = j2: In this case, the interval p does not contain j1 (= j2). Therefore, to find
the maximum element in p, we store the comparison between the values A1[f1] and A2[f2]
using 1 bit. To find the second maximum element, if A1[f1] > A2[f2] (A1[f1] < A2[f2]),
then we store the comparison the values A2[f2] and A1[s1] (A1[f1] and A2[s2]) using 1
extra bit. Thus the number of required extra bits is w(p) = 2. J

The following lemma bounds the total weight of all the nodes in DA, which in turn bounds
the extra space used by the Top-2 encoding of A in addition to the Top-2 encodings of the
individual rows.

I Lemma 11. For a 2× n array A, the sum of the weights of all nodes in DA is at most 3n.

Proof. Let f(p) = (rf
p , c

f
p) and s(p) = (rs

p, c
s
p) be the positions of the first and the second

largest elements in Top-2(p), respectively. Also, for each column 1 ≤ j ≤ n, let fj and sj

be the positions of the first and the second maxima in A, respectively, in the j-th column.
We traverse DA in level order. Whenever we visit a node p = [a, b] in DA, if w(p) = 2, then
we pick the two positions f(p) and s(p), and otherwise (if w(p) = 1), we pick the position
s(p). We now claim that for all 1 ≤ j ≤ n, fj is picked at most twice, and sj is picked at
most once, during the level-order traversal of all the nodes in DA. It is easy to show that
statement of the lemma follows from this claim.
Case 1. Visiting a node p with w(p) = 1: We first show that any sj is picked at most

once. For 1 ≤ j ≤ n, suppose that node p is the first node (in level order) which picks sj .
Since the only case in which this happens is when Top-2(p) = {fj , sj}, it follows that p is
the unique node in DA that picks sj (as mentioned earlier, distinct nodes have distinct
Top-2 answers, and sj cannot be a position in the answers for a Top-2 query unless fj is
also an answer to the same query).
We now show that any fj is picked at most twice. Suppose we pick fj when we visit a
node p = [a1, b1]. We need to prove that there can be at most one other node that can
pick fj . Assume, on the contrary, that there are two more distinct nodes p2 = [a2, b2],
p3 = [a3, b3] such that we pick fj when we visit these nodes. Since w(p2) = w(p3) = 1
(note that if the weight of a node is 2, then fj can be picked at most once – see Case 2 in
this proof), only fj is picked as the second largest element when we visit p2 and p3. Also,
by the construction of DA, fj is not picked if we pick fj in any ancestor or descendant of
p. Therefore, p2 and p3 are neither ancestor nor descendant of p, and by Proposition 8,
for any two distinct q, r ∈ {p, p2, p3}, q 6⊂ r and q ∩ r 6= ∅.
Now without loss of generality, suppose that 1 ≤ a1 < a2 < a3 < j < b1 < b2 < b3 ≤ n.
Note that if f(p) exists between a3-th and b1-th column, Top-2(p) = Top-2(p2) =
Top-2(p3) = {f(p), fj} since s(p) = s(p2) = s(p3) = fj . This leads to a contradiction
since distinct nodes should have distinct Top-2 answers (for the same reason, f(p2),
and f(p3) cannot exist between a3-th and b1-th column). Therefore, a1 ≤ cf

p < a3
and b1 < cf

p3
≤ b3. Now suppose that b1 < cf

p2
≤ b2 (the case when a2 ≤ cf

p2
< a3 is

analogous). Then fj cannot be picked when we visit the node p3 since the value in fj is
smaller than the values in both f(p2) and f(p3). This leads to a contradiction, proving
that there can be at most two nodes whose weight is 1 which pick fj during the traversal.

Case 2. Visiting a node p with w(p) = 2: In this case, we prove that neither f(p) nor
s(p) are picked by any node other than p. (Thus, in this case, both f(p) and s(p) are
picked only once.) By the construction of DA, neither f(p) nor s(p) can be picked in any
ancestor of p. Also, since neither f(p) nor s(p) can be the second largest elements in any
of the descendants of p, we can’t pick either of them after visiting the node p. We now
claim that there is no node q such that p ∩ q 6= ∅, p 6⊂ q and q 6⊂ p. By Proposition 8, if
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the claim is true, p has an intersection only with its ancestors or descendants, which do
not pick both f(p) and s(p) during the traversal.
We assume, contrary to the above claim, that for the node p = [a, b], there exists a node
q = [aq, bq] such that p ∩ q 6= ∅, p 6⊂ q and q 6⊂ p. Also without loss of generality, suppose
that 1 ≤ aq < a < bq < b ≤ n. Now consider the node r, which is an element in the
lowest common ancestor (LCA)4 of the nodes p and q. If any answer of the Top-2(r)
query does not exist in [aq, b], one of r’s child is a common ancestor of the nodes p and q,
contradicting the fact that r is the LCA of p and q. Therefore, both answers of Top-2(r)
exist in c-th and d-th column where aq ≤ c ≤ d ≤ b. Also, both nodes p and q can exist
only if aq ≤ c < a and bq < d ≤ b, in which case, f([c + 1, b]) exists in d-th column.
Furthermore, by the construction of DA, cf

s = d for any node s in the path from node
[c+ 1, b] to node p. Therefore for any parent node of p, both answers of Top-2 exist in
the d-th column since w(p) = 2, contradicting the fact that bq < d ≤ b. This leads to a
contradiction that such q exists. J

I Theorem 12. A 2× n array A can be encoded using 2 lg
(3n

n

)
+ 3n+ o(n) bits, to answer

Top-2 queries.

Proof. We first encode the first and the second rows in A using 2 lg
(3n

n

)
+ o(n) bits, to

answer Top-2 queries on each row, using the encoding in Lemma 5. For each node p in
DA in level order, we write down a w(p)-length bit-string which contains the additional
bits needed to answer the query Top-2(p) (as mentioned in Lemma 10). The resulting
bit-string, dDA

, has length at most 3n, by Lemma 11. A Top-2(1, 2, a, b, A) query can be
answered as follows. We find the last node q = [aq, bq] in level order such that aq ≤ a and
b ≤ bq using the Top-2 encodings for each row and the bit string dDA

. Since Top-2(q) is
same as the Top-2(1, 2, a, b, A) by the Lemma 9, we can answer Top-2(1, 2, a, b, A) by finding
Top-2(aq, bq, A1) and Top-2(aq, bq, A2), and reading the appropriate w(q) bits in dDA

to pick
the first and the second largest elements among these four candidates. J

5 Conclusion

In this paper, we obtained space-efficient encodings which answer Top-k queries on 2D arrays.
In particular, for an m× n 2D array, we proposed an optimal encoding when the query is
one-sided. We also proposed two different encodings that answer the general (four-sided)
queries. Also when k = 2 and m = 2, we obtain an encoding which uses less space than the
general encoding. We end with following open problems:

Can we support the queries efficiently on our proposed encodings of Theorem 2, Theorem 7,
and Theorem 12?

For 2 and 3-sided queries, can we obtain encodings which use less space than the encoding
for the 4-sided Top-k queries on 2D array?

Is the effective entropy of unsorted Top-k queries smaller than the effective entropy of
sorted Top-k queries on 2D arrays?

4 For nodes p and q in DAG D, we define a LCA of p and q as the set of nodes whose out-degree is zero
in the subgraph of D induced by the common ancestors of p and q.
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Abstract
The problem of finding factors of a text string which are identical or similar to a given pattern
string is a central problem in computer science. A generalised version of this problem consists in
implementing an index over the text to support efficient on-line pattern queries. We study this
problem in the case where the text is weighted: for every position of the text and every letter
of the alphabet a probability of occurrence of this letter at this position is given. Sequences
of this type, also called position weight matrices, are commonly used to represent imprecise or
uncertain data. A weighted sequence may represent many different strings, each with probability
of occurrence equal to the product of probabilities of its letters at subsequent positions. Given
a probability threshold 1

z , we say that a pattern string P matches a weighted text at starting
position i if the product of probabilities of the letters of P at positions i, . . . , i + |P | − 1 in the
text is at least 1

z . In this article, we present an O(nz)-time construction of an O(nz)-sized index
that can answer pattern matching queries in a weighted text over a constant-sized alphabet in
optimal time. This improves upon the state of the art by a factor of z log z in construction time
and space. Other applications of this data structure include an O(nz)-time construction of the
weighted prefix table and an O(nz)-time computation of all covers of a weighted sequence, which
improve upon the time complexity of the state of the art by the same factor.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases weighted sequence, position weight matrix, indexing, weighted suffix tree

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.4

1 Introduction

Finding factors of a text resembling a pattern constitutes a classical problem in computer
science. Apart from its theoretical interest, it is the core computation of many applications [14]
such as search engines, bioinformatics, natural language processing and database search.
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In many situations the text can be considered as fixed and the patterns may arrive later.
The algorithmic challenge is then to provide fast and direct access to all the factors of the
text via the implementation of an index. The most widely used data structures for this
purpose are the suffix tree and the suffix array [7]. These data structures can be constructed
in O(n) time for a text of length n. Then all locations of a pattern of length m can be found
in the optimal time O(m+ Occ), where Occ is the number of occurrences.

The pattern matching problem for uncertain sequences has been less explored [12]. In
this work we consider a type of uncertain sequences called weighted sequences (also known as
position weight matrices, PWM). In a weighted sequence every position contains a subset
of the alphabet and every letter is assigned a probability of occurrence such that at each
position the probabilities sum up to 1. Such sequences are common in various applications:
(i) data measurements such as imprecise sensor measurements; (ii) flexible modelling of
DNA sequences such as DNA binding profiles; (iii) when observations are private and thus
sequences of observations may have artificial uncertainty introduced deliberately.

In the weighted pattern matching (WPM) problem we are given a string of length m

called a pattern, a weighted sequence of length n called a text, both over an alphabet Σ of
size σ, and a threshold probability 1

z . The task is to find all positions in the text where the
fragment of length m represents the pattern with probability at least 1

z . Each such position
is called an occurrence of the pattern; we also say that the fragment and the pattern match.
An O(σn logm)-time solution for the WPM problem based on Fast Fourier Transform was
proposed in [6]. This problem was also considered in [1] where a reduction to property
matching in a text of size O(nz2 log z) was proposed.

In this article, we are interested in the indexing version of the WPM problem, that is,
constructing an index to provide efficient procedures for answering queries related to the
content of a fixed weighted sequence. In [11], the authors presented the weighted suffix
tree allowing O(m+ Occ)-time WPM queries; the construction time and size of that data
structure is O(nσz log z). A direct application of the results in [1] reduces the construction
time and the size of that index to O(nz2 log z). The index structure built in [11] consists of
a compacted trie of all of the factors with probability greater than or equal to 1

z . A similar –
though more general – indexing data structure, which assumes z = O(1), was presented in [4]
with query time O(m+m×Occ). Here we propose a tree-like data structure that is similar
to the aforementioned ones which is, however, constructed and stored much more efficiently.
Note that the proposed index is constructed and works for a predetermined parameter z, as
opposed to the one of [4] which can additionally answer queries for z′ < z.

Our model of computations. We assume word-RAM model with word size w = Ω(log(nz)).
We consider the log-probability model of representations of weighted sequences in which
probabilities can be multiplied exactly in O(1) time.

A common assumption in practice is that σ = O(1) since the most commonly studied
alphabet is Σ = {A, C, G, T}. In this case a weighted sequence of length n has a representation
of O(n) size. We describe the indexing data structure under this assumption. In the
Conclusions Section we briefly discuss the construction of the index for larger alphabets.

Our contribution. We present an O(nz)-time construction of an O(nz)-sized index that
answers weighted pattern matching queries in optimal O(m+ Occ) time improving upon [1]
by a factor of z log z. Applications of our data structure include an O(nz)-time construction
of the weighted prefix table and an O(nz)-time computation of all covers of a weighted
sequence, which improve upon [2] and [11], respectively, by the same factor in the complexity.
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Structure of the article. In Section 2 basic notation related to weighted sequences, tries and
compacted tries is presented. In particular, we introduce an important notion of extensions
of solid prefixes, which is then used to construct an intermediate data structure that is
crucial to our index, called solid factor trie, in Section 3. The weighted index is described in
Section 4. First, in Section 4.1, we show how the main component of the index, compacted
trie of maximal solid factors, is obtained from the solid factor trie, and then, in Section 4.2,
a black-box description of the weighted index together with all the auxiliary data structures
is given. Section 5 contains two examples of applications of the weighted index. We end
with a Conclusions Section where we sketch changes to be made to the index in the case of a
superconstant-sized integer alphabet.

2 Preliminaries

Let Σ = {s1, s2, . . . , sσ} be an alphabet. A string S over Σ is a finite sequence of letters
from Σ. By S[i], for 1 ≤ i ≤ |S|, we denote the i-th letter of S. The empty string is denoted
by ε. By S[i..j] we denote the string S[i] . . . S[j] called a factor of S (if i > j, then the factor
is an empty string). A factor is called a prefix if i = 1 and a suffix if j = |S|. A factor U of a
string S is called proper if U 6= S. By SR we denote the reversal (the mirror image) of S.

I Definition 1 (Weighted sequence). A weighted sequence X = x1x2 . . . xn of length |X| = n

over an alphabet Σ = {s1, s2, . . . , sσ} is a sequence of sets of pairs of the form:

xi = {(sj , π(X)
i (sj)) : j ∈ {1, 2, . . . , σ}}.

If the considered weighted sequence is unambiguous, we write πi instead of π(X)
i . Here, πi(sj)

is the occurrence probability of the letter sj at the position i ∈ {1, . . . , n}. These values are
non-negative and sum up to 1 for a given i.

The probability of matching of a string P with a weighted sequence X, both having the
same length, equals

P(P,X) =
|P |∏
i=1

π
(X)
i (P [i]).

We say that a string P matches a weighted sequence X with probability at least 1
z , denoted

by P ≈ 1
z
X, if P(P,X) ≥ 1

z . By X[i..j] we denote a weighted sequence called a factor of
X and equal to xi . . . xj (if i > j, then the factor is an empty weighted sequence). We then
say that a string P occurs in X at position i if P matches the factor X[i..i+ |P | − 1]. We
also say that P is a solid factor of X (starting, occurring) at position i. By Occ 1

z
(P,X) we

denote the set of all positions where P occurs in X. The main problem considered in the
article can be formulated as follows.

I Problem (Weighted Indexing).
Input: A weighted sequence X of length n over an alphabet Σ of size σ and a threshold
probability 1

z .
Queries: For a given pattern string P of length m, check if Occ 1

z
(P,X) 6= ∅, compute

|Occ 1
z
(P,X)|, or report all elements of Occ 1

z
(P,X).

We say that P is a (right-)maximal solid factor of X at position i if P is a solid factor of
X at position i and no string P ′ = Ps, for s ∈ Σ, is a solid factor of X at this position.
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I Fact 2 (Amir et al. [1]). A weighted sequence has at most z different maximal solid factors
starting at a given position.

For each position of a weighted sequence X we define the heaviest letter as the letter
with the maximum probability (breaking ties arbitrarily). By X we denote a string obtained
from X by choosing at each position the heaviest letter. We call X the heavy string of X.

2.1 Extensions of solid factors

Let us fix a weighted sequence X of length n. If F is a solid factor of X starting at position
i and ending at position j, j ≥ i− 1, then the string FX[j + 1..n] is called the extension of
the solid factor F . By E we denote the set of extensions of all solid factors of X.

I Observation 3. E is exactly the set of extensions of all maximal solid factors of X.

Proof. Let FX[j + 1..n] ∈ E be an extension of a solid factor F starting at position i and let
k ∈ {j, . . . , n} be the maximum index such that FX[j + 1..k] is a solid factor of X starting
at position i. Then M = FX[j + 1..k] is a maximal solid factor, as it cannot be extended by
the most probable letter X[k + 1], and FX[j + 1..n] = MX[k + 1..n] is its extension. J

The following observation shows that E is closed under suffixes.

I Observation 4. If S ∈ E, S 6= ε, then the longest proper suffix S′ of S also belongs to E.

Proof. Assume that S is an extension of a solid factor F . If |F | ≥ 1, then S′ is an extension
of the longest proper suffix of F . Otherwise, S′ is an extension of an empty factor. J

2.2 Tries

We consider rooted labeled trees with labels on edges, called tries. The labels are letters from
Σ; edges going down from a single node have distinct labels. The root is denoted by root.

If T is a trie and u, v are its two nodes such that v is an ancestor of u, then by str(u, v)
we denote the string spelled by the edge labels on the path from u to v. We say that
{str(u, root) : u ∈ T} are the suffixes of the trie T . As usual by lca(x, y) we denote the
lowest common ancestor of the nodes x and y. By Li for i ≥ 0 we denote the i-th level of T
that consists of nodes at depth i in the trie.

A compacted trie is a trie in which maximal paths whose inner nodes have degree 2 are
represented as single edges with string labels. Usually such labels are not stored explicitly, but
as pointers to a base string (or base strings); only the first letters are stored. The remaining
nodes are called explicit, whereas the nodes that are removed due to compactification are
called implicit. A well-known example of a compacted trie is a suffix tree of a string [7].

A suffix tree of a trie T , denoted by S(T ), is a compacted trie of the strings str(u, root)
for u ∈ T ; see [5, 15, 16]. The explicit nodes of S(T ) that correspond to str(u, root) for u ∈ T
are called terminal nodes. The string labels of the edges of S(T ) are not stored explicitly,
but correspond to upward paths in the trie T . For a node v of S(T ), by str(v) we denote the
concatenation of labels of the edges from the root of S(T ) to v.

I Fact 5 (Shibuya [16]). The suffix tree of a trie with N nodes has size O(N) and can be
constructed in O(N) time.
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3 Solid factor trie

For a weighted sequence X of length n, a solid factor trie of X, denoted by T , is a trie
having as suffixes the reversals of the strings from E . By this definition:

I Observation 6. If S is a solid factor of X, then there exist nodes u, v in T such that
str(u, v) = S.

It turns out that the solid factor trie represents all maximal solid factors of X much more
efficiently than if each of them was stored separately.

I Lemma 7. The solid factor trie T has at most z nodes at each level.

Proof. By Observation 4, each node at the level i in T comes from a string of length i in E .
By Observation 3 and Fact 2, there are at most z strings of length i in E . J

We proceed with a construction of the solid factor trie in time linear in the size of the trie.
For this, we need to equip the data structure with additional values; these enhancements
will also turn out useful in the construction of the weighted index.

For each edge of the trie we store, in addition to its letter label, its probability defined
as the probability of this letter at the respective position in X. If v is an ancestor of u,
then by π(u, v) we denote the product of probabilities of edges on the path from u to v.
Let H be the heavy path in T that corresponds to X and let h be the leaf on this path.
For each node v of T we retain the node back(v) defined as lca(v, h) and the probability
π-back(v) = π(v,back(v)). We also denote str-back(v) = str(v,back(v)) (those values are
not stored).

I Theorem 8. The solid factor trie T of a weighted sequence X of length n can be constructed
in O(nz) time.

Proof. The trie is constructed by the algorithm Construct-T (X, n). We add new nodes to
T level by level. First we extend the heavy path. A node v at level i− 1 receives a child with
an edge labeled by a letter s if and only if s str-back(v) is a solid factor at position n− i+ 1;
this condition is checked using the π-back(v) values. Then we assign the child its values of
back and π-back. The correctness of the algorithm follows from the claim below.

I Claim. After the i-th step of the outmost loop of the algorithm Construct-T (X, n), the
trie’s suffixes are the reversals of the strings from E of length at most i.

Proof. The proof goes by induction on i. The case of i = 0 is trivial. Let us assume that
the claim holds for i− 1 and prove that it then also holds for i. We need to show that if a
node u is created by the algorithm at the i-th level, then str(u, root) ∈ E and, conversely,
if S ∈ E is a string of length i, then a node u such that str(u, root) = S is created by the
algorithm at the i-th level. We prove the two implications separately.

(⇒) If the node u is created for some letter s, then, by the inductive hypothesis and the
condition checked in the algorithm, s str-back(v) is a solid factor of X starting at position
n− i+ 1. Let j be the level of the node back(v). Then:

str(u, root) = s str-back(v) X[n− j + 1..n] ∈ E .
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Algorithm Construct-T (X, n)

h0 := root; L0 := {h0};
for i := 1 to n do

Create a new node hi being a child of hi−1 with the letter X[n− i+ 1];
back(hi) := hi;
π-back(hi) := 1;
Li := {hi};
foreach v ∈ Li−1 do

foreach s ∈ Σ in order of non-increasing π(X)
n−i+1(s) do

if v = hi−1 and s = X[n− i+ 1] then continue;
if π(X)

n−i+1(s) · π-back(v) ≥ 1
z then

Create a new node u being a child of v with the letter s;
back(u) := back(v);
π-back(u) := π

(X)
n−i+1(s) · π-back(v);

Li := Li ∪ {u};
else break;

(⇐) Let S′ be the longest proper suffix of S. Then S′ ∈ E due to Observation 4. By the
inductive hypothesis, there exists a node v in Li−1 such that str(v, root) = S′. Then S is an
extension of the solid factor s str-back(v), so indeed π(X)

n−i+1(s) · π-back(v) ≥ 1
z and the node

u corresponding to S will be created. J

Let us proceed with the complexity analysis. In each step of the innermost foreach-loop
(apart from the step involving a node of the heavy path), either a new node is created or
the execution of the loop is interrupted. For a given i, the former takes place |Li| times in
total and the latter takes place at most |Li−1| times in total. The whole algorithm works in
O(

∑n
i=0 |Li|) = O(nz) time due to Lemma 7. J

Let us introduce additional values to T that enable recovering the maximal solid factors
of X. For a node u ∈ Li, by end(u) we denote its ancestor v such that str(u, v) is a maximal
solid factor at position n− i+ 1 in X. Moreover, by len(u) we denote |str(u, v)|.

I Lemma 9. The values end(u) and len(u) for all nodes u of T can be computed in O(nz)
time.

Proof. Clearly, it suffices to focus on the end-pointers, as the len-values can be computed
from these pointers in linear time if only we store for each node its level in the trie.

For each node u, end(u) is an ancestor of back(u) (possibly equal to back(u)), therefore
it is located on the heavy path H. For each node v ∈ H from the leaf h up to the root we
will set the end-pointers for all nodes u such that end(u) = v. In the computation we use
the following property of the pointers:

I Observation 10. If x is an ancestor of y, then end(x) is an ancestor of end(y).

A node will be called active if it is a descendant of v such that its end-pointer has not
been computed yet but its children’s end-pointers have all been computed. After a node
v ∈ H has been considered, a set A containing all the active nodes u together with the values
π(u, v) is stored. Initially the set is empty.
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For the next node v ∈ H we first update the set A. If v = h, then we simply insert v to
A with the probability 1. Otherwise, we iterate through all the nodes u in the set A and
multiply their probabilities by the probability of the edge π(v′, v) where v′ is the child of v
on the heavy path. Then we insert to A all the leaves in the subtrees of T corresponding to
children of v other than v′; their probabilities in A are the values of π-back.

Next, we try to set the end-pointers for the elements of A and their ancestors. If v is
the root, we simply set the pointers to the root to all the elements of A and their ancestors.
Otherwise, let w ∈ H be the parent of v. We iterate through all the elements u ∈ A and for
each of them check if π(u,w) = π(u, v)π(v, w) is at least 1

z . If so, we simply leave u in A
for the next iterations. Otherwise, we set end(u) = v. If u was the last child of its parent
for which we computed the end-pointer, we add the parent of u to A. In order to efficiently
check this condition, each node counts its children whose end-pointer is yet to be determined.

The correctness of the algorithm follows from Observation 10. The running time is
proportional to the total number of times a node from A is visited. When a node v ∈ H
is considered, for each node u ∈ A either its end-pointer is set, which obviously happens
at most |T | = O(nz) times in total, or str(u, v) corresponds to a left-maximal solid factor
ending at position corresponding to the level of v in T , which can happen at most z times
by Fact 2. This implies O(nz) time complexity of the whole algorithm. J

I Example 11. The figure below shows an example of T for z = 4 and

X = [(a, 0.5), (b, 0.5)]bab[(a, 0.5), (b, 0.5)][(a, 0.5), (b, 0.5)]aaba.

Among a few heavy strings of X, we can select X = ababaaaaba.
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4 Construction of the weighted index

Our index for a weighted sequence X is based on a compacted trie of all maximal solid factors
of X. We first show how this compacted trie can be constructed from the suffix tree S(T )
of the solid factor trie T . Next, we describe in detail all the components of the resulting
weighted index.
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4.1 Compacted trie of maximal solid factors
First of all, from Fact 5 and Lemma 7 we obtain an efficient construction of S(T ):

I Lemma 12. The suffix tree of the solid factor trie can be constructed in O(nz) time.

The trie T represents more than the (maximal) solid factors of X, and so does S(T ). However,
the len-values that we computed in T let us delimit the maximal solid factors. Using them
we can transform S(T ) into a compacted trie T ′ of all maximal solid factors of X. Assume
that in S(T ) each terminal node stores, as its label, the starting position in X of the string
from E that it represents (i.e., its depth). Then in T ′ a terminal’s label is a list of starting
positions in X of occurrences of the corresponding maximal solid factor.

I Theorem 13. A compacted trie T ′ of all maximal solid factors of a weighted sequence X
of length n can be constructed in O(nz) time.

Proof. We start by constructing the solid factor trie T of X, together with the len-values,
and its suffix tree S(T ). By Theorem 8 and Lemmas 9 and 12, these steps take O(nz) time.
Now it suffices to properly trim S(T ). For a terminal node v in S(T ) corresponding to
str(u, root) in T , as len(v) we store len(u). Then we need to “lift” such a terminal node to
depth len(v) in S(T ). In practice we proceed as follows.

For an (explicit or implicit) node u of S(T ), by maxlen(u) we denote the maximum value
of len(v) for a descendant terminal node v. As a result of trimming we leave only those
(explicit or implicit) nodes u for which maxlen(u) is at least as big as their depth in the trie;
we call such nodes relevant nodes and the remaining nodes irrelevant nodes.

This procedure can be implemented in linear time. Indeed, the maxlen-values for all
explicit nodes can be computed with a single bottom-up traversal. In another bottom-up
traversal, we consider all irrelevant explicit nodes. Let w be such a node and let v be its
explicit parent. Assume that v is located at depth d. If maxlen(w) ≤ d, w is removed from
S(T ) and its label is appended to its parent’s label. Otherwise, we cut the edge connecting
v and w at depth maxlen(w) and move the irrelevant node w there, making it relevant. J

4.2 The weighted index
As already mentioned, our weighted index is based on the compacted trie T ′ of all maximal
solid factors of X. We also need to store the solid factor trie T which lets us access the
string labels of the edges of the compacted trie. For convenience we extend each maximal
solid factor in T ′ by a symbol $ 6∈ Σ. As a result, each maximal solid factor corresponds to a
leaf in T ′ which is labeled with a list of starting positions of its occurrences in X.

We assume left-to-right orientation of the children of each node (e.g., lexicographic). A
global occurrence list OL is stored being a concatenation of the lists of occurrences in all the
leaves of the trie T ′ in pre-order. Each node v stores, as OL(v), the occurrence list of leaves
in its subtree represented as a pair of pointers to elements of the global list OL. We enhance
the occurrence list OL by a data structure for the following colored range listing problem.

I Problem (Colored range listing). Preprocess a sequence A[1..N ] of elements from [1..S] so
that, given a range A[i..j], one can list all the distinct elements in that range.

I Fact 14 (Muthukrishnan [13]). A data structure for the colored range listing problem of
O(N) size can be constructed in O(N + S) time and answers queries in O(k+ 1) time where
k is the number of distinct elements reported.
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For all nodes of T ′ we also compute the following values (for the purpose of this computation
we replace each leaf v with |OL(v)| bogus leaves with single occurrences).

I Fact 15 (Color set size, Hui [10]). Given a rooted tree of size N with L leaves colored from
[1..S], in O(N + S) time one can find for each node u the number of distinct leaf colors in
the subtree of u.

We denote the resulting data structure as I.

I Theorem 16. The index I for a weighted sequence X can be constructed in O(nz) time. It
answers decision and counting variants of weighted pattern matching queries in O(m) time,
and, if required, reports all occurrences of the pattern in O(m+ |Occ 1

z
(P,X)|) time.

Proof. The compacted trie T ′ can answer queries if Occ 1
z
(P,X) 6= ∅ in O(m) time. We

can use Fact 15 to equip each explicit node with the number of positions where the string
represented by the node occurs. This way, |Occ 1

z
(P,X)| can also be determined in O(m) time.

With the aid of the data structure for colored range listing, we can also report Occ 1
z
(P,X)

in time proportional to the number of reported elements. J

I Example 17. The figure below shows the trie T ′ constituting the weighted index for the
solid factor trie T shown in Example 11.

10

5 6

7

8

3 5

1 3

1

3 3

9

4 5

6

2 4

2 2 2 4 5 1 1

4

a

$ a

a
ab

a$

ba$
ba$

b

a

$ a
aa

ba
$ ba$

b

a
$

aba$
b$

b

aa
ab

a$

baaba$

b

a

$ a
a

ab
a$

ba$
ba$

b

a

a
aa

ba
$ ba$

baaba$

b

aa
ab

a$

baaba$

b

a

a

ab
a$

ba$

b

a$

b$

baaba$

5 Applications of the weighted index

In this section we present two non-trivial applications of the weighted index. In both cases
we improve the time complexity of the previously known results by a factor of z log z.

5.1 Weighted longest common prefixes and weighted prefix table
For a weighted sequence X of length n and a pair of indices i, j, 1 ≤ i, j ≤ n, by wlcp(i, j)
we denote the length of the longest solid factor that occurs in X at both positions i and j.
After some preprocessing our weighted index allows to answer such queries in O(z) time.
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I Theorem 18. Given a weighted sequence X of length n, after O(nz)-time preprocessing
we can answer wlcp(i, j) queries for any 1 ≤ i, j ≤ n in O(z) time.

Proof. For each position i in X we precompute the list of leaves L(i) of the weighted index
I that contain i in their occurrence lists. Prior to that, all leaves are numbered in pre-order,
and the elements of L(i) are stored in this order. By Fact 2, |L(i)| ≤ z for each i.

Observe that wlcp(i, j) is the maximum depth of a lowest common ancestor (lca) of a
leaf in L(i) and a leaf in L(j). To determine this value, we merge the lists L(i) and L(j)
according to the pre-order. The claim below (Lemma 4.6 in [7]) implies that, computing
wlcp(i, j), it suffices to consider pairs of leaves that are adjacent in the resulting list.

I Claim. If l1, l2 and l3 are three leaves of a (compacted) trie such that l2 follows l1 and l3
follows l2 in pre-order, then depth(lca(l1, l3)) = min(depth(lca(l1, l2)),depth(lca(l2, l3))).

Merging two sorted lists, each of length at most z, takes O(z) time. Finally let us recall that
lca-queries in a tree can be answered in O(1) time after linear-time preprocessing [3, 9]. J

The weighted prefix table WPT [1..n] of X is defined as WPT [i] = wlcp(1, i); see [2]. As
a consequence of Theorem 18 we obtain an O(nz)-time algorithm for computing this table.
It outperforms the algorithm of [2], which works in O(nz2 log z) time.

I Theorem 19. The weighted prefix table WPT of a given weighted sequence of length n
can be computed in O(nz) time.

5.2 Efficient computation of covers
A cover of a weighted sequence X is a string P whose occurrences as solid factors of X
cover all positions in X; see [11]. More formally, if we define maxgap of an ordered set
A = {a1, . . . , ak} (with a1 < . . . < ak) as

maxgap(A) = max{ai − ai−1 : i = 2, . . . , k},

then P is a cover of X if and only if

1 ∈ Occ 1
z
(P,X) and maxgap(Occ 1

z
(P,X) ∪ {n+ 1}) ≤ |P |.

Note that the former condition means exactly that P is a solid prefix of X. An O(n)-time
algorithm computing a representation of all the covers of a weighted sequence under the
assumption that z = O(1) was presented in [11]. Here we show an algorithm that works in
O(nz) time.

The algorithm of [11] uses a data structure (which we denote here by D) to store a
multiset of elements A from the set {2, . . . , n} allowing three operations:
1. initialisation with a given multiset of elements A;
2. computing maxgap(D) = maxgap(A ∪ {1, n+ 1}) for the currently stored multiset A;
3. removing a specified element from the currently stored multiset A.
The data structure has O(n) size, executes operation 1. in O(|A| + n) time and supports
operations 2. and 3. in constant time. It consists of: (1) an array C[1..n+ 1] that counts the
multiplicity of each element; (2) a list L that stores all distinct elements of A ∪ {1, n+ 1} in
ascending order and retains its maxgap; and (3) an array P [1..n+ 1] that stores, for each
distinct element of A ∪ {1, n+ 1}, a pointer to its occurrence in L.

The algorithm of [11], formulated in terms of our index I, works as follows. For a node v
let D(v) be the D-data structure storing the multiset OL(v) \ {1}. The path from the root
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to each terminal node that represents a maximal solid prefix of X is traversed, and at each
explicit node v the data structure D(v) is computed. To this end, when we move from a node
v to its child w on the path, from D(v) we remove all elements from OL(w′) for w′ being
children of v other than w. Afterwards for the node w we perform the following check, which
we call cover-check(w): if maxgap(D(w)) ≤ depth(w), report the covers being prefixes of
str(w) of length [max(maxgap(D(w)),depth(v) + 1)..depth(w)]. The whole procedure works
in O(nz2) time, as a single traversal works in linear time w.r.t. the size of the index and
there are at most z maximal solid prefixes of X (Fact 2).

Let us show how this algorithm can be implemented to run in O(nz) time. We will call
an explicit node of I a prefix node if it corresponds to a solid prefix of X. To implement
the solution, it suffices for each prefix node to compute the D-data structure and apply the
cover-check routine. A prefix node will be called branching if it has more than one child
being a prefix node, and starting if it is the root or its parent is branching. A maximal
path going down the trie from a starting prefix node and passing only through non-starting
prefix nodes will be called a covering path. Considering the prefix node subtree of I, which
contains at most z leaves and, consequently, at most z − 1 branching nodes, we make the
following easy but important observation.

I Observation 20. There are O(z) covering paths and each prefix node belongs to exactly
one of them.

In the algorithm we compute the D-data structures for all starting prefix nodes (by first
computing the C-arrays) and then update the data structure efficiently along each covering
path. The proofs of the following two lemmas are deferred to the full version of the article.

I Lemma 21. D(v) for all starting prefix nodes v can be computed in O(nz) time.

I Lemma 22. The values maxgap(D(v)) for all prefix nodes can be computed in O(nz) time.

I Theorem 23. A representation of size O(nz) of all covers of a weighted sequence X of
length n can be computed in O(nz) time. In particular, all shortest covers of X can be
determined in O(nz) time.

Proof. To annotate all the covers on the edges of the index, we compute the maxgaps for all
the prefix nodes using Lemma 22 and then apply the constant-time cover-check routine for
each of the nodes. As for the shortest covers, there are at most z of them (as there are at
most z different solid prefixes of X of a specified length, each with probability of occurrence
at least 1

z ), so they can all be listed explicitly in O(nz) time and space. J

6 Conclusions

We have presented an index for weighted pattern matching queries which for a constant-sized
alphabet has O(nz) size and admits O(nz) construction time. It answers queries in optimal
O(m + Occ) time. We have also mentioned two applications of the weighted index. Our
index outperforms the previously existing solutions by a factor of z log z in the complexity.

Generalization to integer alphabets. Let us briefly discuss how to adapt our index to a
general integer alphabet. The size of the input is then the total length R of the lists in the
representation of the weighted sequence. In the construction of the solid factor trie we need
the list at each position to be ordered according to the probabilities of letters. As the size
of each list to be sorted is min(z, σ) (at most z letters can have probability at least 1

z ), the
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sorting requires O(R log min(σ, z)) time. The construction of a suffix tree of a tree of [16]
works for any integer alphabet. Finally, our weighted index is a compacted trie with children
of a node being indexed by the letter of the alphabet. Hence, to avoid an increase of the
complexity of a query for a particular child of a node, for a general alphabet one requires to
store a hash table of children. With perfect hashing [8] the complexity does not increase but
becomes randomized (Las Vegas, running time w.h.p.).

An open question is whether our weighted index, constructed for a predetermined z, can
be adapted to answer weighted pattern matching queries for z′ < z, as it is in the case of [4].
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Abstract
Longest common extension queries (often called longest common prefix queries) constitute a fun-
damental building block in multiple string algorithms, for example computing runs and approx-
imate pattern matching. We show that a sequence of q LCE queries for a string of size n over a
general ordered alphabet can be realized in O(q log logn + n log∗ n) time making only O(q + n)
symbol comparisons. Consequently, all runs in a string over a general ordered alphabet can be
computed in O(n log logn) time making O(n) symbol comparisons. Our results improve upon
a solution by Kosolobov (Information Processing Letters, 2016), who gave an algorithm with
O(n log2/3 n) running time and conjectured that O(n) time is possible. We make a significant
progress towards resolving this conjecture. Our techniques extend to the case of general un-
ordered alphabets, when the time increases to O(q logn+n log∗ n). The main tools are difference
covers and the disjoint-sets data structure.
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5:2 Faster Longest Common Extension Queries in Strings over General Alphabets

can be either ordered, meaning that one can check if one symbol is less than another, or
unordered, meaning that only equality of two symbols can be checked. Many classical
linear-time string-matching algorithms (e.g. Knuth-Morris-Pratt, Boyer-Moore) work for any
unordered general alphabet. Recently, a linear-time algorithm for computing the leftmost
critical factorization in such model was given [11]. On the other hand, algorithms related
to detecting repetitions usually need Ω(n logn) equality tests [18], and an on-line algorithm
matching this bound is known [13].

In this paper we consider the longest common extension problem (LCE, in short) in case of
general ordered and unordered alphabets. The goal is to preprocess a given word w of length
n for queries LCE(i, j) returning the length of the longest common factor starting at position
i and j in w. Such queries are often a basic building block in more complicated algorithms,
for example in computing runs [1, 2] as well as in approximate string matching [15].

For integer alphabets of polynomial size, one can preprocess a given string in linear time
and space to answer any LCE query in constant time. Preprocessing space can be traded for
query time [4, 5] and generalizations to trees [3] and grammar-compressed strings [9, 10, 16, 19]
are known. The situation is more complicated for general alphabets. If the alphabet is
ordered, then of course we can reduce it to [1..n] by sorting the characters in O(n logn)
time and preprocess the obtained string in linear time and space to answer any LCE query
in constant time. However this increases the total preprocessing time to O(n logn). For
unordered alphabet the situation is even worse, because the reduction would take O(n2)
time. A natural question is hence how efficiently we can answer a collection of such queries
given one by one (on-line), where we measure the preprocessing time plus the total time
taken by all the queries.

It is known that if we can perform on-line O(n) LCE queries for a given word of length n in
total time T (n) makingO(n) symbol comparisons, then we can compute all runs inO(n+T (n))
time making only O(n) symbol comparisons. An algorithm with T (n) = O(n log2/3 n) time
was recently presented by Kosolobov [14], who posed the existence of a linear-time algorithm
as an open question. Much earlier, Breslauer [6] asked in his PhD thesis whether an easier
task of square detection (equivalently, checking if a word has at least one run) is possible in
linear time in the comparison model. In this paper we make a significant progress towards
answering both questions by giving a faster algorithm with T (n) = O(n log logn).

Our result. For a given string of length n over a general ordered alphabet, we can answer
on-line a sequence of q LCE queries in O(q log logn+n log∗ n) time making O(q+n) symbol
comparisons. In particular, a sequence of O(n) queries can be answered in O(n log logn)
time. Consequently, all runs in a string over a general ordered alphabet can be computed in
O(n log logn) time making O(n) symbol comparisons. For a general unordered alphabet we
answer q LCE queries in O(q logn+n log∗ n) time, still making O(q+n) symbol comparisons.

Overview of the methods. At a very high level, our approach is similar to the one used by
Kosolobov. We first show how to calculate min(LCE(i, j), t) efficiently, where t = polylogn.
Then we use a difference cover to sample some positions in the text. Using “short” queries,
we can efficiently construct a sparse suffix array for these sampled positions, which in turn
allows us to calculate an arbitrary LCE(i, j) efficiently. The key difference is that instead of
calculating min(LCE(i, j), t) naively, we use a recursive approach. The main tool there is an
efficient Union-Find structure. This is enough to answer O(n) short queries in O(n log logn ·
α(n log logn, n log logn)) total time. We can remove the α(n log logn, n log logn) factor
introducing another difference cover and carefully analyzing the running time of the Union-
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6 6 6 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

h(3, 10) = 5 h(3, 10) = 5

Figure 1 An example of a 6-cover S(6) = {2, 3, 5, 8, 9, 11, 14, 15, 19, 20, 21, 23} (for D = {2, 3, 5}),
with the elements marked as black circles. For example, we have h(3, 10) = 5, since 3+5, 10+5 ∈ S(6).

Find data structure. Finally, we modify the algorithm to work faster when the number of
queries q is smaller than n. The main insight allowing us to obtain O(q log logn+ n log∗ n)
total time is introducing multiple levels of difference covers with some additional properties.
Such family of difference covers was implicitly provided in [8].

2 Preliminaries

A difference cover is a number-theoretic tool used throughout the paper. A set D ⊆ [0..t− 1]
is said to be a t-difference-cover if [0..t− 1] = { (x− y) mod t : x, y ∈ D }.

I Lemma 1 (Maekawa [17]). For every integer t there is t-difference-cover of size O(
√
t),

which can be constructed in O(
√
t) time.

A subset X of [1..n] is t-periodic if for each i ∈ [1..n− t] we have: i ∈ X ⇔ i+ t ∈ X.
A set S ⊆ [1..n] is called a t-cover of [1..n] if S is t-periodic and there is a constant-

time computable function h such that for 1 ≤ i, j ≤ n − t we have 0 ≤ h(i, j) ≤ t and
i+ h(i, j), j + h(i, j) ∈ S(t) (see Figure 1).

A t-cover can be obtained by taking a t-difference-cover D and setting S(t) = {i ∈ [1..n] :
i mod t ∈ D}. This is a well-known construction implicitly used in [7], for example.

I Lemma 2. For each t ≤ n there is a t-cover S(t) of size O( n√
t
) which can be constructed

in O( n√
t
) time.

Our another tool is a disjoint-sets data structure. In this problem we maintain a family of
disjoint subsets of [1..n], initially consisting of singleton sets. We perform Find queries asking
for a subset containing a given element, and Union operations which merge two subsets.

Note that the extremely fast-growing Ackermann function [21] is defined for i, j ∈ Z>0 as

A(i, j) =


2j if i = 1,
A(i− 1, 2) if i > 1 and j = 1,
A(i− 1, A(i, j − 1)) if i > 1 and j > 1.

Moreover, for n,m ∈ Z>0 (m ≥ n) one defines α(m,n) = min{i ≥ 1 : A(i,
⌊

m
n

⌋
) > logn}.

I Lemma 3 (Tarjan [20]). A sequence of up to n Union and m Find operations on an
n-element set can be executed on-line in O(n+m · α(m+ n, n)) total time.

The proof of the following lemma is deferred to the full version of the paper:

I Lemma 4. For every n,m ∈ Z>0, we have n+m · α(m+ n, n) = O(m+ n log∗ n).

CPM 2016
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i j

`1 `1

`2 `2

`3 `3

∆ ∆

t t
CoarseLCE
ShortLCE

Figure 2 Illustration of Algorithm 1 for the case `1 ≥ ∆.

3 Generic LCE algorithm for general ordered alphabets

We define t-short LCE queries by restricting the answer to at most t:

ShortLCEt(i, j) = min(LCE(i, j), t).

We define a t-block as a fragment of the input text w which starts in S(t) and has length t.
If a position in S(t) lies near the end of w, we form a t-block from a suffix of w and enough
dummy symbols to reach length t. We also introduce t-coarse LCE queries, which are LCE
queries restricted to positions from S(t) returning the number of matching t-blocks:

CoarseLCEt(i, j) =
{
bLCE(i, j)/tc if i, j ∈ S(t),
⊥ otherwise.

We now describe how to use ShortLCE and CoarseLCE queries for general LCE queries.

I Lemma 5. If every sequence of q ShortLCEt queries and CoarseLCEt queries can be
executed on-line in total time T (n, q), then every sequence of q LCE queries can be executed
on-line in total time T (n,O(q)) +O(n+ q).

Proof. To calculate LCE(i, j) we first check if LCE(i, j) < t by calling ShortLCEt(i, j). If so,
we are done. Otherwise, we can reduce computing LCE(i, j) to computing LCE(i+ ∆, j+ ∆)
for any ∆ ≤ t. In particular, we can choose ∆ = ht(i, j) so that i+ ∆, j + ∆ ∈ S(t). Then
we call CoarseLCEt(i+ ∆, j + ∆) which gives us the value b 1

t (LCE(i, j)−∆)c. Computing
the exact value of LCE(i, j) requires another ShortLCEt query; see Algorithm 1. The whole
process is illustrated in Figure 2. J

Algorithm 1: GenericLCE(i, j)
`1 = ShortLCEt(i, j)
if `1 < t then return `1
∆ = ht(i, j) . i+ ∆, j + ∆ ∈ S(t)
`2 = t · CoarseLCEt(i+ ∆, j + ∆)
`3 = ShortLCEt(i+ ∆ + `2, j + ∆ + `2)
return ∆ + `2 + `3

4 ShortLCEt queries in O(log t) amortized time

In this section we show how to implement fast on-line ShortLCEt queries. We assume
that t = 2k and set t′ = Θ(log t) to be a smaller power of two. The amortized running
time is O(log t +

√
log t log∗ n), which in particular is O(log t) for t = logΩ(1) n. The key

components are Union-Find structures and t′-covers. We start with a simpler (and slightly
slower) algorithm without t′-covers.
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4.1 ShortLCEt queries in O(log t · α((n+ q) log t, n log t)) amortized
time

I Lemma 6. A sequence of q ShortLCE2k (i, j) queries can be executed on-line in total time
O((q + n)k · α((q + n)k, nk)).

Proof. We compute ShortLCE2k (i, j) using a recursive procedure; see Algorithm 2. The
procedure first checks if w[i..i+ 2k − 1] is already known to be equal to w[j..j + 2k − 1] using
a Union-Find structure. If so, we are done. Otherwise, if k = 0, we simply compare w[i] and
w[j]. If k > 0, we recursively calculate ShortLCE2k−1(i, j) and, if the call returns 2k−1, also
ShortLCE2k−1(i, j). Finally, if both calls return 2k−1, we update the Union-Find structure
to store that w[i..i+ 2k − 1] = w[j..j + 2k − 1].

Algorithm 2: ShortLCE2k (i, j): compute LCE(i, j) up to length 2k

if Findk(i) = Findk(j) then return 2k

if k = 0 then
if w[i] = w[j] then ` = 1 else ` = 0

else
` = ShortLCE2k−1(i, j)
if ` = 2k−1 then

` = 2k−1 + ShortLCE2k−1(i+ 2k−1, j + 2k−1)

if ` = 2k then Unionk(i, j)

return `

To analyze the complexity of the procedure, we first observe that the total number of calls
to Union is O(nk), because each such call discovers that w[i..i+ 2k − 1] = w[j..j + 2k − 1]
(which was not known before). Moreover, these calls contribute O(nk) to the total running
time. We argue that the number of executed Find queries and the running time of the
remaining operations performed by ShortLCE2k (i, j) is proportional to O(k + 1) plus the
number of Union calls, which implies the lemma. For the sake of conciseness, #union denotes
the number of calls to Union triggered by the considered call to ShortLCE (including itself).

We inductively bound the number of recursive calls triggered by ShortLCE2k (i, j):

2k + 1 + 2#union if w[i..i+ 2k − 1] 6= w[j..j + 2k − 1],
1 + 2#union if w[i..i+ 2k − 1] = w[j..j + 2k − 1].

ShortLCE1 terminates immediately, so this holds for k = 0. For k > 0 we have four cases.
1. w[i..i + 2k − 1] is already known to be equal to w[j..j + 2k − 1]. Then we terminate

immediately.
2. w[i..i + 2k−1 − 1] 6= w[j..j + 2k−1 − 1]. Then the number of recursive calls triggered

by ShortLCE2k−1(i, j) is 2k − 1 + 2#union so the number of recursive calls triggered by
ShortLCE2k (i, j) is 2k + 2#union.

3. w[i..i+ 2k−1− 1] = w[j..j+ 2k−1− 1] but w[i+ 2k−1..i+ 2k− 1] 6= w[j+ 2k−1..j+ 2k− 1].
The number of recursive calls triggered by ShortLCE2k−1(i, j) and ShortLCE2k−1(i +
2k−1, j + 2k−1) is 1 + 2#union and 2k − 1 + 2#union, respectively. The total number of
triggered recursive calls is hence 2k + 1 + 2#union.

4. w[i..i+ 2k−1− 1] = w[j..j+ 2k−1− 1] and w[i+ 2k−1..i+ 2k− 1] = w[j+ 2k−1..j+ 2k− 1].
The number of recursive calls triggered by both ShortLCE2k−1(i, j) and ShortLCE2k−1(i+

CPM 2016
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Find

Union

Union

Find Union

Find Naive and
Union

Find

Find

Find

Union

Naive and
Union Find

Find

Naive

Figure 3 A recursion tree of SparseShortLCEt,t′(i, j) for some example parameters such that
t = 24t′. The calls terminating with Union, Find and naive tests (in a segment of size t′) are shown
as nodes in the figure. The naive tests are only at the bottom of the tree and they are accompanied
by Unions (except the last one).

2k−1, j + 2k−1) is 1 + 2#union. However, w[i..i+ 2k − 1] was not known to be equal to
w[j..j + 2k − 1], so we then execute Unionk(i, j). Hence the total number of recursive
calls is 1 + 2#union (rather than of 3 + 2#union).

Consequently, the total running time follows from Lemma 3. J

4.2 Faster ShortLCEt queries
Assume t = 2k = Ω(logn). We show how to reduce the factor α(qk + nk, nk) introducing a
t′-cover, for t′ = 2k′ . We define a sparse version of ShortLCE queries, which are ShortLCE
queries restricted to positions from S(t′):

SparseShortLCEt,t′(i, j) =
{

ShortLCEt(i, j) if i, j ∈ S(t′)
⊥ otherwise

We slightly modify Algorithm 2 to obtain Algorithm 3, which computes min(LCE(i, j), 2k)
for positions i, j ∈ S(t′).

I Lemma 7. A sequence of q SparseShortLCE2k,2k′ queries can be executed on-line in total
time O(q(k + 2k′) + n

√
2k′ + nk√

2k′
log∗ n).

Algorithm 3: SparseShortLCE2k,2k′ (i, j): compute min(LCE(i, j), 2k) for i, j ∈ S(2k′)

if Findk(i) = Findk(j) then return 2k

if k = k′ then
Compute naively ` = ShortLCE2k′ (i, j)

else
` = SparseShortLCE2k−1,2k′ (i, j)
if ` = 2k−1 then

` = 2k−1 + SparseShortLCE2k−1,2k′ (i+ 2k−1, j + 2k−1)

if ` = 2k then Unionk(i, j)

return `
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Proof. The analysis is similar to the proof of Lemma 6. The total number of calls to Union
is now only O( nk

2k′/2 ) because we always have that i, j ∈ S(2k′). Hence, excluding the cost of
computing ` = ShortLCE2k′ (i, j), the total time complexity is O(qk + nk

2k′/2 log∗ n) by the
same reasoning as in Lemma 6, except that we additionally apply Lemma 4 to bound the
running time of the Union-Find data structure (stated in Lemma 3).

Now we analyze the cost of computing ` = ShortLCE2k′ (i, j). First, observe that for
every original call to SparseShortLCE2k,2k′ (i, j) we have at most one such computation with
` < 2k′ (because it means that we have found a mismatch and no further recursive calls are
necessary). On the other hand, if ` = 2k′ , then we call Unionk′(i, j), which may happen
at most n

2k′/2 times. Therefore, the total complexity of all these naive computations is
O(n2k′/2 + q · 2k′). J

Algorithm 4: FasterShortLCE2k,2k′ (i, j)

Compute naively ` = ShortLCE2k′ (i, j)

if ` < 2k′ then return l

∆ = h2k′ (i, j)
` = ∆ + SparseShortLCE2k,2k′ (i+ ∆, j + ∆)
return min(`, 2k)

The next lemma is a direct consequence of Lemma 7 and Algorithm 4 with 2k′ = Θ(k).

I Lemma 8. A sequence of q ShortLCE2k queries can be executed on-line in total time
O(qk + n

√
k log∗ n).

5 CoarseLCEt queries

Let t = Ω(log2 n). Recall that we defined a t-block of w as a factor of size t starting in S(t).
We want to show how to preprocess w in O(n log logn) time, so that any CoarseLCEt query
can be answered in constant time. To this end we proceed as follows:
1. sort all t-blocks in lexicographic order and remove duplicates,
2. encode every t-block with its rank on the sorted list,
3. construct a new string code(w) of length O(n) over alphabet [1..n], such that any

CoarseLCEt query can be reduced to an LCE query on code(w),
4. preprocess code(w) for LCE queries.

I Lemma 9. For t = Ω(log2 n) we can lexicographically sort all t-blocks of w in O(n log t)
time.

Proof. Two t-blocks can be lexicographically compared with a ShortLCEt query. We have
O( n√

t
) such blocks, hence one of the classical sorting algorithms they can be all sorted using

O( n√
t

logn) = O(n) queries. By Lemma 8, the total time to execute these queries and sort
all t-blocks is therefore O(n log t). J

We can use the lexicographic order of t-blocks to assign ranks to all t-blocks. Then we
reduce CoarseLCE queries to LCE queries in a word code(w) over an integer alphabet; see
Figure 4.

CPM 2016
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a a a a a a a a a a a ab b b b b b b b b b b b * * * *
2 3 5 8 9 11 1415 17 2021 23

1 8 6 2

3 5 1 4

6 1 8 7

w :

α

β

γ

code(w) : 1 8 6 2 $ 3 5 1 4 # 6 1 8 7 &

α β γ

Figure 4 6-blocks of w are lexicographically sorted (using ShortLCEt) and ranked. Then
CoarseLCE6(2, 11) in w is reduced to LCE(1, 12) in code(w).

I Lemma 10. For t = Ω(log2 n) we can preprocess w in O(n log t) time so that any
CoarseLCEt query can be answered in constant time.

Proof. Using Lemma 9, we assign a number to each t-block, so that two t-blocks are identical
if and only if their numbers are equal. The number assigned to the block starting at
position p ∈ S(t) is denoted rank(p). These numbers are ranks on a sorted list of length
|S(t)|, so rank(p) ∈ [1..|S(t)|]. Then we construct a new string code(w) as follows. Let
{ i1, i2, . . . ik } = [1, t] ∩ S(t) and zs be the word obtained from w by concatenating the
numbers assigned to all t-blocks starting at positions is, is + t, is + 2t, is + 3t, . . .:

zs = rank(is)rank(is + t)rank(is + 2t)rank(is + 3t) . . . .

Finally, we introduce k new distinct letters #1,#2, . . . ,#s and construct code(w):

code(w) = z1 ·#1 · z2 ·#2 · z3 ·#3 · · · zk ·#k.

Next, code(w) is preprocessed to answer LCE queries in constant time. A CoarseLCEt(p, q)
query for positions p, q ∈ S(t) is answered by first computing positions p′, q′ corresponding
to p, q in code(w). Formally, if p = is mod t, then p′ = |z1#1z2#2 . . . zs−1#s−1|+ p−is

t + 1;
q′ is computed similarly. Then an LCE(p′, q′) query on code(w) returns CoarseLCEt(p, q).
The positions p′ and q′ can be computed in constant time, so the total query time is constant.
Preprocessing code(w) requires constructing its suffix array, which takes linear time for
integer alphabets of polynomial size, and preprocessing it for range minimum queries, which
also takes linear time. Hence the total preprocessing time is O(n log t). J

I Theorem 11. A sequence of O(n) LCE queries for a string over a general ordered alphabet
can be executed on-line in total time O(n log logn) making only O(n) symbol comparisons.

Proof. We set t = Θ(log2 n) and reduce each LCE query to constant number of CoarseLCEt

queries and ShortLCEt queries as described in Lemma 5. Thus together with Lemma 8
and Lemma 10 we obtain that any sequence of q LCE queries for a string over a general
ordered alphabet can be realized in O(n log logn) time. However, the total number of symbol
comparisons used by the algorithm might be Ω(n log logn). This can be decreased to O(n)
with yet another Union-Find data structure, where we maintain sets of positions already
known to store the same letter. This is essentially the idea used in Lemma 7 of [12]. J
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6 Faster solution for sublinear number of queries

The algorithm presented in the previous section is not efficient when the number of queries
q is significantly smaller than the length of the string n. In this section we show that this
can be avoided, and we present an O(q log logn + n log∗ n)-time algorithm. This requires
some nontrivial changes in our approach. In particular, we need a stronger notion of t-covers,
which form a monotone family.

S(40),S(41),S(42), . . . ⊆ [1, n] is a monotone family of covers if the following conditions
hold for every k:
1. S(4k) is a 4k-cover (except that h4k is computable in O(k) instead of constant time).
2. S(4k+1) ⊆ S(4k).
3. For any i, j ∈ S(4k) we have that h4k+1(i, j) ∈ {0, 4k, 2 · 4k}, and furthermore for such

arguments h4k+1 can be evaluated in constant time.
4. |S(4k)| ≤ ( 3

4 )kn.

The existence of such a family is not completely trivial, in particular plugging in the
standard construction of S(4k) from Lemma 1 does not guarantee that S(4k+1) ⊆ S(4k).
The following lemma, implicitly shown in [8], provides an efficient construction.

I Lemma 12 (Gawrychowski et al. [8], Section 4.1). Let S(4k) be the set of non-negative
integers i ∈ [1, n] such that none of the k least significant digits of the base-4 representation
of i is zero. Then S(40),S(41),S(42), . . . is a monotone family of covers, which can be
constructed in O(n) total time.

6.1 ShortLCEt queries with monotone family of covers
Similarly as in the proof of Lemma 8, we reduce ShortLCE queries to SparseShortLCE
queries. However, now we slightly change the definition of SparseShortLCE queries so that
there is only one parameter as follows:

SparseShortLCEt(i, j) =
{

ShortLCEt(i, j) if i, j ∈ S(t)
⊥ otherwise

I Lemma 13. Consider a sequence of q SparseShortLCE4ki queries for i ∈ {1, . . . , q}. The
queries can be answered online in O((n+ s) ·α(n+ s, n)) time where s =

∑q
i=1 Ti with Ti = 1

if the i-th query returns 4ki and Ti = ki + 1 otherwise.

Proof. We maintain a separate Union-Find structure for S(4k) at every level k ∈ {0, . . . ,K}
where K = maxq

i=1 ki. To answer a query for SparseShortLCE4k , we check if Findk(i) =
Findk(j) and if so, return 4k. Otherwise, we calculate the answer with at most four calls to
SparseShortLCE4k−1 . This is possible because S(4k) ⊆ S(4k−1) and S(4k−1) is 4k−1-periodic.
Finally, we call Unionk(i, j) if the answer is 4k; see Algorithm 5.

We again analyze the number of recursive calls to SparseShortLCE4k counting Union
operations. The total number of unions at level k is |S(4k)| ≤ ( 3

4 )k, and in total this sums
up to O(n). The amortized number of Find queries executed by a call to SparseShortLCE4k

is constant if LCE(i, j) = 4k and O(k + 1) otherwise. These values also bound the running
time of the remaining operations. Hence, by Lemma 3, the total time is as claimed. J

I Lemma 14. A sequence of q queries ShortLCE4ki for i ∈ {1, . . . , q} can be answered online
in total time O((n+ s) · α(n+ s, n)) = O(n log∗ n+ s) where s =

∑q
i=1(ki + 1).

CPM 2016
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k′ SparseShortLCE calls

0 SparseShortLCE40 (101304, 001014)→ ∆ = 000014

1 SparseShortLCE41 (101314, 001024)→ ∆ = 000114

1 SparseShortLCE41 (102014, 001124)→ ∆ = 000214

3 SparseShortLCE43 (102114, 001224)→ ∆ = 010214

return call SparseShortLCE44 (112114, 011224)

Figure 5 An execution of ShortLCE44(i = (10130)4, j = (00101)4) (assuming LCE(i, j) > 44).
The numbers are given in base-4 representation. Note that there is no SparseShortLCE42 call.

Proof. We calculate ShortLCE4k (i, j) using O(k) SparseShortLCE queries; see Algorithm 6.
We iterate through k′ = 0, 1, . . . , k − 1 maintaining ∆ such that 0 ≤ ∆ ≤ LCE(i, j) and
i+∆, j+∆ ∈ S(4k′). Before incrementing k′, we keep increasing ∆ by 4k′ until i+∆, j+∆ ∈
S(4k′) or ∆ > LCE(i, j). The latter condition is checked by calling SparseShortLCE4k′ (i+
∆, j + ∆) and terminating if it returns less than 4k′ . The while loop iterates at most twice,
because h4k′+1 ∈ {0, 4k′ , 2 · 4k′}. Eventually, we either terminate having found the answer, or
we can obtain it with a single call to SparseShortLCE4k (i+ ∆, j + ∆).

Let us analyze the total time complexity. Each call to ShortLCE4k performs up to k
SparseShortLCE4k′ queries, but we terminate as soon as we obtain an answer other than 4k′ .
In Lemma 13, the last of these queries contributes O(k′ + 1) = O(k + 1) to s, while the
remaining queries contribute one each. The total contribution of all SparseShortLCE4k′

queries called by a single ShortLCE4k query is therefore O(k + 1). Hence, the total running
time consumed by all SparseShortLCE4k′ queries is O((n + s) · α(n + s, n)) where s =
O(
∑q

i=1(ki + 1)). It is not hard to see that the remaining time consumed by a single
ShortLCE4k query is O(k + 1). This is partly because checking whether i + ∆ and j + ∆
belong to S(4k′+1) takes constant time, since we know that these indices are in S(4k′).
Over all queries this sums up to O(s), which is dominated by the running time of the
SparseShortLCE4k′ queries. The O(n log∗ n+ s) upper bound follows from Lemma 4. J

6.2 Final algorithm
We first modify the implementation details for CoarseLCE to reduce the preprocessing time.

Algorithm 5: SparseShortLCE4k (i, j): compute min(LCE(i, j), 4k) for i, j ∈ S(4k)
if Findk(i) = Findk(j) then return 4k

if k = 0 then
if w[i] = w[j] then ` = 1 else ` = 0

else
` = 0
for p = 0 to 3 do

` = `+ SparseShortLCE4k−1(i+ p · 4k−1, j + p · 4k−1)
if ` < (p+ 1) · 4k−1 then break

if ` = 4k then Unionk(i, j)

return `
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Algorithm 6: ShortLCE4k (i, j)
` = ∆ = 0
for k′ = 0 to k − 1 do

while i+ ∆ 6∈ S(4k′+1) or j + ∆ 6∈ S(4k′+1) do
` = `+ SparseShortLCE4k′ (i+ ∆, j + ∆) . i+ ∆, j + ∆ ∈ S(4k′)
∆ = ∆ + 4k′

if ` < ∆ then return min(4k, `)
return min(4k,∆ + SparseShortLCE4k (i+ ∆, j + ∆)) . i+ ∆, j + ∆ ∈ S(4k)

I Lemma 15. For t = Ω(log6 n) we can preprocess a string of length n in O(n log∗ n) time,
so that each CoarseLCEt query can be answered in constant time.

Proof. We set k =
⌈ 1

2 log t
⌉
and lexicographically sort all 4k-blocks using ShortLCE4k queries.

The number of blocks is at most ( 3
4 )kn ≤ n

t0.5 log 0.75 ≤ n
t0.2 . By Lemma 14, the sorting time is:

O
( n

t0.2 logn log t+ n log∗ n
)

= O
(
n log n log log n

log1.2 n
+ n log∗ n

)
= O(n log∗ n).

Then we proceed as in the proof of Lemma 10. J

By combining Lemma 15 and Lemma 14, we obtain the final theorem.

I Theorem 16. A sequence of q LCE queries for a string over a general ordered alphabet can
be executed on-line in total time O(q log logn+n log∗ n) making O(q+n) symbol comparisons.

7 Final remarks

We gave an O(n log logn)-time algorithm for answering on-line O(n) LCE queries for general
ordered alphabet. It is known (see [14]) that the runs of the string can be computed in
O(T (n)) time, where T (n) is the time to execute on-line O(n) LCE queries. Hence our
algorithm implies the following result:

I Corollary 17. The runs of a string over general ordered alphabet can be computed in
O(n log logn) time.

Our algorithm is a major step towards a positive answer for a question posed by Koso-
lobov [14], who asked if O(n) time algorithm is possible.

It is also natural to consider general unordered alphabets, that is, strings where the only
allowed operation is checking equality of two characters.

I Theorem 18. A sequence of q LCE queries for a string over a general unordered alphabet
can be executed in O(q logn+ n log∗ n) time making O(n+ q) symbol equality-tests.

Proof. We can use the faster ShortLCE4k algorithm described in Section 6.1 with k =
d 1

2 logne. Observe that in this approach we did not use the order of the characters, and thus
it still works for unordered alphabets. J

Note that for unordered alphabets the reduction by Kosolobov [14] (see also [2]) from
computing runs to LCE queries no longer works. Actually, deciding whether a given string is
square-free already requires Ω(n logn) comparisons, as shown by Main and Lorentz [18]. On
the other hand for O(n) LCE queries O(n) equality tests always suffice.
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Abstract
In the online dictionary matching problem the goal is to preprocess a set of patterns D =
{P1, . . . , Pd} over alphabet Σ, so that given an online text (one character at a time) we report all
of the occurrences of patterns that are a suffix of the current text before the following character
arrives. We introduce a succinct Aho-Corasick like data structure for the online dictionary
matching problem. Our solution uses a new succinct representation for multi-labeled trees, in
which each node has a set of labels from a universe of size λ. We consider lowest labeled ancestor
(LLA) queries on multi-labeled trees, where given a node and a label we return the lowest proper
ancestor of the node that has the queried label.

In this paper we introduce a succinct representation of multi-labeled trees for λ = ω(1) that
support LLA queries in O(log log λ) time. Using this representation of multi-labeled trees, we
introduce a succinct data structure for the online dictionary matching problem when σ = ω(1).
In this solution the worst case cost per character is O(log log σ + occ) time, where occ is the size
of the current output. Moreover, the amortized cost per character is O(1 + occ) time.
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1 Introduction

One of the crucial components of Network Intrusion Detection Systems (NIDS) is the ability
to detect the presence of viruses and malware in streaming data. This task is typically
executed by searching for occurrences of special digital signatures which indicate the presence
of harmful intent. While searching for one such signature is often a fairly simple task, NIDS
has to deal with the task of searching for many signatures in parallel. In such settings it
is required that both the time spent on each packet of data and the total space usage are
extremely small. Currently, the task of finding these signatures dominates the performance
of such security tools [32], and several practical approaches have been suggested [9, 10]. The
theoretical model for this problem is known as the (online) dictionary matching problem,
which is a well studied problem [1, 2, 3, 4, 11, 13, 14] and is defined next.
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Dictionary matching. In the dictionary matching problem the input is a dictionary D =
{P1, P2, ..., Pd} of patterns and a text T = t1t2...tN , all over alphabet Σ, where σ = |Σ|.
The goal is to list all pairs (i, j) such that ti−|Pj |+1...ti = Pj . Let n =

∑d
i=1 |Pi|, and let

nmax = maxP∈D{|P |}. For a dictionary D the prefix set of D, denoted by P (D), is the set
of all prefixes of patterns in D. Let m = |P (D)| and notice that m ≤ n + 1. We assume
Σ is an integer alphabet Σ = {1, 2, . . . , σ}, and that σ ≤ m. The Aho-Corasick (AC) data
structure [1] solves the dictionary matching problem using O(m logm) bits of space and in
O(|T |+ occ) time, where occ is the size of the output.

Online dictionary matching. In the online dictionary matching problem the input is the
same as in the dictionary matching problem, but here the text T arrives online (character
by character) and the goal is to report all of the occurrences of patterns from D as soon as
they appear (before the next character arrives). For a dictionary D and text T let Si be
the longest suffix of t1t2 . . . ti such that Si ∈ P (D). The AC data structure works in the
online model by repeatedly finding Si+1 from Si and ti+1 (and then also reporting all of the
patterns from D that are suffixes of Si+1). The amortized cost for this process, ignoring
the work for reporting the output, is constant. However, the worst-case time per character
in the AC data structure can be as large at Θ(nmax). This may be too large for real-time
applications, such as those that occur in NIDS.

One naïve way of tackling this problem is by using an automata with a state for each prefix
in P (D), where each state has σ outgoing transitions. However, this approach introduces a
blow up in space, which in practice means that the entire data structure cannot fit in fast
memory. Moreover, even the O(m logm) bit implementation of the AC data structure may
be too large. Thus, a large body of recent work has focused on succinct representations of
the AC data structure.

Succinct data structures. Given a combinatorial object a representation of the object is
succinct if it uses z + o(z) bits of space where z is the information theoretic lower bound
for the number of bits representing the object. The main challenge when using a succinct
representation is supporting the algorithmic operations with costs that are as efficient as in
the non-succinct representation.

A growing trend in recent years has focused on developing succinct representations for
the dictionary matching problem; see Table 1. The information theoretic lower bound for
a dictionary of size n over alphabet σ is n log σ bits which is significantly less than the
O(m logm) bits used by the AC data structure, when σ << n. However, much like in the
AC data structure, current succinct representations also pay Θ(nmax) time per character in
the worst-case. We emphasize that Hon et al. [21] presented a solution using O(m log σ) bits
(which is not succinct) and the worst-case cost per character is O(log logm) time.

1.1 Our Results
In this paper we introduce a new succinct representation of the AC data structure with an
implementation that supports low time cost per character in the worst-case. Such a solution
addresses the type of constraints that show up in practical settings, such as in NIDS, where
the space usage is limited and the worst-case time per character needs to remain low. Our
succinct representation is summarized as follows.

I Theorem 1. For σ = ω(1) there exists a succinct data structure for the online dictionary
matching problem using m(Hk(D) + 5 + o(1)) + 2σ+O(d log n

d ) bits of space where the worst-
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Table 1 Comparison of the results.

Algorithm Space Worst-case Time Total Time
per Character

AC (NFA) [1] O(m logm) O(nmax) O(|T |+ occ)
AC (DFA) [1] O(mσ log (mσ)) O(1) O(|T |+ occ)
Chan et al. [12] O(mσ) O(log2 m) O((|T |+ occ) log2 m)
Hon et al. [21] O(m log σ) O(log logm) O(|T | log logm+ occ)
Belazzougui [7] m(H0(D) + 3.443 + o(1)) +O(d log n

d
) O(nmax) O(|T |+ occ)

Hon et al. [22] m(Hk(D) + 5 + o(1)) +O(d log n
d

) O(nmax) O(|T |+ occ)
New (σ = ω(1)) m(Hk(D) + 5 + o(1)) + 2σ +O(d log n

d
) O(log log σ) O(|T |+ occ)

case time per character is O(log log σ), and the total time for a text query T is O(|T |+ occ)
where occ is the size of the output.

Our main technique is a succinct representation of multi-labeled trees of size n, where
each node in the tree has a set of labels drawn from a set L where λ = |L|. The operations
of interest on multi-labeled trees are label dependent. In particular we will be interested in
lowest labeled ancestor (LLA) queries where given a node u and a label ` we need to report
the lowest proper ancestor of u that has label `. We show in Sections 4 and 5 how to support
such operations for general trees. Strikingly, the type of trees in our implementation of the
AC data structure exhibit some special combinatorial properties. Their properties allow an
even more succinct representation for these trees which efficiently support LLA queries and
other label dependent operations.

In this paper we propose a representation of multi-labeled trees that is succinct when
λ = ω(1). Although we mainly consider the LLA operation, our representation supports many
other operations as well and is succinct for more cases. Moreover, we find our implementation
of the LLA operation to be simpler than previous approaches (see below).

1.2 Related Work
The notion of succinct data structures was introduced by Jacobson [24] with succinct data
structures for bit-arrays, trees and graphs. Many succinct representations for combinatorial
objects have since been developed, including succinct representations of sets [24, 26, 30],
strings [28, 8], and trees [27, 17].

The first solution for the dictionary matching problem using less than O(m logm) bits
was introduced by Chan et al. in [12]. Their solution also solves the dynamic variant of the
problem. Other solutions are based on using suffix trees [23, 21] and are slower than the AC
algorithm.

The first representation for the dictionary matching problem in succinct space without a
query slowdown was introduced by Belazzougui [7] which was slightly improved by Hon et al.
[22]. Succinct representations have also been developed for some variations of the dictionary
matching problem, such as dynamic dictionary matching [21, 15], 2D dictionary matching
[29], and approximate dictionary matching [21].

Labeled and multi-labeled trees. The problem of representing labeled trees was first
considered by Geary, Raman and Raman [17]. However, their solution is succinct only for
λ = o( log logn

log log logn ). Ferragina et al. [16] proposed a representation of labeled trees based on
the XML Burrows–Wheeler transform. However, their representation does not support LLA
queries. Barbay et al. [5, 6] introduced a representation for labeled trees and multi-labeled
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trees supporting a restricted set of operations which does not include LLA queries. Moreover,
their representation is succinct only when t

n = λo(1).
The only known representation of labeled trees which supports LLA queries using succinct

space are the solutions of He et al. [20] and Tsur [31]. Although these solutions are for
the labeled case, they can be extended for multi-labeled trees using the same techniques of
Barbay et al. [5], but then they would only be succinct when t

n = λo(1).

2 Preliminaries

2.1 The Aho-Corasick data structure
The Aho-Corasick (AC) data structure [1] is a multi-pattern extension of the KMP data
structure [25]. Since the AC data structure is in the core of this paper, we present its internals
in some more detail.

The AC data structure is built upon a trie storing the patterns in D. The trie edges have
the properties that each edge is labeled by a character σ ∈ Σ, and any two edges leaving the
same node have different labels. Thus, there is a bijection between nodes in the trie and
prefixes in P (D). For a prefix u ∈ P (D) let state(u) be the node in the trie corresponding
to u. Then u is the concatenation of the edge labels on the path from the root of the trie to
state(u). When it is clear from context, we sometimes abuse notation and refer to state(u)
as u itself.

The edges of the trie are termed as forward links. In addition to the forward links, there
are also failure links and report links. For u, v ∈ P (D) there is a failure link from node u to
node v if and only if v is the longest string in P (D) that is a proper suffix of u. Similarly,
for u ∈ P (D) and v ∈ D there is a report link from node u to node v if and only if v is the
longest string in D that is a proper suffix of u.

In order to solve the online prefix matching problem, we will move from a node u in the
AC structure that corresponds to Si to the node v that corresponds to Si+1. To do this,
the AC algorithm first tries to use a forward link from u with the character ti+1. If no such
forward link exists, then the algorithm recursively follows failure links until either no failure
links are found (in which case v is the root of the trie) or until we reach a node that has
a forward link with the character ti+1. One can show that the cost per character of this
process is O(1) amortized time. Once v is found we use report links to report the current
occurrences.

2.2 Succinct Representation of Trees
Representing ordinal trees. An ordinal tree T with n nodes is a rooted tree where the
children of each node are ordered. Each node is given a unique id from 1, . . . , n. We use
succinct representations of ordinal trees, where each node is given a unique id (the actual
tree is not stored). The id is the rank of the node in the pre-order traversal of T .

We use the Balanced Parentheses (BP) representation introduced by Jacobson [24]. In
this representation we use parentheses to represent a pre-order traversal of the tree where
the first time we visit a node is represented with an open parentheses and the last time we
visit a node is represented with a close parentheses. This creates an array of 2n bits. For a
node u let open(u) and close(u) denote the open and close parentheses of u.

Base set of operations. Munro and Raman [27] showed how to support the following
operations in constant time using another o(n) bits on top of the BP representation, for a
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total of 2n+ o(n) bits. By supporting this base set of operations on the BP representation
one can also support many other common operations in constant time.

findclose(l) – Given an index l = open(u) for some node u, return close(u).
findopen(r) – Given an index r = close(u) for some node u, return open(u).
enclose(i) – Return the pair of indices (l, r) such that: (1) l and r correspond to the same
node, (2) l ≤ i ≤ r, and (3) r − l is minimized.
pre_rank(i)/post_rank(i) – Return the number of open/close parentheses in the the first
i parentheses.
pre_select(i)/post_select(i) – Return the index of the i’th open/close parenthesis.

It is important to notice that given an interval [l, r] that corresponds to a node v, the id of v
is pre_rank(l). Similarly, given the id i of v we have l = pre_select(i) and r = findclose(l).
To simplify these operations we use the notion v = node([l, r]) and [l, r] = interval(v). Our
algorithms will also make use of the following two properties of the BP representation.

I Property 2.1. Let T be an ordinal tree. Let u be a node in T whose rank in the pre-order
(post-order) on T is i (j). Then the open (close) parenthesis in the BP representation of T
is i (j).

I Property 2.2. Let T be an ordinal tree and let [a, b] and [c, d] be two subintervals in the
BP representation of T that correspond to two different nodes. Then either one subinterval
is completely contained in the other or both subintervals are disjoint.

We emphasize that the 2n+ o(n) bit representation of Geary, Raman and Raman [17]
subsumes the representation of Munro and Raman [27], and in particular supports the base
set of operations on the BP representation in constant time.

2.3 Labeled Trees and Multi-Labeled Trees
A labeled tree is an ordinal tree where each node has a label drawn from a set L of size λ = |L|.
A multi-labeled tree is an ordinal tree where each node is associated with a (possibly empty)
subset of L. For multi-labeled trees we denote the sum of the sizes of the label subsets by t.
We assume without loss of generality that λ ≤ t. Notice that the information-theoretic lower
bound for representing a multi-labeled tree is log

(
nλ
t

)
+ log

(2n
n

)
+ o(n).

Our algorithms will make use of lowest labeled ancestor (LLA) queries on multi-labeled
trees, where given a node id u and a label ` we can quickly return a node id v that is the
lowest proper ancestor of u which has the label `, or report that no such node exists. This
operation is denoted by v = LLA(`, u). For succinctness sake, from now on we refer to a
node id as the node itself.

Representations supporting same label operations. In order to support fast LLA queries
in succinct space we will make use of succinct representations of trees that allow us to
compute in constant time some specific operations. These operations are on a label `
and a node u where u is also labeled by `. The same label operations that we require
are LLA, pre_rankT and post_rankT queries. We will also want to support pre_selectT
and post_selectT queries in constant time. For sake of simplicity we refer to all of these
operations as same label operations (although the select operations do not have any node as
input). See Table 2 for the list of these operations.

In Section 4 we prove the following theorem.

I Theorem 2. Assume there is a representation for a multi-labeled tree T using f(T ) bits
that supports the same-label operations and the base set operations on the BP representation
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Table 2 Same label operations for multi-labeled trees.

Operation Description
LLA(`, u) The closest proper ancestor of u labeled by `
pre_rankT (`, u) The rank of u (by the preorder of T ) in the set of nodes labeled by `
post_rankT (`, u) The rank of u (by the postorder of T ) in the set of nodes labeled by `
pre_selectT (`, i) The i’th node with label ` in the preorder of T
post_selectT (`, i) The i’th node with label ` in the postorder of T

in O(1) time each. Then there exists a representation of T that for any λ = ω(1) uses
f(T ) + o(n+ t) bits and answers any LLA query in O(log log λ) time.

We are also able to represent any tree so it can support same-label LLA queries, as long
as the label universe is an integer universe L = {1, 2, . . . , λ}. This is discussed in Section 5,
where combined with Theorem 2 we prove the following theorem.

I Theorem 3. For any multi-labeled tree T with a label set L = {1, 2, . . . , λ} with λ = ω(1),
there exists a representation of T that uses dlog

(
nλ
t

)
e+ 2(n+ t+ λ) + o(n+ t+ λ) bits and

supports LLA queries in O(log log λ) time.

3 Dictionary Matching and Same Label Operations

The c-extended prefix subset of D, denoted by Pc(D), is the subset of P (D) which contains
all u ∈ P (D) such that uc ∈ P (D) (the concatenation of u and c).

For each u ∈ P (D) let uR be the the string u in reverse order, and let P (D)R be the set of
all reversed prefixes ofD. The suffix-lexicographic order of P (D) is an ordering of the elements
in P (D) where the order is determined by the lexicographic order of the corresponding
elements in P (D)R. Thus, for u ∈ P (D), the rank of u in the suffix-lexicographic order of
P (D), denoted by rank(u), is the lexicographic rank of uR in P (D)R. Since each prefix
in u ∈ P (D) has a unique node state(u) in the AC data structure, let rank(u) be the
unique id of state(u). Unless specified otherwise we will abuse notation and assume that
state(u) = rank(u).

Belazzougui’s data structure. Belazzougui in [7] showed how one can leverage the suffix-
lexicographic order of P (D) in order to implement the AC data structure with n(H0(D) +
3.443 + o(1)) + O(d log n

d ) bits. Our solution replaces only one particular component of
Belazzougui’s data structure which is called the failure tree, denoted by Tfail . This tree
is defined by the failure links in the AC data structure, so that for two nodes state(u)
and state(v) we have fail(state(u)) = state(v) if and only if parentTfail

(state(u)) = state(v).
An important property of Tfail is that the pre-order traversal of Tfail is exactly the suffix-
lexicographic order of P (D). Thus, Belazzougui’s data structure uses succinct representations
of ordinal trees for representing Tfail that support parent operations in constant time, thereby
simulating the failure links.

3.1 Final-Failure Links
As discussed above, given some Si ∈ P (D) and c ∈ Σ such that Sic /∈ P (D) the time for
finding Si+1 in the AC algorithm is Θ(nmax). This expensive runtime occurs since the AC
algorithm may traverse many failure links. However, the traversal stops when the algorithm
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reaches a node for which there exists a forward link labeled by c. If such a node exists then
this node is the final node in the traversal. We call this node the final-failure node for Si
and c, denoted by ff(c, Si). Notice that ff(c, u) = state(v) where v is the longest suffix of
u for which v ∈ Pc(D). If no such node exists then we say that ff(c, u) =⊥. The key idea
for improving the time cost per character of the AC algorithm is to find the final-failure
node directly instead of traversing all of the failure links. We emphasize that the rest of
Belazzougui’s data structure remains the same. The only thing we change is the component
for finding the final-failure.

In order to support locating the final-failure node we extend the definition of the failure
tree. Instead of representing Tfail as an unlabeled ordinal tree, we represent Tfail as a
multi-labeled tree. For each node state(u) ∈ Tfail we say that state(u) is labeled by c if and
only if u ∈ Pc(D). Notice that a node may have many labels, or no labels at all (which is why
we use a multi-labeled tree). Now the process of finding the final-failure node for state(u)
and character c reduces to finding LLA(c, state(u)) in the multi-labeled version of Tfail .

Same label operations on Tfail . We will now show how the properties of the AC structure
and the implementations we consider allow us to support the same label operations in Table 2
on Tfail in constant time. This will allow us to use Theorem 2.

I Lemma 4. There exists an implementation of Tfail that supports the parent operation,
same-label operations and the base set operations on the BP representation in O(1) time
using m(Hk(D) + 5 + o(1)) + 2σ +O(d log n

d ) bits.

Proof. Our implementation of Tfail contains two components. The first component is an
implementation of the forward links of the AC data structure which is another part of
the data structure of Belazzougui [7]. For u ∈ Pc(D), the forward link from state(u) with
character c ∈ Σ is implicitly represented by the ordered pair (c, state(u)). Using Belazzougui’s
implementation we can move from (c, state(u)) to state(uc) or backwards in constant time.

The second component is a representation of a slightly modified version of Tfail . A key
observation with regard to the structure of Tfail is that for any child of the root of Tfail , all
of the nodes in the subtree of this child correspond to prefixes of the form uc for some c ∈ Σ
and u ∈ Pc(D). However, it is possible that suffixes of the form uc are partitioned among
several subtrees of children of the root. For purposes that will be clear later, it is helpful to
have all of the nodes corresponding to prefixes ending with character c in one unique subtree
of a child of the root. To support this, we add σ new dummy nodes, one for each character in
Σ. These nodes will be the only children of the root. The i’th dummy has in its subtree all of
the nodes of the form vi for each Pi(D) (recall that Σ = {1, 2, . . . , σ}). This is guaranteed by
having each old child of the root become a child of the appropriate new dummy node. Notice
that the pre-order and post-order of the nodes in Tfail , excluding the dummy nodes, do not
change with this modification. Rather, the i’th dummy node is inserted between the nodes
corresponding to prefixes ending with i− 1 and the nodes corresponding to prefixes ending
with i in the pre-order. Thus, for ui we have pre_rankTfail (ui) = pre_rankT ′fail (ui) − i.
Similarly, the i’th dummy node is inserted between the nodes corresponding to prefixes
ending with i and the nodes corresponding to prefixes ending with i+ 1 in the post-order.
For the rest of this proof we refer to this slightly modified tree as T ′fail . Notice that T ′fail
has m+ σ nodes.

We represent T ′fail with the data structure of Geary, Raman and Raman [17] using
2m+ 2σ + o(m) bits. Recall that this implementation supports the base set operations on
the BP representation in constant time. The particular constant time operations we use with
this representation on T ′fail are:

CPM 2016



6:8 Succinct Online Dictionary Matching with Improved Worst-Case Guarantees

parentT ′fail
(u) = parent(u): Given the id of a node u ∈ T ′fail return the id of the parent

of u in T ′fail .
childT ′fail (u, i) = child(u, i): Given the id of a node u ∈ T ′fail and a positive integer i,
return the id of the i’th child of u in T ′fail .
pre_rankT ′fail

(u) = pre_rank(u): Given the id of a node u ∈ T ′fail return its location in
the pre-order traversal of T ′fail .
post_rankT ′fail

(u) = post_rank(u): Given the id of a node u ∈ T ′fail return its location
in the post-order traversal of T ′fail .
pre_selectT ′fail

(i) = pre_select(i): Given an integer 1 ≤ i ≤ m+ σ return the id of the
i’th node in the pre-order traversal of T ′fail .
post_selectT ′fail

(i) = post_select(i): Given an integer 1 ≤ i ≤ m+ σ return the id of the
i’th node in the post-order traversal of T ′fail .

We use the parent operations on T ′fail to simulate parent operations on Tfail as follows. Due
to the dummy nodes, when invoking the parent operation on u we check if the parent of u is
a child of the root (by invoking another call to the parent operation), and if so we treat the
root as the parent of u. Otherwise, the parent of u in T ′fail is also the parent of u in Tfail .

Same label LLA. For u, v ∈ Pc(D) we have that LLA(c, state(u)) = state(v) if and only if
parentTfail (state(uc)) = state(vc). This gives lead to supporting same label LLA queries in
constant time. To do this, we first move from state(u) to state(uc) in constant time with the
forward links structure, then we move from state(uc) to parentTfail (state(uc)) = state(vc) in
constant time using parent operations on T ′fail , and then we move from state(vc) to state(v)
using the forward links structure (going backwards) in constant time. The transition from
state(vc) to state(v) is executed by first finding the pair c, state(v) via a select operation
on state(v, c). This pair is represented using logm + log σ bits. Extracting the logm bits
representing state(v) completes the transition.

Pre-order and post-order rank/select queries. We focus on the details for implementing
pre_rankTfail (c, u) for some u ∈ Pc(D) as the rest of the operations are implemented using
similar ideas (and the implementations are mostly technical). Recall that by definition,
for u ∈ Pc(D), pre_rankTfail (c, u) is exactly the rank of uc in the pre-order Tfail , minus∑
c′<c |Pc′(D)|. Recall that pre_rankTfail (uc) = pre_rankT ′fail (uc)−c, so the rank of u in the

pre-order of Tfail among the nodes labeled by c can be computed in constant time by invoking
pre_rankT ′fail (uc). Next, let b = pre_rank(child(r, c)) where r is the root of T ′fail . Since the
c’th child of r is the dummy corresponding to c, then its rank in the pre-order of T ′fail is exactly∑
c′<c |Pc′(D)|+ (c− 1). So we can compute pre_rankTfail (c, u) = pre_rankT ′fail (uc)− b in

constant time.

Space usage. Our data structure uses the same space as Belazzougui’s data structure, with
the exception that instead of using 2m+ o(m) bits for representing the failure tree, we use
2m+ 2σ + o(m) bits via the representation of Geary, Raman and Raman [17] (which also
supports base set of operations on the BP representation). Thus the total space used is
m(log σ + 2σ

m + 3.443 + o(1)) +O(d log n
d ) bits. We further reduce the space usage using the

technique of Hon et al. [22] to compress the forward links component into its k’th order
entropy, thereby achieving a representation that uses m(Hk(D) + 5 + o(1)) + 2σ +O(d log n

d )
bits. J
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3.2 Proof of Theorem 1
By combining Lemma 4 and Theorem 2 we obtain a succinct representation of Tfail which
supports finding failure links in worst-case constant time and finding a final-failure in
worst-case O(log log σ) time, while using m(Hk(D) + 5 + o(1)) + 2σ +O(d log n

d ) bits.
For the text processing, each time a new character arrives we traverse at most log log σ

failure links. By Lemma 4, each such traversal takes constant time via a parent operation on
Tfail . If one of these links leads to the final failure, then we are done. Otherwise, we invoke
the final failure procedure, which costs another O(log log σ) time. Thus, the runtime is never
worse than the runtime of the AC algorithm, and so the worst-case cost per character is
O(log log σ) (ignoring the cost of reporting the output) and the total cost for the entire text
is O(|T |+ occ).

4 Solving General LLA With Same Label Operations

In this section we prove Theorem 2.

Successor Search. Recall that by the assumption of Theorem 2, the base set of operations
on the BP representation of T are supported in constant time. For each label ` let I`,open
and I`,close be the set of indices in the BP representation of the open and close parentheses,
respectively, that correspond to nodes with label `.

LetM be a subset of an ordered universe U . For an element x ∈ U the successor of x inM
is succM (x) = argminy∈M{y > x}. For sake of completeness we say that if x > maxy∈M{y}
then succM (x) =∞. In the following we show how successor operations on the sets I`,open
and I`,close are used for answering LLA queries.

I Lemma 5. Let T be a multi-labeled tree over label set L. For a node u ∈ T and
a label ` ∈ L let l = succI`,open (close(u)) and r = succI`,close (close(u)). If r < l then
LLA(`, u) = v where v = node([findopen(r), r]). If r > l then LLA(`, u) = LLA(`, w) where
w = node([l,findclose(l)]). If r = l then there is no node LLA(`, u).

Proof. Our proof has three cases. In the first case r < l, and so by Property 2.2 it
must be that open(u) > findopen(r). Therefore, the interval [findopen(r), r] contains the
interval [open(u), close(u)] implying that v is an ancestor of u. Since v is labeled with ` and
r = close(v) = succI`,close (close(u)) there is no node on the internal path from v to u in T
that is labeled with `. Thus, v = LLA(`, u).

In the second case l < r. We first show that LLA(`, u) is necessarily an ancestor of
LLA(`, [l,findclose(l)]) and then show that LLA(`, [l,findclose(l)]) is necessarily an ancestor
of LLA(`, u). Thus, the two must be the same.

Recall that the interval defined by enclose(LLA(`, u)) contains the interval [open(u),
close(u)]. Moreover, since l < r there is no closing parentheses of a node with label `
at the indices strictly between close(u) and l. Therefore, the interval corresponding to
LLA(`, u) must contain the index l. Combining this with Property 2.2 it must be that
the interval corresponding to LLA(`, u) contains the interval [open(u),findclose(l)] and so
LLA(`, u) is necessarily an ancestor of LLA(`, [l,findclose(l)]). For the other direction, by
Property 2.2 the interval corresponding to LLA(`, [l,findclose(l)]) must contain the interval
[l,findclose(l)]. Since there is no index in I`,open between close(u) and l, the interval
corresponding to LLA(`, [l,findclose(l)]) must contain the index close(u). Combining with
Property 2.2 the interval corresponding to LLA(`, [l,findclose(l)]) must contain the interval
[open(u),findclose(l)], and so LLA(`, [l,findclose(l)]) must be an ancestor of LLA(`, u).
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In the third case r = l. Then it must be that r = l =∞ since otherwise we have a single
index for both an open and close parentheses. Thus, there is no index of close parentheses
in the range [close(u) + 1, 2n] that corresponds to a node labeled with `. If u has a proper
ancestor v that is labeled with `, then by Property 2.2 close(v) > close(u). Therefore, there
is no such ancestor, and LLA(`, u) does not exist. J

By Lemma 5, once we perform two successor operations and a constant number of base
set operations, we either find a node v = LLA(`, u) or we find a node w that is labeled with
` such that LLA(`, u) = LLA(`, w). Computing LLA(`, w) in the second case takes O(1)
time since w is labeled with ` (and so this is a same label LLA query). What remains to be
shown is how to execute the two successor queries on the sets of indices.

Successor queries on subsets of indices. Let R be a binary matrix of size [a] × [b]. For
integers 1 ≤ x ≤ a and 1 ≤ y ≤ b let rankcol(y, x) be the number of 1s in the first x entries
of the y’th column of R. For integers 1 ≤ j ≤ a and 1 ≤ y ≤ b let selectcol(y, j) be the index
of the j’th 1 in the y’th column of R.

We focus on I`,open as the treatment of I`,close is the same. Consider the binary matrix
Ropen of size [n]× [λ], where Ropen[i][`] = 1 if and only if i ∈ I`,open. Given a node u in T
we can find the row that corresponds to u in Ropen in constant time by executing a single
pre_rank(u) operation (which is a base set operation). Using the encoding of Barbay et
al. [5] on Ropen we can answer rankcol and selectcol queries in O(log log λ) and O(1) time
respectively. However, this encoding makes use of O(t log λ) bits (since there are t non zero
values in the matrix). We reduce this space usage using indirection as follows.

Let τ = log2 λ. For each set of indices I`,open let Î`,open ⊂ I`,open be the indices whose
rank in I`,open is a multiple of τ . Notice that if |I`,open| < τ then Î`,open = ∅. The treatment
of such cases is discussed after explaining the more challenging case. Consider the binary
matrix R̂open of size [n]× [λ], where R̂open[i][`] = 1 if and only if i ∈ Î`,open. Notice that the
number of non-zero entries in R̂open is t′ = O( tτ ). We further reduce the matrix R̂open by
removing all of the rows that have only zeros, and use another rank and select data structure
to move between the row indices of these matrices. This uses another t′ log n

t′ +O(t′) + o(n)
bits [30], which is o(n+ t) bits1.

Thus, we answer rank and select queries on the rows of R̂open using the encoding of
Barbay et al. [5] with O(t′ log λ) = o(t) bits. Given an index i for which we wish to compute
s = succI`,open

(i) we first find ŝ = succÎ`,open
(i) using the data structure on R̂open after

finding the appropriate row in the matrix R̂open with a single rankcol operation in O(log log λ)
time. If we have successfully found ŝ it must be that |rankI`,open

(s) − rankI`,open
(ŝ)| ≤ τ .

Thus, with O(log τ) executions of pre_select(`, i) (each costing O(1) time since it is a same
label operation), we perform a binary search to find s in O(log τ) time.

Finally, if we were not successful in finding ŝ (either Î`,open = ∅ or i ≥ max Î`,open) then
there are at most τ possible elements to consider (the last τ elements) and a binary or
exponential search with pre_select(`, i) operations finds s in O(log τ) time. This completes
the proof of Theorem 2

1 If t ≤ n then let t = n/x for some x. Then t′ log n
t′ = n

xτ log xτ = o(n). If t > n then t′ log n
t′ =

t
τ log nτ

t ≤
t
τ log τ = o(t).
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5 Same Label Operations for General Multi-labeled Trees

In this section we prove Theorem 3. The representation of T uses two main components.
The first component is a label-ordered tree, which functions in a way that is similar to the
modified failure tree in the dictionary matching data structure. The second component is
an implementation of a transition operator which functions in a way that is similar to the
forward links in the dictionary matching data structure.

Label-ordered tree. The encoding technique for the label-ordered tree is similar to the
tree extraction technique used in [18, 19, 20]. For each ` ∈ L let F` be the induced forest
obtained by inducing T on the nodes with label `. By an inducing we mean that for two
nodes u, v ∈ F`, u is the parent of v if and only if both u and v are labeled with `, and
u = LLA(`, v). Notice that the sum of the sizes of all of the forests is exactly t. For each
such forest we create a dummy node and make it the parent of all of the roots of trees in the
forest. This adds another λ nodes. Finally, we add a special new root whose children are the
dummy nodes, ordered by their labels, thereby creating the label-ordered tree. We denote
this tree by T̂ . The size of T̂ is t+ λ+ 1. We use the data structure of Geary, Raman and
Raman [17] to represent T̂ with 2t + 2λ + o(t + λ) bits, while supporting the base set of
operations on the BP representation of T̂ in constant time.

Transition operator. The transition operator translates in constant time between the rank
of a node u in T and a label `, and the rank of the copy of u in T̂ which is associated
with `. This translation works in both directions. To do so, for each u ∈ T and for each
label ` of u, the transition operator creates the ordered pair (`, pre_rankT (u)). Notice
that rank((`, pre_rankT (u))) = pre_rankT̂ (u`) − ` − 1, where the rank is taken over all
ordered pairs. Similarly, one can use a select query to translate from pre_rankT̂ (u`) to
pre_rankT (u). We use a data structure that supports rank and select queries in constant
time [30] using dlog

(
nλ
t

)
e+ o(t) +O(log log (nλ)) bits.

Same label LLA. Using the above representations, we support same label LLA queries
exactly like we do in the proof of Lemma 4. Since we used a representation for supporting the
base set of operations on the BP representation of T̂ in constant time, again using the ideas
in the proof of Lemma 4 we support same label operations and the base set of operations
on the BP representation of T in constant time. Thus, together with Theorem 2 we have
completed the proof of Theorem 3.
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Abstract
Let G = (V,E) be a vertex-colored graph, where C is the set of colors used to color V . The
Graph Motif (or GM) problem takes as input G, a multisetM of colors built from C, and asks
whether there is a subset S ⊆ V such that (i) G[S] is connected and (ii) the multiset of colors
obtained from S equals M . The Colorful Graph Motif (or CGM) problem is the special
case of GM in which M is a set, and the List-Colored Graph Motif (or LGM) problem is
the extension of GM in which each vertex v of V may choose its color from a list L(v) of colors.

We study the three problems GM, CGM, and LGM, parameterized by ` := |V | − |M |. In
particular, for general graphs, we show that, assuming the strong exponential time hypothesis,
CGM has no (2−ε)` ·|V |O(1)-time algorithm, which implies that a previous algorithm, running in
O(2` · |E|) time is optimal [2]. We also prove that LGM is W[1]-hard even if we restrict ourselves
to lists of at most two colors. If we constrain the input graph to be a tree, then we show that
GM can be solved in O(4` · |V |) time but admits no polynomial-size problem kernel, while CGM
can be solved in O(

√
2` + |V |) time and admits a polynomial-size problem kernel.
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natorics, G.2.2 Graph Theory

Keywords and phrases NP-hard problem, subgraph problem, fixed-parameter algorithm, lower
bounds, kernelization

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.7

1 Introduction

The Subgraph Isomorphism problem is the following pattern matching problem in graphs:
given a (typically large) host graph G and a (small) query graph H, return one (or all)
occurrence(s) of H in G, where the term occurrence denotes here a subset S of V (G) such
that G[S], the subgraph of G induced by S, is isomorphic to H. This type of graph mining
problem has numerous applications, notably in biology [20]. Subgraph Isomorphism is
a structural graph pattern matching problem, where one looks for similar graph structures
between H and G. In some biological contexts, however, additional information is provided
to the vertices of the graphs, for example their biological function. This can be modeled
by labeling each vertex of the graph, for example by giving it one or several colors, each
corresponding to an identified function. In the presence of such functional annotation, the
structure of a given induced subgraph may be of less importance than the functions it
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corresponds to. Thus, a new set of functional graph pattern matching problems has emerged,
starting with the Graph Motif problem [15], which was introduced in the context of the
analysis of metabolic networks. Here, what is primarily sought in the host graph is a multiset
M of colors that represents the functions of interest.

Graph Motif (GM)
Input: A multiset M built on a set C of colors, an undirected graph G = (V,E), and
a coloring χ : V → C.
Question: Is there a set S ⊆ V such that G[S] is connected and there is a one-to-one
mapping f from S to M?

Many variants of the GM problem have been introduced and studied. In particular,
List-Colored Graph Motif (or LGM) is a generalization of GM that is used to identify
protein complexes in protein interaction networks that are similar to a given protein complex
from a different species [7]. In LGM, a list-coloring L : V → 2C is assigned to each vertex
of G, and the question asked is the existence of S ⊆ V such that (i) G[S] is connected and
(ii) the one-to-one mapping f from S to M we look for satisfies ∀v ∈ S : f(v) ∈ L(v). The
special case of GM in which M is a set is called Colorful Graph Motif (or CGM). Many
optimization problems related to GM have received interest, including some that are related
to tandem mass spectrometry and where the input graph is directed [19]. All these problem
variants have given rise to a very abundant literature. CGM, GM, and LGM are NP-hard
even in very restricted cases [10]. Consequently, many of the above-mentioned studies have
focused on (dis)proving fixed-parameter tractability of the problems (see e.g. [21] for the
most recent survey on the topic). In such cases, very often the parameter k := |M | = |S| is
considered.

In this paper, we study the parameterized complexity of GM, CGM, and LGM, but we
differ from the usual viewpoint by focusing on the dual parameter ` := |V | − |S|, that is, `
is the number of vertices to be deleted from G to obtain a solution. Although the choice
of ` may be disputable because it may a priori be too large to expect a good behavior in
practice, there are several arguments for choosing such a parameter: First, after some initial
data reduction, the input may be divided into smaller connected components, where ` is not
much larger than k. Second, the algorithms for parameter k rely on algebraic techniques
or dynamic programming, and in both cases, the worst-case running time is equivalent to
the actual running time. In contrast, for example for CGM, the algorithm for parameter `
is a search tree algorithm [2], and search tree algorithms can be accelerated substantially
via pruning rules. Finally, there are subgraph mining problems where the dual parameter `
is usually bigger than the parameter k but leads to the current-best algorithm (in terms of
performance on real-world instances) [13]. Hence, parameterization by ` may be useful even
if ` is bigger than k, and thus deserves to be studied.

Related work and our contribution. GM is NP-hard, even when M is composed of two
colors [10]. Concerning the parameterized complexity for parameter k := |M |, the current-
best randomized algorithm has a running time of 2k · nO(1) [3, 18] where n := |V |, and there
is some evidence that this cannot be improved to a running time of (2− ε)k · nO(1) [3]. The
current-best running time for a deterministic algorithm is 5.22k · nO(1) [17]. GM on trees
can be solved in nO(c) time where c is the number of colors in M [10], but it is W[1]-hard
with respect to c [10]. Other parameters, essentially related to the structure of the input
graph G, have been studied by Bonnet and Sikora [6]. Finally, concerning parameter `, GM
has been shown to be W[1]-hard, even when M is composed of two colors [2].
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Table 1 Overview of new and previous results with respect to the dual parameter ` := n − k,
where n := |V |, m := |E|, k := |M |, and ∆ := maxv∈V |L(v)| denotes the maximum list size in G.
The lower bound result for CGM assumes the strong exponential time hypothesis (SETH) [14].

General graphs Trees

LGM W[1]-hard [2] ?
LGM, ∆ = 2 W[1]-hard (Cor. 4) ?

GM W[1]-hard [2] O(4` · n) (Thm. 5)
no poly. kernel (Thm. 8)

CGM O(2` ·m) [2], O(
√

2` + n) (Thm. 13),
no (2− ε)` · nO(1) (Thm. 1)
no poly. kernel (Thm. 2) (2`+ 1)-vertex kernel (Thm. 10)

Since CGM is a special case of GM, any above-mentioned positive result for GM also
holds for CGM. Besides, CGM is NP-hard, even for trees of maximum degree 3 [10], and
does not admit a polynomial-size problem kernel with respect to k even if G has diameter
two or if G is a comb graph (a special type of tree with maximum degree 3) [1]. Finally,
CGM can be solved in O(2` ·m) time [2]. The LGM problem is an extension of GM and
thus any negative result for GM propagates to LGM. Moreover, LGM is known to be
fixed-parameter tractable with respect to k, the current-best algorithm runs in 2k · nO(1)

time [18]. Concerning parameter `, LGM has been shown to be W[1]-hard even when M is
a set [2].

As mentioned above, we study GM, LGM and CGM with respect to the dual parame-
ter ` := n− k. Since many results in general graphs turn out to be negative, we also chose
to focus on the special case where the input graph G is a tree. Our results are summarized
in Table 1. In a nutshell, we strengthen previous hardness results for the general case and
show that the O(2` ·m)-time algorithm for CGM is essentially optimal. Then, we show that
for GM on trees a fixed-parameter algorithm can be achieved, and that, for CGM on trees, a
polynomial problem kernel and better running times than for general graphs can be achieved.

Preliminaries. Throughout the paper, the input graph for our three problems is G = (V,E),
and we let n := |V | (resp. m := |E|) denote its number of vertices (resp. edges). We
use [n] := {1, . . . , n} to denote the set of the integers from 1 through n. The set S of vertices
sought for in the three problems is called an occurrence of M . If G is vertex-colored, we call
a vertex set S colorful if |S| = |M | and all vertices in S have pairwise different colors. A
vertex v is called unique if it is assigned a color c that is assigned to no other vertex in V .

We briefly recall the relevant notions of parameterized algorithmics [8]. A reduction to a
problem kernel, or kernelization, is an algorithm that takes as input an instance (I, k) of a
parameterized problem and produces in polynomial time an equivalent instance (I ′, k′) (that
is, having the same solution) such that (i) |I ′| ≤ g(k), and (ii) k′ ≤ k. The instance (I ′, k′)
is called problem kernel and g is called the size of the problem kernel. If g is a polynomial
function, then the problem admits a polynomial-size problem kernelization. The class W[1] is
a basic class of presumed fixed-parameter intractability [8], that is, if a problem is W[1]-hard
for parameter k, then we assume that it cannot be solved in f(k) · nO(1) time [8]. The strong
exponential time hypothesis (SETH) assumes that CNF-SAT with n variables cannot be
solved in time (2− ε)n for any ε > 0 [14].

This work is structured as follows. In Section 2, we present lower bounds for LGM
and CGM on general graphs. These negative results motivate our study of the case when G
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is a tree; our results for GM on trees and CGM on trees will be presented in Section 3
and Section 4, respectively. Due to lack of space, some proofs are deferred to a full version of
the article.

2 Parameterization by Dual in General Graphs: Tight Lower Bounds

CGM can be solved in O(2` ·m) time [2]. We show here that this running time bound is
essentially optimal.

I Theorem 1. Colorful Graph Motif cannot be solved in (2− ε)` · nO(1) time unless
the strong exponential time hypothesis fails.

Proof. We present a polynomial-time reduction from CNF-SAT:

Input: A boolean formula Φ in conjunctive normal form with clauses C1, . . . , Cq over
variable set X = {x1, . . . , xr}.
Question: Is there an assignment β to X that satisfies Φ?

The reduction works as follows. First, for each variable xi ∈ X introduce two variable
vertices vti and v

f
i and color each of the two vertices with color χxi . The idea is that (with

the final occurrence) we must select exactly one vertex for this color. This selection will
correspond to a truth assignment to X. Now, introduce for each clause Ci a clause vertex ui,
color ui with a unique color χCi and make ui adjacent to vertex vtj if xj occurs nonnegated
in Ci and to vertex vfj if xj occurs negated in Ci. Finally, introduce one further vertex v∗ with
a unique color χ∗, make v∗ adjacent to all variable vertices and let M be the set containing
each of the introduced colors exactly once. Note that there are exactly |X| colors that appear
twice in G and that all other colors appear exactly once. Hence, ` = |X|. We next show the
correctness of the reduction. Let I denote the constructed instance of CGM.

First, assume that Φ is satisfiable and let β be a satisfying assignment of X. For the
CGM instance consider the vertex set S ⊆ V that contains all clause vertices, vertex v∗, and
for each variable xi the vertex vti if β sets xi to ’true’ and vfi otherwise. Clearly, |S| = |M |
and no two vertices of S have the same color. To show that I is a yes-instance of CGM it
remains to show that G[S] is connected. First, the subgraph induced by the variable vertices
in S plus v∗ is a star and thus it is connected. Second, since β is a satisfying assignment
each clause vertex in S has at least one neighbor in S (which is by construction a variable
vertex). Hence, G[S] is connected.

Conversely, assume that I is a yes-instance of CGM, and let S be a colorful vertex set
with |S| = |M | such that G[S] is connected. Since S is colorful, the variable vertices in S
correspond to a truth assignment of X. This assignment satisfies X: Indeed, since G[S] is
connected, there is a path in G[S] between each clause vertex ui and v∗, and thus there is a
neighbor of ui that is in S. If this neighbor is vtj (resp. vfj ), then by construction, β assigns
’true’ (resp. ’false’) to xj and thus Ci is satisfied.

Thus, the two instances are equivalent. Now observe that since ` = |X| = r and
n = 2r+q+1, any (2−ε)` ·nO(1)-time algorithm implies a (2−ε)r · (r+q)O(1)-time algorithm
for CNF-SAT. This directly contradicts the SETH. J

The above reduction also makes the existence of a polynomial-size problem kernel
for parameter ` unlikely. This is implied by the following two facts. First, CNF-SAT
parameterized by the number of variables does not admit a polynomial-size problem kernel
unless NP ⊆ coNP/poly [9]. Second, the reduction presented in proof of Theorem 1 is a
polynomial parameter transformation [5] from CNF-SAT parameterized by the number of
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variables to CGM parameterized by `. More precisely, given an input CNF-SAT formula Φ
on variable set X, the reduction produces an instance I = (M,G,χ) of CGM with ` = |X|.
Now, any polynomial-size problem kernelization applied to I produces in polynomial time an
equivalent CGM instance I ′ of size `O(1) = |X|O(1). Since CNF-SAT is NP-hard, we can now
transform this CGM instance in polynomial time into an equivalent CNF-SAT instance that
has size `O(1) = |X|O(1). Hence, a polynomial-size problem kernel for CGM parameterized
by ` implies a polynomial-size problem kernel for CNF-SAT parameterized by |X|. This
implies NP ⊆ coNP/poly [9] (which in turn implies a collapse of the polynomial hierarchy).

I Theorem 2. Colorful Graph Motif parameterized by ` does not admit a polynomial-
size problem kernel unless NP ⊆ coNP/poly.

We have thus resolved the parameterized complexity of CGM parameterized by ` on general
graphs and now turn to the more general LGM which is W[1]-hard with respect to ` [2].
Here, it would be desirable to obtain fixed-parameter algorithms for the parameter ` at least
for some restricted inputs. In other words, we would like to further exploit the structure of
real-world instances to obtain tractability results. A very natural approach here is to consider
the size and structure of the list-colorings L(v) as additional parameter. Unfortunately, the
problem remains W[1]-hard even for the following very restricted case of list-colorings. Herein,
the vertex-color graph is the graph with vertex set V ∪ C and edge set {{v, c} | c ∈ L(v)}.

I Theorem 3. List-Colored Graph Motif is W[1]-hard with respect to ` even if the
vertex-color graph is a disjoint union of paths.

We immediately obtain the following.

I Corollary 4. List-Colored Graph Motif is W[1]-hard with respect to ` even if |L(v)| ≤
2 for every vertex in G.

3 Graph Motif on Trees

Motivated by these negative results on general graphs, we now study the special case where
the input graph is a tree. For LGM, we were not able to resolve the parameterized complexity
with respect to ` for this case. Hence, we focus on the more restricted GM problem. We
show that GM is fixed-parameter tractable with respect to ` if the input graph is a tree.
Recall that for general graphs, GM is W[1]-hard for ` even if the motif M contains only two
colors [2]. Hence, the tree structure helps significantly when parameterizing by `.

3.1 A Dynamic Programming Algorithm
Call a color of M abundant if it occurs more often in G than in M . The abundant colors are
exactly the ones that have to be “deleted” to obtain a solution S. Let c1, . . . , cj denote the
abundant colors ofM , and let `i denote the difference between the number of vertices in V that
have color ci and the multiplicity of ci in M . This implies in particular that

∑
1≤i≤j `i = `.

The algorithm is a dynamic programming algorithm that works on a rooted representation
of G. Thus, obtain a rooted tree T by rooting G at an arbitrary vertex r ∈ V . As usual for
dynamic programming on trees, the idea is to combine partial solutions of subtrees. Our
algorithm is somewhat similar to a previous dynamic programming algorithm for GM on
graphs of bounded treewidth [10] but the analysis and concrete table setup is different.

I Theorem 5. Graph Motif can be solved in O(4` · n) time if G is a tree.
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The fixed-parameter tractability of GM on trees also implies the following result for LGM.

I Corollary 6. LGM can be solved in O(4` · n) time if G is a tree and the vertex-color
graph H = (V ∪ C, {{v, c} | c ∈ L(v)}}) is a disjoint union of paths.

Proof. We describe a reduction of this special case of LGM on trees to GM on trees. Here,
we call the vertices of H that are from V the V -vertices of H and those that are from C

the C-vertices. Observe that without loss of generality, we can assume that all colors in the
lists are contained inM . First, if H has a connected component that contains more C-vertices
than V -vertices, then the instance (M,G,L) is a no-instance and can be immediately rejected.
Second, for any connected component H ′ of H that contains at least two C-vertices c1 and c2
that have multiplicity two in M , then the instance is also a no-instance: In H ′, the number
of V -vertices exceeds the number of C-vertices by at most one. Hence, if four or more
V -vertices are assigned only to c1 or c2, then there is some other C-vertex in H ′ that is
assigned to none of the V -vertices. A similar argument applies if H ′ contains a C-vertex
that has multiplicity at least three in M .

If the instances are not rejected because any of the cases described above applies, then
each connected component H ′ of H has at most one C-vertex that has multiplicity two in M
and all other C-vertices have multiplicity at most one. We show that in both cases, the
constraints of L for H ′ can be replaced by simple coloring constraints.

Case 1: Every C-vertex of H ′ has multiplicity one in M . If H ′ has the same number
of V -vertices as C-vertices (equivalently, H ′ has an even number of vertices), then every
occurrence S of M contains all V -vertices from H ′. Otherwise, if H ′ has more V -vertices
than C-vertices (equivalently, H ′ has an odd number of vertices), then every occurrence S
of M contains all except one V -vertex from H ′. In both cases, we can replace the constraints
as follows. Introduce a color cH′ , color all V -vertices in H ′ with color cH′ and replace in M
every C-vertex of H ′ by cH′ . In the first case, the number of vertices with color cH′ is exactly
the multiplicity of cH′ in M , in the second case it is the multiplicity of cH′ in M plus one.

Case 2: One C-vertex c of H ′ has multiplicity two in M . If H ′ has the same number of
V -vertices as C-vertices (equivalently, H ′ has an even number of vertices), then the instance
is a no-instance and can be rejected immediately: any assignment of colors to the V -vertices
either fails to assign one of the C-vertices or assigns at most one V -vertex to c. Otherwise,
if H ′ has an odd number of vertices, every occurrence S of M contains all V -vertices of H ′.
The constraints posed by H ′ may thus be replaced as follows: Introduce a color cH′ , color
all V -vertices in H ′ with color cH′ and replace in M every C-vertex of H ′ by cH′ (replace c
twice). Then the multiplicity of cH′ in M is exactly the number of V -vertices in H ′.

Applying these replacements exhaustively then results in an equivalent instance of GM
on trees which can be solved in the claimed running time due to Theorem 5. J

3.2 A Kernelization Lower Bound
We now show that GM does not admit a polynomial-size problem kernel with respect to `
even if G is a tree. The proof is based on a cross-composition [4] from the W[1]-hard
Multicolored Clique problem [11].

Multicolored Clique
Input: A graph H = (W,F ) and a vertex-coloring χ : W → {1, . . . , k}.
Question: Is there a vertex set S ⊆ W such that S is colorful, that is, |S| = k and
the vertices in S have pairwise different colors, and H[S] is a clique?
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To avoid confusion between the colors of the Multicolored Clique instance and the GM
instance, we refer to the colors of the Multicolored Clique instance as labels in the
following. Informally, cross-compositions are reductions that combine many instances of
one problem into one instance of another problem. The existence of a cross-composition
from an NP-hard problem to a parameterized problem Q implies that Q does not admit a
polynomial-size problem kernel (unless NP ⊆ coNP/poly) [4].

I Definition 7 ([4]). Let L ⊆ Σ∗ be a language, let R be a polynomial equivalence relation
on Σ∗, and let Q ⊆ Σ∗×N be a parameterized problem. An or-cross-composition of L into Q
(with respect to R) is an algorithm that, given t instances x1, x2, . . . , xt ∈ Σ∗ of L belonging
to the same equivalence class of R, takes time polynomial in

∑t
i=1 |xi|+ k and outputs an

instance (y, k) ∈ Σ∗ × N of Q such that
the parameter value k is polynomially bounded in maxti=1 |xi|+ log t, and
the instance (y, k) is a yes-instance for Q if and only if at least one instance xi is a
yes-instance for L .

We present an or-cross composition of Multicolored Clique into GM on trees
parameterized by `. The polynomial equivalence relation R will be simply to assume that all
the Multicolored Clique instances have the same number of vertices n. The main trick is
to encode vertex identities in the graph of the Multicolored Clique instance by numbers
of colored vertices in the GM instance; note that this approach was also followed in previous
works on GM [10, 6]. Given t instances (H1 = (W1, F1), χ1), H2 = (W2, F2), χ2), . . . ,Ht =
(Wt, Ft), χt) of Multicolored Clique such that |Wi| = n for all i ∈ [t], we reduce to an
instance of GM where the input graph is a tree as follows. Herein, we assume without loss
of generality that t = 2s for some integer s.

The first construction step is to add one vertex r that connects the different parts of
the instance and which will be contained in every occurrence of the motif. The vertex r
thus receives a unique color that may not be deleted. To this vertex r we attach subtrees
corresponding to edges of the input instances. Deleting vertices of such a subtree then
corresponds to selecting the endpoints of the corresponding edge.

Instance selection gadget. The technical difficulty in the construction is to ensure that the
solution deletes only vertices in subtrees corresponding to edges of the same graph. To achieve
this, we introduce k · (k−1) · log t instance selection colors ι[p, q, τ ] where p ∈ [k], q ∈ [k]\{p},
and τ ∈ [log t], and demand that the solution deletes exactly one vertex of each instance
selection color. To ensure that exactly one instance is selected, we use two further colors ι+
and ι−. For each Multicolored Clique instance (Hi, χi), attach an instance selection
path Pi to r that is constructed based on the number i. Let b(i) denote the binary expansion
of i and let bτ (i), τ ∈ [log t], denote the τth digit of b(i). Construct a path Pi containing
first a vertex with color ι+, then in arbitrary order exactly one vertex of each color in the
color set Ii := {ι[p, q, τ ] : bτ (i) = 1}, and then a vertex with color ι−. Attach the path Pi
to r by making the vertex with color ι+ a neighbor of r.

The idea of the construction is that exactly one instance selection path Pi is deleted
completely and that this will force any solution to delete paths that “complement” Pi (that
is, paths which contain all ι[p, q, τ ] such that bτ (i) = 0) in the rest of the graph.

Edge selection gadget. To force deletion of subtrees corresponding to exactly
(
k
2
)
edges

with different labels, we introduce 2k(k − 1) label selection colors λ[p, q]+ and λ[p, q]−
where p ∈ [k] and q ∈ [k] \ {p}. These colors will ensure that for each pair of labels p and q
the solution deletes exactly one path corresponding to the ordered pair (p, q) and one path
corresponding to the pair (q, p).
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There are two further sets of colors. One set is used for ensuring vertex consistency of the
chosen edges, that is, to make sure that all the selected edges with label pair (p, ·) correspond
to the same vertex with label p. More precisely, we introduce a color ω[p, q] for each p ∈ [k]
and each q ∈ [k] \ {p}, except for the biggest q ∈ [k] \ {p}.

The final color set is used to check that the edges selected for label pair (p, q) and for
label pair (q, p) are the same. To this end, we introduce a set of colors ε[p, q] for each p ∈ [k]
and each q ∈ [k] \ {p} such that q > p. To perform the checks of vertex and edge consistency,
we encode the identities of vertices and edges into path lengths. More precisely, we assign
each vertex v ∈Wi a unique (with respect to the vertices of Wi) number #(v) ∈ [n].

Now, for each label pair (p, q) and each instance i, attach one path Pi(u, v) to r for each
edge {u, v} where u has color p and v has color q 6= p. The path Pi(u, v)

starts with a vertex with color λ[p, q]+ that is made adjacent to r,
then contains exactly one vertex of each color in {ι[p, q, τ ] : ι[p, q, τ ] /∈ Ii},
then contains #(u) vertices of color ε[p, q] if p < q and n−#(v) vertices of color ε[q, p]
if p > q,
then, if q is not the biggest label in [k] \ p, contains #(u) vertices with color ω[p, q],
then, if q is not the smallest label in [k] \ p, contains n−#(u) vertices with color ω[p, q′],
where q′ is the next-smaller label in [k]\p (if p = q−1, then q′ = q−2; otherwise q′ = q−1),
and
ends with a vertex with color λ[p, q]−.

Let C denote the multiset containing all the vertex colors of all vertices added during the
construction with their respective multiplicities. In the correctness proof it will be easier to
argue about the colors that are not contained in M . Hence, the construction is completed by
setting the multiset D of colors to “delete” to contain each color with multiplicity one except

the color of r which is not contained in D,
the vertex consistency colors ω[p, q] each of which is contained with multiplicity n, and
the edge selection colors ε[p, q] each of which is contained with multiplicity n.

The motif M is defined as M := C \D. It remains to show the correctness.

I Theorem 8. Graph Motif does not admit a polynomial-size problem kernel with respect
to ` even if G is a tree.

4 Colorful Graph Motif on Trees

For the combination of vertex-colored trees as input graphs and motifs that are sets, the
problem becomes considerably easier. First, we show that CGM admits a linear-vertex
problem kernel in this case. Moreover, we show that this problem kernel can be computed
in linear time. The idea for the problem kernelization is based on two simple observations.
First, in all graphs, not only in trees, the number of vertices that are not unique is bounded.

I Observation 9. Let (M,G,χ) be an instance of Colorful Graph Motif. Then at
most 2` vertices in G are not unique.

Proof. Let C+ denote the set of colors that occur more than once in G and let occ(c) denote
the number of occurrences of a color c in G. We denote c+ := |C+|, n+ :=

∑
c∈C+ occ(c),

and n− the number of unique vertices in G. By definition, no color is repeated in M , thus
|M | = c+ + n− ; moreover, |V | = n+ + n−. Hence, the number ` = |V | − |M | of vertices to
delete satisfies ` = n+−c+. By definition n+ ≥ 2c+, and thus we conclude that ` ≥ n+/2. J
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r

u v

r r

Figure 1 The two phases of the kernelization. Left: The input instance, where r, u, and v have
unique colors. The pendant non-unique subtrees are highlighted by the grey background. Middle:
after Phase I, all vertices on paths between unique vertices are contracted into r. Right: In Phase II,
all vertices with a color that was removed in Phase I are removed together with their descendants.

Second, if there are two vertices that are unique, then the uniquely determined path between
these vertices is contained in every occurrence of the motif. The kernelization accordingly
removes all the vertices that lie on these paths. More precisely, these vertices are “contracted”
into the root r. Afterwards, in a second phase some further vertices are removed because
their colors have been used during the contraction. Eventually, this results in an instance
which has at most one unique vertex and thus, by Observation 9, bounded size. For an
example of the kernelization, see Figure 1. Below, we give a more detailed description.

I Theorem 10. Colorful Graph Motif on trees admits a problem kernel with at
most 2`+ 1 vertices that can be computed in O(n) time.

Proof. We first describe the kernelization algorithm, then we show its correctness and finally
bound its running time. By Observation 9, the size bound holds if the instance has no unique
vertex. Thus, we assume that there is a unique vertex in the following.

Given an instance (G,M,χ) of CGM, first root the input tree G at an arbitrary unique
vertex r. Now call a subtree with root v pendant if it contains all descendants of v in G.
Then, compute in a bottom-up fashion maximal pendant subtrees such that no vertex in this
subtree is unique. Call these subtrees the pendant non-unique subtrees. By Observation 9,
the total number of vertices in pendant non-unique subtrees is at most 2`. Now the algorithm
removes vertices in two phases.

Phase I. Remove from G all vertices except r that are not contained in a pendant non-
unique subtree. Remove all colors of removed vertices from M . If there is a color c such that
two vertices with color c are removed in this step, then return “no”. Make r adjacent to the
root of each pendant non-unique subtree.

Phase II. In the first step of this phase, for each color c where at least one vertex has been
removed in Phase I, remove all vertices from G that have color c. In the second step of this
phase, remove all descendants of these vertices. Finally, let M ′ denote the set of colors that
are contained in the remaining instance. This completes the kernelization algorithm; the
resulting instance has at most 2`+ 1 vertices since all vertices except r are unique. To show
correctness, we first observe the following.

Claim: Every occurrence of M in G contains no vertex v that is removed during Phase II
of the kernelization. This can be seen as follows. First, every occurrence ofM in G contains
all vertices removed during Phase I: these vertices are either unique or lie on the uniquely
determined path between two unique vertices. Now consider a vertex v removed during
Phase II. If v is removed in the first step of Phase II, then v has the same color c as a vertex u
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removed during Phase I. Consequently, v is not contained in an occurrence of M : By the
above, the occurrence contains u and it contains no other vertex with color c. Otherwise, v
is removed in the second step of Phase II, because v is not connected to r. Since every
occurrence of M contains r, it thus cannot contain v.

We now show the correctness of the kernelization, that is, the equivalence of the original
instance (M,G,χ) and the resulting instance (M ′, G′, χ′). First, assume that (M,G,χ) is
a yes-instance. Let ST be an occurrence of M in G, and let T denote G[ST ]; by the above
claim, T contains only vertices that are removed during Phase I or that are contained in G′.
Consider the subtree T ′ of G that contains all vertices of T that are not removed during the
kernelization. We show that T ′ is connected in G′ and contains all colors of M ′. Connectivity
can be seen as follows. First, observe that T and T ′ contain r. Second, any vertex v 6= r

of T ′ is contained in some pendant non-unique subtree of G. Thus, v is in T connected to r
via a path that first visits only vertices of T ′, including the root of the pendant non-unique
subtree. The root of the pendant non-unique subtree is in G′ adjacent to r. Thus, each
vertex v 6= r has in T ′ a path to r which implies that T ′ is connected. It remains to prove
that T ′ contains all colors of M ′. Consider a color c ∈M ′. Since c ∈M ′, none of the vertices
with color c are removed in Phase I of the kernelization. Moreover, since no vertex of T
is removed in Phase II of the kernelization, we have that the vertex of T with color c is
contained in T ′. Thus, T ′ contains each color of M ′. Finally, T ′ contains each color at most
once since T does.

Now assume that (M ′, G′, χ′) is a yes-instance and let ST ′ be an occurrence of M ′ in G′.
Let T denote G[ST ′ ∪ VI ], where VI is the set of vertices removed during Phase I of the
kernelization. We show that T is connected and contains every color of G exactly once. To
see that T is connected observe the following: Clearly, G[{r} ∪ VI ] is connected. Moreover,
each vertex v 6= r of T ′ has in T ′ a path to r. This path contains a subpath from v to the
root r′ of the pendant non-unique subtree containing v. In G, r′ is adjacent to some vertex
of {r} ∪ VI . Therefore, r′ is connected to r in T and thus T is connected. It remains to show
that T contains every color of G exactly once. Clearly, T ′ contains at least one vertex of each
color c ∈M ′. Moreover, it also contains at least one vertex of each color c ∈M \M ′ since it
contains all vertices of VI . Besides, it contains each color only once: The vertices of T ′ have
pairwise different colors and different colors than those of the vertices of VI . Finally, the
vertices of VI have different pairwise colors since the kernelization did not return “no”.

The running time can be seen as follows. Determining the pendant non-unique subtrees
can be done by a standard bottom-up procedure in linear time. Removing all vertices during
Phase I can also be achieved in linear time. After removing a vertex with color c in Phase I,
we label c as occupied. When we remove a vertex with an occupied color during Phase I, we
immediately return “no”. After the removal of vertices during Phase I, we can construct M ′
from M in linear time by removing each occupied color. Finally, we can in linear time add
an edge between r and each root of the pendant non-unique subtrees and then remove all
remaining vertices that have an occupied color. The final graph G′ is obtained by performing
a depth-first search from r, in order to include only those vertices still reachable from r. J

Now, let us turn to developing fast(er) FPT algorithms for CGM. It can be seen that
it is possible to solve CGM in trees in time 1.62` · nO(1), by ’branching on colors with the
most occurrences’ until every color appears at most twice. More precisely, for a color c that
appears at least three times and some vertex v with color c, we can branch into the two
cases to either delete v or to delete the at least two other vertices that have color c. The
branching vector1 for this branching rule is (1, 2) or better. Now, if every color appears at

1 For an introduction to the analysis of branching vectors, refer to [8, 12].
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most twice, then CGM on trees can be solved in polynomial time [10, Lemma 2]. However,
by a different branching approach, the above running time can be further reduced.

I Branching Rule 11. If there is a color c such that there are two vertices u and v with
color c that are both not leaves of the tree G, then branch into the case to delete from G

either
the maximal subtree containing u and all vertices w such that the path from v to w

contains u, or
the maximal subtree containing v and all vertices w such that the path from u to w

contains v.

Proof of correctness. No occurrence may contain vertices of both subtrees, since in this
case it contains u and v which have the same color. J

If the rule does not apply, then one can solve the problem in linear time; here, let occ(c)
denote the number of occurrences of a color c in G.

I Lemma 12. Let (M,G,χ) be an instance of Colorful Graph Motif such that G is a
tree and for each color c with occ(c) > 1 at least occ(c)− 1 occurrences of c are leaves of G,
then (M,G,χ) can be solved in O(n) time.

Proof. For each color c with occ(c) > 1, the algorithm simply deletes occ(c)− 1 leaves with
color c. This can be done in linear time by visiting all leaves via depth-first search, checking
for each leaf in O(1) time whether occ(c) > 1 and deleting the leaf in O(1) time if this is the
case. The resulting graph contains each color exactly once, and it is connected since a tree
cannot be made disconnected by deleting leaves. J

Altogether, we arrive at the following running time.

I Theorem 13. Colorful Graph Motif can be solved in O(
√

2` + n) time if G is a tree.

Proof. The algorithm is as follows. First, reduce the input instance in O(n) time to an
equivalent one with O(`) vertices using the kernelization of Theorem 10. Now, apply
Branching Rule 11. If this rule is no longer applicable, then solve the instance in O(`)
time (by applying the algorithm behind Lemma 12). Since the graph has O(`) vertices,
applicability of Branching Rule 11 can be tested in O(`) time. Thus, the overall running time
is O(`) times the number of search tree nodes. Since each application of Branching Rule 11
creates two branches and reduces ` by at least two in each branch, the search tree has
size O(2`/2) = O(

√
2`). The resulting running time is O(

√
2` · `+n). Furthermore, the factor

of ` in the running time can be removed by interleaving search tree and kernelization [16],
that is, by applying the kernelization algorithm of Theorem 10 in each search tree node. J
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Abstract
Strings with don’t care symbols, also called partial words, and more general indeterminate strings
are a natural representation of strings containing uncertain symbols. A considerable effort has
been made to obtain efficient algorithms for pattern matching and periodicity detection in such
strings. Among those, a number of algorithms have been proposed that behave well on random
data, but still their worst-case running time is Θ(n2). We present the first truly subquadratic-
time solutions for a number of such problems on partial words. We show that n longest common
compatible prefix queries (which correspond to longest common extension queries in regular
strings) can be answered on-line in O(n

√
n logn) time after O(n

√
n logn)-time preprocessing. We

also present O(n
√
n logn)-time algorithms for computing the prefix array and two types of border

array of a partial word. We show how our solutions can be adapted to indeterminate strings over
a constant-sized alphabet and prove that, unless the Strong Exponential Time Hypothesis is false,
the considered problems cannot be solved efficiently over a general alphabet.
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1 Introduction

In this work we deal with different representations of sequential data with uncertainty and
imprecision. An (ideal) text is a sequence of symbols from an alphabet Σ. The symbols at
some positions may be unknown; in this case they are represented by a don’t care symbol
(sometimes called a hole and denoted as �) and the resulting sequence is called a partial word.
In a more general variant, for some positions, instead of a single character from Σ or a hole,
a subset of Σ is specified, thus representing a symbol which can be decoded in a number of
ways. The presence of such generalised symbols results in a so-called indeterminate string
(also called a degenerate string).

Our main goal here is to develop worst-case efficient algorithms for different variants
of pattern matching problem and periodicities detection in the context of strings with
uncertainty. The classical pattern matching problem consists in finding all fragments of a
given text that match a given pattern. In the presence of uncertainty one needs to specify
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the relation of matching (denoted by ≈): a don’t care symbol matches every other symbol,
and a generalised symbol matches every symbol that belongs to the set represented by it
(in particular, two generalised symbols match if their sets have a common element). The
pattern matching problem is well-studied in the case of partial words [14, 21, 22, 9, 8]. Also
if the pattern is an indeterminate string and the text is a regular string, then worst-case
efficient [2] or practically efficient [26, 17, 24] algorithms are known.

One of the variants of the pattern matching problem in strings with uncertainty are
longest common compatible prefix queries (lccp-queries), being a natural generalisation of
longest common prefix queries in a regular string. Here we are to preprocess a text of length
n with uncertain symbols so that the queries for longest matching prefix of any two suffixes
of the text can be answered efficiently. They were first defined in [6], where a solution for
partial words was presented with O(n2) preprocessing time and O(1) query time for the case
of a constant-sized alphabet. A solution with the same complexity for a linearly-sortable
alphabet, which works more efficiently in the case that the number of blocks of don’t cares in
the text is bounded, was shown in [11]. A connected notion is that of a prefix array, which
stores the answers to the longest common compatible prefix queries between the whole text
and all its suffixes. Its O(n2) worst-case time (and O(n) average time) computation for
partial words was shown in [18] and for indeterminate strings in [23]. Further combinatorial
insights on the prefix array of an indeterminate string have been recently presented in [3, 7].

The basic array of periodicity on strings is the border array. It stores, for every prefix of
a string, the length of its longest proper border. Its importance stems from applications in
pattern matching algorithms and connections with the set of periods of a string; see [10, 13].
There are two different definitions of border on strings with uncertainty; see [16, 23]. A
quantum border of an uncertain string X is its prefix that matches its suffix. The main
weakness of this definition is that if X has a quantum border of length b, there does not
necessarily need to exist a solid string S matching X and having a border of length b. For
example, this is the case for X = a � b which has a quantum border of length 2: a � ≈ � b;
however, none of the strings aab, abb has a border of this length. Therefore, one could be
interested in so-called deterministic borders: a deterministic border of an uncertain text is
defined as a border of some regular string that matches this text. As in the case of regular
strings, quantum and deterministic borders correspond to quantum and deterministic periods
of uncertain texts (the definitions are deferred until Section 2) and thus allow periodicity
detection. Quantum periods are also called weak periods and deterministic periods are
also called strong periods [5]. Both variants of the border array for a partial word or an
indeterminate string can be computed in O(n2) worst-case time and O(n) average time;
see [18, 16].

Our Results. In Section 3 we show that, for a partial word of length n, for any q ∈ {1, . . . , n}
one can compute in O(n2 logn/q) time a data structure for answering lccp-queries in O(q)
time. In particular, one can answer n such queries in a partial word in O(n

√
n logn) time.

In Section 4 we present a construction of the prefix array and both types of a border array –
hence, the corresponding types of period array – in the same time complexity. Finally in
Section 5 we show that all these results (apart from the deterministic border/period array
computation) extend to indeterminate strings over a constant-sized alphabet. Under the
word-RAM model the complexities improve by a factor of

√
logn. We also argue that, under

the Strong Exponential Time Hypothesis, none of the considered problems can be solved on
indeterminate strings in O(n2−εσO(1)) time over an alphabet of size σ, for ε > 0.
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2 Preliminaries

A string S of length n = |S| is a sequence of n letters over a finite alphabet Σ. The letter
at the position i, for 1 ≤ i ≤ n, is denoted as S[i]. The size of the alphabet is denoted by
σ = |Σ|. By S[i..j] we denote a factor of S equal to S[i] . . . S[j] (if i > j then it is the empty
string ε). The factor is called a prefix if i = 1 and a suffix if j = n. The length of the longest
common prefix of S[i..n] and S[j..n] is denoted as lcp(i, j).

If S[1..b] = S[n− b+ 1..n] then the string S[1..b] is called a border of S. A positive integer
p ≤ n is called a period of S if S[i] = S[i+ p] for all i = 1, . . . , n− p. It is known that S has
a period p if and only if it has a border of length n− p [10, 13].

For a string S we define the following arrays of length n:
prefix array π, such that π[i] = lcp(1, i) for i ≥ 2;
border array B, such that B[i] is the length of the longest border of S[1..i];
period array P , such that P [i] is the shortest period of S[1..i].

A partial word X of length n = |X| is a sequence of elements X[1], . . . , X[n] from Σ∪{�}.
Here � 6∈ Σ is a special character called a don’t care symbol. Two characters a, b ∈ Σ ∪ {�}
are said to match (denoted as a ≈ b) if a = b or a = �, or b = �. The ≈-relation is extended
to partial words position by position. Note that ≈ is not transitive; for instance, a ≈ � and
� ≈ b, but a 6≈ b.

We define a factor of X as a partial word X[i..j] = X[i] . . . X[j] (if i > j then it is the
empty partial word). A factor is called a prefix if i = 1 and a suffix if j = n. The length
of the longest common conservative prefix at positions i and j, denoted as lccp(i, j), is the
greatest integer k such that X[i..i+ k− 1] ≈ X[j..j + k− 1]. Then the prefix array π[2..n] of
X is defined as π[i] = lccp(1, i).

A quantum border of a partial word X is an integer b ∈ {0, . . . , n} such that X[1..b] ≈
X[n− b+ 1..n]. A quantum period of X is an integer p ∈ {0, . . . , n} such that X[i] ≈ X[i+p]
for all i = 1, . . . , n− p. Those two notions correspond, i.e., if X has quantum period p then
it has a quantum border n− p and vice versa; see [23]. A deterministic border (deterministic
period) of X is an integer b (p, respectively) such that there exists a string S such that
S ≈ X and S has a border of length b (a period p, respectively). Here, obviously, we have
that if p is a deterministic period of X, then n− p is a deterministic border of X and vice
versa. Up to the length n

2 quantum and deterministic borders of a partial word are the
same [16]. However, as we have mentioned before, this does not apply to greater lengths.
For partial words we have the following alternative definition of a deterministic period.

I Observation 1. A positive integer p is a deterministic period of a partial word X if and
only if X[i] ≈ X[j] whenever p | i− j.

I Example 2. The partial word

a b a � � � a � a a

has six quantum periods: 2, 3, 4, 6, 9, 10. For example, 2 is a quantum period because

a b ≈ a � ≈ � � ≈ a � ≈ a a.

However, this partial word has only four deterministic periods 3, 6, 9, 10, all corresponding
to the solid string

aba aba aba a.

CPM 2016
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As in the case of regular strings, we introduce the border arrays and the period arrays for
partial words. By QB[i], QP [i], DB[i], and DP [i] we denote the longest quantum border,
shortest quantum period, longest deterministic border, and shortest deterministic period
of X[1..i]. As we have already mentioned, for every i it holds that QP [i] = i−QB[i] and
DP [i] = i−DB[i].

I Example 3. The following table presents the prefix array and the border arrays of two
types of an example partial word.

X[i] a � a � b a b b b �
π[i] – 4 2 5 0 2 0 0 0 1
QB[i] 0 1 2 3 4 3 4 5 0 1
DB[i] 0 1 2 3 2 3 2 0 0 1

We say that a pattern P occurs in a text T , both being partial words, at position i

if P ≈ T [i..i + |P | − 1]. Pattern matching on partial words can be done efficiently via
convolutions. A line of research lead through alphabet-dependent algorithms and randomized
algorithms [14, 21, 22] eventually to an efficient deterministic algorithm; see [9, 8].

I Fact 4. Given two partial words P and T of length m and n, respectively, one can find all
occurrences of P in T in O(n logm) time.

3 Longest Common Compatible Prefix Queries

Let X be a partial word of length n. In this section we show how to answer lccp-queries for X
in O(q) time after O(n2 logn/q)-time preprocessing, for any q ∈ {1, . . . , n}. In the solution
we use a dynamic programming approach combined with pattern matching in partial words.

Let us define a family of partial words Xi = X[(i− 1)q + 1..iq] for i = 1, . . . , bn/qc. Let
the array A[i, j] for i = 1, . . . , bn/qc and j = 1, . . . , n− q+ 1 be defined as follows: A[i, j] = 1
if Xi ≈ X[j..j + q − 1], and A[i, j] = 0 otherwise.

I Observation 5. The array A can be computed in O(n
2 logn
q ) time.

Proof. Computation of the array is equivalent to pattern matching of each Xi in X. The
time complexity follows from Fact 4. J

Let the array L for i = 1, . . . , bn/qc and j = 1, . . . , n− q + 1 be defined as follows:

L[i, j] = max{k ≥ 0 : Xi . . . Xi+k−1 ≈ X[j..j + kq − 1]}.

I Lemma 6. The array L can be computed from the array A in O(n
2

q ) time.

Proof. We compute L[i, j] for decreasing values of i and j using a dynamic programming
approach. Assume that if i > bn/qc or j > n− q + 1, then L[i, j] = 0. For i = bn/qc , . . . , 1
and j = n − q + 1, . . . , 1, if A[i, j] = 1, then L[i, j] = L[i + 1, j + q] + 1, and otherwise
L[i, j] = 0. J

We answer lccp-queries using the array L. In the query algorithm we use a simple bounded
lccp routine (denoted as blccp) that for a pair of indices i, j and a length parameter ` returns
min(lccp(i, j), `).

I Observation 7. blccp(i, j, `) for any i, j, ` can be computed in O(`) time.
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function lccp(i, j)

k := bi/qc; ` := kq − i+ 1;
x := blccp(i, j, `);
if x < ` then return x;
y := L[k + 1, j + x] · q;
z := blccp(i+ x+ y, j + x+ y, q);
return x+ y + z;

Figure 1 Function lccp(i, j).

X
i

x y z

kq

`

X
j

Figure 2 A schematic illustration of the algorithm answering an lccp(i, j)-query. For simplicity
the partial word X is depicted twice; the upper copy is divided into fragments of length q. The
result of the query is shown in bold.

I Lemma 8. Knowing the array L for the partial word X, one can compute lccp(i, j) for
any i, j ∈ {1, . . . , n} in O(q) time.

Proof. The lccp(i, j) query is answered by the algorithm from the pseudocode in Figure 1.
First, we find the smallest ` such that i+ ` ≡ 1 (mod q). We start with an lccp-query from i

and j bounded by ` (part x). If the bound is attained, we read the remaining lccp length
up to a multiple of q from the array L (part y). The remainder of the result modulo q is
computed using a final blccp query (part z); see also Figure 2.

The only non-constant-time operations are two blccp-queries, which can be answered in
O(q) time each by Observation 7. J

I Theorem 9. Let X be a partial word of length n and q ∈ {1, . . . , n} be an integer. After
O(n2 logn/q)-time and O(n2/q)-space preprocessing one can answer lccp-queries for X in
O(q) time.

Proof. We use Observation 5 and Lemma 6 for the construction of the data structure and
the algorithm of Lemma 8 for answering lccp-queries. J

4 Computing Periodicity Arrays

The prefix array of a partial word can be computed via n lccp-queries. By selecting q =⌊√
n logn

⌋
in Theorem 9, we obtain O(n

√
n logn)-time computation of the array. The space

usage of this algorithm is O(n
√
n/ logn). However, we can obtain better space complexity if

we refrain from storing the whole array L.
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I Corollary 10. The prefix array of a partial word of length n can be computed in O(n
√
n logn)

time and O(n) space.

Proof. Consider the array L from the algorithm of Theorem 9. To compute the array π, it
suffices to store the values `j = L[1, j] for j = 2, . . . , n (assuming L[1, j] = 0 for j > n−q+1).
Then

π[j] = `j · q + blccp(1 + `j · q, j + `j · q, q),

which can be computed in O(q) time.
The values `j can be computed with only linear space. Probably the simplest approach is

to perform subsequent matching in X of bn/qc partial word patterns of the form X1 . . . Xi

for i = 1, . . . , bn/qc. Then as `j we store the greatest index i such that X1 . . . Xi occurs at
the position j in X.

By Fact 4, the aforementioned computation of `j-values takesO(n2 logn/q) time. Knowing
those values, we can compute all π[j] in O(nq) time. We select q =

√
n logn and obtain an

O(n
√
n logn)-time algorithm. It requires only linear space. J

In the case of solid strings one can compute the border array from the prefix array in
linear time; see [10, 13]. For partial words we can apply a similar approach to compute the
quantum border array. Assume π[n+ 1] = 0. We use the following combinatorial observation.

I Observation 11. p is a quantum period of X[1..i] if and only if p ≤ i ≤ p+ π[p+ 1].

Proof.
(⇒) Assume that p is a quantum period of X[1..i]. Then i − p is a quantum border of
X[1..i], X[1..i− p] ≈ X[p+ 1..i]. Hence, π[p+ 1] ≥ i− p, i.e., i ≤ p+ π[p+ 1]. Obviously,
p ≤ i.

(⇐) We have X[1..π[p + 1]] ≈ X[p + 1..p + 1 + π[p + 1] − 1]. As p ≤ i ≤ p + π[p + 1] =
p+ 1 + π[p+ 1]− 1, this concludes that X[1..i− p] ≈ X[p+ 1..i]. Hence, i− p is a quantum
border of X[1..i], so p is a quantum period of X[1..i]. J

I Lemma 12. The quantum border array and the quantum period array of a partial word of
length n can be computed in O(n) time given its prefix array.

Proof. We focus on computing the array QP [i]; the array QB[i] can then be computed in
O(n) time. The algorithm is shown in Figure 3.

In the algorithm we store the last index l for which QP [l] has been computed. For every
p ∈ {1, . . . , n} we set the value of the quantum period to p for positions determined by
Observation 11, taking care not to override the previously computed values. As each position
in QP is set at most once, the algorithm runs in linear time. J

Let us proceed to the computation of deterministic border and period arrays. We will
use the following characterisation of a deterministic period of a partial word in terms of its
quantum periods, which is a consequence of Observation 1.

I Observation 13. A partial word X has a deterministic period p if and only if it has all
quantum periods jp for 1 ≤ j ≤ n

p .

Let us define

Ik(p) = [kp, (k + 1)p), Mk(p) = min
j=1,...,k

(jp+ π[jp+ 1]).

We combine Observation 11 with Observation 13 to obtain the following criterion.
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function Compute-QP (X,n)

{ Assume π[n+ 1] = 0 }
l := 0;
for p := 1 to n do

for i := max(p, l + 1) to p+ π[p+ 1] do
QP [i] := p;

l := max(l, p+ π[p+ 1]);
return QP ;

Figure 3 Algorithm computing the quantum period array.

I Observation 14. If i ∈ Ik(p), then X[1..i] has a deterministic period p if and only if
i ≤Mk(p).

Using Observation 14 we obtain the following result.

I Lemma 15. The deterministic border array and the deterministic period array of a partial
word X can be computed in O(n logn) time and O(n) space given its prefix array.

Proof. First we compute, for every p ∈ {1, . . . , n}, an interval I(p) such that i ∈ I(p) if
and only if X[1..i] has a deterministic period p. For this, notice that the intervals Ik(p) for
k = 1, . . . ,

⌊
n
p

⌋
are pairwise disjoint, their left endpoints are monotonically increasing, whereas

the values Mk(p) for k = 1, . . . ,
⌊
n
p

⌋
are monotonically non-increasing. By Observation 14,

we have Ik(p) ⊆ I(p) as long as Mk(p) ≥ (k + 1)p − 1. The last interval included in I(p)
is Ik(p) ∩ [1,Mk(p)] for the smallest k such that Mk(p) < (k + 1)p − 1, if such a value of
k exists. The computation of I(p) takes O(np ) time, which gives O

(∑n
p=1

n
p

)
= O(n logn)

time in total.
The final step consists in computing the smallest deterministic period of each X[1..i].

This is equivalent to the min-variant of the Manhattan skyline problem: for a family of
intervals I(p) with heights p we are to compute, for every i, the smallest height of an interval
that covers it. Using the linear-time nested union/find data structure [15] this problem can
be solved in O(n) time (see also Section 5.1 in [12]). J

We plug Corollary 10 into Lemmas 12 and 15 to arrive at the following final result.

I Theorem 16. The prefix array, the quantum border array, the quantum period array, the
deterministic border array, and the deterministic period array of a partial word of length n
can all be computed in O(n

√
n logn) time and O(n) space.

I Remark. In [18] it is mentioned that all quantum periods/borders of the whole partial word
can be computed via a single run of pattern matching, i.e., in O(n logn) time. Therefore, by
Observation 13, all deterministic periods (hence, borders) of the whole partial word can also
be computed in O

(∑n
p=1

n
p

)
= O(n logn) time (and linear space).

5 The Case of Constant Alphabet and Indeterminate Strings

An indeterminate string X of length |X| = n over an alphabet Σ of size σ is a sequence
of nonempty sets X[1], . . . , X[n] with X[i] ⊆ Σ. Two subsets A, B of Σ are said to match
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(denoted as A ≈ B) if they contain at least one letter in common. Under this matching
relation one can transfer all notions of pattern matching and periodicity from partial words
to indeterminate strings [16, 23]. In this section we show that the majority of the results from
the previous sections extend to indeterminate strings over a constant-sized alphabet. Due
to large constants hidden in the time complexities, the resulting algorithms are plausible in
practice only for a small σ. The most common alphabet over which indeterminate strings are
considered is Σ = {A, C, G, T}. Such indeterminate strings occur, e.g., in the FASTA format.

In the data structure of Section 3 we used an efficient pattern matching routine on partial
words. The state-of-the-art algorithm for pattern matching on indeterminate strings works in
O(σn logn) time or in O(n

√
n logn) time [2], however, only if the text is a regular string. If

both the pattern and the text are indeterminate, we obtain an efficient solution for σ = O(1).

I Lemma 17. Given two indeterminate strings P and T of length m and n, respectively,
over a constant-sized alphabet, one can find all occurrences of P in T in O(n logm) time.

Proof. For every A ⊆ Σ we perform the following procedure. Construct a binary string P ′ of
length m such that P ′[i] = 1 if and only if P [i] = A. Construct a binary string T ′ of length
n such that T ′[i] = 1 if and only if the sets T [i] and A are disjoint. Use an FFT convolution
to count, for every alignment of P ′ and T ′, the number of common 1s at the corresponding
positions of P ′ and a factor of T ′.

In the end we report all alignments for which no common 1 was found in any of the steps.
The algorithm works in 2σ steps, each taking O(n logm) time. J

Another building block of the lccp data structure are the blccp queries. For indeterminate
strings with σ = O(1) they can be implemented in O(`) time just as in Observation 7. We
can also answer them slightly faster using standard properties of the word-RAM model.

I Fact 18. For an indeterminate string X of length n over an alphabet of size σ = O(1),
after O(n)-time and space preprocessing one can compute blccp(i, j, `) in O(`/ logn) time.

Proof. Consider any ε > 0. Let c = (2 + ε)σ and L = max
(⌊

logn
c

⌋
, 1
)
. The number of

indeterminate strings of length L over the alphabet of size σ is:

2σL ≤ 2
σ logn
(2+ε)σ = n

1
2+ε <

√
n,

so each of them can be assigned an integer identifier between 1 and b
√
nc. For every pair of

indeterminate strings of length L we precompute their lccp. There are 22Lσ such pairs, and
the result for each of them can be computed in O(L) time. All the results can be stored in
an array of size 22Lσ. In total this precomputation takes

O(22LσL) = O(n
1

1+ε/2 logn) = o(n)

time.
For every factor of X of length L we then compute its integer identifier. This can be

done in O(n) time if the identifiers are determined by Rabin-Karp-style polynomials with
the rolling property; see [13]. Finally a blccp(i, j, `) query is answered by cutting the factors
of length ` into factors of length L and using the precomputed answers. J

I Remark. For a partial word over a constant-sized alphabet a much better constant
c = (2 + ε) log(σ + 1) would suffice.

Using Lemma 17 and Fact 18 we obtain an implementation of lccp-queries on indeterminate
strings.
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I Theorem 19. Let X be an indeterminate string of length n over a constant-sized alphabet
and q ∈ {1, . . . , bn/ lognc} be an integer. After O(n2/q)-time preprocessing one can answer
lccp-queries for X in O(q) time.

Now the computation of the prefix array and quantum border/period array is the same
as in partial words. However, the computation of the deterministic border and period array
does not generalise, since Observation 1, and consequently Observation 13, does not hold
for indeterminate strings. For example, consider an indeterminate string X of length 3 over
Σ = {a, b, c} such that X[1] = {a, b}, X[2] = {a, c}, X[3] = {b, c}. It has a quantum period
1 and X[1] ≈ X[2] ≈ X[3] ≈ X[1]. However, it does not have a deterministic period 1 since
there is no s ∈ Σ that would match X[1], X[2], and X[3] simultaneously. Therefore we obtain
only the following result for indeterminate strings.

I Corollary 20. The prefix array, the quantum border array, and the quantum period array
of an indeterminate string of length n over a constant-sized alphabet can be computed in
O(n
√
n) time and O(n) space.

The time complexities of the algorithms of Corollary 20 have exponential dependency on
the alphabet size σ. We will now show that, under some well-known hypotheses, no truly
subquadratic algorithms with polynomial dependency on σ exist for any of the considered
problems.

The Orthogonal Vectors Problem is defined as follows: given two sets A and B containing
N vectors from {0, 1}d each, does there exist a pair of vectors α ∈ A and β ∈ B that is
orthogonal, i.e.,

∑d
h=1 α[h]β[h] = 0? The following conjecture is known to be implied (see

[25]) by the Strong Exponential Time Hypothesis (SETH), see [19, 20], which asserts that for
any ε > 0 there is an integer k > 3 such that k-SAT cannot be solved in 2(1−ε)n time. This
conjecture has already been applied to prove hardness results of stringology problems [1, 4].

I Conjecture 21. There is no ε > 0 and an algorithm that solves the Orthogonal Vectors
Problem in O(N2−ε · dO(1)) time.

We will show that, under this conjecture, pattern matching on indeterminate strings
of length n and 2n, respectively, both over an alphabet of size σ, cannot be solved in
O(n2−ε · σO(1)) time.

I Theorem 22. The Orthogonal Vectors Problem can be reduced to pattern matching of an
indeterminate pattern of length n in an indeterminate text of length 2n, where n = N , over
an alphabet of size σ = d.

Proof. Let A = {α1, . . . , αN} and B = {β1, . . . , βN} be the two sets of vectors in {0, 1}d.
Consider an alphabet Σ = {1, . . . , σ}. For a vector α ∈ {0, 1}d, by f(α) we denote the
subset of Σ defined as: s ∈ f(α)⇔ α[s] = 1. Under this mapping, two vectors α and β are
orthogonal if and only if the sets f(α) and f(β) are disjoint, i.e., the indeterminate symbols
f(α) and f(β) do not match.

We construct an indeterminate pattern P = f(α1) . . . f(αN ) and an indeterminate text
T = f(β1) . . . f(βN )f(β1) . . . f(βN ). Then the Orthogonal Vectors Problem for the sets A
and B has a positive answer if and only if P does not occur in T at any of the positions
1, . . . , n. J

Let P and T be the indeterminate pattern and text of Theorem 22 and S be the
concatenation of P and T . As the pattern matching can be solved by computing the prefix
array of S or any of the border arrays of S, or answering n lccp-queries in S, we obtain the
following conditional lower bound.
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I Corollary 23. The prefix array and any of the border arrays of an indeterminate string of
length n cannot be computed in O(n2−ε · σO(1)) time unless SETH fails. Also the problem
of answering n lccp-queries in an indeterminate string of length n cannot be solved in
O(n2−ε · σO(1)) time unless SETH fails.

6 Conclusions and Final Remarks

We have presented a worst-case efficient framework for answering longest common compatible
prefix queries in a partial word. We have then shown how we can compute the prefix array
and two types of border/period arrays of a partial word basically as fast as answering n
lccp-queries. In some cases lccp-queries can be answered faster than using our approach –
e.g., if the number of don’t care symbols is small or the number of groups of consecutive
don’t care symbols is small, see [11] – which automatically yields more efficient algorithms
for computing the aforementioned arrays.

Then we have presented extensions of all the results apart from the construction of the
deterministic border and period array to indeterminate strings over a constant-sized alphabet.
We have also argued that, for general alphabets, efficient solutions to any of the considered
problems for indeterminate strings would violate the Strong Exponential Time Hypothesis.
This, in particular, justifies the usage of heuristic approaches for these problems. As an open
question we leave the computation of deterministic periods of an indeterminate string over a
constant-sized alphabet in O(n2−ε) time.

Acknowledgements. The authors thank an anonymous referee for a number of helpful
suggestions.
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Abstract
In this article we propose an alternative way to prove some recent results on statistics on words,
such as the expected number of runs or the expected sum of the run exponents. Our approach
consists in designing a general framework, based on the symbolic method developed in analytic
combinatorics. The descriptions obtained in this framework are built in such a way that the
degree of ambiguity of an object O (i.e., the number of different descriptions corresponding to
O) is exactly the value of the statistic under study for O. The asymptotic estimation of the
expectation is then done using classical techniques from analytic combinatorics. To show the
generality of our method, we not only apply it to obtain new proofs of known results, but also
extend them from the uniform distribution to any memoryless distribution.
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1 Introduction

In this article we propose an alternative way to prove some recent results on statistics on
words, such as the expected number of runs or the expected sum of the run exponents.
Studying statistics on words is a classical topic in discrete probabilities, which has many
fundamental applications in computer science, for instance in the fields of bioinformatics,
information theory and average case analysis of algorithms.

We specially focus on statistics related to the runs in a random word (see Section 2.1 for
the definition). Bounding the maximal number of runs in a word is a fundamental question
in combinatorics of words, with consequences in text algorithms. Kolpakov and Kucherov
proved that it is in O(n) in their seminal paper [12], and they conjectured that it is at most
n. Banai and his coauthors proved this conjecture very recently [1]. Several other statistics,
such as the total run length or the sum of exponents, have also been studied in the literature.
Besides tightening lower and upper bounds in the worst case [4, 5, 8, 14, 16, 17, 18, 1],
works have been done on the expected values of those statistics, for uniform distributions on
words [15, 13, 11, 3]. It is the kind of questions we propose to study in this article.

Our main contribution is to provide a general framework, which proves quite useful to
obtain asymptotic equivalents to the expectations of statistics related to runs. We follow and
adapt the main ideas developed in the field of analytic combinatorics (see the textbook of
Flajolet and Sedgewick [6]): First we explain how to build the formal power series Lχ(z) that
corresponds to the statistic χ directly from a combinatorial specification on sets of words.
Then, we use the techniques of complex analysis to estimate the expectation En[χ] of χ for
uniform random words of length n. The main difference with the classical framework is that
the combinatorial specifications we use are ambiguous. Usually, unambiguity is mandatory for
this combinatorial method to apply. However, if the degree of ambiguity of the specification
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for a word w, i.e. the number of ways to produce w, is exactly χ(w), then we can directly
get an expression of Lχ(z), or an equation it satisfies.

The net gain of this method is that once Lχ(z) is known, no tedious computations are
needed to get the asymptotic equivalent of En[χ]. The tools from analytic combinatorics
apply and directly yield the result. Moreover, this framework can be used to go beyond
uniform distributions, since it can easily be extended to memoryless distributions, where
each letter is chosen independently with some fixed probability on the alphabet.

The technique we propose is quite natural, and there are hints of its use, for instance,
in [6, A.7.] and also in the study of hidden words [7]. However, it lacks a general framework,
which is what we propose and illustrate in this article. This introduction is continued in
Section 3, where we present the method on three basic examples, after the required notations
given in Section 2. This is done in an informal way, but it should gives a fair picture of our
method. The formalism of weighted sets is then introduced in Section 4. In Section 5, we
propose alternative proofs to some results of the literature. Finally, we explain in Section 6
how to generalize them to memoryless distributions.

2 Preliminaries

For any two nonnegative integers i, j, let [i, j] denote the integer interval {i, . . . , j}. By
convention, [i, j] = ∅ if j < i. Let also [i] denote the integer interval [1, i].

The mobius function µ : Z≥1 → {−1, 0, 1} is defined as follows. If n = pα1
1 · · · p

αk

k is the
decomposition of a positive n into prime numbers, then µ(n) = (−1)k if all the αi’s are equal
to 1, and µ(n) = 0 otherwise. The main property of this function is that f and g are two
functions from Z≥1 such that f(n) =

∑
d|n g(d), then g(n) =

∑
d|n µ

(
n
d

)
f(d), where d|n

means that d ranges over the divisors of n.

2.1 Words and Probabilities on Words
In the sequel we consider words on a finite alphabet A, of cardinality ` ≥ 2. We assume the
reader is familiar with the classical definitions on words, such as prefixes, suffixes, factors,
subwords . . . For w ∈ A∗ of length n and i ∈ [n], let wi (or w[i]) denote the i-th letter of w,
with the convention that positions start at 1. The last letter of w is therefore w|w|. Let also
w[i, j] = wi · · ·wj denote the factor of w that starts at position i and ends at position j.

Recall that a word w is not primitive when there exists a word v and an integer k ≥ 2
such that w = vk, and that it is primitive otherwise. Let P denote the set of all primitive
words. A word w of length n is periodic with period p ≥ 1 when w[i] = w[i+ p], for every
i ∈ [n− p]. The period of a word is its smallest period. If w is periodic with period p, then
its exponent is |w|p . The exponent is not necessarily an integer: for instance the exponent of
ababa is 5/2. A run of period p in a word w is a factor w[i, j] of w with least period p, such
that p ≥ 2 and w[i − 1, j] and w[i, j + 1], when they exist, are not of period p (the factor
w[i, j] is “maximal” for the period p). We identify such a run by the triplet (i, j, p). Let
runs(v) denote the set of all runs in the word v.

The uniform distribution on a finite set E is the probability p defined for all e ∈ E by
p(e) = 1

|E| . By a slight abuse of notation, we will speak of the uniform distribution on A∗ to
denote the sequence (pn)n≥0 of uniform distributions on An. For instance, if A = {a, b, c},
then each element of An has probability 3−n under this distribution.

Another very classical distribution on An is the memoryless distribution of probability p,
where p is a probability on the alphabet A. Under this distribution, the probability of a word
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w = w1 · · ·wn ∈ An is Pp(w) = p(w1) · · · p(wn). This distribution consists in generating each
letter of the word independently, following p.

2.2 Elements of Analytic Combinatorics
We only present the parts of this well-established theory that will be needed in the sequel.
For more information, the reader is referred to the book of Flajolet and Sedgewick [6].

A set E with a size function s : E → N is a combinatorial set if for every n ∈ N, En := s−1(n)
is finite. The generating series E(z) of E is defined by E(z) :=

∑
e∈E z

s(e) =
∑
n≥0 enz

n,
with en = |En|. We will also use the notation [zn]E(z) := en to denote the n-th coefficient
E(z). If E and F are two combinatorial sets of size functions s and t, E × F is also a
combinatorial set for the size function r((e, f)) = s(e) + t(f), for every e ∈ E and f ∈ F .
This construction extends naturally to E1 × · · · × Ek and to Ek, for every k ≥ 2.

The symbolic method consists in a dictionary to directly translate unambiguous combina-
torial specifications into equations on generating series. In particular:

I Theorem 1 ([6]). For E and F two combinatorial sets of generating series E(z) and F (z):
If E and F are two disjoint sets, then G = E∪̇F implies that G(z) = E(z) + F (z).
If G = E × F , then G(z) = E(z)F (z).
If E0 = ∅ and G = E∗ := ∪k≥0Ek, then G(z) = 1

1−E(z) .

There are other basic constructions, but we will not need them in this article. However,
there is a more advanced tool that is particularly useful for us: If E0 = ∅, a tuple of elements
of E is primitive when, it is primitive as a word on the alphabet E . From [6, A.4] we get that
if F is the set of primitive tuples of elements of E , then

F (z) =
∑
k≥1

µ(k)E(zk)
1− E(zk) . (1)

As an illustration, observe that the generating series of the alphabet is A(z) = `z, as there
are ` letters, each of size 1. Since a word is a tuple of letters, the generating series of all
words1 is 1

1−A(z) = 1
1−` z . Moreover, by Equation 1, the generating series P (z) of the set P

of primitive words on A is

P (z) =
∑
k≥1

µ(k) `zk

1− `zk . (2)

The second part of the theory consists in considering generating series as analytic functions
from C to C, and then in using the powerful techniques of this field. We referred the reader
to [6] for the classical definitions of the theory of analytic functions. In the sequel, we
will only use the following theorem, which is a simplified version of the classical Transfer
Theorem [6, p.393]. The full version is much more powerful, but it requires some analytic
conditions that are too long to introduce for this extended abstract.

I Theorem 2 (Simplified Transfer Theorem [6]). Let r be a positive real number. Let f be a
function from C to C, which is analytic at 0, with radius of convergence greater than r. For
any k ∈ Z≥1, we have the following asymptotic equivalent as n tends to infinity,

[zn] f(z)
(1− z/r)k ∼

f(r)nk−1

(k − 1)! rn .

1 This elementary result can of course be obtained directly.

CPM 2016
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We will also use Theorem 2 the following way in the sequel: if f1, . . . , fk are analytic at 0
and of radius of convergence greater than r, then applying the theorem to each term yields

[zn]
(

f1(z)
1− z/r + f2(z)

(1− z/r)2 + . . .+ fk(z)
(1− z/r)k

)
∼ fk(r)nk−1

(k − 1)! rn , (3)

since the other terms are negligible when n tends to infinity.
Extracting the n-th coefficient of Equation (2) yields the well known fact that if Pn

denote the number of primitive words, then Pn =
∑
d|n `

n/d ∼ `n. Hence, P (z) is analytic at
0 and its radius of convergence is 1/`. This simple fact will be quite useful in the sequel.

If χ is a statistic on a combinatorial set E , i.e. a mapping from E to R, the cumulative
generating series of χ is the formal power series Lχ(z) =

∑
e∈E χ(e)z|e|. Observe that the

expectation of χ for uniform random elements of En is given by En[χ] = [zn]Lχ(z)/[zn]E(z).
Since we focus on statistics on words in this article, we will always have [zn]E(z) = `n, the
number of words of length n, except in Section 6 where we directly work with probabilities.

3 Three Introductory Examples

In this section we study three basic examples, to illustrate how some statistics on random
words can be estimated using ambiguous specifications. We will not be fully formal, the
rigorous framework will be presented in the next section.

We start with the classical question of estimating the expected number occurrences of
a fixed pattern v of length m in a uniform random word w of length n. Occurrences may
overlap: aaa has two occurrences of aa in our settings. Let αv be the random variable
that counts the number of occurrences of v in w. The classical probabilistic analysis of the
expectation En[αw] of αw for the uniform distribution on An is the following: for any i ∈ [n]
let Xi be the random variable that values 1 if there is an occurrence of v in w starting
at position i and that values 0 otherwise. Then we have αv =

∑n
i=1 Xi. The Xi’s are

not independent, but since the expectation is linear, we have En[αv] =
∑n
i=1 E[Xi]. As a

consequence, E[Zn] = (n−m+ 1)`−m ∼ n`−m, as v is fixed in our settings.
As we are working with the uniform distribution, the probabilistic proof can also be

established in a purely combinatorial manner: We just count the number of words of length n
having an occurrence of v at position i, and get exactly the same computations.

There is another, more advanced, way to obtain this result using combinatorics. The
symbolic method described in Section 2.2 works when one starts with an unambiguous
combinatorial specification. If the regular expression is ambiguous, then applying blindly
the rules of transformation does not produce the correct generating series. Nonetheless, the
resulting series L(z) can still be useful: roughly speaking, if κ(w) denote the number of
different ways that the word w can be parsed in the expression (we call this quantity the
degree of ambiguity of w), then L(z) =

∑
w κ(w)z|w|. We can take advantage of this property,

provided we can design an ambiguous expression such that for every word, the value of the
statistic is equal to its degree of ambiguity. Back to our example, it is not difficult to see that
for the ambiguous expression L = A∗vA∗, each word w can be parsed in a number of ways
equal to the number of occurrences of v in w. Hence, using the dictionary of the symbolic
method, we get that Lαv

(z) = zm

(1−`z)2 . From this expression we obtain:∑
|w|=n

αv(w) = [zn] zm

(1− `z)2 = [zn−m] 1
(1− `z)2 = (n−m+ 1)`n−m.

We just have to divide by `n to get the expectation of αv. Instead, we can use the Simplified
Transfer Theorem directly on zm

(1−`z)2 to obtain that En[αv] ∼ n`−m. It is probably too
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complicated to use analytic combinatorics here, but in many situations, we will not want
to find an exact expression for the n-th coefficient, if it can be avoided. Using the Transfer
Theorem, we can find asymptotic equivalents without first computing the coefficients.

Let us consider another simple example. Assume that we are now interested in the number
βv(w) of occurrences of v as a subword of w. The expectation of βv for random words of
length n can be established using probabilities and the linearity of the expectation as for
αv. However, we want to illustrate the use of analytic tools once more. It is not difficult
to verify that the ambiguous expression L = A∗v1A

∗v2A
∗ · · ·A∗vmA∗ corresponds to our

needs. Its associated generating series is L(z) = zm

(1−`z)m+1 , which satisfies the conditions
of the Simplified Transfer Theorem. This yields that [zn]L(z) ∼ `n−mnm

m! . As there are `n
words of length n, the expected number of occurrences of v as a subword of a random word
of length n is asymptotically equivalent to nm

m!`m . See [7] for more information on statistics
related to subwords.

We conclude this section with a last elementary example. Let π(w) denote the length of
the largest word v such that w ∈ vA∗v, where v denote the reverse (or mirror) of v. The
description L = ∪v∈A+vA∗v is ambiguous, but a word w is in exactly π(w) sets of this union,
since the number of nonempty prefixes of a word is equal to its length. The specification L
can be rewritten E×A∗, where E is the set of pairs (v, v) for nonempty v. The generating
series of E is E(z) = `z2

1−`z2 , and the symbolic method yields that L(z) = E(z)
1−`z . As E(z) is

analytic at 0 with radius of convergence 1√
`
> 1

` , the Simplified Transfer Theorem applies
and yields that [zn]L(z) ∼ E(`−1)`n = 1

`−1`
n. Hence, the expected value of π tends to 1

`−1 .
In the sequel, we define a framework on sets of weighted words to formalize what we did

for our three introductory examples. It is directly inspired from the simple remarks we just
made, on how ambiguity can be used to estimate statistics. However, this is done in a more
sophisticate way. We will be able, for instance, to handle non-integer degrees of ambiguity,
which will prove useful in Section 5.

4 Combinatorics of Sets of Weighted Words

In this section we introduce the framework that will be used throughout this article. The
idea is to formalize the notion of “number of time an ambiguous expression is parsed”, and
to do it in a way similar to the symbolic method. For this purpose, we have to introduce
some formalism on sets of weighted words. The definitions we propose are natural extensions
of the classical ones on sets.

Consider the two sets of words E = {a, ab, aa} and F = {ε, a, b}. We interpret them as
“each word of E has weight 1”, and the same for F . Since a is in both E and F , we would
like a to have weight two in E ∪ F . Similarly, since ab = a · b = ab · ε, we would like ab to
have weight two in E · F . Finally, since aaa = a · a · a = a · aa = aa · a, we would like aaa to
have weight three in E∗. A relevant way to handle this is to use multisets, that is, sets where
an element may appear more than once. We will need a bit more in the sequel, and thus
allow the weights to take any real positive value in the definitions below.

Formally, if E be a nonempty set, a weighted set2 on E is a mappingM from E to R≥0.
For e ∈ E , we say that e is inM (written e ∈M) ifM(e) 6= 0, and we write e /∈M otherwise.
A setM is viewed as a weighted set where every element of e has weight 1: for every e ∈ E ,
M(e) = 1 if e ∈M andM(e) = 0 otherwise.

2 We use the terminology “weighted set on E” for “set of weighted elements of E”, as a weighted graph is
a graph of weighted vertices.

CPM 2016
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If E is a combinatorial set of size function s, we define the generating series M(z) of
a weighted set M on E by M(z) =

∑
e∈EM(e)zs(e). Observe that ifM is a set, then the

generating series ofM viewed as a weighted set or as a set coincide.
From now on, we only work on weighted sets of words on A. To simplify the notations,

we will sometimes writeM = {a 7→ 1
2 , ba 7→ 3, baba 7→ 11} for the weighted set defined by

M(a) = 1
2 ,M(ba) = 3,M(baba) = 11, andM(x) = 0 for every x /∈ {a, ba, baba}.

IfM andM′ are two weighted sets of words, the sum M⊕M′ is the weighted set N
defined by N (w) =M(w) +M′(w), for every w ∈ A∗. The concatenation M�M′ of the
weighted setsM andM′ is defined by

M�M′ =
⊕
v∈M
v′∈M′

{vv′ 7→ M(v)M′(v′)}.

That is, every pair (v, v′) contributes additively toM(v)M(v′) to the weight of the word vv′.
For instance, ifM = {a 7→ 1/2, ab 7→ 3} andM′ = {ε 7→ 5, b 7→ 7}, then their concatenation
isM�M′ = {a 7→ 5/2, ab 7→ 37/2, abb 7→ 21}.

If ε /∈ M, the star M? is defined by M? = ⊕k≥0Mk, where M0 = {ε 7→ 1} and
Mk+1 =Mk �M for every k ≥ 0. Observe that if ε ∈M, then this operation is not well
defined, as ε is in everyMk and therefore has infinite weight inM∗.

The following proposition extends the symbolic method to weighted sets of words.

I Proposition 3. IfM andM′ are two weighted sets of words, then

N =M⊕M′ ⇒ N(z) = M(z) +M ′(z),
N =M�M′ ⇒ N(z) = M(z)M ′(z),

N =M? ⇒ N(z) = 1
1−M(z) , (if ε /∈M).

In the sequel, we will implicitly use the following lemma, which was already presented
informally in Section 3.

I Lemma 4. Let αv(w) denote the number of occurrences of v as a factor of w. The
generating series of the weighted set A∗ � {v 7→ 1} �A∗ (the weighted set version of A∗vA∗)
is equal to Lαv

(z), the cumulative generating series of the statistic αv.

Proof. As A∗v is a unambiguous expression, every element of A∗ � {v 7→ 1} has weight
1, and the same holds for A∗. Thus, by definition, if N = (A∗ � {v 7→ 1}) � A∗, then
N (w) = |{(w1, w2) ∈ A∗ ×A∗ : w = w1v · w2}|, which is exactly αv(w), as announced. J

5 Application to Run Statistics

5.1 The Expected Number of Runs
For any given word v, let ρ(v) denote its number of runs. In [15], Puglisi and Simpson
established the following result.

I Theorem 5 ([15]). The expected number of runs in a word of length n on an alphabet of
size ` satisfies asymptotically

En[ρ] ∼

`− 1
`

∑
k≥1

µ(k)
`2k−1 − 1

n.
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To prove Theorem 5, they proceed as follows. For every given p, they compute the total
number of runs of period p in the set of all words of length n. Then, they sum these values for
all possible p. Finally, they obtain an asymptotic equivalent of this quantity using elementary,
but technical, computations.

In this section, we propose an alternative proof of Theorem 5 using our framework. Recall
that P is the set of all primitive words and that P (z) is its associated generating series. Let
C = {ww 7→ 1 : w ∈ P} and let D = {aww 7→ 1 : w ∈ P and the last letter of w 6= a}.

I Lemma 6. The generating series of the weighted set (C � A∗) ⊕ (A∗ � D � A∗) is the
cumulative generating series of the statistic ρ.

Proof. For the weighted setM = C �A∗ = ⊕w∈P{ww 7→ 1} �A∗,M(w) is the number of
prefixes of the form ww for w ∈ P , that is,M counts the number of runs at the beginning of
the word. Similarly, for N = A∗ �D �A∗ = ⊕w∈D,a 6=w[|w|]A

∗ � {aww 7→ 1} �A∗, N (w) is
the number of runs of w that does not start at the first position, since each run is identified
by the factor aww. Hence,M⊕N counts the number of runs, concluding the proof. J

The generating series of C and D are C(z) = P (z2) and D(z) = (`− 1)zP (z2), respectively.
Hence, the cumulative generating series Lρ(z) of the number of runs can be obtained using
Proposition 3:

Lρ(z) = P (z2)
1− `z + (`− 1)zP (z2)

(1− `z)2 .

Since the radius of convergence of P (z2) is 1√
`
> 1

` , we are in the settings of Equation (3)
and the Simplified Transfer Theorem yields that [zn]Lρ(z) ∼ n `−1

` P (`−2)`n. Dividing by `n
gives another expression for the result of Theorem 5:

En[ρ] ∼ `− 1
`

P

(
1
`2

)
n. (4)

In particular, the infinite sum of Theorem 5 is just P (`−2). Indeed, by Equation (2) we have

P

(
1
`2

)
=
∑
k≥1

µ(k) ` · `−2k

1− ` · `−2k .

Multiplying the numerator and denominator by `2k−1 yields the formula of Theorem 5.

5.2 The Expected Total Run Length
The total run length of a word is the sum of the lengths of its runs. We denote by τ(w) the
total run length of w. In [11], Glen and Simpson proved the following result.

I Theorem 7 ([11]). The expected total run length of a uniform random word of length n
asymptotically satisfies

En[τ ] ∼

∑
k≥1

Pk
2k(`− 1) + 1

`2k+1

n,

where Pk is the number of primitive words of length k.

CPM 2016
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Their techniques follows the steps of the proof of Theorem 5 given in Section 5.1.
In order to prove Theorem 7 with our framework, we first focus on another statistic. For

any word w, let δ(w) denote the sum of the periods of the runs of w. We are interested
in the expected value of δ for uniform random words of length n. Consider the weighted
set C = {ww 7→ |w| : w ∈ P}, where the weight of each ww is the length of w. A
direct computation yields that the generating series of C is C(z) = z2P ′(z2). Similarly the
generating series of the weighted set D = {aww 7→ |w| : w ∈ P and the last letter of w 6= a}
is D(z) = (`− 1)z3P ′(z2).

We can now reuse the ambiguous specification of Lemma 6, with C and D instead of C
and D, and get that the cumulative generating series of δ is

Lδ(z) = z2P ′(z2)
1− `z + (`− 1)z3P ′(z2)

(1− `z)2 , with P ′(z) = d

dz
P (z).

By Equation 3, from this expression of Lδ(z) we directly get the following proposition.

I Proposition 8. The expected sum of the periods of the runs in a uniform random word of
length n asymptotically satisfies En[δ] ∼ `−1

`3 P
′(`−2)n.

We can now proceed with our proof of Theorem 7. Consider the ambiguous specification
L = ∪w∈PA∗wwA∗. Observe that a run r = (i, j, p) in a word v matches the expression of
L exactly once for every w = v[k, k + p− 1], with k ∈ {i, . . . , j − 2p+ 1}. That is, the pair
(v, r) matches the specification exactly |r| − 2p + 1 times. In other words, the generating
series of the weighted set A∗ � C � A∗ is the cumulative generating series of the statistic
τ − 2δ + ρ (recall that τ is the total run length, δ is the sum of periods and ρ is the number
of runs). Thus, Proposition 3 directly yields:

P (z2)
(1− `z)2 = Lτ (z)− 2Lδ(z) + Lρ(z)⇒ Lτ (z) = P (z2)

(1− `z)2 + 2Lδ(z)− Lρ(z).

Theorem 2 applies and we obtain that

En[τ ] = 1
`n

[zn]Lτ (z) ∼
(

2(`− 1)
`3 P ′

(
1
`2

)
+ 1
`
P

(
1
`2

))
n, (5)

which is another formulation of Theorem 7. Indeed, since P (z) =
∑
k≥1 Pkz

k, we have

1
`
P

(
1
`2

)
= 1
`

∑
k≥1

Pk
`2k =

∑
k≥1

Pk
`2k+1 .

Moreover, P ′(z) =
∑
k≥1 kPkz

k−1, and thus

2(`− 1)
`3 P ′

(
1
`2

)
= 2(`− 1)

`3

∑
k≥1

kPk
`2k−2 =

∑
k≥1

Pk
2k(`− 1)
`2k+1 .

Summing the two terms yields the formula of Theorem 7.

5.3 The Expected Sum of Exponents
For any word v ∈ A∗, let γ(v) denote the sum of the exponents of the runs of v. In [13],
Kusano, Matsubara, Ishino and Shinohara proved the following result.
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I Theorem 9 ([13]). The expected sum of the exponents of runs for uniform random words
of length n satisfies asymptotically:

En[γ] ∼

∑
k≥1

µ(k)
(

2(`− 1)
`2k − `

+ 1
k`

log
(

`2k

`2k − `

)) n.

We follow the analysis of the previous section: A run r = (i, j, p) in a word v matches
the expression L = ∪w∈PA∗wwA∗ exactly |r| − 2p+ 1 times. Since we want to compute the
statistic γ, we have to divide the contribution of each run (i, j, p) by p.

Let C̃ = {ww 7→ 1
|w| : w ∈ P} and let D̃ = {aww 7→ 1

|w| : w ∈ P and w|w| 6= a}. Let
C̃(z) and D̃(z) denote their generating series. By Proposition 3, the generating series of
L̃ = A∗ � C̃ �A∗ is L̃(z) = C̃(z)

(1−`z)2 . Moreover, it satisfies:

L̃(z) =
∑
v∈A∗

∑
r∈runs(v)
r=(i,j,p)

|r| − 2p+ 1
p

z|v| = Lγ(z)− 2Lρ(z) +
∑
v∈A∗

∑
r∈runs(v)
r=(i,j,p)

z|v|

p
(6)

Let ξ(v) be the sum of 1
p for every (i, j, p) ∈ runs(v). Using exactly the same idea as in

Section 5.1, its cumulative series is Lξ(z) = C̃(z)
1−`z + D̃(z)

(1−`z)2 . Hence, Equation (6) rewrites

Lγ(z) = 2Lρ(z) + C̃(z)− D̃(z)
(1− `z)2 − C̃(z)

1− `z .

Since the radius of convergence of both C̃(z) and D̃(z) is 1/
√
`, the Simplified Transfer

Theorem applies. We obtain that the expected value of γ asymptotically satisfies

En[γ] ∼
(

2(`− 1)
`

P

(
1
`2

)
+ 1
`
Q

(
1
`2

))
n, (7)

where the function Q(z) =
∫ z

0 P (t)t−1dt naturally appears when simplifying C̃(`−1)−D̃(`−1).
One can check that Equation (7) is just another formulation of Theorem 9. Indeed, we

have

2`− 1
`

P

(
1
`2

)
=
∑
k≥1

µ(k) 2(`− 1)
`(`2k−1 − 1) =

∑
k≥1

µ(k)2(`− 1)
`2k − `

.

And since everything is normally convergent,(
1
`2

)
=
∫ 1/`2

0
P (t)t−1dt =

∫ 1/`2

0

∑
k≥1

µ(k)
t

` tk

1− ` tk dt =
∑
k≥1

µ(k)
∫ 1/`2

0

` tk−1

1− ` tk dt.

Observe that the derivative of t 7→ − log(1− ` tk) is t 7→ k` tk−1

1−` tk . Thus

Q

(
1
`2

)
=
∑
k≥1

µ(k)
k

log 1
1− `1−2k =

∑
k≥1

µ(k)
k

log `2k

`2k − `
.

This gives the announced result.
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6 Generalization to Memoryless Sources

In this section, we show how our formalism can be used to generalize the results to memoryless
sources (see Section 2.1 for the definition). From now on, the alphabet is A = {a1, . . . , a`}
and we have a probability function p on A that charges at least two letters:3 p(ai) < 1 for
every i ∈ [`]. Let ~p be the vector ~p = (p(a1), . . . , p(a`)).

6.1 Multivariate Generating Series and Memoryless Sources
For v ∈ A∗ and i ∈ [`], let |v|i denote the number of occurrences of the letter ai in v. In our
settings, multivariate generating series are formal power series on the formal variables z, u1,
. . . , u`. When needed, we will use the vector ~u = (u1, . . . , u`) to simplify the notations. For
any positive integer k, let ~uk denote the vector (uk1 , . . . , uk` ), and let Nk(~u) = uk1 + . . .+ uk2 .

The multivariate generating series L(z, ~u) of a language L is defined by

L(z, ~u) :=
∑
v∈A∗

z|v|
∏̀
i=1

u
|v|i
i =

∑
n,k1,...,k`≥0

L(n, k1, . . . , k`)znuk1
1 · · ·u

k`

` ,

where L(n, k1, . . . , k`) is the number of words of length n of L with exactly ki occurrences of
ai, for every i ∈ [`].

Multivariate generating series are widely use in combinatorics and analytic combinatorics.
In particular, when the parameters controlled by the ui’s are additive, the symbolic method
can be extended, giving efficient techniques to build the series. We refer the interested reader
to [6, Ch. III] for more information on this topic. Interestingly, we can also extend our
framework to multivariate generating series, when the ui’s are associated with the number of
occurrences of the letters. First, the definition is extended to a weighted setM by weighting
each word: M(z, ~u) :=

∑
v∈A∗M(v) z|v|

∏`
i=1 u

|v|i
i . Proposition 3 is then directly generalized:

ifM and N are two weighted sets then the multivariate series ofM⊕N isM(z, ~u)+N(z, ~u),
the one ofM�N is M(z, ~u)N(z, ~u), and the one ofM? is 1

1−M(z,~u) .
The main reason to consider multivariate series is the following: if L(z, ~u) is the series

of a language L, then if we instantiate every formal variable ui with the value p(ai),
which we simply write L(z, ~p), then we obtain a univariate series such that [zn]L(z, ~p) is
exactly the probability that a word of length n belongs to L, for the memoryless model
of probability p. Similarly, if the generating series M(z) of the weighted set M is the
cumulative generating series of a statistic χ (for the uniform distribution), then En[χ] =
[zn]M(z, ~p) for the memoryless distribution of probability p. The proofs of these facts are
completely straightforward. However, together with the symbolic method, this provides a
useful framework to deal with statistics on random words for memoryless distributions.

As an example, let us consider our first introductory statistic, the number of occurrences
of the pattern v in a word. We use the weighted set description A∗ � {v 7→ 1} � A∗. The
multivariate series of A? is 1

1−z N1(~u) , since it is the weighted star of A, whose multivariate
series is A(z, ~u) = u1z + . . . + u`z = N1(~u) z. The multivariate series of {v 7→ 1} is
V (z, ~u) = z|v|u

|v|1
1 · · ·u|v|`` . Hence, the multivariate series of the number of occurrences of v is

V (z,~u)
(1−N1(~u)z)2 . For ~u = ~p, we have N1(~p) = 1, since p is a probability, and V (z, ~p) = Pp(v)z|v|,
by definition of a memoryless model. Hence, the multivariate series for ~u = ~p is equal to
Pp(v)

(1−z)2 . The Simplified Transfer Theorem yields that the expected number of occurrences of
v in a word of length n is asymptotically Pp(v)n, for this memoryless distribution.

3 Everything is trivial if p(ai) = 1 for some i, as the only word of An with positive probability is an
i .
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6.2 Expected Number of Runs for Memoryless Sources
We start as in Section 5.1, and use the weighted set (C �A∗)⊕ (A∗ �D �A∗) to count the
number of runs, with C = {ww 7→ 1 : w ∈ P} and D = {aww 7→ 1 : w ∈ P and w|w| 6= a}.
The associated multivariate series is therefore L(z, ~u) = C(z,~u)

1−N1(~u)z + D(z,~u)
(1−N1(~u)z)2 , where C(z, ~u)

and D(z, ~u) are the multivariate series of C and D.
At this point we have to compute the multivariate generalization P (z, ~u) of P (z), the

series of primitive words. We will also need to compute Pi(z, ~u), the multivariate series of
the primitive words that ends by ai. This is done using Equation (1), which readily extends
to multivariate series in our case, yielding

P (z, ~u) =
∑
k≥1

µ(k)zkNk(~u)
1− zkNk(~u) and Pi(z, ~u) =

∑
k≥1

µ(k)zk uki
1− zkNk(~u) .

Moreover, C(z, ~u) = P (z2, ~u2) and it is easy to compute from Pi(z, ~u) that

D(z, ~u) =
∑
i∈[`]

zviPi(z2, ~u2) =
∑
k≥1

µ(k)z2k+1
∑`
i=1 viu

2k
i

1−N2k(~u)z2k , with vi =
∑
j∈[`]
j 6=i

ui.

This formula looks complicated, but it simplifies when evaluating it at z = 1, the dominant
singularity, and at ~u = ~p. In particular, if ~u = ~p, then vi = 1 − p(ai) and

∑`
i=1 viu

k
i =

Nk(~p) − Nk+1(~p). Hence, applying the Simplified Transfer Theorem to the expression of
L(z, ~p) yields the following result.
I Theorem 10. For the memoryless distribution of probability p, the expected number of
runs in a random word of length n satisfies asymptotically

En[ρ] ∼ D(1, ~p)n =

∑
k≥1

µ(k)N2k(~p)−N2k+1(~p)
1−N2k(~p)

n.

7 Conclusions

As illustrated throughout this article, the framework we propose is quite useful to study
some statistics on random words. We choose to focus on presenting the technique itself in
this extended abstract, to try to convince the reader that it is a precious tool to estimate the
expectation of various parameters on words.

Due to the lack of space, we only generalized the result on the expected number of runs
to memoryless distributions, but the other theorems of Section 5 can also be extended in
a similar way. Some other kinds of generalizations can also be obtained. For instance, the
expected number of cubic-runs (runs of exponent at least 3) is asymptotically equivalent to
`−1
` P (`−3)n, which can be obtained as in Section 5.1. More generally, all results can readily

be generalized to k-runs. Other known statistics can be studied using this method: as a last
example, the expected number of squares χ in a word, i.e. the number of factors of the form
vv for nonempty v was studied in [3]. In our framework, this corresponds to the weighted set
⊕v∈A+A

∗ � {vv 7→ 1} �A∗, thus Lχ(z) = `z2

(1−`z)2(1−`z2) and En[χ] ∼ n
`−1 .

A natural extension of this work would be to provide similar tools to deal with higher
moments, in particular with the variance. However, what we did in this article is related to
the linearity of the expectation, and the variance is not linear. To compute higher moments,
we have to handle dependencies between runs in a word, which is much more complicated. It
would also be interesting to revisit some other probabilistic studies of the literature, such
as [9, 2, 10], to see if they can be included in the framework of sets of weighted words.
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Abstract
Let T be an edge-labeled graph, where the labels are from a finite alphabet Σ. For a subtree U of
T , the Parikh vector of U is a vector of length |Σ| which specifies the multiplicity of each label in
U . We ask when T can be reconstructed from the multiset of Parikh vectors of all of its subtrees,
or all of its paths, or all of its maximal paths. We consider the analogous problems for weighted
trees. We show how several well-known reconstruction problems on labeled strings, weighted
strings and point sets on a line can be included in this framework. We present reconstruction
algorithms and non-reconstructibility results, and extend the polynomial method, previously
applied to jumbled strings [Acharya et al, SIAM J on Discr. Math, 2015] and weighted strings
[Bansal et al, CPM 2004], to deal with general trees and special tree classes.
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1 Introduction

Let T be an unrooted tree T with labeled edges, where the labels come from a finite ordered
alphabet Σ. For a subtree U of T , the Parikh vector of U is a vector of length |Σ| which
specifies the multiplicity of each label in U . If the labels are positive reals or integers, we
refer to them as weights, and define the weight of U as the sum of weights of the edges in
U . (It is common to refer to a subtree as jumbled if only its Parikh vector is known, and as
weighted if only its weight is known.) Given a subtree property A, we refer to the multiset of
Parikh vectors of all subtrees with property A as MPA(T ), and to the multiset of weights of
all subtrees with property A as MWA(T ). For example, MWpath(T ) is the multiset of path
weights in a weighted tree T .

Consider the two edge-labeled trees in Fig. 1, with labels from the alphabet Σ = {a, b}.
The two trees are non-isomorphic, but the multisets of Parikh vectors of their subtrees are
the same, MPsubtree(T1) = MPsubtree(T2), as can be easily checked. At the same time, the
multisets of Parikh vectors of their paths are not the same, MPpath(T1) 6= MPpath(T2), since,
for instance, T2 has a path with Parikh vector (1, 3) and T1 does not.

These multisets can be described with the help of polynomials. Let variable x represent
label a, and variable y label b. Then the polynomial describing the subtrees of both T1 and T2
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T1 T2

b a

a b b

a b

b b a

Figure 1 Two MPsubtree-equivalent trees.

is 2x+ 3y+ 4xy+ y2 + x2y+ 3xy2 + 2x2y2 + xy3 + x2y3, where the interpretation e.g. of the
term 3xy2 is that there are 3 (the coefficient) subtrees that contain 1 letter a and 2 letters b
(the exponents). In a similar way, polynomials can be used to describe the multisets of paths
or of maximal paths. Moreover, they can be used to describe the weights of certain subtrees
when the edges are labeled with positive integers. We will give more precise definitions later.

In this paper, we are interested in the following questions:

Computation: How can we compute the polynomials describing the jumbled or weighted
subtrees, paths, or maximal paths?
Reconstruction: Can trees be uniquely reconstructed from the multiset of jumbled or
weighted subtrees, paths, or maximal paths? I.e. are there non-isomorphic trees with the
same multisets? – We split this problem into two sub-problems:
1. Large Unjumble: Is the unlabeled tree (i.e., its topology) uniquely determined by the

multiset of jumbled or weighted subtrees, paths, or maximal paths?
2. Small Unjumble: Given the topology of the tree, is the labeling uniquely determined

by the multiset of jumbled or weighted subtrees, paths, or maximal paths?

The method of using polynomials to describe multisets of Parikh vectors or of weights has
been successfully applied in the past to strings. In [8] polynomials were used for representing
the multiset of weights of substrings (there called submasses) of a weighted string, i.e. where
each character is assigned a positive integer weight. Fast Fourier Transform was employed to
compute this polynomial, and several algorithms were proposed for finding substrings with a
given query weight, using this polynomial.

In [2] the authors describe a similar polynomial representation of the multiset of Parikh
vectors of substrings, and study the class of strings having the same multiset (there called
confusable), using algebraic methods based on this polynomial. The method was originally
employed in [28] for the related turnpike problem: Given n unknown points on a line,
reconstruct the positions of these points from the multiset of interpoint distances. Indeed,
in [1], an algorithm was given for reconstruction of all confusable strings from the multiset
of Parikh vectors of substrings, an adaptation of an algorithm given in [28]. Note that the
turnpike problem itself can be viewed as a problem on an edge-weighted tree (a path), where
the vertices are the points, the edges are weighted by the distances between consecutive
points, and the input is the multiset of path weights.

In this paper, we show how the polynomial method can be extended to trees. But
generalizing the substructure of substring to trees can result either in subtrees, or in paths.
We show that the method works for both types of substructures, as well as for maximal paths
(i.e. paths between leaves). Note that equivalence w.r.t. one does not imply equivalence w.r.t.
the other.

In the case of strings, both for jumbled and for weighted substrings, the polynomial can
be computed via convolution from a very easily computable polynomial with 0/1 coefficients
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(called generating polynomial in [2] and prefix polynomial in [8]), essentially using the fact
that the Parikh vector (resp. weight) of a substring is the difference of the Parikh vectors
(resp. weights) of two prefixes. We show how to compute the polynomials for trees in a
similar manner, recursively from the polynomials of subtrees, but using both multiplication
and addition of polynomials. Since strings can be represented as edge-labeled paths, our
framework encompasses the known results on strings. Of course, if the tree T is a path, then
the multisets of subtrees and of paths coincide.

The related problem of jumbled pattern matching, finding one or all occurrences of
substructures with a given Parikh vector, has been studied recently extensively on strings,
most recently in [13, 5, 25, 4, 15, 22, 24, 7, 21, 27, 29, 12, 11]; and also on vertex-colored
graphs and trees [20, 14, 17]. On graphs, the problem is also called motif search, and it is
NP-hard to decide whether a match exists, even when G is a tree [26]. When the number of
colors is constant, the problem is fixed-parameter tractable w.r.t. treewidth [20].

Note that the variant of our problem where the subtrees are restricted to maximal paths
is closely related to the problem of distance-based phylogenetic reconstruction, see e.g. [16],
where a distance matrix between the leaves of a tree is given, and the task is to reconstruct
the tree. The problem there is well-understood: such a tree exists if the input matrix has a
certain property (called additivity), and an efficient algorithm exists for reconstructing the
tree [30], which runs in cubic time in the number of leaves. The difference here is that we
are given the input numbers without assignment to the pairs of leaves.

Following [28], we call two weighted trees T1 and T2 homometric if the multisets of
pairwise distances between vertices is the same for both trees, or equivalently in our terms,
MWpath(T1) = MWpath(T2). We note that even though trees, and more generally, graphs,
do appear in the literature on homometric sets [19, 6], those papers consider homometric
vertex sets within one tree rather than homometric pairs of trees, while the papers [18, 3]
treat quite different problems from the present ones.

Most proofs are omitted due to space limitations, and will be included in the full version.

2 The polynomial representation of Parikh multisets and weight
multisets

Let Σ be a finite alphabet with elements a1, a2, . . . , aσ. Consider the polynomial ring over
the integers in σ indeterminates, i.e. Z[x1, x2, . . . , xσ]. When the alphabet is binary, we will
denote the indeterminates by x and y.

If we interpret a Parikh vector (k1, k2, . . . , kσ) as a multidegree, we can assign to it the
monomial xk1

1 x
k2
2 · · ·xkσσ . Note that the total degree of the polynomial equals the sum of

entries of the Parikh vector. A multiset of Parikh vectors can then be represented as the
sum of the monomials of its elements; multiplicities become coefficients. The power of
this viewpoint is that disjoint union of (multi)sets corresponds to the product of the two
monomials associated to the sets.

If we work with weights rather than arbitrary labels, then a single indeterminate suffices:
to a weighted edge e with weight w(e), we associate the polynomial xw(e). If we have a set
U of edges and take the product of the monomials corresponding to the elements, then we
get x

∑
e∈U

w(e). The primary focus of the present paper are Parikh multisets and weight
multisets of a tree T obtained by taking Parikh vectors or weights of subtrees of T satisfying
some condition.

I Definition 1. Let T be a tree and A be a property of subtrees. Let the edges of T be
labeled by an σ-element alphabet Σ. The MPA-polynomial of T , denoted by fA(T ) is

CPM 2016
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the σ-variable polynomial associated to the multiset of Parikh vectors of all subtrees of T
satisfying condition A.

I Definition 2. Let T be a tree and A be a property of subtrees. Let the edges of T be
weighted by positive integers. TheMWA-polynomial of T , denoted by gA(T ) is the 1-variable
polynomial associated to the multiset of weights of all subtrees of T satisfying condition A.

The main reason for using polynomials to represent multisets is that we have additional
algebraic structure, while all information about the multiset is still preserved. This is a
crucial property used throughout (sometimes implicitly), so we state it as an observation.

I Observation 3. Let T1, T2 be trees and A a subtree property. Then MPA(T1) = MPA(T2)
if and only if fA(T1) = fA(T2). Similarly MWA(T1) = MWA(T2) if and only if gA(T1) =
gA(T2).

The following observation is also straightforward and means that MPA(T ) contains all
the information for computing MWA(T ).

I Observation 4. If the letters of the alphabets are positive integers, then they can be
interpreted as weights. Then the MWA-polynomial of a tree can be calculated from the
MPA-polynomial by substituting xai into the variable xi.

I Example 1. Let A = PATH. Let Σ = {a, b} and let the indeterminate x correspond to a,
and y to b. The tree T1 in Figure 1 has theMPpath-polynomial 2x+3y+4xy+y2+x2y+2xy2+
2x2y2, while theMPpath-polynomial of T2 is 2x+3y+4xy+y2+x2y+2xy2+x2y2+xy3. If we
let a = 3 and b = 2, then the MWpath-polynomial of T1 is 3t2 + 2t3 + t4 + 4t5 + 2t7 + t8 + 2t10.
This is obtained from its MPpath-polynomial by letting x = t3 and y = t2. (We used a new
letter t to avoid confusion.)

In what follows, we discuss how MPA-polynomials and MWA-polynomials of a tree can
be computed. We will restrict our attention to the case of A = SUBTREE, where all subtrees
are considered, A = PATH, where only paths between pairs of vertices are considered and
A = MAXPATH, where only maximal paths are considered. The theorems will be stated for
MPA-polynomials, but are valid in the same form for MWA-polynomials.

Unless otherwise specified, the labels or weights are always on the edges rather than
the vertices. The computation methods for vertex labeled and vertex weighted graphs are
obtained by adapting the computations, which we will not state as separate theorems. Our
examples of MPA-equivalent families are proved using the polynomial method. We present
recursive computation methods for the three kinds of subtree properties in the following
sections (the base cases for the recursion are left to the reader).

To conclude this section, we propose a new algorithmic application of MPA-polynomials
(resp.MWA-polynomials) for randomized testing ofMPA-equivalence (resp.MWA-equivalence)
of trees. The method is based on randomized equality testing for polynomials using the
Schwartz-Zippel lemma [32, 34]. The computation methods presented later all allow an
efficient substitution into the polynomials, even in the case when we consider subtrees, where
the size of the MPsubtree-set and thus the number of coefficients of the polynomial can be
exponential in the input. For the substitution we do not need the sequence of coefficients,
we can use the recursive methods for evaluating the polynomial. Finally note that using
modular arithmetic, calculations can be further sped up.
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3 Subtrees

3.1 Computation of fSUBTREE(T )
We first consider the case when all subtrees are considered in the Parikh multiset or the
weight multiset. Although we work on free trees (i.e. unrooted trees), for the computations
it is convenient to consider rooted trees. We root the tree T in an arbitrary vertex v and
define an auxiliary polynomial r(T, v), called the rooted MP -polynomial of T with root v,
as the polynomial representing the Parikh multiset of all subtrees containing v. We have the
following theorem.

I Theorem 5. Let T be a rooted tree with root v. Let v1, v2, . . . , vk be the children of v.
Denote the subtrees rooted at vi by Ti for i = 1, . . . , k. Denote the index in Σ of the label on
the edge connecting v and vj by lj. We have the following equations.

r(T, v) =
k∏
j=1

(1 + xlj · r(Tj , vj)) and f(T ) = r(T, v) +
k∑
j=1

f(Tj)

Note that Theorem 5 generalizes the computation ofMP -polynomials orMW -polynomials
of strings presented in e.g. [8, 28, 2] since a string can be interpreted as an edge-labeled path.
The theorem also generalizes the subtree size multiset presented in [9].

3.2 Reconstructibility – Large Unjumble
For a general labeled tree T , one can ask if the unlabeled version of the tree (the topology)
can be uniquely reconstructed from MPsubtree(T ) or MWsubtree(T ). This is already impos-
sible from MPsubtree(T ) for a trivial (i.e. one-element) alphabet, which also implies that
MWsubtree(T ) does not determine the isomorphism class of the unlabeled tree either.

If one puts the same label (resp. weight) on each edge, then the Parikh vector (resp.
weight) of a subtree simply counts the number of edges in that subtree. It was proved in [9]
that knowing the number of subtrees with k edges for all k, that is, in our terms, knowing
MPsubtree(T ) for one-letter alphabets is not generally enough for unique reconstruction of
the tree up to isomorphism.

I Proposition 6 ([9]). Let Σ = {1}. There exist infinitely many pairs of trees T1, T2, such
that if we label each edge with the only element of Σ, then MPsubtree(T1) = MPsubtree(T2)
and MWsubtree(T1) = MWsubtree(T2).

In the positive direction, we mention the following reconstructibility result from the same
paper. A spider is a tree with one vertex of degree at least 3 and all others with degree at
most 2 (called star-like trees in that paper).

I Theorem 7 ([9]). Let |Σ| = 1, and T1, T2 be two edge-labeled spiders with labels from Σ.
If MPsubtree(T1) = MPsubtree(T2), then T1 and T2 are isomorphic.

3.3 Reconstructibility – Small Unjumble
When the alphabet is non-trivial, there are several non-isomorphic labelings of a typical tree.
We consider reconstructibility of the labels for a fixed unlabeled tree. Note that the problem
of reconstructing a string from its substring compositions [2] is a special case: a string can
be represented as a path of equal length where the edge labels correspond to individual
characters in the string.
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The problem of reconstructing a 1-dimensional point set from interpoint distances consid-
ered in [28] is also a special case of the reconstruction of a tree from MW (T ): the weights
are the distances between neighboring points on a line. Since every subtree of a path is
a (sub)path, this remark also applies for reconstructibility from path Parikh vectors (resp
weights), addressed in the following section. The above two problems can also be reduced to
the case of vertex labeled paths.

We give non-reconstructibility examples for trees that are not a path. The smallest pair
of non-isomorphic MPsubtree-equivalent edge labeled trees are on six vertices.

I Example 2. Let P be a path of length 4, whose vertices are called v1, v2, . . . , v5 and the
edges v1v2, . . . are labeled with a, b, a, b. Construct T1 by attaching a 6th vertex v6 to v4 with
an edge labeled by b. Construct T2 from P by attaching a 6th vertex to v2 with an edge labeled
by b. See the example in Fig. 1.

It is also possible to attach a larger tree instead of the sixth vertex, which gives larger
examples of MPsubtree-equivalent pairs. We remark that the smallest such example for
vertex labeled trees is on 7 vertices. We also give a construction that yields an infinite family
of MPsubtree-equivalent examples (similar constructions work for vertex labeled trees).

I Proposition 8. Let s1 and s2 be two MPsubtree-equivalent strings of length k over a binary
alphabet Σ1. Create two MPsubtree-equivalent edge-labeled paths P1, P2 by using characters
of the strings as labels. Let U be an edge labeled rooted tree with labels from a disjoint alphabet
Σ2. Create Tj (j = 1, 2) from Pj by joining k+ 1 copies of U to each vertex of Pj , identifying
the vertex on the path and the root of U . Then T1 and T2 are not isomorphic as labeled trees,
but MPsubtree(T1) = MPsubtree(T2).

Finally, we present a result stating that, unsurprisingly,MP -equivalence does not generally
follow from MW -equivalence, already for 2-letter alphabets. We have an infinite family
already for paths.

I Proposition 9. Let k ≤ n an integer, Σ = {1, 2}. Let P1 be a path of length 14 + 5k, edge
labeled with elements of the sequence s1 = 21211112222122(12122)k. Let P2 be a path of
length 14, edge labeled with elements of the sequence s2 = 22111121222212(12212)k. Then
MPsubtree(P1) 6= MPsubtree(P2), but MWsubtree(P1) = MWsubtree(P2).

4 Paths

4.1 Computation of fPATH(T )

Let f(T ) = fPATH(T ) be the MPpath-polynomial of T . Root T is an arbitrary vertex v. We
denote by r(T, v) the polynomial corresponding to all paths at least one of whose endpoints
is v. We include 0-length paths in the computation, since it makes the formulae simpler, this
adds a constant n (the number of vertices) to the polynomial.

I Theorem 10. Let T be a rooted tree with root v. Let v1, v2, . . . vk be the children of v in
T . Denote the subtrees rooted at v1 (resp. v2 etc.) by T1 (resp. T2 etc.). Denote the index
in Σ of the label on the edge connecting v and vj by lj. We have the following equalities:

r(T, v) = 1 +
∑

(xlj · r(Tj , vj)), f(T ) = r(T, v) +
k∑
j=1

f(Tj) +
∑

1≤i<j≤k
(xlixljr(Ti, vi)r(Tj , vj))
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Proof. For the statement on r note that a path starting in v either stops there immediately,
or contains exactly one of the vj and thus a path from vj to a vertex of Tj as a subpath.
To understand the identity for f , observe that a path in T either contains v as one of its
endpoints or is entirely contained in one of the Tj , or else it is the union of two paths which
both have v as one endpoint and their respective other endpoints in distinct Ti and Tj . J

4.2 Reconstructibility – Large Unjumble

For a general labeled tree T , one can ask if the unlabeled version of the tree can be uniquely
reconstructed from MPpath(T ) or MWpath(T ). We show that this is already impossible
from MPpath(T ) for a one-element alphabet, which also implies that MWpath(T ) does not
determine the isomorphism class of the unlabeled tree either.

In the following, we give infinitely many examples of pairs of unlabeled trees that are
homometric. This can be considered as a special case of MPpath-equivalence (resp. MWpath-
equivalence) when |Σ| = 1 (resp. we use the same weight everywhere).

I Proposition 11. For n ≥ 11 and odd, let T1 be a tree constructed from a 5-star by adding
respectively 1, 1, (n− 5)/2 and (n− 9)/2 new vertices joined to the star’s leaves, obtaining
a tree on n vertices. Construct T2 similarly, by adding 0, 2, (n− 7)/2 and (n− 7)/2 new
vertices adjacent to the star’s leaves. Then T1 and T2 are homometric but are not isomorphic.

For n ≥ 12 and even, let T1 be a tree constructed from a 6-star by adding respectively
1, 1, 1, (n − 6)/2 and (n − 10)/2 new vertices to the star’s leaves, obtaining a tree on n

vertices. Construct T2 similarly, but add 0, 1, 2, (n− 8)/2 and (n− 8)/2 new vertices. Then
T1 and T2 are homometric but are not isomorphic.

We remark that all one has to do is check the number of paths of length 1, 2, 3 and 4
since the constructed trees have diameter 4. The calculation is straightforward, and the idea
behind it is that if we add k1, k2, k3 and k4 vertices to the 5-star as above, then the number
of 1-paths (resp. 2-paths, 3-paths and 4-paths) is already determined by their sum and the
sum of their squares, and these values are identical for the two trees. One can compose such
trees by solving instances of the Prouhet-Tarry-Escott problem, see e.g. [10], Chap. 11.

4.3 Reconstructibility – Small Unjumble

We now turn to the problem of unique reconstructibility of the labeling, once the unlabeled
version of the tree is known. Again, if we take the viewpoint of strings being (either edge
or vertex) labeled graphs, then this problem contains as a special case the problem of
string reconstructibility from MWpath or MPpath. We thus focus on reconstructibilty for
other trees. First remark that the contruction in Proposition 8 also yields infinitely many
MPpath-equivalent pairs of non-isomorphic trees.

We now give a family of pairs that are vertex labeled PM-equivalent trees.

I Proposition 12. Let k ≥ 1 an integer. Let Pbase be a path of length 3 with alternating
vertex labels 0, 1, 0, 1, and Pk−1 be a path on k vertices, al labeled by 0. Construct T1 by
attaching two copies of Pk−1 to Pbase with two edges: one is attached to the leaf with 0 label,
and the other to the neighboring vertex on Pbase. We get a tree on 2k + 4 vertices. The
construction of T2 is similar, but Pbase is reversed. Then T1 and T2 are two different labelings
of the same tree, and MPpath(T1) = MPpath(T2).
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Class sizes for MP-equivalence. For paths, the size of an equivalence class of MWpath-
equivalent paths (resp. MPpath-equivalent paths) is always a power of 2, as it was proved in
[28] (resp. [2]). This result no longer holds for other classes of trees, as illustrated by the
example below.

I Example 3. Let T be a spider on 11 vertices with 5 legs of length 2. Then the following 3
weightings of T form an MPpath-equivalence class of size 3 (we give the weighting as 5-tuples
of weight pairs on the legs from the center outwards). T1 : [1, 3], [2, 3], [3, 5], [4, 1], [6, 1],
T2 : [1, 3], [2, 5], [3, 1], [5, 1], [5, 3], T3 : [1, 5], [2, 1], [4, 1], [4, 3], [5, 3].

Finally note that Proposition 9 also applies for A = PATH.

5 Maximal paths

5.1 Computation of fMAXPATH(T )
Let f(T ) = fMAXPATH(T ) be the MPmaxpath-polynomial of T . Let r(T, v) denote the MP -
polynomial corresponding to all paths with one endpoint in v and another one in a leaf.
Finally, let t(T, v) be the MP -polynomial for all maximal paths that have v as one of their
endpoints. Note that t(T, v) = 0 if v is not a leaf in T .

I Theorem 13. Let T be a rooted tree with root v, and let v1, v2, . . . vk be the children of v
in T . Denote the subtrees rooted at v1 (resp. v2 etc.) by T1 (resp. T2 etc.). Denote the index
in Σ of the label on the edge connecting v and vj by lj. We have the following equalities:

r(T, v) =
∑

(xlj · r(Tj , vj))

f(T ) = t(T, v) +
k∑
j=1

(f(Tj)− t(Tj , vj)) +
∑
i<j

(xlixljr(Ti, vi)r(Tj , vj))

t(T, v) =
{
r(T, v) if k=1
0 if k>1

5.2 Reconstructibility – Small Unjumble
We only consider reconstructibility for weighted graphs. Let us fix the topology of T as an
n-star. We have the following reconstructibility result for edge-weighted n-stars.

I Theorem 14. Let T1 and T2 be two n stars s.t. n − 1 is not a power of 2. Then
MWmaxpath(T1) = MWmaxpath(T2) implies that T1 and T2 are isomorphic as edge weighted
trees. If n = 2k + 1 for some k ≤ 0, then there are non-isomorphic edge labeled n-stars that
are MWmaxpath-equivalent.

The theorem is an easy consequence of Theorem 1 and Theorem 2 from [33], about
the reconstructibility of numbers from the multiset of their pairwise distances. These two
theorems are also proved in [23, 31] using the polynomial representation of sumsets, which
is more in the spirit of the present paper. To see how it follows, simply observe that the
weights of maximal paths are the pairwise sums of edge labels.

6 Reconstruction Algorithms

In this section, we treat reconstruction of edge-labeled trees from weighted paths, where the
topology of the tree is given (Small Unjumble). Note that we assume that S is given sorted.
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First let us note that for the case where T is a star, a simple greedy algorithm will solve
the problem exactly in time loglinear in the input size |S| =

(
n
2
)
. Denote by X the multiset

of weights of the edges, then MWpath(T ) = X ∪ (X +X) (where by X +X we denote the
multiset of sums of two elements from the multiset X). Clearly, the two smallest numbers in
S are necessarily in X, which means that their sum is necessarily in X +X. The algorithm
starts with an empty X, iteratively chooses the smallest remaining number in S, adds it to
X, and eliminates it and its sums with those already in X from S. We touch each of the

(
n
2
)

input numbers exactly once; getting the next smallest one takes constant time, while finding
the corresponding elements from X +X takes logn time each.

I Example 4. Let T be a 6-star, i.e. |V (T )| = 6 with one vertex of degree 5 and 5 leaves, and
let S = {2, 3, 5, 5, 7, 8, 9, 10, 11, 12, 12, 13, 14, 15, 19}. Necessarily 2, 3 ∈ X, and this eliminates
also 5 = 2 + 3 from the input set. The next remaining smallest number is 5: this must
again be an edge label, thus 5 ∈ X, eliminating 7 = 5 + 2 and 8 = 5 + 3 from our input set.
Continuing, we get that 9 ∈ X, eliminating 11, 12, 14, and finally, that 10 ∈ X, eliminating
12, 13, 15, 19. So we see that the 5 edges are labeled with 2, 3, 5, 9, and 10 respectively.

In particular, if T is a star, then if there is a solution, it is necessarily unique. Thus we
have proved the following:

I Proposition 15. If T is a star, then the Greedy Algorithm correctly reconstructs its labeling
from MWpath(T ) in time O(n2 logn). Moreover, for any instance S, either S is uniquely
reconstructable, or there is no solution.

Now let’s turn to a general tree topology. In the following we will generalize the algorithm
given in [28] for the turnpike problem to any tree. To this end, we define the path poset
of a tree T as the set of all paths in T , together with the inclusion order. We give an
example below (Ex. 5). Note that the input MWpath(T ) consists precisely of the weights of
all elements of the path poset. So the task is to fill in the values from S into the path poset.
The following is immediate:

I Lemma 16. For any tree T , the path poset of T is exactly the union of the path posets of
its maximal paths.

I Example 5. Let T be as in Fig. 2, input S = {1, 2, 2, 3, 3, 4, 5, 5, 5, 6, 6, 7, 8, 9, 11}. In the
same figure, we show the three pyramids with the unique solution (up to exchanging the labels
of d and e).

Following [28], we will refer to the above representation of the values of the path poset of
a maximal path as a pyramid. If π = (v1, . . . , vs) is a maximal path in T , then in its pyramid
∆, row k will hold all values of subpaths of π of length k. Let us refer to dij as the sum of
the weights on the path from vi to vj . As was shown in [28], the following relationships hold
within one pyramid:

I Lemma 17 ([28]). dij + dk` = di` + dkj for 1 ≤ i ≤ k ≤ ` ≤ j.

This property is then used in [28] for a backtracking algorithm which takes the next
largest remaining value, guesses its position in the pyramid, and fills in all other values which
are implied by it. When a choice implies a value not present in the input, the algorithm
backtracks. We, however, need to fill in all pyramids concurrently. For this, the following
lemma will be useful. We omit the proof for lack of space.
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⌘

⌘

a b c d e

ab bc cd ce
de

abc bcd bce

abcd abce

8
7 6

5 5 3
2 3 2 1
a b c d

11
7 9

5 5 6
2 3 2 4
a b c e

5
1 4
d e

Figure 2 Example 5: A tree, its path poset, and the path posets of its three maximal paths (in
the latter we omit the edges for clarity), with the values of the input set filled in.

I Lemma 18. Let π = (v1, . . . , vr) and π′ = (u1, . . . , ur′) be two maximal paths in T with
non-empty intersection ρ. Let ∆ be the pyramid for π, with entries dij , and ∆′ the pyramid for
π′, with entries d′ij. If ρ = (vi, . . . , vi+`) = (ui′ , . . . , ui′+`), then the following relationships
hold between ∆ and ∆′:
1. for k ≤ i, k′ ≤ i′: dk,i+s − d′k′,i′+s = dk,i+t − d′k′,i′+t for all 0 ≤ s, t ≤ `, and
2. for k ≥ i+ `, k′ ≥ i′ + `: di+s,k − d′i′+s,k′ = di+t,k − d′i′+t,k′ for all 0 ≤ s, t ≤ `.

Our algorithm proceeds as follows. In each step, it takes the next largest value still in S
and places it in one of the maximal free places, i.e. in a free place that has no larger free
place in any of the pyramids. It then fills in all implied positions according to Lemma 17
and 18. If at some point it encounters a value not present among the yet unused values, it
backtracks. For example, in Example 5, for the first value 11 there are three possible choices,
namely the tops of the three pyramids. Say we have already placed values 11 and 9 in their
respective places as in the final solution. Now placing 8 on the top of the first pyramid will
force the difference for all values on the right sides of the first and second pyramids to be 3,
an application of Lemma 17.

I Lemma 19. Every maximal free place is either on top of a pyramid, or on the side of a
pyramid.

I Theorem 20. There is a O((2Γ)(Γ+n)n2 logn) algorithm for finding all possible labelings
of a given tree T from the multiset of

(
n
2
)
path weights, where n is the number of vertices of

T , and Γ the number of maximal paths in T .

Although the algorithm has exponential running time, it compares well to the simple
exhaustive search if the number of leaves is small, since trying all possible labelings of the
edges would give O(n2n/2n) running time. Note that parameter Γ is quadratic in the number
of leaves. So essentially the algorithm performs well on trees which are close to strings, and
badly on trees that are close to stars, i.e. have many leaves. Indeed, as can be seen, the
Greedy algorithm for stars applies the opposite strategy, namely filling in the path poset from
below; this makes sense when the higher levels are more populous than the lower levels, while
starting from above is appropriate when the form is pyramid-like. Moreover, the analysis
is very pessimistic and does not so far take advantage of the improvements given by the
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pruning due to Lemmas 17 and 18. In practice, we expect that many branches will be pruned
by these implications. For the special case of the turnpike problem, if we consider random
instances then incorrect branches are pruned almost immediately, see [28].

7 Conclusion and Open Problems

Our reconstruction algorithm is purely combinatorial, and it seems a challenging problem to
find a reconstruction algorithm based on MP -polynomials, similar to the ones presented in
[28, 2]. We would also be interested in proving further results about unique reconstructibility
with algebraic techniques.

Another intriguing task is connecting the Large Unjumble Problem for weighted maximal
paths to the distance-based phylogeny problem: Note that if we had an assignment of the
input numbers to the Γ leaf pairs, then a reconstruction, if it exists, is unique, and can be
found in O(Γ3/2) e.g. using the Neighbor Joining algorithm [30] (or it can be shown that no
such reconstruction exists).

Further open problems include the complexity status of the reconstruction problems
introduced, in particular in which of the cases Large Unjumble is computationally hard.
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Abstract
This paper presents a simple 7/2-approximation algorithm for the max duo-preservation
string mapping (MPSM) problem. This problem is complementary to the classical and well
studied min common string partition problem (MCSP), that computes the minimal edit
distance between two strings when the only operation allowed is to shift blocks of characters.
The algorithm improves on the previously best known 4-approximation algorithm by computing
a simple local optimum.
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1 Introduction

Within the field of stringology, string comparison is one of the central problems, as its
applications range from data compression to bioinformatics. There are various ways to
measure the similarity of two strings, however the most common measure is the so called edit
distance that counts the minimum number of edit operations that must be performed in order
to transform one string into the other. In the specific field of biology, the edit-distance may
provide some measure of the kinship between different species based on the similarities of their
DNA, as each edit operation can be considered as a single mutation. In data compression, it
may help to store efficiently a set of similar yet different data (e.g., different versions of the
same object). Indeed, when a set of elements all have a short edit-distance towards a single
“base element”, an efficient way to compress the whole set of data might be to store only the
“base” element of the set, and then record all the other elements as series of edit operations.

Obviously, the concept of edit distance changes definition based on the set of edit
operations that are allowed. We tackle the classical case where the only edit operation that
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Figure 1 A mapping π that preserves 2 duos.

is allowed is to shift a block of characters, that is, to change the order of the characters in
the string by modifying the position of some substring. In this case, the edit distance can be
measured by solving the min common string partition (MCPS).

The MCSP is a fundamental and widely studied problem in the field of string comparison,
which applications in the field of bioinformatics are described in [7, 13]. Given a string A
let PA denote a partition of A, that is, a set of substrings whose concatenation results in
A. Consider two strings A and B, both with n characters, such that B is a permutation
of A. The MCSP Problem introduced in [13] and [18] asks for two partitions PA of A and
PB of B of minimum cardinalities such that PA is a permutation of PB. The k−MCSP
denotes a natural restriction of the problem where each character of the alphabet has
at most k occurrences in each string. In [13], it is shown that this problem is NP-Hard
and even APX-Hard. This holds also when the number of occurrences of each character
is at most 2, and the result follows from a reduction to max independent set (note
that the problem is trivial when the maximal number of occurrences of each character is
at most one). Since its introduction in [13], the problem has been intensively studied in
various frameworks, such as polynomial approximation [7, 8, 9, 13, 15, 16] and parametric
computation [3, 4, 10, 14]. Regarding polynomial approximation, the best results known so
far are an O(logn log∗ n)-approximation algorithm for the general version of the problem
[9], and an O(k)-approximation for k−MCSP [16]. Regarding parametric computation, the
problem was proved to be Fixed Parameter Tractable (FPT), first with respect to both k
and the cardinality φ of an optimal partition [3, 10, 14], and more recently, with respect to
φ only [4].

In [6], the symmetrical (maximization) version of the problem is introduced and denoted
by max duo-preservation string mapping (MPSM). A duo is defined as a couple of
consecutive characters in a given string. It is clear that when a couple of partitions (PA,PB)
are a solution for a given instance of min common string partition that partition A

and B into φ substrings, this solution is equivalent to a mapping π from characters of A to
characters of B that preserves exactly n− φ duos. A duo is considered preserved when its
two consecutive characters are mapped to two consecutive characters in the other string.
Hence, given two strings A and B, the MPSM problem asks for a mapping π from A to B
that preserves a maximum number of duos. An example of mapping that preserves 2 duos is
provided in Figure 1.

Reminding that MCSP is NP-Hard [13], its maximization version MPSM is also NP-Hard.
However, it is likely that these two problems have different behaviours in terms of ap-
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proximation, inapproximability, and parameterized complexity. Among many others, max
independent set and min vertex cover provide a perfect example of two symmetrical
problems having different characteristics: on the one hand, min vertex cover is easily
2-approximable in polynomial time by taking all endpoints of a maximal matching [12], and
is FPT [5], while on the other hand max independent set is inapproximable within ratio
nε−1 for a given ε ∈ (0, 1) unless P = NP [17], and is W [1]-Hard [11].

In [6], some approximation results are presented for MPSM with the following method. A
graph problem called constrained maximum induced subgraph (CMIS) is defined and
proved to be a generalization of MPSM. Using a solution to the linear relaxation of CMIS,
it is then shown that a randomized rounding provides a k2 expected approximation ratio
for k-CMIS (and thus for k-MPSM), and a 2 expected approximation ratio for 2-CMIS (and
thus for 2-MPSM). In [2], these results were improved by introducing and analysing two
simple approximation algorithms: the first guarantees a 4-approximation ratio (regardless of
the value of k), while the second ensures an approximation ratio 8/5 when k = 2 and ratio 3
when k = 3. Moreover, the problem is shown to be APX-Hard. Very recently, the problem
was shown to be FPT with respect to the number of duos preserved [1].

In what follows, we present further improvements on the latter results, namely a polyno-
mial 7/2-approximation algorithm based on a local search technique. In Section 2, we present
briefly a graph generalization of MPSM called max consecutive bipartite matching.
Then, we describe our local search algorithm in Section 3 for which we provide complexity
analysis (Section 4) and bound on the approximation ratio (Section 5). We finally provide
some perspective for future works and possible further improvements on the approximation
guarantee in Section 6.

2 Graph translation of the Problem

We are interested in improving on the best known approximation algorithm for max duo-
preservation string mapping problem, that has approximation ratio 4. In [2], the problem
is shown to be a particular case of the following graph problem, which we denote as max
consecutive bipartite matching. Given a bipartite graph where vertices on both sides
are ordered : A = (a1, ..., an), B = (b1, ..., bn), the max consecutive bipartite matching
problem asks for the maximum matching M such that if (ai, bj) ∈M , then ai+1 can only be
matched to bj+1, and bj+1 can only be matched to ai+1. In other words, sets of matched
consecutive vertices on one side must be matched to consecutive vertices on the other side.

Let us recall briefly why max duo-preservation string mapping is a particular case
of max consecutive bipartite matching. Strings A and B of any instance of max
duo-preservation string mapping can be translated as ordered duo sets DA and DB

(for example, if A = “abc” and B = “bac”, then DA = ((ab), (bc)), and DB = ((ba), (ac))).
Consider the bipartite graph G(I) built in the following way (an example is provided in

Figure 2):
each vertex on the left-hand side represents a duo of the set DA, and each vertex on the
right-hand side represents a duo of DB .
edges exist between two vertices if and only if they represent the same duo (same couple
of characters in the same order)

It is shown in [2] that any feasible solutionM for max consecutive bipartite matching
in the graph G(I) yields a mapping π between strings A and B that preserves at least |M |
duos (and exactly |M | duos if M is inclusion-wise maximal).

CPM 2016
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Figure 2 Graph G(I) when I consists of A = “abcacba” and B = “bcabaca”.

Indeed, such a matching can be seen as a partial mapping, and the number of edges
in the matching is equal to the number of duos that the mapping preserves. The partial
mapping can then be completed in an arbitrary way, since the set of non-mapped characters
in A is a permutation of non-mapped vertices in B.

In the rest of the paper, we will refer only to the max consecutive bipartite matching
problem, bearing in mind that any approximation result that holds for max consecutive
bipartite matching also holds max duo-preservation string mapping.

We call two edges conflicting if they cannot be both part of the same solution, either
because they share a common endpoint or because their endpoints are consecutive on one
side of the graph but not on the other.

In the following, we present an algorithm that produces such a partial mapping based on
local search technique.

3 Local search algorithm

Local search algorithms produce solutions that are defined as local optima. A local optimum
of an optimization problem is a solution that is optimal (either maximal or minimal) within
a neighbouring set of candidate solutions. Starting from any feasible solution, the algorithm
searches an improving solution in the neighbouring set, and repeatedly moves to an improving
neighbouring solution as long as such a solution exists. When no improving neighbouring
solution can be found, then the current solution is by definition a local optimum.

The quality of the local optimum obviously depends on the definition of the neighbouring
set.

We devise a local search algorithm denoted LOCAL, which is based on a neighbourhood
structure N . Given a matching M that is a feasible solution for the problem, the neighbour-
hood of M , called N (M), contains all feasible solutions M ′ such that |M \M ′| ≤ 1 . In
other words M ′ must contain all edges of M apart from possibly one.

While searching for an improving solution in the neighbouring set, the algorithm LOCAL
will first try to improve the solution without removing any edge from the current solution
M . On the one hand, if M is not inclusion-wise maximal, then there is an edge that can be
added to the current solution M without having to remove any edge from it. If on the other
hand M is inclusion-wise maximal, then the algorithm scans every matching M \ {v} (for
each v ∈M) and checks if at least two edges can be added to one of these matchings. The
pseudocode of algorithm LOCAL is provided in Section 4.
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Algorithm 1 algorithm LOCAL
Input: G = (V,E)
Output: M
1: M = ∅,M ′ = ∅
2: if ∃v ∈ E then
3: M ′ ← {v}
4: end if
5: while M 6= M ′ do
6: M ′ ←M

7: for each v ∈ E do
8: if M ∪ {v} is feasible then
9: M ←M ∪ {v}
10: continue
11: end if
12: end for
13: for each v ∈M do
14: for each (u,w) ∈ E × E do
15: if M \ {v} ∪ {u,w} is feasible then
16: M ←M \ {v} ∪ {u,w}
17: break
18: end if
19: end for
20: end for
21: end while
22: return M

4 Complexity analysis

We prove that the algorithm runs indeed in polynomial time. First of all, even starting from
an empty solution, the algorithm will increment the value of its solution by at least one at
each step, so that it will conclude after at most |SOL| ≤ n steps.

At each step, the algorithm first scans all edges that are not in SOL and checks if one
of them does not conflict with any edge of SOL. This is done in O(n2) time. If such an
edge is found, the current step is finished. Otherwise, for each edge u of SOL, the algorithm
considers all sets of at most 6 non-solution edges conflicting with u, and checks if they can
be added to the matching SOL \ {u} without generating any conflict. This is done in O(n6)
time for each edge u of the current solution: each edge of the solution conflicts with O(n)
non-solution edges, so that there are O(n6) candidate combinations of at most 6 non-solution
edges to consider. Considering that, at each step, the current solution has O(n) edges, the
complexity of a single step is O(n7).

In all, the algorithm finishes after at most n steps, each step running in O(n7) time, so
that the overall complexity is O(n8).

The complexity of LOCAL can actually been brought down to O(n4) thanks to the following
observation. If an improvement incrementing the cardinality of the solution by at least one
can be made at some step (by removing an edge u of SOL and adding a set X of at least two
non conflicting edges to SOL), then an improvement incrementing this value by exactly one
is also possible (by removing the same edge u of SOL and adding exactly any couple of edges
of the set X). Thus, instead of scanning all sets of at most 6 non-solution edges conflicting

CPM 2016
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with each edge u, it suffices that the algorithm scans only every couple of non-solution edges
conflicting with u. If no improving couple can be found, then no improvement of any kind
can be made, and the current solution is a local optimum.

5 Approximation analysis

We now prove that, indeed, LOCAL improves on the best known 4-approximate algorithm for
max consecutive bipartite matching:

I Theorem 1. The algorithm LOCAL yields a 3.5 approximation ratio for max consecutive
bipartite matching problem.

Consider that the algorithm LOCAL runs on an instance I of max consecutive bipartite
matching and outputs a solution SOL.

The proof is based on counting the conflicts between edges of SOL and edges of an
unknown optimal matching OPT. We denote such number of conflicts by C.

On the one hand, a single edge of SOL cannot be conflicting with more than 6 edges of
OPT (the worst case is shown in Figure 3). Indeed, on the one hand, any edge u can be in
conflict only with edges that share an endpoint with u, or that have an endpoint that is
consecutive to an endpoint of u (immediately after or immediately before), which results
in no more than 6 possible endpoints for edges conflicting with u (the two endpoints of u,
and the four consecutive vertices). On the other hand, any feasible solution including the
optimal one can pick at most one edge per vertex of the graph. This gives us the following
upper bound on the value of C:

C ≤ 6|SOL| . (1)

We recall that, by definition, there is no solution SOL′ in the neighbourhood N (SOL)
of SOL that has more edges than SOL. Hence, given any edge v of SOL the following fact
holds:



N. Boria, G. Cabodi, P. Camurati, M. Palena, P. Pasini, and S. Quer 11:7

I Fact 2. Let v be an edge of solution SOL generated by LOCAL, and OPT be an optimal
solution for the problem. There is at most one edge u of OPT that conflicts only with v in
SOL.

The fact is rather straightforward: suppose that there exist two edges u and t in a solution
OPT that both conflict with a single edge v in SOL. The solution SOL \ {v} ∪ {u, t} is an
admissible matching in the neighbourhood of SOL and it contains more edges. Hence, LOCAL
should have picked it instead of SOL.

Let us denote by k1 the number of edges in OPT that conflict with one edge of SOL only.
Fact 2 yields naturally the following bound:

k1 ≤ |SOL| . (2)

In OPT the remaining |OPT| − k1 edges conflict with at least 2 edges of SOL, which
gives us the following lower bound on the number of conflicts C:

C ≥ k1 + 2(|OPT| − k1) ≥ 2|OPT| − k1 ≥
(2)

2|OPT| − |SOL| . (3)

Combining equations (1) and (3), we can easily get the following bound on the approxim-
ation ratio of LOCAL, which concludes the proof:

OPT
SOL ≤

7
2 .

6 Conclusion and perspectives

We showed that a simple local optimization technique provides a better approximation
guarantee than the previously best known algorithm for MPSM. The analysis of more
complex local optimums that rely on broader (yet polynomial) definitions of neighbourhood
did not lead to immediate further improvements of the approximation guarantee. However,
there are strong hints that, in such optimums, the number of edges that conflict with 6
edges of a global optimum is somehow linked to the number of edges of the global optimum
conflicting with few edges of the local optimum. Namely, if many edges of the local optimum
conflict with 6 edges of the global optimum, then few edges of the global optimum are
expected to conflict few edges of the global optimum, resulting in a tighter version of equation
3, bounding for example the value C(t) where t is the number of edges of the local optimum
that conflict with 6 edges of the global optimum. Analysing such a bound might eventually
lead to further improvements on the approximation ratio.
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Abstract
We consider the following basic problem in phylogenetic tree construction. Let P = {T1, . . . , Tk}
be a collection of rooted phylogenetic trees over various subsets of a set of species. The tree
compatibility problem asks whether there is a tree T with the following property: for each
i ∈ {1, . . . , k}, Ti can be obtained from the restriction of T to the species set of Ti by contracting
zero or more edges. If such a tree T exists, we say that P is compatible.

We give a Õ(MP) algorithm for the tree compatibility problem, whereMP is the total number
of nodes and edges in P. Unlike previous algorithms for this problem, the running time of our
method does not depend on the degrees of the nodes in the input trees. Thus, it is equally fast
on highly resolved and highly unresolved trees
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1 Introduction

Building a phylogenetic tree that encompasses all living species is one of the central challenges
of computational biology. Two obstacles to achieving this goal are lack of data and conflict
among the data that is available. The data shortage is tied to the vast disparity in the
amount of information at our disposal for different families of species and the limited amount
of comparable data across families [16]. One approach to overcoming this obstacle begins by
identifying subsets of species for which enough data is available, and building phylogenies for
each subset. The resulting trees are then synthesized into a single phylogeny – a supertree –
for the combined set of species. This approach, proposed in the early 90s [2, 15], has been
used successfully to build large-scale phylogenies (see, e.g., [3, 10]).

Any attempt at synthesizing phylogenetic information from multiple input trees must
deal with the potential for conflict among these trees. Conflict may arise due to errors,
or due to phenomena such as gene duplication and loss, and horizontal gene transfer. A
fundamental question is whether conflict exists at all; that is, does there exist a supertree
that exhibits the evolutionary relationships implicit in each input tree? We can formalize
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12:2 Compatibility Testing for Rooted Phylogenetic Trees

this question as follows. Let P = {T1, . . . , Tk} be a collection of rooted phylogenetic trees,
where, for each i ∈ {1, . . . , k}, Ti is a phylogenetic tree for a set of species L(Ti). The tree
compatibility problem asks whether there exists a phylogenetic supertree T for the set of
species

⋃k
i=1 L(Ti) such that, for each i ∈ {1, . . . , k}, Ti can be obtained from T |L(Ti) – the

minimal subtree of T spanning L(Ti) – by zero or more contractions of internal edges. If the
answer is “yes”, then P is said to be compatible; otherwise, P is incompatible.

Here we present an algorithm that solves the compatibility problem for rooted trees in
O(MP log2 MP) time, where MP is the total number of vertices and edges in the trees in P.
This running time is independent of the degrees of the internal nodes of the input trees.

1.1 Previous Work
Aho et al. [1] gave the first polynomial-time algorithm for the rooted tree compatibility
problem. Their motivation was not phylogenetics, but relational databases. Steel [18] was
perhaps the first to note the relevance of Aho et al.’s algorithm to supertree construction.
His version of the Aho et al. algorithm, which he called the Build algorithm, has been a
major influence in later work, including the present paper.

Henzinger et al. [9] showed that one can check the compatibility of a collection R of rooted
triples – that is, phylogenetic trees on three species – in O(|R| log2 |R|) time. (The time
bound stated in [9] is higher, but can be improved using a faster dynamic graph connectivity
data structure [11].) Any collection of trees P can be encoded by a collection of rooted triples
R(P), obtained by enumerating the restriction of each input tree to every three-element
subset of its species set (see Section 2). If n denotes the total number of distinct species in P ,
then we get a trivial upper bound of |R(P )| = O(n3k). We can improve on this by finding a
minimal set R∗ of rooted triples that define the input trees. If the trees are binary – fully
resolved, in the language of phylogenetics –, then O(n) triples suffice for each tree, giving
us |R∗| = O(nk). If input trees admit non-binary – that is, unresolved – nodes, however,
the number of triples needed per input tree is roughly proportional to n2 (the precise bound
depends on the sum of the products of the degrees of internal nodes and the degrees of their
children [8]), giving us |R∗| = O(n2k). Of course, the extra step of finding R∗ adds to the
complexity of the algorithm.

The tree compatibility problem is related to the incomplete directed perfect phylogeny
problem (IDPP). Indeed, any collection of k phylogenetic trees on n distinct species can be
encoded as a problem of testing the compatibility of a collection of O(MP) “directed partial
characters” on n species1. Intuitively, each such character encodes the species in the subtree
rooted at some node in an input tree. There is a Õ(nm) algorithm to test the compatibility
of m incomplete characters [14], which can be adapted to yield a Õ(nMP) algorithm for tree
compatibility.

When the input trees are unrooted, the tree compatibility problem becomes NP-hard
[18]. Nevertheless, the decision version is polynomial-time solvable if k is fixed [4]; that is,
the problem is fixed-parameter tractable in k. The proof of fixed-parameter tractability in
[4] relies on Courcelle’s Theorem [6], and thus is an existence proof, rather than a practical
algorithm.

Finally, we note that there are linear-time algorithms for testing the compatibility of a
collection of trees that all have exactly the same leaf label set. One such algorithm can be
obtained using recent results on computing “loose” and “strict” consensus trees [13]. Both

1 For a precise definition of partial characters and IDPP, we refer the reader to Pe’er et al. [14].
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types of consensus trees can be found in O(nk) time, which is O(MP) when all leaf label
sets are identical. (We thank J. Jansson for pointing this out.)

1.2 Our Contributions
At a high level, our algorithm resembles Build [18, 17]. There are, however, important
differences. Build relies on the triplet graph, whose nodes are the species and where there is
an edge between two species if they are involved in a triplet (see Section 2). Our algorithm
relies instead on intersection graphs of sets of species associated with certain nodes of the
input trees. Our graphs allow a more compact representation of the triplets induced by the
trees in P (see Section 3). The key to the correctness of our approach is the close relationship
between the triplet graph and our intersection graph (see Lemma 5 of Section 3). We remark
that intersection graphs have a long history of use in testing compatibility, beginning with
the work of Buneman [5].

We also take ideas from other sources. From Pe’er et al.’s IDPP algorithm [14], we adapt
the idea of a semi-universal node. Although the graphs used to solve IDPP and rooted
compatibility are different, semi-universal nodes play similar roles in each case: they capture
the notion of sets of nodes in the input trees that map to the same node in a supertree, if a
supertree exists. The relationship between our algorithm and Pe’er et al.’s goes deeper. Our
approach can be viewed as an algorithm for IDPP that takes advantage of the fact that our
particular set of incomplete characters arises from a collection of trees.

Intersection graphs are a convenient tool to prove the correctness for our algorithm. They
are less convenient for an implementation, because they are hard to maintain dynamically,
as our algorithm requires. The difficulty lies in recomputing set intersections whenever the
graphs are updated. We avoid this by using display graphs, an idea that we borrow from the
proof of the fixed-parameter tractability of unrooted compatibility [4]. The display graph of
a collection P is obtained by identifying leaves in the input trees that have the same label.
Display graphs provide all the connectivity information we need for our intersection graphs
(see Lemma 8 of Section 4), but are easier to maintain.

Through our techniques, we achieve what, to our knowledge, is the first algorithm for
rooted compatibility to achieve near-linear time under all input conditions, regardless of the
degrees of the nodes in the input trees. This is an essential quality for dealing with large
datasets.

1.3 Contents
Section 2 reviews basic concepts in phylogenetics, defines compatibility formally, and intro-
duces triplets and the triplet graph. Section 3 presents our intersection graph approach to
testing tree compatibility. Section 4 describes the implementation details needed to achieve
the O(MP log2 MP) time bound. Section 5 contains some final remarks.

2 Preliminaries

For each positive integer r, [r] denotes the set {1, . . . , r}.

2.1 Phylogenetic Trees
Let T be a rooted tree. We use V (T ), E(T ), and r(T ) to denote the nodes, edges, and the
root of T , respectively. For each x ∈ V (T ), we use Ch(x) and T (x) to denote the set of

CPM 2016
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a b c b c d c d e

T1 T2 T3
T

a b c d e

Figure 1 A profile P = {T1, T2, T3} and a tree T that displays P.

children of x and the subtree of T rooted at x, respectively. Suppose u, v ∈ V (T ). Then, u
is a descendant of v if v lies on the path from u to r(T ) in T . Note that v is a descendant of
itself. T is binary, or fully resolved, if each of its internal nodes has two children.

A (rooted) phylogenetic tree is a rooted tree T where every internal node has at least two
children, along with a bijection λ that maps each leaf of T to an element of a set of species,
denoted by L(T ). For each x ∈ V (T ), L(x) denotes the set of species mapped to the leaves
of T (x); that is, L(x) = {λ(v) : v is a leaf in T (x)}. L(x) is called the cluster at x. Note
that L(r(T )) = L(T ). The set of all clusters in T is Cl(T ) = {L(x) : x ∈ V (T )}.

The following lemma, adapted from [17, p. 52], is part of the folklore of phylogenetics.

I Lemma 1. Let H be a collection of non-empty subsets of a set of species X that includes
all singleton subsets of X as well as X itself. If there exists a phylogenetic tree T such that
Cl(T ) = H, then, up to isomorphism, T is unique.

Let T be a phylogenetic tree and A be a set of species. The restriction of T to A,
denoted T |A is the phylogenetic tree with species set A where Cl(T |A) = {C ∩ A : C ∈
Cl(T ) and C ∩A 6= ∅}. Let T ′ be a phylogenetic tree. T displays T ′ if Cl(T ′) ⊆ Cl(T |L(T ′)).

A rooted triple is a binary phylogenetic tree on three leaves. A rooted triple with leaves
a, b, and c is denoted ab|c if the path from a to b does not intersect the path from c to the
root. We treat ab|c and ba|c as equivalent.

When restricted to the three-element subsets of its species set, a phylogenetic tree
T induces a set R(T ) of rooted triples, defined as R(T ) = {T |X : X ⊆ L(T ), |X| =
3 and T |X is binary}.

I Lemma 2 ([17, p. 119]). Let T and T ′ be two phylogenetic trees. Then T displays T ′ if
and only if R(T ′) ⊆ R(T ).

2.2 Profiles and Compatibility
Throughout the rest of this paper P = {T1, . . . , Tk} denotes a set where, for each i ∈ [k],
Ti is a phylogenetic tree. We refer to P as a profile, and write L(P) to denote

⋃
i∈[k] L(Ti),

the species set of P. We write V (P) for
⋃

i∈[k] V (Ti), E(P) for
⋃

i∈[k] E(Ti), and R(P) for⋃
i∈[k]R(Ti). Given a subset A of L(P ), P|A denotes the profile {T1|A, . . . , Tk|A}. The size

of P is MP = |V (P)|+ |E(P)|. Note that MP = O(nk).
Profile P is compatible if there exists a phylogenetic tree T such that, for each i ∈ [k], T

displays Ti. If such a tree T exists, we say that T displays P. See Figure 1.

2.3 The Triplet Graph
The triplet graph of a profile P, denoted Γ(P), is the graph whose vertex set is L(P ) and
where there is an edge between species a and b if and only if there exists a c ∈ L(P ) such
that ab|c ∈ R(P). The following observation concerning singleton profiles will be useful.
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I Observation 1. Let T be a phylogenetic tree with |L(T )| > 2. Let u1, . . . , up be the
children of r(T ). Then, the connected components of Γ({T}) are L(u1), . . . , L(up), where
p ≥ 2.

3 Testing Compatibility

Here we describe our compatibility algorithm and prove its correctness. We begin with some
definitions.

Let U be a subset of V (P) and let L(U) denote
⋃

u∈U L(u). Then, GP(U) denotes the
graph with vertex set U and where u, v ∈ U are joined by an edge if and only if L(u)∩L(v) 6= ∅.
That is, GP(U) is the intersection graph of the clusters associated with the nodes in U . For
each i ∈ [k], let U(i) = U ∩ V (Ti). We say that U is valid if, for each i ∈ [k],
V1 if |U(i)| ≥ 2, then there exists a node v ∈ V (Ti) such that U(i) ⊆ Ch(v) and
V2 L(U(i)) = L(Ti) ∩ L(U).

Observe that the set Uinit defined as follows is valid.

Uinit = {r(Ti) : i ∈ [k]} (1)

Note that L(Uinit) = L(P). From this point forward, we assume that GP(Uinit) is connected.
No generality is lost by doing so. To see why, observe that if GP(Uinit) is not connected,
then P can be partitioned into a collection of species-disjoint profiles P1, . . . ,Pr such that P
is compatible if and only if Pj is compatible for all j ∈ [r].

The next observation follows from the definition of a valid set.

I Observation 2. If U is a valid subset of V (P), then, for each i ∈ [k], Cl(Ti|L(U)) =
{L(U(i))} ∪ {L(v) : v is a descendant of a node in U(i)}.

Together with Lemma 1, Observation 2 shows that Ti|L(U) is completely determined by
the descendants of U(i).

A valid subset U of V (P) is compatible if there exists a phylogenetic tree T with L(T ) =
L(U) that displays Ti|L(U) for every i ∈ [k]. If such a tree T exists, we say that T displays
U .

I Lemma 3. Profile P is compatible if and only if every valid subset of V (P) is compatible.

Proof.
(⇐) If every valid subset of V (P) is compatible, then, in particular, so is the set Uinit of
Equation (1). Let T be a tree that displays Uinit. Then, L(T ) = L(Uinit) = L(P). Thus, for
every i ∈ [k], Ti|L(T ) = Ti, and thus T displays Ti. Hence, P is compatible.

(⇒) Suppose P is compatible, but there is a valid subset U of V (P) that is not compatible.
Let T be a tree that displays P. But then T |U displays U , a contradiction. J

BuildST (Algorithm 1), which is closely related to Semple and Steel’s Build algorithm [17],
determines whether a valid set U ⊆ V (P) is compatible. The key difference between BuildST
and Build is that the latter uses the triplet graph Γ(P), while BuildST uses the graph
GP(U), for different subsets U of V (P). As we show in Lemma 5, the two graphs are closely
related. Nevertheless, GP(U) offers some computational advantages over the triplet graph.
Intuitively, this is because GP(U) is a more compact representation of the triplets in R(P).

BuildST(U) attempts to build a tree TU for U . Step 1 initializes the root of TU . If L(U)
consists of one or two species, then U is trivially compatible; Steps 2–5 handle these cases.

CPM 2016
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Algorithm 1: BuildST(U)
Input: A valid set U ⊆ V (P) such that GP(U) is connected.
Output: A tree TU that displays U , if U is compatible; incompatible otherwise.

1 Create a node rU

2 if |L(U)| = 1 then
3 return the tree consisting of node rU , labeled by the single species in L(U)
4 if |L(U)| = 2 then
5 return the tree consisting of node rU and two children, each labeled by a different

species in L(U)
6 foreach i ∈ [k] such that |U(i)| = 1 do
7 Let v be the single element in U(i)
8 U = (U \ {v}) ∪ Ch(v)
9 Let W1,W2, . . . ,Wp be the connected components of GP(U)

10 if p = 1 then
11 return incompatible
12 foreach j ∈ [p] do
13 Let tj = BuildST(Wj)
14 if tj is a tree then
15 Add tj to the set of subtrees of rU

16 else
17 return incompatible
18 return the tree with root rU

The loop in lines 6–8 identifies the indices i ∈ [k] such that U(i) is a singleton. For each such
i, it removes the single element v in U(i) and replaces v by its children in Ti. Note that if v
is a leaf in Ti, then U(i) = ∅ after this step. As we argue in the proof of Theorem 7, when P
is compatible, all such nodes v – provided they are not leaves – map to the same node w
in the tree T that displays P, in the sense that L(w) is the smallest cluster in T such that
L(v) ⊆ L(w)2. In Theorem 7, we also show that, if GP(U) remains connected after steps 6–8,
then U is incompatible. This case is handled in Line 11. Otherwise, Lines 12–17 recursively
process each connected component of GP(U). If the recursive calls succeed in finding trees
for all components, these trees are assembled into a phylogeny for U by joining them to the
root created in Step 1. If any recursive call determines that a component is incompatible,
then U is declared to be incompatible.

The correctness of BuildST relies on two lemmas, the first of which can be proved using
induction.

I Lemma 4. If, given a valid set U ⊆ V (P), BuildST(U) returns a tree TU , then TU is a
phylogenetic tree such that L(TU ) = L(U).

The next lemma is central to the correctness proof of BuildST.

I Lemma 5. LetW1, . . . ,Wp be the connected components of GP(U) at step 9 of BuildST(U),
for some valid set U ⊆ V (P). Then,
(i) for each j ∈ [p], Wj is a valid set, and
(ii) the connected components of Γ(P|L(U)) are precisely L(W1), . . . , L(Wp).

2 Thus, v plays the role of a semi-universal node, in the sense of Pe’er et al. [14].
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Proof.
(i) Let Ubef and Uaft denote the values of U before and after executing steps 6–8. Each

element of Uaft is either an element of Ubef or a child of some v ∈ Ubef . In the latter
case, every child of v is in Uaft. By assumption, Ubef is valid, and for every non-leaf
node v, L(v) =

⋃
w∈Ch(v) L(w); therefore, Uaft must also be valid. Part (i) follows.

(ii) We can show that the following holds after steps 6–8.
I Claim 6. Let a and b be any two species in L(U). Then, (a, b) is an edge in Γ(P|L(U))
if and only if there exists a node v ∈ U such that a, b ∈ L(v).

Observe that both Π1 = {A : A is a connected component of Γ(P|L(U))} and Π2 =
{L(W ) : W is a connected component of GP(U)} are partitions of L(U). We prove that
Π1 = Π2 by showing that (a) for each connected component A of Γ(P|L(U)) there exists
a connected component W of GP(U) such that A ⊆ L(W ), and (b) for each connected
component W of GP(U) there exists a connected component A of Γ(P|L(U)) such that
L(W ) ⊆ A.
(a) Let A be any connected component of Γ(P|L(U)). We argue that any two species a, b
in A must be in the same connected component of GP(U). Let Ua = {v ∈ U : a ∈ L(v)}
and Ub = {v ∈ U : b ∈ L(v)}. Then, each of Ua and Ub is a clique in GP(U). It thus
suffices to show that there is a path between some node in Ua and some node in Ub.
By the definition of A, there exists a path between a and b in Γ(P|L(U)). Suppose this
path is ρ = 〈a1, . . . , am〉, where a1 = a and am = b. By Claim 6, for each l ∈ [m− 1],
there exists a node wl ∈ U such that {al, al+1} ⊆ L(wl). For each l ∈ [m − 2],
L(wl) ∩ L(wl+1) 6= ∅, so, either wl = wl+1 or there is a edge between wl and wl+1 in
GP(U). Let π = 〈w1, . . . , wm−1〉. Then, we can extract from π a subsequence that is a
path from w1 to wm−1 in GP(U). By the definition of ρ, a ∈ L(w1) and b ∈ L(wm−1),
so w1 ∈ Ua and wl ∈ Ub. This completes the proof of part (a).
(b) Let W be any connected component of GP(U). If |L(W )| = 1, the statement holds
trivially, so assume that |L(W )| > 1. We argue that any two species a, b in L(W ) are in
the same connected component of Γ(P|L(U)). Let va and vb be nodes in W such that
a ∈ L(va) and b ∈ L(vb). If va = vb, then, by Claim 6, (a, b) is an edge of Γ(P|L(U)),
and we are done. So, suppose instead that va 6= vb.
Let us call a path π from va to vb good if |L(w)| > 1 for every node w in π. We claim
that there exists a good path from va to vb. To prove this claim, we first argue that we
can choose va and vb such that |L(va)|, |L(vb)| > 1. Indeed, consider the case of species
a (the case for b is analogous). If |L(v)| = 1 for every node v ∈W such that a ∈ L(v),
then we would have |L(W )| = 1, contradicting our assumption that |L(W )| > 1. Now,
suppose the path π from va to vb has a node w /∈ {va, vb} such that |L(w)| = 1. Let w′
and w′′ be the predecessor and successor of w in π. Then, L(w′) ∩ L(w′′) = L(w) 6= ∅,
so there is an edge between w′ and w′′. Thus, we can delete w from π and the resulting
sequence remains a path between va and vb.
Let π = 〈w1, . . . , wl〉, where w1 = va and wl = vb, be a good path from va to vb in
GP(U). Choose a sequence of species ρ = 〈c1, . . . , cl+1〉, where c1 = a, cl+1 = b and, for
each j ∈ [l], cj , cj+1 ∈ L(wj) and cj 6= cj+1. Note that such a choice is always possible.
Then, by Claim 6, (cj , cj+1) is an edge of Γ(P|L(U)). Hence, ρ is a path from a to b in
Γ(P|L(U)). J

We are now ready to prove the correctness of BuildST.

I Theorem 7. Let Uinit be the set defined in Equation (1). Then, BuildST(Uinit) either (i)
returns a tree T that displays P, if P is compatible, or (ii) returns incompatible otherwise.

CPM 2016
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Proof. We first argue that if BuildST(Uinit) outputs incompatible, P is indeed incompatible.
Assume, on the contrary, that P is compatible. Then, there must be a call BuildST(U)
for some valid subset U such that |L(U)| > 2, in which the graph G(U) of step 9 has a
single connected component, W1 = U . By Lemma 3, U must be compatible, so there exists
a phylogeny TU that displays U . By Observation 1, Γ({TU}) has at least two connected
components A and B. By Lemma 5(ii), however, Γ(P|L(U)) is connected, so there exist
species a ∈ A and b ∈ B such that ab|c ∈ R(P|U). But ab|c /∈ R(T ), and, by Lemma 2,
T does not display some tree in P|L(U), a contradiction. Thus, G(U) has at least two
components.

Now, suppose that BuildST(Uinit) returns a tree T . We prove that T displays P by
arguing that for each i ∈ [k] there is an injective mapping φi : V (Ti) → V (T ) that maps
every node v ∈ V (Ti) to a distinct node φi(v) ∈ V (T ) such that L(v) ⊆ L(φi(v)).

By Lemma 4, each recursive call BuildST(U) returns a phylogenetic tree TU for L(U).
Let rU denote the root of TU . We have two cases.

Case (i): |L(U)| ≤ 2. For each i ∈ [k], we must have |U(i)| ∈ {0, 1, 2}; we only need
to consider |U(i)| ∈ {1, 2}. Suppose first that |U(i)| = 1, and let v be the single node in
U(i). Note that L(v) ⊆ L(rU ). Thus, we make φi(v) = rU . If |L(U(i))| = 1, we are done.
Otherwise, |L(U(i))| = 2. Then, v has two children, v1 and v2, both leaves, labeled with, say,
species s1 and s2, respectively. Node rU also has two children, r1 and r2. Assume, without
loss of generality, that these children are labeled with species s1 and s2, respectively. Then,
L(vj) = L(rj) for j ∈ {1, 2}. Therefore, we make φi(vj) = rj for each j ∈ {1, 2}. Now,
suppose that |U(i)| = 2. Then, |L(U(i))| = 2, and each node in U(i) is a leaf in Ti. As in
the previous case, we map each node of U(i) to the corresponding child of rU .

Case (ii): |L(U)| > 2. Let Ubef be the value of U before entering the loop of lines
6–8, and let Uaft be the value of U at line 9, after the loop of lines 6–8 terminates. Let
Urem = {v ∈ Ubef : v ∈ Ubef(i) for some i ∈ [k] such that |Ubef(i)| = 1}. Then Uaft =
(Ubef \ Urem) ∪ {u ∈ Ch(v) : v ∈ Urem}. Assume inductively that every descendant of a node
in Uaft is mapped to an appropriate node in TU . It therefore suffices to establish mappings
for the nodes in Urem. Now, for every v ∈ Urem, L(v) ⊆ L(rU ). Thus, we make φ(v) = rU

for every v ∈ Urem. J

4 Implementation

We now explain how to implement BuildST in order to solve the tree compatibility problem
in O(MP log2 MP) time. Consider a call to BuildST(U). Recall that we can assume that
GP(U) is connected. BuildST(U) requires the following three pieces of information.
(G1) The value of |L(U)|. This number is needed in Lines 2 and 4 of BuildST.
(G2) The set J(U) of all i ∈ [k] such that |U(i)| = 1. Set J(U) contains the indices i

considered in Lines 6–8 of BuildST.
(G3) The set U(i) = U ∩ V (Ti) for each i ∈ [k]. For each i ∈ J(U), U(i) contains precisely

the element v used in Lines 7 and 8 of BuildST.
It is straightforward to obtain (G1), (G2), and (G3) for the valid set Uinit of Equation (1):
|L(Uinit)| = n, J(Uinit) = [k], and, for every i ∈ [k], Uinit(i) = {r(Ti)}. Now assume that we
have (G1), (G2), and (G3) at the beginning of some call to BuildST(U). Steps 6–8 modify
U and, therefore, GP(U). Suppose that, at Line 9, GP(U) has more than one connected
component. We need to compute (G1), (G2), and (G3) for each connected component, in
order to pass this information to the recursive calls in Line 13. That is, if p > 1, for each
j ∈ [p], we need to compute |L(Wj)|, J(Wj), and Wj(i) = Wj ∩ V (Ti), for each i ∈ [k].
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a b c d e

Figure 2 The graph HP(Uinit) for the profile P of Figure 1. Nodes of Uinit are drawn as squares.
Nodes in the set {xs : s ∈ L(P)} are labeled with the corresponding species. Species labeling the
leaves of trees in P are omitted.

We use the dynamic graph connectivity data structure by Holm et al. [11]. We refer to
this data structure as HDT. HDT allows us to maintain the list of nodes in each component,
as well as the number of these nodes so that, if we start with no edges in a graph with
N vertices, the amortized cost of each update is O(log2 N). For efficiency, however, we do
not use HDT directly on GP(U). The reason is that the edges of GP(U) are defined via
intersections of sets of species, which could make it costly to determine the new nodes and
edges created as a result of Step 8. To avoid this problem, we proceed indirectly, through
an auxiliary graph HP(U), defined below. As we shall see, HP(U) offers another advantage
over GP(U): maintaining HP(U) only requires handling deletions, but maintaining GP(U)
additionally requires handling insertions.

We define HP(U) as a subgraph of the graph HP constructed as follows. For each species
s ∈ L(P), create a new node xs /∈ V (P), and let XP = {xs : s ∈ L(P)}. Then, HP is the
graph whose vertex set is V (P) ∪XP and whose edge set is E(P) ∪ {(u, xs) : u is a leaf in
Ti, for some i ∈ [k], such that λ(u) = s}. Note that HP has O(MP) nodes and edges, and
can be constructed from P in O(MP) time. HP is essentially the display graph for P [4].
The display graph is the result of glueing together leaves in P labeled by the same species.
Contrast this with HP , which connects leaves with a common label through nodes in XP .
This minor difference with respect to the display graph serves to simplify our presentation.

Given a valid subset U of V (P), we define HP(U) as the subgraph of HP induced by {v : v
is a descendant of some node u ∈ U} ∪ {xs ∈ XP : s ∈ L(U)}. Note that HP(Uinit) = HP .
See Figure 2.

The next result states the basic properties of HP(U). Due to space limitations, we omit
its proof.

I Lemma 8. The following statements hold for any valid subset U of V (P).
(i) Let v be a node in U . If U ′ = (U \ {v}) ∪ Ch(v), then HP(U ′) is obtained from HP(U)

by deleting v and every edge (v, u) such that u ∈ Ch(v).
(ii) Any two nodes in U are in the same connected component in GP(U) if and only if they

are in the same connected component of HP(U).

By Lemma 8(ii), the connected components W1, . . . ,Wp of GP(U) can be put into a
one-to-one correspondence with the connected components Y1, . . . , Yp of HP(U) so that
Wj = Yj ∩ U for each j ∈ [p].

We represent HP(U) using the aforementioned HDT data structure. For each connected
component Y of HP(U), we maintain three fields:
(H1) Y.count, the cardinality of Y ∩XP ,
(H2) Y.singleton, a doubly-linked list that contains all indices i ∈ [k] such that |U(i)| = 1,

and
(H3) Y.List, an array where, for each i ∈ [k], Y.List[i] is a doubly-linked list consisting of

the elements of Y ∩ U(i).

CPM 2016
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Recall that we assume that GP(U) is connected at the beginning of a call to BuildST(U).
Thus, by Lemma 8, HP(U) has a single connected component, Y . Then, |L(U)| = Y.count,
J(U) = Y.singleton, and Y.List[i] contains the elements of U(i), for each i ∈ [k]. Thus,
the three fields of Y provide BuildST(U) with the information that it needs – that is, (G1),
(G2), and (G3). In particular, they allow us to easily find each node v considered in Line 7 of
BuildST(U). Line 8 is then performed as a series of edge deletions, one for each edge (v, u)
such that u ∈ Ch(v), followed by the deletion of v (we provide further details below). By
Lemma 8(i), this correctly updates HP(U). The deletions break up HP(U) into a collection of
connected components Y1, . . . , Yp. For each j ∈ [p], Yj corresponds to a connected component
Wj of GP(U) that (if p > 1) is processed in a recursive call in Line 13. We need to compute
Yj .count, Yj .singleton, Yj .List for each j ∈ [p], in order to provide this information to the
recursive calls.

The total number of edge and node deletions executed by BuildST(Uinit) – including all
deletions conducted by the recursive calls – cannot exceed the total number of edges and
nodes in HP , which is O(MP). The HDT data structure allows us to maintain connectivity
information throughout the entire algorithm in O(MP log2 MP). In the remainder of this
section, we show that we can maintain the count, singleton, and List fields throughout
the entire algorithm in total time O(MP log2 MP). We also argue that all the required
information for HP(Uinit) can be initialized in O(MP) time.

Let Yinit = V (P) ∪XP be the vertex set of HP(Uinit). Then, Yinit is the single connected
component of HP(Uinit). We initialize the data fields of Yinit as follows: (1) Yinit.count =
|L(P)|, (2) Yinit.singleton is the set [k], and (3) for each i ∈ [k], Yinit.List[i] consists of
r(Ti). Thus, we can initialize all data fields in O(MP) time.

We assume that every node v in HP(U) is either marked, if v ∈ U , or unmarked, if v /∈ U .
Initially, each node v ∈ Uinit is marked, and every node v ∈ Yinit \ Uinit is unmarked. We
also assume that for each node v in HP(U), we maintain sufficient information to determine
in O(1) time whether v ∈ XP or v ∈ V (P), and that, in the latter case, we have O(1)-time
access to the index i ∈ [k] such that v ∈ V (Ti). For each i such that Y.List[i] contains
exactly one element, we maintain a pointer from Y.List[i] to the entry for i in Y.singleton.
This allows us to update Y.singleton in O(1) time when U(i) is no longer a singleton. For
each marked node v ∈ Y (so v ∈ U), we maintain a pointer from v to the element in Y.List[i]
that contains v. This allows us to update Y.List[i] in O(1) time when v becomes unmarked.

Consider a call to BuildST(U) for some valid set U . Step 1 takes O(1) time. Since HP(U)
initially consists of a single connected component, say Y , and we have Y.count, Steps 2–5
also take O(1) time. Let H = HP(U). We implement the loop in lines 6–8 as follows. First,
we enumerate the indices in J = J(U) in O(|J |) time by listing the elements of Y.singleton.
For each i ∈ J , we retrieve and remove the single element vi of U(i) from Y.List[i], and
then delete i from Y.singleton. This takes O(1) time. We unmark vi, and for every node
u ∈ Ch(vi) we mark u and add it to Y.List[i]. This takes O(1) time per edge. We then
successively delete each edge (vi, u) such that u ∈ Ch(vi), updating (H1)–(H3) for each
newly-created component along the way. Once these edges are deleted, we delete vi itself.
By Lemma 8(i), the result is the graph HP(U) for the new set U . Let us focus on how to
handle the deletion of a single edge e = (vi, u).

Let Y ′ be the connected component of H that currently contains vi. We query the HDT
data structure to determine, in O(log2 MP) amortized time, whether deleting (vi, u) splits
Y ′ into two components. If Y ′ remains connected, no updates are needed. Otherwise, Y ′ is
split into two parts Y1 and Y2. To fill in the count, singleton, and List fields of Y1 and Y2,
we use the well-known technique of scanning the smaller component [7]. We query the HDT
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data structure to determine, in O(1) time, which of Y1 and Y2 has fewer nodes. Suppose
without loss of generality that |Y1| ≤ |Y2|. We initialize Y2.count and Y2.List to Y ′.count
and Y ′.List, respectively. We initialize Y1.count to 0 and Y1.List[i] to null for each i ∈ [k].
We then scan each node v in Y1, and do the following. If v ∈ XP , we decrement Y2.count
and increment Y1.count. Otherwise v ∈ V (P); assume that v ∈ V (Ti). If v is marked, we
remove v from Y2.List[i] and add v to Y1.List[i]; each such move takes O(1) time. This
operation requires at most one update in each of Y1.singleton and Y2.singleton; each
update takes O(1) time.

We claim that any node v is scanned O(logMP) times over the entire execution of
BuildST(Uinit). To verify this, let N(v) be the number of nodes in the connected component
containing v. Suppose that, initially, N(v) = N . Then, the rth time we scan v, N(v) ≤ N/2r.
Thus, v is scanned O(logN) times. The claim follows, since N = O(MP). Therefore, the
total number of updates over all nodes is O(MP logMP), and the work per update is O(1).

To summarize, the work done by BuildST consists of three parts: (i) initialization, (ii)
maintaining connected components, and (iii) maintaining the count, singleton, and List
fields for each connected component. Part (i) takes O(MP) time. Part (ii) involves O(MP)
edge and node deletions on the HDT data structure, at an amortized cost of O(log2 MP) per
deletion. Part (iii) involves scanning the nodes of our graph every time a deletion creates a
new component, for a total of O(MP logMP) scans, at O(1) cost per scan, over the entire
execution of BuildST. This yields our main result.

I Theorem 9. Let Uinit be the set defined in Equation (1). Then, there exists and imple-
mentation of BuildST such that BuildST(Uinit) runs in O(MP log2 MP) time.

5 Discussion

A trivial lower bound for the tree compatibility problem is Ω(MP), the time to read the
input. Thus, our result leaves us a polylogarithmic factor away from an optimal algorithm
for compatibility. Is it possible to reduce or even eliminate this gap? The bottleneck is the
time to maintain the information associated with the various components of HP(U). It is
conceivable that the special structure of this graph and the way the deletions are performed
could be used to our advantage. A second question is how well our algorithm performs in
practice. To investigate this, it should be possible to leverage existing knowledge on the
empirical behavior of dynamic connectivity data structures [12].
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Abstract
An RNA sequence is a string composed of four types of nucleotides, A,C,G, and U . Given an
RNA sequence, the goal of the RNA folding problem is to find a maximum cardinality set of
crossing-free pairs of the form {A,U} or {C,G}. The problem is central in bioinformatics and
has received much attention over the years. Whether the RNA folding problem can be solved in
O(n3−ε) time remains an open problem. Recently, Abboud, Backurs, and Williams (FOCS’15)
made the first progress by showing a conditional lower bound for a generalized version of the
RNA folding problem based on a conjectured hardness of the k-clique problem. However, their
proof requires alphabet size ≥ 36 to work, making the result biologically irrelevant. In this pa-
per, by constructing the gadgets using a lemma of Bringmann and Künnemann (FOCS’15) and
surrounding them with some carefully designed sequences, we improve upon the framework of
Abboud et al. to handle the case of alphabet size 4, yielding a conditional lower bound for the
RNA folding problem. We also investigate the Dyck edit distance problem. We demonstrate a
reduction from RNA folding problem to Dyck edit distance problem of alphabet size 10, estab-
lishing a connection between the two fundamental string problems. This leads to a much simpler
proof of the conditional lower bound for Dyck edit distance problem given by Abboud et al. and
lowers the required alphabet size for the lower bound to work.
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1 Introduction

An RNA sequence is a string composed of four types of nucleotides, A,C,G, and U . Given
an RNA sequence, the goal of the RNA folding problem is to find a maximum cardinality
set of crossing-free pairs of nucleotides, where all the pairs are either {A,U} or {C,G}. The
problem is central in bioinformatics and has found applications in many areas of molecular
biology. For a comprehensive exposition of the topic, the reader is referred to e.g. [18].

It is well-known that the problem can be solved in cubic time by a simple dynamic
programming method [9]. Due to the importance of RNA folding in practice, there has been
a long line of research on improving the time complexity (See e.g. [3, 11, 12, 13, 18, 21]).
Currently the best upper bound is O

(
n3

log2(n)

)
[13, 18], which can be obtained by four-Russian

method or fast min-plus multiplication (based on ideas from Valiant’s CFG parser [19]).
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Whether the RNA folding problem can be solved in O(n3−ε) time for some ε > 0 is still
a major open problem. Other than attempting to improve the upper bound, we should also
approach the problem in the opposite direction, i.e. arguing why the problem is hard.

Conditional lower bounds

A popular way to show hardness of a problem is to demonstrate a lower bound conditioned
on some widely accepted hypothesis.

I Conjecture 1 (Strongly Exponential Time Hypothesis (SETH)). There exists no ε, k0 > 0
such that k-SAT with n variables can be solved in time O(2(1−ε)n) for all k > k0.

I Conjecture 2. There exists no ε, k0 > 0 such that k-clique on graphs with n nodes can
be solved in time Õ

(
n(ω−ε)k/3) for all k > k0, where ω < 2.373 is the matrix multiplication

exponent.

For instance, assuming that SETH (Conjecture 1) holds, the following bounds are
unattainable for any ε > 0:

an O(nk−ε) algorithm for k-dominating set problem [14],
an O(n2−ε) algorithm for dynamic time warping, longest common subsequence, and edit
distance [2, 6, 7],
an O(m2−ε) algorithm for (3/2− ε)-approximating the diameter of a graph with m edges
[15].

We note that such negative results allow us to have a better picture of the structure of
polynomial time complexity, and identify the main obstacles to obtaining faster algorithms
for various fundamental problems.

As remarked in [1], it is easy to reduce the longest common subsequence problem on
binary strings to the RNA folding problem as following: Given two binary strings X,Y , we
let X̂ ∈ {A,C}|X| be the string such that X̂[i] = A if X[i] = 0, X̂[i] = C if X[i] = 1, and we
let Ŷ ∈ {G,U}|Y | be the string such that Ŷ [i] = U if Y [i] = 0, Ŷ [i] = G if Y [i] = 1. Then
we have a 1-1 correspondence between RNA foldings of X̂ ◦ Ŷ R (i.e. concatenation of X̂ and
the reversal of Ŷ ) and common subsequences of X and Y . It has been shown in [7] that
there is no O(n2−ε) algorithm for longest common subsequence problem on binary strings
conditioned on SETH, and we immediately get the same conditional lower bound for RNA
folding from the simple reduction!

Very recently, based on a conjectured hardness of k-clique problem (Conjecture 2), a
higher conditional lower bound was proved for a generalized version of the RNA folding
problem (which coincides with the RNA folding problem when the alphabet size is 4) [1]:

I Theorem 1 ([1]). If the generalized RNA folding problem on sequences of length n with
alphabet size 36 can be solved in T (n) time, then 3k-clique on graphs with |V | = n can be
solved in O

(
T
(
nk+2 log(n)

))
time.

Therefore, a O(nω−ε) time algorithm for the generalized RNA folding with alphabet
size at least 36 will disprove Conjecture 2, yielding a breakthrough to the parameterized
complexity of clique problem.

However, the above theorem is irrelevant to the RNA folding problem in real life (which
has alphabet size 4). It is unknown whether the generalized RNA folding for alphabet size 4
admits a faster algorithm than the case for alphabet size > 4. In fact, there are examples of
string algorithms whose running time scales with alphabet size (e.g. string matching with
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mismatched [5] and jumbled indexing [4, 8]). We also note that when the alphabet size is 2,
the generalized RNA folding can be trivially solved in linear time.

In this paper, we improve upon Theorem 1 by showing the same conditional lower bound
for the RNA folding problem:

I Theorem 2. If the RNA folding problem on sequences in {A,C,G,U}n can be solved in
T (n) time, then 3k-clique on graphs with |V | = n can be solved in O

(
T
(
nk+1 log(n)

))
time.

Note that we also get an O(n) factor improvement inside T (·), though it does not affect
the conditional lower bound.

In the proof of Theorem 1 in [1], given a graph G = (V,E), a sequence of length
O(nk+2 log(n)) is constructed in such a way that we can decide whether G has a 3k-
clique according to the number of pairs in an optimal generalized RNA folding of S. The
construction requires a large alphabet size to build various “walls” which prevent undesired
pairings between different parts of the sequence. Extending their approach to handle the
case with alphabet size 4 may not be easy without aid from other techniques and ideas.

Overview of our approach

At a high level, our reduction (from 3k-clique problem to RNA folding problem) follows the
approach in [1]: We enumerate all k-cliques, and each of them is encoded as some gadgets.
All the gadgets are then put together to form an RNA sequence. The goal is to ensure that
an optimal RNA folding corresponds to choosing three k-cliques that form a 3k-clique, given
that the underlying graph admits a 3k-clique.

To achieve this result using 4 symbols, we implement the above construction using more
efficient gadgets based on a key lemma in [7], whose original purpose is to prove that longest
common subsequence and other edit distance problems are SETH-hard even on binary strings.
We will treat it as a black box and apply it multiple times.

In the final RNA sequence, all clique gadgets are well-separated by some carefully designed
sequences whose purpose is to “trap” all the clique gadgets except three of them. We will see
that only these three clique gadgets can influence the number of matched pairs in an optimal
RNA folding, and the number of matched pairs is maximized when these three clique gadgets
correspond to a 3k-clique. Therefore, we can infer whether the graph has a 3k-clique from
the optimal RNA folding of the RNA sequence.

Dyck Edit Distance

One other way to formulate the RNA folding problem is as follows: deleting the minimum
number of letters in a given string to transform the string into a string in the language
defined by the grammar S → SS, ASU,USA,CSG,GSC, ε (empty string). The Dyck edit
distance problem [16, 17], which asks for the minimum number of edits to transform a given
string to a well-balanced parentheses of s different types, has a similar formulation. Due
to the similarity, the same conditional lower bound as Theorem 1 was also shown for the
Dyck edit distance problem (with alphabet size ≥ 48) in [1]. In this paper, we improve and
simplify their result by demonstrating a simple reduction from RNA folding to Dyck edit
distance problem:

I Theorem 3. If Dyck edit distance problem on sequences of length n with alphabet size 10
can be solved in T (n) time, then the RNA folding problem on sequences in {A,C,G,U}n can
be solved in O(T (n)) time.

CPM 2016
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I Corollary 4. If the Dyck edit distance problem on sequences of length n with alphabet
size 10 can be solved in T (n) time, then 3k-clique on graphs with |V | = n can be solved in
O
(
T
(
nk+1 log(n)

))
time.

Interpretations of our results

The current state-of-art algorithm for k−clique, which takes O
(
nωk/3) time, requires the

use of fast matrix multiplication [10] which does not perform very efficiently in practice.
For combinatorial, non-algebraic algorithm for k−clique, the current state-of-art has time
complexity O

(
nk

logk(n)

)
[20], which is only slightly better than the trivial approach.

Therefore, despite the current gap between the n3 upper bound and the nω lower bound
(neglecting polylog factors) for RNA folding and Dyck edit distance, it is unlikely to have
an n3−ε time “efficient” algorithm for these problems, unless there is a breakthrough in
combinatorial algorithms for k-clique. As a result, our reductions (and the ones in [1])
imply that very likely the use of approximation or heuristic is necessary if one needs a faster
algorithm.

2 Preliminaries

Given a set of letters Σ, the set Σ′ is defined as {x′|x ∈ Σ}. We require that Σ∩Σ′ = ∅, and
∀x, y ∈ Σ, (x 6= y)→ (x′ 6= y′). Therefore, we have |Σ′| = |Σ| and |Σ ∪ Σ′| = 2|Σ|.

For any X = (x1, . . . , xk) ∈ Σk, we write p(X) to denote (x′1, . . . , x′k) (the letter p stands
for the prime symbol). We denote the reversal of the sequence X as XR. The concatenation
of two sequences X,Y is denoted as X ◦ Y (or simply XY ). We write substring to denote a
contiguous subsequence. Two pairs of indices (i1, j1), (i2, j2), with i1 < j1 and i2 < j2, form
a crossing pair iff ({i1, j1} ∩ {i2, j2} 6= ∅) ∨ (i1 < i2 < j1 < j2) ∨ (i2 < i1 < j2 < j1) .

Generalized RNA Folding

Given S ∈ (Σ ∪Σ′)n, the goal of the generalized RNA folding problem is to find a maximum
cardinality set A ⊆ {(i, j)|1 ≤ i < j ≤ n} among all sets meeting the following conditions:

A does not contain any crossing pair.
For any (i, j) ∈ A, either (i) S[i] ∈ Σ and S[j] = S[i]′ or (ii) S[j] ∈ Σ and S[i] = S[j]′ is
true.

We write RNA(S) = |A|.
Any set meeting the above conditions is called an RNA folding of S. If its cardinality

equals RNA(S), then it is said to be optimal.
In the paper we will only focus on the generalized RNA folding problem with four types

of letters, i.e. Σ = {0, 1},Σ′ = {0′, 1′}, which coincides with the RNA folding problem for
alphabet {A,C,G,U}.

With a slight abuse of notation, sometimes we will write (S[i], S[j]) to denote a pair
(i, j) ∈ A. The notation {·, ·} is used to indicate an unordered pair.

Longest Common Subsequence (LCS)

Given X ∈ Σn and Y ∈ Σm, we define δLCS(X,Y ) = n+m− 2k, where k = the length of
the longest common subsequence of X and Y . It is easy to observe that RNA(X ◦ p(Y R))
equals the length of LCS = (n+m− δLCS(X,Y ))/2. In this sense, we can conceive of an
LCS problem as an RNA folding problem with some structural constraint on the sequence.
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In [7], a conditional lower bound for the LCS problem with |Σ| = 2 based on SETH was
presented. A key technique in their approach is a function that transforms an instance of an
alignment problem between two sets of sequences to an instance of the LCS problem, which
is described below.

Alignments of two sets of sequences

Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) be two linearly ordered sets of sequences
of alphabet Σ. We assume that n ≥ m. An alignment is a set A = {(i1, j1), (i2, j2), . . .,
(i|A|, j|A|)} with 1 ≤ i1 < i2 < . . . < i|A| ≤ n and 1 ≤ j1 < j2 < . . . < j|A| ≤ m. An
alignment A is called structural iff |A| = m and im = i1 +m− 1. That is, all sequences in Y
are matched, and the matched positions in X are contiguous. The set of all alignments is
denoted as An,m, and the set of all structural alignments is denoted as Sn,m.

The cost of an alignment A (with respect to X and Y) is defined as:

δ(A) =
∑

(i,j)∈A

δLCS(Xi, Yj) + (m− |A|) max
i,j

δLCS(Xi, Yj).

That is, unaligned parts of Y are penalized by maxi,j δLCS(Xi, Yj).
Given a sequence X, the type of X is defined as (|X|,

∑
iX[i]), where each letter is

assumed to be a number. Note that when the alphabet is simply {0, 1},
∑
iX[i] is simply

the number of occurrences of 1 in X.
The following key lemma was proved in [7] (Lemma 4.3 of [7]):

I Lemma 5 ([7]). Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) be two linearly ordered
sets of binary strings such that n ≥ m, all Xi are of type TX = (`X , sX), and all Yi are
of type TY = (`Y , sY ). There are two binary strings SX = GAm,TY

X (X1, . . . , Xn), SY =
GAn,TX

Y (Y1, . . . , Ym) and an integer C meeting the following requirements:
minA∈An,m δ(A) ≤ δLCS(SX , SY )− C ≤ minA∈Sn,m δ(A).
The types of SX , SY and the integer C only depend on n,m, TX , TY .
SX , SY , and C can be calculated in time O((n+m)(`X + `Y )). Hence |SX | and |SY | are
both O((n+m)(`X + `Y )).

Note that the term GA comes from the word gadget.
Intuitively, computing an optimal alignment (or an optimal structural alignment) of two

sets of sequences is at least as hard as computing a longest common subsequence. The above
lemma gives a reduction from the computation of a number s with minA∈An,m δ(A) ≤ s ≤
minA∈Sn,m δ(A) (which can be regarded as an approximation of optimal alignments) to a
single LCS instance.

In the next section, we will use the above lemma as a black box to devise two encodings,
the clique node gadget CNG(t) and the clique list gadget CLG(t), for a k-clique t in a graph
in such a way that we can decide whether two k-cliques t1, t2 form a 2k-clique according the
value of δLCS(CNG(t1),CLG(t2)).

When invoking the lemma, X, Y are designed in such a way that we can test whether
a condition is met (e.g. whether two given k-cliques form a 2k-clique) by the value of
minA∈An,m δ(A). We will show that minA∈An,m δ(A) = minA∈Sn,m δ(A) for the case we are
interested in. Therefore, we can infer whether the condition we are interested in is met from
the value of δLCS(SX , SY ).
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3 From Cliques to RNA Folding

The goal of this section is to prove Theorem 2.
Let G = (V,E) be a graph, and let n = |V |. We write Ck to denote the set of k-cliques in

G. We fix Σ = {0, 1}. As in [1], we will construct a sequence SG ∈ (Σ ∪ Σ′)∗ such that we
can decide whether G has a 3k-clique according to the value of RNA(SG).

As our framework of the construction of SG is similar to the one in [1], we will give the
building blocks for constructing SG the same names as their analogues in [1], despite that
they have different lower-level implementations.

3.1 Testing 2k-cliques via LCS
We associate each vertex v ∈ V a distinct integer in {0, 1, . . . n− 1}. Let sv be the binary
encoding of such integer with |sv| = dlog(n)e. We define v̄ to be the binary string resulted
by replacing each 0 in sv with 01 and replacing each 1 in sv with 10. It is clear that for each
v ∈ V , v̄ is of type T0 = (2dlog(n)e, dlog(n)e), and δLCS(ū, v̄) = 0 iff u = v.

Our goal is to devise two encodings CNG(t),CLG(t) for a k-clique t such that we can
infer whether two k-cliques t1, t2 form a 2k-clique from the value of δLCS(CNG(t1),CLG(t2)).

For each v ∈ V , the list gadget LG(v) and the node gadget NG(v) are defined as following:
LG(v) = GA1,T0

X (ū1, ū2, . . . , ū|N(v)|, 1dlog(n)e0dlog(n)e, . . . , 1dlog(n)e0dlog(n)e), where N(v) =
{u1, u2, . . . , u|N(v)|}, and the number of occurrences of 1dlog(n)e0dlog(n)e is n− |N(v)|.
NG(v) = GAn,T0

Y (v̄).

I Lemma 6. There is a constant c0, depending only on n, such that for any v1, v2 ∈ V , we
have {v1, v2} ∈ E iff δLCS(LG(v1),NG(v2)) = c0 = minv′

1,v
′
2∈V δLCS(LG(v′1),NG(v′2)).

Proof. We let N(v1) = {u1, u2, . . . , u|N(v1)|}.
Let X = (ū1, ū2, . . . , ū|N(v1)|, 1dlog(n)e0dlog(n)e, . . . , 1dlog(n)e0dlog(n)e), where the number of

occurrences of 1dlog(n)e0dlog(n)e is n− |N(v1)|, and let Y = (v̄2).
In view of Lemma 5, minA∈An,1 δ(A) ≤ δLCS(LG(v1), NG(v2))−C ≤ minA∈Sn,1 δ(A), for

some C whose value depends on |X|, |Y|, and T0. As these parameters depend solely on n,
the number C only depends on n.

Since |Y| = 1, any non-empty alignment between X and Y is structural. This implies
that δLCS(LG(v1), NG(v2))− C = minA∈An,1 δ(A) = minA∈Sn,1 δ(A).

When {v1, v2} ∈ E, since v̄2 is contained in X, clearly minA∈Sn,m δ(A) = 0. When
{v1, v2} 6∈ E, v̄2 does not appear in X, so minA∈Sn,m δ(A) > 0. Note that 1dlog(n)e0dlog(n)e 6=
v̄, for any v ∈ V .

Hence {v1, v2} ∈ E iff δLCS(LG(v1), NG(v2)) = C = minv′
1,v

′
2∈V δLCS(LG(v′1),NG(v′2)).

Therefore, it suffices to set c0 = C. J

We let TX be the type of the list gadgets, and we let TY be the type of the node gadgets.
For each k-clique t = {u1, u2, . . . , uk}, we define the clique node gadget CNG(t) and the
clique list gadget CLG(t) as following:

CLG(t) = GAk2,TY
X (LG(u1), . . . ,LG(u1),LG(u2), . . . ,LG(u2), . . . ,LG(uk), . . . ,LG(uk)),

where the number of occurrences of each LG(ui) is k.
CNG(t) = GAk2,TX

Y (NG(u1),NG(u2), . . . ,NG(uk),NG(u1),NG(u2), . . . ,NG(uk), . . .,
NG(u1), NG(u2), . . ., NG(uk)), where the number of occurrences of each NG(ui) is k.

We are ready to prove the main lemma in the subsection:
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I Lemma 7. There is a constant c1, depending only on n, k, such that for any t1, t2 ∈ Ck,
t1∪t2 is a 2k-clique iff δLCS(CLG(t1),CNG(t2)) = c1 = mint′1,t′2∈Ck δLCS(CLG(t′1),CNG(t′2)).

Proof. Let t1 = {u1, u2, . . . , uk}, and let t2 = {v1, v2, . . . , vk}.
Let X = (LG(u1), . . . ,LG(u1),LG(u2), . . . ,LG(u2), . . . ,LG(uk), . . . ,LG(uk)), where each

LG(ui) appears k times, and let Y = (NG(v1),NG(v2), . . . ,NG(vk),NG(v1), NG(v2), . . .,
NG(vk), . . ., NG(v1), NG(v2), . . ., NG(vk)), where each NG(vi) appears k times.

In view of Lemma 6, we have minw1,w2∈V δLCS(LG(w1),NG(w2)) ≥ c0, so we can lower
bound minA∈Ak2,k2 δ(A) by k2c0.

If maxi,j δLCS(Xi, Yj) = c0, any alignment has cost k2c0. When maxi,j δLCS(Xi, Yj) > c0,
it is easy to observe that in order to achieve δ(A) = k2c0, all sequences in Y must be aligned
(as the cost for any unaligned sequence in Y is now > c0). Therefore, any alignment A
with δ(A) = k2c0 must be A = {(i, i)|i ∈ {1, 2, . . . , k2}} with δLCS(Xi, Yi) = c0, for all
i ∈ {1, 2, . . . , k2}.

In view of the above, minA∈Ak2,k2 δ(A) = k2c0 iff δLCS(Xi, Yi) = c0 for all i ∈ {1, 2, . . . , k2}.
Since A = {(i, i)|i ∈ {1, 2, . . . , k2}} is structural, minA∈Ak2,k2 δ(A) = k2c0 iff minA∈Sk2,k2

δ(A) = k2c0. Therefore, in view of Lemma 5, there exists a constant C such that:
If minA∈Ak2,k2 δ(A) = k2c0, then δLCS(CLG(t1), CNG(t2)) = k2c0 + C.
If minA∈Ak2,k2 δ(A) > k2c0, then δLCS(CLG(t1), CNG(t2)) > k2c0 + C.

Moreover, the value of C depends only on |X|, |Y|, TX , TY . As these parameters depend
solely on n, k, the number C only depends on n, k.

When t1 ∪ t2 is a 2k-clique, all vertices in t1 are adjacent to all vertices in t2. In
view of Lemma 6, ∀i,jδLCS(Xi, Yj) = c0. Hence minA∈Ak2,k2 δ(A) = k2c0, implying that
δLCS(CLG(t1), CNG(t2)) = k2c0 + C.

When t1 ∪ t2 is not a 2k-clique, there exist ui ∈ t1, vj ∈ t2 such that {ui, vj} 6∈ E.
According to our definition of X and Y, we have Xj+k(i−1) = LG(ui), Yj+k(i−1) = NG(vj),
and hence δLCS(Xj+k(i−1), Yj+k(i−1)) > c0. This implies that minA∈Ak2,k2 δ(A) > k2c0,
which leads to δLCS(CLG(t1), CNG(t2)) > k2c0 + C.

As a result, t1∪t2 is a 2k-clique iff δLCS(CLG(t1), CNG(t2)) = k2c0+C = mint′1,t′2∈Ck δLCS(
CLG(t′1),CNG(t′2)). Setting c1 = k2c0 + C suffices. J

I Lemma 8. There exist four integers `CNG,0, `CNG,1, `CLG,0, `CLG,1 ∈ O(k2n log(n)), such
that for any t ∈ Ck,

`CNG,b = the number of occurrences of b in CNG(t), b ∈ {0, 1}.
`CLG,b = the number of occurrences of b in CLG(t), b ∈ {0, 1}.

Proof. As a consequence of Lemma 5, all CNG(t) have the same type, and all CLG(t) have
the same type. Therefore, the existence of these four integers is guaranteed.

In view of Lemma 5, for all v ∈ V , both LG(v) and NG(v) have length at most (n+ 1) ·
(2dlog(n)e+ 2dlog(n)e) = O(n log(n)). Applying Lemma 5 again, the length of both CNG(t)
and CLG(t) for all t ∈ Ck is (k2 + k2)(O(n log(n)) +O(n log(n))) = O(k2n log(n)).

As a result, the four integers can be bounded by O(k2n log(n)). J

3.2 The RNA sequence SG

In this subsection, we define the RNA sequence SG and show that we can decide whether G
has a 3k-clique according to RNA(SG).

Based on the parameters in Lemma 8, we define `0 = `CNG,0 + `CNG,1 + `CLG,0 + `CLG,1 =
O(k2n log(n)); for i ∈ {1, 2, 3}, we set `i = 100`i−1; and `4 = 100|Ck|`3 = O(k2nk+1 log(n)).
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0ℓ4   0′ℓ3   …   0′ℓ3   CG𝛼 𝑡𝛼   0
′ℓ3 … 0′ℓ3   0ℓ4  0′ℓ3  …   0′ℓ3   CG𝛽 𝑡𝛽   0

′ℓ3 … 0′ℓ3   0ℓ4  0′ℓ3  …   0′ℓ3  CG𝛾 𝑡𝛾   0
′ℓ3  …  0′ℓ3   

 

0′ℓ3 ⊙𝑡∈𝒞𝑘
 CG𝛼 𝑡 0′

ℓ3  0′ℓ3 ⊙𝑡∈𝒞𝑘
 CG𝛽 𝑡 0′

ℓ3  0′ℓ3 ⊙𝑡∈𝒞𝑘
 CG𝛾 𝑡 0′

ℓ3  

Figure 1 The three selected clique gadgets and the matchings between 0′`3 and 0`4 .

The RNA sequence SG is then defined as below:

SG = 0`4

[
0′`3 ©

t∈Ck

(
CGα(t)0′`3

)]
0`4

[
0′`3 ©

t∈Ck

(
CGβ(t)0′`3

)]
0`4

[
0′`3 ©

t∈Ck

(
CGγ(t)0′`3

)]
,

where

CGα(t) = 1′2`2p(CLG(t)R)0′`11`20`1CNG(t)1`2 ,

CGβ(t) = 1′`2p(CLG(t)R)0′`11′2`20′`1p(CNG(t))1′`2 ,

CGγ(t) = 1`2CLG(t)R0`11`20`1CNG(t)12`2 .

For any t ∈ Ck, x ∈ {α, β, γ}, the string CGx(t) is called a clique gadget.
Note that CGα(t) ∈ (Σ ∪ Σ′)∗, CGβ(t) ∈ Σ′∗, and CGγ(t) ∈ Σ∗.
It is obvious that |SG| = O(|Ck|`0) = O(k2nk+1 log(n)).

I Lemma 9. RNA(SG) = f(n, k) − Q
2 , for Q = mintα,tβ ,tγ∈Ck(δLCS(CLG(tα),CNG(tβ))

+δLCS(CLG(tα),CNG(tγ)) + δLCS(CLG(tβ),CNG(tγ))), and f(n, k) = 6`2 + 3`1 + 3
2`0 +

3(|Ck|+ 1)`3 + (|Ck| − 1)(2`1 + 2`2 + min(`CLG,1, `CNG,1) + `CLG,0 + `CNG,0).

Proof (Sketch). Due to the page limit, we only demonstrate an example of an RNA folding
matching this bound, omitting the proof of optimality:

We link all 0′ in all 0′`3 to some 0 in some 0`4 in such a way that all clique gadgets are
“blocked” (a clique gadget is blocked if its letters can only link to letters in the same
clique gadget or some 0 in some 0`4) except CGα(tα), CGβ(tβ), and CGγ(tγ). This gives
us 3(|Ck|+ 1)`3 amount of pairs. See Fig. 1.
For a clique gadget that is “blocked”, our design of SG ensures that the optimal number
of pairs involving letters in the clique gadget is irrelevant to its corresponding k-clique:

For a blocked CGα(t), since `2 is significantly larger than `1, `0, an optimal way
to pair up the letters is to match as many {1′, 1} as possible. This gives us 2`2 +
min(`CLG,1, `CNG,1) pairs.
For a blocked CGβ(t), since we do not have any 1 here, the best we can do is to match
all 0′ to some 0`4 . This gives us 2`1 + `CLG,0 + `CNG,0 pairs.
For a blocked CGγ(t), no matching can be made.

The total amount of pairs involving blocked clique gadgets is (|Ck| − 1)(2`1 + 2`2 +
min(`CLG,1, `CNG,1) + `CLG,0 + `CNG,0). See Fig. 2 for an illustration.
For the three clique gadgets that are not blocked, the matching described in Fig. 3 has car-
dinality 6`2+3`1+ 1

2 (`0 − δLCS(CLG(tα),CNG(tβ)))+ 1
2 (`0 − δLCS(CLG(tα),CNG(tγ)))+

1
2 (`0 − δLCS(CLG(tβ),CNG(tγ))). Recall that 1

2 (`0 − δLCS(CLG(tx),CNG(ty))) is the
length of the LCS between CLG(tx) and CNG(ty). J
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 1′2ℓ2  𝑝 CLG 𝑡 𝑅   0′ℓ1  1ℓ2  0ℓ1  CNG 𝑡  1ℓ2     1′ℓ2  𝑝 CLG 𝑡 𝑅   0′ℓ1  1′2ℓ2   0′ℓ1   𝑝 CNG 𝑡   1′ℓ2    1ℓ2   CLG 𝑡 𝑅  0ℓ1   1ℓ2  0ℓ1  CNG 𝑡   12ℓ2 

  CG𝛼 𝑡  

Σ′ 

  CG𝛽 𝑡    CG𝛾 𝑡  

Σ Σ′ Σ 

0ℓ4  0ℓ4  0ℓ4  

Figure 2 The matchings between a blocked clique gadget and 0`4 .

By Lemma 7, there exists a number c1 such that:
the number c1 depends only on n, k, and Q ≥ 3c1.
If Q = 3c1, then there exist tα, tβ , tγ ∈ Ck such that tα ∪ tβ , tα ∪ tγ , tβ ∪ tγ are three
2k-cliques. This implies that tα ∪ tβ ∪ tγ is a 3k-clique.
If Q > 3c1, then the graph has no 3k-clique.

Hence we can decide whether G has a 3k-clique according to RNA(SG), which can be
calculated in time T

(
O
(
k2nk+1 log(n)

))
= O

(
T
(
nk+1 log(n)

))
(k is a constant, and T (·) is

the time complexity of computing optimal RNA folding). Theorem 2 is concluded.

4 Hardness of Dyck Edit Distance Problem

In this section, we shift our focus to the Dyck edit distance problem. We will present a
simple reduction from RNA folding problem (with alphabet size 4) to Dyck edit distance
problem (with alphabet size 10). This leads to a much simplified and improved proof for a
conditional lower bound of Dyck edit distance based on the conjectured hardness k-clique.
Recall that the previous proof in [1] requires 48 symbols.

Given S ∈ (Σ ∪ Σ′)n, the goal of the Dyck edit distance problem is to find a minimum
number of edit operations (insertion, deletion, and substitution) that transform S into a
string in the Dyck context free language defined by the grammar: S→ SS, ∀x ∈ Σ,S→ xSx′,
and S→ ε (empty string).

An alternative definition of the Dyck edit distance problem is described as follows: Given
a sequence S ∈ (Σ ∪ Σ′)n, find a minimum cost set A ⊆ {(i, j)|1 ≤ i < j ≤ n} satisfying the
following conditions:

A = AM ]AS has no crossing pair.
AM contains only pairs of the form (x, x′), x ∈ Σ (i.e. for all (i, j) ∈ AM , we have
S[i] = x, S[j] = x′, for some x ∈ Σ). AM corresponds to the set of matched pairs.
AS does not contain any pair of the form (y′, x), x, y ∈ Σ (i.e. for all (i, j) ∈ AS we have
either S[i] ∈ Σ or S[j] ∈ Σ′). AS corresponds to the set of pairs that can be fixed by one
substitution operation per each pair.
Let D be the set of letters in S that do not belong to any pair in A. Each letter in D
requires one deletion/insertion operation to fix.

The cost of A is then defined as |AS |+ |D|, and the Dyck edit distance of the string S is
the cost of a minimum cost set meeting the above conditions.
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 1′
2ℓ2  𝑝 CLG 𝑡𝛼 

𝑅   0′
ℓ1  1ℓ2  0ℓ1   CNG 𝑡𝛼  1

ℓ2    1′
ℓ2  𝑝  CLG 𝑡𝛽 

𝑅
   0′

ℓ1 1′
2ℓ2   0′

ℓ1   𝑝  CNG 𝑡𝛽   1
′ℓ2     1ℓ2  CLG 𝑡𝛾 

𝑅
  0ℓ1  1ℓ2   0ℓ1 CNG 𝑡𝛾   1

2ℓ2 

  CG𝛼 𝑡𝛼  

Σ′ 

  CG𝛽 𝑡𝛽    CG𝛾 𝑡𝛾  

Σ Σ′ Σ 

Figure 3 The matchings within the three selected clique gadgets.

We can view Dyck edit distance problem as an asymmetric version of RNA folding (both
(x, x′) and (x′, x) are legit aligned pairs in RNA folding) that also handles substitution (in
addition to deletion and insertion). Intuitively, Dyck edit distance is more complicated than
RNA folding. Indeed, the same conditional lower bound as Theorem 1 for Dyck edit distance
problem shown in [1] requires a bigger alphabet size (48 instead of 36) and a longer proof. In
the next, we prove Theorem 3 by showing a simple reduction from RNA folding to Dyck edit
distance with alphabet size 10. This improves upon the hardness result in [1], and justifies
the intuition that Dyck edit distance is a harder problem than RNA folding.

Proof of Theorem 3. For notational simplicity, we let the alphabet for the RNA folding
problem be Σ ∪Σ′ = {0, 0′, 1, 1′} (instead of {A,C,G,U}). Let S be any string in (Σ ∪ Σ′)n.
We define the string SDyck as the result of applying the following operations on S:

Replace each letter 0 with the sequence S0 = aeb′aeb′.
Replace each letter 0′ with the sequence S0′ = bba′a′.
Replace each letter 1 with the sequence S1 = ced′ced′.
Replace each letter 1′ with the sequence S1′ = ddc′c′.

It is clear that SDyck is a sequence of length at most 6n on the alphabet {a, b, c, d, e} ∪
{a′, b′, c′, d′, e′}, though the letter e′ is not used. We claim that the Dyck edit distance of
SDyck is |SDyck|

2 − 2RNA(S).
First, we show that the Dyck edit distance of SDyck is at most |SDyck|

2 − 2RNA(S).
Given an optimal RNA folding of S, we construct a crossing-free matching A with cost
|SDyck|

2 − 2RNA(S) as follows:
For matched pairs in the RNA folding of S:

For each matched pair (0, 0′) in the RNA folding of S, we add two pairs (a, a′), (a, a′)
to AM , and add three pairs (e, b′), (e, b′), (b, b) to AS in its corresponding pair of
substrings (S0 = a(eb′)a(eb′), S0′ = (bb)a′a′) in SDyck.
For each matched pair (0′, 0) in the RNA folding of S, we add two pairs (b, b′), (b, b′)
to AM , and add three pairs (a′, a′), (a, e), (a, e) to AS in its corresponding pair of
substrings (S0′ = bb(a′a′), S0 = (ae)b′(ae)b′) in SDyck.
Similarly, for each matched pair (1, 1′), (1′, 1) in the RNA folding of S, we can add
two pairs to AM and three pairs to AS .

For unmatched letters in S:
For each unmatched letter 0 in S, we add three pairs (a, b′), (e, b′), (a, e) to AS in its
corresponding substring S0 = (a(eb′)(ae)b′). Similarly, for each unmatched letter 1,
we can add three pairs to AS .
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For each unmatched letter 0′ in S, we add two pairs (b, b), (a′, a′) to AS in its corres-
ponding substring S0 = (bb)(a′a′). Similarly, for each unmatched letter 1′, we can add
two pairs to AS .

The set AM has size 2RNA(S), the set AS has size |SDyck|−4RNA(S)
2 , and D is an empty

set. Therefore, the cost of A is |SDyck|−4RNA(S)
2 = |SDyck|

2 − 2RNA(S).
Second, we show that the Dyck edit distance of SDyck is at least |SDyck|

2 − 2RNA(S).
Given a crossing-free matching A (on the string SDyck) of cost C, we recover an RNA folding
of S that has ≥ |SDyck|

4 − C
2 number of matched pairs.

We build a multi-graph G = (V,E) such that V is the set of all substrings S0, S0′ , S1, S1′

that constitute SDyck, and the number of edges between two substrings in V is the number
of pairs in AM linking letters between these two substrings. Note that |V | = n, |E| = AM .
It is clear that C ≥ |SDyck|−2|E|

2 , since |AS |+ |D| ≥ |SDyck|−2|AM |
2 = |SDyck|−2|E|

2 . Therefore,
we are done if we can recover an RNA folding of size ≥ |E|2 , since |E|2 ≥

|SDyck|
4 − C

2 .
We observe the following:
G has degree at most 2 (due to our definition of S0, S0′ , S1, S1′ , at most two letters in
such a substring can participate in pairings of the form (x, x′), x ∈ {a, b, c, d}, without
crossing).
In the graph G, any edge must either links an S0 with an S0′ or links an S1 with an S1′

(due to our definition of S0, S0′ , S1, S1′ , any pairing of the form (x, x′), x ∈ {a, b, c, d},
must be made between S0, S0′ or between S1, S1′).
G does not contain any cycle of odd length (due to the above observation).

In view of the above second observation, a (graph-theoretic) matching M ⊆ E of G
naturally corresponds to a (size |M |) RNA folding of S: for each edge (a pair of substrings
in SDyck) in M , we add its corresponding pair of letters in S to the RNA folding. Since a
maximum matching has size ≥ |E|2 in a graph of maximum degree 2 without odd cycles, we
conclude the proof. J

We note that for the case substitution is not allowed, the letter e in the above proof is
not needed, and this lowers the required alphabet size to 8.

Acknowledgements. The author thanks Seth Pettie and anonymous reviewers for helpful
comments.
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Abstract
Polytomies in gene trees are multifurcated nodes corresponding to unresolved parts of the tree,
usually due to insufficient differentiation between sequences. Resolving a multifurcated tree has
been considered by many authors, the objective function often being the number of duplications
and losses reflected by the reconciliation of the resolved gene tree with a given species tree.
Here, we present PolytomySolver, an algorithm accounting for a more general model allowing for
costs that can vary depending on the operation, but also on the considered genome. The time
complexity of PolytomySolver is linear for the unit cost and is quadratic for the general cost,
which outperforms the best known solutions so far by a linear factor. We show, on simulated
trees, that the gain in theoretical complexity has a real practical impact on running times.
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1 Introduction

Reconstructing gene trees is a fundamental task in bioinformatics and a prerequisite for
most biological studies on gene function. Consequently, a plethora of phylogenetic methods
have been developed, most of them integrating measures of statistical support (e.g. by
bootstrapping or jackknifing), reflecting the confidence we have on the prediction. Some of
them, such as bayesian methods [9, 11] lead to non-binary trees. Moreover, weakly supported
branches are often contracted and also lead to non-binary trees. Thus, although unresolved
nodes in a tree may reflect a true (or hard [12]) simultaneous speciation or duplication
event leading to more than two gene copies, they are usually artifacts (called soft), due to
methodological reasons or to a lack of resolution between sequences.

Information for the full resolution of a gene tree may rely on the weakly exploited link
between gene and species evolution. The question of resolving a non-binary gene tree by
minimizing the number of duplications and losses resulting from the reconciliation of the
gene tree with the species tree has first been considered in NOTUNG [2] and later by Chang
and Eulenstein [1]. In 2012 [8], we developed the first linear-time algorithm for resolving a
polytomy (a single unresolved node), leading to a quadratic-time algorithm for a whole tree.
Recently, algorithmic results extending linearity to a whole gene tree have been obtained by
Zheng and Zhang [15]. These linearity results are however restricted to the case of a unit
cost for duplications and losses. On the other hand, an algorithm allowing different costs for
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Table 1 Time-complexity results for reporting a single optimal resolution of a whole gene tree G
of size |G| with a species tree S of size |S|, where ∆ is the largest degree of a node in G, δ is the cost
of a duplication and λ the cost of a loss. The last column refers to the case in which each species s
has its own duplication cost δs and loss cost λs.

δ = λ = 1 (δ, λ) ∈ R>0 × R>0 {(δs, λs)}s∈V (S)

NOTUNG[6] O(|S||G|∆2) O(|S||G|∆2)

Lafond[8] O(|S||G|) O(|S||G|∆)

Zheng & Zhang[15] O(|G|) O(|G|∆2)

PolytomySolver O(|G|) O(|G|∆) O(|G||S|∆)

duplications and losses has been considered in NOTUNG [6], and further improved by Zheng
and Zhang [15], using a compressed species tree idea.

In this paper, we present a new algorithm called PolytomySolver, which handles unit costs
in linear time and improves the best complexity to date for more general duplication and
loss cost model by a linear factor (complexity results are given in Table 1). Additionally,
PolytomySolver is the first algorithm enabling to account for various evolutionary rates across
the branches of a species tree, as it allows assigning each taxa its specific duplication and
loss cost. This functionality may be used to reduce the effect of missing data by assigning a
lower loss cost to species that are more likely to be concerned by such loss of information. It
is also of practical use when biological evidence supports some particularly low or high gene
duplication or loss rates in some species of interest [10]. In particular, fractionation following
whole genome duplication (WGD) results in an excess of gene losses. In Section 6, we give
an example showing that assigning appropriate costs to post-WGD genomes is important for
an accurate inference.

The paper is subdivided as follows. First, in Section 3, we show how the linear-time
algorithm developed previously by our group [8] for resolving a polytomy with unit duplication
and loss cost can be extended to arbitrary costs, depending on the operation and on the
genome affected by the operation. This extension is however not linear anymore but
rather leads to a cubic-time algorithm. We then, in Section 4, show how using the ideas
introduced by Zheng and Zhang [15] allows to reduce this time complexity to quadratic,
which is the best obtained to date for the same problem. We also show how unit costs
can be handled in linear time, and how PolytomySolver can be used to output all optimal
resolutions, which is an advantage compared to Zheng and Zhang’s algorithms. In Section 5,
comparing our new algorithm with NOTUNG and Zheng and Zhang’s algorithm, we show
that the obtained gain in theoretical complexity actually leads to a significant gain in
running times. For space reason, all proofs are given in Appendix, which is available online
at http://www-ens.iro.umontreal.ca/~lafonman/en/publications.php.

2 Preliminary

All trees are considered to be rooted. Given a set X, a tree T for X has its leafset L(T ) in
bijection with X. Denote by V (T ) its set of nodes, r(T ) its root, and write |T | = |V (T )|.
Given two nodes x and y of T , x is a descendant of y, and y is an ancestor of x, if y is on
the (inclusive) path between x and r(T ). The degree deg(x) of a node x is the number of
edges incident to x. The maximum degree of T is ∆(T ) = maxv∈V (T ) deg(v) (or just ∆ when
T is clear from the context). Given a set L of leaves, the lowest common ancestor of L in

http://www-ens.iro.umontreal.ca/~lafonman/en/publications.php
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Figure 1 S is a species tree over Σ = {a, b, c, d}; G is a gene tree on the gene family Γ with two
copies in genome a, one in genome b and one in genome c; R(G,S) is a reconciliation of G with S
with two duplications and four losses. Each node x of G and R(G,S) is labeled by s(x).

T , denoted lcaT (L), is the common ancestor of L in T that is farthest from the root. A
polytomy (or star tree) over a set L is a tree with a single internal node, which is of degree
|L|, adjacent to each leaf of L. Finally, if x is a node of T , denote by Tx the subtree of T
rooted at x, and by T (x) the polytomy obtained by keeping only x and its children in Tx.

2.1 Gene Tree, Species Tree and Reconciliation
A species tree S for a set Σ = {σ1, · · · , σt} of species represents an ordered set of speciation
events that have led to Σ. Inside the species’ genomes, genes undergo speciations when
the species to which they belong do, but also duplications and losses (other events such as
transfers can happen, but we ignore them here). A gene family is a set Γ of genes where
each gene x belongs to a given species s(x) of Σ. The evolutionary history of Γ can be
represented as a gene tree G where L(G) is in bijection with Γ, and each internal node refers
to an ancestral gene at the moment of an event (either speciation or duplication) belonging
to the species s(x) = lcaS({s(y) : y ∈ L(Gx)}). We denote S(G) = {s(y) : y ∈ L(G)} the set
of species represented by G.

In this paper, we make no distinction between paralogous gene copies. In other words, a
gene x is simply identified by the genome s(x) it belongs to. A gene tree is therefore a tree
where each leaf is labeled by an element of Σ, with possibly repeated leaf labels (Figure 1).

A reconciliation is an extension of the gene tree, obtained by adding lost branches,
reflecting a history of duplications and losses in agreement with the species tree. Formally,
an extension of G is a tree obtained from G by a sequence of graftings, where a grafting
consists in subdividing an edge uv of G, thereby creating a new node w between u and v,
then adding a leaf x with parent w. The new leaf x is mapped to a species s(x) which is a
node of S (internal or leaf). A formal definition follows (see Figure 1 for an example).

I Definition 1 (Reconciled gene tree). Let G be a binary gene tree and S be a binary species
tree. A reconciliation R(G,S) of G with S is an extension of G verifying: for each internal
node x of R(G,S) with two children xl and xr, either s(xl) = s(xr) = s(x), or s(xl) and
s(xr) are the two children of s(x). The node x is a duplication in s(x) in the former case,
and a speciation node in s(x) in the latter case. A grafted leaf x corresponds to a loss in
s(x).

Define δs as the duplication cost and λs as the loss cost assigned to a given species s.
Then, the reconciliation cost of R(G,S) is the sum of costs of the induced duplications and
losses.

2.2 Problem statement
We consider a binary species tree S and a non-binary gene tree G. The goal is to find a
binary refinement of G, as defined below.
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Figure 2 From left to right: a gene tree G; a species tree S; the species tree SG linked to G is
the tree illustrated by plain lines, and the augmented species tree S+

G linked to G is illustrated by
plain and dotted lines; the compressed tree S∗G linked to G as defined in Section 4. The leaf µ′ of
S∗G has a special loss cost λµ′ = 3, as it results from the contraction of a path of length 3.

I Definition 2 (binary refinement). A binary refinement B = B(G) of G is a binary tree
such that V (G) ⊆ V (B) and for every x ∈ V (G), L(Gx) = L(Bx).

The objective function taken for choosing among all possible binary refinements is the
reconciliation cost.

I Definition 3 (Resolution). A resolution of G with respect to S is a reconciliation R(B,S)
between a binary refinement B of G and S. The set of all possible resolutions of a tree G is
denoted R(G).

We are now ready to state our optimization problem.

Minimum Resolution Problem
Input: A binary species tree S and a non-binary gene tree G.
Output: A Minimum Resolution of G with respect to S (or simply Minimum Res-
olution of G), e.g. a resolution of G of minimum reconciliation cost with respect
to S.

It has been previously shown [1] that each polytomy of G can be considered independently.
In particular, a minimum resolution of G can be obtained by a depth-first procedure that
solves each polytomy G(x) iteratively, for each internal node x of G. Thus, in the following,
we focus on a single polytomy G = G(x).

Some parts of the species tree can be ignored in the process of refining G. Define the
species tree linked to G, denoted by SG, as the tree obtained from the subtree of S rooted
at the lowest common ancestor of S(G), by removing all nodes that have no descendant
in S(G) (Figure 2). The algorithms with the best known complexity results (Table 1) are
obtained by using a compressed version S∗G of this tree, which is defined in Section 4. We
first begin, in Section 3, by describing the refinement strategy by using an augmented species
tree linked to G, denoted S+

G , obtained from SG by adding to every node of degree two its
missing child in S. It is known (c.f. [8, 15]) that resolving G with either S or S+

G leads to
the same reconciliation cost. Intuitively, S+

G contains every node of S that may appear in a
resolution of G, whether as a loss, a duplication or a speciation.

3 A dynamic programming approach

We present a dynamic programming approach for the Minimum Resolution Problem
for a single polytomy G. It is a generalization of that presented in [8]. While the previous
algorithm was developed for a unit cost of duplications and losses, the one we present here



M. Lafond, E. Noutahi, and N. El-Mabrouk 14:5

ca b

d

eS:

a a b b b

G:

c

M 1 2 3 4

a 1 0 1 2

b 2 1 0 1

c 0 1 2 3

d 2 1 1 2

e 2 2 3 4

a a

a
Ma,1 = δ

Ma,3 = λ
a a a

a b b b a

Cd,1= Ma,1+ Mb,1

a a b b b

Md,1= Md,2+ δ

d
d

Figure 3 A polytomy G and a species tree S. The corresponding table M is obtained for
δs = λs = 1 for all species. Squares on trees illustrate duplications. To the right of table M , the
forests corresponding to an (a, 1) and (a, 3)-resolution are given, where the circled a illustrates a
singleton loss. We illustrate the (d, 1)-resolution, rooted at a speciation node, corresponding to
Cd,1 = 3 (obtained from the vertical arrow in table M), and an optimal (d, 1)-resolution, obtained
from a (d, 2)-resolution (horizontal arrow in M).

holds for a more general reconciliation cost, where each s ∈ Σ has its own duplication cost δs
and loss cost λs. In this section, we assume that S = S+

G .
The recursion is made on the subtrees of S. Define the multiplicity m(s) of s ∈ V (S)

in G as the number of times it appears in G, i.e. m(s) = |{x ∈ L(G) : s(x) = s}|. An
(s, k)-resolution of G is a forest of k reconciled gene trees T = {T1, . . . , Tk} such that, for
each 1 ≤ i ≤ k, s(r(Ti)) = s, and each leaf x of G with s(x) being a descendant of s is
present as a leaf of some tree of T (see Figure 3 for an example). All leaves of trees in T
that are not in L(G) represent losses. Also, some trees of T may be restricted to a single
node which is either a child x of r(G) with s(x) = s, or a singleton loss in s. The cost of
T , denoted c(T ), is the sum of reconciliation costs of all Tis. Notice that since S = S+

G , a
resolution of G is an (r(S), 1)-resolution.

Denote by Ms,k the minimum cost of an (s, k)-resolution for a given node s of S and
a given integer k ≥ 1 (and Ms,k = ∞ for k < 1). The final cost of a minimum resolution
of G is given by Mr(S),1. The table M is computed, line by line, for all nodes of S, in a
bottom-up traversal. For now, k is unlimited, but we show in the complexity section that
there is no need to consider more than |G| − 1 columns.

The following lemma gives the base case for the leaves of S. It follows from the fact that,
if k is larger than the number of available leaves, then additional leaves have to be added
(called singleton losses); otherwise leaves have to be joined under duplication nodes. As an
illustration, in Figure 3, this lemma is used to compute the three first lines of M .

I Lemma 4 (Base case). For a leaf node s of S, if k > m(s) then Ms,k = λs · (k −m(s));
otherwise Ms,k = δs · (m(s)− k).

The rest of this section focuses on the computation of a line Ms of M for an internal node
s of S, from the linesMsl

andMsr , where sl and sr are the two children of s in S. We require
an intermediate cost table Cs,k, defined for internal nodes of S, accounting only for speciation
events. That is, Cs,k represents the minimum cost of an (s, k)-resolution in which every tree
is rooted at a speciation node with two children (these two children may both be losses), or
consists of a singleton node that is a child of r(G) already mapped to s. For k > m(s), such
an (s, k)-resolution of cost Cs,k can only be obtained from an (sl, k−m(s))-resolution and an
(sr, k −m(s))-resolution by creating k −m(s) speciation nodes, each joining a pair of (sl, sr)
trees, then adding the m(s) singleton trees mapped to s. No other scenarios are possible,
since (s, k)-resolutions are reconciled trees, and each non-singleton root is a speciation in s
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that must have genes mapped to sl and sr as children. See for example the (d, 1)-resolution
corresponding to Cd,1 in Figure 3. Note that if instead k ≤ m(s), such an (s, k)-resolution
cannot exist, since m(s) trees are required for the children of r(G) mapped to s, plus at least
another tree containing the genes in a descendant of s. Thus we define:

Cs,k = Msl,k−m(s) +Msr,k−m(s) if k > m(s) and Cs,k = +∞ otherwise (1)

It is readily seen that Ms,k ≤ Cs,k. A recurrence for computing Ms,k follows.

I Lemma 5. For an internal node s of S, Ms,k = min(Ms,k−1 + λs,Ms,k+1 + δs, Cs,k).

This recurrence cannot be used as such to compute C and M , as it induces both a
left and right dependency. That is, Ms,k depends on Ms,k+1 and vice-versa, leading to
a chicken-and-egg problem as to which value should be computed first. In the case of a
unit cost δs = λs = 1 for all s, we have shown in [8] that this dependency can be avoided
by considering a strong property on lines of M . Indeed, each line Ms is characterized by
two values k1 and k2 such that, for any k1 ≤ k ≤ k2, Ms,k is minimum, for any k ≤ k1,
Ms,k−1 = Ms,k + 1, and for any k ≥ k2, Ms,k+1 = Ms,k + 1. In other words, Ms has a slope
of −1 until k1, a slope of 0 until k2, then a slope of 1. In particular, Ms can be treated as a
convex function fully determined by k1, k2 and its minimum value γ. We then say Ms has a
minimum plateau between k1 and k2. For example, line Md in Figure 3 is fully determined
by k1 = 2 and k2 = 3.

Here, we extend these results by first showing, in Lemma 7, that both C and M are still
convex, albeit having less predictable changes in the slopes. Nevertheless, this allows to first
compute the bounds k1 and k2 of the functions’ minimum plateau, and then extend to the
left and to the right from this plateau.

We first recall the formal definition of a discrete convex function, then state the convexity
result for C and M and finally give the recurrences of the dynamic programming algorithm
in Theorem 8.

I Definition 6 (Convex function). A discrete function f is convex if and only if, for any
integer n > 1, the two following statements, which are equivalent, are true.

f(n+ 1) + f(n− 1)− 2f(n) ≥ 0;
for any integers ε1, ε2 > 0 and any integer n > ε1, f(n− ε1) + f(n+ ε2)− 2f(n) ≥ 0.

I Lemma 7. Both Ms and Cs are convex.

I Theorem 8 (Recurrence 2). Let k1 and k2 be the smallest and largest values, respectively,
such that Cs,k1 = Cs,k2 = mink Cs,k. Then,

Ms,k =


Cs,k if k1 ≤ k ≤ k2

min(Cs,k,Ms,k+1 + δs) if k < k1

min(Cs,k,Ms,k−1 + λs) if k > k2

Theorem 8 provides the way for computing a row Ms for an internal node s of S: for each
k, compute Cs,k using recurrence (1) and keep the two columns k1 and k2 setting the bounds
of the convex function’s plateau. Extend to the left of k1 usingMs,k = min(Cs,k,Ms,k+1 +δs),
and to the right of k2 using Ms,k = min(Cs,k,Ms,k−1 +λs). These recurrences, with the base
case for S leaves given in Lemma 4, describe the dynamic programming algorithm, that we
call PolytomySolver, for computing the cost Mr(S),1 of a minimum resolution of the polytomy
G with respect to S. We refer the reader to [8] for the reconstruction of a solution from M

in linear time, which is accomplished using a standard backtracking procedure.



M. Lafond, E. Noutahi, and N. El-Mabrouk 14:7

Complexity
The following lemma states that there is no reason to explore more gene copies of a given
species than the size of the polytomy, in other words, the size of a line of M can be bounded
by |G|. This fact may seem obvious to the accustomed, but in [6] it was equally “obvious" that
only m∗ = maxs∈V (S) m(s) columns needed to be considered, which turns out to be wrong 1.
In fact, this Lemma requires a surprising amount of care in the details (see Appendix).

I Lemma 9. Only the values of M and C for columns k between 1 and |G| − 1 need to be
computed.

It follows from Lemma 4, Theorem 8 and Lemma 9 that each row of C and M can be
computed in time O(|G|), and the whole table in time O(|S||G|).

Now suppose that H is a general tree with p polytomies, where ∆ is the largest degree
of a polytomy. According to the depth-first procedure described at the end of Section 2,
G can be resolved in time O(p|S|∆), which is less than O(|H||S|∆). In the next section,
we improve this to O(|H|∆) in the case of distinct costs δ and λ that are shared across all
species, and O(|H|) in the case of equal costs δ = λ.

4 A faster algorithm using species tree compression

Assume that all species have the same duplication cost δ and the same loss cost λ. We call it
unit cost if δ = λ, and general cost otherwise. Again we assume that G is a polytomy.

In the previous section, results have been obtained using the augmented linked species
tree S+

G . As observed by Zheng and Zhang [15], S+
G contains many “useless" nodes that

do not provide any meaningful information with regards to the resolution of G. This idea
allowed them to optimize their refinement algorithm for the unit cost, leading to a linear-time
algorithm. However, their algorithm does not apply to the general cost. For such a cost, their
optimisation idea was rather applied to the NOTUNG’s algorithm, which is less efficient.
Here, we use a similar idea to optimize PolytomySolver. More precisely, we show how a
compressed version of the linked species tree SG can be used to reduce the complexity for
refining a general tree G to O(|G|∆) for the general cost, and to O(|G|) for the unit cost.

We first need some definitions. Let T be a tree. Call P a path in T if P is a sequence of
non-root adjacent vertices of degree two in T . Contracting P in T consists in replacing P
by a single node µ = µ(P ). Now, let U be the set of non-root vertices of degree two of SG
that are not in S(G). We call U the set of “useless nodes" of SG. Notice that SG[U ], the
graph obtained from SG by keeping only nodes of U and edges with both endpoints in U ,
corresponds to a set of disjoint paths in SG. The compressed tree S∗G is the tree obtained
from SG by contracting every path P of SG[U ] to µ = µ(P ), then adding a leaf child µ′ to
every such µ (see Figure 2 for an example). Moreover, we set a special loss cost λµ′ = λ|P |
to µ′ (and duplication cost δ as every other node). This special loss cost ensures that a loss
in µ′ is counted as a loss in every node in P . Notice that some internal nodes of SG that are
included in S(G) may still have only one child. Thus S∗G is finally obtained by adding to
each remaining node having only one child a new leaf child (duplication of cost δ and loss
cost λ). The following Theorem ensures that S∗G does not change the solution space.

1 The complexity reported in Table 1 is not the one reported by NOTUNG, as dependency is not given
on ∆ but instead on m∗. However, it can be shown that considering m∗ columns is not enough on some
examples.
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I Theorem 10. Let T be a binary refinement of G. Then the reconciliation cost of T is the
same whether we reconcile it with S+

G or S∗G and their corresponding duplication/loss costs.

Thus, using S+
G or S∗G leads to the same minimum resolution for G. We show that using

S∗G leads to reduction in time complexity of the algorithm.

I Theorem 11. Given a gene tree H, PolytomySolver can run in time O(∆|H|).

4.1 The case of a unit cost

In [8], we showed how, in the case of a unit cost δ = λ, each line Ms of M can be computed
in constant time. However, in order to take advantage of the compressed species tree S = S∗G,
we need to account for special leaves µ′ with loss cost λµ′ > 1, since they make the cost
not unitary anymore. The following theorem allows us to extend the result to this specific
case. It leads to the computation of M in time O(|S∗G|) = O(|G|) for a polytomy G. The
complexity for a gene tree H is thus reduced to O(|H|), which results in a reduction of the
previous complexity by a factor of ∆.

I Theorem 12. Suppose S = S∗G. Then for s ∈ V (S),
1. if s is a leaf with loss cost λ = 1, then Ms,k = |k −m(s)|;
2. if s is a leaf with loss cost λs > 1, then Ms,k = k · λs;
3. if s is an internal node, there exist 3 integers k1, k2 and γs such that

Ms,k =


γs if k1 ≤ k ≤ k2

γs + k1 − k if k < k1

γs + k − k2 if k > k2

Moreover, k1, k2 and γs can be computed in constant time.

4.2 Constructing all minimum resolutions

After computing table M , it remains to compute (r(S), 1)-resolutions, i.e. all resolutions of
minimum cost. Without any increase in the theoretical time complexity of the algorithm, a
simple pass through table M leads to one minimum resolution (see [8] for the details). Here
we rather show how to recover all minimum resolution.

Denote by Ps,k the set of all minimum (s, k)-resolutions of a polytomy G. By setting
s = r(S) and k = 1, we exhibit the following recursive algorithm that finds Pr(S),1. To
do so, we define three intermediate solution sets Pdups,k ,P losss,k and Pspecs,k , which respectively
correspond to (s, k)-resolutions containing a duplication root, a singleton loss and only
speciation roots (it turns out that these three cases are disjoint).

We show in the Appendix that this algorithm eventually terminates, and does find every
solution. The essential reason that this algorithm finishes is because of the convexity of Ms,
which allows avoiding circular dependencies between say Ps,k and Ps′,k′ .

It can be shown that this algorithm takes time O(|S| · |Pr(S),1|), which may be exponential.
Methods for outputting solutions iteratively, each in polynomial time, seem possible, but are
not immediately obvious. Notice that Zheng and Zhang’s algorithms [15] can only output a
subset of Pr(S),1. As for NOTUNG, it takes time O(|S|∆ · (|Pr(S),1|+ ∆)) to construct every
optimal solution [2].
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procedure Compute Ps,k
if s is a leaf and m(s) = k then

return k singleton trees mapped to s
Let Pdups,k = ∅,P losss,k = ∅,Pspecs,k = ∅
if Ms,k = Ms,k+1 + δs then

Compute Ps,k+1
for every forest T in Ps,k+1, and for every pair of distinct trees T1, T2 ∈ T do

Add to Pdups,k the (s, k)-resolution obtained by joining r(T1) and r(T2)

if Ms,k = Ms,k−1 + λs then
Compute Ps,k−1
for every forest T in Ps,k−1 do

Add to P losss,k the (s, k)-resolution obtained adding a singleton loss in s in T
if s is an internal node with children s1, s2 and Ms,k = Ms1,k−m(s) +Ms2,k−m(s)

then
Compute Ps1,k−m(s) and Ps2,k−m(s)
for each pair (T1, T2) in Ps1,k−m(s) × Ps2,k−m(s), and for every bijection f :

T1 −→ T2 do
Add to Pspecs,k the (s, k)-resolution T obtained by joining r(T1) with r(f(T1))

for every
T1 ∈ T1, then adding the m(s) children of G mapped to s as singleton trees

Let Ps,k = Pdups,k ∪ P losss,k ∪ P
spec
s,k , and return Ps,k

end procedure

5 Results on simulated data

We compare the running time of our algorithm to Zheng and Zhang’s algorithms [15] and
NOTUNG, on simulated datasets for both cases of unit and general costs. We implemented
PolytomySolver and Zheng and Zhang’s algorithms in python and used the latest stable
version (v2.6)2 of NOTUNG. Our implementations are available at https://github.com/
UdeM-LBIT/profileNJ. Run times are reported for single outputs of the algorithms.

We first simulated species trees with n leaves using a birth-death process. For each
species tree, gene trees of fixed size (1.5× n) and branch support picked from a standard
uniform distribution, were simulated using a simple Yule process [13]. In order to mimic a
gene family history with a high number of events (duplications and losses), we labeled each
leaf of the gene tree with a uniformly chosen species from the set of leaves of the species
tree. Non-Binary gene trees were then obtained by contracting edges of the gene trees with
support lower than a fixed threshold r (0.2, 0.4, 0.6 and 0.8).

For each species tree and each algorithm, we measured the average running time on 40
non-binary trees (10 simulated gene trees for each contraction rate). All software were run
on the same computer and with the same costs for duplications and losses.

We first considered the unit cost (λ = δ = 1), for which both PolytomySolver and Zheng
and Zhang’s algorithm (LZZ) are linear. Figure 4a shows the results for values of n ranging
from 500 to 10000, and Figure 4b shows results for n between 10000 and 100000. As expected,
the two linear algorithms exhibit very similar run time in all cases, and are significantly

2 Notice that an improved version of NOTUNG v2.8 became available after these tests were performed.
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Figure 4 Running times comparisons between all algorithms for species trees of increasing size n
and gene trees of size 1.5× n. a Running times of PolytomySolver, LZZ (linear Zheng and Zhang’s
algorithm) and NOTUNG, using unit cost, for species trees of increasing size ranging from 500 to
10000. b Running times of PolytomySolver and LZZ for unit cost on larger species trees (n in the
range of 10000 to 100000). c Running times of PolytomySolver, DZZ (Dynamic Zheng and Zhang’s
algorithm) and NOTUNG using δ = 3 and λ = 2.

faster than NOTUNG, which could not be included in Figure 4b. Indeed, on those trees,
NOTUNG took a considerable amount of time, and in some cases we could not get a result
after many hours.

We then considered a non-unit cost, using δ = 3 and λ = 2. Recall that PolytomySolver is
quadratic in this case. As for the algorithm proposed by Zheng and Zhang for these costs,
that we refer to by DZZ (for Dynamic Zheng and Zhang’s algorithm), it is (essentially)
cubic (see Table 1). Figure 4c gives the results for species trees of size ranging between 500
and 10000. As expected, PolytomySolver is faster than DZZ and NOTUNG. Surprisingly,
NOTUNG turns out to be faster than DZZ, which rather expected to improve over NOTUNG
as it uses the species tree compression idea. This could be due to the fact that NOTUNG is
a well optimized program. Moreover, the error in NOTUNG of using m∗ instead of ∆ (see
footnote in this Section 3), may accelerate the process, as m∗ is usually much smaller than
∆.

6 A practical use of PolytomySolver

As handling species specific costs is one of the major contribution of this paper, we conclude
our presentation by providing a biological example for which taking advantage of this
flexibility of PolytomySolver leads to better accuracy.

We first downloaded the orthogroup of the yeast gene REG1, a regulatory subunit of type
1 protein phosphatase Glc7p, involved in negative regulation of glucose-repressible genes, from
the Fungal Orthogroups Repository (http://www.broadinstitute.org/regev/orthogroups/).
We then reconstructed the gene tree with PolytomySolver, using the same species tree as [14]
and a unit cost for both λ and δ. Two equally parsimonious solutions with a reconciliation
cost of 2 were obtained (Figures 5B, 5C).

It has been shown that the yeast Saccharomyces cerevisiae arose from an ancient whole-
genome duplication (WGD) [4, 5, 7]. This WGD was immediately followed by a massive
gene loss period, during which most of the duplicated gene copies were lost [7]. There is
also evidence of lineage-specific loss of paralogous genes. In particular, C. glabrata and S.
castellii appear to have lost several hundred paralogs [3, 5]. This is reflected in their total
gene count, which are the lowest among the post-WGD genomes [14].

Whereas the solution shown in Figure 5C is in agreement with this WGD event, the
alternative gene family history in Figure 5B places the duplication much lower in the tree, with
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Figure 5 A. Phylogeny of ten Hemiascomycota fungi, including S. cerevisiae (Scer), S. paradoxus
(Spar), S. mikatae (Smik), S. bayanus (Sbay), C. glabrata (Cgla), S. castellii (Scas), K. waltii (Kwal),
K. lactis (Klac), S. kluyveri (Sklu) and A. gossypii (Agos). The whole-genome duplication (WGD)
event in yeast is indicated. The species that did not went through the WGD are shadowed in
light blue. B. and C. Two minimally resolved gene trees of the phosphatase Glc7p gene family.
Duplication nodes are depicted by a red square and lost genes are shown in orange.

and additional duplication in S. castellii instead. By assigning to C. glabrata and S. castellii
a loss cost lower than for all other species, the only solution returned by PolytomySolver
is the one shown in Figure 5C. Using appropriate species dependant costs might therefore
allow to filter the solution space with additional relevant information.

7 Conclusion

PolytomySolver is the most efficient algorithm to date for refining an unresolved gene tree. In
contrast to previous methods, this algorithm is flexible enough to handle general reconciliation
costs, allowing for instance to account for different costs over the branches of a species tree.
Moreover, all topologies of optimal trees can be output by PolytomySolver. Notice that
here we made no distinction between paralogous genes, which are simply referred to by
their genome of origin. If we rather consider the specificity of each gene copy then, for a
given topology obtained by PolytomySolver, an appropriate method shall be considered to
distribute gene copies on leaves. We are presently investigating the possibility of introducing
a Neighbor-Joining principle in the resolution process.

The gain in running time attained with PolytomySolver allows to perform exhaustive
corrections of all trees contained in a large gene tree dataset such as Ensembl. Moreover,
compared with NOTUNG, running time is independent upon the largest degree of a node,
which makes the algorithm efficient enough to resolve highly unresolved trees. The next step
will be to perform such a large scale gene tree dataset correction.
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Abstract
The genomic scaffold filling problem has attracted a lot of attention recently. The problem
is on filling an incomplete sequence (scaffold) I into I ′, with respect to a complete reference
genome G, such that the number of adjacencies between G and I ′ is maximized. The problem
is NP-complete and APX-hard, and admits a 1.2-approximation. However, the sequence input
I is not quite practical and does not fit most of the real datasets (where a scaffold is more
often given as a list of contigs). In this paper, we revisit the genomic scaffold filling problem by
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can only be inserted in between the contigs, and the objective is to maximize the number of
adjacencies between G and the filled S′, and (2) a scaffold S is given, a subset of the missing
genes X ′ ⊂ X = c(G) − c(S) can only be inserted in between the contigs, and the objective
is still to maximize the number of adjacencies between G and the filled S′′. For problem (1),
we present a simple NP-completeness proof, we then present a factor-2 greedy approximation
algorithm, and finally we show that the problem is FPT when each gene appears at most d times
in G. For problem (2), we prove that the problem is W[1]-hard and then we present a factor-2
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1 Introduction

The cost of sequencing a genome has been reduced significantly in the last decade, with the
current cost being around $1k. This results in a lot of genomes being sequenced, usually
not completely finished (we call them draft genomes). On the other hand, the cost to finish
these genomes completely has not been decreased as much compared with a decade ago [9].
The result is that we are having more and more draft genomes. On the other hand, for many
tools to analyze the genomic data we do need complete genomes. For instance, to compute
the reversal distance between two genomes we do need two complete genomes. Hence, there
is a need to turn a draft genome into a complete one.

To make the result biologically interesting, Munoz et al. first proposed the following
scaffold filling problem (on multichromosomal genomes with no gene repetition) as follows
[28]. Given a complete (permutation) genome R and an incomplete scaffold S, fill the missing
genes in R − S into S to have S′ such that the genomic distance (or DCJ distance [30])
between R and S′ is minimized. It was shown that this problem can be solved in polynomial
time. In [22], Jiang et al. considered the case for singleton genomes without gene repetition
(i.e., permutations), using the simplest breakpoint distance as the similarity measure. It was
shown that this problem is solvable in polynomial time; in fact, even for the two-sided case
when both the input scaffolds, being a reference to each other, are incomplete permutations.

When the genomes and scaffolds contain gene repetitions, the problem becomes harder.
(That should not be considered as a surprise as even computing certain similarity measure
between two complete genomes is NP-complete, for instance, with the exemplar breakpoint
distance [11, 13, 2, 5, 24], exemplar adjacency number [12, 14], or the minimum common
string partition [15].) The similarity measure adopted for the scaffold filling problem is
the number of common (string) adjacencies, which can be computed in polynomial time
[2, 21, 22]. In [21, 22], it was shown by Jiang et al. that scaffold filling to maximize the
number of common string adjacencies (SF-MNSA) is NP-hard. (Formally, the problem
is to fill an incomplete sequence scaffold I into I ′, with respect to a complete reference
genome G, such that the missing letters in G − I are inserted back to I and the number
of common adjacencies between G and I ′ is maximized.) A factor-1.33 approximation was
designed in [21, 22], and this bound has been improved to 1.25 [25], and to 1.20 [23]. For
the corresponding two-sided case, i.e., when two scaffolds are references to each other, the
problem admits a factor-1.5 approximation with the number of common adjacencies between
the filled scaffolds being maximized [26]. Using the number of common adjacencies as a
parameter, it was shown that this problem is also fixed-parameter tractable (FPT) – this only
handles that case when G and I ′ are not very similar so it is only of a theoretical meaning
[7].

The motivation of this paper is two-fold. Firstly, the ‘scaffold’ used in most of these
papers is an incomplete sequence, i.e., a missing gene can be inserted anywhere in such a
‘scaffold’. In practice, most of the real datasets are not in this format; in fact, a scaffold in a
real dataset is usually composed of a sequence of contigs, where a contig is usually computed
with mature tools like BLAST [1], hence should not be arbitrarily altered. This case was
considered briefly in [28, 22], all other research on scaffold filling used an incomplete sequence
as a scaffold. Secondly, take a complete reference genome G and a scaffold S, there is no
guarantee that the filled scaffold S′ is of the same length as that of G; in fact, sometimes
we could know roughly the length of the target genome S∗ (S′ should be as close to S∗ as
possible). Then, we might only need to insert a subset of letters in G− S into S (to obtain
S′).
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The main contribution of this paper is to present some research results along these two
lines. We formally call the two problems as One-sided Scaffold Filling (One-sided-SF-max),
and One-sided Subset Scaffold Filling (One-sided-SF-max(⊂)). (For the important practical
case when a gene can only appear at most d times in G, we call the corresponding problems
One-sided-SF-max(d) and One-sided-SF-max(⊂, d) respectively.) The objective function in
both cases are to maximize the number of common adjacencies between the reference and the
filled scaffold. For One-sided-SF-max, we present a simple reduction from the Hamiltonian
Path problem hence showing it to be NP-hard, we then present a factor-2 approximation.
Then we show that One-sided-SF-max(d) is FPT. For One-sided-SF-max(⊂), we prove a
stronger negative result by showing that, parameterized by the number of missing genes
inserted, the problem is W[1]-hard. We then present a factor-2 FPT-approximation for the
special case One-sided-SF-max(⊂, d). As far as we know, this is the first W[1]-hardness result
on the research of scaffold filling.

The paper is organized as follows. In Section 2, we give the preliminaries. In Section
3, we present the approximation results for One-sided-SF-max. In Section 4, we present
the FPT algorithm for One-sided-SF-max(d). In Section 5, we present the results for
One-sided-SF-max(⊂). We conclude the paper in Section 6.

2 Preliminaries

Throughout this paper we focus only on singleton genomes (i.e., each is a sequence). But
the results can be easily generalized to multichromosomal or circular genomes, with minor
changes.

At first, we review some necessary definitions, which are also defined in [22, 31]. We
assume that all genes and genomes are unsigned, and it is straightforward to generalize
the result to signed genomes. Given a gene set Σ, a string P is called permutation if each
element in Σ appears exactly once in P . We use c(P) to denote the set of elements in
permutation P . A string A is called sequence if some genes appear more than once in A, and
c(A) denotes genes of A, which is a multi-set of elements in Σ. For example, Σ = {a, b, c,
d}, A = abcdacd, c(A) = {a, a, b, c, c, d, d}. A sequence scaffold is an incomplete sequence,
typically obtained by some sequencing and assembling process. A substring with m genes
(in a sequence) is called an m-substring, and a 2-substring is also called a pair ; as the genes
are unsigned, the relative order of the two genes of a pair does not matter, i.e., the pair xy is
equal to the pair yx. Given an incomplete sequence (or sequence scaffold) A=a1a2a3 · · · an,
let PA = {a1a2, a2a3, . . . , an−1an} be the set of pairs in A.

I Definition 1. Given two sequence scaffolds A=a1a2 · · · an and B=b1b2 · · · bm, if aiai+1
= bjbj+1 (or aiai+1=bj+1bj), where aiai+1 ∈ PA and bjbj+1 ∈ PB, we say that aiai+1 and
bjbj+1 are matched to each other. In a maximum matching of pairs in PA and PB , a matched
pair is called an adjacency, and an unmatched pair is called a breakpoint in A and B
respectively.

It follows from the definition that sequence scaffolds A and B contain the same set of
adjacencies but distinct breakpoints. The maximum matched pairs in B (or equally, in A)
form the (common) adjacency set between A and B, denoted as a(A,B). We use bA(A,B)
and bB(A,B) to denote the set of breakpoints in A and B respectively. We illustrate the
above definitions in Fig. 1.

For a sequence A and a multi-set of elements X, let A + X be the set of all possible
resulting sequences after filling all the elements in X into A. We define a contig as a string
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sequence scaffold A = 〈c b c e d a b a 〉
sequence scaffold B = 〈a b a b d c〉

PA = {cb, bc, ce, ed, da, ab, ba}
PB = {ab, ba, ab, bd, dc}

matched pairs : (ab↔ ba), (ba↔ ab)
a(A,B) = {ab, ba}
bA(A,B) = {cb, bc, ce, ed, da}
bB(A,B) = {ab, bd, dc}

Figure 1 An example for adjacency and breakpoint definitions.

over a gene set Σ whose contents should not be altered. A scaffold S is simply a sequence of
contigs 〈C1, ..., Cm〉. We define c(S) = c(C1) ∪ · · · ∪ c(Cm). Now, we define the problems on
scaffolds formally.

I Definition 2. One-Sided-SF-max.
Input: a complete genome G and a scaffold S = 〈C1, C2, ..., Cm〉 where G and the contig
Ci’s are over a gene set Σ, a multiset X = c(G)− c(S) 6= ∅.
Question: Find S∗ ∈ S +X such that |a(S∗, G)| is maximized.

One-Sided-SF-max(⊂) is exactly the same as One-Sided-SF-max except that only a subset
X ′ ⊂ X need to be inserted into S. When a gene can appear at most d times in G, the two
versions of problems are abbreviated as One-Sided-SF-max(d) and One-Sided-SF-max(⊂, d)
respectively.

We first present a simple reduction from Hamiltonian Path to One-Sided-SF-max.

I Theorem 3. The decision version of One-Sided-SF-max is NP-complete.

Proof. It is obvious that the decision version of One-Sided-SF-max is in NP, so we just
focus on the reduction from Hamiltonian Path. Given a connected graph H = (V,E), with
V = {v1, v2, · · · , vn} and ei = (vi,1, vi,2), for ei ∈ E, let e′i = vi,1vi,2, for i = 1..m. Let deg(v)
be the degree of vertex v (assuming deg(v) > 1 for all v). G and S are constructed as follows.

G = #e′1#e′2# · · ·#e′m# ◦#2#3#n
1 ,

and

S = 〈C1, C2〉,

with C1 = 〈#2v
deg(v1)−1
1 #1 · · · vdeg(vn)−1

n #1#〉 and C2 = 〈#m#3〉. Here ◦ is a connector
and X = c(G)− c(S) = V . As there are only three places to insert elements in X back to S,
moreover, the only possible adjacencies are between two vertices forming an edge in H and
between a vertex and a #, it is obvious that to maximize the number of adjacencies we need
to insert the sequence of vertices forming a Hamiltonian Path in between C1, C2.

We make the following claim: H has a Hamiltonian path iff n missing genes can be
inserted into S to obtain n+ 1 adjacencies. We only show the “only if" part here as the other
direction is trivial. If n missing genes can be inserted into S to obtain n+ 1 adjacencies, say
they are inserted between C1 and C2 as v′1v′2 · · · v′n (where v′j = vi), then n− 1 adjacencies
must be v′jv′j+1 and the other two are #v′1 and v′n#. Then each v′jv′j+1 corresponds to an
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e6
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Figure 2 A simple graph H for the reduction.

edge in H and v′1v′2 · · · v′n corresponds to a Hamiltonian path in H. It is obvious that this
reduction take O(n2) time. J

We show a simple example for the reduction. The graph H is given in Fig. 2. We have

G = #v1v3#v1v2#v2v4#v2v5#v4v5#v2v3##2#3#1#1#1#1#1,

S = 〈 #2v1#1v2v2v2#1v3#1v4#1v5#1# 〉, 〈 #######3 〉.

After inserting genes in V into S, we obtain

S∗ = #2v1#1v2v2v2#1v3#1v4#1v5#1# v1v3v2v4v5 #######3 .

It is easy to verify that we have n + 1 = 6 common adjacencies between G and S∗: #v1,
v1v3, v3v2, v2v4, v4v5 and v5#.

We note that the reduction for the unbounded case SF-MNSA (from X3C in [21, 22]) in
fact also works for One-Sided-SF-max – just making each letter in I a contig. (Of course, this
would make the contigs too artificial.) But it is obvious that the above proof is simpler and
more straightforward. We next present an approximation algorithm for One-sided-SF-max.

3 An Approximation Algorithm for One-Sided-SF-max

Before presenting our algorithm, we make the following definitions.
Let αi, βi be the first and last letter of Ci, i = 1..m, respectively. Then 〈βi, αi+1〉

constitutes a region where missing genes can inserted between βi and αi+1, for i = 1..m.
Here, we also have two open regions on the two ends of S. We denote them as 〈−∞, α1〉 and
〈βm,+∞〉 respectively.

We define a type-1 substring s of length ` ≥ 1, over X, as one which can be inserted in
〈βi, αi+1〉, for 1 ≤ i ≤ m− 1, to generate `+ 1 new common adjacencies. We call 〈βi, αi+1〉 a
type-1 slot for s. (Throughout this paper, once a type-1 slot is inserted with a corresponding
substring we do not allow the insertion of any other letter.) It is easy to see that we could
have at most m− 1 type-1 slots.

Then, we define a type-2 substring s of length ` ≥ 1, over X, as one which can be inserted
in 〈βi, αi+1〉, for 0 ≤ i ≤ m, to generate ` common adjacencies. (We write β0 = −∞ and
αm+1 = +∞. Clearly the two open slots can be type-2 or type-3.) Note that in this case, in
〈βi, αi+1〉, we could have two type-2 slots, i.e., right after βi (written as βi◦) or right before
αi+1 (written as ◦αi+1). By definition, for a fixed 〈βi, αi+1〉, it cannot be type-1 and type-2
at the same time. It is easy to see that we could have at most 2(m− 1) + 2 = 2m type-2
slots.

Note that if βiαi+1 is already a common adjacency with respect to G, then it is possible
that s is inserted in the slot to generate |s|+ 1 common adjacencies (while destroying the
common adjacency βiαi+1). In this case, s really increases the total number of common
adjacencies by |s|. Hence, s is considered as type-2. For convenience, we simply say that
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in this case s generates |s| new common adjacencies. In fact, with a simple example we
could show that such an existing adjacency in a slot must be destroyed to obtain an optimal
solution. Example: G = 〈1, 1, 5, 4, 3, 5, 3, 7, 7〉, S = 〈 1,7,3,5 , 3,1,5,7 〉, the missing gene 4
must be inserted between 1,7,3,5 , 3,1,5,7 to obtain the optimal solution.

Finally, we define a type-3 substring s of length ` ≥ 1, over X, as one which can be
inserted in the slot 〈βi, αi+1〉, for some i, to generate `− 1 common adjacencies. Note that a
type-3 substring can only form adjacencies internally, hence it does not matter where we
insert s – provided that it does not destroy any existing adjacencies.

We show an example as follows:

G = 〈1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6〉,

S = 〈 1,5 , 3,6 , 2,4 〉.
We have α1 = 1, β1 = 5, α2 = 3, β2 = 6, α3 = 2, β3 = 4. Then, X = {1, 2, 3, 4, 5, 6} are
missing from S. One of the optimal solution is

S′ = 〈1, 2, 1,5 , 6, 3,6 , 5, 4, 3, 2,4 〉.

In this case, 〈5, 4, 3〉 is type-1, 6 and 〈1, 2〉 are type-2.
We comment that in general a type-j substring, j = 1, 2, 3, does not have to be a substring

of G. If a type-j substring is composed of i letters, we call it an i-type-j substring.
Let the number of common adjacencies between G and S be k0, and the number of

newly increased common adjacencies be k1 (after all genes in X have been inserted into
S). To approximate k0 + k1, it suffices to approximate k1. This is because if we have an
approximation solution A1 for k1, i.e., |A1| ≥ k1/ρ, then k0 + |A1| ≥ (k0 + k1)/ρ (for ρ > 1).
From now on, we will only discuss the approximation for the newly increased common
adjacencies.

Our Algorithm 1 is a simple greedy one:
1. Scan through all slots, if an 1-string (i.e., a letter) x or a 2-string xy in X can be inserted

in such a slot t to obtain two adjacencies or three adjacencies, insert x or xy into t, lock
t. Update X ← X − {x} or X ← X − {x, y} accordingly.

2. For all the remaining (type-2) slots, if a letter x ∈ X could be inserted to obtain one
adjacency, then insert x into the slot and update the the slot as follows. If x is inserted
at the slot y◦ (resp. ◦y) then update the slot as x◦ (resp. ◦x).

3. For all the letters in X after Step 1 (including those already inserted at Step 2), compute
a multigraph Q with the vertices being these letters in X (after Step 1), and if xy is a
potential adjacency in G (ignoring those already matched with the ones computed at Step
1 and 2), then there is an edge between all x ∈ X and all y ∈ X. Compute a maximum
matching M in Q. For all the pairs xy in M with one end x being a letter inserted at
Step 3, insert y before or after x accordingly. For the remaining pairs in M , insert them
arbitrarily in any unlocked slot in S, provided no existing adjacency is destroyed.

4. Insert the remaining letters in X arbitrarily in any unlocked slot in S, provided no existing
adjacency is destroyed.

Let bij denote the number of j-type-i substrings in some optimal solution. Then the
optimal solution value

Opt =
∑
j=1..p

(j + 1)b1j +
∑
j=1..q

jb2j +
∑
j=2..r

(j − 1)b3j ,

for some p, q, r. Let b′ij denote the number of j-type-i substrings in the approximation
solution. We show the properties of the greedy algorithm as follows.
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I Lemma 4. After Step 1, 2b′11 + 3b′12 ≥ 1
2 (2b11 + 3b12).

Proof. By the greedy choice, we have b′11 + b′12 ≥ b11 + b12. Then,

2b′11 + 3b′12 ≥ 2b′11 + 2b′12

≥ 2b11 + 2b12

= 1
2(4b11 + 4b12)

≥ 1
2(2b11 + 3b12). J

I Lemma 5. After Step 2, b′21 ≥ b21.

Proof. If a slot t could be either inserted with an i-type-1 substring si for i = 1, 2, then a
1-type-2 substring (letter) x could not be inserted at the slot t in an optimal solution. The
reason is as follows. (1) Suppose that t can be inserted with an 1-type-1 substring s1. If t in
the optimal solution is inserted with x to generate one adjacency, then we could swap x with
s1 to generate at least two adjacencies. This contradicts with the optimality of the assumed
optimal solution. (2) Suppose that t can be inserted with an 2-type-1 substring s2. If t in the
optimal solution is inserted with x to generate one adjacency, then, again, we could swap x
with s2 to generate at least three adjacencies. This implies that there is an optimal solution
where all 2-type-1 substrings are always inserted before any 1-type-2 substring is processed.

Then following the greedy choice at Step 2, we have b′21 ≥ b21. J

Hence, we could have the following theorem.

I Theorem 6. One-Sided-SF-max can be approximated within a factor of 2.

Proof. By definition, the optimal solution value OPT satisfies

Opt =
∑
j=1..p

(j + 1)b1j +
∑
j=1..q

jb2j +
∑
j=2..r

(j − 1)b3j ,

for some p, q, r. At Step 3, the size of the maximum matching, |M |, satisfies

|M | ≥ 1
2

 ∑
j=3..p

(j + 1)b1j +
∑
j=2..q

jb2j +
∑
j=2..r

(j − 1)b3j

 .

The right-hand side of the above inequality represents the optimal internal adjacencies
among the corresponding type-1, type-2, and type-3 substrings in the optimal solution. The
approximation solution value, App, satisfies

App = (2b′11 + 3b′12) + b′21 + |M |

≥ 1
2(2b11 + 3b12) + b′21 + |M | (by Lemma 4)

≥ 1
2(2b11 + 3b12) + b21 + |M | (by Lemma 5)

≥ 1
2Opt. J
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4 An FPT Algorithm for One-Sided-SF-max(d)

In this section, we present an FPT algorithm for One-Sided-SF-max(d), parameterized by
the optimal number of common adjacencies k. Whether One-Sided-SF-max is FPT is still
open, but One-Sided-SF-max(d) represents the important practical version where each gene
appears in a genome at most d times. We first review Fixed-Parameter Tractable (FPT)
algorithms.

4.1 Definition of FPT Algorithms
Let Σ be the alphabet, and Q ⊆ Σ∗ be a classic decision problem. A parameterized problem
is a pair (Q, κ) where κ : Σ∗ → N is a polynomial computable function. An instance of (Q, κ)
is a pair (x, κ(x)) consisting of a string x ∈ Σ∗ and an integer κ(x).

I Definition 7. Let (Q, κ) be a parameterized problem. We say (Q, κ) is Fixed-Parameter
Tractable (FPT) if for each instance (x, κ(x)), there is an algorithm A which decides whether
x ∈ Q in f(κ(x)) · |x|c time, where f is an arbitrary computable function and c is a constant.

As a convention now, we write O(f(κ(x))nc) = O∗(f(k)). FPT algorithms are efficient
tools for handling some NP-complete problems, especially when k = κ(x) is small in some
practical datasets [16, 18, 29].

4.2 The FPT Algorithm
We now present an FPT algorithm for One-Sided-SF-max(d), parameterized by the optimal
number of common adjacencies k. (Here k includes the existing number of common adjacencies
between S and G, though it is obvious that our algorithm also works by looking at newly
created common adjacencies.) As the running time of the algorithm is high and the result is
mostly for theoretical purpose.

Our idea is as follows. We use the color-coding method to find a potential `-type-i
substring for i = 1, 2. Then we use the property that each gene appears at most d times
to search for a slot to put this string in a right slot. After this process are repeated for all
potential type-1 and type-2 substrings, type-3 substrings can then be inserted arbitrarily, as
long as they do not destroy the existing adjacencies.

Note that a 1-type-3 substring cannot contribute any common adjacency with respect to
G, so it is useless. All other inserted letters are useful. We first show the following lemma
regarding the number of useful letters in an optimal solution.

I Lemma 8. Let X∗ ⊆ X be the set of genes in X that contribute in generating some new
common adjacencies. If the optimal number of common adjacencies between G and S∗ is k,
then |X∗| ≤ 2k.

Proof. From the previous discussions, a `-type-1 substring creates `+ 1 common adjacencies,
a `-type-2 substring creates ` common adjacencies, and a `-type-3 substring creates ` − 1
common adjacencies. Hence, in the worst case, the k common adjacencies are created by
2k type-3 substrings, each of length 2 (creating one common adjacency). In this case, these
genes form the set of optimal active genes X∗, with |X∗| ≤ 2k. J

We then make use of the color-coding method [3, 4], summarized as the following lemma.
For a positive integer n, let [n] = {1, 2, ..., n}.
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I Lemma 9 ([3, 4]). Let 1 ≤ ` ≤ k. For every n, ` there is a family ∆n,` of polynomial time
computable functions from [n] to [k] such that for every `-element subset Y of [n], there is an
h ∈ ∆n,` such that h is injective on Y . Moreover, ∆n,` can be computed in time 2O(k) ·nO(1).

The following lemma is similar to that for solving the k-path problem using color-coding
[3, 4].

I Lemma 10. Given a fixed slot, a p-type-j substring, j = 1, 2, can be computed in FPT
time.

Proof. A p-type-j substring is formed by the 2-substrings (or, at most n − 1 possible
adjacencies) in G. We use the color-coding technique. For the ease of description, we focus
on j = 1. We give each 2-substring in G one of the p+ 1 random colors. A p-type-1 substring
for a given slot is determined by p+ 1 2-substrings in G. The probability that we could find
such a colorful p-type-1 substring is at least

(p+ 1)!
(p+ 1)p+1 =

√
2π(p+ 1)
ep+1 > (1

e
)p+1,

where p! ∼
√

2πp(pe )p, following Stirling’s formula. To guarantee that we could obtain a
valid solution, we simply run this algorithm ep+1 times. This process can be derandomized
with standard techniques [16, 18, 4]. The total running time of this algorithm is then
bounded by O∗(ep+1). For constructing the corresponding p-type-2 and p-type-3 substrings
(over the unused/unmatched 2-substrings in G), the running times are O∗(ep) and O∗(ep−1)
respectively. Note that type-3 substrings are not relevant to any specific slot. J

I Theorem 11. One-Sided-SF-max(d) is FPT.

Proof. The general idea is a combination of bounded-degree search and color-coding. Fol-
lowing Lemma 9 and 10, the algorithm generates a proper p-type-j substring s, where
p ≤ k − 1, j = 1 or p ≤ k, j = 2, for a potential slot 〈βi, αi+1〉. As βi and αi+1 can each
appear d times, we could have 2d possible slots to put s. We then delete the letters in s
from X and repeat the process until no type-1 or type-2 substring can be inserted in S. If
the number of common adjacencies is at least k, we stop and insert the remaining letters in
X arbitrarily, not to destroy any existing adjacency. If the number of common adjacencies
is still less than k, we use Lemma 10 to generate some p-type-3 substring and insert it
arbitrarily into S (not to destroy any existing adjacency). By Lemma 8, the search stops
when a total of at most 2k useful letters have been inserted. (The remaining letters can be
inserted arbitrarily, provided that they do not destroy any existing common adjacency). We
can then check and report a solution with at least k common adjacencies, or report that such
a solution does not exist.

The total running time of this algorithm is

O∗((2d · ek)k) = O∗(2kdke2k).

Hence we have the theorem. J

In the next section, we discuss the One-sided Subset Scaffold Filling (One-sided-SF-max(⊂))
problem.

CPM 2016



15:10 Genomic Scaffold Filling Revisited

5 Results for One-Sided-SF-max(⊂)

In this section, we present some results for One-Sided-SF-max(⊂). We prove that if the
parameter is the number of genes inserted, then the problem is W[1]-hard. This implies
that the problem cannot be solved with an FPT algorithm, unless FPT=W[1] [16, 18, 29].
We then present a simple FPT-approximation for the problem, with a factor of 2, for
One-Sided-SF-max(⊂, d).

5.1 W[1]-Hardness Result
The main theorem is stated as follows.

I Theorem 12. One-Sided-SF-max(⊂) parameterized by the number of genes inserted is
W[1]-hard.

Proof. Throughout this proof, assume that k ≤ (n − 1)/2. We show that Independent
Set can be reduced to One-Sided-SF-max(⊂) via a linear FPT reduction. Given a graph
Q = (V,E), if the maximum vertex degree is ∆, then for each vertex ui ∈ V with degree
deg(ui) < ∆, we create ∆− deg(ui) new nodes and connect them only to ui. In the resulting
graph Q′ = (V ′, E′), all the original vertices in V have degree ∆. It can be easily seen that
Q has an independent set of size k iff k vertices in Q′ can be selected to cover exactly k∆
edges. This part of the proof is adapted from [20].

Now we arrange the graph Q′ = (V ′, E′) as a genome G as follows. WLOG, still assume
that |V ′| = n, |E′| = m throughout this proof. For each vi ∈ V ′, construct Ei as the list
of edges incident to vi (ordered by their indices). Then we use separators #’s and #j , for
j = 1..5. The set of genes are {ei|i = 1..m} ∪ {#j |j = 1..5} ∪ {#}. Finally we arrange G as
follows.

G = #m+1 ◦#1#2#3#4 ◦#4#3#2#1 ◦#5E1#5E2#5 · · ·#5En#5.

Note that ◦ is used as a connector, each ei (i = 1..m),#j (j = 1..4) appears twice in G, #
appearsm+1 times and #5 appears n+1 times in G. S is constructed such that it is composed
of exactly k + 1 contigs C1, ..., Ck+1, each Ci starts and ends with #5. For C1, between the
two #5’s, we arrange all the genes #’s and ei’s such that C1 = #5#e1#e2# · · ·#em##5.
We construct C2 = #5#3#1#4#2 ◦#n−2k−1

5 ◦#2#4#1#3#5. The remaining contigs are
constructed as Ci = #5#5 for i = 3, ..., k + 1.

It is clear that in S we have missed a copy of ei for each i = 1..m. Due to the construction
of G, ei cannot form any common adjacency with # or #j for j = 1..4, the only possible
common adjacencies are from ei and e`’s (i.e., in some sequences of Ep’s, each of length ∆)
and between ei and #5’s. To maximize the common adjacencies obtained, these missing
genes can only be inserted in k slots, after Ci and before Ci+1 for i = 1..k. Then, it is safe
for us to claim, with some easy details omitted, that Q has an independent set of size k iff
k∆ missing genes can be inserted into the k slots in S to obtain a maximum of k(∆ + 1)
adjacencies with respect to the reference genome G. This is obviously an FPT-reduction. J

With the above W[1]-hardness result, it is easy to obtain the following corollary (part of
it is similar to the corollary in [27]).

I Corollary 13. The optimization version of One-Sided-SF-max(⊂) does not admit an
EPTAS (resp. FPTAS) unless FPT=W[1].



H. Jiang, C. Fan, B. Yang, F. Zhong, D. Zhu, and B. Zhu 15:11

Proof. Assume that there is an EPTAS (resp. FPTAS) which runs in time O(( 1
ε )O( 1

ε )nc) (resp.
O(( 1

ε )c1nc2)), for some constant c (resp. c1 and c2); moreover, it achieves an approximation
factor of 1 + ε, for any ε > 0. Then, if k∗ is the optimal solution value and APP is the
approximation solution value, we have

APP ≥ k∗

1 + ε
.

Setting ε = 1
2k∗−1 , we have APP ≥ k∗

1+ε = k∗ − 1
2 , which further implies APP = k∗. In

this case, the running time of the algorithm becomes O((k∗)O(k∗)nc) (resp. O((k∗)O(c1)nc2));
i.e., the problem would admit an FPT algorithm. A contradiction to Theorem 12, unless
FPT=W[1]. J

5.2 FPT-Approximation for One-Sided-SF-max(⊂,d)
For W[1]-hard problems, a natural way to handle them is to use FPT-approximations. Here we
briefly review the Fixed-Parameter Tractable Approximation Algorithm (FPT-approximation
for short), which was first proposed in 2006 [10, 17, 8] (but the development has been slow.)

I Definition 14. A Fixed-Parameter Tractable ρ-approximation for a minimization (resp.
maximization) parameterized problem (Q, κ) is an FPT algorithm which, given any instance
(x, k) ∈ (Q, κ), returns a solution of cost at most ρ(k) · k (resp. at least k/ρ(k)) if a solution
of cost at most (resp. at least) k exists.

Our FPT-approximation algorithm for One-Sided-SF-max(⊂, d), parameterized by the
number of inserted genes, is as follows.

1. As in Theorem 11, use bounded-degree search and color-coding to insert ` (0 ≤ ` ≤ k)
type-1 and type-2 substrings into the ` slots, which can be done in FPT time.

2. If these ` substrings have a total length at least k, then the problem can be solved
optimally in FPT time.

3. If these ` substrings have a total length k1 with k1 < k, then we insert enough type-3
substrings (of a total length k − k1) as follows.

4. We use a maximum matching method to insert k− k1 letters. For all the remaining genes
to be inserted into G, form a graph D such that there is an edge connecting two such
genes if they could potentially form a common adjacency with respect to G. Then simply
compute a maximum matching in D and insert all the pairs in the matching arbitrarily
into D (provided that they do not destroy any existing common adjacency).

I Theorem 15. One-Sided-SF-max(⊂, d) parameterized by the number of genes inserted
admits a factor-2 FPT-approximation.

Proof. The analysis of the first two steps of the FPT algorithm is the same as in Theorem
11, hence omitted.

Let k1 letters inserted at Step 1 generate k∗1 common adjacencies. The k − k1 genes
forming type-3 substrings could generate at most k2 ≤ k − k1 − 1 common adjacencies.
By the maximum matching algorithm at step 4, we could generate at least k2/2 common
adjacencies. (For any connected component in D, if it contains a path of length k3 ≤ k2 then
the maximum matching algorithm could return at least k3/2 common adjacencies.) Then

OPT = k∗1 + k2,
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and

APP ≥ k∗1 + k2/2 ≥
OPT

2 .

The whole algorithm obviously takes FPT time. J

6 Concluding Remarks

In this paper, we revisit the genomic scaffold filling problem by considering each scaffold
as a sequence of contigs (instead of as an incomplete sequence as in most of the previous
research). We obtain a list of algorithmic results, some of which could eventually lead to the
practical processing of genomic datasets. However, as in [7], the parameter k (i.e., number of
common adjacencies) in reality should be relatively large, so the FPT algorithms we obtained
here are only theoretically meaningful. Further research is needed along this line. On the
other hand, theoretically, it is interesting to decide whether One-Sided-SF-max is FPT and
whether One-Sided-SF-max(⊂) admits an FPT-approximation.
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Abstract
Problems of genome rearrangement are central in both evolution and cancer. Most evolutionary
scenarios have been studied under the assumption that the genome contains a single copy of
each gene. In contrast, tumor genomes undergo deletions and duplications, and thus the number
of copies of genes varies. The number of copies of each gene along a chromosome is called its
copy number profile. Understanding copy number profile changes can assist in predicting disease
progression and treatment. To date, questions related to distances between copy number profiles
gained little scientific attention. Here we focus on the following fundamental problem, introduced
by Schwarz et al. (PLOS Comp. Biol., 2014): given two copy number profiles, u and v, compute
the edit distance from u to v, where the edit operations are segmental deletions and amplifications.
We establish the computational complexity of this problem, showing that it is solvable in linear
time and constant space.
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Keywords and phrases Genome Rearrangement, Copy Number
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1 Introduction

The genome of a species evolves by undergoing small and large mutations over generations.
Large mutations modify genome organization by rearrangement of genomic segments. Com-
putational analysis of the process of genome rearrangement has been subject of extensive
research over the last two decades [5]. The majority of these studies to date were restricted
to a single copy of each gene, and were concerned with the reordering of segments. Extant
models that do not make this assumption often result in NP-hard problems [12, 14, 15].

While most work on genome rearrangements to date was done in the context of species
evolution, there is today great opportunity in analysis of cancer genome evolution. Cancer
is a dynamic process characterized by the rapid accumulation of somatic mutations, which
produce complex tumor genomes. Species evolution happens over eons and changes are carried
over from one generation to the next. In contrast, cancer evolution happens within a single
individual over a few decades. In many tumor genomes, a lot of the changes are segmental
deletions and amplifications [16]. As a result, the number of copies of each gene along a
chromosome, known as its copy number profile, changes during cancer development, compared
to the normal genome that has two copies (or alleles) for each gene. Understanding these
changes can assist in predicting disease progression and the outcome of medical interventions.
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However, computational questions related to distances between copy number profiles received
little scientific attention to date. Such questions are the topic of this paper.

Over the years, a variety of methods were used to determine the copy number profile of a
cancer genome, at different resolutions. G-banding allows viewing the chromosomes bands
[11]. FISH measures the copy numbers of tens to hundreds of targeted genes [4]. Array
comparative genomic hybridization gives a higher resolution of copy number estimation for a
cell population [17]. Most recently, deep sequencing techniques yield copy number profiles
by using read depth data [10]. While it would have been preferable to analyze the genome
(karyotype) itself and not its copy number profile, detection of structural variations from
sequencing data is still problematic [7, 1]. Today it is a routine procedure to obtain detailed
copy number profiles of cancer genomes, but utilizing them to understand cancer evolution
is still an open problem.

Given two copy number profiles, the healthy tissue’s and the tumor’s, evaluating the
distance between them can help in understanding cancer progression. A naïve measure of
distance is the Euclidean distance between the two profiles [13]. Chowdhury et al. defined
edit distance between copy number profiles obtained from FISH, where the edit operations
are amplification or deletion of single genes, single chromosomes or the whole genome [3, 4, 2].
However, calculating these distances requires exponential time in the number of genes and
therefore is limited to low resolution FISH data. The TuMult algorithm uses the number of
breakpoints (loci where the copy numbers change) between two profiles as a simple distance
measure [6].

Schwartz et al. introduced a model that admits amplification and deletion of contiguous
segments [13]. The edit distance between two copy number profiles was defined as the
minimum number of segmental deletions and duplications over all separations of the profiles
into two alleles (a procedure known as phasing). Their algorithm MEDICC for computing
the edit distance uses finite-state transducers (FSTs) [9] in order to model the profiles and
efficiently compute the distance. However, the complexity of this method was not analyzed.
Even without the phasing computation, the method needs to compose a 3-state transducer
with itself N times, resulting in a transducer with 3N states [13, 8]. The running time of
FST procedures relies on the number of states and transitions, and in some cases may be
exponential [9, 8].

Copy Number Transformation. We investigate the following problem, which underlies the
model of [13]: Given two copy number profiles (CNPs), u and v, compute the minimum
number of segmental duplications and deletions needed to transform u into v. We call this
problem the Copy Number Transformation Problem (CNTP). A CNP is represented
by a vector of nonnegative integers (the number of copies of each gene). A segmental deletion
(amplification) decreases (resp. increases) by 1 the values of a contiguous segment of the
vector, where zero values are not affected. Formal definitions are given in Section 2.

Our Contribution. We show that CNTP is solvable in linear time and constant space.
The algorithm relies on several properties of the problem that we establish in Section 3.1,
which may also be relevant to the analysis of other problems involving CNPs. Exploiting
these properties results in a pseudo-polynomial dynamic programming algorithm for CNTP,
presented in Section 3.2. In Section 3.3, by establishing that a certain function in the dynamic
programming recursion is piecewise linear, we improve its performance and obtain our main
result. For lack of space, some proofs are omitted.



R. Shamir, M. Zehavi, and R. Zeira 16:3

(A) (B)                         S  =  (1, 1, 1, 1, 1) 

 

                   c1(S)  =  (1, 0, 1, 1, 1) 

 

             c2(c1(S))  =  (1, 0, 1, 0, 1) 

 

T = c3(c2(c1(S)))   =  (2, 0, 2, 0, 2) 

 

 

 

c1 = (2,2,-1) 

c2 = (4,4,-1) 

c3 = (1,5,+1) 
Not elongated Elongated 

𝑆 =	… , 2,3, …
𝑇 =	… , 0,0, …

𝑆 =	… , 2,3, …
𝑇 =	… , 0,0, …

Figure 1 Copy number transformations. (A) The CNT C = (c1, c2, c3) transforms S into T .
The size of C is 3. Red and green blocks indicate deletions and amplifications, respectively. (B)
Elongated and non-elongated CNTs. Bold lines indicate the range of deletions.

2 Preliminaries

In this section, we give definitions and notation that are used throughout the paper. Let n ∈ N.
A CN profile (CNP) is a vector V = (v1, v2, . . . , vn), where vi ∈ N ∪ {0}. A CN operation
(CNO) is a triple c = (`, h, w), where 1 ≤ ` ≤ h ≤ n and w ∈ {−1, 1}. We say that a CNO c =
(`, h,−1) is a deletion and c = (`, h, 1) is an amplification. Given a CNP V = (v1, v2, . . . , vn)
and a CNO c = (`, h, w), we define the operation c(V ) = (c(v1), c(v2), . . . , c(vn)) as follows.
For each i ∈ {1, 2, . . . , n}, if ` ≤ i ≤ h and vi ≥ 1, then c(vi) = vi + w, otherwise (i.e., if
i < ` or i > h or vi = 0) c(vi) = vi. A triple c = (`, h, w) with h < ` has no effect on the
CNP, i.e., c(V ) = V . Given two CNPs, S = (s1, s2, . . . , sn) (source) and T = (t1, t2, . . . , tn)
(target), a CN transformation (CNT) is a vector C = (c1, c2, . . . , cm), where m ∈ N and
each ci = (`i, hi, wi) is a CNO, such that C(S) = cm(cm−1(· · · (c1(S)))) = T . The size of
C, denoted |C|, is m. An example is given in Fig. 1(A). Finally, we denote the number of
operations of weight w ∈ {−1, 1} affecting si by op(C, w, i) = |{(`, h, w) ∈ C : ` ≤ i ≤ h}|.
For example, in Fig. 1(A) op(C,−1, 2) = 1.

The CN distance (CND) from S to T , dist(S, T ), is the smallest size of a CNT C

that satisfies C(S) = T , where if no such CNT exists, dist(S, T ) = ∞. Note that dist is
not symmetric. For example, for S = (1) and T = (0), dist(S, T ) = 1 but dist(T, S) =
∞. Given two CNPs, S = (s1, s2, . . . , sn) and T = (t1, t2, . . . , tn), the Copy Number
Transformation problem, CNTP, seeks dist(S, T ) (if one exists). We say that a CNT
C is optimal if it realizes dist(S, T ), i.e., |C| = dist(S, T ) (there may exist several optimal
CNTs). We let N = max{maxn

i=1{si}, maxn
i=1{ti}} denote the maximum copy number in

the input. Finally, for all 1 ≤ i ≤ n, we define ui = si − ti.

3 An Algorithm for CNTP

We first present an O(nN2)-time, O(N)-space algorithm for CNTP that is based on dynamic
programming (Sections 3.1 and 3.2). Recall that N is the maximal integer in the input, so
that the algorithm is pseudo-polynomial. Then, we modify this algorithm to run in linear
time (Section 3.3). On a high level, the modification is based on the observation that the
table used by the algorithm to store values of partial solutions can be described by O(n)
piecewise linear functions, where each function encapsulates O(N) entries of the table. We
show that each function has only three linear segments and so the computation of an entry
can be performed in time O(1) rather than O(N). Furthermore, since each function can be
represented in a compact manner, the size of table shrinks from O(nN) to O(n). The precise
definitions of the table and the functions are given in Sections 3.2 and 3.3. Our proof of the
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correctness of the use of these functions requires a somewhat extensive case analysis that is
presented separately in Section 3.4.

3.1 Key Propositions
We start by developing Alg1, an O(nN2)-time dynamic programming algorithm for CNTP.
Let (S = (s1, s2, . . . , sn), T = (t1, t2, . . . , tn)) be the input. Observe that there exists a CNT
C such that C(S) = T if and only if there does not exist an index 1 ≤ i ≤ n such that
si = 0 and ti > 0. Since the existence of such an index can be determined in linear time
(where, if such an index is found, we return ∞), we will assume that dist(S, T ) < ∞. To
simplify the presentation, we further assume w.l.o.g. that t1, tn 6= 0. Indeed, if t1 = 0 or
tn = 0, we can solve the input (S′ = (1, s1, s2, . . . , sn, 1), T ′ = (1, t1, t2, . . . , tn, 1)) instead,
since it holds that dist(S, T ) = dist(S′, T ′). Finally, we assume w.l.o.g. that for all 1 ≤ i ≤ n,
si > 0. Indeed, if there exists 1 ≤ i ≤ n such that si = 0, then also ti = 0, and we
can solve the input (S′ = (s1, . . . , si−1, si+1, . . . , sn), T ′ = (t1 . . . , ti−1, ti+1, . . . , tn)) since
dist(S, T ) = dist(S′, T ′).

Alg1 exploits four key observations about the nature of the problem at hand, summarized
as follows: (1) it is sufficient to examine CNTs where all of the deletions precede all of the
amplifications; (2) it is sufficient to examine CNTs that do not contain both a deletion that
affects si but not si+1 and a deletion that affects si+1 but not si, and the same is true for
amplifications; (3) when seeking an optimal solution, it is not necessary to store information
indicating how many deletions/amplifications affect si if ti = 0; (4) the maximum number of
deletions/amplifications that affect each si can be bounded by N .

To formally state the first observation, we need the following definition.

I Definition 1. A CNT C = (c1, c2, . . . , cm) is ordered if for all 1 ≤ i < j ≤ m, if cj is a
deletion, then ci is also a deletion.

I Proposition 2. There exists an optimal ordered CNT.

We note that the “opposite” proposition, stating that there exists an optimal CNT
where all of the amplifications precede all of the deletions, does not hold: consider, e.g.,
S = (1, 1, 1, 1, 1) and T = (2, 0, 2, 0, 2). To prove this proposition, we will need the following
claim.

I Claim 3. Let C = (c1, c2, . . . , cm) be an optimal CNT and let i be an index such that
ci = (`i, hi, 1) and ci+1 = (`i+1, hi+1,−1). Then, there exists an optimal CNT C ′ =
(c1, . . . , ci−1, c′i, c′i+1, ci+2, . . . , cm), where c′i = (`′i, h′i, w′i) and c′i+1 = (`′i+1, h′i+1, w′i+1), such
that one of the following conditions holds.
1. (h′i − `′i) + (h′i+1 − `′i+1) < (hi − `i) + (hi+1 − `i+1).
2. (h′i − `′i) + (h′i+1 − `′i+1) = (hi − `i) + (hi+1 − `i+1) and w′i = −1.

Proof. Consider the following exhaustive case-analysis.
1. hi < `i+1 or hi+1 < `i: In this case, the segments corresponding to ci and ci+1 are disjoint.

Thus, we can simply define c′i = ci+1 and c′i+1 = ci. Then, Condition 2 is satisfied.
2. `i ≤ `i+1 ≤ hi ≤ hi+1: Define c′i = (hi + 1, hi+1,−1) and c′i+1 = (`i, `i+1 − 1, 1). For any

CNP V = (v1, v2, . . . , vn), c′i+1(c′i(V )) = ci+1(ci(V )). This argument holds because an
application of ci which is followed by an application of ci+1 does not change any entry vk

such that `i+1 ≤ k ≤ hi. We have that C ′(S) = T . Since |C ′| = |C|, C ′ is an optimal
CNT. Now, Condition 1 is satisfied.
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3. `i+1 ≤ `i ≤ hi+1 ≤ hi: Define c′i = (`i+1, `i − 1,−1) and c′i+1 = (hi+1 + 1, hi, 1). As in
the second case, we obtain an optimal CNT that satisfies Condition 1.

4. `i ≤ `i+1 ≤ hi+1 ≤ hi: Define c′i = (`i, `i+1 − 1, 1) and c′i+1 = (hi+1 + 1, hi, 1). As in the
second case, we obtain an optimal CNT that satisfies Condition 1.

5. `i+1 ≤ `i ≤ hi ≤ hi+1: Define c′i = (`i+1, `i − 1,−1) and c′i+1 = (hi + 1, hi+1,−1). As in
the second case, we obtain an optimal CNT that satisfies Condition 1. J

As we show below, Claim 3 implies the existance of an ordered optimal CNT. In each of the
cases in Claim 3, a local change is made in the CNT. Note however that just performing enough
local operations does not guarantee reaching an ordered optimal CNT. For example, in a CNT
with three consecutive CNOs, ci = (`i, hi, 1), ci+1 = (`i+1, hi+1, 1), ci+2 = (`i+2, hi+2,−1),
one may loop between changing ci+1 into a deletion and then into an amplification.

Proof of Proposition 2. Let C be the set of optimal CNTs, and suppose, by way of contra-
diction, that it does not contain an ordered CNT. The three following phases sieve some
solutions out of C. Informally, we initially consider only optimal CNTs that minimize the
sum of the sizes of the segments corresponding to their CNOs (C1); then, we further consider
only the CNTs whose first amplification is as late as possible (C2); finally, we only take the
CNTs whose first deletion after their first amplification is as early as possible (C3).

Given C = (c1, c2, . . . , cm) ∈ C, define x(C) =
∑m

i=1(hi − `i). Let C1 be the set of every
C ∈ C for which there does not exist C ′ ∈ C such that x(C) > x(C ′).
Given C = (c1, c2, . . . , cm) ∈ C1, let y(C) be the largest index 0 ≤ i ≤ m such that for all
1 ≤ j ≤ i, cj is a deletion. Note that y(C) = 0 if and only if c1 is an amplification. Let C2

be the set of every C ∈ C1 for which there does not exist C ′ ∈ C1 such that y(C) < y(C ′).
Given C = (c1, c2, . . . , cm) ∈ C2, let z(C) be the smallest index i ∈ {y(C) + 1, . . . , m}
such that ci is a deletion. By the definition of y(C) and since C is not ordered, we have
that z(C) is well-defined and z(C) ≥ y(C) + 2. Let C3 be the set of every C ∈ C2 for
which there does not exist C ′ ∈ C2 such that z(C) > z(C ′).

Since C 6= ∅, we have that C3 6= ∅. Thus, we can let C = (c1, c2, . . . , cm) be a solution
in C3. Let i be the smallest index such that ci is an amplification and ci+1 is a deletion.
Now, consider the conditions in Claim 3: if Condition 1 holds, we have a contradiction to
the fact that C ∈ C1, while if Condition 2 holds, we have a contradiction either to the fact
that C ∈ C2 (if i = 1 or ci−1 is a deletion) or to the fact that C ∈ C3 (otherwise). Thus, we
conclude that C contains an ordered CNT. J

The other three propositions are stated without proof.

I Definition 4. A CNT C is elongated if for all 1 ≤ i < n and w ∈ {−1, 1},

min{op(C, w, i), op(C, w, i + 1)} = |{(`, h, w) ∈ C : ` ≤ i, i + 1 ≤ h}|.

Equivalently, C is elongated if no two amplifications (or deletions) “dovetail”, i.e., one
ending at i and the other starting at i+1. It is clear that for any CNT C, the inequality≥ holds
above (since {(`, h, w) ∈ C : ` ≤ i, i + 1 ≤ h} is a subset of both {(`, h, w) ∈ C : ` ≤ i ≤ h}
and {(`, h, w) ∈ C : ` ≤ i + 1 ≤ h}). Our second key proposition implies the inequality ≤
holds as well. An example for an elongated CNT is given in Fig. 1(B).

I Proposition 5. Every ordered optimal CNT is elongated.

To formalize our third key proposition, we need the following definition.
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I Definition 6. A CNT C skips zeros if for every 1 ≤ i < j ≤ n such that for all
i < r ≤ j, tr = 0 we have

op(C,−1, j) = max{ jmax
r=i+1

{sr}, op(C,−1, i)}, and op(C, 1, j) = op(C, 1, i).

In words, for a block of consecutive zeros in the target profile, all deletions that span the
block also include its flanking positions. An example of a CNT that skips zeros is given in
Fig. 2(A).

I Proposition 7. There exists an optimal ordered CNT that skips zeros.

For a position with positive target value, knowing the number of deletions that affected
it uniquely determines the number of amplifications that affected it. This simple fact will
help the efficiency of our procedures. Formally:

I Observation 8. Let 1 ≤ i ≤ n be an index such that ti > 0, and let C = (c1, c2, . . . , cm)
be a CNT such that C(S) = T . Then, op(C, 1, i) = −ui + op(C,−1, i).

Finally, we formalize our fourth key proposition.

I Definition 9. A CNT C is bounded if for all 1 ≤ i ≤ n and every w ∈ {−1, 1}, we have
op(C, w, i) ≤ N .

I Proposition 10. Every optimal ordered CNT that skips zeros is bounded.

3.2 An O(nN2)-Time Algorithm for CNTP
On a high-level, the dynamic programming algorithm works as follows. It considers increasing
prefixes Si = (s1, s2, . . . , si) and T i = (t1, t2, . . . , ti) of the input. It computes a table M
having n(N + 1) entries where M[i, d] is the best value of a solution on (Si, T i) that uses
exactly d deletions that affect the ith position. The parameter d ranges between zero and N ,
and the values for each i are computed based on values M[j, ·] for a single specific j < i. In
particular, at each point of time, only two rows of the table M are stored. By Propositions
2–10, the algorithm considers only ordered, elongated, zero-skipping and bounded solutions.
We call such solutions good.

More formally, given 1 ≤ i ≤ n and 0 ≤ d ≤ N , we say that a CNT C is an (i, d)-CNT
if C(Si) = T i, d = op(C,−1, i), and C is good. We say that an (i, d)-CNT C is optimal if
there is no (i, d)-CNT C ′ such that |C ′| < |C|. Our goal will be to ensure that each entry
M[i, d] stores the size of an optimal (i, d)-CNT, where if no such CNT exists, it stores ∞. We
do not compute entries M[i, d] such that ti = 0; indeed, by relying on Property 7, we are able
to skip such entries (though our recursive formula does consider CNs si referring to indices i

such that ti = 0). In this context, observe that any ordered CNT C such that C(S) = T

consists of at least ui deletions that affect si, and if ti > 0, it cannot consist of more than
si − 1 such deletions (since after decreasing si to 0, it remains 0). Moreover, if ui ≤ d < si,
there exists an (i, d)-CNT – by independently adjusting the value of each position < i to its
target position and the value at position i with d deletions, using operations of span 1.

I Observation 11. Given 1 ≤ i ≤ n such that ti > 0 and 0 ≤ d ≤ N , there exists an
(i, d)-CNT if and only if ui ≤ d < si.

In case si < ti, Observation 11 states that there exists an (i, d)-CNT if and only if d < si.
In light of this observation, we will use the following assumption.



R. Shamir, M. Zehavi, and R. Zeira 16:7

I Assumption 12. In the computation below, we assume that max{ui, 0} ≤ d < si. Entries
M[i, d] for which it is not true that max{ui, 0} ≤ d < si store ∞.

By Observation 8, if a solution involved d deletions at position i with ti > 0, then it
involved −ui + d amplifications at that position. For convenience denote that number by
a(i, d) = −ui + d for all 1 ≤ i ≤ n satisfying ti > 0 and max{ui, 0} ≤ d < si, and a(i, d) =∞
otherwise.

For input profiles S, T , the algorithm precomputes two vectors .Given an index 1 < i ≤ n

such that ti > 0, let prev(i) denote the largest index j < i such that tj > 0. Moreover, if
prev(i) = i − 1, let Qi = 0, and otherwise let Qi = maxprev(i)<j<i{sj}. A skipping zero
solution will skip the positions between i and prev(i) in the computation, but will make sure
to perform at least Qi deletions spanning the skipped positions.

Initialization. The initialization step sets all entries M[1, d] as follows.

M[1, d]← d + a(1, d).

Recursion. If ti = 0 position i is skipped. Suppose that i > 1, ti > 0 and max{ui, 0} ≤ d <

si. The order of the computation is determined by the first argument. The computation is
summarized in the following formula.

M[i, d]← min
0≤d′≤N

{M[prev(i), d′] + max{d− d′, 0}+ max{a(i, d)− a(prev(i), d′), 0}

+ max{Qi −max{d, d′}, 0}}.

Roughly speaking, to compute M [i, d] we look back to the previous non zero position in
T , and for each value d′ in that position add the difference from d if needed, the number
of amplifications to be added if needed, and the number of additional deletions if such are
needed to take care of the skipped zero positions. After filling the table M, Alg1 returns
min0≤d≤N M[n, d]. An example if a filled table is given in Fig. 2(B).

Correctness. First, we claim that the entries of the table M are computed properly.

I Lemma 13. For all 1 ≤ i ≤ n such that ti > 0 and for all 0 ≤ d ≤ N , M[i, d] stores the
size of an optimal (i, d)-CNT, where if no such CNT exists, it stores ∞.

Proof. We prove the lemma by induction on the order of the computation.
The correctness of the initialization step follows from the definition of an (i, d)-CNT and

Observation 8.
Now, fix 1 < i ≤ n such that ti > 0, and fix max{ui, 0} ≤ d < si. Let m be the size of an

optimal (i, d)-CNT. Suppose that the lemma is correct for all i′ < i and 0 ≤ d′ ≤ N . We
need to show that M[i, d] = m.

First Direction. First, we show that M[i, d] ≤ m. Let C = (c1, c2, . . . , cm) be an optimal
(i, d)-CNT, and for all 1 ≤ j ≤ m, denote cj = (`j , hj , wj). For all 1 ≤ j ≤ m, let
c′j = (`j , min{hj , prev(i)}, wj). Now, define C ′ = (c′1, c′2, . . . , c′m). We further let Ĉ =
(ĉ1, ĉ2, . . . , ĉq) denote the CNT obtained from C ′ by removing all of the CNOs c = (`, h, w)
such that h < `. Denote d̂ = op(Ĉ,−1, prev(i)). Observe that d̂ ≤ N and that Ĉ is
a (prev(i), d̂)-CNT (because C is an (i, d)-CNT). Therefore, by the induction hypothesis,
M[prev(i), d̂] ≤ q (recall that q = |Ĉ|). If prev(i) = i − 1, then Qi = 0 and since C is
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16:8 A Linear-Time Algorithm for the Copy Number Transformation Problem

ordered and elongated, by Observation 8 we have that m− q = max{d− d̂, 0}+max{a(i, d)−
a(prev(i), d̂), 0}. Thus, by the recursive formula, in this case we get that M[i, d] ≤ m

Now, suppose that prev(i) < i− 1. Then, since C is ordered and skips zeros, and by the
definition of Qi, the two following conditions hold.
1. op(C,−1, i− 1) = max{Qi, op(C,−1, prev(i))}.
2. op(C, 1, i− 1) = op(C, 1, prev(i)).

Thus, since C is ordered and elongated, by Observation 8 we have that m − q =
max{d − d̂, 0} + max{a(i, d) − a(prev(i), d̂), 0} + max{Qi − max{d, d̂}, 0}. Again, by the
recursive formula, this implies that M[i, d] ≤ m.

Second Direction. Next, we show that M[i, d] ≥ m. To this end, it is sufficient to show
that there exists an (i, d)-CNT C such that M[i, d] ≥ |C|. Let d̂ be an argument d′ at
which the value computed by using the recursive formula is minimized. By the inductive
hypothesis, there exists a (prev(i), d̂)-CNT Ĉ = (ĉ1, ĉ2, . . . , ĉq) such that M[prev(i), d̂] ≥ q.
For all 1 ≤ j ≤ q, denote ĉj = (`j , hj , wj). Now, if prev(i) = i− 1, define C̃ = Ĉ, and else
define C̃ as follows. For all 1 ≤ j ≤ q, let c̃j = (`j , h̃, wj), where h̃ = hj if hj < prev(i)
and h̃ = i − 1 otherwise. Let C̃ = (c̃1, c̃2, . . . , c̃q). Moreover, as long as there exists
prev(i) < j < i such that op(C̃,−1, j) < sj , choose the smallest such j, and append to the
beginning of C̃ the CNO (j, i − 1,−1). Let C ′ be the CNT obtained at the end of this
process. Denote C ′ = (c′1, c′2, . . . , c′r), and for all 1 ≤ j ≤ r, denote c′j = (`′j , h′j , w′j). Now,
let p and q be the number of deletions and amplifications in C ′ whose segments include
i − 1, respectively. If p < d, append to the beginning of C ′ d − p “dummy” deletions of
the form (i, i − 1,−1), and if a(i, d) < q, append to the end of C ′ a(i, d) − q “dummy”
amplifications of the form (i, i − 1, 1). Let C ′′ = (c′′1 , c′′2 , . . . , c′′k) be the resulting CNT,
and for all 1 ≤ j ≤ k, denote c′′j = (`′′j , h′′j , w′′j ). Finally, we define C as follows. Let D

(A) be a set of exactly d deletions (resp. amplifications) in C ′′ whose second argument is
i − 1. We let C be defined as C ′′, except that each CNO (`, h, w) ∈ D ∪ A is replaced
by the CNO (`, i, w). It is straightforward to verify that C is an (i, d)-CNT such that
|C| = q + max{d− d̂, 0}+ max{a(i, d)− a(prev(i), d̂), 0}+ max{Qi −max{d, d̂}, 0}, which
concludes the correctness of the second direction. J

Now, we turn to consider the correctness and running time of Alg1.

I Theorem 14. Alg1 solves CNTP in time O(nN2) and space O(N).

Proof. The table M contains O(nN) entries, and each entry can be computed in time O(N).
Therefore, the time complexity of Alg1 is bounded by O(nN2). Moreover, for the computation
of M[i, ·], it is only necessary to keep O(N) entries for position prev(i), and therefore the
space complexity is bounded by O(N). Since every (n, d)-CNT C satisfies C(S) = T , and
since for every good optimal CNT C, there exists 0 ≤ d ≤ N such that C is an (n, d)-CNT,
we have that Lemma 13 implies that Alg1 returns the smallest size of a good optimal CNT
(if such a CNT exists). By Propositions 2–10, such a CNT indeed exists, and therefore Alg1
solves CNTP. J

3.3 A Linear-Time Algorithm for CNTP
In this section we show how to modify Alg1 in order to obtain an algorithm, called Alg2,
that solves CNTP in linear time. The central lemma that leads to this improvement states
each column in the table M can be described by a piecewise linear function of at most three
segments.
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Skipping zeros solution 

𝑆 = 	3,1,2,3,2,1,4
𝑇 = 	2,0,0,0,0,0,2

i=7 i=1 
∞ ∞ d=0 
∞ 1 d=1 
32 d=2 
4 ∞ d=3 
∞ ∞ d=4 

𝑀[𝑖, 𝑑]

𝑑

𝑓#(𝑑)

𝑑#&#' 𝑎# 𝑏# 𝑑#&*+

𝑏𝑎𝑠𝑒#
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𝑏𝑎𝑠𝑒#
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+2𝑑#&*+

(A)

(B)

(C)

Figure 2 (A) A skipping-zeros solution. Bold lines indicate deletions. (B) The DP M [i, d] matrix
for the two CNPs in (A). (C) An example of the piecewise linear function fi(d) described in Lemma
15. The number of segments is three but can be smaller, depending on the values involved.

To present this lemma, we need the following notation. For all i ∈ {1, 2, . . . , n} such that
ti > 0, let dmin

i = max{ui, 0} and dmax
i = max{si − 1, 0} be the least and largest values of

d for which M [i, d] is finite. Now, the function fi : {dmin
i , . . . , dmax

i } → N ∪ {0} will satisfy
fi(d) = M[i, d]. Observe that the function fi is discrete. We stress that in this section, we do
not explicitly compute the entries of M – the definition of the functions concerns the values
that would have been stored in these entries if they were computed by using Alg1.

I Lemma 15. For each i ∈ {1, 2, . . . , n} such that ti > 0, there exist basei, ai, bi ∈ N ∪ {0}
such that for all d ∈ {dmin

i , . . . , dmax
i }:

fi(d) =


basei if dmin

i ≤ d ≤ ai

(basei − ai) + d if ai ≤ d ≤ bi

(basei − ai − bi) + 2d if bi ≤ d ≤ dmax
i

Moreover, base1, a1 and b1 can be computed in constant time, and for each i ∈ {2, 3, . . . , n}
such that ti > 0, given baseprev(i), aprev(i) and bprev(i), basei, ai and bi can be computed in
constant time.

An example is given in Fig. 2(C). The proof is based on Lemma 13 and an exhaustive case
analysis, which, for the sake of clarity of presentation, is handled separately in Section 3.4.

Our algorithm, Alg2, performs the following computation:
1. Let base0 = a0 = b0 = 0.
2. For i = 1, 2, . . . , n:

a. If ti = 0, skip the rest of the current iteration.
b. Compute basei, ai and bi using baseprev(i), aprev(i) and bprev(i).

3. Return basen.

We are now ready to prove our main result.

I Theorem 16. Alg2 solves CNTP in time O(n) and space O(1).

Proof. According to Lemma 15, the function fi(d) = M[i, d] is a piecewise linear function
described by three values. The correctness of Lemma 15 shows that step 3 calculates these
values in constant time and space given the previous values. The time and space complexity
of Alg2 follow directly.
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Now, by the correctness of Alg1, it is sufficient to prove that Alg2 returns the value
min0≤d≤N M[n, d]. By Observation 11, min0≤d≤N M[n, d] = mindmin

n ≤d≤dmax
n

M[n, d]. By
Lemma 15, we further have that mindmin

n ≤d≤dmax
n

M[n, d] = basen. Thus, by the inductive
proof of Lemma 15, we conclude that Alg2 solves CNTP. J

3.4 Case Analysis
The purpose of this section is to prove the correctness of Lemma 15. That is, we want
to show that fi(d) is a piecewise linear function described by three parameters, and these
parameters can be calculated in constant time. To this end, let j = prev(i) and Ri = uj − ui.
Accordingly, the term a(i, d)−a(j, d′) can be written as Ri + d−d′. Moreover, let d′opt be the
argument d′ that minimizes the recursive formula we use to compute M[i, d] under certain
conditions that will be clear from context.

We prove Lemma 15 by induction on i. To simplify the proof, let a0 = b0 = base0 = 0
and f0(d) = 2d for every 0 ≤ d ≤ N . This definition is equivalent to adding the new entries
s0 = t0 = N + 1 (which do not affect the distance from S to T ), and thus, it can serve as the
basis of our induction. Next, suppose that Lemma 15 holds for j = prev(i) < i, and we will
prove that it holds for i.

The proof is based on an exhaustive case analysis that examines the position of Qi relative
to dmin

j , aj , bj and dmax
j , as well as the sign of Ri. For example, one of the cases is defined

by the conditions dmin
j ≤ Qi ≤ aj , Ri ≥ 0 and aj − Ri ≤ Qi . In each case, we analyze

the behavior of M[i, d] as we increase d. More precisely, we examine several intervals that
together contain all of the values that can be assigned to d. For example, in the above
mentioned case, we consider the intervals d ≤ aj −Rj , aj −Rj ≤ d ≤ Qi and Qi ≤ d. For
each interval, we let d′opt be an argument d′ that minimizes M[i, d] under the conditions of
the examined case. These conditions along with d′opt allow us to remove the minimization
and maximization functions from the formula defining M[i, d], and thus we obtain fi(d).
In the latter example, if d ≤ aj − Rj we can choose d′opt = aj and get fi(d) = M[i, d] =
M[j, aj ] + max{d − aj , 0} + max{Ri + d − aj , 0} + max{Qi −max{d, aj}, 0}} = basej . As
a corollary of the analysis, we get that indeed fi(d) is piecewise linear, and that ai, bi and
basei can be calculated in constant time given aj , bj , basej , Ri and Qi.

Due to lack of space, the details of the case analysis are omitted. The analysis shows that
in all cases, fi(d) is indeed a piecewise linear function with at most three linear segments
defined by some ai, bi, basei. After applying straightforward operations that reorganize the
analysis (to present the results in a compact manner), we obtain the algorithm PiecewiseAlg,
whose pseudocode is given below. This algorithm performs step 2b of Alg2, i.e., it calculates
ai, bi, basei given aj , bj , basej and Qi in constant time and space.

PiecewiseAlg first calculates Ri, dmin
i and dmax

i based on si and ti. Next, according to
the sign of Ri and the relative position of Qi in comparison to the previous aj and bj , the
algorithm calculates the structure of fi(d) defined by ai and bi. Finally, since fi(d) is defined
only for the range dmin

i ≤ d ≤ dmax
i , we calculate basei = fi(dmin

i ). Similarly, we limit the
values of ai and bi to that range.

4 Conclusion

In this paper, we initiated the study of distances between CNPs from a theoretical point of
view. We focused on one fundamental problem, CNTP, and showed that it is solvable in
linear time and constant space. To this end, we proved several properties of CNTP that may
be useful in solving other problems involving CNPs. Our algorithm can be modified to return
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Algorithm 1 PiecewiseAlg
Input: si, ti, Qi, aj , bj , basej

Output: ai, bi, basei

Ri ← uj − ui

dmin
i ← max{ui, 0}

dmax
i ← max{si − 1, 0}

if Ri ≥ 0 then
if Qi ≤ aj then

ai ← aj −Ri; bi ← bj .
else if aj < Qi ≤ bj then

ai ← Qi −Ri; bi ← bj .
else if bj < Qi then

ai ← bj −Ri; bi ← Qi.
end if

else if Ri < 0 then
if Qi ≤ aj then

ai ← aj ; bi ← bj −Ri.
else if aj < Qi ≤ bj then

ai ← Qi; bi ← bj −Ri.
else if bj < Qi then

ai ← min{Qi, bj −Ri}; bi ← max{Qi, bj −Ri}.
end if

end if

basei ← basej + max{Qi − aj , 0}+


0 if dmin

i ≤ ai

dmin
i − ai if ai < dmin

i ≤ bi

2dmin
i − ai − bi if bi < dmin

i ≤ dmax
i

ai ← max{dmin
i , min{ai, dmax

i }}; bi ← max{ai, min{bi, dmax
i }}.

a transformation that realizes dist(S, T ) in linear time and linear space by backtracking
the dynamic programming vector. We have implemented the algorithm as well as an ILP
formulation of CNTP (the implementations are available upon request), and we intend to
assess the performance of these approaches.

Many computational and combinatorial aspects in the analysis of distances between
CNPs require further research. Indeed, this paper can be viewed as a first step towards
understanding them. We intend to investigate variants of CNTP where one seeks a CNP
that minimizes the overall distance from it to two (or more) CNPs that are given as input.
Such variants are relevant to phylogenetic reconstruction in cancer (see [13]). Additional
directions for further research involve the introduction of edit operations other than basic
segmental deletions and amplifications, dealing with phasing of the profiles, as well as the
handling of noise.
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Abstract
The all scores matrix of a grid graph is a matrix containing the optimal scores of paths from every
vertex on the first row of the graph to every vertex on the last row. This matrix is commonly used
to solve diverse string comparison problems. All scores matrices have the Monge property, and
this was exploited by previous works that used all scores matrices for solving various problems.
In this paper, we study an extension of grid graphs that contain an additional set of edges, called
bridges. Our main result is to show several properties of the all scores matrices of such graphs.
We also give an O(r(nm+n2)) time algorithm for constructing the all scores matrix of an m×n
grid graph with r bridges.
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1 Introduction

String comparison is a fundamental problem in computer science that has applications
in computational biology, computer vision, and other areas. String comparison is often
performed using sequence alignment: The characters of two input strings are aligned to each
other, and a scoring function gives a score to the alignment according to pairs of the aligned
characters and unaligned characters. The goal of the string alignment problem is to seek an
alignment that maximizes (or minimizes) the score. Common scoring functions are the edit
distance score, and the LCS (longest common subsequence) score.

All scores matrices were introduced by Apostolico et al. [2] in order to obtain fast
parallel algorithms for LCS computation. The all scores matrix of two strings A and B

is a (|B|+ 1) × (|B|+ 1) matrix that stores the optimal alignment scores between A and
every substring of B. More precisely, the element at row i and column j in the matrix is
the optimal alignment score between A and B[i..j]. All scores matrices are also called DIST
matrices [2] or semi-local score matrices [30].

The problem of efficiently constructing the all scores matrix of two strings has been
studied in several papers [29, 1, 2, 17, 19, 20, 21, 22, 26, 31, 30]. All scores matrices provide
a very powerful tool that can be also used for solving many problems on strings: optimal
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(a) (b)

Figure 1 The crossing paths property yielding the Monge property in grid graphs. In Figure (a),
the dark gray path is an optimal path from (0, 1) to (4, 5), and the light gray path is an optimal
path from (0, 2) to (4, 4). These two paths cross at the vertex v. Figure (b) shows that a path from
(0, 1) to (4, 4) can be obtained by taking the prefix of the dark gray path until v, and the suffix of
the light gray path from v. Similarly, a path from (0, 2) to (4, 5) can be obtained by taking the
prefix of the light gray path until v, and the suffix of the dark gray path from v. The sum of scores
of the new paths is equal to the sum of scores of the former paths, which is equal to D[1, 5] + D[2, 4].
Since the new paths are not necessarily optimal, we obtain that D[1, 4] + D[2, 5] ≥ D[1, 5] + D[2, 4].

sequence alignment computation [9], approximate tandem repeats [24, 29], approximate
non-overlapping repeats [5, 15, 29], common substring alignment [23, 25], sparse spliced
alignment [16, 28], alignment of compressed strings [12], fully-incremental string compari-
son [14, 30], and other problems.

The alignment problem on strings A and B can be represented by using an (|A|+ 1)×
(|B|+1) grid graph, known as the alignment graph (cf. [29]). Vertical (respectively, horizontal)
edges correspond to alignment of a character in A (respectively, B) with a gap, and diagonal
edges correspond to alignment of two characters in A and B. A path from the j-th vertex on
row i to the j′-th vertex on row i′ corresponds to an alignment of A[i..i′] and B[j..j′]. The
all scores matrix is therefore a matrix that contains the maximum (or minimum) scores of
paths from vertices on the first row of the alignment graph to the vertices on the last row.

For an n × n matrix D, its density matrix D� is an (n − 1) × (n − 1) matrix, where
D�[i, j] = D[i, j] +D[i− 1, j − 1]−D[i− 1, j]−D[i, j − 1]. A matrix is called Monge if its
density matrix is either non-negative or non-positive, and unit Monge if every row or column
of the density matrix contains at most one non-zero element, and all the non-zero elements
are equal to 1. All scores matrices of grid graphs are Monge matrices, this follows from the
crossing paths property of the grid graph: If P1 and P2 are two paths from vertices on the
first row to vertices on the last row of the graph, where on the first row the endpoint of P1
appears before the endpoint of P2, and on the last row the endpoint of P1 appears after the
endpoint of P2, then the paths P1 and P2 must cross. This is illustrated in Figure 1. The
Monge property is crucial for many of the algorithms for constructing all score matrices and
for their applications. When the scoring function is the LCS score, the all scores matrix is
unit Monge [31].

In this paper we extend the classical grid graphs to include an additional set of edges.
These additional edges are of form ((i, j), (i′, j′)) where i′ ≥ i and j′ ≥ j, and either
i′ > i+ 1 or j′ > j + 1 (see Figure 2a). We call these edges bridges. The bridges represent
correspondence between pairs of substrings, one per each input sequence, which could be
precomputed using an auxiliary adviser. In grid graphs enhanced with bridges, the crossing
paths property no longer holds, and so the all scores matrix does not necessarily have the
Monge property (see Figure 2).

Motivating examples of grid graphs enhanced with bridges are found in the domain of
computational biology. Here, bridges are often used to incorporate additional information
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that is known about the function and the physical structure of the aligned biomolecules and
of their components [6, 11, 27]. One such example is found in a problem denoted “sequence
alignment guided by motifs”. Here, each one of the input sequences is first subjected to a
parsing step in which meaningful substrings within it are identified and labeled. Substrings
sharing the same label could be instantiations of the same motif shared by members of a
protein family [13], particular DNA or RNA substrings of similar structure or function [4],
or conserved molecular binding sites shared by multiple sequences that are combinatorially
regulated in some biological pathway. Note that two substrings identified as belonging to
the same motif family could be quite diverged in sequence, as it is the function, rather than
the exact sequence, that is conserved in functional motifs. Yet, pairs of substrings sharing
the same motif label are expected to be highly conserved in their location and order of
occurrences within homologous genomic sequences. To incorporate this information, the
alignment grid graph is enhanced with bridges reflecting pairs of substrings belonging to
the same motif family, one from each sequence, and weights are assigned to these additional
edges based on some a-priori scoring scheme expressing the importance of conserving the
motifs in the alignment [4, 3, 8].

Our contribution and roadmap

In this paper, we consider grid graphs with bridges, and we assume that the non-bridge edges
have 0/1 weights. We note that grid graphs with arbitrary bounded integer weights on the
non-bridge edges can be reduced to grid graphs with 0/1 weights [30], and thus we will only
consider the 0/1 weights scheme. However, this reduction is only quasi-polynomial: If the
weights of non-bridge edges in the original grid graph are integers between −C and C, the
reduction increases the size of graph by a factor of Θ(C2).

Our main result is to show the following properties of the non-zero values in the density
matrix of an all scores matrix of a grid graph with r bridges (see Figure 2 for an example).

1. All the non-zero values in the density matrix are −1 or 1, except for O(r2) values in
specific locations in the matrix.

2. In every row or column, except for r specific rows and r specific columns, the number of
non-zero values is O(r).

In particular, the number of non-zero values in the density matrix is O(rn). Thus, if r = o(n),
the all scores matrix is “almost Monge”. Property 1 will be proved in Section 2 (Theorem 3),
and Property 2 in Sections 3. Due to space constraints, we only prove Property 2 for the
case of a single bridge.

As a consequence of our main result, we obtain an algorithm for computing the all scores
matrix for grid graphs with bridges in O(r(nm + n2)) time. This algorithm is based on
Schmidt’s algorithm [29] for grid graphs with no bridges, and utilizes the properties described
above. See below for comparison of this algorithm with previous results. The algorithm is
given in Section 4 (Theorem 20).

Due to space constraints, some proofs were omitted.

Related work

Our algorithm mentioned above computes the optimal scores of paths from every vertex in
a specific set of vertices (the vertices on the first row) to every vertex in the graph. This
problem is called multiple source shortest paths (MSSP) problem. Algorithms for solving
MSSP were proposed by several previous works. Schmidt [29] gave an MSSP algorithm
for grid graphs with general weights. This algorithm constructs the all scores matrix in
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O((nm+ n2) logn) time. For grid graphs with bounded integers weights, Schmidt gave an
algorithm that constructs the all scores matrix in O(mn) time. Tiskin [30] gave an MSSP
algorithm for grid graphs with bounded integer weights that constructs the all scores matrix
in O(mn(log logn/ logn)2) time. The results on grid graphs have been extended to general
planar graphs. Klein [18] gave an algorithm for MSSP on planar graphs with general weights.
The algorithm constructs the all scores matrix of a grid graph in O((nm+ n2) logn) time.
Eisenstat and Klein [10] gave an algorithm for MSSP on undirected planar graphs with
bounded integer weights, which is faster than the algorithm of Klein by a factor of Θ(logn).
Cabello et al [7] extended the result of Klein to graphs that can be embedded on a surface
with genus g. Since a grid graph with r bridges can be embedded on a surface with genus r,
the algorithm of Cabello et al. constructs the all scores matrix of a grid graph with r bridges
and general weights in O(rn2 log2 n) time. Cabello et al. also gave a randomized algorithm
whose running time is O(rn2 logn) with high probability. Our algorithm improves the result
of Cabello et al. by a factor of Θ(log2 n) for the case of bounded integer weights.

2 Preliminaries and basic problem properties

A grid graph with bridges is a directed graph G = (V,E) whose vertex set is V = {(i, j) : 0 ≤
i ≤ m, 0 ≤ j ≤ n}, and whose edge set consists of four types of edges:
1. Horizontal edges: ((i, j), (i, j + 1)) for every pair of indices i, j satisfying 0 ≤ i ≤ m and

0 ≤ j < n.
2. Vertical edges: ((i, j), (i + 1, j)) for every pair of indices i, j satisfying 0 ≤ i < m and

0 ≤ j ≤ n.
3. Diagonal edges: Edges of the form ((i, j), (i+ 1, j + 1)).
4. Bridges: Edges of the form ((i, j), (i′, j′)) where i ≤ i′ and j ≤ j′, and either i+ 1 < i′ or

j + 1 < j′.
In our framework, the horizontal and vertical edges have weight 0, the diagonal edges have
weight 1, and each bridge has a positive integer weight. The score of a path is the sum of
the weights of its edges. The 0/1 weights of the non-bridge edges correspond to the LCS
scoring scheme for sequence alignment.

Let G be a grid graph with bridges f1, . . . , fr. For a path P in G, if the first bridge P
passes through is fs, we say that P is an s-path. If P does not pass through bridges, we say
that P is a 0-path. The reason for focusing on the first bridge is to obtain a variant of the
crossing path property which will be given in Lemma 12.

We define matrices D, D�, and Dfirst as follows (see Figure 2).
1. For 0 ≤ i ≤ j ≤ n, D[i, j] is the maximum score of a path from (0, i) to (m, j). For i > j,

D[i, j] = j − i. The matrix D is called the all scores matrix of G.
2. For 1 ≤ i, j ≤ n, D�[i, j] = (D[i, j] + D[i − 1, j − 1]) − (D[i − 1, j] + D[i, j − 1]). The

matrix D� is called the density matrix of D.
3. For 0 ≤ i, j ≤ n, Dfirst[i, j] is a subset of the set S = {0, 1, . . . , r} of bridge indices. For

every s ∈ S, s ∈ Dfirst[i, j] if and only if there is an s-path from (0, i) to (m, j) with score
D[i, j].

To illustrate the importance of this matrix, consider a region in Dfirst in which all elements
contain the same symbol s. Then, the crossing path property holds for indices in the region
(since the two paths pass through fs), so we obtain that the Monge property holds inside the
region.

Next, we point out the entries in D and in D� that are affected by a bridge in G. For
some bridge fk = ((i, j), (i′, j′)), we define start(fk) = j and end(fk) = j′. We also define
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(a) Grid graph
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Figure 2 Figure (a) contains an example of a grid graph with two bridges. The weight of the
bridge f1 = ((1, 2), (9, 5)) is 7, and the weight of the bridge f2 = ((0, 6), (9, 7)) is 4. The matrices
D, D�, and Dfirst of the graph are shown in Figures (b), (c), and (d), respectively. Only the
non-zero values of the density matrix are shown. The boundary indices are marked in grey, and the
intersection indices are marked with darker grey. As stated in the text, each column or row of the
density matrix can contain at most two negative values in non-boundary indices, and these values
must be −1. The value of D�[3, 5] is 2 + 2 − 7 − 1 = −4, and these four values in D are marked in
(b). The cause of the negative value in D�[3, 5] is that the corresponding optimal paths do not cross.

Ek = {(i, j) : i ≤ start(fk), j ≥ end(fk)}. In other words, Ek contains all indices (i, j) in D
such that paths from (0, i) to (m, j) can pass through fk. The boundary of fk is a set of indices
in D�, defined as Bk = {(i, end(fk)) : i ≤ start(fk) + 1} ∪ {(start(fk) + 1, j) : j ≥ end(fk)}.
The two sets in the definition of Bk are called the left boundary and bottom boundary of fk,
respectively. We say that an index (i, j) in D is a boundary index if it is inside the boundary
of some fk. An index (i, j) is an intersection index if there are k, k′ (possibly k = k′) such
that (i, j) is in the left boundary of fk and in the bottom boundary of fk′ (see Figure 2c).

In the introduction we gave two properties of the density matrix. We now restate these
properties using the definitions above.
1. Non-zero values other than −1, 1 can appear only at intersection indices.
2. In every row or column, the number of −1 values in non-boundary indices is at most r,

and the number of 1 values in these indices is at most r.
Due to space constraints, we show these properties only for negative values. We will prove
the properties for the positive values in the full version of the paper. Due to symmetry, we
will show Property 2 only for columns.

CPM 2016
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Note that if i > j+1, D�[i, j] = (j− i)+((j−1)−(i−1))−(j−(i−1))−((j−1)− i) = 0.
If i = j + 1 then D�[i, j] = −D[j, j], so in this case D�[i, j] = 0 unless there is a bridge
fk with start(fk) = end(fk) = j, in which case (i, j) is an intersection index. Similarly,
for i = j, D�[i, j] ∈ {0, 1} unless one of the following two cases occurs: (1) There is a
bridge fk with start(fk) = j − 1 and end(fk) = j. (2) There are bridges fk and fk′ with
start(fk) = end(fk) = j − 1 and start(fk′) = end(fk′) = j. In both cases (i, j) is an
intersection index. Therefore, the properties stated above are satisfied for indices (i, j) with
i ≥ j. In the rest of the paper we will implicitly assume that indices (i, j) in D� satisfy
i < j.

We now give a proof for Property 1. For this goal, we need the following definition and
lemma.

I Definition 1. A pair of indices (i1, j1), (i2, j2) in the matrix D are said to be bridge
equivalent if for every 1 ≤ k ≤ r, (i1, j1) ∈ Ek if and only if (i2, j2) ∈ Ek. In other words,
(i1, j1), (i2, j2) are bridge equivalent if paths from (0, i1) to (m, j1) and paths from (0, i2) to
(m, j2) can pass through the same set of bridges.

I Lemma 2. For every i, j,
1. If (i, j − 1) and (i, j) are bridge equivalent, D[i, j − 1] ≤ D[i, j] ≤ D[i, j − 1] + 1.
2. If (i− 1, j) and (i, j) are bridge equivalent, D[i, j] ≤ D[i− 1, j] ≤ D[i, j] + 1.

Property 1 is now obtained.

I Theorem 3. Negative values other than −1 can appear only at intersection indices.

Proof. Let (i, j) be an index that is not an intersection index. We have that either (1)
(i, j − 1), (i, j) are bridge equivalent, and (i − 1, j − 1), (i − 1, j) are bridge equivalent, or
(2) (i − 1, j), (i, j) are bridge equivalent, and (i − 1, j − 1), (i, j − 1) are bridge equivalent.
In the former case we can rearrange the terms in the definition of D�[i, j] and obtain that
D�[i, j] = ∆1−∆2, where ∆1 = D[i, j]−D[i, j−1] and ∆2 = D[i−1, j]−D[i−1, j−1]. We
have ∆1 −∆2 < 0, and by Lemma 2, ∆1,∆2 ∈ {0, 1}. It follows that ∆1 = 0 and ∆2 = 1, so
D�[i, j] = −1. In the latter case we write D�[i, j] = ∆′1−∆′2 where ∆′1 = D[i, j]−D[i−1, j]
and ∆2 = D[i, j − 1]−D[i− 1, j − 1]. By Lemma 2, in this case ∆′1 = −1 and ∆′2 = 0, so
again D�[i, j] = −1. J

We next give several lemmas which will be used later to prove Property 2 in Section 3.

I Definition 4. An index (i, j) which is not a boundary index and for which D�[i, j] < 0 is
called an injury. The submatrices D[i− 1..i, j − 1..j] and Dfirst[i− 1..i, j − 1..j] are called
the submatrices of D and Dfirst corresponding to the injury, respectively.

I Lemma 5. For an injury (i, j), D[i− 1..i, j − 1..j] = ( x x+1
x x ) for some x.

Proof. As in the proof of Theorem 3, D�[i, j] = ∆1−∆2, where ∆1 = D[i, j]−D[i, j−1] = 0
and ∆2 = D[i − 1, j] − D[i − 1, j − 1] = 1. Thus, D[i − 1..i, j − 1..j] is of the form
( y y+1
x x ). We also have D�[i, j] = ∆′1 − ∆′2 where ∆′1 = D[i, j] − D[i − 1, j] = −1 and

∆′2 = D[i, j − 1]−D[i− 1, j − 1] = 0. The lemma follows. J

Our next goal is to show that every column in the density matrix contains at most r
injuries. Consider a fixed column, and assume that this column has k injuries.

I Definition 6. Let Di =
(
γi βi

αi δi

)
be the submatrix of Dfirst corresponding to the i-th injury,

where the injuries are numbered in increasing row indices.



A. Carmel, D. Tsur, and M. Ziv-Ukelson 17:7

Our approach for proving that k ≤ r is based on showing properties of the Dfirst matrix.
One of our techniques is showing that there are forbidden structures in Dfirst. For example,
Lemma 10 below states that a structure consisting of a symbol s ∈ βi and s ∈ αj for j ≥ i
is forbidden. For the case of r = 1, applying this lemma with i = j implies that there are
only two possible values for αi, βi: either {0}, {1} or {1}, {0}. If we assume conversely that
there are k = 2 injuries, then there are four possible values for α1, β1, α2, β2. We then use
Lemma 10 and an additional lemma (Lemma 12) that gives another forbidden structure in
Dfirst, and show that each of these four cases cannot occur. This is a contradiction, and
therefore there cannot be two injuries.

I Lemma 7. For every i, j,
1. If (i, j − 1) and (i, j) are bridge equivalent,

(a) If D[i, j − 1] = D[i, j] then Dfirst[i, j − 1] ⊆ Dfirst[i, j].
(b) If D[i, j − 1] + 1 = D[i, j] then Dfirst[i, j] ⊆ Dfirst[i, j − 1].

2. If (i− 1, j) and (i, j) are bridge equivalent,
(a) If D[i, j] = D[i− 1, j] then Dfirst[i, j] ⊆ Dfirst[i− 1, j].
(b) If D[i, j] + 1 = D[i− 1, j] then Dfirst[i− 1, j] ⊆ Dfirst[i, j].

Proof. We first prove the first part of the lemma. Choose a value s ∈ Dfirst[i, j−1]. Let P an
s-path from (0, i) to (m, j− 1) with score D[i, j− 1]. The path P ′ obtained by appending the
vertex (m, j) to P is an s-path from (0, i) to (m, j) with score D[i, j − 1] = D[i, j] Therefore,
s ∈ Dfirst[i, j].

We next prove the second part of the lemma. Let s ∈ Dfirst[i, j], and let P be an s-path
from (0, i) to (m, j) with score D[i, j]. Since (i, j − 1),(i, j) are bridge equivalent, P cannot
pass through a bridge f with end(f) > j− 1, so P has vertices on column j− 1. Denote by k
the maximal index such that (k, j − 1) ∈ P . The path P ′ obtained by taking the prefix of P
until (k, j−1), and appending the vertices (k+ 1, j−1), . . . , (m, j−1) is an s-path from (0, i)
to (m, j − 1) with score at least D[i, j]− 1 = D[i, j − 1]. It follows that s ∈ Dfirst[i, j − 1].

The proofs of the third and fourth parts of the lemma are symmetrical to the proofs of
the first two parts, and thus they are omitted. J

The following lemma follows directly from Lemmas 5 and 7.

I Lemma 8. For every i, αi ⊆ γi ∩ δi and βi ⊆ γi ∩ δi

In order to restrict values of D in indices for which the entries in Dfirst contain the same
symbol s, we define a matrix Ds as follows. For a symbol s ∈ S, let Ds be a matrix in which
for every (i, j) ∈ Es, Ds[i, j] is the maximum score of an s-path from (0, i) to (m, j). For
s = 0, Ds is defined as above, except that Ds[i, j] is defined for every 0 ≤ i, j ≤ n. Note that
Ds[i, j] ≤ D[i, j] for every (i, j) for which Ds[i, j] is defined.

I Lemma 9. For every s ∈ S, the matrix Ds has the Monge property.

Proof. For s = 0 the lemma is true due to the crossing paths property for grid graphs with
no bridges. For s > 0 we also have the crossing paths property: For every index (i, j), a
maximum score s-path from (0, i− 1) to (m, j) must cross a maximum score s-path from
(0, i) to (m, j − 1) as both paths pass through fs. Thus, the lemma follows. J

I Lemma 10. For every 1 ≤ i ≤ j ≤ k, βi ∩ αj = ∅.

Proof. Fix i ≤ j, and assume conversely that s ∈ βi ∩ αj . By Lemma 5, the submatrices of
D corresponding to injuries i and j are D′ = ( x x+1

x x ) for some x, and D′′ =
(
y y+1
y y

)
for some
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(a) (b) (c)

Figure 3 An illustration of the proof of
Lemma 10. The grey s symbols in figure (a) rep-
resent values that are obtained using Lemma 8.

Figure 4 An illustration of the proof of
Lemma 12.

y, respectively (see Figure 3). Let D′s and D′′s be the submatrices of Ds that correspond to
D′ and D′′, respectively. From the assumption s ∈ βi and Lemma 8, we have that s ∈ γi.
Thus, the first row of D′s is equal to the first row of D′. Similarly, we have that s ∈ δj and
therefore the last row of D′′s is equal to the last row of D′′. By taking the first row of D′s
and the last row of D′′s , we obtain that Ds contains a submatrix

(
x x+1
y y

)
and therefore Ds

does not have the Monge property. This contradicts Lemma 9. J

Finally, we give another forbidden structure in Dfirst, based on a variant of the crossing
path property.

I Definition 11. Let � be a linear order on S = {0, 1, . . . , r} defined as follows. For every
i 6= j, i � j if and only if start(fi) ≤ start(fj), where start(f0) =∞.

I Lemma 12. Let di, dj , dk be values on rows i, j, k of some column i′ of Dfirst, where
i < j < k. Then, there are no s, t ∈ S such that s � t, s ∈ di ∩ dk, t /∈ di ∪ dk, and t ∈ dj.

Proof. Assume conversely that there are s, t ∈ S such that s � t, s ∈ di ∩ dk, t /∈ di ∪ dk,
and t ∈ dj . Note that s 6= 0 since by definition, 0 6� t.

Let Pi, Pk be maximum score s-paths from (0, i) and (0, k) to (m, i′), respectively. Let
Pj be a maximum score t-path from (0, j) to (m, i′). Since s � t, in the subgraph of G that
contains the vertices above and to the left of the start vertex of fs, the paths Pi, Pj , Pk do
not pass through bridges (see Figure 4). Thus, Pj must cross one of the paths Pi and Pk.
Assume without loss of generality that Pj crosses Pk.

Let P 1
j , P

1
k denote the prefixes of Pj , Pk until the crossing point, and let P 2

j , P
2
k denote

the suffixes of Pj , Pk from the crossing point. Let y, z denote the scores of the paths Pj , Pk,
respectively, and let a, b denote the score of the paths P 1

j , P
1
k , respectively.

We have that the path P 1
k ∪P 2

j is a t-path from (0, k) to (m, i′). Since t 6∈ dk, we conclude
that b+(y−a) < z. Furthermore, due to the path P 1

j ∪P 2
k we have a+(z−b) ≤ y. Summing

the two inequalities above we obtain y + z < y + z, a contradiction. J

3 Properties of the one bridge case

In this section we assume the grid graph has a single bridge, f = ((ibeg, jbeg), (iend, jend)),
and show that there is at most one injury in every column of D�.

I Theorem 13. There is at most one injury in every column of D�.

Proof. Fix some column of D�, and suppose conversely that there are at least two injuries
in this column. Recall that Di =

(
γi βi

αi δi

)
is the submatrix of Dfirst corresponding to the i-th
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(a) (b) (c) (d)

Figure 5 The four cases for two injuries in the proof of Theorem 13. The grey 0 in figure (a)
represents a value that is obtained using Lemma 8.

injury. By Lemma 10, αi ∩ βi = ∅, and since αi and βi are non empty subsets of S = {0, 1},
it follows that either Di is of the form ( · 1

0 · ) or Di is of the form ( · 0
1 · ). Considering the first

two injuries, there are four possible cases (see Figure 5):
1. D1, D2 are of the form ( · 1

0 · ).
2. D1, D2 are of the form ( · 0

1 · ).
3. D1 is of the form ( · 1

0 · ) and D2 is of the form ( · 0
1 · ).

4. D1 is of the form ( · 0
1 · ) and D2 is of the form ( · 1

0 · ).
We now show that each of the cases above yields a contradiction. In Case 1, we have from
Lemma 8 that 0 ∈ δ1. We now apply Lemma 12 on β1, δ1, β2 and obtain a contradiction
(taking s = 1 and t = 0). Case 2 yields a contradiction using similar arguments. In Cases 3
and 4, we have 1 ∈ β1 ∩ α2 and 0 ∈ β1 ∩ α2, respectively, which is a contradiction to
Lemma 10. J

Theorem 13 implies the following corollary.

I Corollary 14. For j 6= jend there are at most two negative values in column j of D�.
Moreover, the negative values can occur only in rows 1, . . . , jbeg + 1, and if there are two
negative values, one of the values must be in row jbeg + 1.

Proof. The column j can contain at most one injury. The column j has at most one boundary
index, so there is at most one negative value in addition to the injury. J

4 Algorithm for constructing all-scores matrices

In this section we give an algorithm for computing the all scores matrix of a grid graph
with bridges. Our algorithm is an extension of the algorithm of Schmidt for a grid graph
without bridges [29]. We follow the presentation of Schmidt’s algorithm which was given in
Matarazzo et al. [26]. For clarity of presentation, we will first describe an algorithm for the
case of a single bridge, and we will later handle the case of r > 1 bridges.

Let f = ((ibeg, jbeg), (iend, jend)) be the single bridge of the grid graph, and let Wf denote
its weight.

Let G0, . . . , Gm be grid graphs, where Gi is the subgraph of G induced by all the vertices
(i′, j) with i′ ≤ i. Let D0, . . . , Dm be the all scores matrices of G0, . . . , Gm, respectively.

For 0 ≤ k ≤ n, define

DiffCi,j(k) = Di[k, j + 1]−Di[k, j] and DiffRi,j(k) = Di+1[k, j]−Di[k, j].

The following lemma follows from the definition above.

I Lemma 15. For i ≤ m, if all DiffCi,j(k) values are known for all j and k, then the
matrix Di can be constructed in O(n2) time.

CPM 2016
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Our algorithm for constructing the all-scores matrix of G computes all DiffCm,j functions
and then applies Lemma 15. The algorithm is based on the following properties of the
DiffCi,j and DiffRi,j functions.
1. Most DiffCi,j and DiffRi,j functions have compact representations of size O(1).
2. The compact representations of DiffCi+1,j and DiffRi,j+1 can be computed efficiently

from the compact representations of DiffCi,j and DiffRi,j .

Property 1, stated in Lemma 18, is obtained from Lemmas 16 and 17 below. Property 2
is shown in Lemma 19. Similar properties were used in the algorithm of Schmidt for grid
graphs with no bridges. In that case, all the DiffCi,j and DiffRi,j functions have compact
representations, and the size of each representation is exactly 1. In the case of a grid graph
with a bridge, we need additional steps to handle the DiffCi,j and DiffRi,j functions that
do not have compact representations.

I Lemma 16. For every j 6= jend − 1, DiffCi,j(k) ∈ {0, 1}, and for every i 6= iend − 1,
DiffRi,j(k) ∈ {0, 1}.

Proof. Follows immediately from Lemma 2. J

I Lemma 17.
1. For every i and j 6= jend − 1 there are k1 < k2 (where k2 = jbeg + 1) such that for every

k 6= k1, k2, DiffCi,j(k − 1) ≤ DiffCi,j(k).
2. For every i 6= iend − 1 and j there are k1 < k2 (where k2 = jbeg + 1) such that for every

k 6= k1, k2, DiffRi,j(k − 1) ≥ DiffRi,j(k).

Based on the previous two lemmas, we now give a compact representation for the DiffRi,j

and DiffCi,j functions. The compact representation SRi,j of DiffRi,j is an array of “step”
indices, i.e., the indices in which the value of DiffRi,j change. Formally, let I be the set
of all indices k such that DiffRi,j(k) 6= DiffRi,j(k − 1). Then, SRi,j [l] is the l-th smallest
element of I. The arrays SCi,j are defined similarly.

I Lemma 18. For every i 6= iend− 1 and j 6= jend− 1, the arrays SRi,j and SCi,j have O(1)
elements each.

In the following lemma we show that SCi+1,j and SRi,j+1 can be computed efficiently from
SCi,j and SRi,j . For every (i, j) 6= (iend − 1, jend − 1) and k ≤ j, the optimal path from
(0, k) to (i+ 1, j + 1) passes through either (i+ 1, j), (i, j), or (i, j + 1). Thus,

Di+1[k, j + 1] = max{Di+1[k, j], Di[k, j] +Wi,j , Di[k, j + 1]},

where Wi,j = 1 if there is a diagonal edge entering (i, j) and Wi,j = 0 otherwise. From the
equality above, the following formulas for DiffCi+1,j and DiffRi,j+1 are obtained (see [26]).

I Lemma 19. For 0 ≤ k ≤ j and (i, j) 6= (iend − 1, jend − 1),

DiffCi+1,j(k) = Maxi,j(k)−DiffRi,j(k) and DiffRi,j+1(k) = Maxi,j(k)−DiffCi,j(k)

where Maxi,j(k) = max{DiffRi,j(k),Wi,j ,DiffCi,j(k)}.

We will use compact representations SMaxi,j for the Maxi,j functions, which are defined
similarly to the SRi,j arrays. From the definition of Maxi,j , every step of Maxi,j corresponds
to a step of either DiffCi,j or DiffRi,j , and thus the number of elements in SMaxi,j is less
then or equal to the number of elements in both SCi,j and SRi,j . Therefore, SMaxi,j has
O(1) elements for i 6= iend − 1 and j 6= jend − 1.
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Our algorithm for computing the arrays SCm,j , traverses every i, j and computes SCi+1,j
and SRi,j+1 from SCi,j and SRi,j using Lemma 19. When i 6= iend − 1 and j 6= jend − 1,
this computation takes O(1) time by Lemma 18. There are two cases which require a special
treatment. The first case is (i, j) = (iend − 1, jend − 1). In this case Lemma 19 can not
be applied and thus SCi+1,j and SRi,j+1 must be computed differently. Here we compute
Di+1[k, j], Di[k, j + 1], and Di+1[k, j + 1], for every 0 ≤ k ≤ n. Then, we use these values to
compute DiffCi+1,j(k) and DiffRi,j+1(k) for all k, and finally we compute SCi+1,j and
SRi,j+1 from DiffCi+1,j and DiffRi,j+1.

The values Di+1[k, j] and Di[k, j + 1] are obtained using Lemma 15 in O(n2) time. To
compute the Di+1[k, j + 1] values, we use the equality

Di+1[k, j + 1] = max{Di[k, j + 1], Di[k, j] +Wi,j , Di+1[k, j], Dibeg [k, jbeg] +Wf}.

The second special case is when i = iend − 1 or j = jend − 1. In this case Lemma 18 does
not apply. Therefore, we can only bound the time to compute SCi+1,j and SRi,j+1 by O(n).
Since there are O(n+m) pairs i, j for which this case occurs, the total contribution of this
case to the time complexity of the algorithm is O(n2 + nm).

Extension to r bridges

The algorithm presented above can be extended to the case of r > 1 bridges. In this
case, using the results of the next section we get that for every non-boundary pair (i, j),
DiffCi,j and DiffRi,j are partitioned to O(r) monotone regions and thus their compact
representations SCi,j ,SRi,j have O(r) elements. Therefore, the computation of SCi,j ,SRi,j

for non-boundary indices takes O(rnm) time. As for boundary indices, the technique remains
as in the case of one bridge, only that now there are O(r) intersection indices and O(r(n+m))
boundary indices. Summing the above, the following theorem is obtained.

I Theorem 20. The all scores matrix for an m × n grid graph with r bridges can be
constructed in O(r(nm+ n2)) time.

Acknowledgments. We thank the anonymous CPM 2016 reviewers for their helpful com-
ments.
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Abstract
We consider computing a longest palindrome in the streaming model, where the symbols arrive
one-by-one and we do not have random access to the input. While computing the answer exactly
using sublinear space is not possible in such a setting, one can still hope for a good approx-
imation guarantee. Our contribution is twofold. First, we provide lower bounds on the space
requirements for randomized approximation algorithms processing inputs of length n. We rule
out Las Vegas algorithms, as they cannot achieve sublinear space complexity. For Monte Carlo
algorithms, we prove a lower bounds of Ω(M log min{|Σ|,M}) bits of memory; hereM = n/E for
approximating the answer with additive error E, andM = logn

log(1+ε) for approximating the answer
with multiplicative error (1 + ε). Second, we design three real-time algorithms for this problem.
Our Monte Carlo approximation algorithms for both additive and multiplicative versions of the
problem use O(M) words of memory. Thus the obtained lower bounds are asymptotically tight
up to a logarithmic factor. The third algorithm is deterministic and finds a longest palindrome
exactly if it is short. This algorithm can be run in parallel with a Monte Carlo algorithm to ob-
tain better results in practice. Overall, both the time and space complexity of finding a longest
palindrome in a stream are essentially settled.
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1 Introduction

In the streaming model of computation, a very long input arrives sequentially in small
portions and cannot be stored in full due to space limitation. While well-studied in general,
this is a rather recent trend in algorithms on strings. The main goals are minimizing the space
complexity, i.e., avoiding storing the already seen prefix of the string explicitly, and designing
real-time algorithm, i.e., processing each symbol in worst-case constant time. However,
the algorithms are usually randomized and return the correct answer with high probability.
The prime example of a problem on string considered in the streaming model is pattern
matching, where we want to detect an occurrence of a pattern in a given text. It is somewhat
surprising that one can actually solve it using polylogarithmic space in the streaming model,
as proved by Porat and Porat [13]. A simpler solution was later given by Ergün et al. [6],
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while Breslauer and Galil designed a real-time algorithm [3]. Similar questions studied in
such setting include multiple-pattern matching [4], approximate pattern matching [5], and
parametrized pattern matching [9].

We consider computing a longest palindrome in the streaming model, where a palindrome
is a fragment which reads the same in both directions. This is one of the basic questions
concerning regularities in texts and it has been extensively studied in the classical non-
streaming setting, see [1, 7, 11, 12] and the references therein. The notion of palindromes,
but with a slightly different meaning, is very important in computational biology, where
one considers strings over {A, T,C,G} and a palindrome is a sequence equal to its reverse
complement (a reverse complement reverses the sequences and interchanges A with T and C
with G); see [8] and the references therein for a discussion of their algorithmic aspects. Our
results generalize to biological palindromes in a straightforward manner.

We denote by LPS(S) the problem of finding the maximum length of a palindrome in a
string S (and a starting position of a palindrome of such length in S). Solving LPS(S) in the
streaming model was recently considered by Berenbrink et al. [2], who developed tradeoffs
between the bound on the error and the space complexity for additive and multiplicative
variants of the problem, that is, for approximating the length of the longest palindrome with
either additive or multiplicative error. Their algorithms were Monte Carlo, i.e., returned
the correct answer with high probability. They also proved that any Las Vegas algorithm
achieving additive error E must necessarily use Ω( nE log |Σ|) bits of memory, which matches
the space complexity of their solution up to a logarithmic factor in the E ∈ [1,

√
n] range, but

leaves a few questions. Firstly, does the lower bound still hold for Monte Carlo algorithms?
Secondly, what is the best possible space complexity when E ∈ (

√
n, n] in the additive

variant, and what about the multiplicative version? Finally, are there real-time algorithms
achieving these optimal space bounds? We answer all these questions.

Our main goal is to settle the space complexity of LPS. We start with the lower bounds in
Sect. 2. First, we show that Las Vegas algorithms cannot achieve sublinear space complexity
at all. Second, we prove a lower bound of Ω(M log min{|Σ|,M}) bits of memory for Monte
Carlo algorithms; here M = n/E for approximating the answer with additive error E, and
M = logn

log(1+ε) for approximating the answer with multiplicative error (1 + ε). Then, in
Sect. 3 we design real-time Monte Carlo algorithms matching these lower bounds up to a
logarithmic factor. Our real-time Monte Carlo algorithm for LPS with additive error E uses
O(n/E) words of space, and our real time Monte Carlo algorithm for LPS with multiplicative
error ε ≤ 1 uses O

( logn
ε

)
words of space. Finally we present, for any m, a deterministic

O(m)-space real-time algorithm solving LPS exactly if the answer is less than m and detecting
a palindrome of length ≥ m otherwise. The last result implies that if the input stream is
fully random, then with high probability its longest palindrome can be found exactly by a
real-time algorithm within logarithmic space.

Notation and Definitions. Let S denote a string of length n over an alphabet Σ =
{1, . . . , N}, where N is polynomial in n. We write S[i] for the ith symbol of S and S[i..j]
for its substring (or factor) S[i]S[i+ 1] · · ·S[j]; thus, S[1..n] = S. A prefix (resp. suffix) of S
is a substring of the form S[1..j] (resp., S[j..n]). A string S is a palindrome if it equals its
reversal S[n]S[n−1] · · ·S[1]. By L(S) we denote the length of a longest palindrome which is
a factor of S. log stands for the binary logarithm.

We consider the streaming model of computation: the input string S[1..n] (called the
stream) is read left to right, one symbol at a time, and cannot be stored, because the available
space is sublinear in n. The space is counted as the number of O(logn)-bit machine words.
An algorithm is real-time if the number of operations between two reads is bounded by a
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constant. An approximation algorithm for a maximization problem has additive error E
(resp., multiplicative error ε) if it finds a solution with the cost at least OPT − E (resp.,
OPT
1+ε ), where OPT is the cost of optimal solution; here both E and ε can be functions of the
size of the input. In the LPS(S) problem, OPT = L(S).

A Las Vegas algorithm always returns a correct answer, but its memory usage on the
inputs of length n is a random variable. A Monte Carlo algorithm gives a correct answer
with high probability and has deterministic working time. Here we call “high” the probability
greater than 1− 1/n.

2 Lower Bounds

In this section we use Yao’s minimax principle [15] to prove lower bounds on the space
complexity of the LPS problem in the streaming model, where the length n and the alphabet
Σ of the input stream are specified. We denote this problem by LPSΣ[n].

I Theorem 1 (Yao’s minimax principle for randomized algorithms). Let X be the set of inputs
for a problem and A be the set of all deterministic algorithms solving it. Then, for any
x ∈ X and A ∈ A, the cost of running A on x is denoted by c(a, x) ≥ 0.

Let p be the probability distribution over A, and let A be an algorithm chosen at random
according to p. Let q be the probability distribution over X , and let X be an input chosen at
random according to q. Then maxx∈X E[c(A, x)] ≥ mina∈AE[c(a,X)].

We use the above theorem for both Las Vegas and Monte Carlo algorithms. For Las
Vegas algorithms, we consider only correct algorithms, and c(x, a) is the memory usage. For
Monte Carlo algorithms, we consider all algorithms (not necessarily correct) with memory
usage not exceeding a certain threshold, and c(x, a) is the correctness indicator function, i.e.,
c(x, a) = 0 if the algorithm is correct and c(x, a) = 1 otherwise.

Our proofs will be based on appropriately chosen padding. In some cases the padding
requires a larger (but constant) alphabet, which can be always reduced to binary while
increasing the size of the input by a constant factor. For the padding we will often use an
infinite string ν = 011102120313 . . ., or more precisely its prefixes of length d, denoted ν(d).
Here 0 and 1 should be understood as two characters not belonging to the original alphabet.
The longest palindrome in ν(d) has length O(

√
d).

I Theorem 2 (Las Vegas approximation). Let A be a Las Vegas streaming algorithms solving
LPSΣ[n] with additive error E ≤ 0.99n or multiplicative error (1 + ε) ≤ 100 using s(n) bits
of memory. Then E[s(n)] = Ω(n log |Σ|).

Proof. By Theorem 1, it is enough to construct a probability distribution P over Σn such
that for any deterministic algorithm D, its expected memory usage on a string chosen
according to P is Ω(n log |Σ|) in bits.

Consider solving LPSΣ[n] with additive error E. We define P as the uniform distribution
over ν(E2 )x$$yν(E2 )R, where x, y ∈ Σn′ , n′ = n

2 −
E
2 − 1, and $ is a special character not in

Σ. Let us look at the memory usage of D after having read ν(E2 )x. We say that x is “good”
when the memory usage is at most n′

2 log |Σ| and “bad” otherwise. Assume that 1
2 |Σ|

n′ of all
x’s are good, then there are two strings x 6= x′ such that the state of D after having read both
ν(E2 )x and ν(E2 )x′ is exactly the same. Hence the behavior of D on ν(E2 )x$$xRν(E2 )R and
ν(E2 )x′$$xRν(E2 )R is exactly the same. The former is a palindrome of length n = 2n′+E+2,
so D must answer at least 2n′+2, and consequently the latter also must contain a palindrome
of length at least 2n′ + 2. A palindrome inside ν(E2 )x′$$xRν(E2 )R is either fully contained
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within ν(E2 ), x′, xR or it is a middle palindrome. But the longest palindrome inside ν(E2 ) is of
length O(

√
E) < 2n′+ 2 (for n large enough) and the longest palindrome inside x or xR is of

length n′ < 2n′ + 2, so since we have exluced other possibilities, ν(E2 )x′$$xRν(E2 )R contains
a middle palindrome of length 2n′ + 2. This implies that x = x′, which is a contradiction.
Therefore, at least 1

2 |Σ|
n′ of all x’s are bad. But then the expected memory usage of D is at

least n′

4 log |Σ|, which for E ≤ 0.99n is Ω(n log |Σ|) as claimed.
Now consider solving LPSΣ[n] with multiplicative error (1 + ε). An algorithm with

multiplicative error (1 + ε) can also be considered as having additive error E = n · ε
1+ε , so if

the expected memory usage of such an algorithm is o(n log |Σ|) and (1 + ε) ≤ 100 then we
obtain an algorithm with additive error E ≤ 0.99n and expected memory usage o(n log |Σ|),
which we already know to be impossible. J

Now we move to Monte Carlo algorithms. We first consider exact algorithms solving
LPSΣ[n]; lower bounds on approximation algorithms will be then obtained by padding the
input appropriately. We introduce an auxiliary problem midLPSΣ[n], which is to compute
the length of the middle palindrome in a string of even length n over an alphabet Σ.

I Lemma 3. There exists a constant γ such that any randomized Monte Carlo streaming
algorithm A solving midLPSΣ[n] or LPSΣ[n] exactly with probability 1 − 1

n uses at least
γ · n log min{|Σ|, n} bits of memory.

Proof. First we prove that if A is a Monte Carlo streaming algorithm solving midLPSΣ[n]
exactly using less than bn2 log |Σ|c bits of memory, then its error probability is at least 1

n|Σ| .
By Theorem 1, it is enough to construct probability distribution P over Σn such that

for any deterministic algorithm D using less than bn2 log |Σ|c bits of memory, the expected
probability of error on a string chosen according to P is at least 1

n|Σ| .
Let n′ = n

2 . For any x ∈ Σn′ , k ∈ {1, 2, . . . , n′} and c ∈ Σ we define

w(x, k, c) = x[1]x[2]x[3] . . . x[n′]x[n′]x[n′ − 1]x[n′ − 2] . . . x[k + 1]cx[k − 1] . . . x[2]x[1].

Now P is the uniform distribution over all such w(x, k, c).
Choose an arbitrary maximal matching of strings from Σn′ into pairs (x, x′) such that D is

in the same state after reading either x or x′. At most one string per state of D is left unpaired,
that is at most 2bn2 log |Σ|c−1 strings in total. Since there are |Σ|n′ = 2n′ log |Σ| ≥ 2·2bn2 log |Σ|c−1

possible strings of length n′, at least half of the strings are paired. Let s be longest common
suffix of x and x′, so x = vcs and x′ = v′c′s, where c 6= c′ are single characters. Then D
returns the same answer on w(x, n′ − |s|, c) and w(x′, n′ − |s|, c), even though the length
of the middle palindrome is exactly 2|s| in one of them, and at least 2|s|+ 2 in the other
one. Therefore, D errs on at least one of these two inputs. Similarly, it errs on either
w(x, n′ − |s|, c′) or w(x, n′ − |s|, c′). Thus the error probability is at least 1

2n′|Σ| = 1
n|Σ| .

Now we can prove the lemma for midLPSΣ[n] with a standard amplification trick. Say
that we have a Monte Carlo streaming algorithm, which solves midLPSΣ[n] exactly with error
probability ε using s(n) bits of memory. Then we can run its k instances simultaneously and
return the most frequently reported answer. The new algorithm needs O(k · s(n)) bits of
memory and its error probability εk satisfies:

εk ≤
∑
2i<k

(
k

i

)
(1− ε)iεk−i ≤ 2k · εk/2 = (4ε)k/2.

Let us choose κ = 1
6

log(4/n)
log(1/(n|Σ|)) = 1

6
1−o(1)

1+log |Σ|/ logn = Θ( logn
logn+log |Σ| ) = γ· 1

log |Σ| log min{|Σ|, n},
for some constant γ. Now we can prove the theorem. Assume that A uses less than
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κ · n log |Σ| = γ · n log min{|Σ|, n} bits of memory. Then running
⌊ 1

2κ
⌋
≥ 3

4
1

2κ (which holds
since κ < 1

6 ) instances of A in parallel requires less than bn2 log |Σ|c bits of memory. But
then the error probability of the new algorithm is bounded from above by(

4
n

) 3
16κ

=
(

1
n|Σ|

) 18
16

≤ 1
n|Σ|

which we have already shown to be impossible.
The lower bound for midLPSΣ[n] can be translated into a lower bound for solving LPSΣ[n]

exactly by padding the input so that the longest palindrome is centered in the middle. Let
x = x[1]x[2] . . . x[n] be the input for midLPSΣ[n]. We define

w(x) = x[1]x[2]x[3] . . . x[n/2]1 000 . . . 0
n

1x[n/2 + 1] . . . x[n].

Now if the length of the middle palindrome in x is k, then w(x) contains a palindrome of
length at least n+ k + 2. In the other direction, any palindrome inside w(x) of length ≥ n
must be centered somewhere in the middle block consisting of only zeroes and both ones are
mapped to each other, so it must be the middle palindrome. Thus, the length of the longest
palindrome inside w(x) is exactly n+k+2, so we have reduced solving midLPSΣ[n] to solving
LPSΣ[2n + 2]. We already know that solving midLPSΣ[n] with probability 1 − 1

n requires
γ ·n log min{|Σ|, n} bits of memory, so solving LPSΣ[2n+2] with probability 1− 1

2n+2 ≥ 1− 1
n

requires γ · n log{|Σ|, n} ≥ γ′ · (2n+ 2) log min{|Σ|, 2n+ 2} bits of memory. Notice that the
reduction needs O(logn) additional bits of memory to count up to n, but for large n this is
much smaller than the lower bound if we choose γ′ < γ

4 . J

To obtain a lower bound for Monte Carlo additive approximation, we observe that any
algorithm solving LPSΣ[n] with additive error E can be used to solve LPSΣ[n−EE+1 ] exactly
by inserting E

2 zeroes between every two characters, in the very beginning, and in the very
end. However, this reduction requires log(E2 ) ≤ logn additional bits of memory for counting
up to E

2 and cannot be used when the desired lower bound on the required number of
bits Ω( nE log min(|Σ|, nE ) is significantly smaller than logn. Therefore, we need a separate
technical lemma which implies that both additive and multiplicative approximation with
error probability 1

n require Ω(logn) bits of space.

I Lemma 4. Let A be any randomized Monte Carlo streaming algorithm solving LPSΣ[n]
with additive error at most 0.99n or multiplicative error at most n0.49 and error probability
1
n . Then A uses Ω(logn) bits of memory.

Combining the reduction with the technical lemma and taking into account that we are
reducing to a problem with string length of Θ( nE ), we obtain the following.

I Theorem 5 (Monte Carlo additive approximation). Let A be any randomized Monte Carlo
streaming algorithm solving LPSΣ[n] with additive error E with probability 1− 1

n . If E ≤ 0.99n
then A uses Ω( nE log min{|Σ|, nE }) bits of memory.

Proof. Define σ = min{|Σ|, nE }.
Because of Lemma 4 it is enough to prove that Ω( nE log σ) is a lower bound when

E ≤ γ

2 ·
n

logn log σ. (1)

Assume that there is a Monte Carlo streaming algorithm A solving LPSΣ[n] with additive
error E using o( nE log σ) bits of memory and probability 1− 1

n . Let n
′ = n−E/2

E/2+1 ≥
n
E (the
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18:6 Tight Tradeoffs for Real-Time Approximation of Longest Palindromes in Streams

last inequality, equivalent to n ≥ E · E
E−2 holds because E ≤ 0.99n and because we can

assume that E ≥ 200). Given a string x[1]x[2] . . . x[n′], we can simulate running A on
0Ex[1]0E/2x[2]0E/2x[3] . . . 0E/2x[n′]0E/2 to calculate R (using log(E/2) ≤ logn additional
bits of memory), and then return

⌊
R

E/2+1

⌋
. We call this new Monte Carlo streaming

algorithm A′. Recall that A reports the length of the longest palindrome with additive
error E. Therefore, if the original string contains a palindrome of length r, the new string
contains a palindrome of length E

2 · (r + 1) + r, so R ≥ r(E/2 + 1) and A′ will return at
least r. In the other direction, if A′ returns r, then the new string contains a palindrome of
length r(E/2 + 1). If such palindrome is centered so that x[i] is matched with x[i+ 1] for
some i, then it clearly corresponds to a palindrome of length r in the original string. But
otherwise every x[i] within the palindrome is matched with 0, so in fact the whole palindrome
corresponds to a streak of consecutive zeroes in the new string and can be extended to the
left and to the right to start and end with 0E , so again it corresponds to a palindrome
of length r in the original string. Therefore, A′ solves LPSΣ[n′] exactly with probability
1− 1

(n′(E/2+1)+E/2) ≥ 1− 1
n′ and uses o(n

′(E/2+1)+E/2
E/2 log σ) + logn = o(n′ log σ) + logn bits

of memory. Observe that by Lemma 3 we get a lower bound

γ · n′ log min{|Σ|, n′} ≥ γ

2 · n
′ log σ + γ

2 ·
n

E
log σ ≥ γ

2 · n
′ log σ + logn

(where the last inequality holds because of Eq.(1)). Then, for large n we obtain contradiction
as follows

o(n′ log σ) + logn < γ

2 · n
′ log σ + logn. J

Finally, we consider multiplicative approximation. The proof follows the same basic idea
as of Theorem 5, however is more technically involved. The main difference is that due to
uneven padding, we are reducing to midLPSΣ[n′] instead of LPSΣ[n′].

I Theorem 6 (Monte Carlo multiplicative approximation). Let A be any randomized Monte
Carlo streaming algorithm solving LPSΣ[n] with multiplicative error (1 + ε) with probability
1− 1

n . If n−0.98 ≤ ε ≤ n0.49 then A uses Ω( logn
log(1+ε) log min{|Σ|, logn

log(1+ε)}) bits of memory.

3 Real-Time Algorithms

In this section we design real-time Monte Carlo algorithms within the space bounds matching
the lower bounds from Sect. 2 up to a factor bounded by logn. The algorithms make use
of the hash function known as the Karp-Rabin fingerprint [10]. Let p be a fixed prime
from the range [n3+α, n4+α] for some α > 0, and r be a fixed integer randomly chosen from
{1, . . . , p−1}. For a string S, its forward hash and reversed hash are defined, respectively, as

φF (S) =
(

n∑
i=1

S[i] · ri
)

mod p and φR(S) =
(

n∑
i=1

S[i] · rn−i+1

)
mod p .

Clearly, the forward hash of a string coincides with the reversed hash of its reversal. Thus, if
u is a palindrome, then φF (u) = φR(u). The converse is also true modulo the (improbable)
collisions of hashes, because for two strings u 6= v of length m, the probability that φF (u) =
φF (v) is at most m/p. This property allows one to detect palindromes with high probability
by comparing hashes. (This approach is somewhat simpler than the one of [2]; in particular,
we don’t need “fingerprint pairs” used there.) In particular, a real-time algorithm makes
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Algorithm 1 Algorithm ABasic, ith iteration.
1: if i mod tE = 0 then
2: add I to the beginning of SP
3: read S[i]; compute I(i+ 1) from I; I ← I(i+ 1)
4: for all elements v of SP do
5: if S[v.i..i] is a palindrome and answer.len < i−v.i+1 then
6: answer ← (v.i, i−v.i+1)

O(n) comparisons and thus faces a collision with probability O(n−1−α) by the choice of
p. All further considerations assume that no collisions happen. For an input stream S,
we denote FF (i, j) = φF (S[i..j]) and FR(i, j) = φR(S[i..j]). Let I(i) denote the tuple
(i, FF (1, i−1), FR(1, i−1), r−(i−1) mod p, ri mod p). The proposition below is immediate
from definitions and simple arithmetical manipulations.

I Proposition 7. 1. Given I(i) and S[i], the tuple I(i+1) can be computed in O(1) time.
2. Given I(i) and I(j+1), the string S[i..j] can be checked for palindromicity in O(1) time.

3.1 Additive Error
I Theorem 8. There is a real-time Monte Carlo algorithm solving the problem LPS(S) with
the additive error E = E(n) using O(n/E) space, where n = |S|.

First we present a simple (and slow) algorithm which solves the posed problem, i.e.,
finds in S a palindrome of length `(S) ≥ L(S)− E, where L(S) is the length of the longest
palindrome in S. Later this algorithm will be converted into a real-time one. We store the
sets I(j) for some values of j in a doubly-linked list SP in the decreasing order of j’s. The
longest palindrome currently found is stored as a pair answer = (pos, len), where pos is its
initial position and len is its length. Let tE = bE2 c.

In Algorithm ABasic we add I(j) to the list SP for each j divisible by tE . This allows
us to check for palindromicity, at ith iteration, all factors of the form S[ktE ..i]. We assume
throughout the section that at the beginning of ith iteration the value I(i) is stored in a
variable I.

I Proposition 9. Algorithm ABasic finds in S a palindrome of length `(S) ≥ L(S)−E using
O(n/E) time per iteration and O(n/E) space.

Proof. Both the time and space bounds arise from the size of the list SP , which is bounded
by n/tE = O(n/E); the number of operations per iteration is proportional to this size
due to Proposition 7. Now let S[i..j] be a longest palindrome in S. Let k =

⌈
i
tE

⌉
tE .

Then i ≤ k < i + tE . At the kth iteration, I(k) was added to SP ; then the palindrome
S[k..j−(k−i)] was found at the iteration j − (k − i). Its length is

j − (k− i)− k+ 1 = j − i− 2(k− i) + 1 > (j − i+ 1)− 2tE = L(S)− 2
⌊E

2

⌋
≥ L(S)−E,

as required. J

The resource to speed up Algorithm ABasic stems from the following

I Lemma 10. During one iteration, the length answer.len increases by at most 2 · tE.
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Algorithm 2 Algorithm A, ith iteration.
1: if i mod tE = 0 then
2: add I to the beginning of SP
3: if i = tE then
4: sp← first(SP )
5: read S[i]; compute I(i+ 1) from I; I ← I(i+ 1)
6: sp← previous(sp) . if exists
7: while i− sp.i+ 1 ≤ answer.len and (sp 6= last(SP )) do
8: sp← next(sp)
9: for all existing v in {sp, next(sp)} do

10: if S[v.i..i] is a palindrome and answer.len < i−v.i+1 then
11: answer ← (v.i, i−v.i+1)

Proof. Let S[j..i] be the longest palindrome found at the ith iteration. If i− j + 1 ≤ 2tE
then the statement is obviously true. Otherwise the palindrome S[j+tE ..i−tE ] of length
i−j+1−2tE was found before (at the (i−tE)th iteration), and the statement holds again. J

Lemma 10 implies that at each iteration SP contains only two elements that can increase
answer.len. Hence we get the following Algorithm A.

Due to Lemma 10, the cycle at lines 9–11 of Algorithm A computes the same sequence of
values of answer as the cycle at lines 4–6 of Algorithm ABasic. Hence it finds a palindrome
of required length by Proposition 9. Clearly, the space used by the two algorithms differs by
a constant. To prove that an iteration of Algorithm A takes O(1) time, it suffices to note
that the cycle in lines 7–8 performs at most two iterations. Theorem 8 is proved.

3.2 Multiplicative Error
I Theorem 11. There is a real-time Monte Carlo algorithm solving the problem LPS(S)
with multiplicative error ε = ε(n) ∈ (0, 1] using O

( logn
ε

)
space, where n = |S|.

As in the previous section, we first present a simpler algorithm MBasic with non-linear
working time and then upgrade it to a real-time algorithm. The algorithm must find a
palindrome of length `(S) ≥ L(S)

1+ε . The next lemma is straightforward.

I Lemma 12. If ε ∈ (0, 1], the condition `(S) ≥ L(S)(1− ε/2) implies `(S) ≥ L(S)
1+ε .

We set qε =
⌈
log 2

ε

⌉
. The main difference in the construction of algorithms with the

multiplicative and additive error is that here all sets I(i) are added to the list SP , but then,
after a certain number of steps, are deleted from it. The number of iterations the set I(i) is
stored in SP is determined by the time-to-live function ttl(i) defined below. This function is
responsible for both the correctness of the algorithm and the space bound.

Let β(i) be the position of the rightmost 1 in the binary representation of i (the position
0 corresponds to the least significant bit). We define

ttl(i) = 2qε+2+β(i) . (2)

The definition is illustrated by Fig. 1. Now we state a few properties of the list SP .

I Lemma 13. For any integers a ≥ 1 and b ≥ 0, there exists a unique integer j ∈ [a, a+ 2b)
such that ttl(j) ≥ 2qε+2+b.
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Algorithm 3 Algorithm MBasic, ith iteration.
1: add I to the beginning of SP
2: for all v in SP do
3: if v.i+ ttl(v.i) = i then
4: delete v from SP

5: read S[i]; compute I(i+ 1) from I; I ← I(i+ 1)
6: for all v in SP do
7: if S[v.i..i] is a palindrome and answer.len < i−v.i+1 then
8: answer ← (v.i, i−v.i+1)

464442403836322824168 21 531

Figure 1 The state of the list SP after the iteration i = 53 (qε = 1 is assumed). Black
squares indicate the numbers j for which I(j) is currently stored. For example, (2) implies
ttl(28) = 21+2+2 = 32, so I(28) will stay in SP until the iteration 28 + 32 = 60.

Proof. By (2), ttl(j) ≥ 2qε+2+b if and only if β(j) ≥ b, i.e., j is divisible by 2b by the
definition of β. Among any 2b consecutive integers, exactly one has this property. J

Figure 1 shows the partition of the range (0, i] into intervals having lengths that are
powers of 2 (except for the leftmost interval). In general, this partition consists of the
following intervals, right to left:

(i−2qε+2, i], (i−2qε+3, i−2qε+2], . . . , (i−2k, i−2k−1], (0, i−2k], where k = dlogne−1. (3)

Lemma 13 and (2) imply the following lemma on the distribution of the elements of SP .

I Lemma 14. After each iteration, the first interval (resp., the last interval; each of the
remaining intervals) in (3) contains 2qε+2 (resp., at most 2qε+1; exactly 2qε+1) elements of
the list SP .

The number of the intervals in (3) is O(logn), so from Lemma 14 and the definition of qε

I Lemma 15. After each iteration, the size of the list SP is O
( logn

ε

)
.

I Proposition 16. Algorithm MBasic finds a palindrome of length `(S) ≥ L(S)
1+ε using O( logn

ε )
time per iteration and O( logn

ε ) space.

Proof. Both the time per iteration and the space are dominated by the size of the list SP .
Hence the required complexity bounds follow from Lemma 15. For the proof of correctness,
let S[i..j] be a palindrome of length L(S). Further, let d = blogL(S)c.

If d < qε + 2, the palindrome S[i..j] will be found exactly, because I(i) is in SP at the
jth iteration:

i+ ttl(i) ≥ i+ 2qε+2 ≥ i+ 2d+1 > i+ L(S) > j .

Otherwise, by Lemma 13 there exists a unique k ∈ [i, i+ 2d−qε−1) such that ttl(k) ≥ 2d+1.
Hence at the iteration j− (k− i) the palindrome S[i+(k−i)..j−(k−i)] will be found, because
I(k) is in SP at this iteration:

k + ttl(k) ≥ i+ ttl(k) ≥ i+ 2d+1 > j ≥ j − (k − i) .
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The length of this palindrome satisfies the requirement of the proposition:

j−(k−i)−(i+(k−i))+1 = L(S)−2(k−i) ≥ L(S)−2d−qε ≥ L(S)− L(S)
2qε ≥ L(S)

(
1− ε2

)
.

The reference to Lemma 12 finishes the proof. J

Now we speed up Algorithm MBasic. It has two slow parts: deletions from the list SP
and checks for palindromes. By Lemmas 17, 18, O(1) checks is enough at each iteration.

I Lemma 17. Suppose that at some iteration the list SP contains consecutive elements
I(d), I(c), I(b), I(a). Then b− a ≤ d− b.

Proof. Let j be the number of the considered iteration. Note that a < b < c < d. Consider
the interval in (3) containing a. If a ∈ (j − 2qε+2, j], then b − a = 1 and d − b = 2, so
the required inequality holds. Otherwise, let a ∈ (j − 2qε+2+x, j − 2qε+2+x−1]. Then by (2)
β(a) ≥ x; moreover, any I(k) such that a < k ≤ j and β(k) ≥ x is in SP . Hence, b− a ≤ 2x.
By Lemma 14 each interval, except for the leftmost one, contains at least 2qε+1 ≥ 4 elements.
Thus each of the numbers b, c, d belongs either to the same interval as a or to the previous
interval (j − 2qε+2+x−1, j − 2qε+2+x−2]. Again by (2) we have β(b), β(c), β(d) ≥ x− 1. So
c−b, d−c ≥ 2x−1, whence the result. J

We call an element v of SP valuable at ith iteration if i − v.i + 1 > answer.len and
S[v.i..i] can be a palindrome. (That is, Algorithm MBasic does not store enough information
to predict that the condition in its line 7 is false for v.)

I Lemma 18. At each iteration, SP contains at most three valuable elements. Moreover, if
I(d′), I(d) are stored in consecutive elements of SP and i− d′ < answer.len ≤ i− d, where
i is the number of the current iteration, then the valuable elements are consecutive in SP ,
starting with the one containing I(d).

Proof. Let d be as in the condition of the lemma and v be the element containing I(d). If v
is followed in SP by at most two elements, we are done. If it is not the case, let the three
next elements be v1, v2, v3, containing I(c), I(b), I(a) respectively. If S[v3.i..i] = S[a..i] is a
palindrome then S[a+(b−a)..i−(b−a)] is also a palindrome. At the iteration i−(b−a) the
set I(b) was in SP , so this palindrome was found. Hence, at the ith iteration the value
answer.len is at least the length of this palindrome, which is i − a + 1 − 2(b − a). By
Lemma 17, b− a ≤ d− b, implying answer.len ≥ i− a+ 1− (b− a)− (d− b) = i− d+ 1.
This inequality contradicts the definition of d; hence, S[a..i] is not a palindrome. By the
same argument, the elements following v3 in SP do not produce palindromes as well. Thus,
only the elements v, v1, v2 are valuable. J

Now we turn to deletions. The function ttl(x) has the following nice property.

I Lemma 19. The function x→ x+ ttl(x) is injective.

Lemma 19 implies that at most one element is deleted from SP at each iteration. To
perform this deletion in O(1) time, we need an additional data structure. By BS(x) we
denote a linked list of maximal segments of 1’s in the binary representation of x. For example,
the binary representation of x = 12345 and BS(x) are as follows:

13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 0 0 0 1 1 1 0 0 1 BS(12345) = {[0, 0], [3, 5], [10, 10], [12, 13]}

Clearly, BS(x) uses O(log x) space. The following lemma is easy.
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Algorithm 4 Algorithm M, ith iteration.
1: add I to the beginning of SP
2: if i = 1 then
3: sp← first(SP )
4: compute BS[i] from BS; BS ← BS[i]; compute β(i) from BS

5: if QU(β(i)) is not empty then
6: v ← element of SP pointed by first(QU(β(i)))
7: if v = sp then
8: sp← next(sp)
9: delete v; delete first(QU(β(i)))

10: add pointer to first(SP ) to QU(β(i))
11: read S[i]; compute I(i+ 1) from I; I ← I(i+ 1)
12: sp← previous(sp) . if exists
13: while i− sp.i+ 1 ≤ answer.len and sp 6= last(SP ) do
14: sp← next(sp)
15: for all existing v in {sp, next(sp), next(next(sp))} do
16: if S[v.i..i] is a palindrome and answer.len < i−v.i+1 then
17: answer ← (v.i, i−v.i+1)

I Lemma 20. Both β(x) and BS(x+ 1) can be obtained from BS(x) in O(1) time.

Thus, if we support one list BS which is equal to BS(i) at the end of the ith iteration,
we have β(i). If I(a) should be deleted from SP at this iteration, then β(a) = β(i) (see
Lemma 19). The following lemma is trivial.

I Lemma 21. If a < b and ttl(a) = ttl(b), then I(a) is deleted from SP before I(b).

By Lemma 21, the information about the positions with the same ttl (in other words,
with the same β) are added to and deleted from SP in the same order. Hence it is possible
to keep a queue QU(x) of the pointers to all elements of SP corresponding to the positions
j with β(j) = x. These queues constitute the last ingredient of our real-time Algorithm M.

Proof of Theorem 11. After every iteration, Algorithm M has the same list SP (see Fig. 1)
as Algorithm MBasic, because these algorithms add and delete the same elements. Due
to Lemma 18, Algorithm M returns the same answer as Algorithm MBasic. Hence by
Proposition 16 Algorithm M finds a palindrome of required length. Further, Algorithm M
supports the list BS of size O(logn) and the array QU containing O(logn) queues of total
size equal to the size of SP . Hence, it uses O( logn

ε ) space in total by Lemma 15. The cycle
in lines 13–14 performs at most three iterations. Indeed, let z be the value of sp after the
previous iteration. Then this cycle starts with sp = previous(z) (or with sp = z if z is the
first element of SP ) and ends with sp = next(next(z)) at the latest. By Lemma 20, both
BS(i) and β(i) can be computed in O(1) time. Therefore, each iteration takes O(1) time. J

I Remark. Since for ε ≤ 1 the classes O
( logn

log(1+ε)
)
and O

( logn
ε

)
coincide, Algorithm M uses

space within a logn factor from the lower bound of Theorem 6. Further, let ε = ε(n) be a
growing function. Algorithm M can be transformed, with some additional technicalities, into
a real-time algorithm which solves LPS(S) with the multiplicative error ε using O

( logn
log(1+ε)

)
space. The basic idea of transformation is to replace all binary representations with those in
base proportional to 1 + ε, and thus shrink the size of the lists SP and BS.
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3.3 The Case of Short Palindromes
A typical string contains only short palindromes, as Lemma 22 below shows (for more
on palindromes in random strings, see [14]). Knowing this, it is quite useful to have a
deterministic real-time algorithm which finds a longest palindrome exactly if it is “short”,
otherwise reporting that it is “long”. This idea is formalized in Theorem 23. Its proof is based
on a modification of the Manacher’s algorithm with a sliding window and lazy computation.

I Lemma 22. If an input stream S ∈ Σ∗ is picked up uniformly at random among all strings
of length n, where n ≥ |Σ|, then for any positive constant c the probability that S contains a
palindrome of length greater than 2(c+1) logn

log |Σ| is O(n−c).

I Theorem 23. Let m be a positive integer. There exists a deterministic real-time algorithm
working in O(m) space, which solves LPS(S) exactly if L(S) < m, and otherwise finds a
palindrome of length m or m+1 as an approximate solution to LPS(S).

I Remark. Lemma 22 and Theorem 23 show a “practical” way to solve LPS. For example,
one can run Algorithm M and Algorithm E, both in O(logn) space, in parallel. Then either
Algorithm E will give an exact answer (which happens with high probability if the input
stream is a “typical” string) or both algorithms will produce approximations: one of fixed
length and one with an approximation guarantee (modulo the hash collision).
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Abstract
This paper extends the problem of palindrome searching into a higher dimension, addressing two
definitions of 2D palindromes. The first definition implies a square, while the second definition
(also known as a centrosymmetric factor), can be any rectangular shape. We describe two
algorithms for searching a 2D text for maximal palindromes, one for each type of 2D palindrome.
The first algorithm is optimal; it runs in linear time, on par with Manacher’s linear time 1D
palindrome algorithm. The second algorithm searches a text of size n1 × n2 (n1 ≥ n2) in
O(n2) time for each of its n1 × n2 positions. Since each position may have up to O(n2) maximal
palindromes centered at that location, the second result is also optimal in terms of the worst-case
output size.
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1 Introduction

Palindromes are strings that read the same forwards and backwards. Formally, a string P is
a palindrome if it is of the form uauR, where u is a non-empty string and uR is its reverse;
a is the empty string or a single character. a is called the gap, while u and uR are called
respectively the left arm and right arm of the palindrome. Palindromes have long drawn the
attention of computer science researchers. The classical online and linear time palindrome
algorithm is due to Manacher [21] in 1975. A palindrome variation called a palstar, which
is loosely defined as the concatenation of palindromes, was studied as well in the 1970’s by
[19] and [11]. There is later research concerning searching for palindromes when there is a
parallel model [3][4].

Other variations of palindrome search that have been studied more recently include
gapped palindromes, complementary palindromes, approximate palindromes, and compressed
palindromes. A gapped palindrome is when the size of the gap |a| ≥ 2 [20]. Complementary
palindromes are relevant in DNA, and it is where a character matches its complementary
character instead of itself, e.g. AACGTT. [20]’s gapped palindrome algorithm can be ad-
apted to find complementary gapped palindromes (which they refer to as biological gapped
palindromes). Approximate palindromes have an allowed number of variations between the
arms, and they have been studied in run-length compressed texts [6] as well as in the online
model [2]. An interesting algorithm that searches for palindromes with edit distance of k

is presented in [15]. Compressed palindromes have been studied as well under straight line
programs [22].

Extending the concept of a palindrome to two dimensions has various applications. For
example, face recognition technology exploits symmetry characteristics of the human face

© Sara H. Geizhals and Dina Sokol;
licensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 19; pp. 19:1–19:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


19:2 2D Palindromes

S A T O R
A R E P O
T E N E T
O P E R A
R O T A S

Figure 1 Two examples of sq2DPs. The one on the left is written in Latin, while the one on the
right is in Hebrew.

in order to extract a set of significant features [7]. Determining the global maximum of
local reflectional symmetry in grey level images is related to genetic algorithms [18]. [14]
creates palindromic shapes as representations of the intrinsic and extrinsic symmetries of
2D articulated planar shapes.

This paper presents algorithms that work with two different definitions of 2D palin-
dromes. The first definition dates back to the early Romans, and it can apply only to a
square pattern; hence, we refer to it as a sq2DP. The second definition is termed a centrosym-
metric factor1 in [5]. This type of 2D palindrome can take on any rectangular shape and
thus we refer to it as a rect2DP. To the best of our knowledge, the problem of searching a
2D text for maximal 2D palindromes has not been previously studied.

I Definition 1. A sq2DP is an m ×m 2D pattern that admits four symmetries: identity,
two diagonal reflections, and 180◦ rotation.

For example, Figure 1 portrays two famous sq2DPs. The one on the left is the first
dateable representation of this type of 2D palindrome, and it was found in the ruins of
Pompeii. The language is Latin, and it means, “the sower [planter] Arepo works with the
help of wheel [a plough]” [10][24]. The one on the right is a sq2DP formed of five Hebrew
words, of five characters each. It was written by Rabbi Abraham ibn Ezra (1089-1164) in
response to the question as to whether a fly landing in honey makes the honey not kosher.
Its translation is: “We have explained that the glutton [fly] who is in the honey was burned
and incinerated [i.e., it disintegrated and therefore does not make it not kosher]” [23].

This problem is important to group theorists, in the field of mathematics. A sq2DP is
a 2D pattern invariant under the subgroup generated by the two diagonal reflections of the
dihedral group known as D8. The D8 group is one that is formed by the set of a square’s
eight symmetries (four rotations and four reflections).

I Definition 2. A rect2DP is a rectangular block of m1 rows and m2 columns that admits
the two symmetries of identity and 180◦ rotation.

Each 2D palindrome has a center, which is the point that results in an equal number of
columns to the left and right, as well as an equal number of rows above and below. The
technical definition of the center differs slightly depending on the type and size of the 2D
palindrome. Given an m×m sq2DP, if m is odd, the center is at location (dm

2 e, d
m
2 e). If m

1 The paper studies the complexity of 2D Sturmian sequences in terms of the number of centrosymmetric
factors that can occur in a 2D Sturmian sequence. Although their definition uses a binary alphabet
due to its context, this paper assumes any bounded alphabet.



S.H. Geizhals and D. Sokol 19:3

Table 1 Two examples of rect2DPs. The left one’s center is between the two 3’s.

1 0 2 4
0 3 3 0
4 2 0 1

n e v e r o d
d o r e v e n

is even, the center is in between rows and columns. Similarly for a rect2DP, if the number
of rows (resp. columns) is even, the center is placed between rows (resp. columns). For
example, the center of the left rect2DP in Table 1 is in the second row between the two 3’s.

We present one algorithm for sq2DP, and one for rect2DP. Both algorithms consider each
possible position of a center, and then locate the 2D palindrome(s) centered there. As with
1D palindromes, we are interested only in the 2D palindromes that are maximal. A sq2DP
of size m ×m is maximal if enlarging it by one on all sides – to size (m + 2) × (m + 2) –
results in a pattern that is not a sq2DP. There is exactly one maximal sq2DP centered at
each possible center position. Similarly, a rect2DP is maximal if it is not contained within
a larger rect2DP with the same center. For a given text position, a maximal rect2DP is
the highest rect2DP for its width or the widest rect2DP for its height. Thus, there may be
several maximal rect2DP centered at a given position.

The remainder of this paper is organized as follows: Section 2 presents an algorithm for
locating all maximal sq2DP in a given 2D text. Its input is T of size n× n, and its runtime
is linear, i.e. O(n2). This is on par with Manacher’s linear palindrome algorithm and stems
from the fact that there is exactly one maximal palindrome centered at each position. In
Section 3, we describe a different algorithm that searches for maximal rect2DP. Its input is
T of size n1 × n2 (where n1 ≥ n2), and its runtime is O(n1n2

2). We conclude in Section 4
with our plans for future work.

2 Square 2D Palindrome

The input to the algorithm is a 2D text T over a bounded alphabet Σ. For simplicity, we
assume T is of size n×n, however, the algorithm can be used for any rectangular text. The
algorithm searches T for all maximal sq2DP that occur in T .

The basis of the algorithm is that the symmetry property of palindromes in one dimension
also applies to sq2DP. In 1D, the palindromes that are substrings of the left arm of a
palindrome will appear as well in the right arm. To illustrate, consider the lengths of the
maximal palindromes centered at each position in the string abacaba: 1,3,1,7,1,3,1, and note
the symmetry of this numerical list (around its center).

Henceforth we distinguish between the two diagonals of a square as follows. The diagonal
that extends from the upper left corner to the lower right corner is called the main diagonal,
and the diagonal that extends from the upper right corner to the lower left corner is called
the anti-diagonal. Assume that P is a maximal sq2DP in T centered at position (Ci, Cj).
Suppose we are considering location (i, j) of T as a possible center for a palindrome, and
(i, j) is contained in the bottom right triangle of the larger palindrome P that is centered
at (Ci, Cj). Further assume that both the maximal palindrome centered at (i, j) and at the
mirror position of (i, j) over the anti-diagonal of P are completely contained within P . We
can conclude the following:

I Observation 1. The maximal palindrome centered at a location (i, j) is identical to the
maximal palindrome centered at the mirror position of (i, j) over the anti-diagonal of P .
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The observation follows directly from the symmetry that the palindrome has over its anti-
diagonal. As in 1D, the smaller palindromes contained in the upper triangle are mirrored
exactly in the lower triangle. Note that this is true whether we use either diagonal, but our
algorithm uses only the values over the anti-diagonal.

The idea of the algorithm is to use Observation 1 as follows. When searching for a
palindrome centered at location (i, j) that is contained in a larger palindrome P , we first
consider the value from the mirror image of position (i, j) over the anti-diagonal of P . If
the maximal palindrome at the mirror image extends beyond the left boundary of P , then
we take the minimum of the value at the mirror image and the boundary of P . Following
this initial setting, we use the naive method to check whether it is possible to extend the
palindrome centered at (i, j) beyond the right boundary of the containing palindrome. This
mimics the algorithm of Manacher in two dimensions, but of course additional techniques
are needed to render the algorithm linear time.

2.1 Preprocessing Stage
The text T is preprocessed by constructing a generalized suffix tree (GST) for the columns
of T , from bottom to top and from top to bottom, and for the rows of T , from left to right
and right to left. Then, it is preprocessed to allow O(1)-time longest common prefix (LCP)
queries.

We define forward subcolumns and subrows (resp.) beginning at any location (i, j) as:
c(i, j) = T [i, j] . . . T [n, j], r(i, j) = T [i, j] . . . T [i, n]. Similarly, the reverse subcolumns and
subrows are denoted by: c′(i, j) = T [i, j] . . . T [1, j], r′(i, j) = T [i, j] . . . T [i, 1].

Using these subcolumns and subrows, we can define four directions of L’s cornered at a
particular location (i, j), as subcolumn-subrow pairs2.

1. A “backwards L,” denoted Li,j = 〈c′(i, j), r′(i, j)〉, consists of a pair of T ’s reverse sub-
column and reverse subrow.

2. An “upside down L,” denoted L
i,j = 〈c(i, j), r(i, j)〉 consists of a pair of T ’s forward

subcolumn and forward subrow.
3. An L, denoted Li,j = 〈c′(i, j), r(i, j)〉, consists of a pair of T ’s reverse subcolumn and

forward subrow.
4. An “upside down backwards L,” denoted L

i,j = 〈c(i, j), r′(i, j)〉, consists of a pair of T ’s
forward subcolumn and reverse subrow.

We also define constant time symmetry checking between L and L. This can be done
by taking the minimum value of the LCP of the corresponding sides of the L’s when re-
flected over the anti-diagonal. Specifically, LCP (Li,j , Lp,q) = min(LCP (c′(p, q), r(i, j)),
LCP (c(i, j), r′(p, q))). Similarly, in the other direction, the longest symmetric prefix between
L and L, reflected over the main diagonal, can be found in constant time.

2.2 Scanning Stage
In the scanning stage of the algorithm, we define a set of forward diagonals in the text,
parallel to the main diagonal, d = −(n− 1) to (n− 1). This is similar to the method used
by Amir and Farach [1] for multiple pattern matching of square patterns. We number each

2 These L’s are similar to the L’s defined by Amir and Farach in [1]; the L-suffix tree of Giancarlo [12]
uses a similar concept.
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forward diagonal d = i − j, the difference between its row and column coordinates. Note
that d = 0 is the main diagonal, d > 0 are the diagonals below the main diagonal, and d < 0
are the diagonals above the main diagonal. Each diagonal contains n− |d| positions, where
|d| represents the absolute value of d.

Since the same procedure is performed on each forward diagonal, we describe the al-
gorithm for a single forward diagonal d. The goal of the algorithm is to fill d’s integer array
pals which corresponds to the n−|d| positions on diagonal d in T . Each element in pals will
contain a value representing the maximal sq2DP centered at the corresponding position in
T . Value v indicates that it consists of the position itself, plus v in the four directions (up,
down, left, and right) – i.e., a sq2DP of size (v ∗ 2− 1), with this position as its center.

We explain how Algorithm 1 works on diagonal d ≥ 0. For d < 0, the same algorithm
works with minor modifications to indices. The variable maxCenter is the center of the
sq2DP that has extended the farthest; maxCenter+pals[maxCenter] is the rightmost (and
lowest) position it reaches. j is a pointer that moves along the positions on the diagonal one
at a time, and at each position we determine the size of the maximal sq2DP centered at the
position pointed to by j.

For each j, the value in pals[j] is set in a way similar to Manacher [21]: if the position
is past maxCenter + pals[maxCenter], then it has never been seen yet, and therefore its
value in pals is initialized to 1. If the position is before maxCenter + pals[maxCenter],
then it is known to be part of a palindrome, and therefore its value in pals is initialized to
the value of its mirror image over maxCenter; but if that value, when added to j, would
extend beyond maxCenter + pals[maxCenter], then the value is reduced so that it doesn’t
extend. Following the initial setting of the value in pals[j], a while loop continually performs
constant-time symmetry checking between the L’s of different orientation to check how far
the current palindrome extends.

One such square is demonstrated in Figure 2. Diagonal d > 0 is depicted and location j

on diagonal d is depicted as the large dot. The LCP queries start one beyond j +pals[j] and
j − pals[j]: one involves L(straight vertical and horizontal lines) with L (dashed vertical
and horizontal lines), and the other query involves L (dashed vertical and straight horizontal
lines) with L(straight vertical and dashed horizontal lines).

Although both reflectional symmetries must be checked individually, it is not necessary
to explicitly check the 180◦ rotation, since it is implied by transitivity from the reflectional
symmetries. Specifically, location (i, j) must match its symmetric location over the main
diagonal, which is (j, i). By the anti-diagonal symmetry, T [j, i] = T [n − i, n − j] which is
exactly the location symmetric to (i, j) by the 180◦ rotation.

Note that the algorithm works with sq2DPs of odd × odd dimensions; for even × even
ones, include the following modifications: before the preprocessing stage, add a row to the
top and the bottom of T , plus a row between every two rows. Also add a column on the left
and the right of T , plus a column between every two columns. The added rows and columns
are filled with a character that does not appear in T ; and T of size n × n is now of size
(2n + 1)× (2n + 1). When the scanning stage outputs a sq2DP of size (2v + 1)× (2v + 1),
where v is even, that is indicative of a sq2DP of size v×v, once the added rows and columns
are removed.

2.3 Example
Using Table 2, we will demonstrate the scanning stage with an example, at the point where
d = 0 and j = 6 (for position T [6, 6]; it is underlined). This position is contained in a
palindrome, as maxCenter + pals[maxCenter] = 5 + 5 = 10 extends beyond it. Therefore,
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Figure 2 LCP queries on position j (large dot) of diagonal d > 0. One query involves a backwards
L (straight vertical and horizontal lines) with an upside down L (dashed vertical and horizontal
lines), and the other involves an L (dashed vertical and straight horizontal lines) with an upside
down backwards L (straight vertical and dashed horizontal lines).

Algorithm 1: Algorithm for sq2DP.
input : GST of the columns and rows of T in forward and reverse order, diagonal d

output: diagonal d’s integer array pals, of size n− |d|, containing the values of the
maximal sq2DP centered at the corresponding positions in T

1 maxCenter = 1
2 pals[1] = 1
3 for j = 2 to n− |d| do //for positions j on diagonal d

4 i = d + j //jth position on diagonal d is at T [d + j, j] (if d ≥ 0)
5 if maxCenter + pals[maxCenter] ≤ j /* position not known to be part of

palindrome */

6 then
7 pals[j] = 1
8 else
9 pals[j] = min{pals[2 ∗maxCenter − j], maxCenter + pals[maxCenter]− j}

10 while (j + pals[j] < n) and (j − pals[j] > 1) and /* in bounds */

/* The following two LCP queries check each of the diagonal symmetries, verifying
whether the current palindrome can be enlarged by one layer all around. */

11 LCP (Li−pals[j]−1,j−pals[j]−1, Li+pals[j]+1,j+pals[j]+1) ≥ 2× pals[j] and
12 LCP (Li+pals[j]+1,j−pals[j]−1,

L

i−pals[j]−1,j+pals[j]+1) ≥ 2× pals[j]
13 do
14 pals[j]++
15 end
16 if j + pals[j] > maxCenter + pals[maxCenter] then
17 maxCenter = j

18 end
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Table 2 Text T (left) and d = 0’s pals array (right), at the point where the algorithm will
calculate the value for T [6, 6] in pals[6].

1 2 3 4 5 6 7 8 9 10
1 a b b b b a a b b e
2 b c c c b c c c b e
3 b c c c b c c c a e
4 b c c c b c c c a e
5 b b b b a b b b b a
6 a c c c b c c c b c
7 a c c c b c c c b c
8 b c c c b c c c b c
9 b b a a b b b b a b
10 e e e e a c c c b c

index 1 2 3 4 5 6 7 8 9 10
value 1 1 3 1 5 ? ?

its value in pals is that of its mirror image over maxCenter: 1. The two LCP queries
indicate no extensions. Then j = 7, and that refers to T [7, 7] (underlined). Its value in pals

is that of its mirror image over maxCenter – T [3, 3]’s value of 3. LCP queries are performed,
in an effort for a larger sq2DP, and they start with a square of size 7× 7 (as sizes 3× 3 and
5× 5 are already known to be part of the sq2DP). They do indicate a sq2DP of size 7× 7,
but then the algorithm cannot continue as it would go out of bounds. Thus, maxCenter

is set to point to this position and pals[7] is set to 4. Then j is 8, and the algorithm will
calculate the value of pals[8] for T [8, 8].

2.4 Runtime
I Theorem 3. The time complexity for finding all maximal sq2DP in a text of size n × n

is O(n2).

Proof. The runtime of the preprocessing stage is as follows: the construction of the GST
is in time linear to the size of T [8]. Then it takes O(n)-time to preprocess to allow for
constant-time LCP queries [13].

The scanning stage runs in O(n2) time. This is because Algorithm 1 is run on each of
the 2n − 1 diagonals. There are O(n) positions j per diagonal (as seen by the number of
iterations of the for loop in Algorithm 1). As in Manacher’s algorithm, the initial value in
pals is copied from the mirror image around maxCenter, and therefore each matching L
is compared exactly once. Each mismatching L can be charged to the center for which it
mismatched since each center encounters at most one mismatch. J

3 Rectangle 2D Palindrome

Working with rect2DPs is different than working with sq2DPs, as the mirror image property
of Observation 1 is unique to squares and does not hold for general rectangles. Therefore,
we use a different approach to finding them. The input is a 2D text T over a bounded
alphabet Σ, with n1 rows and n2 columns. We assume n1 ≥ n2; otherwise, it is possible to
first rotate T by 90◦. The preprocessing and scanning stages are described in this section,
and all maximal rect2DP in T are reported.
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Figure 3 Placing of T180 on top of T , with T [r, c] (represented as the dot) as the anchor. Some
mismatches are demarcated with x’s, and a rect2DP (enclosed in double lines) is placed within their
bounds.

3.1 Preprocessing Stage
In the preprocessing stage, we construct a GST for the columns in T , both from top to
bottom and from bottom to top. Then the GST is preprocessed to allow for constant-time
LCP queries.

3.2 Scanning Stage
The scanning stage is run on each position of T . We describe the algorithm for a given
position (r, c). The scanning stage outputs integer tuples whose values represent the height
and width of maximal rect2DP(s) centered at position T [r, c].

The underlying idea is visually depicted in Figure 3. Place T180, which is T rotated by
180◦, on top of T , with T [r, c] as the anchor (that is, T [r, c] must be placed on top of itself).
Let Tov be the overlapping region, which is shaded. For each column in Tov, find the first
mismatch between T and T180 that is above row r in T , and the first mismatch that is below
row r of T . In Figure 3, some mismatches are demarcated with x’s. Then, for each width
possible, attempt to place a rect2DP whose center is position T [r, c] and which is bounded
on top and on bottom by mismatches. In Figure 3, such a rect2DP (enclosed with double
lines) is drawn.

The idea is implemented in Algorithm 2 as follows: create Tov as a subtext of T . It has
T [r, c] as its center, and it has the coordinates

top left: T [r −minr, c−minc] top right: T [r −minr, c + minc]
bottom left: T [r + minr, c−minc] bottom right: T [r + minr, c + minc]

where minr = min(r− 1, n1− r) and minc = min(c− 1, n2− c). Thus, Tov has minr ∗ 2 + 1
rows and minc ∗ 2 + 1 columns. Note that since position T [r, c] is the center of Tov, it is at
position Tov[minr + 1, minc + 1].

Then, finding mismatches between T and T180 is performed as constant-time LCP queries
on the GST of the columns of T . Specifically, let 0 ≤ k ≤ minc. Every query involves row
r; it is between the column that is k to the left of T [r, c], from row r and above, with the
column that is k to the right of T [r, c], from row r and below. The results are stored in the
colLcp array.

Finally, for every width, beginning with the widest possible, perform a range minimum
query (RMQ) on colLcp. The resulting value bounds a rectangle on top and on bottom.
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Algorithm 2: Algorithm for rect2DP.
input : T , GST of T ’s columns in forward and reverse order, r, c

output: integer tuples whose values represent the maximal rect2DP(s) centered at
position T [r, c]

1 for k = 1 to (minc ∗ 2 + 1) do //for columns k

2 colLcp[k] = LCP (T [r, c−minc + k], . . . , T [1, c−minc + k];
3 T [r, c + minc − k], . . . , T [n1, c + minc − k])
4 end

5 maxHeight = 0
6 for w = minc . . . 0 do //for widths w, in decreasing order
7 height = RMQ (colLcp, (minc + 1)− w, (minc + 1) + w)
8 if height > maxHeight /* if height ≤ maxHeight, then there is no rect2DP ; or

there is, but it’s not maximal */

9 then
10 maxheight = height

11 output 〈(height× 2− 1), (w × 2 + 1)〉
12 end

Table 3 The algorithm is at the point of locating the rect2DPs for position T [3, 5] (underlined).
The Tov subtext (bold) is centered at that position. The colLcp array is also shown.

1 2 3 4 5 6 7 8
1 e e e e e e e e
2 e e d d b b e e
3 e d c c a c c b
4 e e e b b d e e
5 e e e e e e e e
6 e e e e e e e e

1 2 3 4 5 6 7
colLcp 0 1 3 3 3 3 0

If the height is less than or equal to a previously found height then the rectangle is not a
rect2DP (as it is not maximal). Otherwise, the algorithm outputs an integer tuple – height
and width – representing this maximal rect2DP.

The algorithm above works with rect2DPs of odd × odd dimensions. For the case where
one or both of the dimensions is even, similar modifications can be done to the text as
provided in the sq2DP case. Alternatively, each possible center, including in between rows
and columns, can be considered.

3.3 Example
In Table 3, T has n1 = 6 rows and n2 = 8 columns. We will demonstrate the scanning
stage, at the point of the algorithm where r = 3 and c = 5 (position T [3, 5], which is
underlined). That position is the center of Tov (which is bold), by having 5 rows (since
minr = min(3−1, 6−3)∗2+1 = 5) and 7 columns (since minc = min(5−1, 8−5)∗2+1 = 7).
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In particular, they are T ’s rows 1-5 and columns 2-8.
The colLcp array is shown. In detail: colLcp[1] is the result of the LCP query between

dee and bee (which is 0), colLcp[2] is from the LCP query between cde and cee (which is 1),
colLcp[3] is from the LCP query between cde and cde (which is 3), and so on.

Then, we set maxHeight to 0. We will look for rect2DPs in w widths, in decreasing
order. When w = 3, we are looking for a rect2DP that is centered at this position and is
of width 7. No such rect2DP exists, and this is found by the algorithm (height = 0; since
height ≯ maxHeight, there is no output). When w = 2, height = 1. 1 > maxHeight, and
so this rect2DP is maximal: maxHeight is set to 1, and 〈(1× 2− 1), (2× 2 + 1)〉 = 〈1, 5〉 is
outputted. It refers to the rect2DP of size 1 × 5: ccacc. When w = 1, we are looking for a
rect2DP that is centered at this position and is of width 3. height = 3, and 3 > maxHeight,
which means that there is such a rect2DP. It is of size 5× 3 – from T [1, 4] through T [5, 6].
Lastly, when w = 0, height = 3. Because 3 ≯ 3 there is no output. This correlates, as the
rect2DP of size 3× 3 isn’t maximal.

3.4 Runtime
I Lemma 4. The time complexity for finding all maximal rect2DP in a text of size n1×n2
(where n1 ≥ n2) is O(n1n2

2).

Proof. The runtime of the preprocessing stage is as follows: the construction of the GST
is in time linear to the size of T [8]. Then it takes O(n)-time to preprocess to allow for
constant-time LCP queries [13].

The scanning stage takes O(n1n2
2)-time. This is because there are n1 × n2 positions,

and each takes O(n2) time for each for loop in Algorithm 2 (they run O(minc) times and
minc < n2). Note that, following linear time preprocessing, a RMQ takes O(1)-time [9]. J

I Lemma 5. A text T of size n1 × n2 can have O(n1n2
2) maximal rect2DP.

Proof. We prove by providing one such example. See Table 4 for an n × n text that has
O(n3) maximal rect2DP. It contains a diamond composed of 0’s, and the rest of the text
has *’s which indicate unique, unused characters. On the right is a partial table of counts
of how many rect2DPs are centered at the corresponding text positions. The other three
quadrants of the diamond (whose counts are not shown) are reflections and have the same
values. Beginning at the center (T [dn/2e, dn/2e]) and moving outward, an element’s count
is one less than that of its neighbor. Let i represent a row and j a column; summing the top
left quadrant (in this case, from [1, 1] through [7, 6]) of the counts table is:

∑bn/2c
i=1

∑i−1
j=1 j =∑bn/2c

i=1
i(i+1)

2 = O(
∑n

i=1 i2). Since the sum of the squares of 1 to n is (n)(n+1)(2n+1)/6 =
O(n3), this n× n input text has O(n3) maximal rect2DP. J

I Theorem 6. Algorithm 2 has worst case running time proportional to the worst case
output size.

Proof. Combining Lemmas 4 and 5 results in the proof. J

4 Conclusion

In this paper, we discussed two types of 2D palindromes and presented efficient algorithms
to find them. By unlocking the world of 2D palindromes, we released many research oppor-
tunities. Essentially all of the variations of the 1D palindrome problem can now be applied
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Table 4 Shown on the left is a text that contains a cubic number of maximal rect2DP. The *’s
indicate unique, unused characters. On the right is a partial table with counts, which are the exact
number of rect2DP that are centered at the corresponding text positions.

1 2 3 4 5 6 7 8 9 0 1 2 3
1 * * * * * * 0 * * * * * *
2 * * * * * 0 0 0 * * * * *
3 * * * * 0 0 0 0 0 * * * *
4 * * * 0 0 0 0 0 0 0 * * *
5 * * 0 0 0 0 0 0 0 0 0 * *
6 * 0 0 0 0 0 0 0 0 0 0 0 *
7 0 0 0 0 0 0 0 0 0 0 0 0 0
8 * 0 0 0 0 0 0 0 0 0 0 0 *
9 * * 0 0 0 0 0 0 0 0 0 * *
0 * * * 0 0 0 0 0 0 0 * * *
1 * * * * 0 0 0 0 0 * * * *
2 * * * * * 0 0 0 * * * * *
3 * * * * * * 0 * * * * * *

1 2 3 4 5 6 7 8 9 0 1 2 3
1 1
2 1 2
3 1 2 3
4 1 2 3 4
5 1 2 3 4 5
6 1 2 3 4 5 6
7 1 2 3 4 5 6 7 6 5 4 3 2 1
8 6
9 5
0 4
1 3
2 2
3 1

to the 2D setting. First, we would like to look at how both types of 2D palindromes relate
to palstars and gapped palindromes. Additionally, searching for approximate palindromes
is something that would be interesting in 2D. Yet another extension is from [16] and [17],
who study pal-equivalence. Two strings of the same length are pal-equivalent iff the length
of the maximal palindrome at every center in the strings is equal.

Another angle for further research, in terms of rect2DP, is to reduce the runtime. Al-
though we proved that the output size is potentially asymptotically larger than the input,
an optimal algorithm would take time proportional to the actual number of non-trivial
palindromes reported.

Finally, it would be interesting to define and study additional geometric shapes of 2D
palindromes, e.g. triangular, circular and perhaps a hexagonal 2D palindrome.
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Abstract
Given permutations T and P of length n and m, respectively, the Permutation Pattern Matching
problem asks to find allm-length subsequences of T that are order-isomorphic to P . This problem
has a wide range of applications but is known to be NP-hard. In this paper, we study the special
case, where the goal is to only find the boxed subsequences of T that are order-isomorphic to P .
This problem was introduced by Bruner and Lackner who showed that it can be solved in O(n3)
time. Cho et al. [CPM 2015] gave an O(n2m) time algorithm and improved it to O(n2 logm). In
this paper we present a solution that uses only O(n2) time. In general, there are instances where
the output size is Ω(n2) and hence our bound is optimal. To achieve our results, we introduce
several new ideas including a novel reduction to 2D offline dominance counting. Our algorithm
is surprisingly simple and straightforward to implement.
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1 Introduction

Consider a permutation T = (t1, t2, . . . , tn) represented in the plane as the set of points
{(1, t1), (2, t2), . . . , (n, tn)}. An axis-aligned box B = (xmin, xmax, ymin, ymax) that contains
|B| = k points induces a permutation σ(B) of the integers 1, . . . , k. For example, the box
shown in Figure 1 induces the permutation σ(B) = (1, 4, 3, 2). Given T and a permutation
P = (p1, p2, . . . , pm) (the pattern), the boxed permutation pattern matching problem is to
output all boxes where σ(B) = P . If two boxes contain the same set of points, we consider
them the same.

We view boxed permutation pattern matching as a natural 2D computational geometry
problem, but it can also be seen and motivated as a generalization of order-preserving
pattern matching (also known as consecutive permutation pattern matching). In this one-
dimensional string matching problem the goal is to output all substrings of T that are
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Figure 1 A permutation T = (2, 9, 3, 1, 10, 7, 5, 4, 8, 6) and a box B = (3, 8, 2, 7) with σ(B) =
(1, 4, 3, 2).
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Figure 2 A permutation T with many occurrences of the pattern P = (1, 2, . . . ,m), 2 ≤ m ≤ n.
Precisely, (n−m+ 2)2/4 boxes satisfy σ(B) = P , the figure shows two of them.

order-isomorphic to P . Order-preserving pattern matching has recently received a lot of
attention (see e.g., [9,10,12,13,15,17,18,20]) as it is a natural generalization of classic exact
string matching, and since it can be used to search for trends in time series such as stock
prices, music or weather data, etc.

Boxed permutation pattern matching solves order-preserving pattern matching if we only
output the boxes of the form B = (xmin, xmin +m− 1,−∞,∞) where σ(B) = P . However,
contrary to order-preserving pattern matching, which can be solved in Õ(n) time by KMP-
like algorithms [18,20], boxed permutation pattern matching requires Ω(n2) time in general,
as there are instances with Ω(n2) occurrences of P (see e.g. Figure 2).

In this paper we present the first algorithm that solves boxed permutation pattern match-
ing in optimal time, i.e., O(n2).
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1.1 Previous and Related Work
Boxed permutation pattern matching was introduced by Bruner and Lackner [7] under the
name boxed-mesh permutation pattern matching. They gave a simple O(n3) time algorithm.
Recently, Cho et al. [11] presented a faster O(n2m)-time algorithm and showed how to
improve it to O(n2 logm) time. Bruner and Lackner, as well as Cho et al., defined the
problem in terms of subsequences, but we note that our geometric definition of the problem
is equivalent.

Boxed permutation pattern matching is one of a few special cases of permutation pattern
matching that can be solved in polynomial time. This problem, which is known to be
NP-hard [4], asks to output all subsequences of T that are order-isomorphic to P .

Due to the many applications of permutation pattern matching a vast amount of research
has studied its generalizations (e.g., vincular [3,19], bivincular [5] and mesh [6] patterns) and
special cases (e.g. boxed mesh [2,11] and consecutive patterns [9,12,13,17,18,20] or patterns
with certain combinatorial properties [1,16]). We refer the reader to Bruner and Lackner [7]
for definitions and a comprehensive in-depth overview of previous work.

1.2 Our Result
We show the following result.

I Theorem 1. Boxed permutation pattern matching can be solved in O(n2) time.

As there are instances with Ω(n2) outputs (see Figure 2), this time bound is optimal.
Our algorithm improves the O(n2 logm)-time algorithm by Cho et al. [11]. The logm

factor in their time bound comes from their use of an order statistics tree with update
time O(logm) to represent a box. We observe that plugging in the more efficient data
structure by Pătraşcu and Thorup [21] immediately improves their time complexity to
O(n2 logm/ log logn). However, as their solution inherently requires dynamic rank (or se-
lect) queries on the Ω(m) points inside a box, we cannot hope to further improve the time
bound with this approach due to lower bounds on dynamic rank and select queries [14,21].

We circumvent this apparent problem as follows: Instead of representing a box by the
Ω(m) points it contains, we represent it in constant space by storing its four sides. Hence
we can easily update the representation in constant time whenever we add a new point to
the box. The challenge is to efficiently check if a point can be added or not. We show that
implementing this check can be reduced to 2D offline dominance counting on n subproblems
of size O(n). Solving these subproblems individually using the state-of-the-art O(n

√
logn)-

time algorithm for 2D offline dominance problem by Chan and Pătraşcu [8] leads to an
O(n2√logn)-time solution for boxed permutation pattern matching. To get O(n2) time, we
exploit the close relationship of the n subproblems, and show that it suffices to solve just a
single of these subproblems.

Our final algorithm is surprisingly simple and straightforward to implement, as it only
relies on a few lookup tables and uses no complicated supporting data structures.

2 Preliminaries

We start by giving some necessary definitions and combinatorial properties. Let Pk, 1 ≤
k ≤ m, be the permutation of the integers 1, . . . , k induced by the prefix (p1, p2, . . . , pk) of
P (see Figure 3). For a box B = (i, j, ymin, ymax) we define its size |B| to be the number of
points it contains. We use · to denote if one or more sides of B are unspecified, i.e., (i, j, ·, ·)

CPM 2016



20:4 Boxed Permutation Pattern Matching

P1 = 1
P2 = 2, 1
P3 = 3, 2, 1
P4 = 3, 2, 1, 4
P5 = 4, 2, 1, 5, 3
P6 = 4, 2, 1, 6, 3, 5

P = P7 = 4, 2, 1, 6, 3, 5, 7

Figure 3 The permutations induced by the prefixes of the pattern P = (4, 2, 1, 6, 3, 5, 7).

denotes an arbitrary box with xmin = i and xmax = j. We say that B = (i, j, ·, ·) is anchored
if it includes the point (i, ti) as its left-most point. Furthermore, we say that B is a prefix
box if B is anchored and σ(B) = P|B|, in which case we also say that B matches the prefix
of P of size |B|. We need the following lemma, which is similar to Lemma 2 in [11].

I Lemma 2. For fixed integers 1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ m, there is at most one prefix
box B = (i, j, ymin, ymax) of size k.

Proof. Let i, j and k be fixed, and let s and l denote the number of elements of {p2, . . . , pk}
that are smaller and larger than p1, respectively. A prefix box (i, j, ·, ·) of size k must contain
the first s points below ti and the first l points above ti, and hence it is unique. J

The proof of the lemma uses the fact that for fixed i, j, k there is a unique candidate box
Bk = (i, j, ·, ·) that can match Pk. Figure 4 shows these candidate boxes for k = 1, . . . ,m
(and i and j fixed). Observe that only the prefixes P1,P2 and P5 are matched, and that the
boxes are nested, i.e., Bk−1 is contained in Bk.

Given a prefix box B = (i, j, ·, ·) its preceding prefix box is the largest prefix box B′ =
(i, j, ·, ·) smaller than B. Observe that the preceding prefix box can be obtained by removing
a certain number of points from above and a certain number of points from below, and note
that these two numbers only depend on the size of B. Consequently, for a prefix box B of
size k = 2, . . . ,m, we let (ak, bk) be the number of points that needs to be removed from B

from above and below, respectively, to obtain the preceding prefix box of B. We will show
how to compute these numbers later.

I Example 3. In Figure 4 there are three prefix boxes on (i, j) = (2, 8): B5, B2 and B1.
The preceding prefix box of B5 is B2 and to obtain it we need to remove one point from
above and two from below, so (a5, b5) = (1, 2). Similarly, B1 is the preceding prefix box of
B2 and to obtain it, we need to remove one point from below, so (a2, b2) = (0, 1).

3 The Flattening Box Algorithm

At a high level the algorithm of Cho et al. [11] and our new algorithm can both be seen as
implementations of an abstract algorithm, which we call the flattening box algorithm. The
name comes from the fact that it examines boxes of decreasing height and increasing length.
In this section we give a geometric exposition of this abstract algorithm, and in the next
section we elaborate on how to implement the three primitives it needs.

Let Bmax(i, j) be the largest prefix box (i, j, ·, ·), e.g., in Figure 4, we have that
Bmax(2, 8) = B5. We also refer to Bmax(i, j) as the maximum prefix box on (i, j). Note
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Figure 4 The unique boxes (2, 8, ·, ·) that can match P1, . . . , P7. In this specific case only the
three bold boxes B1, B2, and B5 are prefix boxes and match the corresponding prefix of P .

that by Lemma 2, Bmax(i, j) is unique, and observe that if |Bmax(i, j)| = m then it corres-
ponds to an occurrence of P .

Recall that to solve the boxed permutation pattern matching problem, we need to find
all boxes B s.t. σ(B) = P . The flattening box algorithm actually solves the slightly more
general problem of computing Bmax(i, j) for all 1 ≤ i ≤ j ≤ n. We do this in n iterations
(i = 1, . . . , n), and in each iteration we compute Bmax(i, j) for all j = i, . . . , n. The main
idea is to compute Bmax(i, j) as a so-called extension of another prefix box (i, j − 1, ·, ·).

3.1 Extensions of Prefix Boxes
We say that a prefix box B = (i, j, ymin, ymax) has an empty extension B′ = (i, j +
1, ymin, ymax) if B′ is a prefix box also of size |B|. Note that this means B′ contains exactly
the same points as B. See Figure 5a for an example. Moreover, we say that B has an
increasing extension B′ = (i, j + 1,min(ymin, tj+1),max(ymax, tj+1)), if B′ is a prefix box
of size |B| + 1, i.e., σ(B′) = P|B|+1. Note, here B′ is the box obtained by extending B to
include the point (j + 1, tj+1). See Figure 5b for an example.

The following lemma shows that we can compute the prefix boxes of the form (i, j, ·, ·)
as the extensions of the prefix boxes of the form (i, j − 1, ·, ·).

I Lemma 4. Let 1 ≤ i < j ≤ n. Any prefix box B = (i, j, ·, ·) is an extension of a prefix box
B′ = (i, j − 1, ·, ·).

Proof. Let B = (i, j, ymin, ymax), j > i, be a prefix box and consider the box B′ = (i, j −
1, ymin, ymax). Clearly, B′ is also a prefix box, and if |B′| = |B| − 1, B is an increasing
extension of B′, and otherwise |B′| = |B| and B is an empty extension of B′. J

Let Bext(i, j) = (i, j, ·, ·) denote the largest prefix box that has an extension. We then have
the following important corollary, which we will use for computing Bmax(i, j).
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1
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B B′

(a) An empty extension

1
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2
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4

4

5

5

6
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7

7

B

B′

(b) An increasing extension

1

1

2

2

3

3

4

4

5

5

6

6
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7

B

B′

(c) Not an extension

Figure 5 Illustrating different extensions of a prefix box B of the pattern P shown in Figure 1.
(a) B′ is an empty extension of B, since σ(B) = P|B| = σ(B′). (b) B′ is an increasing extension of
B, since σ(B) = P|B| and σ(B′) = P|B|+1. (c) B′ is not an extension of B.

I Corollary 5. Bmax(i, j) is an (increasing or empty) extension of Bext(i, j − 1).

I Example 6. In Figure 4 there are three prefix boxes B5, B2 and B1 on (i, j) = (2, 8). B5
has no extension, B2 has both an increasing and an empty extension, and B1 has an empty
extension. Consequently, Bext(i, j) = B2, and thus the largest prefix box Bmax(i, j + 1) is
the increasing extension of B2, i.e., (2, 9, 5, 8), matching the prefix P3.

3.2 The Abstract Algorithm
Our goal is to compute Bmax(i, j) assuming we have already computed Bmax(i, j − 1). Ac-
cording to Corollary 5, we need to first find Bext(i, j−1). Note that as shown by Example 6,
Bext(i, j−1) is not necessarily equal to Bmax(i, j−1). However, we can find Bext(i, j−1) as
follows: Starting with Bmax(i, j− 1) (which we have computed), we check each of the prefix
boxes (i, j−1, ·, ·) in decreasing order of their size. The first one, which has an extension (in-
creasing or empty) gives us Bext(i, j− 1), and hence also Bmax(i, j). Algorithm 1 shows this
approach, assuming that we have available a function precedingPrefixBox, which takes a
prefix box B = (i, j − 1, ·, ·) and returns the largest prefix box (i, j − 1, ·, ·) smaller than B.

4 Implementing the Algorithm

To implement the abstract algorithm we need to describe how to check if a prefix box B
has an increasing/empty extension, and how to obtain the preceding prefix box of B. We
describe how to do this in the following sections.

4.1 Checking If a Prefix Box Can Be Extended
We can easily check in constant time whether a given prefix box B = (i, j, ymin, ymax) has
an empty extension, since this is the case if and only if tj+1 /∈ [ymin, ymax].

Hence in the remaining part of this section we focus on how to efficiently check whether
B has an increasing extension, which is significantly more involved. We need the following
definitions. For a permutation Q = (q1, . . . , q|Q|), we define DQ(i, j) = |(i, j, 1, qj)|, i.e.,
DQ(i, j) is the number of points (l, ql) where i ≤ l ≤ j and ql ≤ qj (see Figure 6b).
Moreover, for a box B = (i, j, ymin, ymax), we define EQ(B) = |(i, j, 1, ymin− 1)|, i.e., EQ(B)
is the number of points below B (see Figure 6a).
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Input : Permutations T = (t1, . . . , tn) and P = (p1, . . . , pm)
Output: All boxes B s.t. σ(B) = P

1 for i← 1 to n do
2 Bmax(i, i)← (i, i, ti, ti)
3 /Users/mikaamit/Dropbox/Order Preserving/versions/CPM16/paper.tex
4 for j ← i+ 1 to n do
5 B ← Bmax(i, j − 1)
6 while Bmax(i, j) = null do
7 if B has an increasing extension B′ then
8 Bmax(i, j)← B′

9 else if B has an empty extension B′ then
10 Bmax(i, j)← B′

11 else
12 B ← precedingPrefixBox(B)
13 end
14 end
15 if |Bmax(i, j)| = m then
16 Output Bmax(i, j) /* Found an occurrence of P */
17 end
18 end
19 end

Algorithm 1: The Flattening Box Algorithm

The following lemma gives the property that we will use for checking if a prefix box B
has an increasing extension in constant time.

I Lemma 7. A prefix box B = (i, j, ymin, ymax) has an increasing extension if and only if
DT (i, j + 1)− ET (B) = DP (1, |B|+ 1).

Proof. We need the following simple append operation on permutations. Let Q =
(q1, . . . , qk) be a permutation of the integers 1, . . . , k. The permutation obtained by ap-
pending an integer 1 ≤ r ≤ k + 1 to Q is the permutation Q · r = (q′1, . . . , q′k, r) of the
integers 1, . . . , k + 1, where for 1 ≤ i ≤ k, q′i = qi + 1 if qi ≥ r and q′i = qi otherwise.

Now to prove the lemma, we start by observing that Pk+1 = Pk · DP (1, k + 1) for
1 ≤ k ≤ m−1. We need to show that the box B′ = (i, j+1,min(tj+1, ymin),max(tj+1, ymax))
obtained by extending B to include the point (j+1, tj+1), induces the permutation P|B|+1 if
and only if DT (i, j+ 1)−ET (B) = DP (1, |B|+ 1). We consider the two cases |B′| = |B|+ 1
and |B′| > |B|+ 1 separately.

In the first case |B′| = |B|+ 1, which means B′, in addition to the points in B, includes
only the point (j+1, tj+1). It is not hard to see that DT (i, j+1)−ET (B) counts the number
of points (l, tl) ∈ B s.t. tl ≤ tj+1 (see Figure 6). Hence the induced permutation of B′ is

σ(B′) = σ(B) · (DT (i, j + 1)− ET (B)) .

At the same time we have that B has an increasing extension if and only if

σ(B′) = P|B|+1 = P|B| ·DP (1, k + 1) = σ(B) ·DP (1, k + 1) .

Combining the two equations yields the lemma.
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ymin

ymax

i j j + 1

tj+1 B

ET (B)

(a) ET (B)

ymin

ymax

i j j + 1

tj+1 B

DT (i, j + 1)

(b) DT (i, j + 1)

ymin

ymax

i j j + 1

tj+1 B

DT (i, j + 1) − ET (B)

(c) DT (i, j + 1) − ET (B)

Figure 6 Illustrating the boxes that represent ET (B), DT (i, j + 1), and DT (i, j + 1) − ET (B).
The number of points in these boxes are used to decide if a prefix box B has an increasing extension.

In the other case |B′| > |B| + 1. This means that B′ in addition to (j + 1, tj+1) also
contains some other points (either above or below B). See Figure 5c for an example. Clearly
σ(B′) 6= P|B|+1 and thus B has no increasing extension in this case. To show that DT (i, j+
1)− ET (B) 6= DP (1, |B|+ 1), observe that if points above B were included then DT (i, j +
1)−ET (B) > |B|+ 1, and if points below B were included then DT (i, j + 1)−ET (B) ≤ 0.
Since 1 ≤ DP (1, |B|+ 1) ≤ |B|+ 1, we have that DT (i, j+ 1)−ET (B) 6= DP (1, |B|+ 1). J

In the following we describe how to efficiently obtain the values of DT (i, j + 1), ET (B)
and DP (1, |B|+ 1).

4.1.1 The value DP (1, |B|+ 1)
Prior to running the algorithm, we preprocess a table of size O(m) that stores the value
DP (1, k) for k = 2, . . . ,m. Assuming we maintain the size of the current prefix box B in
the algorithm (which is straightforward), we can obtain DP (1, |B| + 1) by a constant-time
lookup. We describe how to compute the lookup table in O(m

√
logm) time in Section 4.3.

4.1.2 The value ET (B)
Recall that in the algorithm we consider the prefix boxes (i, j, ·, ·) in decreasing order of
their size until we find Bext(i, j). For each such prefix box B, we need the value of ET (B),
i.e., the number of points below that prefix box. We maintain this number as we iterate j
from i to n as follows.

Initially (for j = i) there are no points below the box, so ET (B) = 0. The number
only changes in the following two cases: If B does not have an extension, we consider the
preceding prefix box of B, and hence ET (B) increases by bk (the number of points that are
removed from below). The other case in which ET (B) changes is when B is extended to
j + 1 as an empty extension and tj+1 < ymin. In this case ET (B) increases by one.

4.1.3 The value DT (i, j + 1)
In the following assume that i is fixed, corresponding to a single iteration of the outer-most
loop of the algorithm. As we iterate j from i to n, we need the value DT (i, j). We compute
these values for j = i, . . . , n in the beginning of iteration i and store them in a table of size
O(n). Recall that DT (i, j) is the number of points with x value between i and j and y-value
below tj . Hence we can compute the value DT (i, j) from DT (i− 1, j) as follows.

DT (i, j) =
{
DT (i− 1, j)− 1 if ti−1 < tj

DT (i− 1, j) otherwise
(1)
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Note that computing the table only takes O(n) time, assuming we have the tableDT (i−1, j).
Moreover, there is no need to store the old table, so we only need O(n) space over all
iterations of the algorithm. However, in the very first iteration (i = 1), we need the table
DT (1, j), j = 1, . . . , n. We compute this table in O(n

√
logn) time in the preprocessing

phase of the algorithm as explained in Section 4.3.

4.2 Computing the Preceding Prefix Box
Recall that given a prefix box B = (i, j, ymin, ymax) of size k, its preceding prefix box B′
can be obtained by removing ak points from above, and bk points from below. We compute
(ak, bk) for all k in the preprocessing phase as will be explained in Section 4.3.

To remove ak points from above, we decrement ymax in steps of one and keep track of
how many points we have excluded. Note that when decrementing ymax we exclude a point
from B if and only if i ≤ T−1(ymax) ≤ j, where T−1 is the inverse permuation of T , i.e.,
T−1(ti) = i. We remove the bk points from below by similarly incrementing ymin until bk
points have been excluded.

We compute T−1 in the preprocessing phase of the algorithm in O(n) time.

4.3 Preprocessing the Lookup Tables
We now describe and analyze the necessary preprocessing of the text T and the pattern P .

4.3.1 Preprocessing of the Text
For the text, we need two O(n)-size tables, its inverse permutation T−1, and the table for
DT (1, j), j = 1, . . . , n. The inverse permutation is easily computed in O(n) time.

Recall that DT (1, j) is the number of points with strictly smaller coordinates than (j, tj).
The problem of computing this number for all n points is known as 2D offline dominance
counting. A point in the plane dominates another point if each one of its coordinates is
strictly larger. In the 2D offline dominance counting problem we are given a set of n points,
and we want to count the number of other points that each point dominates. This problem
is solved in O(n

√
logn) time using the algorithm by Chan and Pătraşcu [8]. In fact, since

we only need to compute this table for i = 1, we can afford to use the trivial O(n2)-time
algorithm as well.

4.3.2 Preprocessing of the Pattern
For the pattern we need two O(m)-size tables, the table for DP (1, k), k = 1, . . . ,m, and the
table storing the (ak, bk) values for k = 1, . . . ,m. Computing the table for DP (1, k) can be
done in O(m

√
logm) time exactly as we did for the text.

We will compute the (ak, bk) values incrementally using an algorithm very similar to the
flattening box algorithm. Recall that (ak, bk) denote the number of points that must be
removed from a prefix box B of size k, from above and below, respectively, to obtain its
preceding prefix box. Initially, we set (a1, b1) = (0, 0). Let T = P , i.e., we treat the set of
points {(1, p1), . . . , (m, pm)} as the text. Now consider a box Bk = (1, k, 1,m). This box is
clearly a prefix box, since it matches Pk, and hence it is also the maximum prefix box of the
form (1, k, ·, ·). Let B′k denote the second largest prefix box on (1, k, ·, ·), i.e., the preceding
prefix box of Bk. The idea is to compute B′k, for k = 1, . . . ,m. It is easy to see that this
will give us the (ak, bk) values as the number of points above and below B′k, respectively.
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It follows from Lemma 2 that we can compute B′k from B′k−1 as follows: Starting with
B′k−1 (which we have computed), we check each of the prefix boxes (1, k−1, ·, ·) in decreasing
order of their size. The first one, which has an extension (increasing or empty) of size less
than k, gives us B′k. Note that as we have already computed (ak′ , bk′) for k′ < k, we
can compute the preceding prefix box of B′k−1 (and any of its predecessors) by simply
removing (ak−1, bk−1) points from above and below using exactly the same approach as
in the flattening box algorithm (See Section 4.2). This requires that we also compute the
inverse permutation of P in O(m) time and space.

The time for computing all (ak, bk) values can be bounded by O(m2), for the same reason
the flattening box algorithm runs in O(n2) time (See the next section).

5 Analysis

We now summarize the time analysis of our algorithm.
As already argued, we need O(n

√
logn) time and O(n) space for preprocessing the text,

and preprocessing of the pattern takes O(m2) time and O(m) space. To prove that the
algorithm runs in O(n2) time, we show that a single iteration of the outer-most for-loop
only takes O(n) time. Checking if a prefix box can be extended only requires constant-time
table lookups. To see that the total time spent computing preceding prefix boxes is O(n),
it suffices to note that once a point is excluded, it can never be included again. Hence the
total time spent decrementing ymax and incrementing ymin is O(n).

Consequently, the total time complexity is O(n2 +m2) = O(n2).

6 Open Problems

We have shown that boxed permutation pattern matching can be solved in O(n2) time,
which is optimal. Our algorithm uses O(n) space, which leaves open the problem of reducing
the space to O(m). The main challenge in doing this is the apparent absence of a suitable
decomposition of a problem instance into O(n2/m2) independent subproblems of size O(m2).
We do believe that an O(n2) time and O(m) space algorithm exists, but note that with our
current techniques, it seems difficult to reduce the space to O(m) without increasing the
time to at least O(n2 log logn), for computing the rank of a point in a given box.

Another interesting direction for future work is the possibility of designing output-
sensitive algorithms. That is, can an instance of boxed permutation pattern matching with
occ occurrences of the pattern be solved in O(n2−ε + occ) time, for some ε > 0?

Finally, we note that indexing and approximate variants of boxed permutation pattern
matching also have not been studied yet.
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Abstract
In the longest common substring problem we are given two strings of length n and must find a
substring of maximal length that occurs in both strings. It is well-known that the problem can be
solved in linear time, but the solution is not robust and can vary greatly when the input strings
are changed even by one letter. To circumvent this, Leimester and Morgenstern introduced the
problem of the longest common substring with k mismatches. Lately, this problem has received a
lot of attention in the literature, and several algorithms have been suggested. The running time
of these algorithms is n2−o(1), and unfortunately, conditional lower bounds have been shown
which imply that there is little hope to improve this bound.

In this paper we study a different but closely related problem of the longest common substring
with approximately k mismatches and use computational geometry techniques to show that it
admits a randomised solution with strongly subquadratic running time.
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Keywords and phrases Randomised algorithms, string similarity measures, longest common
substring, sketching, locality-sensitive hashing
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1 Introduction

Understanding how similar two strings are and what they share in common is a central task
in stringology, the significance of which is witnessed for example by the 50,000+ citations
of the paper introducing BLAST [3], a heuristic algorithmic tool for comparing biological
sequences. This task can be formalised in many different ways, from the longest common
substring problem to the edit distance problem. The longest common substring problem can
be solved in optimal linear time and space, while the best known algorithms for the edit
distance problem require n2−o(1) time, which makes the longest common substring problem
an attractive choice for many practical applications. On the other hand, the longest common
substring problem is not robust and its solution can vary greatly when the input strings are
changed even by one letter. To overcome this issue, recently there has been introduced a new
problem called the longest common substring with k mismatches. In this paper we continue
this line of research.

1.1 Related work
Let us start with a precise statement of the longest common substring problem.
I Problem 1 (The longest common substring). Given two strings T1, T2 of length n, find
a substring of maximal length that occurs in T1 and T2 exactly.

The suffix tree of T1 and T2, a data structure containing all suffixes of T1 and T2, allows
to solve this problem in linear time and space [32, 19, 21], which is optimal as any algorithm
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needs Ω(n) time to read and Ω(n) space to store the strings. However, if we only account for
“additional” space, the space the algorithm uses apart from the space required to store the
input, then the suffix tree-based solution is not optimal and has been improved in a series of
publications [6, 25, 31].

The major disadvantage of the longest common substring problem is that its solution
is not robust. Consider, for example, two pairs of strings: an, an−1b and a(n−1)/2ba(n−1)/2,
an−1b. (Assume for simplicity that n − 1 ≥ 2 is even.) The longest common substring of
the first pair of strings is twice as long as the longest common substring of the second pair
of strings, although we changed only one letter. This makes the longest common substring
unsuitable to be used as a measure of similarity of two strings: Intuitively, changing one letter
must not change the measure of similarity much. To overcome this issue, it is natural to allow
the substring to occur in T1 and T2 not exactly but with a small number of mismatches.

I Problem 2 (The longest common substring with k mismatches). Given two strings T1, T2
of length n and an integer k, find a substring of maximal length that occurs in T1 and T2
with at most k mismatches.

The problem can be solved in quadratic time and space by a dynamic programming
algorithm, but there have been also shown more efficient solutions. The longest common
substring with one mismatch problem was first considered in [7], where an O(n2)-time and
O(n)-space solution was given. This result was further improved by Flouri et al. who showed
an O(n logn)-time and O(n) space solution to the problem [16]. For a general value of
k, the problem was first considered by Leimeister and Morgenstern [28] who presented a
greedy heuristic algorithm for the problem. Later Flouri et al. showed that the longest
common substring with k mismatches admits a quadratic time and constant (additional) space
algorithm [16]. Apart from that, Grabowski presented two output-dependent algorithms with
running times O(n((k + 1)(`0 + 1))k) and O(n2`k/k), where `0 is the length of the longest
common substring of T1 and T2 and `k is the length of the longest common substring with k
mismatches of T1 and T2 [18]. Finally, Aluru et al. gave an O(2kn)-space, O(n(2 logn)k+1)-
time algorithm [4]. Yet, the worst-case running time of all these algorithms is still quadratic.
Very recently, Abboud et al. [1] applied the polynomial method to develop a k1.5n2/2Ω(

√
log n

k )-
time randomised solution to the problem.

The best algorithms for the edit distance problem and its variations (we do not give
their precise statements here as it is not essential for the paper) also have n2−o(1) running
time [30, 12, 29], and these bounds are tight under the Strong Exponential Time Hypothesis
(SETH) of Impagliazzo, Paturi and Zane: [8, 11]:

I Hypothesis 1. (SETH). For every δ > 0 there exists an integer m such that SAT on
m-CNF formulas on n variables cannot be solved in mO(1)2(1−δ)n time.

1.2 Our contribution
In this paper we introduce a new problem called the longest common substring with approx-
imately k mismatches, inspired by the work of Andoni and Indyk [5].

I Problem 3 (The longest common substring with approximately k mismatches). Given
two strings T1, T2 of length n, an integer k, and a constant ε > 0. If `k is the length of the
longest common substring with k mismatches of T1 and T2, return a substring of length at
least `k that occurs in T1 and T2 with at most (1 + ε) · k mismatches.

In their work Andoni and Indyk used the technique of locality-sensitive hashing to develop
a space-efficient randomised index for a variant of the approximate pattern matching problem.
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We build up on their work with several new ideas in the construction and the analysis to
develop a randomised subquadratic-time solution to Problem 3. Assume binary alphabet
and let 0 < ε < 2 be an arbitrary constant.

I Theorem 1. The longest common substring with approximately k mismatches can be solved
in O(n1+1/(1+ε)) space and O(n1+1/(1+ε) log2 n) time correctly with constant probability.

If the alphabet is of constant size σ > 2, we can use a standard trick and encode T1
and T2 by replacing each letter a in them with a binary vector 0a−110σ−a. The Hamming
distance (i.e. the number of mismatches) between any two substrings of T1 and T2 in the
encoded form will be exactly twice as large as the Hamming distance between the original
substrings, which allows to extend our solution naturally to this case as well at a cost of an
additional constant factor.

We note that although the problem statement is not standard for stringology, it makes
perfect sense from the practical point of view. Indeed, for most applications it is not important
whether a returned substring occurs in T1 and T2 with for example 10 or (1 + 1

5 ) · 10 = 12
mismatches. The result is also important from the theoretical point of view as it improves
our understanding of the big picture of string comparison.

2 Overview

In this section we give an overview of the main ideas needed to prove Theorem 1. The
classic solution to the longest common substring problem is based on two observations. The
first observation is that the longest common substring of T1 and T2 is in fact the longest
common prefix of some suffix of T1 and some suffix of T2. The second observation is that
the maximal length of the longest common prefix of a fixed suffix S of T1 and suffixes of T2
is reached on the two suffixes of T2 that are closest to S in the lexicographic order. This
suggests the following algorithm: First, we build a suffix tree of T1 and T2, which contains
all suffixes of T1 and T2 and orders them lexicographically. Secondly, we compute the longest
common prefix of each suffix of T1 and the two suffixes of T2 closest to S in the lexicographic
order, one from the left and one from the right. The problem of computing the longest
common prefix has been extensively studied in the literature and a number of very efficient
deterministic and randomised solutions exist [9, 10, 14, 22, 20], for example, one can use a
Lowest Common Ancestor (LCA) data structure, which can be constructed in linear time
and space and maintains longest common prefix queries in O(1) time [14, 20].

Our solution to the longest common substring with approximately k mismatches problem
is somewhat similar. We will consider θ(n1+1/(1+ε) logn) orderings on the suffixes of T1 and T2
and will show that with high probability the length of the longest common substring with
approximately k mismatches is the answer to a longest common prefix with approximately k
mismatches (LCPk̃) query for some pair of suffixes that are close to each other in one of the
orderings. In an LCPk̃ query we are given two suffixes S1, S2 of T1 and T2 and must output
any integer in the interval [`k, `(1+ε)·k], where `k and `(1+ε)·k are the lengths of the longest
common prefixes of S1 and S2 with k and (1+ε) ·k mismatches respectively. Note that LCPk̃
queries can be answered deterministically in O(k) time using the kangaroo method [27, 17],
but for the purposes of this paper we give a faster randomised solution.

I Theorem 2. After O(n log3 n) time and O(n log2 n) space preprocessing of T1 and T2, an
LCPk̃ query can be answered in O(log2 n) time. The answer is correct with probability at
least 1− 1

n2 .
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The key idea is to compute sketches for all power-of-two length substrings of T1 and T2.
The sketches will have logarithmic length (i.e., we will be able to compare them very fast)
and the Hamming distance between them will be roughly equal to the Hamming distance
between the original substrings. Once the sketches are computed, we can use a simple binary
search to answer LCPk̃ queries in polylogarithmic time.

To define the orderings on suffixes of T1 and T2 we will use the locality-sensitive hashing
technique, which was initially introduced for the needs of computational geometry [23]. In
more detail, we will choose θ(n1+1/(1+ε) logn) hash functions, where each function can be
considered as a projection of a string of length n onto a random subset of its positions. By
choosing the size of the subset appropriately, we will be able to guarantee that the hash
function is locality-sensitive: For any two strings at the Hamming distance at most k, the
values of the hash functions on them will be equal with high probability, while the values of
the hash functions on any pair of strings at the Hamming distance bigger than (1 + ε) · k will
be different with high probability. For each hash function we will sort the suffixes of T1 and
T2 by the lexicographic order on their hash values. As a corollary of the locality-sensitive
property, if two suffixes of T1 and T2 have a long common prefix with at most k mismatches,
with high probability they will be close to each other in the ordering.

3 Proof of Theorem 2

In this section we show Theorem 2. During the preprocessing stage, we compute sketches [26]
of all substrings of the strings T1 and T2 of lengths ` = 1, 2, . . . , 2blognc, which can be defined
in the following way. For a fixed ` choose λ = 1.5 lnn/γ2 binary vectors ri`, where γ is a
constant to be defined later and let

ri`[j] =
{

1 with probability 1
4k

0 with probability 1− 1
4k

for all i = 1, 2, . . . , λ and j = 1, 2, . . . , `

For a string x of length ` ∈ {1, 2, . . . , 2blognc} we define a sketch sk(x) to be a vector
of length λ, where sk(x)[i] = ri` · x (mod 2). In other words, to obtain sk(x) we sample
each position of x with probability 1

4k and then sum the letters in the sampled positions
modulo 2. All sketches can be computed in O(n log3 n) time by independently running the
Fast Fourier Transform (FFT) algorithm for each of the vectors ri`, and occupy O(n log2 n)
space [15]. Each substring S can be decomposed uniquely as x1x2 . . . xr, where r ∈ O(logn)
and |x1| > |x2| > . . . > |xr| are powers of two. We define a sketch sk(S) =

∑
q sk(xq). Let

δ1 = 1
2 (1− (1− 1

4k )k), δ2 = 1
2 (1− (1− 1

4k )(1+ε)·k), and ∆ = (δ1+δ2)
2 · λ.

I Lemma 3 ([26]). For any i if the Hamming distance between S1 and S2 is at most k, then
sk(S1)[i] 6= sk(S2)[i] with probability at most δ1. If the Hamming distance between S1 and S2
is at least (1 + ε) · k, then sk(S1)[i] 6= sk(S2)[i] with probability at least δ2.

Proof. Let m be the Hamming distance between S1 and S2 and let p1, p2, . . . , pm be the
positions of the mismatches between them. If none of the positions p1, p2, . . . , pm are sampled,
then sk(S1)[i] = sk(S2)[i], and otherwise for each way of sampling p1, p2, . . . , pm−1 exactly
one of the two choices for pm will give sk(S1)[i] = sk(S2)[i]. (Recall that the alphabet is
binary.) Hence, the probability that sk(S1)[i] 6= sk(S2)[i] is equal to 1

2 (1− (1− 1
4k )m), which

is at most δ1 if the Hamming distance between S1 and S2 is at most k, and at least δ2 if the
Hamming distance is greater than (1 + ε) · k. J
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I Lemma 4. If the Hamming distance between sketches sk(S1) and sk(S2) is bigger than ∆,
then the Hamming distance between S1 and S2 is bigger than k. If the Hamming distance
between sketches sk(S1) and sk(S2) is at most ∆, then the Hamming distance between S1
and S2 is at most (1 + ε) · k. Both claims are correct with probability at least 1− 1

n3 .

Proof. Let χi be an indicator random variable that is equal to one if and only if sk(S1)[i] =
sk(S2)[i]. The claim follows immediately from Lemma 3 and the following Chernoff bounds
(see [2, Appendix A]). For λ independently and identically distributed binary variables
χ1, χ2, . . . , χλ, Pr[

∑
i χi ≥ (p + γ)] ≤ e−2λγ2 and Pr[

∑
i χi < (p − γ)] ≤ e−2λγ2 , where

p = Pr[χi = 1]. We put γ = (δ2−δ1)
2 and obtain that the error probability is at most

e−2λγ2
< 1

n3 . (Note that γ = Θ(1− eε/4) is a constant depending on ε.) J

Suppose we wish to answer an LCPk̃ query on two suffixes S1, S2. It suffices to find
the longest prefixes of S1, S2 such that the Hamming distance between their sketches is at
most ∆. As mentioned above, these prefixes can be represented uniquely as a concatenation
of strings of power-of-two lengths `1 > `2 > . . . > `r. To compute `1, we initialise it with
the biggest power of two not exceeding n and compute the Hamming distance between the
sketches of corresponding substrings. If it is smaller than ∆, we have found `1, otherwise we
divide `1 by two and continue. Suppose that we already know `1, `2, . . . , `i and let hi be the
Hamming distance between the sketches of prefixes of S1 and S2 of lengths `1 + `2 + . . .+ `i.
To compute `i+1, we initialise it with `i and then divide it by two until the Hamming distance
between the corresponding substrings of length `i+1 is at most ∆− hi. From above it follows
that the algorithm is correct with probability at least 1− 1

n2 (we estimate error probability
by the union bound) and that the query time is O(log2 n). This completes the proof of
Theorem 2.

4 Proof of Theorem 1

Recall that we are given two strings T1, T2 of length n, and if `k is the length of the longest
common substring with k mismatches of T1 and T2, the objective is to return a substring of
length at least `k that occurs in T1 and T2 with at most (1 + ε) · k mismatches.

4.1 Algorithm
We start by preprocessing T1 and T2 as described in Theorem 2. The main phase of the
algorithm is defined by three parameters t, w, and m to be specified later, and consists of
θ(t! logn) independent steps.

At each step we choose
(
w
t

)
hash functions, where each hash function can be considered

as a t-tuple of projections of strings of length n onto subsets of their positions of size m.
Let H be a set of all projections of strings of length n onto a single position, i.e. the value of
the i-th projection on a string of length n is simply its i-th letter. We start by choosing a
set of w functions ur ∈ Hm, r = 1, 2, . . . , w, uniformly at random. Each hash function h is
defined to be a t-tuple of distinct functions ur. More formally, h = (ur1 , ur2 , . . . , urt

) ∈ Hmt,
where 1 ≤ r1 < r2 < . . . < rt ≤ w. The fact that the hash functions are constructed from a
small set of functions uj will ensure faster running time for the algorithm.

Consider the set of all suffixes S1, S2, . . . , S2n of T1 and T2. We append each suffix in the
set with an appropriate number of letters $ /∈ Σ so that all suffixes have length n and build a
trie on strings h(S1), h(S2), . . . , h(S2n).
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Algorithm 1 Longest common substring with approximately k mismatches.
1: Preprocess T1, T2 for LCPk̃ queries
2: for i = 1, 2, . . . , θ(t! logn) do
3: for r = 1, 2, . . . , w do
4: Choose a function ur ∈ Hm uniformly at random
5: Preprocess ur
6: end for
7: for all h = (ur1 , ur2 , . . . , urt) do
8: Build a trie on h(S1), h(S2), . . . , h(S2n)
9: Augment the trie with an LCA data structure

10: end for
11: for all suffixes S of T1 do
12: Find the largest ` s.t. the total size of the `-neighbourhoods of S is ≥ 2

(
w
t

)
13: Select a set S of 2

(
w
t

)
suffixes from the `-neighbourhoods of S

14: for all suffixes S′ ∈ S do
15: Compute LCPk̃(S, S′)
16: Update the longest common substring with approximately k mismatches
17: end for
18: end for
19: end for

I Theorem 5. After O(wn4/3 log4/3 n)-time and O(wn)-space preprocessing of functions ur,
r = 1, 2, . . . , w, for any hash function h = (ur1 , ur2 , . . . , urt

) a trie on h(S1), h(S2), . . . , h(S2n)
can be built in O(tn logn) time and linear space.

Let us defer the proof of the theorem until we complete the description of the algorithm and
show Theorem 1. The algorithm preprocesses u1, u2, . . . , uw, and for each hash function h
builds a trie on h(S1), h(S2), . . . , h(S2n). It then augments the trie with an LCA data
structure, which can be done in linear time and space [14, 20]. Given two strings h(Si), h(Sj)
the LCA data structure can find the length of their longest common prefix in constant time.

Consider a suffix S of T1 and let h be a hash function projecting a string of length n
onto a subset P ⊆ [1, n] of its positions. We define h

∣∣
[`] to be a projection onto a subset

P ∩ [1, `] of positions. (In other words, h
∣∣
[`] is a function h applied to a prefix of a string of

length `.) We further say that the `-neighbourhood of S is the set of all suffixes S′ of T2
such that h

∣∣
[`](S) = h

∣∣
[`](S

′). Note that for a fixed h and ` the size of the `-neighbourhood
of S is equal to the number of suffixes S′ of T2 such that the length of the longest common
prefix of h(S) and h(S′) is at least |P ∩ [1, `]|. From the properties of the lexicographic
order it follows that if S′, S′′ are two suffixes of T2 and h(S′′) is located between h(S′) and
h(S) in the trie for h, then the longest common prefix of h(S′) and h(S) is no longer than
the longest common prefix of h(S′′) and h(S). Therefore, the larger ` is, the smaller the
neighbourhood is. We use a simple binary search and the LCA data structures to find the
largest ` such that the total size of `-neighbourhoods for all hash functions is at least 2

(
w
t

)
in O(

(
w
t

)
· log2 n) time. From the union of the `-neighbourhoods we select a multiset S of

2
(
w
t

)
suffixes ensuring that all suffixes S′ such that the longest common prefix of h(S′) and

h(S) has length at least |P ∩ [1, `]|+ 1 are included. For each suffix S′ ∈ S we compute the
longest common prefix with approximately k mismatches of S′ and S by one LCPk̃ query
(Theorem 2). The longest of all retrieved prefixes, over all suffixes S of T1, is returned as
an answer. The algorithm is summarised in the figure above. We will now proceed to its
complexity and correctness.
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4.2 Complexity and correctness
To ensure the complexity bounds and correctness of the algorithm, we must carefully choose
the parameters t, w, and m. Let p1 = 1 − k/n, and p2 = 1 − (1 + ε) · k/n. The intuition
behind p1 and p2 is that if S1, S2 are two suffixes of length n and the Hamming distance
between S1 and S2 is at most k, then p1 is a lower bound for the probability of two letters
S1[i], S2[i] to be equal. On the other hand, p2 is an upper bound for the probability of two
letters S1[i], S2[i] to be equal if the Hamming distance between S1 and S2 is at least (1+ε) ·k.
Let ρ = log p1/ log p2, and define

t =
⌈√

ρ logn
ln logn

⌉
+ 1, w = dnρ/te, and m =

⌈
1
t

logp2

1
n2

⌉
.

4.2.1 Complexity
To show the time complexity of the algorithm, we will start from the following simple
observation.
I Observation 6. ρ ≤ 1/(1 + ε) and 2 ≤ t ≤

√
logn.

Proof. By Bernoulli’s inequality (1 − k/n)1+ε ≥ 1 − (1 + ε) · k/n. Hence, we obtain that
ρ = log(1−k/n)

log(1−(1+ε)k/n) ≤
1

1+ε . The second part of the lemma follows. J

I Lemma 7. One step of the algorithm takes O(wn4/3 log4/3 n+
(
w
t

)
· n log2 n) time.

Proof. By Theorem 5, after O(wn4/3 log4/3 n)-time preprocessing we can build a trie and an
LCA data structure on strings h(S1), h(S2), . . . , h(S2n) for a hash function h in O(tn logn) =
O(n log3/2 n) time and there are

(
w
t

)
hash functions in total. For each suffix of T1 we then

run 2
(
w
t

)
LCPk̃ queries, which takes O(

(
w
t

)
· n log2 n) time. J

I Corollary 8. The running time of the algorithm is O(n1+1/(1+ε) log2 n).

Proof. Preprocessing T1, T2 for LCPk̃ queries takes O(n log3 n/ε2) time (see Theorem 2).
Each step of the algorithm takes O(wn4/3 log4/3 n +

(
w
t

)
· n log2 n) time, and there are

θ(t! logn) steps in total. To estimate the total running time of the algorithm we notice
that wt! = O(e

√
ρ logn ln logn) = O(no(1)) and

(
w
t

)
· t! ≤ wt

t! t! = nρ ≤ n1/(1+ε). Plugging these
inequalities into the time bound for one step and recalling that 0 < ε < 2, we obtain the
claim. J

I Lemma 9. The space complexity of the algorithm is O(n1+1/(1+ε)).

Proof. The data structure for LCPk̃ queries requires O(n log3 n) space. At each step of
the algorithm, preprocessing functions uj requires O(wn) = O(n1+o(1)) space and the tries
occupy O(

(
w
t

)
· n) = O(n1+1/(1+ε)) space. J

4.2.2 Correctness
Let S be a suffix of T1. Consider a set of the longest common prefixes with k mismatches of
S and suffixes of T2 and let `k be the maximal length of a prefix in this set achieved on some
suffix S′ of T2.

I Lemma 10. For each step with probability ≥ θ(1/t!) there exists a hash function h such
that h

∣∣
[`k](S) = h

∣∣
[`k](S

′).
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Proof. Consider strings S[1, `k]$n−`k and S′[1, `k]$n−`k . The Hamming distance between
them is equal to the Hamming distance between S[1, `k] and S′[1, `k], which is k. Moreover,
for any hash function h we have that h(S[1, `k]$n−`k ) = h(S′[1, `k]$n−`k ) if and only if
h
∣∣
[`k](S) = h

∣∣
[`k](S

′). Remember that each hash function is a t-tuple of functions uj .
Consequently, if h(S[1, `k]$n−`k ) 6= h(S′[1, `k]$n−`k ) for all hash functions h, the strings
collide on at most t− 1 functions uj . By [5, Lemma A.1] the probability of this event for
two strings at the Hamming distance k is at most 1− θ(1/t!). J

As a corollary, we can choose the constant in the number of steps so that with probability
≥ 1 − 1/n2 there will exist a step of algorithm such that for at least one hash function
we will have h

∣∣
[`k](S) = h

∣∣
[`k](S

′). The set S of 2
(
w
t

)
suffixes that we sample from the

`-neighbourhoods of S might or might not include the suffix S′. If it does, then the LCPk̃
query for S′ and S will return a substring of length ≥ `k with high probability. If it does
not, then by the definition of neighbourhoods for each suffix S′′ ∈ S belonging to the
neighbourhood for a hash function g we have g

∣∣
[`k](S) = g

∣∣
[`k](S

′′). We will show that only
for a small number of such suffixes an LCPk̃ query can return a substring of length smaller
than `k.

I Lemma 11. With probability ≥ 1 − 2/n2 there are at most
(
w
t

)
suffixes S′′ such that

g
∣∣
[`k](S) = g

∣∣
[`k](S

′′) but the LCPk̃ query returns a substring shorter than `k.

Proof. If the LCPk̃ query for S and S′′ returns a substring shorter than `k, then with
high probability the Hamming distance between S[1, `k] and S′′[1, `k] is at least (1 + ε) · k.
Remember that a hash function g can be considered as a projection onto a random subset of
positions of size mt, and therefore we obtain

Pr[g
∣∣
[`k](S) = g

∣∣
[`k](S

′′)] = Pr[g(S[1, `k]$n−`k ) = g(S′′)[1, `k]$n−`k ] ≤ (p2)mt = 1
n2

We can consider an indicator random variable that is equal to one if for a suffix S′′ such
that g

∣∣
[`k](S) = g

∣∣
[`k](S

′′) the LCPk̃ query returns a substring shorter than `k, and to zero
otherwise. By linearity, the expectation of their sum is at most 2

n2 ·
(
w
t

)
. The claim follows

from Markov’s inequality. J

From Lemmas 10 and 11 and Theorem 2 it follows that the algorithm correctly finds the
value of ` for the suffix S of T1 with error probability ≤ 3/n2. Applying the union bound,
we obtain that the error probability of the algorithm is constant.

4.3 Proof of Theorem 5
Recall that h is a t-tuple of functions ur, i.e h = (ur1 , ur2 , . . . , urt

), where 1 ≤ r1 < r2 <

. . . < rt ≤ w. Below we will show that after the preprocessing of functions ur we will be
able to compute the longest common prefix of any two strings ur(Si), ur(Sj) in O(1) time.
As a result, we will be able to compute the longest common prefix of h(Si), h(Sj) in O(t)
time. It also follows that we will be able to compare any two strings h(Si), h(Sj) in O(t)
time as their order is defined by the letter following the longest common prefix. Therefore,
we can sort strings h(S1), h(S2), . . . , h(S2n) in O(tn logn) time and O(n) space and then
compute the longest common prefix of each two adjacent strings in O(tn) time. The trie on
h(S1), h(S2), . . . , h(S2n) can then be built in O(n) time by imitating its depth-first traverse.

It remains to explain how we preprocess functions ur, r = 1, 2, . . . , w. For each function
ur it suffices to build a trie on strings ur(S1), ur(S2), . . . , ur(S2n) and to augment it with an
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LCA data structure [14, 20]. We will consider two different methods for constructing the
trie with time dependent on m. No matter what the value of m is, one of these methods
will have O(n4/3 log1/3 n) running time. Let ur be a projection along a subset P of positions
1 ≤ p1 ≤ p2 ≤ · · · ≤ pm ≤ n and denote T = T1$nT2$n.

I Lemma 12. The trie can be built in O(
√
mn logn) time and O(n) space correctly with

error probability at most 1/n3.

Proof. We partition P into disjoint subsets B1, B2, . . . , B√m, where

B` = {p`,1, p`,2, . . . , p`,√m} = {p(`−1)
√
m+q | q ∈ [1,

√
m]}.

Now ur can be represented as a
√
m-tuple of projections b1, b2, . . . , b√m onto the subsets

B1, B2, . . . , B√m respectively. We will build the trie by layers to avoid space overhead.
Suppose that we have built the trie for a function (b1, b2, . . . , b`−1) and we want to extend it
to the trie for (b1, b2, . . . , b`−1, b`).

Let p be a random prime of value at most nO(1). We create a vector χ of length n, where
χ[p`,q] = 2

√
m−1−q and zero for all positions not in B`. We then run the FFT algorithm for

χ and T in the field Zp [15]. The output of the FFT algorithm will contain convolutions of
χ and all suffixes S1, S2, . . . , S2n. The convolution of χ and a suffix Si is the Karp-Rabin
fingerprint [24] ϕ`,i of b`(Si), where

ϕ`,i =

√
m∑

q=1
Si[p`,q] · 2

√
m−1−q (mod p)

If the fingerprints of b`(Si) and b`(Sj) are equal, then b`(Si) and b`(Sj) are equal with
probability at least 1 − 1

n4 , and otherwise they differ. For a fixed leaf of the trie for
(b1, b2, . . . , b`−1) we sort all suffixes that end in it by fingerprints ϕ`,i, which takes O(n logn)
time in total. For each two suffixes Si, Sj that end in the same leaf, adjacent and have
ϕ`,i 6= ϕ`,j , we compare b`(Si) and b`(Sj) letter-by-letter in O(

√
m) time to find their longest

common prefix. Note that this letter-by-letter comparison step will be executed at most n
times, and therefore will take O(

√
mn) time in total. We then append each leaf with a trie

on strings b`(Si) that can be built by imitating its depth-first traverse, which takes O(n)
time for a layer. J

The second method builds the trie in O(n2 log2 n/m) time by the algorithm described in
the first paragraph of this section, and we only need to give a method for comparing the
longest common prefix of ur(Si) and ur(Sj) (or, equivalently, the first position where ur(Si)
and ur(Sj) differ.)

I Lemma 13 ([5]). After O(n)-time and space preprocessing the first position where two
strings ur(Si) and ur(Sj) differ can be found in O(n logn/m) time correctly with error
probability at most 1/n3.

Proof. We start by building the suffix tree for the string T . The suffix tree can be built in
O(n) time and space [32, 13, 19]. Furthermore, we augment the suffix tree with an LCA
data structure in O(n) time [14, 20].

Let ` = 3n logn/m. We can find the first ` positions q1 < q2 < . . . < q` where Si and Sj
differ in O(n logn/m) time using the kangaroo method [27, 17]. The idea of the kangaroo
method is as follows. We can find q1 by one query to the LCA data structure in O(1) time.
After removing the first q1 positions of Si, Sj , we obtain suffixes Si+q1 , Sj+q1 and find q2
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by another query to the LCA data structure, and so on. If at least one of the positions
q1, q2, . . . , q` belongs to P , then we return the first such position as an answer, and otherwise
we say that ur(Si) = ur(Sj).

Let us show that if p is the first position where ur(Si) and ur(Sj) differ, then p belongs
to {q1, q2, . . . , q`} with high probability. Because q1 < q2 < . . . < q` are the first ` positions
where Si and Sj differ, it suffices to show that at least one of these positions belongs to
P. We rely on the fact P is a random subset of [1, n]. We have Pr[q1, q2, . . . , q` /∈ P] =
(1− `/n)m = (1− 3 logn/m)m ≤ n−3. J

As a corollary of Lemmas 12 and 13, the trie on strings ur(S1), ur(S2), . . . , ur(S2n) can be
built in O(min{

√
m,n logn/m} · n logn) = O(n4/3 log4/3 n) time and O(n) space correctly

with high probability which implies Theorem 5 as explained in the beginning of this section.
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Abstract
We consider fully-online construction of indexing data structures for multiple texts. Let T =
{T1, . . . , TK} be a collection of texts. By fully-online, we mean that a new character can be appen-
ded to any text in T at any time. This is a natural generalization of semi-online construction of
indexing data structures for multiple texts in which, after a new character is appended to the kth
text Tk, then its previous texts T1, . . . , Tk−1 will remain static. Our fully-online scenario arises
when we maintain dynamic indexes for multi-sensor data. Let N and σ denote the total length
of texts in T and the alphabet size, respectively. We first show that the algorithm by Blumer et
al. [Theoretical Computer Science, 40:31-55, 1985] to construct the directed acyclic word graph
(DAWG) for T can readily be extended to our fully-online setting, retaining O(N log σ)-time
and O(N)-space complexities. Then, we give a sophisticated fully-online algorithm which con-
structs the suffix tree for T in O(N log σ) time and O(N) space. A key idea of this algorithm is
synchronized maintenance of the DAWG and the suffix tree.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases suffix trees, DAWGs, multiple texts, online algorithms

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.22

1 Introduction

Text indexing is a fundamental problem in computer science, which plays important roles in
many applications including text retrieval, molecular biology, signal processing, and sensor
data analysis. In this paper, we focus on indexing a collection of multiple texts, so that
subsequent pattern matching queries can be answered quickly. In particular, we study
online indexing for a collection T of multiple texts, where a new character can be appended
to each text at any time. Such fully-online indexing for multiple growing texts has potential
applications to continuous processing of data streams, where a number of symbolic events or
data items are produced from multiple, rapid, time-varying, and unbounded data streams [2,
11]. For example, motif mining system tries to discover characteristic or interesting collective
behaviors, such as frequent path or anomalies, from data streams generated by a collection
of moving objects or sensors [14, 11].

It is known that suffix trees [13] and DAWGs [4] can be efficiently constructed for a
collection of growing texts in the semi-online setting, where only the last inserted text can
be grown. However, these existing semi-online algorithms to maintain a suffix tree or a
DAWG for multiple texts are not sufficient to construct indexing structures for multiple
data streams which grow in a fully-online manner.
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22:2 Fully-online Construction of Suffix Trees for Multiple Texts

We propose how the DAWG and the suffix tree can be incrementally constructed for
a fully-online text collection. First, we observe that Blumer et al.’s construction [4] for
DAWGs and Weiner’s right-to-left construction [15] for suffix trees can readily be adapted
to solve this problem. Hence, at any moment during the fully-online growth of the texts, we
can find all occ occurrences of a given pattern of length M in the current text collection in
O(M log σ + occ) time.

Our next goal is to extend Ukkonen’s construction [13] to fully-online left-to-right con-
struction of suffix trees for multiple texts. A motivation of this goal is that a growing suffix
tree can be enhanced with powerful semi-dynamic tree data structures such as those for
nearest marked ancestor (NMA) queries [16], lowest common ancestor (LCA) queries [7],
and level ancestor (LA) queries [1]. Note that these data structures cannot be applied to
DAWGs, and that the same query results cannot be obtained on the suffix tree maintained
in a Weiner-like right-to-left online manner since the suffix tree obtained in this manner
inherently indexes the reversed texts in the collection. However, it turns out that this goal
is a big algorithmic challenge, because: (A) In Ukkonen’s algorithm, a pointer called the
active point keeps track of the insertion points of suffixes in decreasing order of length. The
efficiency of Ukkonen’s algorithm is due to the monotonicity of the tracking path of the
active point. However, unfortunately this monotonicity does not hold in the fully-online
setting for multiple texts. (B) Due to the non-monotonicity mentioned above, Ukkonen’s
technique to amortize the cost to track the suffix insertion points does not work in our
case. (C) Ukkonen’s “open edge” technique to maintain the leaves does not work in our
case, either. In Section 5 we will explain in more details why and how these problems arise
in our fully-online setting. In this paper, we present a number of new novel techniques to
overcome all the difficulties above. As a final result, we propose the first optimal O(N log σ)-
time O(N)-space fully-online left-to-right construction algorithm for a suffix tree of multiple
texts over a general ordered alphabet of size σ, where N is the final total length of the texts.

1.1 Related work
We note that we can obtain fully-online text index for multiple texts using existing more
general dynamic text indices as follows. To use the index of Ferragina and Grossi [8] which
permits character-wise updates, we build a text $1 · · · $K which initially consists only of
K delimiters. Then, appending a character a to the kth text in the collection reduces to
prepending a to the kth delimiter $k. Using this approach, the index of Ferragina and
Grossi [8] takes O(N logN) total time to be constructed, requires O(N logN) space, and
allows pattern matching in O(M+logN+N logM+occ) time. Using the compressed index
for a dynamic text collection of Chan et al. [6], we can append a new character a to the
kth text Tk by removing Tk and then adding Tka in O(|Tk|) time. This yields a fully-online
index with O(N2 logN) construction time and O(N) bits of space (or O(N/ logN) words of
space assuming Θ(logN)-bit machine word), supporting pattern matching in O(M logN +
occ log2 N) time.

2 Preliminaries

2.1 Strings
Let Σ be a general ordered alphabet. Any element of Σ∗ is called a string. For any string
T , let |T | denote its length. Let ε be the empty string, namely, |ε| = 0. If T = XY Z,
then X, Y , and Z are called a prefix, a substring, and a suffix of T , respectively. For any
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Figure 1 Illustration for STrie(T ), STree(T ), and DAWG(T ) with T = {T1 = aaab, T2 =
ababc, T3 = bab}. The solid arrows and broken arrows represent the edges and the suffix links of
each data structure, respectively. The number k (k = 1, 2, 3) beside each node indicates that the
node represents a suffix of Tk. The nodes [ab]T and [b]T are separated in DAWG(T ) since the node
bab in STrie(T ) is represents a suffix of T3, while the node abab does not (see also the subtrees
rooted at nodes ab and b in STrie(T )).

1 ≤ i ≤ j ≤ |T |, let T [i..j] denote the substring of T that begins at position i and ends at
position j in T . For any 1 ≤ i ≤ |T |, let T [i] denote the ith character of T . For any string
T , let Suffix(T ) denote the set of suffixes of T , and for any set T of strings, let Suffix(T )
denote the set of suffixes of all strings in T . Namely, Suffix(T ) =

⋃
T∈T Suffix(T ). For any

string T , let T denote the reversed string of T , i.e., T = T [|T |] · · ·T [1].
Let T = {T1, . . . , TK} be a collection of K texts. For any 1 ≤ k ≤ K, let lrsT (Tk) be

the longest repeating suffix of Tk that occurs at least twice in T .

2.2 Suffix trees and DAWGs for multiple texts
The suffix trie for a text collection T = {T1, . . . , TK}, denoted STrie(T ), is a trie which
represents Suffix(T ). The size of STrie(T ) is O(N2), where N is the total length of texts
in T . We identify each node v of STrie(T ) with the string that v represents. A substring
x of a text in T is said to be branching in T , if there exist two distinct characters a, b ∈ Σ
such that both xa and xb are substrings of some texts in T . Clearly, node x of STrie(T ) is
branching iff x is branching in T . For each node av of STrie(T ) with a ∈ Σ and v ∈ Σ∗, let
slink(av) = v. This auxiliary edge slink(av) = v from av to v is called a suffix link.

The suffix tree [15] for a text collection T , denoted STree(T ), is a “compacted trie”
which represents Suffix(T ). STree(T ) is obtained by compacting every path of STrie(T )
which consists of non-branching internal nodes (see Fig. 1). Since every internal node of
STree(T ) is branching, and since there are at most N leaves in STree(T ), the numbers of
edges and nodes are O(N). The edge labels of STree(T ) are non-empty substrings of some
text in T . By representing each edge label x with a triple 〈k, i, j〉 of integers s.t. x = Tk[i..j],
STree(T ) can be stored with O(N) space. We say that any branching (resp. non-branching)
substring of T is an explicit node (resp. implicit node) of STree(T ). An implicit node x is
represented by a triple (v, a, `), called a reference to x, such that v is an explicit ancestor of
x, a is the first character of the path from v to x, and ` is the length of the path from v to
x. A reference (v, a, `) to node x is called canonical if v is the lowest explicit ancestor of x.
For each node av of STree(T ) with a ∈ Σ and v ∈ Σ∗, let slink(av) = v.

The directed acyclic word graph [3, 4] of a text collection T , denoted DAWG(T ), is
a smallest DAG which represents Suffix(T ). DAWG(T ) is obtained by merging identical
subtrees of STrie(T ) connected by the suffix links (see Fig. 1). Hence, the label of every
edge of DAWG(T ) is a single character. The numbers of nodes and edges of DAWG(T ) are
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O(N) [4], and hence DAWG(T ) can be stored with O(N) space. DAWG(T ) can be defined
formally as follows: For any string x, let EposT (x) be the set of ending positions of x in
the texts in T , i.e., EposT (x) = {(k, j) | x = Tk[j − |x| + 1..j], 1 ≤ j ≤ |Tk|, 1 ≤ k ≤ K}.
Consider an equivalence relation ≡T on substrings x, y of texts in T such that x ≡T y iff
EposT (x) = EposT (y). For any substring x of texts of T , let [x]T denote the equivalence
class w.r.t. ≡T . There is a one-to-one correspondence between each node v of DAWG(T )
and each equivalence class [x]T , and hence we will identify each node v of DAWG(T ) with its
corresponding equivalence class [x]T . Let long([x]T ) denote the longest member of [x]T . By
the definition of equivalence classes, long([x]T ) is unique for each [x]T and every member
of [x]T is a suffix of long([x]T ). If x, xa are substrings of some text in T with x ∈ Σ∗
and a ∈ Σ, then there exists an edge labeled with character a ∈ Σ from node [x]T to
node [xa]T . This edge is called primary if |long([x]T )| + 1 = |long([xa]T )|, and is called
secondary otherwise. For each node [x]T of DAWG(T ) with |x| ≥ 1, let slink([x]T ) = y,
where y is the longest suffix of long([x]T ) which does not belong to [x]T . In the example
of Fig. 1, [aaab]T = {aaab, aab}. The edge labeled with b from node [aaa]T to node
[aaab]T is primary, while the edge labeled with b from [aa]T to node [aaab]T is secondary.
slink([aaab]T ) = [ab]T .

The following fact follows from the definition of branching substrings:
I Fact 1. For any substring x of texts in T , node x is branching (explicit) in STree(T ) iff
node [x]T is branching in DAWG(T ).

2.3 Fully-online text collection
We consider a collection {T1, . . . , TK} of K growing texts, where each text Tk (1 ≤ k ≤ K)
is initially the empty string ε. Given a pair (k, a) of a text id k and a character a ∈ Σ which
we call an update operator, the character a is appended to the k-th text of the collection.
For a sequence U of update operators, let U [1..i] denote the sequence of the first i update
operators in U with 0 ≤ i ≤ |U |. Also, for 0 ≤ i ≤ |U | let TU [1..i] denote the collection of
texts which have been updated according to the first i update operators of U . For instance,
consider a text collection of three texts which grow according to the following sequence
U = (1, a), (2, b), (2, a), (3, a), (1, a), (3, c), (3, b), (2, b), (1, a), (1, b), (3, c), (3, b), (1, c), (3, b),
(2, c) of 15 update operators. Then,

TU [1..0] =


ε

ε

ε

 , . . . , TU [1..14] =


1
a

5
a

9
a

10
b

13
c

2
b

3
a

8
b

4
a

6
c

7
b

11
c

12
b

14
b

 , TU [1..15] =


1
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5
a

9
a

10
b

13
c

2
b

3
a

8
b

15
c
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
where the superscript i over each character a in the k-th text implies that U [i] = (k, a). For
instance, U [15] = (2, c) and hence c was appended to the 2nd text T2 = bab in TU [1..14],
yielding T2 = babc in TU [1..15].

If there is no restriction on U like the one in the example above, then U is called
fully-online. If there is a restriction on U such that once a new character is appended
to the k-th text, then no characters will be appended to its previous k − 1 texts, then
U is called semi-online. Hence, any semi-online sequence of update operators is of form
(1, T1[1]), . . . , (1, T1[|T1|]), . . . , (K,TK [1]), . . . , (K,TK [|TK |]).

Section 3 reviews previous algorithms which incrementally construct the DAWG and the
suffix tree for a growing text collection in the semi-online setting. Sections 4 and 5 propose
our new algorithms which incrementally construct the DAWG and the suffix tree for a text
collection in the fully-online setting, respectively.
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3 Semi-online construction algorithms

3.1 Blumer et al.’s semi-online DAWG construction algorithm

We recall Blumer et al.’s algorithm [4] which incrementally builds DAWG(TU ) for a given
semi-online sequence U of update operators of length N . Since U is semi-online, at each
step i (0 ≤ i ≤ N) of the semi-online update, there exists a unique k (1 ≤ k < K) such that
T1, . . . , Tk−1 will be static for all the following i′th steps (i ≤ i′ ≤ N), Tk is now growing
from left to right, and Tk+1, . . . , TK are still the empty strings. Assume that U [i] = (k, a),
and hence a new character a is appended to the kth text in the collection at the ith step.
For ease of notation, let T ′ = TU [1..i−1] and T = TU [1..i]. Also, assume that DAWG(T ′) has
already been constructed. In updating DAWG(T ′) to DAWG(T ), we have to assure that
all suffixes of the extended text Tka will be represented by DAWG(T ). These suffixes are
categorized to three different types:
Type-1 The suffixes of Tka that are longer than lrsT ′(Tk)a.
Type-2 The suffixes of Tka that are not longer than lrsT ′(Tk)a and are longer than

lrsT (Tka).
Type-3 The suffixes of Tka that are not longer than lrsT (Tka).

Blumer et al.’s algorithm inserts the suffixes of Tka in decreasing order of length, from
the Type-1 ones to the Type-2 ones. By definition, the Type-3 ones are already represented
by DAWG(T ′), and hence, we need not insert them explicitly.

Their algorithm maintains an invariant v which indicates node [Tk]T ′ , called the active
point, from which the update starts. There are two cases to happen:
1. If there is an out-going edge labeled with a from v, then Tka = lrsT (Tka), which implies

all suffixes of Tka are of Type-3. There are two subcases:
a. If the edge labeled with a is primary, then no updates to the graph topology are

needed. The new active point for the next step is on [lrsT (Tka)]T .
b. If the edge labeled with a is secondary, then the graph topology needs to be updated.

Since the edge is secondary, every member Xa of u = [lrsT (Tka)]T ′ that is longer
than Tka is not a suffix of Tka, while every member Y a of u = [lrsT (Tka)]T ′ that is
not longer than Tka is a Type-3 suffix of Tka. This implies that EposT (lrsT (Tka)) ⊃
EposT (Xa). By the definition of the nodes of DAWGs (recall Section 2.2), the node
u is split into two nodes z = [Xa]T and w = [lrsT (Tka)]T : First, a new node w is
created. All secondary in-coming edges of u corresponding to Type-3 suffixes Y a are
redirected to w. This can be done by traversing the chain of the suffix links starting
from v. All the out-going edges of u are copied to w. Now, node w is complete, and
the node u with its remaining in-coming edges is the other new node z. The suffix
link of u is inherited by w, and the suffix link of z is set to w. The new active point
for the next step is on node w.

2. If there is no out-going edge labeled with a from the active point v, then a new sink s
is created. The Type-1 suffixes are inserted by making a new edge labeled by a from
v = [Tk]T ′ to s. To insert the Type-2 suffixes, the active point v moves by updating
v ← slink(v). Then the following procedure is repeated until an out-going edge labeled
with a from the active point is found: (i) A new edge labeled with a from v to s is
created. (ii) The active point v moves by updating v ← slink(v). The node u where
the above procedure ends is [lrsT (Tka)]T ′ , and the new sink s is exactly [Tka]T which
represent all Type-1 and Type-2 suffixes of Tka. There are two cases:
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a. If the edge labeled with a from the last locus v of the active point to u is primary,
then u = [lrsT (Tka)]T . Thus no updates to the graph topology are needed. The suffix
link of the new sink s = [Tka]T is set to u.

b. If the edge labeled with a from the last locus v of the active point to u is secondary,
then as in Case 1b, u is split into two nodes w and z where w represents the members
of u that are longer than the longest repeating suffix lrsT (Tka) (none of these members
is a suffix of Tka), and z represents the members of u which are Type-3 suffixes of
Tka. The suffix link of the new sink s is set to z.

In both subcases above, the new active point is on the new sink s = [Tka]T .

It is not difficult to see that if the total number of new nodes, edges, and suffix links is q,
then the above update takes O(q log σ) time, where the log σ term is due to searching for
an out-going edge labeled by a. Since no existing nodes, edges, or suffix links are deleted
during the updates, and since the size of DAWG(TU ) is O(N), the amortized time for the
update is O(log σ). Hence, DAWG(TU ) can be constructed in O(N log σ) time and O(N)
space in the semi-online setting.

3.2 Ukkonen’s semi-online suffix tree construction algorithm

Ukkonen [13] proposed an algorithm to incrementally construct the suffix tree of a single
text. His algorithm can easily be extended to incrementally construct the suffix tree for
multiple texts in the semi-online setting.

Let U be a semi-online sequence ofN update operators such that the last update operator
for each k (1 ≤ k ≤ K) is (k, $k), where $k is a special end-marker for the kth text in the
collection. For ease of notation, T ′ = Tu[1..i−1] and T = Tu[1..i], Also, assume that we have
already constructed STree(T ′) and that the next update operator is U [i] = (k, a). Thus a
new character a is appended to the kth text Tk of T ′, and the kth text of T becomes Tka.

As in the case of semi-online DAWG construction, the suffixes of Tka are inserted in
decreasing order of length. The Type-1 suffixes are maintained as follows. Let s be any
suffix of Tk which is represented by a leaf of STree(T ′). Since s is a non-repeating suffix
of Tk in T ′, sa is a non-repeating suffix of Tka in T , which implies that sa will also be
a leaf of STree(T ). Based on this observation, the label of the in-coming edge of s is
represented by a triple 〈k, b,∞〉 called an open edge, where b is the beginning position of
the label of the in-coming edge in the kth text. This way, every existing leaf will then be
automatically extended. Hence, updating STree(T ′) to STree(T ) reduces to inserting the
Type-2 suffixes of Tka. For this sake, the algorithm maintains an invariant which indicates
the locus of x = lrsT ′(Tk) on STree(T ′) called the active point. Since x can be an implicit
node, the algorithm maintains the canonical reference (v, c, `) to x. For convenience, if x
is an explicit node, then let its canonical reference be (x, ε, 0). The update starts from the
current active point x represented by its canonical reference pair, and the Type-2 suffixes
of Tka are inserted in decreasing order of length, by using the chain of (virtual) suffix links.
There are two cases:
I. If it is possible to go down from x with character a, then no updates to the tree topology

are needed. The new active point is xa, and the reference to xa is made canonical if
necessary. The update ends.

II. If it is impossible to go down from x with character a, then we create a new leaf. Let j
be the beginning position of the suffix of Tka which corresponds to this new leaf. The
following procedure is repeated until Case I happens.
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1. If the active point x is on an explicit node, then a new leaf node s is created as a
new child of x, with its incoming edge labeled by 〈k, b,∞〉, where b = |Tka| − |x|+ 1.
The active point x is updated to slink(x).

2. If the active point x is on an implicit node, then x becomes explicit in this step.
A new leaf node s is created as a new child of x with its incoming edge labeled
by 〈k, b,∞〉. Since the suffix link of the new explicit node x does not yet exist, we
simulate the suffix link traversal as follows: Let (vj , cj , `j) be the canonical reference
to x. First, we follow the suffix link slink(vj) of vj , and then go down along the path
of length `j from slink(vj) starting with character cj . Let this locus be x′. Let vj+1
be the longest explicit node in this path.
(i) If |vj+1| = |x′|, then we firstly create the new suffix link slink(x) = vj+1 for the

new explicit node x. The active point x is updated to x′ and is represented by
canonical reference (vj+1, ε, 0).

(ii) If |vj+1| < |x′|, then the next active point is implicit. The active point x is
updated to x′ and is represented by canonical reference (vj+1, cj+1, `j+1). The
suffix link of x will be set to x′ when x′ becomes explicit in the next step.

The most expensive case is II-b-(ii). Since the path from vj+1 to x′ contains at most `j−`j+1
explicit nodes, it takes O((`j − `j+1 + 1) log σ) time to locate the next active point x′ (note
`j − `j+1 ≥ 0 holds). All the other operations take O(log σ) time. Hence, the total cost to
insert all leaves (suffixes) for the kth text is O(

∑Nk

j=1(`j − `j+1 + 1) log σ) = O(Nk log σ),
where Nk is the final length of the kth text. Thus the amortized time cost for each leaf
(suffix) for the kth text is O(log σ). Overall, it takes a total of O(N log σ) time to construct
STree(TU ) for a semi-online sequence U of update operators. The space requirement is
O(N).

4 Fully-online DAWG construction algorithm

We can easily extend Blumer et al.’s semi-online DAWG construction algorithm to the fully-
online setting. Let U be a fully-online sequence of N update operators. Our fully-online
algorithm maintains the active point vk for every growing text Tk in the collection, at any
step of the algorithm. Now, assume that we have already constructed DAWG(T ′), where
T ′ = TU [1..i−1] for 1 ≤ i ≤ N . Let U [i] = (k, a), and we are updating DAWG(T ′) to
DAWG(T ), where T = TU [1..i]. The update starts from the active point vk = [Tk]T ′ , exactly
in the same way as was described in Section 3. The total cost to update DAWG(T ′) to
DAWG(T ) is again O(q log σ), where q is the total number of nodes, edges, and suffix links
which were introduced in this update. Since the total size of DAWG(T ) is O(N), the
amortized cost for this update is again O(log σ). By the above arguments, we obtain the
following theorem.

I Theorem 1. Given a fully-online sequence U of Nupdate operators for a collection of
K texts, we can update DAWG(TU [1..i]) for i = 1, . . . , N in a total of O(N log σ) time and
O(N) space.

Assume for now that each text Tk in a collection T begins with a special character
#k which does not appear elsewhere in T . Then, the tree of the (reversed) suffix links of
DAWG(T ) forms the suffix tree STree(T ) for the collection T = {T1, . . . , TK} of the reversed
texts of T [4]. Hence, the next corollary follows from Theorem 1, which gives right-to-left
fully-online suffix tree construction.
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I Corollary 2. Given a fully-online sequence U of Nupdate operators for a collection of K
texts, we can update STree(TU [1..i]) for i = 1, . . . , N in a total of O(N log σ) time and O(N)
space.

5 Fully-online suffix tree construction algorithm

5.1 Difficulties in fully-online construction of suffix trees
Unlike the case with DAWGs, it is not easy to extend Ukkonen’s semi-online suffix tree
construction algorithm to our left-to-right fully-online setting, because:
(A) Let U [i] = (k, a) which updates the current kth text Tk to Tka, and assume that we have

just constructed STree(TU [1..i]). Recall that we defined the initial locus of the active
point for Tka on STree(TU [1..i]) to be the longest repeating suffix of Tka in TU [1..i].
However, since U is fully-online, any other text Th (h 6= k) in the collection would be
updated by following update operators U [r] with r > i. Then, the longest repeating
suffix of Tka in TU [1..r] can be much longer than that of Tka in TU [1..i]. In other words,
some Type-1 suffixes of Tka in TU [1..i] can become of Type-2 in TU [1..r]. What is worse,
updating Th can affect the longest repeating suffix of any other text in the collection as
well. If we maintain all these active points naïvely, it takes O(KN log σ) time.

(B) Even if we somehow manage to efficiently maintain the active point for each text in
the collection, there remains another difficulty. Let j be the beginning position of the
longest repeating suffix of Tka in TU [1..i], and let (vj , cj , `j) be the canonical reference
to this suffix. Let U [i′] = (k, a′) be the first update operator in U which updates the
kth text after U [i] = (k, a). Let (v′j , c′j , `′j) be the canonical reference to the longest
repeating suffix of Tka in TU [1..i′], which is the “real” initial active point where insertion
of the Type-2 suffixes should start at this i′th step. By the property of suffix trees
`′j ≥ `j holds, and what is worse, this length `′j is unbounded by the number of Type-2
suffixes inserted at this i′th step. Thus, the amortization technique we used for the
semi-online construction does not work in the fully-online setting.

(C) The phenomenon mentioned in Difficulty A also causes a problem of how to represent
the labels of the in-coming edges to the leaves. Assume that we created a new leaf w.r.t.
an update operator (k, a), and let 〈k, bk,∞〉 be the triple representing the label of the
in-coming edge to the leaf, where bk is the beginning position of the edge label in the
kth text. It corresponds to a Type-1 suffix of the kth text, but the leaf can later be
extended by another growing text Th. Then, the triple 〈k, bk,∞〉 has to be updated to
〈h, bh,∞〉, where bh is the beginning position of the edge label in the hth text. Notice
that this update may happen repeatedly.

5.2 Constructing suffix trees with the aid of DAWGs
We utilize DAWGs to overcome Difficulties A, B and C in fully-online construction of suffix
trees. Namely, we construct STree(T ) in tandem with DAWG(T ).

A high-level description of our algorithm is as follows. We insert the Type-2 suffixes of
Tka in increasing order of length, starting from the locus of the longest Type-3 suffix of
Tka. The idea of inserting the Type-2 suffixes in increasing order of length was also used
by Breslauer and Italiano [5], for quasi real-time left-to-right construction of the suffix tree
for a single text. To efficiently find the locus where the next longer Type-2 suffix should be
inserted in the tree from the locus where the last Type-2 suffix was inserted, we introduce
a simpler amortized variant of the suffix tree oracle of Fischer and Gawrychowski [10, 9].



T. Takagi et al. 22:9

a
b

a

a

b

c

b

a

b

c

c
a

b
b

c

DAWG

c

c

a
b

a

a

b

c

b

a

ba

b
c

LPT

c

a

a

a

a

a b

c

c

c

bb

b

c

c
b

b

Suffix Tree

Figure 2 Illustration for DAWG(T ), LPT(T ), and STree(T ′), where T ′ = {T1 = aaab, T2 =
ababc, T3 = bab} and T = {T1c, T2, T3}. The bold solid arrows represent the primary edges of
DAWG(T ), the gray nodes are the marked nodes of LPT(T ), and the dashed arrows represent the
links between the marked nodes of LPT(T ) and the corresponding branching nodes of STree(T ′).
lrsT (T1c) = abc, and hence we perform an NMA query from node abc on LPT(T ), obtaining node
ab. We then access the suffix tree node ab using the pointer from LPT(T ), and obtain the locus of
abc on STree(T ′).

These will overcome Difficulties A and B. To overcome Difficulty C, we introduce new lazy
representation of the labels of edges leading to the leaves. The next is a key lemma.

I Lemma 3. We can compute, in amortized O(log σ) time, the canonical reference to the
longest Type-3 suffix lrsT (Tka) of Tka on STree(T ′), using a data structure which requires
space linear in the total length of the texts in T .

Proof. We introduce the longest path tree of T ′, denoted LPT (T ′), which is the spanning
tree of DAWG(T ′) consisting only of the primary edges of DAWG(T ′). Every node of
LPT (T ′) is marked iff its corresponding node on DAWG(T ′) is branching. Every marked
node of LPT (T ) is linked to its corresponding node of STree(T ′) which is also branching
by Fact 1 (see also Fig. 2). LPT (T ′) is enhanced with the nearest marked ancestor (NMA)
data structure of Westbrook [16], which supports the following operations in amortized O(1)
time using linear space: 1) find the NMA of any node; 2) insert an unmarked node; 3) mark
an unmarked node.

When DAWG(T ′) is updated to DAWG(T ), at most two new primary edges are in-
troduced to DAWG(T ), one for the new sink and one for the split node. We insert these
new edges to LPT (T ′) and obtain LPT (T ). Because of these new edges, at most two
non-branching nodes of DAWG(T ′) can become branching in DAWG(T ). We mark their
corresponding nodes in LPT (T ), and link them to the corresponding suffix tree nodes after
we have constructed STree(T ). This is because the corresponding nodes of STree(T ′) are
still non-branching.

We use LPT (T ) to quickly move from the DAWG to the suffix tree (see Fig. 2 for a
concrete example). Since lrsT (Tka) is the longest in [lrsT (Tka)]T , there always exists a
node y of LPT (T ) which represents lrsT (Tka). We conduct an NMA query from y on
LPT (T ), and let v be the NMA of y. Let ` = |y|− |v|, and let c be the label of the first edge
in the path from v to y. We move from v to its corresponding node x in STree(T ′). Then,
(x, c, `) is a reference to lrsT (Tka) in STree(T ′). Since v is the NMA of y in LPT (T ), and
since updating Tk to Tka does not explicitly insert any suffix shorter than lrsT (Tka), this
reference is canonical by Fact 1.

Clearly the total size of the above data structures is linear in the total length of the
texts in T . We analyze the time complexity. Recall Case 2 when updating DAWG(T ′) to
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DAWG(T ). At the end of the update, we find (or create) in amortized O(log σ) time the
node of DAWG(T ) which represents [lrsT (Tka)]T . Hence we can find node y = lrsT (Tka)
in amortized O(log σ) time. Updating LPT (T ′) to LPT (T ) takes O(log σ) time. Inserting
a new node and querying an NMA from a given node takes amortized O(1) time. We can
link a new marked node of LPT (T ) to the corresponding new branching node of STree(T )
in O(1) time, since we can remember this new branching node when updating STree(T ′) to
STree(T ). Hence, the amortized bound is O(log σ). J

To find the insertion point of the shortest Type-2 suffix from the longest Type-3 suffix
lrsT (Tka), and to insert the Type-2 suffixes of Tka in increasing order of length, we maintain
the labeled reversed suffix links for each explicit node of the suffix tree. Namely, if slink(bv) =
v for two nodes bv, v with v ∈ Σ∗ and b ∈ Σ, let rslinkb(v) = bv. We leave rslinkb(v)
undefined if bv is not a substring of any text in the collection, or if node bv is implicit in the
suffix tree.

A suffix tree oracle for a suffix tree S is a data structure which efficiently answers the
following query: given a pair (v, b) of a node v of S and a character b ∈ Σ, return the
nearest ancestor u of v for which rslinkb(u) is defined. The state-of-the-art suffix tree oracle
by Fischer and Gawrychowski [10, 9] answers queries and supports updates in worst-case
O(log logn+ (log log σ)2/ log log log σ) time each, using O(n) space, where n is the number
of leaves in S. We present a simpler suffix tree oracle with amortized O(log σ) bound.

I Lemma 4. For a suffix tree with n leaves, there is a suffix tree oracle of size O(n) which
answers each query in amortized O(log σ) time. It takes amortized O(log σ) time to update
this suffix tree oracle, per insertion of a new leaf or a new suffix link to the suffix tree.

Proof. (Sketch) We follow the approach by Fischer and Gawrychowski [10, 9]. The log logn
term in the running time of their suffix tree oracle is due to the fringe nearest marked
ancestor data structure by Breslauer and Italiano [5], which answers each NMA query in
a special case in worst case O(log logn) time. It is possible to replace the fringe nearest
marked ancestor data structures with the NMA data structures of Westbrook [16], so the
time cost for each NMA query is amortized to O(1). The other (log log σ)2/ log log log σ
term is due to fast predecessor data structures for integer alphabets. Since our alphabet is
more general, we use balanced search trees with O(log σ)-time operations. Hence our bound
is O(log σ) amortized. A complete proof can be found in a full version of this paper [12]. J

To overcome Difficulty C, we employ lazy maintenance for leaves, namely, we maintain
only the first character of the label of every edge leading to a leaf. On the other hand, we
eagerly maintain the whole label of every edge leading to an internal explicit node.

I Lemma 5. The lazy representation of the in-coming edges of leaves allows for updating
the suffix tree in amortized O(log σ) time per insertion of a new leaf.

Proof. Let U [i] = (k, a) and T = TU [1..i] as previously. Let xa be a Type-2 suffix of the
extended text Tka that will be inserted to the suffix tree. Using the suffix tree oracle of
Lemma 4, we obtain the canonical reference (v, c, `) to x from which a new leaf for the suffix
xa is to be inserted.

The difficult case is when x is on the edge e from v to a leaf and ` ≥ 2, since we only
know the first character c of the label of e. We create a new internal node x on e, and
create a new leaf as a child of x and its in-coming edge labeled with the first character a.
We can determine the label of the in-coming edge of the new internal explicit node x as
follows. Let y be the node of LPT (T ) which corresponds to the node [v]T of DAWG(T ),
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Figure 3 Illustration of how to determine the label of the in-coming edge of a new internal
explicit node which is created on an edge leading to an existing leaf. Let T ′ = {T1 = abab, T2 =
aaab, T3 = ababc}, and T = {T1d, T2, T3}. Now we are inserting a new leaf w.r.t. Type-2 suffix
babd of T1d. The canonical reference to the insertion point of this suffix is (b, a, 2), and hence we
create a new internal node on the middle of the out-going edge of node b whose edge label begins
with a. Now, since long([b]T ) = ab, we access the LPT node y = ab. Since the label a of the
out-going edge of y in LPT(T ) is now represented by pair 〈3, 3〉, we can label the new suffix tree
edge leading to the new internal node by 〈3, 3, 3 + 2− 1〉 = 〈3, 3, 4〉.

namely y = long([v]T ). We represent the label of each edge of LPT (T ) by a pair of the
text id and the position of the character in the text of that id. Let 〈h, j〉 be the label of
the out-going edge of node y of LPT (T ) such that Th[j] = c. Since we insert the Type-2
suffixes of Tka in increasing order of length, the path in LPT (T ) of length ` starting with
this edge from y is non-branching. Thus, we can label the in-coming edge of the suffix tree
by triple 〈h, j, j + `− 1〉. See also Fig. 3.

While updating DAWG(T ′) to DAWG(T ), we have visited the node [x]T . We can obtain
node y on LPT (T ) by an NMA query from node long([x]T ), and associate to y each Type-2
suffix xa of Tka whose length is in range [s + 1, l + 1], where s and l are the lengths of
the shortest and longest members of [x]T , respectively. As we insert the Type-2 suffixes of
Tka to the suffix tree in increasing order of length, for each Type-2 suffix xa the time cost
to access its corresponding node y on LPT (T ) is O(log σ) amortized. It takes amortized
O(log σ) time to query the suffix tree oracle by Lemma 4. All the other operations take
O(1) time each. J

Assume we are searching a growing text collection T for a given pattern P . If we stuck
on the parent node u of a leaf in STree(T ) due to our lazy leaf representation, then we can
move to the DAWG node which corresponds to the parent node u via LPT (T ), and continue
searching for P on DAWG(T ). This way we can find the locus of P on STree(T ) in optimal
O(M log σ) time, where M = |P |. Also, since the tree topology is correctly maintained with
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our lazy leaf representation, semi-dynamic NMA [16], LCA [7], and LA [1] queries can be
correctly supported in O(1) time on our suffix tree representation.

Finally, we obtain the main result of this section.

I Theorem 6. Given a fully-online sequence U of Nupdate operators for a collection of K
texts, we can update STree(TU [1..i]) for i = 1, . . . , N in a total of O(N log σ) time and O(N)
space.

After the whole U has been processed, we determine the triples representing the entire
labels of the in-coming edges of all leaves of STree(TU ) in a total of O(N) time. We can
then discard DAWG(TU ) and LPT (TU ).

6 Conclusions and open problems

The main contribution of this paper is an O(N log σ)-time algorithm to maintain the suffix
tree for a text collection in the left-to-right fully-online setting, where N and σ are the total
text length and the alphabet size, respectively. The key was a non-trivial use of the DAWG.

There are interesting open problems for the left-to-right fully-online suffix tree construc-
tion:
1. Is it possible to efficiently maintain complete labels of the edges leading to the leaves?
2. Our bound is amortized, namely, for each new character our algorithm takes O(log σ)

amortized time. Is it possible to de-amortize it, e.g. by using techniques in [5, 9, 10]?
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Abstract
This paper presents a new approach for linear-time suffix sorting. It introduces a new sorting
principle that can be used to build the first non-recursive linear-time suffix array construction
algorithm named GSACA. Although GSACA cannot keep up with the performance of state of
the art suffix array construction algorithms, the algorithm introduces a couple of new ideas for
suffix array construction, and therefore can be seen as an ’idea collection’ for further suffix array
construction improvements.
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1 Introduction

The suffix array is an elementary data structure used in string processing as well as in data
compression. Introduced by Manber and Myers in 1990 [11], the suffix array nowadays
finds application in dozens of different areas. Constructing a suffix array from a given
string unfortunately turns out to be a computationally hard task; despite the existence
of linear-time algorithms for suffix array construction, some super-linear algorithms still
achieve better results in practice.

As data grows bigger and bigger, ’optimal’ suffix array construction algorithms (SACAs)
nowadays still stay an area of great interest. According to a survey paper of Puglisi et
al. [19], an ’optimal’ SACA fulfils three requirements: First, an algorithm should run in
asymptotic minimal worst-case-time, linear-time in an optimal way. Second, an algorithm
should run fast in practice, too. Finally, the algorithm should consume as less extra space
in addition to the text and the suffix array as possible, a constant amount optimally.

Presently, no SACA is able to meet all of those requirements in an optimal way. Our
contribution towards this goal will be the presentation of a new design principle for suffix
array construction, resulting in the first non-recursive linear-time suffix array construction
algorithm. Although the new algorithm is not able to fulfil all requirements of optimal suffix
array construction, it presents a new approach for suffix array construction, and therefore
is interesting from a theoretical point of view.

Overview This paper will be organised as follows: Section 2 contains a short introduction
to suffix arrays and basic definitions. Section 3 presents the new sorting principle along
with an introductory example, before Section 4 lists the new algorithm with explanations
of technical details. Section 5 contains performance analyses of the new algorithm, before
Section 6 summarises the results and gives an outline for future work.
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Related Work The suffix array first was described in 1990 by Manber and Myers [11] as a
space-saving alternative to suffix trees [21].

Then, in 2003, four linear-time1 SACAs were contemporary introduced by Kim et al. [8],
Kärkkäinen and Sanders [7], Ko and Aluru [10] and Hon et al. [6], before Joong Chae Na
introduced another linear-time SACA in 2005 [15]. Two algorithms stood out: the Skew
Algorithm by Kärkkäinen and Sanders [7] because of its elegance, as well as the algorithm
by Ko and Aluru [10] because of its good performance in practice.

Later on, in 2009, Nong et al. presented two new algorithms using the induced sorting
principle [17, 18] as an improvement to the algorithm by Ko and Aluru. One of those
algorithms, called SA-IS [17], was able to outperform most of other existing SACAs [14]
while guaranteeing asymptotic linear runtime and almost optimal space requirements. In
the meantime, performance of SA-IS was further improved while decreasing the required
workspace to an only alphabet-dependent linear term [16]. Consequently, variants of the
SA-IS algorithm serve as best linear-time SACAs known at the moment.

2 Preliminaries

Let Σ be a totally ordered set (alphabet) of elements (characters). A string S of length n

over alphabet Σ is a finite sequence of n characters originating from Σ. The empty string
with length 0 is denoted by ε.

Let i and j be two integers in range [1, n]. We denote by
S[i] the i-th character of S.
S[i..j] the substring of S starting at the i-th and ending at the j-th position.
We state S[i..j] = ε if i > j, and define S[i..j + 1) = S[i..j].
Si the suffix of S starting at the i-th position, i.e. Si = S[i..n].

Furthermore, we call S a nullterminated string if $ ∈ Σ, $ < c for all c ∈ Σ \ {$}, and $
occurs exactly once in S, at the end of the string. First, a definition of the suffix array shall
be presented. Additionally, next lexicographically smaller suffixes are required.

I Definition 1. Let Σ be an alphabet, S be a string of length n over alphabet Σ and T be
a string of length m over alphabet Σ. We write S <lex T and say that S is lexicographically
smaller than T , if one of the following conditions holds:

There exists an i (1 ≤ i ≤ min{n, m}) with S[i] < T [i] and S[1..i) = T [1..i).
S is a proper prefix of T , i.e. n < m and S[1..n] = T [1..n].

I Definition 2. Let S be a nullterminated string of length n. The suffix array SA of S is
a permutation of integers in range [1, n] satisfying SSA[1] <lex SSA[2] <lex · · · <lex SSA[n]. The
inverse suffix array ISA is the inverse permutation of SA.

I Definition 3. Let S be a nullterminated string of length n, and let i be an integer in
range [1, n). Then, by î we denote the position of the next lexicographically smaller suffix
of Si, i.e. î := min{ j ∈ [i . . . n] | Sj <lex Si }. Also, we define n̂ := n + 1 for the last suffix
of S.2

An example of these definitions can be found in Table 1.

1 Super-linear-time SACAs are not object of interest here; we refer to the survey paper of Puglisi et al.
[19] for more information about them.

2 One can think of this as follows: if we define an imaginary empty last suffix Sn+1 := ε, then Sn+1 is a
proper prefix of Sn, so Sn+1 is the next smaller suffix of Sn.
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Table 1 Suffix array and next lexicographically smaller suffixes of S = graindraining$.

i SA[i] ŜA[i] SSA[i] S[SA[i]..ŜA[i])
1 14 15 $ $
2 3 14 aindraining$ aindraining
3 8 14 aining$ aining
4 6 8 draining$ dr
5 13 14 g$ g
6 1 3 graindraining$ gr
7 4 6 indraining$ in
8 11 13 ing$ in
9 9 11 ining$ in
10 5 6 ndraining$ n
11 12 13 ng$ n
12 10 11 ning$ n
13 2 3 raindraining$ r
14 7 8 raining$ r

3 Algorithmic Idea

Within this Section, the algorithmic idea of the new algorithm will be presented. The main
idea is to split the suffix array construction in two phases.

In a first phase, suffixes are divided into suffix groups as if each suffix Si consists only
of the string S[i..̂i): If S[i..̂i) = S[j..̂j) holds for two suffixes Si and Sj , then they belong to
the same group, otherwise to different groups. For any group G containing a suffix Si, we
denote the string S[i..̂i) as the group context of G. In addition to the division of suffixes, the
groups itself also will be ordered by comparing their group contexts. When comparing suffix
groups by their contexts, the terms ’lower group’ and ’higher group’ will be used rather than
the terms ’smaller’ or ’larger’, because groups are sets, and the latter both terms usually
refer to set sizes, not to lexicographic comparison.

Afterwards, in a second phase, this group structure can be used to compute the suffix
array. By iterating over the suffix array in ascending lexicographic order and completing
the contexts of suffixes such that only groups with a single suffix remain, the desired order
of suffixes can be obtained. A sketch of the principle can be found in Algorithm 1.

First, let’s clarify the correctness of the principle by some argumentation. Assume that
before the i-th iteration of the outer loop in Phase 2 (lines 4 to 8) all entries SA[1] · · · SA[i]
were computed correctly. Then, within the i-th iteration, each further computed SA-entry
is correct: Let j be any index with ĵ = SA[i]. Assume that an index k from the same
group exists such that Sk <lex Sj . Because group(k) = group(j), by the sorting in Phase 1,
S[j..̂j) = S[k..k̂) holds, so S

k̂
<lex Ŝ

j
must hold. Because of the ascending iteration order of

the outer loop in Phase 2, k̂ must have been processed in one of the previous i−1 iterations.
Within this iteration, the index k was processed in the inner loop of Phase 2, and thus has
been removed from its group in line 8, group(k) 6= group(j), contradiction. For the same
reason, and because of the group order computed in Phase 1 (line 2), exactly those suffixes
Sk with group(k) < group(j) must be lexicographically smaller than Sj , so j is correctly
placed into the suffix array in line 7.

Now we know that all entries are placed correctly to SA, but it remains to show that the
suffix array is filled entirely. Therefore, consider the point in time after the i-th iteration
of the outer loop in Phase 2, and let Sj be the lexicographically i + 1-th smallest suffix.
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Algorithm 1 Suffix array construction for a given nullterminated string S of length n.
Phase 1: divide suffixes into groups

1: order all suffixes of S into groups: Let Si and Sj be two suffixes.
Then, group(i) = group(j) if and only if S[i..̂i) = S[j..̂j).

2: order the suffix groups by their contexts: Let G1 and G2 be two groups,
i ∈ G1, j ∈ G2. Then, G1 < G2 if and only if S[i..̂i) <lex S[j..̂j).
Phase 2: construct suffix array from groups

3: SA[1]← n

4: for i = 1 up to n do
5: for all suffixes Sj with ĵ = SA[i] do
6: let sr be the number of suffixes placed in lower groups,

i.e. sr := |{ s ∈ [1 . . . n] | group(s) < group(j) }|.
7: SA[sr + 1]← j

8: remove j from its current group and put it in a new group
placed as immediate predecessor of j’s old group.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
S[i] g r a i n d r a i n i n g $

groups {14}{ 3 8, }{ 6 }{ 1 13, }{ 4 9, 11, }{ 5 10, 12, }{ 2 7, }
context $ a d g i n r

Figure 1 Initial group division for the suffixes of S = graindraining$, where links from the
group with context i to the text are shown. Groups are ordered by their context from left to right.

Because Ŝ
j

<lex Sj holds by the definition of next lexicographically smaller suffixes, the
index ĵ must have been processed by the outer loop of Phase 2 already, and thus, the index
j must have been placed to the suffix array correctly, SA[i + 1] = j holds.

The argumentation shows that the principle works correctly, but there are still a lot of
issues remaining. But instead of presenting a more detailed algorithm directly, an intro-
ductory example will be presented, to bridge the gap between the sorting principle and the
final algorithm.

3.1 Example: Phase 1

Within Phase 1, suffixes have to be divided into groups. More specifically, all suffixes Si

sharing the same prefix S[i..̂i) must belong to the same group, while the groups itself must
be sorted by their contexts, see Algorithm 1. To accomplish this task, in an initial step,
suffixes are split into groups by their first character. Also, the groups are sorted by their
initial context, see Figure 1 for an example.

To obtain the requested group order, all groups are processed in descending order (i.e.
from highest to lowest group), repeating the following steps for each group G:
1. For each index i ∈ G compute its prev pointer prev(i), the previous index placed in a

lower group, i.e. prev(i) := max{ j ∈ [1..i] | group(j) < group(i) }.
2. Split the set P := { prev(i) | i ∈ G } into subsets P1, . . . ,Pk such that i, j ∈ Pq ⇔ i, j ∈ P

and group(i) = group(j) for any subset Pq.
3. For each subset Pq, remove the indices of Pq from their old group and put them to a

new group, placed as immediate successor of their old group.



U. Baier 23:5

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
S[i] g r a i n d r a i n i n g $

groups {14}{3 8, }{6}{1 13, }{4 9, 11, }{5 10, 12, }{2 7, }
context $ a d g i n r

Step 1: For each index of the pro-
cessed group, compute prev point-
ers.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
S[i] g r a i n d r a i n i n g $

groups {14}{3 8, }{6}{1 13, }{4 9, 11, }{5 10, 12, }{2 7, }
context $ a d g i n r

Steps 2 and 3: Rearrange the pre-
viously computed prev pointer in-
dices in new groups.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
S[i] g r a i n d r a i n i n g $

groups {14}{3 8, }{6}{13}{1}{4 9, 11, }{5 10, 12, }{2 7, }
context $ a dr g gr i n r Result: The contexts of the new

groups consist of the contexts of
their old groups, extended by the
context of the currently processed
group. Also, the lexicographic
order between the groups is pre-
served.

Figure 2 First iteration step of Phase 1 applied to the string S = graindraining$.

Such processing causes an effect quite similar to the prefix doubling technique: Each time
when indices of a group are removed and collected in a new group (step 3), the context
of the new group consists of the context of the old group, extended by the context of the
currently processed group, see Figure 2 for an example.

To clarify why context extensions take place, let i be an index and ic be the first index
following i such that i is not reachable using the prev pointer chain starting at ic, i.e.
ic := min{ j ∈ [i + 1..n + 1] | i 6∈ {j, prev(j), prev(prev(j)), . . .} }.3 As one can show (see
[2]), during the processing of groups in Phase 1, group(i) = group(j) ⇔ S[i..ic) = S[j..jc)
holds for two indices i and j, so the string S[i..ic) meets our imagination of group contexts.
However, coming back to the above mentioned context extensions, we’ll take a closer look
onto the steps performed when processing a group. In Step 1, prev pointers are computed.
Let i be an index of the processed group, and let p := prev(i) be its prev pointer. By the
definition of a prev pointer (see Step 1), all indices j between p and i (p < j < i) are placed
in higher groups than p and i.4 Since groups are processed in decreasing order, for each such
index a prev pointer must have been computed already. As p belongs to a lower group than
all of those indices, p ≤ prev(j) must hold for all p < j < i. Consequently, p is reachable
from the prev pointer chains starting at all indices j with p < j < i, but as index i had no
prev pointer before the current step, pc = i must hold. Now, after the computation of the
prev pointer, p is reachable from all indices up to ic − 1, so the new context of p is S[p..ic).
This shows that p’s old context was extended by the context of the currently processed
group. Consequently, p must be placed into a new group, as performed in Steps 2 and 3.

Another property of the processing is a consistent group order: For any groups G1 and
G2, G1 is lower ordered than G2 if and only if the context of G1 is lexicographically smaller
than the context of G2. Whenever a new group is created, its context is extended by a
lexicographically larger context, so the new group must be placed higher than the old one.
Also, since the context of the old group is lexicographically smaller than that of the next

3 After the initial step ic = i + 1 holds for all indices, because no prev pointers were computed yet.
4 The special case that groups of indices between p and i are equal to group(i) will be handled later.
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
S[i] g r a i n d r a i n i n g $

groups {14}{3 8, }{6}{13}{1}{4 9, 11, }{5 10, 12, }{2 7, }
context $ a dr g gr in n r

Step 1: compute prev point-
ers. Note that one computed prev
pointer points to index 3, while 2
pointers point to index 8.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
S[i] g r a i n d r a i n i n g $

groups {14}{3 8, }{6}{13}{1}{4 9, 11, }{5 10, 12, }{2 7, }
context $ a dr g gr in n r

Steps 2 and 3: since the index 8 is
followed by two contexts, it must
be moved to a different group than
3, although both belonged to the
same group before.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
S[i] g r a i n d r a i n i n g $

groups {14}{3}{8}{6}{13}{1}{4 9, 11, }{5 10, 12, }{2 7, }
context $ ai

n

ai
ni

n

dr g gr in n r

Result: By placing 8 in a higher
group than 3, the lexicographic or-
der of groups is still preserved.

Figure 3 Third iteration step of Phase 1 applied to the string S = graindraining$.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
S[i] g r a i n d r a i n i n g $

groups {14}{ 3 }{ 8 }{ 6 }{13}{ 1 }{ 4 9, 11, }{ 5 10, 12, }{ 2 7, }

Figure 4 Groups and prev pointers from the string S = graindraining$ after Phase 1.

higher group G̃, the extended context of the new group is lexicographically smaller than that
of G̃, so the placement of the new groups in Step 3 preserves the lexicographic order.

Now knowing that context extensions take place, one needs to be aware of one special
case to preserve a consistent group order: Think about two indices i and j of the same group
such that one prev pointer from an index of the currently processed group points to i, and
two prev pointers from the currently processed group point to j. Since context extensions
take place, i’s context is extended one time, while j’s context is extended by two contexts
of the currently processed group. Since i and j belong to the same group, the new context
of i is lexicographically smaller than that of j. As a consequence, after the extensions, i and
j cannot belong to the same group, and must be handled separately as shown in Figure 3.
Note that the example considers only two indices with different pointer counts; in general
terms, an arbitrary number of indices and pointers must be taken into account.

The result of Phase 1 for our running example can be found in Figure 4. Summarising,
the greedy group processing from highest to lowest group in conjunction with aspects of
implicit dynamic programming lead to the desired group division after Phase 1. A formal
proof for correctness must be omitted here, but can be found in [2]. Next, we’ll take a look
at the implementation of the missing part: Phase 2.

3.2 Example: Phase 2
After dividing suffixes into groups in Phase 1, the purpose of Phase 2 is to compute the suffix
array using the group division. During Phase 2, the suffix array is processed in ascending
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
S[i] g r a i n d r a i n i n g $

groups {14}{3}{8}{6}{13}{1}{4 9, 11, }{5 10, 12, }{2 7, }

SA[i] 14 3 8 − 13 − − − − − − − − −

None of the elements in the prev
pointer chain of index SA[1]− 1 =
13 is placed in the suffix array
already, so ĵ = SA[1] holds for each
such index. Each index is removed
from its current group and placed
into a new group as immediate pre-
decessor of its old group. Also,
each index is placed into SA, at the
position that equals the number of
suffixes placed in lower groups.

Figure 5 First iteration step of Phase 2 applied to the string S = graindraining$.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
S[i] g r a i n d r a i n i n g $

groups {14}{3}{8}{6}{13}{1}{4 9, 11, }{5 10, 12, }{2}{7}

SA[i] 14 3 8 6 13 1 − − − − − − 2 7

Index 3 is already contained in the
suffix array, so only the suffixes S6
and S7 are placed into SA, since
they are part of the prev pointer
chain starting at index SA[3]−1 =
7.

Figure 6 Third iteration step of Phase 2 applied to the string S = graindraining$.

order. Within the i-th iteration, all indices j with ĵ = SA[i] are computed. Each such index
is removed from its current group, placed into a new group as immediate predecessor of its
old group, and stored in the suffix array, see Algorithm 1.

The main issue in implementing this method is to compute indices j with ĵ = SA[i]. As
we will see, prev pointers computed in Phase 1 will be very useful for this computation:
starting at j := SA[i] − 1, we follow the prev pointer chain prev(j), prev(prev(j)), . . . until
either no more prev pointer exists, or the index under consideration is already contained in
the suffix array. The set { j ∈ [1 . . . n] | ĵ = SA[i] } then consists of exactly those indices
visited in the prev pointer chain of SA[i] − 1. Examples can be found in Figures 5 and 6,
the next purpose is to ensure correctness of this statement.

The first index under consideration is j := SA[i] − 1: if j is not contained in the suffix
array already, then by the ascending iteration order of Phase 2, SSA[i] <lex Sj must hold.
Since Sj is the preceding suffix of SSA[i], SSA[i] clearly must be the next lexicographically
smaller suffix of Sj . Now, given a suffix Sj with ĵ = SA[i], the next index k with k̂ = SA[i]
(if existing) can be found by following j’s prev pointer, i.e. k = prev(j). If k is not contained
in the suffix array already, SSA[i] <lex Sk must hold. Also, since group(k) < group(l) holds
for all k < l ≤ j by the definition of prev pointers, Sk <lex Sl holds for all k < l ≤ j because
of the group order of Phase 1. This indeed means that k̂ ≥ ĵ. Combined with SSA[i] <lex Sk,
SSA[i] clearly must be the next lexicographically smaller suffix of Sk.

For any index k between j and prev(j) (prev(j) < k < j) group(k) ≥ group(j) must hold
by the definition of prev pointers. If group(k) > group(j), by sorting in Phase 1, Sk >lex Sj

must hold. Because k < j, k̂ ≤ j 6= SA[i] holds, so those indices can be skipped. In the
special case that group(k) = group(j), by Phase 1, S[k..k̂) = S[j..̂j) holds. Since k < j

and the contexts are the same, k̂ < ĵ holds, so clearly k̂ 6= SA[i] must be fulfilled and those
indices can be skipped, too.

If an index j is reached that is already contained in the suffix array, we know that it
must have been placed into the suffix array in an earlier step. This indeed means that
Ŝ

j
<lex SSA[i], so j can be skipped. For any further index k in the prev pointer chain of

j, an argumentation as above clearly shows that S
k̂

<lex SSA[i], so those indices can be

CPM 2016



23:8 Linear-time Suffix Sorting – A New Approach for Suffix Array Construction

Algorithm 2 Suffix array construction of a given nullterminated string S of length n.
Phase 1: divide suffixes into groups

1: order all suffixes of S into groups according to their first character:
Let Si and Sj be two suffixes. Then, group(i) = group(j)⇔ S[i] = S[j].

2: order the suffix groups: Let G1 be a suffix group with group context character u,
G2 be a suffix group with group context character v. Then, G1 < G2 if u < v.

3: for each group G in descending group order do
4: for each i ∈ G do
5: prev(i)← max({ j ∈ [1 . . . i] | group(j) < group(i) } ∪ {0})
6: let P be the set of previous suffixes from G,

P := { j ∈ [1 . . . n] | prev(i) = j for any i ∈ G }.
7: split P into k subsets P1, . . . ,Pk such that a subset Pl contains

suffixes whose number of prev pointers from G pointing to them
is equal to l, i.e. i ∈ Pl ⇔ |{ j ∈ G | prev(j) = i }| = l.

8: for l = k down to 1 do
9: split Pl into m subsets Pl1 , . . . ,Plm

such that suffixes
of same group are gathered in the same subset.

10: for q = 1 up to m do
11: remove suffixes of Plq

from their group and put them into a new
group placed as immediate successor of their old group.

Phase 2: construct suffix array from groups
12: SA[1]← n

13: for i = 1 up to n do
14: j ← SA[i]− 1
15: while j 6= 0 do
16: let sr be the number of suffixes placed in lower groups,

i.e. sr := |{ s ∈ [1 . . . n] | group(s) < group(j) }|.
17: if SA[sr + 1] 6= nil then
18: break
19: SA[sr + 1]← j

20: remove j from its current group and put it in a new group
placed as immediate predecessor of j’s old group.

21: j ← prev(j)

skipped, too. For the remaining indices between this prev pointer chain, we can also use the
argumentation above and forget about these indices, too.

We refer to [2] for a formal proof, it must be omitted here for reasons of space. So far,
we’ve seen a running example along with some argumentations for correctness. The missing
part is an algorithm along with its runtime analysis, which will be addressed in the next
section.

4 Algorithm

The new suffix array construction algorithm including all special cases discussed in the
previous section can be found in Algorithm 2.

Now, to verify that the algorithm can be implemented in asymptotic linear time, some
technical details about the algorithm will be discussed. First thing that has to be done is
to explain a set of needed data structures. Six arrays of size n will be used:
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
S[i] g r a i n d r a i n i n g $

GSIZE[i] 1 2 0 1 2 0 3 0 0 3 0 0 2 0
SA[i] 14 3 8 6 1 13 4 9 11 5 10 12 2 7

GLINK[i] 5 13 2 7 10 4 13 2 7 10 7 10 5 1
ISA[i] 5 13 2 7 10 4 14 3 8 11 9 12 6 1

Figure 7 Initial data structure setup after line 2 of Phase 1, applied to the string S =
graindraining$. Prev pointers are not listed since all entries initially are set to nil.

SA contains suffix starting positions, ordered according to the current group order.
ISA is the inverse permutation of SA, to be able to detect the position of a suffix in SA.
GSIZE contains the sizes of all groups. Group sizes are ordered according to the group
order, so GSIZE has the same order as SA. GSIZE contains the size of each group once
at the beginning of the group, followed by zeros until the beginning of the next group.
GLINK stores pointers from suffixes to their groups. All entries point to the beginning
of a group, at the same position where GSIZE contains the size of the group.
PREV is used to store prev pointers. All entries initially are set to nil.
PC is used to count prev pointers pointing from G to P. PC initially is set to zero.

The initial setup of those structures (lines 1 and 2 of Algorithm 2) can be performed in O(n)
time using a technique called bucket sort. Refer to Figure 7 for an example.

The first problem to be solved is the processing of groups in descending group order, line
3. Therefore, if two variables gs and ge contain the bounds of the current group G in SA,
we get to the preceding group by setting ge ← gs − 1 and gs← GLINK[SA[gs− 1]], and so
trivially need O(n) time to iterate over all groups.

For the prev pointer computation in line 5, we observe the following: Each index j

between an index i and prev(i) belongs to a higher or equal group. If j belongs to a higher
group, its prev pointer is already computed, and each index between j and prev(j) belongs
to a higher group than that of i. So, to compute the prev pointer of an index i, we start at
index i− 1 and follow prev pointers until an index j belongs to the same or a lower group5.
If j belongs to a lower group, the prev pointer of i is found; otherwise, if j belongs to the
same group and itself has no prev pointer yet, we collect j in a list and repeat the same
procedure, thus setting prev pointers of a whole list of indices. This technique is called
pointer jumping and is well known to require O(n) work totally, since each pointer is used
only once for pointer jumping, and overall n pointers are computed. The extra amount of
work for the list collection is O(|G|), and therefore sums up to O(n) in total for Phase 1,
since each group is processed only once.

For the computation of the set P and subsets P1, . . . ,Pk
6, (lines 6 to 7) we use the PC-

array. After prev pointer computation, for each i ∈ G, we increment PC[PREV[i]]. After this
loop, PC[p] contains the count of prev pointers pointing from G to p. Also note that the set P
easily can be computed during the loop, by adding the index prev(i) to set P if PC[prev(i)]
was zero before the incrementation. Now, while the set P is not empty, do the following: In
the l-th iteration, for each p ∈ P, decrement PC[p]. If PC[p] is zero, remove p from P and
add it to set Pl. This way, all sets P1, . . . ,Pk are computed, and all entries of the array PC
are set to zero, so it can be reused again. Time results in O(|G|) per group G, because the

5 This can be done by comparing GLINK[j] with gs from the actual group.
6 The set P and subsets P1, . . . , Pk can be implemented as list and list of lists respectively.
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Table 2 SACA performance results. Speeda) and cache missesb) are composed of the arithmetic
mean of 10 runs per file for each text corpus.

Text Corpus divsufsort[12] SA-IS[13] KA[9] DC3[20] GSACA[1]
Silesia [3] speeda) 15.9 MB/s 17.2 MB/s 8.1 MB/s 2.9 MB/s 4.5 MB/s

(files < 40 MB) cache missesb) 26.5 % 32.7 % 24.2 % 52.0 % 61.2 %
Pizza & Chili [4] speeda) 9.2 MB/s 8.1 MB/s 3.5 MB/s 1.1 MB/s 3.0 MB/s

(files with 200 MB) cache missesb) 49.5 % 74.8 % 55.2 % 86.1 % 79.0 %
Repetitive [5] speeda) 12.5 MB/s 14.2 MB/s 5.3 MB/s 1.7 MB/s 3.5 MB/s

(files > 45 MB) cache missesb) 41.9 % 68.6 % 49.7 % 78.0 % 76.9 %
a) Construction speed: size of input/time to construct SA, in MB/s.
b) Cache miss rate: number of cache misses/number of cache accesses of last–level cache, in %.

number of decrementations in the array PC is identical to the number of additions in the
preceding stage, and therefore again, computation requires O(n) work during Phase 1.

The suffix rearrangements from lines 9 to 11 can be performed like the following:
1. For all p ∈ Pl, decrement GSIZE[GLINK[p]] and exchange p with the index placed at

GLINK[p] + GSIZE[GLINK[p]] using SA and ISA. This way, p is moved to the back of its
group and ’virtually’ removed from it.7

2. For all p ∈ Pl, set GLINK[p] to GLINK[p] + GSIZE[GLINK[p]], so GLINK correctly points
to the beginning of the new groups again.

3. For all p ∈ Pl, increment GSIZE[GLINK[p]], so the sizes of the new groups are correct.
Total work again results in O(n) for Phase 1, for the same reasons as above.

After the processing of a group G is finished, we also set SA[ge] ← gs and ISA[i] = ge

for all indices i ∈ G: this serves as a preparation for Phase 2. In Phase 2, to detect if an
index j is contained in SA already (line 17), we check if ISA[j] = 0 holds; otherwise, sr, the
number of suffixes placed in lower groups (line 16), can be computed using ISA and SA. As
mentioned above, in Phase 2, ISA entries point to the end of a group. The last index of a
group then contains a pointer to the start of the group. If we set sr ← SA[ISA[j]], increment
SA[ISA[j]] and afterwards set SA[sr]← j and ISA[j]← 0, j ’virtually’ gets removed from its
group, while the group counter points to the next SA - entry.

Now, summing up all work performed, we get O(n) work for Phase 1 as well as for
Phase 2, since the inner loop of Phase 2 is executed n − 1 times totally, as each suffix has
exactly one next lexicographically smaller suffix. There might be smarter ways to implement
the algorithm; refer to [2] for other suggestions; however, the point of interest here is that
Algorithm 2 can be implemented in a non-recursive way, running in asymptotic linear time.

5 Performance Analyses

All experiments were conducted on a 64 bit Ubuntu 14.04.3 LTS system equipped with two
ten-core Intel Xeon processors E5-2680v2 with 2.8 GHz and 128 GB of RAM.

The algorithm described in this paper was named GSACA because of its greedy and
grouping behaviour. It was compared against common linear-time and state of the art
SACAs on text selections of different text corpuses. The benchmark itself is available online
[1], results can be found in Table 2.

7 Note that the additional split of Pl from line 9 of Algorithm 2 implicitly is performed within this step.
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The results clearly show that GSACA cannot keep up with current state of the art
SACAs; construction speeds of divsufsort or SA-IS are about 3 to 4 times faster than those
of GSACA. Limited performance mainly is owed to cache-unfriendly operations like pointer
jumping or suffix rearrangements, causing high cache miss rates and slow construction.

6 Conclusion

We presented the first non-recursive linear-time suffix array construction algorithm. Unfor-
tunately, by comparing its performance with other linear–time SACAs, GSACA must be
seen as a late child of the 2003 ’epoch of suffix array construction’ rather than a state of
the art SACA. Nonetheless, the results are quite promising: the algorithm deals a lot with
previous smaller and next smaller values, what normally hints to an alternative stack-based
approach. This could result in better cache miss rates and speed, but this remains an open
problem for the moment. Compared to developmental histories of other SACAs, GSACA is
in its infancy, and therefore offers a lot of room for future improvements.
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Abstract
In the snippets problem we are interested in preprocessing a text T so that given two pattern
queries P1 and P2, one can quickly locate the occurrences of the patterns in T that are the closest
to each other. A closely related problem is that of constructing a color-distance oracle, where the
goal is to preprocess a set of points from some metric space, in which every point is associated
with a set of colors, so that given two colors one can quickly locate two points associated with
those colors, that are as close as possible to each other.

We introduce efficient data structures for both color-distance oracles and the snippets prob-
lem. Moreover, we prove conditional lower bounds for these problems from both the 3SUM
conjecture and the Combinatorial Boolean Matrix Multiplication conjecture.
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1 Introduction

We introduce and study the following problem: preprocess a text T so that given two pattern
queries, P1 and P2, one can quickly locate the occurrences of the two patterns in T that
are closest to each other, or report the distance between these occurrences. This natural
task arises in many common indexing applications, for example, when searching a corpus
of documents for two query keywords, the relevance of a document may be measured by
the two keywords’ proximity inside the document. Web search engines often use this notion
of relevance by providing with each result a snippet — a subtext from the corresponding
webpage in which the two keywords appear close to each other, which is very useful to assess
the relevance of that result. This problem, which we call the snippets problem, turns out to
be a special case of a more general problem, which we define next, and deals with colored
points in a metric space.

Colored Points.

Let M be a metric space with distance function d(·, ·). Each point p ∈ M may have an
associated color cp ∈ [`], in which case we say that the point is colored. Let S ⊂M be a set
of N points. We call S a colored set if every point p ∈ S is colored. For a color c ∈ [`], let
P (c) denote the set of points in S which have color c. The distance between a point p ∈M
and a color c ∈ [l] is defined as d(p, c) := min{d(p, q) : q ∈ P (c)}. The distance between
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two colors, called the color-distance, of c, c′ ∈ [`] is defined as d(c, c′) := min{d(q, q′) : q ∈
P (c), q′ ∈ P (c′)}.

One application for computing the distance of two colors arises in navigational tools.
For example, consider a user who is interested in visiting both a postoffice and a pharmacy.
One can color, in advance, all of the pharmacies with one color and all of the postoffices
with another color. The distance between the two colors corresponds to the closest pair of
a postoffice and a pharmacy. This leads to the following problem.

I Problem 1.1 (Color-Distance Oracle). The color-distance oracle problem asks to preprocess
a colored set S, so that given a query of two colors c, c′ ∈ [`], one can quickly report d(c, c′).

Multi-colored points.

A natural generalization of color-distance oracles is to let each point have several colors. For
example, a single location in a map could be both a postoffice and a pharmacy. A point
p ∈ M is said to be multi-colored if p has an associated nonempty set of colors C(p) ⊆ [`].
A set of points S ⊂M is a multi-colored set if each point p ∈ S is multi-colored.

I Problem 1.2 (Multi-Color-Distance Oracle). The multi-color-distance oracle problem asks
to preprocess a multi-colored set S, so that given a query of two colors c, c′ ∈ [`], one can
quickly report d(c, c′).

One straightforward way for solving the multi-color-distance oracle problem is to create
|C(p)| copies of each point, one for each color, and apply a solution for the color-distance
oracle problem (such as Theorem 2). The size of the instance of the newly created instance
is
∑
p∈S |C(p)|, which could be much larger than N = |S|. Notice that this quantity is

actually the size of the input for the multi-color-distance oracle problem, since generally
speaking, each point may need to have its colors listed explicitly. Nevertheless, there are
interesting cases in which the list of colors for each point need not be given explicitly. One
such example is in the snippets problem, which falls under the notion of a color hierarchy,
described next.

Color hierarchies.

We say that a multi-colored set S admits a color hierarchy if for every two colors c, c′ ∈ [l],
either one of the sets P (c) and P (c′) contains the other, or the two sets are disjoint (a
formal terminology is that {P (c)}c∈[l] is a laminar family). It is easy to see that a color
hierarchy can be represented by a rooted forest (i.e., each tree has a root) TS of size O(`),
where each color c is associated with a vertex uc in this forest, such that the descendants
of uc are exactly all the vertices uc′ whose color c′ satisfies P (c′) ⊆ P (c). We convert the
forest TS to a rooted tree by adding a dummy root vertex and making it the parent of all
of the roots of the trees in the forest. With the aid of TS , a multi-colored set S that admits
a color hierarchy can be represented using only O(N + `) machine words, because it suffices
to describe the tree and associate with each point just one color (the color with the lowest
corresponding vertex in TS); the other colors of this point are implicit from TS (the colors
on the path to the root of TS). This leads us to the following problem.

I Problem 1.3 (Multi-Color-distance Oracle with a Color Hierarchy). The multi-color-distance
oracles with a color hierarchy problem asks to preprocess a multi-colored set S that admits a
color hierarchy, so that given a query of two colors c, c′ ∈ [`], one can quickly report d(c, c′).
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1.1 Our Results
Our main result is a data structure for the snippets problem, summarized as follows.

I Theorem 1. For every fixed ε > 0, there is a data structure for the snippets problem with
preprocessing time O(N1.5 logεN), query time O(|P1|+ |P2|+

√
N logεN)), and space usage

O(N) words.

To prove Theorem 1 we solve the more general problems of colored and multi-color-
distance oracles. These data structures use (in a black-box manner) an algorithm (data
structure) for nearest neighbor search.

Nearest Neighbor Search (NNS).

In the Nearest Neighbor Search (NNS) problem, the goal is to preprocess a set of points
S ⊂ M (recall M is a metric space), so that given a point p ∈ M one can quickly report
argminq∈S{d(p, q)}. Given an NNS algorithm for k = |S| points, we denote its preprocessing
time by tnns(k), its query time by qnns(k), and its space usage by snns(k). Once the nearest
neighbor is found, one can evaluate the distance between p and its nearest neighbor by
invoking the function d (we assume such evaluation takes O(1) time, for simplicity), thereby
obtaining d(p, S).

With the aid of an NNS data structure for point sets in a metric M , we prove the
following theorem in Section 2.

I Theorem 2 (Color-distance Oracle). Assume there is a data structure that supports NNS
queries on a set of k points from M using preprocessing time tnns(k), query time qnns(k),
and space usage snns(k) words. Then for every 0 < τ ≤ N , there exists a color-distance
oracle for N -point sets in M , that has preprocessing time O(tnns(N)+N · τ ·qnns(N)), query
time O(τ · qnns(N)), and space usage O(snns(N) + (Nτ )2) words.

Our solution for the multi-color-distance oracles with a color hierarchy problem is based
on the notion of range NNS, which is defined as follows.

I Problem 1.4 (Range NNS). In the range NNS problem the goal is to preprocess an array A
of N points from a metric M , so that given two indices 1 ≤ i ≤ j ≤ N and a point p ∈M ,
one can quickly find the NNS of p in the set {A[i], A[i+ 1], . . . , A[j]}.

We prove the following theorem in Section 3.

I Theorem 3 (Multi-Color-distance Oracle with a Color Hierarchy). Assume there is a range
NNS algorithm for k-point sets in a metric M that uses preprocessing time trnns(k), query
time qrnns(k), and space usage srnns(k) words. Then for every 0 < τ ≤ N , there exists a
multi-color-distance oracle for N -point sets in M that admit a color hierarchy, (specifically,
the multi-coloring of the input S is given implicitly via a tree TS), that has preprocessing
time O(trnns(N) + N2

τ · (qrnns(N) + log log log N
τ )), query time O(τ · qrnns(N)), and space

usage O(srnns(N) + (Nτ )2) words.

Conditional Lower Bounds.

Solving the multi-color-distance oracle problem with poly-logarithmic query time and non-
trivial preprocessing time seems to be extremely difficult, leading to the question of finding a
polynomial time lower bound. Polynomial (unconditional) lower bounds for data structure
problems are considered beyond the reach of current techniques. Thus, it is common to
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prove conditional lower bounds (CLBs) based on the conjectured hardness of some “basic”
problem. One of the most popular conjectures for CLBs is that the 3SUM problem (given
n integers determine if any three sum to zero) cannot be solved in truly subquadratic time,
where truly subquadratic time is O(n2−Ω(1)) time. This conjecture is reasonable even if the
algorithm is allowed to use randomization, see e.g. [30, 1, 23, 15].

Another popular conjecture is the combinatorial Boolean matrix multiplication (BMM)
conjecture. In the BMM problem we are given two n × n Boolean matrices A and B and
the task is to compute the Boolean product of the two matrices. The combinatorial BMM
conjecture states that combinatorial algorithms for computing this Boolean product require
runtime Ω(n3−o(1)), see [1].

In Section 5 we prove CLBs for the color-distance oracle problem based on the 3SUM and
combinatorial BMM conjectures. Moreover, these CLBs hold also for approximate versions
of the color-distance oracle problem, where the answer to a color-distance query between
two colors c and c′ is required to be between d(c, c′) and α · d(c, c′), where α ≥ 1 is a stretch
parameter. The CLBs are summarized as follows.

I Theorem 4. Assume the 3SUM conjecture holds. Then for every fixed 0 < γ < 1 and fixed
α ≥ 1, every data structure for the color-distance oracle problem with stretch α for points
on the line, that has preprocessing time tCDO and query time qCDO, must satisfy

tCDO +N
1+γ
2−γ qCDO = Ω

(
N

2
2−γ−o(1)

)
.

Notice that by taking γ arbitrarily close to 0, a linear preprocessing time implies an
Ω(N0.5−o(1)) query time. This is line with other conditional lower bounds based on the
3SUM conjecture [23].

I Theorem 5. Assume the combinatorial BMM conjecture holds. Then every combinatorial
data structure for the color-distance oracle problem with constant stretch α ≥ 1 for points
on the line, that has preprocessing time tCDO and query time qCDO, must satisfy

tCDO +N · qCDO = Ω
(
N1.5−o(1)

)
.

Comparing Theorem 5 with Theorem 1 and assuming the combinatorial BMM conjecture
holds, it is impossible to obtain a polynomial speedup in both the preprocessing and query
time of Theorem 1 via combinatorial algorithms. However, it might be possible to obtain
a polynomial speedup in one of them. We emphasize that the proofs of Theorems 4 and 5
are for the one dimensional case, and thus the conditional lower bounds apply to the special
case of the snippets problem.

1.2 Related Work

Perhaps the most related problem color-distance oracles is the (approximate) vertex-labeled
distance oracles for graphs problem, where we are interested in preprocessing a colored
graph G so that given a query of a vertex q and a color c we can return d(q, c) (or some
approximation thereof). Hermelin, Levy, Weimann and Yuster [16] introduced this problem
and provided, amongst other results, a data structure using O(kn1+1/k) expected space with
stretch (4k−5) and O(k) query time. In another result they showed how to reduce the space
usage to O(kN`1/k) at the expense of an exponential stretch (2k − 21). Chechik [8] showed
how to reduce this stretch back down to (4k − 5).
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Two pattern document retrieval problems.

Another related body of work are document retrieval problems on two patterns. In the
Document Retrieval problem [28] we are interested in preprocessing a collection of documents
X = {D1, · · · , Dk} where N =

∑
D∈X |D|, so that given a pattern P we can quickly report

all of the documents that contain P . Typically, we are interested in run time that depends
on the number of documents that contain P and not in the total number of occurrences of P
in the entire collection of documents. In the Two Patterns Document Retrieval problem we
are given two patterns P1 and P2 during query time, and wish to report all of the documents
that contain both P1 and P2. In the Forbidden Pattern Document Retrieval problem [14] we
are also interested in preprocessing the collection of documents but this time given a query
P+ and P− we are interested in reporting all of the documents that contain P+ and do not
contain P−.

All known solutions for the Two Patterns Document Retrieval problem or the Forbidden
Pattern Document Retrieval problem with non trivial preprocessing use at least Ω(

√
N) time

per query [28, 11, 17, 18, 14]. In a recent paper, Larsen, Munro, Nielsen, and Thankachan [25]
show lower bounds for these problems conditioned on the hardness of BMM. More recently
some CLBs for both problems were shown from the 3SUM conjecture as well [23].

Nearest Neighbor Search.

The NNS problem has been studied intensively for many metric spacesM , due to its numer-
ous applications. The literature on both theoretical and practical aspects is very extensive,
and we provide below only a brief overview of leading theoretical approaches.

In the classical setting where M is a D-dimensional Euclidean space, the standard al-
gorithm is to preprocess the point set by computing a Voronoi diagram, which has a fast
query time. However, the Voronoi diagram requires O(ndD/2e) time and space, which is pro-
hibitive unlessD is rather small. Several algorithms are known to achieve (1+ε)-approximate
NNS in RD (often under any `p norm) by employing various space partitions. Specifically,
Arya, Mount, Netanyahu, Silverman, and Wu [5] achieve preprocessing time that is linear in
the number of points k (but exponential in D), which is quite effective when the dimension
D is not too large. Locality Sensitive Hashing (LSH), which was introduced by Indyk and
Motwani [19] and further refined later, see e.g. [3, 4], is an alternative approach that is often
preferred for high dimension D, because its performance is polynomial in D (although its
query time is typically polynomial, and not logarithmic, in k).

In general metric spaces (i.e., not of the form RD), NNS is considered a very difficult
problem. But under certain “bounded growth” conditions on the data, one can obtain
performance that is similar to, or even better than, the low-dimensional Euclidean case, see
e.g. [10, 20, 24, 12], and the survey [9].

2 Color-distance Oracle

Proof of Theorem 2. We begin by preprocessing each set P (c) with a NNS data structure.
This takes a total of O(snns(N)) words of space and O(tnns(N)) time. A color c is said to be
light if |P (c)| < τ . If color c is not light then it is heavy. Notice that there can be at most
N/τ heavy colors. For each pair of heavy colors we precompute and store their distances in
a lookup table using O((Nτ )2) words. The computation of the entries for this table is done
directly using O(Nτ) NNS queries. To answer a color-distance query on two colors c and
c′, if both colors are heavy then we use the lookup table for their precomputed distance.
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Otherwise, assume without loss of generality that c is light. We then execute |P (c)| < τ

NNS queries on P (c′), one for each of the points in P (c), and the distance between c and c′
is the smallest distance found by any of these NNS queries.

To summarize, the preprocessing time is O(tnns(N) +N · τ · qnns(N)), the query time is
O(τ · qnns(N)), and the space usage is O(snns(N) + (Nτ )2) words. J

Since we may assume that snns(k) = Ω(k) (as we need to store all of the points in S),
picking τ =

√
N the preprocessing time becomes O(tnns(N)+N1.5qnns(N)), the space usage

becomes O(snns(N)) and the query time is O(
√
N · qnns(N)).

3 Multi-color-distance Oracle

Proof of Theorem 3. Assume without loss of generality that TS is an ordinal tree (the
children of each vertex are ordered). For every point p ∈ S we create a new vertex up and
add it to TS as a child of the single vertex representing the color set C(p). This process
adds N leaves to TS and now each leaf is associated with a unique point. With the aid of
TS we embed the set S in an array A, where the order is determined by the order in which
the leaves (corresponding to points in S) are encountered during a pre-order traversal of
TS . After the construction of A, by the properties of ordered traversals on trees, each color
c ∈ [`] is associated with a range in A. We preprocess A using a RNNS data structure.

Next, we partition A into blocks of size τ . For each pair of blocks we precompute and
store the two closest points, one from each block, together with their distances in a N

τ ×
N
τ

matrix B. The entry B[i][j] corresponds to the two closest points between the ith and jth
blocks. It is straightforward to compute each entry in O(τ · qrnns(N)) time, for a total of
O(N

2

τ · qrnns(N)) time to precompute the B. Next, we preprocess B using a 2D Range
Minimum Query (2DRMQ) data structure [2]. Such data structures preprocess a matrix of
values (in our case these are the distances that are stored in B) so that given a rectangle in
the matrix, defined by its corners, we can quickly return the entry with the smallest value.
The 2DRMQ data structure uses O((Nτ )2) space and O((Nτ )2 log log log N

τ ) preprocessing
times, and the query time is constant.

Answering a query.

To answer a multi-color-distance oracle query between two colors c and c′, let [xc, yc] and
[xc′ , yc′ ] be the ranges in A that are associated with c and c′ respectively. Each interval
can be partitioned into three parts, based on the block partitioning. The first (last) part
is a suffix (prefix) of some block that starts from the left (ends at the right) endpoint of
the interval. The middle part is everything else, which completely spans some consecutive
blocks. Notice that the first and last part have size at most τ . For the two middle parts
(one for each color) we find the two closest points by invoking the 2DRMQ data structure
on B, since the two contiguous ranges define a natural rectangle in B. This covers all of
the possible combinations of two points from the two middle parts and takes constant time.
Now to the remaining parts. Each of the O(τ) points in the first and last parts of [xc, yc]
is queried against the entire range [xc′ , yc′ ] with the range NNS data structure. Similarly,
each of the O(τ) points in the first and last parts of [xc′ , yc′ ] is queried against the entire
range [xc, yc] with the range NNS data structure. This costs O(τ · qrnns(N)) time. Finally,
we take the minimum over all of the answers to the queries. Since the queries together cover
all of the possible pairs of points, the minimum over all queries is the distance between the
colors. J
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4 Back to Snippets

Amulti-color-distance oracle with a color hierarchy can be used to solve the snippets problem
as follows. During the preprocessing phase we construct the suffix tree for the text T . Every
internal node in the suffix tree defines a unique color. Location i in T is colored with all of the
colors defined by nodes on the path from the root of the suffix tree to the leaf corresponding
to the suffix at location i. Thus, the suffix tree represents the color hierarchy of the set of
colors.

Given two query patterns, P1 and P2, we first locate their corresponding vertices in the
suffix tree. This takes O(|P1| + |P2|) time. These two nodes define the two colors that we
give as input to the multi-color-distance oracle query. It is straightforward to see that the
answer to this color-distance oracle query is exactly the distance of the two patterns in T .

In order to use Theorem 3 we need to specify a range NNS data structure that works
in a metric defined by locations of an array. For this we can use the range predecessor
data structures [13, 29, 26, 31, 27, 6, 7, 22, 21]. In these data structures the goal is
to preprocess an array A of n elements from integer universe [u] so that given a query
range_pred(x, y, p) where 1 ≤ x ≤ y ≤ n and p ∈ [u] the data structure quickly returns
argmaxq∈{A[x],A[x+1],...,A[y]}{q < p}. Using, for example, the data structure of [29] the pre-
processing time is O(n logn), the query time is O(logε n) and the space usage is O(n) words,
where ε > 0 is an arbitrarily small constant. Plugging these runtimes into Theorem 3 and
setting τ =

√
N completes the proof of Theorem 1.

Notice that if the multi-color-distance oracle would return the two points that are closest,
and not just their distance, then we could also report the two occurrences of the patterns
that are closest to each other. Our implementations of multi-color-distance oracle do in fact
allow for this information to be returned.

5 Conditional Lower Bounds

Offline SetDisjointness.

Both the 3SUM problem and the combinatorial BMM problem can be reduced to the SetDis-
jointness data structure problem. In this problem we wish to preprocess a family of sets F ,
all from universe U , with total size N =

∑
S∈F |S| so that given a query of pointers to two

sets S, S′ ∈ F , one can quickly determine if S ∩ S′ = ∅. For a SetDisjointness data structure
let tp denote the preprocessing time and let tq denote query time. The following theorems
summarize the best known CLBs for the SetDisjointness data structure problem from the
3SUM and combinatorial BMM conjectures.

I Theorem 6 ([23]). Assume the 3SUM conjecture holds. For every fixed 0 < γ < 1, any
data structure for SetDisjointness has tp +N

1+γ
2−γ tq = Ω

(
N

2
2−γ−o(1)

)
.

I Theorem 7 (Folklore). Assume the combinatorial BMM conjecture holds. Any combinat-
orial data structure for SetDisjointness has tp +N · tq = Ω

(
N1.5−o(1)).

SetDisjointness via color-distance oracles

We prove next that the SetDisjointness data structure problem can be reduced to the color-
distance oracle problem. Combining this reduction with Theorems 6 and Theorem 7 we
obtain CLBs for the the color-distance oracle problem from both the 3SUM conjecture and
the combinatorial BMM conjecture. Moreover, this reduction also holds for approximate

CPM 2016
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versions of the color-distance oracle problem. In these versions the answer to a color-distance
query between two colors c and c′ can be as large as α · d(c, c′), where α ≥ 1 is a constant
stretch parameter.

I Theorem 8. If there exists a color-distance oracle with constant stretch α ≥ 1 for points
on the line with tCDO preprocessing time and qCDO query time, then there exists a data
structure for online SetDisjointness where tp = O(tCDO log k) and tq = O(qCDO log k).

Proof. We reduce the SetDisjointness problem to the color-distance problem as follows. Let
F = {S1, · · · , Sk}. For each Si we define a unique color ci. For an element e ∈ U let |e|
denote the number of subsets containing e. Since each element in U appears in at most O(k)
subsets, we partition U into Θ(log k) parts where the ith part Pi contains all of the elements
e ∈ U such that 2i−1 < |e| ≤ 2i. An array Xi is constructed from Pi = {e1, · · · e|Pi|} by
assigning an interval Ij = [fj , `j ] in Xi to each ej ∈ Pi such that no two intervals overlap.
Every interval Ij contains a list of all of the colors of sets in F that contain ej . This implies
that |Ij | = |ej | ≤ 2i. Furthermore, for each ej and ej+1 we separate Ij from Ij+1 with a
dummy color d listed 2i + 1 times at locations [`j + 1, fj+1 − 1]. Finally, we pad each Xi so
that its size is exactly N . This is always possible since

∑
e∈U |e| = N (so the array is never

of size more than N).
We now simulate a SetDisjointness query on subsets (Si, Sj) ∈ F by performing a color-

distance query on colors ci and cj in each of the Θ(log k) arrays. There exists a Pi for
which the two points returned from the query are at distance strictly less than 2i + 1 if and
only if there is an element in U that is contained in both Si and Sj . Thus, using O(log k)
color-distance queries we solve the SetDisjointness query.

Finally, notice that the reduction also holds for the approximate case, as for any constant
α the reduction can overcome the α approximation by separating intervals using 2iα + 1
instances of the dummy color d. J

Acknowledgments. We thank Sharma Thankachan for suggesting to consider range pre-
decessor data structures, thereby significantly simplifying our earlier, more complicated,
solution.
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30 M. Pǎtraşcu. Towards polynomial lower bounds for dynamic problems. In STOC, pages
603–610. ACM, 2010. doi:10.1145/1806689.1806772.

31 C. Yu, W. Hon, and B. Wang. Improved data structures for the orthogonal range successor
problem. Comput. Geom., 44(3):148–159, 2011.

http://dx.doi.org/10.1145/1806689.1806772


The Nearest Colored Node in a Tree
Paweł Gawrychowski∗1, Gad M. Landau†2, Shay Mozes‡3, and
Oren Weimann‡4

1 University of Warsaw, gawry@mimuw.edu.pl
2 University of Haifa, landau@cs.haifa.ac.il
3 IDC Herzliya, smozes@idc.ac.il
4 University of Haifa, oren@cs.haifa.ac.il

Abstract
We start a systematic study of data structures for the nearest colored node problem on trees.
Given a tree with colored nodes and weighted edges, we want to answer queries (v, c) asking for
the nearest node to node v that has color c. This is a natural generalization of the well-known
nearest marked ancestor problem. We give an O(n)-space O(log logn)-query solution and show
that this is optimal. We also consider the dynamic case where updates can change a node’s
color and show that in O(n) space we can support both updates and queries in O(logn) time.
We complement this by showing that O(polylogn) update time implies Ω( logn

log logn ) query time.
Finally, we consider the case where updates can change the edges of the tree (link-cut operations).
There is a known (top-tree based) solution that requires update time that is roughly linear in
the number of colors. We show that this solution is probably optimal by showing that a strictly
sublinear update time implies a strictly subcubic time algorithm for the classical all pairs shortest
paths problem on a general graph. We also consider versions where the tree is rooted, and the
query asks for the nearest ancestor/descendant of node v that has color c, and present efficient
data structures for both variants in the static and the dynamic setting.
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1 Introduction

We consider a number of problems on trees with colored nodes. Each of these problems can
be either static, meaning the color of every node of a tree T on n nodes is fixed, or dynamic,
meaning that an update can change a node’s color (but the tree itself does not change). The
edges of T may have arbitrary nonnegative lengths and dist(u, v) denotes the total length of
the unique path connecting u and v. Depending on the version of the problem, given a node
u and a color c we are interested in:

The nearest colored ancestor: the first node v on the u-to-root path that has color c.
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The nearest colored descendant: the node v of color c such that the v-to-root path goes
through u and the distance from u to v is as small as possible.

The nearest colored node: the node v of color c such that the distance from u to v is as
small as possible.

In the static case, if the number of colors is constant, there is a trivial (and optimal)
solution for all three problems with O(n)-space and O(1)-query. In fact, this can be achieved
even for a logarithmic number of colors [7]. For an arbitrary number of colors, a lower bound
of Ω(log logn)-query for any O(n polylogn)-space solution to each of these problems (in fact,
even on strings) follows from a simple reduction from the well known predecessor problem.
We present tight O(n)-space O(log logn)-query solutions to all three problems. To achieve
this, for every color c we construct a separate tree T (c). If there are total s nodes of color c
then T (c) is only of size O(s) but (after augmenting it with appropriate additional data) it
captures for all n nodes of the original tree their nearest node of color c.

In the dynamic case, the nearest colored ancestor problem has been studied by Alstrup-
Husfeldt-Rauhe [3] who gave a solution with O(n)-space, O( logn

log logn )-query, and O(log logn)-
update. They also gave a lower bound stating that O(polylogn)-update requires Ω( logn

log logn )-
query. This holds even when the number of colors is only two (then a node is either marked
or unmarked and the problem is known as the marked ancestor problem). We show that
this lower bound (with the same statement and only two colors) extends to both the nearest
colored node and the nearest colored descendant. For upper bounds, we show that the nearest
colored node problem can be solved with O(n)-space, O(logn)-update, and O(logn)-query.
Our solution can be seen as a variant of the centroid decomposition tweaked to guarantee
some properties of top-trees.

The original top-trees of Alstrup-Holm-de Lichtenberg-Thorup [2] were designed for only
two colors (i.e., for the nearest marked node problem). They achieve O(logn) query and
update and also support updates that insert and delete edges (i.e., maintain a forest under
link-cut operations). The straightforward generalization of top-trees from two to k colors
increases the space dramatically to O(nk). We believe it is possible to improve this to O(n)
using similar ideas to those we present here. However, because we do not allow link-cut
operations, compared to top-trees our solution is simpler. Moreover, our query time can be
improved to (optimal) O( logn

log logn ) at the cost of increasing the update time by a logε n factor
and the space by a log1+ε n factor. Whether such an improvement is possible with top trees
remains open. We note that in both the O(nk) and the O(n) space solutions with top-trees,
while queries and color-changes require O(logn) time the time for link/cut is O(k · logn).
This can be significant since k can be as large as n (we emphasise that our solution does not
support link/cut at all). We show that Õ(k) is probably optimal by showing that O(k1−ε)
query and update time implies an O(n3−ε) solution for the classical all pairs shortest paths
problem on a general graph with n vertices. The non existence of such an algorithm has
recently been widely used as an assumption with various consequences [19].

Finally, for the nearest colored descendant problem, we give a solution with O( logn
log logn )-

query and O(log2/3+ε n)-update by reducing the problem to 3-sided emptiness queries on
points in the plane. We then show that the O(polylogn)-update Ω( logn

log logn )-query lower
bound of [3] also applies to the nearest colored descendant problem by giving a reduction
from nearest colored ancestor to nearest colored descendant.

Related work. The approximate version of the nearest colored node problem (where we
settle for approximate distances) has recently been studied (as the vertex-to-label distance
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query problem) in general graphs [8, 12, 20] and in planar graphs [1, 13, 14]. In fact, the
query-time in [14] is dominated by a O(log logn) nearest colored node query on a string
(which we now know is optimal).

Preliminaries. A predecessor structure is a data structure that stores a set of n integers
S ⊆ [0, U ], so that given x ∈ [0, U ] we can determine the largest y ∈ S such that y ≤ x. It
is known [15] that for U = n2 any predecessor structure of O(n polylogn)-space requires
Ω(log logn)-query, and that linear-size structures with such query-time exist [16, 18].

A Range Minimum Query (RMQ) structure on an array A[1, . . . , n] is a data structure for
answering queries min{A[i], . . . , A[j]}. When the array A is static, RMQ can be optimally
solved in O(n)-space and O(1) query [5, 6, 11]. In the dynamic case, we allow updates
that change the value of array elements. When the query range is restricted to be a suffix
A[i, . . . , n] we refer to the problem as the Suffix Minimum Query (SMQ) problem.

A Lowest Common Ancestor (LCA) structure on a rooted tree T is a data structure for
finding the common ancestor of two nodes u, v with the largest distance from the root. For
static trees, LCA is equivalent to RMQ and thus can be solved in O(n)-space and O(1)-query.

A perfect hash structure stores a collection of n integers S. Given x we can determine
if x ∈ S and return its associated data. There exists O(n)-space, O(1)-query perfect hash
structure [10], which can be made dynamic with O(1)-update (expected amortized) [9].

2 Static Upper Bounds

We root the tree at node 1 and assign pre- and post-order number pre(u), post(u) ∈ [1, 2n] to
every node u. All these numbers are distinct, [pre(u), post(u)] is a laminar family of intervals,
and u is an ancestor of v if and only if pre(v) ∈ (pre(u), post(u)). We order edges outgoing
from every node according to the preorder numbers of the corresponding nodes.

We assume the colors are represented by integers in [1, n]. We will construct a separate
additional structure for every possible color c. The size of the additional structure will be
always proportional to the number of nodes of color c, which sums up to O(n) over all colors
c. Below we describe the details of the additional structure for every version of the problem.

Nearest colored descendant. Let v1, v2, . . . , vs be all nodes of color c sorted so that
pre(v1) < pre(v2) < . . . < pre(vs). We insert the preorder numbers of all these nodes
into a predecessor structure, so that given an interval [x, y] we can determine the range
vi, vi+1, . . . , vj consisting of all nodes with preorder numbers from [x, y] in O(log logn) time.
Additionally, we construct an array D[1..s], where D[i] = dist(1, vi). The array is augmented
with an RMQ structure. To answer a query, we use the predecessor structure to locate
the range consisting of nodes v such that pre(v) ∈ [pre(u), post(u)]. Then, if the range is
nonempty, a range minimum query allows us to retrieve the nearest descendant of u with of
color c. The total query time is hence O(log logn).

Nearest colored ancestor. Let v1, v2, . . . , vs be all nodes of color c. We insert all their pre-
and postorder numbers into a predecessor structure. Additionally, for every i we store (in an
array) the nearest ancestor with the same color for the node vi (or null if such ancestor does
not exist). To answer a query, we use the predecessor structure to locate the predecessor of
pre(u). There are two cases:
1. The predecessor is pre(vi) for some i. Because [pre(v), post(v)] create a laminar family,

either pre(u) ∈ [pre(vi), post(vi)] and vi is the answer, or u has no ancestor of color c.
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2. The predecessor is post(vi) for some i. Consider an ancestor u′ of u with the same color.
Then pre(u′) < post(vi), so u′ is also an ancestor of vi. Similarly, consider an ancestor v′
of vi with the same color, then post(v′) > pre(u) so v′ is also an ancestor of u. Therefore,
the nearest ancestor of color c is the same for u and vi, hence we can return the answer
stored for vi.

The query time is hence again O(log logn).

Nearest colored node. We define the subtree induced by color c, denoted T (c), as follows.
Let v1, v2, . . . , vs be all nodes of color c. T (c) consists of all nodes vi together with the lowest
common ancestor of every pair of nodes vi and vj . The parent of u ∈ T (c) is defined as the
nearest ancestor v of u ∈ T such that v ∈ T (c) as well; if there is no such node, u is the root
of T (c) (there is at most one such node). Thus, an edge (u, v) ∈ T (c) corresponds to a path
from u to v in T .

I Lemma 1. T (c) consists of at most 2s − 1 nodes and can be constructed in O(s) time
assuming that we are given a list of all nodes of color c sorted according to their preorder
numbers and a constant time LCA built for T .

Proof. Let v1, v2, . . . , vs be the given list of nodes of color c. By assumption, pre(v1) <
pre(v2) < . . . < pre(vs). We claim that T (c) consists of all nodes vi and the lowest common
ancestor of every vi and vi+1. To prove this, consider two nodes vi and vj such that i < j

such that their lowest common ancestor u is different than vi and vj . Then, u is a proper
ancestor of vi and vj , and furthermore vi is a descendant of ua and vj a descendant of ub,
where a < b and u1, u2, . . . , u` is an ordered list of the children of u. vi can be replaced by
the node vi′ of color c with the largest preorder number in the subtree rooted at ua. Then
the lowest common ancestor of vi′ and vi′+1 is still u, so it is indeed enough to include only
the lowest common ancestor of such pairs of nodes and the bound of 2s− 1 follows.

To construct T (c) we need to determine its set of nodes and edges. Determining the
nodes is easy by the above reasoning. To determine the edges, we use a method similar to
constructing the Cartesian tree of a sequence: we scan v1, v2, . . . , vs from the left to right
while maintaining the subtree induced by v1, v2, . . . , vi. We keep the rightmost path of the
current subtree on a stack, with the bottommost edge on the top. To process the next vi+1,
we first calculate its lowest common ancestor with vi, denoted x. Then, we pop from the
stack all edges (u, v) such that u and v are both below (or equal to) x in T . Finally, we
possibly split the edge on the top of the stack into two and push a new edge onto the stack.
The amortized complexity of every step is constant, so the total time is O(s). J

The first part of the additional structure is the nearest node of color c stored for every
node of T (c). Given a node u, we need to determine its nearest ancestor u′ such that u′ ∈ T (c)
or u′ lies strictly inside some path corresponding to an edge of T (c). In the latter case, we
want to retrieve the endpoints of that edge. This is enough to find the answer, as any path
from u to a node of color c must necessarily go through u′ (because u′ is the lowest ancestor
of u such that the subtree rooted at u′ contains at least one node of color c, and a simple
path from u to a node of color c must go up as long as the subtree rooted at the current node
does not contain any node of color c), and then either u′ ∈ T (c) and we have the answer for
u′ or the path continues towards one of the endpoints of the edge of T (c) strictly containing
u′ (because the subtrees hanging off the inside of a path corresponding to an edge of T (c) do
not contain any nodes of color c). Hence after having determined u′ we need only constant
time to return the answer.
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To determine u′, we use the structure for the nearest colored ancestor constructed for a
subset of O(s) marked nodes of T . These marked nodes are all nodes of T corresponding to
the nodes of T (c), and additionally, for every path u1 → u2 → . . . → u` corresponding to
an edge of T (c), the node u2 (where u1 is closer to the root than u` and ` ≥ 2). For every
marked node of the second type we store the endpoints (u1, u`) of its corresponding edge
of T (c). Then, locating the nearest marked ancestor of u allows us to determine that the
sought nearest ancestor u′ is a node of T (c), or find the edge of T (c) strictly containing u′.
By plugging in the aforementioned structure for the nearest colored ancestor, we obtain the
answer in O(log logn) time with a structure of size O(s).

This concludes the description of our static solution. Before moving on to the dynamic
case, we note that the above solution can be easily extended to the case where every node
v ∈ T has an associated set of colors C(v) and instead of looking for a node of color c we
look for a node v such that c ∈ C(v).

3 Dynamic Upper Bounds

In the dynamic setting, we allow updates to change a node’s color. To be even more general,
we assume that every node v ∈ T has an associated (dynamically changing) set of colors
C(v), and an update can either insert or remove a color c from the current set C(v).

Nearest colored descendant. As in the static case, we construct a separate structure
for every possible color c. We also maintain a mapping from the set of colors to their
corresponding structures. Let v1, v2, . . . , vs be all nodes of color c. We create a set of points
of the form (pre(vi), dist(1, vi)). Then, a nearest colored descendant query can be answered
by locating the point with the smallest y-coordinate in the slab [pre(u), post(u)]× (−∞,∞).
We store the points in a fully dynamic 3-sided emptiness structure of Wilkinson [17]. The
structure answers a 3-sided emptiness query by locating the point with the smallest y-
coordinate in a slab [x1, x2]× (−∞,∞) in O( logn

log logn ) time and can be updated by inserting
and removing points in O(log2/3+ε n) time, with both the update and the query time being
amortized. Consequently, we obtain the same bounds for the nearest colored descendant.

Nearest colored ancestor. This has been considered by Alstrup-Husfeldt-Rauhe [3]. The
query time is O( logn

log logn ) and the update time O(log logn). While not explicitly stated in
the paper, the total space is linear.

Nearest colored node. Our data structure is based on a variant of the centroid decom-
position. That is, we recursively decompose the tree into smaller and smaller pieces by
successively removing nodes. The difference compared to the standard centroid decomposition
is that each of the obtained smaller trees has up to two appropriately defined boundary
nodes (similarly to the decomposition used in top-trees).1

We assume the degree of every node is at most 3. This can be achieved by standard
ternerization with zero length edges. The basis of our recursive decomposition is the following
well-known fact.
I Fact 1. In any tree T on n nodes there exists a node c ∈ T such that T \ {c} is a collection
of trees of size at most n

2 each.

1 Using standard centroid decomposition leads to update time of O(log2 n), compared to O(log n) when
controlling the number of boundary nodes.
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25:6 The Nearest Colored Node in a Tree

Figure 1 Schematic depiction of a single step of our centroid decomposition. After removing the
grayed out node and its adjacent edges we obtain 6 pieces. One of them contains three boundary
nodes and hence needs to be further partitioned into 4 smaller pieces.

We apply it recursively. The input to a single step of the recursion is a tree T on n nodes
with at most two distinguished boundary nodes. We use Fact 1 to find node c1 ∈ T such that
T \ {c1} is a collection of smaller trees T1, T2, . . .. Each neighbor of c1 in the original tree
becomes a boundary node in its smaller tree Ti. A boundary node u ∈ T such that u 6= c1 is
also a boundary node in its smaller tree Ti. Because T contains at most two boundary nodes,
at most one smaller tree Ti contains three boundary nodes, while all other smaller trees
contain at most two boundary nodes. If such Ti containing three boundary nodes u1, u2, u3
exists, we further partition it into even smaller trees T ′1, T ′2, . . .. This is done by finding a
node c2 ∈ Ti which, informally speaking, separates all u1, u2, u3 from each other. Formally
speaking, we take c2 to be any node belonging to all three paths u1 − u2, u1 − u3, u2 − u3
(intersection of such three paths is always nonempty). Then, Ti \ {c2} is a collection of
trees T ′1, T ′2, . . . such that each T ′j contains at most one of the nodes u1, u2, u3. Finally, each
neighbor of c2 in Ti becomes a boundary node in its smaller tree T ′j ; see Figure 1.

I Lemma 2. Given a tree T on n nodes with at most two boundary nodes b1, b2, we can find
two nodes c1, c2 ∈ T , called the centroids of T , such that T \ {c1, c2} is a collection of trees
T1, T2, . . . with the property that each Ti consists of at most n

2 nodes and contains at most
two boundary nodes, which are defined as nodes corresponding to the original boundary nodes
of T or nodes adjacent to c1 or c2 in T .

Let T0 denote the original input tree. We apply Lemma 2 to T0 recursively until the tree is
empty. The resulting recursive decomposition of T0 can be described by a decomposition tree
T as followed. Each node of T corresponds to a subtree of T0. The root r of T corresponds to
T0. The children of a node u ∈ T , whose corresponding subtree of T0 is T , are the recursively
defined decomposition trees of the smaller trees Ti obtained by removing the centroid nodes
from T with Lemma 2. For a node u ∈ T whose corresponding subtree is T we define C(u)
to be C(c1) ∪ C(c2), where c1 and c2 are the centroids of T . Because the size of the tree
decreases by a factor of two in every step, the depth of T is at most logn. We will sometimes
abuse notation and say that a tree T in the decomposition is the parent of T ′ if the node of
T whose corresponding tree is T is the parent of the node of T whose corresponding tree is
T ′. This concludes the description of our recursive decomposition.

We now describe the information maintained in order to implement dynamic nearest
colored node queries. For every tree T in the decomposition, every boundary node b of T ,
and every color c such that c ∈ C(v) for some v ∈ T , we store the node of T with color c
that is nearest to b. Observe that, since the degree is bounded, this information can be
used to compute in constant time the nearest node with color c to each centroid ci of T , by
considering the nearest nodes with color c to each of the adjacent (to c1 or to c2) boundary
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nodes of the children Ti of T in T .
For every node v ∈ T0 we store a pointer to the unique node of T in which v is a centroid.

We also preprocess the original tree T0 so that the distance between any two nodes can
be calculated in constant time: we root the tree at node 1, construct an LCA structure,
and store dist(1, v) for every v ∈ T0. Such preprocessing actually allows us to compute the
distance between any two nodes in any of the smaller trees in the decomposition.

Queries. Given a tree T in the decomposition, a node v ∈ T and a color c, we need to find
the node u ∈ T with color c that is nearest to v.

Let ci (i = 1, 2) be the centroids of T . Either some ci lies on the v-to-u path in T , or v
and u belong to the same child Ti of T . In the former case u is the closest node to ci in T
with color c. Note that this information is already stored. In the latter case, the query is
reduced to a query in Ti.

It follows that, in order to find the closest node to v with color c in T0, it suffices to
consider the closest nodes with color c to each of the centroids of each of the trees on the path
in T from the node of T in which v is a centroid to the root of T . There are O(logn) such
centroids, and each of them can be checked in constant time using the stored information.

Updates. Consider adding or removing color c from C(v). We implement the updates in a
bottom-up fashion along the same path used for the query. Subtrees on this path are the
only ones in the decomposition containing v, so only their information should be updated.

Repairing the information for the boundary nodes of a subtree T along the path in T is
done in a similar manner to that of the query. For each boundary node bi of T (i = 1, 2),
we need to find the nearest node u ∈ T with color c. Let cj (j = 1, 2) be the centroids of
T . Let Ti denote the child of T in T that contains bi. Either bi and u both belong to Ti, or
u = cj for some j, or u is in some other child T` of T and some cj lies on the bi-to-u path in
T . In all cases we can use the information stored at the children of T to correctly determine
the information stored at T . If bi, u ∈ Ti then bi is a boundary node of Ti, so we use the
information stored for Ti. If u = cj then we verify that c ∈ C(cj). Finally, in the last case,
the closest node to bi with color c in T` is also the closest node to the boundary node of T`
adjacent (in T ) to cj , so we use the information stored for T`.

Summary. To summarize, both the query and the update time is O(logn). The space is
O(logn ·

∑
v∈T0

|C(v)|), because every c ∈ C(v) contributes constant space at every level.

Decreasing the space. The space can be reduced to O(n+
∑
v∈T0

|C(v)|). Let T be a tree in
the decomposition. Recall that for each boundary node u ∈ T and color c such that c ∈ C(v)
for some v ∈ T we maintain the nearest node of T with color c. Hence, every c ∈ C(v) might
contribute constant space at every tree T such that v ∈ T . Now we describe how this can be
avoided by maintaining, for every color c, a separate structure of size proportional to the
number of nodes with color c.

Recall that we extend the colors of nodes in the original tree T0 to color sets of nodes
of the decomposition tree T . For a node u ∈ T that is associated with subtree T of T0 we
define u’s color set to be the union of the color sets of the centroids of T . For every color c we
maintain the subtree of T induced by color c (cf. Section 2 for definition of induced), denoted
T (c). Before we describe how these subtrees can be efficiently maintained, we describe how
to use T (c) instead of T to perform queries and updates.
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Consider a query (v, c) and let u be the node of T in which v is a centroid. The query
traverses the ancestors of u. At each such ancestor u′ ∈ T , we iterate through the centroids
ci (i = 1, 2) and consider their nearest node with color c as candidate for the answer. The
nearest node is either the centroid itself, or the nearest node with color c to a boundary
node of a child u′′ ∈ T of u′. In the former case, u′ ∈ T (c). In the latter case, u′ /∈ T (c). If
also u′′ /∈ T (c) then, by definition of T (c), c /∈ C(u′′) and u′′ has at most one child u′′′ ∈ T
containing nodes with color c in its corresponding subtree of T . Hence instead of iterating
through the boundary nodes of u′′ we can iterate through the boundary nodes of u′′′. By
repeating this reasoning, u′′ can be replaced by its highest descendant belonging to T (c)
(such highest descendant is uniquely determined, unless the subtree of T corresponding to
u′′ has no nodes with color c). Consequently, the queries can be modified to operate on T (c)
instead of T : we locate the first ancestor u′ ∈ T of u such that u′ ∈ T (c) (if there is none,
we take the root of T (c) as u′), and then iterate through all ancestors of u′ in T (c). For each
such ancestor u′′, we consider as candidates for the answer its centroid nodes ci (i = 1, 2) and
also the nearest node with color c to every boundary node of each child of u′′ in T (c). The
same reasoning allows us to recalculate, upon an update, the information stored at u ∈ T (c)
using the information stored at all of its children in T (c).

By Lemma 1, the size of the subtree induced by color c is at most 2|{v ∈ T : c ∈ C(v)}|−1.
Summing over all colors we obtain that the total size of all induced subtrees is 2

∑
v∈T0

|C(v)|.
We still need to show how to maintain them and also how to efficiently locate the first ancestor
u′ ∈ T of u such that u′ ∈ T (c). The latter is implemented with a nearest colored ancestor
structure. We only describe how to update T (c) after adding c to some C(v), where v ∈ T0,
and do not change T (c) after removing c (so our trees will be in fact larger than necessary).
Whenever the total size of all maintained subtrees exceeds 4

∑
v∈T0

|C(v)|, we rebuild the
whole structure. This does not increase the amortized complexity of an update and can be
deamortized using the standard approach of maintaining two copies of the structure.

After adding c to some C(v), where v ∈ T0, we might also need to include c in C(u) for
some u ∈ T , thus changing T (c). Inspecting the proof of Lemma 1 we see that the change
consists of two parts: we need to include u in T (c), and in particular insert it onto the
sorted list of nodes of T of color c. Then, we might also need to include the lowest common
ancestor of u and its predecessor on the list, and also the lowest common ancestor of u and
its successor there. We implement the list with a balanced search tree, so that all these new
nodes can be generated in O(logn) time. We also need to generate new edges (or, more
precisely, split some existing edges into two and possibly attach a new edge to the new middle
node). This is easy to do if we are able to efficiently find the edge of T (c) corresponding
to a path containing a given node u ∈ T . To this end, we also maintain a list of all nodes
of T (c) sorted according to their preorder numbers in T . Then binary searching over the
list gives us the highest descendant of u belonging to T (c). By implementing the list with a
balanced search tree we can hence find such an edge in O(logn) time. Thus, the update and
the query time is still O(logn) and the space linear.

Decreasing the query time. The query time can be decreased to O( logn
log logn ), which

is optimal, at the cost of increasing the update time to O(log1+ε n) and the space to
O(log1+ε n

∑
v∈T |C(v)|).

For trees of constant degree, Lemma 2 decomposes T into a constant number of trees,
each of size n

2 , by removing at most two nodes. By iterating the lemma ε log logn times we
obtain the following.
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I Lemma 3. Given a tree T on n nodes with at most two boundary nodes, we can find
O(logε n) centroid nodes c1, c2, . . . ∈ T such that T \ {c1, c2, . . .} is a collection of trees
T1, T2, . . . with the property that each Ti consists of at most n

logε n nodes and contains at most
two boundary nodes, which are defined as nodes corresponding to the original boundary nodes
of T or nodes adjacent to any ci in T .

We apply Lemma 3 recursively. Now the depth of the recursion is O( logn
log logn ).

Note that, because the number of centroids ci and trees Ti is no longer constant, it is no
longer true that the nearest node to centroid ci with color c in T can be computed in O(1)
time from the information stored for boundary nodes of the Tis. Therefore, to implement
query (v, c) in O( logn

log logn ) time, we maintain explicitly, for each centroid node ci, its nearest
node of T with color c. This allows us to process the case when v = ci in constant time.
If v is not a centroid of T , then v ∈ Tj for some j. We recurse on Tj . The only remaining
possibility is that the sought node u does not belong to Tj . In such case, the path from v

to u must go through one of the boundary nodes of Tj . Each of these boundary nodes is
adjacent to a constant number of the centroid nodes ci of T (because of the constant degree
assumption). We iterate through every such centroid ci and consider its nearest node with
color c as a candidate for the answer in constant total time.

Implementing updates is again done in a bottom-up fashion. However, now we also need
to recalculate the nearest node with color c to every centroid node ci. Recalculating the
nearest node with color c (to either a boundary or a centroid node) takes now O(logε n) time,
because we need to consider boundary nodes of up to O(logε n) subtrees Ti and also O(logε n)
centroid nodes. Hence the total update time at every level of recursion is O(log2ε n). By
adjusting ε we get that the total update time is O(log1+ε n).

4 Lower Bounds

Static nearest colored node, descendant, and ancestor. First we consider the static
nearest colored node. In such case, there is a lower bound stating that O(n polylogn) space
requires Ω(log logn) query time. In fact, the lower bound already applies for paths, and follows
easily from Belazzougui and Navarro [4]: they show (via reduction from predecessor [15]) that
any data structure that uses O(n polylogn) space to represent a string S of length n over
alphabet {1, . . . , n} must use time Ω(log logn) to answer rank queries. A rankσ(i) query asks
for the number of times the letter σ appears in S[1, . . . , i]. The reduction to nearest colored
node is trivial: each letter corresponds to a color, we create a path on n nodes where the
color of the i-th node is S[i], and additionally the node stores rankS[i](i). Then, to calculate
an arbitrary rankσ(i), we consider the i-th node and find its nearest node of color σ. Then, if
that nearest node is on the left of i, we return its stored answer, and otherwise we return its
stored answer decreased by one. This also shows that one cannot beat O(log logn) time with
a structure of size O(n polylogn) for the static nearest colored descendant and ancestor.

In all dynamic problems, the lower bounds hold even if we have only two colors, that is,
every node is marked or not.

Dynamic nearest marked node and ancestor. We next show that the following lower
bound of Alstrup-Husfeldt-Rauhe [3] for marked ancestor also applies to dynamic nearest
marked node. Notice that Theorem 4 implies that any O(polylogn) update time requires
Ω( logn

log logn ) query time. In the marked ancestor problem, the query is to detect if a node has
a marked ancestor, and an update marks or unmarks a node, so we immediately obtain a
lower bound for the dynamic nearest marked ancestor.
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I Theorem 4 ([3]). For the marked ancestor problem, if tu is the update time and tq is the
query time then

tq = Ω
(

logn
log tu + log logn

)
The lower bound holds under amortization and randomization.

The proof of Theorem 4 uses a (probabilistic) sequence of operations (mark/unmark/marked
ancestor query) on an unweighted complete tree T on n leaves and out-degree ≥ 2. To show
that the bounds of Theorem 4 also apply to dynamic nearest marked node, we add edge
weights to T that increase exponentially with depth: edges outgoing from a node at depth
d has weight 2d. This way, if a node has a marked ancestor, then its nearest marked node
is necessarily the nearest marked ancestor (because in the worst case the distance to the
nearest marked ancestor is 20 + 21 + . . .+ 2d−1, while the distance to any proper descendant
is at least 2d). Hence the marked ancestor problem reduces to nearest marked node. In fact,
it is possible to achieve a reduction without using weights by replacing each weight W with
a path of W nodes. Since T is balanced, this will increase the space of T to be O(n2) which
is fine since the bound of Theorem 4 is independent of space.

Dynamic nearest marked descendant. We next show that the bounds of Theorem 4 also
apply to the case of nearest marked descendant. This requires three simple reductions:
1. dynamic existential marked ancestor → planar dominance emptiness.

Dynamic existential marked ancestor is a simpler variant of the dynamic marked ancestor
problem where a query does not need to find the nearest marked ancestor but only
to report if there exists a marked ancestor. In fact, the proof [3] of the lower bound
of Theorem 4 is for the dynamic existential marked ancestor problem. In the planar
dominance emptiness problem, we need to maintain a set S ⊆ [n]2 of points in the plane
under insertions and deletions, such that given a query point (x, y) we can determine if
there exits a point (x′, y′) in S that dominates (x, y) (i.e., x′ ≥ x and y′ ≥ y). As shown
in [3], since we can assume the input tree is balanced, there is a very simple reduction
obtained by embedding the tree nodes as points in the plane where node (x′, y′) is an
ancestor of node (x, y) iff x′ ≥ x and y′ ≥ y.

2. planar dominance emptiness → dynamic SMQ.
In the dynamic SMQ problem we are given an array A[1, . . . , n] where each entry A[i] is
in {1, . . . , n}. An update (i, j) changes the value of A[i] to be j, and a suffix maximum
query SMQ(i) returns the maximum value in A[i, . . . , n]. The reduction is as follow: For
each x in {1, . . . , n} we set A[x] to be the largest y s.t (x, y) ∈ S (or zero if there is no
(x, y) ∈ S). It is easy to see that a dominance query (x, y) in S reduces to checking
whether SMQ(x) > y. Upon an insertion or deletion of a point (x, y) we need to update
A[x]. For this we need to maintain for every x the maximum y s.t. (x, y) ∈ S. This can
be done in O(log logn) time and linear space using a predecessor structure for each x.

3. dynamic SMQ → dynamic nearest marked descendant.
The reduction is as follows: Given an array A, we build a tree T of size n2. The tree is
composed of a spine v1, . . . , vn where each vi has two children: the spine node vi+1 and
the unique path vi,n → vi,n−1 → · · · → vi,1. The weight of each spine edge (vi, vi+1) is 1
and the weight of each non-spine edge (vi,j , vi,j−1) is n (again, we could replace weight n
with n weight-1 edges, which increases |T | to n3). In each path vi,n → vi,n−1 → · · · → vi,1
there is exactly one marked node: If A[i] = j then the marked node is vi,j . It is easy to
see that SMQ(i) indeed corresponds to the nearest marked descendant of vi.
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Dynamic nearest colored node and descendant with link-cut operations. Recall that, to
support insertion and deletion of edges (i.e., maintain a forest under link and cut operations),
the (top-tree based) solution of Alstrup-Holm-de Lichtenberg-Thorup [2] can be extended
from two colors to k colors at the cost of increasing the update time to Õ(k). We show
that this is probably optimal. Namely, we prove (via a simple reduction) that a solution
with O(k1−ε) query and update time implies an O(n3−ε) solution for the classical All Pairs
Shortest Paths (APSP) problem on a general graph with n vertices.

Vassilevska Williams and Williams [19] introduced this approach and showed subcubic
equivalence between APSP and a list of seven other problems, including: deciding if a graph
has a triangle whose total length is negative, min-plus matrix multiplication, deciding if a
given matrix defines a metric, and the replacement paths problem. Namely, they proved that
either all these problems have an O(n3−ε) solution or none of them does.

It is well known that in APSP we can assume w.l.o.g that the graph is tripartite. That is,
it has 3n vertices partitioned into three sets A,B,C each of size n. The edges have lengths
`(·) and are all in A×B ∪B ×C. The problem is to determine for every pair (a, c) ∈ A×C
the value minb∈B(`(a, b) + `(b, c)).

We now describe the reduction: Given a tripartite graph A = {a1, . . . , an}, B =
{b1, . . . , bn}, C = {c1, . . . , cn} we pick vertex a1 in A and make it the root of the tree.
We set its children to be b1, b2, . . . , bn where the edge (a1, bj) has the same length `(a1, bj)
as in the tripartite graph. Each bj has n children. The kth child has color ck, and the
corresponding edge has length `(bj , ck). We get a tree that is of size O(n2), and has depth
two. We then ask the n queries (a1, ck) where ck is a color. This completes the handling of
a1. I.e., for every ck ∈ C we have found minb∈B(`(a1, b) + `(b, ck)). We next want to do the
same for a2. To this end we do n updates: for each i we change the root-to-bj edge so that
its length becomes `(a2, bj). We then ask n queries, and so on.

Overall we do n2 updates and n2 queries on a tree that is of size N = n2, and k =
√
N

colors. Assuming that APSP cannot be solved in O(n3−ε) time, we get that, for dynamic
nearest colored node on a tree of size N with link-cut operations, the query or the update
must take Ω(

√
N) = Ω(k). Note that, the updates in this reduction do not alter the topology

of the tree, but only the edge lengths. Hence, the lower bound applies even to a dynamic
nearest colored node problem with just edge-weight updates (and no link or cut updates).
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Abstract
We present parallel algorithms for exact and approximate pattern matching with suffix arrays,
using a CREW-PRAM with p processors. Given a static text of length n, we first show how to
compute the suffix array interval of a given pattern of length m in O

(
m
p + lg p+ lg lg p · lg lgn

)
time for p ≤ m. For approximate pattern matching with k differences or mismatches, we show
how to compute all occurrences of a given pattern in
O
(
mkσk

p max (k, lg lgn)+(1 + m
p ) lg p · lg lgn+ occ

)
time, where σ is the size of the alphabet

and p ≤ σkmk. The workhorse of our algorithms is a data structure for merging suffix array
intervals quickly: Given the suffix array intervals for two patterns P and P ′, we present a data
structure for computing the interval of PP ′ in O(lg lgn) sequential time, or in O

(
1 + lgp lgn

)
parallel time. All our data structures are of size O(n) bits (in addition to the suffix array).
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1 Introduction

We consider parallelizing indexed pattern matching queries in static texts, using (com-
pressed) suffix arrays [14, 16] and (compressed) suffix trees [17, 19] as underlying indexes.
We work with the concurrent read exclusive write (CREW) parallel random access machine
(PRAM) with p processors, as this model most accurately reflects the design of existing
multi-core CPUs. Our starting point is that a (possibly very long) pattern can be split up
into several subpatterns that can be matched in parallel. In a suffix array, this will result
in p intervals, each corresponding to one of the subpatterns. These intervals, called subin-
tervals, will then be combined (using a merge tree approach) to finally yield the interval for
the entire pattern. From this interval, all occurrences of the pattern in the text could then
be easily listed.

We also consider parallel indexed pattern matching with k errors, again using the same
indexes as in the exact case. Here, we follow the approach of Huynh et al. [10], whose
basic idea is to first make all possible modifications of the pattern within distance k, and
then match those modifications in the suffix array. To avoid repeated computations of
subintervals, a preprocessing is performed for every prefix and suffix of the pattern. We
show how to parallelize both steps (preprocessing and the actual matching), resulting in
a fast parallel matching algorithm. We stress that in the case of approximate pattern
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matching, parallel pattern matching algorithms are of even more practical importance than
in the exact case, as this is an inherently time-consuming task in the sequential case, even
for short patterns.

1.1 Our Results
In the abstract, we stated the results for uncompressed suffix arrays [14] as the underlying
index, which requires O(n lgn) bits of space for a text of length n. However, there exists a
wealth of compressed versions of suffix arrays (CSAs) [16], which are smaller (using |CSA|
bits), but often have nonconstant access time tSA. (See also Table 1 for known trade-offs.)
Here, we state our results more generally, using the parameters |CSA| and tSA.

Our first result (Thm. 8) is an index of size |CSA| + O(n) bits that, with p ≤ m

processors, allows us to compute the suffix array interval of a pattern of length m in
O
(
tSA

(
m
p + lg p+ lg lg p · lg lgn

))
time andO(tSA (m+ min (p, lgn) (lg p+ lg lg p · lg lgn)))

work. Our second result (Thm. 12) is an index of the same size |CSA|+O(n) bits that can
find all occ occurrences of a pattern
in O

(
tSA

(
mkσk

p max (k, lg lgn) + (1 + m
p ) lg p · lg lgn

)
+ occ

)
time, for p ≤ mkσk. Both

results rely on the ability to merge two suffix array intervals quickly, a task for which we
give a data structure of size O(n) bits on top of CSA that allows us to do the merging in
O(tSA lg lgn) sequential (Lemma 4) or in O

(
tSA(1 + lgp lgn)

)
parallel time (Lemma 7).

1.2 Related Work
We are only aware of one article addressing the parallelization of single queries [11]. Their
main result is to augment a suffix tree with a data structure of size O(n lg p) words that
answers pattern matching queries using O

(
m
p lg p

)
time and O(m lg p) work, which is worse

than ours in all three dimensions. Parallelizing approximate pattern matching has not been
done earlier, to the best of our knowledge. Another natural approach for exploiting paral-
lelism would be distributing the patterns to be matched onto the different processors and
answer them in parallel; this is more of a load balancing problem and cannot be compared
with our approach. Parallel construction of text indices is another road of research [4, 12],
and could easily be combined with our approach. Finally, in the early 1990’s, some work
has been done on parallelizing online pattern matching algorithms [2, 3].

2 Preliminaries

Let T = t1 . . . tn be a text of length n consisting of characters contained in an integer alphabet
Σ of size σ = |Σ| = nO(1). T [i..j] represents the substring ti . . . tj for 1 ≤ i ≤ j ≤ n. We
call T [i..n] the i-th suffix of T and T [1..i] the i-th prefix of T . We denote the length of the
longest common prefix of the i-th and j-th suffix, i.e., T [i..n] and T [j..n], by lcp(i, j). The
suffix array of a text T of length n is a permutation of {1, . . . , n} such that T [SA[i]..n] is
lexicographically smaller than T [SA[i+ 1]..n] for all i = 1, . . . , n− 1. We denote the inverse
of SA with SA−1.

An interval I = [b..e] is the set of consecutive integers from b to e, for b ≤ e. For an
interval I, we use the notations b(I) and e(I) to denote the beginning and end of I; i.e.,
I = [b(I)..e(I)]. We write |I| to denote the length of I; i.e., |I| = e(I)− b(I) + 1.

For a pattern α ∈ Σ∗, let I(α) be the interval with T [SA[i]..SA[i] + |α| − 1] = α ⇐⇒
i ∈ I(α). If we consider two intervals I(α) and I(β) and the corresponding merged in-
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Table 1 Different representations of the compressed suffix array using |CSA| bits with the time
bound tSA for accessing a value of SA and SA−1. The sampling rate s satisfies s = ω(lgσ n).

|CSA| tSA reference

2n lgn O(1) [14]

(1 + ε)n lgn O(ε) [15]

nHk + o(nHk) +O
(
n+ σk+1 lgn+ n lgn/s

)
O(lg s) [1]

terval I(αβ), we call I(α) the left side interval, I(β) the right side interval. Let Ψk[i] =
SA−1 [SA[i] + k] be the position of the suffix T [SA[i] + k..n] in the suffix array.

2.1 Suffix Trees
The suffix tree of a text T is the tree obtained by compacting the trie of all suffixes of T ;
it has n leaves and less than n internal nodes, where n is the length of T . Each edge is
labeled with a string. We enumerate the leaves from left to right such that the i-th leaf has
i−1 lexicographically preceding suffixes; we write leafrank(`) = i if the leaf ` is the i-th leaf.
We extend the notion of intervals to nodes; i.e., I(v) denotes the interval [b..e] such that
SA[b], . . . ,SA[e] are exactly the suffixes below node v.

Since we target small space bounds, our focus is on a compressed representation of suffix
trees [19, 17, 6, 7]. The main ingredient of the so-called compressed suffix tree is a compressed
suffix array [16]. Depending on its implementation, a compressed suffix array takes |CSA|
bits of space, and gives tSA time access to SA and SA−1 – see Table 1 for a comparison of
the uncompressed and a compressed suffix array. With additional O(n) [19] or even o(n)
bits [5], a compressed suffix tree can answer queries on the LCP-array that stores the values
lcp(SA[i],SA[i+ 1]) for each 1 ≤ i ≤ n − 1. The last ingredient of a compressed suffix
tree is the tree topology (either explicitly [19] or implicitly [17]), and o(n)-bit succinct data
structures for navigating in it [20, 9].

For our purpose, we need the following queries on the suffix tree: lca(u, v) returns the
lowest common ancestor of two nodes u and v, label(e) returns the label of an edge e,
pathlabel(v) returns the labels on the edges of the path from the root to v. These queries
can be answered by all common compressed suffix trees [17, 19, 6, 7].

2.2 Integer Dictionaries
An integer dictionary is a set consisting of tuples of the form (k, v), where k ∈ U := [1.. |U |]
is an integer from a universe U with |U | = nO(1); we call k a key and v a value. A common
task is to find a tuple in a dictionary by a given key. Besides, we might be interested
in finding the successor (predecessor) of a key k, i.e., the largest (smallest) key k′ in the
dictionary with k′ ≤ k (k′ ≥ k). We define the operations key((k, v)) = k and val((k, v)) = v.

A well-known dynamic integer dictionary representation is the y-fast trie [23]. It can
perform lookups, predecessor and successor queries in O(lg lgn) expected time, and uses
O(n lgn) bits of space for storing n elements. It consists of an x-fast trie whose leaves store
binary search trees. In more detail, the x-fast trie stores O(n/ lgn) entries in O(lgn) hash
tables, and each leaf stores O(lgn) entries in its balanced binary search tree. Here, we only
need a static version. Therefore, we use perfect hashing [8] as our hashing method, resulting
in O(lg lgn) time w.h.p. in worst case for all queries, while keeping the same space bounds
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and linear deterministic construction time. Alternatively, we can construct the hash tables
in O(n lg lgn) deterministic time [18, Theorem 1], resulting in O(lg lgn) deterministic worst
case time for all queries. Further, we exchange the balanced binary search trees with sorted
arrays, which will be useful later when we parallelize the queries.

3 Suffix Array Interval Merging

To perform the merging of two suffix array intervals in O(tSA lg lgn) time, we adapt the
idea from Lam et al. [13, Lemma 19]. In their method, the aim is to output all occurrences
resulting from the merging of two suffix array intervals in O(tSA(lg lgn+ occ)) time. Here,
we show how to modify their approach such that only the resulting interval is returned,
leading to O(tSA lg lgn) time. Although our method is similar to Lam et al. [13], we give
the full proof for completeness.

The idea is to sample the Ψ- and lcp-values of each (lg2 n)-th suffix array position. The
sampling is stored in y-fast tries such that a search in a sorted array can be broken down to a
y-fast trie query, or to a binary search on a range of size O

(
lg2 n

)
– both can be performed in

O(lg lgn) time. To lower the space consumption, the sampling is done only for certain nodes
determined by the heavy path decomposition of the suffix tree, whose definition follows.

3.1 Heavy Path Decomposition
The heavy path decomposition of a rooted tree assigns a level to each node of the tree. The
level of the root is 1. A node inherits the level of its parent if its subtree is the largest
among the subtrees of all its siblings (ties are broken arbitrarily); we call such a node heavy.
Otherwise, it has the level of its parent incremented by one; we then call the node light.
Further, we define the root to be light. A maximal connected subgraph consisting of nodes
on the same level is called heavy path. A heavy path starts with a light node, called head,
and ends at a heavy leaf.

3.2 Precomputed Data Structures
We first present a simple data structure for the child-operation child(u, c) in a (compressed)
suffix tree, i.e., for finding the child v of u such that the label of the edge between u and v
starts with character c. We use ∆ = Ω(lgn) as the sampling rate throughout this section.

I Lemma 1. The suffix tree of a text of length n can be augmented with a data structure of
size O(n lgn/∆) bits answering child(v, c) in O(tSA lg ∆) time.

Proof. We sample the children of each internal node u and store the sampled children in a
y-fast trie with the first character of the edge label between u and the respective child as
key. Given a node u with k children, we sample every ∆-th child of u so that u’s y-fast trie
contains bk/∆c elements. Since the suffix tree has less than 2n nodes, storing the y-fast
tries for all internal node takes O(n lgn/∆) bits overall.

Given a character c, we search child(u, c) in the following way: Since the children of a
node u are sorted by the first character of the edge connecting u with its respective child, the
y-fast trie of u can retrieve the first child v whose edge label label(u, v) is lexicographically
at least as large as c. If c is a prefix of label(u, v), then we are done. Otherwise, say that
v is the i-th child of u, we can find child(u, c) by a binary search on the range between the
(i−∆)-th child and the i-th child in O(tSA lg ∆) time. J
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We also need a simple O(n)-bit data structure to find the heavy leaf of a given heavy
path in constant time [13, Lemma 15].

Next, we define three types of integer dictionaries that we are going to index in y-fast
tries to allow fast lookups. For every light node v, we define the integer dictionary

Γ(v) :=
{

(Ψ|pathlabel(v)|[i], i) : i ≡ 1 (mod ∆) and i ∈ I(v)
}
.

Given a heavy leaf ` and its head v, we define the two integer dictionaries

HL(`) := {(lcp(SA[leafrank(`)],SA[i]) , i) : i ≡ 1 (mod ∆) and i ∈ I(v) and i ≤ leafrank(`)}

and

HR(`) := {(lcp(SA[leafrank(`)], SA[i]) , i) : i ≡ 1 (mod ∆) and i ∈ I(v) and i > leafrank(`)} .

We store Γ(v) in a y-fast trie for each light node v, HL(`) and HR(`) in a y-fast trie for each heavy
leaf `. Given an interval J ⊆ [1..n], we can find

an i ∈ Γ(v) with b(J ) ≤ key(i) = Ψ|pathlabel(v)|[val(i)] ≤ e(J ),

an il ∈ HL(`) with b(J ) ≤ key(il) = lcp(SA[leafrank(`)], SA[val(il)]) ≤ e(J ), and

an ir ∈ HR(`) with b(J ) ≤ key(ir) = lcp(SA[leafrank(`)],SA[val(ir)]) ≤ e(J ),
all in O(tSA · lg ∆) time.

I Lemma 2. We need O
(
n lg2 n/∆

)
bits of space to store the y-fast tries for all Γ(·), HL(·), and

HR(·).

Proof. Since the subtrees of the light nodes on the same level are disjoint, summing over the sizes
of Γ(v) for all light nodes v on the same level yields at most n/∆ elements. Since the heavy path
decomposition has at most O(lgn) different levels and a y-fast trie uses O(lgn) bits per stored
element, the claim for |Γ(v)| follows.

We analyze the size of HL(·) by identifying a leaf with its leafrank. The sampling of HL(·)
considers only n/∆ leaves. A leaf ` has at most O(lgn) light nodes as ancestors. So there are
at most O(lgn) heavy leaves `H having leafrank(`) as a value in their dictionary HL(`H). Hence,
summing over HL(`H) for all heavy leaves `H yields O(n lgn/∆) elements. The same considerations
lead to the same size bounds for HR(·). J

I Lemma 3. Given the compressed suffix tree of T and the dictionaries Γ(·), HL(·) and HR(·) as
defined above, we can merge two suffix array intervals in O(tSA lg ∆) time.

Proof. Let I(α) and I(β) be two suffix array intervals and P := αβ. Our task is to search the
interval I(P ) ⊆ I(α) with Ψ|α|[i] ∈ I(β) for all i ∈ I(P ). Since i 7→ Ψ|α|[i] is monotonically
increasing for i ∈ I(α), the merge could be solved with two binary searches in I(α). To obtain the
O(tSA lg ∆) time bound we will either use the y-fast tries, or perform a binary search on O(∆)-large
intervals.

Let us take the node v whose suffix array interval is I(α), i.e., the lowest common ancestor of
the leaves with leafrank b(I(α)) and e(I(α)). We consider two cases:

Node v is heavy. Let H be the heavy path to which v belongs, ` its heavy leaf, and u its head.
If Γ(u) is empty, there are less than ∆ leaves in the subtree rooted at u. Since I(P ) ⊂ I(u), we
can find I(P ) by binary search in O(tSA lg ∆).
Otherwise (Γ(u) 6= ∅), let q := lcp

(
SA[Ψ|α|[leafrank(`)]], SA[b(I(β))]

)
. The value q is the length

of the longest common prefix of P and the path label of `, subtracted by |α|. By definition of q,
there is a node r on H whose path label coincides with αβ[1..q]. In particular, this is the node
on the path H whose path label is the longest prefix of P with respect to the path labels of all
other nodes on H. Since I(P ) ⊂ I(r), our task is to find r in O(tSA lg ∆) time. To this end, we
locate a leaf whose LCA with ` is r.

CPM 2016



26:6 On the Benefit of Merging Suffix Array Intervals for Parallel Pattern Matching

The interval boundaries can be found by a coarse search on the y-fast tries of HL(`) and HR(`),
and a subsequent refinement step using binary search. Let k := leafrank(`). Since i 7→
lcp(SA[i], SA[k]) is monotonically increasing for i < k, and monotonically decreasing for i > k, we
can perform the binary search for a value on the key-sorted integer dictionaries
{(lcp(SA[i],SA[k]) , i) : i < k} and {(lcp(SA[i], SA[k]) , i) : i > k} conceptionally. The y-fast tries
at HL(`) and HR(`) help us computing the tuple jl ∈ HL(`) ∪ {(|pathlabel(`)| , k)} with

lcp(SA[val(jl)−∆], SA[k]) ≤ |α|+ q ≤ key(jl) = lcp(SA[val(jl)], SA[k])

and the tuple jr ∈ HR(`) ∪ {(|pathlabel(`)| , k)} with

key(jr) = lcp(SA[val(jr)], SA[k]) ≤ |α|+ q ≤ lcp(SA[val(jr) + ∆], SA[k]) .

Since lcp(SA[val(jl)−∆],SA[k]) ≤ |α| + q ≤ lcp(SA[val(jr) + ∆],SA[k]), we can find one of the
positions il ∈ [val(jl) − ∆.. val(jl)] and ir ∈ [val(jr) .. val(jr) + ∆] by binary search such that
lcp(SA[il], SA[k]) = lcp(SA[ir],SA[k]) = |α| + q. The binary search takes O(tSA lg ∆) time. On
finding il or ir, we can retrieve r, i.e., the lowest common ancestor of ` and the il-th or ir-th
leaf. If the pattern P is a prefix of the path label of r, then I(P ) = I(r), and we are done.
Otherwise, we choose the child w of r whose edge label S starts with β[q+1]; w can be retrieved
in O(tSA lg ∆) time by Lemma 1. The child w must be a light node, for otherwise we get a
contradiction to the definition of r. We set v ← w, α← P [1.. |α|+ q+ |S|], β ← P [|α|+ 1.. |P |],
and jump to the next case:

Node v is light. If Γ(v) is empty, then |I(v)| < ∆. Therefore, we can find the interval boundaries
of I(P ) in I(v) with a binary search in O(tSA lg ∆) time. Otherwise, we use the y-fast trie
storing Γ(v) to find the tuple jl ∈ Γ(v) with the smallest key satisfying b(I(β)) ≤ key(jl) =
Ψ|α|[val(jl)] and the tuple jr ∈ Γ(v) with the largest key satisfying key(jr) = Ψ|α|[val(jr)] ≤
e(I(β)). If both exist, we can find the positions b(I(P )) ∈ [val(jl)−∆.. val(jl)] and e(I(P )) ∈
[val(jr) .. val(jr) + ∆] by two binary searches. If there is no tuple i ∈ Γ(v) with b(I(β)) ≤
key(i) ≤ e(I(β)), we search with the y-fast trie of Γ(v) the tuple kl ∈ Γ(v) with

key(kl) = Ψ|α|[val(kl)] ≤ b(I(β)) ≤ Ψ|α|[val(kl) + ∆]

and the tuple kr ∈ Γ(v) with

Ψ|α|[val(kr)−∆] ≤ e(I(β)) ≤ Ψ|α|[val(kr)] = key(kr) .

Both values exist, and val(kr) − val(kl) ≤ ∆. So we find the interval I(P ) by applying two
binary searches to the range val(kl) .. val(kr).

J

Setting ∆ := lgc n for c ≥ 2 yields:

I Lemma 4. Given the compressed suffix tree of T , there is a data structure of size O(n) bits that
allows us to merge two suffix array intervals in O(tSA lg lgn) time.

4 Parallel Exact Pattern Matching
We parallelize the merging of suffix array intervals that we presented in Section 3 and show that
queries in the suffix tree using consecutive subpatterns and linear space can be solved in parallel on
a CREW-PRAM. For this, we use parallel binary search:

I Lemma 5 ([21, Theorem 2.1]). Given a sorted array of size n, a binary search requires O
(
1 + lgp n

)
time when operating on a CREW-PRAM with p processors.

We conclude that we can parallelize the query on y-fast tries in the same way:

I Lemma 6. A y-fast trie can do lookups, predecessor and successor queries in
O
(
1 + lgp lgn

)
time using p processors.
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Proof. We can find an element in an x-fast trie in O
(
1 + lgp lgn

)
time using parallel binary search

(Lemma 5) on the O(lgn) hash tables. The sorted arrays stored at the leaves can similarly be
searched in O

(
1 + lgp lgn

)
time, again using Lemma 5. J

Let us focus on the merging of two suffix array intervals as treated in Section 3. The dominant
term of its running time is due to the query time of the y-fast tries and the binary searches.
As we can parallelize both, a parallelization of the merging algorithm improves the time bounds
significantly:

I Lemma 7. Given p processors and two suffix array intervals I(α) and I(β), the merged interval
I(αβ) can be computed in O

(
tSA(1 + lgp lgn)

)
time and

O
(
tSA min (p, lgn) (1 + lgp lgn)

)
work.

Proof. We can merge two suffix array intervals in O(tSA lg lgn) time using Lemma 4. Recalling the
proof of Lemma 3, we took the node v whose suffix array interval is I(α). There, in both cases (v is
either heavy or light), the time is dominated by searching in y-fast tries, and/or by binary searching
in O(∆) sampled Ψ- or lcp-values. Both can be parallelized by Lemmas 5 and 6, respectively.
This yields O

(
tSA(1 + lgp lgn)

)
time using p processors. During the parallel searches, we use at

most O(lgn) processors O
(
1 + lgp lgn

)
times. This amounts to O

(
tSA min (p, lgn) (1 + lgp lgn)

)
work. J

Being able to merge two suffix array intervals in parallel, we now show how to compute the
suffix array interval of a pattern P in parallel. To this end, we decompose the pattern in subpat-
terns α1, . . . , αp such that P = α1α2 . . . αp, and then compute the suffix array intervals for the
subpatterns. Then we merge those intervals in parallel.

I Theorem 8. Given a text of size n and a pattern of size m. With p ≤ m processors, we
can compute the suffix array interval of the pattern in O

(
tSA
(
m
p

+ lg p+ lg lg p · lg lgn
))

time and
O(tSA (m+ min (p, lgn) (lg p+ lg lg p · lg lgn))) work. In order to achieve this time bound we need
an index of size |CSA|+O(n) bits.

Proof. Let P = α0
1α

0
2 . . . α

0
p be a pattern of length m such that |α0

i | = Θ
(
m
p

)
for i = 1, . . . , p.

The computation of all intervals I
(
α0
i

)
requires O

(
tSA

m
p

)
time. In the first merge step we have

two processors to compute each of the intervals I
(
α1
i

)
:= I

(
α0

2i−1α
0
2i
)
for i = 1, . . . , p2 . In each

merge step we halve the number of intervals. So in the k-th merge step (1 ≤ k ≤ lg p), we have
2k processors to compute each of the intervals I

(
αki
)

:= I
(
αk−1

2i−1α
k−1
2i
)
for i = 1, . . . , p2k . As

we require O(lg p) merge steps and can use Lemma 7 with 2k processors in the k-th merge step,
the interval I(P ) can be computed in O

(
tSA
∑lg p

k=1 (1 + lg2k lgn)
)

= O(tSA (lg p+ lg lg p · lg lgn))

time, given the intervals I
(
α0
i

)
of the subpatterns – see Figure 1. In total, I(P ) can be found in

O
(
tSA
(
m
p

+ lg p+ lg lg p · lg lgn
))

time.
During the computation of the suffix array intervals of the subpatterns of P we use all p pro-

cessors, which results in O(tSAm) work. The same holds for each merging step, as we use all
processors to parallelize the binary search. We have O(lg p) merge steps. During the k-th merge
step, we merge p

2k suffix array intervals with 2k processors each. Using Lemma 7 the total work is
O(tSA (m+ min (p, lgn) (lg p+ lg lg p · lg lgn))). J

5 Parallel Approximate Pattern Matching
In this section, we consider two different distances for the approximate string matching problem.
The first distance we consider is the Levenshtein distance, where the distance between two patterns
P and P ′ is the minimal number of the operations insert, change and remove required to change
P ′ into P . The second one is the Hamming distance, where the distance of two pattern P and P ′
of equal length is the number of mismatching positions, i.e., |{i : P [i] 6= P ′[i], 1 ≤ i ≤ |P |}|. We
consider two problems related to these distances.
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p

8

4 4

. . .

2 2 2 2

4

2 2

Figure 1 Schedule for the merging of p suffix array intervals, i.e., the suffix array intervals of the
subpatterns. The number in each node denotes the number of processors available for the merging
of the two considered suffix array intervals.

k-difference problem Given a text T of length n and a pattern P of length m, we want to report
all occurrences i ∈ {1, . . . , n} such that T [i..i+ j] and P have a Levenshtein distance of at most
k for at least one j ∈ {0, . . . , n− i}.

k-mismatch problem Given a text T of length n and a pattern P of length m, we want to report
all occurrences i ∈ {1, . . . , n−m} such that T [i..i + m] and P have a Hamming distance of at
most k.

We apply the results from Section 3 to parallelize the approximate string matching algorithm
by Huynh et al. [10]. To do so, we first present an approach to compute the suffix array intervals
of all prefixes and suffixes of the pattern in parallel – see Figure 2.

I Lemma 9. Given a text of length n and its suffix array, we can compute the suffix array intervals of
all prefixes and suffixes of a pattern of length m in O

(
tSA(1 + m

p
) lg p · lg lgn

)
parallel time operating

on a CREW-PRAM with p processors.

Proof. Let P = α0α1 . . . αp−1 be a pattern of lengthm such that |αi| = m
p
for i = 0, . . . , p−1. Thus,

the j-th prefix of a subpattern αi is P [1+im
p
..im

p
+j] for all i = 0, . . . , p−1 and j = 1, . . . , m

p
. First,

we compute the suffix array intervals for all those prefixes in parallel, which requires O(1 +m/p)
time, as no merging is necessary during this step.

In the second step, we merge the suffix array intervals in parallel. Since we want the suf-
fix array intervals of all prefixes of the pattern, during the first merge step we merge the suf-
fix array intervals I

(
P [1 + 2im

p
..(2i+ 1)m

p
]
)
as the left side interval with each of the intervals

I
(
P [1 + (2i+ 1)m

p
..(2i+ 1)m

p
+ j
)
as right side interval for all i = 0, . . . , p2 − 1 and j = 1, . . . , m

p
.

This results in the intervals I
(
P [1 + 2im

p
..(2i+ 1)m

p
+ j
)
for i = 0, . . . , p2 − 1 and j = 1, . . . , m

p
.

During each merge step, we halve the number of left side intervals that we have to consider during
the next merge step but double the number of right side intervals that are merged, i.e., in the
k-th merge step, we merge the intervals I

(
P [1 + 2kim

p
..(2ki+ 2k−1)m

p
]
)
with each of the intervals

I
(
P [1 + (2ki+ 2k−1)m

p
..(2ki+ 2k−1)m

p
+ j]

)
for i = 0, . . . , p2k − 1 and j = 1, . . . , 2k−1 m

p
. This

amounts to O(m) intervals that need to be merged in each step. In the end, we obtain the suffix
array intervals of the prefixes of P , i.e., the intervals I(P [1..j]) for j = 1, . . . ,m. Since we start
with p left side intervals, and each merge step halves the number of left side intervals, we end up
with lg p merge steps.

The computation of the suffix array intervals of all suffixes of P works analogously. Using
Lemma 4, we can compute the suffix array intervals of all prefixes and suffixes of the pattern in
O
(
tSA(1 + m

p
) lg p · lg lgn

)
time. J

I Theorem 10. With |CSA|+O(n) bits of space, the 1-difference and 1-mismatch problems can be
solved in parallel in O

(
tSA lg lgn

(
mσ
p

+ (1 + m
p

) lg p
)

+ occ
)
for p ≤ mσ.
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P [1..3] P [4..6] P [7..9] P [10..12]

Figure 2 Schematics of the merging process to compute the suffix array intervals of all prefixes
of a pattern P = a1 . . . a4 of length m = 12 using p = 4 processors. The gray blocks above the first
dashed line represent the suffix array intervals of all prefixes of the subpatterns ai (for i = 1, . . . , 4).
The blocks between the dashed lines represent the suffix array intervals after the first merge step.
The intervals that are merged are shown by arrows. The blocks below the second dashed line are
the suffix array intervals computed in the second merge step.

Table 2 Let P ′ be the resulting string of introducing an error in the pattern P [1..m] at position i.
Further, let v be the suffix tree node with I(v) = I(P [1..i− 1]). We can compute the two suffix
array intervals considered for merging in O(tSA lg lgn) time, and perform the merging in the same
time.

operation c P ′ intervals to merge

substitution c ∈ Σ \ {P [i]} P [1..i− 1]cP [i+ 1..m] I(child(v, c)) and I(P [i+ 1..m])

deletion − P [1..i− 1]P [i+ 1..m] I(v) and I(P [i+ 1..m])

insertion c ∈ Σ P [1..i− 1]cP [i..m] I(child(v, c)) and I(P [i..m])

Proof. We precompute the suffix array intervals I(P [i..m]) and I(P [1..i]) for all 1 ≤ i ≤ m in
parallel by Lemma 9. This requires O

(
tSA(1 + m

p
) lg p · lg lgn

)
time. The exact matches are found

in the interval I(P [1..m]). To compute the matches with one error, we iterate over all positions
in P [1..m], and introduce an error at one position i with 1 ≤ i ≤ m. An error can be introduced by
an insertion, a deletion, or a substitution. Let us fix one modification occurring at position i, and
call the modified string P ′. Our task is to find I(P ′). To this end, we exploit some already computed
results, i.e., we have I(P ′ [1..i− 1]) = I(P [1..i− 1]), and either (substitution) I(P ′ [i+ 1..m]) =
I(P [i+ 1..m]), (deletion) I(P ′ [i..m− 1]) = I(P [i+ 1..m]), or (insertion) I(P ′ [i+ 1..m+ 1]) =
I(P [i..m]) – see Table 2. If P ′ resulted from an insertion or substitution, the interval I(P ′ [1..i− 1])
can be enhanced to I(P ′ [1..i]) by child(v, P ′ [i]) in O(tSA lg lgn) time due to Lemma 1, where v is
the node with I(v) = I(P ′ [1..i− 1]). Finally, we can compute I(P ′) by merging two intervals in
O(tSA lg lgn) time with Lemma 4. Introducing an error in P atm different positions with σ different
characters is embarrassingly parallel. With p ≤ mσ processors it requires O

(
tSA

mσ
p

lg lgn+ occ
)

time in addition to the time for the preprocessing. J

Up to now, we have assumed that the time for the output is in O(occ). Unfortunately, this is
not always the case, as an occurrence of a pattern with k errors may be reported multiple times. For
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example, if we allow one error, the pattern aba could be reported twice at the first position of the
text aaa, as the second position of the pattern could either be deleted or replaced. Hence, we need
to make sure that each occurrence of a pattern is reported just once, regardless how many different
combinations of operations can be used to change the pattern to the corresponding substring. This
problem has been discussed and solved in [10].

I Lemma 11 ([10, Discussion related to Theorem 2]). Given a pattern P , we can check whether an
occurrence of the pattern P ′ with at most k errors is minimal regarding its distance and its edit
operations to P in O(k) time whenever we append a character or want to report an occurrence.

Using Lemmas 9 and 11, we can solve the 1-difference and 1-mismatch problems in parallel as
described above. The same is true for the k-difference and k-mismatch problems.

I Theorem 12. Using |CSA| + O(n) bits of space, the k-difference and k-mismatch problems can
be solved in parallel in O

(
tSA

(
mkσk

p
max (k, lg lgn) + (1 + m

p
) lg p · lg lgn

)
+ occ

)
for p ≤ mkσk

processors.

Proof. The idea of the algorithm is similar to the algorithm of Theorem 10. First, we compute the
suffix array intervals of all the suffixes and prefixes of the pattern using Lemma 9. This requires
O
(
tSA(1 + m

p
) lg p · lg lgn

)
time. We want to introduce at most k errors in parallel. Again, we

parallelize over the positions of the introduced errors. Similar to the idea of Theorem 10, we merge
different suffix array intervals. But in this case, we cannot parallelize over one position, instead we
have to parallelize considering up to k positions where we can include an error.

The number of patterns P ′ that have a distance of at most k from P is bounded by O
(
σkmk

)
[22,

Theorem 6]. Thus, we require O
(
tSA

mkσk

p
max (k, lg lgn) + occ

)
time using p ≤ σkmk processors in

parallel. The O(max (k, lg lgn))-term results from the check of whether the occurrence is computed
with minimal distance to the pattern P , which has to be done every time we update the considered
pattern and requires O(k) time using Lemma 11. J
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Abstract
A square factorization of a string w is a factorization of w in which each factor is a square.
Dumitran et al. [SPIRE 2015, pp. 54-66] showed how to find a square factorization of a given
string of length n in O(n logn) time, and they posed a question whether it can be done in O(n)
time. In this paper, we answer their question positively, showing an O(n)-time algorithm for
square factorization in the standard word RAM model with machine word size ω = Ω(logn). We
also show an O(n+ (n log2 n)/ω)-time (respectively, O(n logn)-time) algorithm to find a square
factorization which contains the maximum (respectively, minimum) number of squares.
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Keywords and phrases Squares, Runs, Factorization of Strings
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1 Introduction

Factorization problems are one of the important topics in the study of string algorithms and
combinatorics on strings and their applications. Essentially, the task is to efficiently identify
a decomposition of a string into factors of a specific given form. For instance, we recall
here the various forms of Lempel-Ziv factorizations of a string [21, 22, 19, 20]; this class of
factorizations found many applications in data-compression but also in the efficient detection
of repetitive structures in strings [18, 14]. Similarly, the standard factorization of strings
(also called Lyndon factorization) [17, 8] found applications in data compression, in variants
of the Burrows-Wheeler transform [16]. Both these factorizations were defined in very simple
ways, starting from basic combinatorial concepts: repeats (or repeated occurrences of the
same factor) in a string, or lexicographically minimal factors of a string; they can be both
computed in linear time; see [5] and [8], respectively.

Some other factorizations of strings, whose factors are defined by well-studied combinat-
orial objects, were proposed and analyzed as well in the literature. Closer to the topic of this
paper, we recall here palindromic factorizations of a string (where we want to split that string
into an arbitrary number of non-trivial palindromic factors, or into a minimal or fixed number
of such factors), analyzed already in the seminal paper of Knuth, Morris, and Pratt [13],
as well as in a series of more recent papers in [9, 15, 2, 12]. In [1], Bakobeh et al. consider
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algorithms for computing closed substrings in strings; a string is closed if it contains proper
substring that occurs in it as a prefix and a suffix, but not elsewhere; more precisely, the
problem of greedily factorizing a string into a sequence of longest closed substrings is solved.
Even more relevant to our study, in [7] it was shown how factorizations into highly repetitive
factors (e.g., repetitions with an exponent greater than 2) can be efficiently computed.

On the other hand, the study of repetitive structures occurring in strings is also one
of the central topics in combinatorics on strings and stringology. Main and Lorentz [18]
proposed an algorithm that decides whether a string w of length n contains a square (i.e.,
two consecutive occurrences of some factor, called root) in O(n logn) time. Their result was
improved by Crochemore [4], who showed how to identify all the squares with a primitive root
of a string w in O(n logn) time. These results hold for general alphabets and are optimal
in a comparison-based model, but if we use the (realistic) RAM model with logarithmic
word size (see [11] and the references therein for a survey of relevant results and techniques
related to this model), and we are only interested in inputs over integer alphabets, we can
actually find all runs of a string in linear time [14, 3]. Thus, we can also construct a succinct
representation of all primitively rooted squares of a string within the same time complexity.

Following these two research directions, in [7], the task of deciding in linear time whether
a string can be split into squares was left as an open problem. In this paper we show that
a square factorization of a string can be indeed computed in linear time, using the RAM
model with logarithmic word size and working under the assumption that the string is
over an integer alphabet. We extend this result by proposing an efficient algorithm for the
computation of such square factorizations with a maximum or minimum number of factors.
Finally, we discuss several connected problems.

2 Preliminaries

Let Σ be an alphabet. An element of Σ∗ is called a string. The empty string ε is the string of
length 0. Let Σ+ be the set of non-empty strings, i.e., Σ+ = Σ∗ −{ε}. For any strings x and
y, we denote by x · y the concatenation of x and y. For a string w = x · y · z, x, y and z are
called a prefix, substring, and suffix of w, respectively. A prefix x of w is called a proper prefix
of w if x 6= w. The length of a string w is denoted by |w|. The i-th character of a string
w is denoted by w[i] for each 1 ≤ i ≤ |w|. For a string w and two integers 1 ≤ i ≤ j ≤ |w|,
let w[i..j] denote the substring of w that begins at position i and ends at position j. For
convenience, let w[i..j] = ε when i > j. For any integers i and j with i ≤ j, we denote
[i, j] = {i, i+ 1, . . . , j}.

For a string x and positive integer k, let x0 = ε, and xk = xk−1 · x. A string w is called
primitive if there does not exist a string x and an integer k ≥ 2 such that w = xk. For any
non-empty string x, a repetition x2 is called a square. A square x2 is called a primitively
rooted square if x is primitive.

A positive integer p is called a period of string w if w[i] = w[i+ p] for all 1 ≤ i ≤ |w| − p.
For a string w, a triplet (p, s, e) is called a run in w if p ≤ (e− s+ 1)/2, p is the smallest
period of w[s..e], s = 1 or w[s− 1] 6= w[s− 1 + p], and e = |w| or w[e+ 1] 6= w[e+ 1− p].

We call a sequence F = (f1, ..., fm) of m non-empty strings a square factorization of a
string w if fi is a square for each 1 ≤ i ≤ m and the concatenation f1 · · · fm is equal to w; the
integer m is called the size of the factorization. Also, we call F a largest square factorization
(resp. a smallest square factorization) of w if the size m is largest (resp. smallest) among all
square factorizations of w.

I Example 1. F1 = (abaababaab, bb, aa, bb, bb), F2 = (abaababaab, bb, aa, bbbb) and F3 =
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(abaaba, baabbbaabb, bb) are the square factorizations of a string w = abaababaabbbaabbbb.
F1 is the largest square factorization of w and F3 is the smallest one.

Notice that a string can have more than one largest square factorization and/or one
smallest square factorization. For instance, string w = aabaabaa has two largest square
factorizations: (aa, baabaa) and (aabaab, aa). Notice that they are also smallest square
factorizations of the string.

Let w be a string of length n over an alphabet Σ = [1, n]. Our model of computation
is a standard word RAM model of machine word size ω = Ω(logn), where the following
operations can be performed in O(1) time: Let X,Y be bit arrays of length m ≤ ω each, and
let k be a non-negative integer. We denote by X & Y , X | Y , and X ⊕ Y , the bitwise and,
bitwise or, and bitwise exclusive or of X and Y , respectively. We denote by ∼X the bitwise
negation of X. We denote by X � k the k-bit logical right shift of X. We can also see X as
an unsigned m-bit integer where the most (least) significant bit is X[1] (respectively, X[m]);
arithmetic operations on such integers take constant time.

3 Algorithms

3.1 A linear time algorithm for computing a square factorization
In this subsection we propose an O(n)-time algorithm for computing a square factorization of
a given string w of length n. Note that if a square factorization of w exists, then there clearly
exists a square factorization such that each factor is a primitively rooted square. Therefore
we only consider primitively rooted squares in w.

For any run λ = (p, s, e) in w, we denote ρ(λ) = p,SqBegRange(λ) = [s, e− 2p+ 1] and
SqEndRange(λ) = [s+2p, e+1]; namely, for any position k ∈ [1, |w|+1], k ∈ SqBegRange(λ) iff
w[k..k+2ρ(λ)−1] is a primitively rooted square, and k ∈ SqEndRange(λ) iff w[k−2ρ(λ)..k−1]
is a primitively rooted square. Also, we denote by R all runs in w.

I Lemma 2 ([3, 14]). |R| < n. Also, R can be computed in O(n) time.

I Lemma 3 ([6]). For any string v, the number of prefixes of v which are also primitively
rooted squares is O(log |v|).

I Corollary 4.
∑
λ∈R |SqBegRange(λ)| =

∑
λ∈R |SqEndRange(λ)| = O(n logn).

Proof. Clearly, both
∑
λ∈R |SqBegRange(λ)| and

∑
λ∈R |SqEndRange(λ)| are equal to the

number of primitively rooted squares in w. By Lemma 3, the number of primitively rooted
squares beginning at each position of w is O(logn). Thus we obtain

∑
λ∈R |SqBegRange(λ)| =∑

λ∈R |SqEndRange(λ)| = O(n logn). J

Let C be a bit array of length n+ 1 such that C[i] = 1 iff w[i..n] can be factorized into
squares. For convenience, let C[i] = 0 if i < 1 or i > n+ 1. Algorithm 1 is a simple solution
by dynamic programming, which is essentially equivalent to the approach of [7].

Let τ be some integer parameter such that 1 ≤ τ ≤ ω. We split C into blocks of length τ .
For each 1 ≤ j ≤ d(n+ 1)/τe, we call C[(j − 1)τ + 1..jτ ] as the j-th block of C.

Let SPRτ = {λ ∈ R | 2ρ(λ) < τ} and LPRτ = {λ ∈ R | 2ρ(λ) ≥ τ}. We call each element
of SPRτ and LPRτ a short period run and a long period run, respectively. Also, for each
position i, we denote Sτ,i = {λSP ∈ SPRτ | i ∈ SqEndRange(λSP)}.

For each 1 ≤ j ≤ d(n+ 1)/τe, letBτ,j = {λLP∈LPRτ | [(j−1)τ+1, jτ ]∩SqBegRange(λLP)
6= ∅} and Eτ,j = {λLP ∈ LPRτ | [(j − 1)τ + 1, jτ ] ∩ SqEndRange(λLP) 6= ∅}. Also, for each
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Algorithm 1: A simple algorithm for determining whether w can be factorized into
squares.

Input: String w of length n.
1 Compute R;
2 C[1..n]← 0;
3 C[n+ 1]← 1;
4 for i = n+ 1 down to 1 do
5 if C[i] = 1 then
6 foreach λ ∈ R such that i ∈ SqEndRange(λ) do
7 C[i− 2ρ(λ)]← 1;

i ∈ [1, n+ 1], let Pτ,i be a bit array of length τ −1 such that for each k ∈ [1, τ −1], Pτ,i[k] = 1
iff there exists λSP ∈ Sτ,i such that τ − 2ρ(λSP) = k.

I Lemma 5. For any positive τ ,
∑d(n+1)/τe
j=1 |Bτ,j | = O(n+ n

τ logn) and
∑d(n+1)/τe
j=1 |Eτ,j | =

O(n+ n
τ logn).

Proof. For each λ ∈ LPRτ , let xτ,λ be the number of integers j such that [(j − 1)τ +
1, jτ ] ∩ SqBegRange(λ) 6= ∅, and yτ,λ be the number of integers j′ such that [(j′ − 1)τ +
1, j′τ ] ⊆ SqBegRange(λ). Clearly, xτ,λ ≤ 2 + yτ,λ and τyτ,λ ≤ |SqBegRange(λ)| for each
λ ∈ LPRτ . We obtain

∑d(n+1)/τe
j=1 |Bτ,j | =

∑
λ∈LPRτ

xτ,λ ≤
∑
λ∈LPRτ

(2 + yτ,λ) = 2|LPRτ |+∑
λ∈LPRτ

yτ,λ ≤ 2|LPRτ |+ (
∑
λ∈LPRτ

|SqBegRange(λ)|)/τ = O(n+ n
τ logn). We can obtain∑d(n+1)/τe

j=1 |Eτ,j | = O(n+ n
τ logn) similarly. J

I Lemma 6. For any parameter τ with 1 ≤ τ ≤ ω, all bit arrays Pτ,1, . . . , Pτ,n+1 can be
computed in O(n) time.

Proof. Initially let Pτ,i ← 0 for all 1 ≤ i ≤ n+ 1. Also, for simplicity, we regard Pτ,n+2 = 0.
Then, for each λSP ∈ SPRτ , flip Pτ,s[τ − 2ρ(λSP)] and Pτ,e+1[τ − 2ρ(λSP)] where [s, e] =
SqEndRange(λSP). Finally, let Pτ,i ← Pτ,i ⊕ Pτ,i−1 for i = 2 to n + 1, which can be done
in O(1) time for each operation since τ ≤ ω. This algorithm takes O(n+ |SPRτ |) = O(n)
time. Its correctness follows from the fact that for two different runs λ1 and λ2 in w, if
ρ(λ1) = ρ(λ2), then SqEndRange(λ1) and SqEndRange(λ2) do not overlap. J

In our algorithm, we process the blocks of C in descending order, from the d(n+ 1)/τe-th
block to the first block of C. Suppose that we are going to process the j-th block of C. Here
we assume that Algorithm 1 has already computed C[jτ + 1..n+ 1] correctly.

First, we handle short period runs. We process each i ∈ [(j − 1)τ + 1, jτ ] in descending
order. We assume that we have already computed C[i..n+ 1] correctly. In Algorithm 1, if
C[i] = 1, then we perform C[i− 2ρ(λSP)]← 1 for each λSP ∈ Sτ,i. We can confirm that by
the definition of Pτ,i, it is equivalent to performing C[i−τ +1..i−1]← C[i−τ +1..i−1] |Pτ,i.
Thus we can update the short period runs in O(1) time for each position i.

After processing these short period runs, it is guaranteed that C[(j − 1)τ + 1..n + 1]
is computed correctly. Next, we handle each long period run λLP ∈ Eτ,j . Let s, e be
integers such that [s + 2ρ(λLP), e + 2ρ(λLP)] = [(j − 1)τ + 1, jτ ] ∩ SqEndRange(λLP). In
Algorithm 1, we perform C[s + k] ← C[s + k] | C[s + k + 2ρ(λLP)] for each k ∈ [0, e − s].
Note that from the definition of long period runs, we obtain e < s + τ ≤ s + 2ρ(λLP),
which means that [s, e] and [s+ 2ρ(λLP), e+ 2ρ(λLP)] do not overlap. Thus the operation
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Algorithm 2: An O(n + n
τ logn)-time algorithm of determining whether w can be

factorized into squares.
Input: String w of length n, and a parameter τ with 1 ≤ τ ≤ ω.

1 Compute SPRτ and LPRτ ;
2 Compute Eτ,1, . . . , Eτ,d(n+1)/τe from LPRτ ;
3 Compute Pτ,1, . . . , Pτ,n+1 from SPRτ ;
4 C[1..n]← 0; C[n+ 1]← 1;
5 for j = d(n+ 1)/τe down to 1 do
6 for i = min{jτ, n+ 1} down to (j − 1)τ + 1 do
7 if C[i] = 1 then
8 C[i− τ + 1..i− 1]← C[i− τ + 1..i− 1] | Pτ,i;

9 foreach λLP ∈ Eτ,j do
10 Let s, e be integers such that

[s+ 2ρ(λLP), e+ 2ρ(λLP)] = [(j − 1)τ + 1, jτ ] ∩ SqEndRange(λLP);
11 C[s..e]← C[s..e] | C[s+ 2ρ(λLP)..e+ 2ρ(λLP)];

C[s + k] ← C[s + k] | C[s + k + 2ρ(λLP)] for each k can be done in parallel. Hence we
perform C[s..e] ← C[s..e] | C[s + 2ρ(λLP)..e + 2ρ(λLP)], which can be done in O(1) time
since |[s, e]| ≤ τ ≤ ω. Therefore it takes O(|Eτ,j |) time for long period runs in the j-th
block of C. By Lemma 5, the computation on long period runs for all blocks can be done in
O(n+ n

τ logn) time.
From above, we obtain Algorithm 2 and Lemma 7.

I Lemma 7. For any parameter 1 ≤ τ ≤ ω, Algorithm 2 determines whether w can be
factorized into squares in O(n+ n

τ logn) time.

Now we describe how to compute a square factorization of w. For a position i, we assume
that C[i] = 1, i.e., w[i..n] can be factorized into squares. First, we determine whether there
exists l ∈ [1, τ − 1] such that C[i+ l] = 1 and Pτ,i+l[τ − l] = 1. This means that there exists
some square factorization of w[i..n] whose first factor is w[i..i+ l − 1]. In this case, we can
spend O(l) time to find such l, if any.

Next, we consider the case where there is no l ∈ [1, τ − 1] s.t. C[i + l] = 1 and
Pτ,i+l[τ − l] = 1. Then, there exists no short period run λSP ∈ Sτ,i+l which satisfies
2ρ(λSP) = l and C[i + l] = 1 for any l. In such a case, from the fact that C[i] = 1,
there must exist some long period run λLP ∈ LPRτ such that i ∈ SqBegRange(λLP) and
C[i+2ρ(λLP)] = 1. We scan all long period runs in Bτ,di/τe and find such λLP in O(|Bτ,di/τe|)
time. Then, we use w[i..i+ 2ρ(λLP)− 1] in the square factorization of w[i..n]. From above,
we obtain Algorithm 3.

I Lemma 8. For any parameter 1 ≤ τ ≤ ω, Algorithm 3 computes a square factorization of
w in O(n+ n

τ logn) time if it exists.

Proof. We analyze the time complexity of Algorithm 3. For a position i with C[i] = 1, if
there exists any short period run λSP ∈ Bτ,i+l such that 2ρ(λSP) = l and C[i+ l] = 1 for any
l ≥ 1, we can compute l = 2ρ(λSP) by scanning Pτ,i+1[τ − 1], Pτ,i+2[τ − 2], . . . , Pτ,i+l[τ − l]
one by one. Note that if such l ∈ [1, τ − 1] exists, then i increases by l, and hence we can
afford to spend O(l) time to find such l. Otherwise, we compute l = 2ρ(λLP) for some
λLP ∈ LPRτ such that i ∈ SqBegRange(LPRτ ) and C[i+ 2ρ(λLP)] = 1; it takes O(|Bτ,di/τe|)
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Algorithm 3: A linear-time algorithm of factorizing w into squares.
Input: String w of length n, and a parameter τ with 1 ≤ τ ≤ ω.
Output: A square factorization of w if it exists; otherwise nil.

1 Compute SPRτ and LPRτ ;
2 Compute Bτ,1, . . . , Bτ,d(n+1)/τe from LPRτ ;
3 Compute Pτ,1, . . . , Pτ,n+1, C by Algorithm 2;
4 if C[1] = 1 then
5 F ← ();
6 i← 1;
7 while i ≤ n do
8 l← 1;
9 while l < τ do

10 if C[i+ l] = 1 ∧ Pτ,i+l[τ − l] = 1 then
11 break;
12 l← l + 1;
13 if l ≥ τ then
14 Find any λLP ∈ Bτ,di/τe such that i ∈ SqBegRange(λLP) and

C[i+ 2ρ(λLP)] = 1;
/* It is guaranteed that such λLP exists. */

15 l← 2ρ(λLP);
16 Append w[i..i+ l − 1] to the end of F ;
17 i← i+ l;
18 return F ;
19 else return nil;

time. Then we use w[i..i + l − 1] for a square factorization of w[i..n] and increase i by l.
Note that in this case, i increases by at least τ . Hence we can afford to spend O(τ) time
before deciding to scan Bτ,di/τe. Moreover, for any 1 ≤ j ≤ d(n+ 1)/τe, Bτ,j is scanned at
most once. Therefore, using Lemma 5, we can show that Algorithm 3 takes O(n+ n

τ logn)
time. J

Optimally, we choose τ = ω. Since ω = Ω(logn), by Lemma 8, we obtain Theorem 9.

I Theorem 9. A square factorization of a string of length n can be computed in O(n) time,
if it exists.

3.2 An algorithm for computing a largest square factorization
In this subsection we propose an algorithm for computing a largest square factorization of w.
Note that any largest square factorization of w consists only of primitively rooted squares,
since otherwise there exist a larger square factorization of w.

Let τ be some integer parameter such that 1 ≤ τ ≤ ω/(blognc+ 1). As with Section 3.1,
we define C,SPRτ ,LPRτ , Sτ,i for each position i ∈ [1, n + 1], and Bτ,j and Eτ,j for each
j ∈ [1, d(n+ 1)/τe].

For each position i of string w, let us denote by T [i] the size of largest square factorization
of w[i..n] if it exists; otherwise T [i] = 0. Algorithm 4 is a simple algorithm which computes
the size of a largest square factorization of each suffix of w in O(n logn) time.
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Algorithm 4: A simple algorithm for computing the size of largest square factorization
of each suffix of w.

Input: String w of length n.
1 Compute R;
2 C[1..n]← 0; C[n+ 1]← 1;
3 T [i]← 0 for each i ∈ [1, n+ 1];
4 for i = n+ 1 down to 1 do
5 if C[i] = 1 then
6 foreach λ ∈ R such that i ∈ SqEndRange(λ) do
7 C[i− 2ρ(λ)]← 1;
8 T [i− 2ρ(λ)]← max{T [i− 2ρ(λ)], T [i] + 1};

Let b = blognc. For each position i ∈ [1, n+1], let P ′τ,i be a bit array of length (τ−1)(b+1)
such that for each k ∈ [1, (τ − 1)(b + 1)], P ′τ,i[k] = 1 iff there exists λSP ∈ Sτ,i such that
(τ − 2ρ(λSP))(b+ 1) = k. We remark that P ′τ,1, . . . , P ′τ,n+1 can be computed in O(n) time in
a similar way to Lemma 6. Also, let U be an array of bit arrays. For each 1 ≤ i ≤ n+ 1, let
U [i] be a bit array of length b+ 1 such that U [i][1] = C[i], and U [i][2..b+ 1] is the binary
representation of T [i]. Note that T [i] can be represented as an unsigned b-bit integer since
T [i] ≤ n/2. For convenience, we regard U [i] = 0 if i < 1 or i > n+ 1. In addition, for two
integers s, e with s ≤ e, we denote by U [s..e] the concatenation U [s] · U [s+ 1] · · ·U [e], which
we also regard as an unsigned ((b+ 1)(e− s+ 1))-bit integer where the most significant bit is
U [s][1] and the least significant bit is U [e][b+ 1]. To obtain a largest square factorization
quickly, we compute U instead of T and C.

For each 1 ≤ j ≤ d(n+ 1)/τe, we call U [(j − 1)τ + 1..jτ ] the j-th block of U . As with
Algorithm 2, we process the blocks of U in descending order, from the d(n+ 1)/τe-th block
to the first block of U . Suppose that we are going to process the j-th block of U . Here we
assume that our algorithm has already computed U [jτ + 1..n+ 1] correctly.

See Algorithm 5 for computing a largest square factorization, where M serves as a
fixed-length (τ(b+ 1)) bit array to specify the runs to be processed at once (Lines 7-8).

First, we handle short period runs. We process each i ∈ [(j−1)τ+1, jτ ] in descending order.
We assume that we have already computed U [i..n+1] correctly. As with Algorithm 4, if C[i] =
1, then we perform C[i− 2ρ(λSP)]← 1 and T [i− 2ρ(λSP)]← max{T [i− 2ρ(λSP)], T [i] + 1}
for each λSP ∈ Sτ,i. In other words, if U [i][1] = 1, then we perform U [i−2ρ(λSP)][1]← 1 and
U [i− 2ρ(λSP)][2..b+ 1]← max{U [i− 2ρ(λSP)][2..b+ 1], U [i][2..b+ 1] + 1} for each λSP ∈ Sτ,i.
It is equivalent to performing U [i− 2ρ(λSP)]← max{U [i− 2ρ(λSP)], U [i] + 1} if U [i][1] = 1.
We process all short period runs in Sτ,i in parallel. Note that since 2ρ(λSP) < τ for any
λSP ∈ Sτ,i, we update U [i− τ + 1..i− 1] by taking U [i] and Sτ,i into consideration. We show
the method in Lines 12–17 of Algorithm 5, where M ′ in Line 13 serves as a bit array of
length (τ − 1)(b+ 1). The fact that (τ − 1)(b+ 1) < ω implies that the operations in Lines
12–17 can be performed in constant time.

I Example 10. Here, we explain the situation with some i and λSP ∈ Sτ,i using a concrete
example. Let Y = (U [i] + 1)P ′τ,i where Y is a bit array of length (τ − 1)(b + 1). In this
example, we consider the case when b = 4, τ = 7, P ′τ,i = 00001 00000 00000 00000 00001 00000
in binary representation and U [i] = 10110 in binary representation, which means that C[i] = 1
and T [i] = 6. Then we obtain Y = 10111 00000 00000 00000 10111 00000. Intuitively, we
copy U [i] + 1 to the appropriate positions. After that, in order to update U [i − τ + k]
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with max{U [i− τ + k], U [i] + 1} for each k ∈ [1, τ − 1] with P ′τ,i[k(b+ 1)] = 1, we perform
U [i− τ + k]← max{U [i− τ + k], Y [(k − 1)(b+ 1) + 1..k(b+ 1)} for each k ∈ [1, τ − 1]. This
remaining part is almost same as Lines 23–26, which we will explain in Example 11.

After processing these short period runs, it is guaranteed that U [(j − 1)τ + 1..n+ 1] is
computed correctly. Next, we handle long period runs in Lines 19–26, where again M ′ serves
as a variable-length (up to τ(b+ 1)) bit array. Consider each long period run λLP ∈ Eτ,j . Let
s, e be integers such that [s+2ρ(λLP), e+2ρ(λLP)] = [(j−1)τ+1, jτ ]∩SqEndRange(λLP). In
Algorithm 4, for each k ∈ [0, e−s], we perform C[s+k]← 1 and T [s+k]← max{T [s+k], T [s+
k+ 2ρ(λLP)] + 1} if C[s+k+ 2ρ(λLP)] = 1. Note that from the definition of long period runs,
we obtain e < s+ τ ≤ s+ 2ρ(λLP), which means that [s, e] and [s+ 2ρ(λLP), e+ 2ρ(λLP)] do
not overlap. Thus we process all k’s in parallel. We next analyze Lines 19–26 of Algorithm 5.
Since e− s+ 1 ≤ τ , we obtain (e− s+ 1)(b+ 1) ≤ τ(b+ 1) ≤ ω, which means that we can
perform Lines 19–26 in constant time.

I Example 11. Here, we explain the situation with some j and λLP ∈ Eτ,j using a concrete
example. Let s, e be integers such that [s + 2ρ(λLP), e + 2ρ(λLP)] = [(j − 1)τ + 1, jτ ] ∩
SqEndRange(λLP). Also, let s′ = s + 2ρ(λLP) and e′ = e + 2ρ(λLP). In Lines 19–26, we
update U [s..e] by taking U [s′..e′] into consideration.
1. Let X = U [s..e] and Y = U [s′..e′]. In this example, we consider the case when b =

4, |[s, e]| = 5, X = 10010 00000 00000 00000 11010 in binary representation and Y =
10110 00000 11000 00000 10101 in binary representation, which means that C[s..e] =
(1, 0, 0, 0, 1), T [s..e] = (2, 0, 0, 0, 10), C[s′..e′] = (1, 0, 1, 0, 1) and T [s′..e′] = (6, 0, 8, 0, 5).
Also, let M ′ = 10000 10000 10000 10000 10000 in binary representation.

2. Let Y ′ = Y + ((Y & M ′)� b). Then we obtain Y ′ = 10111 00000 11001 00000 10110.
Intuitively, it represents T [s′ + k] + 1 for each k with C[s′ + k] = 1.

3. Let D = (Y ′ |M ′) − (X & ∼M ′). Then we obtain D = 10101 10000 11001 10000 01100.
Intuitively, it represents (T [s′ + k] + 1)− T [s+ k] for each k.

4. Let D′ = ((D &M ′)� b)(2b − 1). Then we obtain D′ = 01111 01111 01111 01111 00000.
Intuitively, it indicates all positions k such that T [s′ + k] + 1 ≥ T [s+ k].

5. Let Z = D & D′. Then we obtain Z = 00101 00000 01001 00000 00000. Intuitively, it
represents max{(T [s′ + k] + 1)− T [s+ k], 0} for each k.

6. Let Z ′ = Z + X. Then we obtain Z ′ = 10111 00000 01001 00000 11010. Intuitively, it
represents max{T [s′ + k] + 1, T [s+ k]} for each k.

7. Compute Z ′′ = Z ′ | (Y & M ′) to set C[s..e] appropriately. Then we obtain Z ′′ =
10111 00000 11001 00000 11010. Finally, we substitute Z ′′ for U [s..e]. Then we obtain
C[s..e] = (1, 0, 1, 0, 1) and T [s..e] = (7, 0, 9, 0, 10) as a result.

After computing U [1..n+1], we obtain a largest square factorization of w as in Algorithm 3.

I Lemma 12. Algorithm 5 computes a largest square factorization of w in O(n+ n
τ logn)

time for any parameter 1 ≤ τ ≤ ω/(blognc+ 1).

Proof. Clearly, Algorithm 5 requires O(n+
∑d(n+1)/τe
j=1 |Bτ,j |+

∑d(n+1)/τe
j=1 |Eτ,j |) time. There-

fore, from Lemma 5, Algorithm 5 runs in O(n+ n
τ logn) time in total. J

The optimal strategy is to choose τ = bω/(blognc+ 1)c. Thus, we obtain Theorem 13.

I Theorem 13. A largest square factorization of a string of length n can be computed in
O(n+ n

ω log2 n) time.
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Algorithm 5: An algorithm for computing a largest square factorization of w.
Input: String w of length n, and a parameter τ with 1 ≤ τ ≤ ω/(blognc+ 1).
Output: A largest square factorization of w if it exists; otherwise nil.

1 Compute SPRτ and LPRτ ;
2 Compute Bτ,1, . . . , Bτ,d(n+1)/τe, Eτ,1, . . . , Eτ,d(n+1)/τe from LPRτ ;
3 Compute P ′τ,1, . . . , P ′τ,n+1 from SPRτ ;
4 U [i][1..b+ 1]← 0 for each i ∈ [1, n+ 1];
5 U [n+ 1][1]← 1; /* equivalent to C[n+ 1]← 1 */
6 b← blognc;
7 M [1..τ(b+ 1)]← 0 where M is a bit array of length τ(b+ 1);
8 M [k(b+ 1)− b]← 1 for each k ∈ [1, τ ];
9 for j = d(n+ 1)/τe down to 1 do

10 for i = min{jτ, n+ 1} down to (j − 1)τ + 1 do
11 if U [i][1] = 1 then
12 Y ← (U [i] + 1)P ′τ,i where Y is a bit array of length (τ − 1)(b+ 1);
13 M ′ ←M [1..(τ − 1)(b+ 1)];
14 X ← U [i− τ + 1..i− 1];
15 D ← (Y |M ′)− (X &∼M ′);
16 D′ ← ((D &M ′)� b)(2b − 1);
17 U [i− τ + 1..i− 1]← ((D′ &D) +X) | (Y &M ′);

18 foreach λLP ∈ Eτ,j do
19 Let s, e be integers such that

[s+ 2ρ(λLP), e+ 2ρ(λLP)] = [(j − 1)τ + 1, jτ ] ∩ SqEndRange(λLP);
20 M ′ ←M [1..(e− s+ 1)(b+ 1)];
21 Y ← U [s+ 2ρ(λLP)..e+ 2ρ(λLP)];
22 Y ′ ← Y + ((Y &M ′)� b);
23 X ← U [s..e];
24 D ← (Y ′ |M ′)− (X &∼M ′);
25 D′ ← ((D &M ′)� b)(2b − 1);
26 U [s..e]← ((D′ &D) +X) | (Y &M ′);

27 if U [1][1] = 1 then /* equivalent to C[1] = 1 */
28 F ← ();
29 i← 1;
30 while i ≤ n do
31 l← 1;
32 while l < τ do
33 if U [i+ l] + 1 = U [i] ∧ P ′τ,i+l[(τ − l)(b+ 1)] = 1 then break;
34 l← l + 1;
35 if l ≥ τ then
36 Find any λLP ∈ Bτ,di/τe such that i ∈ SqBegRange(λLP) and

U [i+ 2ρ(λLP)] + 1 = U [i];
37 l← 2ρ(λLP);
38 Append w[i..i+ l − 1] to the end of F ;
39 i← i+ l;
40 return F ;
41 else return nil;
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4 Other problems and further work

In this section we discuss several connected problems. The first such problem is that of
computing a smallest square factorization of a string (i.e., a square factorization with a
minimum number of factors). Unlike the factorizations produced as solutions to the previous
problems, in such a factorization the square factors we use are no longer necessarily primitively
rooted. Thus, it seems that a slightly different strategy might be needed to solve this problem.
Next, we propose an O(n logn) time algorithm for computing a smallest square factorization
of a string w of length n, over Σ = [1, n].

Following Lemma 3, let us assume that x2
1, . . . , x

2
k are all the primitively rooted squares

starting at position i of w, with |xj | < |xj+1| for 1 ≤ j ≤ k − 1. If there exists a position i′
of w where x2

h starts, for some h ≤ k, we have that the primitively rooted squares whose root
is shorter than x2

h starting at i′ are exactly x2
1, . . . , x

2
h−1, so x2

h is the h-th primitively rooted
square occurring at both positions i and i′, in the list of such squares ordered increasingly
w.r.t. their length.

Further, we can produce for each i ≤ n the list of all primitively rooted squares starting
at i in O(n logn) time; there are at most 2 logn such squares for each i. We define the
(n + 1) × (1 + 2 logn) matrix Q, where, for 1 ≤ i ≤ n and 1 ≤ j ≤ 2 logn we have that
Q[i][j] is the number of factors in a smallest square factorization of w[i..n], such that the
first square of this factorization is a power of the j-th primitively rooted square in the
list of primitively rooted squares starting at i, ordered increasingly w.r.t. their length (or
undefined, if there are less than j primitively rooted squares starting at i). Moreover,
Q[i][0] = min{Q[i][j] | 1 ≤ j ≤ 2 logn}, and Q[n+ 1][j] = 0 for all 0 ≤ j ≤ 2 logn.

The values stored in this matrix can be computed by dynamic programming. Assume we
are computing Q[i][j] with i ≤ n and 1 ≤ j ≤ 2 logn, and there are at least j primitively
rooted squares starting at position i of w; at this point in our computation we already know
all the values stored in the arrays Q[i′][·] for i′ > i. When x2

j occurs also at position i+ 2|xj |,
by the preliminary remark we made, we get that x2

j is the j-th primitively rooted square
in the list of such squares occurring at position i+ 2|xj |; so we can compute Q[i][j] as the
minimum between Q[i+ 2|xj |][0] + 1 and Q[i+ 2|xj |][j]. Indeed, either the first square in
the factorization of w[i..n] is x2

j , and then we continue with the smallest square factorization
of w[i + 2|xj |..n]; or the first square in the factorization of w[i..n] is x2k

j for some k > 1,
and the smallest square factorization of w[i+ 2|xj |..n] started with x2k−2

j . The case when
x2
j does not occur at i + 2|xj | is much simpler: we just set Q[i][j] as Q[i + 2|xj |][0] + 1.

Finally, after computing Q[i][j] for all 1 ≤ j ≤ 2 logn, we set Q[i][0] as their minimum.
Clearly, this process can be easily implemented in O(n logn) time, with the help of data
structures allowing us to test whether some primitively rooted square x2

j occurring at position
i also occurs at some other position i+ 2|xj |, like, e.g., the data structures SqBegRange and
SqEndRange.

The number of factors in a smallest square factorization of w can be now found in Q[1][0],
while this factorization can be effectively obtained by tracing back the computation of Q[1][0]
via dynamic programming. Thus, we have shown the following result.

I Theorem 14. A smallest square factorization of w can be obtained in O(n logn) time.

We conjecture that a more efficient implementation of the above solution can be obtained
using and extending the ideas in the previous section.

Two other open problems connected to square factorizations of strings are the following.
The first one is inspired by the work of [15]: given a string w and a number k decide whether
w has a square factorization with exactly k factors. The second one follows the line of
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research in [2]: given a string w decide whether there exists a square factorization of w whose
factors are each two distinct (i.e., a diverse square factorization of w). While we expect that
the first problem can be solved efficiently, we conjecture that the second one is NP-Complete.

The strategy employed in Section 3.1 seems to also lead to an improvement in deciding
whether a string w1, of length n, can be obtained from other string w2, of length m < n,
by iterated prefix-suffix duplication [10]. Prefix-suffix duplication is a string operation that
rewrites a string u = xwy into xu (prefix-duplication) or uy (suffix-duplication). Accordingly,
in the respective problem one asks whether there exists a sequence of prefix-suffix duplications
that can be applied to w1 so that in the end we get w2; state-of-the-art algorithms [10]
solved this problem in O(n2 logn) time or, alternatively, in O(n logn) time if we allow only
suffix-duplications or only prefix-duplications to be applied in order to obtain w1 from w2.
We conjecture that using the ideas of Section 3.1 we can shave a logn factor from both
of these complexities. For instance, if we consider the case of only suffix-duplications, we
basically have to decide the existence of a factorization of w into w = x0 · · ·xk such that
x0 = w1 and xi is a primitive string which is a suffix of x0 · · ·xi−1; in other words, xi
is a primitively rooted square centered at position |x0 · · ·xi−1| + 1. This problem greatly
resembles to the problem of factoring a string into squares and we conjecture that it can be
solved by the same methods, within the same linear time complexity.
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Abstract
For a text of length n given in advance, the substring minimal suffix queries ask to determine
the lexicographically minimal non-empty suffix of a substring specified by the location of its oc-
currence in the text. We develop a data structure answering such queries optimally: in constant
time after linear-time preprocessing. This improves upon the results of Babenko et al. (CPM
2014), whose trade-off solution is characterized by Θ(n logn) product of these time complexit-
ies. Next, we extend our queries to support concatenations of O(1) substrings, for which the
construction and query time is preserved. We apply these generalized queries to compute lexico-
graphically minimal and maximal rotations of a given substring in constant time after linear-time
preprocessing.

Our data structures mainly rely on properties of Lyndon words and Lyndon factorizations.
We combine them with further algorithmic and combinatorial tools, such as fusion trees and the
notion of order isomorphism of strings.

1998 ACM Subject Classification E.1 Data Structures

Keywords and phrases minimal suffix, minimal rotation, Lyndon factorization, substring canon-
ization, substring queries

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.28

1 Introduction

Lyndon words, as well as the inherently linked concepts of the lexicographically minimal suffix
and the lexicographically minimal rotation of a string, are one of the most successful concepts
of combinatorics of words. Introduced by Lyndon [26] in the context of Lie algebras, they are
widely used in algebra and combinatorics. They also have surprising algorithmic applications,
including ones related to constant-space pattern matching [13], maximal repetitions [6], and
the shortest common superstring problem [28].

The central combinatorial property of Lyndon words, proved by Chen et al. [8], states
that every string can be uniquely decomposed into a non-increasing sequence of Lyndon
words. Duval [14] devised a simple algorithm computing the Lyndon factorization in linear
time and constant space. He also observed that the same algorithm can be used to determine
the lexicographically minimal and maximal suffix, as well as the lexicographically minimal
and maximal rotation of a given string.

The first two algorithms are actually on-line procedures: in linear time they allow
computing the minimal and maximal suffix of every prefix of a given string. For rotations
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such a procedure was later introduced by Apostolico and Crochemore [3]. Both these solutions
lead to the optimal, quadratic-time algorithms computing the minimal and maximal suffixes
and rotations for all substring of a given string. Our main results are the data-structure
versions of these problems: we preprocess a given text T to answer the following queries:

I Problem (Minimal Suffix Queries). Given a substring v = T [`..r] of T , report the
lexicographically smallest non-empty suffix of v (represented by its length).

I Problem (Minimal Rotation Queries). Given a substring v = T [`..r] of T , report the
lexicographically smallest rotation of v (represented by the number of positions to shift).

For both problems we obtain optimal solutions with linear construction time and constant
query time. For Minimal Suffix Queries this improves upon the results of Babenko et
al. [4], who developed a trade-off solution, which for a text of length n has Θ(n logn) product
of preprocessing and query time. We are not aware of any results for Minimal Rotation
Queries except for a data structure only testing cyclic equivalence of two subwords [24]. It
allows constant-time queries after randomized preprocessing running in expected linear time.

An optimal solution for the Maximal Suffix Queries was already obtained in [4], while
the Maximal Rotation Queries are equivalent to Minimal Rotation Queries subject
to alphabet reversal. Hence, we do not focus on the maximization variants of our problems.

Using an auxiliary result devised to handle Minimal Rotation Queries, we also develop
a data structure answering in O(k2) time the following generalized queries:

I Problem (Generalized Minimal Suffix Queries). Given a sequence of substrings
v1, . . . , vk (vi = T [`i..ri]), report the lexicographically smallest non-empty suffix of their
concatenation v1v2 . . . vk (represented by its length).

All our algorithms are deterministic procedures for the standard word RAM model with
machine words of size W = Ω(logn) [17]. The alphabet is assumed to be Σ = {0, . . . , σ − 1}
where σ = nO(1), so that all letters of the input text T can be sorted in linear time.

Applications The last factor of the Lyndon factorization of a string is its minimal suffix.
As noted in [4], this can be used to reduce computing the factorization v = vp1

1 · · · vpmm of a
substring v = T [`..r] to O(m) Minimal Suffix Queries in T . Hence, our data structure
determines the factorization in the optimal O(m) time. If v is a concatenation of k substrings,
this increases to O(k2m) time (which we did not attempt to optimize in this paper).

The primary use of Minimal Rotation Queries is canonization of substrings, i.e.,
classifying them according to cyclic equivalence (conjugacy); see [3]. As a proof-of-concept
application of this natural tool, we propose counting distinct substring with a given exponent.

Related work Our work falls in a class of substring queries: data structure problems solving
basic stringology problems for substrings of a preprocessed text. This line of research,
implicitly initiated by substring equality and longest common prefix queries (using suffix trees
and suffix arrays; see [10]), now includes several problems related to compression [9, 22, 24, 5],
pattern matching [24], and the range longest common prefix problem [1, 2]. Closest to ours
is a result by Babenko et al. [5], which after O(n

√
logn)-expected-time preprocessing allows

determining the k-th smallest suffix of a given substring, as well as finding the lexicographic
rank of one substring among suffixes of another substring, both in logarithmic time.
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Outline of the paper In Section 2 we recall standard definitions and two well-known
data structures. Next, in Section 3, we study combinatorics of minimal suffixes, using in
particular a notion of significant suffixes, introduced by I et al. [19, 20] to compute Lyndon
factorizations of grammar-compressed strings. Section 4 is devoted to answering Minimal
Suffix Queries. We use fusion trees by Pătraşcu and Thorup [29] to improve the query time
from logarithmic to O(log∗ |v|), and then, by preprocessing shorts strings, we achieve constant
query time. That final step uses a notion of order-isomorphism [25, 23] to reduce the number
of precomputed values. In Section 5 we repeat the same steps for Generalized Minimal
Suffix Queries. We conclude with Section 6, where we briefly discuss the applications.

2 Preliminaries

We consider strings over an alphabet Σ = {0, . . . , σ − 1} with the natural order ≺. The
empty string is denoted as ε. By Σ∗ (Σ+) we denote the set of all (resp. non-empty) finite
strings over Σ. We also define Σ∞ as the set of infinite strings over Σ. We extend the order
≺ on Σ in the standard way to the lexicographic order on Σ∗ ∪ Σ∞.

Let w = w[1] . . . w[n] be a string in Σ∗. We call n the length of w and denote it by |w|.
For 1 ≤ i ≤ j ≤ n, a string u = w[i] . . . w[j] is called a substring of w. By w[i..j] we denote
the occurrence of u at position i, called a fragment of w. A fragment of w other than the
whole w is called a proper fragment of w. A fragment starting at position 1 is called a prefix
of w and a fragment ending at position n is called a suffix of w. We use abbreviated notation
w[..j] and w[i..] for a prefix w[1..j] and a suffix w[i..n] of w, respectively. A border of w is a
substring of w which occurs both as a prefix and as a suffix of w. An integer p, 1 ≤ p ≤ |w|,
is a period of w if w[i] = w[i+ p] for 1 ≤ i ≤ n− p. If w has period p, we also say that is has
exponent |w|p . Note that p is a period of w if and only if w has a border of length |w| − p.

We say that a string w′ is a rotation (cyclic shift, conjugate) of a string w if there exists a
decomposition w = uv such that w′ = vu. Here, w′ is the left rotation of w by |u| characters
and the right rotation of w by |v| characters.

Augmented suffix array The suffix array [27] of a text T of length n is a permutation SA
of {1, . . . , n} defining the lexicographic order on suffixes T [i..n]: T [SA[i]..n] ≺ T [SA[j]..n] if
and only if i < j. For a string T , both SA and its inverse permutation ISA take O(n) space
and can be computed in O(n) time; see e.g. [10]. Typically, one also builds the LCP table
and extends it with a data structure for range minimum queries [18, 7], so that the longest
common prefix of any two suffixes of T can be determined efficiently.

Similarly to [4], we also construct these components for the reversed text TR. Additionally,
we preprocess the ISA table to answer range minimum and maximum queries. The resulting
data structure, which we call the augmented suffix array of T , lets us perform many queries.

I Theorem 1 (Augmented suffix array; see Fact 3 and Lemma 4 in [4]). The augmented suffix
array of a text T of length n takes O(n) space, can be constructed in O(n) time, and allows
answering the following queries in O(1) time given fragments x, y of T :
1. determine if x ≺ y, x = y, or x � y,
2. compute the longest common prefix lcp(x, y) and the longest common suffix lcs(x, y),
3. compute lcp(x∞, y) and determine if x∞ ≺ y, x∞ = y, or x∞ � y.
Moreover, given indices i, j, it can compute in O(1) time the minimal and the maximal suffix
among {T [k..n] : i ≤ k ≤ j}.

CPM 2016
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Fusion trees Consider a set A of W -bit integers (recall that W is the machine word size).
Rank queries given a W -bit integer x return rankA(x) defined as |{y ∈ A : y < x}|. Similarly,
select queries given an integer r, 0 ≤ r < |A|, return selectA(r), the r-th smallest element
in A, i.e., x ∈ A such that rankA(x) = r. These queries can be used to determine the
predecessor and the successor of a W -bit integer x, i.e., predA(x) = max{y ∈ A : y < x}
and succA(x) = min{y ∈ A : y ≥ x}. We answer these queries with dynamic fusion trees by
Pătraşcu and Thorup [29]. We only use these trees in a static setting, but the original static
fusion trees by Fredman and Willard [15] do not have an efficient construction procedure.

I Theorem 2 (Fusion trees [29, 15]). There exists a data structure of size O(|A|) which
answers rankA, selectA, predA, and succA queries in O(1 + logW |A|) time. Moreover, it
can be constructed in O(|A|+ |A| logW |A|) time.

3 Combinatorics of minimal suffixes and Lyndon words

For a non-empty string v the minimal suffix MinSuf(v) is the lexicographically smallest
non-empty suffix s of v. Similarly, for an arbitrary string v the maximal suffix MaxSuf(v)
is the lexicographically largest suffix s of v. We extend these notions as follows: for a pair
of strings v, w we define MinSuf(v, w) and MaxSuf(v, w) as the lexicographically smallest
(resp. largest) string sw such that s is a (possibly empty) suffix of v.

In order to relate minimal and maximal suffixes, we introduce the reverse order ≺R on Σ
and extend it to the reverse lexicographic order, and an auxiliary symbol $ /∈ Σ. We extend
the order ≺ on Σ so that c ≺ $ (and thus $ ≺R c) for every c ∈ Σ. We define Σ̄ = Σ ∪ {$},
but unless otherwise stated, we still assume that the strings considered belong to Σ∗.

I Observation 3. If u, v ∈ Σ∗, then u$ ≺ v if and only if v ≺R u.

We use MinSufR and MaxSufR to denote the minimal (resp. maximal) suffix with respect
to ≺R. The following observation relates the notions we introduced:

I Observation 4. 1. MaxSuf(v, ε) = MaxSuf(v) for every v ∈ Σ̄∗,
2. MinSuf(vw) = min(MinSuf(v, w),MinSuf(w)) for every v ∈ Σ̄∗ and w ∈ Σ̄+,
3. MinSuf(vc) = MinSuf(v, c) for every v ∈ Σ̄∗ and c ∈ Σ̄,
4. MinSuf(v, w$) = MaxSufR(v, w)$ for every v, w ∈ Σ∗,
5. MinSuf(v$) = MaxSufR(v)$ for every v ∈ Σ∗.
A property seemingly similar to 5. is false for every v ∈ Σ+: $ = MinSufR(v$) 6= MaxSuf(v)$.

A notion deeply related to minimal and maximal suffixes is that of a Lyndon word [26, 8].
A string w ∈ Σ+ is called a Lyndon word if MinSuf(w) = w. Note that such w does not
have proper borders, since a border would be a non-empty suffix smaller than w. A Lyndon
factorization of a string u ∈ Σ̄∗ is a representation u = up1

1 . . . upmm , where ui are Lyndon
words such that u1 � . . . � um. Every non-empty word has a unique Lyndon factorization [8],
which can be computed in linear time and constant space [14].

3.1 Significant suffixes
Below we recall a notion of significant suffixes, introduced by I et al. [19, 20] in order to
compute Lyndon factorizations of grammar-compressed strings. Then, we state combinatorial
properties of significant suffixes; some of them are novel and some were proved in [20].

I Definition 5 (see [19, 20]). A suffix s of a string v ∈ Σ∗ is a significant suffix of v if
sw = MinSuf(v, w) for some w ∈ Σ̄∗.
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Let v = vp1
1 . . . vpmm be the Lyndon factorization of a string v ∈ Σ+. For 1 ≤ j ≤ m we

denote sj = v
pj
j · · · vpmm ; moreover, we assume sm+1 = ε. Let λ be the smallest index such

that si+1 is a prefix of vi for λ ≤ i ≤ m. Observe that sλ � . . . � sm � sm+1 = ε,
since vi is a prefix of si. We define yi so that vi = si+1yi, and we set xi = yisi+1.
Note that si = vpii si+1 = (si+1yi)pisi+1 = si+1(yisi+1)pi = si+1x

pi
i . We also denote

Λ(w) = {sλ, . . . , sm, sm+1}, X(w) = {x∞λ , . . . , x∞m}, and X ′(w) = {xpλλ , . . . , xpmm }. The
observation below lists several immediate properties of the introduced strings:

I Observation 6. For each i, λ ≤ i ≤ m: (a) x∞i � xpii � xi � yi, (b) xpii is a suffix of v
of length |si| − |si+1|, and (c) |si| > 2|si+1|. In particular, |Λ(v)| = O(log |v|).

The following lemma shows that Λ(v) is equal to the set of significant suffixes of v.
(Significant suffixes are actually defined in [20] as Λ(v) and only later proved to satisfy our
Definition 5.) In fact, the lemma is much deeper; in particular, the formula for MaxSuf(v, w)
is one of the key ingredients of our efficient algorithms answering Minimal Suffix Queries.

I Lemma 7 (I et al. [20], Lemmas 12–14). For a string v ∈ Σ+ let si, λ, xi, and yi, be
defined as above. Then x∞λ � xpλλ � yλ � x∞λ+1 � x

pλ+1
λ+1 � yλ+1 � . . . � x∞m � xpmm � ym.

Moreover, for every string w ∈ Σ̄∗ we have

MinSuf(v, w) =


sλw if w � x∞λ ,
siw if x∞i−1 � w � x∞i for λ < i ≤ m,
sm+1w if x∞m � w.

In other words, MinSuf(v, w) = sm+1−rw where r = rankX(v)(w).

We conclude this section with a precise characterization of Λ(uv) for |u| ≤ |v| in terms of
Λ(v) and MaxSufR(u, v). This is another key ingredient of our data structure, in particular
letting us efficiently compute significant suffixes of a given fragment of T . The proof is
deferred to the full version due to space constraints.

I Lemma 8. Let u, v ∈ Σ+ be strings such that |u| ≤ |v|. Also, let Λ(v) = {sλ, . . . , sm+1},
s′ = MaxSufR(u, v), and let si be the longest suffix in Λ(v) which is a prefix of s′. Then

Λ(uv) =


{sλ, . . . , sm+1} if s′ �R sλ (i.e., if sλ � s′ and i 6= λ),
{s′, si+1, . . . , sm+1} if s′ �R sλ, i ≤ m, and |si| − |si+1| is a period of s′,
{s′, si, si+1, . . . , sm+1} otherwise.

Consequently, for every w ∈ Σ̄∗, we have MinSuf(uv,w) ∈ {MaxSufR(u, v)w,MinSuf(v, w)}.

4 Answering Minimal Suffix Queries

In this section we present our data structure for Minimal Suffix Queries. We proceed
in three steps improving the query time from O(log |v|) via O(log∗ |v|) to O(1). The first
solution is an immediate application of Observation 4.3. and the notion of significant suffixes.
Efficient computation of these suffixes, also used in the construction of further versions of
our data structure, is based on Lemma 8, which yields a recursive procedure. The only “new”
suffix needed at each step is determined using the following result. It can be seen as a cleaner
formulation of Lemma 14 in [4].

I Lemma 9. Let u = T [`..r] and v = T [r + 1..r′] be fragments of T such that |u| ≤ |v|.
Using the augmented suffix array of T we can compute MaxSufR(u, v) in O(1) time.
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I Lemma 10. Given a fragment v of T , we can compute Λ(v) in O(log |v|) time using the
augmented suffix array of T

Proof. If |v| = 1, we return Λ(v) = {v, ε}. Otherwise, we decompose v = uv′ so that
|v′| =

⌈ 1
2 |v|

⌉
. We recursively generate Λ(v′) and use Lemma 9 to compute s = MaxSufR(u, v′).

Then, we apply the characterization of Lemma 8 to determine Λ(v) = Λ(uv′), using the
augmented suffix array (Theorem 1) to lexicographically compare fragments of T .

We store the lengths of the significant suffixes in an ordered list. This way we can
implement a single phase (excluding the recursive calls) in time proportional to O(1) plus
the number of suffixes removed from Λ(v′) to obtain Λ(v). Since this is amortized constant
time, the total running time becomes O(log |v|) as announced. J

I Corollary 11. Minimal Suffix Queries can be answered in O(log |v|) time using the
augmented suffix array of T .

Proof. Recall that Observation 4.3. yields MinSuf(v) = MinSuf(v[1..m − 1], v[m]) where
m = |v|. Consequently, MinSuf(v) = sv[m] for some s ∈ Λ(v[1..m− 1]). We apply Lemma 10
to compute Λ(v[1..m − 1]) and determine the answer among O(log |v|) candidates using
lexicographic comparison of fragments, provided by the augmented suffix array (Theorem 1).

J

4.1 O(log∗ |v|)-time Minimal Suffix Queries
An alternative O(log |v|)-time algorithm could be developed based just on the second part of
Lemma 8: decompose v = uv′ so that |v′| > |u| and return min(MaxSufR(u, v′),MinSuf(v′)).
The result is MinSuf(v) due to Lemma 8 and Observation 4.3. Here, the first candidate
MaxSufR(u, v′) is determined via Lemma 9, while the second one using a recursive call.
A way to improve query time to O(1) at the price of O(n logn)-time preprocessing is to
precompute the answers for basic fragments, i.e., fragments whose length is a power of two.
Then, in order to determine MinSuf(v), we perform just a single step of the aforementioned
procedure, making sure that v′ is a basic fragment. Both these ideas are actually present
in [4], along with a smooth trade-off between their preprocessing and query times.

Our O(log∗ |v|)-time query algorithm combines recursion with preprocessing for certain
distinguished fragments. More precisely, we say that v = T [`..r] is distinguished if both
|v| = 2q and f(2q) | r for some positive integer q, where f(x) = 2blog log xc2 . Note that the
number of distinguished fragments of length 2q is at most n

2blog qc2 = O( n
qω(1) ).

The query algorithm is based on the following decomposition (x > f(x) for x > 216):

I Fact 12. Given a fragment v such that |v| > f(|v|), we can in constant time decompose
v = uv′v′′ such that 1 ≤ |v′′| ≤ f(|v|), v′ is distinguished, and |u| ≤ |v′|.

Proof. Let v = T [`..r], q = blog |v|c and q′ = blog qc2. We determine r′ as the largest
integer strictly smaller than r divisible by 2q′ = f(|v|). By the assumption that |v| > 2q′ , we
conclude that r′ ≥ r − 2q′ ≥ `. We define v′′ = T [r′ + 1..r] and partition T [`..r′] = uv′ so
that |v′| is the largest possible power of two. This guarantees |u| ≤ |v′|. Moreover, |v′| ≤ |v|
assures that f(|v′|) | f(|v|), so f(|v|′) | r′, and therefore v′ is indeed distinguished. J

Observation 4.2. implies MinSuf(v) ∈ {MinSuf(uv′, v′′),MinSuf(v′′)} and Lemma 8 fur-
ther yields MinSuf(v) ∈ {MaxSufR(u, v′)v′′,MinSuf(v′, v′′),MinSuf(v′′)}, i.e., leaves us with
three candidates for MinSuf(v). Our query algorithm obtains MaxSufR(u, v′) using Lemma 9,
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computes MinSuf(v′′) recursively, and determines MinSuf(v′, v′′) through the characteriza-
tion of Lemma 7. The latter step is performed using the following component based on a
fusion tree, which we build for all distinguished fragments.

I Lemma 13. Let v = T [`..r] be a fragment of T . There exists a data structure of size
O(log |v|) which answers the following queries in O(1) time: given a position r′ > r compute
MinSuf(v, T [r + 1..r′]). Moreover, this data structure can be constructed in O(log |v|) time
using the augmented suffix array of T .

Proof. By Lemma 7, we have MinSuf(v, w) = sm+1−rankX(v)(w)w, so in order to determine
MinSuf(v, T [r + 1..r′]), it suffices to store Λ(v) and efficiently compute rankX(v)(w) given
w = T [r + 1..r′]. We shall reduce these rank queries to rank queries in an integer set R(v).

I Claim. Denote X(v) = {x∞λ , . . . , x∞m} and let

R(v) = {r + lcp(T [r + 1..], x∞j ) : x∞j ∈ X(w) ∧ x∞j ≺ T [r + 1..]}.

For every index r′, r < r′ ≤ n, we have rankX(v)(T [r + 1..r′]) = rankR(v)(r′).

Proof. We shall prove that for each j, λ ≤ j ≤ m, we have

x∞j ≺ T [r + 1..r′] ⇐⇒
(
r + lcp(T [r + 1..], x∞j ) < r′ ∧ x∞j ≺ T [r + 1..]

)
.

First, if x∞j � T [r + 1..], then clearly x∞j � T [r + 1..r′] and both sides of the equivalence
are false. Therefore, we may assume x∞j ≺ T [r + 1..]. Observe that in this case d :=
lcp(T [r + 1..], x∞j ) is strictly less than n− r, and T [r + 1..r + d] ≺ x∞j ≺ T [r + 1..r + d+ 1].
Hence, x∞j ≺ T [r + 1..r′] if and only if r + d < r′, as claimed. J

We apply Theorem 2 to build a fusion tree for R(v), so that the ranks are can be obtained
in O(1 + log |R(v)|

logW ) time, which is O(1 + log log |v|
log logn ) = O(1) by Observation 6.

The construction algorithm uses Lemma 10 to compute Λ(v) = {sλ, . . . , sm+1}. Next,
for each j, λ ≤ j ≤ m, we need to determine lcp(T [r + 1..], x∞j ). This is the same as
lcp(T [r+ 1..], (xpjj )∞) and, by Observation 6, xpjj can be retrieved as the suffix of v of length
|si|−|si+1|. Hence, the augmented suffix array can be used to compute these longest common
prefixes and therefore to construct R(v) in O(|Λ(v)|) = O(log |v|) time. J

With this central component we are ready to give a full description of our data structure.

I Theorem 14. For every text T of length n there exists a data structure of size O(n) which
answers Minimal Suffix Queries in O(log∗ |v|) time and can be constructed in O(n) time.

Proof. Our data structure consists of the augmented suffix array (Theorem 1) and the
components of Lemma 13 for all distinguished fragments of T . Each such fragment of length
2q contributes O(q) to the space consumption and to the construction time, which in total
over all lengths sums up to O(

∑
q

nq
qω(1) ) = O(

∑
q

n
qω(1) ) = O(n).

Let us proceed to the query algorithm. Assume we are to compute the minimal suffix of
a fragment v. If |v| ≤ f(|v|) (i.e., if |v| ≤ 216), we use the logarithmic-time query algorithm
given in Corollary 11. If |v| > 2q, we apply Fact 12 to determine a decomposition v = uv′v′′,
which gives us three candidates for MinSuf(v). As already described, MinSuf(v′′) is computed
recursively, MinSuf(v′, v′′) using Lemma 13, and MaxSufR(u, v′)v′′ using Lemma 9. The
latter two both support constant-time queries, so the overall time complexity is proportional
to the depth of the recursion. We have |v′′| ≤ f(|v|) < |v|, so it terminates. Moreover,

f(f(x)) = 2blog(log f(x))c2 ≤ 2(log(log log x)2)2
= 24(log log log x)2

= 2o(log log x) = o(log x).
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Thus, f(f(x)) ≤ log x unless x = O(1). Consequently, unless |v| = O(1), when the algorithm
clearly needs constant time, the length of the queried fragment is in two steps reduced from
|v| to at most log |v|. This concludes the proof that the query time is O(log∗ |v|). J

4.2 O(1)-time Minimal Suffix Queries
The O(log∗ |v|) time complexity of the query algorithm of Theorem 14 is only due to the
recursion, which in a single step reduces the length of the queried fragment from |v| to f(|v|)
where f(x) = 2blog log xc2 . Since f(f(x)) = 2o(log log x), after just two steps the fragment
length does not exceed f(f(n)) = o( logn

log logn ). In this section we show that the minimal
suffixes of such short fragments can precomputed in a certain sense, and thus after reaching
τ = f(f(n)) we do not need to perform further recursive calls.

For constant alphabets, we could actually store all the answers for all O(στ ) = no(1) strings
of length up to τ . Nevertheless, in general all letters of T , and consequently all fragments
of T , could even be distinct. However, the answers to Minimal Suffix Queries actually
depend only on the relative order between letters, which is captured by order-isomorphism.

Two strings x and y are called order-isomorphic [25, 23], denoted as x ≈ y, if |x| = |y|
and for every two positions i, j (1 ≤ i, j ≤ |x|) we have x[i] ≺ x[j] ⇐⇒ y[i] ≺ y[j].
Note that the equivalence extends to arbitrary corresponding fragments of x and y, i.e.,
x[i..j] ≺ x[i′..j′] ⇐⇒ y[i..j] ≺ y[i′..j′]. Consequently, order-isomorphic strings cannot be
distinguished using Minimal Suffix Queries or Generalized Minimal Suffix Queries.

Moreover, observe that every string of length m is order-isomorphic to a string over an
alphabet {1, . . . ,m}. Consequently, order-isomorphism partitions strings of length up to m
into O(mm) equivalence classes. The following fact lets us compute canonical representations
of strings whose length is bounded by m = WO(1).

I Fact 15. For every fixed integer m = WO(1), there exists a function oid mapping each
string w of length up to m to a non-negative integer oid(w) with O(m logm) bits, so that
w ≈ w′ ⇐⇒ oid(w) = oid(w′). Moreover, the function can be evaluated in O(m) time.

Proof. To compute oid(w), we first build a fusion tree storing all (distinct) letters which
occur in w. Next, we replace each character of w with its rank among these letters. We
allocate dlogme bits per character and prepend such a representation with dlogme bits
encoding |w|. This way oid(w) is a sequence of (|w|+ 1) dlogme = O(m logm) bits. Using
Theorem 2 to build the fusion tree, we obtain an O(m)-time evaluation algorithm. J

To answer queries for short fragments of T , we define overlapping blocks of length m = 2τ :
for 0 ≤ i ≤ n

τ we create a block Ti = T [1 + iτ..min(n, (i+ 2)τ)]. For each block we apply
Fact 15 to compute the identifier oid(Ti). The total length of the blocks is bounded 2n, so
this takes O(n) time. The identifiers use O(nτ τ log τ) = O(n log τ) bits of space.

Moreover, for each distinct identifier oid(Ti), we store the answers to all the Minimal
Suffix Queries in Ti. This takes O(logm) bits per answer and O(2O(m logm)m2 logm) =
2O(τ log τ) in total. Since τ = o( logn

log logn ), this is no(1). The preprocessing time is also no(1).
It is a matter of simple arithmetics to extend a given fragment v of T , |v| ≤ τ , to a

block Ti. We use the precomputed answers stored for oid(Ti) to determine the minimal suffix
of v. We only need to translate the indices within Ti to indices within T before returning
the answer. Below, we state our results for short and arbitrary fragments, respectively:

I Theorem 16. For every text T of length n and every parameter τ = o( logn
log logn ) there exists

a data structure of size O(n log τ
logn ) which can answer in O(1) time Minimal Suffix Queries

for fragments of length not exceeding τ . Moreover, it can be constructed in O(n) time.
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I Theorem 17. For every text T of length n there exists a data structure of size O(n) which
can be constructed in O(n) time and answers Minimal Suffix Queries in O(1) time.

5 Answering Generalized Minimal Suffix Queries: Overview

In this section we sketch our solution for Generalized Minimal Suffix Queries, focusing
on the differences compared to the data structure developed in Section 4. As in Section 4,
we proceed in three steps gradually improving the query time; we start, however, with some
terminology.

We define a k-fragment of a text T as a concatenation T [`1..r1] · · ·T [`k..rk] of k fragments
of the text T . Observe that a k-fragment can be stored in O(k) space as a sequence of pairs
(`i, ri). If a string w admits such a decomposition using k′ (k′ ≤ k) substrings, we call it a
k-substring of T . Every k′-fragment (with k′ ≤ k) whose value is equal to w is called an
occurrence of w as a k-substring of T . Observe that a substring of a k-substring w of T is
itself a k-substring of T . Moreover, given an occurrence of w, one can canonically assign
each fragment of w to a k′-fragment of T (k′ ≤ k). This can be implemented in O(k) time
and referring to w[`..r] in our algorithms, we assume that such an operation is performed.

Basic queries regarding k-fragments easily reduce to their counterparts for 1-fragments:

I Observation 18. The augmented suffix array can answer queries 1., 2., and 3. in O(k)
time if x and y are k-fragments of T .

Generalized Minimal Suffix Queries can be reduced to the following auxiliary queries:

I Problem (Auxiliary Minimal Suffix Queries). Given a fragment v of T and a
k-fragment w of T , compute MinSuf(v, w) (represented as a (k + 1)-fragment of T ).

I Lemma 19. For every text T , the minimal suffix of a k-fragment v can be determined by k
Auxiliary Minimal Suffix Queries (with k′ < k) and additional O(k2)-time processing
using the augmented suffix array of T .

Proof. Let v = v1 · · · vk. By Observation 4.2., MinSuf(v) = MinSuf(vk) or for some i, 1 ≤
i < k, we have MinSuf(v) = MinSuf(vi, vi+1 · · · vk). Hence, we apply Auxiliary Minimal
Suffix Queries to determine MinSuf(vi, vi+1 · · · vk) for each 1 ≤ i < k. Observation 4.3.
lets reduce computing MinSuf(vk) to another auxiliary query. Having obtained k candidates
for MinSuf(v), we use the augmented suffix array to return the smallest among them using
k − 1 comparisons, each performed in O(k) time; see Theorem 1 and Observation 18. J

Below we focus on the auxiliary queries only. Answering them in O(k log |v|) time is easy:
We apply Lemma 10 to determine Λ(v), and then we compute the smallest string among
{sw : s ∈ Λ(v)}. These strings are (k+ 1)-fragments of T and thus a single comparison takes
O(k) time using the augmented suffix array.

5.1 O(k log∗ |v|)-time Auxiliary Minimal Suffix Queries
Our solution is based on that in Section 4.1. The only big challenge is to generalize Lemma 13:
preprocess v to compute MinSuf(v, w) for an arbitrary k-fragment w in O(k) time. We
still apply Lemma 7, but this time we actually determine rankX′(v)(w), which differs from
rankX(v)(w) by at most one (and therefore leaves us with two candidates for rankX(v)(w)).

This is because in general we are able to preprocess a family A of fragments of T to
determine rankA(w) given a k-fragment w of T . Our solution is based on the compressed trie
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of fragments in A, accompanied with several fusion trees to allow efficient navigation. For
|A| ≤ WO(1) it takes O(|A|2) time to construct and determines ranks in the optimal time
O(k). By our choice of distinguished fragments v of length 2q, building this component for
all sets X ′(v) takes O( nq2

qω(1) ) = O( n
qω(1) ) time, which is O(n) in total (over all values of q).

5.2 O(k)-time Auxiliary Minimal Suffix Queries
To achieve the optimal query time, we again focus on |v| ≤ τ with τ = o( logn

log logn ). Computing
MinSuf(v, w), we need to handle k-fragments w of arbitrary length, which might be scattered
around the text T (not just in a block Ti containing v), so the task is much more difficult
than in Section 4.2. Our approach is to replace w with a similar k′-fragment w′ of Ti$, such
that k′ ≤ k + 1 and rankX′(v)(w) = rankX′(v)(w′). This is achieved again using fusion trees.

As already noted, a fixed value of rankX′(v)(w) gives two candidates for rankX(v)(w), i.e.,
for MinSuf(v, w). Simultaneously rankX′(v)(w′) depends only on the relative order of letters
of Ti$. Hence, for each distinct oid(Ti) and for each fragment v of Ti$, we construct Λ(v)
and a data structure able to efficiently rank k-fragments of Ti$ in X ′(v). This component is
built using the general tool for ranking k-fragments in a collection of fragments, which we
mentioned in Section 5.1. This ultimately leads to the strongest result of this paper:

I Theorem 20. For every text T of length n there exists a data structure of size O(n) which
can be constructed in O(n) time and answers Generalized Minimal Suffix Queries in
O(k2) time.

6 Applications

As already noted in [4], Minimal Suffix Queries can be used to compute Lyndon
factorization. For fragments of T , and in general k = O(1), we obtain an optimal solution:

I Corollary 21. For every text T of length n there exists a data structure of size O(n) which
given a k-fragment v of T determines the Lyndon factorization v = vq1

1 . . . vqmm in O(k2m)
time. The data structure takes O(n) time to construct.

Our main motivation of introducing Generalized Minimal Suffix Queries, however,
was to answer Minimal Rotation Queries, for which we obtain constant query time after
linear-time preprocessing. This is achieved using the following observation; see [10]:

I Observation 22. The minimal cyclic rotation of v is the prefix of MinSuf(v, v) of length |v|.

I Theorem 23. For every text T of length n there exists a data structure of size O(n) which
given a k-fragment v of T determines the lexicographically smallest cyclic rotation of v in
O(k2) time. The data structure takes O(n) time to construct.

Using Minimal Rotation Queries, we can compute the Karp-Rabin fingerprint [21] of the
minimal rotations of a given fragment v of T (or in general, of a k-fragment). This can be
interpreted as computing fingerprints up to cyclic equivalence, i.e., evaluating a function h
such that h(`, r) = h(`′, r′) if and only if T [`..r] and T [`′..r′] are cyclically equivalent.

Consequently, we are able, for example, to count distinct substrings of T with a given
exponent 1 + 1/α. They occur within runs or α-gapped repeats, which can be generated in
time O(nα) [6, 12, 16] and classified using Minimal Rotation Queries according to the
cyclic equivalence class of their period. For a fixed equivalence class the set of substrings
generated by a single repeat can be represented as a cyclic interval, and the cardinality of
a union of intervals is simple to determine; see also [11], where this approach was used to
count and list squares and, in general, substrings with a given exponent 2 or more.
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Abstract
We describe an algorithm computing an optimal prefix free code for n unsorted positive weights
in less time than required to sort them on many large classes of instances, identified by a new
measure of difficulty for this problem, the alternation α. This asymptotical complexity is within
a constant factor of the optimal in the algebraic decision tree computational model, in the worst
case over all instances of fixed size n and alternation α. Such results refine the state of the art
complexity in the worst case over instances of size n in the same computational model, a landmark
in compression and coding since 1952, by the mere combination of van Leeuwen’s algorithm to
compute optimal prefix free codes from sorted weights (known since 1976), with Deferred Data
Structures to partially sort multisets (known since 1988).
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1 Introduction

Given n positive weights W [1..n] coding for the frequencies
{
W [i]/

∑n
j=1 W [j]

}
i∈[1..n]

of n

messages, and a number D of output symbols, an Optimal Prefix Free Code [11] is a
set of n code strings on alphabet [1..D], of variable lengths L[1..n] and such that no string
is prefix of another, and the average length of a code is minimized (i.e.

∑n
i=1 L[i]W [i] is

minimal).
Any prefix free code can be computed in linear time from a set of code lengths sat-

isfying the Kraft inequality
∑n
i=1 D

−L[i] ≤ 1. The original description of the code by
Huffman [11] yields a heap-based algorithm performing O(n logn) algebraic operations,
using the bijection between D-ary prefix free codes and D-ary cardinal trees [8]. This
complexity is asymptotically optimal for any constant value of D in the algebraic de-
cision tree computational model1, in the worst case over instances composed of n positive
weights, as computing the optimal binary prefix free code for the weights W [0, . . . , Dn] =
{Dx1 , . . . , Dx1 , Dx2 , . . . , Dx2 , . . . , Dxn , . . . , Dxn} is equivalent to sorting the positive integers
{x1, . . . , xn}. We consider here only the binary case, where D = 2.

Yet, not all instances require the same amount of work to compute an optimal code:

∗ Extended abstract, see the full version [1] on http://arxiv.org/abs/1602.03934 for complete proofs
and comments.

1 The algebraic decision tree computational model is composed of algorithms which can be modelled as a
decision tree where the decision made in each node is based only on algebraic operations on the input.
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When the weights are given in sorted order, van Leeuwen [14] showed that an optimal
code can be computed using within O(n) algebraic operations.
When the weights consist of r ∈ [1..n] distinct values and are given in a sorted, com-
pressed form, Moffat and Turpin [17] showed how to compute an optimal code using
within O(r(1 + log(n/r))) algebraic operations, which is often sublinear in n.
In the case where the weights are given unsorted, Belal et al. [5, 6] described several
families of instances for which an optimal prefix free code can be computed in linear
time, along with an algorithm claimed to perform O(kn) algebraic operations, in the
worst case over instances formed by n weights such that there is an optimal binary
prefix free code with k distinct code lengths2. This complexity was later downgraded to
O(16kn) in an extended version[4] of their article. Both results are better than the state
of the art when k is finite, but worse when k is larger than logn.

In the context described above, various questions are left unanswered, from the confirm-
ation of the existence of an algorithm running in time O(16kn) or O(kn), to the existence
of an algorithm taking advantage of small values of both n and k, less trivial than running
two algorithms in parallel and stopping both whenever one computes the answer. Given n
positive integer weights, can we compute an optimal binary prefix free code in time better
than O(min{kn, n logn}) in the algebraic decision tree computational model? We answer in
the affirmative for many classes of instances, identified by the alternation measure α defined
in Section 3.1:

I Theorem 1. Given n positive weights of alternation α ∈ [1..n− 1], there is an algorithm
which computes an optimal binary prefix free code using within O(n(1+ logα)) ⊆ O(n lgn)
algebraic instructions, and this complexity is asymptotically optimal among all algorithms
in the algebraic decision tree computational model in the worst case over instances of size n
and alternation α.

Proof. We show in Lemma 12 that any algorithm A in the algebraic decision tree computa-
tional model performs within Ω(n lgα) algebraic operations in the worst case over instances
of size n and alternation α. We show in Lemma 9 that the GDM algorithm, a variant of the
van Leeuwen’s algorithm [14], modified to use the deferred data structure from Lemma 5,
performs q ∈ O(α(1+lg n−1

α )) such queries, which yields in Corollary 10 a complexity within
O(n(1+ logα) + α(lgn)(lg n

α )), all within the algebraic decision tree computational model.
As α ∈ [1..n−1] and O(α(lgn)(lg n

α )) ⊆ O(n(1+ logα)) for this range (Lemma 11), the
optimality ensues. J

We discuss our solution in Section 2 in three parts: the intuition behind the general
strategy in Section 2.1, the deferred data structure which maintains a partially sorted list
of weights while supporting rank, select and partialSum queries in Section 2.2, and the
algorithm which uses those operators to compute an optimal prefix free code in Section 2.3.
Our main contribution consists in the analysis of the running time of this solution, described
in Section 3: the formal definition of the parameter of the analysis in Section 3.1, the upper
bound in Section 3.2 and the matching lower bound in Section 3.3. We conclude with a
comparison of our results with those from Belal et al. [5] in Section 4.

2 Note that k is not uniquely defined, as for a given set of weights there can exist several optimal prefix
free codes varying in the number of distinct code lengths used.
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2 Solution

The solution that we describe is a combination of two results: some results about deferred
data structures for multisets, which support queries in a “lazy” way; and some results about
the relation between the computational cost of sorting and that of computing an optimal
prefix free code. We describe the general intuition of our solution in Section 2.1, the deferred
data structure in Section 2.2, and the algorithm in Section 2.3.

2.1 General Intuition
The algorithm suggested by Huffman [11] starts with a heap of external nodes, selects the
two nodes of minimal weight, pairs them into a new node which it adds to the heap, and
iterates untill only one node is left. Whereas the type of the nodes selected, external or
internal, does not matter in the analysis of the complexity of Huffman’s algorithm, we claim
that the computational cost of optimal prefix free codes can be greatly reduced on instances
where many external nodes are selected consecutively. We define the “EI signature” of an
instance as the first step toward the characterization of such instances:

I Definition 2. Given an instance of the optimal prefix free code problem formed by n

positive weights W [1..n], its EI signature S(W ) ∈ {E, I}2n−1 is a string of length 2n − 1
over the alphabet {E, I} (where E stands for “External” and I for “Internal”) marking, at
each step of the algorithm suggested by Huffman [11], whether an external or internal node
is chosen as the minimum (including the last node returned by the algorithm, for simplicity).

The analysis described in Section 3 is based on the number |S|EI of blocks formed only
of E in the EI signature of the instance S. We can already show some basic properties of
this measure:

I Lemma 3. Given the EI signature S of n unsorted positive weights W [1..n], |S|E = n;
|S|I = n − 1; |S| = 2n − 1; S starts with two E; S finishes with one I; |S|EI = |S|IE + 1;
|S|EI ∈ [1..n− 1].

Proof. The three first properties are simple consequences of basic properties on binary trees.
S starts with two E as the first two nodes paired are always external. S finishes with one I
as the last node returned is always (for n > 1) an internal node. The two last properties are
simple consequences of the fact that S is a binary string starting with an E and finishing
with an I. J

For example, the text T = “ABBCCCDDDDEEEEEFFFFFGGGGGGHHHHHHH” has
frequencies W = 1 2 3 4 5 5 6 7 . It corresponds to an instance of size n = 8,
of EI signature S(W ) = EEEIEEEEIEIIIII of length 15, which starts with EE, finishes with
I, and contains only α = 3 occurrences of EI, corresponding to a decomposition into α = 3
maximal blocks of consecutive Es.

Instances such as this, with very few blocks of E, are easier to solve than instances with
many such blocks. For example, an instance W of length n such that its EI signature S(W )
is composed of a single run of n Es followed by a single run of n − 1 Is (such as the one
described in Figure 1) can be solved in linear time, and in particular without sorting the
weights: it is enough to assign the codelength l = blog2 nc to the n− 2l largest weights and
the codelength l+ 1 to the 2l smallest weights. Separating those weights is a simple select
operation, supported by the data structures described in the following section.

CPM 2016
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Figure 1 Frequencies and code tree for the
text T = “ba_bb_caca_ba_cc”, minimizing
the number of occurrences of “EI” in its EI
signature S(T ) = “EEEEIII”.
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Figure 2 Frequencies and code tree for the
text T = “aaaaaaaabcc____”, maximizing
the number of occurrences of “EI” in its EI
signature S(T ) = “EEIEIEI”.

We describe two extreme examples. First, consider the text T = “ba_bb_caca_ba_cc”.
Each of the four symbols of its alphabet {a, b, c,_} occurs exactly 4 times, so that an optimal
prefix free code assigns a uniform codelength of 2 bits to all symbols (see Figure 1). There
is no need to sort the symbols by frequency (and the prefix free code does not yield any
information about the order in which the symbols would be sorted by monotone frequencies),
and accordingly the EI signature of this text, S(T ) = “EEEEIII”, has a single block of Es,
indicating a very easy instance. The same holds if the text is such that the frequencies of
the symbols are all within a factor of two of each other. On the other hand, consider the
text T = “aaaaaaaabcc____”, where the frequencies of its symbols follow an exponential
distribution, so that an optimal prefix free code assigns different codelengths to almost all
symbols (see Figure 2). The prefix free code does yield a lot of information about the order
in which the symbols would be sorted by monotone frequencies, and accordingly the EI
signature of this text, S(T ) = “EEIEIEI”, has three blocks of Es, indicating a more difficult
instance. The same holds with more general distribution, as long as no two pairs of symbol
frequencies are within a factor of two of each other.

2.2 Partial Sum Deferred Data Structure
Given a Multiset W [1..n] on alphabet [1..σ] of size n, Karp et al. [13] defined the first
deferred data structure supporting for all x ∈ [1..σ] and r ∈ [1..n] queries such as rank(x),
the number of elements which are strictly smaller than x in W ; and select(r), the value of
the r-th smallest value (counted with multiplicity) in W . Their data structure supports q
queries in time within O(n(1 + lg q) + q lgn), all in the comparison model.

Karp et al.’s data structure [13] supports only rank and select queries in the comparison
model, whereas the computation of optimal prefix free codes requires to sum pairs of weights
from the input, and the algorithm that we propose in Section 2.3 requires to sum weights
from a range in the input. Such a requirement can be reduced to partialSum queries.
Whereas Partial Sum queries have been defined in the literature based on the positions in
the input array, we define such queries here in a way that depends only on the content of
the Multiset (as opposed to a definition depending on the order in which it is given), so
that it can be generalized to deferred data structures.

I Definition 4. Given n unsorted positive weights W [1..n], a Partial Sum data structure
supports the following queries: rank(x), the number of elements which are strictly smaller
than x in W ; select(r), the value of the r-th smallest value (counted with multiplicity) in
W ; partialSum(r), the sum of the r smallest elements (counted with multiplicity) in W .

For example, given the array A = 5 3 1 5 2 4 6 7 , this definition of the
operators yields rank(5) = 4, select(6) = 5, and partialSum(2) = 3.
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We describe below how to extend Karp et al.’s deferred data structure [13], which sup-
ports rank and select queries on Multisets, in order to add the support for partialSum
queries, with an amortized running time within a constant factor of the original asymptotic
time. Note that the operations performed by the data structure are not any more within
the comparison model, but rather in the algebraic decision tree computational model, as
they introduce algebraic operations (additions) on the elements of the Multiset. The res-
ult is a direct extension of Karp et al. [13], adding a sub-task taking linear time (updating
partial sums in an interval of positions) to a sub-task which was already taken linear time
(partitioning this same interval by a pivot):

I Lemma 5. Given n unsorted positive weights W [1..n], there is a PartialSum Deferred
Data Structure which supports q operations of type rank, select and partialSum in time
within O(n(1+lg q)+q(1+logn)), all within the algebraic decision tree computational model.

Proof. Karp et al. [13] described a deferred data structure which supports the rank and
select queries (but not partialSum queries). It is based on median computations and (2, 3)-
trees, and performs q queries on n values in time within O(n(1 + lg q) + q(1 + logn)), all
within the algebraic decision tree computational model. We describe below how to modify
their data structure in a simple way to support partialSum queries with asymptotically
negligible additional cost. At the initialization of the data structure, compute the n partial
sums corresponding to the n positions of the unsorted array. After each median computation
and partitioning in a rank or select query, recompute the partial sums on the range of
values newly partitioned, adding only a constant factor to the cost of the query. When
answering a partialSum query, perform a select query and then return the value of the
partial sum corresponding to the value by the select query: the asymptotic complexity is
within a constant factor of the one described by Karp et al. [13]. J

In the next section we describe an algorithm that uses the deferred data structure de-
scribed above to batch the operations on the external nodes, and to defer the computation
of the weights of some internal nodes for later, so that for many instances the input is not
completely sorted at the end of the execution, which reduces the execution cost.

2.3 Algorithm “Group-Dock-Mix” (GDM)
There are five main phases in the GDM algorithm: the Initialization, three phases (Grouping,
Docking and Mixing, giving it the name “GDM” to the algorithm) inside a loop running until
only internal nodes are left to process, and the Conclusion:

In the Initialization phase, initialize the Partial Sum deferred data structure with the
input, and the first internal node by pairing the two smallest weights of the input.
In the Grouping phase, group the weights smaller than the smallest internal node: this
corresponds to a run of consecutive E in the EI signature of the instance.
In the Docking phase, pair the consecutive positions of those weights (as opposed to the
weights themselves, which can be reordered by future operations) into internal nodes, and
pair those internal nodes until the weight of at least one such internal node becomes equal
or larger than the smallest remaining weight: this corresponds to a run of consecutive I
in the EI signature of the instance.
In theMixing phase, rank the smallest unpaired weight among the weights of the available
internal nodes: this corresponds to an occurrence of IE in the EI signature of the
instance. This is the most complicated (and most costly) phase of the algorithm.

CPM 2016
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In the Conclusion phase, with i internal nodes left to process, assign codelength l =
blog2 ic to the i − 2l largest ones and codelength l+1 to the 2l smallest ones: this
corresponds to the last run of consecutive I in the EI signature of the instance.

The algorithm and its complexity analysis distinguish two types of internal nodes: pure
nodes, which descendants were all paired during the same Grouping phase; and mixed nodes,
each of which either is the ancestor of such a mixed node, or pairs a pure internal node with
an external node, or pairs two pure internal nodes produced at distinct phases of the GDM
algorithm. The distinction is important as the algorithm computes the weight of any mixed
node at its creation (potentially generating several data structure operations), whereas it
defers the computation of the weight of some pure nodes for later, and does not compute
the weight of some pure nodes.

Before describing each phase more in detail, it is important to observe the following
invariant of the algorithm:

I Lemma 6. Given an instance of the optimal prefix free code problem formed by n > 1
positive weights W [1..n], between each phase of the algorithm, all unpaired internal nodes
have weight within a constant factor of two (i.e. the maximal weight of an unpaired internal
node is strictly smaller than twice the minimal weight of an unpaired internal node).

We now proceed to describe each phase in more details:
Initialization: Initialize the deferred data structure Partial Sum with the input; com-
pute the weight currentMinInternal of the first internal node through the operation
partialSum(2) (the sum of the two smallest weights); create this internal node, of weight
currentMinInternal and children 1 and 2 (the positions of the first and second weights,
in any order); compute the weight currentMinExternal of the first unpaired weight
(i.e. the first available external node) by the operation select(3); setup the variables
nbInternals = 1 and nbExternalProcessed = 2.
Grouping: Compute the position r of the first unpaired weight which is larger than
the smallest unpaired internal node, through the operation rank(currentMinInternal);
pair the ((r − nbExternalProcessed) modulo 2) indices to form b r−nbExternalProcessed

2 c
pure internal nodes; if the number r−nbExternalProcessed of unpaired weights smaller
than the first unpaired internal node is odd, select the r-th weight through the operation
select(r), compute the weight of the first unpaired internal node, compare it with the
next unpaired weight, to form one mixed node by combining the minimal of the two with
the extraneous weight.
Docking: Pair all internal nodes by batches (by Lemma 6, their weights are all within a
factor of two, so all internal nodes of a generation are processed before any internal node
of the next generation); after each batch, compare the weight of the largest such internal
node (compute it through partialSum on its range if it is a pure node, otherwise it is
already computed) with the first unpaired weight: if smaller, pair another batch, and if
larger, the phase is finished.
Mixing: Rank the smallest unpaired weight among the weights of the available internal
nodes by a doubling search starting from the beginning of the list of internal nodes. For
each comparison, if the internal node’s weight is not already known, compute it through
a partialSum operation on the corresponding range (if it is a mixed node, it is already
known). If the number r of internal nodes of weight smaller than the unpaired weight is
odd, pair all but one, compute the weight of the last one and pair it with the unpaired
weight. If r is even, pair all of the r internal nodes of weight smaller than the unpaired
weight, compare the weight of the next unpaired internal node with the weight of the
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next unpaired external node, and pair the minimum of the two with the first unpaired
weight. If there are some unpaired weights left, go back to the Grouping phase, otherwise
continue to the Conclusion phase.
Conclusion: There are only internal nodes left, and their weights are all within a factor
of two from each other. Pair the nodes two by two in batches as in the Docking phase,
computing the weight of an internal node only when the number of internal nodes of a
batch is odd.

The combination of those phases forms the GDM algorithm, which computes an optimal
prefix free code given an unsorted sets of positive integers. In the next section, we analyze
the number q of rank, select and partialSum queries performed by the GDM algorithm,
and deduce from it the complexity of the algorithm in terms of algebraic operations.

3 Analysis

The GDM algorithm runs in time within O(n lgn) in the worst case over instances of size n
(which is optimal (if not a new result) in the algebraic decision tree computational model),
but much faster on instances with few blocks of consecutive Es in the EI signature of
the instance. We formalize this concept by defining the alternation α of the instance in
Section 3.1. We then proceed in Section 3.2 to show upper bounds on the number of queries
and operations performed by the GDM algorithm in the worst case over instances of fixed size
n and alternation α. We finish in Section 3.3 with a matching lower bound for the number
of operations performed.

3.1 Alternation α(W )
We suggested in Section 2.1 that the number |S|EI of blocks of consecutive Es in the EI
signature of an instance can be used to measure its difficulty. Indeed, some “easy” instances
have few such blocks, and the instance used to prove the Ω(n lgn) lower bound on the
computational complexity of optimal prefix free codes in the algebraic decision tree compu-
tational model in the worst case over instances of size n has n−1 such blocks (the maximum
possible in an instance of size n). We formally define this measure as the “alternation” of
the instance (it measures how many times the van Leeuwen algorithm “alternates” from an
external node to an internal node) and denote it by the parameter α:

I Definition 7. Given an instance of the optimal prefix free code problem formed by n

positive weights W [1..n], its alternation α(W ) ∈ [1..n − 1] is the number of occurrences of
the substring “EI” in its EI signature S(W ).

This number is of particular interest as it measures the number of iteration of the main
loop in the GDM algorithm:

I Lemma 8. Given an instance of the optimal prefix free code problem of alternation α, the
GDM algorithm performs α iterations of its main loop.

In the next section, we refine this result to the number of data structure operations and
algebraic operations performed by the GDM algorithm.

3.2 Upper Bound
In order to measure the number of queries performed by the GDM algorithm, we detail how
many queries are performed in each phase of the algorithm.

CPM 2016
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The Initialization corresponds to a constant number of data structure operations: a
select operation to find the third smallest weight, and a simple partialSum operation
to sum the two smallest weights of the input.
Each Grouping phase corresponds to a constant number of data structure operations:
a partialSum operation to compute the weight of the smallest internal node if needed,
and a rank operation to identify the unpaired weights which are smaller or equal to this
node.
The number of operations performed by each Docking and Mixing phase is better ana-
lyzed together: if there are i symbols in the I-block corresponding to this phase in the EI
signature, and if the internal nodes are grouped on h levels before generating an internal
node larger than the smallest unpaired weights, the Docking phase corresponds to at most
h partialSum operations, whereas the Mixing phase corresponds to at most log2(i/2h)
partialSum operations, which develops to log2(i)−h, for a total of h+log2(i)−h = log2 i

data structure operations.
The Conclusion phase corresponds to a number of data structure operations logarithmic
in the size of the last block of Is in the EI signature of the instance: in the worst case,
the weight of one pure internal node is computed for each batch, through one single
partialSum operation each time.

Lemma 8 and the concavity of the log yields the total number of data structure operations
performed by the GDM algorithm:

I Lemma 9. Given an instance of the optimal prefix free code problem of alternation α, the
GDM algorithm performs within O(α(1 + lg n−1

α )) data structure operations on the deferred
data structure given as input.

Proof. For i ∈ [1..α], let ni be the number of internal nodes at the beginning of the i-th
Docking phase. According to Lemma 8 and the analysis of the number of data structure
operations performed in each phase, the GDM algorithm performs in total within O(α +∑α
i=1 lgni) data structure operations. Since there are at most n − 1 internal nodes, by

concavity of the logarithm this is within O(α+ α lg n−1
α ) = O(α(1 + lg n−1

α )). J

Combining this result with the complexity of the Partial Sum deferred data structure
from Lemma 5 directly yields the complexity of the GDM algorithm in algebraic operation
(and running time):

I Lemma 10. Given an instance of the optimal prefix free code problem of alternation α,
the GDM algorithm runs in time within O(n(1+ logα) + α(lgn)(1 + lg n−1

α )), all within the
algebraic decision tree computational model.

Proof. Let q be the number of queries performed by the GDM algorithm. Lemma 9 implies
that q ∈ O(α(1 + lg n−1

α )). Plunging this into the complexity of O(q lgn + n lg q) from
Lemma 5 yields the complexity O(n(1+ logα) + α(lgn)(1 + lg n−1

α )). J

Some simple functional analysis further simplifies the expression to our final upper bound:

I Lemma 11. Given two positive integers n > 0 and α ∈ [1..n− 1],

O(α(lgn)(lg n
α

)) ⊆ O(n(1 + lgα))

Proof. Given two positive integers n > 0 and α ∈ [1..n−1], α < n
lgn and α

lgα < n. A simple
rewriting yields α

lgα <
n

lg2 n
and α lg2 n > n lgα . Then, n/α < n implies α × lgn × lg n

α <

n lgα, which yields the result. J
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In the next section, we show that this complexity is indeed optimal in the algebraic
decision tree computational model, in the worst case over instances of fixed size n and
alternation α.

3.3 Lower Bound
A complexity within O(n(1 + lgα)) is exactly what one could expect, by analogy with the
sorting of Multisets: there are α groups of weights, so that the order within each group
does not matter much, but the order between weights from different groups matter a lot.
We prove a lower bound within Ω(n lgα) by reduction to Multiset sorting:

I Lemma 12. Given the integers n ≤ 2 and α ∈ [1..n−1], for any algorithm A in the
algebraic decision tree computational model, there is a set W [1..n] of n positive weights of
alternation α such that A performs within Ω(n lgα) algebraic operations.

Proof. For any Multiset A[1..n] = {x1, . . . , xn} of n values from an alphabet of α distinct
values, define the instance WA = {2x1 , . . . , 2xn} of size n, so that computing an optimal
prefix free code for W , sorted by codelength, provides an ordering for A. W has alternation
α: for any two distinct values x and y from A, the van Leeuwen algorithm pairs all the
weights of value 2x before pairing any weight of value 2y, so that the EI signature ofWA has
α blocks of consecutive Es. The lower bound then results from the classical lower bound
on sorting Multisets in the comparison model in the worst case over Multisets of size n
with α distinct symbols, itself based on the number αn of such multisets. J

We compare our results to previous ones in the next section.

4 Discussion

We described an algorithm computing an optimal prefix free code for n unsorted positive
weights in time within O(n(1+ lgα)) ⊆ O(n lgn), where the alternation α ∈ [1..n−1] roughly
measures the amount of sorting required by the computation by combining van Leeuwen’s
results about optimal prefix free codes [14], known since 1976, with Karp et al.’s results
about Deferred Data Structures [13], known since 1988. The results described above yield
many new questions, of which we discuss only a few in the following sections: how do
those results relate to previous results on optimal prefix free codes (Section 4.1), or to other
results on Deferred Data Structures obtained since 1988 (Section 4.2 and 4.3). We discuss
the potential lack of practical applications of our results on optimal prefix free codes in
Section 4.4, and the perspectives of research on this topic in Section 4.5.

4.1 Relation to previous work on optimal prefix free codes
In 2006, Belal et al. [5], described a variant of Milidiú et al.’s algorithm [16, 15] to compute
optimal prefix free codes, announcing that it performs O(kn) algebraic operations when the
weights are not sorted, where k is the number of distinct code lengths in some optimal prefix
free code. They describe an algorithm claimed to run in time O(16kn) when the weights are
unsorted, and propose to improve the complexity to O(kn) by partitioning the weights into
smaller groups, each corresponding to disjoint intervals of weights3. The claimed complexity

3 Those results were downgraded in the December 2010 update of their initial 2005 publication through
Arxiv [4].
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is asymptotically better than the one suggested by Huffman when k ∈ o(logn), and they
raise the question of whether there exists an algorithm running in time O(n log k).

Like the GDM algorithm, the algorithm described by Belal et al. [5] for the unsorted case
is based on several computations of the median of the weights within a given interval, in
particular, in order to select the weights smaller than some well chosen value. The essential
difference between both works is the use of a deferred data structure, which simplifies both
the algorithm and the analysis of its complexity.

While an algorithm running in time within O(n lg k) would improve over the running
time within O(n(1 + lgα)) of our proposed solution, such an algorithm has not been defined
yet, and for α < 2k our solution is superior to the complexity within O(nk) claimed by Belal
and Elmasry [5] (and even more so over the complexity of O(16kn)).

4.2 Applicability of dynamic results on Deferred Data Structures
Karp et al. [13] defined the first Deferred Data Structures, supporting rank and select on
Multisets and other queries on Convex Hull. They left as an open problem the support
of dynamic operators such as insert and delete. Ching et al. [7] quickly demonstrated
how to add such support in good amortized time.

The dynamic addition and deletion of elements in a deferred data structure (added by
Ching et al. [7] to Karp et al. [13]’s results) does not seem to have any application to the
computation of optimal prefix free codes: even if the list of weights was dynamic, further
work is required to build a deferred data structure supporting prefix free code queries.

4.3 Applicability of refined results on Deferred Data Structures
Karp et al.’s analysis [13] of the complexity of the deferred data structure is in function of
the total number q of queries and operators, while Kaligosi et al. [12] analyzed the com-
plexity of an offline version in function of the size of the gaps between the positions of the
queries. Barbay et al.[2] combined the three results into a single deferred data structure for
Multisets which supports the operators rank and select in amortized time proportional
to the entropy of the distribution of the sizes of the gaps between the positions of the queries.

At first view, one could hope to generalize the refined entropy analysis (introduced by
Kaligosi et al. [12] and applied by Barbay et al.[2] to the online version) of Multisets
deferred data structures supporting rank and select to the computational complexity of
optimal prefix free codes: a complexity proportional to the entropy of the distribution of
codelengths in the output would nicely match the lower bound of Ω(k(1 +H(n1, . . . , nh)))
suggested by information theory, where the output contains ni codes of length li, for some
integer vector (l1, . . . , lh) of distinct codelengths and some integer h measuring the number
of distinct codelengths. Our current analysis does not yield such a result: the gap lengths
between queries in the list of weights are not as regular as (l1, . . . , lh).

4.4 Potential (lack of) Practical Impact of our Results
We expect the impact of our faster algorithm on the execution time of optimal prefix free
code based techniques to be of little importance in most cases: compressing a sequence S of
|S| messages from an input alphabet of size n requires not only computing the code (in time
O(n(1 + lgα)) using our solution), but also computing the weights of the messages (in time
|S|), and encoding the sequence S itself using the computed code (in time O(|S|)), which
usually dominates the total cost. Improving the code computation time will improve on the
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compression time only in cases where the size n of the input alphabet is very large compared
to the length |S| of the compressed sequence. One such application is the compression of
texts in natural language, where the input alphabet is composed of all the natural words [18].
Another potential application is the boosting technique from Ferragina et al. [9], which
divides the input sequence into very short subsequence and computes a prefix free code for
each subsequences on the input alphabet of the whole sequence.

Another argument for the potential lack of practical impact of our result is that there
exist algorithms computing optimal prefix free codes in time within O(n lg lgn) within the
RAM model4: a time complexity within O(n(1 + lgα)) is an improvement only for values of
α ∈ o(lgn).

4.5 Perspectives

One could hope for an algorithm with a complexity that matches the lower bound of Ω(k(1+
H(n1, . . . , nh))) suggested by information theory, where the output contains ni codes of
length li, for some integer vector (l1, . . . , lh) of distinct codelengths and some integer h
measuring the number of distinct codelengths. Our current analysis does not yield such a
result: the gap lengths between queries in the list of weights are not as regular as (l1, . . . , lh),
but a refined analysis might. Minor improvements of our results could be obtained by
studying the problem in external memory, where deferred data structures have also been
developed [19, 3], or when the alphabet size is larger than two, as in the original article from
Huffman [11].

Another promising line of research is given by variants of the original problem, such as
Optimal Bounded Length Prefix Free Codes, where the maximal length of each word
of the prefix free code must be less than or equal to a parameter l, while still minimizing the
entropy of the code; or such as the Order Constrained Prefix Free Codes, where the
order of the words of the codes is constrained to be the same as the order of the weights.
Both problems have complexity O(n logn) in the worst case over instances of fixed input
size n, while having linear complexity when all the weights are within a factor of two of each
other, exactly as in the original problem.

Many communication solutions use an optimal prefix free code computed offline. A
logical step would be to study if any can now afford to compute a new optimal prefix free
code more frequently, and see their compression performance improved by a faster prefix
free code algorithm.
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